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Preface

This book arises from slides and lecture notes that I have used over the years
in my courses Financial Markets and Instruments and Financial Engineering,
which were offered at Politecnico di Torino to graduate students in Mathemat-
ical Engineering. Given the audience, the treatment is naturally geared toward
a mathematically inclined reader. Nevertheless, the required prerequisites are
relatively modest, and any student in engineering, mathematics, and statistics
should be well-equipped to tackle the contents of this introductory book.1 The
book should also be of interest to students in economics, as well as junior prac-
titioners with a suitable quantitative background.

We begin with quite elementary concepts, and material is introduced pro-
gressively, always paying due attention to the practical side of things. Mathe-
matical modeling is an art of selective simplification, which must be supported
by intuition building, as well as by a healthy dose of skepticism. This is the
aim of remarks, counterexamples, and financial horror stories that the book is
interspersed with. Occasionally, we also touch upon current research topics.

Book structure

The book is organized into five parts.

1. Part One, Overview, consists of two chapters. Chapter 1 aims at get-
ting unfamiliar readers acquainted with the role and structure of finan-
cial markets, the main classes of traded assets (equity, fixed income, and
derivatives), and the main types of market participants, both in terms of
institutions (e.g., investments banks and pension funds) and roles (e.g.,
speculators, hedgers, and arbitrageurs). We try to give a practical flavor
that is essential to students of quantitative disciplines, setting the stage
for the application of quantitative models. Chapter 2 overviews the basic
problems in finance, like asset allocation, pricing, and risk management,
which may be tackled by quantitative models. We also introduce the fun-
damental concepts related to arbitrage theory, including market complete-
ness and risk-neutral measures, in a simple static and discrete setting.

2. Part Two, Fixed-income assets, consists of four chapters and introduces
the simplest assets depending on interest rates, starting with plain bonds.
The fundamental concepts of interest rate modeling, including the term

1In case of need, the mathematical prerequisites are covered in my other book: Quantitative
Methods: An Introduction for Business Management. Wiley, 2011.

xv



xvi PREFACE

structure and forward rates, as well as bond pricing, are covered in Chap-
ter 3. The simplest interest rate derivatives (forward rate agreements and
vanilla swaps) are covered in Chapter 4, whereas Chapter 5 aims at pro-
viding the reader with a flavor of real-life markets, where details like day
count and quoting conventions are relevant. Chapter 6 concludes this part
by showing how quantitative models may be used to manage interest rate
risk. In this part, we do not consider interest rate options, which require a
stronger mathematical background and are discussed later.

3. Part Three, Equity portfolios, consists of four chapters, where we dis-
cuss equity markets and portfolios of stock shares. Actually, this is not
the largest financial market, but it is arguably the kind of market that
the layman is more familiar with. Chapter 7 is a bit more theoretical
and lays down the foundations of static decision-making under uncer-
tainty. By static, we mean that we make one decision and then we wait
for its consequences, finger crossed. Multistage decision models are dis-
cussed later. In this chapter, we also introduce the basics of risk aversion
and risk measurement. Chapter 8 is quite classical and covers traditional
mean–variance portfolio optimization. The impact of statistical estima-
tion issues on portfolio management motivates the introduction of factor
models, which are the subject of Chapter 9. Finally, in Chapter 10, we
discuss equilibrium models in their simplest forms, the capital asset pric-
ing model (CAPM), which is related to a single-index factor model, and
arbitrage pricing theory (APT), which is related to a multifactor model.
We do not discuss further developments in equilibrium models, but we
hint at some criticism based on behavioral finance.

4. Part Four, Derivatives, includes four chapters. We discuss dynamic un-
certainty models in Chapter 11, which is more challenging than previous
chapters, as we have to introduce the necessary foundations of option
pricing models, namely, stochastic differential equations and stochastic
integrals. Chapter 12 describes simple forward and futures contracts, ex-
tending concepts that were introduced in Chapter 4, when dealing with
forward and futures interest rates. Chapter 13 covers option pricing in
the case of complete markets, including the celebrated and controversial
Black–Scholes–Merton formula, whereas Chapter 14 extends the basic
concepts to the more realistic setting of incomplete markets.

5. Part Five, Advanced optimization models, is probably the less standard
part of this book, when compared to typical textbooks on financial mar-
kets. We deal with optimization model building, in Chapter 15, and op-
timization model solving, in Chapter 16. Actually, it is difficult to draw
a sharp line between model building and model solving, but it is a fact
of life that advanced software is available for solving quite sophisticated
models, and the average user does not need a very deep knowledge of the
involved algorithms, whereas she must be able to build a model. This is
the motivation for separating the two chapters.
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Needless to say, the choice of which topics should be included or omit-
ted is debatable and based on authors’ personal bias, not to mention the need
to keep a book size within a sensible limit. With respect to introductory text-
books on financial markets, there is a deeper treatment of derivative models. On
the other hand, more challenging financial engineering textbooks do not cover,
e.g., equilibrium models and portfolio optimization. We aim at an intermediate
treatment, whose main limitations include the following:

We only hint at criticism put forward by behavioral finance and do not
cover market microstructure and algorithmic trading strategies.
From a mathematical viewpoint, we pursue an intuitive treatment of fi-
nancial engineering models, as well as a simplified coverage of the re-
lated tools of stochastic calculus. We do not rely on rigorous arguments
involving self-financing strategies, martingale representation theorems, or
change of probability measures.
From a financial viewpoint, by far, the most significant omission concerns
credit risk and credit derivatives. Counterparty and liquidity risk play
a prominent role in post-Lehman Brothers financial markets and, as a
consequence of the credit crunch started in 2007, new concepts like CVA,
DVA, and FVA have been introduced. This is still a field in flux, and the
matter is arguably not quite assessed yet.
Another major omission is econometric time series models.

Adequate references on these topics are provided for the benefit of the interested
readers.

My choices are also influenced by the kind of students this book is mainly
aimed at. The coverage of optimization models and methods is deeper than
usual, and I try to open readers’ critical eye by carefully crafted examples and
counterexamples. I try to strike a satisfactory balance between the need to il-
lustrate mathematics in action and the need to understand the real-life context,
without which quantitative methods boil down to a solution in search of a prob-
lem (or a hammer looking for nails, if you prefer). I also do not disdain just a bit
of repetition and redundancy, when it may be convenient to readers who wish
to jump from chapter to chapter. More advanced sections, which may be safely
skipped by readers, are referred to as supplements and their number is marked
by an initial “S.”

In my Financial Engineering course, I also give some more information on
numerical methods. The interested reader might refer to my other books:

P. Brandimarte, Numerical Methods in Finance and Economics: A MAT-
LAB-Based Introduction (2nd ed.), Wiley, 2006
P. Brandimarte, Handbook in Monte Carlo Simulation: Applications in
Financial Engineering, Risk Management, and Economics, Wiley, 2014
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Part One

Overview



Chapter One

Financial Markets: Functions,
Institutions, and Traded
Assets

Providing a simple, yet exhaustive definition of finance is no quite easy task,
but a possible attempt, at least from a conceptual viewpoint, is the following:1

Finance is the study of how people and organizations allocate scarce
resources over time, subject to uncertainty.

This definition might sound somewhat generic, but it does involve the two es-
sential ingredients that we shall deal with in practically every single page of this
book: Time and uncertainty. Appreciating their role is essential in understand-
ing why finance was born in the past and is so pervasive now. The time value of
money is reflected in the interest rates that define how much money we have to
pay over the time span of our mortgage, or the increase in wealth that we obtain
by locking up our capital in a certificate of deposit issued by a bank. It is com-
mon wisdom that the value of $1 now is larger than the value of $1 in one year.
This is not only a consequence of the potential loss of value due to inflation.2

A dollar now, rather than in the future, paves the way to earlier investment op-
portunities, and it may also serve as a precautionary cushion against unforeseen
needs. Uncertainty is related, e.g., to the impossibility of forecasting the return
that we obtain from investing in stock shares, but also to the risk of adverse
movements in currency exchange rates for an import/export firm, or longevity
risk for a worker approaching retirement. As we show in Chapter 2, we may
model issues related to time and uncertainty within a mathematical framework,
applying principles from financial economics and tools from probability, statis-
tics, and optimization theory. Before doing that, we need a more concrete view

1This definition is taken from [2].
2This holds under common economic conditions; the exception to the rule is deflation, which is
(at the time of writing) a possibility in Euroland. In this book, we will assume that the standard
economic conditions prevail.

1



2 CHAPTER 1 Financial Markets: Functions, Institutions, and Traded Assets

in order to understand how financial markets work, which kinds of assets are
exchanged, and which actors play a role in them and what their incentives are.
We pursue this “institutional” approach to get acquainted with finance in this
chapter. Some of the more mathematically inclined students tend to consider
this side of the coin modestly exciting, but a firm understanding of it is neces-
sary to put models in the right perspective and to appreciate their pitfalls and
limitations.

In Section 1.1, we discuss the role of time and uncertainty in a rather ab-
stract way that, nevertheless, lays down some essential concepts. A more con-
crete view is taken in Section 1.2, where we describe the fundamental classes of
assets that are traded on financial markets, namely, stock shares, bonds, curren-
cies, and the basic classes of derivatives, like forward/futures contracts and op-
tions. In order to provide a proper framework, we also hint at the essential shape
of a balance sheet, in terms of assets, liabilities, and equity, and we empha-
size the difference between standardized assets traded on regulated exchanges
and less liquid assets, possibly engineered to meet specific client requirements,
which are traded over-the-counter. In Section 1.3, we describe the classes of
players involved in financial markets, such as investment/commercial banks,
common/hedge/pension funds, insurance companies, brokers, and dealers. We
insist on the separation between the institutional form and the role of those play-
ers: A single player may be of one given kind, in institutional terms, but it may
play different roles. For instance, an investment bank can, among many other
things, play the role of a prime broker for a hedge fund. Furthermore, depending
on circumstances, players may act as hedgers, speculators, or arbitrageurs. The
exact organization of financial markets is far from trivial, especially in the light
of extensive use of information technology, and a full description is beyond the
scope of this book. Nevertheless, some essential concepts are needed, such as
the difference between primary and secondary markets, which is explained in
Section 1.4. There, we also introduce some trading strategies, like buying on
margin and short-selling, which are essential to interpret what happens on finan-
cial markets in practice, as well as to understand some mathematical arguments
that we will use over and over in this book. Finally, in Section 1.5 we con-
sider market indexes and describe some basic features explaining, for instance,
the difference between an index like the Dow Jones Industrial Average and the
Standard & Poor 500.

1.1 What is the purpose of finance?

If you are reading this book, chances are that it is because you would like to
land a rewarding job in finance. Even if this is not the case, one of the reasons
why we aim at finding a good job is because we need to earn some income in
order to purchase goods and services, for ourselves and possibly other people
we care about. Every month (hopefully) we receive some income, and we must
plan its use. The old grasshopper and ant fable teaches that we should actually
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FIGURE 1.1 Shifting consumption forward and backward in time.

plan ahead with care. Part of that income should be saved to allow consumption
at some later time. Sometimes, we might need to use more income than we
are earning at present, e.g., in order to finance the purchase of our home sweet
home.

Now, imagine a world in which we cannot “store” money, and we have to
consume whatever our income is immediately, no more, no less, just like we
would do with perishable food, if no one had invented refrigerators and other
conservation techniques. This unpleasing situation is depicted in Fig. 1.1(a).
There, time is discretized in T = 3 time periods, indexed by t = 1, . . . , T .3 The
income during time period t is denoted by It, and it is equal to the consumption
Ct during the same period:

It = Ct, t = 1, . . . , T.

3Sometimes, time discretization requires careful thinking about events. Do we earn income
at the beginning or at the end of a time period? In other words, is income earned during time
period t immediately available for consumption during the same time period? We may argue that
income during time period t is available for consumption only during time period t+1. We shall
discuss more precise notation and concepts in Section 2.1.2. Here, for the sake of simplicity,
we assume that every event during a time period is concentrated at some time instant. We
sometimes use the rather awkward term epoch to refer to a specific point in time. We also often
use the term time bucket to refer to a time period delimited by two time instants.
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This state of the matter is not quite satisfactory, if we have excess income in
some period and would like to delay consumption to a later time period. In
Fig. 1.1(b), part of income I2, denoted by L2,3, is shifted forward from time
period 2 to time period 3. This results in an increase of C3 and a decrease of
C2. The amount of income saved can be regarded as money invested or lent to
someone else. By a similar token, we might wish to anticipate consumption to
an earlier time period. In Fig. 1.1(c), consumption C2 is increased by shifting
income backward in time from time period t = 3, which means borrowing an
amount of money B3,2, to be used in time period t = 2 and repaid in time pe-
riod t = 3. Savers and borrowers may be individuals or institutions, and we
may play both of these roles at different stages of our working life. Clearly, all
of this may happen if there is a way to match savers and borrowers, so that all of
them may improve their consumption timing. This is one of the many roles of
financial markets; more specifically, we use the term money markets when the
time span of the loan is short. In other cases, the investment may stretch over a
considerable time span, especially if savers/borrowers are not just households,
but corporations, innovative startups, or public administrations that have to fi-
nance the development of a new product, the building of a new hospital, or an
essential infrastructure. In this case, we talk about capital markets.

Needless to say, if we accept to delay consumption, it is because we expect
to be compensated in some way. Informally, we exchange an egg for a chicken;
formally, we earn some interest rate R along the time period involved in the
shift.4 We may interpret the shift as a flow of money over a network in time
but, unlike other network flows involved in transportation over space, we do not
have exact conservation of flows. With reference to Fig. 1.1(b), we have the
following flow balance equations at nodes 2 and 3:

C2 = I2 − L2,3,

C3 = I3 + L2,3(1 +R),

stating that we give up an amount L2,3 of consumption at time 2 in exchange
for an increase (1 + R)L2,3 in later consumption. The factor 1 + R is a gain
associated with the flow of money along the arc connecting node t = 2 to node
t = 3. This is what the time value of money is all about. The exact value of the
interest rate R, as we shall see in Chapter 3, may be related to the possibility
of default (i.e., the borrower may not repay the full amount of his debt) and to
inflation risk, among other things.

Clearly, there must be another side of the coin: The increase in later con-
sumption must be paid by a counterparty in an exchange. We delay consump-
tion while someone else anticipates it. With reference to Fig. 1.1(c), we have

4In financial practice, whenever an interest rate is quoted, it is always an annual rate. For now,
let us associate the rate with an arbitrary time period.
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the following flow balance equations at nodes 2 and 3:

C2 = I2 +
B3,2

1 +R
,

C3 = I3 −B3,2.

Note that we are expressing the borrowed amount B3,2 in terms of the money at
time t = 3, when the debt is repaid; in other words B3,2 is a flow out of node 3.
This is not essential at all: If we use money at time t = 2, i.e., we consider the
flow B∗3,2 into node 2, the flow balance would simply read

C2 = I2 +B∗3,2,

C3 = I3 −B∗3,2(1 +R).

The two sides of the coin must be somehow matched by a market mechanism.
In practice, funds are channeled by financial intermediaries, which must be
compensated for their job. In fact, there is a difference between lending and
borrowing rates, called bid–ask (or bid–offer) spread, which applies to other
kinds of financial assets as well. Lending and borrowing money through a bank
is what we are familiar with as individuals, whereas a large corporation and a
sovereign government have the alternative of raising funds by issuing securi-
ties like bonds, typically promising the payment of periodic interest, as well
as the refund of the capital at some prespecified point in time, the maturity of
the bond. Corporations may also raise funds by issuing stock shares. Buying
a stock share does not mean that we lend money to a firm; hence, we are not
entitled to the payment of any interest. Rather, we own a share of the firm and
may receive a corresponding share of earnings that may be distributed in the
form of dividends to stockholders. However, the amount that we will receive is
random and no promise is made about dividends, as they depend on how well
the business is doing, as well as the decision of reinvesting part of the earning
in new business ventures, rather than distributing the whole of it.

After being first issued, securities like bonds and stock shares may be ex-
changed among market participants, at prices that may depend on several under-
lying risk factors. Since the values of these factors are not known with certainty,
the future prices of bonds and stock shares are random. In fact, time is inter-
twined with another fundamental dimension in finance, namely, uncertainty.
When we lend or borrow money at a given interest rate, the future cash flows
are known with certainty, if we do not consider the possibility of a default on
debt. However, when we buy a stock share at time t = 0 and plan to sell it
at time t = T , randomness comes into play. Let us denote the initial price by
S(0).5 The future price S(T ) is a random variable, which we may denote
as S(T, ω) to emphasize its dependence on the random outcome (scenario) ω.
We recall that, in probability theory, a random variable is a function mapping
underlying random outcomes, corresponding to future scenarios or states of na-
ture, to numeric values. Let ωi, i = 1, . . . ,m, denote the i-th outcome, which

5Depending on notational convenience, we shall write S(t) or St, as no ambiguity should arise.
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FIGURE 1.2 Representing uncertain states of the world by a scenario fan.

occurs with probability πi. For the sake of simplicity, we are considering a dis-
crete and finite set of possible outcomes, whereas later we will deal extensively
with continuous random variables. A simple way to depict this kind of discrete
uncertainty is by a scenario fan like the one depicted in Fig. 1.2. Therefore,
S(T, ω) is a random variable, and we associate a future price S(T, ωi) with each
future state of the world. The corresponding holding period return is defined as
follows.

DEFINITION 1.1 (Holding period return) Let us consider a holding period
[0, T ], where the initial asset price is S(0) and the terminal random asset price
is S(T, ω). We define the holding period return as

R(ω)
.
=
S(T, ω)− S(0)

S(0)
(1.1)

and the holding period gain as

G(ω)
.
=
S(T, ω)

S(0)
= 1 +R(ω). (1.2)

The gain and the holding period return (return for short) are clearly related. A
return of 10% means that the stock price was multiplied by a gain factor of 1.10.

Remark. The term gain is not so common in finance textbooks. Usually, terms
like total return or gross return are used, rather than gain. On the contrary, terms
like rate of return and net return are used to refer to (holding period) return. The
problem is that these terms may ring different bells, especially to practitioners.
We may use the qualifier “total” when we want to emphasize a return includ-
ing dividend income, besides the capital gain related to price changes. Terms
like “gross” and “net” may be related with taxation issues, which we shall al-
ways disregard. This is why we prefer using “gain,” even though this usage
is less common. We shall not confuse gain, which is a multiplicative factor,
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with profit/loss, which is an additive factor and is expressed in monetary terms.
Furthermore, we shall reserve the term “rate of return” to the case of annual
returns. For instance, interest rates are always quoted annually, even though
they may be applied to different time periods by a proper scaling. We will use
the term “return,” when the holding period may be arbitrary. The following
example illustrates a further element of potential confusion when talking about
return.

Example 1.1 Different shades of return

Consider a holding period consisting of two consecutive years. In
year one, the return from investing in a given stock share is +10%; in
year two the return is −10%. What was the “average” return?

As it turns out, the question is stated in a very imprecise way. It
might be tempting to say that, trivially, the average return was 0%, the
familiar arithmetic mean of +10% and −10%. However, we cannot
really add returns like this. Over the two years, the gain was

G = (1 + 0.10)× (1− 0.10) = 0.99,

i.e., we have lost money, as the holding period return was −1% [we
may recall the rule (1 + x)(1− x) = 1− x2]. Indeed, the problem is
that the very term “average” is ambiguous. If what we actually mean
is the expected value of the annual return, which we may estimate by
a sample mean, then we may say that the arithmetic average is, in fact

Ra =
0.10− 0.10

2
= 0.

But if we mean an average over time, we should deal with a sort of
geometric average over two years:

(1 + 0.10)× (1− 0.10) = (1 +Rg)
2 ⇒ Rg = −0.5013%.

We may also notice that, in this case, an average should refer to a
standard time interval, usually one year. Indeed, we should not con-
fuse the holding period return with an annual (rate of) return. We will
need a way to annualize a generic holding period return.

Returns and gains are random variables. Hence, a natural question is: How
should we model uncertain returns? There is a huge amount of work carried out
on this subject, including plenty of empirical investigation. The next example
shows that there cannot be any single convenient answer.
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Example 1.2 One distribution does not fit all

The most familiar probability distribution is, no doubt, the normal.
Can we say that the distribution of return from a stock share is nor-
mal? Empirical investigation tends to support a different view, as the
normal distribution is symmetric and features thin tails, i.e., it tends
to underestimate the probability of extreme events. In any case, the
worst stock return we may experience is−100%, or (−1), i.e., we lose
all of our investment (this is related to the limited liability property of
stock shares, discussed later). In other words, the worst gain is 0,
and a stock share price can never be negative. Since the support of a
normal random variable is unbounded, (−∞,+∞), according to this
uncertainty model there is always a nonzero probability of observing
an impossible price.

However, let us discuss the matter from a very limited viewpoint,
namely, convenience. One nice feature of a normal distribution is that
if we add normal variables, we get another normal (to be precise, we
should be considering jointly normal variables). This is nice when we
add returns from different stock shares over the same time period. If
we have invested 30% of our wealth in stock share a and 70% in stock
share b, the holding period return for the portfolio is

Rp = 0.3Ra + 0.7Rb, (1.3)

where we denote the return of stock shares a and b by Ra and Rb,
respectively, and Rp is the portfolio return. To justify Eq. (1.3), let us
consider:

Initial stock prices Sa(0) and Sb(0)

Initial wealth W (0)

Stock prices Sa(T ) and Sb(T ) at the end of the holding period
Wealth W (T ) at the end of the holding period

Then, if initial wealth is split as we have assumed, we may write

W (0) =
0.3×W (0)

Sa(0)
· Sa(0) +

0.7×W (0)

Sb(0)
· Sb(0)

= Na · Sa(0) +Nb · Sb(0),

whereNa andNb are the number of stock shares a and b, respectively,
that we buy. At the end of the holding period, we have

W (T ) = Na · Sa(T ) +Nb · Sb(T )

= Na · (1 +Ra) · Sa(0) +Nb · (1 +Rb) · Sb(0)
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= W (0) ·
[
1 +

Na ·Ra · Sa(0) +Nb ·Rb · Sb(0)

W (0)

]
= W (0) · (1 + 0.3 ·Ra + 0.7 ·Rb)
= W (0) · (1 +Rp),

which gives Eq. (1.3).
If Ra and Rb are jointly normal, then Rp is a nice normal, too,

which is quite convenient. Furthermore, if the holding period returnR
is normal, so is the corresponding stock price S(T ) = S(0) · (1 +R).
However, imagine that we take a different perspective. Rather than
considering two stock shares over one time period, let us consider
one stock share over two consecutive time periods. In other words,
we take a longitudinal view (a single variable over multiple time pe-
riods) rather than a cross-sectional view (multiple variables over a
single time period). Let us denote by R(1) and R(2) the two hold-
ing period returns of that single stock share, over the two consecutive
time periods. As we have mentioned, in this case we should not add
returns, but rather multiply gains G(1) and G(2) to find the holding
period gain

G = G(1) ·G(2)

=
[
1 +R(1)

]
·
[
1 +R(2)

]
= 1 +R(1) +R(2) +R(1) ·R(2).

The last expression involves a product of returns. Unfortunately, if
R(1) and R(2) are normal, their product is not. Hence, the holding
period gain G is not normal, and the same applies to the holding pe-
riod return R = G − 1. We may only say that the holding period
return is approximately normal if the single-period returns are small
enough to warrant neglecting their product.

One way out is to consider the logarithmic return, or log-return
for short,

r
.
= log(1 +R) ≡ logG,

where we use log rather than ln to denote natural logarithm. It is inter-
esting to note that, given the well-known Taylor expansion (Maclaurin
series, if you prefer)

log(1 + x) ≈ x− x2

2
+
x3

3
− x4

4
+ · · · ,
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for a small x, the log-return can be approximated by the return. Since

log
[(

1 +R(1)
)
·
(
1 +R(2)

)]
= log

(
1 +R(1)

)
+ log

(
1 +R(2)

)
= r(1) + r(2),

we see that log-returns are additive, and if we assume that they are
normal, we preserve normality over time.

Since
S(T ) = S(0) ·G = S(0) · er,

the normality of the log-return r implies that the gain and the stock
prices are lognormally distributed, i.e., they may be expressed as the
exponential of a normal random variable. On the one hand, this is
nice, as it is consistent with the fact that we cannot observe negative
stock prices. Furthermore, the product of lognormals is lognormal,
which is nice in the longitudinal sense. Unfortunately, this is not
nice in the cross-sectional sense, since the sum of lognormals is not
lognormal, and we get in trouble when we consider the return of a
portfolio of different stock shares.

To summarize, whatever modeling choice we make, some com-
plication will arise. On the one hand, normal returns/gains (and stock
prices) simplify the analysis of a portfolio over a single holding pe-
riod, but they are empirically questionable and complicate the anal-
ysis over multiple time periods. On the other hand, lognormal gains
(and stock prices) are fine for dynamic modeling of a single stock
share, but they complicate the analysis of a portfolio. We may con-
clude that, whatever we choose, we have to accept some degree of
approximation somewhere. The alternative is to tackle complicated
distributions by numerical methods.

Beside risky assets, we shall also consider a risk-free (or riskless) asset.
This is a peculiar asset for which S(T, ω) is actually a constant across states of
the world. A concrete example is a safe bank account, whereby

B(T, ω) = B(0) · (1 +Rf ),

for every state of the world (or scenario) ω ∈ Ω. The rate Rf will be referred
to as risk-free return. If the holding period T is one year, we may refer to the
annual risk-free return as the risk-free rate. The above framework to depict
uncertainty does not only apply to stock shares, but to other financial and nonfi-
nancial assets as well, like bonds, commodities, foreign currencies, etc. As we
shall see in Chapter 2, uncertainty motivates some basic problems in finance,
like portfolio optimization and risk management.
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Now, if we may invest wealth at some prespecified and risk-free interest
rate, why should we bother with risky investments? The answer is that risk
is associated with the hope of a larger return, i.e., risky assets come with a
risk premium. Some investors are willing to assume a limited amount of risk
in exchange for the possibility of an increase in future consumption. Other
investors, however, would just like to get rid of risks they bear:

Imagine a nonfinancial firm subject to research, development, and pro-
duction costs incurred in some currency, for a range of products that are
exported and sold in another currency. For instance, the firm might sign a
contract for the design and construction of a production plant, where the
overall price offered to the client is in US dollars, but actual costs are in-
curred in euro. Adverse fluctuations in currency exchange rates may well
wipe out profit margins. As we shall see, firms may hedge this risk away
using certain derivative assets, such as forward and futures contracts.
With reference to Fig. 1.2, let us assume that the state corresponding to
outcome ω5 is a “bad state,” i.e., a state in which we will be able only to
afford a very low consumption level, possibly because an adverse event
occurs (like illness, accident, or loss of job). Then, we might consider
purchasing shares of an insurance contract, i.e., an asset whose value is
strictly positive when ω5 occurs, 0 otherwise. We assume that the insur-
ance payoff is 1 in the bad state, but any other value will do, if assets are
perfectly divisible and we may scale investments up and down at will.

More generally, an investor may shape the probability distribution of her
wealth according to her taste and appetite for risk. A market participant with
a given risk exposure may change it, and this is the essential function of risk
management. Clearly, for any player hedging a risk exposure away, there must
be another market participant willing to assume that risk or part of it. With
respect to this uncertainty dimension, financial markets play the role of a risk
transfer mechanism. For instance, insurance companies do that in exchange
for a premium, and rely on risk pooling and reinsurance contracts to manage
the resulting risk exposure.6 One of the main problems in this context is the
definition of a fair insurance premium, which is a standard task in actuarial
mathematics.

Note that an insurance contract is an asset from the viewpoint of the policy
owner, but not a tradable one, as we cannot sell our life insurance policy. How-
ever, an insurance company, for which insurance contracts are a liability, may
pool and sell them to interested investors, using a process called securitization,
which is the creation of liquid securities from illiquid assets.7 By doing this, the

6Risk pooling may be considered as a corollary of the law of large numbers. If we aggregate a
large number of small and independent risks, the overall risk should be reduced. This happens,
e.g., with car insurance policies. Risk pooling may fail miserably with strongly correlated risks.
Reinsurance, in a sense, is an opposite mechanism, by which a large risk is fractioned and sold
to third parties.
7See Section 1.2.2.
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risk may be fractioned and sold to investors who are willing to bear part of the
risk for a given price. Securitization is a good example to illustrate the pros and
cons of financial innovation. On the one hand, it allows to create securities that
may offer enhanced return to holders, which is good in a regime of low interest
rates. Furthermore, it may allow to insure against catastrophic risks that could
not be insured otherwise. On the other one, just consider the damage inflicted
to financial markets by the creation of illiquid and opaque mortgage-backed
securities, bundling subprime mortgages and leading to the 2008 financial cri-
sis. The same considerations apply to derivatives, which may be used in quite
different ways by players having different views about the future or different
attitudes toward risk (like hedgers and speculators, discussed later in this chap-
ter). In all of these cases, the fundamental recurring themes are asset pricing
and risk management, which we start considering in Chapter 2.

In later chapters, we will also see that making decisions under uncertainty
is no trivial task, and that in real life, things are complicated by the fact that
the two dimensions that we have considered, time and uncertainty, are actually
intertwined. The resulting picture, illustrated in Fig. 1.3, is a scenario tree,
where uncertainty unfolds progressively over time. The tree consists of a set
of nodes nk, k = 0, 1, . . . , 14. Node n0 is the root of the tree and represents
the current state of the world. Then, over three time instants, t = 1, 2, 3, we
observe a sequence of realizations of random variables representing financial
risk factors. The outcomes ωi of the sample space are associated with scenarios,
i.e., sequences of nodes in the tree. For instance, scenario ω3 corresponds to the
sequence of nodes

(n0, n1, n4, n9).

More formally, each scenario is a sample path of a stochastic process. We
also see that the probability of a scenario depends on conditional probabilities
of events. For instance, the conditional probability of node n4 at time t = 2,
given that we are at node n1 at time t = 1, is π4|1. Hence, the unconditional
probability of scenario ω3 is

P(ω3) = π1|0 · π4|1 · π9|4.

Since we are at state n0, we may write π1 rather than π1|0, but we must be
careful in distinguishing conditional and unconditional probabilities. Stochas-
tic processes and the generation of scenario trees are discussed in Chapter 11.
Dynamic policies in such a context must allow for a way to adapt a strategy
to contingencies, and this leads to challenging multistage optimization models
discussed in Chapter 15.

1.2 Traded assets

Finance revolves around buying and selling assets, pricing them, and assessing
the involved risk. But what are assets, exactly? Open any page of a financial
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FIGURE 1.3 A scenario tree generalizes the scenario fan of Fig. 1.2 by unfolding uncer-
tainty progressively over time.

journal and you will read about assets such as stock shares, bonds, or deriva-
tives. Indeed, these are the assets that we will mostly deal with in this book; yet,
it is essential to get a broader picture. Generally speaking, an asset is anything
that can be transformed into money by its owner:

A financial institution, like a pension fund, may rely on a portfolio of
bonds as an asset: The stream of coupon payments is used to pay pensions
to retired workers.
A nonfinancial firm uses machines and other equipments to produce items
for sale. These items may be innovative products protected by a patent;
the patent is another asset that may be sold.
An individual may use her human capital, possibly a Ph.D. title, to land
a good, rewarding, and hopefully well-paid job. Unlike other assets, a
Ph.D. title is not marketable.
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An insurance policy is an asset that can be transformed into money, but
only when a prespecified event occurs, since it cannot be freely traded.

We see that assets may be both tangible or intangible objects that can be trans-
formed into a sequence of cash flows, and they come in plenty of different
forms. To start putting some order, let us introduce a few basic features to help
us in classifying assets:

Real vs. financial. The bonds owned by a pension fund are financial in nature,
whereas manufacturing equipments are real.

Risky vs. risk-free. Stock shares are considered as risky assets, as their future
price and their dividend income are not known with certainty. A certificate
of deposit issued by a very solid bank is perceived as a risk-free asset, since
we know exactly how much money we are going to collect at maturity, even
though the risk of default cannot be ruled out with absolute certainty.

Liquid vs. illiquid. Liquidity refers to the possibility of selling an asset quickly
and at a fair price; both sides of the coin are relevant. If we need a lot of
money immediately, we may sell our home; however, if we really want to
do it quickly, we may be forced to accept a price that is possibly much
lower than its fair value. A similar consideration applies to manufacturing
equipments, which may be very specific and difficult to sell for a fair price.
On the contrary, most stock shares are very liquid and actively traded on
regulated exchanges. Shares of common funds are liquid and can be re-
deemed on short notice, whereas shares of hedge funds may require several
weeks to be liquidated.

Tradable vs. nontradable. Most financial assets are easily traded on markets,
but we cannot sell our own insurance policy. The fact that an asset is non-
tradable does not diminish its importance. For instance, when we age, we
lose a fraction of human capital, as the sheer number of future cash flows
that we obtain from our job gets less and less. If our human capital is a
rather safe asset, then we may initially consider tilting our strategic asset
allocation toward reasonably risky stock shares. When we age, it is a com-
mon advice that we should rebalance the portfolio toward safer assets.

Exchange-traded vs. over-the-counter. Stock shares are traded on regulated
exchanges, just like some simple and standardized classes of derivatives
(vanilla options and futures contracts). Sometimes, we need a more spe-
cific kind of asset for risk management purposes, which may be tailored
by an investment bank according to our requirements. When an investment
bank engineers a very specific asset, this is sold over-the-counter (OTC),
rather than on regulated exchanges. Plain vanilla options are examples of
exchange-traded derivatives, whereas exotic options are OTC assets. Un-
fortunately, a tailored OTC asset will be harder to sell. Typically, we may
only sell it back to the original issuer by closing the contract, and its price
is less easy to quantify as it is not related to a transparent demand–offer
mechanism.
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In the rest of this section, we outline the most common forms of financial as-
sets, namely, stock shares (equity), bonds, and derivatives, as well as foreign
currencies and hybrid assets. Before doing so, it is useful to lay down a (very)
simplified view of a balance sheet, showing the connection between assets, li-
abilities, and equity. We also discuss briefly the difference between assets and
securities.

1.2.1 THE BALANCE SHEET

A cornerstone of corporate finance is the balance sheet, one of the fundamental
documents periodically issued by firms, which is used by investors and stake-
holders to assess the health state of the firm. The essence of a balance sheet
may be schematically represented in the following tabular form:

Assets Liabilities
Equity

which involves three sections:

1. Assets, as we have seen, can be transformed to positive cash flows, i.e.,
future payments that the firm will receive. Hence, the asset side of the
balance sheet lists what the firm “owns.”

2. Liabilities, on the other hand, are related to negative cash flows, i.e.,
future payments that will have to be covered. Hence, the liability side of
the balance sheet lists what the firm “owes.”

3. Equity is defined as the difference between the total value of the assets
and the total value of the liabilities:

Assets− Liabilities = Equity.

Equity must be positive. When equity is negative, it means that the as-
sets will not be able to generate sufficient cash flows in order to pay the
liabilities, and bankruptcy occurs.

Example 1.3 The balance sheet and financial ratios

Let us consider the extremely simplified and fictional balance sheet
of a firm, reported in Table 1.1. On the asset side, we have current
assets, which are liquid assets, like cash, or assets that can be con-
verted to cash in the short term, like accounts receivable (money that
will be received from customers). Fixed assets are less liquid and can
be converted to cash, but not so quickly. In the case of equipment, the
value may be questionable, and affected by depreciation and amorti-
zation standards, which may be chosen according to tax management
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Table 1.1 Fictional balance sheet (in $ millions) for Example 1.3.

Assets Liabilities
Current assets Current liabilities

Cash $80 Accounts payable $300
Accounts receivable $120 Long-term debt $1800

Fixed assets
Equipment $2500

Total assets $2700 Total liabilities $2100
Total equity: $600

policies. The liability side can also be partitioned into short-term lia-
bilities, like accounts payable (money that must be paid to suppliers),
and long-term debt (possibly bonds). We may check that the two
sides of the balance sheet, total assets and total liabilities plus equity,
are matched. If ten million shares are outstanding, the book value of
each stock share should be

$600

10
= $60.

This is the book value of the firm, which need not correspond to the
market value. If the market value of each share is $40, then we say
that the book-to-market ratio is

$60

$40
= 1.5.

A ratio larger than 1 should suggest that the stock share is under-
priced.

Based on the balance sheet, different ratios may be computed in
order to measure the financial well-being and the solvency of a firm.
A natural ratio is

Total debt ratio =
Total liabilities

Total assets
=

$2100

$2700
≈ 0.78.

More specific ratios consider only short-term items. In general, we
aim at measuring the degree of leverage of a firm (or bank), i.e., the
ratio of debt to equity.

Another fundamental accounting document, which we shall not
discuss in detail, is the income statement, which links sales to net
income, taking costs and taxes into account. Let us assume that net
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income is $200 (million) for our fictional firm. Net income is used to
define important ratios:

Return on assets (ROA), the ratio of net income to total assets:

$200

$2700
≈ 0.074

Return on equity (ROE), the ratio of net income to total equity:

$200

$600
≈ 0.33

Earnings per share (EPS), the ratio of net income to shares out-
standing:

$200

10
= $20

Price-to-earnings (PE), the ratio of price per share to earning per
share:

$40

$20
= 2

These ratios are also used to classify stock shares as follows:

Value stocks are stocks that look undervalued, but could deliver
long-term profits to shareholders. They may feature low PE and
price-to-book ratios.
Growth stocks, on the contrary, look overvalued with respect to
current market, but they may promise further growth opportuni-
ties due to expanding markets, new products, etc. They are gen-
erally rather volatile.

Furthermore, some of these ratios may be used in the multifactor
models of Chapter 9.

We should always keep in mind that the ratios we have just defined may
vary considerably across different industry sectors. Hence, rather than consid-
ering their absolute values, we should compare them against those of similar
firms. By the same token, depending on the nature of the firm we are consid-
ering, the exact kind of items listed in a balance sheet may be very different,
financial or nonfinancial, tangible or intangible, fairly easy or very difficult to
evaluate, liquid or illiquid, as well as short or long term. It is also important to
realize that the cash flows associated with assets and liabilities may be deter-
ministic or stochastic, as the following examples illustrate.
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Manufacturing firms. Specialized equipment for production is an asset, but
a rather illiquid one, just as account receivables (payments to be received
from clients). However, account receivables are usually short-term assets,
and in this sense they contribute to firm’s liquidity, even though they are
not marketable. Assets may also be somewhat intangible, like customer
goodwill or the portfolio of knowledge embedded in human resources. On
the other hand, money that the firm owes to suppliers (accounts payable)
contributes to short-term liabilities. Liabilities also include money that the
firm has borrowed from a bank to finance its short-term operations or its
long-term research and development programs. Alternatively, a large cor-
poration may issue bonds to finance itself. Note that such corporate bonds
are liabilities for the issuer, but they are assets from the viewpoint of bond-
holders, which may be financial intermediaries or individual investors.

Banks. Assets and liabilities for a bank tend to have a financial nature, but they
need not be marketable. One such example is mortgages, unless they are
pooled by a securitization process and sold as mortgage-backed securities.
It is important to understand how the uncertain balance between assets and
liabilities may be a source of risk for banks. Traditional mortgages that
the bank has contracted with its clients and kept in its balance sheet are
long-term assets, whereas the deposits are short-term liabilities, since the
client may withdraw money whenever she feels like it. This maturity mis-
match may result in considerable exposure to interest rate risk, since short-
and long-term assets or liabilities react in different ways to changes in in-
terest rates.8 Banks with a proprietary trading desk may hold any kind of
financial asset, including bonds and stock shares. A bank may finance its
operations using deposits, but since they result in short-term and uncertain
liabilities, they may issue certificates of deposits or bonds, which appear in
the liability side of its balance sheet.

Insurance companies. A life insurance company receives periodic payments
that may be invested in financial assets, whose cash flows will be used to
pay, e.g., pensions and annuities, which appear on the liability side. The
financial assets may be more or less risky, just like the liabilities. A life
insurer faces longevity risk and, possibly, inflation risk if pension benefits
are inflation-indexed. By a similar token, a non-life insurer collects premia
from policyholders and is subject to stochastic liabilities related to, e.g.,
loss of property and car accidents.

These examples just give a vague idea of the variety of assets and liabili-
ties that may appear on balance sheet. The picture is complicated by the fact
that the exact way in which items are listed is far from trivial, and it is affected
by accounting standards and regulations, having an impact on tax payments.
Moreover, there may be little agreement on how assets and liabilities are ex-
actly valued. This results in a possibly remarkable discrepancy between the

8We consider interest rate risk management in Chapter 6.
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book value, i.e., the value reported in the balance sheet, and the actual market
value of an item. This is inevitable, when cash flows are stochastic, requiring
a suitable valuation model. Whatever model we choose, model and correlation
risk come into play. To understand correlation risk, let us consider an insurance
company. If there is a large number of uncorrelated and relatively small risk
exposures, like car accidents, the overall value of the liabilities may be fairly
predictable. However, considerable risk is faced when insuring properties with
large values, or when an unexpected increase in correlation among risks intro-
duces a remarkable amount of volatility.9 By the same token, if a balance sheet
includes derivatives, which one among the many conflicting valuation models
should be used? And how should we estimate their parameters?10

Given this complexity, the accounting profession has (reasonably) given
priority to standardization and consistency, rather than financial accuracy and
mathematical sophistication, issuing a set of debatable guidelines and rules. As
the reader can imagine, this is beyond the scope of this book, and a thorough dis-
cussion of accounting documents like balance sheet and income statement can
be found in corporate finance books. Nevertheless, a bit of understanding of
the balance sheet is also necessary for anyone interested in quantitative models
of financial markets. The two primary assets that we describe in the following,
stock shares and bonds, are clearly related to the balance sheet. Whatever as-
sets and liabilities are listed and how exactly, a fundamental principle applies:
If a firm is liquidated and closed down, assets are sold, generating funds that
are used to pay the outstanding liabilities. If any equity remains, this money is
distributed to stockholders (also called shareholders). This is why stock shares
are referred to as equity, and stock markets as equity markets: Stock shares
represent residual claims on equity.11 Note that creditors, possibly bondhold-
ers, have priority over shareholders, and there is a pecking order for creditors
as well. Bond indentures describe bond features like collateralization, i.e., if
firm’s assets are locked as a guarantee against default, and the level of seniority
(priority in the pecking order) associated with the bond. Clearly, these features

9An example of unexpected increase in correlation is the increase of defaults on mortgage pay-
ments, when a generalized economic crisis leads to an increase in unemployment. In this case,
default is not due to strictly individual issues, like illness or delinquency. The same may apply
when an increase in the interest rates makes floating-rate mortgages more expensive, making
default the only possible choice for some homeowners.
10Another issue with derivatives is their exact purpose. In fact, derivatives may be used to
manage risk exposures and improve the balance sheet. However, they may also be used for quite
risky speculation and, sometimes, drawing the line between the two uses is difficult. A pension
fund might use derivatives in a defensive manner, but in order to prevent reckless behavior
by fund managers, their use may be prohibited altogether. By the same token, at the time of
writing, there is considerable controversy, here in Italy, about how public authorities have used
interest rate derivatives in order to manage public debt. Many risk management strategies have
backfired, which is always a possibility and, per se, is no evidence of reckless management. The
problems are: (a) the appropriateness and size of the exposure that was assumed and (b) the
suspiciously high prices that were paid to investment banks.
11By the way, it should be clear why sovereign governments may issue bonds, but not stock
shares.
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have an impact on the riskiness and value of bonds. Furthermore, the stylized
structure of the balance sheet provides us with a useful representation of trad-
ing strategies12 and an essential link between financial markets and corporate
finance.

1.2.2 ASSETS VS. SECURITIES

Sometimes, it may be useful to draw a line separating assets from securities.
Securities are assets that can be readily purchased or sold on financial mar-
kets, like stock shares and bonds; we may also say that securities are tradable
or marketable financial assets. On the contrary, a health insurance policy is an
asset, but it cannot be sold by its owner and cannot be considered as a secu-
rity. Note that this does not mean that nontradable assets have no value. We
should also note that the line between assets and securities is often not so clear.
For instance a mortgage is an asset for a bank, but an illiquid one, as we said.
However, pools of mortgages may be transformed into liquid securities by se-
curitization, whereby tradable mortgage-backed securities are created. Other
kinds of asset-backed securities (ABS) have been created and traded. By a sim-
ilar token, a commodity like oil is not, per se, a security, even though it can be
traded. The point is that an individual investor cannot really buy and store oil.
However, she can take a position related to oil price by using derivatives written
on oil and other nonfinancial commodities. Real estate funds have also been
created to enable retail investors to take a stake in this family of alternative as-
sets, like residential or commercial real estate. Therefore, in this book, we will
not insist too much on the difference, but we will use the term “security” when
the liquidity feature of an asset needs to be emphasized.

We will investigate liquid securities in some detail, but we should always
keep in mind that liquidity is not only related to the specific kind of assets per
se, but to market conditions as well. In conditions of stress, market liquidity
may be severely reduced, putting a lot of pressure on market players in need for
cash.

Example 1.4 The liquidity trap in thin markets

In a deep and liquid market, a trade has little impact on prices, but
markets may get thin and, needless to say, they have a nasty habit
of doing so at the least favorable moment. Consider a hedge fund
financing the purchase of assets by borrowing money. We will see
later that this strategy is called margin trading. In the balance sheet of
the hedge fund, the borrowed money contributes to the liability side,
whereas the purchased assets are on the asset side. Equity, which is

12See Sections 1.4.4 and 1.4.5.
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the difference of the two sides of the balance sheet, will float with the
value of assets, whereas the liabilities are what they are. Quite often,
hedge funds purchase rather illiquid and risky assets, either to earn
some additional return, or as a part of a complex trading strategy. In
fact, this is why we can redeem shares of a common fund at short
notice, but doing so with a hedge fund requires much more time, as
complex trading strategies involving illiquid assets are not so easy to
unwind.

Under market stress, a flight to quality may occur, whereby mar-
ket participants sell risky assets in order to rebalance their portfolios
toward safer assets, like sovereign bonds of a quite solid country. As
a result, asset values may be considerably reduced, eroding equity of
hedge funds. The thinner the market, the larger this effect.

Well-intended regulations specify that a minimum safety cash
margin must be maintained in order to preserve equity. Hence, when
equity is eroded, the fund may be forced to liquidate assets to raise ad-
ditional cash. But when this happens in bad times, a vicious feedback
cycle may arise. We need to sell illiquid assets to raise cash, which
in turn leads to further a reduction in the market price of the assets,
forcing additional sales. It may even be the case that potential buyers
are aware of the state of the matter and have a strong incentive to wait
for a further reduction of the price asked by a fund in desperate need
of liquidity.

This liquidity trap was a key factor in the famous near-collapse of
Long Term Capital Management (LTCM) in 1998. As a consequence
of Russian default of bonds, market nervousness ensued, leading to
a drop in the market prices of risky securities, with a huge impact
on the highly leveraged portfolio of the fund. Similar issues arose in
the more recent subprime mortgage crisis: Illiquid assets could not
be liquidated because of a market crunch. Thus, investors in need of
cash were forced to sell liquid securities, like stock shares, leading to
a collapse in equity markets as well.

Example 1.5 Are you on-the-run?

Sometimes, there are slight differences in the liquidity of otherwise
equivalent securities. Treasury bonds, i.e., bonds issued by sovereign
governments, are issued and sold on markets at regular time inter-
vals in order to finance public spending and debt. The most recently
issued bonds are called on-the-run, whereas their older relatives are
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called off-the-run. On-the-run bonds are more actively traded, and
liquid, and this has an impact on their price. Some traders may try to
take advantage of this price differential by suitable trading strategies,
buying the cheaper bonds and short-selling the more expensive ones.

1.2.3 EQUITY

As we have pointed out, stock shares represent residual claims on the equity
of a firm, i.e., what remains after liquidating assets and paying liabilities. This
is why we use terms like “equity markets” and, as we shall see later, “equity
derivatives.” Stock shares are risky assets, as suggested by the randomness in
the holding period return of Eq. (1.1). The holding period return as defined there
involves only a capital gain, i.e., a return related to a price change. However,
there is also a possible source of income in the form of dividends distributed to
shareholders. If we denote by D the dividend paid during the holding period
(0, T ), the corresponding holding period return is

R(ω) =
S(T, ω) +D − S(0)

S(0)
. (1.4)

Dividends may be random or not, depending on the length of the holding period.
Dividends are announced with some advance with respect to the ex-dividend
date,13 but they are uncertain for the not-so-close future. Actually, if the holding
period is long enough, the exact timing with which dividends are paid is also
relevant, as they may be reinvested in the stock itself or other assets. Thus, to be
more precise, we should consider D in Eq. (1.4) as the value projected forward
to time T . For instance, if a dividend of 0.60 will be paid in two months and
the holding period is six months,

D = 0.60× er×4/12,

where r is the (continuously compounded) annual interest rate, which we use
to shift the cash flow four months forward.14 Care must be taken with respect
to taxation, as dividend income and capital gains might be taxed in a different
way. We should also mention that an important topic in corporate finance is the

13To be precise, the ex-dividend date does not necessarily coincide with the date on which
a dividend is paid. Since stock shares change hand continuously, a rule must be established to
specify who is going to receive the dividend. If we buy the stock share after the ex-dividend date,
when the stock share is said to go “ex-dividend,” we are not entitled to receive the dividend, but
the previous shareholder is, even if the dividend will be paid later.
14This operation is the reverse of cash flow discounting, and we will discuss such issues in
Chapter 3.
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dividend policy, i.e., the strategy by which a firm decides whether earning will
be reinvested or distributed in the form of dividends.

When we are stockholders, we are actually the owners of shares of a firm,
which is not the case for bondholders. This raises an important issue: Are we
responsible for illegal behavior by the board of directors or damage caused by
defective products? The answer is no, since stock shares are limited liability
assets. This is essential, especially for large corporations, in order to enable
separation between management and ownership. Apart from legal implications,
this feature implies that stock prices cannot be negative and that the worst-case
return from holding stock shares is −100%. From a mathematical viewpoint,
as we have already mentioned, this also implies that a widely used distribution
like the normal, which features an unbounded support, the whole real line R =
(−∞,+∞), cannot be a model for stock returns, but an approximation at best.15

Although this will not play a major role in this book, we must keep in
mind that stock shares have not only an economic nature, but a legal one as
well. In practice, there may be different kinds of stock shares associated with
the same firm, like common and preferred stock shares. The difference may
be in voting rights, which may not be associated with preferred stock shares.
On the other hand, preferred stock shares come with the “promise” of a given
dividend, whereas common stocks do not have any such guarantee. The holder
of a preferred share has priority over holders of common stocks in terms of
dividend payments; however, if no dividend is paid, this does not involve any
default on the part of the firm. On the contrary, if interest on debt is not paid,
a default occurs, with the possibility of the firm being declared bankrupt. This
is a relevant consideration when a firm has to decide on the best way to raise
capital, by issuing either stock shares or debt. The cost of servicing debt is
tax-deductible, which may yield some advantage in terms of taxation. Issuing
new stock shares may dilute property, and it may not be taken well by markets,
resulting in a sudden drop in the stock price. On the other hand, issuing debt
increases the possibility of bankruptcy. This choice of the capital structure is a
fundamental topic in corporate finance.

There are other important features of stock shares that are worth mention-
ing:

Not all stock shares are publicly traded. Some may be kept under the
control of original owners of a firm in order to have the final say in matters
of management. Furthermore, not all firms are listed on financial markets,
since this requires an expensive process, as some standard requirements
must be met in order to be quoted. Private equity funds may be used to
invest in privately held firms.
Unlike other assets, like bonds or options, stock shares do not have a
maturity. However, unlike energy in physics, stock shares may be cre-
ated and destroyed. Sometimes, new equity is floated in order to raise

15As we shall see later, the normal distribution may also be unsatisfactory for other reasons, as
it is symmetric and thin-tailed.
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additional capital. Sometimes, equity disappears when shares are re-
purchased by the firm itself.16 It may also be the case that a firm is
delisted or acquired by another firm (not to mention the unpleasing event
of bankruptcy).
Other exceptional events that may have a relevant impact on the price of
a stock share are:

– Stock splits: Two or more stock shares of the same firm are created out
of a single one. Stock splits may occur when the stock price is quite
large. Increasing the number of outstanding stock shares and reducing
their price may improve liquidity and lower the bid–ask spread. Some-
times, reverse splits occur, which may require some adjustments, e.g.,
to deal with owners of an odd number of shares when the reverse split
is 1-for-2. A reverse split may occur when the stock price is very low.
For instance, a low price may even preclude the listing of a share on
a stock market, and a reverse split may be a corrective action to avoid
delisting.

– Spinoffs: A firm is separated in two firms, and two different stock
shares are created out of each stock share of the original firm.

– Mergers and acquisitions: Two firms are merged into a single one, with
a corresponding merging of pre-existing stock shares.

Once again, all of these operations have rationales and features that are dis-
cussed in detail by books about corporate finance. We observe that their impact
on stock prices must be properly accounted for. If a stock share is currently
traded at a price of $100 and a 2-for-1 split occurs, the new resulting price will
be something like $50, which clearly does not imply a return of −50%. Stock
market indexes, discussed later, should take all of this into due account. By the
same token, derivative contracts must clearly specify how these events are dealt
with.17 A stock split has no effect on the market capitalization of a firm, which
is given by the total number of shares outstanding, times their market price.

1.2.4 FIXED INCOME

Floating stock shares is one way a firm can raise the capital it needs. An alter-
native is to borrow money, which does not necessarily mean literally borrowing
money from a bank. A common way to raise capital in mature financial markets
is issuing a bond. Bonds are also issued by sovereign governments, as well as
by local authorities: Examples are US treasury bonds and municipal bonds. A

16Stock repurchase may have different motivations, as it may be a way to compensate share-
holders without issuing dividends, or a way to reduce the number of outstanding shares, when
they are deemed to trade at a too low price.
17For instance, we shall see that a typical call option suffers from a drop in the underlying asset
price. Usually, call options are not protected against payment of dividends, but they are against
stock splits.
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bond is a security that, in its simplest form, may be described by the following
main features:

The face value F , also called nominal or par value, which is the amount
that the issuer promises to pay back to the bondholder.
The maturity T , i.e., the time at which the face value will be paid back.
The coupon rate c, which is the interest rate applied to the face value to
define periodic interest payments that are paid to the bondholder. These
payments are called “coupons” for historical reasons, as bonds were phys-
ical pieces of paper with coupons that were detached to request payment
of periodic interest.

If c = 0, i.e., no coupon is paid along the bond life, we have a zero-coupon
bond, often referred to as a “zero.” If c > 0, we have a coupon-bearing bond.
Usually, coupons are paid twice a year, but different frequencies may be ar-
ranged.

Example 1.6 A plain coupon-bearing bond

Let us assume that F = $10,000, T = 5, measured in years, and
semiannual coupons are paid, with rate c = 4%. Note that coupon
rates, like all interest rates, are always quoted annually, but should be
adjusted to the actual period they refer to. In this case, since frequency
is semiannual, the actual coupon rate is 2% for six months. This
means that along the bond life there will be ten cash flows to the
bondholder. At times t = k × 0.5, k = 1, 2, . . . 9, measured in years,
the cash flow will be

c

2
× F = $200,

whereas the final cash flow at T = 5 includes both the last coupon
and the face value, amounting to $10,200.

The choice between funding alternatives depends on the circumstances. Most
firms would not issue a bond for a short-term cash need,18 whereas for a long-
term project, issuing bonds may be a better alternative, at least for a suitably
sized firm. Debt securities are liabilities from the viewpoint of the issuing firm,
which has an impact on both taxes and the risk of bankruptcy. On the one hand,
the cost of servicing debt is tax-deductible; on the other one, however, this
increases the risk of default. As we have hinted at before, the choice between
issuing debt or equity is affected by a tradeoff related to these and other issues,
such as the dilution of property, etc.

18A possible alternative is issuing commercial paper.
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Usually, zeros are short-term bonds, whereas coupons are paid for longer-
term maturities. For instance, US treasury bonds may be classified as:

T-bills, zeros, with maturities up to one year
T-notes, coupon-bearing, with maturities up to ten years
T-bonds, coupon-bearing, with longer maturities

Some long-term zeros are in fact traded, but they are often created synthetically
by stripping coupons of long-term coupon-bearing bonds. This is an example
of a financial engineering practice known as unbundling cash flows.19

Usually, when a bond is issued, the coupon rate more or less reflects the
current level of interest rates. If we compare the uncertainty in dividends of
a stock share against a fixed-rate coupon bond, i.e., a bond where c is declared
and fixed, we may understand why bond markets are referred to as fixed-income
markets. Bonds are the basic fixed-income securities, but, as we shall see, this
name also refers to quite different securities whose cash flows depend on the
level of interest rates. Indeed, the term “fixed-income” is quite a bit misleading.
To begin with, we may have bonds whose coupon rate is not fixed, but depends
on the time-varying level of interest rates. We refer to these bonds as floating-
rate bonds, or floaters. Other bonds pay coupons affected by other variables,
like inflation or even a stock market index (we talk of linkers, in such a case).
In fact, we use the term “fixed-income markets” to refer to a wide array of
securities related to interest rates. They include interest rate derivatives, such
as swaps and options, as well as hybrid securities, like convertible and callable
bonds, discussed later.

While the cash flows of a fixed-rate bond are supposed to be known with
certainty, the bond price itself is affected by the following risk factors:

Default risk. The bond issuer may default on the coupon payments or
even on the reimbursement of the face value, totally or partially. In fact,
not all bonds are created equal: Collateral guarantees and bond inden-
tures, which may also specify the order in which bondholders are re-
funded in case of bankruptcy, are relevant. In the event of default, part
or all of the face value or coupons may be lost. Debt restructuring may
even result in a change of maturity.
Inflation risk. This is relevant for long-term bonds. Some bonds pay
real-interest20 coupons, i.e., the coupon rate (or the face value) is adjusted
according to inflation.
Foreign-exchange risk. This is obviously relevant if we invest in foreign
bonds, which may be denominated in a foreign currency.
Interest rate risk. We will explore the inverse relationship between
bond prices and interest rates: When interest rates increase, bond prices

19See Section 1.2.6.4.
20In Section 3.3, we shall see that a nominal interest rate may be eroded by a high inflation rate.
The real interest rate is adjusted for inflation and should reflect actual purchasing power.
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go down and vice versa. A rather paradoxical result is that a floating-
rate bond, with uncertain cash flows, may be less risky than a fixed-rate
bond.21

Interest rate risk is relevant when we do not plan to hold a bond until matu-
rity. If we sell the bond, there may be considerable uncertainty about its future
price. In fact, defining a holding period return for bonds is actually complicated,
since we should also specify how coupons are used exactly. In an asset–liability
management problem, they might just be used to pay a stream of liabilities. If
they are reinvested, there is uncertainty about the future interest rates at which
this will be done, resulting in reinvestment risk.

1.2.5 FOREX MARKETS

Another huge market is the foreign exchange market (FOREX market for short),
where currencies are exchanged. The involved risk factor is the exchange rate
between pairs of currencies, which is relevant also for international equity and
fixed-income portfolios. Nonfinancial firms are also subject to currency ex-
change variability, which explains the number of FOREX derivatives available.
FOREX markets are also the terrain of plenty of speculative short-term trading.

The institutional arrangements behind FOREX markets are not trivial but,
given their limited role in this book, we leave the related issues to the references.
There is one, somewhat annoying, detail that we have to mention. If we read a
stock market quote and the price of a stock share is, say, $12, we interpret this
as the price of one share. Dimensionally, the quote is dollars per share. Hence,
if we buy 3 shares at that price, from a dimensional viewpoint we spend

12
dollar
share

× 3 shares = 36 dollars.

We would probably never think of a quote in terms how many shares we can buy
with 1 dollar, although sometimes, given an available budget, we must find out
how many shares we may afford to buy; hence, we would not consider share per
dollar as a sensible unit. When we buy commodities, the specific measurement
unit plays a more explicit role. We might buy a certain kind of vegetables for,
say, 3.2 per kilogram. Considering dimensions (i.e., units of measurement), if
we buy 2 kg, we pay

3.2
euro
kg
× 2 kg = 6.4 euro.

In this case, too, measurement units have a straightforward interpretation when
figuring out prices and cash flows.

Now, if the exchange rate between USD and EUR is quoted as

EUR/USD = 1.1166,

21See Section 3.5.6.
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what does it mean? At the time of writing, the value of 1 is larger than the
value of $1, and indeed the above ratio tells that we may buy 1.12 dollars with
1 euro, allowing for some rounding and neglecting transaction costs. Alterna-
tively, we may say that the price of 1 euro is 1.12 dollars. This depends on
the perspective we take, and since FOREX quotes always involve two monetary
units, some clarification is in order.

Quoting exchange rates is about stating an equivalence between two amounts
denominated in different countries. We might write something like

EUR 1 = USD 1.1166, (1.5)

or, equivalently

USD 1 = EUR 1/1.1166 = EUR 0.8956. (1.6)

Let us focus on the first case, Eq. (1.5). We say that

EUR is the base currency, and we consider EUR 1 as a fixed number
USD is the quoted currency, and we consider USD 1.1166 as a variable
number

In a currency pair, written as EUR/USD, the currency to the left of the slash is
the base currency, and the currency to the right is the quoted currency.

Depending on which currency is considered as domestic, there are two
types of quotes:

In direct quotation the domestic currency is the quoted currency, i.e., a
variable amount of the domestic currency is quoted against a fixed amount
of foreign currency. This kind of quotation is also called normal or un-
certain for certain.
In indirect quotation the domestic currency is the base currency, i.e., a
fixed amount of domestic currency is quoted against a variable amount of
foreign currency. This quotation is also called reciprocal or certain for
uncertain.

For instance, a Eurozone bank quoting as in Eq. (1.5) would use an indirect
quote. A difficulty with FOREX markets is that different quotations are used on
different markets. The choice may depend on the following:

A matter of perspective, i.e., what our domestic currency is
A matter of convenience: for instance, a quote like EUR/JPY 115.261,
stating that 1 euro corresponds to 115.261 Japanese yen is convenient,
whereas the reciprocal would be less convenient
A matter of priority, as the choice is influenced by the fact that there are
some “major” currencies which are more widely traded than other ones
A matter of local conventions, since, for instance, the conventions in the
UK are different from the conventions in the USA
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A further complication is introduced by bid–ask spreads. The quote in Eq. (1.5)
would more likely read as

EUR/USD 1.1165/67,

stating that the bank is bidding 1.1165 dollars to buy 1 euro, and asking 1.1167
dollars to sell 1 euro. Sometimes, the “three Bs rule” is invoked:

The market maker Buys the Base currency at the Bid (low) price.

Indeed, the Eurozone bank would buy 1 euro for 1.1165 dollars. Needless to
say, a Eurozone bank will also quote an exchange rate like USD/CHF, which
does not involve any domestic currency, to add to the confusion. In this case,
we have to come up with a cross-rate, starting with a mix of direct or indirect
quotes.

An indirect quote may also be considered as a “quantity quotation,” in the
sense that it gives the quantity of foreign currency needed to buy one unit of
the domestic currency. The direct quote may be considered as a “price quo-
tation,” i.e., the price of one unit of foreign currency in terms of the domestic
currency. In this book, we will deal extensively with derivative pricing, includ-
ing forward/futures contracts on currencies. For the sake of uniformity, we will
always interpret ratios as prices, just as we do in commodity prices, rather than
currency pairs. Hence, assuming that we are US investors, we would consider a
price like

1.1166 dollars per euro,

stating that the price of 1 is $1.1166, so that if we want to buy 200.00, we
have to pay

$
1.1166× 200.00 = $223.32.

Note that this is the contrary with respect to a base/quoted currency pair. A
Eurozone investor would consider that as a price at which a euro is sold. We
will neglect bid–ask spreads, and no ambiguity should arise.

1.2.6 DERIVATIVES

Stock shares and bonds are, in a sense, primary assets. They need not be pri-
mary risk factors, as we may build a model relating their prices (or returns) to
underlying risk factors like inflation, oil price, and interest rates.22 However, the
relationship between risk factors and stock share prices/returns is represented
by a mathematical model, possibly estimated by statistical methods, on which
there may be no general agreement.

An incredibly large class of assets has been created on top of primary as-
sets, collectively known as derivatives. A derivative security is a financial asset

22See Chapter 9 on factor models.
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deriving its value from some other variable, by an explicit formula that is writ-
ten in a contract. For instance, if St is the random price of an asset at time
t,23 a typical derivative features a payoff f(ST ) at a well-defined time T , the
maturity of the derivative, for some well-defined function f(·) of the under-
lying asset price at maturity. We insist again on the fact that the function f(·)
is explicitly written in the contract. More complex derivatives feature a payoff
depending on the whole price path until maturity.

If the derivative is written on a stock share or a bond with price St, we say
that the latter is the underlying asset. However, St can be something else, not
necessarily a primary asset. For instance, we may consider:

The price of a nonfinancial asset, e.g., a commodity like gold or oil, pro-
vided that a well-defined price is quoted on exchanges
A risk factor that is not the price of a traded asset, but a financially relevant
variable nevertheless, like an interest rate or a market index,24 or even an
elusive variable like volatility
A risk factor that is not related to financial assets or prices, as in weather
derivatives
The price of another derivative, as in compound options or swaptions

We observe that there is room for a considerable variety of derivatives, as they
may depend on a combination of underlying variables, and they also differ in
terms of the function defining the payoff.

Derivatives may be used for opposite purposes, namely, risk hedging and
speculation. Originally, they were meant to be risk transfer mechanisms and
have quite a long history, definitely predating the development of quantitative
finance. However, they have become quite controversial assets, as the volume
of derivatives outstanding is so huge that it often larger than the market of the
underlying primary assets.25

There are different issues related to derivatives, which may be tackled by
quantitative finance models:

Pricing26: What is the fair value of a derivative, and how is it related to
underlying risk factors?

23Depending on convenience, we will write St or S(t); we will not stick to a single notation, as
no ambiguity actually arises.
24See Section 1.5.
25Statistics published by the Bank for International Settlements in 2014 estimated a total no-
tional amount of OTC derivatives of about $630 trillion. Interest rate swaps accounted for $381
trillion. These numbers are impressive but misleading, since the notional amount of an interest
rate swap, as we shall see, overestimates the value of the derivative and the actual cash flows
that will occur. Nevertheless, there is no doubt that this is a huge market.
26As is common in the literature, we will use the term pricing, even though valuation would be
more correct. The fair value of the derivative is only a component of the actual price asked by a
bank issuing derivatives, since this will include a profit margin and some buffer against residual
risk that cannot be hedged away in real life.
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Hedging: If a market player like an investment bank writes, i.e., creates a
derivative, how can it manage the ensuing risk?
Portfolio management: How can a derivative be used to change the char-
acteristics of a portfolio, increasing or reducing its exposure to selected
risk factors?

A wide array of derivatives is traded, but here we just want to introduce the
three basic families: Forward contracts, futures contracts, and vanilla options.

We should also notice that, beside quantitative issues, there is a host of
regulatory and legal issues related to derivatives, not to mention how should
they be accounted for in financial statements of banks and firms. These are,
however, outside the scope of this book.

1.2.6.1 Forward contracts

A forward contract is an arrangement between two counterparties, which at
time t0 agree to buy and sell, respectively, an asset at a prespecified forward
price F (t0, T ) at a later date T , the maturity of the contract. The part agreeing
to buy the asset is said to hold the long position in the contract, whereas the
part agreeing to sell is said to hold the short position in the contract. Note that
the contract is symmetric, in the sense that both parties are forced to comply
with what they have agreed.

The current spot price of the underlying asset when the contract is written,
denoted by S(t0), is a known number, whereas the spot price S(T ) at maturity
is uncertain. At time t0 the forward price F (t0, T ) is established once for all.
During the time interval (t0, T ) the spot price S(t) will change randomly. By
the same token, the forward price F (t, T ), observed at time t, for delivery at
time T , t ≤ T , will change as well. This is the forward price for new forward
contracts written at a later time t > t0, but the forward price in previously
arranged contracts will not change. As we shall see, the value of a contract will
depend on the difference between the fixed F (t0, T ) and the uncertain F (t, T )
along the life of the contract.

Both the spot price S(t) and the forward price F (t, T ) are stochastic pro-
cesses, which are arguably correlated in some way. We should find a way to
model the relationship between spot and forward price, which may be a non-
trivial task. However, we can immediately see that the following spot–forward
convergence condition must hold at maturity:

S(T ) = F (T, T ). (1.7)

In fact, F (T, T ) is the forward price for an immediate delivery at time t = T ,
and it must be the same as the spot price, otherwise two prices would be quoted
for the same item.27

27Formally, this is an example of the law of one price, which is a consequence of the no-arbitrage
principle that we investigate in Section 2.3.
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FIGURE 1.4 Payoff from forward contracts: (a) long position, (b) short position.

The value of the contract arises from the payoff that will result at maturity.
The payoff for the long position is

S(T )− F (t0, T ).

To see why, observe that, if S(T ) > F (t0, T ), the long position may buy the
underlying asset at the delivery price F (t0, T ) and sell it at the current spot price
S(T ) at maturity, earning a profit. Note, however, that the payoff may well be
negative, since the long position has to buy at the delivery price, even when this
is larger than the prevailing spot price. Going the other way around, the payoff
for the short position is

F (t0, T )− S(T ).

Clearly, the sum of the two payoffs is zero: The profit for the long position is
just the loss for the short position, and vice versa (this is a zero-sum bet, in
some sense). The payoffs are illustrated in the two diagrams of Fig. 1.4, for
the long and short positions, respectively. The long position benefits from an
increase in the spot price, whereas the short position benefits from a decrease in
the spot price. As we shall see in later chapters, it is common jargon to say that
an investor is “long a variable” if she gains from an increase in the variable, and
is “short a variable” if she gains from a decrease in the variable. The variable
may be the price of an asset, an interest rate, and whatnot. When the underlying
variable is not really the price of a deliverable asset, the contract is settled in
cash, i.e., an amount corresponding to the payoff is exchanged (when our payoff
is negative, it means that we owe money to our counterparty). In Chapter 2, we
will see that, using no-arbitrage pricing principles, the forward delivery price
is selected in such a way that the value of the contract is initially zero for both
parties. Thus, payoff and profit coincide, as nothing is paid when entering the
contract. After inception of the contract, the spot price S(t) and the forward
price F (t, T ) will change, and this will affect the value of the contract, which
may drift away from zero.

The fact that the value of a forward contract is initially zero explains why
it may be so attractive for a speculator, at least in principle. In the case of
speculation, the profit from a successful trade in the underlying asset is limited
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by the fact that we have to actually buy (or short-sell) it on the spot market,
which may be limited by the available budget. In principle, nothing is needed
to enter into a forward contract, as the forward price is determined in such
a way that the value of contract at inception is zero. Thus, the return is not
really defined, as the denominator is zero! In practice, it may be the case that
some collateral has to be posted, and in any case there are transaction costs.
Nevertheless, we will see how a considerable leverage may be obtained with
derivatives in general, magnifying both profit and loss opportunities.

The other side of the coin is that a forward contract may be used to eliminate
or reduce risk, i.e., for hedging purposes. Assume that we will have to buy the
underlying asset at time T in the future. Since S(T ) is uncertain, we face some
risk, but by entering into a long position, we will be able to buy at F (t0, T ) no
matter what, eliminating uncertainty altogether. If the contract is settled in cash
rather than by buying the underlying asset, the net cash flow at time T will be

S(T )− F (t0, T )︸ ︷︷ ︸
payoff

−S(T )︸ ︷︷ ︸
purchase cost

= −F (t0, T ), (1.8)

which is negative, since we are buying the asset, and is equivalent to a contract
for physical delivery of the asset. A typical case in which derivatives are settled
in cash is when the underlying is a nontradable asset like a stock market index.
In other cases, physical delivery would be possible in principle, but it might be
avoided because of transportation costs and the like.

Example 1.7 A long hedge

Suppose that in six months we will need 500 ounces of gold, and that
the current (time t = 0) forward price for delivery in 0.5 years (six
months) is

F (0, 0.5) = 1250 $/ounce.

Then, we may enter into a long position for 500 ounces to lock that
price. As a practical remark, we shall see that real-life contracts may
be given for standardized sizes, such as, e.g., 100 ounces. If the con-
tract is settled by physical delivery, we shall buy gold at 1250 dollars
per ounce, no matter what. The corresponding (negative) cash flow is

−1250 $/ounce× 500 ounces = −$625,000.

If the contract is settled in cash, and the spot price at maturity turns
out to be 1150 $/ounce, our cash flow will be

[(1150− 1250)− 1150] $/ounce× 500 ounces = −$625,000,

the same as before. Note that, in this case, we buy at a cheaper spot
price, but this is compensated by a loss on the long forward position.
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If we have to sell the underlying asset, we should enter into a short position,
which just implies a change in sign in Eq. (1.8).

A perfect hedge results if a forward contract matching both the desired ma-
turity and the underlying asset, as well as the contract size, can be agreed. By
the way, note that “perfect hedge” means that risk is completely eliminated, not
that the outcome is necessarily a pleasing one. If we take the long position, as
in Example 1.7, we will regret our decision if the spot price at maturity turns
out to be lower than the delivery price. By the same token, a short position is
not a nice place to be if the underlying spot price increases. Still, risk manage-
ment should be assessed a priori, i.e., ex-ante, not ex-post. The main feature
of forward contracts is that they are actually a private arrangement between the
two counterparties, typically a firm and an investment bank. Forward contracts
are not securities freely traded on regulated exchanges, but rather an OTC agree-
ment. This implies both advantages and disadvantages. On the positive side, the
details of an OTC contract may be tailored according to quite specific needs. On
the negative side:

Since there is no quoted price, which is driven by demand and offer, pric-
ing a specific contract may be troublesome. Hence, a firm in need for a
hedge might adopt a strategy of competitive pricing, which means asking
around for multiple quotes to compare them. A possibly better alternative
is to establish long-term relationships with a single, trustworthy bank.
The contract is not standardized, hence it is not liquid. Unwinding the po-
sition may be difficult if the hedging needs change. This typically implies
assessing the value of the contract and closing it before maturity by a cash
settlement. Note that this is the result of a negotiation process, possibly
implying the valuation of an illiquid contract, and not the immediate sale
of a security on regulated and liquid markets.
A further issue with forward contracts is counterparty risk. There is only
one cash flow, at maturity, possibly a huge one. Imagine that we hold
a short position in a forward contract written on an asset whose price is
dropping dramatically. We are about to collect a remarkable payoff, but
what if the long position walks away? In fact, only creditworthy firms are
accepted as partners in a forward agreement, but counterparty risk is not
completely eliminated.

The solution to liquidity and counterparty risk issues is represented by futures
contracts, which are the exchange-traded equivalent of forward contracts.

1.2.6.2 Futures contracts

Futures contracts are quite similar to forward contracts, in the sense that the
delivery of an underlying asset or commodity is arranged for a future date, at
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a prespecified futures price28 F (t, T ) that is continuously quoted on regulated
exchanges. Futures contracts have specific features aimed at easing the difficul-
ties with forward contracts, namely, liquidity and counterparty risk:

Standardization, to improve liquidity
Daily marking-to-market through a clearinghouse, to ease counterparty
risk

In order to improve liquidity, futures contracts are standardized. This means
that the range of available underlying assets and delivery dates is limited and
cannot be arranged to perfectly suit very specific needs. For instance, certain
contracts are only available for quarterly delivery, i.e., maturing at four months
per year. This makes the use of futures contracts in hedging more difficult, but
it results in a deeper market, where it is easy to buy and sell futures contracts.
Furthermore, a liquid market is less subject to manipulation and cornering.

Example 1.8 Cornering in futures markets

Cornering is an illegal practice, whereby speculators accumulate a
significant amount of the underlying asset. When maturity is ap-
proached, the short positions will be forced to buy the asset at large
prices to honor their contracts, if the supply is limited. To circumvent
this difficulty, contracts should be arranged only for underlying assets
with a sufficiently deep market, or alternatively a range of underlying
assets may be eligible for delivery, rather than a single one. For in-
stance, in futures contracts on bonds, a whole range of bonds may be
delivered, not only a specific one. Clear rules define the equivalence
among similar, but not identical, bonds and the coefficients by which
the delivery price is modified if necessary. For instance, bonds with
comparable maturities, but different coupon rates may be included in
the range for acceptable delivery.

The two essential features of futures contracts aimed at easing counterparty
risk are:

1. The existence of a clearinghouse. The clearinghouse consists of a group
of solid financial institutions, and it steps between the long and the short
positions. The institutional arrangement is depicted in Fig. 1.5. Actually,
if we hold the long position, we do not really “see” any corresponding
short position in the contract. We only deal with the clearinghouse, which
assumes the counterparty risk.

28Please note the essential difference between the future spot price, which is uncertain, and the
futures price associated with a derivative contract.
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FIGURE 1.5 The institutional arrangement of a futures contract. The clearinghouse
manages the margin accounts of the long and short positions.

2. The contracts are marked to market daily. This means that, rather than
settling the contract at maturity, daily cash flows are exchanged at the end
of every trading day. Indeed, both long and short positions are required to
post some margin, in the form of cash or some collateral, on an account
managed by the clearinghouse. If the futures price moves unfavorably, we
will lose some amount of money immediately, rather than at maturity. The
loss is sustained by the margin account, where daily profits are also col-
lected in the case of a favorable movement. There is a minimum amount
that must be maintained on the margin account, the maintenance margin.
If the account level falls below the maintenance margin, a margin call
is issued. Failure to comply with the margin call by posting more cash or
collateral on the margin account has the consequence that our contract is
immediately closed out and assumed by the clearinghouse.

We should note that the actual exposure of the clearinghouse is related to net
position, balancing long and short positions. One proof that the mechanism
does work occurred on October 19th, 1987, a day remembered as the Black
Monday of 1987, when a loss in excess of 20% in the Dow Jones index occurred.
The S&P500 index sustained a similar drop, with a corresponding shock on
index futures. Indeed, some brokers who were members of the clearinghouse
went bankrupt on that day, but the clearinghouse survived and all contracts were
honored.

We will analyze later the full details of futures contracts, as well as their
use for hedging and speculation. For now, we just clarify the mechanics of daily
marking-to-market.29 Imagine that, at time t0, an arbitrary moment within a
trading day, we enter into a long position in a futures contract at price F (t0, T ).
Say that, at the end of the day, corresponding to time t1, when the futures prices
are settled and marking-to-market takes place, the settlement price is F (t1, T ).
The cash flow for the long position at the end of the first day is, for each contract,

F (t1, T )− F (t0, T ),

which is positive if there is an increase in the futures price. The corresponding
cash flow for the short position is F (t0, T ) − F (t1, T ). In general, if the set-
tlement price at the end of day tk is larger than the corresponding price of the

29The picture is a bit simplified here.
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previous day, i.e., if
F (tk, T ) > F (tk−1, T ),

money is drawn from the margin account of the short position and deposited into
the margin account of the long position, and vice versa if there is a decrease in
the futures price. The marking-to-market mechanism generates a series of daily
cash flows for the long position:

F (t1, T )− F (t0, T ),

F (t2, T )− F (t1, T ),

F (t3, T )− F (t2, T ),

...,
F (tm, T )− F (tm−1, T ),

where tm ≡ T . The last cash flow may also be expressed as

S(T )− F (tm−1, T ),

since the futures price at maturity, F (T, T ), converges to the spot price. If we
sum these cash flows, we obtain a telescoping sum:

m∑
i=1

[
F (t1, T )− F (ti−1, T )

]
= F (tm, T )− F (t0, T )

= S(T )− F (t0, T ). (1.9)

Thus, the net sum of cash flows looks just like the payoff from a forward con-
tract. A similar expression, with a change in sign, applies to the short position.
Now, in the light of this result, one could wonder whether there is a signifi-
cant difference between forward and futures contracts. Indeed, there is a subtle
but important difference between the two: The daily cash flows may be rein-
vested immediately at some interest rate, when positive. Negative cash flows,
i.e., losses, may also be financed at some interest rate. We will prove in Section
12.2 that, if interest rates are deterministic, the forward and the futures price are
the same. However, if the interest rate moves randomly, this will have an effect,
especially if there is a definite correlation between futures prices and interest
rates. This is especially the case with interest rate futures. Thus, forward and
futures prices need not be identical.

Liquidity has another, possibly surprising, effect. As a general rule, futures
contracts do not result in the actual delivery of the underlying asset, and most
futures contracts are closed before maturity. To close a futures contract, all
we have to do is entering into an offsetting position: A long position is closed
by entering into an equivalent short position, and vice versa. This feature is
essential both for hedgers and speculators, who do not really want to buy the
underlying asset, especially if the price of the underlying asset is only a proxy
for the actual risk factor that they are exposed to. For instance, a firm that is
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Table 1.2 An illustration of the mechanics of futures markets. All data are in $.

Trade Settlement Daily Cumulative Account Margin
Day price price gain gain balance call

1 1350 16,000
1 1346 −800 −800 15,200
2 1330 −3200 −4000 12,000
3 1334 800 −3200 12,800
4 1315 −3800 −7000 9000 1000
5 1304 −2200 −9200 7800 2200
6 1320 3200 −6000 13,200
7 1330 2000 −4000 15,200
8 1328 −400 −4400 14,800
9 1338 2000 −2400 16,800

exposed to risk factors related to energy or transportation costs may consider
using oil futures as a suitable hedging instrument, but they would certainly not
be interested in the actual trade of oil.

Example 1.9 Mechanics of futures markets

Table 1.2 illustrates a possible scenario in a trade on gold futures. On
day 1, when the gold futures price is $1350 per ounce, we enter a long
position for two contracts, whose unit size is 100 ounces (hence, each
contract specifies the purchase of 100 ounces of gold at a total price
of $135,000). The initial margin required by the broker is $8000 per
contract, hence, we have to deposit $16,000 on the margin account
immediately. The maintenance margin is $5000 per contract. At end
of day 1, the futures is settled at $1346. Hence, we have a cash flow

$(1346− 1350)× 200 = −$800

which is actually a loss, as the futures price declined and we hold a
long position. In Table 1.2, we list the settlement price for a sequence
of days, resulting in daily gains, which are cumulated. The margin
account falls below the maintenance margin at the end of day 4. After
marking-to-market, the margin account balance is only $9000, and
$1000 have to be posted in order to restore the maintenance margin.
We get another margin call after the settlement of the next day. At
some time during day 9, when the futures price is $1338, we close the
contract, with a total loss of $2400.
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1.2.6.3 Vanilla options

Options, like forward and futures contracts, concern buying or selling an asset
in the future at a predetermined price. However, options are more complicated
contracts, since they are asymmetric. In forward and futures contracts, the long
and the short position have symmetric obligations, in the sense that both of them
are forced to buy and sell, respectively, the underlying asset at the agreed price,
whether they like it or not. This results in linear payoff functions, and there is a
unique given price such that the value of the contract is zero at its inception. On
the contrary, options feature nonlinear, possibly complicated payoffs. Further-
more, options involve two quite different roles, the option writer and the option
holder, making the contract asymmetric. The option writer is the counterparty
originally creating the option, which is sold to the holder. To get the point, let
us focus on the simplest family of options, namely, vanilla options. Two kinds
of vanilla options are traded, call and put options.

In a call option, the option holder has the right, but not the obligation, to
buy the underlying asset from the option writer, in the future, at a fixed
price K called the strike price.
In a put option, the option holder has the right, but not the obligation, to
sell the underlying asset to the option writer, in the future, at a fixed strike
price K.

We immediately notice the asymmetric nature of options: The holder has the
right to a choice, and the option writer will have to comply, no matter what.
The writer of a call option will be forced to sell the asset if the holder exercises
the call option, and the writer of a put option will be forced to buy the asset
if the holder exercises the put option. This immediately suggests that: (a) the
payoff will be nonlinear, (b) the option writer should be compensated for this
obligation, and (c) the option will have a positive value at its inception, unlike
linear contracts. In the case of options, the jargon is misleadingly different from
the case of futures: The option writer is said to hold the short position in the
contract, whereas the option holder holds the long position. Since the option
can be a call or a put, in this case the terminology does not refer to who buys or
sells the underlying asset. The long position should be understood as the side
of the contract that profits from an increase in the value of some asset. The long
position in a futures profits from an increase in the futures price, and the long
position in an option profits from an increase in the option value, for both call
and put options. The short position, on the contrary, profits from a drop in the
futures price or in the option value. Clearly, the option writer earns a profit if
the option expire worthless, without being exercised by the holder, who paid the
option premium. As with forwards/futures, the contract can be settled in cash,
rather than by actual delivery of the underlying asset, if this is not tradable, or
it is not convenient to do so.

If the option can be exercised only at a prespecified time T , the option ma-
turity, the option is said to be European-style. If the option can be exercised at
any time before and including a time T , which in this case is an expiration date,
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FIGURE 1.6 Payoff (continuous line) and profit (dotted line) from long positions in
options: (a) call option, (b) put option.

rather than a maturity, the option is said to be American-style. The payoff of a
European-style call option, from the holder viewpoint, is

max{S(T )−K, 0}.

To see why, consider that the holder will exercise only if it is convenient to do
so, which is the case if the spot price S(T ) at maturity is larger than the strike
price K. In such a case, the holder may buy the asset at K from the option
writer and sell it immediately at S(T ) on the spot market. By the same token,
the payoff of the put option, from the holder viewpoint, is

max{K − S(T ), 0}.

If K > S(T ), the option holder may buy the asset on the spot market at S(T ),
and force the option writer to take delivery at the strike priceK. The payoff and
profit to the long position for a call and a put option, respectively, are depicted in
the diagrams of Fig. 1.6. We immediately observe that the payoffs are nonlinear
(piecewise linear, to be precise). Furthermore, payoff and profit are not the same
thing, unlike the case of linear contracts with initial zero value. Since the payoff
cannot be negative, it must be the case that an option has some positive value
at time t = t0, when the option is written, which is the fair price that the writer
should ask.30 Thus, the profit to holders is the payoff shifted down by the option
price. While there is only one “right” forward/futures price, such that the initial
value of the contract is zero, options with different strike prices are traded. We
should expect that the price of a call option, all other factors being equal, is a
decreasing function of the strike price, whereas the price of a put option is an
increasing function of the strike price.

The diagrams for the short position are just the diagrams of Fig. 1.6 turned
upside down, as shown in Fig. 1.7. The option writer is compensated by earning

30We stress again that we confuse “value” and “price.” Option pricing models, as we shall see,
yield a fair value. The actual price will account for profit and some additional fudge against the
risk born by the writer.



1.2 Traded assets 41

S(T )K

Payoff/pro t

(a)

S(T )K

Payoff/pro t

(b)

FIGURE 1.7 Payoff (continuous line) and profit (dotted line) from short positions in
options: (a) call option, (b) put option.

the option price (or premium), but it is important to realize a key difference
between the two roles. If the option expires worthless, the holder will lose the
whole option premium, but this is the worst that can happen. Figure 1.7(a)
shows that there is no bound on the potential loss for a call writer. Thus, two
essential tasks in quantitative finance are finding the fair value of options and
devising ways to hedge the risk of writing options. A significant portion of this
book is devoted to these two problems, and we will find out that they are tightly
linked. We will also see that pricing American-style derivatives is, as a general
rule, much more complicated. To see why, consider the case of an American-
style put option if S(t) < K at t < T , before maturity. The option payoff, if the
option is exercised early at time t, is the same as the European-style option, with
S(T ) replaced by S(t). Hence, the option holder could earn a positive payoff,
K − S(t), by exercising early, but is this really an optimal choice? Should
the option holder exercise immediately, or wait for a better opportunity? The
answer is not really trivial, as it implies the solution of specific kind of dynamic
stochastic optimization problem, an optimal stopping problem.

We observe that the option payoffs for call and put options only depend
on the value of the underlying asset at maturity (or the early exercise date for
American-style options). The payoff is a simple piecewise linear function that
does not depend on the whole history of the underlying asset price. This is why
these simple options are called vanilla.31 Vanilla options are commonly traded
on regulated exchanges, but several OTC variants, involving multiple assets and
more complicated payoff functions are commonly engineered. These options
are often called exotic options.

Just like futures, options may be used for both hedging and speculation
purposes. Let us illustrate these uses by two simple examples.

31Vanilla is the most basic ice cream flavor.
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Example 1.10 A protective put

Let us consider a protective put strategy. We hold an asset, with value
S0 = S(t0), but we are concerned with a possible loss over the hold-
ing period [t0, T ]. One way to hedge risk is buying a put option with
strike K. Then, the overall portfolio value at maturity is the sum of
the asset value and the option value,

ST + max{K − ST , 0} = max{K,ST }.

If we look at the total payoff, it seems that the larger the strike, the
better. Clearly, this is too good to be true. Indeed, we should not
forget that the protection from the put option does not come for free,
and it is a safe guess that a put option with a larger strike price will
be more expensive, too. On the contrary, hedging with forward or
futures contracts can be achieved at no initial cost. However, we give
up the whole upside potential (if ST grows), whereas this is partially
retained by hedging with options.

Example 1.11 A bullish speculation

The current price of an asset is S0 = $100, and we have a strong belief
that it will rise in the near future. One possible strategy is simply to
buy the asset. If we are right and, say, the asset price at some later
time T turns out to be ST = $120, the holding period return is

120− 100

100
= 20%.

Now let us assume that a call option with strike price K = $100 costs
$5. If we buy the call option, the return in the above scenario is a
stellar

max{120− 100, 0} − 5

5
=

15

5
= 300%.

Clearly, there must be some other side of the coin. To get a feeling,
let us assume that we are wrong and the underlying asset price goes
down by 1%. The percentage loss, if we invest in the asset itself, will
be a not too painful 1%: We may be fairly disappointed, but this is a
loss we may well live with. However, the call option return is

max{99− 100, 0} − 5

5
=
−5

5
= −100%,

since the option expires worthless and we lose the whole premium.



1.2 Traded assets 43

1.2.6.4 Hybrid securities, bundling/unbundling, and
securitization

So far, we have considered simple assets like stock shares, plain bonds, and
vanilla options. We have hinted at the possibility of creating more complex as-
sets, like exotic options featuring different payoff structures. One such example
is an Asian option, whose payoff depends on some form of average. The most
natural Asian option involves an arithmetic average over time of the price of a
single underlying asset, like

max

{
1

N

N∑
k=1

S(tk)−K, 0

}
,

where tk, k = 1, . . . , N , is a sequence of sampling instants. Such options are
usually not traded on regulated exchanges, but sold OTC. It may sound surpris-
ing, but we may find both European- and American-style Asian options. The
point is that Asian refers to the form of the payoff, whereas the other labels refer
to the possibility of early exercise.

By assembling or disassembling assets and cash flows, a whole world of
possibly quite complex assets can be created by financial engineering. The
building blocks are often stock shares, bonds, and options, and the basic proce-
dures include:

Cash flow bundling and unbundling
Addition of option-like features to traditional assets
Securitization

Let us illustrate the idea with a few concrete examples.

Convertible bonds. A convertible bond is a corporate bond with an optional
component: The holder has the right to exercise an option to transform it into a
prespecified number of stock shares of the same firm. We may regard this kind
of asset as a security bundling a bond and a sort of call option on a stock share.
To be precise, the bundled derivative is often not really an option, but rather a
warrant. The difference is that when a warrant is exercised, a brand new set
of shares is created, diluting equity. Convertible bonds may be appealing to
issuers as a way to raise capital when the stock share price is perceived by the
management as unjustifiably low. Given the embedded option, the price of the
bond will be higher than otherwise. If the stock share price rises, new stock
shares will be issued and the company will stop servicing debt. Otherwise,
the firm will be able to deduct the cost of debt servicing from profit, with a
tax advantage. Convertible bonds may be appealing to investors as well, when
assessing the company risk is difficult, and they offer upside potential if the firm
grows.32

32Convertibles may also be interesting for sophisticated investors looking for arbitrage oppor-
tunities, which we introduce later. See, e.g., [4].
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Callable bonds. A callable bond is a bond that may be bought back by the
issuer, at a given price, subject to certain limitations. For instance, a bond may
be declared noncallable for a given number of years after its issuance. When an
investor buys a callable bond, she is essentially selling a call option back to the
bond issuer. Hence, all other factors being equal, a callable bond is cheaper than
a noncallable one. The bond issuer will find the call opportunity convenient if
there is a drop in interest rates, since it may refinance debt by issuing brand new
bonds with a reduced coupon rate. This is bad news for the bondholder, as she
will be subject to reinvestment risk: She is forced to get her capital back just
when the bond value is increasing because interest rates are dropping,33 and she
will have to reinvest in new bonds with lower coupons (or old bonds with higher
price and corresponding lower yield).

Structured bonds. A structured bond typically offers a coupon that is not
linked to interest rates, but rather to another index, like a stock market index.
Even if the index return turns out to be negative, the repayment of face value of
the bond is guaranteed. This shows that a structured bond includes an option
element. Indeed, structured bonds were also used to circumvent regulations
forbidding mutual/pension funds from investing in derivatives.

Example 1.12 A structured bond

A rather fancy, but real-life example of a structured bond is the fol-
lowing:

Bond maturity is four years.
At maturity, the payment of the face value is guaranteed, plus a
single coupon; the coupon, too, will be paid at maturity, and no
periodic coupon will be paid.
The coupon is linked to the monthly average value of a basket of
ten stock shares in the telecommunication industry; since matu-
rity is 4 years, 48 monthly observations of ten stock prices are
involved in the average.
The average return of the portfolio might well be negative, but in
this case the coupon will just be zero, and no loss will be sus-
tained.
It will be possible to ask for the anticipated payment of the coupon
every six months, starting from the end of year 2.
It is also possible to ask for the anticipated repayment of the face
value, but this implies a reduction with respect to the face value.

33We will explore the inverse relationship between bond prices and interest rates in Chapters 3
and 6.
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This looks like a very complicated security, but it may be assem-
bled by bundling a zero-coupon bond and an exotic option. The zero
ensures the payment of the face value, which is reduced if early re-
payment is requested. The option is a complicated version of a call.
Let Sj(ti) be the price of each underlying stock share, indexed by
j = 1, . . . , 10, at time ti = i/12, where i = 0, 1, 2, . . . 48. Note that
we are considering one year as the time unit, as customary in finance,
and for the sake of simplicity we are assuming that one year consists
of 12 identical months, which is not really the case. Finally, let us
consider the following payoff:

max

{
0,

1

48

48∑
i=1

10∑
j=1

Sj(ti)−K

}
,

where K, the strike, is just the initial value of the portfolio ,

K =

10∑
j=1

Sj(t0).

This option has three features:

It is a rainbow option, as it is written on multiple underlying
assets.
It is an Asian option, since its payoff is related to the average
price, rather than to a single price at maturity (or early exercise).
It is a Bermudan-style option, since it features early exercise op-
portunities, but only at a limited set of epochs, corresponding to
t = 2, 2.5, 3, 3.5 years; thus, it is halfway between American- and
European-style options.

Long-maturity zeros. As we have seen, zero-coupon bonds are typically asso-
ciated with short maturities. However, we may find zeros maturing in 30 years.
These zeros are often created by investment banks that hold long-term, coupon-
bearing sovereign bonds, and strip the coupons creating zeros. This coupon
stripping procedure is an example of the more general idea of cash flow un-
bundling. As we shall see, the availability of a rich array of zeros is useful in
asset–liability management. Furthermore, they are quite sensitive to changes in
the interest rates, and can be used for speculation and hedging purposes.

Mortgage-backed securities. When a bank issues a mortgage to a homeowner,
it creates an asset in its balance sheet. This asset, however, is not liquid. In order
to create a marketable security, the cash flows from a pool of mortgages can be
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bundled together by a securitization procedure, in order to create a mortgage-
backed security that can be traded. A mortgage-backed security can be risky, as
homeowners may default on payments or, on the contrary, they might repay debt
early, if interest rates move in their favor. The former issue exposes the investor
to default risk, whereas the latter issue creates reinvestment risk. Despite these
risks, these securities promised a larger yield than other bonds, which made
them quite popular when they were introduced. Default risk should be somehow
mitigated by risk pooling. It seem sensible to say that a limited amount of
defaults in a pool of mortgages should be not too much of a trouble. The idea
was pushed to the limit when subprime mortgages, i.e., mortgages offered to
homeowners with a high chance of default, were securitized. Unfortunately,
risk pooling works when risks are not quite correlated. When the subprime
mortgage crisis erupted in 2007, correlations increased sharply, proving that,
indeed, some of the underlying risks were not fully understood. As we discuss
in Section 5.5, the matter was further complicated by tranching procedures,
whereby different layers of securities with different risk levels are assembled,
possibly by a second round of securitization. The ensuing crisis lead to the
demise of Lehman Brothers and to a revision of financial engineering practices
that, at the time of writing, is not quite settled yet.

1.3 Market participants and their roles

After discussing securities that are actually traded on financial markets, let us
take a more concrete look at who market participants are and their roles. In Sec-
tion 1.1, we have described the role of financial markets in terms of consumption
timing and risk transfer, which underlines the following functions performed by
financial markets:

To channel available funds from lenders to borrowers.
To transfer risk, both for individuals and corporations.

Actually there are many other important functions, which includes the ones
listed below:

To provide a payment mechanism (e.g., by bank drafts and credit cards).
We will not consider this side of the financial system, but we have to
bear in mind that this is one of the main historical reasons behind the
creation of finance during the Renaissance in Italy, when the needs of
traders facing travel risk had to be met.
To provide financial services, including the creation and sale of securities
like bonds by both public and private issuers, as well as offering advice
to firms in matters of financial management.
To create market liquidity, i.e., the possibility of buying and selling assets
quickly and at a fair price, as well as to offer portfolio adjustment facili-
ties. The actual complexity of the information technology infrastructure,
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needed to actually perform trading on markets and to take care of asset
custody, should not be underestimated.
To enable the separation between ownership and management in large
corporations, which cannot always be effectively managed by family own-
ers. Corporate growth would otherwise be impossible much beyond the
size of a firm owned by the original founders. This is a controversial mat-
ter, as it may create problems related to bad incentives and agency issues.
Moreover, the excess of financialization of the economy is under scrutiny,
and with good reason.
It has been claimed that the financial system also plays an information
role, since the wide availability of financial data may be used to gather
valuable knowledge. It may be argued that this is a bit debatable, in the
light of speculation excess and some market anomalies studied by behav-
ioral finance.

In concrete terms, all of these functions (and others) are carried out by an inter-
connected network of actors including

Households and private investors
Large corporations and smaller firms
Governments and other public agencies, including local authorities like
municipalities
Financial intermediaries like banks, brokers, dealers, market makers, etc.
Financial service providers like financial advisory firms, common funds,
hedge funds, pension funds, insurance companies, etc.
Regulatory and supervisory agencies, like the SEC (Security Exchange
Commission) in the USA, the equivalent CONSOB34 in Italy, the Basel
Committee, central banks, etc.

All of these actors are connected by markets, which we may think as a platform
on which transactions can be executed, either over-the-counter or on a computer
network. We will discuss a bit of market structures later, but it is fundamental
to immediately understand the two basic structures: Primary markets and sec-
ondary markets. When securities are created, they are first sold on primary
markets. For instance, a corporation may float equity, possibly by an initial
public offering (IPO), which needs some support from investment banks, un-
der the scrutiny of regulatory bodies. By a similar token, a government may sell
bonds to institutional investors using an auction mechanism. Households do not
have direct access to primary markets, but they operate on secondary markets,
where securities may be freely traded after they are issued.

34Commissione Nazionale per le Società e la Borsa.
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Example 1.13 Selling vs. writing options

A common source of confusion is the nature of the obligations related
to selling an option, like a vanilla call or put. If we sell a call option,
are we obligated to sell the underlying asset to the holder if the option
is exercised? The source of confusion is the kind of market on which
the option is sold. The writer is the one selling the option first on
primary markets. Then the option, assuming it is an exchange-traded
one, may change hands on secondary markets, but the obligation is
only assumed by the original writer. If we buy and then sell an op-
tion, we are just selling the rights to a new holder, incurring a profit
or a loss. To avoid any ambiguity, we shall always use the term “op-
tion writing” when we mean “selling on primary markets,” collecting
the option premium and assuming the obligations stated in the con-
tract. When we talk about “selling” an option, it will always refer to
secondary markets, as part of a trading strategy.

Some specific market players, like brokers and dealers, make sure that there
is sufficient liquidity on markets. Before discussing some of these actors in
more detail, let us underline that they play different, but not mutually exclu-
sive, roles. For instance, governments may be net savers or net borrowers, just
like households. However, we know well that our role can change over time,
since we may borrow money at the beginning of our working life (e.g., un-
der the form of a mortgage) and, hopefully, we become savers as our career
progresses. Of particular interest are some key roles that may be played by in-
vestors, non-financial firms, and financial intermediaries: Hedgers, speculators,
and arbitrageurs. These will be discussed later.

1.3.1 COMMERCIAL VS. INVESTMENT BANKS

Banks come in many forms, including retail banks mostly dealing with house-
holds, commercial banks offering services to small-medium firms, and large
investment banks. Investment banks are often involved in mergers and acqui-
sitions, and they also act as underwriters to help corporations in raising capital
by floating equity or issuing bonds. Usually these securities are bought by in-
vestment banks on primary markets, and then sold on secondary markets. Fur-
thermore, there are different legal entities, like banks floating their own equity
and credit unions. Here, we just want to draw the line between deposit- and
non-deposit taking banks.

A deposit-taking institution, like a retail or commercial bank, may also
collect funds from households, who deposit money on accounts that may be
more or less protected against bankruptcy. Bankruptcy may result from careless
credit distribution decisions by the bank, from the difficulty to collect loans
back due to economic stagnation, or, in extreme cases, from risky proprietary
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trading, i.e., trading that the bank carries out itself, rather than on behalf of its
clients. The recent trend has been to reduce this kind of government-backed
protection.

Large investment banks are non-deposit taking, and must raise capital by
other means, like floating equity, issuing bonds, or borrowing money from other
banks. As we shall see in Section 1.4.4, using debt rather than equity has the
results of boosting ROE by a leverage mechanism. The leverage ratio mea-
sures the amount of debt used with respect to own equity. Roughly speaking,
if ROA is 5%, a leverage ratio of 2 will double ROE. Unfortunately, the same
happens in the case of loss, and when excessive debt is used, bankruptcy risk is
considerably increased.35

Since risky proprietary trading activity may hurt clients of deposit-taking
banks, a line between the two types of banks was drawn in the USA after the
1929 crash (Glass–Steagall Act), which is why investment banks could not take
deposits. This line has been blurred in the last decades. Furthermore, the in-
creasing interconnection among market players has increased systemic risk, i.e.,
the possibility that the collapse of a large institution affects many others by a
domino effect.36

1.3.2 INVESTMENT FUNDS AND INSURANCE COMPANIES

Individual investors may feel that they lack the information required to make
sound investment decisions. Furthermore, it may be difficult to properly diver-
sify the risk exposure with a limited budget, as transaction costs preclude the
possibility of many small investments in a broad set of securities. Hence, they
may purchase shares of mutual funds, that are supposedly managed by skilled
professionals who, in exchange for a fee, should provide good return opportuni-
ties to their clients. Shares are continuously created in the case of an open-end
fund. Shares are destroyed when a client redeems her shares of a mutual fund.
On the contrary, closed-end funds have a given number of shares that may be
traded.

There are two basic kinds of fund manager. Active managers try to earn
extra return by skill and by pursuing, for instance, stock-picking and market-
timing strategies. The actual performance of active managers is the subject of
a good amount of controversy. As an alternative, we may consider a passive
manager, who will not try to do any better than the market as a whole, but will
just provide a diversified portfolio tracking a broad index. We shall see that the
passive view has some theoretical support by equilibrium models like the capital
asset pricing model. Clearly, the fee required by a passive manager should be
definitely small with respect to the cost of an active fund.

35Apparently, the leverage ratio of Lehman Brothers before their collapse was something like
20. LTCM, too, had reduced equity by forcing investors out before their near collapse.
36The collapse of Lehman Brothers affected hedge funds, among other things, as they acted as
prime brokers for these funds.
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The ultimate active fund is a hedge fund. Despite the misleading name,37

hedge fund managers pursue possibly very risky and nonstandard investment
strategies in order to earn extra return. When we buy a share of a mutual fund,
we are client of the fund. On the contrary, when we buy a share of a hedge
fund, we are partners of the hedge fund, which has a different legal nature.
This is related to the high risk involved, and in fact only wealthy individuals
are allowed to expose themselves to this level of risk. Furthermore, due to the
complex trading strategies and the use of possibly illiquid assets, it may take a
considerable amount of time to redeem shares of a hedge fund. These barriers
are somewhat circumvented by funds of hedge funds.

The ultimate passive fund is an exchange-traded fund, ETF for short,
which is a just passive fund tracking an index. In order to reduce costs, ETF
shares are not distributed through a commercial network, unlike passive mutual
funds, but they traded on exchanges, just like stock shares. This opens a thorny
issue, since the ETF is supposed to track an index, but an uncontrolled demand–
offer mechanism might cause its value to drift away from the fair one.38 Market-
makers guarantee the necessary liquidity and make sure that the ETF value is
kept in line. Furthermore, a deviation from the fair value would create an arbi-
trage opportunity, which will be exploited by skilled investors, assuming liquid
and well-functioning markets.

There are other non-deposit taking financial intermediaries that are engaged
in fund management, namely, pension funds and insurance companies. These
intermediaries face difficult asset–liability management problems, as they col-
lect pension contributions and insurance premia that must be properly invested
in assets, in order to generate cash flows and meet an uncertain stream of li-
abilities. A non-life insurance company may deal with, e.g., a stream of car
accidents or other property damage. A life insurance company faces a similar
task as a pension fund. Liabilities are uncertain because of longevity risk and,
possibly, inflation-indexation. A defined-benefit pension fund must guaran-
tee to retired workers an income that depends on the received wages, according
to prespecified rules. The contribution level may be increased over time, de-
pending on contingencies. Recently, because of decreasing interest rates and
increasing life expectancy, there has been a shift toward defined-contribution
pension funds, in which there is no defined income, and considerable risk is
borne by the retired worker. It may seem that a defined-benefit fund is much
preferable from the worker’s viewpoint. However, we should also consider that
with a company defined-benefit fund it is more difficult to transfer vested bene-
fits, if a worker changes the employer. Furthermore, a firm with a well-funded
pension fund might become the target of hostile takeovers.

37Risk hedging means reducing risk.
38This cannot happen with a mutual fund, whose net asset value (NAV) is evaluated and re-
ported daily by the fund management.
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1.3.3 DEALERS AND BROKERS

A fundamental requirement of financial markets is liquidity. Hence, there is a
need for institutional players that are continuously available to buy and sell an
asset. These market-makers are also referred to as specialists. This role may be
played by dealers and brokers. It may be the case that the same institution is
both a dealer and a broker, but the two functions are different. To understand the
difference, think of a real estate agent. Her role is to connect two counterparties,
but she does not really own an inventory of houses and apartments. This is the
role of a broker. The broker has no inventory of assets, and as such she does not
suffer from inventory risk. A commission on the trade is paid to the broker to
compensate her. There are also primary brokers associated with hedge funds,
which may need large trades. On the contrary, when we travel around the world
and exchange currencies at an airport, we do business with a dealer. The dealer
does keep an inventory of the assets she trades. Clearly, this inventory entails
some risk. In fact, the dealer is compensated by enforcing a bid–ask spread:39

The bid price is the price at which the dealer is willing to buy the asset
from us.
The ask price is the price at which the dealer is willing to sell the asset
to us.

Needless to say, the ask price is larger than the bid price, and their difference
is a measure of market liquidity. We have seen an example of bid–ask spread
in Section 1.2.5 on foreign exchange, and we will see similar examples in the
case of stock shares when we discuss market mechanisms. The same applies to
interest rates, as the rates at which we may lend or borrow money, when dealing
with a bank, are quite different.

Bid–ask spreads are a form of market friction. Other market frictions are
represented by taxes and by transaction costs associated with trades. These fees
may have a fixed and/or a variable component. In general, thanks to the use of
information technology, transaction costs have been reduced over the years.40

For the sake of simplicity, we will usually ignore such frictions, which may be
a sensible approximation for large institutional investors.

1.3.4 HEDGERS, SPECULATORS, AND ARBITRAGEURS

Market participants are often engaged in risk transfer, which is the traditional
purpose of insurance contracts. More recently, a huge market of derivative as-
sets has been developed, connecting hedgers and speculators. Hedgers are ex-
posed to risk factors, like interest rates and currency exchange rates, and would

39You may also hear the term bid–offer, but I personally prefer bid–ask, since the difference
between bid and ask sounds much clearer to me than the difference between bid and offer.
40Some argue that the reduction of market frictions and the related increase of transaction fre-
quency is far from being a blessing, as it may lead to market instability. High-frequency algo-
rithmic trading strategies are often blamed for this.
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like to reduce or eliminate that exposure. One possibility is to lock a rate for
the future by forward contracts, for instance. Speculators, on the contrary, have
a definite view about the direction that markets will take, and they are willing
to take a bet on it. Thus, speculators may be willing to “buy volatility” from
hedgers. We should realize that these two roles are not mutually exclusive. In-
deed, there are multiple sources of risk that affect the value of a portfolio of
assets, and a market participant might want to shape her portfolio in such a
way that it is made less sensitive to risk factors on which she does not feel like
betting, and more sensitive to other factors on whose direction she is more con-
fident. Hence, she will increase the exposure to some risk factors, behaving as
a speculator, and at the same time she will reduce the exposure to other risk
factors, behaving as a hedger. As a concrete example, an investor may feel that
she is good at picking stock shares that will perform better than the market as
a whole, but she is unsure about the market direction. In the case of a market
crash, being good at stock-picking and lose less than the market may only be a
partial consolation. As we shall see, she will be interested in taking risks that
are specific to some firms, while getting rid of systematic market risk. Hedgers
and speculators need models to quantify uncertainty in risk factors and to un-
derstand how different sources of risk affect asset prices. On the one hand, we
need tools to measure risk. On the other hand, we also need risk management
approaches and decision models to find the best hedging strategy.41

Pricing models are also needed to check the consistency of the prices of
assets that depend on common risk factors. For instance, derivatives written on
the same underlying asset should be somehow related. If prices are inconsistent,
trading strategies may be devised in order to take advantage of price misalign-
ment. In technical terms, we talk of arbitrage opportunities, which are exploited
by arbitrageurs. In liquid and well-functioning markets, it may be argued that
arbitrage opportunities should not last long, as arbitrageurs will be quick in de-
tecting and exploiting them, bringing prices back in line. We will investigate
the mathematics of arbitrage in Section 2.3. There, we shall take a simplistic
view of markets, ignoring market frictions, modeling errors, and liquidity is-
sues. Nevertheless, we will be able to develop powerful pricing models based
on the idea that there should be no arbitrage opportunity in market equilibrium.
As usual, market reality is definitely more complex, and the actual arbitrage
strategies may be not so sharp and may fail to work for an array of reasons.
It may also be argued that arbitrageurs are sort of parasites taking advantage
of what other market participants do, without really contributing to any growth
in the real economy. Nevertheless, arbitrageurs play a vital role to the correct
market functioning by keeping prices in line. One example that we have already
hinted at is the need to ensure consistency between prices of an ETF share and
the index that the fund is supposed to track.

41See Section 2.2.
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1.4 Market structure and trading strategies

Quantitative finance relies on mathematical models that are, by necessity, an
abstraction of market reality. Finding the right level of abstraction and detail
simplification is definitely an art rather than a science, and we are engaged in a
quest for those models that are inevitably wrong, but hopefully useful. While
we may not be interested in an overly detailed view of market structures and
the institutional mechanisms by which a trade is executed, we must be aware of
some fundamental features that we outline here.

1.4.1 PRIMARY AND SECONDARY MARKETS

We have already hinted at the difference between primary and secondary mar-
kets. A primary market is where a security is first traded. The exact mechanism
depends on the kind of security. For instance, an auction mechanism is used to
introduce new government bonds on the market, but the auction is restricted to
institutional investors. In the case of a stock, we should distinguish an IPO, i.e.,
the initial public offering of shares of a firm that is first quoted on the market,
from a seasoned offering, where further equity is floated by an already quoted
firm. An IPO may be a costly business, as several requirements are typically
set by regulators and must be met by a firm floating equity on exchanges. A
pool of investment banks is involved in the process, which may also include so-
called “road shows” to present the offering to investors. Anyway, we must keep
in mind that shares need not be traded on an exchange. Some firms are kept
private and possibly owned by private equity funds. A significant part of equity
can also be kept by the original owners to maintain control over management,
and only the rest are floated and are outstanding on secondary markets.

1.4.2 OVER-THE-COUNTER VS. EXCHANGE-TRADED
DERIVATIVES

Not all assets are traded on regulated exchanges, as some are traded OTC. For
instance, forward agreements are negotiated directly between the two counter-
parts, unlike futures. Another example of OTC derivatives are exotic options
with possibly quite complicated payoffs. The advantage of an OTC agreement
is that it may be tailored to meet specific risk hedging requirements. The dis-
advantage is that the lack of a quoted price may put a firm or a public adminis-
tration at disadvantage. Furthermore, nonstandardized assets are rather illiquid,
which means that unwinding the position may be expensive, if not impossible.

1.4.3 AUCTION MECHANISMS AND THE LIMIT ORDER BOOK

As we have mentioned, auctions are used, for instance, when selling sovereign
bonds on primary markets. Here, we consider secondary markets for stock
shares and describe an auction mechanism based on the limit order book.
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Table 1.3 A five-level limit order book for a liquid stock share.

Bid Ask
Quantity Price Price Quantity

130 77.26 77.28 8881
137 77.25 77.31 273
5855 77.23 77.33 115
300 77.22 77.34 272

13,080 77.16 77.35 738

When a market participant issues an order, she may specify a limit price, i.e.,
the maximum (minimum) price at which she is willing to buy (sell) an asset.
The limit order book is structured on two columns:

On the left, we observe the buy orders, associated with limit prices sorted
in decreasing order. The top level line reports the highest bid price, as
well as the related quantity (possibly related to different orders).
On the right, we observe the sell orders, associated with limit prices sorted
in increasing order. The top level orders are associated with the smallest
ask price.

A five-level limit order book is reported in Table 1.3. The two top quotes
are called the inside quotes. When limit prices cross each other, a trade takes
place. Otherwise, no trade is executed. Orders need not specify a limit price,
as an investor may just issue an order to be executed at the best available price.
It may happen that a large order is executed at different prices, when its size
exceeds the quantity available in an inside quote. The spread between the in-
side quotes reflects liquidity. We may notice that the bid–ask spread in Table
1.3 is quite small. Table 1.4 tells a rather different story, as there is a much
larger spread, especially in percentage terms, between the inside quotes. A
large spread typically comes with less trades during a day and lower volumes.42

Quite often, price-contingent orders are used. There are two features: (1)
the kind of order, which may be buy or sell, and (2) the activation condition,
which is related to the price going above or below a threshold level. Therefore,
we have four basic types of price-contingent orders.

The stop-loss order is a selling order to be activated when the price goes
below a limit. The rationale behind the order is clear: We hold an asset,
and in case of a drop in price we want to cut losses and get rid of it.

42The data reported here are not quite recent but real. They refer to the Paris stock exchange
in 2010, and the first share is a large and well-known French cosmetics producer, whereas the
second one is a less traded producer of containers for overseas shipping.
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Table 1.4 A five-level limit order book for a rather illiquid stock share.

Bid Ask
Quantity Price Price Quantity

108 21.91 22.20 100
55 21.90 22.30 206
110 21.85 22.35 232
260 21.88 22.40 100
54 21.77 22.50 100

The limit-sell order is a sell order activated by a price going above the
threshold. In this case, the idea is that we hold an asset, and we sell it
when a target profit has been achieved.
The limit-buy order is a buy order activated when the price goes below
a limit. This means that the asset is cheap enough to be bought. This
is related to a contrarian strategy, a strategy trying to buy undervalued
stocks.
The stop-buy order is a buy order activated when the price goes above
the threshold. The rationale is that the price is high enough to signal an
increasing trend. This is related to a momentum strategy, i.e., a strategy
trying to chase increasing trends.

High-frequency analysts build models at the limit order level, considering
both prices and volume, with the aim of developing algorithmic trading strate-
gies. Other models at this microstructure level concern the optimal execution
of a large trade in order to minimize market impact. We shall not consider this
operational level in this book.

1.4.4 BUYING ON MARGIN AND LEVERAGE

Buying on margin is a leveraged strategy aimed at boosting returns using debt.
In corporate finance, leverage refers to the ratio of debt over equity. Here we
have a similar use, as leverage means buying an asset by only partially using
our own capital, and borrowing the rest from a broker or a bank.

Imagine that we have a strong view about a specific stock share, a bullish
one in particular. As we have already mentioned, we may use derivatives, rather
than just going long the asset to take advantage of our view, but it may very well
be the case that derivatives written on that specific stock share are not available.
Hence, we may resort to leverage, more specifically, to buying on margin.
We have already met the term margin when dealing with futures contracts and
margin accounts. Here we refer to posting the asset itself as a collateral of our
debt, plus some cash acting as a buffer and guaranteeing the broker that we will
repay the debt even if the asset price drops.
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The mechanism revolves around the concept of margin ratio. Margin re-
quirements specify an initial margin ratio, as well as a maintenance margin.
To grasp the idea, it is useful to refer to the asset–liability–equity triad. In this
case:

The asset is the amount of stock shares that we have purchased.
The liability is the money we owe to the broker.
Equity, as usual, is their difference.

In this case, the margin ratio is defined as the ratio of the value of equity to
the value of assets. If the margin ratio falls below the maintenance margin, we
get a margin call, which means that we have to post additional cash (or other
collateral). Failure to do so will result in our position being liquidated by the
broker. This is best illustrated by an example.

Example 1.14 Margin trading

Say that the current price of a stock share of Boom Corp is $100,
and we buy 100 shares, for a total amount of $10,000. To finance the
trade, we borrow $4,000 from the broker. The initial situation is as
follows:

Assets Liabilities
Stock $10,000 Loan from broker $4000

Equity
$6000

The initial margin ratio is

Equity
Assets

=
$6000

$10,000
= 60%,

and let us assume that the maintenance margin ratio is 30%. Note that,
for the sake of simplicity, we are not considering the interest payment
to the broker. If things turn sour and the stock price falls to $70 per
share, the new balance sheet will be

Assets Liabilities
Stock $7000 Loan from broker $4000

Equity
$3000

and the margin ratio now is just

$3000

$7000
= 43%.
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A natural question is: How far can a stock price fall before getting a
margin call? If we let P be price of the stock, the margin ratio is

100P − $4000

100P
.

The limit price is obtained by setting this ratio to 30% and solving for
P , which yields Plim = $57.14.

The effect of leverage is to boost both profit and loss. To see this, imagine
that our view in the previous example is correct and that the Boom Corp price
rises by 30%. The relevant return is return on equity (ROE), rather than return
on assets (ROA). ROA is the usual rate of return that we consider when dealing
with portfolio management (30% in this case), but ROE is boosted by the fact
that we need to invest only a fraction of the value of the assets. To be a bit more
realistic, let us assume that the broker requires an interest rate of 3% (over the
holding period of the trade). ROE is

$10,000× 0.30− $4000× 0.03

$6000
= 48%.

The more leverage we apply, the better, in the rosy scenario. For instance, if we
increase initial leverage to 50%, ROE is

$10,000× 0.30− $5000× 0.03

$5000
= 57%,

to be compared with the 30% of a normal trade. In practice, with a 50% leverage
we double return, which is eroded by the 3% interest. Clearly, there must be
another side of the coin. Imagine that we are wrong and price plummets to $70.
With a 50% leverage, ROE is

−$10,000× 0.30− $5000× 0.03

$5000
= −63%,

i.e., we double loss and on top of it we have to pay interest on debt.
The example we have considered is rather stylized. The understanding of

margin trading arrangements is essential to interpret what happens in real life,
since it is one of the factors of relevant events like the LTCM demise. The re-
quired cash can also be obtained by posting securities, typically through a repo
agreement,43 i.e., a repurchase agreement. This is a sort of collateralized loan,
as relatively safe securities are sold to a counterparty, with the agreement to
repurchase them later at a given price. It is easy to see that this boils down

43See Section 5.4.
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to borrowing money for a given interest rate. Things may really go badly as
feedback effects may arise for large trades on illiquid assets. Imagine that the
asset involved in a margin trade loses value because of a market crash, and we
start getting margin calls. This may be associated with a reduction in market
liquidity, which implies that we have to sell illiquid securities in order to raise
cash. Unfortunately, selling assets in an illiquid market may have a large im-
pact, leading to a further reduction in asset values, so that we are caught in a
feedback cycle, potentially leading to bankruptcy. The larger the leverage, the
more difficult it is to get out of such a situation.

1.4.5 SHORT-SELLING

Short-selling, like buying on margin, is a strategy that can be used for specu-
lative purposes. In this case, however, the bet is a bearish one, as short-selling
profits from a drop in the asset value. The mechanics of a short sale is as fol-
lows:

At time t = 0 we borrow the asset through a dealer/broker, then we sell it
and deposit the proceeds plus required margin into an account.
At time t = T we close out the position by buying the stock and returning
it to the party from which is was borrowed.

If the asset is a stock share that pays a dividend in the interval (0, T ), a corre-
sponding cash amount must be paid as well. A similar consideration applies to
bonds and coupons. Therefore, when considering profit from a short sale, there
is a change in sign with respect to the usual case:

Profit = initial price − (ending price + dividends).

Of course, the trade will result in a loss if the asset price increases. Furthermore,
borrowing the asset may be expensive, as we must compensate the broker and/or
the asset holder, and possibly limited to a short time interval. Sometimes, a
short-squeeze occurs, i.e., the short position is forced to close the trade at a
very unfavorable time, just when the asset price is rocketing.

In margin trading, we borrow cash to buy an asset, whereas in short-selling
we borrow the asset itself and raise cash, which must be kept into an account
with the broker until the trade is closed. As usual, the lender of the asset protects
herself by requiring the deposit of a margin, in addition to the proceeds of the
short sale. In this case, the margin ratio is defined as equity divided by the
value of the assets owed, which is a liability in this case. This definition of
margin ratio differs from the one we used in the case of buying on margin. As
a mnemonic help, the margin ratio is always defined by dividing equity by the
side that is sensitive to the current value of the traded stock shares, i.e., the asset
side when buying on margin and the liability side when short-selling.
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Example 1.15 A short trade

We are strongly bearish about stock shares of DotBomb. Hence, we
sell 1000 shares at the current price of $100. The proceeds, $100,000,
are deposited in our margin account, together with some collateral. If
the initial margin required is 50%, we must deposit a corresponding
amount in cash or rather safe securities, e.g., T-bills. The initial situ-
ation is as follows:

Assets Liabilities
Cash + T-bills $150,000 Short position in stock $100,000

Equity
$50,000

If we are right, and DotBomb falls to $70, we can close our posi-
tion out and earn $30,000 (neglecting commissions and interest). If,
however, DotBomb rises to $110, the new situation is

Assets Liabilities
Cash + T-bills $150,000 Short position in stock $110,000

Equity
$40,000

and the margin ratio drops to

$40, 000

$110, 000
= 36%.

How much can the stock price increase, before we get a margin call?
If the maintenance ratio is 30%, we must find a stock price P such
that

$150,000− 1000P

1000P
= 30%.

By solving for P , we obtain Plim = $115.38.

This example, too, is somewhat stylized. We are not considering the cost of
the trade, and the fact that it may be expensive to keep the short position open
for a long time. Just like with buying on margin, a realistic assessment of the
return of a trade should be based on ROE. In this case, the actual investment
is the additional margin that has to be posted, which may be rewarded at a
given interest rate. When short-selling an asset is difficult or expensive, a short
position may also be created by taking a position in a derivative. For instance,
we may sell futures contracts written on the asset, as we shall see in more detail
in Chapter 12.
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Short-selling is a highly controversial strategy, as it is believed by some
to be a way to manipulate and depress the markets. A famous case in point
is George Soros’ bet against the GB pound in 1992, when the UK was forced
to leave the European Exchange Rate Mechanism. When markets crash, short
sales are often prohibited, as they are considered by some as a nasty way to gen-
erate a vicious feedback cycle.44 A different view maintains that short-selling is
essential to preserve liquidity, as well as to keep prices in check when markets
roar. We should also consider that short-selling may play a role in hedging and
is not necessarily a speculative strategy. As it happens with many matters in fi-
nance, the jury is out. We have to stress the fact that in later chapters, especially
when discussing pricing by no-arbitrage, we will assume that unlimited short
sales are possible. Clearly, this is a rather idealized view of real markets.

1.5 Market indexes

We are all familiar with stock market indexes like Dow Jones Industrial Average
(DJIA), NASDAQ, Dax, and Nikkei, which are often mentioned on newspapers
and TV news. Some of them have a quite long history (the DJIA has been
computed since 1896), and they are also the underlying factor of several traded
derivatives, like index futures and options. Indexes are tracked and replicated by
index funds and ETFs.45 Most widely known indexes are related to a geographic
area, such as a national stock market, but some indexes, like MSCI (Morgan
Stanley Capital International), refer to world markets. On the other hand, we
may also use more specific indexes, related to a given industry sector, or even
nonfinancial markets, as is the case of indexes for the real estate market.

Indeed, there is a wide variety of indexes, beyond the familiar ones for stock
markets. For instance, the EURIBOR and LIBOR rates are actually indexes,
as they are an average of a set of interbank offered rates. We may also use
bond market indexes, which are a bit more problematic, since bonds, unlike
stock shares, have a maturity. Thus, the pool of bonds in an index must be
continuously updated. Furthermore, we shall see that the volatility of a bond
price gets smaller and smaller as the maturity is approached. An increasingly
important index, VIX, tracks stock market volatility. Intuition would suggest
that such an index should be built by estimating the standard deviation of stock
market return by familiar descriptive statistics. Unfortunately, the usefulness
of such a backward-looking index would be questionable. A forward-looking
index, may rely on the implied volatility of a set of traded options.46

44Short-selling strategies have always been controversial, as illustrated by significant historical
cases reported in [12]. In the USA, in the midst of political discussions about possible prohibi-
tion of short-selling, the practice was even deemed “unAmerican.”
45ETFs may also be short or leveraged. A short ETF allows to take a short position in the index,
profiting from a market drop. A leveraged ETF multiplies profits and losses by a given factor.
46We will discuss implied volatility in Section 13.6. Here, it suffices to say that it is a volatility
such that option prices predicted by a mathematical model match the actual market prices.
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As we can imagine, the definition of a suitable index is far from trivial
and involves managing extraordinary events as well, such as stock splits, merg-
ers/acquisitions, delistings, etc. In order to get a feeling for the involved issues,
it is interesting to compare two well-known indexes:

The Dow Jones Industrial Average, which includes 30 blue chips, and is
a price-based index.
The Standard & Poor’s S&P500 index, which is a broadly based index
involving 500 stock shares, and is a market-value-weighted index.

Generally speaking, we may consider a set of m stock share prices Sk, k =
1, . . . ,m, and define an index

I =
1

D

m∑
k=1

wkSk,

for a given set of weights wk, and a divisor D. Usually, when defining an
average, we assume that weights add up to 1, which in this case would be ob-
tained by choosing D as the sum of weights. Actually, the divisor is initially
chosen in such a way that the resulting index assumes a “nice” value, say, 100
or 1000. More importantly, the divisor is changed when the index composition
is changed to reflect new market conditions,47 or when events such as spinoffs
or mergers/acquisitions take place. The defining features of the aforementioned
indexes are:

Weights wk are all set to 1 for the DJIA, i.e., the index essentially tracks
a portfolio consisting of one stock share for each name in the index.
Weights in the S&P500 index correspond to the number of outstanding
stock shares (free-float only); hence, the portfolio reflects the actual mar-
ket capitalization of each firm.

Example 1.16 Price-based vs. market-value-weighted indexes

Consider the following scenario:

Stock share A has an initial price SA(0) = $25, at time t = 0,
which is increased by 20% to SA(T ) = $30 at time t = T . The to-
tal market capitalization is $500 million (hence, 20 million shares
are outstanding).

47An interesting market anomaly is the plunge in the price of stock shares that are dropped from
an index. Rationally, this should not imply anything in terms of intrinsic firm value, but the
consequent reduction in trading activity on that stock share may have a significant effect.
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Stock share B has an initial price SB(0) = $100, which drops by
10% to SB(T ) = $90 at time t = T . The total market capitaliza-
tion is $100 million (hence, one million shares are outstanding).

A price-based index would initially be

25 + 100

2
= 62.5,

where we assume a divisor D = 2, which is really inconsequential
when considering percentage changes in the index. At the end of the
time horizon, the new index value would be

30 + 90

2
= 60,

with a drop of 4%. Note that the price drop of the more expensive
stock share dominates here, but this does not reflect the true market
weights. Let us consider a market-value-weighted index, with initial
value

25× 20 · 106 + 100× 1 · 106

106
= 600,

where we set D = 106. The new index value would be

30× 20 · 106 + 90× 1 · 106

106
= 690,

with an increase of 15%.

We notice a relevant difference in the behavior of the two indexes. The dif-
ference may also be reflected in the way the index is adjusted when something
new happens. Consider, for instance, a 2-for-1 stock split. Clearly, a market-
value-weighted index would not be affected, but an adjustment would be needed
for the price-based index in order to preserve the continuity in its value.

Example 1.17 Index adjustments

Let us consider how to manage an index for a stock market on which
two stocks are traded. Company A has 50 shares outstanding, with
current price $2, and company B has 10 shares outstanding, with cur-
rent price $10. The current value of a price-based index is 6, whereas
the value of a market-value-weighted index is 100. Let us consider
the following scenario: The price of Company A’s stock increases to
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$4 per share, and CompanyB’s stock splits 2 for 1 and is priced at $5.
How will the values of the price-based and market-value-weighted in-
dexes change?

To begin with, we have to find the divisors. The current divisor
for the price-based index is clearly D = 2, since

2 + 10

2
= 6.

Then, it is important to notice that, actually, the second stock price
did not change. The drop from $10 to $5 merely reflects the split.
After the change in price of the first share, without considering the
stock split, the new index would be

4 + 10

2
= 7.

The new divisor is changed in order to reflect the split without intro-
ducing a discontinuity in the index:

4 + 5

D′
= 7 ⇒ D′ =

9

7
.

The divisor for the market-value-weighted index is found as fol-
lows:

2× 50 + 10× 10

D
= 100 ⇒ D = 2.

However, the stock split is inconsequential for this index and does not
require any adjustment in the divisor. Hence, the new index value is

50× 4 + 20× 5

2
= 150.

An important observation is that indexes are not adjusted when dividends
are paid. This is relevant, as a stock share price experiences a correspond-
ing drop when a dividend is paid, and this will also affect the index, as well
as derivatives written on the index. In option pricing models, the collective
dividend behavior of the stock shares in the index may be approximated by a
continuous-time dividend yield. Also note that the index is nondimensional and
should be regarded as a number, rather than as a price. When defining deriva-
tive payoffs, the index must be multiplied by a given number in order to define
a monetary payoff. For instance, the S&P500 index is multiplied by 250 to be
converted into a monetary value.
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Problems

1.1 Consider assets A1 and A2, whose holding period returns R1 and R2, in
five possible scenarios, are given in the following table:

Scenario Probability R1 R2

ω1 0.2 0.03 0.09
ω2 0.2 0.17 0.16
ω3 0.3 0.28 0.10
ω4 0.2 0.05 0.02
ω5 0.1 −0.04 0.16

Note that the probabilities are not equal, and that returns are not given as a
percentage (if you prefer, you might also write, e.g, R1(ω1) = 3%). Find the
expected value and the standard deviation of the returns of the two assets, as
well as their (Pearson) coefficient of correlation.

1.2 We are pursuing a short-selling strategy, where we have shorted 300 shares
of XYZ, at price 40. The initial margin required by the broker is 50% of the
overall value, and the maintenance margin is 25%. What is the limit price of the
stock before we are slapped with a margin call?

1.3 Consider a European-style call option maturing in five months, with strike
price K = 40, written on a stock share with current price S(0) = 35. We
(very unrealistically) assume that the uncertainty about the stock price at ma-
turity T = 5/12 may be represented by eight equally likely scenarios: S(T ) ∈
{20, 25, 30, 35, 40, 45, 50, 55}. Find the expected value of the option payoff.

1.4 Let us consider a market index for a tiny market, on which just 3 stocks are
traded. In this market, 50,000 shares of the first firm are outstanding, 100,000
of the second one, and 80,000 of the third one. The index is a weighted-average
of the three stock prices, reflecting the capitalization of the three firms. The
current stock prices are 50, 30, and 45, respectively. To make the index
easy to read and nondimensional, it is divided by a divisor (established once for
all and kept constant in time; we rule out exceptional events like those described
in Example 1.17); assume that with that choice of divisor, the index now is 118.
We also assume that the stock shares do not pay any dividend.

The following table lists the stock prices (in EUR) for a three-day scenario
(a single sample path):

Day 1 2 3
Price of stock 1 52 48 45
Price of stock 2 28 25 30
Price of stock 3 43 40 39

Find the corresponding scenario for the index value.
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Further reading
Most general books on financial asset management, like [1] and [5], have
one or more sections on financial institutions and market mechanisms.
More detail is provided in specific texts like [8]; see also [14].
Many useful pieces of information on financial institutions are also given
in [11], with a nice twist toward risk management.
Market microstructure is dealt with in [7].
The first chapters of [13] specifically cover the market structure for bond
and debt markets. Bond markets, including bonds with embedded op-
tions, are also treated in [6].
An adequate discussion of FOREX markets is provided by [15].
A full understanding of how financial markets and institutions work can-
not be achieved without some knowledge of real stories. The case of
Long Term Capital Management is described, among others, in [9]. An-
other very useful reading is [3].
While this book is concerned with financial markets, it is also essential
to acquire some background knowledge on corporate finance, which is
provided, among many others, by [10].
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Chapter Two

Basic Problems in
Quantitative Finance

In the following chapters, we will discuss at length how quantitative finance
methods may be used to solve practically relevant problems. Before embarking
on a detailed investigation, it is important to get a broad overview of the most
relevant themes and their mutual relationships. Bearing this in mind, in this
chapter we introduce simplified versions of the following problems:

Portfolio optimization. Given a set of risky financial assets, whose return is
uncertain, we must decide the fraction of wealth allocated to each of them,
in order to find a satisfactory risk–reward tradeoff, while complying with a
set of constraints.

Risk measurement and management. Measuring risk is not only essential for
financial firms when selecting a portfolio of assets. Nonfinancial firms are
subject to financial risk as well, in terms of exposure to adverse movements
in interest or currency exchange rates. The next logical step is managing
risk, which typically involves hedging some risk factors away by suitable
policies, and possibly taking a position on those risk factors on which we
believe we can place a reasonable bet.

Asset pricing. Finding the fair price of a financial asset is useful when we want
to determine whether it is under- or overpriced, in order to drive portfolio
decisions and, possibly, to detect arbitrage opportunities (a concept that we
will formalize in this chapter). Another typical application is dealing with
over-the-counter (OTC) derivatives, for which quoted prices on regulated
exchanges are not available; prices of OTC derivatives are quoted on re-
quest by investment banks, and we might wonder whether the asked price
is fair or not. Finally, we need an asset pricing model for risk management,
too, since we need to assess the relationships between a set of underlying
risk factors and the price of assets ranging from fairly simple bonds to quite
complex derivatives.

To introduce the first of these themes, in Section 2.1 we describe the classical
Markowitz approach to static portfolio optimization in terms of mean–variance
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68 CHAPTER 2 Basic Problems in Quantitative Finance

efficiency. We also outline possible generalizations, in terms of alternative ways
of tackling the risk–reward tradeoff, as well as dynamic models. In Section 2.2,
we stress the role of models quantifying the sensitivity of portfolio value or re-
turn with respect to underlying risk factors. These models play a key role in risk
management policies by immunization, among other things. From a theoretical
viewpoint, Sections 2.3 and 2.4 are perhaps the key portion of this chapter, as
we introduce a powerful pricing approach based on absence of arbitrage op-
portunities. First, by a set of simple but quite relevant examples discussed in
Section 2.3, we will be immediately able to appreciate both its appeal and its
limitations. Then, we delve a bit into the mathematics of arbitrage in Section
2.4.

In this chapter we also include two supplements. Section S2.1 lays down
the fundamental concepts of multiobjective optimization, which is the foun-
dation of mean–risk portfolio optimization models. Then, in Section S2.2 we
summarize duality for linear programming (LP), which is used in Section 2.4.
LP duality1 is essential in many computational approaches, but here we use it
to relate the feasibility of an LP model to the boundedness of another one. The
existence of arbitrage opportunities would lead to an unbounded profit in a cer-
tain LP, but the fact that its dual is feasible precludes the existence of such a
money-making machine.

2.1 Portfolio optimization

In Chapter 1, we have introduced the essential families of securities (equity,
fixed income, and derivatives) that are traded on financial markets. A natural
problem, then, is how to allocate wealth among those different assets, shaping
our portfolio. This gives rise to a wide array of decision problems, differing
with respect to a few essential features:

The role of time. We may tackle static or dynamic problems. In a static prob-
lem, we only consider two time instants, now and the end of the holding
horizon, whereas in a dynamic problem we have to make a sequence of de-
cisions, possibly taking the unfolding of random events into account. Fur-
thermore, we may formulate models in discrete or continuous time. This
has an obvious impact on the complexity of the problem and the way the
inherent uncertainty is represented.

The hierarchical level. Problems may have a more strategic or operational fla-
vor. At a strategic level, we may want to allocate wealth to broad families
of assets, like domestic/foreign stock shares vs. domestic/foreign bonds.
At a lower hierarchical level, say, a tactical one, individual stock picking
may be considered. Going down the decision hierarchy, the time horizon
is normally shorter and shorter. At the operational level, we might even

1We deal extensively with duality in Sections 16.1.4 and 16.3.2.
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consider the optimal trade execution in real time, which involves market
micro-structure issues, in order to minimize the price impact of a trade.
Algorithmic trading strategies are also concerned with real-time execution
issues.

Asset only vs. asset–liability management problems. A private investor may
consider a portfolio problem in terms of pure asset allocation, but an in-
surance company or a bank must take liabilities into consideration as well.
Therefore, we need a joint characterization of the risk factors affecting both
assets and liabilities. Liabilities might also be considered at the individ-
ual level, too, as we may wish to plan our personal investments account-
ing for future consumption decisions that we have already planned. This
should not be confused with consumption–saving problems, where future
consumption plans are an output of the decision model. This last category
of models is more commonly addressed in the economic literature.

Complexity of the market model. In the simplest static model, we may just
represent the uncertainty in asset returns over the holding period as a mul-
tivariate distribution. This is not as trivial as we might think, as some fea-
tures, like time-varying correlations, fat tails, and asymmetric (skewed) dis-
tributions may be difficult to model. In a dynamic model, we might also
wish to deal with path dependencies, jumps, and stochastic volatilities. Ad-
ditional issues adding realism to a model are related to transaction costs,
bid–ask spreads, as well as the market impact of a trade on an illiquid mar-
ket.

Representation of uncertainty. Classical uncertainty models rely on the tradi-
tional tools of probability and statistics. The more complicated the model,
the more statistical estimation issues arise. However, statistical estima-
tion is based on past data, and the past is not always the major concern
in finance. More sophisticated models may try to incorporate subjective
views about the future, as well as uncertainty about the uncertainty itself,
commonly called model ambiguity. Essentially, we have a single and well-
defined probability distribution in a classical probabilistic decision prob-
lem, but we have several ones in a problem with distributional uncertainty,
and we have none in a robust optimization problem, which relies on a dif-
ferent, nonstochastic framework to represent uncertainty.2

Risk–reward tradeoff. In finance, the quest for increased return has to be tem-
pered with due attention to the corresponding increase in risk. On the one
hand, we might wish to model the degree of risk aversion at an individ-
ual level. In the traditional economic literature, this is addressed by the
introduction of utility functions.3 On the other hand, if we think of profes-
sionally managed portfolios for a set of clients, objective risk measures may
be more relevant. Thus, we have to select first a way to measure risk, which

2See Section 15.9.
3See Section 7.3.
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is nontrivial per se, especially in dynamic models, and then a way to trade
risk against expected reward. This tradeoff is particularly difficult when
long-term wealth management objectives are traded off against short-term
risk.

Depending on how we address all of these issues, we may end up with optimiza-
tion models that can be easily solved by a commercial spreadsheet on a laptop,
or with models that are essentially intractable. We start here by considering a
very basic, but quite relevant, static model.

2.1.1 STATIC PORTFOLIO OPTIMIZATION: MEAN–VARIANCE
EFFICIENCY

In this book we will consider the use of optimization models for portfolio de-
cisions, as well as their pitfalls and limitations. When building an optimization
model we have to specify three ingredients:4

1. Decision variables, expressed as real numbers collected into a vector
x ∈ Rn

2. Constraints, like equalities, inequalities, and other restrictions defining
the feasible set S ⊆ Rn, to which the vector of decision variables should
belong

3. Objective function f(·), to be minimized or maximized

By assembling these building blocks, we obtain an optimization problem in a
rather abstract form,

min (or max) f(x)

s.t. x ∈ S,

where s.t. stands for “subject to.” The process of optimization model building is
usually nonlinear, in the sense that there are successive iterations in which these
elements are added and refined, in no specific order, especially when the model
builder works with a client who is trying to rationalize her problem.

There are different sets of decision variables that may be used in portfolio
optimization. In simple models, we may consider the asset weights, i.e., the
fraction of wealth that we allocate to each asset. However, in an asset–liability
model we must consider the need to generate cash flows matching liabilities,
which leads to a different set of decision variables, such as how many units of
each asset we hold, i.e., the actual number of stock shares or bonds. We may
also consider the amount of money allocated to each asset. Furthermore, when
modeling transaction costs within a dynamic setting, we may also need decision
variables representing the amount of assets that we buy or sell at each trading

4We deal with optimization model building for finance in Chapter 15. For a general introduction
to deterministic and stochastic optimization models, you may also see [2, Chapters 12–13].
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date. Naturally, in dynamic models, decision variables are usually indexed by
time.

For now, let us stick to a simple model based on a static set of portfolio
weights, which we denote by wi, i = 1, . . . , n, where n is the number of assets
that we are considering for inclusion in the portfolio. Portfolio weights may be
collected into vector w ∈ Rn. With this choice of decision variables, a natural
constraint is

n∑
i=1

wi ≡ 1Tw = 1,

where 1 ∈ Rn is a column vector with all elements set to 1, and we use T to de-
note vector and matrix transposition.5 This constraint looks pretty innocent, as
it states that weights add up to 1, but it actually defines a fully invested portfolio.
If we do not require full investment, we may rewrite the constraint as 1Tw ≤ 1.
If we rule out short-selling, we also require a non-negativity condition,

wi ≥ 0, i = 1, . . . , n.

We may also represent this condition in the compact form w ≥ 0, where 0
is a vector collecting n zeros, and the inequality is interpreted componentwise
as usual. These two constraints imply wi ≤ 1. We relax the condition if we
allow short-selling.6 If we include a risk-free asset, it is customary to denote
its weight as w0. If we allow borrowing money to buy stock shares, we may
relax the non-negativity constraint on this weight; as a result, in principle we
might allow asset weights to be larger than 1. As the reader can imagine, this
corresponds to very risky portfolios.7 In practice, additional constraints may be
enforced in order to limit exposure to individual assets or sets of assets, defined
on the basis of geography or industrial sectors. These simple constraints may be
expressed as linear inequalities. For instance, let us consider a small universe
of n = 50 assets and imagine that the subset

I = {4, 8, 15, 16, 23, 42}

corresponds to a specific industry (e.g., consumer electronics) or a geographic
region. We might enforce a lower or an upper bound on the sector exposure,
say 5% and 25%, respectively, by requiring

0.05 ≤
∑
i∈I

wi ≤ 0.25,

5In this book, we will always assume that vectors are column vectors. A row vector will be
denoted as the transposed vector xT.
6See Section 1.4.4 for trading strategies based on short-selling and buying on margin.
7The excessive use of leverage by investment banks is well known and led, e.g., to the collapse
of Lehman Brothers. However, individual investors may be prone to the same mistakes. For
instance, in August 2015, Chinese stock markets faced considerable downturn, which hit Chi-
nese small investors very hard, since many borrowed money to invest in a euphoric market that
had experienced an astonishing growth over the recent past. The consequent reduction in the
capacity of consumption of many Chinese small investors was deemed potentially responsible
for severe economic consequences for everyone outside China as well.
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which is just a pair of linear inequalities.
Defining the objective function may be quite tricky in financial problems.

On the one hand, we would like to achieve a large return. On the other hand,
we would like to keep risk under control. Whatever our aim is, we cannot do
anything without a model of uncertainty. In our case, we need to represent
uncertainty in the return of each asset. Let us denote the random return of asset
i, over the holding period, by Ri.

A note on notation. In most books on probability theory, ran-
dom variables are denoted by uppercase letters, like X , whereas
a lowercase letter x refers to a realization of the random variable.
Treatments emphasizing measure-theoretic approaches to probabil-
ity useX(ω) to insist on the fact that a random variable is actually a
function mapping outcomes ω in a sample space Ω to numerical val-
ues. In the economic literature, an alternative notation is sometimes
adopted, where one uses a tilde to denote the random variable: ε̃ is
the random variable, and ε is its realization. This is certainly conve-
nient when using Greek letters. In this book, we will use letters like
R, r, R̃, and r̃ quite liberally, choosing notation for the sake of con-
venience. The reason is that we shall refer to concepts like holding
period returns, annualized returns, excess returns, nominal interest
rates, and real interest rates, in terms of both random variables and
realizations. Since it is easy to run out of suitable letters, we will
not stick to a single notation throughout the book. Nevertheless,
the context will make what we mean quite clear, and no ambiguity
shall arise.

We assume, for the moment, that we are able to build a suitable characterization
of the joint distribution of the returns of all assets. Then, the portfolio return,
denoted by Rp, can be easily8 related to our decision variables wi,

Rp =

n∑
i=1

wiRi.

The larger the return, the better. However, maximizing the return makes no
sense, asRp is a random variable. When we choose portfolio weights, we shape
the probability distribution of the portfolio return, but we do not define its exact
value. Then, to make a decision, we must define a way to rank the probability
distributions. An obviously relevant quantity is the expected value of portfolio
return. Let us denote the expected return of individual assets as9

µi
.
= E[Ri], i = 1, . . . , n.

8See the discussion in Example 1.2 for details.
9We use .

= rather than = when defining something, and ≡ to refer to an identity.
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The expected value of a linear combination of random variables is just the cor-
responding linear combination of expected values. Hence, we find

µp
.
= E[Rp] =

n∑
i=1

wiµi = µTw,

where we collect expected returns into vector µ ∈ Rn.
It seems that a sensible objective would be to maximize the expected port-

folio return, which leads to the following model:

max µTw (2.1)

s.t. 1Tw = 1

w ≥ 0.

This is actually a linear programming (LP) problem, and a powerful and reliable
technology is available to solve even large-scale LPs, based on the simplex
algorithm or interior point methods. However, a little thought reveals that the
solution of the above problem is quite trivial: Allocate the whole wealth to
the asset with the largest expected return. Since common wisdom suggests
that portfolios should be suitably diversified, it is clear that there is something
missing: The degree of risk aversion that is likely to impact any investment
choice. As we shall discuss in Chapter 7, when we only consider the expected
value of a random outcome, we are said to be risk-neutral decision makers.
However, most investors are not risk-neutral, but more or less risk-averse. One
way to take risk aversion into account is to introduce a risk measure, i.e., a
function mapping random outcomes into a single number capturing risk, which
is traded off against expected return. This will lead us to the formulation of
mean–risk models.

As we learn in basic statistics, one way to characterize the dispersion of a
random variable is by its standard deviation or, equivalently, its variance. Re-
calling again basic properties of linear combinations of random variables, the
variance of portfolio return as a function of portfolio weights is

σ2
p
.
= Var(Rp) =

n∑
i=1

n∑
j=1

wiσijwj = wTΣw,

where σij
.
= Cov(Ri, Rj) is the covariance between returns of assets i and j,

and covariances are collected into the square covariance matrix Σ ∈ Rn×n.
Note that the diagonal of this matrix collects the return variances, Var(Ri)

.
=

σ2
i ≡ σii. There is a good reason to consider standard deviation as the risk

measure, rather than variance: Standard deviation is measured in the same units
as return. However, variance may be mathematically more convenient, as it
leads to quadratic programming (QP) problems, which are easy to solve, just
like LPs.10 Actually, the kind of optimization problem we end up with depends

10See Section 15.1 for a classification of optimization models.
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on how we represent the tradeoff between risk and reward. We discuss details
in Supplement S2.1, where we outline basic approaches to multiobjective opti-
mization, and there are essentially three choices:

1. Form a linear combination of the two objectives, and solve the problem

max µTw − λ ·wTΣw

s.t. 1Tw = 1

w ≥ 0,

where λ is a coefficient related to risk aversion. The maximization of this
risk-adjusted expected return leads to a quadratic programming problem,
if all constraints are linear.

2. Maximize expected return, subject to an upper bound on risk. The risk
budget may be expressed in terms of variance,

wTΣw ≤ β,

or standard deviation, √
wTΣw ≤ γ.

The first choice leads to a quadratically constrained quadratic program
(QCQP; to be precise, the resulting model is a subcase of a QCQP, as
the objective function is linear), while the second one leads to a second-
order cone programming (SOCP) problem. The unfamiliar reader should
not worry about these definitions,11 but we remark that QPs are easier to
solve than QCQPs, and that SOCPs have become efficiently solvable only
after recent algorithmic breakthroughs.

3. The last possibility is to minimize risk subject to a lower bound µmin on
expected return:

min wTΣw

s.t. 1Tw = 1

µTw ≥ µmin

w ≥ 0.

This last possibility also leads to a QP.

Whatever choice we make, a clear difficulty is choosing a sensible value for the
involved parameters, λ, β, γ, or µmin, in such a way to find a good tradeoff.
As we shall see, the most common choice is the last one: By changing the
lower bound on expected return, we generate a set of portfolios, which is called
the mean–variance efficient frontier.12 From a computational viewpoint, this

11More information of these families of convex optimization models is given in Chapter 15.
12See Chapter 8.
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approach is quite convenient. Furthermore, we do not need to specify the whole
joint distribution of returns, as we just need first- and second-order moments.
This simplicity should not mask the limitations and the difficulties of such a
model:

Variance and standard deviation are symmetric risk measures, since they
penalize both under- and above-average returns in the same way, even
though the former may correspond to a huge loss and the latter to a wel-
come extra-profit. Hence, they may not be quite adequate to deal with
possibly asymmetric distributions of returns.
Estimating the covariance matrix Σ is no easy task.
What about forecasting expected returns µ for the future, rather than col-
lecting past averages that might not be relevant anymore?

We will address all of these issues later on.
Despite all of its pitfalls, the mean–variance model plays a pivotal role in

financial theory, leading to a body of knowledge known as Modern Portfolio
Theory, and it is associated with the name of its inventor, Harry Markowitz.13

From a theoretical viewpoint, mean–variance efficiency is also related to an im-
portant, albeit controversial, equilibrium model, the capital asset pricing model
(CAPM), which we shall discuss in Chapter 10.

2.1.2 DYNAMIC DECISION-MAKING UNDER UNCERTAINTY: A
STYLIZED CONSUMPTION–SAVING MODEL

The Markowitz mean–variance portfolio model is static, since we have to make
a single decision at time t = 0, and then we just cross our fingers and wait. In
real life, a static model is repeatedly solved, possibly updating the relevant pa-
rameters when new information is acquired, but this is not made explicit in the
model. On the contrary, in a dynamic model we explicitly account for the dy-
namics of uncertain factors, as well as for the possibility of adapting decisions
along the way. When uncertain factors are realized, we gather additional infor-
mation and may revise the plan. If this possibility is explicitly accounted for
in the model, we end up with a challenging multistage decision problem under
uncertainty. We shall discuss approaches to deal with such problems in Chap-
ter 15. Here, we introduce a simple example in order to get acquainted with
the related issues and to discuss important concepts for discrete-time dynamic
modeling.

As we shall see in Chapter 11, we may build dynamic models based on a
continuous- or a discrete-time framework. Time discretization may be a com-
putational necessity, but it may also be a choice dictated by how decisions are

13For his work on portfolio theory, Harry Markowitz was awarded the Nobel Prize in Economics
in 1990. What is less known is that he was also involved in the development of SIMSCRIPT,
an early programming language for discrete-event simulation, and was the recipient of the John
von Neumann Theory Prize for his work in operations research.
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made in the actual problem. Here, we consider a time horizon [0, T ], where we
make decisions at the beginning of time intervals (or time buckets) of length
δt, like months, years, or days. With a slight abuse of notation, we deal with
time instants indexed by t = 0, 1, . . . , T , where the time horizon T is assumed
deterministic.14 The building elements of a dynamic decision model under un-
certainty are:

A set of control/decision variables (e.g., the amounts of each asset that
we buy or sell), denoted by xt, t = 0, . . . , T − 1. Note that we do not
decide anything at the last time instant, t = T , but we just observe the
final outcome.
A set of state variables (e.g., the current level of wealth or the holdings
of a set of assets after portfolio rebalancing or before). We denote state
variables by St, t = 0, . . . , T ; ST is the terminal state. We use a capital S
to emphasize the random nature of states.15 The initial state s0 is given,
but the state evolution is random and is modeled as a stochastic process.
Some states may be affected by our decisions, whereas the evolution is
purely exogenous for other states.
A set of exogenous risk factors, playing the role of disturbances and
affecting the transitions among states. We denote the vector of random
variables corresponding to risk factors by ξt(ω), t = 1, . . . , T . Note that
here time indexing starts from t = 1, as the first realization of the risk
factors occurs after we make the initial decision x0. The last realization
of the risk factor, ξT , occurs after we have made the last decision xT−1,
and it leads to the terminal state ST .
A set of cost/reward functions, used in defining the objective function,
depending on control and state variables. We may have a set of functions
ft, t = 0, . . . , T − 1 to define the performance along the state trajectory,
and a function FT to assign a value (cost or reward) to the terminal state
ST .

It is important to understand the difference between a multiperiod decision
model and a truly dynamic model under uncertainty. In a multiperiod but static
problem, at time t = 0 we assign a value to all of the decision variables xt.
Thus, decisions are deterministic functions of time. In a dynamic problem un-
der uncertainty, we do not plan everything in advance. We make decisions along
the way, and we adapt them as uncertainty unfolds: Decisions are a sequence
of random variables, as they depend on the uncertain states that we will observe

14To be precise, we should choose a time unit, one year as a rule, and consider time instants of
form ti = t · δt, i = 0, 1, . . . , I, where T = I · δt. Here, for the sake of simplicity, we are
confusing the integer index with the time instant.
15Arguaby, we should do the same for the control variables xt, since they will be random
variables, too, if decisions are adapted to the random occurrence of states.
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FIGURE 2.1 Illustrating time conventions.

in the future.16 We emphasize that time indexing reflects the fact that at each
time instant t, t = 0, . . . , T − 1, we first observe the state St, and then we apply
a control action xt, and then we will observe a realization ξt+1(ω) of the risk
factors, which will lead to the next state St+1. A rather generic and abstract
formulation of the resulting optimization problem is the following:

min E

[
T−1∑
t=0

ft(St,xt) + FT (ST )

]
(2.2)

s.t. xt ∈ At(St)
St+1 = Φt

(
St,xt, ξt+1(ω)

)
,

where we denote by At(St) the set of feasible control actions at time t, possibly
depending on the current state, and by Φt the state transition function at time
t. In this framework, the sequence of decisions xt is a stochastic process, as
it depends on the state trajectory. Note, however, that we are allowed to adapt
decisions to the observed state now, but not to foresee the future state trajec-
tory. For now, we avoid formalizing this requirement explicitly, but it is useful
to define and visualize a suitable convention to define time instants and time
periods, in order to avoid common confusion and ambiguity when dealing with
discrete-time models:

We consider time instants indexed by t = 0, 1, 2, . . . At these time in-
stants, we observe the system state and make a decision.
By a time interval t, we mean the time interval between time instants
t − 1 and t. After the decision at time instant t − 1, the system evolves
and a new state is reached at time t. During the time interval, the random
disturbance will be realized, influencing the transition to the new state.

These definitions are illustrated in Fig. 2.1. Note once more that, with this
timing convention, we emphasize the fact that noise is realized during time
interval t, after making the decision at time instant t− 1.

To illustrate the framework, as well as the timing conventions, let us con-
sider a stylized consumption–saving problem, which may be stated as follows:

16We are implicitly assuming that we may define a suitable set of state variables, collecting
all of the necessary information to analyze possible future evolution. Formally, we deal with
Markov processes, discussed in Chapter 11. In more complicated cases, we may have to keep
track of the whole observed history of the risk factors.
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At time t = 0, the decision maker (or agent) is endowed with an initial
wealth W0 and has to decide the consumed amount C0. It is not possible
to borrow money, so 0 ≤ C0 ≤W0. Note thatC0 is a decision to be made,
and not a given liability. What is not consumed is the saved amount,
S0 = W0 − C0.
A second decision to be made at time t = 0 is the allocation of the saved
amount S0 between a risky and a risk-free asset; let α0 ∈ [0, 1] be the
fraction allocated to the risky asset, R1 the rate of return of the risky asset
over the first time interval spanning from t = 0 to t = 1, and rf the return
of the risk-free asset. We use R1, rather than R0, to emphasize that this
piece of information is not known when the decision is made. For the
sake of simplicity, the risk-free return and the distribution of risky returns
are both assumed constant over time. Furthermore, we do not consider
any intertemporal dependence between risky returns, which are assumed
independent over time (they are a sequence of i.i.d. random variables).
At time instant t = 1, the available wealthW1 is the sum of capital and la-
bor (noncapital) income. Capital income depends on the realized random
return R1 of the risky asset and the allocation decision α0. The portfolio
gain is

α0(1 +R1) + (1− α0)(1 + rf ).

Labor income, denoted by L1, may be random, too, as it may depend on
an uncertain employment state. Again, our notational choice emphasizes
that this piece of information is not known when the first consumption–
saving decision is made at t = 0. We multiply the portfolio gain by the
saved amount S0, add labor income, and express the available wealth at
the end of the first time period as follows:

W1 = S0 [α0(1 +R1) + (1− α0)(1 + rf )] + L1

= (W0 − C0) [1 + rf + α0(R1 − rf )] + L1.

Then, again, W1 is split into consumption C1 and saving S1, an allocation
α1 is chosen, and the process is repeated.
Wealth is a state variable, and the underlying state of employment may
be another one. We assume that the state of employment at time t, de-
noted by λt, may take one among three values in the set L = {α, β, η},
and Lα > Lβ > Lη. We may interpret η as “unemployed,” α as “fully
employed,” and β as an intermediate situation. The dynamics of this state
is modeled by a matrix of time-independent transition probabilities, with
elements

πij = P {λt+1 = j | λt = i} , i, j ∈ L. (2.3)

This is the conditional probability that the employment state at time t+ 1
will be j, given that it was i at time t. The initial employment state λ0 is
given, and we assume that the corresponding income is already included
in the initial wealthW0. We note that the next employment state transition
depends only on the current state, and not on the whole past history. Thus,
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we only need to specify conditional probabilities and, technically, we are
using a model based on a discrete-time Markov chain, to be discussed
in Chapter 11. Furthermore, the employment state is not influenced by
consumption–saving decisions. The sample path of the employment state
is purely exogenous in this model, whereas wealth is partially endoge-
nous, as it depends on consumption and portfolio allocation decisions.
All of the above holds, with the natural adjustment of time subscripts, for
all of the time instants up to t = T − 1.

Now that we have defined control and state variables and their dynamics,
we need to define the objective function, which is a bit trickier, as it requires
to address a risk–reward tradeoff. The consumption Ct is a random variable,
so that maximizing consumption does not make mathematical sense. We could
maximize its expected value E[Ct] (actually, the sum of these expected values
over time), but this may lead to poor and quite risky decisions. Here, we fol-
low standard approaches in economics and assume that the risk–reward tradeoff
is dealt with by introducing a utility function. We shall consider decision-
making under uncertainty and utility functions in more detail later, in Chapter
7. For now, we may just rely on intuition, and assume an increasing and con-
cave utility function depending on consumption, u(Ct). The function should
be increasing, as the more we consume, the better. Furthermore, we shall see
that by choosing a concave utility function, we may model risk aversion. In the
limit, if u(·) is the identity function, we revert back to the expected value of con-
sumption, which characterizes risk-neutral decision-makers. Hence, we might
consider the maximization of the sum of the expected utilities E[u(Ct)] over
time. Furthermore, we may also consider a term q(WT ), accounting for utility
from bequest, i.e., the terminal wealth WT that we may leave to the beloved
ones. This additional term represents a value of the terminal state. Actually,
there is another tradeoff that we should address, involving immediate vs. fu-
ture consumption. To account for this, we also introduce a subjective discount
factor β ∈ (0, 1) and consider the following maximization problem:

max E

[
T−1∑
t=0

βtu(Ct) + βT q(WT )

]
.

When β is large, the impact of later consumption is relevant; when β is small,
i.e., we discount future consumption more heavily, the consequence is that we
are somewhat greedy and emphasize immediate satisfaction. If we assume that,
at time t = T , the terminal wealthWT is fully consumed, i.e., we add a terminal
consumption decision CT = WT , the problem boils down to

max E

[
T∑
t=0

βtu(Ct)

]
.
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Consumption–saving models are common in economics.17 We will see that
asset–liability management problems, where liabilities are stochastic but ex-
ogenous, rather than endogenous decisions, are more relevant in quantitative
finance.18

2.2 Risk measurement and management

Risk measurement and management is another major topic in quantitative fi-
nance. In Section 2.1.1, we have considered the standard deviation of portfolio
return as a possible risk measure. However, there are different issues that have
to be considered:

Defining a risk measure. Standard deviation is a symmetric risk measure, as
it is based on squared deviations from the expected value. However, while
we certainly do not like deviations toward huge losses, we are not likely to
complain about windfalls and unexpected profits. Thus, we should look for
alternative definitions leading to asymmetric measures. We shall learn that
some sensible properties of risk measures may not be satisfied by seem-
ingly reasonable risk measures. The issue becomes even thornier when
considering dynamic risk measures.

Defining a risk model. The mean–variance model is deceptively simple: We
just define a risk measure depending on asset returns. However, this re-
quires an estimate of a possibly large covariance matrix, which is by no
means easy to obtain. It might be preferable to rely on a statistical model
of returns, like a factor model, leading to more reliable estimates and fun-
damental insights into the structure of risk, which may be decomposed in
common and specific risk factors. This is also relevant when we consider
the impact of common risk factors on the prices of several assets depend-
ing on them, as is the case with bond prices depending on interest rates
and with complex portfolios of derivatives written on the same underlying
assets. It is also important to realize that, although we will focus primar-
ily on financial risk factors related to volatile equity markets, interest rates,
and currency exchange rates, some nonfinancial sources of risk are also
relevant. A list of examples includes volume, regulatory, and operational
risk.

Risk management. Risk measurement is useful in monitoring the consequence
of decisions, but we need a proper way to make those decisions. Depending
on the specific problem that we are tackling, this may require the choice of
suitable assets to build a hedge and the choice of their mix, or the definition

17For an extensive discussion of such models see, e.g., [3].
18This kind of models may be tackled by stochastic programming with recourse or by stochastic
dynamic programming. See Chapter 15.
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of a portfolio optimization model that is likely to be more complex than the
static mean–variance model.

Statistical and computational issues. The precise way in which we address
the above issues has a significant impact on how, in concrete terms, we deal
with computational challenges in risk measurement and management. For
instance, measuring the risk of a derivative portfolio may call for repeated
repricing of derivatives subject to uncertain risk factors, which in turn may
require extensive Monte Carlo simulation runs. The computational effort
is related to the need for reliable estimates of the selected risk measure.
Furthermore, there is little point in formulating a sophisticated decision
model, if there is no robust and efficient way of solving it.

In the following sections, we make the above points more concrete by simple
examples, paving the way for a deeper treatment in later chapters.

2.2.1 SENSITIVITY OF ASSET PRICES TO UNDERLYING RISK
FACTORS

We often need to evaluate how asset prices depend on a set of risk factors. There
is a huge variety of models that are used in finance, but a fundamental line must
be drawn between linear and nonlinear models.

2.2.1.1 Linear risk factor models

Asset prices themselves, or their rates of return, may be considered as the pri-
mary risk factors we have to deal with. They are related by the simple relation-
ship

S(T ) = S(0) · (1 +R),

where R is the holding period return over the time span [0, T ]. However, we
must also consider how the returns of different assets are related one to another,
e.g., by estimating their covariance matrix. Given a joint sample of two ran-
dom variables, observed at times t = 1, . . . , T , say, Rit and Rjt, which are the
returns of two stock shares over consecutive holding periods, the estimation of
the covariance σij may be accomplished by calculating the sample covariance,

Sij =
1

T − 1

T∑
t=1

(Rit −Ri)(Rjt −Rj),

where Ri and Rj are the two sample means for each asset. This seems pretty
trivial, but a little thought shows that this is not the case at all. What if we are
considering a universe of n = 500 assets? The covariance matrix is a symmet-
ric matrix consisting of 250,000 entries. A rough cut and imprecise calculation
suggests that the sample size T must be large enough to estimate about 125,000
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parameters with sufficient accuracy. To be precise, we need n(n− 1)/2 covari-
ances and n variances; hence, we need an estimate of

n+
n · (n− 1)

2
=
n · (n+ 1)

2
= 125,250

parameters. Unfortunately, even if a suitably large data set were available, many
data would be so old as to be irrelevant. An alternative strategy is to introduce a
statistical model trying to capture the source of covariance explicitly. One such
model is a simple linear factor model,

Ri = αi +

m∑
k=1

βikFk + εi, i = 1, . . . , n, (2.4)

relating the random return of asset i to a set of m common risk factors Fk,
k = 1, . . . ,m, with m�n, and one specific risk factor εi for each stock share.
The reader with a minimal statistical background will recognize this as a linear
regression model, where αi is a constant contributing to expected return, and
βik is the sensitivity of stock share i to risk factor k. For instance, the oil
price should be a relevant risk factor for stock shares in the automotive industry,
whereas this common risk factor might play a less relevant role for stocks in
the telecommunication industry. We will see how stock betas may be used to
shape the exposure of a portfolio to common risk factors. The specific risk
factor εi is related to the peculiarities of a stock share. The contribution of
specific risk factors to overall portfolio risk may be arguably reduced by proper
diversification, whereas more subtlety is required when dealing with common,
systematic risk factors. A linear factor model may ease statistical issues. It is
easy to see that, if all of the factors are mutually uncorrelated,19 the covariance
can be expressed as

σij =

m∑
k=1

βikβjkσ
2
k, i 6= j,

where σ2
k is the variance of factor Fk. When considering variance, we find

σ2
i ≡ σii =

m∑
k=1

β2
ikσ

2
k + σ2

εi,

where σ2
εi is the variance of the specific factor. We observe that with this struc-

ture, the estimation of the covariance matrix requires the estimation of m × n
betas, m common factor variances, and n specific variances. In the case we
were considering, if n = 500 and m = 3, this amounts to 2003 parameters,
with a reduction of two orders of magnitude with respect to the naive approach.
Apart from statistical issues, a factor model provides us with very useful in-
sights about the structure of a risk exposure, and it may be used to change the

19We shall consider the matter in full detail in Chapter 9.
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exposure itself, possibly making a portfolio insensitive to some risk factors or,
on the contrary, to expose the portfolio to some risk factors on which we are
confident to make a good bet.

2.2.1.2 Nonlinear risk factor models

Linear models may be used when dealing with an equity portfolio, but they
may be not so adequate when dealing with a portfolio of derivatives. Consider
the price at time t of a vanilla call option written on an underlying stock share,
whose current price is St. The option price will depend, among other factors, on
St, but in a nonlinear way. At present, we are not yet equipped to consider the
kind of dependence exactly, but a quick look at the nonlinear payoff depicted in
Fig. 1.6 provides us with some intuition about the kind of relationship between
the option price and St.

An easier case in which we may grasp the nonlinear relationship between
an asset price and the underlying risk factors is the case of a zero-coupon bond
and the level of interest rates. We will consider bond pricing and the impact of
interest rate risk at length in Chapter 3, but the nature of the relationship is easy
to grasp in terms of discounted cash flows. If a zero with face value F matures
in exactly T years, and the relevant annual interest rate is R0,T , the fair bond
price is

Pz(0;R0,T , T ) =
F

(1 +R0,T )T
. (2.5)

The notation Pz(0;R0,T , T ) suggests that this is the price at time t = 0 of a zero,
maturing at time t = T , depending on the interest rate R0,T .20 By “relevant”
interest rate we mean an annual rate which applies to an investment horizon of
T years, for an investment with a default risk comparable to that of the zero-
coupon bond. It is important to realize that R0,T , like any interest rate, refers
to a single year; on the contrary, when referring to stock markets, we often use
a holding period return, which need not be annualized. In this case, the interest
rate R0,T may also be interpreted as an annual yield, i.e., the annual growth
factor of the initial investment in the zero. Later, this pricing equation will be
better justified by no-arbitrage arguments, but for now it is enough to understand
how future cash flows should be discounted in order to find their present value.

Equation (2.5) immediately shows that the bond price is a function of the
interest rate, and that an increase in R0,T will imply a drop in Pz(0;R0,T , T ).
To get a feeling for this kind of risk, let us consider three zeros, all with face
value F = 100, maturing in 3, 10, and 30 years, respectively, and let us assume,
for the sake of simplicity, that there is a single relevant interest rate applying to
all maturities. For instance, if R0,T = 4%, the price of the first zero is

Pz(0; 0.04, 3) =
100

(1 + 0.04)3
= 88.90.

20We shall introduce and motivate a more complete notation in Chapter 3. In fact, the price of a
coupon-bearing bond depends on a whole range of interest rates with different maturities.
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Table 2.1 Interest rate risk and the effect of zero-coupon bond maturity.

T (years) 3 10 30
Pz(0; 0.04, T ) 88.90 67.56 30.83
Pz(0; 0.05, T ) 86.38 61.39 23.14
% loss −2.83 −9.13 −24.96

If the rate increases to 5%, the new price is

Pz(0; 0.05, 3) =
100

(1 + 0.05)3
= 86.38,

with a corresponding loss of

86.38− 88.90

88.90
= −2.83%.

In Table 2.1, we observe the effect of this increase in the interest rate for the
three maturities. We clearly see that maturity plays a key role, and that a long-
maturity zero is a quite risky asset. Maturity also plays a role in the risk of a
coupon-bearing bond, but we will see that the coupon rate is also relevant. Thus,
we need some specific measures of risk for bonds. More generally, when there is
a nonlinear dependence with respect to a risk factor, we may approximate it with
a Taylor expansion to the first or second order, which requires first- and second-
order derivatives. We shall see that, for a bond, these sensitivities with resect
to interest rates are captured by duration and convexity. By a similar token, in
the case of options, we will consider sensitivity measures such as delta, gamma,
and vega, which relate the option price to the current price of the underlying
asset and the current level of its volatility. Sensitivities to risk factors provide
us with useful information and play a relevant role in strategies to immunize a
portfolio with respect to selected risk factors, possibly in an approximate way.

2.2.2 RISK MEASURES IN A NON-NORMAL WORLD:
VALUE-AT-RISK

Variance and standard deviation are the two dispersion measures that we learn
in basic statistics. Standard deviation of return is referred to as volatility in
finance, and it seems a simple and relevant risk measure. While volatility is
certainly relevant, it might not tell the whole story. The key issue is that stan-
dard deviation is a symmetric risk measure, taking into account extra potential
for profit in the same way as extra potential for loss. As such, standard devia-
tion may be a suitable risk measure in the case of symmetric distributions, most
notably the normal. Indeed, two parameters, expected value and standard devi-
ation, tell everything we need to know about a normal distribution. However,
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empirical analysis does not quite support the view that returns are normally
distributed.

A first issue is skewness, i.e., lack of symmetry. Probability distributions
for profit–loss are not symmetric in general, as the following examples suggest:

Consider the payoff of a call option, as shown in Fig. 1.6. Even if we
assume that the distribution of the underlying asset price at maturity is
normal, the nonlinearity of the payoff changes the nature of its distribu-
tion, which is skewed.
The option payoff cannot be negative, unlike a normal variable. Another
relevant risk factor that cannot take negative values is the volatility itself,
which is a fundamental risk factor for derivatives.
Interest rates cannot be negative as well, and the nonlinearity of the re-
lationship between the price of a zero-coupon bond and the interest rate
contributes to the non-normality of bond returns.

But how can we measure skewness? Let us recall that the expected value is
the first-order moment of a random variable, whereas variance is the second-
order central moment.21 A formal definition of a skewness coefficient relies on
a third-order central moment:

γ
.
=

E
[
(X − µ)3

]
σ3

. (2.6)

Essentially, this is the third-order moment of the standardized variable. Stan-
dardization is necessary, as we want to capture skewness irrespective of location
and scale.22 The odd exponent, unlike the case of variance, preserves the sign
of deviations, and the information provided by skewness is illustrated in Fig.
2.2. The density on the left has positive skewness, and it is skewed to the right.
The other density has negative skewness, and it is skewed to the left. As we can
imagine, skewness is zero for a symmetric distribution, and a nonzero skewness
suggests lack of normality.

A less obvious, but quite relevant feature of a normal distribution is its thin
tails. This means that extreme events are not quite likely. We learn in basic
statistics that, if X ∼ N(µ, σ2),

P{µ− 3σ ≤ X ≤ µ+ 3σ} ≈ 0.9973,

which means that most realizations are within three deviations from the ex-
pected value. We also learn that Student’s t distributions are heavier tailed, i.e.,
they feature more significant uncertainty, especially with few degrees of free-
dom. Heavy (or fat) tails are relevant in finance, as they are related to extreme
events like stock market crashes (and rallies). Fat tails are measured by the

21The moment of order k of a random variable X is defined as mk
.
= E[Xk]. The central

moment of order k of X is defined as Mk
.
= E[(X − µ)k], where µ = E[X].

22It is easy to see that skewness of a random variable X (as well as kurtosis, to be defined
shortly) is insensitive to affine transformation a+ bX , subject to the restriction b > 0.
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FIGURE 2.2 An illustration of positive and negative skewness.

kurtosis coefficient, which relies on a fourth-order central moment:

κ
.
=

E
[
(X − µ)4

]
σ4

. (2.7)

We observe that the fourth power disregards the sign of deviations with respect
to the expected value, unlike skewness, but it emphasizes large deviations much
more than the second power of variance. It can be shown (using, e.g., the mo-
ment generating function) that kurtosis is always 3 for a normal distribution,
whatever σ is. On the contrary, other distributions show fatter tails, a property
captured by a kurtosis in excess of 3. The information provided by kurtosis is
illustrated in Fig. 2.3. The distribution with kurtosis κ = 9 is a Student’s t, and
it features fatter tails than the standard normal, which has κ = 3.

When a profit–loss distribution features significant skewness and kurtosis,
standard deviation is less appropriate as a risk measure, and alternatives may be
defined. Furthermore, from a different viewpoint, practitioners might appreci-
ate risk measures expressed in a more straightforward way, i.e., in terms of a
potential monetary loss. This sets any kind of risk on a common ground and
is more easily perceived by management. One way to cope with these issues
is to define asymmetric, quantile-based risk measures in monetary terms. A
well-known example is value-at-risk.

2.2.2.1 A quantile-based risk measure: Value-at-risk

One way to define asymmetric risk measures, overcoming some of the difficul-
ties with standard deviation, is to resort to quantile-based risk measures. The
idea is to focus on the bad tail of the distribution, where losses are incurred. Let
us consider the portfolio loss LH , over a holding period [0, H], and evaluate its
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FIGURE 2.3 An illustration of kurtosis.

quantiles. Note that loss is measured in monetary terms, which sets all kinds
of risk on a common ground. For the sake of simplicity, let us assume that LH
is a continuous random variable. Then, we define the value-at-risk, with time
horizon H , at confidence level 1− α, as a number V@R1−α,H such that

P{LH ≤ V@R1−α,H} = 1− α. (2.8)

For instance, if we set α = 0.05, we obtain V@R at 95%, for time horizon H .
Quite often, short horizons are considered like, e.g., one day. The probability
that the loss exceeds V@R is α.23 It is common to denote value-at-risk as VaR,
where the last capital letter should avoid confusion with variance.24 However,
we prefer the less ambiguous notation V@R. Informally, V@R aims at mea-
suring the maximum portfolio loss one could suffer, over a given time horizon,
within a given confidence level.

When considering a discrete set of scenarios, we should consider LH as a
discrete random variable and modify the definition of value-at-risk as

V@R1−α,H = inf
{
V ∈ R | P{LT ≤ V } ≥ 1− α

}
. (2.9)

This is just the definition of the generalized inverse of the cumulative distri-
bution function (CDF) of loss, which boils down to Eq. (2.8) in the case of a
continuous random variable with a continuous and strictly increasing (hence,
invertible) CDF. Actually, one could also define another measure by using strict

23We stick to the statistical convention that α is the small area associated with the tail of a
probability density function (PDF), but sometimes the opposite notation is adopted.
24Arguably, the lowercase letter in the middle should also avoid confusion with VAR, which
usually refers to vector autoregressive models in econometrics and time series analysis.
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inequality in Eq. (2.9),

inf
{
V ∈ R | P{LT < V } ≥ 1− α

}
.

Since such technicalities are not relevant, for a continuous random variable with
an invertible CDF, and are not needed to grasp the essentials of value-at-risk,
we defer a more detailed treatment to Section 7.4.3.

Actually, there are two possible definitions of V@R, depending on the ref-
erence wealth that we use in defining loss. LetW0 be the initial portfolio wealth.
If RH is the random return over the holding period, the future wealth is

WH = W0(1 +RH).

Its expected value is
E[WH ] = W0(1 + µ),

where µ is the expected holding period return. The absolute loss over the hold-
ing period is related to the initial wealth:

LaH = W0 −WH = −W0RH . (2.10)

The quantile of absolute loss at level 1 − α is the absolute V@R at that confi-
dence level. We define a relative V@R if we take the expected future wealth as
a reference in evaluating the relative loss

LrH = E[WH ]−WH = W0(µ−RH). (2.11)

Quite often, we are interested in small holding periods, like one day. The rea-
son is that V@R may be used by banks to decide how much cash they should
set aside as a fudge against short-term losses. If the bank is in need for cash
in a very short time period, it may be difficult to liquidate assets to generate
liquidity, especially when markets crash. If the holding period return is short,
it turns out that drift is dominated by volatility. Technically, this means that the
expected return is small compared to standard deviation. This may be shown
by resorting to continuous-time models for stock share prices, like geometric
Brownian motion. Since such models will be treated later, in Chapter 11, we
provide here an intuitive justification.

Example 2.1 The square-root rule

Let us consider a sequence of i.i.d. (independent and identically dis-
tributed) variables over time, Xt, t = 1, . . . ,H . Let µ and σ be the
expected value and standard deviation, respectively, for each variable
Xt. If we sum variables over the H time periods, we define a new
variable,

Y =

H∑
t=1

Xt,
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and find

E[Y ] =

H∑
t=1

E[Xt] = µH, (2.12)

and

σY =

√√√√ H∑
t=1

Var(Xt) = σ
√
H. (2.13)

Note that we are writing the variance of a sum as a sum of variances,
which is wrong in general, but it is fine under the assumption of in-
dependence (actually, lack of correlation is enough). Thus, we find
that the expected value scales linearly with time, whereas the stan-
dard deviation scales with the square root of time. The two functions
are compared in Fig. 2.4. We may observe that, for a large H , the
expected value dominates, but roles are reversed for a small H going
to zero. We shall refer to this fact as the square-root rule.

This seems to suggest that, for a small time period, volatility does
dominate drift, but the conclusion is not really warranted. To be-
gin with, random returns should be multiplied, rather than summed.
However, if we consider summing log-returns, or an approximation
valid for small daily returns, we may claim that the reasoning makes
sense. The assumption of independence of returns over time is bit
more critical, but there are models based on this idea. Probably, the
most delicate point is that we should consider “slicing” a random vari-
able, i.e., expressing a given Y as a sum of termsXδt, for a small time
interval δt. If we add independent (uncorrelated) normals, we do get
a normal. But can we slice a normal into smaller normals? We should
resort to a more sophisticated concept related to self-similar stochas-
tic processes. Indeed, we will use such a process, the Wiener process,
based on a normal distribution. We cannot come up with a rigorous
analysis here, but empirical data do suggest the idea that, on a short
time interval of length δt, drift goes to zero more rapidly than volatil-
ity does. Put another way, we cannot reject the null hypothesis that
return over δt is zero.

Assuming that the square-root rule holds, for a short time periodH we have

µ = E[RH ] ≈ 0.

Hence, Eq. (2.11) boils down to Eq. (2.10), and there is no difference between
absolute and relative value-at-risk. In this book, we will always consider ab-
solute V@R. Nevertheless, we should keep in mind that relative V@R may be
more relevant to longer-term risks, as those faced by a pension fund.
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FIGURE 2.4 An illustration of the square-root rule.

The loss LH is a random variable depending on a set of risk factors, possi-
bly through nonlinear transformations linked to bond or option pricing models.
In fact, estimating V@R for a real-life portfolio is a nontrivial exercise requir-
ing:

The definition of a set of risk factors and the characterization of their joint
distribution. Note that correlations may not be enough. Correlations and
volatilities do characterize a multivariate normal distribution, but we can-
not take normality for granted. Incidentally, as we show in the examples
below, under a normality assumption there would be little point in us-
ing V@R, as this would provide us with little additional information with
respect to standard deviation.
The definition of pricing models linking asset prices to the underlying risk
factors.
The estimation of a quantile, most likely by numerical methods, like
Monte Carlo sampling.

These tasks may be daunting in practice, but let us just illustrate V@R with a
couple of small examples.

Example 2.2 Elementary V@R calculation

We have invested $100,000 in Quacko Corporation stock shares, whose
daily volatility is 2%. This means that the volatility of asset return is

σH =
√

Var(RH) = 0.02,
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where the holding period H is one day and RH is the daily return.
For the sake of simplicity, let us assume that the return is normally
distributed. Given the square-root rule, we have

RH ∼ N
(
0, σ2

H

)
= N

(
0, 0.022

)
.

Loss over the holding period is

LH = −W0 ·RH ,

where the initial wealth W0 is $100,000. The expected value of loss
is E[LH ] = 0, and its volatility is

σL =
√

Var(LH) =
√

(−W0)2 ·Var(RH) = W0 · σH .

We know that quantiles of a normal distribution are related to quan-
tiles z1−α of a standard normal variable. If we want daily V@R with
99% confidence level, we find

V@R0.99,1 = z0.99 × $100,000× 0.02

= 2.3263× $100,000× 0.02

= $4652.70.

Therefore, we are “99% sure” that we will not lose more than $4652.70
in one day.

The assumption of normality of returns can be dangerous, as the normal
distribution has a relatively low kurtosis; alternative distributions have been
proposed, featuring fatter tails, in order to better account for tail risk, which is
what we are concerned about in risk management. Nevertheless, the calculation
based on the normal distribution is so simple and appealing that it is tempting
to use it even when we should rely on more realistic models. In practice, we
are not interested in V@R for a single asset, but in V@R for a whole portfolio.
Again, the normality assumption streamlines our task considerably.

Example 2.3 V@R in multiple dimensions

Suppose that we hold a portfolio of two assets: We have invested
WA = $10,000 in stock share A and WB = $20,000 in stock share
B. We assume that daily returns are jointly normal with the following
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parameters:

σA = 2%, σB = 3%, ρ = 0.4,

where ρ is the correlation coefficient. We are interested in the daily
V@R, so we disregard drift again, with confidence level 99%.

We first compute the volatility of the holding period return of the
whole portfolio:

σP =
√
W 2
Aσ

2
A + 2WAWBρσAσB +W 2

Bσ
2
B

= 10000×
√

12 · 0.022 + 2 · 1 · 2 · 0.4 · 0.02 · 0.03 + 22 · 0.032

= $704.2727.

Therefore

V@RP
0.99,1 = z0.99 · σP = 2.326348× 704.2727 ≈ $1638.38.

It is interesting to compare the risk of the overall portfolio with the
risks of the two individual positions:

V@RA
0.99,1 = z0.99 ·WA · σA = 2.326348× 10000× 0.02

≈ $465.27,

V@RB
0.99,1 = z0.99 ·WB · σB = 2.326348× 20000× 0.03

≈ $1395.81,

V@RP
0.99,1 = 1638.38

≤ 1861.08 = V@RA
0.99,1 + V@RB

0.99,1.

We observe that the risk of the portfolio is less than the sum of the
two risks. The amount of this reduction depends on the correlation.
The two quantities would be the same for perfect positive correlation,
ρ = 1, whereas overall risk would be minimized with perfect negative
correlation, ρ = −1.

In Example 2.3, we take advantage of the stability property of the normal
distribution, i.e., the sum of jointly normal random variables is still a normal
random variable. In general this is not true, and even if we assume that the
underlying risk factors are normally distributed (which does not make sense for
volatility risk and correlation risk), the portfolio loss would not be normally
distributed because of nonlinearities. Monte Carlo methods may be used in
more realistic cases.
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What we have just illustrated is the simplest parametric approach to V@R
estimation. It is simple because of the assumption of normality, because we
are able to capture the joint distribution of the risk factors, and because the risk
model is trivially linear (indeed, the asset prices themselves are the risk factors).
One of the most difficult issues is to capture the joint dependence of the risk
factors. Correlations tell the whole story in the normal case, but not in general.
Furthermore, the correlation themselves may change over time, especially when
markets crash. Hence, we should also mention that a completely different route
may be taken, based on historical V@R. Rather than assuming a specific joint
distribution, we may rely on a nonparametric approach based on resampling
historical data. The advantage of historical data is that they should naturally
capture dependence. Hence, we may combine them, according to bootstrap-
ping procedures, to generate future scenarios and estimate V@R by historical
simulation.

A further effect of the normality assumption is that we observe a reduction
in risk through portfolio diversification. This makes sense, and it is formally
referred to as subadditivity property. If we consider two random variables X
and Y , representing two losses, the subadditivity property of a risk measure R
mapping random variables to real numbers is

R(X + Y ) ≤ R(X) +R(Y ),

i.e., the risk of the sum (the aggregate portfolio) is not larger than the sum
of risks (of the individual portfolios). In the normal case, V@R is essentially
related to standard deviations, since these are used to find quantiles. It is easy
to see that the standard deviation of a sum of two random variables X and Y is
not larger than sum of standard deviations:

σX+Y =
√
σ2
X + 2ρσXσY + σ2

Y

≤
√
σ2
X + 2σXσY + σ2

Y

=
√

(σX + σY )2 = σX + σY , (2.14)

where the inequality depends on the upper bound on the correlation between
X and Y , ρ ≤ 1. Hence, we see that V@R is subadditive under a normality
assumption. Unfortunately, this depends on the fact that V@R does not really
tell us anything more than standard deviation in the normal case, but the nor-
mality assumption itself is not quite realistic. In fact, as we shall see in Section
7.4.3, value-at-risk is not subadditive in general and lacks a fundamental feature
that characterizes coherent risk measures, which will be introduced in Section
7.4.1.

2.2.3 RISK MANAGEMENT: INTRODUCTORY HEDGING
EXAMPLES

The ability to measure risk is certainly necessary in finance, but it may of little
use without a way to manage risk. We must devise strategies to reduce risk
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exposures or eliminate them altogether, if we can and wish doing so. This can
be done by shaping the portfolio in such a way as to obtain a specific exposure
to underlying risk factors, or by including additional assets in the portfolio,
like derivative contracts. We can introduce some essential concepts by simple
examples involving linear contracts like forward and futures contracts. More
sophisticated models are needed when considering nonlinear instruments like
options.

2.2.3.1 Perfect hedging and forward contracts

Perfect hedging is achieved when risk is eliminated completely, i.e., when future
cash flows, or returns, are made deterministic. Imagine that we hold N units of
an asset with current price S0, which we plan to hold for a time period of length
T . The future asset price ST is uncertain, but if we sell N forward contracts
(i.e., take a short position), with price F0 ≡ F (0, T ) and maturing at T , at the
end of the holding period we will be able to sell the asset at the arranged forward
price. Alternatively, if the contract is settled in cash, the total net cash flow at
time T is

N · ST︸ ︷︷ ︸
Sell asset

+ N · (F0 − ST )︸ ︷︷ ︸
Short position payoff

= N · F0, (2.15)

which is equivalent to selling the asset directly to the counterparty of the for-
ward contract, i.e., the long position. If risk is measured by standard deviation,
we clearly see that risk has completely eliminated, i.e., we have a perfect hedge.
This does not imply that perfect hedging is the best choice, since we have also
eliminated any potential for additional profit. If the price ST turns out to be
large, the loss on the short position eliminates all of the profit from the spot
trade.

If we wish to retain a portion of the upside potential, we may take an alter-
native policy and rely on options. If we buy N put options with price P0 and
strike K, the equivalent cash flow at time T is

N · ST +N ·max{K − ST , 0} −N · P0 · erT = N · [max{K,ST } − P0 · erT ].

Note that, in order to take the time value of money into proper account, we have
to project the cash flow −N · P0 forward in time, which requires multiplying it
by a factor involving a risk-free rate r.25 If the maturity T of the hedge is short,
this may be neglected. Depending on the realization of the random variable ST ,
the cash flow may be positive or negative; therefore, we have not eliminated the
possibility of a loss related to paying the premium for an option that we might
not use, but we retain some upside potential. Apparently, it is a clever choice to
choose a put option with a large strike price K; needless to say, a large strike

25See Section 3.1 for an extensive discussion. In this case, the “growth” factor is a positive
exponential function, as we assume a continuously compounded interest rate. Alternatively,
we could project cash flows backward in time, multiplying future cash flows by a negative
exponential, playing the role of a discount factor back to time t = 0.
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price will be reflected in a large price P0, making the cost of this insurance
excessive. The choice must balance the potential for down- and upside, and it
may depend on individual risk preferences.

2.2.3.2 Minimum variance hedging and futures contracts

Equation (2.15) shows that a perfect hedge may be achieved, but this assumes
that a forward contract for the desired underlying asset and maturity can be
arranged. However, forward contracts are traded OTC, and not on regulated
exchanges. Thus, the resulting hedge may be expensive26 and not quite liquid,
which means that unwinding positions when necessary may be awkward. As we
have seen, we may resort to futures contracts, but since these are standardized, a
perfect hedge is not quite feasible, since we cannot match the risk exposure and
the maturity perfectly. Nevertheless, we may consider a futures contract with a
maturity close to our time horizon, written on an asset whose price process is
correlated to the price process of the asset we are interested in, resulting in a
cross-hedging strategy.27

Example 2.4 Cross-hedging

Consider a firm that needs to purchase plastic for packaging the goods
it produces. Arranging a forward contract on plastic may not be quite
reasonable, but since plastic is made out of oil, the oil price is a cor-
related risk factor. We do not really want to take a long position in a
forward contract on oil and actually buy it. However, we may take a
long position in oil futures and then close our position, before the ma-
turity of the hedging instruments, without having to take the physical
delivery of oil.

If the hedge consists of a futures contract, the overall cash flow will not be
zero because of asset and maturity mismatches; nevertheless, we might be satis-
fied by minimizing its variance. To be precise, when using futures contracts, we
should also account for another relevant difference with respect to forward con-
tracts: Due to daily marking-to-market, there is a sequence of daily cash flows.
This difference may be relevant or not, depending on the time horizon, as well
as the volatility of interest rates and their correlation with the price processes
St and Ft. In principle, the hedge should be adjusted dynamically, by a strategy
called tailing the hedge. We will see how to deal with this in Chapter 12. For

26It may seem that a hedge based on a forward contract cannot be “expensive,” since no cash
flow occurs at the beginning. However, the forward price F0 might be not quite fair, and there
could be a bid–ask spread between the prices offered to short and long positions.
27We will have a more detailed look at hedging with linear contracts, like forward and futures,
in Section 12.3.
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the sake of simplicity, let us ignore the issue and assume that a futures contract
essentially behaves like a forward contract.

We may establish a cross-hedge with the aim of minimizing the resulting
cash flow variance. In such a case, we must also determine a suitable hedging
ratio h, i.e., the number of the futures contracts that we buy or sell for each unit
of the asset. Unlike the case of perfect hedging, h need not be 1. So, let us
consider a hedge with maturity T1, based on a futures contract maturing at time
T2, where T1 < T2, written on some underlying standardized asset. By maturity
of the hedge, we mean the time instant at which we close the futures contracts,
by taking an opposite position, and sell our assets (or, alternatively, we assess
the value of our portfolio). We assume again that we hold N units of an asset
that we wish to sell at T1. Using the same reasoning that leads to Eq. (2.15), the
cash flow at time T1 is

C1 = N · [ST1
+ h · (F0 − FT1

)] . (2.16)

Since the future contract matures at T2, after the maturity T1 of the hedge, and it
is typically written on a different underlying asset, we do not have spot–futures
price convergence; hence, FT1 6= ST1 in general. Note that we may easily close
a futures contract before maturity and that the resulting cash flow for a short
position, if we neglect the time value of money, is the difference between the
initial and terminal futures prices, when the hedge is closed. We may easily find
the hedge ratio h that minimizes the variance of the total cash flow,28

min
h

Var[ST1
+ h · (F0 − FT1

)]

= Var(ST1
) + h2Var(FT1

)− 2hCov(ST1
, FT1

),

where we get rid of the irrelevant N . This is clearly a convex parabola, as a
function of h, and the first-order optimality condition,

2hVar(FT1)− 2Cov(ST1 , FT1) = 0,

yields the optimal hedge ratio,

h∗ =
Cov(ST1

, FT1
)

Var(FT1
)

. (2.17)

The hedging ratio h∗ will be negative, if the correlation between ST1 and FT1

is negative, in which case we should take a long position in the futures, even
though we want to sell our assets. If we denote the standard deviation of the
futures price at T1 by σF , the standard deviation of the spot price at T1 by σS ,
and their (Pearson) correlation coefficient by ρ, we may write

h∗ = ρ · σS
σF

. (2.18)

28If we do not really want to sell the asset, we may consider the variance of δS + h · δF , where
δS

.
= ST1

− S0 and δF .
= FT1

− F0. Thus, we are interested in the variation of wealth, rather
than in cash flows. Since prices at time t = 0 are known, they do not contribute to variance, and
the two expressions are equivalent.
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This looks very similar to what we are familiar with from the theory of simple
linear regression models. There, the optimal slope of the regression line is given
by the ratio of the covariance between the target and the explanatory variable to
the variance of the explanatory variable. This slope, obtained by least-squares
minimization of residuals, minimizes the variance unexplained by the model.
Here, we have a similar expression for the hedge ratio, which minimizes the
residual variance of the hedged portfolio. Essentially, we regress the spot price
on the price of the hedging instrument. By the way, we observe that, if there
is no hedge mismatch in terms of underlying asset price and maturity of the
futures contract, then we have perfect correlation and identical variances, due
to the convergence of spot and futures prices, and we revert back to perfect
hedging, where h∗ = 1.

Clearly, we should find hedging instruments that are as much correlated
as possible with our risk exposure (positively or negatively, it does not really
matter, as this is only reflected in a change of sign in h∗). Nothing forbids, in
principle, using more than one hedging instrument. The mathematics involved
is not quite different, and it basically requires solving a system of linear equa-
tions. However, as we shall show in Example 2.5, we should not forget that
there might be nonfinancial risk factors at play. Indeed, in practice, hedging is
not such a simple problem as Eq. (2.18) might suggest:

Real-life contracts have a standardized volume, so the hedging ratio may
have to be somehow rounded, resulting in an over- or under-hedging error.
We need an estimate of parameters like standard deviations and correla-
tions. These may be obtained from past data, but there is no guarantee
that these parameters are constant in time, especially in stressed market
conditions. Estimation and modeling errors might affect the performance
of the hedge.
Sometimes, we cannot disregard the impact of daily marking-to-market
of futures contracts, which calls for dynamic adjustments. Since this may
be costly to implement, further hedging errors might result.
In the minimum-variance formulation, we end up with a least-squares
problem, a very simple convex optimization problem. We observe that the
degree of risk aversion and the possible market views do not play any role
in determining the solution. However, more sophisticated optimization
models may be necessary to better match the hedge with investors’ views
and appetite for risk.

2.2.3.3 First-order immunization

So far, we have mostly considered linear models. The factor model of Eq. (2.4)
is linear, and the hedging equations involving forward/futures contracts are also
linear, since their payoff diagrams are linear.29 Due to linearity, the required

29See Fig. 1.4.
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mathematical machinery is rather simple. However, the payoff from vanilla call
and put options is not linear at all. Actually, it is piecewise linear at maturity, but
if we close the hedge before maturity by selling the options, we should expect
a more complicated dependency on the underlying risk factors. The matter is
even more involved when considering exotic derivatives. Also bonds may be
considered as interest rate derivatives, with a price depending in a nonlinear
way on the relevant risk factor, the interest rate. Actually, as we shall see,
the whole term structure of interest rates is involved, as different interest rates
apply to different maturities. Thus, we are lead to consider nonlinear hedging
problems.

One possibility to tackle such problems is to approximate the nonlinear
problem by linearization strategies; another one is to resort to possibly so-
phisticated optimization models. Let us consider the first idea, linearization,
which is pursued by taking advantage of Taylor expansions to the first order.
Let us illustrate the concept in a generalized and abstract framework, whereby
the value V of a portfolio depends on several risk factors, which we denote by
Ri, i = 1, . . . ,m. When the underlying risk factors change by an amount δRi,
there will be a corresponding change δV in the portfolio value. The change in
the value of V may be approximated to the first order as follows:

δV ≈
m∑
i=1

∂V

∂Ri
· δRi.

Now let us consider m hedging instruments (assets) with unit prices Hj , j =
1, . . . ,m, which are sensitive to the same risk factors as V . Observe that the
number of hedging instruments matches the number of risk factors. We may
approximate the change δHj in Hj in the same way as δV ,

δHj ≈
m∑
i=1

∂Hj

∂Ri
· δRi, j = 1, . . . ,m.

If we include φj units of each hedging instrument in the overall portfolio, the
value of the hedged portfolio is

V H = V +

m∑
j=1

φjHj .

The coefficients φj play the same role as the hedging ratio h when using futures
(see Eq. 2.16). Note that some additional budget may be required to set up the
hedge, as we may need to pay for the insurance, e.g., in the case of call or put
options. Actually, this need not be the case, as some derivatives (like interest
rate swaps), have zero initial value, just like forward and futures contracts. For
the moment, let us neglect this issue.
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The approximated change in value of the hedged portfolio is

δV H = δV +

m∑
j=1

φj · δHj

=

m∑
i=1

∂V

∂Ri
· δRi +

m∑
j=1

(
φj

m∑
i=1

∂Hj

∂Ri
· δRi

)

=

m∑
i=1

(
∂V

∂Ri
+

m∑
j=1

φj
∂Hj

∂Ri

)
· δRi. (2.19)

One clear issue is: How can we obtain the required partial derivatives, i.e., first-
order sensitivities to risk factors? In simple cases, like plain bonds and vanilla
options under a suitable market model, they may be obtained by differentiating
an explicit pricing formula. Alternatively, they may be obtained by numerical
and/or statistical methods, possibly by fitting a linear regression model by least-
squares. In fact, the coefficients of a linear regression model may be considered
as first-order sensitivities of an approximate linearized model.

The portfolio is approximately immunized, to the first order, if the condi-
tion δV H = 0 is met for whatever perturbation δRi may occur. Hence, all of
the coefficients multiplying the factors δRi in Eq. (2.19) must be set to zero,
which requires the solution of a system ofm linear equations in them unknown
variables φj :

∂V

∂Ri
+

m∑
j=1

φj
∂Hj

∂Ri
= 0, i = 1, . . . ,m.

Depending on the specific context, first-order immunization may translate to
approaches known as duration matching for fixed-income portfolios and delta-
hedging for option trading, as we shall see. As we may expect, the actual per-
formance of such policies may not be completely satisfactory:

We are immunizing to the first order, but when the underlying factors
change, first-order sensitivities change, for nonlinear hedging instruments.
Hence, hedge adjustments may be needed, and we may incur in signifi-
cant transaction costs.
We may improve performance by using second-order sensitivities, too. In
the case of bonds, second-order sensitivities are related to bond convexity,
and in the case of options they are related to option gamma. Again, we
may use explicit formulas or numerical methods to obtain these sensitivi-
ties, but the fact remains that we are perfectly hedged for small perturba-
tions. Practitioners might argue that an imperfect, but more robust hedge
might be preferred.
We have matched the number of hedging instruments and the number of
risk factors. However, there may be factors that are simply not hedgeable.
In such a case, we may still try to minimize the variance of the hedge, or
another suitable risk measure. Furthermore, the number of risk factors
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can be too large to be practical. In interest rate risk management, there is
an infinite number of risk factors in principle, i.e., an interest rate for each
possible maturity. However, we may take advantage of the relationships
among risk factors to reduce the complexity from both a computational
and financial perspective.30

Last but not least, whenever we use a model, like a factor model or a pric-
ing model, we are subject to model risk. The model itself may be wrong,
or our estimates of critical parameters may turn out to be inadequate to
cope with changed market conditions.

2.2.4 FINANCIAL VS. NONFINANCIAL RISK FACTORS

So far, we have only considered financial risk related to, e.g., uncertain stock
share returns and the impact of interest rate on bond prices. We have also mainly
assumed the viewpoint of a financial institution or an individual investor. From
a mathematical perspective, this is enough motivation to develop quantitative
tools to tackle the related problems. However, we must bear in mind that finan-
cial risk factors have an impact on nonfinancial players and that nonfinancial
risk factors have an impact on financial players, too. In this section, we give a
broader view of risk categories, with some examples showing the role of nonfi-
nancial factors.

Beside market risk and interest rate risk, we should consider currency
risk (foreign-exchange risk, if you prefer). This is relevant to financial insti-
tutions investing in foreign assets, as well as to nonfinancial firms with inter-
national operations. Signing a contract that prescribes a future payment in a
foreign currency implies exposure to adverse movement in the exchange rate.
Hence, nonfinancial firms may also be interested in using derivatives to mit-
igate this exposure. Inflation risk is another important category. We should
realize that risk factors need not be uncorrelated. There is an interplay between
inflation risk and interest rate and currency risk.

We should also be concerned with counterparty and credit risk. Coun-
terparty risk is relevant, e.g., in OTC markets: The counterparty in a forward
contract may fail to comply with his obligations. Credit risk is related to the
possibility of default on a loan, and has a severe impact on both corporate and
noncorporate bonds. Both categories of risk may have to do with the financial
health of a nonfinancial player, as well as with general economic conditions.

There are also specific risk categories that are relevant to specific assets. For
instance, volatility risk refers to the impact of volatility on derivative prices.
Vanilla call and put options are both sensitive to a change in volatility, in the
same way: The larger the volatility, the larger the price. This should not be

30A well-known data reduction technique that is frequently proposed is principal component
analysis. See, e.g., [2, Chapter 17].
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confused with market risk, as volatility risk is nondirectional,31 i.e., it is not
related to prices going either up or down.

When building sophisticated pricing models, we are introducing model
risk. Model risk may be considered as nonfinancial in the sense that it is not re-
lated with market variables, but it is clearly related to financial market modeling.
Other nonfinancial risk categories are regulatory and political risk. Changes
in bank regulations and government policies may have an impact on financial
markets.

On the corporate side, a form of risk which is important to financial insti-
tutions is volume risk. In the hedging examples we have considered, we have
taken for granted the knowledge of N , i.e., the units of the asset we have to buy
or sell. However, this amount may be related to business contingencies, as the
following example illustrates.

Example 2.5 Volume risk in forward contracts

In Section 2.2.3.1, we have considered perfect hedging, and we have
taken for granted that we know the size of the required hedge. Con-
sider the case of a US firm that will need an amount of N euro in
six months. The firm could buy the euros now, but this would be bad
for liquidity. An alternative is to take a long position in a forward
contract for an amount N , locking the price.

So far, so good. But we should ask why the firm needs that
amount of currency. Imagine that the firm has anticipated the need
to buy a set of components from a supplier in the eurozone, to assem-
ble a given number of equipments for a client in the USA. The amount
N depends on how many items the client plans to order, which deter-
mines the number of components needed. What happens if, maybe
because of economic recession, the client cuts the order by a signif-
icant amount? Now the US manufacturer has to buy an excessive
amount of euros, at a locked forward price, and the hedge is not per-
fect anymore. If the dollar drops with respect to euro, no harm done:
The firm will end up with a windfall payoff, but speculation on cur-
rencies is not its core activity. If, on the contrary, the euro drops, the
firm will have to buy euros that it does not need, at a large price, just
when the business is turning sour. Chances are that the risk manager
will find himself in an uncomfortable spot when trying to explain this
to his boss. Overlooking volume risk may be dangerous, indeed.

In practice, quantifying a risk exposure is far from trivial. In a complex
organization, it may be difficult to assess how much hedging is really needed.

31See Section 13.6.
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This is especially true when considering a multinational firm with many differ-
ent currencies involved. Sometimes, opposite cash flows in the same currencies
may provide a sort of natural hedge, but this may be nontrivial to assess by
checking accounting statements. It is also difficult to associate volume risk
with reliable probabilities. For instance, imagine that the volume risk is related
to business expansion opportunities, depending on whether some contracts will
be signed or not by potential customers. Historical data may be of very lit-
tle help, and subjective probabilities may be difficult to assess. Robust models
might be needed, and an approximate hedge which works more or less well in
any scenario might be preferable to a perfect hedge working perfectly only in
one scenario.

Last, but not least, we should also consider operational risk. Loosely
speaking, this is a catch-all risk category accounting for risk due to errors, sys-
tem malfunctions, and wrong data/information creeping in the system. A few
examples may illustrate the relevance of operational risk:

Order execution critically relies on information technology (IT) infras-
tructure. Imagine the effect of a computer network crashing at a most
critical moment. Such an event may be due to a system malfunction or
to a catastrophic event, like a flood or an earthquake. Proper countermea-
sures should be taken in order to ensure business continuity.
Algorithmic trading relies on sophisticated algorithms, executed at max-
imum speed. War histories abound on the dire consequences of obscure
software bugs or improper installation of wrong software versions.
In other cases, strange market behavior may be attributed to human error.
A well-known example is the fat finger mistake, whereby a wrong number
is entered. Imagine adding a trailing ‘0’ to the price of a trading order.
In a more and more interconnected world of big data, the consequences of
a mistake or wrong information may be remarkable. In 2008, stock shares
of United Continental Holdings Inc. (UAL, the parent company of United
Airlines) plunged by 75%, allegedly because an investors’ newsletter re-
ported news of UAL filing for bankruptcy. Actually, that was news six
years old, popping up from a Google search, and it had nothing to do
with relevant market information. Imagine the effect of these search en-
gine issues on trading strategies based on sentiment analysis.

2.3 The no-arbitrage principle in asset pricing

We have argued that we need mathematical models to find the fair value of
assets, especially derivatives. The output of valuation models is just one ingre-
dient in determining the actual price, even though we use the term asset pricing
rather than asset valuation. The actual price will include a profit margin, as
well as some fudge to allow for model errors and risk factors that cannot be
hedged. The cornerstone of such models is the no-arbitrage principle. In-
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formally, an arbitrage opportunity is a trading strategy that requires no initial
commitment of money and will result in a riskless profit. The basic idea is that
such a nice money-making machine (or free lunch, if you prefer) should not
exist, since market participants will immediately take advantage of any oppor-
tunity like that, making it disappear quite fast. The idea is somewhat related to
the efficient market hypothesis (EMH) in financial economics.32 Despite its
simplicity and appeal, the principle is not free from controversy. In particular, it
is criticized by behavioral financial economists, who argue against a completely
rational approach to finance.33

Example 2.6 A behavioral joke

An illuminating joke on the controversy about the EMH goes more
or less like this. A well-known professor of the rational school of
thought is walking and chatting with a student. The student notices a
banknote lying on the sidewalk and points it out to the professor, who
replies: “There is no banknote on the sidewalk, as if there were one,
someone would have already picked it up.”

2.3.1 WHY DO WE NEED ASSET PRICING MODELS?

Several assets, like stocks, bonds, and exchange-traded derivatives, are quoted
on regulated markets, where prices are driven by the interplay between demand
and offer. So, one may well wonder why we should bother developing mathe-
matical models to find prices that we should better read on a computer screen.
Indeed, pricing assets seems like a daunting task, which should take into ac-
count several issues:

Uncertain risk factors
Liquidity issues
Wealth and risk aversion of market participants
Information asymmetries and different market views

At best, we may hope to come up with a reasonably simplified model that does
not produce blatantly absurd prices.

Actually, there are several reasons for the development of asset pricing
models:

32See Chapter 10 for a related discussion of equilibrium models. Roughly speaking, the EMH
states that asset prices immediately incorporate all relevant information, and there is no bias due
to irrational behavior or information asymmetry.
33See Section 10.5.
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Pricing quoted assets is useful to calibrate a model in terms of underlying
factors. For instance, a bond price depends on interest rates. Hence, if
we are provided with a pricing model, we may estimate the underlying
interest rates by observing bond prices. This is also quite relevant when
we want to infer something about unobservable parameters like volatility,
on the basis of observed option prices. Historical price volatility may be
estimated on the basis of past asset prices, but what we may really need
is an estimate of the current volatility (even better, a forecast of future
volatility). Given a model relating option prices with volatility, we may
come up with an implied volatility, which is a market consensus view,
rather than a historical volatility.
If we have a well-defined view about the underlying factors of the price
of a security, we might observe a discrepancy between the quoted and fair
prices and take advantage of it by a suitably designed trading strategy.
For instance, if we believe that the current level of implied volatility is
too low and that it is going to increase, we could buy derivatives that are
long volatility (i.e., their price is increasing with respect to volatility). If
markets move as we predict, a considerable profit might result.
Some assets, like OTC derivatives, are not really quoted. When a firm
asks an investment bank to engineer a derivative for a specific hedging
requirement, it may wish to check whether the asked price is reasonably
fair. Pricing models may provide the firm with an estimate of the fair
value.
In risk management applications, we need a model telling us how asset
prices are expected to react to moves in underlying risk factors. For in-
stance, we do not want to consider the price of each bond or derivative as
a risk factor by itself, as it would be quite difficult to come up with a sen-
sible model accounting for their correlations. Rather, we should focus on
a limited number of common factors, affecting the whole set of securities,
and assess price sensitivities by a parsimonious model.

In this book, we will always price securities under the assumption that no arbi-
trage opportunity is available. As we shall see, this does not necessarily guar-
antee the uniqueness of prices.

2.3.2 ARBITRAGE STRATEGIES

There are different ways of defining an arbitrage strategy in theory, and dif-
ferent ways of carrying it out in practice. All of them, however, lead to a safe
way of making money, without the need of an initial capital. This should not be
confused with investing in the risk-free asset, where we do make a sure profit,
but we need some initial capital. Such a nice money-making machine, as sug-
gested by economic common sense, should not exist. Or, at the very minimum,
it should exist for a very short amount of time, since someone will take immedi-
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ately advantage of it, pushing prices back in line. We may distinguish different
types of arbitrage:

Instantaneous arbitrage, where we trade at a given time instant, without
committing any resource, and we gain an immediate riskless profit.
Static arbitrage, which involves trading at two time instants, say, t = 0
and t = T , and results in the creation of a riskless profit without commit-
ting any resource.
Dynamic arbitrage, which involves trading at multiple time instants and
will not be considered in this chapter.

Example 2.7 An instantaneous arbitrage

Suppose that a stock share is traded on two markets, one with prices
denominated in euros and the other one in dollars. Now imagine that
we observe the following prices:

The current exchange rate is 1.34$/ (by which we mean that the
price of one is $1.34)
The stock share price is 50 on the first market and $68 on the
second market

It is easy to see that these prices are not in line. If we take the first
two as correct, the price of that stock share should be

50× 1.34
$

= $67.

We may buy the stock share on market 1 and sell it immediately on
market 2, with a risk-free profit of $1. If many players pursue the
same strategy, the ensuing pressure on prices will push them back in
line and eliminate the misalignment.

As one can imagine, instantaneous arbitrage also implies that three currency
exchange rates involving three currencies should be consistent. Let us denote
by Sx/y the price of currency y in units of x. Then, given currencies a, b, and c,
we must have:

Sa/b = Sa/c × Sc/b.

A violation of this relationship allows a triangular arbitrage. Note that we are
not considering transaction costs, as well as execution uncertainty due to delays,
which may affect the actual execution of an arbitrage strategy.
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Example 2.8 A static arbitrage with an immediate profit

Consider the following situation:

The price of a stock share is currently $55. The stock share will
not pay any dividend in the next six months.
Two options, a call and a put, are traded on that stock share, ma-
turing in six months and with the same strike price, $60. The price
of the call option is $2, and the price of the put is $7.
The risk-free rate, with semiannual compounding, is currently 4%
(this means that by lending money for six months we gain 2% of
the capital; see Section 3.1).

Now, consider the following trade at time t = 0:

Write the put option to a counterparty (which will be the holder
of the put option).
Short the stock share.
Buy the call option (we are the holders of the call option).
Buy a riskless zero-coupon with face value, $60, which is equiv-
alent to investing

60

1 + 0.02
≈ $58.83

for six months, at the risk-free rate.

Note that the overall cash flow at time t = 0 is

7 + 55− 2− 58.83 = 1.17.

We are actually making some money, which is equivalent to saying
that we have bought a portfolio with negative value.

At maturity, at time t = 0.5 measured in years, one of the follow-
ing three cases will occur:

1. If the stock price is exactly $60 no option is exercised, and we
use the face value of the bond to buy the stock share and close the
short position.

2. If the stock price is larger than $60, the put is not exercised by
its holder, and we use the call to buy the stock share at $60 and
close the short position, where the cash needed is provided by the
zero-coupon bond.

3. If the stock price is smaller than $60, the put is exercised by its
holder: We have to buy the stock share at $60, and we use it to
close the short position; again, the cash needed is provided by the
zero. The call is not exercised.
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Whatever the case, we always break even and the net cash flow at
maturity is zero.

The trade that we have used may look somewhat mysterious, but it is related
to the put–call parity relationship that we will consider later, in Chapter 13. In
this kind of arbitrage, there is a portfolio with negative value at time t = 0, and
its value is always zero at t = T . Buying the portfolio results in an immediate
profit now, with no possibility of losing money in the future. We may consider
another kind of arbitrage in which the net cash flow is zero now, and we may
only make a profit in the future.

Example 2.9 A static arbitrage with deferred profit

Let us consider two assets, a and b, with current price

Sa(0) = Sb(0) = 1,

at time t = 0. At a later time t = T , the asset prices, denoted by
Sa(T, ω) and Sb(T, ω), are random variables whose value depends
on the realized scenario ω. Let us assume that there are three possi-
ble scenarios ωi, i = 1, 2, 3, with prices given in Table 2.2. Let us
consider a portfolio in which we hold an amount ha and hb of the
two assets, respectively. We notice that profit/loss is given as follows,
depending on the scenario/state of nature:

State ω1: ha(2− 1) + hb(1− 1) = ha

State ω2: ha(0− 1) + hb(0− 1) = −ha − hb
State ω3: ha(2− 1) + hb(2− 1) = ha + hb.

If we choose ha = 1 and hb = −1, the net cash flow at t = 0 is
zero, we have a profit in state ω1, and no profit/loss is incurred in the
remaining states. More generally, in this example any portfolio with
ha + hb = 0, ha > 0, is an arbitrage strategy.

We may observe that the source of the anomaly is that asset a
dominates asset b, state by state. We will consider conditions pre-
cluding this anomaly in Section 2.4.2.

In practice, the term “arbitrage” may refer to strategies that are actually
somewhat risky, as they rely on price misalignments spotted by a specific asset
pricing model. Such an arbitrage strategy is subject to model risk. Another
source of potential trouble, in an arbitrage strategy unfolding over time, is the
need for liquidity in the short term. A strategy might be potentially successful
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Table 2.2 Asset prices at time t = T in state ω, for Example 2.9.

State ω1 ω2 ω3

Price Sa(T, ωi) 2 0 2
Price Sb(T, ωi) 1 0 2

in the long term, but result in unsustainable short-term losses because of margin
calls on leveraged or short positions. In this book, we consider deterministic and
somewhat idealized arbitrage strategies, whereas statistical arbitrage strategies
are often pursued in practice.

We will investigate the nature of arbitrage strategies, as well as their rela-
tionship with dominant strategies, in Section 2.3, for the simple case of a finite
number of possible scenarios (states of nature), i.e., a discrete probability dis-
tribution. The concept may be extended to the continuous case, at the price of
a more sophisticated mathematical machinery. Here, we want to consider a few
examples illustrating practically relevant consequences of the assumption that
arbitrage opportunities cannot exist for a long time in well-functioning markets.

2.3.3 PRICING BY NO-ARBITRAGE

Several pricing models assume that arbitrage opportunities do not exist. To
be more precise, the pricing principle based on lack of arbitrage opportunities
assumes that they may exist, but arbitrageurs are very quick to take advantage
of them and their trading strategies make prices realign. Pricing by no-arbitrage
is a relatively simple principle, leading to much simpler pricing approaches
than full-fledged equilibrium models, as it does not require any information
about wealth endowments, market views, and degrees of risk aversion of market
participants.

In Section 2.4, we discuss in more detail the mathematics of (no-)arbitrage,
but parts of its consequences are rather intuitive:

We cannot have two different risk-free interest rates in the same economy.
Otherwise, one would borrow at the lower rate to invest at the higher one.
Clearly, this assumes a market with no bid–ask spread on rates, i.e., rates
to borrow or lend money are the same.
Assets or portfolios that will have the same value in the future, whatever
scenario occurs, must have the same value now. This is essentially a law
of one price, which again assumes a frictionless market with no transac-
tion costs.
Assuming that we may bundle and unbundle assets and cash flows freely,
i.e., no friction is involved and we can synthesize an asset as a linear com-
bination of other assets, we will also see that pricing is a linear operator.
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We may get a clue about the power of no-arbitrage by looking at a few
simple, but instructive examples.

Example 2.10 Relative bond pricing

Consider two bonds maturing in five years. The first one has coupon
rate 9% (assume a single annual coupon) and its price is 104.36 (face
value is 100). The second one has coupon rate 7% (annual coupon,
again) and its price is 96.3. What is the price of a zero-coupon bond
maturing in five years?

It seems that we have very little information, but we may easily
find the only price of the zero that is in line with the other two bond
prices. We have just to realize that the two coupon-bearing bonds
have synchronized cash flows:

C1,t = 7, C2,t = 9, t = 1, 2, 3, 4

C1,5 = 107, C2,5 = 109,

whereas the zero has only one cash flow at maturity, Cz5 = 100.
We may easily build a portfolio consisting of the two coupon-

bearing bonds, replicating the cash flow of the zero, by solving the
following set of linear equations:

9x1 + 7x2 = 0

109x1 + 107x2 = 100,

where x1 and x2 are the amount of the two bonds in the replicating
portfolio. Solving the system yields

x1 = −7

2
, x2 =

9

2
.

Note that the first position takes a negative value, i.e., we should sell
the first bond short. The value of the replicating portfolio is

−7

2
× 104.36 +

9

2
× 96.3 = 68.09,

which must be the price of the zero, if we rule out arbitrage opportu-
nities. Note that we are implicitly assuming that default risk is negli-
gible for all of the bonds involved, that short-selling is possible, and
the market is frictionless.

Example 2.10 is a straightforward application of the law of one price. Let
us investigate another example in this vein, involving options.
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FIGURE 2.5 A butterfly spread.

Example 2.11 Butterfly spreads and the law of one price

Consider a weird derivative with the payoff WT depicted in Fig. 2.5,
depending on the price ST of a certain underlying asset at time t = T .
The breakpoint prices, K1 < K2 < K3, are such that

K2 =
K1 +K3

2
.

The payoff is piecewise linear, and the slopes on the range with strictly
positive payoff are +1 and−1. This payoff corresponds to a common
trading strategy, called butterfly spread. When K2 is close to the
current price S0 of the underlying asset, the strategy is essentially a
bet on low volatility, i.e., we make a profit if the asset price does not
move away from S0. Now imagine that, at time t = 0, three call op-
tions on the same asset are available, with strike prices K1, K2, and
K3, respectively. These three options mature at time t = T , and let
Ci(0), i = 1, 2, 3 denote their prices.

It is easy to see that the butterfly spread may be synthesized by
taking a long position in one option with strike K1, a long position
in one option with strike K3, and a short position in two options with
strike K2. To see this, observe that the value of the portfolio of call
options matches the butterfly spread for any price ST . This is summa-
rized in Table 2.3. When ST < K1, all of the call options have zero
payoff (we say that they are out-of-the-money) and are not exercised
at maturity; hence, the total payoff from the option portfolio is zero,
as in Fig. 2.5. For ST ∈ [K1,K2), the first option has a positive pay-
off (we say that it is in-the-money), and the total payoff is ST −K1.
The other cases are treated similarly, as shown in Table 2.3. Summing
the payoffs of the three options in each possible case yields the payoff
of Fig. 2.5.

Therefore, we have a portfolio and an asset with the same value
in each possible state in the future. Then, by the law of one price, the



2.3 The no-arbitrage principle in asset pricing 111

Table 2.3 Decomposing a butterfly spread.

Scenario ST < K1 K1 ≤ ST < K2 K2 ≤ ST < K3 K3 ≤ ST
Payoff option 1 0 ST −K1 ST −K1 ST −K1

Payoff option 2 0 0 −2(ST −K2) −2(ST −K2)

Payoff option 3 0 0 0 ST −K3

Total payoff 0 ST −K1 K3 − ST 0

initial value of the asset must be the initial value of the portfolio,

C1(0)− 2C2(0) + C3(0),

no more, no less. Otherwise, the law of one price would be vio-
lated and we could make an immediate profit by shorting the more
expensive portfolio and buying the cheaper one, knowing that we will
always break even at maturity. In this case, we would essentially buy
a portfolio with a negative initial value, which means that we earn a
profit by buying it, but with zero value (no commitment at all) for the
future.

Example 2.12 Cash-and-carry arbitrage and forward prices

Suppose that the current spot price for an asset is S0 = $50, the cur-
rent forward price for delivery in one year is F0 = $53, and the annual
risk-free interest rate is 3%, with annual compounding. At time t = 0
we may:

1. Borrow $50 to buy the asset.
2. Enter into a long position to sell the asset in one year at the for-

ward price.

In one year, we will have to repay

$50× 1.03 = $51.5.

Hence, we may sell the asset at F0 = $53, cashing in a risk-free
difference of $1.5. In this case, we have a zero net cash flow at time
t = 0, and a sure profit at maturity.
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FIGURE 2.6 One-step binomial model for option pricing.

The last example is particularly puzzling. Common sense would suggest that
the fair forward price should be related to the expected value of the spot price
at maturity. However, under suitable market assumptions, the example suggests
that no-arbitrage implies a different forward price. We will have more to say
about pricing forward contracts in Chapter 12.

2.3.4 OPTION PRICING IN A BINOMIAL MODEL

Options are nonlinear instruments and, as we shall see in Chapter 13, their pric-
ing involves a quite sophisticated mathematical machinery. However, we may
get a clue on how we may price an option by adopting the simplest uncertainty
model we may think of, the single-step binomial model. Consider a single time
interval of length T . The underlying asset price at the beginning of the time
step is S0; the price ST at the end of this period is a random variable, taking
values uS0 or dS0, where d < u, with probabilities pu and pd, respectively.
The single-step binomial model, which is essentially a coin-flipping model, is
illustrated in Fig. 2.6.

An option is written on the asset, and its payoff can be fu or fd, depending
on the outcome. For instance, for a call option with strike K, we have

fu = max{0, uS0 −K},
fd = max{0, dS0 −K}.

We would like to find the current option price f0. Common sense would suggest
that the fair option value should be related to the expected value of its payoff.
Since, however, the payoff will be received at time t = T , we should discount
it somehow. If the interest rate is continuously compounded, we shall see that
this requires a discount factor consisting of a negative exponential. Hence, a
seemingly sensible guess is (please note the question mark!)

f0
?
= e−rT · E[fT ] = e−rT · [pufu + pdfd] . (2.20)

However, Example 2.12 suggests some caution with this intuition, since it may
fail for forward contracts. Moreover, in Example 2.10, we have solved a pricing
problem very easily by a replication strategy, and we can try with the same
approach here.
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Assume that a riskless asset is traded, with initial price B0 = 1 and fu-
ture price Bu = Bd = erT , where r is the continuously compounded risk-free
rate. This asset may essentially be regarded as a risk-free bank account or a
zero-coupon bond maturing at T .34 Using the two traded assets, we may set
up a portfolio replicating the option payoff. In order to find this replicating
portfolio, let us denote the number of stock shares in the portfolio by ∆ and the
amount of cash by Ψ. The initial value of the replicating portfolio is

Π0 = ∆S0 + Ψ,

and its future value, depending on the realized state, will be either

Πu = ∆S0u+ ΨerT or Πd = ∆S0d+ ΨerT .

To find the composition (∆,Ψ) of the replicating portfolio, we require two con-
ditions, matching the option payoff state by state:

∆S0u+ ΨerT = fu,

∆S0d+ ΨerT = fd.

Solving this system of two linear equations in two unknown variables, we find

∆ =
fu − fd
S0(u− d)

, (2.21)

Ψ = e−rT · ufd − dfu
u− d

. (2.22)

In order to avoid arbitrage, by the law of one price, the initial value of this
portfolio must be exactly f0:

f0 = ∆S0 + Ψ

=
fu − fd
u− d

+ e−rT · ufd − dfu
u− d

= e−rT
{
erT − d
u− d

fu +
u− erT

u− d
fd

}
. (2.23)

It is important to note that this relationship does not depend on the objective
probabilities pu and pd. In particular, the option price is not the discounted
expected value of the payoff, which could have been a seemingly reasonable
guess, expressed in Eq. (2.20). However, Eqs. (2.20) and (2.23) do look quite
similar. The latter can be interpreted as an expected value, provided that we
introduce new “probabilities,”

πu =
erT − d
u− d

, πd =
u− erT

u− d
= 1− πu.

34If we assume a constant and continuously compounded risk-free rate r, there is no difference
between depositing $1 in a bank account, which will grow to $erT , and buying a bond with face
value $erT at the current price of $1. However, things are quite different if we consider a bank
account with a nonconstant interest rate, exposing us to reinvestment risk. Hence, it is better to
interpret the risk-free asset as a bank account. We will clarify this matter in Section 14.3.3.
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However, can we really say that these are probabilities? A first check is that,
indeed, they add up to 1,

πu + πd = 1,

which is fine. However, probabilities should also be non-negative. It is easy to
see πu and πd are positive if d < erT < u, which must be the case if there is no
arbitrage strategy involving the riskless and the risky asset. If we had

erT < d < u,

then the risk-free asset would always be outperformed, and we could make an
unbounded profit by borrowing cash and investing it in the risky stock share;
the future value of the stock shares, in this case, will always be larger than the
debt we have to repay. On the contrary, if

d < u < erT ,

then we should sell the stock share short and invest the proceeds in the risk-free
asset, with the guarantee that we will have enough cash to buy back the stock
share and close the short position. Thus, assuming that no arbitrage opportunity
exists, we may interpret πu and πd as probabilities and write the option price
as the discounted expected value of payoff, under a new probability measure
defined by those probabilities:

f0 = e−rT · EQn [fT ] = e−rT · (πufu + πdfd). (2.24)

The notation EQn[ · ] points out that expectation is taken with respect to a dif-
ferent probability measure. The probability measure Qn is also called risk-
neutral. To understand why, let us write the expected value of ST under prob-
abilities πu and πd:

EQn [ST ] = πuS0u+ πdS0d

= S0 ·
(
erT − d
u− d

u+
u− erT

u− d
d

)
= S0e

rT . (2.25)

We see that the return of the risky stock share is exactly the risk-free rate r.
This would be true in a world of risk-neutral investors, who do not require any
compensation for bearing risk and only care about expected values, as we shall
see in Chapter 7. In such a risk-neutral world, the expected return of any asset
would just be the risk-free rate.

Another interesting insight is obtained if we consider the ratio between
prices St and Bt. Under Qn, a rearrangement of Eq. (2.25) yields, recalling that
B0 = 1,

S0

B0
= EQn

[
ST
BT

]
,

i.e., the expected value of the ratio at time t = T is just the current value of
the ratio. As we shall see in Chapter 11, this is a property characterizing a
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family of stochastic processes called martingales. We leave it as an exercise
(see Problem 2.6) to check that the ratio ft/Bt is a martingale, too, under Qn.
The condition

f0

B0
= EQn

[
fT
BT

]
implies the pricing relationship of Eq. (2.24). This is why Qn is also known
as equivalent martingale measure. In our simple setting, dividing St by Bt
essentially amounts to discounting the asset price. However, the idea is more
general, and we may consider dividing by the price of an almost arbitrary asset,
playing the role of a numeraire, under the condition that its price is strictly
positive (to avoid trouble with division by zero). Alternative numeraires are
associated with different probability measures, which leads to powerful pricing
approaches.

We observe that the replication argument boils down to the trivial fact that
we are expressing the vector [fu, fd]

T in the bidimensional space R2 as a lin-
ear combination of two linearly independent vectors [Su, Sd]

T and [erT , erT ]T

forming a basis. When an arbitrary payoff can be replicated by a set of spanning
assets, we say that the market is complete. The trouble with this assumption is
that market completeness implies that derivatives are redundant, so why should
we bother with them? As one can imagine, real-life markets are incomplete,
i.e., there are payoffs/derivatives that cannot be replicated by trading in elemen-
tary assets. We shall investigate the matter in more detail in Section 2.4, but the
bottom line is the following:

A market model does not allow arbitrage opportunities if and only if there
exists an equivalent martingale measure.
The equivalent martingale measure is unique if and only if the market
model is complete.

Depending on the market model, proving all of this may be relatively simple or
quite demanding but, as we have seen, the essential insights can be obtained by
a simple binomial model. Clearly, a replication argument works under the as-
sumption of market completeness. In this case, the equivalent martingale mea-
sure is unique and may be interpreted as risk-neutral. As we shall observe in
Section 13.3, the argument may be recast in terms of hedging the risk of option
writing. This second approach may have the advantage of applying to incom-
plete markets, too. Furthermore, arbitrage-free but incomplete markets allow
the existence of multiple equivalent martingale measures. Hence, incomplete
markets require a calibration procedure to find the “right” martingale measure.
This amounts to finding a model matching the market prices of traded deriva-
tives, and then applying the model to price OTC securities, as we shall see in
Chapter 14.
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2.3.5 THE LIMITATIONS OF THE NO-ARBITRAGE PRINCIPLE

Whenever we use the no-arbitrage principle, it is a good idea to remind our-
selves of the assumptions, hidden or otherwise, that we are making. In fact,
there are some limitations in its use, since we neglect features of real-life mar-
kets.

We neglect market frictions, i.e., bid–ask spreads and transaction costs, as
well as the effect of taxes and the difference in interest rates for borrowing
and lending. Usually, the effect of transaction costs and other frictions is
that there is a range of arbitrage-free prices, rather than a unique price.
Some trades may work in the long term, but may be adversely affected
by liquidity issues. This may happen if prices move in an unfavorable
way in the short term, with the potential effect of receiving a sequence of
nasty margin calls. We also have to cope with limits to short-selling, a
usual ingredient of arbitrage strategies, as well as inventory costs (which
are relevant when trading commodities).
Another feature of real-life markets is the presence of market players with
bounded rationality, as well as asymmetric information. Some role may
be played by noise trader risk, i.e., the risk of price movements caused
by uninformed traders, which may be irrational from the viewpoint of an
informed trader, but may well affect prices in the short term.
Another assumption we make is that we can observe prices and immedi-
ately operate on markets. Actually, an order must be issued and executed
in an environment featuring faster and faster dynamics, due to the perva-
sive role of information technology. As a result, a trade may suffer from
execution uncertainty.
Last, but not least, we should be aware of model risk. Some assets may
look relatively mispriced according to a pricing model, but we may not
be sure that the model itself and the estimates of its parameters are quite
correct.

A well-known real-life example of the above issues is represented by the de-
bacle of the Long Term Capital Management (LTCM) hedge fund in 1998.
The fund used convergence strategies, based on the detection of price misalign-
ments, under the assumption that, sooner or later, security prices will be brought
back in line (this is an extremely simplified view of the actual strategies em-
ployed). Under extreme market conditions, however, models may break down
and prices may take unexpected routes. In the LTCM case, this was caused by
a potential default on Russian bonds, which caused a flight to quality, i.e., mas-
sive sales of risky assets to invest in safe ones. Thus, prices did not converge
at all, and the gaps widened, leading to massive losses. With highly leveraged
positions, these losses cannot be sustained because of liquidity issues, even if
convergence does take place in the long term.
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2.4 The mathematics of arbitrage

The mathematics of arbitrage relies on stochastic models for asset prices, inter-
est rates, and other risk factors. In Section 2.3.4, we have seen how, in a simple
binomial setting, where we assume market completeness, we may replicate any
payoff by a portfolio consisting of two spanning assets. Market completeness
in the binomial case means that the payoffs of the two spanning assets are lin-
early independent and are a basis for the two-dimensional space R2. Clearly,
two states do not make an excellent model of uncertainty. If we increase the
number of scenarios to m, we may represent uncertainty more accurately, but
if we pursue the same approach as before, we would need a set of m spanning
assets forming a basis for Rm. This does not seem practically sensible, if we
are considering an option written on a single underlying asset. As we shall see
in Chapter 13, the trick is to introduce dynamic replicating portfolios, based
on cash and the underlying asset. If we allow for trading in continuous time,
we may even be able to cope with a continuous random variable modeling un-
certainty. We will deal with such models in Chapter 11, but developing the
mathematics of arbitrage in that context requires tools from stochastic calcu-
lus and functional analysis, beyond the scope of this book. Here, we restrict
the analysis to static trading strategies and finite-dimensional models, which al-
low us to use simpler tools from linear algebra and linear programming. This
is sufficient to get the fundamental insights, without bothering too much with
advanced mathematical machinery. Nevertheless, the uninterested reader may
safely skip this section.

We consider a single-period market, where trading occurs at dates t = 0
and t = T . The sample space Ω consists of m possible states of the world
(scenarios) Ω = {ω1, ω2, . . . , ωm}, with probability measure p(ω) > 0, ∀ω ∈
Ω. Hence, we deal with quite simple stochastic processes with sample paths
Y (t, ω), t ∈ {0, T}.35 Since the initial state is known, when we refer to time
t = 0 we may suppress dependence of the process on ω to improve readability.
Thus, we will write Y (0) and Y (T, ω) when referring to the initial and terminal
states, respectively. On this market, n+ 1 securities are traded:

n “risky” securities, indexed by i = 1, . . . , n, with price process Si(t, ω),
where the initial price is strictly positive, Si(0) > 0, and the terminal
price is non-negative, Si(T, ω) ≥ 0. This non-negativity condition is
satisfied by stock share prices, since equity shares are a limited liability
asset, as well as by derivatives with a non-negative payoff, like call and
put options.
A “bank account,” associated with a price process B(t, ω), such that
B(0) = 1 and B(T, ω) > 0.

35A stochastic process is a sequence of random variables over time. Here, we just have one
random variable at time t = T , but it is a good idea to strive for generality.
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Note that the bank account could correspond to a truly risk-free asset, where
there is no randomness and B(T, ω) = B(T ) for every ω, but this need not be
the case. The strict positivity condition on B is important when we use it as a
numeraire, i.e., when we consider the discounted price processes

S∗i (t, ω)
.
=
Si(t, ω)

B(t, ω)
, i = 1, . . . , n.

The discounted price process for the bank account is, trivially,

B∗i (t, ω) = 1.

For the sake of convenience, we will assume that B(T, ω) = 1 + r, where r is a
risk-free holding period return.

The questions that we want to address in this simple market model are:

Is the market model sensible? A sensible market model should not allow
for riskless money-making machines.
How can we price contingent claims, i.e., securities offering a defined
payoff X(ω) for each state ω at time t = T ? The contingent claim is a
contract C, associated with a function X : Ω → R. In concrete terms,
this will be a derivative with a well-defined payoff.

A static trading strategy may be described by the vector h = [h0, h1, . . . , hn]T∈
Rn+1, representing the holding of each security, where h0 refers to the bank
account. We fix h at time t = 0 and see the result at time t = T , at the end
of the holding period. In this static setting, the trading strategy boils down to a
portfolio; things are more complicated in a dynamic setting. In any case, there
should not exist a trading strategy creating riskless money out of nothing.

The payoffs of all of the contingent claims form a linear space of ran-
dom variables.36 The numerical values taken by X(ω) can be collected into
a payoff vector in Rm, which we identify with the function itself. Thus, in
our finite-dimensional setting, the space of random variables boils down to the
linear space of vectors in Rm, on which we may take arbitrary linear combi-
nations. Note that the basic securities in the market model have a given initial
price, but contingent claims have not. We would like to define a sensible pricing
functional Π, mapping the random variable X(ω) (the payoff of the contingent
claim) to a real number (its price).

36From a mathematical viewpoint, the term linear space, which is equivalent to vector space
in our setting, refers to a set of objects that can be linearly combined: If x and y belong to a
linear space L, so does the linear combination ax + by, where a and b are real numbers. From
a financial viewpoint, this means that we may bundle and unbundle assets forming other assets,
without incurring in any transaction cost.
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Let us define the vector of initial prices of the n+ 1 traded securities,

V =


1

S1(0)

S2(0)
...

Sn(0),

 ∈ Rn+1,

and the matrix of asset prices (payoffs) at t = T ,

Z =


1 + r S1(T, ω1) · · · Sn(T, ω1)

1 + r S1(T, ω2) · · · Sn(T, ω2)
...

...
. . .

...
1 + r S1(T, ωm) · · · Sn(T, ωm)

 ∈ Rm×(n+1).

Note that we choose to associate columns with assets and rows with states of
the world. For a given trading strategy h, the initial portfolio value is VTh,
and the vector of terminal values in each state of the world is Zh. Trading
strategies generate payoffs that are linear combinations of the columns of Z.
These columns span a linear subspace of Rm, but not necessarily the whole
space.

A traded security is redundant if its payoff may be generated by a trading
strategy based on the other securities. We say that the market is complete if
any contingent claim may be replicated by a trading strategy. Otherwise, the
market is incomplete. Clearly, the market is complete if the set of columns in
Z (securities) spans not only a linear subspace, but the whole linear space Rm.
This is the case if the rank of Z is m, i.e., the matrix has full row-rank.

2.4.1 LINEARITY OF THE PRICING FUNCTIONAL AND LAW OF
ONE PRICE

Let us consider contingent claims C, Ca, and Cb, whose respective payoffs are
related by

X(ω) = αXa(ω) + βXb(ω).

The financial counterpart of this linear combination is related to the possibility
of:

Bundling securities, whereby we buy α units of Ca and β units of Cb,
and sell one unit of C
Unbundling securities, whereby we buy one unit of C and sell α units of
Ca and β units of Cb.
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In either case, the net payoff will be zero. If we compare the prices of the three
contingent claims, we see that the pricing functional Π must be linear:

Π(X) ≡ Π(αXa + βXb)

= αΠ(Xa) + βΠ(Xb).

If there are no transaction costs, any difference would lead to a money-making
machine (sell the expensive claim and buy the cheap one) ensuring an immedi-
ate profit with no net obligation in the future.

The linearity of the pricing functional also implies a common sense result:
A contingent claim with zero payoff in every state must have zero price. All
of this is essentially related to the law of one price: Two contingent claims
with the same payoff in every state must have the same price. If the law of
one price is violated, then we can easily build money-making machines. Note,
however, that we may build money-making machines even if the law of one
price is satisfied. As a simple example, consider a binomial model where

erT < d < u,

i.e., the risk-free gain is smaller than the gain of the risky security in every state.
The law of one price is not violated, since the payoffs of the two secutities are
different (in fact, linearly independent). Nevertheless, such a model would im-
ply a clear arbitrage opportunity, as we have seen, based on borrowing cash and
investing in the risky security. A similar consideration applies to the securi-
ties in Table 2.2. These two cases have one thing in common: The payoff of
a security dominates, state by state, the payoff of another security. Therefore,
the law of one price is a necessary, but not a sufficient condition for sensible
market models and pricing mechanisms. We have to investigate in more detail
trading strategies and define two concepts: Dominant strategies and arbitrage
opportunities.

2.4.2 DOMINANT STRATEGIES

For a given trading strategy h, we define the value process (a stochastic pro-
cess),

V (t, ω)
.
= h0B(t, ω) +

n∑
i=1

hiSi(t, ω),

for t ∈ {0, T}, and the additive gain37 (a random variable),

G(ω)
.
= V (T, ω)− V (0) = h0r +

n∑
i=1

hi · δSi(ω),

37In this book, we refer to gain as a multiplicative factor. In this section, gain is defined in
additive terms of profit/loss, i.e., as a difference of values. In order to conform to existent
literature, we avoid the introduction of another term, but no ambiguity should arise.
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where δSi(ω)
.
= Si(T, ω) − Si(0). Since discounting is so relevant in pricing,

we will use the bank account as a numeraire and define the discounted price and
value processes as

S∗i (t, ω)
.
=
Si(t, ω)

B(t, ω)
, V ∗(t, ω)

.
= h0 +

n∑
i=1

hiS
∗
i (t, ω),

respectively, as well as the discounted gain,

G∗(ω)
.
= V ∗(t, ω)− V ∗(0) =

n∑
i=1

hi · δS∗i (ω),

where δS∗i (ω)
.
= S∗i (T, ω) − S∗i (0). Note that the discounted price process for

the bank account is by construction constant over time, B∗(T, ω) = B∗(0) = 1,
for every ω ∈ Ω. Hence, the discounted gain for the bank account is always
zero. Furthermore, since B(0) = 1,

V ∗(0) = V (0) = h0 +

n∑
i=1

hiSi(0).

If the law of one price holds, we cannot find two trading strategies ĥ and h̃,
associated with value processes V̂ and Ṽ , respectively, such that

V̂ (T, ω) = Ṽ (T, ω), ∀ω ∈ Ω,

but V̂ (0) > Ṽ (0). A market where the law of one price is violated cannot be in
equilibrium, as we may generate money out of nothing by buying the cheaper
security and short-selling the more expensive one. We would earn an immediate
positive cash flow and break even in every future state of the world. However,
even if the law of one price holds, we may still build a money-making machine
by looking for a dominant strategy. A trading strategy ĥ is dominant if there
exists another strategy h̃, such that

V̂ (0) = Ṽ (0), V̂ (T, ω) > Ṽ (T, ω), ∀ω ∈ Ω. (2.26)

By buying the dominant strategy and selling the dominated one, we have a net
zero cash flow now, and we make money for sure in the future. Again, this
would be a money-making machine.

Since we may take linear combinations of trading strategies, it is easy to see
that there exists a dominant strategy if and only if there exists a trading strategy
such that

V (0) = 0, V (T, ω) > 0, ∀ω ∈ Ω. (2.27)

To see this, just take the difference
(
V̂ − Ṽ

)
in Eq. (2.26). We may also build

a different type of money-making machine. Let us assume that a bank account
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exists in our market model. Then, there exists a dominant strategy if and only if
there exists a trading strategy such that

V (0) < 0, V (T, ω) ≥ 0, ∀ω ∈ Ω. (2.28)

The two conditions in Eqs. (2.27) and (2.28) are not equivalent if we consider
a market with no bank account. For instance, let us consider two contingent
claims (allowing for negative payoffs) such that

V =

[
1

1

]
Z =

[
3 2

−3 −2

]
.

In this market model, we may easily find a dominant strategy according to Eq.
(2.28). For instance, the portfolio [2,−3]T has

V (0) = 2× 1− 3× 1 < 0,

and payoffs

V (T, ω1) = 2× 3− 3× 2 = 0,

V (T, ω2) = 2× (−3)− 3× (−2) = 0.

However, we cannot find a dominant strategy according to Eq. (2.27), since this
requires

h1 × 1 + h2 × 1 = 0 ⇒ h1 = −h2,

which implies

V (T, ω1) = h1 × 3− h1 × 2 = h1,

V (T, ω2) = h1 × (−3)− h1 × (−2) = −h1,

and these two payoffs cannot be both strictly positive.
However, the existence of a bank account security, which we take as a risk-

free asset for the sake of simplicity, ensures that we may transform any domi-
nant strategy of one type into a dominant strategy of the other type. To see this,
let us assume that the condition (2.27) holds for a strategy h, and let us rewrite
it in terms of discounted value process,

V ∗(0) = 0, V ∗(T, ω) > 0, ∀ω ∈ Ω, (2.29)

which is equivalent to Eq. (2.27), since the price process of the bank account is
strictly positive. Note the implication

V ∗(0) = 0 =⇒ h0 = −
n∑
i=1

hiS
∗
i (0).

Furthermore, Eq. (2.29) implies that the discounted gain for h is also strictly
positive,

G∗(ω) > 0, ∀ω ∈ Ω.
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Now, let us define the minimum discounted gain for h as δ .
= minω∈ΩG

∗(ω),
and consider a strategy h̃ where

h̃0 = h0 − δ = −
n∑
i=1

hiS
∗
i (0)− δ,

h̃i = hi, i = 1, . . . , n.

As a consequence, the discounted gain G̃∗ for the strategy h̃ is

G̃∗(ω) = G∗(ω)− δ.

The intuitive idea is to subtract δ from the discounted gain of portfolio h, so
that the condition G∗(ω) > 0 becomes G̃∗(ω) ≥ 0 for portfolio h̃. The same
amount is subtracted from the initial value of portfolio h, which is zero, so that
the initial value of portfolio h̃ is strictly negative. This amounts to borrowing
an additional amount δ of cash, whose discounted value is still δ at time t = T .
Then, we have

Ṽ ∗(0) = −δ < 0,

Ṽ ∗(T, ω) = Ṽ ∗(0) + G̃∗(ω) = −δ + G̃∗(ω) ≥ 0, ∀ω ∈ Ω,

showing that strategy h̃ satisfies the conditions (2.28). We may also go the other
way around, by reversing the argument and transforming a strategy satisfying
Eq. (2.28) into a strategy satisfying Eq. (2.27). Thus, within our framework, we
may associate dominant strategies with the conditions (2.28).

Why should we prefer the formulation of Eq. (2.28) to Eq. (2.27)? The
point is that the inequalities V (T, ω) ≥ 0 on future payoffs are not strict, and
they will define a closed set, when we use them to write an optimization model.
On the other hand, a strict inequality like V (T, ω) > 0 defines an open set,
so that the existence of a minimum or a maximum cannot be guaranteed (but
only an infimum or a supremum). In fact, in concrete, how can we look for a
dominant strategy? We may solve the following linear program (LP):

min VTh (2.30)
s.t. Zh ≥ 0,

whereby we minimize the initial value of the portfolio, subject to a non-negativity
condition on the terminal payoff. Note that this LP is feasible, as h = 0 is a
feasible solution. However, it could be unbounded below, leading to an infinite
profit. If this is the case, it means that the market model allows for arbitrage
opportunities. How can we find a condition precluding this? One possibility is
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to take advantage of LP duality.38 The LP (2.30) has a dual:

max 0Tπ (2.31)

s.t. ZTπ = V
π ≥ 0,

where π ∈ Rm is the vector of dual variables. If the dual is infeasible, the
primal is unbounded below, and there is a dominant strategy. However, if the
dual is feasible, its objective value is just zero, which must also be the value of
the dual, ruling out a dominant strategy.

To summarize our findings, the absence of a dominant strategy is related
to the existence of a non-negative pricing functional. In fact, the equality
constraints in problem (2.31) may be read as

1 = (1 + r)

m∑
j=1

π(ωj), (2.32)

for the bank account (the asset corresponding to i = 0), and as

Si(0) =

m∑
j=1

π(ωj)Si(T, ωj), i = 1, . . . , n, (2.33)

for the risky securities. Thus, we observe that absence of dominant strategies
leads us to a linear, non-negative pricing functional, giving the current value of
an asset as a linear combination of the payoffs in the possible future states. Note
that the law of one price requires that the pricing functional is linear, and an
additional non-negativity condition is required to rule out dominant strategies.
If we rescale π, introducing q = π · (1 + r), we obtain what we may interpret
as a probability measure, since Eq. (2.32) implies

m∑
j=1

q(ωj) = 1,

q(ω) ≥ 0, ∀ω ∈ Ω.

Furthermore, this probability measure allows to express the security prices in
Eq. (2.33) as a discounted expected value:

Si(0) =

m∑
j=1

q(ωj) ·
Si(T, ωj)

1 + r
, i = 1, . . . , n. (2.34)

Let us explore the more general implications of the above reasoning in
terms of pricing: The existence of dominant strategies would imply illogical

38See Supplement S2.2 for a quick overview, and Section 16.1.4 for a more thorough treatment.
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asset prices, and this is precluded by the existence of a linear and non-negative
pricing functional, associated with vector q. Since, intuitively, we have to dis-
count future cash flows somehow in asset pricing, it turns out to be quite conve-
nient to work with discounted values. Let us observe that we may ensure consis-
tency in prices if there is a non-negative vector q = [q(ω1), q(ω2), . . . , q(ωm)]T∈
Rm, such that for every trading strategy, we have

V ∗(0) =

m∑
j=1

q(ωj)V
∗(T, ωj) =

m∑
i=j

q(ωj)
V (T, ωj)

B(T, ωj)
. (2.35)

This is just obtained from Eq. (2.34), multiplying asset prices Si by the re-
spective portfolio holdings hi, in order to find the portfolio value. To see the
financial implication of Eq. (2.35), let us compare two trading strategies with
payoffs V̂ (T, ω) and Ṽ (T, ω), respectively, such that V̂ (T, ω) > Ṽ (T, ω) for
every state ω. We may observe that if the pricing functional q in Eq. (2.35) is
non-negative, a trading strategy featuring a larger payoff than another one, in
every future state, cannot have a smaller initial value, and therefore it cannot be
dominant.

If we denote by EQn[ · ] the expectation under the probability measure de-
fined by q, we observe that the expected value of the discounted value process
under Qn is constant:

V ∗(0) = EQn [V ∗(T, ω)].

We have already met this kind of condition in the binomial model. In the more
general multiperiod case, this will be referred to as a martingale property.

2.4.3 NO-ARBITRAGE PRINCIPLE AND RISK-NEUTRAL
MEASURES

The existence of a non-negative pricing functional precludes the existence of
dominant trading strategies. But what if we weaken the condition in Eq. (2.27)?
Let us formally define an arbitrage opportunity as a trading strategy such that:

V (0) = 0,

V (T, ω) ≥ 0, ∀ω ∈ Ω, (2.36)
E[V (T, ω)] > 0.

Here, we do not require that the payoff if strictly positive in every future state,
but only that it is strictly positive in at least one state and non-negative in
the other states. Since the requirements defining an arbitrage opportunity are
weaker than those defining a dominant strategy, the conditions precluding the
existence of a dominant strategy must be strengthened in order to preclude
the existence of an arbitrage opportunity. As it turns out, the pricing mea-
sure/functional must be strictly positive.
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Observe first that the conditions of Eq. (2.36) may be restated in terms of
discounted values,

V ∗(0) = 0,

V ∗(T, ω) ≥ 0, ∀ω ∈ Ω, (2.37)
E[V ∗(T, ω)] > 0,

or, equivalently, in terms of discounted gain,

G∗(ω) ≥ 0, ∀ω ∈ Ω; E[G∗(ω)] > 0. (2.38)

These conditions essentially state that the discounted gain of the portfolio is
never negative, and it is strictly positive in at least one state, so that the expected
value is strictly positive (we assume states ω with strictly positive probability
under the real measure). Also recall that the discounted gain of the risk-free
asset is always zero, so we may just focus on the n risky assets.

Now, let us write an LP model whose aim is to generate an arbitrage oppor-
tunity satisfying condition (2.38):

min

n∑
i=1

0 · hi (2.39)

s.t.
m∑
j=1

yj = 1 (2.40)

yj =

n∑
i=1

G∗i (ωj)hi, j = 1, . . . ,m (2.41)

yj ≥ 0, j = 1, . . . ,m,

where G∗i (ωj)
.
= δS∗i (ωj) is the discounted gain of asset i in state j. The

objective function of Eq. (2.39) is identically zero, but this is not really essen-
tial, since we want to check if a trading strategy we would love really exists.39

Equation (2.41) introduces auxiliary variables yj , representing the discounted
gain from the strategy h for each state of the world; these variables are required
to be non-negative, as in Eq. (2.38), and are introduced for the sake of con-
venience. Equation (2.40) may look arbitrary, but since we may scale trading
strategies at will, it is just a convenient way of requiring strict positivity of the
expected discounted gain in at least one state.40 Now, let us associate a dual
variable π0 with constraint (2.40), and dual variables πj with each constraint
(2.41), and write the dual of the LP problem (2.39). To this aim, it is useful to

39Quite often, we use powerful optimization methods to solve a feasibility problem, i.e., to find
a solution satisfying a set of demanding constraints. In this case, it is a common practice to use
a dummy objective identically zero.
40Once again, beware of strict inequalities in optimization, as they define open sets. Existence
of an optimal solution can be guaranteed when the objective function is continuous and the
feasible set is closed and bounded.



2.4 The mathematics of arbitrage 127

write the equality constraints (2.40) and (2.41) in matrix form, so that we may
observe the shape of the technological matrix of the primal LP problem (2.39),
which is transposed in the dual:


0 0 · · · 0 1 1 · · · 1

G∗1(ω1) G∗2(ω1) · · · G∗n(ω1) −1 0 · · · 0

G∗1(ω2) G∗2(ω2) · · · G∗n(ω2) −1 · · · 0
...

...
. . .

...
...

...
. . .

...
G∗1(ωm) G∗2(ωm) · · · G∗n(ωm) 0 0 · · · −1





h1

...
hn

y1

...
hm


=


1

0
...
0

 .

Note that the first n columns of the matrix correspond to the unrestricted vari-
ables hi, and the last m columns correspond to the non-negative variables yj
(in case you got lost, you may wish to recall that subscript i refers to assets,
and subscript j refers to states). Note that the right-hand side vector has a one
in the first position, corresponding to constraint (2.40), and is zero otherwise,
as in constraint (2.41). By transposing the matrix and taking into account the
non-negativity restrictions on variables yj , we find the following dual LP:

max π0

s.t.
m∑
j=1

G∗i (ωj)πj = 0, i = 1, . . . , n (2.42)

π0 − πj ≤ 0, j = 1, . . . ,m. (2.43)

Note that the dual has a trivial feasible solution, with value π0 = 0, where all
dual variables are set to zero. Thus, we are not in the pathological case in which
both primal and dual LPs are infeasible. Hence, the primal will be infeasible
(i.e., there is no arbitrage opportunity) if and only if the dual is unbounded
above. If we can let π0 → +∞, while satisfying constraints (2.42) and (2.43), it
must be the case that we find strictly positive values πj , one per state j, such that
constraint (2.42) is satisfied. If they exist, the values πj > 0 may be rescaled
to values qj ≡ q(ωj) > 0 in such a way that their sum is 1, yielding a strictly
positive probability measure q(ω) such that

EQn [G∗(ω)] =

m∑
j=1

G∗(ωj)q(ωj) = 0, (2.44)

where the notation EQn [ · ] points out that the expectation is taken with respect
to this measure, and not using the probabilities p(ω) of the market model.

The probability measure Qn is called risk-neutral, since the expected re-
turn of risky assets under Qn is just the risk-free return. To see why, observe that
Eq. (2.44) states that the expected discounted gain is zero, which is the case if
the expected holding period return is, in fact, the risk-free rate r. Also note that,
in the more general case of a different numeraire with price process B(t, ω),
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if the expected discounted gain is zero, then the discounted price processes are
martingales. Thus, we conclude that there is no arbitrage strategies if and only
if there exists a strictly positive risk-neutral (martingale) probability measure.
We remark again that non-negativity of the probability measure is needed to
rule out the existence of dominant strategies. However, since arbitrage strate-
gies are weaker than dominant strategies, we have to tighten the non-negativity
condition to strict positivity.

Note that this probability measure need not be unique in general. When
considering generic numeraire assets, the term equivalent martingale measure
is preferred, since the discounted price process of securities is a martingale
under such a measure. For any trading strategy, if Qn is a martingale measure
we have

V (0) = V ∗(0) = EQn [V ∗(0)] = EQn [V ∗(T, ω)−G∗(ω)]

= EQn

[
V (T, ω)

B(T, ω)

]
− EQn [G∗(ω)]︸ ︷︷ ︸

= 0 by Eq. (2.44)

= EQn

[
V (T, ω)

B(T, ω)

]
. (2.45)

Thus, under a martingale measure, the initial value of a trading strategy is just
the discounted expected value of its payoff.

The last issue we have to consider is market completeness. If the market
is complete, any contingent claim can be replicated by a trading strategy. How-
ever, if the market is not complete, there are contingent claims that cannot be
replicated. Consider the subspace of contingent claims that can be replicated
by a trading strategy. This is the subspace of the attainable payoffs. Absence
of arbitrage opportunities implies the absence of dominant strategies, which in
turn implies the law of one price. Hence, under a no-arbitrage assumption, the
price of any attainable contingent claim is just the discounted expected value
of its payoff, under any risk-neutral measure. If the number of states is equal
to the number of linearly independent securities, then any contingent claim is
attainable and can be replicated, i.e., the market is complete. The law of one
price makes sure that the value of an attainable contingent claim must be the
same under every risk-neutral measure. It is not difficult to prove that if the
market is complete, then the risk-neutral measure is unique, so that we find one
well-defined price for all contingent claims. If a contingent claim is not at-
tainable, however, it can be shown that its discounted expected value is not the
same for the whole set of risk-neutral measures. Hence, we do not find a unique
arbitrage-free price, but a range of such prices. In practice, when the market is
incomplete, we may pursue a calibration strategy, whereby a risk-neutral mea-
sure is selected, matching market prices of exchange-traded derivatives, and
used to price OTC derivatives.41

41See Chapter 14.
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The bottom line of our reasoning can be summarized as follows:

There are no arbitrage opportunities in the market, if we can find a strictly
positive equivalent martingale probability measure.
If the market is complete, then this probability measure is unique and may
be interpreted as risk-neutral, if we use a risk-free asset as a numeraire
(which amounts to the usual discounting). If the market is not complete,
then there are multiple martingale measures.

These findings generalize and are consistent with the insights we gathered from
the binomial pricing model. Further generalization may be obtained by con-
sidering dynamic trading strategies, possibly in continuous time. The essen-
tial messages do not change, but continuous-time trading requires sophisticated
mathematical machinery, since pathologies may occur that have to be ruled out.
This requires a more careful and demanding treatment, which is beyond the
scope of this book.

S2.1 Multiobjective optimization

When trading off expected reward and risk, it may be difficult to find a com-
promise solution between conflicting requirements. This is a common issue
in multiobjective optimization, where we have to trade off conflicting require-
ments that cannot be reduced to a single performance measure. In this book, we
will limit our treatment to two objectives, which may be visualized on a plane.
A common approach, in multiobjective optimization, is to trace the frontier of
efficient, or nondominated, solutions.

Let x ∈ S ⊆ Rn be a vector representing our decision, which is constrained
to be in the feasible set S, and let π(x) denote the expected reward (e.g., wealth
or return) and ξ(x) denote the corresponding risk measure (like standard devia-
tion). From a mathematical perspective, each feasible solution is characterized
by a pair of objective values, which can be depicted as illustrated in Fig. 2.7,
on a mean–risk plane. Note that good solutions are on the North–West corner,
where expected reward is maximized and risk is minimized. Formally, we could
consider a “vector” optimization problem:

“max”

[
π(x)

−ξ(x)

]
(2.46)

s.t. x ∈ S,

where we consider −ξ(x), since risk should be minimized. However, stated as
such, the problem has no meaning, and this is why we quote “max.” The dif-
ficulty is that vectors on a plane are not a well-ordered set. If we consider the
three solutions represented by black bullets in Fig. 2.7, there is no objective way
to spot the best one, as the choice may depend on the degree of risk aversion
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Dominated solution

Efficient solution

(x)

(x)

Dominated cone

Dominating cone

FIGURE 2.7 Schematic illustration of the concept of efficient solution.

of the decision maker. However, it stands to reason that the two solutions rep-
resented by hollow circles should not be considered, as there is an alternative
which is better from both points of view.

DEFINITION 2.1 Given the vector optimization problem (2.46), a feasible so-
lution x∗ is said to be an efficient or nondominated solution, if there is no
other solution x̃ ∈ S such that

π(x̃) ≥ π(x∗) and ξ(x̃) ≤ ξ(x∗)

with a strict inequality for at least one of the two objectives. The set of nondom-
inated solutions is called the efficient frontier.

In Fig. 2.7, two shaded regions are displayed. They are two cones,42 rooted at
a specific solution. One is the cone of dominated solutions, i.e., the solutions
that are dominated by the vertex of the cone. The two dominated solutions,
in fact, are located in a dominated cone and are not efficient. The dominating
cone is the cone of solutions that dominate the vertex of the cone. For that
efficient solution, the dominating cone is empty. The efficient frontier is the set
of solutions with an empty dominating cone. When dealing with a continuous
mathematical program, the efficient frontier might be a continuous curve, as
illustrated in Fig. 2.8. In fact, this is the qualitative shape that is obtained by
solving the mean–variance portfolio optimization problem described in Section
2.1.1.

In order to trace the efficient frontier, we need to find a way to recast the
problem so that it can be tackled by standard optimization software. To this

42We define a cone formally in Section 15.5. Here we are dealing with a shifted cone, really.
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(x)
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FIGURE 2.8 The efficient frontier in the continuous case.

aim, we can scalarize the problem according to some strategy, boiling the vector
problem down to a family of single-objective optimization problems depending
on one or more parameters. The first and perhaps more intuitive approach is to
devise a weighted linear combination of the two objectives. One possibility, in
our mean–risk framework, would be to introduce a parameter γ ∈ [0, 1], which
expresses the relative importance of the objectives. Then, we let γ span its
range, and we solve a sequence of problems with objective

max γ · π(x)− (1− γ) · ξ(x).

One difficulty with this approach is the interpretation of γ. It is a bit easier to
introduce a single parameter λ and solve a sequence of scalarized problems:

max π(x)− λξ(x) (2.47)
s.t. x ∈ S.

In this case, λ is related to risk aversion and, even though we obtain the pure risk
minimization case, corresponding to γ = 0, only in the limit when λ→ +∞, it
may be easier to find guidelines in value selection. For instance, in the mean–
variance case, values of λ in the interval [2, 4] are considered sensible.43

This approach, based on weighted combinations or a risk aversion parame-
ter, is clearly intuitive and guarantees that all of the solutions that we generate
are efficient. However, there is no guarantee that all of the efficient solutions

43A word of caution is needed in this case. Even though we may consider standard deviation
as a risk measure, variance is used in the model for the sake of computational convenience, as
this leads to a convex quadratic programming problem, which can be solved very efficiently.
Conceptually, this does not change the matter, as variance and standard deviation are closely
related. However, we should consider that the efficient frontier is plotted on a plane which
involves a transformed version of the underlying risk measure. The mentioned sensible range of
values for λ applies when variance is used in the scalarized objective, not standard deviation.
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FIGURE 2.9 A simple scalarization may not be able to detect all of the efficient solutions.

will be generated in this way. The issue is illustrated in Fig. 2.9, where the
dotted lines correspond to level curves of the scalarized objective, for different
values of λ. In fact, the objective function (2.47) is constant along lines on the
(ξ, π) plane, whose slope depends on the risk aversion coefficient λ; maximiza-
tion of the scalarized objective requires moving to North–West. It is easy to see
that two out of the three efficient solutions can be detected by suitably setting
the risk aversion coefficient, but we cannot generate the third one. This does not
occur in Fig. 2.8, where the plot of the efficient frontier looks essentially like
the boundary of a convex set. A situation similar to Fig. 2.8 may occur when
dealing with discrete optimization problems, or when dealing with arbitrary ob-
jective functions, possibly lacking suitable concavity/convexity properties. An
interesting case, portfolio optimization with cardinality constraints, is described
in Sections 8.2.3 and 15.4.1.

An alternative scalarization approach is based on the idea of transforming
one objective into a constraint. In the mean–risk case, we may minimize risk,
subject to a constraint on minimum expected reward,

min ξ(x)

s.t. x ∈ S,
π(x) ≥ α,

or maximize expected reward, subject to a risk budget,

max π(x)

s.t. x ∈ S,
ξ(x) ≤ β.

We may trace the efficient frontier by solving a sequence of scalarized problems
for varying values of α or β. It is worth noting that this second approach does
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not suffer from the aforementioned difficulty in generating the efficient frontier.
Actually, the choice of the scalarization approach usually depends on computa-
tional convenience, as well as the ease in choosing and interpreting the value of
the involved parameter.

S2.2 Summary of LP duality

Optimization model building and solving are described in more detail in Chap-
ters 15 and 16, which include sections on duality in mathematical programming
and, more specifically, duality in linear programming (LP duality). In this Sup-
plement, we just give the bare essentials of LP duality, as is relevant to this
chapter.

Example 2.13 A trivial LP problem

To begin with, what follows is an example of an LP problem:

max x1 + 2x2 (2.48)
s.t. x1 + x2 ≤ 4

x1, x2 ≥ 0,

where s.t. stands for “subject to” the list of constraints. We observe
that all decision variables occur in a linear fashion (no powers, no
products, no fancy functions), and it is easy to see that the optimal so-
lution is x∗1 = 0, x∗2 = 4, with optimal value of the objective function
f∗ = 8.

All LP models can be recast in the standard form:

min cTx (2.49)
s.t. Ax = b

x ≥ 0,

where x, c ∈ Rn, A ∈ Rm×n, and b ∈ Rm. To leave room for optimization,
the linear system of equations defining the constraints must be underdetermined,
i.e., we must have m < n.

Example 2.14 Recasting an LP problem in standard form

For instance, we may recast problem (2.48) in standard form by chang-
ing the sense of the objective and by introducing a non-negative slack
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variable s to transform the inequality into an equality:

min − x1 − 2x2 (2.50)
s.t. x1 + x2 + s = 4

x1, x2, s ≥ 0.

The standard form is algorithmically convenient, and it also allows to analyze
LPs in full generality without bothering too much about specific cases.

Given any optimization problem, one of the following cases may occur:44

The problem is feasible and there is a finite optimal solution. Note that
the optimal solution need not be unique.45

The problem is infeasible, i.e., the feasible set is empty. In this case, we
conventionally say that the minimum value is +∞, and the maximum
value is −∞ in the case of a maximization problem.
The optimum is unbounded, i.e., we can reduce the cost (or maximize
profit) without bound, while staying within the feasible set. In this case,
we conventionally say that the minimum value is −∞, and the maximum
value is +∞ in the case of a maximization problem.

Sometimes, we are only interested in finding a solution satisfying a set of con-
straints. In such a case, we resort to optimizing a fictional objective, which turns
out to be a nice computational way to solve a difficult system of equalities and
inequalities. Alternatively, we may wish to show that the feasible set is empty,
i.e., we cannot find a solution with some desired features. This is what happens
in the mathematics of arbitrage, when we want to show that a certain trading
strategy cannot exist, under certain conditions. Duality theory may come in
handy in this setting.

Any (primal) LP problem is associated with a dual problem. In the case of
problem (2.49), its dual is

max bTπ (2.51)

s.t. ATπ ≤ c,

where π ∈ Rm is the vector of dual variables. We notice a simple pattern: The
cost vector c and the right-hand side vector b are swapped, and the matrix A
is transposed. Duality may be introduced as a special case of more general La-

44To be precise, it might happen that we find a finite inf but not a finite min, if the feasible set
is open, as in the case minx, s.t. x > 2. However, we disregard this case.
45In the LP case, in fact, we may have an infinite number of optimal solutions, since any convex
combination of two optimal solutions has the same value, given the linearity of the objective
function, and is feasible, given the convexity of the feasible set.
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grangian duality for nonlinear programming,46 or by using separation theorems
for convex sets (rephrased in the form of Farkas’ lemma). Under quite general
conditions, weak duality applies, stating that the maximum of the dual problem
cannot be larger than the minimum of the primal problem. In the LP case, a
stronger duality condition applies and the following cases are possible:

The primal and the dual are both feasible, in which case the two optimal
objectives are the same.
The primal and the dual are both infeasible (a rather uncommon and
pathological case).
The primal is infeasible and the dual is unbounded (above).
The dual is infeasible and the primal is unbounded (below).

Furthermore, it turns out that the dual of the dual problem is just the original
primal problem.

Example 2.15 Finding the dual of a standard LP

In the case of problem (2.50), we have

c =

−1

−2

0

 , A =
[
1 1 1

]
, b =

[
4
]
.

Hence, we immediately find the dual:

max 4π

s.t.

1

1

1

π ≤
−1

−2

0

 .
Here, we have a single dual variable π, since our trivial LP has one
constraint, and we should just maximize π, subject to simple upper
bounds. By taking the most restrictive bound, we find

π∗ = −2,

corresponding to an objective value of −8, which is the same as the
primal value [recall the change in sign of the objective with respect to
the original problem (2.48)].

46See Section 16.1.4.
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Table 2.4 Rules to find the dual of an arbitrary LP.

Primal (minimize) Dual (maximize)

ith constraint ≥ bi ith variable ≥ 0

ith constraint ≤ bi ith variable ≤ 0

ith constraint = bi ith variable unrestricted
jth variable ≥ 0 jth constraint ≤ cj
jth variable ≤ 0 jth constraint ≥ cj

jth variable unrestricted jth constraint = cj

Finding the dual of an LP by first recasting it in standard form may be quite
inconvenient. In Table 2.4, we summarize the rules to transform a primal prob-
lem in general form into the corresponding dual. In this table, we assume that
the primal problem is in minimization form, so that the corresponding dual is
in maximization form; however, the two columns may be swapped (if we build
the dual of the dual problem, as we said, we just find the original primal).

Example 2.16 Infeasible dual of an unbounded primal

Let us change the sense of the inequality in problem (2.48):

max x1 + 2x2 (2.52)
s.t. x1 + x2 ≥ 4

x1, x2 ≥ 0.

Clearly, the problem is unbounded. Applying the rules of Table 2.4,
swapping the columns corresponding to primal and dual problems,
we immediately find its dual:

min 4π

s.t.

[
1

1

]
π ≥

[
1

2

]
π ≤ 0,

which is clearly infeasible, since the first two conditions on the dual
variable π are not compatible with the third one.
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As a further check, we may work with the equivalent standard
form of problem (2.52),

min − x1 − 2x2

s.t. x1 + x2 − s = 4

x1, x2, s ≥ 0,

whose dual is

max 4q

s.t.

 1

1

−1

 q ≤
−1

−2

0

 ,
with dual variable q. The variable substitution π = −q yields the
same infeasible dual as above.

Problems

2.1 You are the manager of a pension fund, and your fee depends on the
achieved annual return. You can play it safe, and allocate wealth to a risk-free
portfolio earning 4% per year (with annual compounding). Alternatively, you
can pursue an active portfolio management strategy, whose return is modeled
by a normal random variable with expected value 8% and standard deviation
10%. Your fee depends on the realized performance, according to the following
table:

Annual return R Fee
R ≤ 0% $0

0% ≤ R < 3% $50,000
3% ≤ R < 9% $100,000

12% ≤ R $200,000

Assume that you do not care about your own risk, so that you just consider
expected values. Which one is the better strategy for you?
What is the standard deviation of your fee, if you take the active strategy?
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2.2 The annual returns of two stock shares are represented by the following
linear factor model:

R1 = 0.03 + 1.2Rm + ε1,

R2 = 0.04 + 0.8Rm + ε2,

where the common factor Rm represents a systematic market risk (e.g., the
return on a stock market index), and ε1 and ε2 are specific risk factors. We
assume that all of the risk factors are uncorrelated and normally distributed with
the following parameters (expected value and standard deviation):

Factor µ σ

Rm 0.04 0.25
ε1 0 0.30
ε2 0 0.40

You have invested 40% of your wealth in the first asset and 60% in the second
one. Find the probability that the realized annual return is negative, i.e., you
lose money.

2.3 You have bought on margin 100 zero-coupon bonds, with face value
1000, maturing in three years. At present, the annual yield (annual return with

annual compounding) of the bonds is 4.3%. The initial margin ratio is 50%, and
the maintenance margin is 20%. Assuming that we neglect the passage of time,
for which yield will you get a margin call?

2.4 You hold a long position in an asset, whose price is correlated with two
commodity prices. The two commodities are the underlying assets of two fu-
tures contracts maturing at time TF . There is no futures contract available on
your asset, which you are going to sell at time TH < TF . Thus, you want
to build a minimum variance hedge based on the two futures. Assuming that
you know all of the relevant statistical information, and that we disregard issues
related to marking-to-market, margin calls, etc., find the optimal hedge ratios.

2.5 The annual return of a risky financial portfolio, denoted by Rp, can be
described by the following linear regression model:

Rp = 0.057 + 3.4F1 − 2.6F2 + ε,

where F1 and F2 are mutually correlated risk factors and ε is another risk factor,
which is independent from the other two. All risk factors are assumed normally
distributed with expected value zero. The standard deviations of F1 and F2 are
0.1 and 0.12, respectively, and their correlation coefficient is 0.48; the standard
deviation of the third risk factor is 0.2.

Assume that the annual risk-free return is rf = 2.5% (annual compound-
ing). What is the probability that the risky portfolio outperforms the risk-
free investment?
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Assume that you have invested 1,000,000 in the risky portfolio. Find
the annual V@R at 95% confidence level. Note: In this case, since the
time horizon is one year, you cannot neglect the expected value of return
(unlike daily V@R).

2.6 Prove that, under the equivalent martingale measure Qn of Section 2.3.4,
the ratio ft/Bt is a martingale.

2.7 Let us consider a market on which three assets, indexed by i = 1, 2, 3, are
traded, with current price

S1(0) = S2(0) = S3(0) = 1.

The asset values in the future, at time t = T , depend on which state will be
realized. We consider three possible scenarios ω1, ω2, and ω3, with probabilities
55%, 30%, and 15%, respectively. The corresponding asset values are given in
the following table:

State S1(T, ω) S2(T, ω) S3(T, ω)

ω1 1 3 1.2
ω2 3 1 1.2
ω3 0 0 1.2

We note that asset 3 is risk-free, and that state ω3 is a “bad” state. Imagine an
insurance contract against the occurrence of the bad state, whose payoff is 0 if
states ω1 or ω2 occur, and 1 if state ω3 occurs. What is the fair price of this
insurance contract? Do you need further information about risk aversion?

Further reading
In this chapter, we have outlined a few mathematical programming mod-
els; a simple introduction to such models may be found in [2].
A good reference for a general introduction on mathematical finance, cov-
ering a lot of ground, is [7].
For an overview of value-at-risk, you may refer to [8].
Example 2.5 on volume risk has been inspired by the Harvard Business
School case [5].
Section 2.4 follows the treatment by [10]. You may also see [6] or [9].
An overview of multiobjective optimization is given, e.g., in [4].
To see more on LP and LP duality you may refer, e.g., to [1] or [11].
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Part Two

Fixed-income assets





Chapter Three

Elementary Theory of Interest
Rates

The time value of money is one of the key ingredients in finance. We need
a way to move cash flows backward and forward in time, in order to analyze
and compare investment opportunities, as well as to come up with financial
plans. In this chapter, we introduce the fundamental concepts related to interest
rates, such as compounding frequencies, discount factors, the term structure of
interest rates, and forward rates.

Interest rates are a key risk factor in the pricing of fixed-income assets,
which include a multitude of securities, ranging from plain bonds to rather com-
plicated interest rate derivatives. In this chapter, we only deal with elementary
bond pricing, which can be accomplished without the need for dynamic models
accounting for the uncertainty about interest rates in the future. Such advanced
models shall be introduced in Chapter 11, whereas we rely here on a static pic-
ture of interest rates. Despite its (apparent) simplicity, this enables us to tackle
some quite relevant problems:

Given two bonds, how can we compare their return?
Given a set of bond prices, how can we check whether there are arbitrage
opportunities?
How can we estimate the amount of money that we need to save each
year, during our working life, in order to achieve a given target wealth at
retirement?
How can we measure the interest rate risk of a plain bond?

As an introduction to the issues involved in comparing investment opportunities,
let us consider the following simple example.

Example 3.1 Two investment opportunities

A friend of ours needs to borrow money, say, $10,000. He will give
that money back in one year, and to compensate us for our help, he
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will top $400 on it. Should we accept his proposal? Of course, we
might do so just because he is a very dear friend of ours, but let us
analyze the situation rationally as an investment analysis problem.
Analyzing an investment requires some sort of relative comparison
between comparable alternatives. Hence, let us say that our bank
offers an interest rate of 3% for a deposit of one year. This means
that if we lend our money to the bank, we will receive $10,300 in one
year, which is less than the $10,400 offered by our friend. Another
way to compare the two alternatives is to consider the return on the
loan,

10,400− 10,000

10,000
= 4%,

a return larger than the 3% offered by the bank. Thus, it would seem
that we might be better off by lending to our friend.

Actually, comparing the two proposals may not be so trivial. We
should also consider the possibility of not getting the money back
at all, if a default occurs. Arguably, the bank should be financially
more reliable than our friend, so the two interest rates might not be
quite comparable, and we need a way to bring risk into the picture.
Furthermore, taxes and more or less hidden fees or transaction costs
may play a role as well. In this chapter, we do not consider additional
complications like market frictions or uncertainty in cash flows, due
to default and other risk factors. We assume that the interest rates
that we analyze are, in a sense to be made clear, risk-free. Last but
not least, in this simple example, we are comparing two opportunities
resulting in cash flows that do not differ in their timing. What if we
have to compare sequences of cash flows occurring at different times?

Interest rates have to do with the time value of money: $10,000 now is not
the same as $10,000 in one year. To cope with more realistic and interesting
problems than Example 3.1, we need the ability to shift money back and forth
in time in order to compare different cash flow sequences on a common ground.
The time value of money is the subject of the first two sections of this chap-
ter. In Section 3.1, we show how interest rates are used to shift cash flows and
money forward in time. There, we also introduce the fundamental concept of
compounding, as well as the difference between quoted and effective rates. In
Section 3.2, we consider shifting cash flows and money backward in time by
discount factors. We justify discounting by the no-arbitrage principle and show
the connection between discount factors and interest rates. Different ways of
measuring rates can be adopted, and it is essential to pay attention to how rates
are expressed in terms of compounding frequency. However, it is important to
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realize that interest rates may be quoted in different ways, according to conve-
nience, but they are just different expressions of the same thing.

In Section, 3.3, we briefly discuss the fundamental difference between
nominal and real interest rates, accounting for inflation. In Section, 3.4, we
move on to a fundamental feature of interest rates: They differ as a function
of maturity. Even a cursory look at rates quoted on a newspaper shows that an
interest rate for a time period of six months is not the same as an interest rate for
a longer period, say, five years. Usually, rates are larger for longer maturities,
but this is not always the case, and theories have been proposed to explain these
patterns.

Armed with these elementary concepts, we shall then examine the foun-
dations of elementary bond pricing in Section 3.5. By “elementary” we mean
that, as we have anticipated, we rely only on a deterministic analysis of cash
flows; more advanced bond pricing models take into account the stochastic na-
ture of interest rates and will be discussed in Chapter 14. Nevertheless, we will
show that pricing floating-rate bonds, which feature stochastic cash flows, may
boil down to a surprisingly simple formula. We also introduce a commonly
used measure of bond return, yield-to-maturity (YTM), as well as a simplified
view of interest rate risk. Elementary bond pricing and YTM are related to
fundamental concepts in investment analysis, like net present value (NPV) and
internal rate of return (IRR). NPV and IRR are discussed in more detail within
the framework of corporate finance. Hence, in Section 3.6, we shall just have
a brief discussion of NPV and IRR. We also hint at more sophisticated analysis
tools based on real options.

We close the chapter with Section 3.7, where we discuss another essential
concept related with the term structure of interest rates, namely, the relationship
between spot and forward rates. This paves the way for the analysis of interest
rate risk management strategies and a few simple interest rate derivatives, which
will be introduced in Chapter 4. In that section, we also consider a possible
explanation of the term structure of interest rates.

It is worth mentioning that in this chapter, as in the rest of the book, we take
for granted that it is perfectly legitimate to lend money and expect a reasonable
compensation for it. We just rule out the application of unreasonable interest
rates, which amounts to usury and is in fact forbidden by the law. However,
there are cultures in which this is simply forbidden, and different arrangements
are required; a notable example is Islamic finance. We will not consider such
issues.

Remark. As we shall see, interest rates are applied to time periods of quite
different length. For comparison purposes, they are always quoted on a common
annual basis. A rate shall always refer to one year, whereas a return may refer
to an arbitrary holding period.
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3.1 The time value of money: Shifting money forward in
time

Suppose that we deposit an amount L in a bank account for one year. If we part
ways with hard-earned money, even though for a limited span of time, we may
require a compensation in the form of an annual interest rate r,1 meaning that
after one year the deposit will grow to

W1 = L(1 + r).

A little thought raises a few questions:

1. What if we want to borrow, rather than lend money? Should we expect to
pay the same interest rate that we earn from a deposit?

2. Are we sure that we will get our money back, or is default an unpleasing
possibility?

3. What if we want to invest L only for a fraction of a year?
4. What if we want to invest L for more than one year?

As we may expect, the first issue is reflected by a spread between the interest
rate that is bid when we invest money and the larger rate that is asked when
we borrow money. In general, whatever asset we are dealing with, we face a
bid–ask spread. This applies, for instance, to currency exchange rates quoted by
a dealer, as well as to stock prices traded through a broker. If a retail bank steps
in as an intermediary between savers and borrowers, it has to make a living by
applying a spread between the two rates. For instance, the bank will collect
deposits that are rewarded at a given interest rate, but it will require a larger rate
on loans and mortgages.

The second issue is related to credit risk, i.e., the risk that a default oc-
curs. If we lend money to a bank, we should consider the possibility that the
bank goes bankrupt.2 When the bank lends us money, it takes into account the
possibility that we will not be able to repay the debt, for reasons that might be
independent of our good will. The default on the part of a client is normally
more likely than the default on the part of a bank, and this will also contribute
to a spread between lending and borrowing rates, since common sense suggests
that credit risk will imply a larger interest rate. The prime rate quoted by banks
is the interest rate offered to their best clients when they need financing, but
this is definitely not the rate offered to normal clients. By the same token, large
institutional investors may afford borrowing funds with a minimal spread.

In this chapter, we shall neglect bid–ask spreads and credit risk; hence,
we only deal with risk-free rates and their connection with time. As we may

1In this section, we denote by r the interest rate applying to a holding period corresponding to
one year; we will introduce a more precise and useful notation later.
2In many countries, bank deposits are guaranteed by the government, but only up to some limit.
At the time of writing, there is strong political pressure to eliminate or at least reduce any such
protection.
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imagine, in normal market conditions, a larger rate is associated with longer-
term investments. If we lock the money for five years rather than one, more
often than not we will be compensated by a larger annual interest rate. If, on
the other hand, we have a bank account from which we may withdraw money
whenever we need or feel like it, the rate that we should expect to earn from
our deposits will be much lower (possibly zero). Time is also essential when
we need to shift money forward and backward in time, among other things, in
order to compare investment opportunities. We must do so both for long and
short time intervals, in order to deal with issues 3 and 4 above.

3.1.1 SIMPLE VS. COMPOUNDED RATES

As we have observed, when an annual interest rate r applies to a single year, an
amount L now is equivalent to an amount L(1 + r) in one year. If we invest
only for a fraction α ∈ (0, 1) of a year, one possible idea is prorating the rate,
i.e., to apply the formula

L(1 + αr). (3.1)

For instance, if the annual rate is 5% and we invest for six months, according to
Eq. (3.1) we will earn 2.5% of L. In principle, we may apply the same concept
when α > 1. However, when the investment spans a long time interval, quite
often interest is paid periodically along the way, and not only at the end of the
time horizon. The interest we receive at the end of each time period can be
immediately reinvested, so that we can earn interest on interest. For instance, if
the money is invested for n years, and we assume that the rate will not change
over time (no reinvestment risk), capital will grow as follows:

L · (1 + r) · (1 + r) · · · (1 + r)︸ ︷︷ ︸
n times

= L · (1 + r)n. (3.2)

The mechanism underlying Eq. (3.1) is called a simple interest rate. The al-
ternative of Eq. (3.2) corresponds to a compounded interest rate.

Example 3.2 Simple vs. compounded rates

Say that the annual rate is 5%, and we invest $1000 for two years. The
wealth at the end of the holding period depends on how the interest
rate is applied. Under the simple interest rate rule of Eq. (3.1), wealth
after two years is

L · (1 + 2r) = 1000× (1 + 2× 0.05) = $1100.

If interest is paid annually and it may be immediately reinvested,
wealth after two years will stem from the application of Eq. (3.2),

L · (1 + r) · (1 + r) = 1000× (1 + 0.05)2 = $1102.50.
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The slight difference between the two amounts is due to the com-
pounding mechanism, since

(1 + r) · (1 + r) = 1 + 2r + r2 > 1 + 2r,

and the term r2 corresponds to interest earned on interest.

Clearly, if compounding is applied over a large number of years, it implies
an exponential increase of wealth. The impact is not so remarkable in Example
3.2, where the time horizon is rather short, but it may be quite relevant for the
long-term investments that are associated with pension funds.

Example 3.3 Building pension capital

Suppose that we are going to work for the next T years, and that at
the beginning of each year we contribute an amount L to a pension
fund, which is invested at an annual rate r for the future time periods
(years) until retirement. If annual compounding applies, what is our
wealth at retirement?

To formalize the problem, let us introduce time instants (epochs)
t = 0, 1, . . . , T . We invest money at epochs t = 0 through t = T − 1,
for a total of T contributions, and we need to evaluate wealth at epoch
t = T . The key is that what we contribute at time t is invested for T−t
time periods. As a result, wealth at retirement is

WT =

T−1∑
t=0

L · (1 + r)T−t = L · (1 + r)T ·
T−1∑
t=0

(
1

1 + r

)t
.

To figure out the sum, we recall a property of the geometric series,

+∞∑
k=0

αk =
1

1− α
,

for |α |< 1. Moreover, we may express a finite sum as the difference
between two infinite sums:

τ∑
k=0

αk =

+∞∑
k=0

αk −
+∞∑

k=τ+1

αk
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=

+∞∑
k=0

αk − ατ+1 ·
+∞∑
k=0

αk

=
1− ατ+1

1− α
.

In our case,

α =
1

1 + r
< 1, τ = T − 1.

Therefore, we find

T−1∑
t=0

(
1

1 + r

)t
=

1− 1

(1 + r)T

1− 1

1 + r

=
1 + r

(1 + r)T
· (1 + r)T − 1

(1 + r)− 1
=

(1 + r)T − 1

r(1 + r)T−1
.

Hence,

WT = L · 1 + r

r
·
[
(1 + r)T − 1

]
. (3.3)

As a quick check, observe that the formula yields W1 = L · (1 + r)
for T = 1. For instance, if L = $10,000, r = 5%, and T = 30 years,

W30 = 10,000× 1.05

0.05
×
(
1.0530 − 1

)
= $697,607.90.

The interest rate has a remarkable impact. If r = 4%, the above
amount drops to $583,283.40.

If simple interest applies, wealth at retirement is

WT =

T∑
k=1

(1 + kr)L = LT + rL ·
T∑
k=1

k.

It is easy to see that

T∑
k=1

k =
T (T + 1)

2
,

which implies

WT = LT ·
(

1 +
r · (1 + T )

2

)
.
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If the above 5% rate is applied with no compounding, wealth at re-
tirement is only

W30 = 10,000× 30×
(

1 +
0.05× 31

2

)
= $532,500,

which is less than what we would obtain with 4% and compounding.

Example 3.3 aims at showing how remarkable the impact of compounding
may be, a concept that we further elaborate on in the following. However, there
are many issues that we did not take into due account:

1. We have assumed that the rate r does not change over time. When we roll
investment over time, rates may move unfavorably, and we face reinvest-
ment risk.

2. We did not consider inflation. Over a long planning horizon, we should
note the difference between real and nominal rates, which we briefly dis-
cuss in Section 3.3.

3. We did not consider taxation. Taxes may be applied immediately, when
money is contributed to a fund, or later, when we collect the terminal
wealth. Deferred taxation may make a remarkable difference.

4. We only considered the accumulation phase, i.e., when capital is built,
but not the decumulation phase, when capital is used for periodic pension
payments. Randomness in the residual lifetime after retirement plays a
key role; longevity risk is dealt with in actuarial mathematics.

3.1.2 QUOTED VS. EFFECTIVE RATES: COMPOUNDING
FREQUENCIES

A further relevant point is that, so far, we have only considered annual com-
pounding, i.e., interest is earned at the end of each year. But what if interest
is compounded at a higher frequency? If interest is earned semiannually or
quarterly, we may reinvest it earlier, and this should yield some advantage.

Interest rates are always quoted in annual terms, even though they may ap-
ply over quite different time periods. In this way, we may compare interest
rates across different maturities. The quoted rate is referred to as the annual
percentage rate. However, this rate may apply to a smaller time interval, like a
semester or a quarter, and interest may be earned n times a year and immediately
reinvested. Let us denote the annual percentage rate by APRn, where n refers
to the compounding frequency, i.e., the number of compounding periods within
a single year: With semiannual compounding, n = 2, and with quarterly com-
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pounding, n = 4. As the following example illustrates, a higher compounding
frequency implies a larger effective annual rate, which we denote by EARn.

Example 3.4 The effect of compounding frequency

Let us consider again an annual percentage rate of 5%. If we invest
$1000, with no compounding, wealth after one year is

W1 = 1000× 1.05 = $1050.

Now, what if interest is earned semiannually? The typical convention
is that if the annual rate APR2 is compounded semiannually, it means
that a rate APR2/2 applies to each semester. Hence,

W1 = 1000× 1.0252 = 1050.625.

While the quoted rate APR2 is 5%, the equivalent effective annual
rate EAR2, with semiannual compounding, is a bit larger and can be
found as follows:

1000× (1 + EAR2) = 1050.625 ⇒ EAR2 = 5.0625%.

By a similar token, with quarterly compounding we find

W1 = 1000× (1.0125)4 = 1050.945,

which corresponds to an effective annual rate EAR4 = 5.0945%.

Example 3.4 shows that, given a quoted APRn, a higher compounding fre-
quency implies a larger EARn. The general formulas are obtained by the fol-
lowing equality, which relates wealth after one year using the two rates:

1 + EARn =

(
1 +

APRn
n

)n
,

which implies

EARn =

(
1 +

APRn
n

)n
− 1, (3.4)

and
APRn = n ·

[
(1 + EARn)

1/n − 1
]
. (3.5)

An obvious question is: What happens when the compounding frequency is
taken to the limit, i.e., n → +∞? This limit is referred to as continuous
compounding, and in order to find the answer we have just to recall what we
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know from basic calculus:

lim
n→+∞

(
1 +

1

n

)n
= e,

where e ≈ 2.71828, the Euler number. This implies

lim
n→+∞

(
1 +

r

n

)n
= er.

More generally, if we invest L at a continuously compounded rate r for τ years,

Wτ = Ler·τ ,

where τ need not be an integer number. When compounding in continuous time,
the relationship between the quoted and the effective rates, denoted by APR∞
and EAR∞, respectively, is found by observing that

1 + EAR∞ = eAPR∞ ,

which in turn implies3

EAR∞ = eAPR∞ − 1, (3.6)
APR∞ = log(1 + EAR∞). (3.7)

To get a feeling for the impact of the compounding frequency, in Table 3.1
we fix an effective rate of 5% and calculate the corresponding APRn, for a
few standard values of n, using Eqs. (3.5) and (3.7). We observe that, when
n increases, a lower APRn suffices to obtain the target EAR. Furthermore, at
the displayed precision level, daily and continuous compounding are practically
equivalent. In Table 3.2, we reverse the roles of the two rates, and for a quoted
rate of 5% we show the corresponding EARn obtained by applying Eqs. (3.4)
and (3.6). We observe that by increasing n we increase EARn, and that daily
and continuous compounding are quite close again.

Continuously compounded rates may look like a mathematical abstraction
and, indeed, they are not really available. Nevertheless, we observe what fol-
lows:

1. Daily compounding, i.e., n = 365, yields essentially the same rates as
continuous compounding, as we have observed in Tables 3.1 and 3.2 .

2. The use of continuous compounding streamlines many calculations, as
we shall see later in this chapter, e.g., when dealing with forward rates.

3. Continuous compounding provides us with a powerful modeling frame-
work in continuous time, based on stochastic differential equations, which
are quite useful to represent uncertainty in interest rates and to price in-
terest rate derivatives, as we shall see in later chapters.

3We always use log to denote the natural logarithm with base e, rather than ln, since we never
use decimal or binary logarithms.
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Table 3.1 Calculating the APRn that yields a given effective rate of 5%, for different
compounding frequencies n.

Period Frequency n APRn

1 year 1 0.05000
6 months 2 0.04939
1 quarter 4 0.04909
1 month 12 0.04889
1 week 52 0.04881
1 day 365 0.04879
Continuous ∞ 0.04879

Table 3.2 Calculating the EPRn obtained by applying a fixed annual percentage rate of
5%, with different compounding frequencies n.

Period Frequency n EARn

1 year 1 0.05000
6 months 2 0.05063
1 quarter 4 0.05095
1 month 12 0.05117
1 week 52 0.05125
1 day 365 0.05127
Continuous ∞ 0.05127

3.2 The time value of money: Shifting money backward
in time

When planning our financial future, we need to shift money into the future,
possibly by making some educated guess about future interest rates. By trans-
forming a sequence of cash flows spread over time into a single equivalent cash
flow at one time instant, we may also compare different prospects. When an-
alyzing investment opportunities, we do so by shifting cash flows back to time
t = 0, i.e., now. On the one hand, this is clearly convenient, as this provides
us with an idea of the present value of a sequence of cash flows; indeed, the
net present value (NPV) is a cornerstone in investment analysis.4 On the other
hand, moving money forward in time may require some hypothesis about un-
certain interest rates in the future, which is subject to forecast error. On the
contrary, when we shift money back in time, we only use given rates applying

4See Section 3.6.1.



154 CHAPTER 3 Elementary Theory of Interest Rates

from now to some maturity.5 Since we transform money now into money in the
future multiplying by a growth factor, it stands to good reason that when money
is shifted backward, we should do the opposite, i.e., divide by a growth factor.
For instance, one question we might want to answer is: What is the value now
of $10,000 in one year? If we apply a 5% interest rate, the answer is

10,000

1.05
= $9523.81.

This the amount of money that, if invested now at 5% for one year, would
give us exactly $10,000 at the end of the time horizon. We also know that
we should consider some form of compounding when dealing with multiple
periods. Hence, the present value of $10,000 in two years is

10,000

(1.05)2
= $9070.295.

Not surprisingly, this value is considerably smaller than the previous one. More
generally, the present value of an amount L in n years, when an annual rate r is
applied, is

L

(1 + r)n
. (3.8)

This fundamental operation is called discounting and the factor 1/(1 + r)n is
called discount factor. Equation (3.8) assumes that cash flows occur at times
corresponding to integer multiples of one year and that annual compounding is
adopted. We need a way to generalize this formula, and we shall see how in
Section 3.2.2. Before doing so, it is quite instructive to formally motivate the
use of discount factors. As it turns out, discounting is a pervasive concept in
finance, and it plays a key role in asset pricing, where it may be justified by
no-arbitrage arguments. We shall illustrate the idea by pricing a simple asset, a
riskless zero-coupon bonds.

3.2.1 DISCOUNT FACTORS AND PRICING A ZERO-COUPON
BOND

Consider a riskless zero-coupon bond maturing in one year, with face value
$1000. We should clarify that by “riskless” we mean that there is no default
risk. The face value will be certainly redeemed at maturity. What is the fair
price of such a bond now? As we have already hinted at in Section 2.2.1, in
order to find the answer, we have to ask what risk-free interest rate applies to a
time horizon of one year. Let us assume that it is 4%. Then, the fair bond price
now should be

1000

1.04
= 961.5385,

5Things are not so simple, actually, as we may have to use rates that reflect the risk of the
investment.
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reasonably rounded to $961.54. More generally, the fair price of a zero-coupon
bond with face value F , maturing in n years, is

F

(1 + r)n
,

where r is the annual interest rate, applying to an investment horizon of n years.
We may use a risk-free rate, if we assume that default risk is irrelevant for that
bond; otherwise, the discount factor should incorporate a risk premium. When
referring to bonds, the interest rate r plays the role of an annual yield and is
typically denoted by y. Also note that the fair price does not consider the impact
of transactions costs and the presence of a bid–ask spread.

Since cash flow discounting is a common sense operation, this pricing for-
mula may look deceptively obvious. Actually, there is a strong justification for
the use of discounting in pricing assets featuring deterministic cash flows: The
no-arbitrage argument. Any other price would lead, under some idealized as-
sumptions about financial markets, to an arbitrage opportunity. To see this, let
us assume that the bond price is lower than the one given above, say, $940.00.
In such a case, an arbitrageur could step in and apply the following strategy:

She may borrow $940.00 at 4% and use this amount to buy the bond.
In one year, she will collect $1000, i.e., the face value of the bond.
She will also have to repay the debt, which will amount to

940× 1.04 = 977.6.

To this aim, she will use part of the face value of the bond. The rest yields
a sure profit of

1000− 977.6 = $22.4.

Note that this profit is risk-free and does not require any initial capital. If a
profit of $22.4 does not look quite impressive, imagine scaling up the trading
strategy by a large multiplicative factor. The point is that, if the bond price is
$940.00, then the implied annual yield y of the bond is found by solving the
simple equation

940 =
1000

1 + y
⇒ y =

1000

940
− 1 ≈ 6,383%. (3.9)

This yield is larger than the risk-free rate of 4%, and such a misalignment cannot
persist for long, as the above strategy would be applied by many arbitrageurs
trading large volumes of the zero, pushing prices and rates back to a set of
consistent levels.

On the other hand, what if the price is larger than the fair price, say, $990?
In this case, the arbitrageur should reverse the above trade and pursue the fol-
lowing strategy:

She may sell the bond short and invest the proceeds, $990, at 4% for one
year.
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In one year, she will collect

990× 1.04 = $1029.60,

which is sufficient to pay the bond face value back to the legitimate bond-
holder, earning a risk-free profit of $29.60.

As usual, this simple kind of arbitrage strategy amounts to selling an expensive
asset and buying a cheap one. In this case, the asset value is related to a risk-free
interest rate, and we cannot have two different risk-free rates in an economy.
Actually, despite the simplicity and appeal of the reasoning, we must be aware
of all of the hidden assumptions behind it. Indeed, we are assuming an idealized,
frictionless market in which:

There is no distortion due to taxes
There is no limit to borrowing
There is no limit to short-selling
There are neither commissions nor bid–ask spreads
There is no difference between borrowing and lending rates

Clearly, these assumptions do not match reality exactly, and they may be ap-
proximately true only for large institutional investors. This leaves room for
some misalignment in prices, but the argument is approximately valid. Inciden-
tally, in Section 2.4.1, we have seen that pricing functionals should be linear.
Since a coupon-bearing bond may be considered as a portfolio of zeros, we may
use a set of discount factors, with different maturities, to price a coupon-bearing
bonds, too, as we shall see in Section 3.5.

We close this section by an example illustrating how we may use the con-
cepts that we have just introduced, most notably the annual bond yield, to com-
pare assets.

Example 3.5 Comparing zeros

Let us consider the prices of three zero-coupon bonds with face value
$1000 and different maturities, as reported in Table 3.3. Given the
bond prices, we may compute their annual holding period return, or
yield, in other words. For instance, the holding period return for the
zero Z30 maturing in 30 years is calculated as

1000− 231.38

231.38
≈ 332.19%.

When compared with this seemingly stellar return, the holding period
return for the bond Z0.5, maturing in six months, just pales away.
However, it is clear that such a comparison makes no sense at all.
We should come up with a common ground for a comparison, and a
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Table 3.3 Comparing three zero-coupon bonds with three maturities.

Bond Maturity Price ($) Holding period return Annual yield

Z0.5 6 months 980.58 1.98% 4.0%
Z2 2 years 915.73 9.20% 4.5%
Z30 30 years 231.38 332.19% 5.0%

natural choice is expressing the return on an annual basis. We may
invert the pricing formula to find the annual yield on each bond,

Pz(T ) =
F

(1 + y)T
⇒ y =

(
F

Pz(T )

)1/T
− 1, (3.10)

where Pz(T ) is the price of a zero-coupon bond maturing in T . Carry-
ing out this calculation gives the last column in Table 3.3. We observe
that, indeed, the annualized return on longer maturity bonds is larger,
which is usually the case. Plotting interest rates for different maturi-
ties provides us with a picture of the term structure of interest rates,
as we shall see in Section 3.4, and an increasing structure may be jus-
tified by risk considerations. Thus, the return of the long-term bond
in Table 3.3 is not really surprising (and just a bit less exciting, when
compared with the yields of the other two bonds).

Example 3.5 is, in a sense, closer to reality, since information about interest
rates and yields is squeezed out of market price data. Then, we may check
whether a set of bond prices is consistent or not. It is important to observe that,
in order to get a meaningful comparison, we should analyze a set of bonds with
similar features in terms of default risk and liquidity.

The careful reader may wonder about the application of Eq. (3.10) when
maturity T is not an integer number. For instance, for the bond maturing in six
months, we set T = 0.5 and find

Pz(0.5) = 980.58 =
1000

(1 + y)0.5
⇒ y =

(
1000

980.58

)2

− 1 = 0.04. (3.11)

We shall dig the issue in more depth in Section 3.2.2.
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3.2.2 DISCOUNT FACTORS VS. INTEREST RATES

In Example 3.5, we have considered the prices of three zeros. On the one hand,
the price of a zero implies a well-defined discount factor. On the other hand, to
compare the three bonds, we have to find an annualized yield, which is essen-
tially an annual interest rate implied by the bond price. Note that we assume that
bonds are free from default risk, and that the corresponding rates are risk-free.
However, we have also seen that there are different ways of compounding inter-
est rates. Furthermore, we have to cope with the fact that all of these quantities
are subject to random changes over time.

Before carrying out any further investigation, we need to introduce a suit-
able notation:

Z(t, T ) is the price at time t of a zero-coupon bond with face value of
$1 and maturing at time T , where time is measured in years. Actual
bonds do not have a face value F of $1, but, by linearity of pricing, we
may immediately find the price at time t of a bond maturing at time T as
follows:

Pz(t, T ) = F · Z(t, T ). (3.12)

Thus, Z(t, T ) is the discount factor at time t for deterministic cash flows
at time T .
rn(t, T ) is the annual interest rate for the time interval (t, T ), where in-
terest is compounded n times per year. Note that the relevant time span
need not be one year, but we always quote annualized rates.
r(t, T ) is the annual interest rate applying to the time interval (t, T ),
where interest is compounded in continuous time.

The choice of compounding may be dictated by opportunity. If the interest rate
applies to a time period of six months, it is convenient to quote it as r2(0, 0.5),
which is the annual rate, whereas the actual rate on the time period will be
r2(0, 0.5)/2.

Example 3.6 From annual rates to cash flows

Let us consider investing 10,000 for six months, at an annual per-
centage rate r2(0, 0.5) = 5%, with semiannual compounding. After
six months, we will obtain

10,000×
(

1 +
r2(0, 0.5)

2

)
= 10,250.

Quoting a rate with annual compounding is not quite convenient in
this case. To see why, let us recall that we may convert a rate with
semiannual compounding to a rate with annual compounding, and
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vice versa, using the relationship(
1 +

r2

2

)2
= 1 + r1.

In principle, for the above investment, we might quote an annual rate

r1(0, 0.5) =

(
1 +

0.05

2

)2

− 1 = 0.050625.

Then, the cash flow after six months should be calculated as

10,000×
√

1 + r1(0, 0.5) = 10,000×
√

1.050625

= 10,250. (3.13)

We find the same result as before, but in a somewhat twisted way.

Equation (3.13) provides us with a justification for Eq. (3.11), where we
have used a discount factor

Z(0, 0.5) =
1√

1 + r1(0, 0.5)
.

This does not look quite natural, but it is fine if we just need a common ground
for a comparison. Indeed, in Example 3.5, we have compared the prices of three
zeros, Pz(0, 0.5), Pz(0, 2), and Pz(0, 30), with face value F = 1000, in terms of
the annually compounded interest rates r1(0, 0.5), r1(0, 2), and r1(0, 30). We
may do the same using semiannually compounded rates. The only essential
requirement is that we must be consistent in the rates we use.

Often, semiannual compounding is assumed in practice, as coupon-bearing
bonds usually pay semiannual coupons. As we shall see, continuous compound-
ing is also very convenient from a mathematical viewpoint. It is important to
understand, though, that the way we measure interest rates has no impact what-
soever on bond prices and discount factors. Our choice will be merely dictated
by convenience or by adherence to market practice. What really matters, in
bond pricing, is the set of discount factors. We may use different ways of quot-
ing an annual interest rate, but the discount factor is always the same. A good
way to understand this is to realize that we may measure space in kilometers or
miles, but the distance between Boston and Los Angeles is what it is.

Since we find it much easier to deal with annualized interest rates, it is
important to relate rates and discount factors. We have already used a simple
relationship between the price of a zero-coupon bond, maturing in exactly m
years, and an interest rate with annual compounding, which we may now ex-
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press in a more precise way:

Pz(t, t+m) =
F[

1 + r1(t, t+m)
]m = F · Z(t, t+m). (3.14)

In Section 3.1.2, we have learned that we may shift money forward in time using
different compounding rules. By the same token, we may adopt different com-
pounding rules to move money backward in time, based on rates with different
compounding. The relationship of Eq. (3.14) may be stated more generally by
using a discount factor depending on a discretely compounded rate rn(t, T ) as
follows:

Z(t, T ) =
1[

1 +
rn(t, T )

n

]n·(T−t) . (3.15)

Note that we raise the denominator to a power related to time-to-maturity, which
is (T − t) years, but is expressed as a number of compounding periods (n per
year). We may also go the other way around:

rn(t, T ) = n ·
[

1

Z(t, T )1/n·(T−t)
− 1

]
. (3.16)

If we resort to continuous compounding, the equivalent relationships look much
nicer:

Z(t, T ) = e−r(t,T )·(T−t), (3.17)

r(t, T ) = − logZ(t, T )

T − t
. (3.18)

Note that, in order to go from discount factors to rates, we need natural loga-
rithms. Since Z(t, T ) ≤ 1, the logarithm is negative, and the minus sign in front
of it yields a non-negative interest rate in Eq. (3.18).

It is also important to notice that time-to-maturity is T − t, and not T ;
sometimes we will use τ = T − t to denote time-to-maturity. We insist on using
a generic current time t, rather than t = 0; in this way, we will be able to study
the stochastic evolution of prices and rates in time. Since interest rates are not
constant, for a given maturity T , the zero prices Pz(t, T ) and the corresponding
discount factors Z(t, T ) are stochastic processes with respect to t. By a similar
token, if we fix time-to-maturity τ and we consider the rate r(t, t + τ) as a
function of t, we obtain another stochastic process. This will be essential when
we consider randomness in interest rates. Since changes in interest rates are
numerically small, it may be useful to introduce a suitable unit to measure them.

DEFINITION 3.1 (Basis point) A change of one basis point corresponds to a
change of 0.0001 (i.e., 1% of 1%) in an interest rate.

For instance, if an interest rate increases from 4% to 4.6%, we say that it has
increased by 60 basis points. One hundred basis points correspond to a change
of 1%.



3.3 Nominal vs. real interest rates 161

3.3 Nominal vs. real interest rates

In Table 3.3, we may notice how a zero maturing in 30 years offers a remarkable
holding period return. The return may look less remarkable when annualized,
but there is a further reason of concern, when holding a security with such a
long maturity: What about the real value of the face value that we will redeem
at maturity? We should keep in mind that one of the essential functions of finan-
cial markets is to allow for consumption shifts over time. The nominal value of
the bond is measured by a monetary amount, but its real value should be mea-
sured in terms of the provided ability to consume, i.e., in terms of purchasing
power. The purchasing power of money is typically eroded over time, a fact
that is measured by an inflation rate. Inflation may be hard to measure, as we
have to define what we purchase exactly. Monetary authorities define a basket
of goods and services that yields an index, whose composition is updated to re-
flect consumption trends and technological innovation. At the time of writing,
inflation rates are rather low in Europe, but in the past there have been periods
of very high inflation, and the issue is quite relevant, e.g., to a pension fund.

Thus, even if the monetary amount of our invested wealth increases by a
nominal interest rate, we might be concerned by its real increase, net of inflation
effects. To figure out the relationship between real, nominal, and inflation rates,
let us consider the monetary price St of a financial asset. The nominal rate of
return rt at time t is related to the asset price:

rt =
St − St−1

St−1
⇒ 1 + rt =

St
St−1

.

Now, let us consider the monetary price Ft of a consumption good, which we
may identify as the reference basket for computing inflation. The inflation rate
it and the price level Ft are related by

1 + it =
Ft
Ft−1

.

Now, let us consider the real value of the financial asset in term of consumption,
i.e., purchasing power, which is given by St/Ft.6 Hence, the real rate of return
Rt is related to the real asset value as follows:

1 +Rt =
St/Ft

St−1/Ft−1
=

1 + rt
1 + it

. (3.19)

For the sake of simplicity, let us streamline notation and eliminate dependency
on time. Therefore, let i1 be the observed annual inflation rate with annual
compounding. This means that the average of prices has increased by a factor
1 + i1 over the last year. Note that here we are talking about the observed
inflation rate for the past, not the expected one for the future. Given the nominal

6We may say that the asset price is measured in units of the basket of goods, which plays the
role of a numeraire. As we shall see, using suitable numeraires plays a key role in asset pricing.
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rate r1 over the same period, the real interest rateR1, with annual compounding,
is given by rewriting Eq. (3.19) and solving for R1:

1 +R1 =
1 + r1

1 + i1
⇒ R1 =

r1 − i1
1 + i1

. (3.20)

Note that this is the exact relationship, whereas the rule of thumb R1 ≈ r1 − i1
is often used. This can be justified, when rates are small enough, as follows:

1 + r1 = (1 +R1)(1 + i1) = 1 +R1 + i1 +R1i1 ≈ 1 +R1 + i1

⇒ R1 ≈ r1 − i1. (3.21)

If we use continuously compounded rates, it turns out that the rule of thumb of
Eq. (3.21) is actually exact:

eR =
er

ei
⇒ R = r − i. (3.22)

As we shall see a few times in the following, formulas involving continuously
compounded rates are indeed often simpler than the corresponding formulas for
discretely compounded rates.

Example 3.7 The joint impact of inflation and tax rates

In this book, we do not consider taxes and their impact on return in
detail, but let us assume that we are subject to a tax rate t on the capital
growth. This means that the nominal after-tax return rate is r1(1− t).
Using the approximation of Eq. (3.21), the real after-tax return is

r1(1− t)− i1 = (R1 + i1)(1− t)− i1 = R1(1− t)− i1t.

The product term i1t shows how tax and inflation rates compound in
reducing the real increase of wealth.

The inflation index measures the past impact of inflation, but what about
the impact of the expected future inflation? Economic common sense suggests
that long-term interest rates should be somehow affected by the expectation
about future inflation. A very simple formula expressing this view is Fisher’s
equation,

r1(0, 1) = R1(0, 1) + E0[i1],

where we use a more careful notation [rates are given at time t = 0 and will
apply to the time period (0, 1)] to insist on the fact that we are looking forward
into the future and everything is conditional on information at time t = 0. As
we have already observed, more often than not, rates for long maturities are
larger than short-term interest rates. Inflation risk is a contributing factor, but
not the only one, and certainly not in a simple way as suggested by Fisher’s
equation. We will refrain from discussing the impact of inflation any further,
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but we emphasize that a long-maturity bond, even if held until maturity, need
not be a perfectly risk-free asset. It may be argued that indexing by inflation
is required to make the asset truly risk-free. We will briefly consider inflation-
indexed bonds in Chapter 5.

3.4 The term structure of interest rates

Let us consider two individuals, who want to borrow money from a bank. The
first borrower will repay her debt in one year; the second one will repay his
debt in ten years. All other things being equal, we would expect that the annual
rate required for the longer-term loan will be higher. There could be different
reasons behind this difference, since, in the long-term:

There is a larger default risk.
Inflation may have a larger impact.
The money is locked for a longer period, with a corresponding reduction
in liquidity, which means that more favorable investment opportunities
could be lost.

It is a matter of fact that if we look at the set of rates r(t, t+τ) at a fixed time
instant t, for different times-to-maturity τ , we observe a nonconstant function
of τ . This function defines the term structure of interest rates, also called
the zero curve or spot rate curve.7 Sometimes, we will use the notation r(t, ·)
to emphasize that we refer to the full term structure observed at time t. The
term structure may have different shapes, as depicted in Fig. 3.1. More often
than not, the structure is indeed increasing, but there are cases in which this
is not true. Decreasing curves are sometimes observed, and humps may also
be observed during the transition from an increasing to a decreasing structure
and vice versa. Note that here we are considering r(t, t + τ) as a deterministic
function of τ for a fixed t. If we fix τ and let time t move forward, we will
observe a quite jagged stochastic process like the one depicted in Fig. 3.2.8 If
we consider the rate as a joint function of both t and τ , we obtain a random
field.

Now, two questions are in order:

1. How can we estimate the term structure?
2. How can we explain the shape of the term structure?

To answer the first question, we can take advantage of the link between the
whole term structure and the price of coupon-bearing bonds. In Section 3.5.2,

7Sometimes, the term yield curve is used, but we will avoid it, as there is some possibility of
confusion between yield of a zero and yield-to-maturity of a possibly coupon-bearing bond.
Yield-to-maturity for bonds with the same maturity will differ if their coupon rates are different,
as we shall see in Section 3.5.4.
8The picture has been obtained by simulating one of the stochastic short-rate models described
in Chapter 14.
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we describe how bond prices may be used to estimate the term structure. The
answer to the second question is definitely trickier. In fact, different theories
have been proposed to explain the term structure:

The expectation theory
The market segmentation and preferred habitat theories
The liquidity preference theory

We will investigate in a little more detail the last one, which may be thought
as a generalization of the expectation theory, in Section 3.7, after introducing
forward rates.

3.5 Elementary bond pricing

We have seen that the price at time t of a risk-free zero-coupon bond maturing at
time T is related to a discount factor Z(t, T ) by Eq. (3.12), where the discount
factor in turn may be expressed in terms of interest rate, as in Eqs. (3.15) or
(3.17). The application of discounting is a consequence of the no-arbitrage
principle. The same principle may be applied to price a more complex coupon-
bearing bond by a simple decomposition approach. By taking advantage of
the linearity of pricing, each individual future cash flow may be regarded as a
zero-coupon bond, as we show in Section 3.5.1. To do so, we need a whole
set of discount factors and, unless the term structure is flat, they correspond to
different interest rates. In Section 3.5.2, we show how the link between bond
prices and rates may be used to estimate the term structure.

To further complicate the matter, the set of underlying interest rates may
also reflect the risk in the bond. Common sense suggests that, in presence of
default risk, a larger interest rate will be commanded. For the sake of simplic-
ity, we will just assume that the bond is free of default risk, and we will deal
with risk-free interest rates. However, we should also realize that, in concrete,
defining and measuring a risk-free rate is not as easy as it might seem, and the
very concept is subject to some misunderstanding; we elaborate on this theme
in Section 3.5.3.

This is an extensive section, where we shall also introduce essential con-
cepts like yield-to-maturity and duration. We will show their relevance in in-
terest rate risk management. To close the section, we will consider the pricing
of a simple floating-rate bond, which leads to some possibly counterintuitive
findings.

3.5.1 PRICING COUPON-BEARING BONDS

Let us consider a risk-free bond with face value F , maturing at time T , paying
a coupon with constant rate c every six months; we will denote the price of this
bond at time t by Pc(t, T ), to distinguish it from the price Pz(t, T ) of a zero with
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the same face value. Semiannual coupons are the most common case, but this
need not be an absolute rule. Note that, consistently with market conventions,
the coupon is expressed in annual terms, but the actual coupon paid every six
months is F · c/2. The current time is denoted by t as usual, and we assume
that m coupons will be paid, at times Ti, i = 1, . . . ,m. The last time instant
coincides with maturity, Tm = T , where the face value is also repaid. Hence,
the bond is essentially a stream of cash flows timed as follows, assuming F =
100: (

100× c

2
, T1

)
, . . . ,

(
100× c

2
, Tm−1

)
,
(

100×
(

1 +
c

2

)
, Tm

)
.

By linearity of pricing,9 the bond may be decomposed as a portfolio of m −
1 zero-coupon bonds with face value 100 × c/2, maturing at times Ti, i =
1, . . . ,m− 1, respectively, and a zero-coupon bond with face value 100× (1 +
c/2), maturing at time Tm. To find the price of the bond, we have just to price
the individual zeros and add everything up:

Pc(t, T ) =
100× c

2
· Z(t, T1) +

100× c
2

· Z(t, T2) + · · ·

+
100× c

2
· Z(t, Tm−1) + 100×

(
1 +

c

2

)
· Z(t, Tm)

=
c

2

m∑
i=1

Pz(t, Ti) + Pz(t, Tm). (3.23)

We observe that the bond price depends on an array of discount factors, i.e.,
on the whole set of underlying risk-free rates. If we express discount factors in
terms of discretely compounded rates, we obtain

Pc(t, T ) = F ·

[
c

2

m∑
i=1

1

[1 + rn(t, Ti)/n]
n·(Ti−t)

+
1

[1 + rn(t, Tm)/n]
n·(Tm−t)

]
.

(3.24)
A similar formula applies if we use continuous compounding:

Pc(t, T ) = F ·

[
c

2

m∑
i=1

e−r(t,Ti)·(Ti−t) + e−r(t,Tm)·(Tm−t)

]
. (3.25)

We insist again: There is no conceptual difference between Eqs. (3.24) and
(3.25), as the discount factors are just the same. They are only expressed in
two different ways, and the latter one will prove to be more convenient, but this
amounts to measuring the same objects using different units of measurement.

9See Section 2.4.1.



3.5 Elementary bond pricing 167

Example 3.8 Bond prices and coupon rates

Let us consider a bond with face value $1,000, paying semiannual
coupons with rate 4%, and maturing in two years. Each coupon pay-
ment amounts to $20. We assume a term structure consisting of the
following continuously compounded rates:

r(0, 0.5) = 3.7%, r(0, 1) = 4.0%,

r(0, 1.5) = 4.2%, r(0, 2) = 4.3%.

The bond price is

Pc(0, 2) = 20× e−0.037×0.5 + 20× e−0.04×1 + 20× e−0.042×1.5

+ 1020× e−0.037×2 = $993.57.

If the coupon rate is 6%, the price increases to

Pc(0, 2) = 30× e−0.037×0.5 + 30× e−0.04×1 + 30× e−0.042×1.5

+ 1030× e−0.037×2 = $1031.56.

The bond prices in Example 3.8 reflect the face value of $1,000. However,
the face value is not quite relevant, and usually bond prices are quoted as a
percentage of the face value. For the two bonds of Example 3.8, this would
correspond to 99.357 and 103.156, respectively.10 We observe that, depending
on the relationship between interest rates and the bond coupon rate, the price
may be below or above the face value. This is expressed as follows.

DEFINITION 3.2 (Trading at premium and at discount) If the bond price is
larger than the face value, we say that the bond trades at premium. If the bond
price is smaller than the face value, we say that the bond trades at discount.
If the bond price corresponds to the face value, we say that the bond trades at
par.

Clearly, a zero always trades at discount and, if there is no change in the interest
rates, its value will increase over time. When a bond trades at premium, its price
will decrease over time, reflecting the fact that valuable coupons are detached.
When a bond is issued, the coupon rate is usually set in such a way that the bond
initially trades approximately at par.

10We shall discuss the practicalities of bond price quoting in Section 5.2.2.



168 CHAPTER 3 Elementary Theory of Interest Rates

3.5.2 FROM BOND PRICES TO TERM STRUCTURES, AND VICE
VERSA

Equations (3.24) and (3.25) link bond prices to the term structure of interest
rates and may used in two ways:

1. To use observed11 bond prices to estimate a term structure of interest
rates.

2. To find the fair value of a bond, given a term structure; a discrepancy
between the fair value and the observed price might indicate that some
bonds are either over- or underpriced, relative to other bonds, which may
suggest an arbitrage opportunity.

Estimating the term structure at time t = 0 amounts to finding a set of risk-free
rates r(0, Ti), for a set of maturities Ti, i = 1, . . . ,m, such that a pricing model
matches observed asset prices. The full term structure may then be recovered
by a suitable interpolation strategy. If we had a broad set of zero-coupon bonds,
issued by an extremely creditworthy issuer, we would have a rich set of discount
factors Z(t, Ti) from which rates could be easily obtained. There are a few
problems, however.

A T-bill would be a suitable zero-coupon bond as far as rates on USD are
concerned, but such bonds are not available for long maturities. Long-
term zeros are traded, but they result from stripping coupons from long-
term bonds (a process called cash flow unbundling). Such bonds are ac-
tually issued by banks and, therefore, they are subject to some credit risk
that would affect our estimate.
Another issue is liquidity: Market prices are not necessarily the same as
fair prices, a difference that may be due to liquidity and other factors, like
the occasional flight to quality.
It has been argued that even T-bills may not be the best choice since their
price may be affected by bank regulations, which require banks to hold a
stock of T-bills.

This is why further assets are often brought into the picture, i.e., interest rate
derivatives like interest rate futures and swaps. These are extremely liquid as-
sets and are sold with a wide range of maturities. The presence of a clearing-
house for futures and the limited credit exposure associated with a swap make
counterparty risk almost irrelevant.

For the sake of illustration, let us consider basic procedures to estimate
the term structure with a set of generic bonds. Let us assume that we have
selected m bonds, indexed by k = 1, . . . ,m, with cash flows Cki at times Ti,
i = 1, . . . ,m. Note that the number of bonds is the same as the number of time

11Here, we use the term observed rather than quoted bond price. The reason is that, as we shall
see in Chapter 5, the quoted bond price is not the cash price, as it does not consider accrued
interest from the next coupon.
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Table 3.4 Data for bootstrapping in Example 3.9.

Maturity 0.5 1 1.5 2
Coupon rate 0% 6% 3% 5%
Price 984.62 1023.12 985.13 1014.69

instants. If a bond matures at time Tj < Tm, all cash flows for i > j are zero.
The cash flows should be discounted by discount factors Z(t, Ti), denoted by
Zi for the sake of simplicity, to yield the observed price P ok . Thus, we just have
to solve the following system of linear equations:

P o1 = C11Z1 + C12Z2 + C13Z3 + · · ·C1mZm

P o2 = C21Z1 + C22Z2 + C23Z3 + · · ·C2mZm

P o3 = C31Z1 + C32Z2 + C33Z3 + · · ·C3mZm (3.26)
... =

...
P om = Cm1Z1 + Cm2Z2 + Cm3Z3 + · · ·CmmZm.

Note that, since we have a set of m unknown discount factors and a set of m
equations, assuming that bonds are linearly independent, we will find exactly
one set of discount factors, from which we may deduce a set of interest rates.

A particular case of this procedure is obtained when cash flows have a stair-
case structure, i.e., bond k has exactly k cash flows at times T1, . . . , Tk. This
means that the first bond is a zero (or a bond with just one coupon left) maturing
at T1, that the second bond pays a coupon at time T1 and matures at time T2,
etc. We find a system of linear equation, whose matrix is lower triangular:

P o1 = C11Z1

P o2 = C21Z1 + C22Z2

P o3 = C31Z1 + C32Z2 + C33Z3 (3.27)
... =

...
P om = Cm1Z1 + Cm2Z2 + Cm3Z3 + · · ·CmmZm.

This system is solved by forward substitution, finding one discount factor at
each step, as shown in the following example. This textbook approach is known
as bootstrapping the zero curve. Actually, what we do, when solving the
system of Eq. (3.26) or Eq. (3.27), is finding the discount curve, i.e., the curve
of discount factors Z(t, T ), which is then converted to the zero curve of interest
rates.
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Example 3.9 Bootstrapping a term structure

Let us consider the bond prices of Table 3.4, where we assume that
all face values are 1000 and coupons are semiannual, and find the
implied continuously compounded rates. The price of the first zero
maturing in six months yields the first discount factor immediately:

Z(0, 0.5) =
984.62

1000
= 0.98462

⇒ r(0, 0.5) = − logZ(0, 0.5)

0.5
= 0.031.

The second bond has two cash flows, 30 and 1030, in six months and
one year, respectively. Hence

1023.12 = 30 · Z(0, 0.5) + 1030 · Z(0, 1)

⇒ Z(0, 1) =
1023.12− 30× 0.98462

1030
= 0.96464

⇒ r(0, 1) = − logZ(0, 1)

1
= 0.036.

By a similar token,

985.13 = 15 · Z(0, 0.5) + 15 · Z(0, 1) + 1015 · Z(0, 1.5)

⇒ Z(0, 1.5) =
985.13− 15× 0.98462− 15× 0.96464

1015
= 0.94176

⇒ r(0, 1.5) = − logZ(0, 1.5)

1.5
= 0.04.

The last step yields r(0, 2) = 0.042.

There are few issues with the above procedures, as it may be difficult to
find a good set of risk-comparable bonds that are not affected by liquidity is-
sues and feature a synchronized sequence of cash flows. In general, it may be
better to use a larger number of securities. This leads to an overdetermined
system, where we have more equations than unknown variables, but we can
find a solution in the least-squares sense. Let P̂k(Z1, . . . , Zm) be the price pre-
dicted for bond k as a function of the discount factors. We would like to find
a set of discount factors such that the predicted prices are as close as possible
to the observed prices. Hence, given a set of n > m bonds, we may solve the
optimization problem:

min
Z1,...,Zm

n∑
k=1

[
P 0
k − P̂k(Z1, . . . , Zm)

]2
. (3.28)
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If P̂k(Z1, . . . , Zm) is a linear function of the discount factors, this is a simple
linear least-squares problem, which is quite easy to solve. In a more general set-
ting, this is a nonlinear optimization problem, typically a nonconvex one, which
requires numerical methods for its solution.12 This would be the case, if we cal-
ibrate directly in terms of interest rates. This kind of model calibration has a
wide scope of applicability and can be applied to quite sophisticated pricing
models for derivatives. Note that, in solving Problem (3.28), we are still as-
suming a set of synchronized cash flows. A more flexible procedure should rely
on a set of arbitrarily timed cash flows; a suitable interpolation approach may
be adopted to find discount factors at generic time instants as a function of the
subset {Z1, . . . , Zm}. Last, but not least, we have assumed a non-parametric
approach whereby we directly solve for the discount factors. An alternative ap-
proach would be to parameterize the zero or the discount curve and estimate
the parameters of the curve. Note again that we may express prices in terms of
discount factors or interest rates. A parametric model of the curve of interest
rates, which we do not illustrate in detail, is the Nelson–Siegel model:

r(0, T ) = β0 + (β1 + β2) · τ1
T
·
(

1− e−T/τ1
)
− β2e

−T/τ1 .

The model depends on parameters β0, β1, β2, and τ1, and it is clearly more
parsimonious than a model relying on several interest rates. This may sacrifice
fit in favor of more robustness to liquidity and other issues. If the model may
look a bit peculiar, it is because the Nelson–Siegel model, as many others, is
actually a model for the forward rates, which we describe later in Section 3.7.
Modeling the forward rates often turns out to be a more convenient approach
than dealing with the spot rates directly. Given the forward rates, it is easy to
find the spot rates.

3.5.3 WHAT IS A RISK-FREE RATE, ANYWAY?

In the rest of this book, we will often refer to risk-free rates or risk-free as-
sets. However, since the term might be somewhat misleading, it is necessary to
clarify what we really mean by risk-free rate and risk-free asset.

Consider, for instance, a T-bill, i.e., a short-maturity zero issued by the
US treasury. In portfolio theory, when talking about a risk-free asset, the T-
bill is quite often given as a concrete example, and its yield is proposed as a
risk-free return over a holding period corresponding to its maturity. But is a
T-bill a really safe asset? To find an answer, we must list and comment on the
potentially relevant sources of risk for its holder:

Currency risk. A T-bill may be a safe asset for an investor whose cur-
rency is the US dollar, but not for all investors.

12We deal with nonconvex optimization in Section 16.2. Further issues with model calibration
are discussed in Section 14.4.
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Inflation risk. Since the T-bill has very short maturity (say, three or six
months), inflation risk is not likely to be that relevant. Nevertheless, it
would be relevant for a zero with longer maturity.
Interest rate risk. From the bond pricing formulas, it is clear that bond
prices are subject to change if interest rates change. Later, we will see
that the impact may be large or small, depending on bond maturity and
coupon rates. For a T-bill, the impact is limited and, probably, an investor
will hold the bond until maturity. However, if a long-term zero is sold
along the way, a possibly consistent loss may be incurred.
Default risk. A T-bill is considered virtually risk-free from this view-
point. Bonds issued by other governments are not so safe, and the same
applies to corporate bonds.

Therefore, if we assume the US dollar as the reference currency and we rule
out default risk, we may say that a T-bill is a reasonably safe asset. We can buy
the asset now for a price F · Z(0, T ), and we will receive the face value F at
maturity. Thus, the corresponding holding period return is deterministic, rather
than stochastic, as is the case with stock shares.

The price of a zero is related to a discount factor Z(t, T ), which is related in
turn to an interest rate r(t, T ) (let us use the one with continuous compounding).
Typically, when we talk about risk-free rates, we do not want to bring inflation
and currency risk into the picture, and we assume that the investment is held for
the whole time horizon to which the interest rate applies. So, can we say that
the rate that we may calculate from a T-bill price is a risk-free rate? As we have
pointed out before, some practitioners could object that the price of T-bills is
somewhat affected by regulations requiring banks to hold some T-bills, which
may have an impact on its price. Hence, they suggest that risk-free rates should
be estimated on the basis of other quite liquid securities, like certain interest rate
derivatives. We might disregard this issue, but it still remains a fact that a risk-
free rate is defined with reference to a given time horizon. Using estimation
procedures that we have outlined in Section 3.5.2, we may estimate the term
structure of risk-free rates r(t, T ) at time t, which for fixed t is a deterministic
function of T . However, the interest rate as a function of t is not deterministic.
Indeed, when we will build continuous-time models for interest rates, we will
see that they are based on stochastic processes, just like stock share prices. The
idea of modeling a risk-free rate by a stochastic process may sound confusing,
and some clarification is in order. If we invest at rate r(t, T ) at time t and we
just collect the reward at time T , indeed, there is no risk involved. However, if
we consider a process defined as

r(t, t+ τ)

for a fixed time-to-maturity τ , as a function of t, this is in fact a stochastic pro-
cess. Risk-free rates do move and we are subject to not only the aforementioned
interest rate risk, but also to reinvestment risk. The second kind of risk is asso-
ciated with rolling a short-term investment forward in time. Consider a strategy
whereby we invest in T-bills maturing in three months. When a T-bill matures,
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FIGURE 3.3 A scenario tree for a risk-free rate.

we reinvest its face value in a freshly issued T-bill. When we buy a T-bill, we
know how much wealth we will have when it matures in three months, but we
do not know the future prices of new T-bills, because the future interest rates,
as well as the corresponding discount factors, are random.

Another way to understand reinvestment risk is to compare a bank account,
whose interest rate will be reset at times T1, T2, . . . , Tm, to a zero-coupon bond
maturing at Tm. Assuming continuously compounded rates, the money invested
in the zero will grow by a known multiplicative gain factor,

exp
[
r(t, Tm) · (Tm − t)

]
.

The gain factor for the bank account is

exp
[
r(t, T1) · (T1 − t) + r(T1, T2) · (T2 − T1)+

· · ·+ r(Tm−1, Tm) · (Tm − Tm−1)
]
.

In this expression, only r(t, T1) is known at time t, even though each rate
r(Ti−1, Ti) will be given at the beginning of the corresponding time interval.

From a formal viewpoint, all of this is related to the concept of a pre-
dictable stochastic process and it may be visualized by the scenario tree of
Fig. 3.3. This tree is not meant to be realistic in any way, but the key message
is how interest rates are associated with nodes. The return of a stock share over
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the time period (t, t+ δt),

S(t+ δ)− S(t)

S(t)
,

is only known at time t + δ, the end of the time interval. However, the interest
rate r(t, t + δt) is known at time t, the beginning of the time interval. Hence,
in the scenario tree of Fig. 3.3, the rates for all of the successors of any node
are the same.13 However, if we keep rolling the investment over time, we face
reinvestment risk, and we cannot predict the final outcome exactly. For instance,
the scenario ω1 corresponds to a sample path in which the rate is 5% on the time
interval (0,1), 4% on the time interval (1,2), and 3% on the time interval (2,3),
Thus, the holding period return for this scenario is

RH(ω1) = 1.05× 1.04× 1.03− 1 = 12.476%.

We note that this is the same result we obtain in scenario ω2. However, the
corresponding return for scenarios ω7 and ω8 is

RH(ω7) = RH(ω8) = 1.05× 1.06× 1.04− 1 = 15.752%.

The concept of a predictable stochastic process is easy to grasp in discrete time,
whereas more technicalities are involved in the case of continuous time.

3.5.4 YIELD-TO-MATURITY

Pricing a bond at time t requires the knowledge of a full term structure r(t, ·),
since different interest rates enter the pricing formula. If we like to be picky, we
could denote the price of a coupon-bearing bond maturing at T by

Pc
(
t;T, r(t, ·)

)
.

But what can we say about the return of the bond? It should be clear that there
is no reason to believe that any one of the rates involved in the pricing formula
defines the holding period return. It should be even clearer that the coupon
rate should not be confused with the bond return. To be more concrete, let us
consider the following two bonds:

Bond B1 pays a 3% coupon and sells for 96.08
Bond B2 pays a 9% coupon and sells for 132.18

Clearly, in comparing the two bonds, maturity plays a role, but even if maturity
is the same, how can we compare the two assets? The second bond offers a
very palatable coupon, but it is very expensive. By the way, we notice that a
coupon-bearing bond may have a price significantly larger than the face value,

13This may be expressed in terms of the filtration to which the process is adapted, as we will
see in Chapter 11.
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which is impossible for zeros. It stands to reason that when coupons are paid,
the overall value of the second bond will be reduced,14 since we strip a cash
flow out. The first bond is much cheaper and its value will arguably increase,
when maturity is approached; however, its coupon is much less attractive. We
clearly see the need of a single number giving us a feeling for the relative value
of the two investments.

Actually, assessing the return from holding a bond is not trivial at all. A first
point is: Why are we holding that bond? If we are holding the bond as a way
to meet a stream of future liabilities, the bond return, per se, might not be very
relevant. Assuming that we are interested in an asset-only portfolio, what is the
holding period over which we want to assess the return? Are we holding the
bond until maturity, or are we planning to sell it along the way? In the former
case, we do not have any uncertainty about the cash flows, but in the latter one,
we face some uncertainty about the price at which we will sell the bond, as the
interest rates are stochastic. Uncertainty in future interest rates has an impact
even if we hold the bond until maturity. In fact, we will reinvest the cash flows
from coupons along the way, but at which interest rates? Thus, for a given time
horizon, the bond return is a random variable, and its characterization requires
a specification of a stochastic model of interest rates. The answer depends on
our assumptions and will not be the same for other market participants with
different expectations. Clearly, if we want to find a simple and manageable
answer, we must adopt some drastic simplification.

A simple, even though limited, answer is provided by yield-to-maturity,
or YTM for short. YTM is a single interest rate that, when used to define
discount factors in a bond pricing formula, matches the observed bond price
Pc(t, T ). YTM is a feature of a specific bond, hence we will use a simpli-
fied notation, whereby yn and y are the yields with discrete and continuous
compounding, respectively, without reference to time. For instance, if we use
semiannual compounding, which is a common practice, since most bonds pay
semiannual coupons, we define the semiannually compounded yield y2 as the
solution of the following equation:

Pc(t, T ) = F ·

 c
2

m∑
i=1

1(
1 +

y2

2

)2·(Ti−t)
+

1(
1 +

y2

2

)2·(Tm−t)

 . (3.29)

The idea can be extended to any compounding period in order to define yn. In
the case of continuous compounding, we have

Pc(t, T ) = F ·

[
c

2

m∑
i=1

e−y·(Ti−t) + e−y·(Tm−t)

]
. (3.30)

Note that we just associate one yield yn or y with the whole sequence of cash
flows. We may think of YTM as a sort of average between interest rates in the

14A full picture is given in Fig. 5.1.
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term structure. Indeed, it is the interest rate that would yield the observed bond
price in the case of a flat term structure. Computing YTM requires numerical
methods, as shown in the following example.

Example 3.10 The link between YTM and interest rates

Let us assume that the following term structure prevails on markets:

r1(0, 1) = 4%, r1(0, 2) = 4.5%, r1(0, 3) = 5%.

A bond maturing in three years, paying a 3% annual coupon, has fair
price

P3% =
3

1.04
+

3

1.0452
+

103

1.05
= 94.6071.

Note that the coupon rate is lower than all of the relevant rates, and
the bond sells at discount. To find YTM, with annual compounding,
we have to solve the nonlinear equation

3

1 + y1
+

3

(1 + y1)2
+

103

(1 + y1)3
= 94.6071,

which can be transformed into the polynomial equation

103x3 + 3x2 + 3x− 94.6071 = 0,

where x = 1/(1 + y1). This equation has a single real root, as well as
two complex conjugates that we ignore,

x = 0.9526 ⇒ y1 =
1− x
x

= 0.0498.

Note that the “average” is tilted toward the largest rate, correspond-
ing to the last cash flow, which includes the face value and is much
larger than those consisting of coupons only. A similar bond, with 9%
coupon, has fair price

P9% =
9

1.04
+

9

1.0452
+

109

1.05
= 111.0537.

This bond sells at premium, and its yield is 0.0495. This is a bit
smaller, as the first and second cash flows are relatively larger.

The difference in YTM may be quite significant. We omit the
details, but if we consider similar bonds, paying one annual coupon
with rates 3% and 9%, respectively, maturing in 20 years, and we
assume that the term structure consists of annually compounded rates,
increasing linearly over time from 2% to 5%, the two bond prices are

P3% = 79.12, P9% = 161.97,

with yields

y1,3% = 4.62%, y1,9% = 4.31%.



3.5 Elementary bond pricing 177

The careful reader might wonder whether there is any guarantee that, in
general, we find a single YTM, if any. Indeed, a general polynomial equation
of degree n may have up to n real roots, not necessarily positive (complex
conjugate roots are of no use to us). We discuss this matter later in Section
3.6.2, when dealing with the internal rate of return of a cash flow sequence. We
can anticipate that, in the case of a bond, it can be shown that there is exactly
one real and positive root, so that there is no ambiguity in calculating YTM.

Example 3.10 clearly shows that, unlike interest rates, we cannot associate
YTM with a specific maturity, as it depends on the peculiarities of each bond,
such as the coupon rate and, possibly, liquidity. Despite this observation, it is
instructive to see the impact that YTM may have on bond prices if we consider
it as a single, catch-all risk factor. We shall do so in Section 3.5.5. Furthermore,
while pricing a bond using YTM is a crude simplification with respect to a
full-fledged term structure, it may help intuition building by providing us with
simple bond price formulas.

Example 3.11 Pricing annuities

Annuities are assets that provide a stream of periodic payments over a
period of time. This may correspond to the buyer’s lifetime in the case
of life insurances and pension funds in the decumulation phase (when
the accumulated wealth is depleted in order to provide pension pay-
ments). Pricing an annuity under longevity risk requires tools from
actuarial mathematics. Furthermore, the long time span involved im-
plies considerable uncertainty about future interest rates. The picture
may be further complicated if the annuity is inflation-indexed.

Here, we consider a simple annuity providing fixed payments
over a given time horizon, disregarding interest rate risk. Such an
annuity is just a bond whereby no face value is redeemed, and it may
be priced given a term structure of interest rates. It is useful to find an
explicit formula, under the further simplification of a flat term struc-
ture, e.g., for a given annually compounded yield:

r1(t, Ti) = y1,

where Ti, i = 1, . . . ,m, is the set of time instants at which a payment
is made. Using y1 makes sense if we consider annual payments (in
practice, typical annuities involve monthly payments). The price of a
unit annuity, paying $1 at each relevant epoch, is

A =

m∑
i=1

1

(1 + y1)i
.

We may find a compact expression for this value, by relying on the
geometric series and using the same trick as in Example 3.3. If we
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consider α ∈ (0, 1),

m∑
i=1

αi =

+∞∑
i=1

αi −
+∞∑

i=m+1

αi = α ·

[
+∞∑
i=0

αi −
+∞∑
i=m

αi

]

= α ·
[

1

1− α
− αm

1− α

]
=
α(1− αm)

1− α
.

Plugging α = 1/(1 + y1), we find

A =

1

1 + y1
·
[
1− 1

(1 + y1)m

]
1− 1

1 + y1

=
1

y1
·
[
1− 1

(1 + y1)m

]
. (3.31)

It is important to see the connection between this formula and Eq.
(3.3). In that case, we have cash flows L at times t = 0, . . . , T − 1,
and we are evaluating the terminal wealth WT at time T . Here, we
have cash flows C = 1 at times t = 1, . . . , T , and we are evaluating
the annuity A at time t = 0. To see the equivalence, we can shift WT

backward in time by T + 1 time periods, to time t = 0. This requires
dividing Eq. (3.3) by (1 + y1)T+1:

WT

(1 + y1)T+1
=

L

(1 + y1)T+1
· 1 + y1

y1
·
[
(1 + y1)T − 1

]
=

L

y1
·
[
1− 1

(1 + y1)T

]
,

which is consistent with Eq. (3.31).

The formula for an annuity immediately yields a formula to price a bond as
a function of YTM. We just have to add the discounted cash flow corresponding
to the face value. If we consider a hypothetical bond maturing in T years and
paying a single coupon per year, at rate c, the bond price is

Pc(0, T ) =
cF

y1
·
[
1− 1

(1 + y1)T

]
+

F

(1 + y1)T
. (3.32)

Note that this formula applies only when the bond is issued or just after the
payment of a coupon. In the more realistic case of semiannual coupons, we find

Pc(0, T ) =
c/2 · F
y2/2

·
[
1− 1

(1 + y2/2)2T

]
+

F

(1 + y2/2)2T
.

Note that, in this case, the number of coupons, i.e., the number of time periods is
2T . We may also come up with a formula for a continuously compounded yield
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y, but since all of these variations do not contribute much to intuition building,
let us stick with the annually compounded yield y1 and assume that coupons are
paid annually, for the sake of simplicity.

A question that we should address is: Why is yield-to-maturity called that
way? To find the answer, imagine that we buy a bond when it is issued and keep
it until maturity, for exactly T years, reinvesting the coupons at the risk-free
rate. In practice, we do not really know the future rates at which coupons will
be reinvested, but let us assume that all of them are just given by y1. Then,
wealth at maturity T , just after collecting the last coupon plus the bond face
value, can be found by shifting cash flows forward in time:

WT =

T∑
t=1

cF · (1 + y1)T−t + F

= (1 + y1)T ·

[
T∑
t=1

cF

(1 + y1)t
+

F

(1 + y1)T

]
= (1 + y1)T · Pc(0, T ).

Thus, we see that y1 gives the holding period return, assuming that the bond
is kept until maturity, and that the term structure of interest rates is flat and
constant over time. Clearly, these assumptions do not match the real world, but
YTM may provide us with a rough-cut estimate of how much a bond yields,
which is good enough for a comparison.

Furthermore, YTM is very useful to build some fundamental intuition. To
see how, let us observe that Eq. (3.32) may be rewritten in two ways:

Pc(0, T ) =
cF

y1
+
F · (1− c/y1)

(1 + y1)T
, (3.33)

and
Pc(0, T )

F
=

c

y1
·
[
1− 1

(1 + y1)T

]
+

1

(1 + y1)T
. (3.34)

Note that the second expression shows that the bond price, relative to its par
value, is a weighted average of the ratio between coupon rate and yield, c/y1,
and 1.

Example 3.12 Pricing a perpetuity

By using Eq. (3.33) and taking the limit for T → +∞, it is easy to
find the price of a perpetuity, i.e., an annuity where T → +∞, paying
an annual amount C, which may be thought as a fraction c of a virtual
nominal F :

Pc(0,∞) =
C

y1
. (3.35)
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The notation suggests the interpretation of this security as a coupon-
bearing bond with infinite maturity. For instance, if y1 = 5% and
C = 10,000, we have

Pc(0,∞) =
10,000

0.05
= 2,000,000.

Note that 5% of this value is exactly the annual payment, i.e., what
is required to pay the annual coupon while keeping the capital intact,
assuming that it will be reinvested at a rate y1 = 0.05 forever. Given
the stochastic nature of interest rates, this will be hardly the case.

A real-life example of a perpetuity was the British consol, a kind of perpet-
ual bond. Equation (3.34) is extremely useful to investigate the relationships
between YTM, coupon rate c, and bond price.

Example 3.13 A key result

What happens if the value of YTM and the coupon rate c are the
same? By applying Eq. (3.33), we find

Pc(0, T ) =
cF

c
+
F · (1− c/c)

(1 + c)T
= F.

Thus, when c = y1, the bond trades at par.
By the same token if c > y1, by using Eq. (3.34), we see that

the bond price is an average between 1 and a number larger than 1.
Hence, Pc(0, T ) > F and the bond trades at premium. On the con-
trary, if c < y1, then Pc(0, T ) < F and the bond trades at discount.
We also notice that the longer the maturity, the smaller the weight of
1 in Eq. (3.34), and the larger/smaller the bond price as a function of
the coupon rate. A long-term bond with a large coupon rate is, in fact,
quite expensive.

Usually, when a bond is issued, the coupon rate is chosen in such a way that the
bond trades approximately at par. This means that the coupon rate reflects the
“general” level of interest rates, i.e., a sort of average provided by YTM.

3.5.5 INTEREST RATE RISK

Since a bond price is the sum of discounted cash flows, it is clear that there is
an inverse relationship between interest rates and bond prices. The impact of
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Table 3.5 The interaction of coupon rates and maturities when yield is increased.

y1 = 4% y1 = 5%

T (years) 3 10 30 3 10 30

c = 0% 88.90 67.56 30.83 86.38 61.39 23.14
c = 3% 97.22 91.89 82.71 94.55 84.56 69.26
c = 9% 113.88 140.55 186.46 110.89 130.89 161.49

% loss
T (years) 3 10 30

c = 0% −2.83 −9.13 −24.96
c = 3% −2.75 −7.98 −16.27
c = 9% −2.62 −6.88 −13.39

a change in the term structure depends on the exact kind of change, which is
not so trivial to analyze, as it may involve a vertical shift, a change in slope,
or a twist in curvature. Here, we analyze interest rate risk with reference to
a simplified setting, where we only consider an uncertain YTM with annual
compounding. In Chapter 6, we will see that this is essentially equivalent to
considering a parallel shift in the term structure, which is indeed a limited view.
However, a simplified analysis is a good starting point to build intuition and get
acquainted with a few essential concepts.

Let us consider the bond prices given in Table 3.5. Prices refer to bonds
differing in coupon rate and maturity: (a) the coupon rates are zero, 3% or
9%, and a single coupon is paid per year; (b) for each possible coupon rate, we
consider three bonds maturing in 3, 10, or 30 years. The resulting nine bonds are
priced for two different values of YTM, 4% and 5%, in order to assess how the
two bond features interact with changes in yield. We also give the percentage
loss associated with the increase in YTM.

The lower part of the table shows that loss may be considerable when YTM
increases by 100 basis points. The table also suggests that impact is:

More significant for long maturities
Less significant for large coupon rates

From a financial viewpoint, these observations may be explained by considering
that, for a zero-coupon bond, an increase in maturity is just bad news. There
is just one cash flow at maturity, and it is more heavily discounted when yield
is increased. However, an increase in YTM has a partially positive effect on a
coupon-bearing bond, if held up to maturity: Coupons can be reinvested at a
larger rate. Clearly, such good news are more relevant for a bond with a large
coupon rate.
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The intuition may be reinforced and made more precise by introducing an
important measure of interest rate risk: duration. Here we give a classical
definition of duration that, as we shall see in Chapter 6, is rather limited. For
the sake of simplicity, we will assume that one coupon is paid per year. Let us
consider the bond price as a function of the annually compounded yield y1,

P (y1) =

T∑
t=1

Ct
(1 + y1)t

.

Note that Ct denotes the generic cash flow at the end of year t. Let us take the
first-order derivative of this function:

dP

dy1
(y1) = −

T∑
t=1

tCt
(1 + y1)t+1

= − 1

1 + y1

T∑
t=1

tCt
(1 + y1)t

. (3.36)

This formula measures the first-order sensitivity of the bond price with respect
to y1, and it looks much like the bond price formula with two differences:

1. There is a leading coefficient multiplying the sum, whose negative sign
makes good sense, as bond price is decreased if yield is increased.15

2. The sum consists of terms in which each discounted cash flow is multi-
plied by its time of payment.

In real life, changes in yield may be relatively small, but not infinitesimal. Nev-
ertheless, a simple measure of sensitivity, allowing us to write useful approx-
imations, may come in handy. Let δy1 be a small change in the annual yield,
and let δP be the corresponding change in the bond price. Using Eq. (3.36), we
may write

δP

δy1
≈ − 1

1 + y1

T∑
t=1

tCt
(1 + y1)t

= − P

1 + y1
·

T∑
t=1

tCt
(1 + y1)t

P

= − P

1 + y1
·

T∑
t=1

tCt
(1 + y1)t

T∑
k=1

Ck
(1 + y1)k

= − P

1 + y1
·
T∑
t=1

wtt, (3.37)

15The fraction 1/(1 + y1) is a bit annoying, but it is the result of discrete compounding. If we
use continuous compounding, we take derivatives of a exponential functions, which are much
nicer.
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where we define weights

wt
.
=

Ct
(1 + y1)t

T∑
k=1

Ck
(1 + y1)k

.

It is easy to see that these weights indeed add up to 1, as they consist of dis-
counted cash flows divided by their total sum, which is just the bond price P .

Now we may rewrite Eq. (3.37) as follows:

δP

P
≈ − 1

1 + y1
·Dmac · δy1, (3.38)

where we define the Macauley duration, as

Dmac
.
=

T∑
t=1

tCt
(1 + y1)t

T∑
k=1

Ck
(1 + y1)k

=

T∑
t=1

wtt. (3.39)

The definition of Macauley duration involves a weighted sum of time instants,
where weights are related to discounted cash flows, and is dimensionally mea-
sured in years. It is called duration, since it provides us with a sort of maturity
taking cash flows into account. It is easy to see that the Macauley duration for
a zero is just its maturity, whereas duration is smaller than maturity for coupon-
bearing bonds.

To get rid of the leading fraction in Eq. (3.38), we may introduce the mod-
ified duration, defined as

Dmod
.
=

1

1 + y1
·Dmac, (3.40)

leading us to the following first-order approximation, linking a change in yield
to the percentage change in bond price:

δP

P
≈ −Dmod · δy1. (3.41)

Example 3.14 A numerical illustration of duration

Let us check the application of duration to the bonds that we con-
sidered in Table 3.5. The duration of each zero corresponds to its
maturity. So, using Eq. (3.41), the prediction of the price of the zero
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maturing in three years is, after the increase of yield,

P (3; 5%) ≈ P (3; 4%) · (1−Dmod · δy1)

= 88.90×
(

1− 1

1 + 0.04
× 3× 0.01

)
= 86.3356.

This is fairly close to the exact price, which is 86.38. We notice that
the duration-based prediction is somewhat pessimistic, as the actual
bond price after the increase in yield is larger. The same calculation
for the bond maturing in 30 years gives

P (3; 5%) ≈ 30.83×
(

1− 1

1 + 0.04
× 30× 0.01

)
= 21.9367.

In this case, the prediction is definitely pessimistic with respect to the
actual price, which is 23.14.

Table 3.6 also shows the Macauley duration of the six coupon-
bearing bonds of Table 3.5, featuring different maturities and coupon
rates. These values may be obtained by direct application of the def-
inition, which is somewhat inconvenient when 30 cash flows are in-
volved, or by an analytical formula that we shall prove later. Let us
check the accuracy for the 9% bonds maturing in 3 and 30 years:

P9%(3; 5%) ≈ 113.88×
(

1− 1

1 + 0.04
× 2.77× 0.01

)
= 110.8468

P9%(30; 5%) ≈ 186.46×
(

1− 1

1 + 0.04
× 15.50× 0.01

)
= 158.6703.

Again, by comparing the approximations with the exact prices in Ta-
ble 3.5, we see that the approximation is pessimistic, but pretty accu-
rate for a short maturity, a bit less for a long maturity. We will discuss
this matter further in Example 6.1.

Example 3.14 shows that the approximate price predicted by duration is
pessimistic, in the sense that it overestimates the drop in the bond price when
yield is increased. By the same token, when there is a drop in yield, the actual
bond price will be larger than what we predict using duration. This is a conse-
quence of the convexity of the price–yield relationship. In fact, if we assume a
continuously compounded yield y, the bond price is a sum of negative exponen-
tials, like Cte−yt, which are convex in t. The same applies to discount factors
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Table 3.6 Macauley duration for the bonds of Table 3.5.

T (years) 3 10 30

c = 0% 3 10 30
c = 3% 2.91 8.72 19.10
c = 9% 2.77 7.50 15.50

involving an annually compounded yield y1.16 A linear approximation always
underestimates a convex function (see Fig. 6.1). Needless to say, the practical
relevance of duration has nothing to do with the approximation per se, as we
may easily reprice the bond. The approximation, as we shall see, is relevant to
define hedging strategies against interest rate risk. A look at Table 3.6 seems
to suggest that duration is smaller for larger coupon rates. Furthermore, we
might also guess that duration is increased when time-to-maturity is increased.
Actually, the first guess is correct, but the second one is not. We investigate
qualitative properties of duration in Section 3.5.5.1.

Equations (3.39) and (3.40) illustrate the traditional definitions of duration,
which may be easily adapted to semiannual or continuously compounded yields,
y2 and y. The annoying distinction between Macauley and modified duration
disappears when using y, as exponential functions yield nicer derivatives than
rational functions, as we shall see later.

Duration is not only useful as a risk measurement tool, but also as a concept
leading us to risk management strategies for fixed-income portfolios. We shall
not elaborate too much on the traditional definition, though, since it is subject
to significant limitations:

We have defined duration with reference to YTM, which is equivalent to
considering a flat term structure. What about a more realistic term struc-
ture? We will see that what we are doing amounts to assuming that the
term structure is only subject to parallel shifts, but this does not account
for changes in slope or curvature, which may be observed in practice.
Duration is a first-oder sensitivity measure providing us with a first-order
approximation. Indeed, Example 3.14 shows that the approximation may
be not quite satisfactory. We may improve the approximation by intro-
ducing a second-order sensitivity measure, bond convexity.
If we define duration using cash flows, we are in trouble when these are
uncertain. A simple case is a floating-rate bond, discussed in Section
3.5.6, and the observation also applies to some derivatives such as vanilla
interest rate swaps. Luckily, there is an easy way to redefine duration in a
more general way.

16Convexity is further discussed in Section 15.1.
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FIGURE 3.4 Duration as a center of gravity of discounted cash flows.

We shall pursue these further developments in Chapter 6.

3.5.5.1 Qualitative properties of duration

To investigate the properties of duration, it may be useful to find an analyti-
cal expression.17 We do so for the Macauley duration in the case of annually
compounded yield. The following analytical formula for Macauley duration is
proved in Supplement S3.1:

Dmac = 1 +
1

y1
+

T (y1 − c)− (1 + y1)

c ·
[
(1 + y1)T − 1

]
+ y1

, (3.42)

where c is the coupon rate of the bond and T is time-to-maturity. It is important
to realize that this formula may be of limited practical use as it disregards the
term structure and assumes that time-to-maturity is an integer number of years
(or periods, if we do not consider annual yield, but rather a semiannual one). In
other words, it applies when the bond is issued or immediately after the payment
of a coupon. Nevertheless, it is useful for a qualitative investigation.

From Eq. (3.42), we immediately see that, in fact, the sensitivity of duration
with respect to the coupon rate is negative. The coupon rate c occurs with a neg-
ative sign in the numerator of the ratio, and a positive sign in the denominator.
Hence, an increase in c will decrease duration. This is actually intuitive, and we
may understand why by looking at Fig. 3.4. If we interpret duration as a center
of gravity of time instants, weighted by cash flows, increasing the coupon rate
c has a large effect on cash flows on the left, much less on the last cash flow on
the right, corresponding to maturity. Financially, if yield is increased, the loss
on the bond value is partially offset by the opportunity of reinvesting coupons
at a larger rate. The larger the coupon rate, the less interest rate risk we observe.

Now what about time-to-maturity? For a zero-coupon bond, duration is just
time-to-maturity; hence, increasing T also increases duration. Intuition might
suggest that the same applies to coupon-bearing bonds, but this is not necessar-

17The treatment in this section follows [2, Chapter 4].



3.5 Elementary bond pricing 187

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

2%
10%

FIGURE 3.5 Duration as a function of time-to-maturity (measured in years), for bonds
with coupon rates of 2% and 10%.

ily true. One starting observation is that when T goes to infinity, duration tends
to a limit which is independent of the coupon rate:

lim
T→+∞

Dmac = 1 +
1

y1
.

To see this, note that T occurs linearly in the numerator of the ratio in Eq. (3.42),
but exponentially in the denominator. Thus, the limit of the ratio is zero. As a
reality check, let us consider the price of a perpetuity, as given in Eq. (3.35):

Pc(0,∞) =
C

y1
⇒ dPc(0,∞)

dy1
= −C

y2
1

⇒ Dmod =
y1

C
· C
y2

1

=
1

y1

⇒ Dmac = (1 + y1) · 1

y1
= 1 +

1

y1
.

Duration will always tend to this limit as T increases, but convergence need not
be monotonic from below, as shown in Fig. 3.5. The plot illustrates convergence
to the limit (Dmac = 11) when y1 = 0.1. Two bonds are considered, one with
small coupon rate c = 0.02, and one with large coupon rate c = 0.1. We see
that when c is smaller than y1, we may have nonmonotonic convergence. To
get some intuition about this counterintuitive effect, we may have a look at Fig.
3.4 again. When time-to-maturity is increased from T to T + 1, we add a new
discounted cash flow (1 + c)F/(1 + y1)T+1, adding mass to the right end of the
cash flow sequence, but we reduce the mass at T , which is also located at the
right end, by F/(1 + y1)T . If c is small with respect to y1, the net effect may
well be a shift to the left of the center of gravity. Hence, a reduction of duration
may result.
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3.5.6 PRICING FLOATING RATE BONDS

Pricing a fixed-coupon bond looks like a rather simple affair, if we do not con-
sider default risk. We have a sequence of deterministic cash flows, and all we
need is a term structure of interest rates to discount them. However, what about
pricing a floater, i.e., a floating-rate bond? As a starting point, let us clarify how
a floating-rate bond works.18 Let us consider a bond, issued at time t = T0, pay-
ing semiannual coupons at times Ti, i = 1, . . . ,m, where Tm is maturity, when
the face value F is also redeemed. At time T0 the semiannually compounded
spot rate r2(T0, T0 + 0.5) ≡ r2(T0, T1), applying to the first semester, is ob-
served and used to define the first coupon rate. Thus, the first coupon payment
will be F · r2(T0, T0 + 0.5)/2. At time t = 0.5, the first coupon is paid and the
new rate r2(T0 + 0.5, T0 + 1) ≡ r2(T1, T2) is observed and used to set the next
coupon rate. More generally, at time Ti a coupon Ci is paid, given by the rate
observed six months before:

Ci = F · r2(Ti−1, Ti)/2,

where Ti = Ti−1 + 0.5.19 Thus, coupon dates are also reset dates, and we
always know the amount of the next coupon in advance, even though the whole
sequence is uncertain.

Let us denote by Pf (t, T ) the price at time t of the floater maturing at time
T . Pricing a floater seems like a complicated affair involving stochastic cash
flows, and the following questions arise:

Should we define a stochastic model describing the evolution of interest
rates over time?
Is a floater more or less risky than a fixed-coupon bond?

The answer to first question is, luckily, in the negative. Rather surprisingly,
pricing a floater is much easier than pricing a fixed-coupon bond. To see why,
let us consider the last cash flow at maturity T = Tm,

Cm + F = F ·
[
1 +

r2(Tm−1, Tm)

2

]
,

which consists of the face value of the bond and a last coupon, determined at
Tm−1 and paid six months later. The value of the bond at time Tm−1 results
from discounting this cash flow:

Pf (Tm−1, T ) = F · 1 + r2(Tm−1, Tm)/2

1 + r2(Tm−1, Tm)/2
= F. (3.43)

Thus, when the rate is reset for the last time at time Tm−1, the bond price is
exactly the face value F , since the same random rate is used to both define and

18See also the discussion in Section 3.5.3.
19For the sake of simplicity, we assume that semesters consist of the same number of days,
which is not really true.
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discount the cash flow. If we step back to time Tm−2, the bond price may be
found by considering the bond as a portfolio consisting of:

A zero-coupon bond with face value

Cm−2 = F · r2(Tm−2, Tm−1)/2,

corresponding to next (second-to-last) coupon.
An asset, the bond itself, after stripping the second-to-last coupon, whose
value at time Tm−1 will be F , no matter what, as we have seen in Eq.
(3.43).

Thus,

Pf (Tm−2, T ) = F · 1 + r2(Tm−2, Tm−1)/2

1 + r2(Tm−2, Tm−1)/2
= F.

Unfolding the recursion, we see that at each reset date, just after the previously
determined coupon has been paid, the bond price is exactly F . In particular, the
bond trades at par when it is issued. Thus, we see that the bond price is known
at reset dates, even though the future cash flows are not. This is a consequence
of no-arbitrage, and it also implies that a floating-rate bond is not affected by
interest rate risk, at least at reset dates.

In order to price the bond at a generic epoch t between two reset dates,
Ti−1 < t < Ti, we have just to discount the next coupon, fixed at the last reset
time Ti−1 and paid at time Ti, plus the bond value at the next reset time:

Pf (t, T ) = Z(t, Ti) · F ·
[
1 +

r2(Ti−1, Ti)

2

]
. (3.44)

Thus, between two reset dates, the bond price is related to a discount factor
Z(t, Ti) that changes with time, and there is some interest rate risk. However,
risk is essentially related to the price of a zero maturing in less than six months.

Now, what about the duration of a floating-rate bond? Clearly, the classical
definition of Eq. (3.39) cannot be applied as it requires knowledge of a sequence
of random cash flows. However, if we interpret the value in Eq. (3.44) as the
price of a zero with time-to-maturity Ti − t, we may suspect that duration for
such a bond is the time to the next coupon, rather than time-to-maturity. We
will see in Chapter 6 that this is indeed the case.

Example 3.15 The risk of a floating-rate bond

It is interesting to compare the risk of a fixed- and a floating-rate
bond. Let us consider a bond with face value F = $1000, paying
semiannual coupons, maturing at time Tm = 4.75 (four years and
nine months), and let us assume that the term structure is flat and
given by a semiannually compounded yield y2 = 4%. Given the
time-to-maturity, the next reset date is T1 = 0.25, i.e., three months
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from now, and ten coupons will be paid over the bond life. Then, the
coupon rate was reset three months ago, and let us assume that the
observed rate was 3%. Hence, the next coupon amounts to

$1000× 0.03

2
= $15.

Note that the relevant discount factor, using the semiannual yield over
0.25 years, is

Z(0, 0.25) =
1√

1 + 0.04/2
,

and so the price of the floater is

Pf (0, 4.75; 4%) =
1015√
1.02

= $1005.00.

If the term structure is shifted up to 5%, the new bond price is

Pf (0, 4.75; 5%) =
1015√
1.025

= $1002.55,

with a very limited loss:

1002.55− 1005.00

1005.00
= −0.24%.

It is easy to see that this loss would be the same for a bond maturing
in 100 years! The reader is invited to compare these values with the
corresponding ones for a fixed-coupon bond.

A comparison with Table 3.5 shows that, somewhat paradoxically, a floating-
rate bond featuring stochastic cash flows may be less risky than a fixed-coupon
bond, with deterministic cash flows. But is this really the case? The answer is
a bit more complicated and depends on the intended use of bonds. If we buy
a bond and plan to sell it shortly, there is no doubt that a floater is less risky.
However, if we plan to hold the bond until maturity and use coupons to finance
a stream of fixed liabilities, the picture may be different. Thus, the message is
that risk must always be analyzed within a context.

3.6 A digression: Elementary investment analysis

The elementary approach to pricing a coupon-bearing bond and the concept
of yield-to-maturity are related to a couple of fundamental tools in investment
analysis, namely, the net present value and the internal rate of return, respec-
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tively. Any textbook on corporate finance spends some pages discussing the
pros and cons of these approaches in the context of capital budgeting. Since
this is a book on financial markets, we will steer away from these discussions.
Nevertheless, seeing the connection between investment analysis and asset pric-
ing is quite useful.

3.6.1 NET PRESENT VALUE

Consider an investment project characterized by a stream of cash flows Ct at
epochs t = 0, 1, . . . , T . Cash flows may also be negative, corresponding to cash
outflows related to investing money in the project. If we consider building a
plant or designing a new product or service, it is quite likely that C0 < 0, as
this is the initial capital outlay but, in a complex project, there may be staged
investments along the planning horizon, before revenue (hopefully) turns some
cash flows into the positive.

If the cash flows were certain, analogy with bond pricing suggests that we
could evaluate the investment by calculating its net present value (NPV) as
follows:

NPV = C0 +
C1

1 + r1(0, 1)
+

C2[
1 + r1(0, 2)

]2 + · · ·+ CT[
1 + r1(0, T )

]T
=

T∑
t=0

Ct[
1 + r1(0, t)

]t ,
where we are using a term structure of risk-free rates with annual compounding.
When pricing a bond, C0 = −Pc(0, T ) < 0 corresponds to the cash outflow to
buy the bond at its current price. The next cash flows for t = 1, . . . , T − 1
correspond to coupon payments Ct = cF > 0, and the final cash flow at bond
maturity includes the face value, CT = cF + F > 0. If NPV > 0, then the
investment is worth pursuing; otherwise, it is better to use the required capital
in some other way.

However, such ventures are very rarely risk-free and there may be consid-
erable uncertainty about future cash flows, which are actually stochastic. One
approach to deal with this issue is to consider the expected value of the future
cash flows, and to account for uncertainty by discounting cash flows using a rate
that includes a risk premium. To avoid further difficulties, a single hurdle rate
R is used to discount all of the expected cash flows:

NPV =

T∑
t=0

E[Ct]

(1 +R)t
.

Clearly, the difficulty in applying the approach lies in the estimation of expected
cash flows and the choice of an appropriate hurdle rate. One idea to estimate
an appropriate risk premium is related to the capital asset pricing model, as we
shall see in Chapter 10.
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3.6.2 INTERNAL RATE OF RETURN

When a valuation model, like the NPV, requires uncertain inputs, such as the
hurdle rate R, a good idea is to check the impact of uncertainty on decisions
by sensitivity analysis. In particular, useful information is provided by finding
a limit value marking the difference between two different courses of action.
Since the sign of the NPV depends on R, we may find the critical rate R such
that the resulting NPV is zero. Such a rate is called internal rate of return, or
IRR for short. This is obtained by solving the nonlinear equation

NPV(R) =

T∑
t=0

E[Ct]

(1 +R)t
= 0.

This is actually a polynomial equation, since we may use substitution of vari-
ables,

z =
1

1 +R
,

and solve20
T∑
t=0

E[Ct]z
t = 0.

Then, given a root z, we find the corresponding IRR

R =
1− z
z

.

We immediately observe that YTM is just the IRR for a bond. When the IRR
exceeds a critical value, corresponding to an investment of comparable risk,
the investment that we are analyzing is worth pursuing. Otherwise, we will be
better off by considering an alternative investment.

Clearly, we are interested in roots leading to real and positive values of IRR,
but what if such roots are not unique? Indeed, we know from the fundamental
theorem of algebra that a polynomial of degree T has T roots, possibly com-
plex conjugates. It may well be the case that there are multiple IRRs, typically
when the sign of cash flows alternates, and this is why many theorists in corpo-
rate finance claim the definite superiority of NPV over IRR (some practitioners
disagree). Luckily, the situation is much easier when dealing with YTM of a
bond. In such a case, there is one negative leading cash flow C0 < 0, followed
by a stream of positive cash flows, and it can be shown that there is a unique
IRR > 0.

20Any numerical computing environment, like MATLAB, provides us with tools to solve poly-
nomial equations. We should not use generic procedures for nonlinear equations, as these are
meant to find one root of the equation near an initial point provided by the user, whereas more
specific procedures for polynomial equations find all of them.
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3.6.3 REAL OPTIONS

As we have mentioned, in the corporate finance literature there is some con-
troversy surrounding the use of NPV and IRR and their relative advantages and
disadvantages. The situation is further complicated by the fact that, in a real-life
capital budgeting problem, we should not consider single investments, but sets
of competing ones, possibly under a budget constraint. The uncertainty in their
cash flows may also be affected by correlations.

However, both approaches suffer from a quite important limitation. They
consider cash flows as exogenously given, whereas in real life they depend on
our decisions. To see the point, imagine a project consisting of a set of inter-
related activities. It may be possible to execute them in some sequence over
time, and condition our decisions on the observation of relevant risk factors.
If a project is turning into a disaster, a wise course of action could be to just
cut our losses and abandon it.21 We may also scale an investment up or down,
depending on the unfolding of uncertainty over time. In other cases, it may be
worth delaying the project, in order to gather more information and reduce the
level of uncertainty.

Traditionally, these planning problems under uncertainty have been ana-
lyzed using decision trees.22 But after the considerable success of quantitative
methods for financial option pricing, the name real options has been coined,
in order to reflect their link with the real economy. There are some standard
real options that are used to analyze flexible investment strategies, like delay
options, abandonment options, growth options, etc. From a methodological
viewpoint, there is an interesting difference with respect to the more traditional
valuation approach, where we discount expected cash flows using a hurdle rate
that reflects a risk premium. As we shall see, when dealing with option pricing,
the approach is to use the risk-free rate for discounting, but to adopt a different
probability measure in order to compute expectations.

3.7 Spot vs. forward interest rates

In Section 1.2.6.1, we have introduced forward contracts, which allow us to buy
or sell an underlying asset in the future at a fixed delivery price, rather than
facing uncertainty of future spot prices. A similar concept may be introduced
for interest rates, even though they are not tradable assets. The current term
structure r(0, ·) at time t = 0 consists of an array of spot interest rates, which
apply to time periods starting immediately. In this section, we show how to find

21A well-known behavioral bias is the sunk-cost syndrome: We tend to insist on an unfortunate
endeavor, since we have already paid some cost that we cannot recover (irreversible investment).
However, from a rational viewpoint, this should be regarded as a sunk cost that should not
influence future decisions. Most of us experiment this syndrome, when we insist on watching a
horrible movie, because we have paid the ticket, rather than just walk away.
22See, e.g., [1, Chapter 13].
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rates that apply to a time period starting somewhere in the future. Such rates are
called forward rates. In order to understand the nature and the role of forward
rates, let us consider the following hypothetical situation:

We are at time t = 0, and we will receive a payment in six months, at
time t = 0.5.
We will need that money only in one year, at time t = 1. Hence, we
would like to invest it for the six-month period (0.5, 1).
The problem is that we know the spot rates r(0, 0.5) and r(0, 1), but there
is some uncertainty about the future spot rate23 r(0.5, 1).

In general, uncertainty in the future spot prices of commodities, indexes, and
other assets may be hedged away by resorting to forward or futures contracts.
By the same token, we can use interest rate derivatives to manage interest rate
risk.

It is easy to see that, if we assume that all rates are free from default risk,
there must be a well-defined forward interest rate for time intervals in the future,
in order to rule out arbitrage opportunities. Let us denote by f(t, T1, T2) the
continuously compounded forward rate observed at time t for a future time
interval (T1, T2), where t ≤ T1 ≤ T2. We already know that, when the maturity
of a forward contract is approached, there is a convergence between spot and
forward prices. By the same token, when T1 = t, we must have

r(T1, T2) = f(T1, T1, T2).

Forward rates are indeed quoted and offered in real-life markets, in the form of
forward rate agreements (FRAs), which we shall discuss in Chapter 4. For now,
let us just discuss how to relate spot and forward rates on the basis of financial
theory.

In the above hypothetical situation, we can show that the knowledge of spot
rates r(0, 0.5) and r(0, 1) implies knowledge of the forward rate f(0, 0.5, 1). To
see how this results from application of the no-arbitrage principle, let us con-
sider the following two strategies to invest money for one year, on the interval
(0, 1):

1. The straightforward possibility is to invest an arbitrary sum L at the spot
rate r(0, 1). At time t = 1, our wealth will be

L · er(0,1)×1.

2. Alternatively, we might invest L for the initial six months at the spot
rate r(0, 0.5), and then on the next semester (0.5, 1) at the forward rate
f(0, 0.5, 1). Wealth after one year will be

L · er(0,0.5)×0.5 · ef(0,0.5,1)×0.5.

23The future spot rate should not be confused with the futures rate, which underlies interest rate
futures contracts. Futures contracts on interest rates will be discussed later, in Section 4.3.
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FIGURE 3.6 Comparing two investment paths.

Since both strategies start with the same money L and are riskless, wealth in
one year must be the same:

L · er(0,1)×1 = L · er(0,0.5)×0.5 · ef(0,0.5,1)×0.5,

which implies

r(0, 1) =
r(0, 0.5) + f(0, 0.5, 1)

2
(3.45)

and
f(0, 0.5, 1) =

r(0, 1)− 0.5 · r(0, 0.5)

0.5
. (3.46)

It is useful to visualize the two strategies as paths over time, as shown in Fig.
3.6. If we multiply the capital growth along any path, we implicitly define a
path rate. If the capital growth were larger along one of the two paths, it would
be possible (under the usual somewhat idealized market conditions) to create an
arbitrage strategy by borrowing money at the smaller path rate and immediately
investing it at the larger path rate.

Equation (3.45) seems to suggest that the spot rate for the longer maturity
is related to an arithmetic average of the spot rate for the shorter maturity and
the forward rate. Indeed, we may generalize it as follows, if we consider time
intervals of length τ1 and τ2 corresponding to maturities T1 = τ1 and T2 =
τ1 + τ2, respectively. In this case, no-arbitrage requires

er(0,T2)×T2 = er(0,T1)×T1 · ef(0,T1,T2)×(T2−T1),

which implies

r(0, T2) =
r(0, T1) · T1 + f(0, T1, T2) · (T2 − T1)

T2

=
r(0, τ1) · τ1 + f(0, τ1, τ1 + τ2) · τ2

τ1 + τ2
,

and

f(0, T1, T2) =
r(0, T2) · T2 − r(0, τ1) · T1

T2 − T1
.
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The equivalence of returns over time paths may be generalized to arbitrary
pairs of paths over time, involving arbitrary time intervals, along with their
forward rates. If we consider time instants T0, T1, . . . , Tn, where T0 = 0, corre-
sponding to time intervals of length τi = Ti−Ti−1, i = 1, . . . , n, by no-arbitrage
we find

r(0, Tn) =

n∑
i=1

τi · f(0, τi−1, τi)

n∑
i=1

τi

, (3.47)

where, in order to streamline the expression, we use the identity

r(0, T1) ≡ f(0, 0, T1)

for the first time interval. Indeed, if we use continuous compounding, spot rates
may be considered as weighted averages of forward rates. Clearly, if we have
the set of spot rates r(0, Ti), we may find the set of forward rates f(0, Ti, Tj),
Ti ≤ Tj , and vice versa.

Example 3.16 Spot and forward curves

Assume that we are given a set of forward rates for annual invest-
ments:

f(0, 0, 1) = 2.0%, f(0, 1, 2) = 2.2%,

f(0, 2, 3) = 2.4%, f(0, 3, 4) = 2.3%.

Using Eq. (3.47) we may directly find the corresponding spot rates:

r(0, 1) = 2.0%,

r(0, 2) =
2.0% + 2.2%

2
= 2.1%,

r(0, 3) =
2.0% + 2.2% + 2.4%

3
= 2.2%,

r(0, 4) =
2.0% + 2.2% + 2.4% + 2.3%

4
= 2.225%.

It is interesting to notice that spot rates are increasing, even though the
forward rates are not. We will discuss this matter further in Section
3.7.4.

Going the other way around requires a little more work, as it
involves a triangular system of linear equations, much in the same
vein as the bootstrapping procedure of Example 3.9.
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The example suggests that the information provided by the spot rate curve
may also be captured by a forward rate curve.

3.7.1 THE FORWARD AND THE SPOT RATE CURVES

Just like we define the spot rate curve r(t, T ) at time t, as a function of T , we
may define a forward curve f(t, T, T + ∆) at time t, for a fixed ∆, as a function
of T . In Section 3.4, we have observed that the term structure of (spot) interest
rates is more often than not increasing, but it may take different shapes. It is
interesting to investigate the relationships between the spot rate and the forward
rate curves. We know that no-arbitrage enforces the condition

r(t, T ) · T + f(t, T, T + ∆) ·∆ = r(t, T + ∆) · (T + ∆),

which implies

f(t, T, T + ∆) =
r(t, T + ∆) · (T + ∆)− r(t, T ) · T

∆

=
r(t, T + ∆) · (T + ∆)− r(t, T ) · T + r(t, T ) ·∆− r(t, T ) ·∆

∆

= r(t, T ) + (T + ∆) · r(t, T + ∆)− r(t, T )

∆
. (3.48)

Equation (3.48) shows that the forward rate can be expressed as a spot rate plus
a term involving an increment ratio. We observe that, for a given epoch T and
time increment ∆, if the spot curve is increasing, the forward curve is above
the spot curve. If the spot curve is decreasing, then the forward curve is below
the spot curve. If we take the limit of the increment ratio for ∆ → 0, we find
an expression involving the partial derivative of the spot rate with respect to
maturity:

lim
∆→0

f(t, T, T + ∆) = r(t, T ) + T · ∂r(t, T )

∂T
. (3.49)

This expression involves the instantaneous forward rate, i.e., a rate for a very
small time interval. This concept is related to a short rate, which we will explore
in detail in the context of continuous-time stochastic models for interest rates.
Here, we observe that when the partial derivative is zero, i.e., when the spot rate
has a maximum or a minimum, forward and spot rates take the same value. This
is illustrated in Fig. 3.7 for the case of a maximum in a humped term structure.

It is worth noting that, in the context of dynamic models of interest rates
under uncertainty, building a realistic and tractable model of a set of spot rates is
not quite trivial. Some modeling approaches take an indirect route and represent
forward rates directly, from which spot rates may be obtained.

3.7.2 DISCRETELY COMPOUNDED FORWARD RATES

We have used continuously compounded forward rates but, by the same token,
we may define discretely compounded forward rates fn(t, T1, T2). Actually,
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FIGURE 3.7 Comparing spot and forward curves.

discretely compounded rates are used in the definition of interest rate deriva-
tives like, e.g., forward rate agreements. However, they are much less conve-
nient to work with, since all of the calculations become more intricate. As an
illustration, let us consider two consecutive time spans of i and j years, respec-
tively, and rates with annual compounding, denoted by r1 and f1. Then, the
no-arbitrage condition becomes[

1 + r1(0, N)
]i+j

=
[
1 + r1(0, i)

]i[
1 + f1(0, i, i+ j)

]j
,

whereN = i+j. If we consider a collection ofN annual forward rates f1(0, i−
1, i), i = 1, . . . , N , we find[
1 + r1(0, N)

]N
=
[
1 + f1(0, 0, 1)

]
·
[
1 + f1(0, 1, 2)

]
· · ·
[
1 + f1(0, N −1, N)

]
,

where f1(0, 0, 1) ≡ r1(0, 1). This implies

r1(0, N) =

[
N∏
i=1

(
1 + f1(0, i− 1, i)

)]1/N

− 1.

We notice that the annually compounded spot rate for N years is related to a
geometric average of forward rates, rather than being directly given by an arith-
metic average as in the continuously compounded case. By using no-arbitrage,
we may find any spot rate given forward rates, and any forward rate given spot
rates. However, the calculations get a bit messy, especially if we consider semi-
annual or shorter compounding. In this book, we will mostly use continuous
compounding for the sake of simplicity, unless we have to stick to market con-
ventions.

3.7.3 FORWARD DISCOUNT FACTORS

We emphasize once again that compounding issues arise when we want to quote
annualized rates in a convenient way, but we are just applying different units to
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measure the same thing. What actually matters is the discount factor, which
may be written in different ways as a function of spot rates:

Z(t, T ) = e−r(t,T )·(T−t) =
1

[1 + r1(t, T )]
T−t =

1

[1 + r2(t, T )/2]
2·(T−t) .

By the same token, we may find useful a forward discount factor, denoted by
F (t, T1, T2). No-arbitrage implies an interesting relationship among forward
and spot discount factors:

F (t, T1, T2) =
Z(t, T2)

Z(t, T1)
. (3.50)

As a quick reality check, notice that the forward discount factor must be less
than 1, and in fact, under ordinary economic conditions, we have Z(t, T2) <
Z(t, T1), for T1 < T2. Equation (3.50) may look more familiar when rewritten
in terms of rates:

Z(t, T2) = e−r(t,T2)·(T2−t) = e−r(t,T1)·(T1−t)−f(t,T1,T2)·(T2−T1)

= Z(t, T1) · F (t, T1, T2).

3.7.4 THE EXPECTATION HYPOTHESIS

In this section, we investigate in slight more detail the expectation hypothesis as
a theory explaining the term structure of spot rates. We analyze this hypothesis,
disregarding alternatives, because it has an interesting connection with forward
rates. Let us consider continuously compounded rates and a time period con-
sisting of two consecutive years. We know that the spot rate for a time interval
of two years is an average of spot and forward rates along a time path:

r(0, 2) =
r(0, 1) + f(0, 1, 2)

2
. (3.51)

Now, the pure expectation hypothesis relates the spot rate over two years to the
expectation of the spot rate for the second year, i.e.,

r(0, 2)
?
=
r(0, 1) + E[r(1, 2)]

2
, (3.52)

where the question mark emphasizes that this is just a hypothesis. A comparison
between Eqs. (3.51) and (3.52) would suggest that the forward rate for a time
interval is an expectation of the future spot rate on the same time interval, in
this case:

f(0, 1, 2)
?
= E[r(1, 2)]. (3.53)

This would suggest that forward rates should be predictors of future spot rates,24

but is this consistent with what we know about forward rates?

24A similar question may be asked when dealing with forward contracts on stock shares or
foreign currencies. Evidence shows that, in general, forward prices are not really good predictors
of spot prices.
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If the structure is increasing, i.e., r(0, 2) > r(0, 1), Eq. (3.48) implies that
the forward rate f(0, 1, 2) is larger than the spot rate r(0, 1), but then Eq. (3.53),
in turn, would imply

r(0, 1) < E[r(1, 2)],

i.e., an increase in the future one-year spot rate is expected next year. However,
we have observed that the term structure is usually increasing, and how can it be
the case that we expect an increase in spot rates most of the time? This does not
sound quite reasonable. Furthermore, Example 3.16 shows that we may have
increasing spot rates, even when forward rates are not increasing.

Thus, the pure expectation hypothesis expressed by the equality (3.53) does
not seem quite plausible, and it must rather be the case that there is a gap be-
tween the forward rate and the expected spot rate,

f(0, 1, 2) > E[r(1, 2)].

Usually, an inequality like this may be explained in terms of a risk premium.
The liquidity preference theory assumes that a risk premium is required in
order to give up liquidity. By introducing a risk premium π(0, 1, 2), we may
write

f(0, 1, 2) = E[r(1, 2)] + π(0, 1, 2).

If there is a positive risk premium, an increasing term structure may result, even
though there is no expectation of an increase in the spot rates.

Example 3.17 The effect of a liquidity premium

Let us consider an array of continuously compounded spot interest
rates for time periods of one year:

r(0, 1), r(1, 2), r(2, 3), r(3, 4), . . .

Say that no increase is expected and

r(0, 1) = 4% = E[r(1, 2)] = E[r(2, 3)] = E[r(3, 4)] = · · ·

If the risk premium is

π(0, k, k + 1) = 1%, k = 1, 2, 3, . . . ,

the one-year forward rates are

f(0, 0, 1) ≡ r(0, 1) = 4%,

f(0, k, k + 1) = E[r(k, k + 1)] + π(0, k, k + 1)

= 5%, k = 1, 2, 3, . . .
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Then, the term structure is an average of forward rates,

r(0, τ) =
1

τ

τ−1∑
k=0

f(0, k, k + 1), τ = 1, 2, 3, . . . ,

which in this specific case yields

r(0, 1) = 4%,

r(0, 2) =
4% + 5%

2
= 4.5%,

r(0, 3) =
4% + 5% + 5%

3
= 4.67%,

r(0, 4) =
4% + 5% + 5% + 5%

4
= 4.75%.

Thus, we observe an increasing term structure, even though there is
no expected increase in the spot rates.

It may even happen that an increasing term structure results from
decreasing expected spot rates, if the liquidity premium is increasing.
For instance, let us consider

r(0, 1) = 4%, E[r(1, 2)] = 3.75%, E[r(2, 3)] = 3.5%,

and

π(0, 1, 2) = 0.5%, π(0, 2, 3) = 1.0%.

Then, in this case, we find

f(0, 0, 1) = 4%, f(0, 1, 2) = 4.25%, f(0, 2, 3) = 4.5%,

and

r(0, 1) = 4%,

r(0, 2) =
4% + 4.25%

2
= 4.125%,

r(0, 3) =
4% + 4.25% + 4.5%

3
= 4.25%.

The resulting term structure is increasing, even though rates are ex-
pected to drop.

Example 3.17 shows that an increasing term structure need not imply that
spot rates are expected to increase. However, if the term structure is decreas-
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ing, we may say that a decrease in the spot rates is expected, unless we assume
negative liquidity premia. This may occur when an economic slowdown is an-
ticipated.

3.7.5 A WORD OF CAUTION: MODEL RISK AND HIDDEN
ASSUMPTIONS

The relationship between spot and forward rates looks rather obvious. The
no-arbitrage argument sounds compelling, and no sophisticated mathematical
model is actually used. In particular, there seems to be no place for any stochas-
tic modeling issue. However, hidden assumptions may creep in without we
realizing it. We have assumed that interest rates are risk-free, but when we step
into the real world, things may be different, and we must refer to real-life quoted
rates. As we shall see in later chapters, a widely used interest rate is LIBOR,
which is an average of interbank rates. To be precise, it is a trimmed average
of rates applying to interbank unsecured loans. Since a bank may default, this
rate cannot be really considered risk-free, but under normal conditions the de-
fault risk was considered negligible. Indeed, only trustworthy banks may be
included in the panel defining a LIBOR rate, for the very reason that it refers
to unsecured loans. Something changed when the credit crisis erupted in 2007
and led, among other things, to the Lehman Brothers collapse in 2008. Due
to the ensuing credit crunch, the LIBOR rates skyrocketed abruptly. While a
risk-free rate essentially captures the time value of money and does not depend
on the counterparties involved in a transaction, when credit risk is involved, the
specific counterparty matters. Under an extreme stress, even the panel of banks
involved in the definition of LIBOR rates may change.

Real-life forward rates play a role in forward rate agreements, as well as in
interest rate swaps, which we will introduce in Chapter 4. The relevant feature
of these derivative contracts is that the payoff is related to the difference between
a floating and a fixed rate, applied to a notional amount. The notional amount
is not really exchanged and, since the actual payoff is related to a difference of
cash flows, default risk is less relevant than in other transactions. In a risk-free
setting, a forward rate agreement may be replicated by transactions in spot rates,
just like the forward rate may be related with spot rates. However, under market
stress, an increasing gap was observed between the forward rates implied by
spot LIBOR rates and the actual market rates of forward rate agreements, so
that the standard equations that are proposed in classical textbook treatments,
the present one included, broke down.

It is important to note that, before 2007, the standard replication argu-
ment had been consistent with market data for years, but the situation changed
abruptly, creating a difficult puzzle to solve. The message is that we may rely
on implicit model assumptions, even when we are not using sophisticated mod-
eling frameworks, and this may result in model risk. More details can be found,
e.g., in [8] or [9, Chapter 4].
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S3.1 Proof of Equation (3.42)

Let us consider the price of a coupon-bearing bond, paying one coupon per year
at rate c, when time-to-maturity is an integer number T of years: We know that,
after a coupon payment, when there are T years to maturity, the bond price is

Pc(y1) =
cF

y1

[
1− 1

(1 + y1)T

]
+

1

(1 + y1)T
.

The face value F is irrelevant if we want to find Macauley duration,

Dmac = − 1 + y1

Pc(y1)
· dPc(y1)

dy1
.

Hence, we may set F = 1 and rewrite the bond price as

Pc(y1) =
1

y1

[
c ·
(

1− (1 + y1)−T
)

+ y1(1 + y1)−T
]
.

The form of the duration definition suggests the opportunity of taking the deriva-
tive of the logarithm of the bond price. In fact, using the chain rule for compos-
ite functions, we have

d logPc(y1)

dy1
=

1

Pc(y1)
· dPc(y1)

dy1
.

Now we have

logPc(y1) = − log y1 + log
{
c ·
[
1− (1 + y1)−T

]
+ y1(1 + y1)−T

}
,

and by taking its derivative we find

d logPc(y1)

dy1
= − 1

y1
+
cT · (1 + y1)−T−1 + (1 + y1)−T − Ty1(1 + y1)−T−1

c ·
[
1− (1 + y1)−T

]
+ y1(1 + y1)−T

= − 1

y1
+
cT · (1 + y1)−1 + 1− Ty1(1 + y1)−1

c ·
[
(1 + y1)T − 1

]
+ y1

Now, to find Macauley duration, we multiply by −(1 + y1) and simplify:

Dmac =
1 + y1

y1
− cT + (1 + y1)− Ty1

c ·
[
(1 + y1)T − 1

]
+ y1

= 1 +
1

y1
+

T (y1 − c)− (1 + y1)

c ·
[
(1 + y1)T − 1

]
+ y1

,

which proves Eq. (3.42).
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Problems

3.1 Assume that the prices of zero-coupon bonds, with face value 1000, ma-
turing in 1, 2, 3, and 4 years are

947.87, 885.81, 815.15, 757.22,

respectively.

Find the term structure of interest rates.
Find the one-year forward rates.
Let us consider the zero maturing in two years and assume that, on a very
short time interval, the change in the corresponding rate is modeled by
a normal random variable with expected value 0 and standard deviation
0.01. Find the 95% V@R, if you have invested 100,000 in that bond.
Hint: You may take advantage of a first-order approximation based on
duration, and then compare the result against the exact one.

3.2 Consider a riskless bond paying one coupon per year with coupon rate
5%, maturing in three years, and with face value $1000. The forward rates with
continuous compounding are:

f(0, 0, 1) = 3.7%, f(0, 1, 2) = 4.5%, f(0, 2, 3) = 5.1%.

Find the bond price.

3.3 A bond with face value 100 matures in two years and has just paid a
coupon. The bond pays one coupon per year and the coupon rate is 6%. If the
bond price is 102, what is its yield-to-maturity?

3.4 A corporate bond (subject to default risk) matures in three years, pays
one coupon per year, at rate 9% of a face value 1000, and trades at 960.
The term structure for risk-free rates is flat at 7% (annual compounding). A
bank offers an insurance against default, for a price of 200. This insurance
covers both future coupons and the repayment of whole face value (for the sake
of simplicity, we do not consider partial default). Should we accept the offer?

3.5 A bond portfolio consists of two bonds: A zero-coupon bond maturing in
three years and a coupon bond with a single (annual) coupon of 4%, maturing
in two years. Both bonds have a face value of 1000, and we hold 10 bonds of
the first kind and 20 of the second one. Interest rates are subject to uncertainty,
and we consider the following three term structure scenarios:

Scenario Probability One year Two years Three years
ω1 0.2 3.1% 3.8% 4.3%
ω2 0.5 3.2% 3.3% 3.5%
ω3 0.3 3.0% 2.9% 2.8%

The three scenarios consist of annually compounded spot rates for maturities of
1, 2, and 3 years (note that, in general, making sure that scenarios are realistic
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and arbitrage-free is not trivial). We neglect the passage of time, i.e., we assume
that these scenarios apply to the immediate future and are based on an instan-
taneous change in the term structure. Find the expected value of the portfolio
wealth after the realization of the random scenario.

3.6 We hold a fixed-income portfolio including two bonds: A zero maturing
in three years, and a coupon-bearing bond paying one coupon per year with
coupon rate 4%, maturing in two years. The face value is 1000 for both bonds,
and we have invested 53,000 and 93,000 in the two bonds, respectively (let
us assume infinitely divisible assets, i.e., we may buy fractions of a bond). We
are given the following risk-free forward rates, with annual compounding:

f1(0, 0, 1) = 3%, f1(0, 1, 2) = 4%, f1(0, 2, 3) = 5%.

The price of the two bonds is also related to sovereign risk, i.e., all of the interest
rates used in pricing are incremented by a spread that is currently 2.3%. This
rate reflects default risk on sovereign debt. Let us assume that the spread is
subject to a random shock on the very short term, which is uniformly distributed
between −1% and +2%. Find V@R at 99% confidence level on the short term
(in other words, we do not consider the effect of time on the bond prices).

3.7 How would you price a floater with a spread δ on observed interest rates?

3.8 How would you price a reverse floater, neglecting the possibility of nega-
tive rates?

Further reading
We have not covered some institutional issues in bond trading, which are
dealt with in [13].
For a treatment of elementary interest rate and bond mathematics, see [3]
or [11].
A more extensive coverage of interest rates and related issues can be
found in [4], [7], [12], and [14].
A more detailed investigation on the term structure of interest rates is
described in [2, Chapter 9].
A specific book on interest rate risk management is [5].
Dynamic stochastic models for interest rate risk management are covered
in [6] and [10].
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Chapter Four

Forward Rate Agreements,
Interest Rate Futures, and
Vanilla Swaps

In this chapter, we consider a few simple interest rate derivatives, which are the
natural counterparts of the forward and futures contracts introduced in Section
1.2.6, when the underlying variable is an interest rate. We will also appreciate
a relationship with forward interest rates, introduced in Section 3.7.

In Chapter 3, we have repeatedly used the concept of risk-free rate and
have shown how risk-free rates can be estimated from bond prices. However,
if we want to trade derivatives whose underlying variable is a risk-free rate, we
need a very precise reference rate, on which financial institutions may formally
and legally agree, not just an estimate. In Section 4.1, we introduce two such
rates, the LIBOR and EURIBOR rates. These are essential rates, as they are
the underlying variables of several derivatives, but they cannot be considered
risk-free, as the painful experience during the 2008 credit crunch has shown.

Then, we move on to consider three simple families of interest rate deriva-
tives:

1. Forward rate agreements, in Section 4.2
2. Eurodollar futures, in Section 4.3
3. Vanilla interest rate swaps, in Section 4.4

A stylized presentation of simple forward rate agreements and vanilla swaps
may rely only on no-arbitrage arguments, without the need for dynamic stochas-
tic models, which are necessary to analyze options. We just use concepts like
bond pricing and forward rates, which have been introduced in Chapter 3. The
resulting pricing models are quite useful, but we have to keep in mind that we
are implicitly assuming that everything is risk-free.1

1The assumption that there are no issues with credit and liquidity risk is important and must be
made explicit to grasp the limitations of the reasoning lines that we shall pursue. Recent trends
in derivative valuation pay due attention to the cost of funding a transaction, which are affected
by credit issues. See, e.g., [5, Chapter 4].

207
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The contracts that we describe are quite simple, but extensively traded on
both regulated financial markets and OTC. Interest rate swaps are actually OTC
derivatives, even though swap rates are readily available, and according to statis-
tics provided by the Bank for International Settlements, the notional amount of
outstanding contracts in December 2014 was a staggering $381 trillion. As we
shall see, the notional amount of swaps grossly overstates the actual market
value, but it gives a clue about the relevance of this kind of market. We should
also mention that, in real life, there are plenty of institutional details that we will
neglect in the mathematical presentation here; some of these details are covered
in Chapter 5. The use of simple interest rate derivatives for risk management is
discussed in Chapter 6.

4.1 LIBOR and EURIBOR rates

The seemingly intuitive concept of a“risk-free” rate is actually an elusive one.2

The risk-free rate is not really constant in time, and when we try to squeeze risk-
free rates out of bond prices or other securities, we may face difficulties due to
liquidity and credit risk. Hence, when derivatives are written on an interest rate,
which is supposed to be risk-free, it is important to specify what rate is used
exactly and who is in charge of quoting it.

A widely used set of interest rates is defined by considering interbank of-
fered rates:

LIBOR (London interbank offered rate) rates result from a trimmed aver-
age of a set of rates offered by banks to other banks operating in London,
in need of liquidity.
EURIBOR (Euro interbank offered rate) rates are defined similarly, by
averaging rates offered by banks in the eurozone.

The LIBOR is quoted for a set of currencies, and available maturities are in the
range up to one year.

Rates are related to unsecured loans, i.e., not backed by any collateral.
However, they were supposed to be almost risk-free, since they refer to rel-
atively short-term loans among solid institutions. Actually, during the credit
crunch crisis ensuing after the subprime mortgage crisis, those rates increased
considerably, because of the lack of trust among banks. The price was paid,
among others, by homeowners whose floating mortgage rates were related to
LIBOR or EURIBOR plus a spread. We remark that the plain textbook treat-
ment that we offer here is traditional and assumes that no credit or liquidity
issue affects rates, but in stressed conditions this is not quite true. We should
also mention the possibility that rates are manipulated by bank cartels. That this
is not a remote possibility is shown by the fines that have been paid by banks
found guilty of such manipulations. Alternative rates have been proposed to

2See Section 3.5.3.
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overcome issues with LIBOR/EURIBOR, but the message does not change: In
order to trade interest rate derivatives, we need a well-defined and official rate.

4.2 Forward rate agreements

A forward rate agreement, or FRA for short, is an OTC agreement between
two counterparties, which is stipulated at time t = 0 as follows:

The two parties agree on a notional amount of money N and a time pe-
riod (T1, T2) in the future. Let ∆ = T2 − T1 be the length of the time
interval (measured in years, also called tenor) and let n = 1/∆ be the
corresponding compounding period. Usually, ∆ is a fraction of a year,
like a quarter or a semester, corresponding to n = 4 and n = 2, respec-
tively.
One party will pay a fixed interest rate on the notional, for the time period
(T1, T2). This rate is agreed at t = 0 and we will denote it by Kn, to
reflect the compounding frequency. Hence, the party paying fixed should
pay

N ·∆ ·Kn. (4.1)

The other party will pay a floating interest rate on the notional, for the
time period (T1, T2). This rate is floating in the sense that it is unknown
at t = 0 and will be set at T1 by observing the future spot rate rn(T1, T2).
Thus, the floating payer should pay

N ·∆ · rn(T1, T2). (4.2)

Note that we are using discretely compounded rates to reflect market practice,
even though continuously compounded rates may be more convenient mathe-
matically. We should also note that we are disregarding an important real-life
complication: How many days are included in a quarter or a semester? This
really depends on which months happen to be included, as a month may have
30, 31, or even 28 days (29 in leap years). Such day count issues are discussed
in Section 5.1.

The two cash flows in Eqs. (4.1) and (4.2) are figurative and do not occur
in practice, as only the actual net difference will be paid. From the viewpoint
of the party paying fixed, the cash flow at time T2 will be

Vfixed(T2) = N ·∆ · [Kn − rn(T1, T2)] ,

which is reversed for the party paying floating,

Vfloat(T2) = N ·∆ · [rn(T1, T2)−Kn] = −Vfixed(T2).

These expressions give the payoff of contract, i.e., its value at time T2. However,
the payoff is actually determined at time T1, when the spot rate rn(T1, T2) is
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observed. Hence, a contract may also be arranged so that the cash flow takes
place at time T1, in which case the payoff will be discounted using the spot rate
rn(T1, T2).

Now, there are two related questions, which are common with forward con-
tracts on other assets:

How can we define a fixed rate Kn such that the fair value of the contract
at time t = 0 is zero?
What is the value of the contract at a generic epoch 0 < t < T1?

As we show in the following, we already know where to look for the first an-
swer: We just use forward rates defined in Section 3.7 and setKn = fn(0, T1, T2).
However, we need something more to answer the second question. We illustrate
two views. The first one is based on hedging/replication arguments and will
also prove essential when dealing with options. The second one decomposes
the FRA into two bonds. We will meet again both views when dealing with
interest rate swaps later in this chapter.

The value of an FRA may be needed to assess the market value of a port-
folio including an FRA, according to marking-to-market principles. Further-
more, it may be useful, for instance, to determine the fair value at which the
two counterparties could agree to cancel the contract, or to assess the loss in
case of bankruptcy of a counterparty. We should keep in mind that FRAs, as
well as swaps, are of a different nature from eurodollar futures. The latter are
liquid futures contracts, easily closed out by reversing the position. FRAs and
swaps, just like forward contracts written on other underlying assets, are OTC
contracts.

4.2.1 A HEDGING VIEW OF FORWARD RATES

In Section 2.3, we have used a replication argument to price an option. The
idea is related to hedging risk away by synthesizing a position that eliminates
a given risk exposure. We may apply the same principle to deal with an FRA.
Consider a firm that will have to borrow a given amount of money N for a time
interval [T1, T2] in the future. As before, let ∆ = T2 − T1 be the length of the
time interval and n = 1/∆ be the corresponding compounding frequency per
year. At time t = 0, the future spot rate rn(T1, T2) is not known and the firm
faces interest rate risk, since the current spot rate can increase. The firm may
hedge this risk away by contracting an FRA, whose rate is locked now, with a
bank. But what is the fair rate Kn that the firm and the bank should agree on (if
we do not consider credit risk)?

Let us take the viewpoint of the bank. The bank is subject to interest rate
risk, because the actual spot rate rn(T1, T2) may well be different from the
agreed rate. What the bank does not want to do is collecting the necessary
amountN at time t = T1 from another bank, as this may occur at a bad moment
(i.e., when the spot rates are larger than the contracted fixed rate). And even if
the bank has that money, it might lose more valuable investment opportunities
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FIGURE 4.1 Hedging a forward contract.

if interest rates rise. From the bank’s viewpoint, two cash flows will occur in
the future:

At time t = T1 the bank will see a negative cash flow −N , i.e., it will
lend N to the firm.
At time t = T2 the bank will see a positive cash flow

N ·
[
1 + ∆ ·Kn

]
, (4.3)

i.e., it will receive the capital back, plus earned interest.

These cash flows are depicted in Fig. 4.1 as continuous arrows. In order to
hedge those two cash flows now, in such a way that there is no uncertainty at
all, the bank should synthesize opposite cash flows (the dashed arrows in Fig.
4.1), offsetting those of the trade with the firm. How can it achieve this aim?

To begin with, if the bank wants to synthesize a positive cash flow N at
time T1, it may buy a zero-coupon bond with face value N maturing at T1. If
we assume, for the sake of convenience, zeros with unit face value, we may
think of buying N unit zeros. The price of these bonds now is

N · Z(0, T1),

which corresponds to a negative cash flow for the bank at t = 0. Now the bank
should offset this negative cash flow at time t = 0, so that the initial net cash
flow is zero. Furthermore, it has to offset the positive cash flow at time T2,
resulting from the trade with the firm. The solution is selling a zero maturing
at time T2. Since the price now of $1 at time T2 is the discount factor Z(0, T2),
and the cash flow at time zero (to buy the bond maturing at T1) is−N ·Z(0, T1),
the bank may sell

N · Z(0, T1)

Z(0, T2)
(4.4)

units of the zero maturing in T2. Note that this amount is nondimensional, as it
measures a number of unit zeros traded. If we imagine multiplying the amount
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in Eq. (4.4) by the bond face value, $1, this is the money that the bank will have
to pay at time T2 to the bondholders, a negative cash flow. If the hedge has to
work, this must exactly offset the cash flow given in Eq. (4.3), i.e., the positive
cash flow at time T2 resulting from the trade with the firm. The hedge is perfect
if

N ·
[
1 + ∆ ·Kn

]
= N · Z(0, T1)

Z(0, T2)
,

which implies
1

1 + ∆ ·Kn
=
Z(0, T2)

Z(0, T1)
. (4.5)

As a quick reality check, observe that the ratio on the right-hand side of Eq.
(4.5) should be less than 1, and in fact Z(0, T2) < Z(0, T1), since T1 < T2.
Furthermore, the ratio on the left-hand side has the typical form of a discount
factor. If we rearrange Eq. (4.5) slightly,

Z(0, T1) · 1

1 + ∆ ·Kn
= Z(0, T2),

we see a clear message: If we discount from T2 to T1, and then from T1 to now,
t = 0, we must get the same value that we find when discounting directly from
T2 to now. This sounds suspiciously like the kind of argument that we have
seen when we introduced forward rates in Section 3.7. The only difference is
that now we are discounting cash flows, moving them backward in time rather
than moving them forward to see capital growth, but this is inconsequential.
Indeed, in Section 3.7.3 we introduced a forward discount factor, F (t, T1, T2),
and by comparing Eq. (3.50) with Eq. (4.5), we see that the fixed rate Kn must
be such that

1

1 + ∆ ·Kn
= F (0, T1, T2).

Note that discount factors, unlike rates, do not depend on whatever compound-
ing we use. If we use discrete compounding with frequency n, we find

Kn = fn(0, T1, T2),

i.e., the fixed rate must be the current forward rate for the tenor of the FRA. If it
is convenient, we may also use the equivalent rate f(0, T1, T2) with continuous
compounding. Indeed, we find ourselves again on familiar ground, if we express
discount factors in terms of continuously compounded rates,

F (0, T1, T2) = e−(T2−T1)·f(0,T1,T2) =
e−T2·r(0,T2)

e−T1·r(0,T1)
=
Z(0, T2)

Z(0, T1)
,

which implies the known relationship between spot and forward rates,

f(0, T1, T2) =
T2 · r(0, T2)− T1 · r(0, T1)

T2 − T1
. (4.6)

Using this kind of hedging argument may seem a useless complication. Af-
ter all, we find something that was easily obtained by linking spot rates with
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forward rates by no-arbitrage. However, this approach allows us to answer the
second question: What is the value of an FRA contract after its inception? The
two bonds form a hedging portfolio with zero value at t = 0, as the bank buys
and sells zeros in such way that the net cash flow at times t = 0 is zero. Neglect-
ing the nominal value N , the value of the portfolio at time t is related to a long
position in one zero maturing at T1 and a short position in Z(0, T1)/Z(0, T2)
bonds maturing at T2:

1 · Z(t, T1)− Z(0, T1)

Z(0, T2)
· Z(t, T2), (4.7)

where we write “1” explicitly to point out that we are using one bond with price
Z(t, T1) and Z(0, T1)/Z(0, T2) bonds with price Z(t, T2). These numbers of
bonds in the hedge do not change over time, but the bond prices do change and
depend on t. The initial value is (somewhat trivially) zero when t = 0, but it
will change as time goes by and interest rates move randomly.

It is interesting to rewrite Eq. (4.7) in terms of discretely compounded for-
ward rates, in order to get a better feeling, consistent with market practice:

1 · Z(t, T1)− Z(0, T1)

Z(0, T2)
· Z(t, T2)

= Z(t, T2) ·
[
Z(t, T1)

Z(t, T2)
− Z(0, T1)

Z(0, T2)

]
= Z(t, T2) ·

[
1

F (t, T1, T2)
− 1

F (0, T1, T2)

]
= Z(t, T2) · [1 + ∆ · fn(t, T1, T2)− 1−∆ · fn(0, T1, T2)]

= Z(t, T2) ·∆ · [fn(t, T1, T2)− fn(0, T1, T2)] . (4.8)

Equation (4.8) gives the value of an FRA with unit nominal value from the view-
point of the floating payer, at a time t < T1.3 Remember that, in our motivating
example, the bank pays floating to the firm. The value for the fixed payer is ob-
tained by changing the sign, and for a generic nominal we just multiply by N .
To interpret the result, we note that the value is obtained by evaluating the future
payoff, which is uncertain and will be known only at time T1, by replacing the
future spot rate rn(T1, T2) with the forward rate fn(t, T1, T2); the payoff is then
discounted from time T2 back to time t. Thus, we are using the forward rate as
if this were a predictor of the future spot rate, which is a nontrivial result. The
discussion about the pure expectation hypothesis in Section 3.7.4 showed that
forward rates do not really predict spot rates; here, we use them in this manner,
but only for valuation purposes.

3The value of the contract for t ∈ [T1, T2] is trivially found by discounting the payoff, which is
set at time T1 and received at time T2.
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4.2.2 FRAs AS BOND TRADES

To find the value of an FRA, we may also use another clever trick, which we
will meet again when dealing with swaps. The idea is to add the payment of the
notional to both legs of the FRA. Clearly, this does not change the net payment
in any way, but it allows us to recast the FRA as a difference of two bonds, a
fixed- and a floating-rate one. The payment on the fixed leg, for a fixed rate Kn,
is

N ·
[
1 + ∆ ·Kn

]
,

and its value at time t ≤ T2 is obtained by straightforward discounting,

Vfixed(t) = Z(t, T2) ·N ·
[
1 + ∆ ·Kn

]
.

The payment on the floating leg is only known at t = T1,

N ·
[
1 + ∆ · rn(T1, T2)

]
,

but we may find its value at time t < T1, by using the same approach that we
used in Section 3.5.6 to price a floating-rate bond. Its value at T1 is just the face
value,

Z(T1, T2) ·N ·
[
1 + ∆ · rn(T1, T2)

]
= N,

since, on the left-hand side, we have the product of two random terms canceling
each other. Thus, the value of the floating leg at time t < T1 is

Vfloat(t) = Z(t, T1) ·N.

The value of the FRA, from the viewpoint of the floating payer, is Vfixed(t) −
Vfloat(t). By using, once more, the link between discount factors and forward
rates,4

1 + ∆ · fn(t, T1, T2) =
Z(t, T1)

Z(t, T2)
, (4.9)

the FRA value may be rewritten as follows:

Vfixed(t)− Vfloat(t)

= N · [Z(t, T2) · (1 + ∆ ·Kn)− Z(t, T1)]

= N · Z(t, T2) ·
[
(1 + ∆ ·Kn)− Z(t, T1)

Z(t, T2)

]
= N · Z(t, T2) ·

[(
1 + ∆ ·Kn

)
−
(
1 + ∆ · fn(t, T1, T2)

)]
= N · Z(t, T2) ·∆ ·

[
Kn − fn(t, T1, T2)

]
. (4.10)

By setting the value of this contract to zero at t = 0, we find again the condition
Kn = fn(0, T1, T2). For a later time 0 < t < T1, disregarding the nominal
value N , we find the same result as Eq. (4.8): We have to replace the unknown
future spot rate rn(T1, T2), in the formula for the payoff of a forward contract,
by the current forward rate fn(t, T1, T2).

4See Section 3.7.3 on forward discount factors.
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Table 4.1 Sample evolution of a term structure.

Time to maturity τ r(0, τ) r(0.25, 0.25 + τ)

τ = 0.25 3.0% 3.1%
τ = 0.50 3.2% 3.3%
τ = 0.75 3.5% 3.7%
τ = 1.00 4.0% 4.1%

4.2.3 A NUMERICAL EXAMPLE

An FRA with a nominal value of $100 million is agreed at t = 0 for the semester
(0.5, 1). A set of continuously compounded rates for various maturities is given
in Table 4.1. The table shows the known term structure at time t = 0, as well as
one possible future scenario at time t = 0.25. We want to answer the following
questions:

1. What is the payment on the fixed leg?
2. If the term structure after three months is the one shown in the rightmost

column in Table 4.1, what is the value of the FRA for the fixed payer?

The first step is finding the fixed payment, which means finding the semian-
nually compounded forward rate f2(0, 0.5, 1), using Eq. (4.6). Then, in order
to apply Eq. (4.10), we also have to find the relevant forward rate after three
months, i.e., f2(0.25, 0.5, 1).

The current continuously compounded forward rate for the time interval
[0.5, 1] is

f(0, 0.5, 1) =
1× r(0, 1)− 0.5× r(0, 0.5)

1− 0.5
=

0.04− 0.5× 0.032

0.5
= 4.8%,

which corresponds to f2(0, 0.5, 1) = 2 ×
(
e0.5×0.048 − 1

)
= 0.04858064. The

fixed payment is therefore determined as

100 · 106 × 0.5× 0.04858064 = $2,429,032.

At time t = 0.25, we need to recalculate the new forward rate f2(0.25, 0.5, 1)
for the tenor [0.5, 1]. Note that three months have elapsed, and now the relevant
spot rates are

r(0.25, 0.5) = 3.1% and r(0.25, 1) = 3.7%,

which implies

f(0.25, 0.5, 1) =
0.75× r(0.25, 1)− 0.25× r(0.25, 0.5)

0.75− 0.25

=
0.75× 0.037− 0.25× 0.031

0.5
= 4.0%,
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which corresponds to

f2(0.25, 0.5, 1) = 2×
(
e0.5×0.04 − 1

)
= 0.04040268.

Now, from the viewpoint of the fixed payer, the FRA value after three months
is

Vfloat(0.25)− Vfixed(0.25)

= N × Z(0.25, 1)× (0.75− 0.25)× [f2(0.25, 0.5, 1)− f2(0, 0.5, 1)]

= $100 · 106 × e−0.75×0.037 × 0.5× [0.04040268− 0.04858064]

= −$397,706.86.

The result we find may look counterintuitive: There is an increase in the
whole term structure, which should be good news to the fixed payer, who re-
ceives the floating rate. Nevertheless, her position is losing value. The puzzle
may be explained by considering that in the pricing equation, the forward rates
are used as if they were predictors of future spot rates. The forward rates im-
plied by the initial term structure suggest an increase in the spot rates, which
does indeed take place after three months, but by a lower amount than pre-
dicted. If we denote by r̂0(T1, T2) the “forecast” at time t = 0 of the future spot
rates at time T1 with maturity T2, we see that

r̂0(0.25, 0.5) = f(0, 0.25, 0.5) =
0.5× 0.032− 0.25× 0.03

0.5− 0.25

= 0.034 > 0.031,

r̂0(0.25, 0.75) = f(0, 0.25, 0.75) =
0.75× 0.035− 0.25× 0.03

0.75− 0.25

= 0.0375 > 0.037,

r̂0(0.25, 1) = f(0, 0.25, 1) =
1× 0.04− 0.25× 0.03

1− 0.25

= 0.04643 > 0.041.

Furthermore, the forward rate for the time period [0.5, 1] goes from 4.858% at
time t = 0 down to 4.0403% at time t = 0.25.

The reader may also note that, in this case, we do not really need the semi-
annually compounded forward rates, since we could use the continuously com-
pounded ones to find the fixed payment directly:

100 · 106 ×
(
e0.5×0.048 − 1

)
= $2,429,032.

The message is that, if we want to find the value of an FRA where the fixed rate
is quoted according to market practice, we must be careful about compounding.

4.3 Eurodollar futures

In this section, we briefly outline one kind of futures contract written on interest
rates. We defer a discussion of futures contract on bonds to Section 5.3.2, as
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they involve some important institutional details. A bond futures depends in a
nonlinear way on interest rates through the bond price, i.e., the price of a traded
asset; eurodollar futures are an example of a linear contract directly defined
on interest rates, which are not traded assets. We consider eurodollar futures
because they are widely traded and practically relevant, and they also give us the
opportunity of discussing a fundamental point: the difference between futures
and forward rates.5

The term eurodollar may be misleading, as it has nothing to do with forex
markets. By eurodollars we mean US dollars deposited on a non-US bank ac-
count. Eurodollar futures are very liquid and actively traded futures, whose
underlying variable is the three-month LIBOR on dollar deposits. Interest rate
futures are available for other currencies as well, based, e.g., on EURIBOR or
Euro LIBOR. They can be used:

To lock interest rates for future time periods
To change the risk exposure of a fixed-income portfolio
To speculate on interest rate movements

Contract maturities are standardized (March, June, September, December) up
to ten years in the future.6 Contracts are also available for the other months, but
only short-term ones (i.e., within the current year). The nominal contract size is
$1,000,000, to which the futures rate is applied over a three month period (0.25
years).

Let Lf
4(t, T, T + 0.25) be the LIBOR futures rate at time t, with quarterly

compounding, for the time interval [T, T + 0.25]. This futures rate, not to be
confused with the forward rate, is implicit in the quoted futures price. In fact,
the quote does not give the rate directly, but implicitly. The futures quote at
time t is given as

100× [1− Lf
4(t, T, T + 0.25)].

For instance, if the quoted futures price when taking a position in the contract
is 97.22, the related futures rate is

Lf
4 =

100− 97.22

100
= 2.78%.

Also note that a change of 1 basis point in the underlying futures rate implies a
price change of $25, since

1,000,000× 0.0001× 0.25 = 25.

Let us illustrate this point with an example.

5This is a more general point concerning the relationship between forward and futures prices.
As we shall see later, it can be shown that they should be the same under the assumption of
constant interest rates. Clearly, this assumption is nonsensical when dealing with interest rate
derivatives.
6For further details, see http://www.cmegroup.com/trading/interest-rates/
stir/eurodollar_contract_specifications.html

http://www.cmegroup.com/trading/interest-rates/stir/eurodollar_contract_specifications.html
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Example 4.1 Daily cash flows in eurodollar futures

Let us consider a scenario in which the settlement price at the end of
day k is 99.28. Suppose that the settlement price at the end of day k+1
was 99.33, which implies a drop of 5 basis points in the underlying
futures rate. Then, at the end of day k + 1, the long position gains
$125.

We recall that, in forward and futures contracts, the long position gains
from an increase in the forward/futures price. Thus, if the quote increases,
as in Example 4.1, the long position makes a profit, which means that the long
position gains when interest rates fall. Hence, a long position may hedge against
a fall in interest rates. The short position has an opposite exposure.

Example 4.2 Locking rates by eurodollar futures

To see how, in principle, an investor can lock an interest rate for a fu-
ture time interval [T, T + 0.25], imagine that she takes a long position
in one contract when the quote is 97.22 (futures rate is 2.78%). If the
spot rate at maturity is 2.5%, the final settlement futures price will be
97.50, and if we disregard the time value of the daily cash flows, the
net gain will be

$25× (97.50− 97.22) = $700.

She will invest $1,000,000 at the spot rate 2.5% for three months,
earning

$1,000,000× 0.025× 0.25 = $6250.

Adding the $700 profit from the futures position, she earns a total of
$6950 and, apparently, she has the same gain as with a locked rate of
2.78%,

$1,000,000× 0.25× 0.0278 = $6950.

However, we have disregarded the possibility of investing daily prof-
its (and the need of financing daily losses) due to marking-to-market
of futures contracts. In other words, we are considering the futures
contract as a forward.

For short time periods, it may be the case that the difference between futures
and forward rates is not quite remarkable but, when dealing with an extended
period of time, the difference cannot be disregarded. To see why, let us consider
a contract with a payoff related to the difference r(T1, T2) − K, where K is a
contracted rate (forward or futures).
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1. When marking-to-market is applied, intuition suggests that positive cash
flows will be realized when interest rates rise; these are daily cash flows,
and they can be immediately reinvested at higher rates. On the other hand,
if interest rates drop, negative cash flows will occur; however, they may
be financed at a lower rate. This makes marking-to-market a welcome
feature with respect to a forward. Hence, due to demand–offer mecha-
nism, the contracted rate K for a forward contract will tend to be smaller
in order to make the forward contract more attractive and compensate for
the lack of marking-to-market.

2. Furthermore, a forward contract is essentially settled at time T2 (even if
the contract is settled before, at time T1, the payoff is just the discounted
payoff that one would earn at time T2). A futures contract with the above
payoff, which is settled at time T1, is preferable to a contract settled at T2.
This has the effect of reducing the forward rate, too.

The above argument is purely intuitive, but the difference between forward and
futures rates (as well as between forward and futures prices for contracts on an
underlying asset or commodity) may be analyzed by using the tools of stochastic
calculus that we shall cover later. We just reinforce the intuition by mentioning a
correction that can be used to recover forward rates from observed futures rates.
The corresponding forward rate may be obtained by a “convexity correction.”
One such correction (related to the Ho–Lee model, which is a short-rate model
based on stochastic differential equations) is

f(0, T1, T2) = rfut(0, T1, T2)− 1

2
σ2T1T2,

where rates are continuously compounded and σ is the volatility of short-term
rates. We refrain from discussing the correction in any detail, but we point out
the intuition: The forward rate tends to be smaller than the futures rate, and
the difference is significant when volatility is large and for long maturities. On
the contrary, when volatility is zero, there is no difference between forward
and futures rates. Indeed, as we mentioned before, forward and futures prices
should be the same in the case of constant interest rates, as we shall prove in
Section 12.2.

A further consequence of daily marking-to-market is that, in general, a
hedge based on futures contracts is more difficult to set up than a hedge based
on forward contracts. For long maturities, the strategy should be dynamically
adjusted by tailing the hedge (this will be further discussed later in Section
12.3.4).

We should also keep in mind the institutional side of the coin: Futures rate
may be easily recovered by observing quite liquid exchange-traded securities.
On the contrary, FRAs are over-the-counter contracts. Forward rates are implied
by the term structure, which may be estimated on the basis of observed fixed-
income asset prices, as we have discussed in Section 3.5.2. However, we recall
that liquidity issues and other distortions may complicate this task.



220 CHAPTER 4 FRAs, Interest Rate Futures, and Vanilla Swaps

T0

K Nn

L T , T Nn 0 1 L T , T Nn 1 2 L T , T Nn m 1 mL T , T Nn m 2 m 1

K Nn K Nn K Nn

t T2T1 TmTm-1

FIGURE 4.2 An illustration of swap cash flows.

4.4 Vanilla interest rate swaps

A vanilla interest rate swap is an agreement between two counterparties that will
exchange periodical cash flows expressed as an interest on a nominal amount
N . There are two legs in the swap:

The fixed leg, associated with cash flows related to a fixed interest rate
The floating leg, associated with cash flows related to a floating interest
rate

To understand the swap mechanics, please refer to Fig. 4.2:

Interest rates will apply to time periods [Ti−1, Ti], i = 1, . . . ,m. We
assume, for the sake of simplicity, that ∆ = Ti − Ti−1 is constant and
independent from i, but this is not the necessarily case in real life. Rates
are assumed to be compounded n = 1/∆ times per year, where usually
n = 2 or n = 4.
At time t ≤ T0 the contract is arranged and a fixed rate Kn, the swap
rate, is established. If t < T0, we speak of a forward-start swap contract.
If t = T0, we have a spot-start swap, which is the only case we consider
here.
The floating rate will be reset at time instants T0, T1, . . . , Tm−1, where,
for instance, the LIBOR rate Ln(Ti−1, Ti) is observed.
Payments will occur at times T1, T2, . . . , Tm, when the floating rate is
also reset (with the exception of Tm). On the floating leg, a payment
Ln(Ti−1, Ti) · ∆ · N is made at time Ti. On the fixed leg, a payment
Kn ·∆ ·N is made at time Ti.

The two cash flow sequences are illustrated in Fig. 4.2. Needless to say, for the
sake of convenience, only the net difference of the two cash flows is paid. Here
we only consider this extremely simple swap agreement, but in practice there
are many variations on the theme.7 For instance, the frequencies of the fixed and
the floating leg need not be the same; we assume so for the sake of simplicity.
As a matter of fact, there is a huge market of interest rate swaps, which, like any

7See Section 5.3.1.
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derivative, may be used to change the nature of assets or liabilities, to speculate
on interest rates, or to hedge interest rate risk.

There are two basic questions, which we have already considered when
dealing with FRAs: How is the fixed rate Kn chosen at the inception of the
contract, and how can we find the fair value of the contract at a later time?
We may answer both questions by finding a way to value a swap contract, and
then enforcing an initial value zero, just like we did with FRAs. There are two
equivalent ways to value a vanilla interest rate swap:

1. As the difference of a fixed- and a floating-rate bond (which requires in-
cluding a fictitious payment of notionals at maturity Tm).

2. As a portfolio of FRAs with a range of maturities, T1, . . . , Tm.

The first approach is, in a sense, a horizontal decomposition of the cash flows in
Fig. 4.2, where floating-rate flows are drawn on the upper side of the figure, and
fixed-rate flows are on the lower side. On the contrary, using FRAs is a vertical
decomposition with respect to time, resulting in pairs of cash flows occurring at
the same time instant. These two approaches mirror those we have discussed in
Sections 4.2.1 and 4.2.2, respectively, and have advantages and disadvantages:

If the payment frequency is not the same on the two legs, we cannot use
the approach based on a sequence of FRAs.
However, when dealing with forward-start swaps, using FRAs may be
more natural.

4.4.1 SWAP VALUATION: APPROACH 1

Let us assume that we want to value the swap at time t, T0 ≤ t ≤ T1, when m
payments are still due. The value of the fixed leg is the value of a fixed-coupon
bond,

Pfixed(t, T ) = N ·

[
m∑
i=1

Kn ·∆ · Z(t, Ti) + Z(t, Tm)

]
.

Note that we include a fictitious payment of the notional amount at maturity
T ≡ Tm, which is not going to occur, as it is exactly offset by the same payment
on the floating leg. The value of the floating leg is the value of a floating-coupon
bond, where the first coupon is related to the already observed rate Ln(T0, T1):

Pfloat(t, T ) = Z(t, T1) ·N · [1 + Ln(T0, T1) ·∆] .

The swap value, from the fixed payer viewpoint, is

Pfloat(t, T )− Pfixed(t, T ).

If we consider the initial swap value, at t = T0, the swap rate is chosen in such
a way that the initial swap value is zero:

Pfixed(T0, T ) = Pfloat(T0, T ) = N.
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Table 4.2 Term structure for Example 4.3.

Time to maturity Spot rate r(0, τ)
τ = 0.5 2.3%
τ = 1.0 2.6%
τ = 1.5 2.8%
τ = 2.0 3.0%

The swap rate is then found as a solution of the following equation:

N ·

[
m∑
i=1

Kn ·∆ · Z(T0, Ti) + Z(T0, Tm)

]
= N,

which yields

Kn =
1

∆
· 1− Z(T0, Tm)

m∑
i=1

Z(T0, Ti)

. (4.11)

The swap rate is essentially a coupon rate such that the fixed-coupon bond sells
at par. This rate is also called the par yield. This swap rate is quoted by dealers
(with a bid–ask spread) for various maturities.

Example 4.3 Finding the swap rate

The current term structure of (continuously compounded) interest rates
is given in Table 4.2. We want to find the swap rate for a contract ma-
turing in two years with semiannual payments.

To find the swap rate, let us assume a nominal value of 1 (which
is actually irrelevant) and solve the equation

K2

2
×
(
e−0.5×0.023 + e−1×0.026 + e−1.5×0.028 + e−2×0.03

)
+ e−2×0.03 = 1,

which yields
K2 ≈ 3.015%.

Clearly, we may just apply Eq. (4.11) and find the same result. The
swap rate K2 with semiannual compounding corresponds to K =
0.0299 with continuous compounding.
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Table 4.3 Term structure for swap valuation in Examples 4.4 and 4.5.

Time to maturity Spot rate r(0, τ)
τ = 0.25 4.3%
τ = 0.75 4.7%
τ = 1.25 5.0%

Example 4.4 Swap valuation

A swap was agreed in the past, with swap rate K2 = 6% and a no-
tional of $100 million. A payment occurred three months ago, and
the LIBOR rate was reset to 5%, with semiannual compounding. Pay-
ments will occur in 3, 9, and 15 months, and the current term structure
of (continuously compounded) rates is given by Table 4.3. We want
to find the swap value from the fixed payer viewpoint.

Let us price the fixed-rate bond first:

Pfixed = 3× e−0.25×0.043 + 3× e−0.75×0.047 + 103× e−1.25×0.05

= 102.6236,

where we express value in millions of dollars. The floating-rate bond
price is

Pfloat = (100 + 2.5)× e−0.25×0.043 = 101.404.

Then, the swap value for the fixed payer is

Pfloat − Pfixed = 101.404− 102.6236⇒ −$1,219,534.

4.4.2 SWAP VALUATION: APPROACH 2

If we regard the swap as a portfolio of FRAs, we know that, for valuation pur-
poses, we may replace the random future spot rates by the corresponding for-
ward rates, as we have seen in Section 4.2.1. The value of the swap, from the
fixed payer’s viewpoint, is

N ·∆ ·
m∑
i=1

[
fn(t, Ti−1, Ti)−Kn

]
· Z(t, Ti). (4.12)
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To show that we find the same swap value as before, let us set t = T0, decom-
pose the sum, and express the forward rate using discount factors:

N ·
m∑
i=1

[
fn(T0, Ti−1, Ti)−Kn

]
·∆ · Z(T0, Ti)

= N ·

[
m∑
i=1

(
Z(T0, Ti−1)

Z(T0, Ti)
− 1

)
· Z(T0, Ti)−

m∑
i=1

Kn ·∆ · Z(T0, Ti)

]

= N ·

[
m∑
i=1

(
Z(T0, Ti−1)− Z(T0, Ti)

)
−

m∑
i=1

Kn ·∆ · Z(T0, Ti)

]

= N ·

[(
1− Z(T0, Tm)

)
−

m∑
i=1

Kn ·∆ · Z(T0, Ti)

]
.

By setting this to zero, we find the same result as Eq. (4.11). In the second line
we use Eq. (4.9) to link forward rates and discount factors. We get to the last
line by using a telescoping sum and the identity Z(T0, T0) ≡ 1.

Example 4.5 Swap valuation (continued from Example 4.4)

We use the data in Table 4.3 once more, but now we need the forward
rates for the relevant maturities in order to “predict” the cash flows on
the floating leg for the second and third payment:

f(0, 0.25, 0.75) =
0.75× 0.047− 0.25× 0.043

0.5
= 0.049,

f2(0, 0.25, 0.75) = 2× (e0.049×0.5 − 1) = 0.04960518,

f(0, 0.75, 1.25) =
1.25× 0.05− 0.75× 0.047

0.5
= 0.0545,

f2(0, 0.75, 1.25) = 2× (e0.0545×0.5 − 1) = 0.05524935.

The first cash flow is known, since it is related to the last observed
LIBOR rate.

Then, we calculate and discount the net “forecasted” cash flows:

Vswap =
100 · 106

2
×
[
e−0.043×0.25 × (0.05− 0.06)

+ e−0.047×0.75 × (0.04960518− 0.06)

+ e−0.05×1.25 × (0.05524935− 0.06)
]

= −$1,219,534.

The result, of course, is the same as with approach 1.



4.4 Vanilla interest rate swaps 225

4.4.3 THE SWAP CURVE AND THE TERM STRUCTURE

If we consider a range of swap rates for different maturities and we plot them,
we find the swap curve. As we mentioned in Section 4.1, LIBOR rates are not
available for long maturities. If one wants to extend the LIBOR curve to long
maturities, swap rates may be used. Actually, other fixed-income securities
may be used. One possible advantage of using swap rates is that they feature
good liquidity properties and limited credit risk, the factors that may hinder the
possibility of estimating a term structure of truly risk-free rates by using plain
bonds.

Example 4.6 Extending the LIBOR curve by using swap rates

Let us assume that LIBOR rates for 6 and 12 months are 3% and
3.3%, respectively, with continuous compounding. We would like to
find the LIBOR rate for 18 months, and we consider the quoted swap
rate for a contract maturing in 18 months with semiannual payments.
The quoted rates are

bid 3.5%, ask 3.7%,

which reflect the bid–ask spreads observed in real-life markets (see
Section 5.3.1). Let us take the average, 3.6%, as the swap rate. Note
that these rates are to be considered as semiannually compounded
and define cash flows, rather than discount factors. The swap rate is
such that a fixed-coupon bond with coupon rate 3.6%, maturing in
18 months, trades at par. Assuming an arbitrary face value of $1, we
have to solve the following equation:

1 =
0.036

2
× e−0.03×0.5 +

0.036

2
× e−0.033×1

+

(
1 +

0.036

2

)
× e−L(0,1.5)×1.5,

which yields L(0, 1.5) ≈ 3.575%, with continuous compounding.

Once again, we stress the fact that, in Example 4.6, we have mixed LIBOR
and swap rates as if they are both risk-free. After the credit crunch of 2008,
this practice is a bit questionable. Nevertheless, the example shows that swaps
may be used to estimate a term structure of interest rates. Indeed, even more
complicated derivatives, namely, swaptions (options on swaps), are used to this
purpose.
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Problems

4.1 The current LIBOR rates for maturities of three and six months are 4.3%
and 4.7%, respectively (with continuous compounding). We also have the fol-
lowing eurodollar futures market quotes:

Maturity Price
6 months 94.9
9 months 94.5
12 months 94.2

Price a risk-free bond maturing in one year, paying semiannual coupons, with
coupon rate 6%. For the sake of simplicity, we ignore day counts and we assume
that all months consist of 30 days. Furthermore, we assume that there is no
significant difference between forward and futures rates.

4.2 An investment bank agrees on an interest swap contract with a firm. Semi-
annual payments are arranged: the firm pays six-month LIBOR, whereas the
bank pays a fixed rate of 4% with semiannual compounding. The notional value
is 20 million and the maturity is four years. After exactly 28 months the firm
goes bankrupt and defaults. Let us assume that, when default occurs, the term
structure is flat, at 5% with continuous compounding, and that the last relevant
LIBOR observation was 7%. What is the profit/loss for the bank?

Further reading
More information on the simple interest rate derivatives that we have dis-
cussed in this chapter can be found in general books on fixed-income
assets, like [4] and [6].
A detailed treatment of eurodollar futures can be found in [1].
For swaps and their variants, the reader may refer, e.g., to [2] or [3].
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Chapter Five

Fixed-Income Markets

We have introduced the fundamental concepts related to interest rates and fixed–
income assets in Chapter 3. Then, in Chapter 4, we have introduced simple
interest rate derivatives that may be used, among other things, to manage in-
terest rate risk, as we shall illustrate in Chapter 6. In this chapter, we take a
short break to deal with some topics that are quite relevant for the profession.
Mathematically inclined readers may not be interested in certain nasty details
of real markets, and indeed they can skip this chapter if they are only interested
in the intellectual pleasure of quantitative models. However, there is little value
in overly sophisticated and fragile models, without any understanding of the
pitfalls and issues that are so pervasive in financial markets, especially in the
fixed-income case. Due to space constraints, we will not be able to present an
extensive picture, but it is important to get at least a feeling for some issues
that do play an important role in practice. The choice of topics is somewhat
arbitrary, and it has been made to illustrate just a few among the most essential
issues.

When calculating interest in elementary treatments, we deal with time
measured in years or months. For the sake of simplicity, we pretend that
every month is just the same and consists of 30 days, but this is not really
the case. We have to consider the difference between months consisting
of 30 or 31 days, and possibly 28 (or 29 in leap years).1 Market practice
may be rather peculiar and this leads to day count conventions, which are
discussed in Section 5.1.
Bonds may look like simple assets, whose prices can be obtained by
straightforward discounting of cash flows. However, both market conven-
tions and available assets are a bit more complex. Some additional details
on bond markets are given in Section 5.2, where we deal with actual bond
price quotes and bonds with embedded options, namely, callable and con-
vertible bonds. We also hint at the issues related to bond ratings.

1When dealing with interest accrual, Saturdays and Sundays do matter. The picture is different if
we consider equity markets, and specifically trading-induced volatility. It is common to consider
a year consisting of 250 or 252 active trading days.
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In Section 5.3, we extend the treatment of elementary interest rate deriva-
tives by considering additional features of swaps and bond futures/op-
tions.
We should not disregard money markets, i.e., fixed-income markets with
very short maturities. A relevant example is the market of repurchase
agreements (repo for short) which we outline in Section 5.4, along with
other securities that firms may use for short-term liquidity needs.
Finally, in Section 5.5 we consider the securitization of illiquid assets to
create fixed-income securities. We outline mortgage-backed securities,
since they are a prominent example of this process and allow us to under-
stand tranching issues.

The last item in the list is quite relevant, as it opens the door to the dangerous
world of credit risk, which is beyond the scope of this book, yet cannot be
ignored.

5.1 Day count conventions

When dealing with interest rates and bond mathematics, we usually treat time in
a very straightforward fashion. For instance, if we have to discount a cash flow
with a continuously compounded rate of, say, 4%, over a three-month period,
we just use a discount factor like e−0.04×0.25, since three months amount to a
quarter of a year. However, what if the quarter includes February? Is this quarter
the same, in terms of how many days are included, as a quarter including August
and July? In real life, whenever we have to discount or calculate cash flows, e.g.,
when analyzing an interest rate swap, care is needed.

This kind of question is also relevant when dealing with accrued interest
in bond trading. Imagine that we want to buy a bond with a face value of
$10,000 and paying semiannual coupons at rate 5%. The settlement date is
April 20th, year t, and the bond matures in two years, on September 15th, year
t + 2. Assuming semiannual coupons, the last coupon (2.5% of the face value,
i.e., $250) was paid on March 15th, and the next one will be paid on September
15th. Hence, the current bondholder is about to sell the bond, but she has kept
the bond in her portfolio for more than one month: How much of the next
coupon payment is she entitled to? The easy answer is that we should prorate
the interest rate of the whole period, a semester, in proportion to the fraction of
the period that has elapsed from the last coupon payment. Using simple-minded
approach, one month over six should amount to 1/6 ≈ 0.1667, but by doing so
we are ignoring exact day counts. The actual number of days elapsed from the
last coupon payment is 36 (the last 16 days of March, plus the first 20 days of
April). The number of days between March 15th and September 15th is 184,
hence, one possible answer is

$250× 36

184
≈ $48.91. (5.1)
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In doing so, we have used one of the possible day count conventions, which is
based on the ratio of actual number of days. However, there are other possibili-
ties, as one may consider a year consisting of 12 months of 30 days, a practice
that made life much simpler when computers were not available. Among the
possible day count conventions, we mention:

1. Actual/Actual, which yields the result of Eq. (5.1).
2. 30/360, in which case the above calculation would be

$250× 35

180
≈ $48.61.

In this case, we consider equal months consisting of 30 days and a year
consisting of 360 days.

3. Actual/360, in which case the above calculation would be

$250× 36

180
= $50.00.

As we notice, the impact of different conventions is not quite negligible. Actu-
ally, there are other possibilities, and we must also pay attention to leap years.
Hence, we must be careful and keep in mind that different kinds of bonds, e.g.,
treasury vs. corporate, are subject to different conventions.

The careful reader might object that computing accrued interest is not re-
ally needed. If the bond is traded between two coupon payments, all we have
to do is to properly discount cash flows by the selected day count convention.
However, we should consider the fact that the market price is determined by
factors, such as liquidity, which are not quite addressed by simple pricing for-
mulas. Furthermore, as we discuss in Section 5.2, quoting bond prices requires
setting the accrued interest apart from the actual bond price.

Last but not least, day count conventions play an important role in several
interest rate derivatives, as they contribute to determining the payoff. Strange
as it may sound, the misspecification of the payoff in interest rate derivatives is
a potential danger and is one of the facets of model risk.

5.2 Bond markets

Bonds, like stock shares, are first issued on primary markets, possibly with the
support of investment banks acting as underwriters. They are then traded on
secondary markets, on which they may be more or less liquid. The procedure
to issue bonds on primary markets is typically based on auctions, whose details
may differ, depending on the nature of the bond (e.g., treasury vs. corporate).
While bonds may look quite simple, when compared with exotic derivatives,
they come in a variety of forms and may be classified according to the following
criteria:

Issuer. As we have already mentioned, the issuer may be a central government
(for treasury/sovereign bonds) or a corporation (corporate bonds), but there
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are alternative issuers, like municipalities or other public agencies. The
kind of issuer may have an impact on taxation rules, as well as day count
conventions.

Maturity. Short-term bonds are usually zero-coupon bonds, whereas long-
term bonds are coupon-bearing bonds. Long-term zeros may be synthet-
ically created by stripping coupons, however. US treasury bonds are clas-
sified according to time to maturity as follows: T-bills (maturity up to a
year), T-notes (maturities up to ten years), and T-bonds (longer maturities,
possibly thirty years). The market for short-term securities is called money
market, whereas the term capital market refers to securities with longer
maturities. There are other money market instruments, like banks’ cer-
tificates of deposit, banker’s acceptances, and repos, which we discuss in
Section 5.4.

Rules to determine cash flows. In a plain bond, cash flows are linked to a
fixed coupon rate applied to the face value. However, floaters and link-
ers are traded as well. In floaters (floating-rate bonds), coupons depend on
the current level of interest rates. Usually, the coupon rate increases with
interest rates, as it may be given by the six-month LIBOR Lf

0.5, observed
at each reset date, plus a spread. In reverse floaters, the coupon rate is
reduced by an increase of rates and it may be given as

max{0,K − Lf
0.5},

to preserve non-negativity. With linkers, the coupon rate may depend on
some other reference quantity, possibly linked with equity markets. A quite
relevant example is an inflation-indexed bond, where the face value (and,
as a consequence, the coupons) is indexed by the inflation rate. A TIPS
(treasury inflation-protected security) is an example of inflation-indexed
bond.

Embedded options. As we discuss in Section 5.2.3, bonds may have embed-
ded options, like the possibility of early repayment of face value by the
issuer (callable bonds) or the possibility of conversion to equity (convert-
ible bonds). These should not be confused with options written on bonds.

Collateral. The price of a bond depends not only on interest rates, but also on
the credit rating of the issuer. When default is a possibility, we cannot dis-
count cash flows using a risk-free rate. However, the rating does not only
depend on the issuer, as bonds may have different provisions for a collat-
eral, as well as the specification of a “pecking order” in case of default.
Senior bonds are relatively protected against default, whereas subordinated
debentures have a lower degree of protection for the investor. Issuers’ as-
sets are first used to pay senior bondholders in case of default, and they may
not be sufficient to pay holders of subordinated bonds. These features are
specified in bond indentures. Needless to say, subordinated bonds offer a
higher yield, as they trade at a lower price than senior bonds.
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5.2.1 BOND CREDIT RATINGS

Corporate and sovereign bonds are debt instruments, subject to default risk. In
the event of default, the bond issuer (often referred to as obligor) will fail to
repay a part or the whole of his debt. Statistical modeling of loss given default
(LGD) is an active research area. In order to help investors in assessing the
creditworthiness of a bond issuer, rating agencies like Moody’s and Standard &
Poor’s associate a credit rating with each bond, assessing the ability of obligors
to meet their repayment obligations.

Each rating agency has a rating scale. For instance, the Standard & Poor’s
scale includes credit ratings like the following:

AAA, which corresponds to the prime grade.
AA+, AA, AA−, the high grade bonds.
A+, A, A−, and BBB+, BBB, BBB−, medium grade.

These ratings correspond to investment grade bonds. Down the scale we meet
ratings from BB+ to B−, which are flagged as non-investment grade and spec-
ulative. The rating CCC flags risky bonds, and ratings beginning with a D are
reserved to bonds in default.

Non-investment grade bonds are also referred to as high yield, since their
relatively low price is associated with higher yields. Junk bonds are quite spec-
ulative, and some institutional investors are forbidden to include them in their
portfolio. Credit derivatives, like credit default swaps may be used to insure
bonds against defaults.

5.2.2 QUOTING BOND PRICES

Imagine that the (ask) price of a bond with face value $1000 is quoted as 112.08,
which must be interpreted as a percentage of face value. Does it mean that we
have to pay $1120.80 to buy that bond? The answer is not quite so simple. To
begin with, we must be aware of market conventions. For instance, US treasury
bonds are quoted in 32nds, so that 0.08 does not really mean 8 cents, but rather
$8/32 = $0.25. Leaving this issue aside, the quoted price does not include the
accrued interest related to the next coupon to be paid. The current bondholder
is entitled to some fraction of the next coupon, as she held the bond for the
corresponding fraction of the time period on which interest accrues. The quoted
price is just the clean price, whereas the actual cash price is called dirty price
and is obtained by taking into account the time elapsed from the last coupon
payment.

Example 5.1 Dirty vs. clean bond price

Let us consider a bond paying semiannual coupons with 6% coupon
rate on a face value of $1000, which means that the bond pays $30
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every six months. Let us ignore day count issues, for the sake of
simplicity, and assume that the last coupon was paid two months ago.
Accrued interest is obtained by prorating the next coupon as follows:

$30× 2

6
= $10.

If yield is lower than the coupon rate, the bond shall trade at premium,
say, at a quoted price of 112.08. Thus, the cash price would be

Clean price + Accrued interest = 1120.80 + 10.00 = $1130.80.

In practice, this calculation should be carried out according to the
relevant day count convention pertaining to the specific bond at hand.

Setting the accrued interest component apart makes sense because it is
money that the bondholder is entitled to. However, one could just discount
cash flows properly and this would account for everything, so why should we
quote the clean price? The plots in Fig. 5.1 help to explain why this is conve-
nient. Whenever a coupon is paid, we observe a jump in the bond price, since a
cash flow is eliminated from the cash flow sequence that gives the bond price.
The figure shows the effect for two bonds trading at premium and at discount,
respectively. When the bond trades at premium (the case on the left in Fig. 5.1,
where the coupon rate is larger than yield-to-maturity), we observe a decreasing
lower envelope, to which a jagged price path is superimposed. When the bond
trades at a discount, the lower envelope is increasing. Bond price jumps may
also be observed because of shocks related with interest rate and credit risk,
which may be a good reason for concern, whereas a jump due to a coupon pay-
ment is physiological. The clean price eliminates these “natural” jumps, so that
they are not confounded with the effect of true risk factors.

When dealing with short-term zeros, like T-bills, still another convention
may be used. Suppose that the quote for a T-bill maturing in three months (90
days) is 4.90. Clearly, this is not the bond price. Short maturity bonds may be
quoted in terms of a bank discount with respect to the face value. The bill’s
discount is annualized on the basis of a 360-day convention, and this is then
reported as a percentage of par value. This means that the actual bank discount
for this T-bill is

4.90% × 90

360
= 1.225%,

and a bond with $10,000 par value could be purchased for

$10,000× (100%− 1.225%) = $9877.50.

In real life, a dealer may quote two discounts, reflecting bid–ask spreads. For
instance, the relevant discount, if we want to sell a bond, could be 4.91 (which is
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FIGURE 5.1 Plot of clean (dashed line) and dirty (continuous line) bond prices. Time-
to-maturity is five years, yield is 5%, and coupon rate is 7% (left) and 3% (right). On the
horizontal axis, time is expressed in days.

larger). This quoting approach is a traditional method, with a few shortcomings.
In fact, it is based on a 360-day convention, which does not reflect the exact
return for the investor. For the T-bill we are considering, the return over 90 days
is

$10,000

$9877.50
− 1 = 1.01240− 1 = 1.24%,

which can be annualized as

1.24%× 365

90
= 5.03%.

In this book, we will not consider all of these difficulties, but they are relevant
in the real life. Furthermore, a possible ambiguity arises when dealing, e.g.,
with options on bonds. Does the strike price refer to the clean or the dirty price
of the bond? The exact terms of the agreement must be carefully checked and
specified.

5.2.3 BONDS WITH EMBEDDED OPTIONS

Some bonds come with packaged options. This is the case with structured
bonds, where the repayment of the face value is promised, and the possibility
of a coupon depending on some other factor, like the return on an equity port-
folio, is offered. The guarantee of a non-negative coupon may be engineered
by bundling an option with the underlying bond.2 Structured bonds were used
to circumvent regulation forbidding certain funds to invest in options directly.
Here, we illustrate two more examples of bonds with embedded options.

2See Example 1.12.
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FIGURE 5.2 Decomposing the trade on a callable bond.

5.2.3.1 Callable bonds

Callable bonds are bonds that can be repurchased by the issuer before maturity.
To understand the rationale behind callable bonds, imagine a firm issuing long-
term debt when yield is relatively large, say, 6%. Coupon rates will reflect the
general level of interest rates and credit spreads. Imagine that yield drops. This
is extremely good news for the bondholder, as she could sell the bond for a
large price (at premium). However, the firm will regret issuing the bond, as
now it could collect capital at a considerably smaller cost. If a call provision is
embedded in the bond, the issuer may indeed refinance the debt by repurchasing
the old bonds and issuing brand new ones, featuring a smaller coupon rate.

Hence, the bondholder is exposed to reinvestment risk and must be compen-
sated for that. Indeed, the price for a callable bond is smaller than a noncallable
one. We may understand the point by thinking that the holder of a callable bond
has a long position in the bond and a short position in a call option on the bond
itself. In other words, the bondholder implicitly sells a call option to the issuer,
as shown in Fig. 5.2.

Example 5.2 Finding the implicit call option price

The continuously compounded risk-free rates with maturities of 6, 12,
18, and 24 months are, respectively, 2.2%, 2.7%, 3.1%, and 3.49%. A
callable bond, with no default risk, following the usual market condi-
tions, with coupon rate 9%, maturing in two years, trades for 101.12
(face value is 100). What is the value of a call option on the corre-
sponding noncallable bond?

We notice that the bond has a large coupon rate, 9%, with respect
to prevailing rates. Indeed, the bond sells at premium, but 101.12
does not seem large enough. Indeed, the price difference between a
plain bond and a callable bond is just the value of the call (we assume
that there is no default risk). The noncallable bond price is:

4.5e−0.022×0.5 + 4.5e−0.027×1 + 4.5e−0.03×1.5

+ 104.5e−0.0349×2 = 110.59.

Then, the value of the call option is 110.59− 101.12 = $9.47.
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In Example 5.2, we have taken a simple approach to find the value of a
callable bond, assuming that there is no mispricing on markets. However, we
need pricing models to detect arbitrage opportunities and to measure and man-
age risk. As we shall see, pricing options linked with interest rates is not quite
trivial.

With a callable bond, the bondholder sells a call option; with puttable
bonds, the bondholder also buys a put option, allowing her to sell the bond
back and to collect the face value earlier. Clearly, a puttable bond is more ex-
pensive than a plain bond. A similar risk is associated with prepayment risk on
mortgages. This kind of risk affects mortgage-backed securities and requires
careful modeling.

5.2.3.2 Convertible bonds

Convertible bonds can only be issued by corporations, as they offer the possi-
bility of converting the bond to a prespecified number of stock shares of the
issuing firm, at a given price. Thus, a convertible bond includes an equity op-
tion. To be more precise, what is embedded is typically a warrant, rather than
a call option. The peculiar feature of a warrant is that a brand new stock share
is created when the bondholder exercises the conversion option. Hence, it is
immediately understood that a warrant can only be issued by the corporation
itself, rather than by an investment bank.

A convertible bond may be appealing to the issuer, as it is a way to issue
debt at a somewhat lower price, as a convertible bond is less expensive than a
plain bond. It may also be a more palatable way to raise equity since markets,
under certain circumstances, may perceive the issuing of new equity as a bad
signal. From the investors’ viewpoint, convertible bonds offer the possibility of
taking advantage of the firm upside potential, without incurring the risk of stock
trading.

5.3 Interest rate derivatives

In Chapter 4, we have considered simple interest rate derivatives, like vanilla
swaps and Eurodollar futures. In this section, we introduce more complicated
swaps, and point out important institutional details about derivatives written on
bonds.

5.3.1 SWAP MARKETS

We have seen in Section 4.4 that a swap rate may be determined in such a way
that the current value of a swap contract is zero. Swap contracts are actually
quoted by dealers (market makers), and a realistic quote on markets could be

Bid : 4.99, Ask : 5.03,
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for maturity of, say, seven years. As usual, for any security or contract, there is
a bid–ask spread. This means that if we are floating-rate payers, we will receive
a fixed-rate of 4.99%, and we will have to pay 5.03% if we are floating-rate
receivers. An alternative way to quote a swap rate may be in terms of spread
with respect to a reference bond yield. For instance, a quote like 48–51 implies
that the dealer is willing to pay 48 basis points above the bond yield, when
receiving the floating rate, and is asking 51 basis points above, when paying
the floating rate. Another practical complication is that the two payments need
not be synchronized. Payment on the fixed leg may occur every six months,
whereas payments on the floating leg may be linked to the three-month LIBOR,
in which case they occur every three months. Day count conventions must also
be specified and may be different on the two legs.

Furthermore, non-vanilla swaps are actively traded:

The notional amount may change in time. In amortizing swaps, the no-
tional is reduced over time, whereas it is increased in accrediting swaps.
The swap may be based on floating-for-floating payments, where the two
legs are linked to different markets and/or different maturities. This is the
case with basis swaps.
Another example of floating-for-floating swap is a constant maturity
swap (CMS), whereby a floating rate is exchanged for a particular swap
rate. For instance, the three-month LIBOR could be exchanged for an
eight-year swap rate.

Another common kind of derivative is a swaption, i.e., an option giving the
holder the possibility of entering into a swap contract with a predetermined
swap rate at some later time.

5.3.2 BOND FUTURES AND OPTIONS

There are two broad families of derivatives related to interest rates.

Some contracts, like Eurodollar futures, are directly written on a quoted
interest rate. Since an interest rate is not a traded asset, such contracts
specify a notional to which the interest rate is applied and are settled in
cash. Other examples of such contracts are interest rate caps and floors.
Caps and floors are portfolios of caplets and floorlets, respectively, much
like a swap is a portfolio of forwards. A caplet has payoff

N ·∆ ·max
{
Ln(Ti−1, Ti)−Kn, 0

}
,

where N is a notional amount and Ln(Ti−1, Ti) is an interest rate, pos-
sibly LIBOR for tenor [Ti, Ti−1], with the appropriate compounding fre-
quency, where ∆ = Ti − Ti−1 = 1/n. The time interval up to maturity
Tm is partitioned in subintervals indexed by i = 1, . . . ,m. A cap has the
effect of limiting the interest rate exposure on debt, as the derivative will
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pay any interest in excess of the cap rate Kn. The payoff of a floorlet is

N ·∆ ·max
{
Kn − Ln(Ti−1, Ti), 0

}
.

On the contrary, the underlying asset of bond futures and options is an
actual bond. Hence, the dependence on the interest rate is mediated in
a nonlinear way by the bond price, which may be also sensitive to other
risk factors. Furthermore, the contract prescribes the actual delivery of
the underlying asset, rather than being settled in cash.

The last point has important consequences, as the short position has to actually
deliver the bond, unless the contract is closed out before maturity. This raises a
set of important issues related to the risk of cornering the short positions. The
contract could be written on a specific bond, say, a certain T-bond maturing in
15 years. However, especially for relatively illiquid bonds, speculators could
purchase large amounts of the underlying assets before delivery, cornering the
holders of short positions and forcing them to buy at high prices in order to
comply with their obligations. Note that, given the variety of bonds in terms of
coupon rates and maturities, cornering would be easier to carry out in this case
than in equity markets.

Thus, rather than requiring a specific bond, these contracts specify a range
of acceptable bonds. For instance, a contract may prescribe the delivery of
a treasury bond that, when the futures matures, will have at least 15 years to
maturity and is not callable before, say, 10 years. Clearly, such bonds may
have different coupon rates and quite different prices. The short position has
the possibility of choosing the cheapest-to-deliver bond. Since not all bonds
are the same, a conversion factor is prescribed to convert the futures price into
the bond delivery price when the contract is finally settled.

5.4 The repo market and other money market
instruments

The term “money market” refers to securities and trades aimed at satisfying the
need of financial and nonfinancial firms for short-term funding. Banks in need
of short-term liquidity for treasury management may use the interbank market,
which leads to the definition of important reference rates such as LIBOR and
EURIBOR. The shortest maturity loans are related to overnight rates, which
may follow dynamics that are not quite related with the term structure of interest
rates for longer maturities.

A bank may also issue a certificate of deposit, which offers clients an inter-
est rate for a possibly short-term deposit (say, three months). A firm may issue
a banker’s acceptance, which is a debt instrument guaranteed by a bank, is-
sued as a part of a commercial transaction, and then possibly sold on secondary
markets much like a T-bill.

These securities are fairly safe, given the short time horizon, but they can-
not be considered completely risk-free, which is reflected in the interest rate
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underlying the transaction. One possibility that a borrower may use in order to
reduce the interest rate is to provide some collateral. Good collateral is liquid
and risk-free. Clearly, a corporation may offer real estate and machinery as a
collateral, but we cannot really say that these are liquid assets. Now imagine
a bank or a corporation holding some safe treasury bond. They could sell the
bond to raise liquidity, but an alternative is to use it as a collateral. A convenient
way for doing so is a repurchase agreement. Repurchase agreements are so
common that a whole market, referred to as repo market, has grown. The un-
derlying idea is fairly simple: The borrower sells a security to the lender, under
the agreement to repurchase the same security at some later time for a slightly
larger price. The difference between the two prices implies the payment of in-
terest at a rate, called the repo rate. Since there is a collateral, the transaction is
fairly safe, and the borrower may raise short-term liquidity without the need to
actually liquidate assets. To be on the safe side, the lender may request a hair-
cut, which is a reduction of the value of the collateral asset, to protect against
possible loss on the guarantee. The effect of the haircut to the borrower is to
increase the cost of raising short-term cash.

5.5 Securitization

Securitization is a way to engineer new assets by converting illiquid assets, such
as a pool of mortgages, into a tradable security. The institutional arrangements
are beyond the scope of the book,3 but the general idea is that asset-backed
securities (ABS) collect the cash flows from a pool of assets and are sold as
bonds. In the specific case of a mortgage-backed security (MBS), there are
two risks that the investor is subject to:

The prepayment risk: If interest rates drop, the homeowner may find it
convenient to terminate the old mortgage and open a new one at a lower
rate. This kind of risk is similar to the reinvestment risk of a callable
bond.
The default risk, as homeowners may fail to comply with periodic pay-
ments.

Default risk can be diversified away by pooling mortgages, unless risks are
strongly correlated. In normal economic conditions, defaults on mortgages
are supposed to be uncorrelated. Furthermore, a default may be covered by
the house itself, which is a collateral on the loan. Unfortunately, what hap-
pened during the subprime mortgage crisis is that economic downturn resulted
in a large number of defaults, which turned out to be correlated. Furthermore,

3For instance, the bank has to set up a special purpose vehicle, SPV, to manage the cash flows
from the pool of mortgages to owners of mortgage-backed securities.
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house prices dropped. This made default a good option to homeowners,4 as they
could default, give up the old home, and buy a new one at reduced prices. Thus,
loss on the collateral was sustained. Because of securitization, losses were not
sustained by reckless banks originating risky mortgages, but by the investors
holding the MBSs.

It is worth emphasizing that ABSs are sometimes improperly referred to as
derivatives. It is true that the value of such a security depends on something
else, but this applies to whatever security we trade, including stock shares and
bonds. ABSs should not be considered as derivatives, since this link is not
formalized by a precise mathematical formula written into a contract.

An important concept related to securitization is tranching, a mechanism
by which different securities, with different risks, are issued. The idea is that
losses are sustained by different tranches in a well-defined sequence. To keep it
simple, we may imagine that an ABS is tranched into the following three levels:

The equity tranche, which is the first one to face any loss. For instance,
the equity tranche may have to cover the first, say, 5% of loss. The equity
tranche consists of cheap, but speculative-level securities.
The mezzanine tranche, which has to sustain, say, the next 15% of loss.
The senior tranche, which is supposed to be fairly safe, as it has to sus-
tain only the loss in excess of the previous levels.

This kind of arrangement is common to other securities, like collateralized
debt obligations (CDO), or credit default swaps (CDS), which are a credit
derivative. A set of names (debtors) is pooled, and a security is created that
will refund its holder in case of default. A counterintuitive feature of this kind
of assets is related to default correlation.

Example 5.3 Correlation risk and tranching

Common wisdom suggests that increasing correlation between risk
sources has an adverse effect on investors. Actually, there may be
somewhat paradoxical results. Imagine an ABS (or a CDO), where
loss is related to default on the part of 100 debtors, and all potential
losses are the same in monetary terms. The probability of default is
2% for each debtor. Consider an equity tranche liable to pay the first
5% of defaults. What is the probability of losing the whole value of
the asset?

If default events are both equiprobable and independent, the prob-
ability distribution of the number X of defaults is a binomial random
variable, with probability 0.02 and size 100. The probability of a total

4Some homeowners were, in fact, speculators taking advantage of a prolonged period of in-
creased real estate value.
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loss for the equity tranche is

P{X ≥ 5} = 1− P{X ≤ 4}

= 1−
4∑
k=0

(
100

k

)
× 0.02k × 0.98100−k

= 1− (0.133 + 0.271 + 0.273 + 0.182 + 0.090)

≈ 5.08%.

If correlation is increased to 1, i.e., in the case of perfect correlation,
there are only two scenarios:

A name defaults, hence, all of them do the same, with probability
2%, which is the probability of total loss.
No one defaults, with probability 98%.

Therefore, we notice that increasing the correlation reduces the risk of
losing the whole value of an equity tranche asset, contrary to common
wisdom.

Remark. We notice that we are using the term “correlation” in a
somewhat improper way, as the correlation coefficient refers to val-
ues of numerical random variables, whereas we are talking about cor-
relation of events. The meaning can be made more precise, but we
disregard these technical issues.

On the contrary, a senior tranche covering the last 80% of de-
faults is fairly safe with independent defaults, as the probability of
observing more than 20 defaults is negligible. However, total loss has
probability 2% in the case of perfect correlation. Hence, an increasing
correlation increases risk in this case, as one would expect.

Clearly, this example is a limit case, but it shows that the effect
of correlation risk may be counterintuitive.

A second example may be useful to understand the hidden risks in securi-
tization, as well as what happened during the financial crisis in 2007–2009. Let
us consider Fig. 5.3, where a second-level securitization of the original mezza-
nine tranche is illustrated. Since the assets in the mezzanine tranche were fairly
risky, they were not easily sold to investors. This suggested the possibility of
yet another level of securitization, whereby assets in the mezzanine tranche
were pooled, repackaged, tranched again, and sold. As before, let us assume
that in the original ABS created by the first-level securitization, the first 5%
of loss is sustained by the equity tranche and the next 15% by the mezzanine.
As shown in Fig. 5.3, this 15% may be further tranched in CDOs, created by
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FIGURE 5.3 An illustration of second-level tranching.

a second-level securitization. Let us assume that the percentages for the three
new tranches are 10%, 25%, and 65%, respectively.5 One might assume that
the senior tranche of the second-level security was fairly safe, but let us analyze
a few scenarios.

1. If the loss on the original ABS is 10%, the first 5% is sustained by the
equity tranche, and the second 5% is sustained by the mezzanine tranche.
This 5% actually amounts to 33.3% (one third, 5% out of 15%) of the
total potential loss of the original mezzanine tranche. This means that the
equity tranche at the second level sustains a 10% of loss and is wiped out,
and that the mezzanine tranche in the second-level CDO has to sustain
33.3% − 10% = 23.3% of the loss deriving from the original mezzanine
tranche, which amounts to 23.3/25 = 93.2% of the second-level potential
loss. The senior tranche of the CDO is safe in this scenario.

2. A slight increase in loss on the original assets, say, from 10% to 13%, has
a significant impact. Now the original mezzanine tranche loses

13− 5

15
= 53.3%

of its value, which means that the mezzanine tranche of the CDO is wiped
out, too, while the senior tranche loses

53.3− (10 + 25)

65
= 28.2%

of its value.
3. If the loss on the first-level ABS is 15%, the original mezzanine tranche

loses 10/15 = 66.7% of its value. Hence, the senior tranche of the se-
cond-level CDO loses

66.7− (10 + 25)

65
= 48.8%

of its value.

5We use the same numbers as [2, Chapter 8], which is the basis for the treatment here.
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Thus, we realize that senior tranches at the second level of securitization were
actually quite risky. Despite this fact, these second-level CDOs received quite
good ratings from specialized agencies, possibly due to a conflict of interest,
since the agencies in charge of rating these securities were paid for this service
by the investment banks originating them.

Problems

5.1 The risk-free rates with maturities of 6, 12, and 18 months are, respec-
tively, 2.3%, 2.8%, and 3.2% (with continuous compounding). We also have
the following swap rates:

Maturity Bid Offer
2 years 3.4 3.6
2.5 years 3.6 3.9
3 years 3.9 4.2

We assume semiannual payments, and the swap rates are semiannually com-
pounded (this is consistent with market conventions). For the sake of simplicity,
we neglect day count issues and take for granted that all months consist of 30
days. A callable bond with no default risk has coupon rate 10% and matures in
two years. The bond trades for 97.12. What is the value of a call option on
the corresponding noncallable bond?

5.2 Using the same logic as Problem 5.1, how could you price the put option
within a puttable bond?

Further reading
A general introduction to fixed-income markets can be found in [5], where
institutional details about auction markets are also given.
A more quantitative introduction can be found in [3] or [6].
Conversion factors for bond derivatives are described in [2, Chapter 6].
More information on interest rate swaps can be found, e.g., in [4].
For an introduction to credit risk modeling see, e.g., [1].

Bibliography
1 C. Bluhm, L. Overbeck, and C. Wagner. Introduction to Credit Risk Modeling

(2nd ed.). Chapman and Hall/CRC, Boca Raton, FL, 2010.
2 J.C. Hull. Options, Futures, and Other Derivatives (8th ed.). Prentice Hall,

Upper Saddle River, NJ, 2011.



245

3 L. Martellini, P. Priaulet, and S. Priaulet. Fixed-Income Securities: Valuation,
Risk Management, and Portfolio Strategies. Wiley, Chichester, 2003.

4 A. Sadr. Interest Rate Swaps and Their Derivatives: A Practitioner’s Guide.
Wiley, Hoboken, NJ, 2009.

5 S.M. Sundaresan. Fixed Income Markets and Their Derivatives (2nd ed.).
South Western College Publishing, Cincinnati, OH, 2002.

6 P. Veronesi. Fixed Income Securities: Valuation, Risk, and Risk Management.
Wiley, Hoboken, NJ, 2010.





Chapter Six

Interest Rate Risk
Management

This is the final chapter of a sequence dealing with the elementary mathematics
of interest rates and basic fixed-income securities, and it kind of summarizes
all we have seen from Chapter 3 on. We had a taste of what interest risk is in
Section 3.5.5, where we have seen that a shift in the level of interest rates may
have a significant impact on the value of a bond. There, we have considered
the bond price as a function of one risk factor, yield-to-maturity (YTM), and
we have introduced the classical concept of duration for fixed-coupon bonds.
However, this is just an approximation, since a bond price actually depends on
the whole term structure of interest rates. From Section 2.2.3.3, we also know
how first-order immunization against multiple risk factors may be achieved by
using a set of hedging instruments and by measuring the first-order portfolio
sensitivities to each risk factor. In this chapter, we analyze duration in more
depth and extend it in order to deal with a broader set of securities, most notably
interest rate swaps, and show in more detail how risk factor sensitivities may
be used to measure and manage interest rate risk. Later, we shall need more
sophisticated stochastic models in order to cope with interest rate options, which
provide additional flexibility to the risk management toolkit.

The classical definition of duration has several limitations, and a more flex-
ible one is provided in Section 6.1, allowing us to cope, e.g., with floating-rate
bonds and swaps. We also introduce dollar duration to deal with securities
whose value is zero. We dig deeper into the concept of duration in Section 6.2,
where we interpret it as an investment time horizon and provide some connec-
tion between this sensitivity measure and proper risk measures. We deal with
the application of duration to classical immunization in Section 6.3, pointing
out some of its limitations. We also outline an alternative approach, based on
cash flow matching, which may be further refined as a full-fledged optimization
model. Then, in Section 6.4, we show how interest rate derivatives like swaps
can be used to change the interest rate exposure of a fixed-income portfolio.
Since duration is a first-order sensitivity measure, immunization may be refined
by the introduction of a second-order sensitivity, convexity, which is defined in
Section 6.5. Adding convexity to the picture may improve the quality of our
risk management approaches, but it nevertheless deals with the exposure to a
single risk factor. Immunization may be improved if we consider multiple risk
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factors, as we outline in Section 6.6. The resulting approaches rely, e.g., on
factor durations, and still aim at achieving perfect immunization for small per-
turbations. It might be argued that it is better to be imperfectly hedged against
larger perturbations, but this requires more sophisticated optimization models,
like those we cover in Chapter 15.

6.1 Duration as a first-order sensitivity measure

The price of a bond depends on a whole array of interest rates, associated with
maturities corresponding to cash flow times, i.e., periodic coupon payments as
well as repayment of the face value at bond maturity. We denote, as usual, the
continuously compounded rate at time t, with maturity T , by r(t, T ).1 We use
r(t, ·) to denote the whole term structure at time t. We denote the price at time
t of a generic asset depending on the term structure by P

(
t, r(t, ·)

)
. This asset

may be a plain bond with fixed coupons, of course, but also a more complicated
bond, like a floater, or even an interest rate derivative. We will refer to this asset
as a generic fixed-income security. The shape of the term structure can change
in an array of ways, including a parallel shift, as well as a change in slope or
curvature. Let us consider an instantaneous parallel shift δr, transforming the
structure as follows:

r(t, ·) ⇒ r̄(t, ·) = r(t, ·) + δr. (6.1)

Let δP be the corresponding change in the price of a given fixed-income secu-
rity. We define duration as follows, by taking the limit for δr → 0,

DP
.
= − 1

P

dP

dr
, where

dP

dr
= lim
δr→0

δP

δr
. (6.2)

This immediately gives the approximate relationship

δP

P
≈ −DP · δr, (6.3)

which is just a first-order Taylor expansion.
We notice that this definition of duration is different from the classical def-

inition of Macauley duration that we have given in Section 3.5.5. We recall the
definition of Eq. (3.39) for the sake of convenience:

Dmac
.
=

T∑
t=1

tCt
(1 + y1)t

T∑
k=1

Ck
(1 + y1)k

.

1In this chapter, we mostly use continuously compounded rates for the sake of mathematical
convenience. When it is essential to conform to market practice, we use semiannually com-
pounded rates.
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The key point is that the definition we use here does not involve cash flows
Ct at time t. We also recall that classical Macauley and modified durations
differ because of the use of a discretely compounded yield. Here, we adopt
continuously compounded rates, so that the difference disappears, and consider
a parallel shift in the rates themselves, rather than a change in yield-to-maturity,
which is a somewhat fictitious quantity. Nevertheless, we may easily reconcile
all of the above concepts in simple cases, as we show below.

Let us consider a bond with cash flows Ci at times Ti, i = 1, . . . ,m, where
Tm is the bond maturity. The bond price is

P
(
t, r(t, ·)

)
=

m∑
i=1

CiZ(t, Ti) =

m∑
i=1

Cie
−(Ti−t)·r(t,Ti),

where the discount factors Z(t, Ti) are expressed as a function of continuously
compounded rates. Given the shift of Eq. (6.1), the bond price will change to

P
(
t, r̄(t, ·)

)
=

m∑
i=1

Cie
−(Ti−t)·[r(t,Ti)+δr].

Let us consider the bond price as a function of a single variable, s ≡ δr, corre-
sponding to the shift:

F (s)
.
=

m∑
i=1

Cie
−(Ti−t)·[r(t,Ti)+s].

Since we are interested in a small shift δr → 0, let us evaluate the derivative of
the bond price with respect to s, for s = 0:

dF

ds

∣∣∣
s=0

=

m∑
i=1

[
−(Ti − t)Cie−(Ti−t)·[r(t,Ti)+s]

] ∣∣∣
s=0

= −
m∑
i=1

(Ti − t) · Ci · Z(t, Ti)

If we divide the last expression by −P , we may see that the definition of Eq.
(6.2) is consistent with the definition of Macauley duration, which in this case
is

Dmac =

m∑
i=1

(Ti − t) · Ci · Z(t, Ti)

m∑
i=1

Ci · Z(t, Ti)

.

However, there are a few critical differences that we may summarize as follows:

As we have already noted, the classical definition of Macauley duration
differs from the definition of modified duration in the case of discrete
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compounding, possibly leading to confusion. The use of continuously
compounded rates simplifies all of the matter considerably2 and is more
consistent with the continuous-time stochastic models that we will have
to introduce in order to cope with interest rate options.
Usually, duration is defined with respect to yield-to-maturity, whereas
here we make a connection with one possible change in the term structure.
Duration is a single-factor sensitivity measure, but we may have to cope
with multiple factors, or with more complex changes in the term structure.
The new definition makes all of this more explicit.
Defining duration in terms of cash flows is not feasible, when these are
stochastic, as in the case of a floating-rate bond. However, if we define
duration directly as a sensitivity of the bond price, we can apply it to
fixed-income assets featuring stochastic cash flows, too. An even less
obvious point is: What if the bond is callable and the implicit option is
exercised, so that the bond does not get to mature?

The last observations are essential if we want to broaden the range of fixed-
income securities that we use in interest rate risk management, in order to in-
clude interest rate derivatives. A notable example is an interest rate swap. The
classical definition of duration cannot be applied to swaps, since cash flows are
not deterministic. Furthermore, neither the definition in Eq. (6.2) can be ap-
plied, as it may involve division by zero. Indeed, at its inception, the value of
a swap is zero, which makes the above definition useless. This issue will be
solved by introducing the concept of dollar duration. In the rest of the section,
we find the duration of simple securities, as well as the dollar duration of vanilla
swaps.

6.1.1 DURATION OF FIXED-COUPON BONDS

Let us find the duration of a zero-coupon bond with face value F = 100. Its
price is

Pz(t, r;T ) = 100 · Z(t, T ) = 100 · e−r(t,T )·(T−t),

where we may use the streamlined notation Pz(t, r;T ) to denote its price, which
depends only on the rate for a single maturity, r(t, T ), which we may just denote
by r for the sake of simplicity. The first-order derivative with respect to r is

dPz
dr

= 100 ·
[
−(T − t) · e−r·(T−t)

]
= −(T − t) · Pz(t, T ),

which implies

Dz = − 1

Pz

dPz
dr

= (T − t).

2Also the expression of forward rates as a function of spot rates is simpler with continuous
compounding.
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Hence, the duration of a zero is just its time-to-maturity, which is coherent with
the classical definition, if we use continuous compounding. Let us reconsider
the kind of calculations that we carried out in Example 3.14.

Example 6.1 A numerical check

Let us check the accuracy of the approximation in Eq. (6.3) for a
couple of zeros maturing in 3 and 20 years, respectively. If the con-
tinuously compounded yield r is 3%, we have

Pz(0, 0.03; 3) = 100× e−0.03×3 = 91.39312,

Pz(0, 0.03; 20) = 100× e−0.03×20 = 54.88116.

Note that, in practice, prices should be rounded to cents, but we re-
frain from doing so, in order to better illustrate numerical accuracy.
If there is an upshift by ten basis points,

Pz(0, 0.031; 3) = 100× e−0.031×3 = 91.11935,

Pz(0, 0.031; 20) = 100× e−0.031×20 = 53.79444.

The approximate prices P̂z predicted by the duration approximation
are:

P̂z(0, 0.031; 3) = Pz(0, 0.03; 3) · (1− 3× 0.001) = 91.11894,

P̂z(0, 0.031; 20) = Pz(0, 0.03; 20) · (1− 20× 0.001) = 53.78354.

We observe that the approximation seems a bit less accurate for the
longer maturity zero, and that the duration approximation is some-
what “pessimistic,” in the sense that it gives a lower price than exact
repricing. A similar pattern occurs if there is a downshift by ten basis
points:

Pz(0, 0.029; 3) = 100× e−0.029×3 = 91.66771,

Pz(0, 0.029; 20) = 100× e−0.029×20 = 55.98984,

P̂z(0, 0.029; 3) = Pz(0, 0.03; 3) · (1 + 3× 0.001) = 91.6673,

P̂z(0, 0.029; 20) = Pz(0, 0.03; 20) · (1 + 20× 0.001) = 55.97879.

Again, we observe that duration predicts a lower price than the exact
one. When a larger shift occurs, accuracy is less impressive. For
instance, if there is an increase by 100 basis points, we have

Pz(0, 0.04; 3) = 100× e−0.04×3 = 88.69204,

Pz(0, 0.04; 20) = 100× e−0.04×20 = 44.9329,
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P (t, r; T)z

r

FIGURE 6.1 The price Pz(t, T ; r) = F · exp
(
− r · (T − t)

)
of a zero is a convex function

of the rate r, and it is globally underestimated by the tangent line at any point.

but the first-order approximation based on duration yields

P̂z(0, 0.04; 3) = Pz(0, 0.03; 3) · (1− 3× 0.01) = 88.65132,

P̂z(0, 0.04; 20) = Pz(0, 0.03; 20) · (1− 20× 0.01) = 43.90493.

The last approximation, in particular, is rather inaccurate and overly
pessimistic, with a percentage error of

43.90493− 44.9329

44.9329
= −2.28%.

In Example 6.1, we have observed that the linear approximation based on du-
ration is pessimistic, i.e., it underestimates the actual bond price. Actually, this
is not quite surprising, since the relationship between the risk factor and the
bond price involves an exponential, which is a (differentiable) convex function
and is globally underestimated by the tangent line at any point (see Fig. 6.1).
More generally, the price–yield relationship is convex. We may better account
for this nonlinearity by introducing bond convexity, as we shall see later, which
involves a second-order approximation.

To find the duration of a coupon-bearing bond, whose price will be denoted
by Pc

(
t, r(t, ·)

)
, it may be useful to decompose it into a portfolio of zeros and

take advantage of the linearity of derivative as an operator. Let us consider a
portfolio consisting of N1 bonds with price P1 and N2 bonds of price P2. The
portfolio value is

W = N1 · P1 +N2 · P2.
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The duration of the portfolio is just

DW = − 1

W

dW

dr

= − 1

W

[
N1

dP1

dr
+N2

dP2

dr

]
=

1

W

[
N1P1 ·

(
− 1

P1

dP1

dr

)
+N2P2 ·

(
− 1

P2

dP2

dr

)]
=
N1P1

W
D1 +

N2P2

W
D2

= w1D1 + w2D2, (6.4)

where D1, D2 are the two bond durations and w1, w2 are the weights of the two
bonds in the portfolio. Thus, we observe that the duration of a bond portfolio
is just the weighted combination of the individual bond durations. This can be
easily generalized to a portfolio consisting of any number of bonds.

If we decompose a coupon bond maturing at T into a portfolio of m zeros
maturing at times Ti, i = 1, . . . ,m, where Tm = T , we have

Pc
(
t; r(t, ·)

)
=

m−1∑
i=1

c

2
Pz(t, Ti) +

(
1 +

c

2

)
Pz(t, Tm),

which may be considered as a portfolio of m zeros with weights

wi =
c
2 · Pz(t, Ti)
Pc
(
t; r(t, ·)

) , i = 1, . . . ,m− 1,

wm =
(1 + c

2 ) · Pz(t, Tm)

Pc
(
t; r(t, ·)

) .

Thus, the duration of a coupon-bearing bond is

Dc =

m∑
i=1

wi · (Ti − t)

=
1

Pc(t; r(t, ·))
·

[
m−1∑
i=1

c

2
Pz(t, Ti) · (Ti − t) +

(
1 +

c

2

)
Pz(t, Tm) · (Tm − t)

]
,

which is again consistent with the classical definition.

Example 6.2 Duration of a coupon-bearing bond

Consider a bond maturing in 18 months, paying semiannual coupons
at annual rate 5%, with face value $10,000. The term structure is flat,
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and the continuously compounded rate is 3%. The current bond price
is

Pc = 250× e−0.5×0.03 + 250× e−1×0.03 + 10,250× e−1.5×0.03

= 10,287.86.

Its duration is

DP =
1

10,287.86
×
(
0.5× 250× e−0.5×0.03 + 1× 250× e−1×0.03

+ 1.5× 10,250× e−1.5×0.03
)

= 1.4643.

We note that duration is fairly close to bond maturity, since there is a
large terminal cash flow with respect to coupon payments.

6.1.2 DURATION OF A FLOATER

In Section 3.5.6, we have learned how pricing of a floating-rate bond is sur-
prisingly simple. We need the following information, assuming semiannual
coupons:

The interest rate at the last reset time, which determines the amount of the
next coupon payment.
The time of the next reset time, when the next coupon will be paid.
The current interest rate for a maturity corresponding to the next reset
time.

If we denote the last and the next reset times by Ti−1 and Ti, respectively, the
next coupon payment will be

Ci = F · r2(Ti−1, Ti)

2
,

where we use a semiannually compounded rate to conform to market practice.
We assume that Ti is not the bond maturity, as in that case no future uncertain
cash flow is involved. Since we know that the bond trades at par at the reset
times, the floating bond price is

Pf (t; r(t, ·)) = (Ci + F ) · e−(Ti−t)·r(t,Ti).

Essentially, this is the price of a zero maturing at the next reset time. Thus,
duration is just

Df = Ti − t.
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We note that duration does not depend on bond maturity, and that the duration
of a floater is smaller than the duration of a fixed-coupon bond with the same
maturity. Hence, the interest rate risk of a floating-rate bond is rather limited
(see Example 3.15).

6.1.3 DOLLAR DURATION AND INTEREST RATE SWAPS

We have seen, in Section 4.4, that the value of a vanilla interest rate swap can
be expressed as the difference between the prices of a fixed- and a floating-rate
bonds. Hence, we might argue that the duration of a swap is related to the
difference of the two bond durations. Unfortunately, this idea does not work in
general, as the value of an interest rate swap may well be zero. By a similar
token, we may hold a bond portfolio with long and short positions, possibly
amounting to a current value of zero.

To overcome this issue, we define the dollar duration as

D$
P
.
= −dP

dr
. (6.5)

Clearly, if the value P of the security (or portfolio of securities) is not zero,
duration and dollar duration are related as follows:

D$
P = P ·DP .

For instance, in the case of a zero,

dPz
dr

=
d

dr

[
F · e−r·(T−t)

]
= −(T − t) · F · e−r·(T−t),

and so
D$
z = Pz · (T − t).

Assume that we hold a portfolio of fixed-income securities, indexed by i =
1, . . . ,m, and let Ni and D$

i denote the number of units and the dollar duration
of each security, respectively. Then, using linearity of the derivative operator
again, it is easy to see that the dollar duration of the portfolio is

D$
P =

m∑
i=1

Ni ·D$
i .

An immediate consequence is that the dollar duration of a swap is

D$
swap = D$

float −D
$
fixed

for the fixed-rate payer, and

D$
swap = D$

fixed −D
$
float

for the floating-rate payer. Since the duration of a floater is smaller than a fixed-
coupon bond with corresponding maturity, we notice that the dollar duration for
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the fixed-rate payer will be typically negative. Hence, by entering into a swap
agreement, an investor may reduce the duration of a fixed-income portfolio,
without the need of additional capital, since the initial value of the swap is zero.
Another advantage of swaps is that they relieve us from the possibly difficult
task of taking extended short positions in bonds.

Example 6.3 Dollar duration of a swap

Let us consider a swap with the following features:

Nominal amount, $100,000
Maturity, 14 months, so that cash flows will occur in 2, 8, and 14
months
Swap rate, 3.4% with semiannual compounding, so that the fixed
payment is

100,000× 0.034

2
= $1700

The current term structure, with continuous compounding, is

r(0, 2/12) = 3%, r(0, 8/12) = 3.5%, r(0, 14/12) = 4%.

At the last reset time, four months ago, the six-month rate was 3.8%
with semiannual compounding, so that the next floating payment will
be

100,000× 0.038

2
= $1900.

The value of the fixed-rate bond is

Pfixed = 1700× e−0.03×2/12 + 1700× e−0.035×8/12

+ 101,700× e−0.04×14/12 = $100,415.35,

and its dollar duration is

D$
fixed =

2

12
× 1700× e−0.03×2/12 +

8

12
× 1700× e−0.035×8/12

+
14

12
× 101,700× e−0.04×14/12 = $114,629.33.

The value of the floating-rate bond is

Pfloat = 101,900× e−0.03×2/12 = $101,391.77,

and its dollar duration is

D$
float =

2

12
× 101,900× e−0.03×2/12 = $16,898.63.
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Hence, taking the viewpoint of the fixed payer, the value of the swap
is

Pswap = Pfloat − Pfixed = $976.42,

and its dollar duration is

D$
swap = D$

float −D
$
fixed = −$97,730.70.

Let us consider an instantaneous parallel upshift of ten basis points in
the term structure. According to the dollar duration approximation,
the new swap value can be approximated by

P̂swap ≈ Pswap −D$
swap · 0.001 = $1074.15.

If we reprice the swap exactly, we find the following values after the
shift:

P̄fixed = 1700× e−0.031×2/12 + 1700× e−0.036×8/12

+ 101,700× e−0.041×14/12 = $100,300.79,

P̄float = 101,900× e−0.031×2/12 = $101,374.87,

P̄swap = P̄float − P̄fixed = $1074.09,

showing the accuracy of the approximation for a small shift.
We should note that, unlike plain bonds, the value of the swap

may be increased by a rise in the the interest rates, which shows the
potential of swaps for hedging interest rate risk. The increase in the
swap value is slightly overestimated by the first-order approximation,
whereas the loss on a bond is overestimated when using this kind of
approximation. The explanation is provided by convexity vs. con-
cavity (sometimes referred to as negative convexity) of the nonlinear
functions that we are approximating to the first order.

A related concept is the price value of a basis point, denoted as PV01 or
PVBP, which is the dollar loss for a perturbation δr = 0.0001, i.e., an increase
of one basis point, which is just

PV01 = −D$
P × 0.0001.

6.2 Further interpretations of duration

A deeper understanding of the meaning of duration, as well as its limitations,
may be acquired by linking it with interest rate risk in different ways. In this
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section, we disregard the full term structure and consider yield-to-maturity (an-
nually or continuously compounded, according to convenience) as the single
risk factor. This clearly limits the practical applicability of our findings, but not
their conceptual usefulness.

6.2.1 DURATION AND INVESTMENT HORIZONS

Consider a plain zero maturing in five years, which is the bond duration, too.
If our investment horizon is exactly five years, we do not care about a possible
increase in yield. The bond price will drop if yield rises, but we will just recover
the loss under the increased yield, and we will receive the face value anyway,
at maturity. This is not true if the investment horizon is smaller than the bond
duration, i.e., if we plan to sell the zero before its maturity. Now what if we
are considering a coupon-bearing bond? In this case, we know that an increase
in yield implies a drop in the bond price, but this may be somehow mitigated
by the possibility of reinvesting coupons at a larger rate. The contrary happens
when yield drops: We have a welcome capital gain, but we also suffer from
coupon reinvestment risk. In both cases, we have contrasting effects, and the
final outcome may also depend on our investment horizon.

As it turns out, Macauley duration is an investment horizon such that we
are indifferent to small changes in yield. To see this, let us consider a bond
maturing at time T , with price Pc(y1) depending on the annually compounded
yield y1. Say that we plan to hold the bond for a time period of length H < T .
If the yield does not change, and we reinvest coupons at a rate y1 and sell the
bond at t = H , wealth will be

Pc(y1) · (1 + y1)H . (6.6)

If yield changes instantaneously by an amount δy1 and then remains constant,
wealth at time t = H will be

Pc(y1 + δ1) · (1 + y1 + δy1)H . (6.7)

By equating Eqs. (6.6) and (6.7), we may find the indifference horizon H . This
is much easier if we take logarithms:

logPc(y1) +H · log(1 + y1) = logPc(y1 + δ1) +H · log(1 + y1 + δy1).

Let us rearrange this equation and divide by δy1:

logPc(y1 + δ1)− logPc(y1)

δy1
= −H · log(1 + y1 + δ1)− log(1 + y1)

δy1
.

For a small perturbation δy1, we may replace these ratios by the derivative of a
logarithm. We recall that, by using the chain rule for the derivative of a com-
posite function, we find

d log f(x)

dx
=
f ′(x)

f(x)
.
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Hence, we obtain
1

Pc(y1)
· P ′c(y1) = −H · 1

1 + y1
,

where the right-hand side includes the ratio between the derivative of the func-
tion 1+y1, which is just 1, and the function itself. A slight rearrangement shows
that H is just the Macauley duration:

H = −(1 + y1) · 1

Pc(y1)
· P ′c(y1) ≡ Dmac.

Let us illustrate this finding with a simple example.

Example 6.4 Duration and investment horizons

Let us consider a bond with face value $10,000, maturing in three
years, and paying an annual coupon at rate 6%. If annual yield is 4%,
the bond price is

Pc(4%) =
600

1.04
+

600

1.042
+

10,600

1.043
= $10,555.02,

and its Macauley duration is

Dmac =
1

10,555.02
×
[
1× 600

1.04
+ 2× 600

1.042
+ 3× 10,600

1.043

]
= 2.84.

If yield does not change, we reinvest coupons at 4%, and sell the bond
at time H = 2.84, wealth will be

WH(4%) = 600× 1.042.84−1 + 600× 1.042.84−2 +
10,600

1.043−2.84

= $11,797.82.

To understand this expression, note that the first two cash flows are
reinvested up to time t = 2.84, whereas the third cash flow is dis-
counted from time t = 3 to t = 2.84. If yield is increased by 50 basis
points, wealth will be

WH(4.5%) = 600× 1.0452.84−1 + 600× 1.0452.84−2 +
10,600

1.0453−2.84

= $11,797.85.

Indeed, up to an approximation error, future wealth at the right time
horizon is insensitive to small changes in yield.
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6.2.2 DURATION AND YIELD VOLATILITY

Duration may be considered a measure of interest rate sensitivity for fixed-
income securities, but not a risk measure, unless we link it with an uncertainty
model. If we consider the continuously compounded yield y as a risk factor,
then the approximate relationship

δP

P
≈ −D · δy

implies that the standard deviation of bond return σ is proportional to the stan-
dard deviation of yield:

Var

(
δP

P

)
≈ D2 ·Var(δy) ⇒ σ ≈ Dσy,

where σy is the standard deviation of the perturbation δy, i.e., yield volatility.
Thus, duration is a factor determining volatility, which is a symmetric risk mea-
sure. In general, when we have a short time horizon and a low risk tolerance, a
wise suggestion is to invest in short-duration money market securities.

6.2.3 DURATION AND QUANTILE-BASED RISK MEASURES

In order to overcome some limitations of volatility, which is a symmetric risk
measure, we have introduced quantile-based risk measures like value-at-risk
(V@R) in Section 2.2.2.3 Duration may be used to find an approximation of
such measures. The idea is pretty simple, if we assume a one-factor risk model
under a normal distribution. If δy ∼ N

(
µy, σ

2
y

)
, from the relationship

δP ≈ −P ·DP · δy,

we immediately find that the loss LP = −δP is normally distributed, too, with
parameters

µL = P ·DP · µy, σL = P ·DP · σy.

Example 6.5 Bond V@R

Consider a bond maturing in 18 months, paying semiannual coupons
at rate 5%, with face value $10,000. The term structure is flat, so
we identify interest rate r and yield y, which is 3% with continuous
compounding. We assume that this rate is subject to an instantaneous
shock, characterized by a normal distribution with µr = 0% and σr =
0.5%, and we want to find V@R at confidence level 99%.

3See Section 7.4 for a more in-depth treatment.
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The current bond price is

Pc = 250× e−0.5×0.03 + 250× e−1×0.03 + 10,250× e−1.5×0.03

= $10,287.86.

Its duration is

DP =
(

0.5× 250× e−0.5×0.03 + 1× 250× e−1×0.03

+ 1.5× 10,250× e−1.5×0.03
)
/10,287.86

= 1.4643.

The approximated V@R is given by

z0.99 · σp · P ·DP = 2.3263× 0.005× 10,287.86× 1.4643

= $175.22.

The exact V@R, in this simple case, can be found by just repricing
the bond with the worst rate at 99% confidence level,

rworst99% = 0.03 + 2.3263× 0.005 = 0.0416,

which gives

Pc,worst99% = 250× e−0.5×0.0416 + 250× e−1×0.0416

+ 10,250× e−1.5×0.0416 = $10,114.14.

Hence, the exact value-at-risk is

V@R = 10,287.86− 10,114.14 = $173.72

which is fairly close to the approximation.

We notice that the duration approximation does a good job in Example 6.5,
where the estimate is slightly pessimistic because of a convexity effect. The ac-
tual problem lies in the normal approximation itself, which is pretty debatable.
We should also notice that we have not considered the effect of time, as we have
assumed an instantaneous shock.

6.3 Classical duration-based immunization

Duration is not only a way to measure interest rate sensitivity, but also a tool to
immunize a portfolio against interest rate risk. The idea is just an application
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of the general approach introduced in Section 2.2.3.3, and it is best illustrated
in the context of asset–liability management (ALM) problems. For the sake
of simplicity, we consider a stream of deterministic liabilities Lj , to be paid at
times Tj , j = 1, . . . ,m. On the asset side, we have to choose a fixed-income
portfolio able to provide cash flows sufficient to cover the liabilities. This kind
of problem, with some more realistic twists, is common to insurance companies
and pension funds, among others. In this section, we pursue two ideas for setting
up the asset portfolio:

Matching the whole stream cash outflows over time.
Matching the present value of assets and liabilities, making sure that some
immunization guarantee is met.

6.3.1 CASH FLOW MATCHING

A portfolio exactly matching the liabilities would be easy to build if we had a
rich set of zeros, with maturities corresponding to the time instants at which
liabilities are to be met. Denoting by Nj the holding of each zero maturing at
time Tj , with face value Fj , we would just set

Nj =
Lj
Fj
, j = 1, . . . ,m,

assuming asset divisibility. The current value of the asset portfolio would just
match the present value of the liabilities:

PVA
(
r(0, ·)

) .
=

m∑
j=1

NjFj · Z(0, Tj) =

m∑
j=1

Lj · Z(0, Tj)
.
= PVL

(
r(0, ·)

)
,

where we use discount factors Z(0, Tj) associated with the current term struc-
ture r(0, ·). Assuming that bonds are free from default risk, any change in the
term structure would be irrelevant.

In practice, such a rich set of zeros, including long maturities, may not be
available, or it may be expensive, not to mention default risk on the long term.
Hence, we could consider a set of n bonds, possibly coupon-bearing ones, with
current prices Pi, i = 1, . . . , n, paying at time j a cash flow denoted by Fij .
Let us assume, for the sake of simplicity, that bond cash flows and liabilities
are synchronized. Then, we may consider the following cash flow matching
model:

min

n∑
i=1

Pixi

s.t.
n∑
i=1

Fijxi ≥ Lj j = 1, . . . ,m

xi ≥ 0,
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where xi is the amount of each bond that we buy. This is a simple linear pro-
gramming model, which may be easily solved by commercial software. A little
thought, however, suggests that this model is too naive to be of any practical
use:

The cash flow timings need not be perfectly synchronized, and we should
manage liquidity by short-term investing or borrowing.
The model is static and does not consider the possibility of buying or
selling bonds along the way.
The solution is likely to be too expensive, as the approach is essentially
based on a superhedging strategy, where any cash surplus is of no use.

A more sophisticated modeling approach, allowing for dynamic trading, should
be considered, as we shall discuss in Chapter 15. Unfortunately, this model
should account for the stochastic nature of interest rates and bond prices, and
this may result in a quite challenging stochastic programming problem. A more
down-to-earth idea is to rely on first-order immunization.

6.3.2 DURATION MATCHING

In asset–liability management, the first and foremost concern is solvency, which
is to say that equity,

E
.
= PVA

(
r(0, ·)

)
− PVL

(
r(0, ·)

)
,

should never be negative. In insurance management, some safety buffer (tech-
nically speaking, a reserve) is maintained, so that equity is strictly positive. For
the sake of simplicity, let us assume that we wish to find a minimum cost port-
folio, where equity is zero, and that the only relevant risk factor is the annually
compounded yield y1. Hence, we are satisfied when

PVA(y1) = PVL(y1). (6.8)

Unfortunately, a change in yield may have a different impact on assets and
liabilities, so that equity may get negative. If there is a small change δy1 in
yield, solvency will not be affected if

δPVA
δy1

=
δPVL
δy1

, (6.9)

which means that the two dollar durations are the same. Using the relationships
between dollar duration, duration, and classical Macauley duration, we find:

D$
A = D$

L ⇒ PVA(y1) ·DA = PVL(y1) ·DL

⇒ PVA(y1) · DA,mac

1 + y1
= PVL(y1) · DL,mac

1 + y1
,

which, given Eq. (6.8), boils down to saying that the two Macauley durations
must be the same. This is also consistent with the interpretation of Macauley
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duration as an investment horizon such that small changes in yield have no effect
on terminal wealth.

In order to match DL,mac, we may use two bonds, with prices P1 and P2,
and Macauley durations D1,mac and D2,mac, respectively. In order to match the
value of assets and liabilities, we must hold bond amounts N1 and N2, such that

N1 · P1(y1) +N2 · P2(y1) = PVL(y1).

By dividing both sides of the equality by PVA(y1) and recalling that the duration
of a bond portfolio is the weighted average of the individual durations,4 we end
up with the following system of linear equations:

w1 + w2 = 1

w1 ·D1,mac + w2 ·D2,mac = DL,mac,

where w1 and w2 are the weights of the two bonds in the portfolio. Using the
substitution w2 = 1− w1, the second equation immediately gives

w1 =
DL,mac −D2,mac

D1,mac −D2,mac
.

Expressing the whole thing in terms of bond holdings, we finally obtain

N1 =
PVA
P1
· DL,mac −D2,mac

D1,mac −D2,mac
, N2 =

PVA
P2
· D1,mac −DL,mac

D1,mac −D2,mac
. (6.10)

This classical approach looks simple enough, but we should mention a few
difficulties:

In principle, we might find a negative bond holding, which means that
we should sell a bond short. This is not easily arranged for an extended
period of time.
The duration will change over time, and we need to periodically rebalance
the asset portfolio, incurring transaction costs.
Another reason to rebalance the asset portfolio is that some bonds will
mature along the way. If we want to bracket a target duration with positive
weights, we shall need a bond with a smaller duration and another bond
with a larger duration than the liability, which means that a bond will
mature early and will need to be replaced.
We are only immunized to the first order against a single risk factor (or,
equivalently, only against small parallel shifts in the term structure).

These difficulties may be eased by using more than two bonds, and by exten-
sions that we discuss in the following: (a) taking advantage of the flexibility of
interest rate derivatives; (b) introducing second-order sensitivities (bond con-
vexity); (c) introducing multifactor models.

4See Eq. (6.4).
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6.4 Immunization by interest rate derivatives

Using bonds as hedging instruments has some disadvantages in terms of cost,
liquidity, and limits to short positions. In this section, we apply the generic
framework introduced in Section 2.2.3.3 to interest rate risk immunization by
simple interest rate derivatives. First-order immunization relies on duration or
dollar duration. We consider here one risk factor, which may be a parallel shift
in the term structure or a change in YTM. We should note that, when we con-
sider YTM, different assets will have different yields, but they are affected in
the same way by a parallel shift.

Let us consider a fixed-income portfolio, whose value at time t is P (t; r(t, ·)),
where we emphasize dependence on the full term structure r(t, ·) at time t. If
we include φ units of a hedging instrument H , the value of the hedged portfolio
is

Ph
(
t; r(t, ·)

)
= P

(
t; r(t, ·)

)
+ φH

(
t; r(t, ·)

)
.

Given an instantaneous shock δr, we find

δPh
.
= Ph

(
t; r(t, ·) + δr

)
− Ph

(
t; r(t, ·)

)
≈ dP

dr
δr + φ

dH

dr
δr.

By setting δPh = 0, we find the hedging ratio φ in terms of durations,

DP · P · δr + φDH ·H · δr = 0 ⇒ φ = −DP · P
DH ·H

, (6.11)

which works with bonds, but not with a swap or a futures with initial value
H = 0. In terms of dollar duration we have

D$
P · δr + φD$

H · δr = 0 ⇒ φ = −
D$
P

D$
H

. (6.12)

Example 6.6 Hedging interest rate risk with bond futures

Futures contracts that are sensitive to interest rates may be used as
hedging instruments against interest rate risk. However, if we use
bond futures, a complication arises, as we should consider the du-
ration D$

ctd of the bond that is likely to be actually delivered (the
cheapest-to-deliver bond that we mentioned in Section 5.3.2) as well
as its conversion factor CF. In this case, Eq. (6.12) reads

φ = −
D$
P

D$
ctd

· CF.

Using eurodollar futures or similar contracts avoids this trouble. In
any case, hedging over a long time horizon using future contracts
may require tailing the hedge, in order to account for daily marking-
to-market.
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6.4.1 USING INTEREST RATE SWAPS IN ASSET–LIABILITY
MANAGEMENT

As we have seen in Section 6.3.2, a concern in asset–liability management prob-
lems is to keep equity,

E = A− L,

at a safe level. Interest rate swaps are quite convenient, since they do not require
initial cash outlays and allow to modify the interest rate risk exposure in a very
flexible way by taking the fixed- or floating-payer positions with a range of
maturities.

Let us denote the dollar duration of assets and liabilities by D$
A and D$

L,
respectively. If we do not hedge, the dollar duration of equity,

D$
E = D$

A −D$
L,

may be far from zero, exposing us to interest rate risk. As we have seen in
Section 6.1.3, the dollar duration of a swap is

D$
swap = D$

float −D
$
fixed.

The exact sign of the difference does not matter, as we may easily reverse the
swap by taking the opposite position. We may choose the notional N in such a
way that the hedged portfolio has zero dollar duration:

D$
E = D$

A +N ·D$
swap −D$

L = 0 ⇒ N =
D$
L −D$

A

D$
swap

.

Note again that we do not change the original value of equity, as the initial value
of the swap is zero.

6.5 A second-order refinement: Convexity

Duration-based hedging relies on first-order sensitivities. One way to improve
the accuracy and the performance of hedging strategies is to adopt a second-
order approximation. To this aim, we may introduce (bond) convexity,

CP
.
=

1

P

d2P

dr2
. (6.13)

Convexity may be applied to any fixed-income security or portfolio, even though
it was originally introduced for bonds. A look at Fig. 6.1, where we observe the
convex relationship between bond price and yield, suggests that convexity is
positive for a plain bond. By using convexity, we can write a second-order
Taylor expansion of the relative change in P :

δP

P
≈ −DP · δr + 1

2 · CP · (δr)
2.
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It is important to notice that bond convexity is not the derivative of duration.
Just as with duration, it is also convenient to introduce dollar convexity5:

C$
P
.
=
d2P

dr2
. (6.14)

Just like we have done with duration, we may find the convexity Cz of a
zero-coupon bond first. Since

Pz(t, T ) = F · e−r(t,T )·(T−t),

we have
d2Pz
dr2

= (T − t)2 · F · e−r(t,T )·(T−t) = (T − t)2 · Pz,

and
Cz = (T − t)2. (6.15)

It is also easy to see that the convexity of a fixed-income portfolio is just the
weighted combination of the individual convexities. More precisely, if the value
of the portfolio is

V =

m∑
i=1

NiPi,

where Ni and Pi are the holdings (how many units) and the price of security i,
respectively, then

C =

m∑
i=1

wiCi,

where Ci is the convexity of asset i and the weights are

wi =
Ni · Pi
V

.

As an immediate consequence, the convexity of a coupon-bearing bond is

Cc =
1

Pc
(
t, r(t, ·)

) · [m−1∑
i=1

c

2
· Pz(t, Ti) · (Ti − t)2

+
(

1 +
c

2

)
· Pz(t, Tm) · (Tm − t)2

]
. (6.16)

In Eq. (6.16), we find a formal verification that convexity is positive for a plain
bond. As we noticed in Example 6.1, the convexity effect explains why the
first-order approximation by duration is somewhat pessimistic with respect to
the true changes in bond prices when yield is shifted. Now, let us see how the
approximation is improved by adding a second-order term.

5In Section 13.5, dealing with option price sensitivities, we will appreciate the similarity of
dollar duration and convexity with option delta and gamma, respectively.
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Example 6.7 A numerical check (continued)

Let us check if and by how much using convexity improves the ap-
proximation of the bond price changes that we have considered in
Example 6.1. As we have seen there, the prices of two zeros maturing
in 3 and 20 years, respectively, are

Pz(0, 0.03; 3) = 100× e−0.03×3 = 91.39312,

Pz(0, 0.03; 20) = 100× e−0.03×20 = 54.88116,

when yield is 3%, and they drop to

Pz(0, 0.04; 3) = 100× e−0.04×3 = 88.69204,

Pz(0, 0.04; 20) = 100× e−0.04×20 = 44.9329,

when there is an increase by 100 basis points. If we use both duration
and convexity, we find the approximations

P̂z(0, 0.04; 3) = Pz(0, 0.03; 3) ·
(
1− 3× 0.01 + 1

2 × 32 × 0.012
)

= 88.69245,

P̂z(0, 0.04; 20) = Pz(0, 0.03; 20) ·
(
1− 20× 0.01 + 1

2 × 202 × 0.012
)

= 45.00255.

These approximations are definitely more accurate than those pro-
vided by a first-order expansion. For the second zero, the percentage
error drops (in absolute value) from 2.28% in Example 6.1 to

45.00255− 44.9329

44.9329
= 0.155%,

when adding the second-order term.

We should note the following:

Convexity is a nice property of a bond, since a larger convexity means a
larger profit when yield drops and a smaller loss when yield rises. This is
too good to be true, and one should expect that this is paid somehow in
terms of bond price.6

We may improve the immunization of an asset–liability portfolio by set-
ting both duration and convexity of equity to zero. This requires addi-

6When dealing with option price sensitivities in Section 13.5.3, we shall see the related link
between option gamma (convexity) and option theta (option price decay with time). A large
gamma is associated with a faster option price decay.
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tional hedging instruments, but it does not increase computational com-
plexity significantly. However, it is still true that we are considering only
a single risk-factor, and that we are perfectly hedged against small pertur-
bations. When dealing with multiple risk factors, we have to cope with
second-order cross-sensitivities, which may actually increase complexity.

6.6 Multifactor models in interest rate risk management

Duration-based immunization is a first-order approach aimed at hedging against
a single risk factor. Introducing convexity does not really change the picture,
since it introduces a second-order approximation that still copes with a single
risk factor. Since the term structure involves multiple risk factors, we may have
to take a different approach. In the following example, we illustrate how dura-
tion fails to cope with nonparallel shifts in the term structure, which is typically
affected by changes in slope and curvature, too.

Example 6.8 The effect of nonparallel shifts

Let us consider again the coupon-bearing bond of Example 6.2. If
the term structure is flat and the continuously compounded rate is
3%, we have seen that the bond price and durations are Pc(0; 0.03) =
$10,287.86 and DP = 1.4643, respectively. Thus, the dollar duration
of this bond is

D$
P = 10,287.86× 1.4643 = $15,064.21.

Suppose that we hedge interest rate risk with a short position in a
zero maturing in six months, with a face value of $10,000, like the
coupon-bearing bond. The price of this hedging instrument is

H(0; 0.03) = 10,000× e−0.03×0.5 = $9851.12,

its duration is 0.5, and its dollar duration is

D$
H = 9851.12× 0.5 = $4925.56.

Hence, the short position should consist of

φ = −15,064.21

4925.56
= −3.06

units of the zero. We neglect rounding issues, and we assume that
the short sale is feasible, possibly through the repo market. No initial
cash outlay is needed (we ignore haircuts, margins, etc.). Hence, the
current value of the hedged portfolio is just the bond price:

VH(0; 0.03) = $10,287.86.
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Let us assume that there is a parallel upshift by 100 basis point,
i.e., the new term structure is flat at 4%. This is assumed to be instan-
taneous and takes place at time t = 0. The new bond prices are easily
computed,

Pc(0; 0.04) = $10,138.33, H(0; 0.04) = $9801.99,

and the value of the hedged portfolio changes to

VH(0; 0.04) = Pc(0; 0.04) + φ ·
[
H(0; 0.04)−H(0; 0.03)

]
= 10,138.33− 3.06× (9801.99− 9851.12)

= $10,288.67,

which is very close to the initial one, with some difference due to con-
vexity effect. The loss on the coupon-bearing bond is compensated by
the profit from the short position on the zero.

However, what if the shift is nonparallel? Let us assume that the
new term structure is not flat anymore:

r̄(0, 0.5) = 3.8%, r̄(0, 1) = 4.0%, r̄(0, 1.5) = 4.2%.

Note that, on the average, the new interest rate is 4%, as with the
parallel shift. The new bond prices are

Pc
(
0; r̄(0, ·)

)
= 10,109.66, H

(
0; r̄(0, ·)

)
= 9811.79,

and the value of the hedged portfolio is only

VH
(
0; r̄(0, ·)

)
= 10,109.66− 3.06× (9811.79− 9851.12)

= $10,230.01.

In this case, the drop in the price of the zero is not enough to com-
pensate the loss on the bond and we end up being under-hedged. The
overall loss (−0.56%) does not look quite impressive, but this hap-
pens because the maturity of the coupon-bearing bond is rather short
(see Problem 6.5). Probably, we would be better off with a zero with a
longer maturity, but the general point is that, since we are dealing with
three risk factors, we must introduce additional hedging instruments
and assess individual sensitivities for each risk factor.

In order to deal with multiple risk factors, we have to introduce a multifac-
tor model. Unfortunately, the whole term structure r(t, ·) consists of a virtually
infinite set of risk factors. The resulting complexity may be reduced in a few
ways:
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One approach is to introduce factor durations, possibly durations corre-
sponding to rates at carefully selected maturities. Then, first-order immu-
nization may be carried out as suggested in Section 2.2.3.3.
A slightly different approach relies on an alternative way of finding fac-
tors. One idea is to take linear combination of rates, e.g., by principal
component analysis. Then again, factor durations are put to good use.
These two approaches have one thing in common: They aim at perfect
immunization for small changes in the risk factors. It has been argued that
it may be preferable to be approximately hedged against large changes in
the risk factors. To achieve this objective, one may resort to scenario-
based optimization models, like those we introduce in Chapter 15. In that
case, too, we need a suitable multifactor model to generate scenarios.

We note that the idea of factor models is not limited to fixed-income assets.
Models in this vein for equity portfolios are discussed in Chapter 9. In that
case, the structure is somewhat different. Generally, multifactor models for
fixed-income portfolios deal with similar factors, i.e., rates or combination of
rates, and perhaps credit spreads. In the equity case, the factors are substantially
different, as we shall see, and range from macroeconomic factors like inflation
rate or oil price, to financial factors like the amount of financial leverage of a
specific firm or a broad market index. They may also include behavioral factors
like market momentum.

Problems

6.1 In five years, you will have to pay a single and deterministic liability,
amounting to $10,000. The only asset you may use is a bond paying a 7%
annual coupon and maturing in six years. At present, yield is 6% with annual
compounding.

Assuming asset divisibility, how much should you buy of this bond?
What is the performance of the resulting ALM policy if yield goes up or
down by 100 basis points? How do you explain the result? Assume that
the change is immediate and instantaneous.

6.2 In five years, you are going to pay 20,000 to purchase a machine for
your firm. Consider a portfolio consisting of a zero-coupon bond maturing in
seven years and a coupon bond with coupon rate 5% (the bond pays one coupon
per year), maturing in three years. The term structure is flat, and the rate is now
4% with annual compounding. Assume a face value of 1000 for both bonds.

Build an immunized portfolio. What is the problem with your choice of
bonds?
Repeat the procedure, but now consider the same zero and a similar coupon
bond maturing in six years. Is this portfolio easy to implement?
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6.3 In six years, you will have to pay a single, deterministic liability for an
amount of 30,000. Consider a portfolio consisting of a zero maturing in eight
years and a bond paying a single annual coupon with rate 4%, maturing in four
years. The term structure is flat at a rate of 3.5%, with annual compounding.
Assume a face value of 1000 for both bonds.

Build a first-order immunized portfolio and check its performance for an
immediate shift of ±50 basis points.
Repeat the procedure, but now include another zero maturing in three
years, in order to match both duration and convexity of the assets and the
liability. Compare the performance against the previous portfolio.

6.4 Your portfolio consists of two sovereign bonds: A zero maturing in three
years and a coupon bond maturing in two years, paying a single annual coupon
at rate 4%. Assume a face value of 1000 for both bonds. The one-year risk-
free forward rates are 3%, 4%, and 5%, respectively, with annual compounding
(Actually, the first rate is the annual spot rate, and the last one applies to an
investment over the time interval [2, 3]). The amounts invested in the two bonds
are 53,000 and 93,000, respectively (assume asset divisibility). The two
bonds have been issued by the same government, and the price is influenced by
a spread due to specific country risk. The spread is 2.3% at present (applying
uniformly to every maturity), and it is subject to a random shock, which we
assume uniformly distributed between −1% e +2% (hence, the new spread will
be in the range between 1.3% and 4.3%). Neglecting the passage of time, find
value-at-risk at probability level 97%.

6.5 Repeat the analysis of Example 6.8, but now consider a bond maturing
in five years. For the nonparallel shift, assume a new term structure of rates
linearly increasing from 3% to 5%, so that the average is 4% in both cases,
parallel and nonparallel shifts. In the second case, the rates for the ten maturities
(six months, one year, one year and a half, all the way up to five years) are

3%, 3.22%, 3.44%, 3.67%, . . . , 4.56%, 4.78%, 5%.

Do you still observe a small loss as in Example 6.8? What if you increase the
maturity of the zero to three or five years?

Further reading
General textbooks on fixed-income securities, like [3] and [5], include
extensive sections on interest rate risk management, dealing in more depth
with all of the topics that we have outlined in this chapter. Example 6.8 is
a simplified version of a case discussed in [5, Chapter 4].
For a more specific treatment, you may consult [2] and [4].
For a comprehensive reference, also covering the use of interest rate deriva-
tives in interest rate risk management, see [1].
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Part Three

Equity portfolios





Chapter Seven

Decision-Making under
Uncertainty: The Static Case

Uncertainty is the rule in most financial decision-making problems. The proto-
typical case is the allocation of wealth to a set of assets with uncertain returns.
If we make a here-and-now decision and observe the return of the portfolio af-
ter a given holding period, we are considering a static decision problem, since
we disregard the possibility of adjusting our decisions along the way, when we
observe the actual unfolding of uncertain risk factors. This is not to say that,
in reality, the portfolio will not be adjusted after a while, possibly by solving
the same model again; the point is that this is not explicitly considered in the
decision model itself. On the contrary, multistage decision models take into
account the possibility of updating decisions, depending on the incoming infor-
mation flow over time. It is important to avoid a potential confusion between
multistage and multiperiod models. A multiperiod problem requires the plan-
ning of decisions to be executed over a sequence of time instants. However, if
the plan is specified here and now, once for all, the problem is actually static,
as there is no dynamic adaptation. The solution of a multiperiod problem is a
sequence of numbers, representing the decisions that are supposed to be imple-
mented, no matter what. On the contrary, the solution of a multistage problem
consists of a set of random variables, since decisions will be contingent on the
realization of uncertain states. We may also explicitly express decisions as func-
tions of the uncertain states or, alternatively, as functions of the realization of
random risk factors.

In this chapter, we lay down the conceptual foundations of decision-making
under uncertainty in the static, single-period case. It is useful to consider port-
folio decisions as an application framework to understand the related issues;
however, what we describe here is also relevant for asset pricing. Here, we do
not consider either model building or solution algorithms.1 In Chapter 8, we
discuss a specific relevant case in detail, mean–variance portfolio optimization,
whereas in Chapter 15 we outline more advanced models, including multistage

1A very simple introduction to deterministic optimization models and solution algorithms is
given in Chapter 12 of [4]. Chapter 13 therein describes some models for decision-making
under uncertainty, including, but not limited to financial problems.
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ones. Here, we introduce three possible approaches to decision-making under
uncertainty that are relevant to finance:

Utility functions
Mean–risk models
Stochastic dominance

We start with a few simple introductory examples in Section 7.1. Then,
in Section 7.2, we show that financial decision-making cannot rely on simple
maximization of expected wealth or expected return. Risk should be carefully
accounted for. One way for doing so, albeit not quite a practical one, is by
introducing expected utility, as we illustrate in Section 7.3. A more practical
approach is based on the definition of suitable risk measures and the solution of
a mean–risk optimization problem. Mean–risk models, as we show in Section
7.4, are the foundation of the ubiquitous mean–variance portfolio optimization
framework. However, there is no reason why we could not replace standard
deviation (or variance) of return by an alternative risk measure. We have al-
ready introduced value-at-risk in Section 2.2.2. Here, we discuss some basic
properties that a coherent risk measure should satisfy. As it turns out, value-at-
risk is not quite satisfactory in this respect. Then, in Section 7.5, we outline a
third approach, stochastic dominance. This last section is included for the sake
of completeness, but it is not needed for the remainder of this book and may
be safely skipped. We also include a couple of theorem proofs in Supplement
S7.1, which may be safely skipped, too. Usually, we do not include complete
and overly rigorous proofs, given the introductory nature of this book. However,
some of them may be instructive and useful to the interested reader.

7.1 Introductory examples

A couple of simple examples may help in framing the kind of problems that we
want to tackle in this chapter.

Example 7.1 A choice among lotteries

Consider the choice among the four lotteries depicted in Table 7.1.
These lotteries are characterized by uncertain payoffs, which we model
by four discrete random variables Li(ω), i = 1, 2, 3, 4, taking values
corresponding to three equally likely outcomes ω1, ω2, and ω3. For
each Li(ω), in the table we also report its expected value µi and stan-
dard deviation σi. Which lottery should we choose?

It is easy to see that lottery L4 would not be chosen, since its
payoff is dominated by L1 (as well as by L3):

L4(ωk) ≤ L1(ωk), k = 1, 2, 3,



7.1 Introductory examples 279

Table 7.1 Choice among four lotteries.

Lottery ω1 ω2 ω3 µi σi

L1(ω) 100 200 300 200 81.65
L2(ω) −800 200 1200 200 816.50
L3(ω) 150 200 244 198 38.40
L4(ω) 100 200 150 150 40.82

with strict inequality in scenario ω3. Lottery L2 is obtained from L1

by shifting a payoff of 900 units from scenario ω1 to ω3. Thus, we
do not change the expected value, but the payoff has a much larger
variability, as measured by the standard deviation. Many would agree
that, since the expected value is the same and there is less uncertainty,
lottery L1 should be preferred to L2.

Actually, this is a matter of individual taste and depends on how
much we like or dislike taking risk. If we are risk-averse, chances
are that we may even like L3 the most. This lottery is obtained from
L1 by increasing the payoff for event ω1 by 50 and decreasing the
payoff for ω3 by 56. Thus, the expected value µ3 is only 198, but the
standard deviation is considerably reduced.

In Example 7.1, we have only considered expected value and standard de-
viation of a lottery. Indeed, there is a large body of knowledge, broadly referred
to as modern portfolio theory, which revolves around this view. However, this
may not quite enough. As we said, if we compare the payoffs of lotteries L1

and L4 in Table 7.1, state by state, the latter is clearly dominated. However,
we cannot reach a clear conclusion by just considering expected value and stan-
dard deviation of the two payoffs, since µ4 < µ1 and σ1 > σ4. One issue is
that standard deviation does not capture the features of a very skewed random
variable, associated with an asymmetric probability distribution. Example 7.2
below further illustrates this point.

Example 7.2 A dominated lottery

Let us consider the two lotteries described in Table 7.2. Note that
the states of nature (outcomes) are not equiprobable. We find the ex-
pected value and the standard deviation of the payoff of lottery L1(ω)
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Table 7.2 A dominated lottery.

State ω1 ω2 ω3

Probability 0.4 0.4 0.2
Payoff L1(ω) 10 50 100
Payoff L2(ω) 10 50 500

as follows:

µ1 = 0.4× 10 + 0.4× 50 + 0.2× 100 = 44

σ1 =
√

0.4× 102 + 0.4× 502 + 0.2× 1002 − 442 ≈ 33.23

By the same token, for lottery L2(ω) we find µ2 = 124 and σ2 ≈
188.85. If we compare the two alternatives in terms of expected value
and standard deviation, there is an unclear tradeoff between the two
lotteries, as the second one is more attractive in terms of expected
payoff, but it looks riskier. However, if we compare the payoffs state
by state, L1(ω) is clearly dominated by L2(ω). The problem is that
the large payoff of lottery L2(ω) in state ω3 increases not only the ex-
pected value, but also standard deviation. Its distribution is positively
skewed, and a symmetric deviation measure, like standard deviation,
does not properly account for this feature. We should also notice that,
if we introduce a negative skew, standard deviation will not tell the
difference with respect to a corresponding positive skew.

We have considered simple lotteries that may be represented by a discrete
random variable X that takes values xj with probabilities pj , corresponding to
scenarios (also called outcomes or states of the world) ωj , j = 1, . . . ,m. In risk
management, this random variable usually represents loss, rather than profit,
return, or payoff. We may also consider continuous random variables, as is
common in asset allocation problems.

Example 7.3 Static asset allocation

We are endowed with wealth W0 that we should allocate among a
set of n assets with current price Si0, i = 1, . . . , n. At the end of a
holding period of length T , the prices of the assets are represented by
continuous random variables SiT (ω). If we assume that assets are in-
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finitely divisible and short-selling is not allowed, our decision can be
represented by decision variables hi ≥ 0, i = 1, . . . , n, corresponding
to the holding of each asset, i.e., the number of stock shares of firm i
included in the portfolio.

Decision variables are subject to a budget constraint,

n∑
i=1

hiSi0 = W0,

and define a random variable,

WT (ω) =

n∑
i=1

hiSiT (ω),

which is the random terminal wealth for each outcome ω ∈ Ω.
In this case, the problem does not just require ranking a few sim-

ple lotteries. By choosing the portfolio holdings we define a continu-
ous probability distribution of terminal wealth, and we might choose
the most preferred one by defining and optimizing a suitable func-
tional F (·), mapping a random variable into the set of real numbers:

max
h1,...,hn

F
[
WT (ω)

]
.

We are talking about a functional rather than a function, since we
are mapping random variables (which are function themselves, and
not just numerical variables), to real numbers. If we can find a suit-
able functional F (·), we may map a possibly complicated preference
structure into the simple ordering of real numbers.

Throughout the chapter, we assume that we have a credible stochastic char-
acterization of the probability distribution of uncertain risk factors. The distri-
bution may be considered as an objective assessment of uncertainty, but it is
most likely to be at least partially subjective. The difference is that, ideally, all
market participants should agree on a truly objective representation of uncer-
tainty. On the contrary, market views are to some extent subjective. In more
sophisticated models, we explicitly consider distributional ambiguity and look
for a robust solution. In such a case, we could be uncertain about a set of plau-
sible probability distributions, or we might even take a radical view and give up
the idea of a stochastic representation of uncertainty. In this chapter, for the sake
of simplicity, we assume that a reliable stochastic representation of uncertainty
is available.
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7.2 Should we just consider expected values of returns
and monetary outcomes?

Whenever we bet money on a lottery or invest wealth in risky assets, we pay
due attention to the expected value of the payoff, i.e., a monetary outcome, or
to expected return. The expected value is quite likely to be the first feature we
consider, when dealing with a probability distribution. However, let us ask the
following questions:

Given a set of assets or alternative financial portfolios, should we just se-
lect the one with the largest expected return? No doubt, this would make
life much easier when dealing with decision-making under uncertainty.
However, as we show below, this does not take risk into account and may
lead to quite unreasonable decisions. As a general rule, larger expected
returns come with a larger exposure to risk, and this leads to the need of
assessing difficult risk–return tradeoffs.
Should we consider an asset with negative expected return for inclusion
within a portfolio? Even if we suspect that expected return does not tell
the whole story, one is tempted to think that there is little good to be
expected from such an asset, unless short-selling is allowed. However,
this simplistic view does not consider the correlations between returns.
An asset with a negative expected return may be negatively correlated
with other assets and contribute to reducing risk. Derivatives such as
futures and forward contracts are in fact included in an asset portfolio
(possibly a nonfinancial one, involving commodities) to reduce risk by
exploiting a negative correlation. In real life, indeed, we often purchase
insurance, which is an asset with (hopefully) negative expected return, as
we expect to pay the insurance premium but hope that a severe accident
will not occur.2

Given a financial asset with an array of random payoffs, can we just con-
sider the expected value of the payoff to price the asset fairly? This is a
relevant question, when dealing with derivatives and insurance contracts.
If an insurance company faces a large set of small-scale and independent
risks, it may be argued that finding the actuarially fair price of an insur-
ance policy, by estimating the expected cash outflow for the company,
may be a good strategy. However, this need not apply in general, and
the insurance business can get quite dangerous when risks turn out to be
correlated.3

Among other things, these questions show the link between the three basic prob-
lems of asset allocation, risk management, and asset pricing.

2As a further, but quite different example, lottery tickets have a negative expected payoff, since
it is unlikely that we will win. So, it seems that we may be risk lovers, at least in the small.
3A good lesson in this respect comes from the default risks on mortgages in 2008, leading to the
subprime crisis and the ultimate demise of Lehman Brothers.
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7.2.1 FORMALIZING STATIC DECISION-MAKING UNDER
UNCERTAINTY

In this section, we consider possible ways of formalizing a static problem under
uncertainty. A generic optimization model may be written as

min
x∈S

f(x),

where:

x ∈ Rn is the vector of decision variables
S ⊆ Rn is the set of feasible solutions
f(·) is the objective function, mapping solutions (vectors in Rn) into a
numerical evaluation of their quality (a number in R)

In finance, the objective function is likely to be related to a monetary outcome,
like profit/loss, or to a return. Depending on the choice of the objective func-
tion, the problem may be a minimization or a maximization one. In most fields
of practical interest, some data or parameters of the optimization model are
uncertain. One way of stating this is by considering a vector of random vari-
ables ξ(ω), where ω ∈ Ω is a random outcome, corresponding to a scenario,
within the sample space Ω. Then, the objective function becomes a function
f
(
x, ξ(ω)

)
of both controllable and uncontrollable variables, and the feasible

set may be random, too. This may have two consequences:

The quality of the solution that we find is random and may turn out to be
not quite what we expect.
Possibly worse, the solution may even turn out to be infeasible for some
realizations of the random data.

As we have pointed out before, in Example 7.3, a specific choice x0 of the de-
cision variables defines the distribution of a random variable Y0 = f

(
x0, ξ(ω)

)
,

and we need a way to rank probability distributions. The simplest choice is to
rank distributions by the corresponding expected value. Thus, we might con-
sider an optimization problem like

min
x∈S

E
[
f
(
x, ξ(ω)

)]
.

However, just taking the expected value of an objective like cost or profit may
not account for different attitudes toward risk. Thus, in general, we may con-
sider a transformation of the random performance measure f

(
x, ξ(ω)

)
, say,

R0

[
f
(
x, ξ(ω)

)]
, which should be considered as a risk functional. In concrete,

as we shall see later, we may consider utility functions or mean–risk models.
Actually, stating an optimization problem under uncertainty in a precise

way is not quite trivial, as different approaches may be pursued to model the
interplay of decisions and observations, i.e., how to define a dynamic decision
strategy, as well as how to cope with potential infeasibility of decisions made
before knowing the values of uncertain data. To be more concrete, let us assume
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that the feasible set is explicitly described by a set of inequalities:

gi
(
x, ξ(ω)

)
≤ 0, i = 1, . . . ,m.

Clearly, for a given x, we cannot be sure that the inequality will be satisfied for
every value of ξ. If we insist on guaranteed feasibility in every scenario,4 an
overly fat solution may be obtained. Here, too, we may introduce functionals
Ri, i = 1, . . . ,m, and require

Ri
[
gi(x, ξ(ω))

]
≤ 0, i = 1, . . . ,m.

A naive approach would be to require that the expected value of the constraint
function gi is negative or zero, but this would be a very weak statement of
an uncertain constraint. To see why, consider a standard normal distribution,
where the expected value is zero, but the probability of a strictly positive value
is 50%. As an alternative, we may settle for a probabilistic satisfaction of the
constraints. We may introduce a set of individual chance constraints,

P
{
gi
(
x, ξ(ω)

)
≤ 0
}
≥ 1− αi, i = 1, . . . ,m,

or a joint chance constraint,

P
{
gi
(
x, ξ(ω)

)
≤ 0, i = 1, . . . ,m

}
≥ 1− α.

We should ask whether chance constraints are a suitable modeling framework,
which means: (a) whether they allow us to express a financial decision-making
problem in a sensible way, and (b) whether they lead to model formulations that
may be efficiently solved. We will discuss this matter in Section 15.6.1.

We note again that, in a static decision problem under uncertainty, the solu-
tion is not dynamically adapted according to contingencies. Furthermore, it is
practically impossible to find feasible solutions to problems involving random
equality constraints. To this aim, we may take advantage of a more flexible
modeling framework, stochastic programming with recourse, which will be in-
troduced in Chapter 15.

7.2.2 THE FLAW OF AVERAGES

In common wisdom, we often consider loose statements of the law of large
numbers, which is typically referred to as the “law of averages.” Here, we
rather consider the flaw of averages.5 A comparison of the lotteries in Table 7.1
suggests that ranking alternatives on the basis of the expected value is probably
neither safe nor sensible. Let us consider a few further examples reinforcing the
point.

4Technically, we say that constraints are satisfied almost surely, i.e., with the exception of a set
of null measure. Alternatively, we say that constraints are satisfied with probability one. When
dealing with a finite set Ω of discrete outcomes, this boils down to the satisfaction of constraints
in every discrete scenario.
5See [16].
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Example 7.4 A single bet vs. multiple repeated bets

Consider a simple lottery based on the flip of a fair coin: If it lands
tails, we win 10, otherwise we lose 5. Should we play this lottery?
The expected payoff is 2.5, and most people answer that they would
be willing to take the gamble. If we spice things up and scale the
payoff by a factor of one million, the answer turns probably negative.
Sure, an expected payoff of 2.5 million is quite palatable, but the
considerable risk of losing 5 million makes the gamble not attractive
to most people.

However, imagine playing the gamble repeatedly many times,
say, one thousand times. Our answer could change if we are allowed
to settle the score at the end of the game. Let Xi be the payoff of flip
number i, i = 1, . . . , n, where n is the number of independent and
identically distributed flips. Thus, the variables Xi are i.i.d. random
variables. Let Y =

∑n
i=1Xi be the total payoff, and let us denote the

common expected value and standard deviation of the variables Xi

by µX and σX , respectively. Then, the coefficient of variation of Y ,
under the hypothesis of independent flips, is

CY
.
=

σY
|µY |

=

√
nσX
nµX

=
CX√
n
, (7.1)

where we assume µX > 0. If n is large, the expected overall payoff
becomes virtually certain (this is an informal glimpse of the law of
large numbers). However, if we may go bankrupt along the way (i.e.,
we settle each flip of the coin individually, rather than assessing the
overall profit/loss at the end of the game) or risks are correlated, this
is not true anymore.

The natural interpretation of Example 7.4 is in terms of a bet repeated over
time. An alternative view, which is relevant to insurers, concerns multiple bets
taken at the same time. Indeed, Eq. (7.1) shows why an insurer providing cov-
erage for a large number of uncorrelated risks may rely of expectations, plus
some fudge consisting of reserves. However, correlated risks are much more
dangerous. For an insurer, the random variables Xi correspond to losses. Let us
assume that losses are pairwise correlated in the same way and that the common
correlation coefficient is ρ. Then, the variance of the total loss becomes

Var(Y ) =

n∑
i=1

Var(Xi) +

n∑
i=1

n∑
j=1
j 6=i

Cov(Xi, Xj)

= nσ2
X + n · (n− 1)ρσ2

X

= nσ2
X ·
[
1 + (n− 1)ρ

]
.



286 CHAPTER 7 Decision-Making under Uncertainty: The Static Case

In the limit case ρ = 1, we have Var(Y ) = n2σ2
X = Var(nX) and there is no

diversification of risk, in the sense that the coefficient of variation becomes

CY =
nσX
nµX

= CX .

As an example of correlated risks, we may think of home insurance in a re-
gion prone to earthquakes, or mortgage defaults under economic recession, as
it happened during the subprime mortgage crisis.

Example 7.5 Putting all of our eggs in one basket

Consider an investor who must allocate her wealth to n assets. The
return of each asset, indexed by i = 1, . . . , n, is a random variable Ri
with expected value µi = E[Ri]. Asset allocations may be expressed
by decision variables wi, representing the fraction of wealth invested
in asset i. If we rule out short-selling, these decision variables are
naturally bounded by 0 ≤ wi ≤ 1. If we assume that the investor
should just maximize expected return, she should solve the problem

max

n∑
i=1

µiwi

s.t.
n∑
i=1

wi = 1

wi ≥ 0.

This is a simple model that we have already met in Section 2.1.1, Eq.
(2.1), and we know its quite trivial solution: Just pick the asset with
maximum expected return, i∗ = arg maxi=1,...,n µi, and set wi∗ = 1.
It is easy to see that this concentrated portfolio is a very dangerous bet.
In practice, portfolios are diversified, which means that decisions de-
pend on something beyond expected values. Furthermore, one would
also include additional constraints on portfolio composition, bound-
ing exposure to certain geographic areas or types of industry, and they
would render the above trivial solution infeasible. However, it may
be necessary to add many such additional constraints to find a sensi-
ble solution; this means that the solution is basically shaped by the
constraints that the decision maker enforces in order to rule out bla-
tantly inadequate portfolios. Incidentally, if short-selling is allowed,
the decision variables are unrestricted, and the expected value of fu-
ture wealth goes to infinity. In fact, one would short-sell assets with
low expected return, to raise money to be invested in the most promis-
ing asset. This is clearly risky and should be carefully disciplined.
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The next example is more akin to pricing a risky asset. It provides good
evidence that pricing by the expected value of the payoff (possibly discounted,
in order to take time value of money into account) does not seem a plausible
approach.

Example 7.6 St. Petersburg paradox

Consider the following proposal. We are offered a lottery, whose out-
come is determined by flipping a fair and memoryless coin. The coin
is flipped until it lands tails. Let k be the number of times the coin
lands heads; then, the payoff we get is $2k. Now, how much should
we be willing to pay for this lottery? Even if we are unlucky and the
game stops at the first flip, so that k = 0, we will get $1, so we should
be willing to pay at least this amount.

We may consider this as an asset pricing problem and set the
expected value of the payoff as the fair price for this rather peculiar
asset. The probability of winning $2k is the probability of observing k
consecutive heads followed by the tails that stops the game, after k+1
flips of the coin. Given the independence of events, the probability of
this sequence is 1/2k+1, i.e., the product of k + 1 individual event
probabilities. Then, the expected value of the payoff is

∞∑
k=0

1

2k+1
2k = 1

2 × 1 + 1
4 × 2 + 1

8 × 4 + · · ·

= 1
2 + 1

2 + 1
2 + · · ·

= +∞.

This game looks so beautiful that we should be willing to pay any
amount of money to play it! No one would probably do so. True, the
game offers huge payoffs, but with vanishing probabilities. Again,
we conclude that expected values do not tell the whole story.

The idea that most decision makers are risk-averse is intuitively clear, but
what does risk aversion really mean in formal terms? To get a clue, let us
compare two simple lotteries:

1. Lottery a1, which is actually deterministic and guarantees a sure payoff µ
2. Lottery a2, which offers two equally likely payoffs µ+ δ and µ− δ

The two lotteries are clearly equivalent in terms of expected payoff, but a risk-
averse agent will arguably select lottery a1. More generally, if we consider
a random variable X , representing a payoff, and we add a mean-preserving
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spread, i.e., an independent random variable ε̃ with E[ε̃] = 0,6 this addition
is not welcome by a risk-averse decision maker and the lottery X is preferred
to X + ε̃. This idea may be further formalized and made operational by using
different approaches that are discussed in the following.

7.3 A conceptual tool: The utility function

Given a set of lotteries, a decision maker should be able to pick the preferred
one; or, given any pair of lotteries, the decision maker should be able to tell
which one she prefers or state that she is indifferent between them. If so, she
has a well-defined preference relationship among lotteries. Since preference re-
lationships are a bit cumbersome and difficult to deal with, we could map each
lottery to a real number measuring the attractiveness of that lottery to the deci-
sion maker, and then use the standard ordering of real numbers to rank lotteries.
Such a function cannot be just the expectation, as this disregards risk aversion.
A theoretical answer, commonly put forward in economic theory, can be found
by assuming that decision makers order uncertain outcomes by a suitably cho-
sen functional, rather than by straightforward expected monetary values. For
an arbitrary preference relationship, a functional representing it may not exist
but, under a set of more or less reasonable assumptions,7 such a mapping does
exist and can be represented by an expected utility. A particularly simple form
of expected utility functional, which looks reasonable, but it is only justified by
specific hypotheses on the preference relationship that it represents, is the Von
Neumann–Morgenstern expected utility, defined as

U(X) = E
[
u(X)

]
,

for a suitably chosen function u(·). For a simple lottery a represented by a
discrete random variable with n outcomes xi and probabilities pi, this boils
down to

U(a) =

n∑
i=1

piu(xi).

To be precise, we refer to function u(·) as the utility function, which is related
to a certain payoff. On the contrary, U(·) is the expected utility functional, as
it maps random variables to the real line. If u(x) ≡ x, then the expected utility
functional boils down to the expected value of the payoff. Alternative choices
of the utility function u(·) model different attitudes toward risk. For financial

6For the sake of convenience, when using Greek letters we denote by ε̃ a random variable and
by ε a realization of that variable. This notation is common in economics. In statistics, one
typically uses X and x with the corresponding pair of meanings, but this is not quite convenient
with Greek letters.
7The discussion of these assumptions is best left to books on microeconomics or decision the-
ory; we should mention that most of them seem rather innocent and reasonable, under most
circumstances, but they may lead to surprising effects in paradoxical cases.
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problems, it is reasonable to assume that utility u(·) is a strictly increasing func-
tion, since we prefer more wealth to less. Formally, this property is referred to
as non-satiation.

Beside the requirement of increasing monotonicity, the utility function is
typically assumed to be concave. It is easy to see that concavity may express
risk aversion. For the sake of convenience, we recall that a function f is said to
be concave on a domain S ⊆ Rn, if

f
(
λx + (1− λ)y

)
≥ λf(x) + (1− λ)f(y), ∀x,y ∈ S, λ ∈ [0, 1]. (7.2)

In words, the value of the function for a convex combination of points in the
domain is larger than the corresponding convex combination of the function
values.8 Since a convex combination is a linear combination with non-negative
weights adding up to one, we immediately see the link with expected values. If
we consider a lottery featuring two possible outcomes, x1 and x2, with proba-
bilities p1 = p and p2 = 1− p, respectively, a risk-averse decision maker would
prefer not taking chances:

u
(
E[X]

)
= u

(
px1 + (1− p)x2

)
≥ pu(x1) + (1− p)u(x2) = E

[
u(X)

]
. (7.3)

This may be generalized to a generic, possibly continuous random variable by
recalling Jensen’s inequality for a concave function u of a random variable X:

u
(
E[X]

)
≥ E

[
u(X)

]
. (7.4)

Example 7.7 Concavity and risk aversion

Let us consider again the sure lottery a1, which guarantees a payoff µ
with probability one, and lottery a2, obtained by the mean-preserving
spread ε̃, featuring equally likely outcomes −δ and δ. Concavity im-
plies risk aversion, since

U(a1) = u(µ) ≥ 1
2u(µ− δ) + 1

2u(µ+ δ) = U(a2).

Since the inequality is not strict, we should say that lottery a1 is at
least as preferred as a2, and the decision maker could be indifferent
between the two.

As a numerical illustration, let us consider the logarithmic utility
u(x) = log x, and µ = 10, δ = 5:

U(a1) = log 10 = 2.3026,

U(a2) = 1
2 log 5 + 1

2 log 15 = 2.1587.

Figure 7.1 illustrates the role of concavity in describing risk aversion.

8See Section 15.1 for more details on convex and concave functions.
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u(x)

u(E[X ])

CE (X )u

E[u(X )]

x

FIGURE 7.1 How concave utility functions imply risk aversion; the certainty equivalent
is also shown.

It is fundamental to observe that the specific numerical value that the utility
function assigns to a lottery is irrelevant per se; only the relative ordering of
alternatives is essential. In fact, we speak of ordinal rather than cardinal utility.
Given the linearity of expectation, we also see that an affine transformation of
the utility function u(·) has no effect, provided it is increasing. To see this, let
us consider ū(x)

.
= au(x) + b instead of u(x), where a > 0. Then, the ranking

of alternatives according to u is clearly preserved by ū, since

Ū(X) = E
[
ū(X)

]
= E

[
au(X) + b

]
= aU(X) + b.

Concavity implies risk aversion, from a qualitative viewpoint, but we would
also like to come up with some quantitative way to measure risk aversion. We
have said that a risk-averse decision maker would prefer a certain payoff to an
uncertain one, when the expected values are the same. She would take the gam-
ble only if the expected value of the risky lottery were suitably larger than the
certain payoff. In other words, she requires a risk premium. The risk premium
depends partly on the risk attitude of the decision maker, and partly on the un-
certainty of the gamble itself. We will denote the risk premium by ρu(X)9;
note that this is a number that a decision maker with utility u(·) associates with
a random variable X . The risk premium is implicitly defined by the condition

u
(
E[X]− ρu(X)

)
= U(X). (7.5)

The risk premium also defines a certainty equivalent, i.e., a sure and guar-
anteed payoff CEu(X), such that the agent would be indifferent between this
certain amount and the uncertain lottery:

CEu(X) = E[X]− ρu(X).

9Hopefully, no confusion will arise with the usual notation for the correlation coefficient ρ.
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Note that the certainty equivalent is smaller than the expected value, and the
difference is larger when the risk premium is larger. These concepts may be
better grasped by looking again at Fig. 7.1.

Example 7.8 Certainty equivalent and risk premium

In Example 7.7, we have seen that the sure lottery a1 is preferred to
a2 by a decision maker characterized by a logarithmic utility. Let us
find the corresponding certainty equivalent for lottery a2. We need a
sure amount x = CElog(a2), such that

u(x) = log x = U(a2) = 2.1587.

Hence,
CElog(a2) = e2.1587 = 8.6603,

and the risk premium is

ρlog(a2) = 10− 8.6603 = 1.3397.

We may interpret the risk premium as the additional expected payoff that
a risk-averse decision maker requires to switch from the risk-free alternative a1

to the risky alternative a2, or the amount that she is willing to give up in order
to get rid of the risk of a2.

Example 7.8 points out a difficulty with the risk premium concept: It mixes
the intrinsic risk of a lottery10 with the subjective risk attitude of the decision
maker. Thus, we might wish to separate the two sides of the coin. Consider a
lottery X = x + ε̃, where x is a given number and ε̃ is a random variable with
E[ε̃] = 0 and Var(ε̃) = σ2. Hence,

E[X] = x, Var(X) = σ2.

Let us assume that the random variable ε̃ is a “small” perturbation, in the sense
that any possible realization ε is a relatively small number. Hence, we may ap-
proximate both sides of Eq. (7.5) by Taylor expansions. Consider, for instance,
the expression u(x+ ε). Since only numbers are involved here, we may write

u(x+ ε) ≈ u(x) + εu′(x) + 1
2ε

2u′′(x).

By using this approximation for the random variable ε̃, under the assumption
that its realizations are small enough, and taking expected values, we may ap-

10Here we assume that the risk is related to objective probabilities, but the same concept would
apply in the case of a subjective assessment of probabilities, if we disregard distributional am-
biguity.
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proximate the right-hand side of Eq. (7.5) as follows:

U(X)
.
= E

[
u(x+ ε̃)

]
≈ E

[
u(x) + ε̃u′(x) + 1

2 ε̃
2u′′(x)

]
= u(x) + E[ε̃]u′(x) + 1

2E[ε̃2]u′′(x)

= u(x) + 0 · u′(x) + 1
2Var(ε̃)u′′(x)

= u(x) + 1
2σ

2u′′(x). (7.6)

In the second-to-last line, we have used the well-known identity Var(ε̃) =
E[ε̃2] − E2[ε̃] = E[ε̃2] − 0. We may also approximate the left-hand side of Eq.
(7.5), which involves only numbers, by a first-order expansion around E[X] =
x:

u
(
E[X]− ρu(X)

)
≈ u(x)− ρu(X)u′(x). (7.7)

By equating the two approximations (7.6) and (7.7) and rearranging, we find

ρu(X) = −1

2

u′′(x)

u′(x)
σ2. (7.8)

Since we assume that the utility function is concave and strictly increasing, the
right-hand side of Eq. (7.8) is well-defined and positive.11 We observe that
the risk premium is factored as the product of a term depending on the agent’s
subjective risk aversion, represented by the utility function u(·), and another one
depending on the intrinsic uncertainty of the lottery, represented by the standard
deviation σ. This justifies the following definition of the coefficient of absolute
risk aversion:

Rau(x)
.
= −u

′′(x)

u′(x)
. (7.9)

The more concave the utility function, i.e., the larger u′′(x) in absolute value,
the larger the risk aversion. We have observed that, given the linearity of the
expectation operator, transforming the utility function u(x) by an increasing
affine transformation is inconsequential. Indeed, the definition of the risk aver-
sion coefficient is consistent with this observation, as it is easy to see that the
coefficients for u(x) and ū(x) = au(x) + b are the same.

We should also note that the coefficient Rau(x) may change considerably as
a function of x. If we consider the asset allocation problem of Example 7.3,
we may use expected utility as the functional of terminal wealth WT (ω), which
we should maximize with respect to the vector h of the asset holdings. Let us
denote by Rh the corresponding holding period return of the portfolio. Then,
we should maximize

U(WT ) = E
[
u
(
W0 · (1 +Rh)

)]
.

In general, the solution may change as a function of W0. From an investor’s
perspective, in fact, risk aversion may depend on the current level of wealth.

11We recall that, for a differentiable concave function of one variable, we have u′′(x) ≤ 0.
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By a similar token, we may define the coefficient of relative risk aversion.
This is motivated by considering a multiplicative, rather than additive, shock on
an expected value x: X = x ·(1+ ε̃). Here E[ε̃] = 0 and Var(ε̃) = σ2, as before,
but

E[X] = x, Var(X) = x2σ2.

The mean is preserved again, but the random variable ε̃ is related to a return in
this case. Then, we may consider a relative risk premium πu(X) as the fraction
of wealth that the decision maker is willing to give up in order to avoid taking
chances,

πu(X)
.
=
x− CEu(X)

x
,

which implies
ρu(X) = x− CEu(X) = πu(X) · x.

Now, using a first-order Taylor approximation as before, we may write

u
(
CEu(X)

)
= u

(
E[X]− ρu(X)

)
≈ u(x)− ρu(X)u′(x)

= u(x)− πu(X) · xu′(x). (7.10)

The utility of X can be approximated by a second-order expansion, for a real-
ization ε:

u(X) = u(x+ xε) ≈ u(x) + u′(x)xε+
1

2
u′′(x)x2ε2.

By taking expectations and observing that E[ε2] = σ2, we find

E
[
u(X)

]
≈ u(x) +

1

2
u′′(x)x2σ2. (7.11)

Putting Eqs. (7.10) and (7.11) together and rearranging yield

πu(X) = −1

2

u′′(x)

u′(x)
xσ2,

which suggests the definition of the relative risk aversion coefficient,

Rru(x)
.
= −u

′′(x)x

u′(x)
. (7.12)

The only difference with respect to the absolute coefficient is the multiplication
by x.

7.3.1 A FEW STANDARD UTILITY FUNCTIONS

Beside listing some common utility functions, in this section, we want to il-
lustrate how to classify them according to some relevant criteria. This is best
illustrated by a simple example.
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Example 7.9 Logarithmic utility

A typical utility function is the logarithmic utility:

u(x) = log(x). (7.13)

Clearly this makes sense only for positive values of wealth. It is easy
to check that, for the logarithmic utility, we have

Rau(x) =
1

x
, Rru(x) = 1.

Hence, logarithmic utility has decreasing absolute risk aversion, but
constant relative risk aversion.

The coefficients of absolute and relative aversion may be decreasing, con-
stant, or increasing with respect to their argument. Hence, utility functions may
belong to one of the following families:

Decreasing, or constant, or increasing absolute risk aversion, denoted by
DARA, CARA, and IARA, respectively.
Decreasing, or constant, or increasing relative risk aversion, denoted by
DRRA, CRRA, and IRRA, respectively.

Thus, logarithmic utility is DARA and CRRA. Furthermore, it may be thought
of as a limit case of the more general family of power utility functions:

u(x) =
x1−γ − 1

1− γ
, γ > 1. (7.14)

To understand the reasons behind the parameterization with respect to γ, let us
find the coefficient of relative risk aversion of power utility:

u′(x) = x−γ ,

u′′(x) = −γx−(γ+1),

Rru(x) = x · γ · xγ

xγ+1
= γ.

Furthermore, using L’Hôpital’s rule,12 we find13

lim
γ→1

x1−γ − 1

1− γ
= lim
γ→1

− log(x) · x1−γ

−1
= log(x).

12L’Hôpital’s rule is used to find the limit limx→x0 f(x)/g(x), in the case where both functions
f(·) and g(·) tend to zero. Subject to technical conditions, the limit is limx→x0 f

′(x)/g′(x).
13Here, we are also using the derivative of the function f(x) = ax = ex log a, which is f ′(x) =
ax · log a.
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We may also consider the exponential utility function

u(x) = −e−αx, (7.15)

for α > 0. Note that this is an increasing function, and it is easy to interpret the
parameter α:

Rau(x) = −−α
2e−αx

αe−αx
= α.

Hence, we conclude that the exponential utility is CARA. This feature may be
somewhat at odds with intuition, as one might expect that wealthier individuals
are less averse to risk. It is important to remark that some utility functions have
been used in the academic literature, because they are easy to manipulate, but
this does not imply that they always model realistic investors’ behavior.14

Another common utility function is quadratic utility:

u(x) = x− λ

2
x2. (7.16)

Note that this function is not monotonically increasing and makes sense only
for x ∈ [0, 1/λ]. Another odd property of quadratic utility is that it is IARA:

Rau(x) =
λ

1− λx
⇒ dRau(x)

dx
=

λ2

(1− λx)2
> 0.

This implies, for instance, that an investor becomes more risk-averse if her
wealth increases, which is usually considered at odds with standard investors’
behavior. Nevertheless, it may be argued that, since any concave utility function
may be locally approximated by a quadratic utility function, this provides a use-
ful tool anyway. Furthermore, quadratic utility emphasizes the role of variance,
since we have

U(X) = E

[
X − λ

2
X2

]
= E[X]− λ

2

(
Var(X) + E2[X]

)
. (7.17)

A decision maker with quadratic utility is basically concerned only with the
expected value and the variance of an uncertain outcome. In chapter 8, we will
discuss the connection with mean–variance portfolio optimization (see Section
8.5).

Example 7.10 Logarithmic utility and portfolio choice

Consider the following stylized portfolio optimization problem:

We represent uncertainty in asset return by a binomial model:
There are two possible states of the world in the future, the up
and down states, with probabilities p and q = 1− p, respectively.

14See Problem 7.1 for an example concerning the odd behavior of the exponential utility func-
tion.
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There are two assets: one is risk-free, the other one is risky.
The risk-free asset has gain Rf in both states (recall that multi-
plicative gain is one plus holding period return; in other words,
$1 grows to $Rf ).
Current price for the risky asset is S0 and its gain is u in the up
state and d in the down state. Hence, the two possible risky asset
prices are uS0 and dS0. We use gain, rather than holding period
return, to streamline notation.
Initial wealth is W0 and the investor has logarithmic utility.

In this problem, there is actually one decision variable, which we may
take as δ, the number of stock shares purchased by the investor. To
get rid of the budget constraint, we observe that δS0 is the wealth
invested in the risky asset, and W0 − δS0 is invested in the risk-free
asset. Then, future wealth will be, for each of the two possible states:

Wu = δS0u+ (W0 − δS0)Rf = δS0(u−Rf ) +W0Rf ,

Wd = δS0d+ (W0 − δS0)Rf = δS0(d−Rf ) +W0Rf ,

and expected utility is p log(Wu) + q log(Wd). The problem is then

max
δ

p log
{
δS0(u−Rf ) +W0Rf

}
+ q log

{
δS0(d−Rf ) +W0Rf

}
.

Let us write the first-order (stationarity) condition for optimality:

p · S0(u−Rf )

δS0(u−Rf ) +W0Rf
+ q · S0(d−Rf )

δS0(d−Rf ) +W0Rf
= 0.

In order to solve for δ, we may rearrange the equation a bit:

δS0(u−Rf ) +W0Rf
pS0(u−Rf )

= −δS0(d−Rf ) +W0Rf
qS0(d−Rf )

.

Straightforward manipulations yield

δ

p
+

W0Rf
pS0(u−Rf )

= −δ
q
− W0Rf
qS0(d−Rf )

and

δ

[
1

p
+

1

q

]
= −W0Rf [q(d−Rf ) + p(u−Rf )]

pqS0(u−Rf )(d−Rf )
.

Then, one last step yields

δS0

W0
=
Rf [up+ dq −Rf ]

(u−Rf )(Rf − d)
.
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This relationship implies that the fraction of initial wealth invested
in the risky asset does not depend on the initial wealth itself. We
have derived this property in a simplified setting, but it holds more
generally for logarithmic utility and is essentially due to its CRRA
feature.

Example 7.10 shows how the features of each utility function may affect
the solution of decision problems. One must be aware of the implied behavior,
when choosing a specific utility function. Once again, we recall that, in this
chapter, we are dealing with static decision problems. The definition of a utility
function gets much more complicated in the case of multistage problems, as
intertemporal issues arise.

7.3.2 LIMITATIONS OF UTILITY FUNCTIONS

Utility functions have been subjected to much criticism over the years:

They rely on critical assumptions about the underlying preference rela-
tionships and may lead to paradoxes.
They assume a significant degree of rationality in decision makers, who
may be affected in real life by lack of information and cognitive limita-
tions, leading to behavioral anomalies that are not explained within the
standard utility framework. Some experiments shows that the observed
behavior of decision makers may contradict the expected utility paradigm,
as we discuss in Section 10.5.
They aim at modeling subjective risk aversion, but a portfolio manager
has to cope with multiple clients, and she should certainly not make de-
cisions according to her own degree of risk aversion. Objective risk mea-
sures may be preferable.
It is difficult to elicit a specific utility function from a decision maker.

In Section 7.4, we resort to an alternative approach, based on mean–risk mod-
els. The idea is to introduce an objective risk measure, which is a functional
mapping random variables into real numbers, and trade expected profit/return
against risk. This leads to a multiobjective optimization problem. As we have
seen in Supplement S2.1, one possibility to cope with multiple objectives is to
form a linear combination of two objective functions. For instance, when deal-
ing with a random return R, a natural idea is to define a risk-adjusted expected
return,

E[R]− 1
2λVar(R). (7.18)

This mean–risk objective looks much like an expected quadratic utility, even
though a comparison with Eq. (7.17) shows that they are not exactly the same.
We shall introduce alternative risk measures to cope with asymmetric risks.
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Before doing so, we may take advantage of the streamlined form of Eq. (7.18)
to show how we might try to estimate the risk aversion coefficient λ in a simple
case.15

Example 7.11 Estimating risk aversion

Say that we own a piece of real estate and we want to insure it against
a disaster that may occur with probability p. If disaster strikes, our
loss is 100% of the property value. Risk may be represented by a
Bernoulli random variable:

With probability p, return is −1 (we lose 100% of the property).
With probability 1− p, return is 0.

Then,

E[R] = p× (−1) + (1− p)× 0 = −p,
Var(R) = p× (−1)2 + (1− p)× 02 − p2 = p(1− p).

Note that the expected return is negative, as we are facing a potential
loss. By abusing proper quadratic utility a little bit, let us consider the
mean–risk form of Eq. (7.18),

U(R) = E[R]− 1
2λVar(R).

In this specific case, the utility score is, for a given risk aversion co-
efficient λ,

U = −p− 1
2λp(1− p).

We may consider insuring the property for a given premium. The
more we are willing to pay, the more risk-averse we are. If we are
willing to pay at most ν, then the utility of the certain equivalent loss
of −ν is equal to the above utility score:

U = −ν ⇒ ν = p+ 1
2λp(1− p).

As a reality check, observe that a risk-neutral investor (λ = 0) would
just pay p, the expected loss. Given the insurance premium ν that
we are willing to pay, this relationship allows to figure out a sensible
value of λ, since

λ =
2(ν − p)
p(1− p)

.

To get a more intuitive feeling, imagine that p is small (1− p ≈ 1), so
that

ν ≈ p+ 1
2λp.

15The example is borrowed from [3, Chapter 6].
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Let us try a few values of λ:

λ = 0 ⇒ ν = p,

λ = 1 ⇒ ν ≈ 1.5p,

λ = 2 ⇒ ν ≈ 2p,

λ = 3 ⇒ ν ≈ 2.5p.

Therefore, for each unit increment in the risk aversion coefficient, we
should be willing to pay another 50% of the expected loss.

In portfolio optimization, it is commonly agreed that λ ranges
between 2 and 4.

7.4 Mean–risk models

The framework of expected utility suffers from the limitations that we have
outlined in Section 7.3.2. Arguably, the most critical one is that a utility func-
tion mixes objective risk measurement and subjective risk aversion in decision-
making. This is quite evident in the concept of risk premium. Hence, prac-
titioners in financial industry prefer to rely on the concept of a risk measure.
From a mathematical viewpoint, we should arguably talk of a risk functional,
since what we need is a way to map a random variable X(ω), which is itself a
function, to a real number:

ξ : X(ω)→ R.

We will use both terms interchangeably. Armed with a risk measure, we may
tackle the problem of finding a satisfactory risk–reward tradeoff by using con-
cepts of multiobjective optimization, as discussed in Section S2.1. This results
in mean–risk optimization models.

If we choose variance or standard deviation as risk measures, we end up
with the mean–variance portfolio optimization model that we have introduced
in Section 2.1.1. Mean–variance optimization relies on variance for the sake of
computational convenience, as this choice leads to a simple quadratic program-
ming model. However, the underlying idea is actually using standard deviation
as a risk measure. Standard deviation can be considered as a risk measure: the
smaller, the better. However, while standard deviation captures the dispersion of
a probability distribution, is it really a good risk measure? Example 7.2 clearly
shows that symmetric risk measures, like standard deviation or variance, may
fail with skewed distributions. As an alternative, we have considered value-at-
risk, which is an asymmetric risk measure, in Section 2.2.2.

Value-at-risk is an example of asymmetric risk measure based on quantiles.
However, we may easily define an asymmetric risk measure based on variance,
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namely, semivariance. If X is a random variable modeling profit or return, its
semivariance is defined as

E
[(

max{0, µX −X}
)2]

. (7.19)

In practice, we consider only negative deviations with respect to the expected
value. The idea can be generalized and made more flexible, if we introduce neg-
ative deviations with respect to a minimum target that we wish to achieve, i.e.,
shortfall amounts. Let us denote the random terminal wealth associated with a
portfolio by WT . If we choose a target wealth Wmin, we may be interested in
evaluating the portfolio performance in terms of shortfall probability,

P
{
WT < Wmin

}
,

or expected shortfall,

E
[

max{0,Wmin −WT }
]
.

Shortfall is zero if we achieve or exceed the target, so we are penalizing un-
derachievement in an asymmetric way. Expected shortfall, when used within
portfolio optimization modeling, may result in simple linear programming prob-
lems.16 To this aim, we should discretize the expectation by generating a finite
set of scenarios, as customary in stochastic programming. If we wish to penalize
large shortfalls more heavily, we may consider the expected squared shortfall,

E
[(

max{0,Wmin −WT }
)2]

,

which may be tackled by quadratic programming.
How do these measures compare against each other? In order to provide a

sensible answer, we must clarify the desirable properties of a risk measure.

7.4.1 COHERENT RISK MEASURES

A single-period risk measure is a functional ξ(·) mapping a random variable
X(ω) to the real line. The random variable might be interpreted as the value of
a portfolio, or a profit or loss, i.e., a change in value. Furthermore, loss might
be relative with respect to an expected future target, or an absolute loss. In this
section, we list some desirable properties of a risk measure. In the literature,
different statements of these properties may be found, depending on the inter-
pretation ofX(ω). Here, we assume that the random variable represents a profit
or the value of a portfolio. Hence, the larger the random variable, the better, but
the risk measure is defined in such a way that it should be minimized.

The following set of properties characterizes a coherent risk measure:

16See Chapter 15.
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Normalization. Consider a random variable that is identically zero, X ≡
0. It is reasonable to set ξ(0) = 0; if we do not hold any portfolio, we are
not exposed to any risk.
Monotonicity. If X1 ≤ X2,17 then ξ(X1) ≥ ξ(X2). In plain English, if
the value of portfolio 1 is never larger than the value of portfolio 2, then
portfolio 1 is at least as risky as portfolio 2.
Translation invariance. If we add a fixed amount a to the portfolio, the
risk measure is affected: ξ(X + a) = ξ(X)− a. If a > 0, risk is reduced.
Positive homogeneity. Intuitively, if we double the amount invested in a
portfolio, we double risk. Formally: ξ(bX) = bξ(X), for b ≥ 0.
Subadditivity. Diversification is expected to decrease risk; at the very
least, diversification cannot increase risk. Hence, it makes sense to as-
sume that the risk of the sum of two random variables should not exceed
the sum of the respective risks: ξ(X + Y ) ≤ ξ(X) + ξ(Y ).

We are dealing only with a single-period problem; tackling multiperiod prob-
lems may complicate the matter further, introducing issues related to time con-
sistency, which we do not consider in this book.18

Remark. An interesting implication of translation invariance is

ξ
(
X + ξ(X)

)
= ξ(X)− ξ(X) = 0.

Thus, the risk measure of a portfolio with random valueX may be interpreted as
the minimum amount of additional capital that is needed to make the portfolio
acceptable, where a portfolio X is said to be acceptable if its risk measure
is ξ(X) ≤ 0. In fact, risk measures (functionals) may also be interpreted as
acceptability functionals.

We have listed theoretical requirements of a risk measure, but what about
the practical ones?

Clearly, a risk measure should not be overly difficult to compute. Unfor-
tunately, computational effort may be an issue, if we deal with financial
derivatives whose pricing itself requires intensive computation.
When solving a portfolio optimization model, convexity is a quite impor-
tant feature. Positive homogeneity and subadditivity may be combined
into a convexity condition:

ξ
(
λX + (1− λ)Y

)
≤ λξ(X) + (1− λ)ξ(Y ), ∀λ ∈ [0, 1].

Thus, apart from theoretical considerations, a coherent risk measure may
be practically preferable from a computational viewpoint.

17Since we are comparing random variables, the inequality should be qualified as holding almost
surely, i.e., for all of the possible outcomes, with the exception of a set of measure zero. The
unfamiliar reader may consider this as a technicality.
18The essence of time consistency of a multiperiod risk measure is that if a portfolio is riskier
than another portfolio at time horizon τ , then it is riskier at time horizons t < τ as well. See,
e.g., [2].
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Another requirement is that the risk measure should be easily communi-
cated to top management. A statistically motivated measure, character-
izing a feature of a probability distribution, may be fine for the initiated,
but a risk measure expressed in hard monetary terms can be easier to
grasp. We also note that specific sensitivity measures, like bond duration
(and the option Greeks that we shall meet later), do not enable us to sum-
marize all risk contributions, irrespectively of the nature of the different
positions held in the portfolio. These difficulties led to the development
of value-at-risk.

7.4.2 STANDARD DEVIATION AND VARIANCE AS RISK
MEASURES

We are aware that a major limitation of standard deviation and variance is their
symmetry, since they measure dispersion without paying attention to direction
of variability. Let us run a more formal check by asking whether they meet the
coherence requirements.

The normalization requirement is met, but we know that, for any real
number a,

Var(X + a) = Var(X).

Hence, variance and standard deviation are not translation invariant. We
find a translation invariant measure, however, if we consider

ξ(X) = −E[X] + λ
√

Var(X),

since

ξ(X + a) = −E[X + a] + λ
√

Var(X + a) = ξ(X)− a.

Monotonicity fails, as we have seen in Example 7.2. More generally, if
we have a random variable bounded by a constant,

X1(ω) ≤ α,

and we consider X2(ω) = α, the monotonicity condition fails since
Var(X1) ≥ 0 and Var(X2) = 0.
Let us consider positive homogeneity. Since

Var(bX) = b2Var(X),

this condition fails for variance, but it is met by standard deviation (just
take the square root).
Let us complete the picture with subadditivity. Since

Var(X1 +X2) = Var(X1) + Var(X2) + 2Cov(X1, X2),
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variance fails to meet subadditivity when covariance is positive. How-
ever, if we consider standard deviation and we express covariance using
the correlation coefficient ρ12 ≤ 1, we see that standard deviation is sub-
additive:

σX1+X2
=
√
σ2
X1

+ σ2
X2

+ 2ρ12σX1
σX2

≤
√
σ2
X1

+ σ2
X2

+ 2σX1σX2 = σX1 + σX2 .

Hence, the picture is not quite encouraging for standard deviation and vari-
ance as risk measures, but standard deviation looks a bit better. From a practi-
cal viewpoint, when dealing with the return of a simple portfolio, variance may
result in simple optimization problems, i.e., convex quadratic programs. How-
ever, this is not necessarily true when considering more complicated optimiza-
tion models, where scenarios in terms of underlying risk factors are generated
and mapped to asset prices by a nonlinear pricing model, and a stochastic pro-
gramming model is solved.19 Furthermore, while standard deviation or return
or wealth may make sense, variance of wealth, which is measured in squared
monetary units, cannot be really be interpreted. Even standard deviation of
wealth may fail to convey a precise perception of directional risk. Neverthe-
less, these measures are broadly used in the context of modern portfolio theory,
which relies on mean–variance optimization. As we shall see, this provides us
with useful insights, like the capital asset pricing model, and it may be some-
times justified, since quadratic utility can approximate a generic concave utility
function locally.

7.4.3 QUANTILE-BASED RISK MEASURES: V@R AND CV@R

We have introduced value-at-risk, in Section 2.2.2.1, as a quantile of the proba-
bility distribution of loss. There, we have considered typical textbook examples
relying on normality, in order give a simple picture. However, in practice, es-
timating V@R is far from trivial for a complex trading book involving exotic
derivatives, as well as equity or fixed-income assets. Whatever approach we
use for its computation, V@R is not free from some fundamental flaws, which
depend on its definition as a quantile. We should be well aware of them, es-
pecially when using sophisticated computational tools that may lure us into a
false sense of security. The following example shows how a quantile cannot
distinguish between different tail shapes.

Example 7.12 Different shapes of a tail

Consider the two loss densities in Fig. 7.2. In Fig. 7.2(a), we observe a
normally distributed loss and its 95% V@R, which is just its quantile

19See Chapter 15.
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V@R
LossLoss

(a) (b)

5%

V@R

5%

FIGURE 7.2 Value-at-risk can be the same in quite different situations.

at probability level 95%; the area of the right tail is 5%. In Fig. 7.2(b),
we observe a sort of truncated distribution, obtained by replacing the
tail of the normal PDF with a uniform density. The tail accounts for
5% of the total probability. By construction, V@R is the same in both
cases, since the areas of the right tails are identical. However, we
might not associate the same risk with the two distributions. In the
case of the normal distribution, there is no upper bound to loss; in
the second case, there is a clearly defined worst-case loss. Whether
the risk for density (a) is larger than density (b) or not, it depends on
how we measure risk exactly; the point is that V@R cannot tell the
difference between them.

One way to overcome the limitations of a straightforward quantile, while
retaining some of its desirable features, is to resort to a conditional expectation
on the tail. This observation has led to the definition of alternative risk mea-
sures, such as conditional value-at-risk (CV@R), which (informally) is the
expected value of loss, conditional on being to the right of V@R. For instance,
the conditional (tail) expectation yields the midpoint of the uniform tail in the
truncated density of Fig. 7.2(b); the tail expectation may be larger in the nor-
mal case of Fig. 7.2(a), because of its unbounded support. In this section, we
investigate the properties of both V@R and CV@R in terms of coherence and
computational viability.

7.4.3.1 A remark on quantiles

When defining quantile-based risk measures, there is no particular difficulty
with standard continuous distributions featuring a continuous and strictly in-
creasing CDF

FX(x)
.
= P{X ≤ x}.
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FIGURE 7.3 The link between quantiles and the CDF.
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FIGURE 7.4 A noninvertible CDF of a discrete random variable.

In such a case, the CDF is invertible and the quantile x1−α at probability level
1− α is easily found:

FX(x1−α) = 1− α ⇒ x1−α = F−1
X (1− α), (7.20)

where α ∈ [0, 1] is the probability mass on the right tail (which is supposed
to be small if we are considering a loss). This is illustrated in Fig. 7.3. Given
a numerical value xβ , the CDF FX(xβ) gives the corresponding probability
β = P{X ≤ xβ}. Going the other way around, given the probability 1 − α,
inversion of the CDF yields the corresponding quantile x1−α.

However, the case of a discrete random variable is more involved, as the
CDF is piecewise constant and not invertible. Figure 7.4 shows the CDF for a
discrete random variable with the following PMF:

x 0 1 2 3 4 5

pX(x) 0.05 0.20 0.30 0.25 0.10 0.10

Here,
FX(3) = 0.8, FX(4) = 0.9,
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and we are in trouble when looking for the quantile x0.85. Then, we may define
the quantile as the smallest number x1−α such that FX(x1−α) ≥ 1 − α. This
relies on the definition of a generalized inverse function:

x1−α = min {x : FX(x) ≥ 1− α} .

The generalized inverse function boils down to the standard inverse, when the
CDF is continuous and strictly increasing. In the numerical case that we are
considering, we find

x0.85 = 4,

which makes sense in terms of “staying on the safe side.” The intuitive idea
is that the value 4 “covers” loss with a 90% guarantee, which is larger than
necessary, but the value 3 offers a guarantee of only 80%. This looks innocent
enough, but we should wonder about the possibility of defining quantiles using
a strict inequality, as in

inf {x : FX(x) > 1− α} ,

where we really have to use inf , since the strict inequality does not guarantee
the existence of a minimum. Actually, the question is not trivial and leads to
alternative definitions of quantiles and risk measures, which may differ in terms
of coherence. For the sake of simplicity, we will cut a few corners as usual.20

7.4.3.2 Is value-at-risk coherent?

In this section, we consider a continuous random variable LT , modeling loss
over the time horizon T for which we want to evaluate V@R. We assume that
its CDF is invertible, so that value-at-risk with confidence level 1 − α, for the
given time horizon T , is the usual quantile V@R1−α,T , such that

P{LT ≤ V@R1−α,T } = 1− α, (7.21)

and we may disregard technical complications. If we consider an affine trans-
formation aLT + b of loss, with a ≥ 0, we may manipulate Eq. (7.21) and
find

P{aLT + b ≤ aV@R1−α,T + b} = 1− α,
showing translation invariance21 and positive homogeneity. Value-at-risk is
clearly normalized and monotonic, but what about subadditivity? If we restrict
our attention to specific classes of distributions, such as the normal, V@R is
subadditive (see Problem 7.4). However, this depends on the fact that quantiles
of a normal distribution are related to the standard deviation, which is subad-
ditive. The following counterexample is often used to show that V@R is not
subadditive in general.

20For a deeper analysis, see, e.g., [6].
21In this case, the constant b is added, rather than subtracted, which seems at odds with the
previous definition of translation invariance. The point is that the random variable LT represents
a loss, rather than a profit.
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Example 7.13 V@R is not subadditive

Let us consider two zero-coupon bonds, whose issuers may default
with probability 4% (over some time horizon that we leave implicit).
Say that, in the case of default, we lose the full face value, $100 (in
practice, we might partially recover the face value of the bond). Let
us compute the V@R of each bond with confidence level 95%. We
represent the loss for the two bonds by random variables X and Y ,
respectively, which take values in the set {0, 100}. Since loss has a
discrete distribution in this example, we should use the more general
definition of V@R provided by the generalized inverse. The proba-
bility of default is 4%, and 1 − 0.04 = 0.96 > 0.95; therefore, we
find

V@R0.95(X) = V@R0.95(Y ) = $0

⇒ V@R0.95(X) + V@R0.95(Y ) = $0.

Now what happens if we hold both bonds and assume independent
defaults? We will suffer:

A loss of $0, with probability 0.962 = 0.9216

A loss of $100, with probability 2× 0.96× 0.04 = 0.0768

A loss of $200, with probability 0.042 = 0.0016

Now the probability of losing $0 is smaller than 95%, and

P{X + Y ≤ 100} = 0.9216 + 0.0768 > 0.95.

Hence, with that confidence level,

V@R0.95(X + Y ) = 100 > V@R0.95(X) + V@R0.95(Y ),

which means that risk, as measured by V@R, may be increased by
diversification.

The lack of subadditivity also implies that minimization of V@R may not
result in convex portfolio optimization problems. When uncertainty is repre-
sented by sampled scenarios, it turns out that it is not even a differentiable
function of portfolio weights.22 This is not to say that V@R is not useful and
relevant. In fact, it is used to assess capital requirements for banks, i.e., to deter-
mine the liquidity needed as a buffer against short-term loss. However, it must
be used with care, and alternative measures have been proposed for the same
purpose.

22See, e.g., [5, pp. 615–618].
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7.4.3.3 Conditional value-at-risk

Conditional value-at-risk, CV@R, is an asymmetric risk measure related to tail
expectations and, as such, bears some similarity with expected shortfall (in fact,
the two concepts are sometimes confused). However, in expected shortfall, we
fix a target a priori; here, the threshold is given by V@R. Informally, CV@R is
defined as a conditional tail expectation23 of loss over a time horizon T , where
the threshold is V@R with probability level 1− α:

CV@R1−α,T
.
= E

[
LT | LT > V@R1−α,T

]
. (7.22)

Since CV@R looks like a complication of V@R, it seems reasonable to
expect that it is an even more difficult beast to tame. On the contrary, CV@R is
much better behaved:

It can be shown that CV@R is a coherent risk measure.
A consequence of coherence is that CV@R is a convex risk measure.

The last point is quite relevant in terms of optimization modeling, as it sug-
gests that minimization of CV@R and optimization subject to an upper bound
on CV@R may result in relatively simple convex problems. We will consider
CV@R optimization later, in Section 15.6.2.1. For now, let us consider an ex-
ample in which, rather unsurprisingly, CV@R is easy to find.

Example 7.14 CV@R in the normal case

In the case of a normally distributed loss, L ∼ N(µL, σ
2
L), we may

find an explicit expression for CV@R. Let us consider a standard
normal loss Z ∼ N(0, 1) first, where V@R1−α = z1−α, the familiar
quantile for the standard normal distribution. We have

E[Z |Z > z1−α]

=
1

α

∫ +∞

z1−α

x · 1√
2π
e−x

2/2dx

=
1

α

1√
2π

∫ +∞

z21−α/2

e−ydy (variable substitution y = x2/2)

=
1

α

1√
2π
e−y

∣∣∣z21−α
+∞

23As we have already noted, there are some critical issues in the careful definition of quantile-
based risk measures, especially when dealing with discrete distributions. We disregard such
subtleties. We should also mention that the term “average value-at-risk” is also used to refer to
CV@R.
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=
1

α

1√
2π
e−z

2
1−α/2 =

1

α
φ(z1−α),

where φ(z) is the PDF of the standard normal, as usual. For instance,
if α = 0.05 (note that this is the small area on the right tail of the loss
distribution),

E[Z |Z > z0.95] =
1

0.05
× φ(1.6449) = 2.0627.

In the case of a generic normal loss L ∼ N(µ, σ2), we just destandard-
ize by considering

L = µ+ σZ, q1−α = µ+ σz1−α.

Hence,

E[L |L > q1−α] = E[µ+ σZ |Z > z1−α]

= µ+ σ · E[Z |Z > z1−α]

= µ+
σ

α
· φ(z1−α). (7.23)

For instance, if L ∼ N(−50, 2002), where the negative expected loss
corresponds to a positive expected profit of 50, we find

CV@R0.95 = −50 +
200

0.05
× φ(1.6449) = 362.54.

7.4.4 FORMULATION OF MEAN–RISK MODELS

The exact formulation of a mean–risk model depends on both modeling and
computational convenience. As we have seen in Supplement S2.1, there are
different scalarization strategies to boil a multiobjective problem down to a se-
quence of single-objective problems. In the mean–risk case, we are dealing with
a model where:

We represent a portfolio by the vector x of decision variables, constrained
by a feasible set S ⊂ Rn.
We want to maximize an expected profit/return π(x).
We want to minimize a risk measure ξ(x).
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In practice, we must select a scalarized model, which may be obtained by defin-
ing a risk-adjusted mean,

max π(x)− λξ(x)

s.t. x ∈ S,

or by requiring a minimum expected reward,

min ξ(x)

s.t. x ∈ S,
π(x) ≥ β,

or by defining a risk budget,

max π(x)

s.t. x ∈ S,
ξ(x) ≤ γ.

Depending on the selected risk measure and the adopted scalarization, we for-
mulate one of the mathematical programming problems to be discussed later, in
Chapter 15. They range from manageable linear programming models to dif-
ficult nonconvex problems. Furthermore, the scalarizations involve a choice of
parameters λ, β, or γ, which may have a more or less intuitive meaning to the
decision maker. Efficient solvers are available for a wide class of (convex) opti-
mization problems, enabling us to tackle many practically significant problems.

7.5 Stochastic dominance

In principle, the framework of utility functions allows to find a complete or-
dering of portfolios. However, utility functions are difficult to elicit, and an
investor might be reluctant to commit to a specific utility. The mean–risk frame-
work may provide us with a partial ordering of alternatives, as well as a set of
efficient portfolios. The stochastic dominance framework is a third alternative
framework, resulting in a partial ordering that may be related to broad families
of utility functions.

To get the intuition and a possible motivation, let us consider again the two
lotteries of Example 7.2. The example shows a limitation of mean–variance
analysis, since one lottery is clearly dominated by the other one, yet, we have
an unclear tradeoff in terms of mean and variance. We may introduce a concept
of dominance between random returns/payoffs X and Y fairly easily. We say
that X dominates Y if24

Y (ω) ≤ X(ω), ∀ω ∈ Ω, (7.24)

24As usual, the condition should be better qualified, as it applies with the possible exception of
a subset of the sample space Ω with null measure. If the random variables are discrete, this is
not relevant.
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and
P{Y < X} > 0.

In other words, X is never worse than Y , andX is strictly better than Y in some
scenarios. Note that there is no clear relationship between this concept of domi-
nance and efficiency. Nevertheless, assuming that investors are nonsatiated, i.e.,
they prefer more to less, no one would prefer Y to X . This concept of (strict)
dominance is quite simple and intuitive, but it is not likely to be very useful in
practice. It is unlikely that it will establish a rich preference relationship be-
tween portfolios. Actually, under a no-arbitrage assumption, we should expect
that we never detect this kind of dominance.25

Hence, we must weaken the idea of strict dominance in order to find a
more useful concept. To get a further clue, let us fix a target payoff/return β and
assume that

P{X ≤ β} ≤ P{Y ≤ β}.

What does this condition suggest about the choice between X and Y ? Since
P{X ≤ β} = 1 − P{X > β}, we may rephrase the condition in terms of
complementary probabilities as follows:

P{X > β} ≥ P{Y > β}.

If we consider β as a target performance, we see that the probability of ex-
ceeding the target is larger for X than for Y . This may suggest that X is a
better investment than Y , but actually this conclusion is not warranted, as the
relationship could be reversed for other values of the target β. However, if we
assume that this relationship holds for every possible target, we come up with
the following definition.

DEFINITION 7.1 (First-order stochastic dominance) Consider random vari-
ables X and Y . We say that X has first-order stochastic dominance over Y if

P{X ≤ β} ≤ P{Y ≤ β}, ∀β ∈ R

and
P{X ≤ γ} < P{Y ≤ γ}, for some γ ∈ R.

Note that the condition in Definition 7.1 may be restated in terms of the CDF of
the two random variables:

FX(β) ≤ FY (β), ∀β ∈ R
FX(γ) < FY (γ), for some γ ∈ R.

In plain English, if we plot the two CDFs, FX is never above FY , and it is
strictly less somewhere.

25See Section 2.4 for the link between dominance and arbitrage opportunities.
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Table 7.3 An example of first-order stochastic dominance.

State ω1 ω2 ω3 ω4 ω5

Probability 0.2 0.2 0.2 0.2 0.2
Return rX (%) 3 4 5 6 7
Return rY (%) 7 6 5 3 3

Return β (%) 2 3 4 5 6 7 8

P{rX ≤ β} 0.0 0.2 0.4 0.6 0.8 1.0 1.0
P{rY ≤ β} 0.0 0.4 0.4 0.6 0.8 1.0 1.0

Example 7.15 First-order stochastic dominance

Let us consider the two investments described in Table 7.3. The first
table gives the percentage return of the two investments in five states
of the world. Clearly, there is no state-by-state dominance between
the returns of the two alternatives. The second table shows the two
CDFs for relevant values of return. Note that the CDF does not bear
any relationship with the states of the world. The CDF of rX never
exceeds the CDF of rY and is strictly less at one point (return 3%).
Hence, rX first-order stochastically dominates rY .

In Definition 7.1, we are essentially assuming that investors prefer more
to less, which is expressed by a strictly increasing utility function. This fact is
formalized as follows.

THEOREM 7.2 If X and Y satisfy the condition in Definition 7.1, then

E
[
u(X)

]
> E

[
u(Y )

]
,

for every utility function u satisfying the condition u′(x) > 0 for all x (u is
differentiable and strictly increasing).

Actually, it turns out that the condition is necessary and sufficient, and we shall
just sketch a proof in Supplement S7.1. We may get a glimpse of intuition by
considering the following relationship in distribution between random variables
X and Y :

Y
d
= X + ξ, (7.25)

where ξ is a nonpositive random variable. We should carefully note the funda-
mental difference between Eq. (7.24) and Eq. (7.25). In the latter case, we are
not requiring a strong state-by-state condition,

Y (ω) = X(ω) + ξ(ω), ∀ω ∈ Ω,
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with ξ(ω) ≤ 0, but only a weaker condition in terms of distribution, which is
actually a way to rephrase first-order stochastic dominance. Then, if the utility
function u is strictly increasing, we find

E
[
u(Y )

]
= E

[
u(X + ξ)

]
< E

[
u(X)

]
.

First-order stochastic dominance is easier to observe in the real world than
an unreasonable state-by-state dominance, but it is still too strong and may not
allow to compare alternatives in many significant cases. To see why, let us
consider the specific case u(x) = x, i.e., the utility function is the identity
function, which is to say that the investor prefers more to less but is risk-neutral.
We clearly see that the condition in Theorem 7.2 implies

E[X] > E[Y ].

This means that we cannot compare distributions with the same expected value,
which is a significant limitation. To overcome this difficulty, a weaker condition
has been introduced.

DEFINITION 7.3 (Second-order stochastic dominance) Let us consider ran-
dom variablesX and Y . We say that X has second-order stochastic dominance
over Y if ∫ β

−∞
P{X ≤ s} ds ≤

∫ β

−∞
P{Y ≤ s} ds, ∀β ∈ R,

and ∫ γ

−∞
P{X ≤ s} ds <

∫ γ

−∞
P{Y ≤ s} ds, for some γ ∈ R.

Definition 7.3 involves integrals of the CDF of random variables, which we
may denote by

F̃X(x)
.
=

∫ x

−∞
FX(s) ds ≡

∫ x

−∞
P{X ≤ s} ds. (7.26)

Hence, the condition of second-order stochastic dominance may be restated as
follows:

F̃X(β) ≤ F̃Y (β), ∀β ∈ R

F̃X(γ) < F̃Y (γ), for some γ ∈ R.

First-order stochastic dominance implies second-order dominance; hence, it is
a stronger concept. This is reflected in a weakened version of Theorem 7.2,
whereby we add a condition related to risk aversion.

THEOREM 7.4 If X and Y satisfy the condition in Definition 7.3, then

E
[
u(X)

]
> E

[
u(Y )

]
,

for every utility function u satisfying the conditions u′(x) > 0 and u′′(x) < 0
for all x (u is differentiable, strictly increasing, and concave).
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Stochastic dominance is an interesting concept, allowing us to establish a
partial ordering between portfolios, which applies to a large range of sensible
utility functions. Unfortunately, it is not quite trivial to translate the concept
into computational terms, in order to make it suitable to portfolio optimization.
Nevertheless, it is possible to build optimization models including stochastic
dominance constraints with respect to a benchmark portfolio (see the chapter
references).

S7.1 Theorem proofs

S7.1.1 PROOF OF THEOREM 7.2

The proof that we sketch here is rather limited, as we only deal with the case
of random variables with a common bounded support [a, b], for finite a, b ∈ R.
Nevertheless, it is simple enough and rather instructive. We assume that the
random variables X and Y are continuous with densities (PDFs) fX(x) and
fY (y), related with the CDF as usual:

FX(x)
.
= P{X ≤ x} and fX(x) = F ′X(x).

We assume differentiability throughout. We should consider the difference of
the expected utilities, which may be written as follows:

E[u(X)]− E[u(Y )] =

∫ b

a

u(x)fX(x) dx−
∫ b

a

u(y)fY (y) dy

=

∫ b

a

u(x)F ′X(x) dx−
∫ b

a

u(y)F ′Y (y) dy.

Now we use integration by parts for both integrals. For instance,∫ b

a

u(x)F ′X(x) dx = u(b)FX(b)− u(a)FX(a)−
∫ b

a

u′(x)FX(x) dx

= u(b)−
∫ b

a

u′(x)FX(x) dx,

since the assumption of bounded support implies FX(b) = 1 and FX(a) = 0. A
similar relationship applies to Y , and we find

E[u(X)]− E[u(Y )] =

∫ b

a

u′(y)FY (y) dy −
∫ b

a

u′(x)FX(x) dx

=

∫ b

a

u′(z)
[
FY (z)− FX(z)

]
dz. (7.27)

Now we observe that, for every z, u′(z) > 0, by the assumption of increas-
ing monotonicity, and FY (z) − FX(z) ≥ 0, by the assumption of first-order
dominance. Hence, the integral is positive, which proves the theorem.
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S7.1.2 PROOF OF THEOREM 7.4

The proof, under similar assumptions about bounded support and differentiabil-
ity of the involved functions, is quite similar to that of Theorem 7.2. We use
the function F̃X(x), i.e., the integral of the CDF that we have introduced in Eq.
(7.26), so that

FX(x) = F̃ ′X(x).

We start from Eq. (7.27) and, since risk aversion involves the second-order
derivative u′′(x), we integrate by parts once more as follows:

E[u(X)]− E[u(Y )] =

∫ b

a

u′(z)
[
FY (z)− FX(z)

]
dz

= u′(b)
[
F̃Y (b)− F̃X(b)

]
− u′(a)

[
F̃Y (a)− F̃X(a)

]
︸ ︷︷ ︸

=0

−
∫ b

a

u′′(z)
[
F̃Y (z)− F̃X(z)

]
dz,

where the second term vanishes, since F̃X(a) and F̃X(a) are integrals on an
interval [a, a] with zero measure. Hence,

F̃Y (a) = F̃X(a) = 0.

The result now follows from the assumptions u′(z) > 0, u′′(z) < 0, and the
definition of second-order stochastic dominance.

Problems

7.1 Consider an exponential utility function u(x) = −e−αx, with a strictly
positive α. An investor characterized by this exponential utility has to allocate
an initial wealthW0 between a risk-free and a risky asset. We assume a binomial
uncertainty model, so that the risky asset has two possible gains (not returns)
Ru and Rd, with probabilities πu and πd, respectively. Let q be the wealth
allocated to the risky asset; it is possible to borrow cash as well to short-sell
the risky asset. How does q change as a function of initial wealth W0? Do you
think that your utility function is exponential?

7.2 An investor endowed with an initial wealth W0 = 1 (e.g., in euro) maxi-
mizes the expected value of the quadratic utility function u(x) = ax − bx2/2,
where x is the terminal wealth obtained by investing in n risky assets. Accord-
ingly, the investor chooses a portfolio. Another investor, with a different initial
wealth of W0 = K, by optimizing the same utility function, chooses a different
portfolio (in the sense that the asset weights are different).

How do you explain the difference?
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a bc

x

f (x)X

FIGURE 7.5 PDF of a triangular distribution.

If the second investor changes the coefficient b to b′, he finds the same
portfolio as the first investor. What is the relationship between b and b′?

Note: This problem is borrowed from [13].

7.3 The value of your real estate property is $100,000. In case of a fire, your
property may be lost or damaged, depending on how severe the accident is. Let
us assume that the following scenarios give the residual value of your property
in the future, depending on the possible occurrence of a fire:

State Residual value Probability
ω1 $100,000 0.95
ω2 $50,000 0.04
ω3 $1 0.01

State ω1 means that no accident occurred. Assume that your preferences are
represented by a logarithmic utility depending on wealth, which is why we do
not consider a residual value of $0, but $1. What is the maximum price that
you would be willing to pay for an insurance guaranteeing coverage of any
loss? Note: In the three states, the insurance will pay $0, $50,000, and $99,999,
respectively, so that the value of your property is preserved.

7.4 Consider random variables L1 and L2, modeling loss from two portfolios,
and assume that they are jointly normal. Show that, in this case, value-at-risk is
subadditive.

7.5 Figure 7.5 shows the probability density function (PDF) of a generic tri-
angular distribution with support (a, b) and mode c. For such a distribution,
expected value and variance are given by the following formulas:

E[X] =
a+ b+ c

3
,

Var(x) =
a2 + b2 + c2 − ab− ac− bc

18
.

Say that the profit from a financial portfolio, with a holding period of a few
weeks, has a triangular distribution with parameters (in ) a = −75,000, b =
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55,000, and c = 40,000, so that the maximum possible loss is 75,000. Find
V@R at level 95%. Note: The drawing of Fig. 7.5 is not in scale and is just
meant as a qualitative hint.

7.6 Consider the following payoff distributions for two independent invest-
ment opportunities:26

Investment A Investment B
Payoff Probability Payoff Probability

4 0.25 1 0.33
5 0.50 6 0.33

12 0.25 8 0.33

Compare the two alternatives in terms of stochastic dominance. Hint: You may
plot the CDF, which is piecewise constant, and its integral, which is piecewise
linear, for the two alternatives.

Further reading
Decision-making under uncertainty is a topic of general interest, which is
treated in different ways by different academic and practitioner commu-
nities. A thorough treatment of utility theory can be found, e.g., in [12],
which is a treatment with a more economic flavor.
There is an array of excellent books offering a treatment in a more finan-
cial vein, dealing with both utility theory and stochastic dominance. A
concise, yet quite broad coverage of portfolio theory is offered in [11].
You may also see [7]. A more extensive treatment is offered in [9] or
[10].
The concept of coherent risk measure was introduced in [1].
Risk measures are dealt with extensively in books with a more compu-
tational twist, especially stochastic programming. You may see [15], as
well as [14]. A quite readable chapter on risk measures can also be found
in [6].
We have defined the concept of stochastic dominance, but portfolio op-
timization using this framework is more challenging than using utility
functions or risk measures. See, e.g., [8] or [17].
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Chapter Eight

Mean–Variance Efficient
Portfolios

This chapter is fairly technical and is meant to be a bridge between the gen-
eral framework of mean–risk models, which we introduced in Section 7.4, and
Chapters 9 and 10, where we describe factor and equilibrium models. Here,
we adopt standard deviation as a risk measure, momentarily setting aside the
critical remarks that we made in Section 7.4.1, in order to develop the the-
ory of mean–variance efficient portfolios, which is the foundation of a body
of knowledge broadly known as modern portfolio theory (MPT). In portfo-
lio optimization, variance is typically used, rather than standard deviation, but
this is just a matter of computational convenience. Despite its deceptive sim-
plicity and the limitation of symmetric risk measures, MPT provides us with
useful insights. Everything hinges on the determination of an efficient frontier
of risky portfolios and the selection of an optimal portfolio mixing risky assets
with a risk-free asset. The risk-free asset may be thought as a safe zero-coupon
bond with maturity corresponding to the portfolio holding period, or a safe bank
account offering a constant interest rate.

The theory, in its basic form, only deals with a single-period decision prob-
lem. To fix ideas, we will essentially consider equity portfolios, even though, in
principle, any asset would do, since we may consider the holding period return
from whatever asset, including a bonds and commodities. A further limitation
of our treatment is that we do not consider transaction costs, taxes, etc., but the
basic model can be extended to account for these and additional problem fea-
tures. The resulting optimization models are quadratic programming problems
that, per se, are certainly not hard to solve with numerical optimization meth-
ods.1 A deeper limitation is of a statistical nature and concerns the reliability
of the input data and of the resulting portfolio. We feed the optimization model
with estimates of expected values and covariances of asset returns, but they are
noisy estimates. Estimation errors may be magnified by the optimization pro-
cess, resulting in unreliable and possibly weird solutions. Remedies have been
proposed, including the Black–Litterman approach (Section 10.3) and robust
optimization (Section 15.9).

1See Chapter 16.
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Despite all of its limitations, the MPT framework sheds light on the funda-
mental decomposition of risk into systematic and idiosyncratic (specific) com-
ponents. Another useful idea that we derive from MPT is the decomposition of
the overall portfolio problem into independent subproblems: (1) the selection
of a risky portfolio, and (2) its mixing with the risk-free asset. We will take
a step-by-step, top-down process, whereby in Section 8.1 we first consider the
simple problem of how wealth should be allocated between the risk-free asset
and a generic risky portfolio. This leads to the definition of the capital allo-
cation line (CAL). Then, in section 8.2, we consider in detail the problem of
tracing the mean–variance efficient frontier, which leads us to an important sep-
aration property, as we shall see in Section 8.3. The property suggests that if all
investors have the same view about the probability distribution of returns, then
they should invest in the same risky portfolio, irrespective of their subjective
risk aversion. Risk aversion should come into play only in the capital allocation
between the optimal risky portfolio and the risk-free asset. The optimal risky
portfolio can be found by maximization of a measure, the Sharpe ratio, trading
off risk and expected reward, which we tackle in Section 8.4. In Section 8.5,
we discuss whether and to what extent the theory of mean–variance efficient
portfolios may be reconciled with the theory of expected utility. We close the
chapter with some considerations about the stability of the portfolios generated
by mean–variance optimization. As we illustrate in Section 8.6, a naive mean–
variance approach may yield unreliable and unstable solutions, which would be
hardly trusted by any portfolio manager.

We close the chapter with two technical sections, Supplements S8.1 and
S8.2, where we prove some properties of the efficient portfolio frontier and
give an explicit solution of a simplified portfolio optimization problem. These
supplements may be safely skipped.

In this chapter we use some basic concepts in multiobjective optimization.
The unfamiliar reader may refer to Supplement S2.1.

8.1 Risk aversion and capital allocation to risky assets

In this section, we consider a simple introductory problem, the capital allocation
between a single risky asset and a risk-free one, over a given holding horizon.
We will denote the risk-free return over the holding period as rf ,2 and the return
of a risky portfolio by the random variable r̃,3 with expected value and variance

2We use the term risk-free return, rather than rate, as rf is not annualized and may refer to an
arbitrary holding period.
3There are two main conventions to denote random variables. We may use X for random vari-
ables and x for their realizations. As an alternative, we may use x̃ for random variables and x
for their realizations. We mostly use the first convention in this book but, since in this chapter
we shall use r for return and R for excess return, here we adopt the second one to avoid any
ambiguity.
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denoted by
E[r̃] = µ and Var(r̃) = σ2,

respectively. We will denote the fraction of wealth allocated to the risky asset
by x, so that the corresponding fraction allocated to the risk-free asset is 1− x.
Hence, the random return of the resulting portfolio is

r̃p(x) = xr̃ + (1− x)rf ,

with expected return and standard deviation given by

µp(x) = E[r̃p(x)] = xµ+ (1− x)rf = rf + x · (µ− rf ) , (8.1)

σp(x) =
√

Var[r̃p(x)] =|x | ·σ, (8.2)

respectively. Please note that if we allow a negative value of x, which corre-
sponds to short-selling the risky portfolio, we have to use an absolute value in
Eq. (8.2). It is also useful to introduce the following fundamental concepts.

DEFINITION 8.1 (Excess return) The excess return R̃ of a risky asset (or a
portfolio) is its return in excess of the risk-free return:

R̃
.
= r̃ − rf .

DEFINITION 8.2 (Risk premium) The risk premium π of a risky asset (or a
portfolio) is its expected return in excess of the risk-free return:

π
.
= E

[
R̃
]

= µ− rf ,

i.e., the expected excess return.

Remark. The concept of risk premium of definition 8.2 should not be confused
with the utility theoretic concept of Eq. (7.5), which is related with a specific
utility function and a certainty equivalent. Nevertheless, we may see some sim-
ilarity between the two concepts, since the risk premium that we consider here
does measure a compensation required to take a risk. To better grasp the idea,
we may consider the ratio

λ =
µ− rf
σ

as a market price of risk, i.e., the expected compensation that is expected by
the market (rather than by an individual decision maker) per unit of risk. The
relationship may be rewritten as

µ = rf + λσ,

which sheds further light on the matter. If the market price of risk is zero, then
µ = rf . This kind of reasoning will play a role in the risk-neutral pricing of
options, as we shall see in Chapter 14. However, we should be careful about an
interpretation that relies on the standard deviation of a single asset, rather than
its contribution to the overall risk of a portfolio.
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Table 8.1 Data for Example 8.1. The risk-free return is rf = 3%.

Portfolio Risk premium Expected return Risk (St. dev.)

P1 4% 7% 10%
P2 7% 10% 20%
P3 2% 5% 30%

In order to find the most preferred portfolio, we have to trade off expected
return and risk. Given the background concepts introduced in Chapter 7, we
may use a mean–risk approach, adjusting expected return and building a sort of
expected utility function as follows:

U(x) = µp(x)− 1
2λσ

2
p(x), (8.3)

where λ corresponds to the degree of risk aversion. Such a function is essen-
tially a quadratic utility function and disregards higher-order moments. We may
consider this function as a sort of utility function,4 with all of the pitfalls that we
have outlined in Chapter 7, or as the scalarized objective function of a mean–
risk model.

Example 8.1 A numerical example

Let us consider three portfolios, with expected return and standard
deviation given in Table 8.1. Comparing P1 and P2, we observe that
the former is less risky than the latter, but it features a lower expected
return. The choice between the two depends on the degree of risk
aversion. In Figure 8.1, we plot the expected utility of Eq. (8.3) for
a range of values of λ, which results in a plain straight line for each
portfolio. We observe that there is a critical value for which a decision
maker would be indifferent between P1 and P2. On the contrary,
P3 looks always worse than the other two alternatives. Indeed, we
observe from Table 8.1 that it features the smallest expected return
and the largest risk.

In general, the values of an expected utility can be used to rank alternatives,
but they have no concrete financial meaning; indeed, we speak of ordinal, rather
than cardinal utility. In this specific case, however, the utility score can be
interpreted as a certainty equivalent return, i.e., a risk-free return that would

4We should note that the interpretation of Eq. (8.3) as a quadratic utility function is a bit impre-
cise. See Eq. (7.17) and the discussion in Section 8.5.
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FIGURE 8.1 Plots of expected utility as a function of risk aversion in Example 8.1.

provide the investor with the same utility as the risky portfolio. In practice,
sensible values for λ are usually considered to lie in the range between 2 and 4.

Now, as we said, the problem is to find an allocation between the risky
portfolio and the risk-free asset. We may get a feeling for the involved tradeoff
by plotting the range of portfolios that we can form as a function of x, on a
mean–risk plane with coordinates σp(x) and µp(x). To this aim, let us assume
x ≥ 0 [to get rid of the absolute value in the expression of σp(x)] and eliminate
x between Eqs. (8.1) and (8.2). We solve the latter equation for x and plug it
into the former one, which yields

µp(x) = rf +
µ− rf
σ

· σp(x).

Thus, on the mean–risk plane, the portfolios trace the line shown in Fig. 8.2,
which is called the capital allocation line (CAL). The CAL has an intercept rf
and a slope given by a ratio trading off risk and reward:

Sp =
µp − rf
σp

. (8.4)

This ratio, called Sharpe ratio, relates the risk premium of the portfolio with
its volatility, and it is also known as reward-to-volatility ratio. In the case of a
single risky asset, the Sharpe ratio of the portfolio does not really depend on x,
the decision variable defining the portfolio. In fact, if we assume x ≥ 0 and use
Eqs. (8.1) and (8.2), we find

Sp =
µp(x)− rf
σp(x)

=
rf + x · (µ− rf )− rf

xσ
=
µ− rf
σ

.
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FIGURE 8.2 The capital allocation line.

Hence, the Sharpe ratio of the portfolio boils down to the Sharpe ratio of the
risky asset. In Fig. 8.2, the two bullets correspond to the two assets that we
are considering, and the CAL has positive slope, since we assume that the risky
asset has positive risk premium. The portion of line connecting the two bullets
is spanned by x in the range [0, 1]. For x > 1 we have a leveraged portfolio,
in which expected return is boosted by borrowing money at the risk-free rate in
order to increase the investment in the risky asset.5 For x < 0 we are selling
the risky asset short. The picture does not show the corresponding line, which
has the same intercept as the CAL, but a negative slope. Since, in this case, the
risk premium is positive, portfolios with x < 0 are clearly dominated and not
efficient.

8.1.1 THE ROLE OF RISK AVERSION

The CAL defines the universe of possible portfolios, whereas risk aversion de-
termines which one is selected. To this aim, let us maximize the expected utility
of Eq. (8.3),

U(x) = rf + x (µ− rf )− 1

2
λx2σ2,

with respect to x. Since this function is differentiable and concave, it suffices to
write the first-order optimality condition,

U ′(x) = (µ− rf )− λxσ2 = 0,

which yields the optimal allocation to the risky asset,

x∗ =
µ− rf
λσ2

. (8.5)

5Here, we are assuming that cash may be borrowed or lent at the same rate. See Problem 8.1 to
find out what happens in the case of different rates.
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If the risk premium is positive, x∗ is positive as well. We also notice that, quite
sensibly, this allocation is increasing with respect to the risk premium µ − rf ,
and decreasing with respect to risk σ and risk aversion λ. The expression of
the optimal portfolio depends on a ratio trading off risk premium and risk, even
though it is not really a Sharpe ratio, as it involves variance rather than standard
deviation.

8.2 The mean–variance efficient frontier with risky
assets

In capital allocation, we consider a given portfolio of risky assets as the only
risky asset available to investors. But how can we choose that portfolio of risky
assets? Here, we stick to measuring risk by standard deviation of return, within
a mean–variance framework. This leads us to tracing the efficient frontier of
portfolios of risky assets on the mean–risk plane. We deal with the case of two
risky assets first, and then we move on to the case of n assets. Before doing so,
we should ask why we should include multiple assets in a portfolio. Combining
n risky assets should allow us to strike a better balance between risk and reward.
However, as we show below, there is a limit to the amount of risk reduction that
can be achieved by pure diversification.

8.2.1 DIVERSIFICATION AND PORTFOLIO RISK

Common sense suggests that holding a diversified portfolio should reduce risk.
Indeed, we know from inferential statistics that, given a sample of i.i.d. (inde-
pendent and identically distributed) variables, the variance of the sample mean
X goes to zero when the sample size goes to infinity. In fact,

Var(X) = Var

(
1

n

n∑
i=1

Xi

)
=

1

n2

n∑
i=1

Var(Xi) =
σ2

n
,

which vanishes for an increasing sample size n. However, this holds under an
assumption of independence.6 Such an assumption is not quite realistic in a
financial context. If we consider an equally weighted portfolio (wi = 1/n), the
variance of its return includes not only contributions from individual variances,
but also from the whole array of covariances:

Var

(
n∑
i=1

1

n
· r̃i

)
=

1

n2

n∑
i=1

σ2
i +

1

n2

n∑
i=1

n∑
j=1
j 6=i

σij ,

where σ2
i
.
= Var

(
r̃i
)

and σij
.
= Cov

(
r̃i, r̃j

)
.

6Actually, assuming that correlation is zero would be sufficient.
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In order to figure out what happens when we push on diversification, by
letting n→ +∞, let us define an “average variance,”

σ2 .
=

1

n

n∑
i=1

σ2
i ,

and an “average covariance,”

Cov
.
=

1

n(n− 1)

n∑
i=1

n∑
j=1
j 6=i

σij .

Then, the return variance of the equally weighted portfolio is

σ2
p =

1

n
· σ2 +

n− 1

n
· Cov.

We immediately notice that, for an increasing value of n, the first component of
variance does indeed go to zero, but the second one does not. There is a nondi-
versifiable component of risk. In financial markets, we have to distinguish:

An array of idiosyncratic risk factors, associated with specific firms.
These specific components of risk are nonsystematic and may be elim-
inated by diversification.
A market risk component, which is a systematic and nondiversifiable
risk factor.

This will be more apparent when dealing with factor models in Chapter 9, where
we shall also see how we might hedge systematic risk by using long–short port-
folios. This, however, assumes that short-selling is allowed.7

8.2.2 THE EFFICIENT FRONTIER IN THE CASE OF TWO RISKY
ASSETS

To build intuition, let us consider first the simple case of only two risky assets,
say, A1 and A2, with expected returns µ1 and µ2, and standard deviations of
return σ1 and σ2, respectively. The returns are not necessarily independent,
and we denote their coefficient of correlation by ρ12. The asset weights in the
portfolio are denoted by w1 and w2, subject to the constraint

w1 + w2 = 1. (8.6)

Hence, the expected return of the portfolio is a linear (affine) combination of
the two expected returns:

µp = w1µ1 + w2µ2.

7To hedge market risk, we may also use derivatives like index futures or options. In particular, a
short position in an index futures may be used to emulate a short position in the market portfolio,
as we show in Chapter 12.



8.2 The mean–variance efficient frontier with risky assets 327

Variance is
σ2
p = w2

1σ
2
1 + 2ρ12w1w2σ1σ2 + w2

2σ
2
2 .

The minimum variance portfolio can be found by straightforward minimization8

and is, for two assets:

w1 =
σ2

2 − ρ12σ1σ2

σ2
1 − 2ρ12σ1σ2 + σ2

2

, w2 = 1− w1. (8.7)

As we have seen in Section 2.1.1, we might trace the efficient frontier of port-
folios by setting a range of target portfolio returns µmin. In the case of two
risky assets, the resulting optimization problem is a bit dull, since the additional
constraint

w1µ1 + w2µ2 = µmin,

together with Eq. (8.6), immediately give the resulting portfolio:

w1 =
µmin − µ2

µ1 − µ2
, w2 =

µ1 − µmin

µ1 − µ2
.

To figure out the qualitative shape of the efficient frontier, let us consider ex-
pected return and variance as a function of w = w1:

µp = w(µ1 − µ2) + µ2, (8.8)

σ2
p = w2σ2

1 + 2ρ12w(1− w)σ1σ2 + (1− w)2σ2
2 . (8.9)

By letting w range over the whole real line, i.e., assuming that short-selling is
possible, we may plot a curve on a mean–risk plane. In this case, we find a
curve corresponding to the whole set of attainable portfolios, which we may
call the attainable set. The qualitative shape of this set is outlined in Fig. 8.3
for three specific values of correlation, ρ12 ∈ {−1, 0, 1}, assuming that short-
selling is not allowed, so that w ∈ [0, 1]. In order to rule out pathological cases,
we assume µ1 6= µ2 and σ1 6= σ2. If we allow short-selling, the plots stretch
beyond the extreme points corresponding to assets A1 and A2. Let us consider
the two limit cases first.

Case ρ12 = 1. In this case,

σp =
√
w2σ2

1 + 2w(1− w)σ1σ2 + (1− w)2σ2
2 =

√(
wσ1 + (1− w)σ2

)2
=|w(σ1 − σ2) + σ2 | .

Note that, to be fully general, we have to consider the absolute value. If we
rule out short-selling and use Eq. (8.8) to eliminate the portfolio weight, we
find

σp =
µp − µ2

µ1 − µ2
· (σ1 − σ2) + σ2,

8One possibility is to use a Lagrange multiplier to deal with constraint (8.6), as we shall see in
the general case of n assets. In this simple case, we may just eliminate w2 and solve an uncon-
strained problem with respect to w1, by enforcing the usual first-order optimality condition.
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FIGURE 8.3 Plotting the mean–risk tradeoff curve for portfolios including two risky
assets.

which is a linear relationship between standard deviation and expected re-
turn. In the case of Fig. 8.3, µ1 < µ2 and σ1 < σ2, so the slope is positive.
Also note that we may find a portfolio with zero risk by choosing

w =
σ2

σ2 − σ1
> 1,

which implies short-selling asset A2.
Case ρ12 = −1. By a similar token, in this case we find

σp =

√(
wσ1 − (1− w)σ2

)2
=|w(σ1 + σ2)− σ2 | .

Now, we attain zero risk by setting

w =
σ2

σ1 + σ2
.

In this case, w ∈ [0, 1] and we may get rid of risk without resorting to short-
selling. The set of attainable portfolios corresponds to two line segments,
even if we require w ≥ 0.

For intermediate values of correlation, we have a nonlinear curve featuring a
minimum variance portfolio. In Supplement S8.1, we show that the exact shape
is a hyperbola. Note that the plot corresponding to all of the attainable portfolios
is not the efficient frontier, as only the portion of the attainable set curve above
the minimum variance portfolio is efficient.

An interesting observation is that a sensible portfolio may include a dom-
inated asset. To see this, let us consider asset A3, which happens to lie on the
mean–risk curve in Fig. 8.3, and imagine tracing the frontier with only the two
assets A1 and A3. Since A3 is on the previous attainable set, it means that its
expected return and standard deviation may be replicated by a portfolio includ-
ing A1 and A2, which implies that we get exactly the same attainable set by
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using A1 and A3. Clearly, asset A1 is dominated by A3, and in the case of
perfect positive correlation, ρ13 = 1, the set of attainable portfolios with no
short-selling would be a line segment joining A1 and A3, with a negative slope,
and it would consist of nonefficient portfolios. However, Fig. 8.3 shows that,
for certain values of correlation, it might be worthwhile to include a dominated
asset into a portfolio, as this could reduce the overall portfolio risk. This is espe-
cially true for a negative correlation. Thus, we should not analyze the individual
risks of assets, but their contribution to the overall risk within a well-diversified
portfolio.9

8.2.3 THE EFFICIENT FRONTIER IN THE CASE OFN RISKY
ASSETS

Given the basic intuition provided by the case of two risky assets, let us now
consider a portfolio including n risky assets with expected value µ and covari-
ance matrix Σ. As we have said,10 the case of n risky assets may be tackled by
two alternative scalarization approaches (assuming fully invested portfolios):

One possibility is enforcing a constraint on a target expected return µmin

and letting it range over a suitable interval:

min 1
2wTΣw

s.t. iTw = 1,

µTw = µmin,

where i = [1, 1, . . . , 1]T.
An alternative is setting up a (sort of) utility function characterized by a
risk aversion parameter λ:

max µTw − λ

2
wTΣw (8.10)

s.t. iTw = 1. (8.11)

We may interpret this scalarized objective as a risk-adjusted expected re-
turn. By letting λ range from 0 to +∞, we trace the efficient frontier.

Quite often, these two approaches are equivalent, but they are not in general. As
a counterexample, let us consider tracing the mean–variance efficient frontier
subject to a cardinality constraint. This means that we limit the number of
assets that may have a nonzero weight in the portfolio. In this case, the second
scalarization approach does not necessarily work. To see why, consider Fig. 8.4.
Here, we show the possible shape of an efficient frontier involving three assets,

9This concept will be more evident in Section 10.2, where we deal with the role of beta in the
capital asset pricing model and introduce the security market line.
10See Supplement S2.1.
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FIGURE 8.4 Qualitative sketch of a cardinality-constrained efficient frontier.

where the maximum cardinality is two. We may find a sort of “union” of three
frontiers, each one corresponding to a pair of assets. This frontier does not look
like the boundary of a convex set, and the risk-adjusted objective of Eq. (8.10)
may fail to generate the whole frontier.11

In our simple setting, we may work with either scalarization approach but,
for the sake of convenience, we pursue the second approach in this section,
leaving the first one to Supplement S8.2. As a first step, let us find the min-
imum variance portfolio. This portfolio is obtained by letting λ → +∞ in
the maximization problem (8.10), which is easily solved by using the Lagrange
multiplier method. We plug the equality constraint (8.11) into the Lagrangian
function, associated with a multiplier ν:

L(w, ν) = 1
2wTΣw + ν ·

(
1− iTw

)
.

Stationarity with respect to portfolio weights yields a system of linear equations,
which is solved under the assumption of a full-rank (invertible) covariance ma-
trix:

Σw − νi = 0 ⇒ w = νΣ−1i.

Plugging this vector of weights into constraint (8.11) immediately yields the
value of the multiplier,

ν =
1

iTΣ−1i
⇒ w∗min =

Σ−1i

iTΣ−1i
. (8.12)

Then, the minimum variance of the resulting portfolio is

σ2
min = (w∗min)

T
Σw∗min =

1

iTΣ−1i
,

which is just the Lagrange multiplier.

11We face a similar issue in Fig. 2.9. The problem with a cardinality constraint may be solved
using the mixed-integer modeling tools that we shall discuss in Section 15.4.1.
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The case of finite risk aversion can be tackled along the same lines, and it
is a useful exercise to prove that:

w∗ =
Σ−1i

iTΣ−1i
+

1

λ

(
iTΣ−1i

)
Σ−1µ−

(
iTΣ−1µ

)
Σ−1i

iTΣ−1i
, (8.13)

µ∗ = µTw∗ =
iTΣ−1µ

iTΣ−1i
+

1

λ

(
iTΣ−1i

) (
µTΣ−1µ

)
−
(
iTΣ−1µ

)2
iTΣ−1i

, (8.14)

(σ∗)2 = (w∗)TΣw =
1

iTΣ−1i
+

1

λ2

(
iTΣ−1i

) (
µTΣ−1µ

)
−
(
iTΣ−1µ

)2
iTΣ−1i

.

(8.15)

As a reality check, we may note that if λ goes to infinity, the portfolio of Eq.
(8.13) boils down to the minimum variance portfolio.

We may streamline Eqs. (8.14) and (8.15) by introducing suitable constants

A ≡ iTΣ−1µ

iTΣ−1i
,

B ≡
(
iTΣ−1i

) (
µTΣ−1µ

)
−
(
iTΣ−1µ

)2
iTΣ−1i

,

C ≡ 1

iTΣ−1i
,

and rewriting the two equations as follows:

µ∗ = A+
B

λ
⇒ B

λ2
=

(µ∗ −A)2

B

(σ∗)2 = C +
B

λ2
= C +

(µ∗ −A)2

B
.

The last equation can be rearranged as

(σ∗)2

C
− (µ∗ −A)2

B/C
= 1,

which is the equation of a hyperbola,12 assuming that B > 0 and C > 0.13 To
be precise, since risk aversion λ is supposed to be positive, we only draw a por-
tion of a hyperbola. The resulting curve is depicted in Fig. 8.5. Unlike the case
of two assets, this curve does not correspond to the whole set of attainable port-
folios, but only to the portfolios minimizing variance for given target expected
return. Thus, we should talk of the minimum variance curve (or min-variance

12Supplement S8.1 describes a similar analysis for the case of two assets.
13The inequality C > 0 is a consequence of the positive definiteness of the inverse of a positive
definite matrix. Hence, it holds if we assume that the covariance matrix Σ is positive definite,
not only semidefinite, so that iTΣ−1i > 0. The inequality B > 0 is a consequence of the
Cauchy–Schwartz inequality applied to vectors µ and i, where we consider an inner product
involving matrix Σ−1; therefore, 〈i,µ〉 = iTΣ−1µ and ‖µ‖2= 〈µ,µ〉 = µTΣ−1µ .
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p
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FIGURE 8.5 The set of minimum variance portfolios, for given target expected returns,
with n risky assets. The portion above the overall minimum variance portfolio is the effi-
cient frontier.

set). The dotted portion of the min-variance set, below the point corresponding
to the minimum variance portfolio, is not efficient. The efficient frontier is the
portion of the plot above the minimum variance point.

8.3 Mean–variance efficiency with a risk-free asset: The
separation property

In this section, we examine the structure of the efficient frontier when a risk-free
asset is introduced. As it turns out, the efficient frontier is just a straight line,
mixing a risky portfolio and the risk-free asset, just like in the CAL. Further-
more, all investors should hold the same risky portfolio.

First, let us tackle the problem formally. Let w0 be the weight of the risk-
free asset, earning the risk-free return rf . The problem

max w0rf + µTw − λ

2
wTΣw

s.t. w0 + iTw = 1,

can be rewritten as an unconstrained problem by eliminating w0:

max wTπ − λ

2
wTΣw,

where π = µ − rf i is the vector of risk premia. We apply the first-order opti-
mality condition to the unconstrained maximization problem,

π − λΣw = 0,
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which immediately yields

w∗ =
1

λ
Σ−1π, (8.16)

w∗0 = 1−wTi = 1− 1

λ
iTΣ−1π. (8.17)

As before, we assume a full-rank, invertible covariance matrix. As a reality
check, we observe that when λ → +∞ the whole wealth is allocated to the
risk-free asset. We may build further intuition by considering a couple of simple
examples.

Example 8.2 The case of uncorrelated assets

Suppose that asset returns are uncorrelated, so that Σ is a diagonal
matrix, with entries σii ≡ σ2

i . Then, the weight for each risky asset i
in the optimal portfolio, which also includes the risk-free asset, is

w∗i =
1

λ

µi − rf
σ2
i

=
1

λ

πi
σ2
i

.

In this simplified case, portfolio weights depend in an obvious way
on the risk aversion coefficient λ, the risk premium πi, and risk σi.
We also observe that this solution is formally identical to the case of
simple capital allocation; see Eq. (8.5).

Example 8.3 The case of two correlated assets

The covariance matrix for two correlated assets is

Σ =

[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

]
,

whose inverse is

Σ−1 =
1

1− ρ2


1

σ2
1

− ρ

σ1σ2

− ρ

σ1σ2

1

σ2
2

 .
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Clearly, the inverse exists if we rule out the case of perfect correlation
(ρ 6= ±1). Then, the weights in the optimal portfolio are

w∗1 =
1

λ(1− ρ2)

(
π1

σ2
1

− ρ π2

σ1σ2

)
,

w∗2 =
1

λ(1− ρ2)

(
π2

σ2
2

− ρ π1

σ1σ2

)
,

w∗0 = 1− w∗1 − w∗2 .

Note that, since we do not constrain the portfolio in any way, the
weight of an asset can be positive or negative, depending on the sign
and the size of the risk premia, on the volatilities, and on the correla-
tion. For instance, let us rewrite the weight of asset 1 in terms of the
Sharpe ratios S1

.
= π1/σ1 and S2

.
= π2/σ2:

w∗1 =
1

λ(1− ρ2)σ1
(S1 − ρS2) . (8.18)

With a sufficiently large correlation, so that there is no diversification
effect, if S2 is sufficiently larger than S1, we should sell the first asset
short.

These expressions are useful to check the sensitivity of the port-
folio composition to the input data and to challenge our intuition.
What about the sensitivity to risk aversion? We see that

∂w∗1
∂λ

= − 1

λ
w∗1 ,

which may be positive or negative. If we hold a long (positive) po-
sition in the risky asset 1, increasing risk aversion will decrease its
weight. However, if asset 1 is sold short, increasing λ will increase
the portfolio weight, in the sense that it is shrunk towards zero (we
reduce the amount of short-selling).

An easy finding is

∂w∗1
∂π1

=
1

λ(1− ρ2)σ2
1

> 0,

which makes good sense: The larger the risk premium of an asset,
the larger the corresponding portfolio weight. One would expect that
increasing the risk premium of the other asset will drive the portfolio
weight down, which is not necessarily true. In fact,

∂w∗1
∂π2

=
−ρ

λ(1− ρ2)σ1σ2
.
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In the case of negative correlation, increasing π2 will increase bothw∗1
and w∗2 , because of a diversification effect. This effect is less strong
when risk aversion and volatilities are large, and it is increasing with
the absolute value of the correlation. By a similar token, the effect of
increasing the volatility of the other asset depends on the sign of the
correlation:

∂w∗1
∂σ2

=
ρπ2

λ(1− ρ2)σ1σ2
2

.

When correlation is positive, increasing the volatility of the second
asset increases the weight of the first one, but the contrary applies
with negative correlation.

The sensitivity of w∗1 with respect to σ1 is trickier:

∂w∗1
∂σ1

=
1

λ(1− ρ2)

(
−2

π1

σ3
1

+ ρ
π2

σ2
1σ2

)
=

1

λ(1− ρ2)σ2
1

(−2S1 + ρS2) .

If the two Sharpe ratios are positive and close enough, this sensitivity
will be negative, which corresponds to our intuition. However, the
sensitivity can be positive. For instance, this may happen if risk pre-
mia are both positive, as well as correlation, but asset 1 has a smaller
Sharpe ratio, so that it is sold short. An increase in volatility will in-
crease its weight, in the sense that we should reduce the amount of
short-selling in this case.

The analysis of sensitivity with respect to correlation is left as
an exercise. We only observe that if risk premia are positive and we
change a positive correlation into a negative one, without changing
its absolute value, we will increase the exposure to both risky assets.
This is clearly due to a diversification effect.

The bottom line of this example, with respect to the uncorrelated
case of Example 8.2, is that introducing correlation makes the portfo-
lio behavior less intuitive. In practice, we should also be aware that
uncertainty in parameters may be interpreted as an effect of statistical
estimation noise, which may have an adverse effect on the stability of
the mean–variance optimal portfolio (see Section 8.6).

Equation (8.16) has an important implication: Within a mean–variance
framework, the relative composition of the risky portfolio does not change as
a function of risk aversion. The coefficient λ scales the weights of the risky
assets in the portfolio uniformly. Hence, the overall portfolio does depend on
risk aversion, but only in the way the risk-free asset is mixed with a risky port-
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FIGURE 8.6 CALs and the tangency portfolio.

folio. The risky portfolio only depends on the covariance matrix and the vector
of risk premia. Let us explore this finding in a more intuitive way by comparing
different portfolios that we may build by mixing the risk-free asset with a risky
portfolio.

To begin with, it is never optimal to consider a nonefficient risky portfolio.
To see this, let us consider a nonefficient portfolio wne. If this portfolio is not
efficient, there must exist another, efficient portfolio we dominating it. Two
possibilities should be considered, in terms of expected return and risk:

1. µne < µe and σne ≥ σe

2. µne ≤ µe and σne > σe

In the first case, let w0 be the weight of the risk-free asset. The expected return
of the portfolio including the efficient portfolio is

w0rf + (1− w0)µe > w0rf + (1− w0)µne,

whereas variance is
(1− w0)2σ2

e ≤ (1− w0)2σ2
ne.

Hence, we are better off mixing the efficient portfolio with the risk-free asset.
The second possibility is treated similarly, leading us to the conclusion that we
should never mix a nonefficient portfolio with the risk-free asset.

Now, let us consider different CALs mixing the risk-free asset with an effi-
cient risky portfolio, as depicted in Fig. 8.6. It is immediately apparent that:

All of the portfolios on the line CAL1 are dominated by the portfolios on
the line CAL2.
The line CAL2 is associated with a tangency portfolio, which is the effi-
cient portfolio corresponding to the maximum CAL slope.
Since the slope of the CAL is a Sharpe ratio, in order to find the optimal
risky portfolio, we have to maximize the Sharpe ratio itself. We will
address this task in Section 8.4.



8.4 Maximizing the Sharpe ratio 337

The bottom line of the reasoning is that we have found a separation property,
telling us that the portfolio choice problem may be decomposed into two inde-
pendent tasks:

Determination of the optimal risky portfolio (purely technical),
Allocation of available wealth between the risk-free asset and the risky
portfolio (this depends on subjective preferences).

The fact that all investors should hold the same portfolio, independently from
their risk attitude, will have important consequences, leading us to the capital
asset pricing model in Chapter 10. However, this conclusion relies on some
critical assumptions. Investors are assumed to be mean–variance optimizers,14

and they are supposed to share a common view about risk premia, volatilities,
and correlations, i.e., they use the same data in the same way. As we shall
see in Chapter 9, issues in the statistical estimation of expected returns and
covariances are not quite negligible, not to mention the fact that we should use
forecasts for the future, rather than estimates based on past data.

8.4 Maximizing the Sharpe ratio

The tangency portfolio is found by maximizing the slope of the CAL, which in
turn requires finding a risky portfolio maximizing the Sharpe ratio, trading off
risk premium and standard deviation. The corresponding optimization model is

max

∑
i wi (µi − rf )√

wTΣw
=

πTw√
wTΣw

.
= Sp(w)

s.t.
∑
i

wi = 1,

where the vector π collects the asset risk premia. We allow short sales, as we
have done so far, so there is only one constraint normalizing portfolio weights.
We can tackle the problem by introducing Lagrange multipliers, but we may
also take advantage of a clever trick. In fact, it is easy to see that the Sharpe
ratio function Sp(w) is a homogeneous function of degree zero, i.e.,

Sp(αw) = Sp(w), ∀α > 0.

Geometrically, this means that the Sharpe ratio is constant along rays emanating
from the origin, on which it is not defined, because of division by zero (see Fig.
8.7). Hence, we can disregard the weight normalization constraint and solve an
unconstrained optimization problem, where we maximize the Sharpe ratio as a
function Sp(x). The vector x collects a set of pseudoweights xi, which will be

14See Section 8.5 for a connection with the theory of utility functions.
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normalized after solving the unconstrained problem, in order to find weights:

wi =
xi∑
k xk

.

To find the optimal portfolio, we have to write the usual first-order optimality
conditions for the function

Sp(x) =
πTx

(xTΣx)
1/2

.

Hence, we should solve the system:

∂Sp
∂x1

= 0,
∂Sp
∂x2

= 0, · · · , ∂Sp
∂xn

= 0.

To figure out the solution, let us generalize the reasoning and consider the max-
imization of a function like

θ(x) =
f(x)√
g(x)

.

The first-order conditions are

∂f

∂xk
· g− 1

2 (x)− 1

2
f(x) · g− 3

2 (x) · ∂g
∂xk

= 0, k = 1, . . . , n,

which, assuming g(x) 6= 0, can be simplified and rewritten as

∂f

∂xk
=

1

2

f(x)

g(x)

∂g

∂xk
, k = 1, . . . , n.

If we use a more compact vector form, we end up with the equation

∇f(x) =
1

2

f(x)

g(x)
· ∇g(x). (8.19)

In our specific case, we may take advantage of the specific form of functions
f(·) and g(·) to solve Eq. (8.19):

g(x) is a quadratic form, and we know from matrix theory that the gradi-
ent of the quadratic form xTΣx is 2Σx.
The gradient of the linear function f(x) = πTx is just vector π.
Finally, the term f(x)/g(x) is just a number, which can be safely be disre-
garded. In fact, we may think that it is included in vector x in the resulting
equation, whose solution must be normalized anyway.

So, the first-order optimality conditions boil down to a system of linear equa-
tions, which is readily solved under the assumption of a full-rank covariance
matrix:

Σx = π ⇒ x = Σ−1π. (8.20)
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It is interesting to note that the shape of this solution is essentially the same
as that given in Eq. (8.16), where the portfolio is scaled by the risk aversion
coefficient λ to give the mix with the risk-free asset. Finally, the solution in
terms of pseudoweights must be normalized, in order to obtain the weights of a
fully invested risky portfolio.

Example 8.4 Maximizing the Sharpe ratio: A numerical example

The following example is taken from [4, Chapter 6]. Consider three
assets with expected returns, standard deviations, and correlation ma-
trix given by:

µ =

 0.14

0.08

0.20

 , σ =

 0.06

0.03

0.15

 , R =

 1.0 0.5 0.2

0.5 1.0 0.4

0.2 0.4 1.0

 .
Assume further that the risk-free return is 5%. Then, we should solve
the following system of linear equations (Note: There is an incon-
sistency, as returns have been multiplied by 100 and covariances by
100× 100, but this is inconsequential; why?):

14− 5 = 36x1 + 0.5× 6× 3x2 + 0.2× 6× 15x3

8− 5 = 0.5× 6× 3x1 + 9x2 + 0.4× 3× 15x3

20− 5 = 0.2× 6× 15x1 + 0.4× 3× 15x2 + 225x3.

The system can be simplified to

1 = 4x1 + x2 + 2x3

1 = 3x1 + 3x2 + 6x3

5 = 6x1 + 6x2 + 75x3,

whose solution is

x1 =
14

63
, x2 =

1

63
, x3 =

3

63
.

The sum of the three variables is 18/63. Dividing the pseudoweights
by this normalization factor, we get the actual portfolio weights

w1 =
14

18
, w2 =

1

18
, w3 =

3

18
.
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FIGURE 8.7 Plotting the Sharpe ratio Sp(x), as a function of pseudoweights x1 and x2.
We show a surface plot and the corresponding contour plot.

8.4.1 TECHNICAL ISSUES IN SHARPE RATIO MAXIMIZATION

We have maximized the Sharpe ratio by enforcing the first-order optimality con-
dition, but how can we be sure that this is correct? Indeed, a more careful anal-
ysis is needed, as the Sharpe ratio is not a concave function. To see this, let us
consider the case in Fig. 8.7, which shows the surface and the contour plots in
a case involving two risky assets. In the surface plot, we notice the singularity
at the origin, where the Sharpe ratio is not defined. The plot shows that the
function is not concave at all. The contour plot shows that the Sharpe ratio is
constant along rays emanating from the origin, which is expected, as it is a ho-
mogeneous function of degree zero. Unfortunately, this questions the validity
of Eq. (8.20), since it is not at all obvious that the first-order conditions are suf-
ficient for optimality. However, we are only interested in the Sharpe ratio for a
normalized vector of weights. So, we may consider a section of the surface plot,
corresponding to the line x1 +x2 = 1, where normalization is enforced. On that
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FIGURE 8.8 A section of the Sharpe ratio surface plot, obtained by enforcing the nor-
malization condition x1 + x2 = 1 on the pseudoweights. The Sharpe ratio is displayed as
a function of x1 ≡ w1.

line, we set Sp(x1, x2) = Sp(w1, 1−w1) and plot the Sharpe ratio as a function
of x1 ≡ w1, as shown in Fig. 8.8, we see that the first-order stationarity condi-
tion looks indeed necessary and sufficient for optimality. The function is clearly
not convex, but it is indeed unimodal, as it is first increasing, then decreasing.
Technically, a function like this is quasiconcave.15 In Section 15.3.1, we shall
see that, in fact, the maximization of the Sharpe ratio can be recast as a convex
optimization model. The resulting formulation is a convex quadratic program,
where we may include additional constraints on the portfolio composition.

8.5 Mean–variance efficiency vs. expected utility

In this chapter, we have often used a kind of utility function involving mean
and variance of return. This function may be interpreted as a risk-adjusted ex-
pected return that bears some resemblance to expected quadratic utility, which
we know has some peculiar properties,16 since it is not monotonically increas-
ing and is IARA. Hence, we could and should ask whether the mean–variance
framework is consistent with the expected utility framework. The question can
be recast as follows: If we maximize expected utility, do we find a mean–
variance efficient portfolio? The answer is “not necessarily.” In fact, this is no
big surprise, since in MPT we consider a symmetric risk measure and disregard
higher order moments (e.g., skewness and kurtosis).

15See Section 15.1 for a discussion of convexity and concavity, as well as quasicon-
vex/quasiconcave functions.
16See Section 7.3.1.
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Let us consider a quadratic utility function of end-of-horizon wealth,

u(W ) = W − λ

2
W 2,

with λ > 0, which is increasing on the range W < 1/λ. If we assume that
initial wealth is unitary, terminal wealth boils down to one plus return, i.e., a
multiplicative gain. Let us consider a random terminal wealth W̃ , with

µ = E
[
W̃
]
, σ2 = Var

(
W̃
)
.

The expected utility of W̃ is

E
[
u
(
W̃
)]

= E
[
W̃
]
− λ

2
E
[
W̃ 2
]

= µ− λ

2

(
µ2 + σ2

) .
= U

(
µ, σ2

)
, (8.21)

which only depends on expected return µ and variance σ2. We should notice
the difference between the legit expected quadratic utility of Eq. (8.21) and the
the risk-adjusted expected return,

µ− λ

2
σ2,

which is used in mean–variance optimization. They differ by a term involving
the squared expected return µ2. Nevertheless, we also observe that

∂U

∂σ2
= −λ < 0,

hence, only minimum variance portfolios can be optimal, for a given µ. Fur-
thermore

∂U

∂µ
= 1− λµ,

which is positive on the range for which quadratic utility is increasing. Hence,
a portfolio maximizing expected quadratic utility will also be mean–variance
efficient. In this sense, we may say that mean–variance optimization is justified
if we assume a quadratic utility.

It can also be shown17 that, for a generic utility function, the optimal portfo-
lio is mean–variance efficient in the case of a multivariate normal distribution of
return. The result depends on the shape of the density function of a multivariate
distribution,

fX(x) =
1√

(2π)n det(Σ)
exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
. (8.22)

The level curves of this density are ellipses determined by the quadratic form
involved in the argument of the exponential function, which depends on the

17See [7, p. 97].
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vector of expected values µ and the covariance matrix Σ. The result can be
generalized to the family of elliptical distributions. This family includes the
multivariate normal, as well as the multivariate version of Student’s t. In both
cases, the density depends on the quadratic form inside Eq. (8.22),18 so that its
level curves are elliptical.

It has been argued that mean–variance optimization relies on questionable
assumptions, since elliptical distributions are symmetric and quadratic utility
has some odd features. Supporters of the approach, in turn, argue that quadratic
utility may be considered as a local, second-order approximation of a more
generic utility function.19

8.6 Instability in mean–variance portfolio optimization

The output of any portfolio optimization procedure depends on the input data,
which may be affected by statistical estimation noise. A robust procedure
should not be too sensitive to such noise. Furthermore, one may wish to choose
the input data in order to reflect possible views about the future. For instance,
there may be little point in estimating expected returns or risk premia by a sam-
ple average of recent data. The sensitivity analysis of Example 8.3 shows that
perturbations in the input data may have quite different consequences, depend-
ing on the specific case.

To further investigate the issue, let us consider a numerical example origi-
nally proposed in [6]. The investment opportunities consist of seven assets, as
well as the risk-free asset. The risk premia are as follows:

π =
[
3.9%, 6.9%, 8.4%, 9%, 4.3%, 6.8%, 7.6%

]T
.

The correlations among the excess returns, over an investment horizon, are
given by the following symmetric matrix:

R =



1.000 0.488 0.478 0.515 0.439 0.512 0.491

· 1.000 0.664 0.655 0.310 0.608 0.779

· · 1.000 0.861 0.355 0.783 0.668

· · · 1.000 0.354 0.777 0.653

· · · · 1.000 0.405 0.306

· · · · · 1.000 0.652

· · · · · · 1.000


and the vector of volatilities is

σ =
[
16%, 20.3%, 24.8%, 27.1%, 21%, 20%, 18.7%

]T
.

18See, e.g., [1, pp. 124–128].
19See the discussion in [9] and [10].



344 CHAPTER 8 Mean–Variance Efficient Portfolios

1 2 3 4 5 6 7
-0.5

0

0.5

1

FIGURE 8.9 Effect of a perturbation in the risk premia on asset allocation.

Based on these data, we may easily build the covariance matrix Σ. The risk
aversion coefficient is set to λ = 2.5, and short-selling is allowed.

The resulting portfolio weights are

w = [0.0064, 0.0114, 0.0650, 0.0406, 0.1165, 0.1312, 0.6295]
T
.

We observe that the largest allocation is not to the asset with the largest risk
premium, as volatilities and correlations have an impact on the solution.

Now, let us introduce the following perturbation on the risk premia:

δπ =
[
0%, 0%, −0.8%, 2.4%, 0%, −0.8%, 0%

]T
.

As we shall see later, when discussing the Black–Litterman model in Section
10.3, this could be supposed to reflect a change in the portfolio manager’s view
with respect to equilibrium risk premia. Essentially, one asset is expected to
outperform two other assets, whereas the premia for the four remaining assets
are not perturbed. The resulting portfolio now is

w = [−0.0582, −0.0316, −0.4879, 0.8185, 0.1502, −0.2254, 0.6837]
T
,

which is dramatically different from the previous one. The sum of these weights
is not 1, as the difference is allocated to the risk-free asset. We notice an impres-
sive shift in the weights of the assets involved in the perturbation, which results
in extreme positions and heavy short-selling. The weights of the other assets
are affected as well. The difference is visualized in Fig. 8.9. Increasing the risk
aversion coefficient will have an impact the absolute values of the weights, but
not on their relative change, as the effect of increasing λ is just to scale weights
uniformly down and to increase the weight of the risk-free asset.
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The example shows the swings and the extreme positions that may arise
as a consequence of estimation noise or investors’ views. Furthermore, there
seems to be no sensible way to express the confidence in these subjective views.
One possible remedy would be to control this behavior by enforcing constraints
on the portfolio composition but, by doing so, the portfolio would be defined
by our way of defining constraints, rather than by translating data and views to
decisions.

There are alternative strategies to deal with such issues. One possible ap-
proach, due to Black and Litterman, is to take advantage of an equilibrium
model, the capital asset pricing model, to integrate subjective views. The ap-
proach, which is discussed in Section 10.3, may be regarded as a shrinkage
estimation or a Bayesian estimation approach. Alternative approaches have
been proposed along similar lines, and the overall idea is to reduce the noise
in the estimates that we feed into the optimization model. The Treynor–Black
model of Section 9.3 is also similar in spirit. Essentially, we should follow the
market, adding a little twist on a few selected assets, for which we trust our
views or private information. A more recent stream of research tackles estima-
tion uncertainty within the optimization model, by applying robust optimization
approaches. See Section 15.9.

S8.1 The attainable set for two risky assets is a
hyperbola

Let us rewrite, for the sake of convenience, the equations describing the attain-
able set on the mean–risk plane,

y = w(µ1 − µ2) + µ2, (8.23)

x2 = w2σ2
1 + 2w(1− w)σ12 + (1− w)2σ2

2 , (8.24)

where the coordinates of each point are y = µp and x = σp.
The equation of a hyperbola is usually given in the standard form

(x− h)2

a2
− (y − k)2

b2
= 1. (8.25)

We should eliminate the parameter w in Eqs. (8.23) and (8.24) and recast the
result in the form of Eq. (8.25). To this aim, let us solve for w in Eq. (8.23)

w =
y − µ2

µ1 − µ2
,

and plug this result into Eq. (8.24) to find

x2 =
(y − µ2)2σ2

1 + 2(y − µ2)(µ1 − y)σ12 + (µ1 − y)2σ2
2

(µ1 − µ2)2
.
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This expression may be rearranged as

x2 =
By2 − 2Cy +D

A
, (8.26)

where

A = (µ1 − µ2)2,

B = σ2
1 − 2σ12 + σ2

2 ,

C = σ2
1µ2 + σ2

2µ1 − σ12(µ1 + µ2),

D = σ2
1µ

2
2 + σ2

2µ
2
1 − 2σ12µ1µ2.

Since we assume µ1 6= µ2, we have A > 0. We also see that B > 0, since we
do not consider perfect correlation, i.e., we assume ρ12 ∈ (−1,+1). Now we
may use the standard trick of completing the square:

By2 − 2Cy +D = B

[(
y − C

B

)2

− C2

B2
+
D

B

]
= B(y − k)2 +H,

where

k =
C

B
, H =

BD − C2

B
.

Therefore, we may recast Eq. (8.26) as

x2 =
B(y − k)2 +H

A
⇒ x2

H/A
− (y − k)2

H/B
= 1.

We already know that A,B > 0, and in order to make sure that this is a hy-
perbola we need to prove that H > 0 as well. This implies a rather lengthy
(and boring) calculation, involving plenty of trivial algebra and simplifications,
showing that

BD − C2 =
(
σ2

1 − 2σ12 + σ2
2

)
·
(
σ2

1µ
2
2 + σ2

2µ
2
1 − 2σ12µ1µ2

)
−
[
σ2

1µ2 + σ2
2µ1 − σ12(µ1 + µ2)

]2
= Aσ2

1σ
2
2

(
1− ρ2

12

)
> 0,

under the assumption −1 < ρ12 < 1. We note that the center of the hyperbola
is on the vertical axis. For the limit cases ρ12 = ±1, the hyperbola degenerates
to a pair of lines, as we have seen in Section 8.2.2.

S8.2 Explicit solution of mean–variance optimization in
matrix form

In Section 8.2.3, we have solved a multiobjective optimization problem by re-
lying on a scalarized mean–risk objective function, which plays the role of a
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risk-adjusted expected return. Here, we take the alternative scalarization route,
where we minimize risk, subject to a constraint on expected return. We have to
solve the quadratic program

min 1
2wTΣw (8.27)

s.t. µTw = µmin, (8.28)

iTw = 1, (8.29)

where i = [1, 1, . . . , 1]T. When inequality constraints are added to this model,
possibly including constraints forbidding short-selling, we have to resort to nu-
merical solution methods, but in this case the problem may be solved in closed
form. Let us introduce Lagrange multipliers20 γ1 and γ2, associated with con-
straints (8.28) and (8.29), respectively, and build the Lagrangian function

L(w, γ1, γ2) = 1
2wTΣw + γ1 · (µmin − µTw) + γ2 · (1− iTw).

The first-order optimality condition for the Lagrangian yields a system of linear
equations,

∇wL(w, γ1, γ2) = Σw − γ1µ− γ2i = 0,

which is solved assuming that the covariance matrix has full rank:

w = γ1Σ
−1µ+ γ2Σ

−1i. (8.30)

If we premultiply Eq. (8.30) by µT and use Eq. (8.28), we find the scalar equa-
tion

µTw = γ1µ
TΣ−1µ+ γ2µ

TΣ−1i = µmin. (8.31)

By a similar token, if we premultiply Eq. (8.30) by iT and use Eq. (8.29), we
find

iTw = γ1i
TΣ−1µ+ γ2i

TΣ−1i = 1. (8.32)

Therefore, in order to find the multipliers, we have to solve a system consisting
of the two linear equations (8.31) and (8.32). Let us streamline notation by
introducing

A
.
= µTΣ−1µ, B

.
= µTΣ−1i = iTΣ−1µ, C

.
= iTΣ−1i.

The Cramer’s (determinant) method applied to the system

Aγ1 +Bγ2 = µmin

Bγ1 + Cγ2 = 1

yields

γ1 =
Cµmin −B
AC −B2

, γ2 =
A−Bµmin

AC −B2
,

20See Section 16.1.3 for details about the Lagrange multiplier method.
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which may be plugged into Eq. (8.30) to find the portfolio weights of the min-
imum variance portfolio corresponding to the target return µmin. It is also easy
to see that, by introducing suitable vectors g and h depending on A, B, and C,
we may write the portfolio weights as a linear function of the target return:

w = g + hµmin. (8.33)

When µmin ranges over the real line, we trace the set of minimum variance
portfolios for a given target, whose upper portion, above the minimum variance
portfolio, is the efficient frontier. Equation (8.33) has a further implication: Ev-
ery portfolio on the minimum variance set may be expressed as a linear function
of the target expected return. Let us consider two portfolios on the curve,

w1 = g + hµmin,1, w2 = g + hµmin,2,

and take an affine combination

αw1 + (1− α)w2 = g + h[αµmin,1 + (1− α)µmin,2],

for an arbitrary value of α. The resulting portfolio must be the minimum vari-
ance portfolio for the target expected return αµmin,1 + (1 − α)µmin,2, and this
shows that we may find any portfolio on the minimum variance set by taking
combinations of just two portfolios on the set. This result is known as two-fund
separation theorem. Clearly, this applies under the rather unrealistic assump-
tion that there are no additional constraints on the portfolio composition. A
further consequence is that, since we know from Supplement S8.1 that the set
of attainable portfolios built by combining two assets is a hyperbola, the mini-
mum variance set is a hyperbola in the case of n > 2 assets, too.

Problems

8.1 Let us consider the CAL with different borrowing and lending rates. In
practice, you may borrow money only at a rate rBf > rf . What is the shape of
the CAL in this setting?

8.2 Show that the general formula of Eq. (8.12), for the minimum variance
portfolio, boils down to Eq. (8.7) in the case of two risky assets.

8.3 Analyze the sensitivity of the optimal portfolio in Example 8.3 with re-
spect to the correlation coefficient ρ.

8.4 Prove Eqs. (8.13–8.15).

8.5 Find the optimal risky portfolio maximizing the Sharpe ratio analytically,
for the case of two assets with parameters µ1, µ2, σ1, σ2, and ρ.

8.6 The efficient market hypothesis (EMH), in its strong form, implies that
asset returns over time are independent random variables. An investor does
not believe the EMH and thinks that there is some degree of persistence in
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return. She estimates the following relationship between the random returns on
an index at time periods t− 1 and t:

r̃t = a+ br̃t−1 + εt.

Note that, if b is positive, we have persistence in return. Assume that we know
the parameters of the model, as well as the variance of the random shock term εt
(whose expected value is zero). We use this statistical model to make portfolio
choice on the basis of a mean–variance function

E[r̃p]− λ ·Var(r̃p),

where r̃p is the holding period return for a time period consisting of two consec-
utive time periods t and t+ 1. In the portfolio, we mix the index and a risk-free
asset with constant return rf for each time period. Find the optimal portfolio
weights.
Hint: Which assumption could we make, in order to make the problem manage-
able, if the returns are small enough?

Further reading
Mean–variance optimization is a traditional topic, and an account of mod-
ern portfolio theory can be found in [4].
A succinct, yet accurate treatment is offered in [8], whereas [5] offers a
more extensive coverage.
For the mathematically inclined reader, a good reference is [7].
The mathematics of the efficient frontier is also dealt with by [2].
The effect of distributional ambiguity is best investigated by considering
out-of-sample performance. The experiments carried out in [3] show that
a naive, equally weighted portfolio may yield remarkably robust perfor-
mance.
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Chapter Nine

Factor Models

In Chapter 8, we have investigated the mathematics of mean–variance portfolio
optimization. From a computational viewpoint, this leads to rather easy opti-
mization models, but things are far from trivial from a financial perspective.
One could question the use of a symmetric risk measure, as well as a model
neglecting multiperiod dynamics, transaction costs, etc. Some of these issues
may be addressed by introducing more sophisticated optimization models, but
an essential question remains: How can we provide the optimization model with
suitable inputs? The mean–variance model, in its basic form, does not seem to
require much: A vector of expected returns and a covariance matrix. Appar-
ently, all we need is simple inferential statistics to estimate these parameters.
Reality, unfortunately, is a tad more complicated. To begin with, we would be
better off with forecasts rather than estimates based on past history. Moreover, a
huge amount of data would be needed to estimate a covariance matrix reliably,
and these data are simply not available. Last but not least, the solution of the op-
timization problem critically depends on the reliability of the estimates, leaving
all of the mean–variance optimization framework to rest on shaky foundations.
As we have seen in Section 8.6, the resulting portfolio may be quite sensitive
to perturbations in the data. In this chapter, we consider factor models as a
possible remedy. As we shall see, factor models have deep practical and theo-
retical implications since, augmented with additional assumptions, they lead to
equilibrium models like CAPM and APT, discussed in Chapter 10.

We start by discussing statistical estimation issues for portfolio optimiza-
tion in Section 9.1. Then, we introduce the single-index model in Section 9.2,
showing how a single factor may ease these difficulties. We also show how to
maximize the portfolio Sharpe ratio within the single-index model. Then, be-
fore generalizing the idea to multifactor models, we explore the implications of
the single-index model in terms of practical portfolio management. The model,
despite its simplicity, points out the role of systematic and specific risk factors,
and it sheds light on the contrasting views associated with passive and active
portfolio management. Active and passive strategies may be actually blended,
in order to tilt the portfolio away from a passive benchmark in a limited way,
depending on a set of views that we feel reliable enough. In Section 9.3, we
illustrate one way of doing so, the Treynor–Black model. Later, in Section
10.3 we will describe an alternative approach, the Black–Litterman model. In
practice, models relying on multiple factors are used, and they are outlined in
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Section 9.4. Section 9.5 shows how factor models may be used to shape the risk
exposure of a portfolio.

This chapter revolves about equity portfolios, but factor models have a
much larger applicability. As we have outlined in Section 6.6, multiple risk fac-
tors, related to a set of interest rates with different maturities, should be taken
into account for fixed-income portfolio management. This also applies to port-
folios including derivatives, where not only underlying asset prices or interest
rates, but also model parameters, such as volatility, are relevant risk factors. The
main difference is that we consider here statistical linear models, whose aim is
to explain the return of a primary security, a stock share, whereas fixed-income
and derivative securities involve nonlinear pricing models.

In this chapter, returns refer to an arbitrary holding period, not necessar-
ily one year. Thus, we shall never use the term “rate,” and return should be
interpreted as a holding period return, not annualized.

9.1 Statistical issues in mean–variance portfolio
optimization

The Markowitz approach to mean–variance efficiency and its variations need
two crucial inputs: The vector of expected returns µ and the covariance matrix
Σ. Naive thinking may suggest that all we have to do is collect a sufficient
amount of data and estimate these inputs by sample mean and sample vari-
ances/covariances. Given a sample of realized returns rit, for assets indexed
by i = 1, . . . , n, over time periods t = 1, . . . , T , sample means and sample
covariances are given by

R̄i =
1

T

T∑
t=1

rit, Sij =
1

T − 1

T∑
t=1

(rit − r̄i)(rjt − r̄j),

respectively. However, as we may expect (pun intended), we need expected
returns for the future, rather than sample averages from the past. Clearly, some
subjective assessment would be needed, and it is difficult to think that accurate
predictions may be found for a large number of assets. For the moment, let us
pretend that the data generating process of returns is constant over time, so that
estimates based on past data make sense. How reliable are our estimates?

To get a clue, let us consider a universe of n = 500 firms. The covariance
matrix consists of 500 × 500 = 250,000 entries. Actually, since σij = σji, the
matrix is symmetric. Therefore, about half of that amount, 125,000 parameters,
is really needed. A more accurate assessment is that we need

500 variances σii ≡ σ2
i ,

n× (n− 1)/2 = 124,750 covariances σij , i > j,

amounting to a total of 125,250 entries. Clearly, estimating such a huge number
of parameters reliably is a hopeless endeavor. We would need an extremely
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long time series, which is certainly not available for new firms (say, Facebook).
Moreover, even when have a long time series for firms like, say, IBM, these
data are hardly all relevant, since the market conditions, and possibly the firms
themselves, have changed considerably over time. One way to simplify the task
is to reduce dimensionality by spotting common risk factors, such as market
return, inflation, economic growth, oil price, etc., which explain the return of
a stock share together with firm-specific factors. This simplification may also
be useful for forecasting purposes, as it is certainly easier to predict a few key
variables than a large array of returns.

9.2 The single-index model

The simplest factor model consists of a linear relationship between the return
of each asset, represented by the random variables r̃i, i = 1, . . . , n, and a sin-
gle common risk factor, related to market return, represented by the random
variable r̃M . The market return may be proxied by a relevant index, such as
S&P500, which is why such a model is referred to as single-index model. It
may be convenient to express the single-index model in terms of excess returns
of each asset, R̃i = r̃i− rf , and of the market index, R̃M = r̃M − rf . Then, the
single-index model is given by the linear regression model

R̃i = αi + βiR̃M + ε̃i, i = 1, . . . , n, (9.1)

where the error term ε̃i is interpreted as a specific risk factor of asset i. We also
use terms like systematic and idiosyncratic risk factors to refer to common and
specific factors, respectively. We make the following assumptions:

The specific risks are random variables with expected value E[ε̃i] = 0.
This makes sense, as any predictable component should be included in
the intercept αi.
The systematic and specific risks are uncorrelated. We know from the
theory of linear regression that, after estimating the model using ordinary
least-squares, we indeed have Cov(R̃M , ε̃i) = 0.
Last but not least, a further important assumption is the lack of correlation
among specific risks,

Cov(ε̃i, ε̃j) = 0, i 6= j.

This condition characterizes a diagonal model, since the covariance ma-
trix for the errors is diagonal. Indeed, if idiosyncratic factors are truly
specific, this assumption should hold. However, this is a debatable con-
dition, and it holds only if the single common factor really accounts for
all of the common risk. When multiple common risk factors, possibly
related to macroeconomic conditions, are at play, a single factor will not
account for the whole correlation, and this may be reflected in correlated
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errors. Nevertheless, the diagonality assumption will prove to be quite
convenient.

Before delving into statistical issues, it is important to interpret the single-
index model in terms of contribution to risk premium. According to the index
model,

πi = E[R̃i] = αi + βiE[R̃M ] = αi + βiπM ,

i.e., the risk premium1 of asset i depends on:

A specific risk premium αi, depending on the exposure to specific risk.
Intuitively, securities with a negative alpha are overpriced, and their weight
should be reduced; they could even be sold short.
The degree of exposure to the systematic risk, which is rewarded accord-
ing to the coefficient βi, measuring the sensitivity of each individual asset
to the common risk factor.

From the theory of linear regression by least-squares, we recall that

βi =
Cov(R̃i, R̃M )

Var(R̃M )
≡ σiM

σ2
M

.

Thus, the exposure of an asset to systematic risk is related to its covariance
with the market return.2 The total risk of an asset is the sum of systematic and
specific risks:

σ2
i = β2

i σ
2
M + σ2

εi, (9.2)
where σ2

M and σ2
εi are the variances of R̃M and ε̃i, respectively. We recall from

Section 8.2.1 that there is a limit to how much risk may be diversified away.
Now we may get a deeper understanding of that finding: Specific risks can be
reduced by straightforward diversification in long-only portfolios. To reduce
systematic risk, we may have to short-sell assets (or use derivatives), unless we
find a suitable set of stock shares with positive and negative betas, offsetting
each other. We should also observe that estimating βi by a linear regression
model, based on a sample of past observations, may make sense if we do not
expect too many changes with respect to the past. On the contrary, we should
not expect good results by estimating the specific risk premium αi using past
data. Forecasting αi requires considerable skills in security analysis, and the
“quest for alpha” is a typical endeavor of active portfolio managers.

9.2.1 ESTIMATING A FACTOR MODEL

It is easy to figure out why the factor model is much easier to deal with than
estimation of a full covariance matrix. Variances are given by Eq. (9.2), which

1In order to avoid confusion, let us recall that we denote by µi = E[r̃i] and µM = E[r̃M ]
the expected returns of the individual assets and the index, respectively, and by πi = E[R̃i] =
µi − rf and πM = E[R̃M ] = µM − rf the corresponding risk premia.
2We will meet this expression again in Chapter 10, when discussing the capital asset pricing
model.
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requires the betas and the variances of the systematic and specific risk factors.
The covariance between assets returns, under the diagonal model, is the product
of betas and the market risk:

Cov(R̃i, R̃j) = βiβjσ
2
M , i 6= j.

As to the correlation, it is the product of correlations with the common risk
factor:

ρij =
βiβjσ

2
M

σiσj
=

(βiσ
2
M ) · (βjσ2

M )

(σiσM ) · (σjσM )
= ρim · ρjm.

The expected returns may be found from Eq. (9.1), which requires an estimate
of the alphas. Hence, in order to feed a mean–variance optimization model, we
need to estimate:

The 2n parameters αi and βi, i = 1, . . . , n

The expected value µM (or, equivalently, the risk premium πM ) and the
variance σ2

M of the common risk factor
The n variances σ2

εi of idiosyncratic risk factors

The total number of these parameters is 3n+ 2, rather than the

2n+
n(n− 1)

2

parameters required by the full covariance matrix model. In the case of n = 500
assets, the total is 1502 parameters, which should be compared with the 125,250
entries of the full covariance matrix (to which 500 expected returns should be
added).

The reduction in estimation complexity achieved by a single-index model
is certainly relevant, but we are faced with a daunting task anyway. In order to
tackle it, the index model suggests a decomposition, as well as an organizational
decentralization of the portfolio management task:

Macroeconomic analysis may be used to estimate/forecast the risk pre-
mium and the risk of the market index.
Statistical analysis may be used to estimate/forecast the beta coefficients
of all securities and their residual variances.
The alpha value distills the incremental risk premium attributable to (le-
gitimate) private information developed from security analysis.

Different specialists may tackle each of these subtasks. An array of statistical
techniques may be used, and here we just mention one.

Example 9.1 Shrinkage estimators and beta

In inferential statistics, we learn about the most obvious and desir-
able property of an estimator: The expected value of the estimator,
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which is a random variable, should just be the value of the unknown
parameter. In such a case, we say that the estimator is unbiased. For
instance, it is easy to show that the sample mean is an unbiased esti-
mator of the expected value. However, another feature of an estimator
is its variance. If the value of the estimator is too sensitive to the input
data, the corresponding instability in estimates may adversely affect
the quality of the resulting decisions.

Sometimes, we may reduce variance by accepting a moderate
amount of bias. In fact, a relevant issue in statistical modeling is
the need to address the bias–variance tradeoff. One example of this
idea is the introduction of shrinkage estimators, i.e., estimators that
shrink variability by mixing the sample estimate with a fixed value.
For instance, the following adjusted estimator of beta has been pro-
posed:

βadj = 2
3βsample + 1

3 .

The idea is to take a weighted average between the sample estimate
and a fixed value, which in this case is 1. A unit beta is, in some sense,
a standard beta, as it implies that the risk of the asset is just the same
as the market portfolio. Furthermore, when firms grow and diversify
their lines of business, there is an empirical tendency of beta to move
towards 1.

Shrinkage estimators introduce an amount of bias, but reduce sampling
variability. A similar concern is addressed by regularized regression models,
which we discuss in Section 14.4.1. The Black–Litterman model of Section
10.3 may also be interpreted as a sort of shrinkage estimator, where we merge
different knowledge sources.

9.2.2 PORTFOLIO OPTIMIZATION WITHIN THE SINGLE-INDEX
MODEL

It is useful to see how the simple problem of maximizing the Sharpe ratio of an
unconstrained portfolio may be tackled within the single-index framework. Let
portfolio weights be denoted by wi. Then, the portfolio excess return is

R̃p =

n∑
i=1

wi(αi + βiR̃M + ε̃i) =

n∑
i=1

wiαi + R̃M

n∑
i=1

wiβi +

n∑
i=1

wiε̃i

= αp + βpR̃M + ε̃p, (9.3)

where

αp
.
=

n∑
i=1

wiαi, βp
.
=

n∑
i=1

wiβi (9.4)
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are the portfolio alpha and beta, respectively, and

ε̃p
.
=

n∑
i=1

wiε̃i

accounts for specific risks. Then, the portfolio risk premium is

πp = E[R̃p] = αp + βpπM , (9.5)

where πM is expected excess return (risk premium) of the market portfolio
(more generally, the expected value of whatever common risk factor we choose),
and the portfolio variance is

σ2
p = β2

pσ
2
M +

∑
i

w2
i σ

2
εi = β2

pσ
2
M + σ2

εp, (9.6)

where σ2
εp

.
=
∑

i w
2
i σ

2
εi is the residual variance of the portfolio, i.e., the compo-

nent associated with specific risks.
Finally, we may express the Sharpe ratio as

πp
σp

=

n∑
i=1

wiαi + πM

n∑
i=1

wiβiσ2
M

(
n∑
i=1

wiβi

)2

+

n∑
i=1

w2
i σ

2
εi

1/2
. (9.7)

As we have seen in Section 8.4, we may maximize the Sharpe ratio by solving a
system of linear equations in terms of asset pseudo-weights xi, which have to be
renormalized to yield true weights wi. Using Eq. (8.20), we write the first-order
optimality conditions:

σ2
Mβk

(
n∑
i=1

xiβi

)
+ xkσ

2
εk = αk + πMβk, k = 1, . . . , n, (9.8)

or
n∑
i=1
i6=k

xiβi + xk

(
βk +

σ2
εk

σ2
Mβk

)
=
αk + πMβk
σ2
Mβk

, k = 1, . . . , n. (9.9)

All we have to do is solve this system of linear equations and then normalize the
pseudo-weights. Clearly, the solution is so easy because we allow short-sales
and are essentially dealing with an unconstrained optimization problem.3

3See Section 15.3.1 for a general reformulation of Sharpe ratio maximization.
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9.3 The Treynor–Black model

The single-index model sheds more light on the financial issues involved in the
statistical estimation of risk premia and risk exposures. The estimation of the
asset betas and the variances of the risk factors may be considered as the task
of specifying a risk model, as they are essentially related with the estimation of
covariances. The estimation of alphas, the specific risk premia, is a task of a dif-
ferent nature, as it implies the analysis of future perspectives of individual stock
shares. This is a typical task of active portfolio managers, whereas passive port-
folio management essentially requires tracking an index. In Chapter 10, we will
discuss the capital asset pricing model (CAPM), which is an equilibrium model,
rather than a statistical model. According to CAPM, all alphas should be zero
in equilibrium, i.e., the only risk premium is related to the portfolio exposure to
the undiversifiable systematic risk, since specific risks can be diversified away
and are not rewarded. The practical consequence is that, according to CAPM,
there is no point in pursuing active strategies based on stock-picking.

Even without taking such a radical view, there is no doubt that generating
alpha is difficult and arguably feasible only when analyzing a limited number of
assets. Hence, assuming that we trust our alpha generation skills and we want
to tilt away from a market portfolio, we should do so in a limited manner. This
is the idea underlying the Treynor–Black model, which considers a portfolio
including n individual assets and the market (index) portfolio as asset n + 1.
All of the notation that we have introduced in Section 9.2.2 applies, changing
the upper limit of sums from n to n+ 1, with the conditions:

αn+1 ≡ αM = 0,

βn+1 ≡ βM = 1,

σε,n+1 ≡ σεM = 0.

It is important to understand that the last condition does not imply that the mar-
ket portfolio is riskless. We are only saying that it has no residual (specific)
risk.

Rather than just maximizing the Sharpe ratio numerically, we take a decom-
position approach that helps in building intuition and gaining financial insights.
The overall portfolio selection can be broken down as a top-down process:

Allocate available wealth between the risk-free asset and an optimal risky
portfolio.
Decompose the optimal risky portfolio into a passive and an active com-
ponent.
Find the optimal active portfolio.

It is also convenient to change notation slightly, in order to better express the
above decomposition:

wM is the weight of the passive component of the overall portfolio.
wA is the weight of the active component of the overall portfolio.
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wi, i = 1, . . . , n, are the weights of each individual asset in the active
portfolio. These weights add up to 1 and are used to determine the com-
position of the active portfolio; the actual weights of each asset i in the
overall portfolio depend on both wA and wi.

The capital allocation between the risky portfolio and the risk-free asset is
accomplished as we discussed in Section 8.1. As a first step to find the risky
portfolio itself, let us maximize the Sharpe ratio of a portfolio including the
following two components:

The passive (market) portfolio.
The active portfolio, characterized by the following features:

αA =

n∑
i=1

wiαi, βA =

n∑
i=1

wiβi, σ2
εA =

n∑
i=1

w2
i σ

2
εi.

Note that σ2
εA is just the active risk component, not the overall variance of the

active portfolio. Let us apply optimality condition (9.9), which in this case is a
system of two linear equations:

σ2
MβA(xAβA + xM ) + xAσ

2
εA = αA + βAπM (9.10)

σ2
M (xAβA + xM ) = πM . (9.11)

By plugging Eq. (9.11) into Eq. (9.10), we immediately obtain

xA =
αA
σ2
εA

.

Then, from Eq. (9.11) we find

xM =
πM
σ2
M

− βA
αA
σ2
εA

.

By normalizing pseudo-weights, we find the weight of the active component,

wA =
xA

xA + xM
=

αA
σ2
εA

πM
σ2
M

+ (1− βA)
αA
σ2
εA

.

The weight of the passive component of the risky portfolio is justwM = 1−wA.
We may rewrite the weight of the active portfolio as

wA =
w0
A

1 + (1− βA)w0
A

, (9.12)

where

w0
A
.
=
αA/σ

2
εA

πM/σ2
M

(9.13)
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is the weight of the active portfolio when βA = 1. In order to grasp the message
behind Eq. (9.12), we observe that w0 is a ratio expressing the relative reward–
risk tradeoffs of the active and the passive components of the risky portfolio.
The tradeoffs are not exactly expressed as Sharpe ratios, as they involve vari-
ances rather than standard deviations, but the interpretation is similar. Let us
assume that the active and passive risk premia αA and πM are positive, so that
w0
A > 0, and consider the sensitivity of wA with respect to βA:

∂wA
∂βA

=
(w0

A)2[
1 + (1− βA)w0

A

]2 .
This sensitivity is not defined for a critical value of βA, where we divide by
zero:

β∗A =
1 + w0

A

w0
A

> 1.

Otherwise, the sensitivity is always positive, andwA is an increasing function of
βA. In fact, wA, as a function of βA, is a hyperbola with horizontal and vertical
asymptotes. We observe that

βA = 0 ⇒ wA =
w0
A

1 + w0
A

< 1,

which increases to w0
A when βA = 1. This increases and goes to infinity when

βA approaches the critical value β∗A. In this range, we may interpret this be-
havior by observing that the larger the systematic risk of the active portfolio,
the less effective is the diversification obtained from the market portfolio, and
hence the larger the weight of the active component. However, beyond the criti-
cal value, the weight of the active component would get negative, which means
that the active component is sold short, and it is increasing toward the horizon-
tal asymptote wA = −1 for large βA. This kind of behavior may require rather
pathological assumptions about the problem data, but it illustrates the potential
intricacies of unconstrained portfolio optimization.

To find the composition of the optimal active portfolio, we can analyze its
contribution to the Sharpe ratio of the risky portfolio. The excess return of the
risky portfolio, as a function of the excess returns of the active and the passive
components, is

R̃p = wAR̃A + (1− wA)R̃M

= wA(αA + βAR̃M + ε̃A) + (1− wA)R̃M

= wAαA +
[
1− wA(1− βA)

]
R̃M + wAε̃A.

Then, we find the risk premium and variance of the risky portfolio:

πp = wAαA +
[
1− wA(1− βA)

]
πM , (9.14)

σ2
p =

[
1− wA(1− βA)

]2
σ2
M + w2

Aσ
2
εA. (9.15)
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Hence, the squared Sharpe ratio of the overall portfolio is:

S2
p =

π2
p

σ2
p

=

{
wAαA +

[
1− wA(1− βA)

]
πM
}2[

1− wA(1− βA)
]2
σ2
M + w2

Aσ
2
εA

. (9.16)

By plugging the optimal weight wA of the active portfolio, given by Eq. (9.12),
into Eq. (9.16), and carrying out a bit of algebra, as shown in detail in Supple-
ment S9.1, we find the following fundamental relationship:

S2
p = S2

M +

[
αA
σεA

]2

, (9.17)

where SM is the Sharpe ratio of the market portfolio and αA/σεA is called
the information ratio of the active portfolio. Clearly, the Sharpe ratio of the
market portfolio is constant and, in order to maximize Sp, we should maximize
the information ratio of the active component. Let us express the information
ratio in more detail:

αA
σεA

=

n∑
i=1

wiαi√√√√ n∑
i=1

w2
i σ

2
εi

.

Note that the passive component does not contribute anything, since both αM
and σεM are zero. Using the optimality conditions of Eq. (9.9) again, to maxi-
mize the information ratio, it is easy to see that we obtain the equations

αi = σ2
εixi i = 1, . . . , n,

since we are assuming a simple diagonal model, where specific risks are uncor-
related. Hence, the weights of individual assets in the active portfolio should be
proportional to the ratio

xi = αi/σ
2
εi,

which makes sense, as this ratio trades off the active risk premium αi against
active risk σ2

εi. If we plug xk into the squared information ratio, we obtain[
αA
σεA

]2

=

(∑
i xiαi

)2∑
i x

2
iσ

2
εi

=

(∑
i α

2
i /σ

2
εi

)2∑
i σ

2
εiα

2
i /σ

4
εi

=
∑
i

[
αi
σεi

]2

,

from which we observe that each asset in the active portfolio contributes its
individual squared information ratio to the overall squared information ratio.

Taking into account the normalization within the active portfolio, and its
weight in the overall portfolio, we find the true weight of each individual asset
in the risky portfolio,

w∗i = wA

αi
σ2
εi∑

k

αk
σ2
εk

.



362 CHAPTER 9 Factor Models

9.3.1 A TOP-DOWN/BOTTOM-UP OPTIMIZATION PROCEDURE

The process of building the overall portfolio, according to the Treynor–Black
model, may be thought as a conceptual top-down decomposition of portfolio
optimization. To actually implement it, we have to go bottom-up, finding the
active portfolio first. This may be summarized by the following procedure4:

1. Compute the pseudo-weights of each individual asset in the active port-
folio,

w0
i =

αi
σ2
εi

, i = 1, . . . , n.

2. Scale pseudo-weights so that they add up to 1,

wi =
w0
i∑n

k=1 w
0
k

.

3. Compute alpha and residual variance of the active portfolio,

αA =

n∑
i=1

wiαi, σ2
εA =

n∑
i=1

w2
i σ

2
εi.

4. Compute the “initial” position of the active component in the risky port-
folio,

w0
A =

αA/σ
2
εA

πM/σ2
M

.

5. Compute beta of the active portfolio,

βA =

n∑
i=1

wiβi.

6. Adjust the weight of the active portfolio,

w∗A =
w0
A

1 + (1− βA)w0
A

.

7. Find the weights of the n individual assets and the passive component,

w∗i = w∗Awi, w∗M = 1− w∗A.

8. Compute the features of the risky portfolio,

βp = w∗M + βAw
∗
A,

πp = βpπM + w∗AαA,

σ2
p = (w∗M + βAw

∗
A)2σ2

M + [w∗AσεA]2.

4Here, we are following [1].
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To fully understand these expressions, we should think that the weight
w∗M of the passive component multiplies a unit beta. Also note that the
weight w∗A of the active component multiplies σ2

M in the formula for σ2
p;

therefore, the active portfolio has an impact on the overall contribution of
systematic risk.

9. Solve the capital allocation problem, taking into account subjective risk
aversion.

Example 9.2 Numerical illustration of the Treynor–Black model

Let us consider four assets with the following features:

αi 5.6% −0.4% 7.4% 0.0%
βi 1.3 1.8 0.7 1.0
σεi 28% 21% 30% 24%

We also have:

rf = 4%, µM = 12%, σM = 24%.

Therefore, the risk premia are

πM = µM − rf = 8%,

πi = αi + βiπM (i = 1, 2, 3, 4) ⇒ [16%, 14%, 13%, 8%]T

In Step 1, we find the unscaled pseudoweights in the initial portfolio,
w0
i ,

[0.7143,−0.0907, 0.8222, 0]T,

which, after normalization in Step 2, yield the weight wi of each asset
in the active portfolio,

[0.4940,−0.0627, 0.5687, 0]T.

We notice a small short position for the asset with negative alpha, and
a zero position for the asset with no specific risk premium. These
individual weights are large, but this does not necessarily imply a
large final position. The alpha and the residual variance of the active
portfolio are calculated as in Step 3:

αA = 7%, σ2
εA = 0.0484.

Step 4 yields the “initial” position of the active portfolio,

w0
A = 1.0410.
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In Step 5 we find its beta,

βA = 0.9274,

which is used in Step 6 to find the weight of the active portfolio,

w∗A = 0.9678,

which is fairly large. Then, in the next steps, we find the weight of
the index,

w∗M = 0.0322

and the weight w∗i of each asset within the optimal risky portfolio,

[0.4782,−0.0607, 0.5504, 0]T.

We notice that these weights have been only partially moderated by
the index, because of the peculiarity of the data we are using. How-
ever, let us see what overall portfolio would an investor with risk aver-
sion λ = 4 choose. We recall from Section 8.1 that the optimal allo-
cation to the risky portfolio is

x∗ =
πp
λσ2

p

.

The risk premium and the variance for the risky portfolio are given by

πp = w∗AαA + βpπM

= w∗AαA + [(1− w∗A) · 1 + w∗A · βA]πM

= 0.9678× 0.07 + [0.0322 + 0.9678× 0.9274]× 0.08

= 14.21%,

and
σ2
p = β2

pσ
2
M + w∗2A σ

2
A = 0.0951,

respectively. Therefore, the weights of the risky portfolio and of the
risk-free asset are

x∗ = 0.3735, 1− x∗ = 0.6265,

respectively. Then, the actual weight of the index is

x∗ · (1− w∗A) = 0.3735× 0.0322 = 1.2%,

and the actual weights of individual assets are given by x∗ · w∗A · wi,
which yields

[0.1786,−0.0227, 0.2056, 0]T.
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9.4 Multifactor models

The single-index model is quite useful conceptually, but it is unlikely that a
single common factor may explain the systematic component of stock returns
completely. One consequence is that the resulting model is not diagonal, i.e.,
we find specific residual risks that are not uncorrelated. The other consequence
is that we are not able to assess risk and forecast alpha accurately. Multifactor
models have been proposed as a generalization of the single-index model:

R̃i = αi +

m∑
j=1

βijF̃j + ε̃i, i = 1, . . . , n,

where we include m common risk factors F̃j , as well as a specific risk factor
ε̃i for each asset i. Specific risks are assumed uncorrelated, and the coefficients
βij measure the exposure (sensitivity) of asset i to systematic risk factor j. The
above model is written in terms of excess returns, but we are free to use returns
as well.

There is considerable latitude in the selection of factors:

We may use market-related financial factors such as different indexes or
a set of given benchmark portfolios. In this case, it is quite natural to use
returns as systematic factors.
We may use financial factors that are related to accounting measures com-
monly used in corporate finance, like the book-to-market ratio. These are
called fundamental factors. In this case, the interpretation of factors as
return is less natural.
We may use macroeconomic factors, like inflation or oil price. Again,
factors like these are not interpreted as returns.
It is also possible to use behavioral factors, like momentum, which are
related to market anomalies.5

When a factor F̃j is not directly related to a return, we often estimate the
model in such a way that E[F̃j ] = 0, i.e., the expected value of the factor is
included in the constant term. Thus, the factor should be interpreted as an unan-
ticipated surprise with respect to an expectation. This is common for macroe-
conomic factors, like inflation, not for fundamental factors.

Example 9.3 The three-factor Fama–French model

A well-known factor model is the three-factor Fama–French model
[2]. The model extends the single-index model, based on market risk,

5Indeed, there is no contradiction between behavioral finance and quantitative models. What is
ruled out in behavioral finance is the transition from factor models to equilibrium models, as we
discuss in Section 10.5.
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by introducing two additional factors related to the company size and
the company book-to-market ratio. Company size takes into account
the empirical difference in return between small and large capitaliza-
tion firms. The book-to-market ratio takes into account the difference
between value and growth stocks. Value stocks are characterized by
a high book-to-market ratio, i.e., the market price is small with re-
spect to the book value of the firm, which suggests that the stock is
underpriced. Value investing is a strategy based on investing on stock
shares which are expected to outperform the market if their market
value approaches their intrinsic value. Growth stocks are not cheap,
but the rationale of investing in a growth stock is that the firm has a
sustainable competitive advantage and is able to generate increasing
cash flows over time.

The regression model is specified as follows:

Rit −Rft = αi + βi ·RMt + si · SMBt + hi · HMLt + eit,

where Rit is the return on asset i in month t, Rft and RMt are the
corresponding risk-free return and market return, respectively, SMBt
(small minus big) is the difference in return between diversified port-
folios consisting of small and big cap stocks, and HMLt (high minus
low) is the difference in return between diversified portfolios consist-
ing of high and low book-to-market stocks.

The seminal three-factor Fama–French model has been extended in several
ways, both by introducing additional factors and by changing the model struc-
ture. A significant pitfall of the linear models that we consider here is that the
effect of a factor is proportional to its level and does not interact with other fac-
tors in any way. To get the point, consider a low value of book-to-market ratio.
A reasonably small value might suggest an undervalued stock,6 but a very small
value does not necessarily imply an even better investment opportunity. This
could be accounted for by a nonlinear function reaching its maximum at a sen-
sible value that should be estimated. As another example, consider the amount
of dividend payout. It may be difficult to assess its impact outside any context.
A firm that does not pay dividends may be a growing firm, which invests net
income in new products or services, or, on the contrary, a firm struggling with
poor performance. A firm that pays rich dividends may be a good “cash cow,” or
a firm that is not investing anything in order to maintain its competitive position.
These considerations suggest the opportunity of introducing factor interactions
into the model.

6We should always bear in mind that the stated book value of a firm may rely on questionable
asset valuations, not to mention the latitude in accounting practice.
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9.5 Factor models in practice

As we shall see in Chapter 10, factor models, under suitable but controversial
hypotheses, are the foundation of well-known equilibrium models like CAPM
and APT. Even if one does not believe these assumptions, factor models may be
used for practical purposes, including the following ones:

Factor models may be used to spot potential for excess return in a portfo-
lio, i.e., to “generate alpha.”
Factor models may be used for performance and risk attribution, i.e., to
understand which factors contribute to the realized return of a given port-
folio.
By combining assets with known exposures to common risk factors, we
may shape the portfolio risk and make it selectively insensitive to un-
desired risk factors. Otherwise, we may increase the exposure to a risk
factor on which we feel like making a bet.

Example 9.4 A market-neutral long–short portfolio

A market-neutral portfolio is a portfolio which is not exposed to
systematic risk. The only source of return is specific risk. Such a
portfolio is also referred to as beta-neutral, since its betas with re-
spect to systematic risk factors are zero. A possible rationale behind
such a portfolio is that we may have a view about the relative per-
formance of stock shares, but we do not feel safe in making a bet on
the direction of the market as a whole. The analysis may suggest that
some stocks have positive alpha, and other stocks have negative al-
pha. However, investing in the positive alpha stocks may still result
in a loss if the market takes a negative turn. We might find only a
partial consolation in a portfolio losing less than the index. Thus, we
may take a long–short strategy, whereby we short-sell the stocks with
negative alpha in order to neutralize the overall beta, i.e., the exposure
to portfolio risk.

Let us consider a stylized example of the strategy. We have a
subset of n assets, characterized by the single-index model

R̃i = α+ βR̃M + ε̃i, i = 1, . . . , n.

We assume that α > 0 and β are the same for all of these assets. We
also have another subset of n assets, characterized by the single-index
model

R̃i = −α+ βR̃M + ε̃i, i = n+ 1, . . . , 2n,

where again we assume that the numerical values of the involved pa-
rameters are the same and identical to those of the first subset of as-
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sets. Note that the assets in the second set have negative alpha and, as
such, are natural candidates for short-selling.

Imagine that we go long for a total amount of $W in an equally
weighted portfolio of the stocks in the first subset, and we short the
same dollar amount in an equally weighted portfolio of the stocks in
the second subset. Note that, if we do not consider transaction costs,
the initial value of this long–short portfolio is zero. For this reason,
such a portfolio is said to be dollar-neutral. We cannot define return
for this portfolio, but its profit/loss is

Π̃ =
W

n

n∑
i=1

(
α+ βR̃M + ε̃i

)
− W

n

2n∑
i=n+1

(
− α+ βR̃M + ε̃i

)
= 2αW + ε̃p,

where

ε̃p
.
=
W

n

(
n∑
i=1

ε̃i −
2n∑

i=n+1

ε̃i

)
accounts for specific risk. Note that the portfolio is, in fact, market-
neutral, and that for large n the total contribution of specific risk is
diversified away (see Problem 9.3).

Clearly, Example 9.4 is based on an oversimplified picture, but it illustrates
a possible strategy to build a market-neutral, long–short portfolio. Long–short
portfolios need not be dollar-neutral. A common strategy is 130–30, which
means that 30% of the portfolio value is shorted, in order to increase investment
in stocks that, we believe, will outperform. More realistic strategies in this vein
are used by some hedge funds. When short-selling is not readily applicable, one
way to get rid of systematic risk is by taking a position in suitable derivatives,
such as a short position in index futures.7

S9.1 Proof of Equation (9.17)

As a preliminary step, let us solve Eq. (9.12) for w0
A, which yields

w0
A =

wA
1− wA(1− βA)

. (9.18)

7See Section 12.3.3.
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We also slightly rearrange Eq. (9.13) as

w0
A =

αAσ
2
M

πMσ2
εA

. (9.19)

This allows us to rewrite the squared Sharpe ratio in Eq. (9.16) as follows:

S2
p =

[
wA

1− wA(1− βA)
αA + πM

]2

w2
A

[1− wA(1− βA)]2
σ2
εA + σ2

M

=

(
w0
AαA + πM

)2
(w0

A)2σ2
εA + σ2

M

(9.20)

By plugging Eq. (9.19) into Eq. (9.20), we find

S2
p =

(
αAσ

2
M

πMσ2
εA

αA + πM

)2

α2
Aσ

4
M

π2
Mσ

4
εA

σ2
εA + σ2

M

=

(
α2
A

σ2
εA

· σ
2
M

πM
+
π2
M

σ2
M

· σ
2
M

πM

)2

α2
A

σ2
εA

σ4
M

π2
M

+ σ2
M

=

(
α2
A

σ2
εA

+
π2
M

σ2
M

)2

α2
A

σ2
εA

+
π2
M

σ2
M

=
α2
A

σ2
εA

+ S2
M ,

which is the sum of squared information ratio and squared Sharpe ratio of the
market portfolio, as in Eq. (9.17).

Problems

9.1 You have estimated the following single-index model for two asset re-
turns:

r̃a = 0.14 + 0.8r̃M + ε̃a,

r̃b = 0.08 + 1.2r̃M + ε̃b,

where r̃M , ε̃a, and ε̃b are uncorrelated random variables with zero expected
value (the expected value of the market return has been included into the con-
stant term of the regression) and standard deviations 20%, 30%, and 25%, re-
spectively. The model is expressed in terms of returns, not excess returns. Find
the weights of the minimum variance portfolio (we are only considering risky
assets, not the risk-free asset).

9.2 A pension fund manager has chosen a portfolio consisting of the risk-free
asset, with annual return 3% (annual compounding), and two risky assets. The
holding period return can be expressed by the following factor model:

r̃i = αi + βi1F̃1 + βi2F̃2 + ε̃i, i = a, b,

with the following parameters:
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Asset i αi βi,1 βi,2

i = a 0.01 0.8 1.2
i = b 0.03 −0.4 0.3

All factors are normally distributed with the following parameters:

F̃1 ∼ N(0.03, 0.302), F̃2 ∼ N(0.13, 0.402),

ε̃a ∼ N(0, 0.402), ε̃b ∼ N(0, 0.502).

Each specific risk factor is uncorrelated with the other factors, whereas the cor-
relation coefficient between the two systematic factors is 0.68. The portfolio
weight of the risk-free asset is 40%, and the rest of the portfolio is equally al-
located to the risky assets. The manager receives a bonus depending on the
realized annual return: if it is at least 9%, the bonus is 200,000; if the return
exceeds 12%, she will receive additional 100,000. What is the expected value
of the bonus earned by the manager?

9.3 This problem is a numerical illustration of Example 9.4. Consider a
single-index model, in which all assets have unit beta. The volatility of each
specific risk is 30%, and you are considering a universe of 20 stocks, half of
which have alpha +2% and half have alpha −2%. You go long $1 million
with an equally weighted portfolio consisting of the stocks with positive alpha,
and short $1 million of a similar portfolio of stocks with negative alpha. Note
that the resulting portfolio is both dollar-neutral and beta-neutral. What are the
expected profit and risk of the long–short portfolio? How does your answer
change if you consider 50 or 100 stocks?

9.4 You have invested $100,000 in asset A1 and $250,000 in asset A2. The
annual returns are represented by a single-index model with parameters

α1 = 0.7%, α2 = −0.3%, β1 = 1.1, β2 = 0.8.

The annual return of the market portfolio has expected return 7% and stan-
dard deviation 37%. The volatilities of the specific risks are 22% and 31%,
respectively, on an annual basis. Assuming that the risk factors are normally
distributed, find the annual and the daily value-at-risks, with confidence level
99%.

9.5 Let us consider a multifactor model that we want to use in mean–variance
portfolio optimization, using the risk-adjusted form of the objective function
with risk-aversion coefficient λ. We want to build a long–short portfolio that is
both dollar- and beta-neutral. The first requirement means that the net invest-
ment is zero. The second requirement implies that the resulting portfolio has
no exposure to systematic risk. This kind of portfolio, in principle, can be used
to generate portable alpha. Portable alpha is a strategy by which we may add
alpha to a portfolio without changing its systematic risk exposure, and without
the need for more capital.

Write the optimization model, using portfolio weights as decision vari-
ables.
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Note that we do not have asset covariances, but we use the multifactor
model parameters. How does beta-neutrality simplify the model?
Write down the optimality conditions, using Lagrange multipliers.

Hint: For the second question, you may write the model in either compact
matrix form or in the more explicit form. If you take the former route, you
may use the following fact: Let X be an n-dimensional random vector with
covariance matrix Σx, and consider the transformed variable Z = AX, where
A ∈ Rm×n. Then, the covariance matrix of Z is Σz = AΣxAT.

Further reading
A concrete illustration of how factor models may be used in quantitative
portfolio management is given in [5], which also includes a chapter on
nonlinear models. See also [4].
To appreciate the several flavors of regression models, you may have a
look at the introductory treatment in [3], where the bias–variance tradeoff
is carefully discussed.
The Treynor–Black model was originally introduced in [6]. Our presen-
tation follows the one provided in [1].
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Chapter Ten

Equilibrium Models: CAPM
and APT

This chapter might be regarded as an outgrowth of Chapter 9 on factor models,
as there is a clear relationship between single and multiple factor models and
the equilibrium models we treat here. The single-index model is related with the
capital asset pricing model (CAPM), and multifactor models are related with ar-
bitrage pricing theory (APT). However, equilibrium models require much more
than a statistical model, as they rely on crucial assumptions about investors’
behavior. If we accept these assumptions, we find quite drastic conclusions.
For instance, CAPM implies that there is no point in pursuing active portfolio
management, based on stock-picking or market-timing strategies. There is no
specific risk premium, and we should just follow a passive strategy tracking
the market portfolio. A fierce debate revolves around this conclusion, and it
is related to conflicting views about market efficiency and investors’ rational-
ity. More generally, the view behind equilibrium models is challenged by the
behavioral approach to finance. It is interesting to notice that the behavioral
approach, per se, is not necessarily incompatible with the use of quantitative
factor-based models.

Taken literally, the assumptions behind CAPM are rather hard to accept, as
we shall see. APT is a bit less demanding than CAPM in terms of critical as-
sumptions, but it is much less specific in its consequences, as it does not specify
the factors that we should use in the model. Plenty of empirical investigations
have been carried out to verify the validity of equilibrium models, with mixed
evidence. Even if we do not fully believe in the validity of equilibrium models,
they are conceptually useful and provide us with benchmarks and performance
evaluation tools.

In Section 10.1, we briefly describe the nature of equilibrium models and
contrast their requirements for critical assumptions against the practical sim-
plicity of arbitrage-based approaches. Then, in Section 10.2, we derive CAPM
and show some possible applications. A notable example of use of CAPM is the
Black–Litterman model, described in Section 10.3. The idea is to mix investors’
subjective beliefs with the CAPM view, in order to overcome some issues with
mean–variance portfolio optimization, which we have raised in Section 8.6. The
Black–Litterman approach may be regarded as a way to ease statistical estima-
tion issues either by shrinkage estimation or by a Bayesian approach. Hence,

373
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we provide some background on Bayesian statistics in Supplement S10.1.1 The
APT model and some of its potential applications are discussed in Section 10.4.
Finally, Section 10.5 closes the chapter with some critical remarks related to the
behavioral view of financial markets.

10.1 What is an equilibrium model?

Equilibrium models are a mainstay of economic theory, more specifically, mi-
croeconomics, and they come in quite different forms. We have simple equi-
libria in basic game theory, and more complicated models involving dynamics,
uncertainty, learning, and heterogeneous beliefs. We may investigate equilibria
in terms of actions and strategies chosen by agents in competitive markets, or
in terms of prices of commodities and assets. In deterministic price equilibrium
models, agents are endowed with an amount of goods and are then engaged in
trading activities, where goods are exchanged at some prices, in order to max-
imize their utility from consumption of bundles of goods. The model aims at
finding a set of prices such that markets clear, i.e., aggregate demand and offer
are perfectly matched. In a financial stochastic model, uncertainty comes into
play, and we may consider wealth levels in different future states of the world
as different goods. Clearly, we have to model the attitude toward risk of each
agent, and the initial wealth endowments also play a role, as risk aversion may
depend on wealth.

We will not delve into details of sophisticated equilibrium models, but it
is clear that it is difficult to use them to obtain more than qualitative insights,
possibly supporting a theory,2 unless rather radical simplifications are applied.
Apart from computational difficulties, how can we specify an array of different
utility functions and endowments for a large number of market players, not to
mention the possibility of differential information? As we shall see, in CAPM
we assume that agents have the same information and the same decision-making
procedure, possibly differing only in the subjective degree of risk aversion.

An alternative approach, which we have already seen in action in Chapter
2, is to assume the lack of arbitrage opportunities. Essentially, this requires
that agents prefer more to less and are quite efficient in taking advantage of
any opportunity for risk-free profit. It is intuitive that markets cannot be in
equilibrium if they offer arbitrage opportunities. Hence, relying on no-arbitrage
is less demanding and simpler from a practical viewpoint. Indeed, this is the
cornerstone of what we shall apply in option pricing, and it is the foundation of
APT. However, we should also be aware that no-arbitrage approaches, too, rely

1We will say something about shrinkage estimation later, in Section 14.4.1, where we discuss
regularization issues in linear regression and the basic tradeoff between bias and variance in
statistical estimation. See also Example 9.1.
2For instance, using the equilibrium modeling framework, interesting theoretical connections
are found between market completeness and certain welfare theorems in microeconomics.
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on key assumptions, although they may be less critical than those required by
a full-fledged equilibrium model. For instance, we assume that short-selling is
allowed, unlimited liquidity is available, and that there are no market frictions
(such as taxes, transaction costs, and bid–ask spreads).

10.2 The capital asset pricing model

The capital asset pricing model (CAPM) is an equilibrium model, whose devel-
opment in the mid-1960s is credited to Sharpe, Lintner, and Mossin. One way
to regard CAPM is as a relationship between the risk premium of an individ-
ual asset i and the risk premium of the market portfolio. This is expressed as
follows:

The CAPM formula:

E[r̃i]− rf = βi · (E[r̃M ]− rf ). (10.1)

where rf is the risk-free return over the selected holding period.

We shall prove this formula in Section 10.2.1, and we will see that the coef-
ficient βi is the same as in the single-index model. Equation (10.1) may be
rewritten in terms of risk premia:

πi = βiπM .

Unlike the single-index model, we do not observe any specific risk premium αi
in Eq. (10.1). Moreover, the single-index model involves a relationship among
random variables, whereas CAPM is a statement about expectations. Hence,
there is more to CAPM than the above formula. We should also understand its
more general implications, in the form of a CAPM principle.

As we have pointed out, in order to build an equilibrium model that is sen-
sible and goes beyond simple mathematical exercises, we need some drastically
simplifying assumptions:

Individual investors are price takers: They act as if security prices were
not affected by their own trades. In other words, we assume very deep
and liquid markets with no market impact from large trades.
All investors plan their investment for a single-period time horizon.
Investments are limited to publicly traded financial assets (we do not con-
sider nontradable assets such as education, privately owned firms, etc.).
There are no market frictions, hence, no taxes or transaction costs.
Investors are rational mean–variance portfolio optimizers, i.e., they make
their portfolio decisions using the machinery of Chapter 8. In particular,
they mix the risk-free asset with the tangency portfolio, the risky portfolio
maximizing the Sharpe ratio.
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We only consider asset allocation decisions, i.e., we disregard consump-
tion decisions or the need to pay for liabilities.
Information is costless and available to all investors, who have homoge-
neous expectations (i.e., they use the same expected returns and covari-
ances to make their asset allocation decisions).

In CAPM extensions, some of these assumptions have been relaxed.3 From
our viewpoint, the most relevant assumption concerns the use of the mean–
variance optimization model. This is certainly a strong assumption, which in
turn implies that either all investors have a quadratic utility or they believe that
returns follow an elliptic distribution.4 What we do not assume is that investors
have the same degree of risk aversion. However, as we have seen in Section
8.3, the separation property implies that mean–variance optimizers will invest
in the tangency portfolio, irrespective from risk aversion. The latter comes into
play only in how the tangency portfolio is mixed with the risk-free asset. If
investors have different views, they will assume different expected returns and
covariances, and they will hold different risky portfolios. However, what should
happen if they have the same views, as CAPM assumes?

The CAPM principle. Under the CAPM assumptions, all investors
should hold the same risky portfolio. Hence, the tangency portfolio
must be the market portfolio.

To see why, note that when we aggregate individual portfolios, lending and bor-
rowing assets will cancel out, and the aggregate risky portfolio, obtained by
putting all of the individual portfolios together, will equal the entire wealth of
the economy. The fraction of each stock must correspond to its market value,
i.e., the asset price times the number of shares outstanding. If there were a mis-
match between the market and the aggregate portfolio, e.g., because investors
do not want to include an asset in their portfolio, its price would drop, making
it interesting for inclusion in the portfolio.

The CAPM principle has further and quite significant implications:

The market portfolio is mean–variance efficient and maximizes the Sharpe
ratio.
The capital allocation line (CAL) goes through the tangency portfolio,
which under CAPM is the market portfolio. Hence, the CAL becomes
the capital market line (CML), as illustrated in Fig. 10.1.
Since the optimal risky portfolio that investors should hold is just the
market portfolio, which may be proxied by a broad market index, there
is no point in pursuing an active portfolio strategy. This is also reflected
in the absence of any specific risk premium in the CAPM formula of Eq.

3For instance, Consumption CAPM (CCAPM) is a multiperiod extension allowing for consump-
tion.
4See the discussion in Section 8.5.
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FIGURE 10.1 Proving the CAPM formula.

(10.1). Investors should just pursue a passive strategy, tracking a broad
market index.

10.2.1 PROOF OF THE CAPM FORMULA

Here, we prove the CAPM formula,

E[r̃i]− rf = βi(E[r̃M ]− rf ), (10.2)

where the constant βi is defined as

βi
.
=

Cov(r̃i, r̃M )

Var(r̃M )
. (10.3)

The proof is instructive and not quite complicated, but readers who are not
interested in it may safely skip this section. In Fig. 10.1, we observe that
the market portfolio, with expected return µM

.
= E[r̃M ] and volatility σM , is

the tangency portfolio, under the CAPM assumptions. Now, let us consider a
generic asset i, with expected return µi

.
= E[r̃i], volatility σi, and covariance

σiM
.
= Cov(r̃i, r̃M ) with the market portfolio, and form a portfolio with weight

w for asset i and 1−w for the market portfolio. The portfolio return is a random
variable

r̃p(w) = wr̃i + (1− w)r̃M ,

with the following expected value and standard deviation:

µp(w) = wµi + (1− w)µM

σp(w) =
[
w2σ2

i + 2w(1− w)σiM + (1− w)2σ2
M

]1/2
.

When w = 1, the portfolio boils down to asset i; when w = 0, we just hold the
market portfolio. By changingw, we generate a range of portfolios that describe
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a curve of attainable portfolios in the mean–risk plane (displayed as a dotted
line in Fig. 10.1) . For w = 0, the portfolio (dotted) curve must touch both the
CML and the efficient frontier of risky portfolios. Since the market portfolio
is efficient, however, these curves cannot cross, and a tangency condition must
hold. The slope of the portfolio curve (i.e., the slope of its tangent line) at the
point corresponding to w = 0 must be the same as the slope of the CML, i.e.,
the Sharpe ratio of the market portfolio. Let us write the tangency condition in
explicit terms. We need the slope of the portfolio curve for w = 0. Hence, as a
first step, let us find the derivatives of expected return and risk with respect to
w:

dµp(w)

dw
= µi − µM ,

dσp(w)

dw
=
wσ2

i + (1− 2w)σiM + (w − 1)σ2
M

σp(w)
.

Then, taking the ratio of these equations, we find

dµp(w)

dσp(w)

∣∣∣∣
w=0

=
dµp(w)/dw

dσp(w)/dw

∣∣∣∣
w=0

=
(µi − µM )σM
σiM − σ2

M

.

This is the slope of the tangent line to the curve of attainable portfolios, which
must be the same as the Sharpe ratio as the market portfolio. Therefore,

(µi − µM )σM
σiM − σ2

M

=
µM − rf
σM

⇒ µi = rf +
σiM
σ2
M

(µM − rf ),

which proves Eqs. (10.2) and (10.3).

10.2.2 INTERPRETING CAPM

The CAPM formula can be restated as

E[r̃i]− rf
σiM

=
E[r̃M ]− rf

σ2
M

.

These ratios can be interpreted as market prices of risk, i.e., risk premia di-
vided by a risk measure. For the market portfolio, risk is represented by the
variance of its return, rather than standard deviation. For the return of asset i,
risk is represented by its covariance with the market portfolio, corresponding to
the systematic component of risk. The important message is that, according to
CAPM, specific risk can be diversified away, and the investor is not rewarded
for bearing this risk. Only systematic risk is rewarded and priced. Also note
that, at equilibrium, the market price of risk must be the same for each asset.
Otherwise, the investor would be better off by tilting the portfolio toward assets
with a better ratio.

We have already pointed out that the CAPM relationship is quite similar
to a regression equation in terms of excess return, but the resulting αi is zero.
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FIGURE 10.2 The security market line.

According to CAPM, assets have no alpha, the benefit of active portfolio man-
agement is an illusion, and investors should just pursue a passive strategy. Note
that the beta of each asset measures the risk of each individual asset within a
well-diversified portfolio. This risk measure is more relevant than the individual
variance or standard deviation of asset return. In fact, even a dominated asset
can be useful, if it has a certain correlation with other assets.5 Thus, we need a
measure of the contribution of each asset to the overall portfolio risk, which is
provided by beta.

Based on this reasoning, we may position assets and portfolios within a
mean–risk plane in which beta, rather than volatility, is used to represent risk.
This results in the so-called security market line (SML), displayed in Fig.
10.2. The SML plots, for both an individual asset or a portfolio, the relationship
between its risk and expected return. Note that the CML does the same for a
well-diversified portfolio, for which variance may be a sensible risk measure.
Geometrically, the SML goes through two key points that define it: The risk-
free asset, corresponding to β = 0 (no risk premium) and the market portfolio,
corresponding to β = 1. Points P1 and P3 in Fig. 10.2 correspond to portfolios
(or individual assets) in line with CAPM. The former has less systematic risk
and has an expected return lower than µM , whereas the latter is rewarded for
its additional systematic risk. On the contrary, according to CAPM, portfolio
P2 cannot exist, since it features an additional risk premium that can only be
attributed to specific risk, i.e., to a positive α.

An investor who believes CAPM literally would never look for a portfolio
like P2, trying to beat the market. An active manager, on the contrary, will try
to outperform the market, by using additional information to generate a positive
alpha. Even if one does not believe CAPM literally, it is certainly true that a
portfolio like P2 is hard to find consistently. Please note that CAPM is all about
ex-ante expectations. Ex-post, we may well observe a portfolio outperforming
the market.

5Consider asset A3 in Fig. 8.3.
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10.2.3 CAPM AS A PRICING FORMULA AND ITS PRACTICAL
RELEVANCE

From the CAPM formula, it is not quite apparent why the term “CAPM” in-
cludes the word “pricing.” Let S0 be the current price of an asset, and let ST be
its (random) price at the end of the holding period. The CAPM states that the
expected return from holding the asset is given by

E[ST ]− S0

S0
= rf + β · (µM − rf ),

which implies the pricing relationship

S0 =
E[ST ]

1 + rf + β · πM
. (10.4)

Equation (10.4) gives the asset price as a discounted expectation. Note, how-
ever, that the expected future price is not discounted by using only the risk-free
holding period return rf , and that the market risk premium is involved, mediated
by the asset exposure to systematic risk.

This idea may be used in capital budgeting decisions, when we evaluate the
net present value of a stream of risky cash flow stream to assess the merit of
an investment.6 The CAPM may be used to find a suitable hurdle rate, which
accounts for systematic risk. We should discount using the risk-free return only
when the cash flows are riskless, or when the risk of the investment is uncorre-
lated with market risk (and it should not be rewarded). In practice, we should
find a security, whose risk is comparable with the risk of the investment oppor-
tunity that we are evaluating, and use its beta to define the hurdle rate. It is also
useful to observe that later, when dealing with option pricing, we shall take a
“dual” approach. Here, we use expected cash flows under the true probability
measure, adjusting the discount factor for risk. In risk-neutral option pricing,
we will use the risk-free rate to discount, but expectations of cash flows will be
taken under a risk-neutral (or risk-adjusted) risk measure.

The CAPM has been empirically tested, generating plenty of controversy.
Empirical evidence does not fully support the model, although even defining
how the test should be carried out is controversial. In fact, we have stated the
CAPM in relationship with an index portfolio, but we should actually include
any traded asset, not only stock shares, which is far from trivial. Nevertheless,
even though we may not believe in the CAPM literally, this does not imply that
it is useless. As we shall see in Section 10.3, the CAPM is the foundation of
the Black–Litterman portfolio optimization model, which can be interpreted as
an application of Bayesian statistics. Furthermore, the CAPM can provide us
with a benchmark for security analysis ex-ante, and for performance evaluation
ex-post. Let us illustrate how we may use the ex-post SML to evaluate real-
ized performance, taking ex-ante risk into account. The left plot in Fig. 10.3

6See Section 3.6.
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FIGURE 10.3 Using CAPM for ex-post performance evaluation.

shows the ex-ante SML. All portfolios P1, P2, and P3 are on the SML, follow-
ing the CAPM principle. We may increase the portfolio risk premium only by
increasing its exposure to systematic, nondiversifiable risk. The CAPM is about
ex-ante expectation, but let us stretch the model a bit and draw the SML ex-post.
This means that we plot the actual return performance of each portfolio, while
keeping the ex-ante assessment of risk. Let us assume that the market return
falls well below its expectation, resulting in a loss. In the picture on the right,
the ex-post SML features a negative slope, going through the risk-free asset and
the point M ′ corresponding to the actual market performance. If the observed
performance of the three portfolios were in line, the corresponding points P1,
P2, and P3 should lie on the SML. On the contrary, say that we observe points
P ′1, P ′2, and P ′3, where return is observed ex-post and risk is assessed ex-ante.
Note that this approach is not quite correct, nor theoretically sound, as it is
not supported by the CAPM. However, the idea is to use the ex-post SML to
define a sensible benchmark. For instance, point P3 corresponds to the bench-
mark performance of a portfolio, consistent with its exposure to market risk and
the realized market performance. Point P ′3, corresponding to the actual perfor-
mance, is above P3. This portfolio did not perform well in absolute terms, but
it is above the line. Hence, in terms of relative performance, the portfolio man-
ager did fairly well. The same can be said for portfolio P1, which looks even
better than P3, whereas portfolio P2 had an unsatisfactory performance, as it
lies below the ex-post SML.

By a similar token, let us assume that the market performs according to or
above expectations, so that the ex-post SML has positive slope. If an extremely
risky portfolio yields a remarkable profit, before getting too excited, we should
check if this profit is in line with the risk that the manager has taken. If observed
return is positive, but below the SML, we might wonder if the performance has
really been that good.

10.3 The Black–Litterman portfolio optimization model

We have observed, in Section 8.6, how the solution of a mean–variance port-
folio optimization model is affected by estimates of risk premia (equivalently,
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of expected returns). Estimation errors may yield unacceptable swings in the
portfolio, as well as unreasonable weights, and there seems to be no way to
include subjective views along with a measure of how much we trust them.
Furthermore, our views may be relative, in the sense that we may not feel safe
in forecasting the return of a specific asset, but we may believe that one as-
set will outperform another one by some amount. It is not quite clear how
this information may be exploited in a portfolio optimization model. A cynical
view states that portfolio optimization is the best way to maximize the effect of
estimation errors. This applies to errors in estimating covariances, but it is com-
monly agreed in the literature that the impact of perturbations in risk premia is
definitely more severe. Furthermore, one may expect that a factor model should
yield stable estimates of risk exposures in terms of betas, whereas the task of
forecasting future expected returns is quite dangerous. Hence, here we assume
that the covariance matrix is given and known, and we focus on risk premia.

According to CAPM, all of this effort is wasted, and we should pursue a
purely passive strategy. In Section 10.5.1, we shall see that this view is rein-
forced by the efficient market hypothesis, which roughly states that beating the
market is not possible, at least, not systematically. Here, we take a somewhat
intermediate view. Even if we do not believe CAPM literally, pursuing an active
strategy requires critical forecasts that we may only be comfortable with for a
limited number of assets. Hence, we may use the market portfolio as a reference
from which we may tilt away in a disciplined and limited manner. As we have
seen in Section 9.3, the Treynor–Black model is one possible approach in this
vein, and the Black–Litterman approach that we describe here is another one.

The Black–Litterman model may be regarded as a way to come up with
more reliable estimates of risk premia, and it is somehow related to shrinkage
estimation. Here, we connect the Black–Litterman model with the Bayesian
approach to statistics, in order to emphasize the subjective nature of portfolio
views. We provide some background on the Bayesian approach to statistics
in Supplement S10.1. The main difference with respect to orthodox statis-
tics is that, in the Bayesian approach, parameters of probability distributions
are random variables themselves, and their distribution represents our uncer-
tainty about them. Hence, rather than just relying on data, we may represent
possibly subjective knowledge by a prior distribution of parameters, which is
revised as we gather more evidence, resulting in a posterior distribution. Ac-
tually, this sequential learning interpretation is not essential. What is essential
is that the Bayesian approach allows to merge two sources of knowledge, each
one equipped with some measure of reliability. In our case, knowledge implied
by market equilibrium is merged with subjective views.

10.3.1 BLACK–LITTERMAN MODEL: THE ROLE OF CAPM AND
BAYESIAN STATISTICS

We recall that the mean–variance optimal portfolio weights are given by Eq.
(8.16), which we repeat here for the sake of convenience,

w∗ =
1

λ
Σ−1π, (10.5)
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where λ is the coefficient of risk aversion. The remaining fraction of wealth
is invested in the risk-free asset. While we assume that the covariance matrix
Σ is estimated with sufficient accuracy, possibly by a factor model, the vector
π of risk premia is a quite critical input. However, if we accept the validity of
CAPM, we may reverse the optimization model and find the risk premia implied
by the market portfolio.

Let us denote by wMj the weight of asset j = 1, . . . , n in the market port-
folio. The market weights may be collected into vector wM . Then, the random
market return is given by

r̃M =

n∑
j=1

wMj · r̃j . (10.6)

According to CAPM, the following holds for each asset j:

µj − rf = βj(µM − rf ), (10.7)

where

µM =

n∑
j=1

wMj · µj (10.8)

is the expected return of the market portfolio. Let us denote the risk premium
implied by CAPM by

πej = µj − rf ,

where the subscript e is used to emphasize that this view is implied by market
equilibrium. Then, by using Eq. (10.6) and making βj explicit, we may rewrite
the CAPM Eq. (10.7) as follows:

πei =
Cov(r̃i, r̃M )

σ2
M

· (µM − rf )

=
1

σ2
M

· Cov

(
r̃i,

n∑
j=1

wMj · r̃j

)
· (µM − rf )

=
µM − rf
σ2
M

·
n∑
j=1

wMj · Cov(r̃i, r̃j). (10.9)

By collecting the market-implied risk premia in vector πe, Eq. (10.9) may be
rewritten in matrix form,

πe = δΣwM , (10.10)

where we define the market price of risk

δ
.
=
µM − rf
σ2
M

. (10.11)

If we compare Eqs. (10.5) and (10.10), we see that we are, in fact, inverting the
optimization problem, and the coefficient of risk aversion λ may be identified
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with δ, which plays the role of an aggregate coefficient of risk aversion for the
market.

Remark. We use the notation πe for the sake of simplicity. Within the Bayesian
framework, the uncertain risk premia are considered as a vector θ̃ of random
variables. The estimates implied by market equilibrium are based on back-
ground knowledge, which we may represent as a conditioning informationMe.
Hence, our notation may be interpreted as a shortcut for

πe = E
[
θ̃ |Me

]
.

By the same token, below we use the notation πs for the estimate implicit in
subjective views, and πBL for the aggregate Black–Litterman estimate. Here,
we assume that both returns and uncertain parameters are normally distributed.
This simplifies calculations considerably, making an analytical solution possi-
ble.7 Numerical methods may be used for different, possibly more realistic,
distributional assumptions.

The market-implied risk premia may be considered as one ingredient of the
estimate, which is not just backward-looking and based on historical data, but
also forward-looking. But how can we include subjective views that an investor
might have? For instance, an investor could believe that asset 2 will outperform
asset 5 by, say, 2%. Then, we could write a condition such as

πs2 − πs5 = 0.02, (10.12)

where we use the subscript s to emphasize the subjective nature of this view. If
the subjective views about risk premia are expressed by linear relationships, we
may collect all of them in the following matrix form:

Pπs = q, (10.13)

where P ∈ Rk×n, q ∈ Rk, and k is the number of subjective views. The view
of Eq. (10.12) would correspond to a row of matrix P, with elements set to 1
and −1 in columns 2 and 5, respectively, and zero otherwise; the corresponding
element in vector q would be 0.02. Of course, subjective views are uncertain,
and we might express our confidence in them as follows:

Pθ̃ ∼ N(q,Ω). (10.14)

We are claiming that a linear transformation of the uncertain parameter vector
θ̃, which is again normal, has expected value q, corresponding to subjective
views, and covariance matrix Ω, typically a diagonal matrix whose elements
are related to the confidence in subjective views. A view that we really believe
in will be associated with a small variance.

7In Bayesian parlance, we say that using multivariate normal distributions for both the prior and
the likelihood results in a conjugate pair, so that the posterior is normal, too.
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It is important to realize that Ω has nothing to do with the covariance matrix
Σ between asset returns. However, Σ does play a role in the Black–Litterman
model. In fact, the Bayesian framework suggests that we might merge the two
sources of knowledge by using Eq. (10.37). We note that, unlike the usual
Bayesian sequential learning framework, we cannot really speak of a “prior”
and a “posterior.” We are just merging two different sources of knowledge. The
historical data are not used in estimating the risk premia, as past data may be not
quite relevant to the future, but they do play a role in the estimation of Σ. The
market implied view is expressed by the following distributional assumption
about θ̃:

θ̃ ∼ N(πe, τΣ). (10.15)

The expected value is given by the CAPM risk premia, whereas the covariance
matrix of θ̃ is related to the covariance matrix Σ by the factor τ . One of the
main difficulties of the Bayesian framework is specifying sensible multivariate
priors. Here, we are using the parameter τ to fine tune the degree of confidence
in the market view, without the need to specify covariances.

Putting everything together, we end up with the following Black–Litterman
estimator of the risk premia:

πBL =
[
(τΣ)−1 + PTΩ−1P

]−1

·
[
(τΣ)−1πe + PTΩ−1q

]
. (10.16)

Technical remark. Equation (10.16) states that the estimate πBL of the risk
premia is a weighted average of the market-implied estimate πe and the esti-
mate πs implied by the subjective views. The weights are related to the degree
of uncertainty associated with these two sources of knowledge, and the back-
ground is illustrated in Section S10.1.3. In particular, Eq. (10.16) is related to
Eq. (10.37). However, while the term (τΣ)−1 is clearly understood as the in-
verse of the covariance matrix τΣ associated with the market-implied estimate
of the risk premia, the role of matrix P is less obvious. Without going into too
many calculation details, let us just recall that Bayesian updating with a normal
distribution requires focusing on the essential terms in multivariate densities,
sweeping all of the rest under the rug of a proportionality constant. In the case
of market-implied risk premia, the multivariate normal density of the random
vector θ̃ is proportional to the following expression:

exp
[

1
2

(
θ − πe

)T
(τΣ)−1

(
θ − πe

)]
.

In the case of subjective views, we have a distributional information on a linear
transformation of the random vector θ̃, which involves a multivariate normal
density proportional to

exp
[

1
2

(
Pθ − q

)T
Ω−1

(
Pθ − q

)]
= exp

[
1
2

(
θTPTΩ−1Pθ − θTPTΩ−1q− qTΩ−1Pθ + qTΩ−1q

)]
∝ exp

[
1
2θ

TPTΩ−1Pθ − θTPTΩ−1q
]
,
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where we use the symmetry of the inverted covariance matrix Ω−1 and keep
only terms involving θ. This helps to explain the occurrence of the matrix
products PTΩ−1P and PTΩ−1q in Eq. (10.16). A proper proof is beyond the
scope of this book.

10.3.2 BLACK-LITTERMAN MODEL: A NUMERICAL EXAMPLE

Let us assume a very simple market on which two assets, A and B, are traded.8

The market weights of the two assets are

wA = 0.25, wB = 0.75.

Historical data yield the following estimates about the two volatilities and the
correlation among assets:

σA = 0.08, σB = 0.17, ρ = 0.3,

which imply the following covariance matrix

Σ =

[
0.082 0.3× 0.08× 0.17

0.3× 0.08× 0.17 0.172

]
=

[
0.0064 0.00408

0.00408 0.0289

]
As we have pointed out, we assume that this information can be trusted, and we
may also find the variance of the market portfolio:

σ2
M = w2

Aσ
2
A + w2

Bσ
2
B + 2wAwBσAB

= 0.252 · 0.0064 + 0.752 · 0.0289 + 2 · 0.25 · 0.75 · 0.00408 = 0.018186.

Now, in order to proceed, we need a market-implied estimate of the risk
premia πeA and πeB . To this aim, we may either come up with an estimate of
the market risk premium and use CAPM, or we may directly use Eq. (10.10)
along with an estimate of the aggregate risk aversion. It is commonly agreed
that sensible values of the risk aversion coefficient, within a mean–variance
framework, are in the range from 2 to 4. Assuming an aggregate risk aversion
δ = 3, we find

πe = 3×

[
0.0064 0.00408

0.00408 0.0289

]
×

[
0.25

0.75

]
=

[
1.40%

6.81%

]
. (10.17)

As a reality check, the corresponding market risk premium is9

πeM = δ · σ2
M = 3× 0.018186 = 5.46%.

8The numerical inputs for this example are borrowed from [3, Chapter 27].
9Alternatively, we might estimate δ on the basis of forecasts of µM and σM , using Eq. (10.11).
Forecasting expected return for the whole market is arguably less difficult than doing the same
for an individual asset.
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To complete the market implied view, we have to choose a value for the co-
efficient τ , which is used to express the uncertainty about the market-implied
risk premia. A sensible rule of thumb is to use a standard deviation for the
uncertain parameter that is 10% of the standard deviation of return. Since τ
multiplies variances and covariances, rather than standard deviations, this im-
plies τ = (0.1)2 = 0.01:

τΣ =

[
0.000064 0.0000408

0.0000408 0.000289

]
.

To get a feeling for this choice, let us recall that the variance of a sample mean
is given by

Var(X) =
σ2
X

m
,

where m is the sample size. Therefore, choosing τ = 1/100 is equivalent to the
precision of an estimate based on 100 past observations.

Now, we must integrate market equilibrium with subjective views. Say that
the portfolio manager expects asset A to outperform asset B by 0.5%,

πsA − πsB = 0.5%.

This view can be expressed within our formalism as follows:

P = [1 −1] , q = 0.5%.

The matrix P is a row vector and the vector q is a scalar because we are ex-
pressing only one view. The matrix Ω is a scalar as well, and in order to choose
its value we might want to express that our confidence in the subjective view
is roughly the same as the confidence in the market equilibrium view. If we
represent the two uncertain risk premia by the random variables θ̃A and θ̃B ,
respectively, the variance of their difference, conditional on the market equilib-
rium informationMe, is

Var
(
θ̃A − θ̃B |Me

)
= 0.000064 + 0.000289− 2× 0.0000408

= 0.0002714 ≈ 0.0003,

where we use the entries in matrix τΣ. If we want to assign roughly the same
weight to market-implied and subjective views, we may choose Ω = 0.0003. If
we rewrite Eq. (10.14) as

Pπs = q + ε̃,

our choice corresponds to assuming a standard deviation σε̃ =
√

0.0003 =
1.73% for the noise term ε̃, which is just a scalar in our example, since we are
considering one view.

Now, we have to just apply Eq. (10.16), which requires a few straightfor-
ward matrix calculations. We just outline a couple of them, for illustration
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purposes:

(τΣ)−1 = 100×

[
171.7033 −24.2405

−24.2405 38.0243

]

PTΩ−1P =
1

0.0003
×

[
1

−1

]
×
[
1 −1

]
=

10,000

3

[
1 −1

−1 1

]
.

The final result is

πBL =

[
1.64%

4.24%

]
.

We notice the difference with respect to the market-implied forecasts10 of Eq.
(10.17). The difference between the risk premia is

0.5% according to the subjective view,
1.40%− 6.81% = −5.41% according to the market view,
1.64% − 4.24% = −2.60% according to the integrated view, which is
roughly half-way between the two views.

As it turns out, Black–Litterman portfolios are less “extreme” than portfolios
obtained on the basis of naive estimates.

10.4 Arbitrage pricing theory

The arbitrage pricing theory (APT) model may be considered as an extension
of the CAPM allowing for multiple factors. However, this is a partial view, as it
disregards the difference between a statistical model and an equilibrium model.
The hypotheses behind the APT equilibrium are less stringent than those re-
quired by CAPM. For instance, the critical assumption that market participants
are all mean–variance optimizers is relaxed. Essentially, APT requires that they
will not leave arbitrage opportunities on the table. At first sight, this seems a
rather obvious assumption, but it still relies on the hypothesis that markets are
liquid and frictionless, and that unlimited short-selling is possible.11

If we consider the required assumptions, APT looks like an extension and
an improvement over CAPM. However, it is not quite clear how to choose of
relevant factors in APT. Furthermore, as usual, relaxing the assumptions behind

10Here, we are using the terms “estimate” and “forecast” rather liberally. Within an orthodox
framework, this would not make any sense. Within Bayesian statistics, we may be forgiven for
the confusion, since parameters are random variables and we may use their expected values as
forecasts.
11These assumptions also underlie the use of no-arbitrage principles in pricing derivatives. The
difference between the concepts that we use in Chapter 13 and APT is that we deal here with
portfolios of primary assets, rather than derivatives, and we do not consider dynamic modeling
in any way.
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a mathematical model, in order to strive for generality, comes with a price,
which in this case is:

From a technical viewpoint, the proof of the APT is much more involved
than the proof of the CAPM. In fact, we will provide some intuition, rather
than a mathematically rigorous proof.
From a financial viewpoint, APT applies to well-diversified portfolios,
rather than to individual assets. To be more precise, the possibility is left
open that APT does not apply to all of the individual assets, and that some
violation is possible.

10.4.1 THE INTUITION

Before stating the theorem formally, it is important to gain some financial in-
tuition. To this aim, let us consider a multifactor linear model based on two
systematic factors,

r̃i = αi + βi1F̃1 + βi2F̃2 + ε̃i, i = 1, . . . , n,

where i may refer to an asset or a portfolio. Note that we are writing the model
in terms of return r̃i, rather than excess return R̃i, but this is not essential. If we
assume a diagonal model and only consider well-diversified portfolios, rather
than individual assets, we may assume that specific risks have been diversified
away, so that the model can be rewritten as

r̃i = αi + βi1F̃1 + βi2F̃2, i = 1, . . . , n.

Now, leaving distributional knowledge about the common factors aside, how
many features do we need to specify a portfolio p? In this case, we need
three coefficients, one alpha and two betas. Equivalently, we may be concerned
with the expected return, µp

.
= E[r̃p], and the two factor loadings βp1 and βp1.

Hence, geometrically, we may associate each portfolio with a point in a three-
dimensional space with coordinates (µp, βp1, βp2). We also know that, in such
a space, three (linearly independent) points define a plane, whose equation may
be written as

µp = λ0 + λ1βp1 + λ2βp2,

for some constants λ0, λ1, and λ2.
For instance, let us assume that the three well-diversified portfolios dis-

played in Table 10.1 are available.12 To find the plane corresponding to these
three portfolios, we may solve the following system of linear equations:

15 = λ0 + 1.0λ1 + 0.6λ2

14 = λ0 + 0.5λ1 + 1.0λ2

10 = λ0 + 0.3λ1 + 0.2λ2

,

12The numerical example is borrowed from [8].
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Table 10.1 Three well-diversified portfolios and their systematic factor exposures.

Portfolio i Expected return µi βi1 βi2

A 15% 1.0 0.6
B 14% 0.5 1.0
C 10% 0.3 0.2

where, for the sake of convenience, we express return as a percentage. This
gives the equation

µp = 7.75 + 5βp1 + 3.75βp2. (10.18)

If we combine the three portfolios, we just get another point on this plane (note
that building a portfolio means taking a linear affine combination of other as-
sets/portfolios, i.e., a linear combination where weights add up to 1).

Now, let us compare the following two portfolios:

Portfolio D, which is obtained by an equally weighted combination of
portfolios A, B, and C.
Portfolio E, which has expected return 15%, βE1 = 0.6, and βE2 = 0.6.

The risk exposures of portfolio D are found by combining the betas of its three
building blocks:

βD1 = 1
3 × 1.0 + 1

3 × 0.5 + 1
3 × 0.3 = 0.6

βD2 = 1
3 × 0.6 + 1

3 × 1.0 + 1
3 × 0.2 = 0.6.

Thus, we observe that portfolio D has the same risk exposure as portfolio E.
However, its expected return is

µD = 1
3 × 15 + 1

3 × 14 + 1
3 × 10 = 13% < µE .

By construction, portfolio D lies on the plane of Eq. (10.18), whereas portfolio
E does not. This introduces an inconsistency and, if both portfolios D and E
exist, then we have a perfect money-making machine. All we have to do is to
short the “ugly” portfolio D and buy the “nice” portfolio E, for an arbitrary
initial capital, as shown in Table 10.2. Note that the betas of portfolio D are
negative, since we are short-selling it, and they exactly offset the betas of port-
folio E. We assume that we short $1 of D in order to buy $1 of E, but this is
not essential, as we may scale the trade up arbitrarily. The resulting long–short
portfolio is beta-neutral and riskless (we assume specific risk is negligible), and
it is dollar-neutral (we do not need any initial capital to set up the trade). How-
ever, assuming that the multifactor model applies, it earns a positive risk-free
return, 15% − 13% = 2%. This is an arbitrage opportunity, which should not
exist in equilibrium.

If we have to rule out such arbitrage opportunities, all portfolios must lie
on the same plane, which means that there must exist constants λ0, λ1, and λ2,
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Table 10.2 An arbitrage trade. We assume an investment of $1, but this may be scaled
up at will.

Initial cash flow βp1 βp2 µp

Portfolio D +$1 −0.6 −0.6 −13%
Portfolio E −$1 0.6 0.6 15%
Arbitrage long–short portfolio 0 0.0 0.0 2%

such that
µp = λ0 + λ1βp1 + λ2βp2,

for any well-diversified portfolio p. By generalizing the result to an arbitrary
number of factors, we obtain the statement of the APT theorem.

Remark. The careful reader will notice a difference with the arbitrage strategies
that we have considered in Section 2.3. For instance, in Example 2.8, we did
not rely on any model, but only the well-defined payoffs of derivatives. Here,
we are relying on a multifactor model, whose parameters are estimated. If the
betas of portfoliosD and E are subject to estimation error, we cannot claim that
we really have a clean and guaranteed arbitrage opportunity. Furthermore, we
are not considering the uncertainty associated with residual specific risk.

10.4.2 A NOT-SO-RIGOROUS PROOF OF APT

One way to generalize our intuition and see why APT should hold is to exploit
concepts from linear algebra, provided that we still assume that specific risks
can be disregarded. First, let us state the APT theorem formally.

THEOREM 10.1 (APT pricing equation) Consider the multifactor model

r̃i = αi +

m∑
j=1

βijF̃j , i = 1, . . . , n,

where no specific risk factor is involved. Then, assuming no-arbitrage, there
exist constants λ0, λ1, . . . , λm such that

µi = λ0 +

m∑
j=1

βijλj , i = 1, . . . , n. (10.19)

To prove the claim, let us consider the case m = 2 and say that we invest
an amount xi (of any monetary unit) in each asset i, forming a portfolio such
that:

n∑
i=1

xi = 0,

n∑
i=1

xiβi1 = 0,

n∑
i=1

xiβi2 = 0.
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In plain English, we are building a long–short portfolio with no risk exposure
(beta-neutral) and zero initial value (dollar-neutral). Since the portfolio does
not require any initial investment and is riskless, if we rule out arbitrage oppor-
tunities, its expected profit (in monetary units) must be zero, too:

n∑
i=1

µixi = 0.

Let us translate this financial idea in terms of linear vector spaces, by introduc-
ing vectors x, µ, β1, β2, which collect traded amounts and the features of each
asset i, and i = [1, 1, . . . , 1]T. Then,

xTi = 0, xTβ1 = 0, xTβ2 = 0 ⇒ xTµ = 0,

i.e., any vector x which is orthogonal to i, β1, and β2 must also be orthogonal
to µ. According to a theorem of linear algebra, this implies that µ must be a
linear combination of i, β1, β2,

µ = λ0i + λ1β1 + λ2β2,

which proves Eq. (10.19). Clearly, this may be generalized to an arbitrary num-
ber of factors.

10.4.3 APT FOR WELL-DIVERSIFIED PORTFOLIOS

So far, we took for granted that there was no need to consider specific risk.
Let us try to justify the claim for well-diversified portfolios in a more general
setting, where we include specific risks in the multifactor model

r̃i = αi +

m∑
j=1

βijF̃j + ε̃i, i = 1, . . . , n.

If we build a portfolio p, with weights wi, we have

r̃p = αp +

m∑
j=1

βpjF̃j + ε̃p,

where

αp =

n∑
i=1

αiwi, βpj =

n∑
i=1

βijwi, Var(εp) = σ2
εp =

n∑
i=1

σ2
εiw

2
i ,

where σεi is the volatility of each specific risk factor. Now, let us assume the
following:

1. Specific risks are bounded, in the sense that

σ2
εi ≤ S2, ∀i

for some constant S.
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2. The portfolio is well diversified, in the sense that

wi ≤W/n, ∀i

for some constant W ≈ 1, so that there is no overweighted asset.

Then,

σ2
εp ≤

1

n2

n∑
i=1

W 2S2 =
1

n
W 2S2. (10.20)

If we let n→∞, Eq. (10.20) implies σ2
εp → 0. Hence, we see that the previous

results do apply to well-diversified portfolios, at least asymptotically, also if we
include specific risks in the model.

10.4.4 APT FOR INDIVIDUAL ASSETS

What we have seen so far does not imply that APT holds for individual as-
sets. Dealing with individual assets rigorously requires some more sophisti-
cated technical machinery (see, e.g., [11]), but the net result is the following.
Consider a universe of n assets, where a multifactor model withm common risk
factors applies, and let n → ∞. There exist numbers λ0, λ1, . . . , λm such that,
if we define the error

νi
.
= µi − λ0 −

m∑
j=1

βijλj ,

we find

lim
n→∞

1

n

n∑
i=1

ν2
i = 0.

This means that the mean square error of the model goes to zero. This, in turn,
implies that most of the errors νi (i.e., all but a finite number of them) must
be negligible. Hence, APT for individual assets holds as an asymptotic result,
requiring an infinite universe of assets. Thus, most assets are correctly priced
by the model, but APT might fail for a few of them.

A more intuitive argument is the following. Assume that APT does not
apply to any individual asset. Nevertheless, we may build a well-diversified
portfolio, for which we know that APT applies. Is it possible that APT does
not apply to the individual assets, while it applies to the portfolio? In principle
it may happen for a single portfolio, if we take some lucky combination of
portfolio weights, so that errors cancel each other. It may also happen for a
few portfolios, but the chances of finding that lucky combination of weights are
diminishing. Since we assume an infinite universe of assets, we may build an
infinite number of well-diversified portfolios. However, it is quite unlikely that
APT applies to all such portfolios, but not to individual assets. Still, APT might
well be violated for a finite set of assets.
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10.4.5 INTERPRETING AND USING APT

Let us try to interpret the numbers λi in Theorem 10.1. It is convenient to as-
sume a centered factor model, where common factors have expected value zero.
In other words, the model is based on “unexpected” shocks on factors. Then,
the constant term αi in the multifactor model of return r̃i is just the expected
return:

E
[
F̃j
]

= 0, ∀j =⇒ µi = E
[
r̃i
]

= αi, ∀i.
The APT pricing equation states that

µi = λ0 +

m∑
j=1

βijλj .

As a first step, consider a well-diversified portfolio p with no exposure to risk
factors, i.e., βpj = 0 for all risk factors j = 1, . . . ,m. Then, its return is deter-
ministic (in this case, we do not include any specific risk). But if the portfolio
is risk-free, no-arbitrage implies that

µp = λ0 = rf ,

where rf is the risk-free return.
In order to interpret the coefficients λj , j ≥ 1, imagine that we build a

portfolio p1 with unit exposure to factor F1, and zero exposure to the remaining
factors. In other words,

βp1,1 = 1; βp1,j = 0, j = 2, 3, . . .

Then,
E[r̃p1 ] = λ0 + λ1 ⇒ λ1 = E[r̃p1 ]− rf .

We see that λ1 is the expected excess return of a portfolio with unit exposure to
factor F1 only. The same reasoning applies to all other systematic factors. If we
introduce, for each factor j, the parameter

δj
.
= E[r̃pj ],

i.e., the expected return of a portfolio with unit exposure to F̃j only, we may
rewrite the APT equation as

E[r̃i] = rf +

m∑
j=1

βij · [δj − rf ].

The coefficients λj ≡ δj−rf can be interpreted as risk premia, in the sense that
they tell us by how much the expected return increases for each additional unit
of exposure to systematic risk factor F̃j . Hence, we may read APT as follows:

E[r̃i] = rf +

m∑
j=1

βijπj ,

where πj is the risk premium associated with systematic factor F̃j .
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Table 10.3 Well-diversified portfolios for Example 10.1.

Portfolio βi1 βi2 Expected return
A 1.6 −0.8 9.5%
B 0.5 1.3 11.7%
C −0.1 0.4 4.1%

Example 10.1 A toy numerical example

An APT model is based on two independent systematic factors F̃1 and
F̃2, both with zero expected value (centered model). We assume that
the holding period is one year, and the annual risk-free rate is 4%. We
are given the three well-diversified portfolios displayed in Table 10.3.
Let us find the coefficients of an APT model based on portfolios A
and B, and check whether the introduction of portfolio C creates an
arbitrage opportunity.

To find the first answer, we solve the system of linear equations

0.095 = 0.04 + 1.6λ1 − 0.8λ2,

0.117 = 0.04 + 0.5λ1 + 1.3λ2,

which yield λ1 = 0.0537 and λ2 = 0.0386. Note that the problem
data give λ0 = 0.04 directly.

Hence, according to APT, the equilibrium expected return of port-
folio C should be

µC = 0.04− 0.1× 0.0537 + 0.4× 0.0386 = 0.0501, (10.21)

which is larger than the expected return in Table 10.3. If we believe
the parameter estimate in the table, then we have an arbitrage oppor-
tunity. Using portfolios A and B, as well as the risk-free asset, we
may generate a portfolio (let us call it portfolio D) with the same
risk exposure of portfolio C, but a larger expected return. Hence, we
should short portfolio C and buy portfolio D. To find a combination
of A and B with the same risk exposure as C, we solve the following
system:

1.6wA + 0.5wB = −0.1,

− 0.8wA + 1.3wB = 0.4,

w0 + wA + wB = 1,
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where w0 is the weight of the risk-free asset (which has zero beta by
definition). Note that we need the third equation to obtain a set of nor-
malized weights, which would not be obtained by using only the first
two equations. Solving this system, we find wA = −0.1331, wB =
0.2258, w0 = 0.9073.

Given these weights, the return of the resulting portfolio D is

r̃D = wAr̃A + wB r̃B + w0rf

= −0.1331× (0.095 + 1.6F̃1 − 0.8F̃2)

+ 0.2258× (0.117 + 0.5F̃1 + 1.3F̃2) + 0.9073× 0.04

= 0.0501− 0.1F̃1 + 0.4F̃2.

The expected return of portfolio D is, in fact, 0.0501, as predicted by
the consistency condition in Eq. (10.21). Finally, we build a long–
short portfolio with wC = −1 (short portfolio C) and wD = 1 (buy
portfolio D, which replicates the risk exposure of C). The portfolio is
both dollar-neutral and beta-neutral. Assuming no specific risk (and
no estimation errors in our models), its return is deterministic:

wC r̃C + wD r̃D

= −(0.041− 0.1F̃1 + 0.4F̃2) + (0.0501− 0.1F̃1 + 0.4F̃2)

= 0.0091.

If we short-sell $1,000,000 of portfolioC and buy $1,000,000 of port-
folio D, we earn a sure profit of $9,100.

Example 10.1 is rather stylized, and we should wonder what can go wrong
in real life:

The impact of specific risk: Unless portfolios are really well-diversified,
some residual risk can affect our trade.
The impact of model risk: APT is not quite explicit in the selection of
factors, and a wrong choice of factors will have a detrimental impact.
The impact of estimation risk: We may base our strategy on wrong esti-
mates of betas and expected returns. The arbitrage strategies of Examples
2.8 and 10.1 are quite different, as the first one is a true, model-free arbi-
trage opportunity.
The impact of execution risk: We may plan a trade, but execution prices
may not be in line with our plan.

In practice, terms like risk arbitrage and statistical arbitrage are used, to empha-
size that certain arbitrage strategies do entail an amount of risk.
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Example 10.2 Hedging a single risk factor away

Here we consider a seemingly trivial problem: How to hedge a sin-
gle systematic risk factor away, when there is no specific risk. Let
us consider two well-diversified portfolios whose returns follow the
single-factor model

r̃1 = α1 + β1F̃ ,

r̃2 = α2 + β2F̃ ,

where we have streamlined notation a bit to account for the presence
of one risk factor. Without loss of generality, let us assume a centered
model with E

[
F̃
]

= 0, so that each alpha is the expected portfolio
return. It is easy to find a portfolio with suitable weights, such that
the common risk factor is hedged away. From

wr̃1 + (1− w)r̃2 = wα1 + (1− w)α2 +
[
wβ1 + (1− w)β2

]
· F̃ ,

we see that the portfolio exposure to the risk factor is given by the
term within brackets. By setting

wβ1 + (1− w)β2 = 0

we find a weight

w∗ =
β2

β2 − β1
,

such that the portfolio is beta-neutral. However, since the resulting
portfolio is risk-free, no-arbitrage implies that it must earn the risk-
free return, no more, no less. The return of the portfolio with weights
w∗ and 1− w∗ is

β2

β2 − β1
· α1 −

β1

β2 − β1
α2 = rf ,

which may be rewritten as

α1 − rf
β1

=
α2 − rf
β2

. (10.22)

We have not made any assumption about the two portfolios we are
considering. Hence, this equality must hold for any pair of well-
diversified portfolios, and the ratios in Eq. 10.22 must be a constant
depending only on the risk factor:

α− rf
β

= λ ⇒ α = rf + λβ. (10.23)

Thus, the expected return α is just the risk-free rate plus the risk ex-
posure β multiplied by a coefficient λ which may be interpreted as a
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market price of risk. Clearly, λ is just the coefficient associated with
the systematic risk factor in the APT pricing equation. We shall meet
this kind of reasoning again in Chapter 14.

In concrete, APT does not tell much about which factors we may use. As
we have already pointed out in Section 9.4, there are plenty of factors we may
choose from, including the following broad families:

Macroeconomic factors. These are rather general factors, like market
return, change in the short-term interest rate, change in industrial produc-
tion level, change in inflation, change in oil price, etc.
Fundamental factors. These are factors related to a specific firm, like
size, book-to-price, dividend yield, earning variability, financial leverage,
growth, etc.
Statistical factors. These are obtained as a combination of factors, using
multivariate statistic methods for data reduction, such as principal com-
ponent analysis (PCA) and factor analysis. An interesting feature of PCA
is that it yields uncorrelated factors; however, these may be hard to in-
terpret. Exploratory factor analysis may be used when looking for latent,
i.e., unobservable, factors.

APT may be applied ex-ante as well as ex-post with respect to portfolio choice
(see, e.g., [5]). In active portfolio management, we may use APT in making
factor bets, i.e., tilting the portfolio in order to take advantage of information
about a risk factor. The estimation of risk exposures and risk premia may also
be helpful in spotting under- or over-priced stocks. In passive portfolio man-
agement, we may build an index portfolio tracking a particular well-diversified
benchmark by replicating its betas. APT has been proposed as a tool to evalu-
ate performance of mutual funds, much like CAPM (see, e.g., [13]). A further
application is return attribution, where ex-post return is factored into the fol-
lowing contributions:

1. Expected return, which is the reward for the risk taken.
2. Unexpected factor return, which arises from factor bets and factor sur-

prises.
3. Alpha, which arises from stock selection.

10.5 The behavioral critique

We have considered simple and stylized equilibrium and no-arbitrage models in
this chapter. The common underlying assumption is some form of rationality
in the behavior of market participants. The rather drastic conclusion of CAPM
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is that there is no point in trying to outperform the market. A similar con-
clusion is claimed by the efficient market hypothesis (EMH) that we outline
below. In Chapter 11, we will explore its consequences in terms of dynamic
modeling. The bottom line is that future asset prices are driven by stochastic
processes, whose increments are unpredictable and independent from the past.
As a consequence, any trading strategy trying to exploit patterns in stock prices
is claimed to be futile.

Actually, there is a rich set of strategies, which we roughly place under
the common label of technical analysis, trying to exploit different kinds of
patterns. For instance, trend following strategies try to take advantage of the
momentum in stock prices. Technical analysis may be contrasted with funda-
mental analysis, whereby one tries to take advantage of knowledge about the
firm, possibly by a factor model. In technical analysis, we only use a time se-
ries model based on the prices themselves, assuming that there is little point in
trying to explain erratic prices. Both of them may be contrasted with CAPM.
An alternative view is proposed by behavioral finance, which admits that mar-
ket participants are neither fully rational nor fully informed. These limitations,
as well as behavioral biases related to decision makers’ psychology, have been
put forward to explain market anomalies and bubbles, as well as seemingly
irrational patterns in both individual consumption–saving decisions and even
corporate finance choices.

No-arbitrage models seem less demanding than CAPM in terms of critical
assumptions. However, we should always keep in mind how they rely on im-
plicit assumptions concerning liquid and frictionless markets.13 In practice, we
have to deal with:

Limitations to short-selling (especially over extended time periods)
Short-term losses and liquidity issues
Implementation cost
Model risk

These issues have more to do with market structure than with market anomalies
due to investors’ psychology. Needless to say, a carefully planned arbitrage
strategy may prove to be quite dangerous in case of irrational patterns.

Given the rich variety of models, recently enriched by machine learning
approaches, it is difficult to draw clear lines between competing strategies, and
space does not allow a full treatment. In this section, we just hint at some al-
ternative ideas that it is worth bearing in mind, when we feel the temptation of
trusting any model too much, both in terms of market structure and investors’
behavior. A lot of empirical work has been and is being carried out on these
topics, with plenty of contradictory and confusing evidence. One thing is sure.
Critical remarks about CAPM and related models do not necessarily imply that
quantitative models are irrelevant. Quite the contrary. While CAPM suggests

13Also see the joke of Example 2.6.
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the opportunity of a passive strategy, quantitative models may try to take advan-
tage of market imperfections by pursuing active strategies. Factor models may
rely on behavioral factors, too. Furthermore, even if one is pursuing a purely
passive strategy, the problem remains of doing so efficiently, at minimum cost.14

10.5.1 THE EFFICIENT MARKET HYPOTHESIS

There are different forms in which we may state the essential idea of the EMH:

1. The weak form states that current asset prices reflect all of the informa-
tion implicit in past prices and trades.
Practical implication: Investors cannot outperform the market using only
historical price and volume data.

2. The semistrong form states that current asset prices reflect all the pub-
licly available information.
Practical implication: Investors cannot outperform the market using only
publicly available information, i.e., historical price, fundamental data, an-
alysts’ recommendations, etc.

3. The strong form states that prices (immediately) reflect all of the avail-
able information, public and private.
Practical implication: Investors cannot outperform markets at all.

The EMH views markets as populated by knowledgeable and perfectly ra-
tional investors. Even if not all investors are like that, informed professional
traders are supposed to keep prices in line, possibly by exploiting arbitrage
opportunities, which are occasional and disappear quickly. If we assume that
prices incorporate new information instantly, then there is no pattern to be ex-
ploited. If we assume that new, possibly positive, information is slowly incor-
porated in prices, then we may observe a trend pattern. This is a case of market
under-reaction. By a similar token, if we believe EMH literally, we should
not observe market over-reactions associated with bad news. The EMH view
is clearly debatable. However, it is true that empirical evidence suggests how
outperforming the market consistently is quite difficult.

10.5.2 THE PSYCHOLOGY OF CHOICE BY AGENTS WITH
LIMITED RATIONALITY

Many models in economics assume a rational decision maker, with infinite
memory and information processing ability. The decision-making paradigm
based on utility functions is an expression of this unbounded rationality view.
However, emotions (like disappointment and regret) play a major role in decision-
making, influencing actual behavior. This applies to general decision-making
under uncertainty, and to financial decision-making as well. Furthermore, due

14See Section 15.4.1 for an optimization model aimed at passive portfolio management.
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to information processing limitations, heuristics are often used in real life. As
a consequence, a few recurring “irrational” behavior patterns have been identi-
fied, based on mechanisms including:

Mental accounting. The portfolio is not considered in its entirety, but is par-
titioned. If we receive a large dividend, we may be tempted to spend it,
whereas we do not sell a stock with a high capital gain.

Anchoring. We use past values as reference points or “anchors.” Quite often,
losing stocks are kept for too long (the price at which they are bought is
an anchor), rather than admitting the mistake and selling them (aversion to
sure loss). Often, the winning stocks are sold instead, which may not be
rational also in terms of taxation.

Framing. The answer to a question may depend on how a problem is framed.
This has been a topic of plenty of psychological research activity. For in-
stance, when people are asked how much money would they be willing to
pay to avoid a one-in-a-thousand chance of being killed, they give an an-
swer. If the question is rephrased as how much money would they ask to
accept that risk, the amount tends to be much larger, even though the two
questions are equivalent.

Behavioral biases and cognitive limitations result in anomalous patterns and
errors. Among the commonly cited examples, we mention the following ten-
dencies:

Overconfidence. It is well-known that 90% of drivers think they are above
average drivers. By a similar token, one may be overconfident about his
views about a stock share.
Memory bias. Too much weight may be attributed to recent observations,
which may result in forecasting errors.
Conservatism. Investors may be too slow in revising their beliefs, which
may justify certain momentum strategies.
Sample size neglect and representativeness heuristics. This may explain
the initial overreaction to earning reports.

Last, but not least, we mention again information asymmetry as one of
the main features of competitive financial markets. There are informed market
participants (possibly, participants who believe they are informed), and noise
traders. The latter may contribute to market anomalies, as well. Furthermore,
the actions of investors’ who know or believe that other market participants are
more informed may explain herding and imitative behavior, possibly generating
market instability.

10.5.3 PROSPECT THEORY: THE AVERSION TO SURE LOSS

In Chapter 7, we have introduced the expected utility function as a possible
paradigm for decision-making under uncertainty. However, apart from practi-
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cal difficulties in eliciting individual utility functions, the concept itself relies
on critical assumptions, and the literature is rich in examples pointing out the
contradictions with empirically observed behavior.

Example 10.3 A decision-making paradox

When asked to make a choice, most people prefer $2400 with cer-
tainty to a lottery in which they may win $2500 with probability 0.33,
$2400 with probability 0.66, and nothing with probability 0.01. Note
that the expected value in the second case is $2409 > $2400, but
the fear of painful regret in the case of a zero payoff is such that we
prefer to avoid the risk. Let us assume a utility function such that
u(0) = 0, with no loss of generality. Hence the above choice implies
the following:

u(2400) > 0.33 · u(2500) + 0.66 · u(2400)

⇒ 0.34 · u(2400) > 0.33 · u(2500).

However, most people prefer $2500 with probability 0.33 and nothing
with probability 0.67 to $2400 with probability 0.34 and nothing with
probability 0.66. Arguably, this is due to the fact that we are not
really able to perceive the small difference in probabilities, whereas
the additional $100 have a clear meaning. However, according to
utility theory, this second choice implies

0.34 · u(2400) < 0.33 · u(2500),

which contradicts the first one.

Prospect theory is a descriptive framework for decision-making under un-
certainty that tries to explain some inconsistencies with expected utility theory.
A common pattern is known as certainty effect, i.e., the tendency to overweight
outcomes that are considered as certain.

Example 10.4 The aversion to sure loss

Consider the following two choices:

1. You have to choose between losing $7400 for sure, and a risky
alternative, whereby you lose $10,000 with probability 0.75 and
nothing with probability 0.25. What do you prefer?

2. You may take a gamble whereby you win $7400 with probability
0.25, and you lose $2600 with probability 0.75. Do you accept?
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Value

Loss Profit

FIGURE 10.4 The value function in prospect theory.

Most people take the risky alternative in the first case, but they do not
in the second one. Note that, in the second case, the expected payoff
of the gamble is

0.25× 7400− 0.75× 2600 = −100.

Since we expect to lose $100, any risk-averse or risk-neutral decision
maker would not take the chance. However, in the first case, the ex-
pected loss of the risky alternative is $7500, which is larger than the
sure loss by $100. If we consider the sure loss of $7400 as a sunk cost,
taking chances in the first choice is equivalent to adding the gamble
of the second choice to the sure loss. Hence, it seems that, when loss
is involved, we may behave as risk-lovers, contradicting the idea of
concave utility functions.

More generally, most people are averse to sure losses, which may explain
the reluctance to selling losing stocks or to cut losses when pursuing projects
that are losing money. Furthermore, it seems that uncertain choices depend
on reference values (0 or −7400 in Example 10.4). Prospect theory, as an al-
ternative to utility functions, is based on value functions that are concave for
positive values (gains) and convex for negative values (losses), as shown in Fig.
10.4. The value function represents risk aversion for positive values, whereas
the opposite behavior is associated with losses. Also note that the curve is
steeper for negative values. Unlike utility functions, here there is a reference
point, with respect to which gains and losses are evaluated. The reference point
may be current wealth, but this depends on how the prospect is formulated.
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S10.1 Bayesian statistics

Parameter estimation plays a pivotal role in statistics and is central in finance,
too. In orthodox statistics, parameters are numbers that we do not know. As
such, there is no probability measure associated with parameters. For instance
a typical trick question is the following one:

We estimate a 95% confidence interval for an expected value, and
the available sample yields the interval (5.66, 6.13). Can we say
that the expected value is contained in that interval with probability
0.95?

Any student in inferential statistics knows that this a wrong view, but a quite
tempting one. The confidence level gives a measure of coverage, i.e., the proba-
bility that a random confidence interval includes the unknown true value. There-
fore, a 95% confidence level tells us that if we sample 100 times, approximately
95 intervals should include the true value, but we cannot say anything about a
single realized confidence interval. To understand the point, let us consider a
random variable X with expected value µ. The probability P{X ≤ µ} is a sen-
sible mathematical object, even though we cannot evaluate it exactly when µ or
the underlying distribution are unknown. However, if we consider a realization
x = 10 of the variable, we cannot even talk about the probability P{10 ≤ µ},
since we are comparing two numbers. Either the inequality is satisfied or not,
and if µ is unknown, we cannot say anything.

However, it would be nice to have a way to express how much we trust an
estimate. This is certainly relevant in finance, when we express views about ex-
pected returns or risk premia, as well as critical but unobservable model param-
eters like volatility. In orthodox statistics, there is no such a thing as “probabilis-
tic knowledge” about parameters, and data are the only source of information;
subjective knowledge, more or less reliable, is disregarded.

Bayesian statistics provides a framework in which the above view about
confidence intervals makes sense. Furthermore, within Bayesian statistics, sub-
jective views may be stated in a precise way. The key shift in the paradigm is
that parameters are regarded as random variables themselves. The following
example shows some additional difficulties that we may encounter within the
orthodox framework.15

Example 10.5 Difficulties with orthodox confidence intervals

Let X be a uniformly distributed random variable, and let us assume
that we do not know where the support of this distribution is located,
but we know that its width is 1. Then, X ∼ U[µ−0.5, µ+0.5], where

15This example is taken from [9], page 45, which in turn refers back to [7].
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µ is the unknown expected value of X , as well as the midpoint of
the support. To estimate µ we take a sample of n = 2 independent
realizations X1 and X2 of the random variable. Now consider the
order statistics

X(1) = min{X1, X2}, X(2) = max{X1, X2}

and the confidence interval

I = [X(1), X(2)]. (10.24)

What is the confidence level of I, i.e., the probability P{µ ∈ I}?
Both observations have a probability 0.5 of falling to the left or to
the right of µ. The confidence interval will not contain µ if both
observations fall on the same half of the support. Then, since X1 and
X2 are independent, we have

P{µ /∈ I} = P{X1 < µ,X2 < µ}+ P{X1 > µ,X2 > µ}
= 0.5× 0.5 + 0.5× 0.5 = 0.5.

So, the confidence level for I is the complement of this probability,
i.e., 50%.

Now suppose that we observe X1 = 0 and X2 = 0.6. What is the
probability that µ is included in the confidence interval I resulting
from Eq. (10.24), i.e., P{0 ≤ µ ≤ 0.6}? In general, this question
does not make any sense, since µ is a number. But in this specific
case, we have some additional knowledge, leading to the conclusion
that the expected value is included in that interval for sure. Since the
absolute deviation |X − µ | from the expected value is bounded by
0.5, a confidence interval of width 0.6 must contain µ. By a similar
token, if we observe X1 = 0 and X2 = 0.001, we have some reason
to argue that such a small interval is quite unlikely to include µ, but
there is no way in which we can express this view properly, within the
framework of orthodox statistics.

S10.1.1 BAYESIAN ESTIMATION

Say that we want to estimate an uncertain parameter θ̃ ∈ Θ ⊆ R, characteriz-
ing the probability distribution of a continuous random variable X . A natural
possibility is to build an estimate θ̂ = E[θ̃], for which we need the distribution
of θ̃. We have some prior information about θ̃, that we would like to express
in a sensible way. Such a knowledge or subjective view may be expressed by a
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probability density p(θ), which is called the prior distribution of θ̃. Here, we
care about the difference between the random variable θ̃ from its realized value
θ, but will not always be so picky. One possible prior is a uniform distribution.
Note that a uniform prior may seem uninformative, but this need not be the case,
as a uniform prior bounds Θ.

Then, the prior should be somehow merged with experimental evidence.
Experimental evidence consists of independent observations X1, . . . , Xn from
the unknown distribution. Let us denote the density of X by f(x | θ), to em-
phasize its dependence on the value θ of the parameter. Since a random sample
consists of independent random variables, their joint distribution, conditional
on θ̃ = θ, is

fn(x1, . . . , xn |θ) = f(x1 |θ) · f(x2 |θ) · · · f(xn |θ).

The conditional density fn(x1, . . . , xn |θ) is called the likelihood function.
Since we are dealing with the n + 1 random variables θ̃, X1, . . . , Xn, we

could also consider their joint density g(x1, . . . , xn, θ), but this will not be re-
ally necessary for what follows. Let us denote the marginal density of the n
observations by

gn(x1, . . . , xn).

Given the likelihood fn(x1, . . . , xn | θ) and the prior p(θ), we can find the
marginal density of X1, . . . , Xn by applying the total probability theorem:

gn(x1, . . . , xn) =

∫
Θ

fn(x1, . . . , xn |θ)p(θ)dθ,

where we integrate over the domain Θ of θ̃, i.e., the support of the prior distri-
bution. Now we need to invert the conditioning, i.e., we would like to obtain
the distribution of θ̃ conditional on the observed values Xi = xi, i = 1, . . . , n,
i.e.,

pn(θ |x1, . . . , xn).

This posterior density should merge the prior and the density of observed data
conditional on the parameter. This is obtained by applying Bayes’ theorem to
densities, which yields

pn (θ |x1, . . . , xn) =
g(x1, . . . , xn, θ)

gn(x1, . . . , xn)
=
fn(x1, . . . , xn |θ) · p(θ)

gn(x1, . . . , xn)
. (10.25)

Note that the posterior density involves a term gn(x1, . . . , xn), which does not
really depend on θ. Its role is to normalize the posterior distribution, so that its
integral is 1. Sometimes, it might be convenient to rewrite Eq. (10.25) as

pn(θ |x1, . . . , xn) ∝ fn(x1, . . . , xn |θ) · p(θ), (10.26)

i.e., pn is proportional to the product of fn and p. In plain English,

posterior ∝ likelihood× prior.

What we are saying is that, given some prior knowledge about the parameter
and the distribution of observations, conditional on the parameter, we obtain an
updated distribution of the parameter, conditional on the actually observed data.
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S10.1.2 BAYESIAN LEARNING IN COIN FLIPPING

We tend to take for granted that coins are fair, and that the probability of getting
heads is 1/2. Let us consider flipping a possibly unfair coin, with an unknown
probability θ of getting heads. In order to learn this unknown value, we flip
the coin repeatedly, i.e., we run a sequence of independent Bernoulli trials with
unknown parameter θ̃.16 If we do not know anything about the coin, we might
just assume a uniform prior

p(θ) = 1, 0 ≤ θ ≤ 1.

If we flip the coin n times, we know that the probability of getting h heads is
related to the binomial probability distribution

fn(h |θ) ∝ θh(1− θ)n−h. (10.27)

This is our likelihood function. If we regard this expression as the probability of
observing h heads, given θ, this should actually be the probability mass function
(PMF) of a binomial variable with parameters θ and n, but we are disregarding
a binomial coefficient, which does not depend on θ and just normalizes the
distribution. In fact, if X is a binomial random variable with parameters θ and
n, we should write the PMF as

P{X = k} =

(
n

k

)
θk(1− θ)n−k, where

(
n

k

)
.
=

n!

(n− k)!k!
,

but the leading binomial coefficient plays no role for what we need to accom-
plish. If we multiply the likelihood function by the prior, which is just 1, we
obtain the posterior density for θ̃, given the number of observed heads:

pn(θ |h) ∝ θh(1− θ)n−h, 0 ≤ θ ≤ 1. (10.28)

Equations (10.27) and (10.28) look like the same thing, because we use a uni-
form prior, but they are very different in nature. Equation (10.27) should be
interpreted as the PMF of a discrete random variable, the number of observed
heads. On the contrary, Eq. (10.28) gives the posterior density of the continuous
random variable θ, conditional on the fact that we observed h heads and n − h
tails. If we look at it this way, we recognize the density of a beta distribution.17

To normalize the posterior, we should multiply it by the appropriate value of the
beta function. Again, this normalization factor does not depend on θ and can be
disregarded.

In Fig. 10.5, we display posterior densities, normalized in such a way that
their maximum is 1, after flipping the coin n times and having observed h heads.

16This example is based on [22, Chapter 2].
17The beta distribution is a continuous distribution with support [0, 1]. It includes, as a special
case, the uniform distribution on the unit interval, as well as some shapes of the triangular
distribution. See, e.g., [4, Chapter 7].
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FIGURE 10.5 Updating the posterior density of the probability of observing heads in
coin flipping. In each plot, H is the number of heads observed in N flips.

The plot in Fig. 10.5(a) is just the uniform prior. Now imagine that the first flip
lands heads. After observing the first heads, we know for sure that θ 6= 0;
indeed, if θ were zero, we could not observe any heads. The posterior is now
proportional to a triangle:

p1(θ |1) ∝ θ1(1− θ)1−1 = θ, 0 ≤ θ ≤ 1.

This triangle is shown in Fig. 10.5(b). If we observe another heads in the second
flip, the updated posterior density is a portion of a parabola, as shown in Fig.
10.5(c):

p2(θ |2) ∝ θ2(1− θ)2−2 = θ2, 0 ≤ θ ≤ 1.

If we get tails at the third flip, we rule out θ = 1 as well. Proceeding this way,
we get beta distributions, progressively concentrated around the true (unknown)
value of θ. Incidentally, the figure has been obtained by Monte Carlo simulation
of coin flipping with θ = 0.2.

S10.1.3 THE EXPECTED VALUE OF A NORMAL DISTRIBUTION

Consider a sample (X1, . . . , Xn) from a normal distribution with unknown ex-
pected value θ and known variance σ2. It may seem odd that we assume knowl-
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edge of variance, when the expected value is uncertain, but this may be relevant
to finance, if we assume that we trust the estimate of the covariance matrix
much more than the estimate of expected return. In terms of a single-index
model, we assume that the estimates of betas are fairly reliable and stable over
time, whereas the estimate of alphas is much more critical and related to sub-
jective views about the future. Implicitly, we assume that returns are normally
distributed, which we know to be subject to criticism. We do so for the sake of
simplicity, but the Bayesian framework for portfolio management may be ap-
plied to other distributions as well. We treat the univariate case in detail. The
multivariate extension is conceptually straightforward.

Given the mutual independence among observations, we have the following
likelihood function:

fn(x1, . . . , xn |θ) =
1

(2π)n/2σn
exp

{
−

n∑
i=1

(xi − θ)2

2σ2

}
.

Let us assume that the prior distribution of θ̃ is normal, too, with expected value
µ0 and standard deviation σ0:

p(θ) =
1√

2πσ0

exp

{
− (θ − µ0)

2

2σ2
0

}
.

We should not confuse σ0, the standard deviation in the prior, which represents
our uncertainty about the expected value θ, with σ, which is the known standard
deviation of the observations. Sometimes, we refer to (µ0, σ

2
0) as a pair of

hyperparameters, as they are the parameters of the distribution of a parameter.
To get the posterior, we may simplify our work by considering in each

function only the part that involves θ, wrapping the rest within a proportionality
constant. We may rewrite the prior as

p(θ) ∝ exp

{
− (θ − µ0)

2

2σ2
0

}
. (10.29)

In order to simplify the expression of the likelihood, we observe that
n∑
i=1

(xi − θ)2
=

n∑
i=1

(xi − x+ x− θ)2

=

n∑
i=1

(xi − x)
2

+

n∑
i=1

(x− θ)2
+ 2 ·

n∑
i=1

(xi − x)︸ ︷︷ ︸
≡0

·
n∑
k=1

(x− θ)

=

n∑
i=1

(xi − x)
2

+ n (θ − x)
2
,

where x is the average of xi, i = 1, . . . , n. Then, we rewrite the likelihood as

fn(x1, . . . , xn |θ) ∝ exp
{
− n

2σ2
(θ − x)

2
}
. (10.30)
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By multiplying Eqs. (10.30) and (10.29), we obtain the posterior

pn(θ |x1, . . . , xn) ∝ exp

{
−1

2

[
n

σ2
(θ − x)

2
+

1

σ2
0

(θ − µ0)
2

]}
. (10.31)

Finally, a bit of tedious algebra leads to

pn(θ |x1, . . . , xn) ∝ exp

{
− 1

2ξ2
(θ − ν)

2

}
, (10.32)

where we define

ν
.
=
nσ2

0x+ σ2µ0

nσ2
0 + σ2

, (10.33)

ξ2 .
=

σ2
0σ

2

nσ2
0 + σ2

. (10.34)

We recognize the familiar shape of a normal density, with expected value ν and
variance ξ2. Hence, given an observed sample mean X and a prior µ0, Eq.
(10.33) tells us that the Bayes’ estimator of θ can be written as

θ̂ = E
[
θ̃ |X1, . . . , Xn

]
=

nσ2
0

nσ2
0 + σ2

X +
σ2

nσ2
0 + σ2

µ0

=

n

σ2

n

σ2
+

1

σ2
0

X +

1

σ2
0

n

σ2
+

1

σ2
0

µ0. (10.35)

If we define the precisions

τ0
.
=

1

σ2
0

, τ
.
=

1

σ2
,

we may recast Eq. (10.35) as

µn = E
[
θ̃ |X1, . . . , Xn

]
=
nτX + τ0µ0

nτ + τ0
, (10.36)

which has a quite natural interpretation: The posterior estimate µn is a weighted
combination of the prior and the empirical evidence, where weights are given
by the respective precisions. The variance of the normal posterior density is(

n

σ2
+

1

σ2
0

)−1

,

which may be more conveniently rewritten in terms of an updated precision:

τn = nτ + τ0.
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The generalization to a multivariate normal distribution is conceptually
straightforward. The unknown vector of expected values, θ, has a normal prior
N(µ0,Σ0). We observe n independent realizations

Xi ∼ N(θ,Σ), i = 1, . . . , n,

with sample mean X. In this case, the posterior estimate involves inverses of
the covariance matrices,

µn = E [θ |X1, . . . ,Xn] =
[
nΣ−1 + Σ−1

0

]−1·
[
nΣ−1X + Σ−1

0 µ0

]
, (10.37)

and the updated covariance matrix is

Σn =
[
nΣ−1 + Σ−1

0

]−1
. (10.38)

Formally, Eqs. (10.37) and (10.38) are the same expressions as in the scalar
case, where division by variance σ2 is replaced by premultiplication by the in-
verse covariance matrix Σ−1. We insist again on the fact that Σ is the covari-
ance matrix of the random vector X, which we have assumed known, whereas
Σn is related with the posterior uncertainty about the vector of expected values
of X.

Problems

10.1 Imagine that there are two stock markets in the world, whose relative
capitalization weights are 25% and 75%, respectively. The expected returns
of the two markets are 6% and 4%, and their volatilities are 15% and 10%,
respectively. Kurtosis of return is 5 in the first market and 7 in the second one;
skewness is zero for both of them.

Consider a risk-averse investor X, with logarithmic utility function. If she
wants a portfolio with expected return of 3%, is it possible to achieve her
objective?
What is the volatility of the above portfolio, assuming that the two mar-
kets are statistically independent?
Now assume that all investors are exactly like investor X. Is investor X
still able to achieve the above portfolio at market equilibrium? Why?
Can the CAPM hold for these two markets, populated by investors like
X? Why?

10.2 You are analyzing three stock shares: Joint, Eppon, and Peculiar Motors.
Based on your analysis, the price of a Joint stock share should be the same as
the sum of one Eppon share and one Peculiar Motors share. The expected price
of a Joint share in one year, according to your forecast, is $100. The current
price of a Peculiar Motors is $30, which is fair in your opinion. The annual
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risk-free rate is 5% (annual compounding), the market risk premium is 10%,
the market volatility 38%, and the beta of Joint is 2. In equilibrium, what is the
fair price of one Eppon share?

10.3 Consider an individual asset, with random holding period return r̃i, and
the market portfolio, with corresponding return r̃M . We describe uncertainty by
five discrete scenarios, as in the following table:

Scenario Probability r̃i(ω) r̃M (ω)

ω1 0.2 0.03 0.09
ω2 0.2 0.17 0.16
ω3 0.3 0.28 0.10
ω4 0.2 0.05 0.02
ω5 0.1 −0.04 0.16

Assuming that CAPM holds, find the risk-free return.
Does the result look sensible? If not, how can you explain the anomaly?

10.4 An APT model is based on three mutually independent systematic fac-
tors F1, F2, and F3. The annual risk-free rate, with annual compounding, is 4%
(below we assume annual returns). We consider three well-diversified portfo-
lios, i = A,B,C, with the following features:

Portfolio βi1 βi2 βi3 E[r̃i]

A 1.5 −0.9 2.0 8.5%
B 0.5 1.2 0.6 12.8%
C −0.1 0.4 −0.3 4.9%

Find the coefficients characterizing the APT model.
Find the expected return of a portfolio with unit exposure to F1, neutral
to F2 and F3.

10.5 An APT model is based on two mutually independent systematic factors
F1 and F2. The annual risk-free rate, with annual compounding, is 4% (below
we assume annual returns). We consider three well-diversified portfolios, i =
A,B,C, with the following features:

Portfolio βi1 βi2 E[r̃i]

A 1.6 −0.8 9.5%
B 0.5 1.3 11.7%
C −0.1 0.4 4.1%

Find the coefficients characterizing the APT model based on portfolios A
and B.
If the expected return of portfolio C is as given in the table, are there
arbitrage opportunities? If so, devise an arbitrage strategy.
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Further reading
For a treatment of equilibrium models from the theoretical viewpoint of
financial economics, see [1]. See also [6] for links with CAPM and arbi-
trage theory, as well as equilibrium with differential information.
CAPM was introduced in [20], and APT was introduced in [18].
Some of the concepts that we have used in proving or justifying CAPM
and APT, as well as some examples, have been borrowed from [8], [11],
and [16].
The Black–Litterman portfolio management approach was introduced in
[2]; see also [10] and [19].
A general overview of Bayesian methods in finance can be found in [17].
An introductory overview on market efficiency and behavioral finance
can be found in [3], which has been the basis for part of our exposition.
Fundamental concepts in behavioral finance are also illustrated in, e.g.,
[21]. See [12] for a key reference about prospect theory.
Technical analysis is one of the most controversial topics in finance, and
a non-negligible amount of related literature has probably little to do with
a serious and objective investigation. Nevertheless, there are exceptions.
An empirical analysis can be found in [15], and [14] is an interesting
source of interviews with technical analysis practitioners.
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Chapter Eleven

Modeling Dynamic
Uncertainty

From Chapter 8 on, we have considered static portfolio management models,
where we make a decision at time t = 0 and observe the result at time t = T ,
the end of a predefined holding period. Representing uncertainty in this context
requires the characterization of a multivariate distribution of risk factors, which
is not quite trivial. However, there are even more complicated problems, calling
for a dynamic characterization of uncertainty.

A first example is asset–liability management (ALM) problems, where
we consider a sequence of time instants ti ∈ [0, T ], i = 1, . . . ,m, at
which we must meet a possibly uncertain liability Li. We have consid-
ered simple approaches to interest rate risk management for ALM prob-
lems in Section 6.3. In these limited approaches, we actually solve a static
decision problem. It may be the case that a better plan is obtained by a
multistage decision model, but even if we do not want to pay the price
of such a challenging optimization model,1 we may need to check the
performance of whatever plan on a set of random scenarios for both the
assets and the liabilities. Thus, we must characterize the uncertain evo-
lution of the underlying risk factors over time, in order to generate a rich
and reliable set of scenarios.
Another quite relevant example is provided by the need to hedge an op-
tion dynamically. In Section 2.3.4, we have considered a single-step bi-
nomial model for option pricing. Quite clearly, we need a more refined
uncertainty model for both pricing and hedging purposes.2 Furthermore,
we certainly cannot use a static model when dealing with American-style
options, which can be exercised at any time before expiration. Thus, we
need a dynamic model, describing the evolution of the relevant factors for
the option value, most notably the price of the underlying stock share in
the case of an equity option.

1See Section 15.6.3.2.
2We will emphasize the tight relationship between option pricing and hedging later, in Section
13.3.1.
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We are familiar with dynamic models of deterministic physical systems, where
a collection of state variables sj(t), j = 1, . . . , n, collected into a vector s(t) ∈
Rn, evolves over time.3 Depending on the representation of time, we may
choose between the following classes of models:

Continuous-time differential equations, where the derivative of the state vari-
ables with respect to time t ∈ [0, T ] ⊂ R is given as a function of state and
time:

ds

dt
= g

(
s(t), t

)
.

The vector function g(·, ·) is referred to as transition function, as it im-
plicitly describes the transition from one state to another one. Furthermore,
the transition function may change over time or not.

Discrete-time difference equations, where we describe the state transition in
a more explicit form,

sk+1 = gk(sk), k = 0, 1, 2, 3, . . .

Here, we discretize time in uniform steps of length δt and consider time
instants tk = k · δt. For the sake of notational simplicity, we typically write
sk as a shorthand for s(k · δt). Again, the transition function may depend
on time or not.

As we shall see, the choice between a continuous- and a discrete-time repre-
sentation may be dictated by computational convenience, when we have to dis-
cretize the continuous time in order to apply a numerical method. However,
perhaps surprisingly, it may be the case that a continuous-time model proves
more convenient, if it provides us with an analytical solution. There are fur-
ther variations on the theme of dynamic modeling, which are quite relevant for
finance.

Continuous vs. discrete states. Differential equations assume continuous state
variables. However, some state variables are intrinsically discrete, like the
credit rating of a bond. Stock prices, strictly speaking, should be consid-
ered as a discrete state variable, as we use a limited number of decimals
in actual markets. If the minimum tick is one cent of whatever monetary
unit, then the stock price will be expressed as a number with two decimals,
which is a discrete state, if we measure prices in cents. A similar consider-
ation applies to interest rates. For modeling convenience, we may represent
stock prices by real numbers. Sometimes, we go the other way around and
discretize a continuous state space for computational purposes.

Stochastic transitions. Needless to say, whatever dynamic model we use in
finance, it has to account for uncertainty. While, in probability theory, we
deal with random variables like X(ω), here, we need to deal with a col-
lection of random variables indexed by time, Xt(ω). Such a collection is

3We often denote dependence on time by a subscript, as in st, but when multiple subscripts
might obscure notation, we shall also use s(t).
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called a stochastic process. As we shall see, we have to deal with four
combinations of continuous- vs. discrete-time, as well as continuous- vs.
discrete-state stochastic processes. The introduction of time adds a further
layer of complication, as we need to take into due account the dependence
(or lack thereof) of random variables over time.

Controlled transitions. If we deal with state variables like stock prices, we
may assume that their evolution over time is driven by exogenous risk fac-
tors. However, a state variable like the funding level of a pension fund
is influenced by decisions. Hence, we have to introduce control variables
that partially affect state transitions. For instance, a discrete-time dynamic
model may be written as

Sk+1 = gk(Sk,xk, εk+1), k = 0, 1, 2, 3, . . . ,

where we collect decision variables in vector xk. We use capital letters for
state variables to insist on their random nature, whereas control variables
are denoted by lowercase letters. Please also note the use of subscripts for
the random factors εk+1. Especially in discrete time, it is important to fig-
ure out the sequence of events:4 (1) We first observe the current state Sk.
(2) Then we make a decision xk. (3) Random risk factors εk+1 are real-
ized after the decision, leading to a new state Sk+1 through the transition
function gk.

After this quick overview, the reader should not be surprised by the considerable
variety of dynamic models that are used in finance, including:

Stochastic differential equations
Time series models
Scenario trees
Recombining lattices
Discrete- and continuous-time Markov chains

In this chapter, we describe some of this models, in a more or less detailed
way. Most emphasis will be placed on stochastic differential equations, given
their key role in option pricing. On the contrary, we shall not treat time series
models as they deserve, and readers will be referred to some excellent books on
financial econometrics.

In Section 11.1, we introduce stochastic processes formally, along with a
few very simple examples. We also introduce important subclasses of stochas-
tic processes, namely, Markov processes and martingales, as well as filtra-
tions modeling the flow of information over time. In Section 11.2, we deal
with continuous-time, continuous-state processes and introduce the key build-
ing block of many financial models, the standard Wiener process. Continuous-
time financial models rely on stochastic differential equations, which are intro-

4This framework lends itself to optimization by stochastic dynamic programming, as we shall
see in Section 15.7. See also the consumption–saving example of Section 2.1.2.
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duced in Section 11.3. As it turns out, we should not really talk about differ-
ential equations, but rather about integral equations. In fact, in order to model
uncertainty in a sensible way, we have to deal with processes featuring nondif-
ferentiable or even discontinuous sample paths. Thus, we shall not deal with
traditional derivatives, but with differentials, i.e., increments over infinitesimal
time intervals, which are integrated over time. Hence, we shall need the intro-
duction of a suitable concept of stochastic integral. Furthermore, we shall also
find that the familiar rules of deterministic calculus may fail to work, within our
stochastic context, and must be replaced by a suitable extension, namely, Itô’s
lemma. All of this material forms the core of stochastic calculus and is dealt
with in Section 11.4. Then, armed with the necessary theoretical background,
in Section 11.5, we outline some of the most common models adopted in finan-
cial modeling. In Section 11.6, we briefly describe how to tackle sample path
and scenario generation based on dynamic uncertainty models, which is often
required by numerical solution methods.

As we shall see, this chapter mostly revolves around stochastic calculus.
A rigorous exposition would require considerable mathematical background,
including machinery based on measure theory, quadratic variations, change of
measure by the Girsanov theorem and Radon–Nikodym derivatives, and other
wild beasts. Given the introductory nature of this book, and for the sake of
brevity, we shall pursue a rather informal and heuristic approach. In order to
not disappoint mathematically inclined readers too much, and to provide other
readers with some intuition necessary to tackle the more advanced literature, in
Supplement S11.1, we introduce a slightly more formal and measure-theoretic
view, with emphasis on the link between measurability concepts and the evolu-
tion of information over time.

11.1 Stochastic processes

The simplest way to think of a stochastic process is as a collection of random
variables indexed by time.5 If time is a continuous variable, i.e., it is represented
by a real number t ∈ R+

.
= [0,+∞), we have a continuous-time stochastic

process, denoted by Xt or X(t). If time is a discrete variable, represented by
a non-negative integer number, k ∈ Z+

.
= {0, 1, 2, . . .}, we have a discrete-

time stochastic process, denoted by Xk. The random variable itself may take
real or an integer values, but we may also consider arbitrary discrete sets, as
is the case of credit ratings. In the following, we will be mostly dealing with
stochastic processes taking numerical values. Beside continuous- and discrete-
time processes, there is a third category, discrete-event stochastic processes.
Actually, these are continuous-time processes, with the peculiar feature that
the state of the system is piecewise constant, with occasional jumps. We shall

5It may be worthwhile to mention that, in other application domains, we might be interested in
collection of random variables indexed by space.
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consider one such case, the Poisson process, in Example 11.4. As a financially
motivated example, imagine a pool of loans and a process N(t) counting the
number of defaults occurred in the time interval [0, t].

We may also collect multiple random variables into a vector stochastic pro-
cess X(t), with components Xj(t), j = 1, . . . ,m. The usual terminology in
econometrics is as follows:

When we consider the realization of different random variables at the
same time instant, we are analyzing cross-sectional data.
When we consider the realization of a single variable at different time
instants, we are analyzing longitudinal data.
When we consider different random variables at different time instants,
we are analyzing panel data.

On a more formal level, we know that random variables should be regarded
as functions X(ω), mapping outcomes ω within a sample space Ω into numeri-
cal values, i.e., real or integer numbers. This more formal framework is needed
to see precisely how a probability measure on the underlying sample space is
translated to a probability measure for random variables. From a practical view-
point, we often disregard the underlying framework and just settle for useful
descriptions like a cumulative probability function (CDF), a probability den-
sity function (PDF, for continuous random variables), or a probability mass
function (PMF, for discrete random variables). By the same token, we should
consider a stochastic process in more formal terms, as a function of two argu-
ments, X(t, ω). In this context, ω is associated with a possible history of the
process. If we fix ω = ω∗ and consider X(t, ω∗) as a function of time, we have
a sample path, also called scenario, of the stochastic process. If we fix time
t = t∗, we observe a random variable X(t∗, ω). When unnecessary, we will
avoid stressing the role of ω, but in certain cases, it is important to make it more
explicit.

A concrete example of stochastic process that we are interested in is the
price S(t, ω) of a stock share. However, we may be interested in more than one
stock share, in which case we observe a set of stochastic processes Sj(t, ω),
j = 1, . . . , n, collected into a vector, S(t, ω). In this case, if we fix t = t∗, we
are considering a multivariate distribution S(t∗, ω), and we need to represent
the relationships among different stock shares. The usual approach is to spec-
ify their mutual correlations, but this may not be sufficient, especially when
we consider risk management problems and the occurrence of extreme market
scenarios.

Example 11.1 Random fields

The dynamics of stock share prices over time may be difficult to
model accurately, but interest rates are much more complex. In earlier
chapters, we have considered continuously compounded interest rates
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r(t, t+ τ) for an investment over the time interval (t, t+ τ). If we in-
troduce randomness, we have to cope with a mathematical object like
r(t, t+ τ, ω). This object is called a random field. If we fix τ = τ∗,
we obtain a stochastic process representing how an interest rate for a
given time-to-maturity changes over time. If we fix t = t∗, we obtain
a function of time-to-maturity τ , describing the term structure of rates
at time t∗, for different scenarios ω. Clearly, there must be some con-
nection between interest rates at different time instants, and rates for
different maturities. Modeling interest rates in financially sensible,
yet computationally tractable way is no easy task.

As we shall see, apart from considering the mutual dependence of different
components in a vector stochastic process, the following related issues play a
key role:

The flow of information. Consider a bounded time interval [0, τ ]. If we have
observed a sample path X(t, ω) for t ∈ [0, τ ], what can we say about the
future evolution of the process, for t > τ? The key point is that we usually
cannot say which sample path ω we are following, because there will be a
subset of sample paths which, up to time τ , cannot be distinguished from ω.
We shall introduce filtrations as a formal way of modeling the information
generation in a stochastic process.

The dependence over time. Sometimes, the process has no memory of the
past, and knowledge of the sample path observed so far does not tell us
anything about the future. At the other end of the spectrum, we may have
a strongly path-dependent process whose future evolution depends on the
whole sample path so far. In intermediate cases, only a limited amount of
memory plays a role.

11.1.1 INTRODUCTORY EXAMPLES

In this section, we illustrate the differences between discrete and continuous
features of stochastic processes in terms of time and state, by a set of simple
examples. In doing so, we will streamline notation and avoid pointing out the
dependence on the outcome (scenario) ω.

Example 11.2 A discrete-time random walk

Consider the discrete-time stochastic process

Xk = Xk−1 + εk, k = 1, 2, 3, . . . , (11.1)
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where the initial state is often set to X0 = 0, and εk ∼ N(0, 1) is an
element of a sequence of i.i.d. standard normals. Xk is the state of
the system at discrete time k, and it is a continuous random variable,
since we add normal variables at each time step. Hence, we have
a continuous-state, discrete-time stochastic process. The state is af-
fected by a sequence of shocks εk, which are mutually independent,
have zero expected value, and are also independent on the current
state. Hence, the shocks are unpredictable. Note that we insist on
adding a shock indexed by k to a state variable indexed by k − 1, to
emphasize the nature of the shocks, which are often referred to as in-
novations in econometric parlance. Their independence on the past
is related to the efficient market hypothesis. This kind of process is
called a random walk. As we shall see, there is a corresponding pro-
cess in continuous time, called standard Wiener process, which plays
a key role in financial modeling.

By unfolding Eq. (11.1) recursively, we find

Xk =

k∑
i=1

εi.

Given the mutual independence and the normality of the driving shocks,
we easily find the unconditional distribution of the state,Xk ∼ N(0, k).
Please note that the variance is k. Hence, the standard deviation is

√
k,

i.e., it scales with the square root of (discrete) time. It is also easy to
find conditional distributions. Conditional on the value Xh = x at
time h < k, we have

Xk = x+

k∑
i=h+1

εi,

and
Xk |{Xh = x} ∼ N(x, k − h).

This is an example of a Gaussian process, since the joint distribution
of the random variables Xk is normal.

In a random walk, it is important to observe that all we need to characterize
the probability distribution of future states is the knowledge of the current state
Xk = x. In fact, this is what state variables are all about, in any dynamic
system. As we shall see, in the stochastic process parlance, this is related to
a property characterizing Markov processes, to be formally defined later. The
same property characterizes the next example.
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FIGURE 11.1 A discrete-time Markov chain.

Example 11.3 A discrete-time Markov chain

A discrete-time Markov chain is a process with a state variable Xk,
k = 0, 1, 2, 3, . . ., taking values in a discrete set. The discrete state
space may consist of an infinite, yet countable set, like the set of in-
teger numbers, or a finite set, like the credit ratings of a bond. As
we shall see, we may also consider a continuous-state Markov chain.
The name chain is related to the nature of the state space. In fact, we
may represent the process by a graph, as shown in Fig. 11.1. Here,
the state space is the set {A,B,C,D}. Nodes correspond to states,
and directed arcs represent possible transitions, labeled by the corre-
sponding probabilities. For instance, if we are in state C now, at the
next step we will be in stateB, with probability 0.7, or in stateA, with
probability 0.3. Note that transition probabilities depend only on the
current state, not on the whole past history. Thus, we may describe
the chain in terms of the conditional transition probabilities,

Pij ≡ P{Xt+1 = j | Xt = i} ,

which, in the case of a finite state space of cardinality n, may be
collected into the single-step transition probability matrix P ∈ Rn×n.
For the chain in Fig. 11.1,

P =


0.2 0.8 0 0

0.4 0 0 0.6

0.3 0.7 0 0

0.5 0 0.5 0

 .
Note that the matrix need not be symmetric, and that the current state
is associated with a matrix row, whereas the next states are associated
with columns. On the diagonal, we have the probability of staying in
the current state. After a transition, we must land somewhere within
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FIGURE 11.2 Sample paths of a Poisson process.

the state space. Therefore, each and every row adds up to 1:

n∑
j=1

Pij = 1, i = 1, . . . , n.

In Example 11.3, we may imagine that we observe the credit rating asso-
ciated with a bond with a given frequency, say, one month. Hence, we only
observe state transitions at the beginning of each month. The sojourn time, i.e.,
the random time that the system spends at a given state, will be an integer num-
ber. However, in reality, state transitions might occur at arbitrary time instants.
Hence, we may consider a continuous-time Markov chain, too, where the time
that the process spends in a given state is modeled by a continuous random
variable. As we shall see later, Markov processes are, in a sense, “memoryless.”
Hence, in discrete-time the actual distribution is given by a geometric random
variable. The corresponding memoryless distribution in continuous time is an
exponential random variable, which is at the heart of the following example.

Example 11.4 The Poisson process

The Poisson process is a continuous-time stochastic process N(t),
counting the number of events that have occurred in the time interval
[0, t]. A sample path is illustrated in Fig. 11.2, and it is important to
understand the underlying dynamics:
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The process starts at the initial state N(0) = 0.
After a random timeX1, the first event occurs, and the state of the
system jumps to N(X1) = 1.
After a random time X2, the second event occurs, and N(X1 +
X2) = 2.

The striking feature of the Poisson process is that the sample path is
piecewise constant and there is a jump corresponding to each event.
This is a very simple example of a discrete-event stochastic process.

There are other examples of counting processes. The Poisson
process is obtained when we make a specific assumption about the
random times elapsing between events. Let Xk, k = 1, 2, 3, . . ., be
the random time elapsing between events k− 1 and k; by convention,
X1 is the epoch of the first event after the start time t = 0. We obtain a
Poisson process, if we assume that variables Xk are independent and
exponentially distributed with parameter λ, which is the event rate,
i.e., the average number of events occurring per unit time. Note that
the expected value of Xk is 1/λ, and that the number of events occur-
ring during a time interval of length τ is a discrete Poisson random
variable with parameter λτ .

The Poisson process is a possible model for customer arrivals at a bank but,
per se, it is not quite used in finance. However, it is a fundamental building
block of other processes, so it is worth exploring in more detail.

The process “jumps” whenever an event occurs, and the sample paths are
piecewise constant. The jump introduces a discontinuity in the process,
but it is important to understand what kind of discontinuity is involved
exactly. If a jump occurs at time t∗, and there is a transition from state m
to state m+ 1, we have a limit from the left

lim
t↑t∗

N(t) = N(t∗−) = m,

but the process is not continuous, as N(t∗) = m+ 1. On the contrary, the
process is continuous from the right, as the limit from the right is

lim
t↓t∗

N(t) = N(t∗+) = m+ 1 = N(t∗).

We might even stumble on esoteric jargon like a càdlàg function when
dealing with similar stochastic processes in finance. This is just a French
acronym for “continue à droite, limitée à gauche,” since the sample path
is continuous from the right, and is limited (or bounded, i.e., it does not
go to infinity) from the left.
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In principle, we may also define a stochastic process with jumps, which
is continuous from the left. From a financial viewpoint, the difference is
quite relevant, since a process which is continuous from the right has an
element of intrinsic unpredictability, which makes the corresponding risk
factor difficult to hedge.
If we assume an arbitrary distribution for the times elapsing between con-
secutive events in a counting process, we do not obtain a Poisson process,
which requires a sequence of i.i.d. exponential variables. As a conse-
quence of the lack of memory of the exponential distribution, the Poisson
process may represent the random occurrence of events that have no mu-
tual relationships at all. The Poisson process is, in fact, a Markov process,
to be defined later.

Let us explore the consequence of the requirement on inter-event times Xk

in more detail. If we consider a time interval [t1, t2], with t1 < t2, then the
number of events occurring in this interval, i.e., N(t2) − N(t1), has Poisson
distribution with parameter λ · (t2 − t1). Thus, the increment of the event count
for intervals of equal length is the same, and where the intervals are located
is irrelevant. Hence, we say that the Poisson process has stationary incre-
ments. Furthermore, if we consider another time interval [t3, t4], where t3 < t4,
which is disjoint from the previous one, i.e., t2 < t3, then the random variables
[N(t2) −N(t1)] and [N(t4) −N(t3)] are independent. Hence, we say that the
Poisson process has independent increments. As we shall see later, a wider
class of stochastic processes, called Lévy processes, is characterized by station-
ary and independent increments. This class includes quite different processes,
like the Poisson process and the Wiener process, which is a continuous process
extending the Gaussian random walk of Example 11.2 to continuous time.

We mention a couple of possible extensions of the simple Poisson process:

If we introduce a time-varying event rate λ(t), we obtain the so-called
inhomogeneous Poisson process.
If we associate a random variable Yk with each event, corresponding to
the size of the jump, and the variables Yk are an i.i.d. sequence, then we
obtain the compound Poisson process

M(t) =

N(t)∑
k=1

Yk.

Note that the sum includes only the events occurred up to time t.

Compound Poisson processes are relevant in finance, since we do observe jumps
in stock prices, but they have a random, possibly negative, size. This jump
component may be integrated with a continuous component, leading to jump–
diffusion processes. In practice, we may need to use different kinds of stochastic
processes jointly in a financial model. For instance, a bond price depends on
interest rates, which may be modeled by continuous-state processes, but also
on credit ratings, which are discrete-state. The reader has certainly noticed
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FIGURE 11.3 A few sample paths of the stochastic process of Eq. (11.2).

that, in this introductory set of examples, we did not consider continuous-state,
continuous-time processes. We shall do so later, as this requires the more com-
plicated machinery of stochastic differential equations.

11.1.2 MARGINALS DO NOT TELL THE WHOLE STORY

All we need to know about a single random variable X is encoded in its CDF,
or alternatively in its PDF or PMF, for continuous and discrete variables, re-
spectively. If we think of a stochastic process X(t) or Xk as a collection of
random variables, it is tempting to believe that all we need is a characterization
of each individual variable for each time instant. To see how wrong this idea is,
let us illustrate a simple counterexample. Consider the discrete-time stochastic
process

Xk = k · ε, k = 0, 1, 2, 3, . . . , (11.2)

where ε ∼ N(0, 1). We immediately see that each Xk is normal with expected
value 0 and variance k2. This marginal distribution is the same as for the process

Xk = k · εk, k = 0, 1, 2, 3, . . . , (11.3)

where εk is again standard normal, but we have one such variable for each time
instant. More precisely, εk is a sequence of i.i.d. standard normals. However,
the two processes have little in common, despite the fact that their marginal
PDFs are the same for every time instant. To see this, we may compare the
sample paths of the two processes. Figure 11.3 shows a few sample paths of
the process described by Eq. (11.2). In fact, this is a rather degenerate process,
since uncertainty is linked to the realization of a single random variable. If we
want to simulate a sample path of this process, we just need one sample from
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FIGURE 11.4 A single sample path of the stochastic process of Eq. (11.3).

the standard normal distribution, which yields the slope of a line. Indeed, the
sample path is just a line, going through the origin, featuring that slope. If we
know a single point on any sample path, we have full information about the
whole sample path, and prediction is quite easy. Figure 11.4 shows one sample
path of the process described by Eq. (11.3), which looks completely different
and is quite unpredictable.

The random variables Xk1 and Xk2 , for any k1 6= k2, are perfectly corre-
lated in the first process, but independent in the second one. These two pro-
cesses are, in a sense, at the opposite side of the spectrum. In the first pro-
cess, if we know the value of the process at just one time instant, we know the
whole sample path. In the second one, no information at all is provided by such
knowledge. The random walk of Example 11.2 has a slightly different marginal
distribution, N(0, t) rather than N(0, t2), but what is really relevant is that it is
somewhere between these two extremes, in terms of information and predic-
tion. The random walk process is not as trivially predictable as the process of
Fig. 11.3, but the current state has an impact on the future states, unlike the case
of Fig. 11.4.

The key is the dependence between each variable in the collection X(t)
or Xk. On second thought, this is pretty obvious. Also in the static case of a
multivariate distribution X, we may have different joint distributions featuring
the same marginals.6 In fact, a full characterization of a stochastic process, in
general, would require the joint distribution of all of the variables for different
times t. However, specifying the dependence by a multivariate density function
is out of the question, especially in continuous time. We have to find some con-

6Technically speaking, the mutual dependence may be characterized by a copula.
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venient way of describing how a stochastic process evolves, possibly limiting
our interest to tractable cases.

One very interesting family of processes, to be described below, consists of
the class of Markov processes, where the only information we need to charac-
terize future evolution is the knowledge of its current state. This is the case of
the discrete-time random walk: The path that leads to the current state does not
matter for the future evolution. We may get to a state by quite different paths,
but once we get to that state, any memory of the observed path so far is lost.
The random walk also enjoys another important property:

E
[
X(t) |X(τ) = x

]
= x, ∀t ≥ τ.

In plain English, the expected value of the process, given its current value, is
just its current value. There is no tendency to drift up or down. As will shall see,
processes featuring this property are called martingales. In order to better un-
derstand these properties, we need a formal way to characterize the information
generated by a stochastic process.

11.1.3 MODELING INFORMATION: FILTRATION GENERATED
BY A STOCHASTIC PROCESS

In this introductory book, we avoid using quite formal approaches to probability,
based on measure theory. However, as we have pointed out, a stochastic process
should be regarded as a function X(t, ω) depending on two arguments, time
t and an element ω of a sample space Ω. In the case of a random variable
X(ω), we define a probability measure on Ω, which in turn allows to associate
probabilities with the numerical values of the random variable. This requires
the definition of an algebra of sets, based on subsets of the sample space, which
may be combined by taking the usual set operations, like difference, union, and
intersection. More formally, we should deal with a probability space,{

Ω,F , P
}
,

where:

Ω is the underlying sample space.
F is a field field of events, i.e., a family of subsets of Ω, which is closed
under the usual set-theoretic operations. This means that if we consider
two events E1 and E2 in F , their union, intersection, and difference are
also in F . A field is also called an algebra.
P (·) is a probability measure, a function associating a probability with
any event in F . The nature of F ensures that, if we are able to associate
a probability with any pair of events, we are also able to assign a sensible
probability to their intersection (i.e., the joint event), their union, as well
as the complement of a single event (related to the probability that an
event does not happen).
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Since this machinery is not really needed in this elementary book, we just out-
line these concepts in Supplement S11.1, which may be safely skipped by unin-
terested readers. The whole thing gets more complicated when time comes into
play, as the underlying algebra of events evolves over time, reflecting the infor-
mation generated by the stochastic process. The following example provides us
with the basic intuition.

Example 11.5 Filtration generated by coin flipping

Let us consider three consecutive flips of a fair and memoryless coin.
There are two outcomes H and T for each flip, and eight possible
scenarios:

ω1 = (H,H,H)

ω2 = (H,H,T)

ω3 = (H,T,H)

ω4 = (H,T,T)

ω5 = (T,H,H)

ω6 = (T,H,T)

ω7 = (T,T,H)

ω8 = (T,T,T)

The sample space is Ω = {ω1, ω2, . . . , ω8}. After the three flips, we
know exactly which scenario ω occurred. Hence, we observe events
(subsets of Ω) of the form {ωi}, consisting of a single outcome. If we
associate numerical values Xk(ω), k = 1, 2, 3, with the outcome, at
the end of the time horizon we have observed a specific sample path.
To be concrete, we may associate this process with a binomial tree,
where an asset price goes up when we draw heads, and it goes down
when we draw tails. On the contrary, before the first flip, we do not
know anything. We can only deal with sets ∅, the empty set, and Ω.
Considering the empty set may sound weird, but this is really needed
to make sure that the field of events satisfies the technical conditions
of closure with respect to set theoretic operations. The complement of
Ω is, in fact, the empty set ∅. The probability measure of ∅ is zero, and
there are technical reasons why, at any time, we should also consider
events with probability zero. We will gloss over such technicalities.

Now, imagine that the first flip of the coin results in heads. We
do not know which scenario ω will occur eventually, but we may rule
out outcomes ω5, ω6, ω7, and ω8. By a similar token, we may rule out
the first four outcomes if the first flip is T. Hence, after the first flip
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we deal with an algebra including events

ΩH =
{
ω1, ω2, ω3, ω4

}
and ΩT =

{
ω5, ω6, ω7, ω8

}
,

completed with Ω and ∅, which may be obtained from ΩH and ΩT by
unions and intersections. The two subsets ΩH and ΩT form a partition
of the sample space. We note that these subsets are, in a sense, smaller
(finer) than the whole sample space that we deal with before the first
flip. By a similar token, after two flips, we know that one among the
four events

ΩHH =
{
ω1, ω2

}
, ΩHT =

{
ω3, ω4

}
,

ΩTH =
{
ω5, ω6

}
, and ΩTT =

{
ω7, ω8

}
,

will occur. Again, the subsets ΩHH, ΩHT, ΩTH, and ΩTT are a partition
of the sample space. These four subsets are smaller than the two sub-
sets ΩH and ΩT that we deal with after the first flip. So, they generate
a finer algebra. After the whole sequence of flips, we deal with sin-
gletons, the smallest possible events by which the sample space may
be partitioned.

Example 11.5 shows that, when we accumulate information, we deal with
successive partitions of the sample space, which involve smaller and smaller
subsets, generating finer and finer algebras. Formally, this is represented by
time-dependent algebras of events Ft, such that the algebra gets finer and finer
as time progresses. Technically, if t1 < t2,

Ft1 ⊆ Ft2 ,

i.e., any subset in Ft1 is in Ft2 , but there may subsets generated by the richer
structure in Ft2 that cannot be generated in Ft1 . This increasing sequence of
algebras is called a filtration.

From our viewpoint, we may just think of a filtration as the information
generated by the stochastic process over time. The filtration Ft is the informa-
tion generated by a given stochastic process on the time interval [0, t]. Clearly,
information is added as time progresses, and never subtracted. Filtrations are
important in defining conditional expectations. For instance, when we write

E[X(t) |Fτ ],

for t ≥ τ , we mean the expected value of X(t) at a future time t, given (condi-
tional on) the whole history of the process up to time τ . Needless to say,

E[X(t) |Ft] = X(t).
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By the same token, we may consider a conditional probability like

P{Xt ∈ A |Fτ} ,

i.e., the probability that Xt will be within a subset A of the state space, condi-
tional on the whole history up to time τ ≤ t.

11.1.4 MARKOV PROCESSES

We have repeatedly hinted at Markov processes, and it is finally time to pro-
vide a formal definition. The essential property of Markov processes is related
to their limited memory: The only information that is needed to characterize
the future system evolution is the current state. Formally, we may express this
in terms of a conditional transition probability. A discrete-state, discrete-time
Markov process is characterized by the following condition (Markov prop-
erty):

P{Xt+1 = it+1 | Xt = it, Xt−1 = it−1, Xt−2 = it−2, . . .}
= P{Xt+1 = it+1 | Xt = it} . (11.4)

This means that the conditional probability of being at discrete state it+1 at time
t + 1, given the past history of the process, only depends on the state it visited
at time t. Thus, any path dependency is ruled out, as the path that the process
followed to reach state it is irrelevant. For instance, in Example 11.3, we only
need to consider single-step transition probabilities. In the case of continuous
states, the property stated in Eq. (11.4) does not make sense, as the probability
of any single state is identically zero. However, we may consider transitions
probabilities to subsets of the state space and state the Markov property as fol-
lows:

P{Xt+1 ∈ A | Xt = it, Xt−1 = it−1, Xt−2 = it−2, . . .}
= P{Xt+1 ∈ A | Xt = it} , (11.5)

for every possible subset A. From a practical viewpoint, we may look for a
transition density, which gives a transition probability when integrated over
subsets of the state space.

From a conceptual viewpoint, a much more elegant solution relies on the
filtration concept that we have introduced in Section 11.1.3. This allows to
express the Markov property in full generality:

P{Xt ∈ A | Fτ} = P{Xt ∈ A | Xτ} , (11.6)

for every subset A of the state space and for any τ ≤ t. This condition can also
be applied to continuous-time processes. Equation (11.6) states that the only
relevant piece of information in the whole filtration Fτ , i.e., the whole history
of the process on the time interval [0, τ ], is the value of the process Xτ at the
last time instant τ .
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Example 11.6 The random walk, again

The discrete-time random walk

Xk = Xk−1 + εk, k = 1, 2, 3, . . . ,

is an example of a Markov process that can be described by an explicit
transition equation, which is an example of the more general case

Xt+1 = gt(Xt, εt+1), (11.7)

where a vector of state variables and a vector of shocks are consid-
ered. There is a strong connection between dynamic equations based
on state variables and Markov processes. To be more precise, we
should also require that the driving process εt consists of a sequence
of i.i.d. variables.

Example 11.7 Redefining the state space

Lookback options are a family of exotic, path-dependent options where
the payoff depends on the maximum or the minimum price of the un-
derlying asset, observed along the sample path up to maturity. For
instance, the option payoff could be

Smax − ST ,

where ST is the asset price at maturity and Smax is the maximum
observed price on the time interval [0, T ]. Let us assume a binomial,
discrete-time process where

Sk+1 =

{
uSk, with probability pu,
dSk, with probability pd.

The price dynamics is clearly Markovian, but the maximum price so
far,

Mk
.
= max
j=0,1,2,...,k

Sj ,

seems to introduce an unavoidable path dependence, destroying the
Markov property. Actually, we may notice that Mk can be defined
recursively as

Mk = max
{
Sk,Mk−1

}
≡ Sk ∨Mk−1,

where we introduce the common shorthand a ∨ b .
= max{a, b}. This

suggests the possibility of augmenting the state variable, which is now
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FIGURE 11.5 A simple regime switching model, with states corresponding to low and
high volatility.

a vector with two components, whose state transition equation is

[
Sk+1

Mk+1

]
=



[
uSk

Mk ∨ uSk

]
, with probability pu,[

dSk

Mk ∨ dSk

]
, with probability pd.

The trick of augmenting the state space is a general strategy that
can be attempted, in order to transform a non-Markov process into
a Markov one. In practice, needless to say, it can only be pursued
when it leads to a moderate increase in the size of the state space.

Example 11.8 A regime-switching model

Financial markets are characterized by volatility, which is linked to
the standard deviation of returns. One interesting feature of volatility
is that we observe periods of relative calm, in which volatility is rea-
sonable, followed by periods of nervousness, where volatility is quite
large. Imagine that we want to build a model in which markets can be
in one of two states, low and high; the time bucket that we consider is
a single trading day. High volatility tends to persist; hence, we cannot
just assign a probability that, on one day, markets will be in one of the
two states. We may build a regime-switching model, accounting for
the fact that each state tends to persist: After a day of high volatility,
we are more likely to observe another day of high volatility; the same
holds for a day with low volatility. A naive regime-switching model
is illustrated in Fig. 11.5. Here we assume that if the last day was
in the low state, the next day will feature the same level of volatil-
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ity with probability 0.8. However, there is a probability 0.2 that we
will observe a day with high volatility. If we get to the high state
one day, the next day will feature high volatility again with probabil-
ity 0.7, whereas we have a 0.3 probability of moving back to the low
state. Clearly, this is an overly naive model, and we are not consider-
ing estimation issues arising when a state is hidden, i.e., not directly
observable. Formally, we have the following transition probabilities:

P (low | low) = 0.8, P (high | low) = 0.2,

P (high | high) = 0.7, P (low | high) = 0.3.

A natural question is: If we are currently in a state, what is the
expected number of time buckets that we will spend in that state? In
other words, what is the expected sojourn time? The answer can be
found by using the geometric distribution. We recall that the geomet-
ric distribution is the discrete counterpart of the exponential distri-
bution, in terms of a memoryless property. The expected value of a
geometric random variable with “failure” probability p is 1/p, where
we count the number of trials to obtain the first success, which in this
case corresponds to a transition out of the current state. Hence, the
expected sojourn time in the high state is

E[Thigh] =
1

0.7
= 1.43.

In continuous-time Markov chains, the sojourn time in each state is
exponentially distributed.

11.1.5 MARTINGALES

The discrete-time random walk of Eq. (11.1) is clearly a Markov process, but it
is characterized by another relevant feature: The expected value of the process
at any time t > τ , conditional on Xτ = x, is just x:

E[Xt |Xτ = x] = x. (11.8)

In plain English, the value of the process is not expected to increase or decrease.
A process enjoying this characteristic is called a martingale. The defining prop-
erty of martingales can be formalized as follows7:

E{Xt | Fτ} = Xτ , t ≥ τ. (11.9)

7In rigorous expositions of martingale processes, an integrability condition is also required. As
usual, we disregard technical issues.
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This property should not be confused with either Eq. (11.8), which is weaker,
or with the Markov property stated by Eq. (11.6).

On the one hand, Eq. (11.9) is about expectations, whereas Eq. (11.6)
is about transition probabilities. It is true that probabilities may be ex-
pressed as expected values of indicator functions, but Markov processes
may take non-numerical values, whereas martingales make only sense for
processes taking numerical values.
On the other hand, the martingale property (11.9) involves the whole his-
tory up to time τ , encoded in the filtration Fτ , and not only the state Xτ ,
as is the case of Eq. (11.8). The random walk is a Markov process, so the
relevant information boils down to a single state, but a martingale need
not be a Markov process, as it is possible to define martingales that are
not Markov processes. Going the other way around, the Poisson process
is a Markov process, but it is not a martingale.

From a historical viewpoint, martingales have their root in gambling strate-
gies. In fact, a martingale may be interpreted as a fair game, in which wealth
is not expected to increase or decrease. To see why martingales are relevant in
finance, let us consider the value at time τ of a vanilla European-style derivative
maturing at T . The payoff at maturity is a random variable fT , depending on
the value of the underlying asset at T . As we have already pointed out, intuition
might suggest that the fair value at time τ should be given by the conditional
expectation of the discounted expected payoff,

fτ
?
= e−r·(T−τ) · E[fT |Fτ ],

which may be rewritten as

fτ
erτ

?
= E

[
fT
erT

∣∣∣∣Fτ] .
Note the use of the question mark to stress that fact that we are just guessing.
This amounts to saying that the stochastic process

Xt
.
=

ft
ert

,

defined as the ratio between the value of the derivative and a bank account
process at time t, is a martingale. The bank account process gives the amount
available at time t, if we start from an initial deposit of $1 and earn interest at
the continuously compounded risk-free rate r. We already know, from Section
2.3.4, that this is not true, and financial intuition helps to understand why. Since
the derivative is a risky asset, it stands to good reason that it should offer a risk
premium to investors, i.e., its expected return should be larger than the risk-free
rate. Formally, this implies that the process Xt should be expected to increase
over the time interval [τ, T ],

fτ
erτ

< E

[
fT
erT

∣∣∣∣Fτ] .
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The process, however, is a martingale under a risk-neutral measure, which
would apply in a risk-neutral world, where no risk premium is demanded by
investors. We have shown that, for a simple single-step binomial model, the
process is a martingale if we switch to risk-neutral probabilities:

fτ
erτ

= EQn

[
fT
erT

∣∣∣∣Fτ] .
An important point to be realized is that a process may be a martingale or not,
depending on the selected probability measure. By a suitable change of mea-
sure, a process may be transformed into a martingale. As we shall see in Chap-
ters 13 and 14, finding an equivalent martingale measure, under which the ratio
of two stochastic processes is a martingale, provides a powerful machinery to
price options.

11.2 Stochastic processes in continuous time

In this section, we start investigating continuous-time stochastic models, which
are essential in pricing financial derivatives. To this aim, we shall need the more
sophisticated machinery of stochastic calculus, which provides us with essen-
tial tools like stochastic integrals and stochastic differential equations. Before
tackling these concepts, we need to get acquainted with an essential building
block, the standard Wiener process, which is essentially the continuous-time
counterpart of the discrete-time random walk of Example 11.2. As we shall
see, the standard Wiener process is a Gaussian process, featuring continuous
sample paths. Gaussian means that it involves normal distributions. Continuous
sample paths means that we are ruling out jumps in asset prices or interest rates.
Thus, using the standard Wiener process as a building block may fail to capture
some essential features of financial markets, like excess kurtosis8 and heavy-
tailed distributions, which arise from both non-normality and jumps. The net
result is that we may underestimate risk, by assuming a safer world than the real
one, where some risks cannot be hedged away. Given the introductory nature
of this book, we will stay within the safe domain of Wiener processes, but we
also describe a more general building block, the class of Lévy processes, which
subsumes the standard Wiener process.

11.2.1 A FUNDAMENTAL BUILDING BLOCK: STANDARD
WIENER PROCESS

The standard Wiener process W (t) is a continuous-time stochastic process
that may be characterized by the following properties:

1. W (0) = 0 (this is actually a convention).

8We have excess kurtosis when this is larger than 3, the kurtosis of a normal distribution.
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FIGURE 11.6 A sample path of the standard Wiener process.

2. Given any time interval [s, t], the increment W (t) −W (s) is distributed
as N(0, t − s), a normal random variable with expected value zero and
standard deviation

√
t− s.

3. Increments are stationary, in the sense that they do not depend on where
the time interval is located, but only on its width.

4. Increments are independent: If we take time instants t1 < t2 ≤ t3 < t4,
defining two nonoverlapping time intervals, then [W (t2) − W (t1)] and
[W (t4)−W (t3)] are independent random variables.

The second condition makes sure that standard deviation scales with the square
root of time, which is just what happens with the discrete-time random walk. In
fact, the standard Wiener process may be thought of as the limit of a discrete-
time random walk, when the time step δt gets infinitesimal.

We may write increments of the Wiener process as follows:

δW (t)
.
= W (t+ δt)−W (t)

d
= ε
√
δt,

where ε is standard normal. We use the notation d
= to point out that two random

variables have the same distribution, even though they need not be the same
mathematical object. We are just saying that δW (t) ∼ N(0, δt), and that we
may sample increments of the standard Wiener process by sampling and then
scaling a standard normal variable. This is used in Monte Carlo simulation
to generate sample paths of the standard Wiener process, which look like the
one depicted in Fig. 11.6. In this figure, we observe that sample paths of the
Wiener process look continuous, but not differentiable. This may be stated
precisely, but introducing continuity and differentiability rigorously requires a
precise definition of stochastic convergence. To get an intuitive feeling for this
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fact, let us consider the increment ratio

δW (t)

δt
=
W (t+ δt)−W (t)

δt
.

Given the defining properties of the Wiener process, it is easy to see that

Var

[
δW (t)

δt

]
=

Var [W (t+ δt)−W (t)]

(δt)2
=

1

δt
.

If we take the limit for δt→ 0, this variance goes to infinity. Strictly speaking,
this is no proof of nondifferentiability of W (t), but it does suggest that there
is some trouble in using an object like dW (t)/dt. In fact, we will never take
derivatives of stochastic processes, but we shall work with possibly infinitesimal
increments, formally treated as differentials to be integrated.

Note that most of the properties defining the standard Wiener process are
shared by the Poisson process, which also features stationary and independent
increments. The difference is that the standard Wiener process is continuous
(in some well-defined sense), whereas the Poisson process is not. Both belong
to a more general class of stochastic processes, the Lévy processes, featuring
stationary and independent increments.

11.2.2 A GENERALIZATION: LÉVY PROCESSES

Lévy processes are defined by the following properties:

X0 = 0 (technically, this is just required with probability 1).
If 0 ≤ t1 < t2 < t3 < t4, then the increments (Xt2−Xt1) and (Xt4−Xt3)
are independent random variables (independent increments).
The increment (Xt − Xτ ), for τ < t, has the same distribution as Xt−τ
(stationary increments).
For any real number ε > 0 and any time instant t ≥ 0, we have the
following stochastic continuity property:

lim
h→0

P
{
|Xt+h −Xt | > ε

}
= 0.

The first three properties should ring some bells, since we have already met
them when we defined the Poisson and the standard Wiener processes. The
stochastic continuity property may be puzzling a bit, as it seems to exclude the
jumps featured by Poisson processes. Actually, this is not true, as the limit is in
probability terms. If the number of jumps is, in some sense, limited, stochastic
continuity is preserved. In fact, the number of jumps of a Poisson process in a
finite time interval has Poisson distribution. Since this is a discrete distribution
with unbounded support, there is no upper bound to the number of jumps, but
only a countable number of jumps is possible.

The standard Wiener and the Poisson processes are specific cases of a Lévy
process. As we shall see, they can be generalized in different ways, and jump–
diffusion processes merge their characteristics. The definition of a Lévy pro-
cess leaves much room to different choices of the distribution of increments. If
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we choose a heavy-tailed distribution, we may circumvent some limitations of
Gaussian processes based on the Wiener process. One such case is the Lévy
flight, which should be contrasted against a random walk. However, not ev-
ery distribution will do. It can be shown that Lévy processes involve infinitely
divisible distributions. This essentially states that the random variable may be
decomposed into a sum of an arbitrary number of i.i.d. random variables. The
normal and Poisson distribution are infinitely divisible, but other distributions
are not.

11.3 Stochastic differential equations

The standard Wiener process is a useful building block, but it cannot be di-
rectly used to model stock prices or interest rates, since (among other issues) it
may take negative values. To that aim, we must introduce a powerful modeling
framework to describe continuous-time, continuous-state processes. Informally,
we shall talk about stochastic differential equations. As we shall see, the con-
cept that we will be actually using is a form of stochastic integral.

To get started, let us consider a deterministic, ordinary differential equa-
tions that we are all familiar with from physics,

m
d2x

dt2
(t) = F (t), (11.10)

linking force, mass, and acceleration. Ordinary differential equations involve
derivatives of some order, and Eq. (11.10) is a second-order equation. In fi-
nance, we essentially use first-order equations but, as we have already hinted
at, a Wiener process features continuous, but nondifferentiable sample paths.
Therefore, we shall never meet a notation like dW (t)/dt, in terms of deriva-
tives. We only use the differential dW (t) of the Wiener process. Informally,
we may think of dW (t) as a random variable with distribution N(0, dt). Ac-
tually, we should think of this differential as an increment over a small time
period δt, where the increment has distribution N(0, δt) and we take the limit
for δt → 0. Cutting a few corners, the fundamental theorem of calculus states
that ∫ t

s

dF (τ) = F (t)− F (s),

i.e., when we have an exact differential, possibly found by taking the antideriva-
tive F (·) of an integrand function f(·) = F ′(·), the integral of the increments
over a time interval [s, t] is the difference between the values of F (·) at the ex-
treme points t and s. By direct analogy, we may argue that the integration of
the increments of the standard Wiener process yields∫ t

s

dW (τ) = W (t)−W (s).
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By integrating a deterministic function of time, we find a number, whereas by
integrating a stochastic process, we find a random variable. This stochastic
integral looks harmless enough, but assigning a proper meaning to it, as we
shall see, is not quite trivial, and we need specific rules to work with it.

11.3.1 A DETERMINISTIC DIFFERENTIAL EQUATION: THE
BANK ACCOUNT PROCESS

In order to get acquainted with the (rather informal) approach that we will use
to cope with differential equations, it is best to consider an extremely simple
example.9 We do not take advantage of the general framework for linear ordi-
nary differential equations, but we work with differentials directly. Consider the
function B(t), describing how the amount deposited on a bank account grows
over time, when a continuously compounded and constant interest rate r is ap-
plied. The increase in wealth on a time interval dt is given by

dB(t) = rB(t) · dt, (11.11)

which may be interpreted as the limit of the increment of wealth over a small
time interval δt,

δB(t)
.
= B(t+ δt)−B(t) = rB(t) · δt.

We may rewrite Eq. (11.11) as

dB(t)

B(t)
= r · dt. (11.12)

If we integrate these differentials over the time interval [0, T ], we obtain∫ T

0

dB(t)

B(t)
= r

∫ T

0

dt = r · (T − 0),

where integration of the right-hand side is trivial. The left-hand side can be
dealt with by recalling the derivative of the logarithm:

d logB(t)

dB(t)
=

1

B(t)

⇒ d logB(t) =
dB(t)

B(t)

⇒
∫ T

0

dB(t)

B(t)
=

∫ T

0

d logB(t) = logB(T )− logB(0).

9We shall see slightly more challenging examples of deterministic ordinary differential equa-
tions in Section 14.2.1.
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Finally, we find a well-known equation,

log
B(T )

B(0)
= rT ⇒ B(T ) = B(0)erT . (11.13)

If the risk-free rate is not constant, but given by a deterministic function of time
r(t), we may follow the same drill, and Eq. (11.13) is generalized to

B(T ) = B(0) · e
∫ T
0
r(t) dt. (11.14)

In practice, the rate r(t) should be interpreted as a short rate, i.e., an interest rate
that applies to a very small time interval, and is subject to random variations and
reinvestment risk.10 In this case, r(t) is a stochastic process, which should be
written as r(t, ω), for each outcome ω in a sample space Ω. The integral in Eq.
(11.14) should be interpreted as a standard Riemann integral for each sample
path r(·, ω), which results in a random variable B(T, ω).

11.3.2 THE GENERALIZED WIENER PROCESS

Now let us turn to the task of building a stochastic differential equation, using
the standard Wiener process W (t) as a building block. A good starting point is
the simplest differential equation we may think of,

dX(t) = a dt,

where a is a given constant, with initial condition X(0) = x0. By integrating
the differential, as we did in Section 11.3.1, we find that the solution is a straight
line,

X(t) = x0 + at.

We may introduce noise by adding the differential of a Wiener process, which
yields the stochastic differential equation

dX(t) = a dt+ b dW (t). (11.15)

This equation defines a generalized Wiener process, and intuition suggests
that it may be solved by straightforward integration over the time interval [0, t],

X(t)−X(0) =

∫ t

0

dX(τ) =

∫ t

0

a dτ +

∫ t

0

b dW (τ) = at+ b [W (t)−W (0)] ,

(11.16)
which may be rewritten as

X(t) = x0 + at+ bW (t).

10We know the interest rate applying to a time period at the beginning of the period, but we do
not know the interest rate that will apply to future time periods. See Section 3.5.3.
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Hence, for the generalized Wiener process, we find the following distribution
of the random variable X(t):

X(t) ∼ N
(
x0 + at, b2t

)
.

Thus, sample paths are lines with slope a, to which a Gaussian noise is super-
imposed, whose impact depends on how large b is (in absolute value).

Example 11.9 Simulating the generalized Wiener process

We may use Eq. (11.16) to generate sample paths of the generalized
Wiener process by Monte Carlo sampling. We rewrite the equation
for a small time step δt,

X(t+ δt)−X(t) = a · δt+ b [W (t+ δt)−W (t)] ,

and express the increment of the Wiener process as

δW (t)
.
= W (t+ δt)−W (t)

d
= εt+δt

√
δt,

where εt ∼ N(0, 1) is a sequence of i.i.d. variables. As before, we
multiply the standard normal ε by the square root of the time step, to
obtain the correct distribution of the increment. This boils down to
the updating rule

X(t+ δt) = X(t) + a · δt+ bεt+δt
√
δt,

which can be used to sample X(t+ δt), conditional on X(t). For in-
stance, if we set δt = 1, X(0) = 20, a = 1, and b = 3, the simulation
of 200 time steps yields the sample path of Fig. 11.7. The dashed line
corresponds to the mean value function µ(t) = 20 + t, which gives
the unconditional expected value of the process as a function of time.
We will further discuss sample path generation in Section 11.6.

From a mathematical viewpoint, we see that solving a stochastic differen-
tial equation amounts to finding the distribution of the state X(t) in the future,
conditional the current state. We will steer away from theoretical issues con-
cerning existence and uniqueness of a solution. From a financial viewpoint, the
generalized Wiener process is a simple stochastic process, but can we use it
for financial modeling? A first observation is that it may take negative values,
which is not the case for stock prices, for instance. Furthermore, this process is
based on additive increments which are independent on the current state. How-
ever, a stock price increment of $0.10 is not the same for a stock with price $1.00
or $100.00. Hence, we should consider multiplicative shocks or, equivalently,
express increments in terms of returns.
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FIGURE 11.7 Sample path of a generalized Wiener process.

11.3.3 GEOMETRIC BROWNIAN MOTION AND ITÔ PROCESSES

If we want to write a stochastic differential equation modeling the random return
of an asset, we might consider the following modification of the generalized
Wiener process:

dX(t)

X(t)
= µdt+ σ dW (t).

This equation, in order to avoid trouble with division by zero, is usually written
as

dX(t) = µX(t) dt+ σX(t) dW (t). (11.17)

A process satisfying Eq. (11.17) is called geometric Brownian motion, or
GBM for short. The constant µ is called drift coefficient, and it is related
to expected return, whereas the constant σ, the volatility coefficient, is related
to standard deviation of return. To see this, let us approximate the equation for
a small time step δt:

δX(t)

X(t)
≈ µ δt+ σ δW (t).

Since the increment δW (t) of the Wiener process has normal distribution N(0, δt),
this approximation might suggest that the stock return has a normal distribution
N(µ δt, σ2 δt). Note once again that the standard deviation, σ

√
δt, scales with

the square root of time. This does not seem satisfactory, as a normal return may
lead to negative prices. However, the above approximation is not quite correct
and suffers from a discretization error. By exact integration of the correspond-
ing stochastic differential equation, we will show that the GBM process cannot
take negative values and that the true distribution of X(t) is lognormal.

More generally, we may consider an equation like

dX(t) = a
(
X(t), t

)
dt+ b

(
X(t), t

)
dW (t), (11.18)
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for given functions a(·, ·) and b(·, ·). This differential equation defines an Itô
process. By integration of differentials, we could argue that the solution should
be something like

X(t) = X(0) +

∫ t

0

a
(
X(s), s

)
ds+

∫ t

0

b
(
X(τ, τ)

)
dW (τ). (11.19)

Here, the first integral looks like a familiar Riemann integral of a function of
time. To be precise, this applies to each sample path, which is a function of
time for each outcome ω. But what about the second one? We need to assign a
precise meaning to it, and this will lead us to the definition of a stochastic inte-
gral, which we illustrate later. Here we just notice that, unlike the generalized
Wiener process, we do not have a numerical constant b, but a function b(·, ·) that
cannot be moved outside the integral, and we do not have a differential that can
be easily integrated.

Leaving a careful theoretical analysis aside, from a practical viewpoint,
how can we compute a stochastic integral? Analogy with the example in Section
11.3.1 would suggest considering

dX(t)

X(t)

as the increment of the log-price process logX(t). If this were true, we could
rewrite the equation defining GBM as

d logX(t)
?
= µdt+ σ dW (t),

where we use again the notation ?
= to underline that this is just a possibly wrong

conjecture, and not a proven fact. This is a generalized Wiener process in terms
of the logarithm of X(t), and straightforward integration would lead us to

logX(t)− logX(0) = log
X(t)

X(0)

?
= µt+ σ

(
W (t)−W (0)

)
,

or
X(t)

?
= X(0) · eµt+σW (t).

Given the properties of the standard Wiener process, we could rewrite the solu-
tion as

X(t)
?
= X(0) · eµt+σ

√
tε,

where ε is standard normal. Hence, X(t) would be the exponential of a normal
random variable, i.e., a lognormal random variable, which cannot take negative
values. The solution looks like a simple and quite sensible generalization of
Eq. (11.13), so that sample paths look like an exponential growth, on which
Gaussian noise is superimposed.

Unfortunately, all of this relies on the application of calculus rules, specifi-
cally, the chain rule to take derivatives or differentials of composite functions. If
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we have a deterministic function f(t) of time, provided that it is strictly positive
and suitably well-behaved, we may apply the chain rule and write

d log f(t)

dt
=

1

f(t)
· df(t)

dt
.

However, there is really no guarantee that we may apply this idea to differentials
of stochastic processes. In fact, as we shall see, all of the above is not terribly far
from truth, but it is wrong nevertheless. The usual rules of deterministic calculus
do not work in a stochastic calculus, and we need a more careful treatment of
stochastic integrals.

11.4 Stochastic integration and Itô’s lemma

The stochastic differential equation of Eq. (11.18) defines the Itô process X(t),
driven by the standard Wiener process W (t). We will take for granted that the
state X(t) depends only on the history of W (t) over the time interval from 0
to t. Given the past history, i.e., the filtration Ft generated by W (t) up to time
t, we know the value of the random variable X(t). Technically speaking, we
say that process X(t) is adapted to process W (t).11 Now, let us consider a
stochastic integral like ∫ T

0

X(t) dW (t). (11.20)

How can we assign a meaning to this expression?

11.4.1 A DIGRESSION: RIEMANN AND RIEMANN–STIELTJES
INTEGRALS

Let us consider the definite integral of a deterministic (and well-behaved) func-
tion over a bounded interval,

I
.
=

∫ b

a

f(x) dx.

The proper way to define the integral starts with the definition of integrals for
simple, i.e., piecewise constant functions, which is natural enough as it relies
on areas of rectangles. Then, we approximate a more general function by lower
and upper bounding simple functions and take a limit. We will pursue a less
formal (and rigorous) route, which is just meant to be a useful refresher to grasp
the intuition we need.12 We will also take for granted that the integrand function

11In other words, the random variable X(t) is measurable with respect to Ft.
12See [5] for a clear treatment.
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is continuous and all of the integrals we consider exist. The idea is to partition
the integration interval [a, b] by choosing a grid of n+ 1 points,

a ≡ x0 < x1 < x2 < · · · < xn ≡ b,

and defining n intervals [xk, xk+1], k = 0, 1, . . . , n− 1. Then, we approximate
the integral by the sum

În
.
=

n−1∑
k=0

f(ck) · [xk+1 − xk],

where we pick a “representative” point ck ∈ [xk, xk+1] for each subinterval in
the partition. Then, we would expect that when n→ +∞, i.e., when we take the
limit for finer and finer partitions, the approximation În will tend to the integral
I in some sense, leading to the definition of the classical Riemann integral. A
natural question, however, is how should we choose the point ck within each
subinterval. We might choose the right endpoint xk+1, or the left endpoint xk,
or maybe the midpoint. When we take finer and finer partitions, we might argue
that, if the function is well-behaved, the choice should make no difference, as
the function will be approximately constant on a small subinterval. As we shall
see, the choice is quite relevant in the case of a stochastic process, but it is not
critical for a deterministic and continuous function.

However, the differential dW (t) in the integral of Eq. (11.20) does not only
involve an independent variable, like dx. In fact, we may see some similar-
ity with the following extension of the Riemann integral, which is known as
Riemann–Stieltjes integral: ∫ b

a

f(x) dg(x),

where g(·) is called the integrator function. Following the above line of rea-
soning, we might partition the interval [a, b] and use the approximation

n−1∑
k=0

f(ck) ·
[
g(xk+1)− g(xk)

]
.

We notice that this is a sort of path integral, as it depends on the path of the
integrator function. Again, we assume that the limit for n → +∞ exists, and
that it does not depend on the choice of the representative point ck.

11.4.2 STOCHASTIC INTEGRAL IN THE SENSE OF ITÔ

Analogy with the Riemann–Stieltjes integral suggests the following approxima-
tion of the stochastic integral (11.20):

n−1∑
k=0

X(tk) [W (tk+1)−W (tk)] , (11.21)
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where the integration interval has been partitioned into subintervals defined by
points 0 ≡ t0, t1, t2, . . . , tn ≡ T . Again, intuition suggests taking the limit for
n → +∞ and hoping for the best, but there are some crucial points that we
must notice.

The approximation of Eq. (11.21) defines a random variable, not a num-
ber. Hence, when taking the limit, we have to rely on a stochastic con-
vergence concept. Given the nature of this book, we steer away from
the involved technicalities. As it turns out, convergence in mean square
will do, but we should expect that additional conditions are required for
convergence.
What is arguably more important, we should pay attention to how we
have chosen the time instants in the expression above: X(tk) is evaluated
at the left endpoint of the subinterval (tk, tk+1). This is actually one pos-
sible choice: Why not take the value of X(t) at the midpoint or the right
extreme of each interval?

The choice of where we evaluate the process X(t) is quite critical as it leads to
different stochastic integrals. Here we are considering the stochastic integral in
the sense of Itô, where the value of the integrand is taken at the left extreme of
each interval, as in Eq. (11.21). Choosing the value at the midpoint defines the
Stratonovich stochastic integral, which we will not consider in this book. Before
discussing the mathematical implications of our choice, we should realize that
it is well-motivated by the need to model the actual financial decision-making
process.

Example 11.10 Financial motivation of Itô integrals

Consider a set of m assets, whose prices are modeled by stochastic
processes Si(t), i = 1, . . . ,m, described by stochastic differential
equations like (11.18). Let us assume that we pursue a portfolio strat-
egy represented by functions hi(t), which give the number of stock
shares of each asset i that we hold at time t. But which functions
make sense? An obvious requirement is that functions hi(·) should
not be anticipative: hi(t) may depend on all the history so far, over
the interval [0, t], but clairvoyance should be ruled out. Furthermore,
we should think of hi(t) as the number of shares we hold over a time
interval of the form [t, t+ dt). Note that the interval is half-closed, to
point out that we make a decision and rebalance the portfolio at time
t; then, we keep the portfolio constant for a while and, at time t+ δt,
we will observe the result and make a new decision.

Now, assume that we are endowed with an initial wealth that we
have to allocate among the m assets. The initial portfolio value, de-
pending on the portfolio strategy represented by the functions hi(·),
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is

Vh(0) =

m∑
i=1

hi(0)Si(0) = hT(0)S(0),

where we have collected the processes hi(t) and Si(t) into column
vectors h and S, respectively. What about the dynamics of the port-
folio value? If the portfolio is self-financing, i.e., we can trade assets
at any time, but we do not invest any additional cash after t = 0, and
we never withdraw funds for consumption purposes, it can be shown
that the portfolio value will satisfy the equation

dVh(t) =

m∑
i=1

hi(t) dSi(t) = hT(t) dS(t).

This looks fairly intuitive and convincing, but some careful analysis is
needed to prove it (see, e.g., [1, Chapter 6]). Then, we may reasonably
guess that the wealth at time t = T will be

Vh(T ) = Vh(0) +

∫ T

0

hT(t) dS(t).

However, it is fundamental to interpret the stochastic integral as the
limit of an approximation like (11.21), i.e.,∫ T

0

hT(t) dS(t) ≈
n−1∑
k=0

hT(tk) [S(tk+1)− S(tk)] .

The number of stock shares that we hold at time tk does not depend
on future prices S(tk+1). First, we allocate wealth at time tk, and then
we observe return over the time interval [tk, tk+1). This makes finan-
cial sense and is why Itô stochastic integrals are used for financial
modeling.

Example 11.10 shows that, in a dynamic and stochastic setting, we have to
pay due attention to the actual flow of information and decisions, whereas the
choice of the representative point in each subinterval does not seem so critical
in a deterministic setting. The choice has an important effect:

In Eq. (11.21), the random variable X(tk) and the random incre-
ment

[
W (tk+1)−W (tk)

]
by which it is multiplied are independent.

Let us explore the consequences of this fact. To begin with, what is the expected
value of the integral in Eq. (11.20)? This is a good starting question, because
the stochastic integral is a random variable, and the first and foremost feature of
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a random variable is its expected value. We may get a clue by considering the
approximation (11.21) again and taking expectations:

E

[∫ T

0

X(t) dW (t)

]
≈ E

{
n−1∑
k=0

X(tk) [W (tk+1)−W (tk)]

}

=

n−1∑
k=0

E {X(tk) [W (tk+1)−W (tk)]}

=

n−1∑
k=0

E [X(tk)] · E [W (tk+1)−W (tk)] = 0, (11.22)

where we have used the independence between X(tk) and the increments of
the Wiener process over the time interval [tk, tk+1], along with the fact that the
expected value of these increments is zero. This shows that the integral of Eq.
(11.20) is a random variable with expected value zero, but can we say something
more? One immediate consequence of Eq. (11.22) is the following.

THEOREM 11.1 Let us consider a stochastic process X(t), adapted13 to the
standard Wiener process W (t). Then, the stochastic process

I(t)
.
=

∫ t

0

X(s) dW (s),

defined by a stochastic integral in the sense of Itô, is a martingale.

PROOF The proof is quite simple and it relies on the additivity property of
integrals, which applies to stochastic integrals as well:∫ t

0

X(s) dW (s) =

∫ τ

0

X(s) dW (s) +

∫ t

τ

X(s) dW (s), (11.23)

for τ < t. If we define the stochastic process

I(t)
.
=

∫ t

0

X(s) dW (s),

we may rewrite Eq. (11.23) as

I(t) = I(τ) +

∫ t

τ

X(s) dW (s).

Taking the expectation conditional on the filtration Fτ , i.e., given the history up
to time τ , we have

E
[
I(t) |Fτ

]
= E

[
I(τ) |Fτ

]
+ E

[∫ t

τ

X(s) dW (s) |Fτ
]

= I(τ) + 0,

13Formally, “adapted” means that the process X(t) is measurable with respect to the filtration
generated by W (t). In plain English, it means that the value of X at time t depends only on the
history of W on the interval [0, t]. To be concrete, we may interpret X as the price process of a
stock share, depending on the path of an underlying risk factor W .
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which proves the result.

Note that we are not claiming that any stochastic integral is a martingale. For
instance, the stochastic integral in Example 11.10 does not involve the differen-
tial of a standard Wiener process, which is itself a martingale. Hence, the wealth
process Vh(t) need not be a martingale. Another useful result is the following
theorem, which we state without proof.

THEOREM 11.2 (Itô’s isometry) Let Xt be a stochastic process adapted to
the standard Wiener process Wt. Then,

E

[(∫ t

0

Xτ dWτ

)2
]

= E

[∫ t

0

X2
τ dτ

]
.

We shall use Itô’s isometry in Section 14.2.1, in order to find the variance of a
random interest rate at time t.

The definition of stochastic integral does not yield a precise way to compute
it practically. We may try, however, to consider a specific case to build some
intuition. The following example illustrates one nasty consequence of the way
the Itô stochastic integral is defined.

Example 11.11 Chain rule and stochastic differentials

Say that we want to “compute” the stochastic integral∫ T

0

W (t) dW (t).

Analogy with ordinary calculus would suggest using the chain rule
for the differentiation of composite functions, in order to obtain a dif-
ferential that can be integrated directly. Specifically, we might guess
that

dW 2(t)
?
= 2W (t) dW (t),

where we use ?
= again to underline that we are just making guesses.

This in turn would suggest that∫ T

0

W (t) dW (t)
?
=

1

2

∫ T

0

dW 2(t) =
1

2
W 2(T ).

Unfortunately, this cannot be the correct answer, as it contradicts our
previous findings. We have just seen that the expected value of an
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integral of this kind is zero, but

E

[
1

2
W 2(T )

]
=

1

2
E
[
W 2(T )

]
=

1

2

{
Var [W (T )] + E2 [W (T )]

}
=
T

2
6= 0. (11.24)

We see that the two expected values do not match at all, and there
must be something wrong somewhere.

Example 11.11 shows that the chain rule does not work in Itô stochastic
calculus. Hence, the guess we made in Section 11.3.3, about geometric Brow-
nian motion, is quite likely wrong, too. To proceed further, we need to find the
right rule to work with stochastic differentials, and the answer is provided by
Itô’s lemma.

Remark. It is interesting to note that we may choose a different definition of
stochastic integral, whereby we take an average of the values of process X(t)
at the endpoints of each subinterval [tk, tk+1]. As we said, this leads to the
stochastic integral in the sense of Stratonovich. This concept of integral has its
applications in physics, but it is less natural in finance. Nevertheless, it turns
out that, with the Stratonovich integral, we do not run into this kind of trouble
with the chain rule.

11.4.3 ITÔ’S LEMMA

So far, we have tried guessing the differentials of functions of a stochastic pro-
cess Xt,14

dX2
t

?
= 2Xt dXt, d logXt

?
=
dXt

Xt
,

but we have found evidence contrary to their validity. More generally, let us
consider a financial option written on an underlying asset, whose price is de-
scribed by an Itô process following the stochastic differential equation

dXt = a(Xt, t) dt+ b(Xt, t) dWt. (11.25)

If the option is European-style, with a payoff depending only on the price XT

at maturity, we may argue that the its price will be a function f(Xt, t) of the un-
derlying asset price and time. How can we find a stochastic differential equation
for the option price?

What we need is a chain rule to take differentials of functions of stochas-
tic processes. In ordinary calculus, we use the chain rule to find derivatives

14For the sake of convenience, here we switch from notation X(t) to Xt.
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of composite functions. In stochastic calculus, this role is played by Itô’s
lemma. Since, in this introductory book, we do not pursue a rigorous approach
to stochastic calculus, we may only give an informal, yet quite instructive ar-
gument.15 The argument is instructive, as it provides us with valuable intuition
explaining what went wrong in Example 11.11. As a starting point, we may
consider Eq. (11.25) as the continuous limit of the discretized equation

δXt = Xt+δt −Xt = a(Xt, t) δt+ b(Xt, t)εt+δt
√
δt, (11.26)

where εt+δt ∼ N(0, 1).
Let us take a little step back into the realm of deterministic calculus and

consider what is the rationale behind the Taylor expansion of a function g(x, y)
of two variables. The key ingredient we need for our reasoning is the formula
for the differential of such a function:

dg =
∂g

∂x
dx+

∂g

∂y
dy,

which indeed may be obtained from Taylor expansion:

δg =
∂g

∂x
δx+

∂g

∂y
δy +

1

2

∂2g

∂x2
(δx)2 +

1

2

∂2g

∂y2
(δy)2 +

∂2g

∂x ∂y
δx δy + · · · ,

for δx, δy → 0. When taking this limit, only the first-order terms are relevant, as
the second-order terms are negligible. Now, we may apply this Taylor expansion
to the function f(Xt, t) of the stochastic process Xt, limiting it to the leading
terms. In doing so, it is important to notice that the term

√
δt in Eq. (11.26)

needs careful treatment when squared. In fact, streamlining notation a bit, we
deal with something like

(δX)2 = a(X, t)2(δt)2 + 2a(X, t)b(X, t)ε(δt)
3/2 + b(X, t)2ε2δt

≈ b(X, t)2ε2δt,

which implies that the term in (δX)2 cannot be neglected in the approxima-
tion. In fact, when we square

√
δt, we get a first-order term, which must be

accounted for in the differential, whereas higher-order terms in (δt)3/2 and (δt)2

are neglected.
Since ε is a standard normal variable, we have E[ε2] = 1 and E[ε2δt] = δt.

A delicate point is the following: It can be shown that, as δt tends to zero, the
term ε2 δt can be treated as nonstochastic, and it is equal to its expected value.
An informal (far from rigorous) justification relies on the variance of this term:

Var(ε2 δt) = (δt)2
{

E
[
ε4
]
− E2

[
ε2
]}

= (δt)2
{

3−Var2 [ε]
}

= (δt)2 {3− 1} = 2(δt)2,

15We follow the treatment in [12, Chapter 13].
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which, for δt → 0, can be neglected with respect to first-order terms. Here
we have used the fact E

[
ε4
]

= 3, which can be checked by using moment
generating functions or, perhaps cheating a bit, by recalling that the kurtosis of
any normal, including a standard one, is 3. A useful way to remember this point
is the formal rule

(dW )2 = dt. (11.27)

Hence, when δt tends to zero, in the Taylor expansion, we have

(δX)2 → b(X, t)2 dt.

Neglecting higher-order terms and taking the limit, as both δX and δt tend to
zero, we end up with

df =
∂f

∂X
dX +

∂f

∂t
dt+

1

2

∂2f

∂X2
b(X, t)2 dt,

which, by replacing dX with Eq. (11.25), becomes the celebrated Itô’s lemma:

df(Xt, t) =

[
a(Xt, t)

∂f

∂Xt
+
∂f

∂t
+

1

2
b(Xt, t)

2 ∂
2f

∂X2
t

]
dt+ b(Xt, t)

∂f

∂Xt
dWt.

(11.28)
Although this proof is far from rigorous, we see that all the trouble is due to the
term of order

√
δt, which is introduced by the increment of the Wiener process.

It is instructive to see that if we set b(X, t) = 0 in the Itô differential equa-
tion, i.e., if we eliminate randomness, then we step back to familiar ground. In
such a case, the stochastic differential equation is actually deterministic and can
be rewritten as

dx = a(x, t)dt ⇒ dx

dt
= a(x, t),

where we use the notation x rather than X to point out the deterministic nature
of function x(t). Then, Itô’s lemma boils down to

df = a(x, t)
∂f

∂x
dt+

∂f

∂t
dt, (11.29)

which can be rearranged to yield the following chain rule for a function f(x, t):

df

dt
=
∂f

∂x

dx

dt
+
∂f

∂t
. (11.30)

As a first application of Itô’s lemma, let us consider Example 11.11 once more.

Example 11.12 Applying Itô’s lemma to Example 11.11

In order to apply Itô’s lemma to the computation of the stochastic
integral ∫ T

0

Wt dWt,
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we have to recast the problem a bit. Here we have Xt ≡ Wt, which
implies a(Xt, t) ≡ 0 and b(Xt, t) ≡ 1. Furthermore, since our guess
involved the differential ofW 2

t , we may look for the differential of the
function f(Xt, t) = X2

t . To apply Itô’s lemma, we need the following
partial derivatives:

∂f

∂t
= 0, (11.31)

∂f

∂Xt
= 2Xt,

∂2f

∂X2
t

= 2.

These derivatives are trivial, but it is important to point out that the
partial derivative with respect to time in Eq. (11.31) is zero. It is true
that f(Xt, t) depends on time through Xt, but here we have no direct
dependence on t; thus, the partial derivative with respect to time van-
ishes. To put it another way, the dependence of Xt with respect to
time does not play any role, when taking the partial derivative with
respect to t, because Xt is held fixed. We may also have another look
at Eq. (11.30), to see the relationship between the partial and the total
derivative of f(Xt, t) with respect to t.

Putting everything together, the application of Itô’s lemma yields

df = d
(
W 2
t

)
= dt+ 2Wt dWt. (11.32)

It is essential to notice that dt is exactly the term that we would not ex-
pect by applying the usual chain rule. But this is the term that allows
us to get the correct expected value ofW 2

t . Indeed, by straightforward
integration of Eq. (11.32), now we find

W 2
T = W 2

0 +

∫ T

0

d
(
W 2
t

)
= 0 +

∫ T

0

dt+ 2

∫ T

0

Wt dWt.

Hence, the required integral is∫ T

0

Wt dWt =
W 2
T

2
− T

2
.

By taking expectations and recalling Eq. (11.24), we find

E

[∫ T

0

Wt dWt

]
=

E[W 2
T ]

2
− T

2
= 0,
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which is consistent with Eq. (11.22). Essentially, by subtracting a
compensating factor T/2, we make this stochastic integral a martin-
gale.

Let us summarize our findings: With respect to Eq. (11.29), Itô’s lemma in-
cludes an extra term in dW , which is expected, given the form of the differential
equation defining the stochastic process X(t), but also an unexpected term

1

2
b2
∂2f

∂X2
.

In deterministic calculus, second-order derivatives occur in second-order terms
linked to (δt)2, which can be neglected. On the contrary, here we have a term
of order

√
dt which must be taken into account even though it is squared.

11.5 Stochastic processes in financial modeling

A wide class of models for financially relevant prices and risk factors may be
built by choosing suitable functional forms for the drift function a(·, ·) and the
volatility function b(·, ·) in the equation

dXt = a
(
Xt, t

)
dt+ b

(
Xt, t

)
dWt.

This stochastic differential equation, actually, should be intended as a shorthand
notation for the integral form of Eq. (11.19). Indeed, strictly speaking, stochas-
tic differential equations make no sense, and only stochastic integral equations
do. However, the differential form is much more manageable and does not
obscure the financial intuition behind modeling choices. In this section, we
describe some models that have been proposed to represent the uncertain dy-
namics in prices, interest rates, and other risk factors. We start with geometric
Brownian motion, which is the foundation of the Black–Scholes–Merton op-
tion pricing model. Then, we will hint at some generalizations, including the
possibility of adding a jump component.

11.5.1 GEOMETRIC BROWNIAN MOTION

Geometric Brownian motion is defined by a specific choice of the functions
in Itô stochastic differential equation:

dSt = µSt dt+ σSt dWt,
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where µ and σ are constant parameters referred to as drift and volatility coeffi-
cients, respectively. Intuition would suggest to rewrite the equation as

dSt
St

= µdt+ σ dWt,

and then consider this as the differential of log-price, d logS, and integrate it
directly. After all, this worked well for the deterministic bank account process in
Section 11.3.1. However. we have learned that additional care is needed and we
have to resort to Itô’s lemma, in order to find the stochastic differential equation
for f(St, t) = logSt. As a first step, we compute the partial derivatives:

∂f

∂t
= 0,

∂f

∂St
=

1

St
,

∂2f

∂S2
t

= − 1

S2
t

.

Once again, we note that there is no direct dependence on time, so that the
partial derivative with respect to t is zero. Then, putting all of it together, we
find

df =

(
∂f

∂t
+ µSt ·

∂f

∂St
+

1

2
σ2S2

t ·
∂2f

∂S2
t

)
dt+ σSt

∂f

∂St
dWt

=

(
µ− σ2

2

)
dt+ σ dWt.

Now we see that our guess was not that bad, as this equation may be easily
integrated and yields

logSt = logS0 +

(
µ− σ2

2

)
t+ σWt.

Recalling that Wt has a normal distribution and can be written as Wt = ε
√
t,

where ε ∼ N(0, 1), we conclude that the logarithm of price (log-price) is nor-
mally distributed:

logSt ∼ N

[
logS0 +

(
µ− σ2

2

)
t, σ2t

]
.

We can rewrite the solution in terms of St:

St = S0 · exp

{(
µ− σ2

2

)
t+ σWt

}
,

or

St = S0 · exp

{(
µ− σ2

2

)
t+ σ

√
tε

}
. (11.33)

On the one hand, this shows that prices, according to the geometric Brownian
motion model, are lognormally distributed and cannot take negative values. On
the other hand, now we have a way to generate sample paths, based on a dis-
cretization of a prescribed time horizon into time periods of length δt, like we
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FIGURE 11.8 A sample path of geometric Brownian motion.

did with the generalized Wiener process.16 This generates sample paths like the
one depicted in Fig. 11.8.

Remark. We notice that sample paths of GBM essentially results from superim-
posing Gaussian noise to an exponential trendline. Then, one could wonder why
stock share prices do not seem to grow indefinitely like an exponential function.
Among other reasons, we should consider the fact that when dividends are paid,
a down jump is expected, which limits the price growth.

By using properties of the lognormal distribution, we also find

E

[
log

St
S0

]
=

(
µ− σ2

2

)
t,

Var

[
log

St
S0

]
= σ2t,

E

[
St
S0

]
= eµt, (11.34)

Var

[
St
S0

]
= e2µt(eσ

2t − 1), (11.35)

from which we see that the drift parameter µ is linked to the continuously com-
pounded return. The volatility parameter σ is related to standard deviation of
the increment of logarithm of price. The roles of drift and volatility can also be

16See Example 11.9.
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grasped intuitively by considering the following approximation of the differen-
tial equation:

δSt
St
≈ µ δt+ σ δWt,

where δSt/St is the return of the asset over small time interval δt. According to
this approximation, we see that return can be approximated by a normal variable
with expected value µ δt and standard deviation σ

√
δt. Actually, this normal

distribution is only a local approximation of the “true” (according to the model)
lognormal distribution.

Remark. Equation (11.35) looks a bit intimidating, but it is related to the vari-
ance of a lognormal variable and may be obtained by resorting to moment gen-
erating functions. Equation (11.34), on the contrary, looks deceptively simple
but it is often subject to a misunderstanding. Let us consider a lognormal vari-
able Y = eX , where X ∼ N(ν, ξ2). We have to keep very clear in mind that the
expected value of a function need not be the function of the expected value. In
this specific case,

E[eX ] = eν+ξ2/2 ≥ eν = eE[X].

This is a consequence of Jensen’s inequality for convex functions like the expo-
nential. To really grasp where Eq. (11.34) comes from, we have to go through
the correct calculation:

E [St] = S0 · E
[
exp

{(
µ− σ2

2

)
t+ σ

√
tε

}]
= S0 · exp

{
µt− σ2t

2
− (σ

√
t)2

2

}
= S0 · exp{µt}.

11.5.2 GENERALIZATIONS

GBM is a simple diffusion process, admitting an analytical solution, but it is
arguably not adequate to describe the dynamics of real-life risk factors. Never-
theless, there are different ways to extend GBM in order to build more realistic
models.

Multidimensional extensions. When we have to cope with multiple risk fac-
tors, like different stock share prices or interest rates with different matu-
rities, we need a system of differential equations. This raises the issue of
accounting for correlations among risk factors.

Changing drift and volatility functions. The mean value function of GBM is
E[St] = S0 · eµt. This exponential trendline makes no sense for interest
rates or volatilities. By replacing the drift and the volatility functions in a
diffusion process, we may model more realistic behavior.

Going beyond pure diffusions. In GBM, the diffusion component is given by
the standard Wiener process, a Gaussian process with continuous sample
paths. This component may be replaced in order to introduce heavier tails
or jumps.
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11.5.2.1 Correlated Wiener processes

The need to model the dynamics of a set of asset prices arises when we deal with
a portfolio, or when we want to price a rainbow option depending on multiple
underlying assets. The simplest model that we may adopt is a direct general-
ization of GBM. According to this approach, the prices Si(t) of n assets satisfy
the equations

dSi(t) = µiSi(t) dt+ σiSi(t) dWi(t), i = 1, . . . , n,

where the standard Wiener processes Wi(t) are not necessarily independent.
They are characterized by a set of instantaneous correlation coefficients ρij ,
whose meaning can be grasped by an extension of the formal rule of Eq. (11.27):

dWi · dWj = ρij dt.

In terms of path generation, we require the generation of increments

δWi = εi
√
δt, δWj = εj

√
δt,

where εi and εj are standard normals with correlation ρij .

11.5.2.2 Ornstein–Uhlenbeck processes

This exponential growth of GBM makes no sense for several financial variables,
which rather feature mean reversion. Then, we may resort to an Ornstein–
Uhlenbeck process,

dX(t) = γ
[
X̄ −X(t)

]
dt+ σ dW (t).

This is still a Gaussian diffusion, but the drift can change sign, pulling the pro-
cess back to a long-run average X̄ , with mean reversion speed γ. The applica-
tion of this model to a short-term interest rate r(t) yields the Vasicek model:

dr(t) = γ
[
r − r(t)

]
dt+ σ dW (t).

11.5.2.3 Square-root diffusions

One drawback of Ornstein–Uhlenbeck processes is that they do not prevent neg-
ative values, which make no sense for stock prices and interest rates. A possible
adjustment is the following:

dr(t) = γ
[
r − r(t)

]
dt+ σ

√
r(t) dW (t).

This is an example of a square-root diffusion, which in the context of short-term
interest rates is known as the Cox–Ingersoll–Ross model. For a suitable choice
of parameters, it can be shown that a square-root diffusion stays non-negative.



462 CHAPTER 11 Modeling Dynamic Uncertainty

This changes the nature of the process, which is not Gaussian anymore.17 Sim-
ilar considerations hold when modeling a stochastic and time-varying volatil-
ity σ(t). GBM assumes a constant volatility σ, whereas, in practice, we may
observe time periods in which volatility is higher than usual. Square-root dif-
fusions are used in a common stochastic volatility model, the Heston model,
which consists of a pair of stochastic differential equations:

dS(t) = µS(t) dt+ σ(t)S(t) dW1(t),

dV (t) = α
[
V̄ − V (t)

]
dt+ ξ

√
V (t) dW2(t),

where V (t) = σ2(t) is the variance process, V̄ is its long-term average, and dif-
ferent assumptions can be made about the correlation between the two driving
Wiener processes W1(t) and W2(t).

11.5.2.4 Jump–diffusions

In order to account for jumps, we may devise processes with both a diffusion
and a jump component, such as

X(t) = αt+ σW (t) + Y (t),

where Y (t) is a compound Poisson process. From a formal point of view, we
require the definition of a stochastic integral of a stochastic process Y (t) with
respect to a Poisson process N(t):∫ t

0

Y (τ) dN(τ) =

N(t)∑
i=1

Y (ti),

whereN(t) is the number of jumps occurred up to time t in the Poisson process,
and ti, i = 1, . . . , N(t), are the time instants at which jumps occur. We note
that the Wiener and the Poisson process, which are the basic building blocks
of jump–diffusions, are quite different, but they do have an important common
feature: stationary and independent increments. In fact, the class of Lévy pro-
cesses generalizes both of them by emphasizing this feature. A more radical
departure from GBM is represented by pure jump processes. The rationale be-
hind these models is that, at the market microstructure level, stock share prices
do move by jumps, depending on the flow of buy/sell orders and the dynamics
of the limit order book.

11.6 Sample path generation

In this introductory book, we do not discuss in depth numerical solution meth-
ods for optimization or pricing problems in finance. However, a cursory overview

17See Section 14.2.2.
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of how continuous-time, continuous-state dynamic models are translated into a
a discrete-time, discrete-state approximation amenable to computational tech-
niques is useful. There are different kinds of discretized representations, includ-
ing:

Linear scenarios, i.e., independent sample path realizations that share
only the initial state.
Scenario trees, which are better suited to optimization modeling, as they
represent the limited information on which we base multistage decisions.
The main issue with trees is that they grow exponentially in size.
Recombining lattices, which are similar to trees in some respect, but
grow linearly in size. We will explore binomial lattices in the context of
option pricing. A limitation of recombining lattices is that they do not
allow to cope with path dependency.
Markov chains and stochastic meshes, which we shall not discuss.

There is a wide array of methods that can be used to generate discretized repre-
sentations, but they may be divided into two broad classes:

Random sampling, which is the foundation of ubiquitous Monte Carlo
methods. Conceptually, random sampling relies on the law of large num-
bers to estimate a quantity of interest, like an expected value, a probabil-
ity, or a quantile.
Deterministic methods, which aim at finding a discretization that is op-
timal in some sense. One possible idea is moment matching, where we
generate a discrete distribution matching essential properties of a target
continuous distribution. Since expectations are integrals, we may also
borrow ideas from numerical integration, most notably clever Gaussian
quadrature formulas. Another approach relies on low-discrepancy se-
quences, which yield a hybrid between Monte Carlo and deterministic
methods, sometimes nicknamed quasi-Monte Carlo sampling.

All of these approaches have advantages and disadvantages, and the choice
among them depends on the application at hand, as well as the problem size
and the computational budget that we may afford. Hybrid strategies, based on
the integration of the above ideas, have also been proposed.

11.6.1 MONTE CARLO SAMPLING

We have seen a hint of how Monte Carlo sampling may be used to generate
sample paths of a stochastic process in Example 11.9. There, we have dealt
with a generalized Wiener process and no difficulty was involved. In general,
things are not that easy. To see why, let us consider an Itô process described by
the equation

dXt = a
(
Xt, t

)
dt+ b

(
Xt, t

)
dWt.
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A natural discretization with time step δt is

Xt+δt −Xt = a
(
Xt, t

)
δt+ b

(
Xt, t

)√
δt · ε,

where ε is an element of a sequence of i.i.d. standard normals. This simple
scheme is known as the Euler discretization scheme, and it involves an obvi-
ous approximation: The drift and volatility functions, a(·, ·) and b(·, ·), are kept
constant over the time step, whereas they change continuously. This results
in a discretization error, which is a common issue in numerical methods for
solving deterministic differential equations, too.

Example 11.13 Euler discretization of a GBM

Given the GBM

dSt = µSt dt+ σSt dWt,

the Euler scheme yields

δSt = µSt δt+ σSt δWt.

The resulting discretized process is

St+δt = (1 + µ)St + σSt
√
δt · εt+δ.

An obvious issue with this discretization is that it generates the wrong
distribution. GBM is supposed to generate lognormal variables, but
here we are generating normal (possibly negative) random variables.

The difficulties of Euler discretization may be partially eased by choosing a
suitably small step, but this implies a corresponding increase in computational
effort. The GBM is a lucky case, as Itô’s lemma provides the exact discretiza-
tion of Eq. (11.33),

St+δt = Ste
(µ−σ2/2)δt+σ

√
δt·εt+δ .

In other cases, the matter is a bit thornier, but sometimes we do find an ex-
act discretization. A relevant example is a square-root diffusion, which requires
sampling noncentral chi-square random variables, rather than standard normals.
Given the wide range of methods to sample from probability distributions, this is
easily accomplished. In other cases, the discretization error cannot be avoided,
but it can be kept under control by either taking small steps in a simple dis-
cretization scheme, or by resorting to more accurate discretization schemes.
Beside discretization issues, there is a more general difficulty with Monte Carlo
methods, the sampling error, which is of a statistical nature. This is well-
known from elementary inferential statistics, where we sample a sequence of n
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i.i.d. observations Xk, k = 1, . . . , n, and use the sample mean,

X
.
=

1

n

n∑
k=1

Xk,

as an estimator of an unknown expected value µ. In the case of a large sample
from a normal population, we find the confidence interval

X ± z1−α/2 ·
S√
n
,

where the sample standard deviation S is used to estimate the standard deviation
of the sample mean,

σX =
σX√
n
. (11.36)

In finance, the sample size in a Monte Carlo simulation is large enough to war-
rant use of the quantile z1−α/2 of standard normal distribution. Equation (11.36)
is a fundamental key to understand both the strength and the weakness of Monte
Carlo methods, as it features both bad and good news. Good news is that, at
least in principle, whatever the problem dimensionality is, the estimation un-
certainty, relating to sampling error, goes to zero in the same way, depending
on σX . To be fair, we could argue that both the computational effort and the
sampling variability are likely to be affected by problem dimensionality, but
this does not appear explicitly. The bad news, unfortunately, is that uncertainty
is reduced at a slower and slower rate, when the sample size n is increased,
because of the concavity of the square root function. To get a feeling for this,
imagine that we want to reduce the width of the confidence interval by a factor
1/10, which means gaining one order of magnitude in terms of precision. Then,
because of the square root, the sample size should be multiplied by a factor
100, not 10. Linear behavior would be much preferred, and it can be attained
by quasi-Monte Carlo methods, where, unfortunately, the problem dimension-
ality does play a role, limiting the applicability of the approach to intermediate
problem dimensionalities. In the literature, however, there is an array of vari-
ance reduction strategies, where clever sampling is applied to reduce σX . All of
this is beyond the scope of this book, and we refer the interested reader to the
end-of-chapter bibliography.

11.6.2 SCENARIO TREES

If we have to approximate a continuous distribution by a discrete one, we may
visualize the result by the scenario fan in Fig. 1.2. This is sufficient for a static
decision problem under uncertainty, but when a multistage, dynamic problem
must be tackled, we have to resort to a scenario tree, like the one in Fig. 1.3,
which we repeat here in Fig. 11.9, for the sake of convenience. The main ad-
vantage of a scenario tree is that it allows to express nonanticipativity in dy-
namic decisions, i.e., the fact that we are not allowed to foresee the future. At
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FIGURE 11.9 Uncertainty unfolds over time in a scenario tree.

node n0, we have to make a single, here-and-now decision, without knowing
which scenario will unfold. From the viewpoint of state n0, the decision that
we will make at time t = 1 is random, since it is contingent on the realization
of random data. Probably, the decision in node n1 will be different from the
decision at node n2. If we are at node n1, we know that one of the scenarios
in the set {ω1, ω2, ω3, ω4} is going to occur, but we do not know which one.
Hence, at node n1 the decision will be the same for all of the scenarios in the
set {ω1, ω2, ω3, ω4}, which at time t = 1 cannot be distinguished yet. When
time goes on, we gather more information. For instance, if we are at node n3,
we know that one of the scenarios in the smaller set {ω1, ω2} is going to occur.
As we show in Supplement S11.1, this flow of information may be properly
formalized by the introduction of filtrations. We will also see how scenario
trees may be used in the challenging stochastic optimization models discussed
in Chapter 15.

The issue now is: How can we generate a scenario tree? One possible
answer is by Monte Carlo sampling, but we have observed that sampling error
may be significant for a small sample size. As we shall see, if we have to price a
European-style option, we have just to estimate the expected value of the payoff,
under a risk-adjusted probability measure. Since there is no decision to be made
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along the way, we just have to generate a set of independent scenarios, evaluate
the option payoff for each scenario, and then take a sample mean. We may easily
afford a large number of scenarios, and this kind of computation lends itself
to parallel processing. However, solving a multistage optimization problem is
much more challenging: We need a scenario tree to represent nonanticipative
decisions, and a tree is prone to exponential growth in size. If, in Fig. 11.9,
we use a branching factor 100, rather than 2, we have 100 nodes at time 1,
10,000 nodes at time 2, and one million nodes at time 3. How can we represent
uncertainty accurately without resorting to a huge tree? One possible answer
is deterministic scenario generation, rather than brute force sampling. Let us
illustrate one such strategy, moment matching, with a simple example.

Example 11.14 Moment matching

Given a normal random variable X ∼ N(µ, σ2), how can we approx-
imate it by a discrete distribution with only two realizations x1 and
x2?

To begin with, given the symmetry of the normal distribution, a
natural choice is to take two equiprobable realizations, µ ± δ, sym-
metric with respect to the expected value. To find the displacement δ,
we may match variance, which is equivalent to matching the second
order moment:

E
[
X2
]

= 1
2x

2
1 + 1

2x
2
2 = 1

2 (µ+ δ)2 + 1
2 (µ− δ)2 = σ2 + µ2,

which boils down to δ = σ. Note that, by symmetry, we also match
skewness, i.e., the third-order central moment. We leave it as an exer-
cise to prove that if we add a third point x3 = µ, we find δ =

√
3/2 ·σ.

With five points, we may also afford to match the fourth-order mo-
ment, kurtosis, which is 3 for any normal variable.

Moment matching with only two realizations may sound overly silly, but we will
appreciate it when dealing with option pricing in Section 13.3.2. This strategy
is also related with deterministic numerical integration strategies like Gaussian
quadrature. Unfortunately, when dealing with multivariate distributions, mo-
ment matching may not be quite up to the task, as the number of descendant
nodes that must be branched out of a parent node may be too large. Further-
more, critics of the approach stress the fact that quite different distributions
may share the first few moments, and advocate more sophisticated approaches.
As always, there is no generally valid answer, and scenario tree generation is an
active research topic, for which we refer to the literature.

We close this section by stressing that scenario tree generation for financial
decisions has still an additional twist, with respect to other application areas. To
get the message, let us consider a simple scenario fan, consisting of two nodes,
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representing the uncertainty in the holding period return for two assets. Imagine
that we generate two nodes with the following realizations:[

S1(ω1)

S2(ω1)

]
=

[
0.15

0.07

]
,

[
S1(ω2)

S2(ω2)

]
=

[
0.09

0.03

]
.

Does this make sense? A moment of reflection clearly shows that this choice
makes no sense. Asset 1 dominates Asset 2, and this implies that there is an
arbitrage opportunity, as we have discussed in Section 2.4. Detecting arbi-
trage opportunities in a more realistic case is not quite trivial, and generating
arbitrage-free scenario trees requires sophisticated strategies.

S11.1 Probability spaces, measurability, and
information

Successful investing in stock shares is typically deemed a risky and complex
endeavor. However, the following piece of advice seems to offer a viable solu-
tion:18

Buy a stock. If its price goes up, sell it. If it goes down, don’t buy it.

In this section, we dig a little deeper into concepts related to measurability of
random variables and their relationships with the flow of information in dy-
namic decision-making. Despite their more theoretical character,19 the concepts
that we consider here are often stumbled upon when reading books on quanti-
tative finance, where it is common to meet filtrations and adapted processes.
We will not attempt a full and rigorous treatment, which would require a quite
sophisticated machinery. Nevertheless, we will be able to understand what is
wrong with the above suggestion, from a probabilistic perspective, and the con-
cepts that we illustrate should look less intimidating after getting an intuitive
feel for them.

We pointed out that a random variable should be actually regarded as a
function,

X : Ω→ R,

mapping the set Ω of outcomes of a random experiment into the set of real num-
bers R. Indeed, while we often denote random variables by capital letters like
X , the more precise notation X(ω) emphasizes the true nature of random vari-
ables. However, not all conceivable mappings are legitimate random variables.
To understand why, we need to clarify the concept of probability space.

18In his history of the Great Crash of 1929, John K. Galbraith attributes this fundamental piece
of advice to an American comedian; see J.K. Galbraith, The Great Crash 1929, originally pub-
lished in 1954, reprinted by Mariner Books, 2009.
19This supplement may be safely skipped. The only place in which we use related concepts is
Section 15.6, where we illustrate multistage stochastic optimization models.
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DEFINITION 11.3 (Probability space) A probability space is a triple, usu-
ally denoted by (Ω,F , P ), where Ω is the sample space, consisting of outcomes
of a random experiment, F is a family of subsets of Ω, the events, with suitable
closure properties (clarified below), and P is a probability measure mapping
events into the interval [0, 1].

To fully get the message behind this definition, we should observe that for a
given sample space Ω, consisting of a set of outcomes ωi, we may not only de-
fine different probability measures, but also different families of events. Events
are subsets of the sample space, and they need not be just singletons like {ωi}.

Example 11.15 The die has been cast

If we roll a die, the obvious sample space is Ω = {1, 2, 3, 4, 5, 6}. If
we can observe and are interested in the exact outcome, then we may
consider singleton events consisting of a single outcome,

{1}, {2}, {3}, {4}, {5}, and {6}.

The natural probability measure assigns 1/6 with each outcome, but
we would use a different measure in the case of an unfair die. How-
ever, we might also be interested in assigning a probability to other
events as well. The probability that we observe 2 or 3 should be asso-
ciated with the event {2, 3}, and intuition suggests that

P
(
{2, 3}

)
= P

(
{2} ∪ {3}

)
= P

(
{2}
)

+ P
(
{3}
)

= 1
3 .

In this case, since the two events are mutually exclusive, we just add
probabilities. More generally, given events E1 and E2, we might be
interested in the probabilities

P
(
E1 or E2

)
≡ P

(
E1 ∪ E2

)
,

P
(
E1 and E2

)
≡ P

(
E1 ∩ E2

)
,

P
(
not E1

)
≡ P

(
Ω \ E1

)
,

where we see a natural connection with set operations like union, in-
tersection, and difference. Note that or is related to an inclusive “or,”
rather than to the exclusive “either... or...” (but not both). By applying
arbitrary combinations of these operations to singletons and compos-
ite events, we may generate a rather large family of all subsets of
cardinality 1, 2, etc., also including Ω itself and its complement, the
empty set ∅:

F1 =
{
∅, {1}, {2}, . . . , {6}, {1, 2}, {1, 3}, . . .

. . . {5, 6}, {1, 2, 3}, . . . ,Ω
}
. (11.37)
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The family F1 of all subsets of Ω is clearly closed with respect to the
set operations, as by applying set operations to subsets in F1, we can
only generate an element in F1.

However, we may constrain events a bit in order to reflect the pos-
sibly limited amount of information. For instance, we might consider
the following family of events:

F2 =
{

Ω, ∅, {1, 3, 5}, {2, 4, 6}
}
, (11.38)

which makes sense when all we may observe (or are interested in) is
whether the result is odd or even. This family of events, with respect
to F1, is definitely less rich, and this reflects lack of information.
However, it is easy to check that if we try taking complements and
unions of elements in F2, we still get an element of F2.

The closure property of events with respect to elementary operations is im-
portant because we need to assign probability measures to events and their com-
binations. We do not want to generate a subset to which we cannot assign a
probability measure. This may be expressed by requiring that F be a field.

DEFINITION 11.4 (Field) A family F of subsets of Ω is called a field if the
following conditions hold:

1. Ω ∈ F
2. E ∈ F ⇒ (Ω \ E) ∈ F
3. E,G ∈ F ⇒ (E ∪G) ∈ F

Thus, if a subset is in the field, its complement is, too, and the union of elements
of the field is still in the field. Since set intersection may be expressed using
complements and unions, a field is closed with respect to set intersection as well.
Note that the first and second conditions imply that the empty set ∅ belongs to
the field F . A field is also called an algebra of sets.

Example 11.16 A family of subsets that is not a field

Given Ω = {1, 2, 3, 4}, consider the family of subsets

G = {Ω, ∅, {1}, {2, 3, 4}, {1, 2}, {3, 4}} .

This is not a field, since, for instance, {1} ∪ {3, 4}, /∈ G.
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Actually, to cope with continuous random variables and, more generally with
probability distributions with infinite support, a stronger concept is needed: a
σ-field, also called a σ-algebra. To define this stronger concept, the third con-
dition is extended to a countable union of events:

E1, E2, E3, . . . ∈ F ⇒
∞⋃
i=1

Ei ∈ F .

Unfortunately, whenever the concept of infinity comes into play, pathological
cases can occur. We will not be concerned with these anomalies, since we limit
our treatment to a finite sample space.

Since describing a finite field by enumerating all of its subsets may be a
daunting task, we may describe it implicitly by considering a finite partition P
of Ω, i.e., a finite family of subsets Ei, i = 1, . . . , n, such that

1. Ei ∩ Ej = ∅, for i 6= j, and
2.
⋃n
i=1Ei = Ω.

In plain English, a partition consists of mutually disjoint and collectively ex-
haustive subsets. Given a partition P , we may generate the σ-field σ(P) by
combining subsets in the partition in any possible way. In the case of (11.37),
the partition consists of all singleton sets, whereas in the case of Eq. (11.38),
we have the two subsets of even and odd outcomes.

A probability space is fully described when we give the sample space Ω, a
field of events F , and a probability measure P , associating a real number with
elements of F and satisfying the following rules of the game:

1. The probability measure is properly bounded: P (E) ∈ [0, 1], for any
event E ∈ F .

2. P (Ω) = 1, i.e., the whole sample space is, in some sense, the largest
event, and “something has to happen.”

3. Probability is additive for disjoint events:

P
(
E1 ∪ E2

)
= P (E1) + P (E2),

for E1, E2 ∈ F such that E1 ∩ E2 = ∅. This condition is extended to a
countable union of events in the case of a σ-field.

Using these simple rules of the game, we may prove obvious and less obvious
relationships and, above all, we can assign a probability with any event in the
field F .

Let us now turn our attention to random variables. Given a probability
space, we may define random variables as mappings of outcomes in the sample
space into real numbers, but we should clarify how we associate a probability
measure with a random variable. In fact, we are able to associate a probability
measure with the underlying events, but there must be some consistency be-
tween the way we combine events and associate probabilities with them, and
the information that we obtain from observing the realization of a random vari-
able.
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To be specific, let us consider a discrete random variable X(ω), taking
integer values, and an integer value a. How can we define the probability
P(X(ω) = a)? We should consider the subset of outcomes ω ∈ Ω such that
X(ω) = a, which essentially amounts to inverting the function X(ω):20

X−1(a) ≡ {ω ∈ Ω : X(ω) = a} .

Then, the probability we seek is just the probability measure of the subset
X−1(a). However, this is only possible if any such subset is an event in the
σ-field F .

Example 11.17 A nonmeasurable random variable

Consider the sample space Ω = {1, 2, 3, 4} and the partition

P = {{1}, {2, 3, 4}} .

Let F = σ(P) be the field generated by this partition, and define the
mapping X(ω) as follows:

X(ω) = 1 + ω.

This seemingly innocent mapping is not a random variable with re-
spect to the field F . In fact, we cannot assign the probability P(X =
3), since

{ω ∈ Ω : X(ω) = 3} = {2} /∈ F .

To be a random variable, the mapping should be constant for the three
outcomes in {2, 3, 4}, which is an element of the fieldF . For instance,
the random variable Y (ω) defined as

Y ({1}) = −1, Y ({2}) = Y ({3}) = Y ({4}) = 1

is a legitimate random variable.

What is wrong with Example 11.17 is not the mapping X(ω) per se; it is its
association with the field F . If we had a richer field, generated by the partition
of Ω into its singletons, there would be no issue. Technically speaking, we say
that X is not F-measurable.

20The careful reader will immediately guess that what we are saying works only for a discrete
random variable, since, for continuous random variables, the probability of observing a specific
value is zero. Indeed, in a rigorous treatment, we should consider events {ω ∈ Ω : X(ω) ≤ a},
but to keep things as intuitive as possible, we will refrain from doing so.
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DEFINITION 11.5 (Measurable random variable) We say that a random vari-
able X(ω) is F-measurable if

{ω ∈ Ω : X(ω) = x} ∈ F

for all values of x.

In other words, the inverse function for any value x must be an event in the field
F , so that we may associate a probability measure with it. This can be done or
not, depending on the random variable and the richness of the field of events F .
If we go back to dice throwing, it is clear that if our field is given by Eq. (11.38),
we can assign only one value to all even outcomes, and another value to all odd
outcomes. The field is, in a sense, smaller than F1, since all of the events in F2

are events in F1, but the converse is not true; this represents a limitation in the
available information.

Remark. Readers with some more background in integration theory will im-
mediately see the link between measurability of random variables and the in-
tegral in the sense of Lebesgue. Unlike the classical Riemann integral that we
have hinted at in Section 11.4.1, which is built by partitioning the domain of a
function, the Lebesgue integral focuses on its range. In particular, we consider
subsets within the range, on which the function is constant, and the correspond-
ing subsets within the domain, which are found by function inversion. If we
can associate a measure to these subsets in the domain, then we may define the
integral by multiplying each value that the function takes by the measure of the
corresponding subset in the domain, and adding everything up. Clearly, this
can be done for simple (piecewise constant) functions only, but then we may
go through the usual drill by taking limits. The Lebesgue integral extends the
Riemann integral in the sense that they coincide when the latter is defined, but
there are functions that are Lebesgue-integrable and not Riemann-integrable.
Furthermore, we may also consider integrals defined on abstract spaces that
cannot be partitioned in intervals, but may be associated with a measure.

The link between fields, measurability, and information can be further clar-
ified if we consider a dynamic model. Let us consider a stochastic process in the
form of the scenario tree depicted in Fig. 11.10. To be concrete, let us interpret
this as a stochastic process describing the price of a stock share. At time t = 0,
the stock price is X0 = 10. Then, the price may go up or down, resulting in a
stochastic process Xt, t = 0, 1, 2, 3. In this case, the sample space consists of
outcomes ωi, i = 1, 2, . . . , 8, and each outcome corresponds to a scenario, i.e.,
a possible path of stock prices. For instance, outcome ω3 is associated with the
price scenario (10, 12, 11, 13). If we are at any terminal node in the scenario
tree, we know which scenario has occurred, since we can observe the whole
history of stock prices. However, if we are, e.g., at node n4, we do not know
whether we are observing scenario ω3 or ω4, since they cannot be distinguished
at time t = 2. Nevertheless, we do have some information, since by observing
the past history of stock prices, we can rule out any other scenario. At the root
node n0 we have the least information, since any scenario is possible.
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FIGURE 11.10 A scenario tree.

All of this is reflected in the event fields with which the random variables
Xt, t = 0, 1, 2, 3, are associated. We can capture information by suitable parti-
tions of the sample space

Ω = {ω1, ω2, ω3, ω4, ω5, ω6, ω7, ω8}.

At time t = 0, we cannot say anything, and our field of events is

F0 = {∅,Ω} =
{
∅, {1, 2, 3, 4, 5, 6, 7, 8}

}
.

At time t = 1, we can at least rule out half of the scenarios. This is reflected by
the more refined partition

P1 =
{
{1, 2, 3, 4}, {5, 6, 7, 8}

}
,

which generates the field

F1 =
{
∅, {1, 2, 3, 4}, {5, 6, 7, 8},Ω

}
.

At time t = 2, there is a further branching, refining the partition

P2 =
{
{1, 2}, {3, 4}, {5, 6}, {7, 8}

}
,
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which generates an even richer field,

F2 =
{
∅, {1, 2}, {3, 4}, {5, 6}, {7, 8}, {1, 2, 3, 4}, {1, 2, 5, 6}, . . . , {5, 6, 7, 8}
{1, 2, 3, 4, 5, 6}, . . . , {3, 4, 5, 6, 7, 8},Ω

}
.

Finally, at time t = 3, we have the finest partition, consisting of singletons

P3 = { {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8} } ,

which generates the richest field F3, consisting of all possible subsets of Ω.
We note that, as time goes by, we get richer and finer fields. We say that this
sequence of fields is increasing, in the sense that all of the events in Ft are
included in Ft+1. A partition with smaller subsets is associated with more in-
formation, and it generates a richer field.

DEFINITION 11.6 (Filtration) An increasing sequence of σ-fields

F0 ⊆ F1 ⊆ F2 ⊆ · · ·

defined on a common sample space Ω is called a filtration.

A filtration defines precisely how information is collected by observing a stochas-
tic process. This concept can also be defined for continuous-time processes with
a continuous state space, but this requires more sophisticated mathematical ma-
chinery. However, the essential message is quite simple:

The sequence of dynamic decisions that we make while observing
the stochastic process at times t = 0, 1, 2, . . . ,must reflect the avail-
able information and cannot be anticipative.

The piece of advice with which we have opened this section is clearly not
implementable: It would require knowledge of the future. In that case, we have
a sample space consisting of two outcomes,

Ω =
{
ωup, ωdown

}
,

corresponding to bull and bear markets, respectively. The corresponding field,
at the end of the holding period H is

FH =
{
∅, {ωup}, {ωdown},Ω

}
,

However, at time t = 0, we do not know anything, and the corresponding field
is just

F0 =
{
∅,Ω

}
.

Thus, the initial decision should be a “degenerate” random variable, measur-
able with respect to F0, which means that the decision has to be constant and
the same for whatever future scenario. The piece of advice results in a non-
measurable mapping, which is not a proper random variable and assumes clair-
voyance. Let us generalize this idea to a truly dynamic case.
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Example 11.18 Nonanticipative decisions and measurability

Let us consider the scenario tree of Fig. 11.10 and define consider de-
cision variables Zb

t and Zs
t , representing the number of stock shares

that we buy and sell, respectively, at time t. At time t = 0, we have
a unique decision, since we can just buy or sell, here and now. From
the perspective at time t = 0, the decisions made at the next time in-
stants are random variables, as they depend on the observed path of
the stochastic process and the expectations about the future, which are
encoded in the scenario tree. The random variables at time t must be
Ft-measurable. If we are at node n4 in the scenario tree of Fig. 11.10,
we cannot say “buy if scenario is ω3” and “do not buy if scenario is
ω4.” The decision, whatever it is, must be the same for the two sce-
narios ω3 and ω4. Otherwise, the random variable corresponding to
the decision at that node would not be constant over the outcomes in-
cluded the event {ω3, ω4}, and it would not be measurable; we would
be in the same trouble as in Example 11.17.

Technically speaking, we say that decisions must be adapted to the filtra-
tion Ft. Dynamic stochastic optimization models, as we shall see in Section
15.6, must comply with nonanticipativity.

Problems

11.1 The capitalXt of an insurance company, measured in millions of dollars,
follows the generalized Wiener process

dXt = 0.5 dt+ 2 dWt,

where unit time is one year. The insurance company goes bankrupt if capital
gets negative. Find an initial capital, such that the probability that capital is
negative at the end of a four-year period is no more than 5%.
Note: Actually, bankruptcy may well occur before the four years, and we should
study the distribution of hitting times, i.e., the random time at which a stochastic
process assumes a given value. Since this is beyond the scope of this book, we
assume that capital is only checked at the end of the time horizon.

11.2 Consider a stochastic process described by the stochastic differential
equation dSt = µt dt + σt dWt, where drift and volatility are piecewise con-
stant functions of time (measured in years). For the first three years, µt = 2 and
σt = 3; for the next three years, µt = 3 and σt = 4. If the initial value of the
process is S0 = 5, what is the probability distribution of the value of the process
at the end of the six-year period?

11.3 Assume that Yt is a GBM with drift coefficient 3 and volatility coeffi-
cient 7.
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Find the stochastic differential equation of the process Xt = eY
2
t .

Is Xt a GBM?

11.4 The stochastic process St is a GBM with drift coefficient 2 and volatility
coefficient 3. Write the stochastic differential equation for the process

Yt = (St − 10)2 · e−2t.

11.5 Given a standard Wiener process Wt, find:

The joint probability

P
{

(W5 −W2 ≥ 0) ∩ (W1 ≤ 0)
}
.

The variance
Var
[
(W5 −W2) ·W1

]
.

Note: The set theoretical notation ∩ refers to the intersection of events, and is
equivalent to the logical and. We look for the probability of a joint event.

11.6 The stochastic processes Sa(t) and Sb(t) are two GBMs and represent
two stock prices driven by the same sources of risk (i.e., they share the same
driving Wiener process). The drift and volatility coefficients for the two stocks
are denoted by µa, µb, σa, and σb, respectively. Given the two initial prices,
Sa(0) and Sb(0), find the expected value of the product and ratio of prices,
E[Sa(T ) · Sb(T )] and E[Sa(T )/Sb(T )], at time t = T .

11.7 Consider the stochastic process Yt = eWt , where Wt is a standard
Wiener process.

Is Yt a geometric Brownian motion? Is it a martingale? Why or why not?
Compute the conditional probability P{Y10 > 150 |W5 = 3}.

11.8 Consider the two GBMs

dS1(t) = µ1S1(t) dt+ σ1S1(t) dW (t),

dS2(t) = µ2S2(t) dt+ σ2S2(t) dW (t),

which are driven by the same standard Wiener process.

Find the stochastic differential equation for the process Y (t) = S1(t) ·
S2(t). [Hint: Use logarithms to get rid of the product, as well as additivity
of integrals, which extends to stochastic integrals, too.]
Imagine a Finnish investor, whose home currency is EUR, investing on
the US stock market. The stock price in EUR is the product of the stock
price in USD and the exchange rate between the two currencies. Would
you use the above model in this case? Why or why not?

11.9 Let yt be the continuously compounded yield-to-maturity, at time t, of a
zero-coupon bond maturing at time T (let us assume that the face value is $1).
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The yield-to-maturity is modeled by the following stochastic process with mean
reversion:

dyt = α · (y − yt) dt+ σyt dWt,

where α, y, and σ are known parameters related to speed of mean reversion,
long-term yield, and volatility of yield, respectively.

Find the stochastic differential equation for the price of a zero-coupon
bond, depending on yield yt.
Does the volatility of the bond price behave in a sensible way? Why?

Further reading
All mathematically inclined textbooks on financial engineering cover the
material in this chapter. See, e.g., [1] or [12].
There is a huge literature on modeling with stochastic processes. For a
generic textbook treatment, you might refer, e.g., to [16] or [18].
Stochastic calculus for finance is dealt with quite thoroughly in [5] and
[17]. A shorter treatment can be found in [15].
Numerical solution of stochastic differential equation is treated in [13],
where the very meaning of solution for this kind of equations is also dis-
cussed. A short overview is also given in [10].
We did not deal with Lévy processes extensively. The interested reader
may refer to [6].
An extensive treatment of Monte Carlo methods, including the alternative
low-discrepancy sequences, is given in [14]. An excellent treatment is
also given in [7], which is more specifically oriented toward financial
applications. An introductory, but less comprehensive treatment may be
found in [2] or [3]; the former provides MATLAB code, whereas the latter
is based on R.
Scenario tree generation for stochastic optimization is covered, e.g., in [9]
and [11].
We did not cover discrete-time models based on financial time series. An
elementary treatment geared toward finance is given in [4], whereas the
monumental [8] deals with time series in general.
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Chapter Twelve

Forward and Futures
Contracts

Forward and futures contracts are classified as linear derivatives, unlike options,
which are characterized by nonlinear payoffs. We have already introduced for-
ward and futures contracts related with interest rates and fixed-income assets in
Chapters 3 and 4. There, we used no-arbitrage arguments to find forward rates
and to evaluate forward rate agreements. In Section 4.3, we have also pointed
out that forward and futures rates need not be the same, because of the potential
interaction of interest rate movements with daily marking-to-market of futures
contracts. As we know from Section 1.2.6, a further difference between forward
and futures is standardization, which has the effect of making perfect hedging
impossible in practice.

In this chapter, we consider forward and futures contracts on equity and
foreign currencies. Under stylized assumptions, we show in Section 12.1 how
no-arbitrage arguments immediately lead to a fair forward price, which is the
only price such that the initial value of the contract is zero. On the contrary,
applying the idea to derivatives written on commodities is more troublesome,
as commodities cannot be included in a financial portfolio, and they also raise
issues with storage costs as well as limitations to short-selling. Finding the fair
futures price is less trivial, due to the presence of daily cash flows. Neverthe-
less, as we show in Section 12.2, forward and futures prices would actually be
the same, if interest rates were constant. Clearly, this assumption makes little
sense for interest rate derivatives, but it might be considered as a reasonable
approximation for short-maturity contracts on other assets. Even if we approx-
imate futures prices with forward prices, hedging with futures is complicated
by the limited availability of underlying assets and maturities. Nevertheless,
it is a fact of life in risk management that most hedging is carried out with
liquid, exchange-traded futures contracts, rather than over-the-counter forward
contracts. We discuss hedging with linear derivatives and some of the related
issues in Section 12.3. In particular, we consider hedging using index futures
and how we may account for daily marking-to-market by tailing a hedge based
on futures contracts.

Throughout the chapter, depending on notational convenience, we will lib-
erally alternate notation like S(t) and F (t, T ) with St and Ft, for spot and for-
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ward/futures prices at time t, respectively. In the second case, the contract ma-
turity is left implicit.

12.1 Pricing forward contracts on equity and foreign
currencies

In this section, we use a deceptively simple argument to find the price of forward
contracts on stock shares and foreign currencies. The key concept is the spot–
forward parity theorem, which we shall introduce for the case of a non-dividend-
paying stock share. Then, we extend the idea to the case of assets providing the
owner with income. This case includes stock shares paying dividends, as well as
foreign currencies. Throughout this section, we will assume that interest rates
are constant, and we will be able to appreciate the relevance of this assumption.

12.1.1 THE SPOT–FORWARD PARITY THEOREM

Let us denote the spot price of an asset at time t by S(t), and its forward price
for delivery in T by F (t, T ). At time t = 0 we know the spot price S(0), and we
wonder about the fair forward price F (0, T ), which we would like to set in such
a way that the value of the contract is zero, so that (in principle) it costs nothing
to take a position in the forward. We assume that the continuously compounded
risk-free rate r is constant, and that the asset does not provide any income.

Let us compare the two following strategies:

Invest an amount S(0) at the risk free rate over the time interval [0, T ].
The cash flow at time t = 0 is −S(0), and the cash flow at time t = T is
S(0)erT, with no risk.
Invest an amount S(0) to buy one unit of the asset and enter into a short
position to sell the asset at time T at the forward price F (0, T ). The cash
flow at time t = 0 is again −S(0), and the cash flow at time t = T is
F (0, T ), with no risk.

Since both strategies require the same initial investment and are risk-free, there
is only one forward price that leaves no room to arbitrage opportunities:

F (0, T ) = S(0)erT. (12.1)

This condition is known as spot–forward parity condition.
An alternative, but equivalent and quite instructive argument is based on the

hedging needs of the part holding the short position in the contract. The short
position will have to deliver the item at the forward price, no matter what the
spot price S(T ) is. Waiting until maturity to buy the asset in order to deliver it
is quite risky. However, the short position may just borrow S(0) in order to buy
the asset, which is delivered at the forward price F (0, T ). The initial net cash
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flow is zero and there is no risk. The cash flow at maturity is

F (0, T )− S(0)erT,

when the short position sells the asset to the corresponding long position and
repays debt. The no-arbitrage condition requires that this cash flow is zero,
from which we find Eq. (12.1) again.1 This kind of strategy is called cash-
and-carry, and S(0)erT is the cost of buying the underlying asset and holding
it until maturity. The forward price should just be the cost of cash-and-carry,
if there is no additional cost or income from holding the asset. If we want to
hedge a long position, then it is easy to see that we should sell the asset short, in
such a way that we hedge the risk of taking delivery when the future spot price
is smaller than the agreed forward price. In this case, we invest the proceeds of
the short sale at the risk-free rate r, and buy the asset back at the forward price
to close the short sale.

These hedging arguments are useful to appreciate the hidden assumptions
behind Eq. (12.1):

When hedging the short position, we buy and hold the asset. On the
one hand, we have implicitly assumed that the asset does not yield any
income, as it would be the case with a stock share paying a dividend.
Furthermore, carrying a stock share in inventory costs nothing.2 However,
with a physical commodity, storage cost would be an issue.
When hedging a long position, we should short-sell the underlying asset,
and we are assuming that there are no limit to short-selling. This is ar-
guably not true for commodities that are not investment assets. In such a
case, rather than a spot–forward parity, we can only claim that there is an
upper bound on the forward price,

F (0, T ) ≤ S(0)erT.

If we can only buy and hold the asset (at no extra storage cost), it is easy
to see that a forward price larger than S(0)erT, which is the cost of cash-
and-carry, would lead to an arbitrage strategy. However, we may observe
a lower price if we cannot take exploit the opportunity of short-selling
and then buying the asset forward, to close the short position in the asset.
We may borrow or lend money at the same constant risk-free rate r,
and markets are perfectly liquid, so there are no frictions (no transac-
tion costs, no taxes, no bid-ask spreads). Clearly, these assumptions are
not strictly true, but they are approximately true for large institutional in-
vestors, which might be sufficient to enforce or get close to spot–forward
parity.

1See Example 2.12 for an example of arbitrage strategy if the spot–forward parity is violated.
2We might say that the cost-of-carry is the risk-free rate, which is used to finance the purchase
of the asset. The assumption that the transaction can be funded at the risk-free rate is clearly
debatable, and recent derivative models pay due attention to the cost of funding.
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The spot–forward parity Eq. (12.1) is somewhat counterintuitive, as one
seemingly sensible guess for a fair forward price would be

F (0, T )
?
= E[ST ]. (12.2)

A bit of reflection shows that the expectation should be intended in a market-
consensus sense, since individual investors may have different expectations,
making the definition of a sensible expectation rather difficult in practice. Any-
way, spot–forward parity seemingly rules out any role for expectations, but this
is true if the assumption of idealized and frictionless markets is valid. In any
case, we have seen in Section 2.3.4 that the guess of Eq. (12.2) would make
sense under a risk-neutral measure Qn. In fact, Eq. (2.25) suggests the follow-
ing guess:

F (0, T )
?
= EQn [S(T )] = S(0)erT. (12.3)

We introduced the risk-neutral measure Qn in a very simple single-step bi-
nomial model. It turns out that our findings may be extended to continuous-
time models. However, Eq. (12.3) relies on the risk-neutral measure, which is
valid if we assume a constant interest rate. If interest rates are stochastic, Eq.
(12.3) makes no sense. There exists a probability measure, called forward risk-
neutral,3 such that the forward price is indeed the expected spot price in the
future, but this is a different measure, if interest rates are random.

Last, but not least, we observe that Eq. (12.1) may be generalized to

F (t, T ) = S(t)er·(T−t),

which is consistent with the spot–forward convergence condition F (T, T ) =
S(T ), i.e., at maturity, the forward price for immediate delivery is just the spot
price. It is also important to realize that a parity condition does not imply any
causality. It is tempting to think that, given the spot price, we find a fair forward
price. This sounds at odds with the common claim that financial speculation
on the huge derivatives market has an adverse effect on spot prices. In fact, the
parity relationship is just a consistency condition, and it does not say anything
about which price is the driving force. Indeed, the tail may wag the dog.

12.1.1.1 The value of a forward contract

The forward price is the only price, such that the initial value of the contract is
zero. The same consideration applies to vanilla interest rate swaps.4 There is
only one swap rate, such that no money needs to be exchanged when the swap
is agreed on. On the contrary, in the case of asymmetric contracts like options,
a range of strike prices is available, associated with different (positive) option
prices. However, after the forward contract is agreed at time 0, with delivery

3See Section 14.3.3.
4See Section 4.4 for how to value a swap agreement after its inception.
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price F (0, T ), the spot price will move randomly, and the forward price will,
too. At time t, a different forward price F (t, T ) would apply to delivery at time
T . Hence, the old contract will have a positive or negative value, depending on
whose position we are holding.

What we know is that, at time 0, the value of the forward contract is zero,
which we may formally express by using a pricing operator Πt(·) which maps
a future (random) cash flow into its value at time t:

Π0

[
S(T )− F (0, T )

]
= 0.

However, we are wondering about the value at a later time t, Πt

[
S(T )−F (0, T )

]
.

We take advantage of the availability of a new forward price F (t, T ) as follows:

Πt

[
S(T )− F (0, T )

]
= Πt

[
S(T )− F (t, T ) + F (t, T )− F (0, T )

]
= Πt

[
S(T )− F (t, T )

]︸ ︷︷ ︸
=0

+Πt

[
F (t, T )− F (0, T )

]
=
[
F (t, T )− F (0, T )

]
· e−r(T−t), (12.4)

where we use the linearity of pricing,5 the fact that the value of the new forward
contract is zero, and the fact that deterministic cash flows can be just discounted
at the risk-free rate. We observe that the value of the contract is obtained by
replacing, in the discounted payoff, the random future spot price S(T ) by its
current forward price F (t, T ). Thus, we are using the forward price as a sort
of forecast, which should not be taken for granted. We found a similar result in
Section 4.2.1, when dealing with forward rate agreements.

The result in Eq. (12.4) applies to a long position and makes intuitive sense.
If the current forward price increases, the old contract (whose delivery price is
fixed to the old forward price) gets more appealing to the long position and
assumes a positive value. Signs are reversed for a short position. We may also
interpret a futures contract as a sort of forward in which the accumulated value
is paid immediately at the end of each day, and the delivery price is reset, so
that the new value of the contract is always zero.

12.1.2 THE SPOT–FORWARD PARITY THEOREM WITH
DIVIDEND INCOME

Let us consider a forward contract written on a stock share that will distribute
dividends before the maturity of the contract. If the underlying asset provides
its owner with an income, with present value I , the spot–forward parity rela-
tionship becomes

F (0, T ) =
(
S(0)− I

)
· erT. (12.5)

To interpret this relationship, we may think of the cost of hedging a short po-
sition by a cash-and-carry strategy. Clearly, the income provided by the asset

5See Section 2.4.1.
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reduces the hedging cost. The net cash flow at maturity is

F (0, T ) + I · erT − S(0)erT.

Setting this expression to zero yields Eq. (12.5). The hedge for a long position
would be reversed and, in this case, when we close the short sale and give back
the underlying asset to its legitimate owner, we should also compensate her for
the missed dividends, paying an additional amount I · erT.

In some cases, it may be convenient to think of a dividend flow that is
paid continuously, rather than a sequence of lump payments. In the case of a
continuous dividend yield q, we find

F (0, T ) = S(0)e(r−q)T. (12.6)

We see, as with lump dividends, that the dividend yield lowers the forward price,
but the formula should be clarified a bit. To this aim, we should think that the
dividend flow is continuously reinvested in the stock itself. Imagine again that
we hold a short position in the contract, but at time t = 0, we set up the hedge
by buying only an amount

h(0) = e−qT < 1 (12.7)

of the underlying asset, financing this purchase by borrowing S(0)e−qT at the
risk-free rate. We denote by h(t) the amount of the underlying asset that we
hold at time t as a hedge. To see how the hedge will change over time, let
us consider a small time interval δt. Given price S(t), over the time interval
[t, t+ δt], we receive a cash amount

qh(t)S(t) · δt,

which is reinvested by purchasing an additional amount

qh(t)S(t) · δt
S(t)

= qh(t) · δt

of the stock share. This additional amount is the increment in the asset holding
over the time interval:

δh(t) = h(t+ δt)− h(t) = qh(t) · δt.

This is actually an approximation, but if we let δt → 0, we find a familiar
differential equation

dh(t)

dt
= qh(t),

whose solution, given the initial condition of Eq. (12.7), is

h(T ) = h(0)eqT = e−qT eqT = 1.
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Thus, we end up holding exactly the stock share that we need to hedge the short
position at maturity T . The net cash flow at time T will be

F (0, T )− S(0)e−qT erT.

By setting this to zero, we find Eq. (12.6).
A continuous dividend yield may sound like a rather unrealistic assumption.

However, it may be useful, for instance, to deal with derivatives written on stock
market indexes. In that case, the index is affected by all stock shares paying
dividends with different timings. Keep in mind that the index is not protected
against dividends, which have the effect of reducing stock share prices. The
overall effect of many lump payments may be approximated by a continuous
yield. As we show in the next section, a forward on a foreign currency can be
interpreted in this way, too.

12.1.3 FORWARD CONTRACTS ON CURRENCIES

Let S(0) be the current spot price in our domestic currency (say, EUR) of one
unit of foreign currency, and let F (0, T ) be the forward price for delivery at
time t = T . The parity relationship is

F (0, T ) = S(0)e(rd−rf )T, (12.8)

where rd is the continuously compounded domestic risk-free rate and rf is the
foreign risk-free rate. We may interpret the parity relationship as a condition
involving an asset, the foreign currency, which provides a risk-free income at
the continuous yield rate rf . To prove Eq. (12.8) formally, let us compare the
following two investment strategies, available, e.g., to an Italian investor (thus,
the domestic rate is the rate on EUR, and the foreign rate is the rate on, say,
USD):

1. She may invest 1 at rate rd for a time interval of length T . Hence,
terminal wealth is

erdT.

2. She may exchange 1 and buy $1/S(0), which is invested at rate rf for
a time interval of length T . Then, terminal wealth in USD is converted
back to EUR, at no risk, by taking a short position in the forward contract.
This yields the following wealth:

F (0, T )erfT

S(0)
.

Since the two strategies are both riskless, no-arbitrage dictates that they must
yield the same terminal wealth,

erdT =
F (0, T )erfT

S(0)
.
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FIGURE 12.1 Alternative trades using a foreign currency forward.

A simple rearrangement yields Eq. (12.8). The argument can be visualized as
shown in Fig. 12.1. The two paths, where arcs are labeled by a gain factor
multiplying the flow of money, should yield the same terminal wealth. If a path
yields a lower overall gain, we can reverse its flow and create wealth out of
nothing. More specifically:

If the quoted forward price is lower than the fair one, it is cheap to buy the
currency forward in the future, which can be used to repay a debt in the
foreign currency. Thus, we should borrow the foreign currency, convert it
to domestic currency, which is invested at the domestic risk-free rate. Part
of the terminal wealth is converted to the foreign currency, at the cheap
forward price, to close the debt.
If the quoted forward price is higher than the fair one, there is an advan-
tage in selling the currency forward in the future. In this case, we should
invest in the foreign currency, at the foreign risk-free rate. To do so, we
borrow domestic currency at the domestic risk-free rate, convert it to the
foreign currency which is invested and converted back to domestic cur-
rency at the overstated forward price. Part of the resulting wealth is used
to pay the outstanding debt in the domestic currency.

Example 12.1 A currency arbitrage

To see how an arbitrage opportunity may arise if parity is violated,
say that the two-year rates in Australia and the USA are 5% and 7%,
respectively, and that the spot price of 1 AUD is 0.62 USD. Then, the
two-year forward price should be

0.62× e(0.07−0.05)×2 = 0.6453.

Now assume that F (0, 2) = 0.63. The forward price is lower than it
should be, so it is cheap to buy AUD forward. Then, we can:
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Borrow 1000 AUD at 5% per annum for two years and convert
them to 620 USD, which are invested at 7%.
Enter a forward contract to buy 1000× e0.05×2 = 1105.17 AUD,
which is the amount we shall need to repay our debt in AUD, for
1105.17× 0.63 = 696.26 USD.

The 620 USD grow to 620× e0.07×2 = 713.17 USD; 696.26 are used
to buy the AUD that we need to repay our debt, resulting in a risk-free
profit of 16.91 USD.

If, on the contrary, the forward price is too large, say 0.66, we
should sell AUD forward. Thus, the strategy is as follows:

Borrow 1000 USD at 7% per annum for two years and convert
them to 1000/0.62 = 1612.90 AUD, which are invested at 5%.
At maturity, we will have 1612.90× e0.05×2 = 1782.53 AUD.
Enter a forward contract to sell 1782.53 AUD for 1782.53×0.66 =
1176.47 USD.

At maturity, we sell 1782.53 AUD for 1176.47 USD, but we need
only 1000× e0.07×2 = 1150.27 USD to repay our debt, resulting in a
risk-free profit of 26.20 USD.

As usual, forward and futures contracts on foreign currencies may be used
for both speculation and hedging. Many transactions on currencies involve
banks with good credit standing, and for this reason, this is a kind of under-
lying asset for which OTC forward contracts are more common, whereas in
other cases futures contracts are the rule. We should also mention that vanilla
swaps on foreign currencies are available as well. Just like vanilla interest rate
swaps, currency swaps may be priced by regarding them as portfolios of simple
forward contracts.

12.1.4 FORWARD CONTRACTS ON COMMODITIES OR ENERGY:
CONTANGO AND BACKWARDATION

From the spot–forward parity formula,

F (t, T ) = S(t)er·(T−t),

where the cost-of-carry is just the risk-free rate, we may observe that the for-
ward price is always above the spot price. Hence, the spot–forward convergence
will be as in Fig. 12.2(a), where the forward price converges to the spot from
above. This kind of pattern is called contango. However, when the asset is
providing income, as is the case of a dividend yield q, the parity relationship
becomes F (t, T ) = S(t)e(r−q)·(T−t), where the cost-of-carry is reduced. If
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FIGURE 12.2 Different patterns of spot–forward convergence: (a) contango, (b) normal
backwardation.

q > r, the cost-of-carry may even get negative, and in this case convergence
will be from below, as in Fig. 12.2(b). This kind of pattern is called normal
backwardation.

When dealing with contracts on commodities or energy, the picture gets
more complicated. On the one hand, commodities may be difficult to store,
and this increases the cost-of-carry. On the other hand, holding a commodity
may in some cases provide its holder with a convenience yield. As a result, we
may observe either a backwardation or a contango pattern, even for the same
underlying asset at different times. We should also note that the no-arbitrage
argument may break down in the case of assets that are not suitable as invest-
ment purposes. In particular, short sales may be not quite feasible. Hence, as
we noted in Section 12.1.1, it may be the case that we only have an upper bound
on the forward price, and backwardation may be observed.

In general, pricing contracts on nonfinancial assets requires dealing with
strongly incomplete and possibly illiquid markets, where the idealized assump-
tions behind no-arbitrage arguments break down. We should note that, in such a
context, the terms contango and backwardation may refer to the term structure
of forward prices, where we do not observe a single price F (t, T ) over time for
a fixed maturity, as in Fig. 12.2, but rather we fix time t and plot futures prices
for a range of maturities. When forward prices are decreasing with maturity,
we speak of backwardation. When forward prices are increasing with maturity,
we speak of contango. In some cases, like contracts on energy, we may even
observe seasonal patterns in forward prices.

12.2 Forward vs. futures contracts

Assuming that we have a sensible way to find the fair forward price, can we
use it as a futures price as well? The answer is that by doing so we disregard
the impact of marking-to-market. It is true that if we sum all daily cash flows
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along the life of a futures contract, disregarding the time value of money, we
obtain the same total net cash flow that we receive from a forward.6 However,
if we consider the possibility of investing profits and financing losses with debt,
interest rates and their correlation with the underlying asset price come into
play. This is especially critical for interest rate futures, maybe less so for other
assets.

In general, we cannot take for granted that futures and forward prices are
the same, especially for contracts with long maturities. For short maturities
or assets whose prices are not correlated too much with interest rates, we may
approximate the futures price by a forward price. There is a case in which the
approximation is actually exact. The following clever argument shows that,
in fact, forward and futures prices are the same if interest rates are constant.7

Let us consider a time horizon consisting of T days. Time is indexed by t =
0, 1, 2, . . . , T , and the following sequence of events takes place:

We buy a certain number of futures contracts at time t = 0, during day
1, when the futures price is F0 (here, we streamline the notation from
F (t, T ) to Ft, for the sake of notational convenience). Thus, we hold a
long position. As we shall see, this position is changed dynamically over
time.
Marking-to-market occurs at the end of each day before maturity, and the
settlement futures prices are Ft, t = 1, 2, . . . , T − 1.
The first cash flow occurs at time t = 1, i.e., at the end of day 1, when the
settlement futures price is F1. Thus, the cash flow for one long position is
F1 − F0, the difference between the first settlement price and the futures
price at which we have bought the contract.
We have daily cash flows corresponding to the differences Ft−Ft−1. The
actual cash flow depends on the number of contracts we hold.
The contract matures at the end of day t = T , when the futures price FT
converges to the spot price ST . Depending on the underlying asset, the
contract may be finally settled in cash, or actual delivery of the underlying
asset takes place. For the sake of convenience, let us assume that the
contract is settled in cash,8 so that the last cash flow for one contract is
ST − FT−1.

We consider a fixed, continuously compounded risk-free rate, and we denote
the daily interest rate by δ. The key of the argument is that the trading strategy
is dynamic, based on taking and increasing a long position: At the end of each
day (before maturity), we increase the position by a factor eδ, corresponding to
capital growth over one day for a riskless investment. The additional positions
are entered at the settlement price, so they do not contribute to the cash flow on

6See Eq. (1.9).
7Here we follow the treatment given by [4], in an online technical note.
8From a mathematical viewpoint, this is inconsequential.
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that day, but they will at the end of the next day. Thus, our position consists of

e(k+1)δ, k = 0, 1, . . . , T − 1

units of the futures contract at each time instant. Note that the first position,
when we enter at time t = 0, is eδ. At the end of the first day it is increased
to e2δ, and it is increased to eTδ at the end of the day before maturity, at time
t = T − 1. Positive cash flows are invested up to maturity and grow by a factor
eδ each day, whereas negative cash flows are financed by debt that will be repaid
at maturity, growing by a factor eδ each day. At maturity, the contract is finally
settled and the final cash flow occurs.

The resulting sequence of cash flows, at the end of each day, is as follows:

(Fk − Fk−1)ekδ, k = 1, . . . , T.

Note that at time t = 1, we have a cash flow that results from holding the initial
amount eδ units,

(F1 − F0)eδ.

Keep in mind that, at the end of the day, we increase the position at the settle-
ment futures price; hence, this will affect the cash flow only the day after. At
the end of day T − 1, we finally increase the position to eTδ units, and the last
cash flow, at time t = T , is

(FT − FT−1)eTδ.

Since we hold a long position, the cash flows will be positive when the futures
price increases, and negative when it decreases. Cash flows are invested (or fi-
nanced) up to maturity, at time k = T , and grow by a factor eδ each day. Hence,
each cash flow corresponds to the following amount of money at maturity:

(Fk − Fk−1)ekδe(T−k)δ = (Fk − Fk−1)eTδ, k = 1, . . . , T.

By summing everything up, we find a telescoping sum where almost every term
is canceled, and the final profit/loss is

T∑
t=1

(Fk − Fk−1)eTδ = (FT − F0)eTδ = (ST − F0)eTδ.

Note that this amount is random, as it involves the price of the underlying asset
at maturity. We may combine this trading strategy with a riskless investment of
an amount F0 to yield a terminal wealth

F0e
Tδ + (ST − F0)eTδ = ST e

Tδ.

Now, imagine that the corresponding forward price, at time k = 0, is G0. If
we combine a riskless investment of an amount G0 and a long position in eTδ

forward contracts, we end up with the terminal wealth

G0e
Tδ + (ST −G0)eTδ = ST e

Tδ,
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where again we assume that the contract is settled in cash. These two investment
strategies require an initial investment F0 and G0, respectively, and yield the
same terminal wealth in any possible scenario. The consequence is that, by
no-arbitrage arguments, we must have

F0 = G0,

i.e., the futures and the forward price must be the same. In the reasoning, as
usual, we assume rather idealized markets, as well as no bid–ask spread in in-
terest rates. Hence, we should not believe that the conclusion is literally true,
but it might be a sensible approximation in some cases.

Remark. The relationship between forward and futures prices may be analyzed
in more detail by using probabilistic arguments related to risk-neutral pricing.
We have preferred an argument that emphasizes hedging, as this shows the need
for dynamic hedge adjustments when using futures. We will say more on risk-
neutral measures and the pricing of forward and futures contracts in Sections
13.7.3 and 14.3.3.

12.3 Hedging with linear contracts

In principle, by using OTC forward contracts, where we may choose at will
underlying asset, contract size, and maturity, we might hope to set up a per-
fect hedge. However, as someone said, a perfect hedge can only be found
in a Japanese garden. Some residual risk will remain, if the volume required
is uncertain, and forward contracts are not completely free from counterparty
risk, anyway. Furthermore, a hedge based on OTC contracts may be difficult
and expensive to unwind if the hedging needs change. Therefore, futures con-
tracts might be preferred for hedging purposes (and certainly for speculation
purposes), but this raises a few issues that we outline in this section.

12.3.1 QUANTITY-BASED HEDGING

Suppose that we hold QA unit of an asset with spot price St, and that we plan to
sell the asset at time T . We may hedge the risk exposure with a short position
in N units of a linear contract (forward or futures) maturing at T , with contract
sizeQF , written on the same asset. Assuming that the contract is settled in cash,
the cash flow at maturity will be

QAST +NQF (F0 − FT ),

where we neglect the time value of daily cash flows in the case of futures.
Thanks to spot–forward convergence, FT = ST , we may rewrite this cash flow
as

QAST +NQF (F0 − ST ) = (QA −NQF )ST +NQFF0.
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Thus, in order to eliminate randomness, we just have to eliminate dependence
on the random variable ST by choosing

N =
QA
QF

. (12.9)

In practice, unless we use a customized OTC contract, a certain rounding will
be involved, given the standardization of contract sizes. Therefore, we have to
round N to the integer number of contracts that we will actually buy or sell,
depending on the kind of hedge we need (long or short). If we consider a unit
exposure in the asset, i.e., if we set QA = 1, we talk of a hedging ratio, h =
1/QF , the number of contracts we need per unit of the asset. Standardization
of futures contracts also implies that we cannot choose the underlying asset and
the maturity at will, which introduces further sources of risk.

12.3.2 BASIS RISK AND MINIMUM VARIANCE HEDGING

When we hedge with futures, the hedge may be less than perfect because of a
maturity and/or an asset mismatch. A maturity mismatch may be of two kinds.
The hedging horizon T ∗, i.e., the horizon for which we want to hedge the risk
exposure, may be longer or shorter than the maturity T of the hedging instru-
ment. We discuss the related issues first. Then, we consider the more general
case involving an asset mismatch, too.

12.3.2.1 Hedging with a maturity mismatch

Let us consider an asset with spot price St, and a relatively short hedging hori-
zon T ∗. We assume that futures contracts are available for that asset, with ma-
turities larger than T ∗. Then, we may choose a contract with maturity T > T ∗,
so that the cash flow at the hedging horizon is (for a short hedge)

ST∗ + h(F0 − FT∗), (12.10)

where we ignore the time value of daily cash flows and use the hedging ratio
h, the number of contracts per unit of the underlying asset. Here, h need not
be 1, since, before maturity, we cannot claim that ST∗ = FT∗ . The difference
between the future spot price and the futures price gives rise to basis risk. If we
assume that futures and forward prices are close enough, and that spot–forward
parity holds, we may rewrite Eq. (12.10) as follows:

ST∗ + h
[
F0 − ST∗er·(T−T

∗)
]

= h+ ST∗
[
1− her·(T−T

∗)
]
. (12.11)

Hence, we may easily find the hedge ratio that will eliminate uncertainty:

h = e−r·(T−T
∗). (12.12)

This formula has clear limitations: We ignore uncertainty in the risk-free rate,
which is related to the assimilation of futures to forward prices, and take spot–
forward parity for granted.
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If, on the contrary, we have a long-term exposure, and no long-term futures
contract is available, we may consider the possibility of choosing short-term
contracts, which are closed before their maturity and replaced by new contracts.
This kind of strategy, where we roll the hedge forward in time, is called stack-
and-roll. Clearly, when the time horizon is long, ignoring the effect of daily
marking-to-market becomes questionable. Furthermore, liquidity issues may
come into play, as the following well-known example illustrates.

Example 12.2 The Metallgesellschaft case

The following well-known and quite instructive real-life story is well
suited to illustrate the dangers of stack-and-roll and the role of liq-
uidity. At the beginning of the 1990s, Metallgesellschaft (MG) sold
rather long-term contracts (5–10 years) for the supply of oil-related
products, like heating oil, at a fixed delivery price. Hence, in order
to hedge the risk of an increase in the price of oil and its derivatives,
they took long positions in oil futures. Since oil futures were not
available with a corresponding long maturity, the hedge was rolled
forward. Then, after 1992, a drop in the oil price occurred. In terms
of the contracts that MG were selling, this was great news. Unfortu-
nately, this implied considerable losses in the hedge, and this had to
be sustained immediately, given marking-to-market. These losses, in
principle, would have been compensated in the future by the payoff of
the contracts that MG had sold, but this did very little to alleviate the
ensuing short-term liquidity issues. In the end, the hedging strategy
had to be stopped and the outstanding contracts with their customers
were canceled, with a loss that is estimated to be around $1.33 billion.

12.3.2.2 Minimum variance hedging

When using futures contracts for hedging, basis risk does not only arise from
a maturity mismatch. It may well be the case that we want to hedge against
adverse movements in the price St of an asset, for which no futures contract is
available. Then, we may resort to a contract written on another asset, whose
price Pt is correlated with St. This strategy is called cross-hedging. If the
hedging horizon is T ∗ < T , where T is the maturity of the futures contracts,
and we disregard cash flow timing, a short hedge with the naive ratio h = 1
would yield the following cash flow at time T ∗:

ST∗ + (F0 − FT∗) = F0 + (ST∗ − PT∗)︸ ︷︷ ︸
asset mismatch

+ (PT∗ − FT∗)︸ ︷︷ ︸
maturity mismatch

,

where we rewrite the expression in order to point out the two components of
the hedging error. Hence, we must optimize the hedging ration h, in order to
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improve performance. As we have seen in Section 2.2.3.2, a simple strategy to
reduce basis risk is minimum variance hedging, where choose the hedging ratio
in order to minimize

Var
[
ST∗ + h · (F0 − FT∗)

]
= σ2

S + h2σ2
FT∗
− 2hρσST∗σFT∗ ,

where σ2
ST∗

and σ2
FT∗

are the variances of the spot and futures price at time T ∗,
respectively, and ρ is their correlation coefficient. Minimizing variance with
respect to h yields the optimal hedging ratio,

h∗ = ρ · σST∗
σFT∗

. (12.13)

Note that this boils down to the perfect hedge if a contract is available with
maturity T ∗ for the asset we have to sell (or a perfectly correlated asset).

It is interesting to note that the hedge ratio h∗ is essentially the slope of
the regression line when we regress the spot price on the futures price. This
makes intuitive sense, as in linear regression we aim at reducing the variance of
the residuals, whereas here we minimize the variance of the hedging error. We
obtain the same result, if we consider the random variables,

δS = ST∗ − S0, δF = FT∗ − F0,

i.e., the random variations in the spot and futures prices. This is relevant if we
do not really plan to sell the asset, but we consider its potential loss of value.
Since S0 does not contribute to variance, this is mathematically inconsequential
and corresponds to shifting the axes in the regression model. It may also be
interesting to consider what happens if we consider returns, i.e., relative rather
than absolute variations. This will play a role in Section 12.3.3, where we deal
with hedging stock portfolio risk by stock index futures and consider the role
of the portfolio beta in finding the hedge ratio. Then, in Section 12.3.4, we deal
with one more missing piece in the picture, i.e., how we might account for daily
marking-to-market when hedging with futures.

12.3.3 HEDGING WITH INDEX FUTURES

When we need to hedge a stock portfolio, index futures come in handy. Need-
less to say, it would be impossible to trade a wide array of futures contracts on
individual stock shares, as the market would not be liquid enough. Hence, we
have to hedge the portfolio with stock index futures, which may eliminate the
systematic risk component. As we have seen in Section 8.2.1, systematic risk
cannot be easily eliminated by pure diversification, unlike specific risk. How-
ever, by taking a suitable position in stock index futures we may change the beta
of the portfolio, possibly making it market-neutral. Even if we neglect specific
risk, we have to settle for an imperfect hedge. On the one hand, even if we hold
a well-diversified portfolio, it may differ from the index. In particular, its beta
may be larger or smaller than 1. On the other hand, there may be a mismatch



12.3 Hedging with linear contracts 497

between the hedging horizon and the contract maturity. The optimal amount of
futures contracts in the hedge may be found by minimizing the variance of the
hedging error.

Futures contracts are available on market indexes like the S&P500, which
is broad enough to be used to hedge stock portfolio risk for the US stock market.
Other indexes must be used for other stock markets. As we have pointed out in
Section 12.1.2, we may use a continuous dividend yield to account for the div-
idend income provided by a portfolio matching the index. Stock-index futures,
by their very nature, must be settled in cash, as delivering a well-diversified
portfolio consisting of several stock shares (500 in the case of the S&P500 in-
dex) would be impractical. Here, when we talk about the futures price, we do
not really mean a price, but rather an index value which must be converted to a
monetary value. In the case of S&P500 futures, the futures price is multiplied
by a factor MF = 250.

Example 12.3 Marking-to-market S&P500 index futures

Suppose that we sell three S&P500 futures when the futures price is
$1963. At end of the day, if the settlement price is $2001, we will
observe a negative cash flow of

$250× 3× (1963− 2001) = −$ 28,500

on our margin account.

Let us denote the current value of the portfolio by

VA = QAS(0),

where, in this case,QA may be interpreted as the number of shares of a common
fund that we hold, and S(0) is the monetary value of each share, which is the
underlying asset. The “face value” of each futures contract, with maturity T , is

VF = MFF (0, T ),

where MF is the multiplier transforming the index value to a monetary price
(as we have said, MF = 250 for S&P500). To find the number QF of required
futures contracts, we may consider the random variable

QAS(T ∗)−QFMF

[
F (0, T )− F (T ∗, T )

]
, (12.14)

where T ∗ ≤ T is the hedging horizon. For the sake of simplicity, let us neglect
the effect of marking-to-market.9 We may streamline Eq. (12.14) by consider-

9We shall discuss how we may to account for marking-to-market by applying a tailing correction
later, in Section 12.3.4.
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ing the equivalent expression

δS + hMF · δF, (12.15)

where we define the (absolute) variations

δS
.
= S(T ∗)− S(0), δF

.
= F (T ∗, T )− F (0, T ),

and h = QF /QA is the hedging ratio. Note that the quantities in Eqs. (12.14)
and (12.15) are not really the same, but they are equivalent in terms of variance,
as they differ by a constant. If we introduce the standard deviations σδS and
σδF of the two variations, and their correlation coefficient ρδS,δF , the familiar
minimum variance hedging drill yields the optimal hedging ratio

h∗ = −ρδS,δF
MF

· σδS
σδF

, (12.16)

where the negative sign just underlines that we should take a short position. If
we introduce the beta between the two absolute variations,

βδS,δF
.
= ρδS,δF ·

σδS
σδF

, (12.17)

we may write the optimal number of futures contract as

Q∗F = −βδS,δF ·
QA
MF

= −βδS,δF ·
VA

MFS(0)
, (12.18)

which should be rounded to an integer number.
We may also find Eq. (12.18) by estimating a linear regression model,

δS = βδS,δF · δF + ε.

Since we are regressing between variations, we do not include the intercept
term in the regression. If we neglect the error term ε and plug the resulting
approximation,

δS ≈ βδS,δF · δF,

into Eq. (12.15), the hedging condition becomes

βδS,δF · δF + hMF · δF = 0.

Thus, we find

h∗ = −βδS,δF
MF

,

which is equivalent to Eq. (12.18).
We should note that the beta in (12.17) involves absolute variations, and it

should not be confused with the beta in the single-index model of Section 9.2,
which involves returns, i.e., relative variations. Let us recall the index model in
the following form:

rp = αp + βprM + εp,
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which relates the portfolio return rp with the return rM on the index and the
specific risk factor εp. In our case, we may write

rp =
δS

S0
,

and, if we assume that relative changes in the index are tracked by relative
changes in the index futures price, we also have

rM ≈
δF

F0
.

In order to relate the portfolio beta with the beta of absolute variations, we
observe that

Cov

(
δS

S0
,
δF

F0

)
=

Cov(δS, δF )

S0F0
,

Var

(
δF

F0

)
=

Var(δF )

F 2
0

.

Therefore,

βp =
Cov

(
δS
S0
, δFF0

)
Var
(
δF
F0

) = βδS,δF ·
F0

S0
.

Now, let us rewrite Eq. (12.18) by using the portfolio beta:

Q∗F = −βp ·
S0

F0
· QA
MF

= −βp ·
VA
VF

. (12.19)

Hence, we find an expression based on a ratio of values, rather than a ratio of
quantities.

Equation (12.19) makes intuitive sense. If the portfolio has β > 1, i.e., it
is quite exposed to systematic risk, we should increase the hedging ratio with
respect to the case of a unit beta. Otherwise, under-hedging would result. On
the contrary, we should decrease the hedging ratio when β < 1, in order to
avoid over-hedging.

If we are worried about short-term drops due to market turmoil, we may
use index futures to temporary hedge systematic risk away, without the need of
liquidating huge portfolio positions, with a potential adverse market impact. We
may also change the portfolio beta according to market-timing strategies (see
Problem 12.3).

12.3.4 TAILING THE HEDGE

The idea of tailing the hedge stems from the fact that positive cash flows from
marking-to-market may be invested from each settlement date to the time at
which the hedge is closed (possibly, but not necessarily, the maturity if the
contract), whereas negative cash flows may be financed by debt. For the sake of
simplicity, we assume that a single interest rate applies to both borrowing and
lending. A simple example, borrowed from [7], will illustrate the idea.
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Example 12.4 An illustration of tailing the hedge

Suppose that we will have to buy one unit of an asset in 1 year. To
hedge risk, we go long one futures contract at price $100, which will
be settled in cash at maturity. Note that, with a forward contract, we
would lock a price of to be paid in one year, with a single cash flow,
resulting in a perfect hedge. However, a futures contract is marked to
market each day.

Assume that, at the end of the first day, at settlement, the futures
price drops to $99 and then stays constant until maturity. Then, we
incur a loss of $1 on day 1, which is financed by borrowing $1 at a
continuously compounded rate of, say, 5% per year. After day 1, no
additional cash flow will occur due to marking-to-market. At matu-
rity, we will buy the asset at $99 on the spot market, and the overall
cash flow stream is equivalent to a negative cash flow of

−99− 1× e0.05×1 = −$100.0513.

This is a bit of bad news, as the total cost turns out to be more than
anticipated. By a similar token, let us assume that, at the settlement on
the first day, the futures price rises to $101 and then stays constant. In
this case, we have an immediate profit of $1, which may be invested
for one year. Again, no additional cash flow occurs, due to marking-
to-market, and the equivalent cash flow at maturity is

−101 + 1× e0.05×1 = −99.9487.

In this case, we receive good news, but the point is that the hedge is
not perfect.

Essentially, we are over-hedging, and we should reduce the initial
hedge by a factor e−0.05×1. In other words, rather than buying one
futures contract, we should buy

e−0.05×1 ≈ 0.9512

contracts. In the two scenarios, the equivalent cash flow at maturity
would be the same:

−99− e0.05×1 · ×e0.05×1 = −100,

and
−101 + e0.05×1 · ×e0.05×1 = −100.

In Example 12.4, we are tailing the hedge once, but in principle we should do
so every day. When maturity is approaching, since the interest rate is applied to
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shorter and shorter time periods, the degree of tailing should be reduced. The
careful reader will see some similarity with the argument that we have used in
Section 12.2 to show the equivalence of futures and forward prices when interest
rates are constant.

We may extend the example by recalling the telescoping sum of Eq. (1.9),
which we recall here for the sake of convenience:

m∑
i=1

[
F (t1, T )− F (ti−1, T )

]
= F (tm, T )− F (t0, T )

= S(T )− F (t0, T ), (12.20)

assuming that the contract is held until maturity T ≡ tm. Here, the hedging ratio
is 1, but we are neglecting the time value of money. If we assume a constant
interest rate r, with continuous compounding, we should rewrite the sum as

m∑
i=1

er·(T−ti) ·
[
F (t1, T )− F (ti−1, T )

]
6= S(T )− F (t0, T ).

We do find the telescoping sum of Eq. (12.20) if we tail the hedge by a factor
e−r·(T−ti) each day:

m∑
i=1

er·(T−ti)

er·(T−ti)
·
[
F (t1, T )− F (ti−1, T )

]
= S(T )− F (t0, T ).

In real life, interest rates will change over time, and this may affect tailing.
Another complicating factor is that we may be uncertain about the hedging
horizon, i.e., we may wish to close the hedge earlier than anticipated. We should
also consider the cost of implementing a nervous hedging strategy. As a result,
the hedge is adjusted with a lower frequency, and this is worth doing only when
a long time horizon is involved.

In order to account for tailing, if we assume that spot–forward parity in the
form F0 = S0e

rT applies, we may write the number of futures contract we need
by a slight modification of the quantity-based ratio of Eq. (12.9):

Ntailed =
N

erT
=

QA
QF · erT

=
QAS0

QFS0 · erT
=
QAS0

QFF0
=
VA
VF

, (12.21)

where VA = QAS0 is the total value of our assets, and VF = QFF0 is the dollar
“face value” of a futures contract. Thus, we see that we may account for tailing
by using a ratio of values, rather than the ratio of quantities.

Problems

12.1 The current spot price of one GBP is 1.2. The continuously com-
pounded interest rate in the Eurozone is 2.4%, whereas the corresponding UK
interest rate is 3.1%. If the forward price of one GBP, for delivery in six months,
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is 1.22, are there any arbitrage opportunities? If so, devise a suitable trading
strategy to take advantage of them.

12.2 You are a German investor who enters into a futures contract to buy
150,000 GBP in four months. When you take this long position, the following
data apply: Spot price of one GBP is 1.13, the interest rate in the Eurozone is
2%, and the interest rate in UK is 3% (both are continuously compounded and
assumed constant over the following days). At market settlement, the same day,
the spot price of GBP goes up to 1.15. The day after, the settlement spot price
of GBP is 1.17. On the third day, when spot price of GBP is 1.11, you close
the contract.

Assuming that forward and futures prices are the same, what are your
cash flows?
Your broker requires that you deposit cash on a margin account, with a
margin ratio of 25%. If we neglect the time value of money, what has
been the return of your investment over the three days?

12.3 In Section 12.3.3, we have considered how index futures may be used to
neutralize a stock portfolio with respect to systematic risk. However, we may
also wish to change the portfolio beta, rather than setting it to zero. Let β∗ be
the target beta that we want to achieve, which may be smaller or larger than
the current portfolio β, depending on our strategy. Find the number of futures
contracts that we should use.

Further reading
A standard reference on the topics of this chapter is [4], where you may
also find information about derivatives written on commodities.
Another extensive reference is [5], whereas [7] is one of the few texts
explicitly covering the need for tailing in hedging with futures.
For an extensive coverage of stock-index futures, see, e.g., [2, Chapter 3].
A more mathematically inclined treatment may be found in [3]. An ex-
tensive collection of papers and surveys may be found in [6].
The link between risk-neutral pricing and futures/forward contracts is dis-
cussed in [8, Chapter 5] and [1, Chapter 26].
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Chapter Thirteen

Option Pricing: Complete
Markets

We have introduced vanilla options in Section 1.2.6.3 and, in Section 2.3.4, we
have seen how the no-arbitrage principle can be used to find an option price
in the simple single-step binomial setting. The approach relies on a replica-
tion argument: It is possible to replicate the option payoff in both states of the
world by a portfolio consisting of two primary assets, since the market is com-
plete. We have also seen that lack of arbitrage is related to the existence of a
risk-neutral probability measure, and that this measure is unique in a complete
market. Hence, we may use that measure for pricing purposes, and risk aver-
sion does not play any role, since any payoff may be replicated exactly, state
by state. When markets are not complete, the pricing measure is not unique
anymore, and risk aversion cannot be disregarded. From a more practical view-
point, market completeness is a somewhat paradoxical assumption. If markets
were complete, options would be redundant assets, and it is hard to see why an
option market should exist in the first place. Another paradoxical consequence
of market completeness would be that we could always get rid of any risk, since
we could synthesize any payoff we wish. Clearly, this is too good to be true
and, in fact, markets are not complete. In real life, we have to cope with issues
related to incompleteness and residual risk. Nevertheless, a reasonably deep un-
derstanding of the simpler case of complete markets is essential to get a grasp
of both the essential financial concepts and the mathematical tools needed for
option pricing in the more general setting of incomplete markets. We shall deal
with incomplete markets in Chapter 14.

We follow common parlance and use the term option pricing, whereas val-
uation would be more correct. The fair option value, in a complete market, is
just the cost of an exact hedging policy, which offsets the risk exposure of the
option writer and allows her to break even in every scenario. Clearly, some
markup will be added by the option writer, in order to earn profit and to cover
for idealized assumptions and model risk. By the same token, the price de-
manded by the manufacturer of a good is not just the production cost. We must
also bear in mind the true purpose of pricing models. Apparently, they are of no
use, at least for actively traded and liquid vanilla options, since prices are con-

505



506 CHAPTER 13 Option Pricing: Complete Markets

tinuously quoted and determined by demand and offer mechanisms. However,
we do need pricing models for over-the-counter and illiquid securities, as well
as to measure and manage risk with respect to an array of risk factors.

We introduce basic option terminology, as well as some examples of exotic
options, in Section 13.1. Pricing an option requires choosing a model and as-
signing a numerical value to its parameters, and in doing so, we are exposing
ourselves to model risk. Some useful model-free restrictions on option prices,
however, can be found by just relying on the no-arbitrage assumption, as we
show in Section 13.2. In Section 13.3, we extend the binomial model to multi-
ple steps in order to price a vanilla option. We also show a different perspective
on pricing, in terms of hedging cost, rather than in terms of portfolio repli-
cation. In complete markets, the two views boil down to the same approach,
but the hedging view is instructive and may be more useful in incomplete mar-
kets, where we cannot get completely rid of risk. The chapter’s highlight is
Section 13.4, where we use the continuous-time modelling framework, which
we have introduced in Section 11.3, to price a vanilla option. We will prove
the celebrated and controversial Black–Scholes–Merton (BSM) formula for a
European-style vanilla option. Having an explicit formula has obvious com-
putational advantages. What may be less obvious is that it also enables us to
calculate a set of option sensitivities, collectively known as the Greeks, which
may be even more important than the option price itself. We introduce the ba-
sic Greeks in Section 13.5, and we illustrate the particular role of volatility in
Section 13.6. In this chapter, unless otherwise noted, we will consider options
written on a stock share that will not pay any dividend before the option matu-
rity. We relax the assumption a bit in Section 13.7, where we hint at options on
assets providing income, such as options on dividend-paying stocks, indexes,
currencies, and futures. Then, we close the chapter with two sections covering
essential material for practitioners. In Section 13.8, we show how options can
be used in speculative or risk management strategies. We also hint at numeri-
cal methods for option pricing in Section 13.9. In fact, when we foray outside
the safe BSM world, explicit formulas may be a rare commodity, and we find
ourselves in need for numerical methods.

13.1 Option terminology

In this section, we introduce some pieces of essential terminology. In fact,
there is often some confusion about basic terms like vanilla and European-style
option. The former refers to the functional form of the payoff, whereas the
latter refers to the lack of early exercise features. These two dimensions may be
combined in any way and should not be confused. As strange as it may sound,
we may find European- or American-style Asian options!
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13.1.1 VANILLA OPTIONS

By vanilla option, we mean European- or American-style call and put options,
written on a single underlying asset, featuring a very simple and path-independ-
ent payoff. European-style options can be exercised only at maturity, whereas
American-style options may be exercised at any time before expiration.1 An
intermediate case, Bermudan-style options, occurs when there is a finite set of
early exercise opportunities before expiration.

Let St be the market price of the underlying asset at a time instant t within
the set T of exercise opportunities. The payoffs of vanilla calls and puts with
strike K are

max{St −K, 0}

and
max{K − St, 0},

respectively. In the case of European-style options, which can only be exercised
at maturity, T = {T}. In the case of American-style options, T = [0, T ].
Bermudan-style options feature a discrete and finite set T , but several variations
are possible. We note that the above payoffs are path-independent and depend
on the price of the underlying asset at just one point in time.

It is useful to introduce common terminology, referring to the potential
advantage of exercising an option at any time. We say that an option is:

In-the-money at time t, if exercising the option would be profitable.
Hence, a call option is in-the-money when St > K, and a put is when
St < K.
Out-of-the-money at time t, if exercising the option would not be prof-
itable. Hence, a call option is out-of-the-money when St < K, and a put
is when St > K.
At-the-money at time t, if exercise price and asset price are equal, St =
K.

As one may expect, out-of-the-money options should be cheaper than in-the-
money ones. A related concept is the intrinsic value of an option, i.e., the
payoff that could be obtained by exercising the option immediately, i.e., St−K
for a call and K − St for a put. Clearly, an option is in-the-money when the
intrinsic value is positive, and it is out-of-the-money when the intrinsic value
is negative. When a European-style option is in-the-money before maturity, we
cannot exercise it anyway. When an American-style option is in-the-money,
we may wonder whether it is wise to exercise it immediately. As we shall see,
this need not be the case.2 The time value is the difference between the option
value and its intrinsic value. For an in-the-money American-style option, it
is worthwhile to wait, if the time value is strictly positive. By no-arbitrage,

1In this case, the term expiration makes more sense than maturity.
2See Section 13.2.
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options cannot have a negative price. Hence, even a deeply out-of-the-money
European-style option may have some time value.

13.1.2 EXOTIC OPTIONS

Exotic options may differ from vanilla options in terms of both underlying as-
sets, which may be more than one, and payoff, which is typically path-dependent.
An example of option depending on several assets is a spread option, whose
payoff is

max
{
S1(T )− S2(T )−K, 0

}
,

where S1(T ) and S2(T ) are the prices of two stock shares at maturity T . We
may define payoffs depending on several asset prices at the same time instant,
in which case, we speak of rainbow options. On the contrary, path-dependent
options feature a payoff depending on the price of the same underlying asset
at different time instants. We introduce below a few examples of simple path-
dependent options, namely, barrier options, Asian options, and lookback op-
tions. In some lucky cases, despite their additional complexity, we have analyt-
ical pricing formulas for exotic options. However, as a rule, we have to resort to
numerical methods. Unlike vanilla options, exotic options are not liquid securi-
ties traded on regulated exchanges, but rather OTC securities, whose fair price
can only be found by a pricing model. As one may imagine, we may couple the
two dimensions and define a rainbow and path-dependent option, as we have
seen in Example 1.12.

13.1.2.1 Barrier options

In barrier options, a specific asset price Sb is selected as a barrier value. If we
consider a barrier version of a vanilla call or put option, there are two classifi-
cation criteria:

In vs. out. In knock-out options, the contract is canceled if the barrier value is
crossed at any time during the whole option life. On the contrary, knock-in
options are activated only if the barrier is crossed.

Up vs. down. The barrier Sb may be above or below the initial asset price S0.
If Sb > S0, we have an up option, and if Sb < S0, we have a down option.

Example 13.1 Down-and-out put options

A down-and-out put option is a put option that becomes void if the
asset price falls below the barrier Sb. We must have Sb < S0, other-
wise the option has already been canceled, and Sb < K, otherwise,
the option will be canceled before getting in-the-money. The ratio-
nale behind such an option is that the risk for the option writer is
reduced. So, it is reasonable to expect that a down-and-out put option



13.1 Option terminology 509

is cheaper than a vanilla one. Now, consider a down-and-in option.
This option is activated only if the barrier level Sb < S0 is crossed.
Holding both a down-and-out and a down-and-in put option is equiv-
alent to holding a vanilla put option. So, we have the following parity
relationship:

P = Pdi + Pdo, (13.1)

where P is the price of the vanilla put, and Pdi and Pdo are the prices
of the down-and-in and the down-and-out options, respectively. Some-
times a rebate is paid to the option holder if the barrier is crossed and
the option is canceled; in such a case the above parity relationship is
not correct.

In principle, the barrier might be monitored continuously; in practice, pe-
riodic monitoring may be applied (e.g., the price could be checked each day
at the close of trading). This may affect the price, as a lower monitoring fre-
quency makes the detection of barrier crossing less likely. In Sections 13.5 and
13.6.2, we shall see that the price of a barrier option may feature complicated
dependence patterns with respect to the current price of the underlying asset, its
volatility, and the barrier location.

13.1.2.2 Asian options

Barrier options exhibit a weak degree of path dependency. A stronger degree
of path dependency is typical of Asian options, whose payoff depends on the
average asset price over the option life. Different Asian options may be devised,
depending on how the average is computed. Sampling may be discrete or (in
principle) continuous, and the average may be arithmetic or geometric. The
discrete arithmetic average is

Ada =
1

n

n∑
i=1

S(ti),

where ti, i = 1, . . . , n, are the discrete sampling times. The discrete geometric
average is

Adg =

[
n∏
i=1

S(ti)

]1/n

.

If continuous-time sampling is assumed, we have the following continuous
arithmetic and geometric averages, respectively:

Aca =
1

T

∫ T

0

S(t) dt, Acg = exp

[
1

T

∫ T

0

logS(t) dt

]
.
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As one can imagine, continuous time monitoring is not quite practical. Given a
choice of the average A, we may use it to define a rate or a strike. An average
rate call has a payoff given by

max{A−K, 0},

whereas for an average strike call, we have

max{S(T )−A, 0}.

By the same token, we may define an average rate put,

max{K −A, 0},

or an average strike put,
max{A− S(T ), 0}.

Early exercise opportunities may also be specified in the contract, so that we
may define European-, American-, or Bermudan-style Asian options.

13.1.2.3 Lookback options

Lookback options come in different forms, and their basic feature is that the
maximum (or the minimum) underlying asset price is monitored during the op-
tion life. Assuming continuous monitoring, we may observe the maximum and
the minimum asset price:

Smax = max
t∈[0,T ]

S(t),

Smin = min
t∈[0,T ]

S(t).

A European-style lookback call has a payoff given by

S(T )− Smin,

whereas in the case of a lookback put, we have

Smax − S(T ).

Just like with Asian options, we may also include early exercise features.

13.2 Model-free price restrictions

As we shall see later, in order to find an option price, we have to take our
chances and choose a specific model for the dynamics of the underlying asset
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price. Note that this is not the case with simple forward contracts, as spot–
forward parity only relies on a no-arbitrage assumption.3 In general, finding
an option price does require a dynamic model, which will always be an ap-
proximation of reality. Therefore, model risk becomes an issue, and there is an
unclear tradeoff between model sophistication, which is hopefully associated
with increased realism, and robustness.

In this section, we find restrictions on option prices, such as bounds and
parity relationships, requiring only the no-arbitrage condition. In principle, they
may be useful to spot arbitrage opportunities, but they are mostly important
tools for intuition building. We consider both European- and American-style
vanilla options, written on a stock share with price process St. The underlying
asset may or may not pay dividends. We denote the price of European- and
American-style call options at time t by Cet or Cat , respectively. By the same
token, we use P et or P at for put options.

It is easy to understand that an American-style option cannot be less expen-
sive than the corresponding European-style contract, since it offers a larger set
of exercise opportunities. We may wonder whether an American-style option
should be immediately exercised when the intrinsic value is positive. However,
the decision is not so trivial, as we may keep the option alive and wait for bet-
ter opportunities. Indeed, pricing an option with early exercise opportunities is
a stochastic dynamic optimization problem, belonging to the class of optimal
stopping problems. We should keep in mind the following decomposition of
the option value:

Option value = Intrinsic value + Time value.

When the intrinsic value is positive, we may exercise an American-style option
and earn a profit. However, it is optimal to do so only when there is no time
value, i.e., no reason to wait for better opportunities. When the time value is
positive, we should keep the option alive and continue.

13.2.1 BOUNDS ON CALL OPTION PRICES

At maturity, the value of a European-style vanilla call is just given by the payoff,

CeT = max{ST −K, 0}.

Clearly, the payoff is never negative, since the option provides us with a right to
exercise, without any obligation. Furthermore, the largest payoff occurs with a
call option with strike zero. Hence, the option payoff is bounded as follows:

0 ≤ CeT ≤ ST .

3To be precise, we also rely on some modeling assumptions concerning the market, like the
absence of transaction costs and the possibility of unlimited short-selling. However, in simple
cases, we do not need to specify a full-fledged dynamic model.
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FIGURE 13.1 Bounding call option prices.

An immediate consequence is that the call option price at any time t cannot be
negative, and it cannot be larger than the current stock share price:

0 ≤ Cet ≤ St, ∀t ∈ [0, T ].

This is just a consequence of no-arbitrage. Intuitively, the right to buy the stock
share at strike price K cannot be larger than the stock price itself. A slightly
less trivial observation is that the payoff at maturity is always larger than the
intrinsic value,

CeT = max{ST −K, 0} ≥ ST −K.

Note that the intrinsic value can be negative, and it may be thought as the value
of a portfolio consisting of a long position in one stock share and a short position
in a zero with face value K, maturing at time t = T . What is the value of this
portfolio at time t? The no-arbitrage value of the stock share at time t, just like
any security with a payoff ST at maturity, is clearly St. Note that we cannot
discount ST back to time t, as this is a random variable. We may do so with
the risk-free bond, whose current value is found by discounting its face value
by the risk-free, continuously-compounded rate r. Therefore, we find a lower
bound on the option value,

Cet ≥ St −Ke−r·(T−t) = St − PV(K). (13.2)

where PV(K) is the present value of the strike price.
By putting all of these observations together, we see that the value of a call

option must be contained in the shaded diagonal strip in Fig. 13.1. We may also
make an educated guess about a qualitative plot of the option value at time t,
shown in Fig. 13.1 as a dotted line, based on the following observations:
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The call option value should be an increasing function of the current stock
price St.
If the stock price is zero, it means that the firm went bankrupt, and the
option will be out-of-the-money at maturity for sure. Hence,

lim
St→0

Cet = 0.

By a similar token, if the stock price is very large, the call option will
be in-the-money at maturity with a very high probability. Thus, with
probability close to 1, the payoff will be ST −K, which implies

lim
St→+∞

Cet = St −Ke−r·(T−t) = St − PV(K).

The option value must be above the increasing line given by St−PV(K). When
we approach maturity, this line, defining the lower bound, is shifted down and
to the right, converging to the line ST −K corresponding to the option payoff,
if the derivative is in-the-money. Thus, we may expect that the price of a vanilla
call option, all other factors being constant, will be a decreasing function of
time.4

A careful look at Fig. 13.1 also leads us to a possibly surprising finding. In
the figure, we show the time value of the option, which is always positive before
maturity. In fact, we may write

Cat ≥ Cet ≥ St −Ke−r·(T−t) > St −K, t < T. (13.3)

Hence, the value of an American-style call option is always larger than the
intrinsic value, before the expiration. This proves the following theorem.

THEOREM 13.1 (Early exercise of American-style call options) It is never
optimal to exercise early an American-style call option written on a non-dividend-
paying stock. As a consequence, Cat = Cet .

The theorem may seem counterintuitive at first. In order to gain some intu-
ition, let us examine two cases in which we may consider early exercise of an
American-style, in-the-money call option. If we are not really interested in buy-
ing and keeping the stock share, Eq. (13.3) shows that it is more profitable to
sell the call option, rather than exercising it early. Let us assume that, on the
contrary, we really want to buy and hold the stock. In this case, the later we pay
the exercise price, the better. There is little point in paying K before maturity.
Furthermore, the stock price could fall below the strike price at a later time, and
we would regret our decision to exercise early. However, if the underlying stock
share pays a dividend before the option expiration, then it may be profitable to
exercise just before the stock goes ex-dividend, in order to earn the right to the
dividend.

4A quick peek at Fig. 13.10, which is based on the BSM model, shows that the intuition is
reasonable. This need not be the case with other options.
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To see more clearly how the situation may change, if we consider a stock
distributing dividends, let us denote by D the value at maturity of the dividends
paid from time t to the option maturity.5 Now, let us compare two portfolios at
time t:

Portfolio A consists of a long position in the European-style call and an amount
of cash (D +K)e−r(T−t).

Portfolio B consists of a long position in the stock share.

We assume that the risk-free rate r, at which we may invest cash, will not change
over time. At maturity, portfolio A has value

max{ST −K, 0}+D +K = max{ST ,K}+D.

At maturity, portfolio A has value

ST +D.

Since max{ST ,K} ≥ ST , we find that the value of portfolio A at maturity
cannot be less than the value of portfolio B, which implies

Cet ≥ St − (D +K)e−r(T−t).

We see that, with respect to the case of no dividends, the lower bound is de-
creased by an amount De−r(T−t). It could be the case that this lower bound is
smaller than the intrinsic value St − K. Hence, in the case of dividends, we
cannot claim that the American-style option should never be exercised. As it
turns out, it might be optimal to exercise just before the stock goes ex-dividend.

13.2.2 BOUNDS ON PUT OPTION PRICES: EARLY EXERCISE
AND CONTINUATION REGIONS

By following the line of reasoning that we have used in Section 13.2.1 for a call
option, we can find bounds on the value of a put option. Clearly, the put value
cannot be negative. Furthermore, since the stock share price is non-negative as
well, we immediately find the upper bounds

P et ≤ Ke−r(T−t) = PV(K),

P at ≤ K.

This bound corresponds to the case of a firm going bankrupt, so that St = ST =
0. However, with a European-style option, the payoffK cannot be received now,
but only at maturity; so, the amount K must be discounted. For a European-
style put, it also easy to see that

max{K − ST , 0} ≥ K − ST ,

5Long-term dividends are uncertain, but the amount of the next one is usually communicated in
advance. Hence, unless we are dealing with an option with a long maturity, we may assume that
D is known.
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which implies the lower bound

P et ≥ Ke−r(T−t) − ST .

Furthermore, it stands to reason that

lim
St→0

P et = Ke−r(T−t).

and
lim

St→+∞
P et = 0.

Putting all of this together, we find the strip and the plausible put option price
depicted in Fig. 13.2. Note that, unlike the case of a call, the downward sloping
line PV(K)− St will shift up and to the left with time. We also see that, for an
in-the-money put, the time value can be negative. Thus, the value of a put could
increase in time.6

This has a deep consequence for the corresponding American-style put, as
the option value cannot be less than the intrinsic value,

P at ≥ K − St,

since the option can always be exercised immediately. If the intrinsic value is
positive and the time value is zero, then the value of the option is just its imme-
diate payoff; hence, there is no reason to wait and it is optimal to exercise the
option immediately. In this case, the intrinsic value is larger than the continu-
ation value, which is the value of keeping the option alive. This is illustrated

6In Section 13.5, when discussing option Greeks, we shall see that theta can be positive for an
in-the-money put.
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in Fig. 13.3, where a critical price S∗t is shown, separating the exercise region
from the continuation region at time t. If the stock price St is below the strike,
the put is in-the-money, but it may be better to continue, without exercising. If
St ≤ S∗t , then it is optimal to exercise. We note that the option value is given
by a straight line in the exercise region, and it is larger than the intrinsic value
in the continuation region, where time value is positive. In Fig. 13.3, we also
observe that the option value is not only continuous, but continuously differen-
tiable, too, where the linear and the nonlinear portions of the curve meet. The
slope of the put price function is −1 in the exercise region, and there a “smooth
pasting” between the two curves at the point corresponding to the critical price.
This smooth pasting condition can be justified formally, but this is beyond the
scope on an introductory book. In Fig. 13.4, we plot the critical stock price S∗t
as a function of time, which allows us to get a clearer picture of the boundary
between the continuation and exercise (shaded) regions. This plot should be
intended as an educated guess, as we did not show at all that the boundary is
convex. However, it makes sense that S∗t increases with time. When we get
closer and closer to maturity, there are less and less opportunities to wait for,
and we should exercise, settling for smaller and smaller intrinsic values.

The net consequence of all of these observations is that, unlike call options,
American-style puts can be more expensive than the corresponding European-
style counterparts. Finding this price is challenging as it requires finding the
boundary of the exercise region by solving an optimization problem. In fact, as
a general rule, pricing options with early exercise features calls for the applica-
tion of numerical methods. We discuss a simple approach, based on binomial
lattices, in Section 13.3.4; then, in Chapter 15, we generalize the idea within the
framework of stochastic dynamic programming.
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13.2.3 PARITY RELATIONSHIPS

The bounds that we have considered in Sections 13.2.1 and 13.2.2 involve
a single option. Parity relationships involve two derivatives. We have seen
an example of arbitrage opportunity in Example 2.8, which involved trading
both a vanilla call and a vanilla put. The arbitrage opportunity was a conse-
quence of the violation of the following put–call parity relationship, which
links European-style vanilla call and put options, written on the same asset,
with the same maturity, and the same strike:

P et + St = Cet +Ke−r·(T−t). (13.4)

This is a model-free relationship that can be proven by considering the following
two portfolios:

1. Protective put, i.e., a European-style put option plus the underlying asset.
2. Call-plus-bills, i.e., a European-style call option plus a risk-free zero-

coupon bond with the same maturity and face value K.

The value of the protective put at maturity is

max{K − ST , 0}+ ST = max{K,ST }.

At maturity, the call-plus-bills portfolio has value

max{ST −K, 0}+K = max{ST ,K}.

The two portfolios will have the same value in the future, whatever scenario
is realized. By the law of one price, the two portfolios must have the same
value now, in order to rule out arbitrage opportunities; this implies Eq. (13.4).
A practical consequence is that we only need to find a formula for the price
of the call option, as the price of the put is immediately obtained. This parity
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relationship may be adapted to the case of dividends.7 In the case of American-
style options, things are not so easy, but bounds may be obtained.

There are other parity relationships, and we have seen an example involving
barrier options in Eq. (13.1). We also have parity-relationships involving more
complicated derivatives, including interest rate derivatives.

Example 13.2 A parity relationship involving interest rate swaps

We have discussed the valuation of vanilla interest rate swaps in Sec-
tion 4.4. The net cash flow received by the fixed-rate payer at time Ti,
i = 1, . . . ,m, is

N ·∆ ·
[
Ln(Ti−1, Ti)−Kn

]
,

where we assume that ∆ = Ti−Ti−1 is the time elapsing between two
consecutive dates (assumed constant for the sake of simplicity), n =
1/∆ is the corresponding compounding frequency, N is the notional
value, Ln(Ti−1, Ti) is the LIBOR rate with discrete compounding for
the tenor [Li−1, Li], and Kn the fixed swap rate. Time T0 is the last
time at which the LIBOR was reset, and we are typically interested in
the swap value at time t, T0 < t < T1.

As we have see in Section 5.3.2, interest rate derivatives are traded,
which look much like call and put options on interest rates. An inter-
est rate cap consists of a portfolio of m caplets with payoff

N ·∆ ·max
{
Ln(Ti−1, Ti)−Kn, 0

}
.

By a similar token, an interest rate floor consists of a portfolio of m
floorlets with payoff

N ·∆ ·max
{
Kn − Ln(Ti−1, Ti), 0

}
.

Clearly, for any random variable S and any given number K, we have

S −K = max{S −K, 0} −max{K − S, 0}.

Thus, assuming that cash flows have the same timing and that swap,
cap, and floor rates are identical, by no-arbitrage, we find a parity
relationship among the values of the three derivatives at time t:

Vswap(t) = Vcap(t)− Vfloor(t).

7See Problem 13.6.
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13.3 Binomial option pricing

Model-free relationships are useful tools, but they provide us with limited in-
formation. To proceed further, we need to take our chances with a specific
model. In Section 2.3.4, we have considered a simple pricing approach based
on a single-step binomial model, whose structure is depicted again in Fig. 13.5,
for the sake of convenience. We relied on replication arguments and the law of
one price, to conclude that the current option value must be

f0 = e−rT · {πufu + πdfd} , (13.5)

which does not involve the real world probabilities pu and pd, but the risk-
neutral probabilities

πu =
erT − d
u− d

, πd =
u− erT

u− d
.

Hence, we may express the option value in the following form:

f0 = e−rT · EQn
[
fT
]
, (13.6)

which is interpreted as the discounted expected value of the payoff under the
risk-neutral measure Qn. Under the risk-neutral measure, the expected return
of any security is the risk-free rate. For instance, the expected value of the
underlying asset price at maturity is

EQn
[
ST
]

= πuS0u+ πdS0d = S0e
rT.

This might happen only in a world where investors do not care about risk, but
only about the expected return, and do not ask for any risk premium. In such
a risk-neutral world, the expected return of all assets, at equilibrium, should be
the same, and if there is a risk-free asset in the market, its return will be the
expected return for all risky assets as well.

We shall extend our understanding of risk-neutral measures to martingale
measures later, in Chapter 14. Here, we extend the single-step binomial model
to multiple steps, but before doing so, let us repeat the argument in a different
perspective, which shall prove useful later.
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13.3.1 A HEDGING ARGUMENT

It is very instructive to recast the replication kind of argument in terms of hedg-
ing the risk borne by an option writer. Assume that we have written a European-
style, vanilla call option on a stock. How can we hedge against risk? The writer
might just cash the option premium in, cross her finger and wait. This corre-
sponds to a “naked” position, as nothing is done to manage risk. We recall from
Fig. 1.7 that the payoff for a call option writer may consist of an unbounded
loss, showing the dangers of the naked position. An alternative is the “covered”
position, where the writer buys one share of the underlying asset (for each op-
tion), just in case the option is exercised. However, this strategy is risky as
well, as the price of the underlying asset may decrease considerably, so that
the option expires worthless, but we have to liquidate the hedge at a low price.
The naked position is under-hedged, and the covered position is over-hedged.
We should try to find the “right” number of shares to hold, which should lie
somewhere between 0 (naked position) and 1 (covered position). This should
be a long position in the underlying asset, for the writer of a call option, as the
gain from this position will compensate for the loss on the option payoff, when
the underlying asset price goes up. Before proceeding further, it is important
to ask what hedge should be adopted by the writer of a European-style, vanilla
put option. A moment of reflection suggests that, in this case, we should take a
short position in the underlying asset. If its price goes down and the option is
exercised by its holder, the short hedge will compensate the negative payoff for
the writer.

Say that we purchase ∆ stock shares to cover the risk of writing a generic
option with payoffs fu and fd. If we have written the option, the initial value of
our portfolio is

Π0 = ∆S0 − f0. (13.7)

Remark. It is important to understand that Eq. (13.7) gives the value of the
portfolio at time t = 0, and that the value f0 of the derivative occurs with
a negative sign because the writer will lose money (corresponding to holder’s
profit) if the option value increases. Indeed, the writer has a short position in
the option. We are interested in how the portfolio value Πt = ∆St− ft changes
over time. In terms of cash flows at time t = 0, signs would be reversed, as the
option premium is earned by the writer. It is quite common to see a confusion
between values and cash flows. However, for instance, bond values are what
they are; then, cash flow signs depend on whether we buy or sell the bonds.

In the binomial model, the two possible portfolio values at maturity T are

Πu = ∆uS0 − fu,
Πd = ∆dS0 − fd.

We can make the portfolio riskless by choosing ∆ such that

Πu = Πd ⇒ ∆ =
fu − fd
S0(u− d)

.
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If the portfolio is riskless, no-arbitrage dictates that it must earn the risk-free
interest rate r, i.e.,

Πu = Πd = Π0e
rT ,

where we assume continuous interest compounding. Therefore, we may write

(∆S0 − f0)erT = ∆uS0 − fu.

Solving for the current option value we find

f0 = ∆S0

(
1− ue−rT

)
+ fue

−rT,

and by plugging the expression for ∆ and rearranging, we obtain Eq. (13.5)
again.

Since ∆ is the number of stock shares that we should hold, in order to
hedge the risk of each option, it plays the role of a hedging ratio. Note that ∆
is positive for a call option, but negative for a put option. It is also useful to
interpret the increment ratio

∆ =
fu − fd
S0(u− d)

=
fu − fd
Su − Sd

(13.8)

as a discretized approximation of the partial derivative of the option value with
respect to changes in the underlying price, i.e., ∆ ≈ ∂f/∂S. When we move
on to a continuous-time model, we shall see that, in fact, the hedging ratio is
exactly the sensitivity of the option value to the underlying asset price.

To get the full picture, let us recall Eq. (2.22),

Ψ = e−rT · ufd − dfu
u− d

,

which gives the amount of cash which is needed to hedge the option. If this
amount is negative, it means that the option writer has to borrow money to set
up the hedge, as the following example illustrates.

Example 13.3 A numerical example

Let us consider a call option with maturity T = 1 year and strike
price $11. The current price of the stock share is $10, and the risk-
free interest rate is 10%. The two possible returns of the stock share
in one year are either 20% or −10%, which implies u = 1.2 and
d = 0.9. The corresponding payoffs in the up and down states are:

fu = max{10× 1.2− 11, 0} = 1,

fd = max{10× 0.9− 11, 0} = 0,

respectively. To find the replicating portfolio, we need the number
of stock shares ∆ and the amount Ψ to invest in (or to borrow from)
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the bank account. To this aim, we have to solve the system of linear
equations:

12∆ + Ψe0.1 = 1,

9∆ + Ψe0.1 = 0.

If we subtract the second equation from the first one, we get

(12− 9)∆ = 1 ⇒ ∆ = 1
3 ≈ 0.3333.

Thus, for each call option, we should buy one third of a stock share.
Plugging this value back into the first equation yields

Ψ =
1− 12

3

e0.1
= −3 · e−0.1 ≈ −2.7145,

which means that the writer should borrow some cash. Note that the
writer has to repay a debt that, at maturity, will amount to $3. By
putting everything together, we obtain the fair option premium

f0 = ∆S0 + Ψ = 10
3 − 2.7145 ≈ $0.6188.

This option premium and the additional borrowed cash are used to
buy ∆ shares.

Note that, with a naked position, when the stock price goes up,
the writer will have to buy one share at $12 just to hand it over to the
option holder for $11, losing $1. With a covered position, if the price
goes down and the option is not exercised, the writer loses $1 since
she has to sell for $9 the share that was purchased for $10.

Let us check that, on the contrary, risk is hedged away if the
writer buys ∆ = 1/3 shares. If the stock price goes down to $9, the
option writer will just unwind the hedge and sell 1/3 shares for $3.
This is just what the writer needs in order to repay debt at maturity.
Hence, the option writer breaks even in the “down” scenario. In the
“up” scenario, 2/3 additional shares are purchased at the unit price of
$12, in order to sell a whole share to the option holder. The option
writer breaks even again, as the $11 cashed in from the option exercise
are exactly what she needs, $8 for the additional shares plus $3 to
repay debt.
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13.3.2 LATTICE CALIBRATION

In order to make binomial lattices a working tool for option pricing, we need
to pause and tackle a necessary task, lattice calibration. For now, we have re-
ally no idea about how we could choose the multiplicative shocks u and d, as
well as the related probabilities. Here, we use the moment matching approach
that was introduced in Section 11.6.2. The binomial model should be a good
discretization of a continuous-time, continuous-state model. Let us use the sim-
plest model, geometric Brownian motion (GBM),

dSt = µSt dt+ σSt dWt.

For pricing purposes, we should change the probability measure to the risk-
neutral one. It turns out that this amounts to a simple change in the drift coeffi-
cient. Rather unsurprisingly, under the risk-neutral measure, the model is

dSt = rSt dt+ σSt dWt.

Indeed, the drift coefficient is related to the rate of return, which would be the
risk-free rate in the risk-neutral world. We will better motivate this change
later.8 Hence, we should find the three parameters u, d, and πu, in such a way
that some essential properties of the continuous-time model are preserved by the
binomial model. Since the GBM is a process with constant drift and volatility
coefficients, the structure of the single-step binomial lattice is the same for each
time step. By approximating the dynamics over a small time step of length
δt, we may replicate the building block of Fig. 13.5 and generate the multistep
recombining binomial lattice, as depicted later in Fig. 13.6. Therefore, we may
focus on the calibration of a single step.

In Section 11.5.1, we have learned about the essential properties of GBM.
Conditional on being in state St at time t, the new state at time t+δt is a random
variable St+δt, such that

log

(
St+δt
St

)
∼ N

[(
r − σ2

2

)
· δt, σ2 · δt

]
.

Using properties of the lognormal distribution, we find

E[St+δt |St] = St · er·δt (13.9)

and
Var[St+δt |St] = S2

t · e2r·δt
(
eσ

2·δt − 1
)
. (13.10)

Now, we may use the same idea that we applied, within a simpler setting, in
Example 11.14. A reasonable requirement on the discretized dynamics is that it

8A rigorous approach to change of measure requires more sophisticated concepts from probabil-
ity and stochastic calculus, like Radon–Nikodym derivatives and the Girsanov theorem, which
are beyond the scope of this book.
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should match the two above features of the continuous model. Note that these
are two conditions, but we have three parameters: πu, u, and d. Hence, we have
one additional degree of freedom, which may be used by choosing u = 1/d.
Note that this is just one possible choice, which is not required by the need for
recombination. The lattice with multiplicative shocks is recombining anyway,
since Stud = Stdu, so that the two sequences of shocks, up–down and down–
up, result in the same state. Our choice leads to the so-called CRR (Cox, Ross,
and Rubinstein) lattice calibration.

On the lattice, we have

E[St+δt |St] = πuu · St + (1− πu)d · St,

which, together with (13.9), yields9

πuu · St + (1− πu)d · St = er δtSt ⇒ πu =
er δt − d
u− d

.

To match variance, we observe that, on the lattice,

Var(St+δt |St) = E[S2
t+δt |St]− E2[St+δt |St]

= S2
t

[
πuu

2 + (1− πu)d2
]
− S2

t e
2r δt,

which should be matched against Eq. (13.10). After a few tedious calcula-
tions,10 involving a linear approximation of a nonlinear equation, we end up
with the parameterization

u = eσ
√
δt, d = e−σ

√
δt, πu =

er δt − d
u− d

. (13.11)

We observe that the larger the volatility, the larger the gap between u and d,
which makes intuitive sense.

13.3.3 GENERALIZATION TO MULTIPLE STEPS

Pricing by a single-step binomial lattice is clearly too crude to be of any prac-
tical use. In principle, we could rely on a single-step tree (i.e., a scenario fan),
but the usual replication/hedging arguments would require a large number of
spanning assets, which is not practical. Furthermore, the underlying asset price
at maturity is not sufficient to price path-dependent and American-style deriva-
tives, for which the whole path over multiple time steps is required. Thus, we
need a multistep model allowing for trading at intermediate times. Since a full-
fledged scenario tree is plagued by the curse of dimensionality, the recombining
binomial lattice shown in Fig. 13.6 is a quite popular discrete-time, discrete-
state model. Here, we consider a three-step lattice, where option maturity is

9We find a familiar formula for the risk-neutral probability πu, which might be taken for granted.
Actually, there are alternative calibrations. For instance, we might calibrate on the basis of log-
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FIGURE 13.6 Multistep binomial model for option pricing.

T = 3 · δt. Each up-step corresponds to multiplication by the shock u, and each
down-step corresponds to multiplication by the shock d. For instance,

Suud3 = S0uud.

The lattice is recombining because of the multiplicative nature of the shocks,
S0ud = S0du. In fact, the exact sequence of up and down shocks does not really
matter. What matters is the number of up and down shocks in the sequence. For
instance, we find the same price Suud3 for the following three paths:

up-up-down, up-down-up, down-up-up,

where a single down shock occurs. Furthermore, if we use the calibration of
Eq. (13.11), where ud = 1, we find a limited set of different prices since, for
instance, Suud3 = Su1 . Clearly, the recombining feature is convenient in com-
putational terms: For the lattice in Fig. 13.6, we have 4 nodes after 3 steps. In
general, with N time steps, we have N + 1 nodes in the last time layer of a
recombining lattice. In a binomial tree, we would have an exponential growth,
with 2N nodes at the last time layer. This saving, however, has a price: We
cannot price strongly path-dependent options like Asian options. For complex
derivatives, alternative numerical methods can be used, which we hint at in Sec-
tion 13.9.11

Assuming that the risk-free interest rate and the volatility are constant in
time, the lattice calibration of Eq. (13.11) applies to the entire lattice of the
underlying asset price, which is easy to generate. Then, we have to build and fill
the corresponding lattice of option prices. This requires a backward calculation
process, where we start from the terminal (rightmost) layer in the option lattice,
which corresponds to the option payoff at maturity. Then, we should just apply

price, rather than price, and we could use the available degree of freedom to set πu = πd = 1/2,
and then find the shocks accordingly.
10See, e.g., [4, Chapter 7] for details. There, it is also shown that the choice ud = 1 may yield
some computational advantages in terms of memory requirements.
11In Problem 13.9, we give an illustration of how trees might be used to price path-dependent
options.
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Eq. (13.5) recursively, going backward one step at a time, until we reach the
initial node. In order to formalize the approach, let fij be the option value at
node (i, j), where j refers to the time instant j δt, j = 0, . . . , N , and i is the
ith node in period j. Here, N is the number of time steps we consider, and
Nδt = T is the option maturity. Note that we start with j = 0, and N time
steps correspond to N + 1 time instants indexed by j = 0, . . . , N . We assume,
by convention, that node numbers increase going up in the lattice; at time step
j, we have j + 1 nodes labeled by (i, j), i = 0, . . . , j. With these conventions,
the price of the underlying asset at node (i, j) is Sij = S0u

idj−i. We observe
that i is nothing but the number of up-steps. For instance, if we consider a call
option, we have the following option values at maturity:

fi,N = max{0, S0u
idN−i −K}, i = 0, 1, . . . , N.

By going backward in time, decreasing time subscript j, we find

fij = e−r·δt ·
[
πufi+1,j+1 + (1− πu)fi,j+1

]
. (13.12)

All of this is best illustrated by a simple example.

Example 13.4 Pricing a call option by a binomial lattice

Suppose that we want to find the price of a vanilla European-style call
with S0 = K = 50, r = 0.1, σ = 0.4, and T = 5

12 (time-to-maturity
is five months). We must first set up the lattice parameters. Suppose
that each time step is one month. Then,

δt = 1
12 = 0.0833,

u = eσ
√
δt = 1.1224,

d = 1/u = 0.8909,

πu =
er δt − d
u− d

= 0.5073.

Figure 13.7 shows the resulting lattices for the stock price and the
option value. To see how the lattice for the stock price is built, at
node (1, 1) we have

S1,1 = S0u = 50 · 1.1224 ≈ 56.12,

which is the same as S3,5 = S0u
3d2. The lattice of option values is

initialized with the option payoffs. So, for instance,

f5,5 = max{S5,5 −K, 0} = max{89.07− 50, 0} = 39.07.

The option value at the uppermost node in the second-to-last time
layer, f4,4, depends on the option values f5,5 and f4,5, and is obtained



13.3 Binomial option pricing 527

as follows:

e−r·δt [πu · 39.07 + (1− πu) · 20.77]

= e−0.1·0.0833 [0.5073 · 39.07 + 0.4927 · 20.77] ≈ 29.77.

By going backward recursively, we find that the estimated option
price is about 6.36. Later, in Example 13.6, we will see that the exact
option price is 6.1165. Hence, the approximation we have found is
not bad at all, considering that we have used a very crude discretiza-
tion, where each time step is one month. In practice, something like
1000 steps is needed to find a satisfactory approximation.

We should note that, in principle, the above calculation is not really neces-
sary to price a vanilla, path-independent, European-style option. We may just
consider the last time layer, associate probabilities with each node, and compute
the expected value. It is fairly easy to see that the probabilities of each terminal
node depend on the number of up and down steps, as well as their respective
risk-neutral probabilities, and all boils down to a familiar binomial distribution.
There are different ways to approach binomial pricing, with tradeoffs in terms
of time and numerical accuracy. However, we do need to move backward one
step at a time, when pricing American-style derivatives.

13.3.4 BINOMIAL PRICING OF AMERICAN-STYLE OPTIONS

Binomial lattices are a simple and practical tool to price American-style options,
which lack analytical pricing formulas. From a formal viewpoint, the price of
an American-style option stems from the solution of the following optimization
problem:

max
τ

EQn
[
e−rτf(Sτ )

]
, (13.13)

where the function f(·) is the option payoff, the expectation is taken under the
risk-neutral measure Qn, and τ is a stopping time. In our context, a stopping
time is a random variable representing the time at which the option is exercised,
following a given rule. This random variable is adapted to the available infor-
mation, which is the sample path observed so far; in other words, the stopping
time is associated with a nonanticipative exercise policy. For instance, consider
the boundary separating the continuation and early exercise regions in Fig. 13.4.
Given any such boundary, we may define a stopping time corresponding to the
first time instant at which the boundary is crossed. Hence, a boundary is as-
sociated with a decision rule and a stopping time, and solving problem (13.13)
means finding the optimal rule. This is nontrivial in general, since in multidi-
mensional cases, the exercise region need not be a connected subregion of the
state space.
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FIGURE 13.7 Numerical example of binomial option pricing.

Remark. It makes intuitive sense that Eq. (13.13) gives the fair value of an
option with early exercise features, but it is not at all clear how to justify it
theoretically. In fact, this would require the introduction of supermartingales,
to show that the optimization problem yields a trading strategy majorizing the
cost for the option writer, and that there is no “smaller” process with the same
property. We rely on intuition, referring interested readers, e.g., to [15, Chapter
4] for a simple treatment within a binomial setting.

The formulation in terms of a stopping time is a bit too abstract, and we
need to find a financially motivated exercise rule. As we have already discussed
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in Section 13.2.2, the early exercise decision should be made by comparing the
intrinsic value of the option, i.e., the payoff obtained by exercising the option
immediately, and the continuation value, i.e., the value of keeping the option
alive and waiting for better opportunities. The difficulty is in the estimation of
the continuation value. In general, we may do so by applying stochastic dy-
namic programming concepts, as we shall illustrate in Section 15.7.3. Within a
binomial setting, this boils down to a straightforward extension of Eq. (13.12).
Since, as we have seen, there is no point in pricing an American-style call op-
tion, as it is never optimal to exercise early, we illustrate the idea by pricing a
vanilla American-style put option on a non-dividend paying stock.

Let us consider a point (i,N) on the last time layer of the binomial lattice.
If the option is in-the-money at expiration, it is obviously optimal to exercise it.
Hence, in the last time layer we have

fiN = max{K − SiN , 0},

where SiN = S0u
idN−i is the underlying asset price at node (i,N). Now, con-

sider a point in the second-to-last time layer. If the option is not in-the-money,
i.e., if Si,N−1 > K, we do not exercise. But if the option is in the money, we
should compare the intrinsic value, K − Si,N−1, with the continuation value.
Let us denote the continuation value at a generic node (i, j) by f cij . If we con-
tinue and keep the option alive, we own an asset whose value, at node (i,N−1),
is

f ci,N−1 = e−r·δt · (πufi+1,N + πdfi,N ),

where πd = 1−πu. This is the discounted risk-neutral expectation of the option
payoff at the last time step, conditional on being at node (i,N − 1). We should
exercise if the intrinsic value exceeds the continuation value. Hence, the option
value at each node in the second-to-last time layer is

fi,N−1 = max
{
K − Si,N−1, e

−r·δt(πufi+1,N + πdfi,N )
}
.

The same argument may be repeated in a recursive fashion for any time layer.
This means that we should start from the last time layer, where the option value
is just the option payoff, and we should proceed backward in time using a slight
modification of the discounted expectation scheme of Eq. (13.12):

fi,j = max{K − Sij , e−r·δt(πufi+1,j+1 + πdfi,j+1)}. (13.14)

By finding if and where it is optimal to exercise, we obtain an approximation
of the early exercise boundary, as well as the related stopping time. Let us
illustrate the idea with a numerical example.

Example 13.5 Pricing an American-style put by a binomial lattice

We want to find the price of a vanilla American-style put call with
S0 = 60, K = 70, r = 0.02, σ = 0.45, and T = 1, by using a
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three-step binomial lattice (each time step consists of four months).
The lattice calibration is:

δt = 4
12 = 1

3 ,

u = eσ
√
δt = 1.2967,

d = 1/u = 0.7712,

πu =
er δt − d
u− d

= 0.4481.

The discount factor at each step is e−0.02/3 = 0.9934. Figure 13.8
shows the resulting lattices for the stock price and the option value.
The stock price lattice is built like in Example 13.4, and the option
price lattice is initialized by using the put option payoff (the option is
in-the-money in the lower part of the lattice). The interesting node is
(0, 2), the shaded one, where the continuation value is

f c0,2 = e−r·δt · (πuf1,3 + πdf0,3)

= 0.9934 ·
[
0.4481 · 23.73 + (1− 0.4481) · 42.48

]
≈ 33.85.

However, this should be checked against the intrinsic value:

f0,2 = max{f c0,2, K − S0,2} = max{33.85, 70− 35.68}
= max{33.85, 34.32} = 34.32,

from which we see that early exercise occurs at node (0, 2). As a
consequence, the resulting option price is a bit larger than the price of
the corresponding European-style put.

13.4 A continuous-time model: The
Black–Scholes–Merton pricing formula

The binomial model allows us to gain essential insights into option pricing and
hedging and is a useful numerical tool. However, it does not provide us with an
analytical pricing formula that would be of great practical use, not only in terms
of efficiency. In risk management, we need to assess the sensitivity of an asset
price with respect to the relevant risk factors, and an analytical formula would
be of great value from this viewpoint. In this section, we apply the machinery of
stochastic calculus and derive the celebrated and controversial Black–Scholes–
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FIGURE 13.8 Pricing an American-style put by a binomial lattice.

Merton (BSM) pricing formula.12 The model is based on the assumption that
the underlying asset price follows a geometric Brownian motion,

dSt = µSt dt+ σSt dWt.

We may consider the BSM model as the continuous-time limit of the binomial
model when the time step δt goes to zero or, going the other way around, we
may consider the binomial model as a discretization of the continuous model.
Curiously enough, it is by now standard to start textbook expositions with the
more intuitive binomial model, but historically this was developed after the
BSM model.

12The formula was published by Fisher Black and Myron Scholes in 1973. A similar research
line had been pursued by Robert Merton. Scholes and Merton were awarded the Nobel prize in
Economics in 1997. By that time, unfortunately, Fisher Black was deceased.
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13.4.1 THE DELTA-HEDGING VIEW

Here, we apply the hedging-based approach of Section 13.3.1, taking the view-
point of the writer of a vanilla, European-style call option, written on a stock
share that does not pay any dividend. Let us denote by f(St, t) the fair option
price at time t, when the underlying asset price is St. Note that we are taking for
granted that the option price depends on these two variables only, which makes
sense for a path-independent vanilla option. In the case of Asian options, where
the payoff depends on average prices, things are not that simple.

Using Itô’s lemma, we may write a stochastic differential equation for
f(·, ·):

df =
∂f

∂t
dt+

∂f

∂St
dSt +

1

2
σ2S2

t

∂2f

∂S2
t

dt. (13.15)

Just as in the binomial case, what we know is the option value at maturity,

f(ST , T ) = max{ST −K, 0},

and what we would like to know is f(St, t), the fair option price at time t < T ,
in particular, the current fair price at time t = 0. Just like we did in the binomial
case, we consider hedging the writer’s risk by taking a position in ∆ stock
shares, so that the value of the hedged portfolio at time t is

Π(St, t) = −f(St, t) + ∆ · St.

Unlike previous applications of Itô’s lemma, we do not know the function f(·, ·).
Hence, Eq. (13.15) looks like an ugly partial differential equation involving a
random term, and it does not suggest an immediate way to find the option price.
However, from a formal viewpoint, this equation would look a little bit nicer,
without the random term dSt. From a financial viewpoint, we can hedge risk
away, by eliminating the dependence of Πt on random variations in St. This
may be accomplished by choosing

∆ =
∂f

∂St
,

which is the continuous-time counterpart of Eq. (13.8). To see this, let us dif-
ferentiate the portfolio value Π and take advantage of our choice of ∆:

dΠ = −df + ∆ dSt

=

(
− ∂f

∂St
+ ∆

)
dSt −

(
∂f

∂t
+

1

2
σ2S2

t

∂2f

∂S2
t

)
dt

= −
(
∂f

∂t
+

1

2
σ2S2

t

∂2f

∂S2
t

)
dt (13.16)

Thanks to the choice of ∆, the term multiplying the random increment dSt in
the second line of Eq. (13.16) vanishes, so that the portfolio is riskless. Then,
by no-arbitrage arguments, it must earn the risk-free interest rate r:

dΠ = rΠ dt. (13.17)
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Eliminating dΠ between Eqs. (13.16) and (13.17), we obtain

−
(
∂f

∂t
+

1

2
σ2S2

t

∂2f

∂S2
t

)
dt = r

(
−f + St

∂f

∂St

)
dt,

which can be simplified by eliminating dt and rearranged as

∂f

∂t
+ rSt

∂f

∂St
+

1

2
σ2S2

t

∂2f

∂S2
t

= rf. (13.18)

Now, we have a deterministic partial differential equation (PDE for short) de-
scribing an option value f(St, t). This is the Black–Scholes–Merton equation
(BSM equation for short), which must be solved, subject to suitable boundary
conditions. Before doing so, the following key observations are in order:

The choice of ∆ as the derivative of the option value with respect to the
price of the underlying asset is consistent with the findings in the binomial
case.
This eliminates the dependence with respect to the true drift µ, which
is related to the expected return of the underlying asset under the real
probability measure; indeed, µ does not occur in Eq. (13.18). This is
also consistent with the binomial model, where the expected value of the
future asset price, based on the objective probabilities, does not play any
role.

What does not quite look consistent with the binomial model is that, in that
case, we obtain the price as an expected value, whereas here we have to solve
a PDE. As we shall show later, in Section 13.4.2, there is a theorem bridging
the gap between the solution of a certain class of PDEs and conditional ex-
pectations related to stochastic processes. We will use this theorem in Section
13.4.2.1, in order to prove the BSM formula in the risk-neutral expectation set-
ting. However, the proof was originally obtained by taking advantage of the
analogy between the BSM equation and a fundamental equation of mathemati-
cal physics, the heat equation, which is the prototypical equation for diffusion
processes. Since this kind of proof is a bit involved, we shall pursue a different
strategy in Section 13.4.2.1. Nevertheless, we provide some intuition in Section
13.4.1.1.

Like any differential equation, we need some additional condition to pin-
point a specific solution. In fact, the BSM equation is fairly generic and, for
instance, it does not discriminate between a call and a put option. The domain
on which we have to solve the equation is the unbounded strip depicted in Fig.
13.9, for t ∈ [0, T ] and St ∈ [0,+∞). Note that the strip is bounded in time
but unbounded in price since, in principle, there is no upper bound to the price
that a stock share may attain. In the case of a vanilla call, we have to solve the
equation with a terminal condition related to the payoff:

CeT = max{ST −K, 0}.
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FIGURE 13.9 The domain for the solution of the BSM PDE.

In fact, the BSM equation has to be solved backward in time, just like we do
with binomial lattices. We also have the following boundary conditions:

lim
St→0

Cet = 0, lim
St→+∞

Cet = St −Ke−r·(T−t) = St − PV(K).

These are consistent with the bounds on call option prices that we have dis-
cussed in Section 13.2.1. Solving the PDE leads to the celebrated Black–
Scholes–Merton formula (BSM formula for short), which gives the price Cet
of a vanilla European-style call option:

Cet = StΦ(d1)−Ke−r(T−t)Φ(d2), (13.19)

where

d1 =
log(St/K) + (r + σ2/2)(T − t)

σ
√
T − t

,

d2 =
log(St/K) + (r − σ2/2)(T − t)

σ
√
T − t

= d1 − σ
√
T − t,

and Φ(x) is the cumulative distribution function (CDF) for the standard normal
distribution:

Φ(x) =
1√
2π

∫ x

−∞
e−z

2/2 dz.

As usual in this book, we denote the natural logarithm by log, but ln is also often
used. We should note that Eq. (13.19) is written in a general form, referring to
time t. Hence, T − t is to be understood as time-to-maturity. When we price
the option at time t = 0, time-to-maturity boils down to T , as in the following
example.
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FIGURE 13.10 Call option prices as a function of time t and underlying asset price
St. When maturity is approached, the smooth price curve converges to the kinky option
payoff.

Example 13.6 A numerical example

Let us consider the same setting as Example 13.4: S0 = K = 50,
r = 0.1, σ = 0.4, and time-to-maturity is T = 5/12 (here we take
t = 0). The calculation is as follows:

d1 =
log(50/50) + (.10 + 0.42/2)× 5/12

0.4×
√

5/12
= 0.2905,

d2 = 0.2905− 0.4
√

5/12 = 0.0323,

Φ(0.2905) = 0.6143,

Φ(0.0323) = 0.5129,

C0 = 50× 0.6143− 50× e−0.10×5/12 × 0.5129 = 6.1165.

This exact result may be compared with the binomial approximation,
which gave a price 6.36, which proves to be not too bad. It is im-
portant to realize that “exact” should be taken as relative to the BSM
model.

If we apply the BSM formula to a call option for different prices St and
different time instants t, we obtain the plots depicted in Fig. 13.10. Each curve
corresponds to a different time-to-maturity and shows the fair option value as a
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function of St. When t is approaching maturity, the plots converge to the option
payoff. We observe that the price, for a given St, is a decreasing function of
time. These plots are consistent with the bounds and the basic intuition that
we developed in Section 13.2.1. We also notice that the price is a continuous,
differentiable function, which converges to a kinky one. This is a property due
to the diffusion character of the BSM equation.

The same kind of reasoning can be applied to price a put option, but we
may spare ourselves the effort by resorting to put–call parity. By plugging the
BSM formula for the call option price into Eq. (13.4) we find, after some rear-
rangement, a similar formula for the put option price:

P et = Ke−r(T−t)Φ(−d2)− StΦ(−d1), (13.20)

where d1 and d2 are the same expressions occurring in the call option price.

13.4.1.1 The analogy with the heat equation

The BSM PDE belongs to a wide class of quite common equations of math-
ematical physics, related to diffusion processes. In the PDE parlance, it is a
linear, second-order, and parabolic equation. The prototypical equation in this
class is the nondimensional heat equation,

∂u

∂t
=
∂2u

∂x2
, (13.21)

which describes the evolution of temperature u(x, t) in a one-dimensional body,
like a bar, at position x and time t. This form of the equation is referred to
as nondimensional (or dimensionless), in the sense that we are not including
physical constants related to the specific material of the bar. Parabolic equations
like the BSM equation, by suitable changes of coordinates, can be recast in
the form of Eq. (13.21). Indeed, this is how the BSM formula was derived
originally, but since it involves plenty of technicalities, we will not pursue this
approach.

Nevertheless, it is quite useful to get an intuitive feeling for the link between
the heat equation and the BSM equation. As we have seen in Fig. 13.10, even
though the terminal condition involves a nondifferentiable function, the option
value looks like a smooth function of St before maturity. This is due to the
fact that parabolic equations are related to diffusion processes, which involve
some form of smoothing. On the contrary, hyperbolic equations are related to
wave propagation, where singularities and shocks (think of an earthquake) may
be propagated in space. The diffusion property is due to the deep link between
Brownian motion, which is a diffusion process, and the heat equation.13 As we
shall see, this smoothing feature is fundamental for hedging option risk.14

13This link was discussed in a celebrated paper written by Albert Einstein and published in 1905
on the Annalen der Physik.
14Option risk may be managed by dynamic delta-hedging strategies, but if the option delta
swings too much, dynamic hedging turns out to be problematic, as we shall see in Section
13.8.3.
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FIGURE 13.11 Intuitive interpretation of the heat equation.

The heat equation may be derived by physical arguments, but we may set-
tle for an intuitive interpretation, clarifying its diffusion feature. Let us consider
the two temperature profiles depicted in Fig. 13.11. The first one is convex, and
intuition suggests that heat will flow from the neighboring high-temperature
points x − δx and x + δx toward the low-temperature point x. Therefore,
temperature will increase at point x. Hence, a positive second order partial
derivative with respect to space corresponds to a positive partial derivative with
respect to time. The contrary happens with a concave profile, like in the sec-
ond case, where heat should flow from the high-temperature point x toward its
low-temperature neighbors. Thus, the heat equation is related with a diffusion
process that, in some sense, works like an “averaging” process. As we shall see
in Section 13.4.2, this view is reinforced by the link between a certain class of
parabolic equations and stochastic differential equations driven by the Wiener
process (the prototypical diffusion process), which allows us to solve the PDE
by taking an expectation.

Now, let us consider a bar of length L, mapped on the interval x ∈ [0, L].
The equation must be solved on the unbounded strip depicted in Fig. 13.12.
We have an initial condition u(x, 0) = f(x), x ∈ [0, L], for a given func-
tion f(·), and boundary conditions at the endpoints of the bar, u(0, t) = g0(t)
and u(L, t) = gL(t), t ∈ [0,+∞). We may notice that, in this case, time
is unbounded and space is bounded, whereas, in the BSM equation, roles are
swapped, and time is bounded and price is unbounded. Furthermore, time
is going forward in the heat equation, whereas we price options backward in
time. Let us compare Fig. 13.10 against Fig. 13.13, which shows the solution
of the heat equation when the boundary conditions prescribe zero temperature
at points x = 0 and x = L (the body of the bar is perfectly insulated and there
is no loss of heat along the bar), and the initial condition is a triangular, kinky
temperature profile. Here, the bar length is L = 1, and we show the solution at
different consecutive time instants in Figs. 13.13(a)–(d). Figure 13.13(a) gives
the initial condition at t = 0. Then, the temperature profile is a smooth function
that decays to zero on the whole bar, as heat is lost at the endpoints. Modulo a
change of coordinate, we observe a definite similarity with the price of a call op-
tion, where we converge toward a kinky terminal condition, given by the option
payoff (see Fig. 13.10).
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FIGURE 13.12 The domain for the solution of the heat PDE.
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FIGURE 13.13 Solution of the heat equation at different time instants: Plot (a) gives
the initial condition.

13.4.1.2 Option pricing and delta-hedging

In Section 13.4.1, we have motivated the BSM equation by considering a dy-
namic hedging strategy to manage the risk stemming from a short position in an
option. The value of the hedged portfolio at time t depends on the value of the
option and the price of the underlying asset:

Πt = −ft + ∆tSt.
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In Example 13.3, we have seen that a static hedging strategy may hedge risk
in a single-step model. Here, we need a dynamic hedging strategy, where ∆t

is adjusted dynamically. The choice ∆t = ∂ft
∂St

makes Πt riskless, and the
option value is just the cost of setting up the hedge. The strategy is called
delta-hedging, due to the role of the option delta, which may be evaluated by
analytical formulas, when available, or approximated numerically. In theory,
the hedging ratio ∆t should be adjusted dynamically in continuous-time, which
is not practically feasible because of transaction costs. A discrete-time approx-
imation results in residual risk due to hedging errors. Furthermore, as we shall
see in Section 13.8.3, the strategy breaks down when the option delta swings a
lot, resulting in a very nervous hedge.

Our reasoning is somewhat heuristic, but very instructive for a financial
engineer. From a mathematical viewpoint, a more rigorous analysis should
rely on the concept of self-financing portfolios. The self-financing condition
is practically relevant since, after using the option premium (and, maybe, some
additional borrowed cash) to initialize the hedging strategy, we may dynami-
cally adjust the hedge, but we should not use additional funds. Mathematically,
this leads to the application of stochastic calculus concepts, namely, stochastic
integrals and martingales, to find the option price. We have preferred to use a
less rigorous, but more financially motivated approach, which is easier to extend
when we consider more realistic incomplete market models, transaction costs,
and model risk.

13.4.2 THE RISK-NEUTRAL VIEW: FEYNMAN–KAČ
REPRESENTATION THEOREM

In this section, we describe a version of the Feynman–Kač stochastic repre-
sentation theorem, which expresses the solution of a parabolic PDE, like the
BSM equation, as a conditional expectation related with the state of a stochas-
tic process. This allows us to bridge the gap between the PDE framework and
risk-neutral pricing.

THEOREM 13.2 Feynman–Kač representation theorem. Consider the par-
tial differential equation

∂f

∂t
+ µ(x, t) · ∂f

∂x
+

1

2
σ2(x, t) · ∂

2f

∂x2
= rf,

and let f(x, t) be a solution satisfying the terminal condition

f(x, T ) = H(x).

Then, under technical conditions, f(x, t) can be represented as a conditional
expectation,

f(x, t) = Ex,t
[
H(XT )

]
,

where Xt is a stochastic process satisfying the differential equation

dXτ = µ(Xτ , τ) dτ + σ(Xτ , τ) dWτ ,
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with initial condition Xt = x.

The notation Ex,t[ · ] represents the conditional expectation, given that, at time
t, the value of the stochastic process is Xt = x. Clearly, in a financial setting,
the function H(·) corresponds to the value of a derivative at maturity, but the
theorem was developed with applications to physics in mind. From a physical
viewpoint, the theorem is a consequence of the connection between Brownian
diffusions and parabolic PDEs. From a mathematical viewpoint, the proof relies
on Itô’s lemma and stochastic integration (see, e.g., [1]).

Example 13.7 Applying Feynman–Kač theorem

Let us consider the PDE

∂f

∂t
+

1

2
σ2 ∂

2f

∂x2
= 0,

with terminal condition

f(x, T ) = x2.

In order to apply the representation theorem, we observe that r = 0,
σ(x, t) = σ, and µ(x, t) = 0, so that the underlying stochastic process
boils down to a martingale described by

dX(τ) = σ dW (τ).

Therefore, conditional onX(t) = x, integration over the time interval
[t, T ] yields∫ T

t

dX(τ) = σ

∫ T

t

dW (τ) ⇒ X(T )
d
= x+ σ

√
T − t · ε,

where ε ∼ N(0, 1). Therefore,

f(X, t) = E
[
X2(T )

∣∣X(t) = x
]

= Var
[
X(T )

∣∣X(t) = x
]

+ E2
[
X(T )

∣∣X(t) = x
]

= σ2 · (T − t) + x2.

It is easy to check that this function satisfies the PDE and the terminal
condition.

The application of the representation theorem to the BSM equation, for an
option with payoff function H(·), immediately yields

f(S0, 0) = e−rT · EQn [H(ST )] ,
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which is consistent with Eq. (13.6). We point out once more that the expectation
is taken under a risk-neutral measure, and we see that this change of measure
amounts to replacing the drift µ by the risk-free rate r in the stochastic differ-
ential equation for St,

dSt = rSt dt+ σSt dWt.

By recalling the result of Eq. (11.33), we conclude that, under the risk-neutral
measure, the price St is lognormal and may be written as

St = S0 · exp

{(
r − σ2

2

)
t+ σ

√
t ε

}
,

where ε ∼ N(0, 1). Then, proving the BSM formula is a fairly easy, though a
bit tedious exercise in integration.

13.4.2.1 A proof of the BSM formula

As a first step, let us prove a theorem concerning a generic lognormal variable
X with parameters µ and σ2, which may be expressed as

X = eµ+σε,

where ε ∼ N(0, 1).

THEOREM 13.3 IfX is a lognormal random variable with parameters (µ, σ2),
then

E
[

max{X −K, 0}
]

= E[X] · Φ(d1)−K · Φ(d2),

where Φ(·) is the CDF of the standard normal and

E[X] = eµ+σ2/2,

d1 =
log
(
E[X]/K

)
+ σ2/2

σ
,

d2 =
log
(
E[X]/K

)
− σ2/2

σ
.

PROOF Using the representation of X as a function of a standard normal, we
have

E[max{X −K, 0}] =

∫ +∞

−∞
max

[
eµ+σz −K, 0

]
φ(z) dz,

where φ(z) is the PDF of a standard normal. We also note that X = K when

eµ+σε = K ⇒ ε =
logK − µ

σ

.
= q.
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Hence, we may get rid of the max in the integrand function by setting q as the
lower extreme of the integration interval. The desired expected value may be
written as a difference of two integrals:∫ +∞

q

[
eµ+σz −K

] 1√
2π
e−z

2/2 dz

=

∫ +∞

q

eµ+σz 1√
2π
e−z

2/2 dz −K
∫ +∞

q

1√
2π
e−z

2/2 dz. (13.22)

In order to find the first integral, we rewrite the product of the two exponentials
by completing the square,

µ+ σz − z2

2
= µ− −σ

2 + σ2 − 2σz + z2

2
= µ+

σ2

2
− 1

2
(z − σ)2.

Hence,∫ +∞

q

eµ+σz 1√
2π
e−z

2/2 dz = eµ+σ2/2 1√
2π

∫ +∞

q

φ(z − σ) dz

= E[X] · 1√
2π

∫ +∞

q−σ
φ(y) dy, (13.23)

where we use the variable substitution y = z − σ, so that Eq. (13.23) involves
the probability that a standard normal variable ε is larger than q− σ. Hence, we
obtain

E[X] · P{ε ≥ q − σ} = E[X] · P
{
ε ≥ logK − µ− σ2

σ

}
= E[X] · P

{
ε ≥ logK − (µ+ σ2/2)− σ2/2

σ

}
= E[X] · P

{
ε ≥ − log(E[X]/K) + σ2/2

σ

}
= E[X] · P

{
ε ≤ log(E[X]/K) + σ2/2

σ

}
= E[X] · Φ(d1),

where we use symmetry of the standard normal distribution as usual, in order
to write the expression in terms of its CDF Φ(·) By a similar token, we may
rewrite the second integral in Eq. (13.22) as

K · P{ε ≥ q} = K · P
{
ε ≥ logK − µ

σ

}
= K · P

{
ε ≥ logK − (µ+ σ2/2) + σ2/2

σ

}
= K · P

{
ε ≥ − log(E[X]/K)− σ2/2

σ

}
= K · Φ(d2).



13.4 A continuous-time model: The Black–Scholes–Merton pricing formula 543

By taking the difference of the two integrals, the result follows.

In the BSM case, by risk-neutral expectation, the call option price at time
t = 0 (so that T is time-to-maturity) can be written as

e−rT · EQn
[

max{ST −K, 0}
]
,

which involves a lognormal variable ST with parameters (r−σ2/2)T and σ2T ,
rather than just µ and σ, so that EQn [ST ] = S0e

rT . In order to prove the BSM
formula, we have just to plug these parameters into the formula of Theorem
13.3:

e−rT ·
{
S0e

rTΦ(d1)−KΦ(d2)
}

= S0Φ(d1)−Ke−rTΦ(d2),

where, in this case,

d1 =
log(S0e

rT /K) + σ2T/2

σ
√
T

=
log(S0/K) + (r + σ2/2)T

σ
√
T

and

d2 =
log(S0e

rT /K)− σ2T/2

σ
√
T

=
log(S0/K) + (r − σ2/2)T

σ
√
T

= d1 − σ
√
T .

13.4.3 INTERPRETING THE FACTORS IN THE BSM FORMULA

Let us write the BSM formula of Eq. (13.19) for a call at time t = 0:

Ce0 = S0Φ(d1)−Ke−rTΦ(d2), (13.24)

where we set t = 0 also in the expressions of d1 and d2. The option price
depends on the current stock price, multiplied by a factor Φ(d1), and the dis-
counted strike, i.e., the value of a zero with face value K, multiplied by a factor
Φ(d2). It is natural to wonder whether these two factors have a specific mean-
ing. In both the binomial and the BSM model, when we take the hedging-based
view, we build a portfolio with ∆ stock shares, where ∆ is the increment ratio
or the derivative of the option value with respect to the underlying asset price.
Hence, it is not quite surprising that we may prove the following result:

∂Ce0
∂S0

= Φ(d1). (13.25)

At first sight, this may look like an immediate consequence of Eq. (13.24),
where S0 occurs multiplied by Φ(d1). However, this way of reasoning is wrong,
as both d1 and d2 depend on S0. Nevertheless, by taking derivatives correctly
(which is left as a boring, yet useful exercise), we do find the result of Eq.
(13.25), which actually applies to a generic time instant t. In Section 13.5 we
will see that the option delta is the basic sensitivity measure of the option price.
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The second term, too, has an interpretation, as it is the probability that the
call option is in-the-money, under the risk-neutral measure:

Φ(d2) = PQn{ST ≥ K}. (13.26)

To see this, we may express ST as a function of a standard normal variable:15

PQn{ST ≥ K} = PQn

{
S0 · exp

[(
r − σ2

2

)
T + σ

√
Tε

]
≥ K

}
= PQn

{(
r − σ2

2

)
T + σ

√
Tε ≥ log

(
K

S0

)}
= PQn

{
ε ≥ − log(S0/K) + (r − σ2/2)T

σ
√
T

}
= PQn{ε ≥ −d2}
= PQn{ε ≤ d2} ≡ Φ(d2),

where we use symmetry of the standard normal in the last equality.

Remark. We note that, since we have used the risk-neutral drift r, we have
obtained the probability that the call option is in-the-money in the risk-neutral
world. If we use the actual drift µ, we obtain the corresponding objective prob-
ability. It is important to realize that we should use a risk-adjusted measure
for pricing purposes, but the objective measure should be used when generating
scenarios for risk measurement purposes. This difference is illustrated in the
following examples.

Example 13.8 Probability of exercise

The current price of a stock share that pays no dividend is 50. The
price follows a GBM with drift 12% and volatility 35%; the continu-
ously compounded risk-free rate is 5%. Consider a call and a put op-
tions, both European-style, with strike 55, maturing in nine months.
Which option is more likely to be exercised?

The probability of exercising the call is P{ST ≥ K}, which is
given by Φ(d2), provided that we use the true drift. Hence, we should
compute d2 as

d2 =

log

(
S0

K

)
+

(
µ− σ2

2

)
T

σ
√
T

15The careful reader will notice that this calculation has already been used in the proof of The-
orem 13.3.
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=

log

(
50

55

)
+

(
0.12− 0.35

2

)
· 9

12

σ

√
9

12

= −0.1691.

Since d2 < 0, there is no need for further calculations, as this implies
Φ(d2) < 0.5. Hence, the put is more likely to be exercised.

Example 13.9 Pricing a binary option

An immediate consequence of Eq. (13.26), is that (modulo a discount
factor) it gives, for free, the BSM price of a digital (or binary) option,
i.e., an option paying $1 if ST ≥ K. Using the indicator function

1{ST≥K}
.
=

{
1, if ST ≥ K,
0, otherwise,

we find

e−rTEQn [1{ST≥K}] = e−rTPQn{ST ≥ K}
= e−rTΦ(d2). (13.27)

It is important to realize that, in this case, we must calculate d2 using
the risk-neutral drift r, as we are pricing the option.

Also note that the binary call features a discontinuous payoff at
maturity, but thanks to the parabolic nature of the BSM equation, we
find a continuous price as a function of St. As one may expect, when
approaching maturity, the derivative of the option price with respect
to St will get steeper and steeper, as shown in Fig. 13.18. As we
discuss in Section 13.8.3, this could make hedging difficult.

13.5 Option price sensitivities: The Greeks

The BSM formula shows that the price of a vanilla European-style option de-
pends on five factors:

1. Current price St of the underlying asset
2. Volatility σ
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3. Time-to-maturity T − t
4. Risk-free rate r
5. Strike price K

In this section, we deal exclusively with European-style options, since American-
style options require numerical methods to evaluate their sensitivities. A funda-
mental advantage of the BSM formula, apart from its computational appeal, is
that we may evaluate the sensitivity (first-order derivative) of the option price
with respect to each of these factors. These sensitivities are collectively known
as the option Greeks. We have seen, in Section 2.2.1, how such sensitivities
may be used for risk management and, in Chapter 6, we have investigated the
use, as well as the limitations, of duration and convexity for managing interest
rate risk in fixed-income portfolios. In this section, we do the same for option
price sensitivities with respect to underlying asset price, volatility, and time.
Time, strictly speaking, is not a random risk factor, but how an option price
changes over time is quite relevant. We do not consider sensitivity with respect
to the constant parameter K, and we also disregard the sensitivity with respect
to the risk-free rate.16

13.5.1 DELTA AND GAMMA

The option delta is defined as the first-order sensitivity of the option price with
respect to the current price of the underlying asset. For a vanilla call at time t,17

∆C =
∂Cet
∂St

= Φ(d1). (13.28)

The delta of a vanilla call option is given by the CDF of the standard normal
distribution, which is a probability. Hence, the call delta is in the interval [0, 1].
This makes sense, as it should be the number of stock shares that the option
writer should be long for each call option. The more the option is in-the-money,
the closer this number is to 1. The call option ∆C is plotted in Fig. 13.14,
for an option with strike price K = 50. By differentiating the put–call parity
relationship with respect to St, we immediately find the corresponding delta for
the put option:

∆P = ∆C − 1 = Φ(d1)− 1. (13.29)

As shown in Fig. 13.14, the put option delta is identical to the call delta, modulo
a vertical shift. The put delta must be in the interval [−1, 0] and corresponds to
a short hedge in the underlying asset. When the put is in-the-money, delta gets

16The sensitivity of the option price with respect to r is called rho. The sensitivity with respect
to K may look irrelevant, but it plays a role in extracting the risk-neutral density from observed
option prices.
17We have introduced the formula for t = 0, but this is actually irrelevant. The BSM formula
depends on the time-to-maturity τ = T − t, rather than time t. Whenever we consider t = 0,
maturity and time-to-maturity are just the same. A case in which we must be careful, as we shall
see, is the option theta, which gives the sensitivity of the option price with respect to t.
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FIGURE 13.14 Delta for call and put options with strike K = 50.

closer to −1, since the option writer is subject to the risk of being forced to buy
a stock share at a strike price that is quite larger than the spot price. A short
position in the stock compensates the resulting loss.

Delta is to options what duration is to bonds, more or less. The main differ-
ence is that the former is an absolute sensitivity, whereas the latter is a relative
one. The role of convexity is played by the option gamma, which is a second-
order sensitivity:

Γ =
∂2Cet
∂S2

t

=
φ(d1)

Stσ
√
T − t

. (13.30)

Since call and put deltas differ by a constant, gamma is the same for both kinds
of options. It is important to notice that the option gamma involves the PDF φ(·)
of a standard normal distribution, rather than the CDF Φ(·). Hence, gamma is
always non-negative, which is consistent with the increasing monotonicity of
delta. This also shows that both call and put prices are convex functions of St.
In Fig. 13.15, we plot the option gamma for different times-to-maturity. We
notice that the plot gets more and more peaked when the option is approaching
its maturity. This makes sense since, for instance, the option delta at maturity
is 0 for an out-of-the-money call and 1 for an in-the-money call, and it is un-
defined for ST = K. This has a practical implication for delta-hedging close
to maturity, since when delta gets more “nervous,” delta-hedging may become
difficult and expensive for at-the-money options. In practice, option books may
be hedged as a whole, rather than single options, easing the problem.

Example 13.10 Making an option book delta-neutral

An investment bank has written 10,000 call options (strike 40, ma-
turing in three months), and 5000 put options (strike 33, maturing
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FIGURE 13.15 Gamma for call and put options.

in seven months), written on a stock share whose current price is
S0 = 36. The risk-free rate is 3%, with continuous compounding,
and the stock price volatility is 36%. How many stock shares should
they hold in order to make the portfolio delta-neutral?

The value of the hedged portfolio depends on the prices of the
two options and the underlying stock share:

Vt = −10,000× Cet − 5000× P et + φSt,

where the negative signs reflect the short positions in the two options,
and φ is the number of stock shares, which may be positive or neg-
ative, depending on the yet unknown net exposure. The delta of the
portfolio depends on the deltas of the two options:

∆
.
=
∂Vt
∂St

= −10,000× ∂Cet
∂St

− 5000× ∂P et
∂St

+ φ× ∂St
∂St

= −10,000×∆C − 5000×∆P + φ.

We find the deltas of the two options by using Eqs. (13.28) and (13.29):

∆C = 0.3250, ∆P = −0.6750.

Hence, the delta of the hedged portfolio is

∆ = −10,000× 0.3250 + 5000× 0.6750 + φ = 124.4998 + φ.
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Note that the risk exposures from writing the two options tend to can-
cel each other, but the exposure due to the put options prevails. By
setting ∆ = 0, we find

φ ≈ −125,

i.e., they should hold a short position in 125 stock shares.

It is important to consider Example 13.10 within the more general frame-
work of first-order immunization, which was introduced in Section 2.2.3.3. We
may use option delta to build a delta-neutral option portfolio, just like we use
bond duration to make a fixed-income portfolio insensitive to interest rate risk,
and the stock beta to obtain a market-neutral equity portfolio.

The portfolio delta gives a first-order approximation of the change δV in
the value of an option portfolio, as a function of the change δS in the under-
lying asset price. The quality of the approximation may be improved by using
gamma, which is a second-order sensitivity:

δV ≈ ∆ · δS + 1
2Γ · (δS)2. (13.31)

We note that the gamma of stock shares is zero, so that in order to change the
gamma of an option portfolio, we need to use other options. For instance, we
may change the exposure from writing an exotic option, by taking a position in
vanilla options written on the same underlying asset.

Option Greeks may be used for both risk management and risk measure-
ment, as the following example suggests.

Example 13.11 Approximating V@R of an option portfolio

The approximation of Eq. (13.31) is sometimes suggested as a possi-
ble way to approximate V@R of option portfolios. For instance, with
the data of Example 13.10, we may apply the following first-order
approximation:

δV ≈ ∆ · δS = ∆ · S0 · r̃,

where we link the change in the portfolio value, δV , with the random
return on the stock share, r̃ = δS/S0. Say that we need the 99% daily
V@R. If we assume that the stock return is normally distributed, we
find

V@R0.99,1 = z0.99 ·
√

Var(δV ) ≈ z0.99 ·∆ · S0 · σd,
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where σd is the daily volatility of the stock share price. This may be
estimated by scaling the annual volatility as follows:

σd =
0.40√

252
= 0.0252,

where we use the square-root rule introduced in Example 2.1. The
square-root rule is also the reason why we do not consider the stock
share daily drift. Note that, to scale annual volatility down to daily
volatility, we use 252, which is roughly the number of trading days in
one year. Hence,

V@R0.99,1 ≈ 2.3263 · 124.4998 · 36 · 0.0252 = 262.7274.

The approximation of Example 13.11 should be taken with some skepti-
cism. It might be improved by including gamma, but in this case we lose nor-
mality, which is in any case a rather questionable assumption. Furthermore,
risk measures mainly deal with extreme events, where both normality and the
use of approximations valid for small perturbations are unlikely to yield sensi-
ble results. The estimation of risk measures for option portfolios is a difficult
endeavor, requiring heavy use of numerical methods.

13.5.2 THETA

Another relevant Greek is the option theta, which is related to the passage of
time:

ΘC =
∂Cet
∂t

= −Stφ(d1)σ

2
√
T − t

− rKe−r(T−t) · Φ(d2), (13.32)

ΘP =
∂P et
∂t

= −Stφ(d1)σ

2
√
T − t

+ rKe−r(T−t) · Φ(−d2). (13.33)

We see that different formulas are required for vanilla call and put options, but
there is a subtle point that should be stressed. We have often been rather liberal
in our writing of BSM formulas, which have been written in some cases with
reference to time t = 0, and in other cases for a generic time t. In the first case,
T is both the maturity and the time-to-maturity. In the more general case, we
should write τ = T − t as time-to-maturity. If we want to find the sensitivity
with respect to t, we have to use the more general formulas. It is also possible
to measure the sensitivity with respect to time-to-maturity τ , which is readily
obtained by changing the sign in the above formulas.

Given our choice, if theta is negative, it means that the option is losing value
when time is moving forward. Typically, option thetas are negative, which
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FIGURE 13.16 Theta for a put option. Time-to-maturity is six months and the strike
price is 40.

shows that option values are subject to a decay over time. However, this not
always the case. If we consider Fig. 13.1, we observe that the asymptote cor-
responding to the lower bound St − PV(K) on the call option price will move
downward in time. Indeed, the call option price will be reduced over time, all
other factors being equal, which is confirmed by the plots in Fig. 13.10. A
quick look at Eq. (13.32) proves that ΘC cannot be positive. However, the pic-
ture is different for a put option. In Fig. 13.2, we observe that the lower bound
PV(K) − St will increase over time. Hence, we may find a positive theta for
in-the-money put options. This is confirmed by the plot of Fig. 13.16, where
theta is positive for small prices of the underlying asset.

13.5.3 RELATIONSHIP BETWEEN DELTA, GAMMA, AND THETA

Imagine that we build a delta-neutral option portfolio, consisting of vanilla op-
tions on the same underlying asset, and that the portfolio is long gamma. This
means that the portfolio, whose value we denote by Πt, has zero delta and posi-
tive gamma. What happens when the price of the underlying asset changes over
time? We have seen something similar when dealing with interest rate risk in
Chapter 6. A bond with a large convexity looks quite appealing, since it will
gain a lot when rates drop, and it will not lose much when rates rise. If we set
the duration of a fixed-income portfolio to zero, and keep convexity positive,
the portfolio value will increase for any (small) change in the interest rate. By a
similar token, if the delta of an option portfolio is zero and gamma is positive,
the value Πt is a (locally) convex function with respect to St. Hence, it seems
that we should always have a positive profit, no matter which (small) change we
observe in St.



552 CHAPTER 13 Option Pricing: Complete Markets

Clearly, this is too good to be true, and there must be a fly somewhere in
the ointment. We may find the fly by rewriting the BSM equation (13.18) for
Πt in terms of the Greeks:

Θ + rΠt∆ +
1

2
σ2Π2

tΓ = rΠt.

This shows that the Greeks are related, and if we choose a delta-neutral portfo-
lio, this PDE becomes

Θ +
1

2
σ2Π2

tΓ = rΠt.

Now, imagine that we increase gamma, which is nice. The problem is that to
maintain the equation, there must be an increase in Πt, which means that the
portfolio is expensive, or a decrease in Θ. If theta is negative, this means that a
portfolio with large gamma will lose value very quickly. Whatever the case, we
see that gamma has a cost.

This is also relevant from the viewpoint of an option writer, who faces a
negative gamma (in the common parlance, we say that she is short gamma).
This seems like a very uncomfortable place to be, even if the writer adopts a
delta-hedging strategy. However, the decay in the option value, captured by a
negative theta, may help writers. If the option book is losing value from the
viewpoint of the option holders, this is good news to the option writer. More-
over, option writers rely on more careful strategies than naive delta-hedging.

13.5.4 VEGA

Last, but not least, the option vega measures the sensitivity of the option price
with respect to volatility. For both vanilla call and put options, vega is

V =
∂Cet
∂σ

=
∂P et
∂σ

= φ(d1)St
√
T − t, (13.34)

where again φ(·) is the PDF of a standard normal, not to be confused with the
CDF Φ(·).

Vega is important because, despite the assumption of constant volatility in
the GBM model, volatility is stochastic in real life. We may resort to stochastic
volatility models, or we may use the BSM model while keeping an eye on the
volatility as a risk factor. The role of volatility is so important that we shall fur-
ther elaborate on it in Section 13.6. From Eq. (13.34), we immediately observe
that vega cannot be negative. Hence, an increase in volatility will result in an
increase in the prices of both call and put options. The intuitive explanation
is that an increase of volatility makes extreme events, i.e., the observation of
very low or very high stock prices, more likely. Given the asymmetric nature of
option payoffs, this increases the potential profit associated with in-the-money
scenarios, whereas the payoff in the out-of-the-money scenarios is not affected.
This may be used in volatility trading strategies, as illustrated later in Section
13.8.2. If we expect an increase in volatility, we may invest in call and put op-
tions. Note that this is a nondirectional trade, as we are not betting on the market
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going either up or down. It is important to realize that the behavior of exotic
options, with respect to volatility, may be more complex than the behavior of
vanilla options.

13.6 The role of volatility

Volatility has a significant impact on option prices. The BSM formula relies on
a simple GBM model, where volatility is assumed constant, but every profes-
sional is well aware of its role as a risk factor. In fact, volatility trading strategies
are used to take long or short positions with respect to this elusive factor.18 Over
the years, volatility derivatives have been introduced to transfer volatility risk
between speculators and hedgers. Clearly, volatility is not a tradable asset, and
pricing volatility derivatives may be a tricky business, as is the task of measur-
ing a non-observable parameter like volatility, in such a way that market players
may agree on it. Common sense would suggest the use of simple statistics ap-
plied to time series data. On the contrary, as we show below, volatility may be
used in a rather surprising way. Furthermore, while volatility has a straightfor-
ward impact on vanilla options, its effect on certain exotic options may be less
obvious.

13.6.1 THE IMPLIED VOLATILITY SURFACE

The BSM formula relies on five input arguments. Two of them, strike price
and time-to-maturity, are easy to observe. The risk-free rate is a bit trickier, as
we should find the continuous yield of a risk-free asset, with a maturity corre-
sponding to the option maturity. Estimating yields based on bond prices is not
as simple as it may sound, but there are sensible ways for carrying out this task.
Apparently, the current stock price St is easily observed, too, but we should
consider the fact that it is changing all the time. Possibly, the stock price may
change as a consequence of our very hedging actions. However, by far, the
most elusive parameter is volatility. Apparently, we may use statistical analysis
of a time series of stock prices to measure its volatility. However, by doing so,
we may estimate the historical volatility. Rather than this backward-looking
approach, we need a forward-looking view on future volatility.

If we look at the BSM formula, we see volatility as an input, and the option
price as an output. Actually, we may see things the other way around. Since
vanilla options are widely traded and liquid securities, we may find the volatility
implied by the observed option prices. This is an example of an inverse problem,
and it is an example of a more general approach taken in model calibration.19

In order to find this implied volatility, we invert the BSM pricing formula by

18See Section 13.8.2.
19Model calibration is a fundamental step when pricing in incomplete markets. See Section
14.4.
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FIGURE 13.17 Qualitative shape of a volatility smile.

solving the following equation with respect to σ:

h(σ)
.
= ĈBSM(σ;S0,K, r, T ) = Cobs,

where the estimate ĈBSM, based on the BSM model, is matched against the
observed price Cobs. This may be easily accomplished by numerical methods.20

The implied volatility may be regarded as a market-consensus volatility
forecast. For instance, it has been suggested to use implied volatility in V@R
calculations, rather than a historical estimate. Actually, some doubts have been
cast on the actual predictive power of implied volatility. Nevertheless, there is
no doubt that implied volatility may be a market signal. As a matter of fact, at
the peak of the subprime crisis, implied volatility was something like 80%.

Implied volatility may also be used to check the consistency among option
prices. According to the BSM model, volatility is a property of the underlying
asset, and it should be constant across any option, irrespective of strike prices
and times-to-maturity. Actually, if we plot the implied volatility of a vanilla
option with respect to the strike price K, we might obtain a nonlinear plot like
the one depicted in Fig. 13.17. The precise shape may depend on the underlying
asset, but we observe what has been nicknamed a volatility smile (or smirk).
One possible explanation of this anomaly is that the BSM model relies on a
lognormality assumption, which is inconsistent with empirically observed fatter
tails. Since extreme events are more likely than what the GBM model would
suggest, there is more risk in writing options with small or large strikes than the
model accounts for. This is translated to larger option prices, which, in turn,
imply a larger volatility. Out-of-the-money options may be relatively riskier to
option writers than what a low BSM price would suggest, and the same happens
for long-maturity options. Plotting implied volatility as a function of both K
and τ = T − t results in a volatility surface.. Volatility surfaces may be used to
compensate for the shortcomings of the BSM model, without resorting to more

20A safe way for doing so is relying on the bisection method to solve nonlinear equations. See,
e.g., [4].
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complex models. The surface is fitted against quoted prices of exchange-traded
and liquid options, and then it is used to price OTC derivatives, or to check the
price consistency among other options. We see that the machinery of option
pricing is actually a way to interpolate/extrapolate internally consistent prices.

A further use of implied volatility is for quoting purposes. In the case of
bonds, the price may not carry much information, as we may observe an array of
quite different bond prices, depending on coupon rates and maturities. Despite
of all of its shortcomings, yield-to-maturity gives a more concrete feeling for
the driving factors of bond prices. By comparing yields for different bonds and
observing how they change over time, a trader may get a better feeling for how
markets are behaving. By the same token, an option trader may observe implied
volatilities, in order to compare options and get a feeling, even though the trader
may be quite skeptical about the validity of the plain BSM model. In fact, some
options are quoted in terms of the volatility, which would give the actual market
price when plugged into a BSM-like formula.

13.6.2 THE IMPACT OF VOLATILITY ON BARRIER OPTIONS

We have seen that the vega of vanilla options is always positive, which implies
that the prices of vanilla call and put options are increasing functions of volatil-
ity. We may observe a less obvious behavior for exotic options. Let us consider
barrier options, for which some analytical pricing formulas are available. As
an example, let us consider a down-and-out put with strike price K, expiring in
T time units, with a barrier set to Sb. The following formula has been proven,
where S0, r, and σ have the usual meaning:

P = Ke−rT ·
{

Φ(d4)− Φ(d2)− a
[
Φ(d7)− Φ(d5)

]}
− S0 ·

{
Φ(d3)− Φ(d1)− b

[
Φ(d8)− Φ(d6)

]}
,

where

a =

(
Sb
S0

)−1+2r/σ2

, b =

(
Sb
S0

)1+2r/σ2

,

d1 =
log(S0/K) + (r + σ2/2)T

σ
√
T

, d2 =
log(S0/K) + (r − σ2/2)T

σ
√
T

,

d3 =
log(S0/Sb) + (r + σ2/2)T

σ
√
T

, d4 =
log(S0/Sb) + (r − σ2/2)T

σ
√
T

,

d5 =
log(S0/Sb)− (r − σ2/2)T

σ
√
T

, d6 =
log(S0/Sb)− (r + σ2/2)T

σ
√
T

,

d7 =
log(S0K/S

2
b )− (r − σ2/2)T

σ
√
T

, d8 =
log(S0K/S

2
b )− (r + σ2/2)T

σ
√
T

.

This formula relies on the BSM model and is valid under the rather impractical
assumption of continuous barrier monitoring. Its proof takes advantage of cer-
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Table 13.1 The interaction of barrier level and volatility in a down-and-out put option.

Sb = 40 Sb = 35 Sb = 30 Sb = 1 Vanilla

σ = 0.4 0.5735 1.9964 3.5610 4.5841 4.5841
σ = 0.3 0.9629 2.3928 3.1656 3.3235 3.3235

tain properties of Brownian motion,21 but both the mathematical underpinnings
and the formula are not important for our purposes. What is important is that
we may use it to get a glimpse of the impact of volatility on the option price. To
this aim, let us compare a vanilla and a down-and-out put with similar features:
Both options are at-the-money (S0 = K = 50), they mature in five months
(T = 5/12), and the risk-free rate is 5%. We consider different barrier levels,
Sb ∈ {40, 35, 30, 1}, and two values of volatility, σ ∈ {0.4, 0.3}. The resulting
option prices are reported in Table 13.1.

If we read the table row by row from the right, we notice that the price of the
vanilla and barrier options are the same, when the barrier level is very low, so
that crossing the barrier is very unlikely. If we consider larger and larger barrier
levels, the barrier option gets cheaper and cheaper, which makes intuitive sense,
as an option knock-out is more likely. However, a different pattern emerges if
we look at the table column by column. For the vanilla option, a decrease in
volatility implies a decrease in price, as expected. This also applies to the exotic
option when the barrier level is low, suggesting a positive vega. However, when
the barrier level is large, vega seems negative: For Sb = 40 and Sb = 35,
decreasing volatility increases price.

The explanation is that, for a vanilla put, a lower volatility implies a lower
price, as there are less chances to observe a very low stock price at maturity. For
the barrier option, this effect does contribute to the price, but there is another ef-
fect, which drives the option price into the opposite direction: A lower volatility
may imply a higher price, since it makes crossing the barrier less likely. This
second effect is negligible for low barrier levels, but when the barrier level is
not too far from the current stock price, it is the dominating one.

Thus, vega may be both negative and positive, and the volatility effect is not
monotonic for barrier options. In Section 13.8.3, we will observe that barrier
options may also feature a rather weird behavior in terms of delta.

13.7 Options on assets providing income

We have seen, in Section 12.1.2, that when the underlying asset of a forward
contract provides income, the spot–forward parity relationship is affected ac-

21See, e.g., [6].
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cordingly. This applies, e.g., to stock shares paying dividends, stock indexes
with a dividend yield, and foreign currencies. The same consideration applies
to options, which are (usually) not dividend-protected. The case of a lump
dividend payment applies to stock options. When the stock goes ex-dividend,
no-arbitrage models predict a jump in the stock price. This may be taken into
account by numerical methods, including binomial lattices. We will not con-
sider this case here, but only the idealized case of a continuous dividend yield,
which is relevant to index options. The case of a currency option is quite sim-
ilar. An interesting case arises when we consider derivatives written on other
derivatives, specifically, options written on futures.

13.7.1 INDEX OPTIONS

In Section 12.1.2, we have discussed spot–forward parity for an asset providing
income at a continuous yield rate q. Under the usual stylized assumptions, the
parity relationship is

F0 = S0 · e(r−q)T, (13.35)

which may be interpreted in two equivalent ways, related to hedging a short
position in the contract:

We do not need to buy one unit of the underlying asset for each short
position, but only e−qT, which grows to 1 unit, if we reinvest income in
the underlying asset itself. This is equivalent to assuming that the initial
price of the asset is S0 · e−qT.
We collect the income from the underlying asset over the life of contract,
which lowers the cost-of-carry. Hence, we incur carrying cost at rate r−q,
rather than r.

In order to price an option using the BSM framework, we need to write
a model for the underlying asset price under a risk-neutral measure. We may
translate the above intuition as a change in the drift coefficient,

dSt = (r − q)St dt+ σSt dWt. (13.36)

This is also reflected in the corresponding BSM equation:

∂f

∂t
+ (r − q)St

∂f

∂St
+

1

2
σ2S2

t

∂2f

∂S2
t

= rf.

By going through the BSM drill again, we obtain a simple modification of the
BSM formula:

Ce0 = S0e
−qTΦ(d1)−Ke−rTΦ(d2), (13.37)

where

d1 =
log(S0/K) + (r − q + σ2/2)T

σ
√
T

,

d2 =
log(S0/K) + (r − q − σ2/2)T

σ
√
T

= d1 − σ
√
T .
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Put–call parity becomes

P et + Ste
−qT = Cet +Ke−r·(T−t), (13.38)

which allows us to immediately find the put option price:

P e0 = Ke−rTΦ(−d2)− S0e
−qTΦ(−d1). (13.39)

Index options may be used for hedging purposes, just like index futures. As
described in Section 12.3.3, the hedge may be adjusted to account for the port-
folio beta. Indeed, portfolio insurance strategies have been devised to hedge risk
of equity portfolios, based on the creation of synthetic puts based on dynamic
trading. In Section 13.8.1, we illustrate the mechanics, as well as the pitfalls, of
portfolio insurance.

An interesting observation is that, by using spot–forward parity, we may
rewrite the BSM formula in terms of the forward price F0 ≡ F (0, T ):

Ce0 = e−rT [F0Φ(d1)−KΦ(d2)], (13.40)

where

d1 =
log(F0/K) + σ2T/2

σ
√
T

,

d2 =
log(F0/K)− σ2T/2

σ
√
T

.

It is easy to see that, by plugging Eq. (13.35) into Eq. (13.40), we find Eq.
(13.37). If spot–forward parity applies, this is just a way to rewrite BSM and
adds nothing new. However, if we consider options on non-traded assets, the
picture becomes much less obvious. The usual hedging arguments break down,
if we cannot build a hedge based on the underlying asset. However, even if
the asset itself is not traded, but forward contracts are available, by using risk-
neutral arguments and changes of measure22 we may justify the use of Eq.
(13.40), which is known as Black’s formula.

13.7.2 CURRENCY OPTIONS

A foreign currency may be interpreted as an asset providing income at the for-
eign risk-free rate rf , and the forward price (in the domestic currency) is

F0 = S0 · e(rd−rf )T,

where we denote the domestic risk-free rate by rd for the sake of clarity. To
price a currency option we have just to use formulas (13.37) and (13.39) for
index options, by replacing the income rate q with rf .

22See Section 14.3.4.
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A class of popular options related with foreign currencies are quanto op-
tions, a name stemming from quantity adjusting options. Imagine that we are
a European investor, whose reference currency is EUR, who wants to invest
on the Japanese stock market, possibly by using options on the Nikkei index.
These options provide a payoff in Japanese yen (JPY), and the contract is settled
in cash by multiplying the index by a given factor. Therefore, we are exposed to
a twofold risk: (a) the risk of the Japanese stock market, and (b) the exchange
risk, as the underlying asset is denominated in JPY. With a quanto option, the
payoff is converted to EUR by a fixed exchange rate:

E0 ·max{ST −K, 0},

where ST and K are the values of the index at maturity and the strike, re-
spectively, denominated in JPY, and E0 is a fixed exchange rate converting the
payoff in EUR. Quanto options are also called cross-currency options..

13.7.3 FUTURES OPTIONS

A call futures option maturing at T gives the holder the right to enter into a
long futures contract at a specified futures price K; the corresponding put op-
tion gives the right to enter into a short futures position. We should not confuse
the maturities of the two contracts: T is the maturity of the option, whereas the
underlying futures contract matures at a later time TF > T . Futures options
are popular and sometimes even preferred to spot options on the underlying as-
set, because of the liquidity of futures. We should first clarify the mechanics
of futures options. Then, we get to a key point: In the risk-neutral world, we
may interpret a futures contract as an asset providing us with a risk-free in-
come. Hence, the risk-neutral dynamics of the futures price has no drift and is
a martingale.

13.7.4 THE MECHANICS OF FUTURES OPTIONS

From a mathematical viewpoint, the payoff of the call and put futures options
may be written as

max{FT −K, 0},

and
max{K − FT , 0},

respectively. If the option is American-style, we should replace the futures price
FT at maturity by the current futures price Ft, when the option is exercised.
This is true mathematically, but we should understand how this is accomplished
exactly:

If the holder exercises a call futures option, she will receive a long posi-
tion in the underlying futures contract, plus a cash amount corresponding
to the strike price minus the last settlement price.
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If the holder exercises a put futures option, she will receive a short posi-
tion, as well as a cash amount corresponding to the last settlement price
minus the strike price.

Thus, we see that the actual transaction is a bit more involved than the case
of a spot option (i.e., an option on the underlying asset). Let us illustrate the
mechanism with an example.

Example 13.12 Exercising a call futures option

Let us assume that at time t (now), the futures price of an underlying
asset is

Ft = $151.

The strike of the futures option is K = $140, and Flast is the last
settlement futures price that was observed at the end of the previous
trading day. Let assume that it was

Flast = $150.

This means that, if the call option is exercised, the holder will receive
a cash amount

Flast −K = 150− 140 = $10,

plus a long position in the underlying contract. If the holder immedi-
ately closes out her long position in the futures, she will earn

Ft − Flast = 151− 150 = $1.

Hence, the total profit is

(Ft − Flast) + (Flast −K) = Ft −K = $11,

corresponding to the familiar call option payoff on a spot asset.

13.7.5 A BINOMIAL VIEW OF FUTURES OPTIONS

To acquire the fundamental intuition about pricing a futures option, we may start
with the simple single-step binomial model, where we assume that the futures
price now is F0, and it will be either F0u or F0d in the future. We may use
the same setup as the spot option, with one major difference: Taking a position
∆ in the underlying futures, in order to hedge the short position in the futures
option, does not require any upfront payment. Hence, let us assume that we
hold a short position in a futures option and we hedge with an amount ∆ of the
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futures contract. The value of the hedged portfolio now is just

Π0 = −f0,

where f0 is the unknown value of the option. In the up state, the portfolio value
is

Πu = ∆ · (F0u− F0)− fu,
since, in that state, we receive a cash amount related to the difference in futures
prices F0u−F0. Note that, strictly speaking, this is true only if the time elapsed
is one day, otherwise we are ignoring the effect of daily marking-to-market. By
the same token, in the down state, the portfolio value is

Πd = ∆ · (F0d− F0)− fd.

The portfolio is riskless if Πu = Πd, i.e., if

∆ =
fu − fd

F0u− F0d
, (13.41)

which is formally the same expression that we find for a spot option. However,
when we write the value Π0, by risk-neutral discounting, we find

−f0 = e−rT [∆ · (F0u− F0)− fu]. (13.42)

We have to plug the expression of ∆ given by Eq. (13.41) into Eq. (13.42) and
rearrange:

f0 = e−rT ·
[
fu −

fu − fd
F0u− F0d

· (F0u− F0)

]
= e−rT ·

[
fu ·

(F0u− F0d)− (F0u− F0)

F0u− F0d
+ fd ·

F0u− F0

F0u− F0d

]
= e−rT ·

[
fu ·

1− d
u− d

+ fd ·
u− 1

u− d

]
= e−rT · [πufu + πdfd]

= e−rT · EQn[fT ],

with risk-neutral probabilities

πu =
1− d
u− d

, πd = 1− πu =
u− 1

u− d
. (13.43)

A comparison with the corresponding risk-neutral probability πu for a spot
stock option suggests that a term erT has been replaced by 1. The same term, in
an option on an asset providing a continuous income at rate q, would be e(r−q)T ,
where r − q is the risk-neutral drift coefficient in Eq. (13.36). Hence, we may
interpret the risk-neutral probability of Eq. (13.43) as

πu =
e(r−q)T − d
u− d

,

where the income rate q from marking-to-market is actually given by r, under
the risk-neutral measure. Therefore, e(r−q)T = e(r−r)T = 1, and the risk-
neutral drift coefficient is r − r = 0.
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13.7.6 A RISK-NEUTRAL VIEW OF FUTURES OPTIONS

To extend the intuition from the single-step binomial model to a continuous-
time, risk-neutral framework, let us consider a short time step δt and the payoff
from a long futures position held from time t = 0 to time t = δt,

Fδt − F0.

The discounted expectation, under the risk-neutral measure, is

e−r·δt · EQn [Fδt − F0].

However, the initial investment is zero, since there is no upfront payment, and
so we must have

e−r·δt · EQn [Fδt − F0] = 0 ⇒ EQn [Fδt] = F0.

Hence, the futures price process under the risk-neutral measure is a martingale.
If we consider a GBM model, the drift must be zero,

dFt = σFt dWt,

which is reflected in the related form of the pricing PDE for the option price
f(Ft, t),

∂f

∂t
+

1

2
σ2F 2

t

∂2f

∂F 2
t

= rf.

By solving the PDE, or by finding the risk-neutral expectation, we obtain the
price of a call option on a futures contract:

Ce0 = e−rT [F0Φ(d1)−KΦ(d2)], (13.44)

where

d1 =
log(F0/K) + σ2T/2

σ
√
T

,

d2 =
log(F0/K)− σ2T/2

σ
√
T

.

This is a familiar formula by now, related to the Black’s model. In this case,
however, F0 is the futures, rather than the forward price.

Remark. We see that the futures price is a martingale under the traditional
risk-neutral measure. The case of a forward is different, as it requires the intro-
duction of a forward risk-neutral measure, as shown in Section 14.3.3.

13.8 Portfolio strategies based on options

In this section, we outline some option portfolio management strategies, in order
to give a feel for the potential applications of the theory that we have developed,
as well as some of its pitfalls.
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13.8.1 PORTFOLIO INSURANCE AND THE BLACK MONDAY OF
1987

Put options can be used to protect the value of an equity portfolio. Index options
may be used to this aim, and the portfolio beta may help in setting up the hedge,
if the portfolio is well diversified, but not quite in line with the index. However,
we may hold a portfolio for which we feel that index options are inappropri-
ate, because they can only protect against systematic risk and we may not trust
the beta estimate, or we may not find options matching the desired maturity.
Portfolio insurance is a strategy to create a synthetic protective put by dynamic
trading.

Here we give a rough-cut description of a simple portfolio insurance strat-
egy. We know from put–call parity that

P0 + S0 = C0 +Ke−rT,

where S0 is the current value of the underlying asset, which in our case is an
equity portfolio, and P0 and C0 are the hypothetical values of put and call op-
tions, with strike K and maturity T , written on the portfolio. Note that P0 + S0

is the value of a protective put strategy, with strike K, which cannot actually be
implemented, if the option we need is not traded. Plugging the BSM price of
the call option and rearranging, the protective put is equivalent to

S0Φ(d1)−Ke−rTΦ(d2) +Ke−rT = S0Φ(d1) +Ke−rT
[
1− Φ(d2)

]
.

The last expression suggests that our portfolio should consist of Φ(d1) < 1
“portfolio shares” and an amount invested in a risk-free asset. This implies that
1 − Φ(d1) portfolio shares should be sold and invested in the risk-free asset.
We also know that Φ(d1) is the delta of a call option and, when the value of
the underlying asset drops, delta is reduced. Thus, more portfolio shares should
be sold. On the contrary, when the portfolio value goes up, delta will, too, and
shares will be purchased back.

The idea looks very simple, but it is actually simplistic for a few reasons:

We have assumed that we implement a protective put with value P0 +S0,
which actually implies that additional cash (for an amount P0) should be
added. Who is going to sustain that cost? A more sensible framework
should start with a portfolio with overall value S0, and part of that value
should be allocated to the put.
Actually, selling and buying back the portfolio may be expensive. Hence,
futures contracts may be used to that purpose to create synthetic short
positions. Again, index futures may achieve limited effectiveness in case
of peculiar portfolios.

Example 13.13 Who was to blame on October 1987?

October 19, 1987, is an infamous day in financial history, better known
as “the Black Monday of 1987.” On that single day, the Dow Jones
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Industrial Average (DJIA) dropped by 22.61%, and other indexes did
not fare much better. The analysis of the causes of this global market
crash is controversial, but the use of automated trading to implement
portfolio insurance strategies has been often blamed as one of the po-
tential culprits.

Whether this is true or not, it is clear that the strategy that we
have outlined may suffer from a fatal flaw: We take for granted that
uncertainty and risk are exogenous and not affected by our trading ac-
tivities. In other words, we disregard the market impact of our trades.
However, on the one hand, markets can lose liquidity and depth, and
on the other one, even if each individual trader is no big fish enough
to affect prices in the pond, risk may be endogenously generated if
many traders pursue similar strategies. In portfolio insurance, we sell
assets when prices go down, which in turn may trigger further sell-
ing orders if market impact is significant. This may create a vicious
feedback cycle.

Whether automated trading was the only reason behind the Black
Monday is debatable, but one thing is sure: Some traders who held
true put options, not synthetic ones, made a fortune on that day.

13.8.2 VOLATILITY TRADING

The fact that vega is positive for vanilla options suggests that options may be
used in order to take long or short positions with respect to volatility.

Suppose that an at-the-money put option on a stock share matures in 60
days,23 and that its strike price is $90. The risk-free rate is 4%, and the put op-
tion sells for $4.4955. Then, implied volatility is 33%. However, let us assume
that this level of implied volatility is too low, in our view, and we believe that it
will increase to 35%. If our view will prove correct, the put price will increase
to $4.785, with a corresponding profit of $0.29 for each put option (assuming
that the BSM formula applies). Note that we assume an instantaneous change
in volatility, i.e., we neglect the effect of theta.

Taking a position in a call or a put option is more or less the same, since
vega is identical for both options (assuming that the maturity and the strike
are the same, too). However, changes in the underlying asset price have quite
different impacts. If we buy the put, we might lose money if the stock price
increases, possibly overwhelming the impact of volatility. Let us assume that we

23Here we replicate the numerical results for an example that we are borrowing from [2]. They
are obtained by the BSM formula, but time-to-maturity should be taken as 60/365 years, rather
than two months.
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Table 13.2 Hedging a volatility bet.

Stock price 89 90 91
Put price (σ = 35%) 5.2536 4.7846 4.3467
Profit on each put 0.7581 0.2891 −0.1488
Value of 1000 puts 5253.6 4784.6 4346.7
Value of 453 shares 40,317 40,770 41,223
Total 45,570.6 45,554.6 45,569.7
Profit 305.1 289.1 304.2

are confident in our view on volatility, but we have no clue about the direction
of the underlying asset price. To hedge this risk, we may make the portfolio
delta-neutral, by purchasing a few stock shares. The portfolio value, if we hold
N shares and one put option, is

NS0 + P0,

and its delta is
N + ∆P .

Hence, we should hold N = −∆P stock shares for each put option to obtain
a delta-neutral portfolio. If we assume that our assessment of volatility is cor-
rect,24 i.e., we evaluate delta with σ = 0.35, we find ∆P = −0.4533. Note that
the actual position in the stock share is long, as we must gain from the hedge,
when the put price suffers from an increase in the stock share price.

Assume that we buy 1000 put options. The initial value of the hedged
portfolio is

1000× 4.4955 + 453× 90 = $45,265.5.

Let us check the effectiveness of the hedge by considering three scenarios:

1. The stock price decreases to $89.
2. The stock price does not move.
3. The stock price increases to $91.

The results are summarized in Table 13.2. For small changes of the stock price,
the hedged position performs a little better than anticipated, due to the positive
gamma of the option.25 This looks very nice, but what about large movements
in the price of the underlying asset? Furthermore, we have ignored the time
decay in the value of options. The strategy should work fast, lest we suffer from
theta, i.e., the decay in the option value over time.

24A more sophisticated approach would also consider the cross-sensitivity, i.e., the derivative of
vega with respect to changes in the stock price. This sensitivity is called vanna; see Problem
13.15.
25We have observed a similar convexity effect for bonds. See Section 6.5.
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FIGURE 13.18 The evolution of a binary option price over time. The smooth price
function converges to the discontinuous payoff when maturity is approached.

13.8.3 DYNAMIC VS. STATIC HEDGING

We have derived the BSM equation in a rather informal way, which has the ad-
vantage of emphasizing the relationship between fair option price and hedging
cost, as well as giving a recipe for dynamic delta-hedging. In principle, we
should keep a delta-neutral portfolio to hedge the option. As we pointed out
in Section 13.4.1.2, continuous-time hedging is out of the question, because of
transaction costs. Delta-hedging has been the subject of further criticism. Apart
from limitations of delta estimates based on the BSM model, it has been argued
that other approaches are needed to achieve an approximate, but robust hedg-
ing, rather than perfect hedging for small risks. From a practical viewpoint,
we should consider that an option book may be hedged, rather than a single
contract, with corresponding opportunities for saving.

Anyway, even if we remain within the safe BSM world, delta-hedging may
prove difficult to achieve. A clue is given in Fig. 13.15, where we see how
gamma gets more and more peaked as maturity is approached. This implies
that delta may change abruptly for at-the-money options, since the option value
gets closer and closer to the nondifferentiable payoff function. Things are even
uglier in the case of a discontinuous payoff. Equation (13.27) gives the price of a
binary option, which is plotted in Fig. 13.18 as a function of the underlying asset
price in the range [30, 70], when the strike price is set to K = 50, for different
times-to-maturity. When time-to-maturity goes to zero, the price function gets
steeper and steeper, even though it preserves its continuity properties due to
the diffusion nature of the pricing PDE. The problem is that delta-hedging in
such a situation may get very difficult, if there are huge swings in the hedge,
corresponding to modest changes in the underlying asset price.

When we consider exotic options, things may get ugly, too. Let us consider
an example of barrier option, the up-and-out call option. When solving the
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FIGURE 13.19 Boundaries for an up-and-out call option.
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FIGURE 13.20 Surface plot of an up-and-out call option price.

pricing PDE, the boundary conditions illustrated in Fig. 13.19 should be set
to reflect the option specification. The terminal boundary is just the usual call
option payoff, but along the barrier, the knock-out option value is zero. The
resulting option value is displayed in Fig. 13.20. The surface plot gives the value
of the option for a range of underlying asset prices (from 40 to 60) and time
instants (from t = 0 to t = 100 days, which is the option maturity). The strike
isK = 50, the barrier is Sb = 60, and we use an analytical formula available for
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FIGURE 13.21 Surface plot of an up-and-out call option delta.

continuous-time monitoring in the BSM world. Far from the barrier, we notice
the usual call option payoff at maturity. Close to the barrier, the option value
drops to zero. We also notice a different pattern of theta. The option price tends
to increase over time, as there are less and less chances to cross the barrier.
However, the most striking effect is on the option delta, which is displayed in
Fig. 13.21. At maturity, far from the barrier, we notice the usual pattern of a
call delta, which is related to a normal CDF: Delta is zero below the strike and
is one above the strike. However, we notice a striking a singularity close to the
barrier. There, delta is negative and quite large in absolute value. This suggests
that delta-hedging the up-and-out call option is a nightmare, if we are close to
the barrier and close to maturity.

A further complicating factor is model risk. The simplest modeling error
is related to the use of a wrong value for a parameter, like volatility. A thornier
issue is the use of a wrong model altogether. When pricing a barrier option,
we might want to consider a stochastic volatility model, possibly the Heston
model. However, the more sophistication we introduce in the model, the more
uncertain parameters we have to estimate.

All of these difficulties have suggested the opportunity to replace dynamic
delta-hedging with alternative approaches. One such approach is static hedg-
ing, where a portfolio based on vanilla options is chosen once and for all in
order to hedge an exotic option. In practice, we may pursue semi-static hedging
strategies; furthermore, if certain events happen, like a knock-out of a barrier
option, this will affect the hedge. Static hedging may be accomplished in a va-
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riety of ways, including the solution of an optimization model. Model risk may
be tackled by robust optimization techniques,26 whose application to finance is
an active research area.

13.9 Option pricing by numerical methods

In this chapter, we have relied on analytical formulas, for the sake of conve-
nience. Most options, especially when early exercise features are included, must
be priced numerically. All numerical methods rely on some form of discretiza-
tion, which may be deterministic or stochastic. There is a huge variety of nu-
merical methods for financial engineering. Sometimes, a considerable amount
of adaptation is required to devise an efficient and robust procedure for a spe-
cific contract. All of this is definitely outside the scope of this book, but it is
useful to link the three general classes of pricing methods with the concepts
that we are already familiar with, so that the reader may appreciate the tradeoffs
among the alternatives.

Lattice methods. The simple binomial lattice approach that we have consid-
ered in Section 13.3 can be extended to multiple dimensions, and trinomial
lattices offer additional flexibility. The advantages of lattice methods are
the computational efficiency, since they are based on a careful deterministic
discretization, and the possibility of dealing with early exercise. However,
they are not well suited to high-dimensional options, and they also require
some adaptation to cope with path dependency. Furthermore, they do not
yield Greeks naturally.

Finite difference methods. An alternative class of methods relies on the dis-
cretization of the pricing PDE. Finite difference methods are based on a
grid discretization of the domain on which the PDE must be solved, and the
discretization of partial derivatives by increment ratios. When the starting
PDE is linear, as the BSM equation is, we either have to solve a sequence of
systems of linear equations, or we apply a simple set of explicit formulas,
similar to those we obtain from lattice methods. The first case occurs with
implicit schemes; the second case occurs with explicit schemes. Implicit
schemes may be more time consuming, but are more accurate and more ro-
bust in terms of numerical stability. In both cases, we find the option price
by a backward process starting from the option payoff. Finite difference
methods are rather efficient in general since, just like lattice methods, they
rely on a deterministic discretization. Using finite differences, we find some
Greeks, like delta and gamma, for free. These methods are able to cope with
early exercise, but are limited to low-dimensional problems. Furthermore,
they can be applied to path-dependent options, provided that the correct
PDE is devised. For weakly path-dependent, barrier options, the standard

26See Section 15.9.
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BSM equation is valid, whereas a different PDE applies to strongly path-
dependent, Asian options. Sometimes, careful analysis is needed to find
suitable boundary conditions. More sophisticated approaches, like finite-
elements methods, are also applied.

Monte Carlo methods. Unlike the previous approaches, Monte Carlo meth-
ods rely on random sampling. Starting from a dynamic model based on
stochastic differential equations, a discrete-time sample path generation
procedure is selected,27 random paths are sampled, and the sample mean of
the resulting payoff is used to estimate the option price. This sounds quite
simple and, in fact, Monte Carlo methods are quite flexible and powerful.
They are actually the only viable solution method for high-dimensional
problems, especially when complex path dependencies must be accounted
for. The disadvantage is the possibly large sample size needed to obtain re-
liable estimates. Furthermore, the adaptation to American-style options is
difficult and computationally intensive,28 and additional work is needed to
find reliable estimates of the option price sensitivities. Nevertheless, some
methods to reduce variance of the estimators are available, and a significant
advantage of Monte Carlo methods is that they may be easily parallelized,
taking advantage of the availability of multiple processors.

Problems

13.1 A stock price is currently $40. It is known that, in one month, the price
will be either $42 or $38. The annual risk-free interest rate is 8%, with continu-
ous compounding. What is the value of a one-month European call option with
a strike price of $39? How many stock shares should a writer hold in order to
hedge risk? Repeat in the case of a put option, and check the working of the
hedge in detail.

13.2 The following figure shows the payoff of a common strategy called
spread.

ST

K1 K2

K K2 1

0

Payoff

27See Section 11.6.
28This requires numerical methods to solve stochastic dynamic programming problems. See
Section 15.7.
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Explain how you could create the strategy by using either vanilla calls or vanilla
puts. What is the difference between the two implementations in terms of cash
flow timing?

13.3 Consider the payoff depicted in the following figure, depending on ST ,
the price of an underlying stock share at time T .

0 20 70

50

90

70

160

Payoff

ST

Find a trading strategy that replicates this payoff. You may use European-style
call and put options on the stock, the stock itself, and a risk-free zero coupon
with maturity T .

13.4 Consider a forward contract on a stock, with given delivery price and
delivery date. How can we synthesize the payoff of a long position in a forward,
by using vanilla options?

13.5 Consider a call and a put option written on an underlying asset with
current price $60. The options have strike $55 and mature in nine months.
The risk-free rate (with continuous compounding) is 5%. If you think that it is
necessary, you may assume any drift and volatility you like for the underlying
asset price. The call price is $12, the put price is $4. Is there an arbitrage
opportunity? If so, devise a strategy to take advantage of it and check that it
will work in every scenario.

13.6 Extend the put–call parity relationship of Eq. (13.4) to the case in which
the underlying stock share pays dividends, with present value D, between now
and the maturity of the two options.

13.7 Let us consider a European-style call option on an underlying stock
share whose price dynamics is represented by a three-step binomial lattice (Note:
The lattice has 4 nodes in the last time layer, corresponding to maturity). Time-
to-maturity is one year, and the continuously compounded (annual) risk-free
rate is 3%. The current underlying asset price is $30 and the strike is $30. We
do not consider dividends and, at each time step, the stock share either gains
15%, with probability 0.6, or loses 10%, with probability 0.4.

Price the option.
Consider the sample path (up, up, down), and imagine that we are at the
beginning of the last time period (after two steps, when time-to-maturity
is four months). How many stock shares should be bought or sold (at this
time instant) by the option writer to hedge risk?
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13.8 Consider an American-style put option written on a stock share that does
not pay dividends. The continuously compounded risk-free rate is 3%. The
option matures in nine months and its strike is $60. The current stock price is
$50 and its annualized drift and volatility are 10% and 50%, respectively. Price
the option using a time step of three months. If we had to price a European-style
Asian option, would the lattice calibration or anything else change?

13.9 The price of a stock share (no dividend, current price is 50) follows
a GBM with drift 12% and volatility 35%; the continuously compounded risk-
free rate is 5%. Consider a (European-style) lookback call with floating strike,
whose payoff is (Smax − Smin). Find the option price, by approximating the
underlying stochastic process by a three-step binomial tree (the option matures
in nine months, and each time step is three months).

13.10 The price of a non-dividend-paying stock share is currently 55 and its
volatility is 31%, while the drift is 10%. The risk-free rate, continuously com-
pounded, is 6%. We want to find the price of an as-you-like-it option, with strike
55 and maturity T2 of six months. In such an option, the holder may chose at a
given time T1, before maturity (T1 < T2), whether the option is a call or a put.
In other words, at time T1 the holder may choose whether the uncertain payoff
at time T2 will be given by a call or a put payoff. Both payoffs have the same
strike, maturity, and underlying asset, of course.

For which price of the underlying asset you are indifferent between choos-
ing the put or the call option at T1?
Estimate the value of the option at time t = 0, using a two-step binomial
lattice, assuming that the choice has to be made after three months, i.e.,
half-way to maturity, which is six months (Clearly, this is a very rough
estimate!).

13.11 Compute the delta of a European-style call option with strike 40, ma-
turing in four months, written on an underlying asset whose current price is 37.
The stock price follows a GBM with drift and volatility coefficients 13% and
30%, respectively. The annual risk-free rate is 6%, with continuous compound-
ing.

13.12 Compute the delta of a European-style put option with strike price 35,
maturing in five months, written on a stock share (no dividends) whose current
price is 47, with drift and volatility 12% and 45%, respectively. The annual
risk-free return is 3% (all rates are continuously compounded). If an investor
holds 100 such puts and wishes a portfolio that is not sensitive to variations
of the underlying asset (on the short term), how many stock shares should she
hold?

13.13 You hold a portfolio of (vanilla, European-style) options written on the
same stock share, whose price follows a geometric Brownian motion with drift
9% and volatility 25%. At present, the stock price is $30, and the risk-free rate,
with continuous compounding, is 3%. The portfolio consists of:
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A short position in 1000 put options, strike $27, maturing in three months
A long position in 500 call options, strike $30, maturing in four months
A short position in 1500 call options, strike $28, maturing in two months

How many stock shares do you need to make the portfolio delta-neutral? Can
you also make the portfolio gamma-neutral by using stock shares? If so, explain
how. Otherwise, how should you change the position in the last call to make the
portfolio gamma neutral?

13.14 You hold a long position in a call and a short position in a put, written
on the same non-dividend-paying stock share, but having different strikes and
maturities, as reported in the table below (note that the number of puts held is
negative):

Option Call Put
Maturity six months two months
Strike ( ) 55 45
Number 1000 −1500

The underlying asset price follows a GBM with drift coefficient 13%. The
current volatility is 35%, while the continuously compounded risk-free rate is
4% for all maturities; the current underlying asset price is 50. Is your position
long or short with respect to volatility? Note: When you are long a risk factor,
it means that you gain if the factor increases; you are short the risk factor, if you
gain when its value drops. We consider only small variations.

13.15 In risk management, we sometimes need second-order sensitivities,
like gamma. Vanna is defined as

∂2V

∂S ∂σ
,

where V is the option value. This may be regarded as the derivative of delta
with respect to volatility, or the derivative of vega with respect to the current
price of the underlying asset. Let us assume that the BSM model applies.

Is vanna different for call and put options?
Find a formula for the option vanna.

13.16 Consider a European-style option on a non-dividend-paying stock share,
whose price follows a geometric Brownian motion with drift 5% and volatility
35% (per year); the continuously compounded risk-free rate is 3%; the option
matures in 4 months, and the current underlying asset price is $50. The payoff
(in USD) is given by the following contingency table depending on the terminal
price of the underlying asset:
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Condition Payoff
ST < 50 0

50 ≤ ST < 60 5
60 ≤ ST < 70 10

70 ≤ ST 1

Find the option price.

13.17 Let us consider a European-style put option on a non-dividend-paying
asset whose price follows a GBM with drift 10% and volatility 40% (annu-
alized). The risk-free rate is 5% with continuous compounding. The option
matures in six months, the current underlying asset price is 40, and the strike
is 50. Find the probability that the payoff is between 10 and 20.

13.18 Consider a European-style derivative, depending on ST , the price of a
non-dividend-paying stock share at time T , characterized by the payoff depicted
in the figure below.
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Find a simple expression for the option price.

13.19 An investment bank offers a derivative whose payoff at maturity T is
given by S2

T , where ST is the price of the underlying asset, a non-dividend-
paying stock share with a price following a GBM.

Find the price of the derivative at time 0.
Check the correctness of your result by verifying that it satisfies the BSM
partial differential equation.

13.20 Using the Feynman–Kač representation theorem, solve the PDE

∂V

∂t
+ ax

∂V

∂x
+

1

2
b2x2 ∂

2V

∂x2
= 0,

for an unknown function V (x, t) with terminal condition

V (x, T ) = log
(
x4
)

+ k,
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where a, b, and k are known constants. Note that we have no right-hand side in
the PDE (like rV ), so that the formula can be simplified.

13.21 Prove that the price of a European-style vanilla call option is a convex
function of its strike, without any assumption on the model (e.g., you should
not assume that the BSM model applies). Hint: Consider the butterfly-spread
in Example 2.11.

13.22 Assume that an index value is 100 at present, and that an at-the-money
put option on the index is available and used to hedge a portfolio with a beta of
1.5. The put option matures in two months, the index volatility is 25%, and the
risk-free rate is 5% (with continuous compounding). For the sake of simplicity,
let us assume that, in pricing and settling the option, the index is multiplied by 1
(hence, we may identify the index value with the value of the underlying asset,
which is $100). We have invested $100,000 in the portfolio.

Build a delta-neutral portfolio, without adding cash. This means that a
part of the current wealth is used to buy the put options. How many
options are bought? What are the dollar values of the two positions?
Check the effectiveness of the hedge and explain the results in the follow-
ing scenarios:

– Instantaneous return on the index of ±5%

– Return on the index of ±5%, after one month

Hint: You may assume that you initially hold 1000 units of the index, and
that the portfolio return is only affected by systematic risk (i.e., there is no
contribution from specific risk). Neglect dividend yield.

Further reading
We have just scratched the surface of option pricing. A standard and quite
extensive coverage of options can be found in [11]. You may also see [17]
or [18].
We have followed a rather liberal and intuitive approach to the applica-
tion of stochastic calculus to financial engineering. This is arguably the
best way to get going and build useful intuition, but more advanced appli-
cations, in terms of both contract types and underlying dynamic models,
require a more solid foundation. See, e.g., [1] or [6].
Apart from a theoretical understanding of options, it is very useful to read
about real-life stories. For instance, more details about the Black Monday
of 1987 can be found in [3].
Static hedging is described in [7], for the case of barrier options. An
application based on robust optimization is proposed in [12]. Robust op-
timization, which we outline in Chapter 15, is used to address parametric
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uncertainty. See also [14] for a discussion of static hedging and model
risk. A comprehensive reference on model risk is [13].
An introductory reference on numerical methods is [4], where standard
approaches are covered. See also [8]. More specific references about
Monte Carlo methods are [5] and [9], whereas [16] deals with numerical
methods based on the solution of PDEs.
After the 2008 credit crunch, new concepts have been introduced to ad-
just the valuation of derivatives, taking a range of factors into account.
They are collectively known as xVA and include credit, debit, and fund-
ing valuation adjustments (CVA, DVA, and FVA, respectively). See, e.g.,
[10].
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Chapter Fourteen

Option Pricing: Incomplete
Markets

In Chapter 13, we have introduced the essential mathematical machinery re-
quired to price options. We have done so under the somewhat self-contradictory
assumption of market completeness. The practical implication of market com-
pleteness is that we price derivatives under the condition that they are of no
use, as they can be perfectly replicated, and that any risk can be hedged away.
Needless to say, markets are not complete, as a consequence of the following
reasons:

The derivative may be written on a non-traded asset, which cannot be in-
cluded in a hedging/replication portfolio. This is the case, e.g., for interest
rate derivatives.
The BSM model relies on geometric Brownian motion (GBM), which
features continuous sample paths, a gentle tail behavior with moderate
kurtosis, as well as a deterministic volatility. Actually, volatility is an
unobservable risk factor, which may be hard to hedge.
Diffusion models with stochastic volatility may yield heavy-tailed dis-
tributions that are more compatible with observed behavior than GBM.
A more radical approach is to rule out continuity and introduce jumps.
Jumps introduce a non-predictable component that may disrupt replica-
tion approaches.
Transaction costs preclude continuous-time hedging, resulting in hedging
errors and residual risk.

From a theoretical viewpoint, market incompleteness implies the existence of
multiple probability measures compatible with no-arbitrage. From a practical
viewpoint, market incompleteness implies that the option writer cannot fully
hedge the whole risk of her business. Hence, risk aversion creeps back into the
game, in one form or another.

Lack of market completeness gives rise to different approaches to option
pricing and hedging:

One possible approach relies on the adaptation of the pricing machinery
of complete markets. We use the same tools, like PDEs or risk-neutral

579
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expectations, but we have to spot a suitable measure by model calibration,
i.e., by matching observed prices of liquid securities, and then using the
model to price illiquid and OTC derivatives.
Another approach relies on the solution of an optimization model, in
which we want to devise a hedging portfolio minimizing a risk measure.
The price of the derivative should be related to the cost of the resulting
hedging strategy. There are alternative ways of doing so, depending on
the trading strategy that we want to pursue (static or dynamic), and on the
risk measure that we select.

Note that these two views coincide in the ideal setting of complete markets, but
lead to different frameworks in a more realistic setting. We will pursue the first
approach, which is more common and aims at finding a system of internally
consistent prices.1 The machinery of option pricing is, essentially, an interpola-
tion/extrapolation approach based on relative pricing. We do not claim that we
find the “right” prices, but only that those prices are consistent, in the sense that
they do not allow for arbitrage opportunities.

The limited aim of this chapter is to provide the reader with the essential
concepts, which will be illustrated by simple examples. The sheer variety of
derivatives and pricing approaches precludes an exhaustive treatment. Further-
more, a more advanced knowledge of stochastic calculus than the very basic
one provided in Chapter 11 would be needed. We shall only deal with interest
rate derivatives, showing how the approaches devised for complete markets may
be generalized. Even so, there is a significant variety of modeling approaches
to cope with interest rate derivatives. The difficulty in modeling interest rates
is that there are plenty of them, even if we only consider risk-free rates and do
not model credit spreads. In principle, we should model the dynamics of a full
term structure r(t, t + τ), as a function of t, for a conceptually infinite set of
time to maturities τ . This is considerably more complicated than modeling a
single stock price, and it should be done in a credible and arbitrage-free way.
Clearly, an infinite-dimensional problem must be discretized and boiled down
to a finite-dimensional one.

An extreme choice is to use a single factor and relate all of the relevant
rates to it. Models based on the (instantaneous) short rate have been pro-
posed in this vein. Clearly, this approach is limited in terms of both ability
to fit market prices and dynamic realism, as all rates are related to a single
risk factor and certain twists in the term structure are precluded.
An alternative approach is to use a limited set of factors, such as a subset
of spot rates or a suitable combination of spot rates (possibly obtained by
data reduction algorithms, like principal component analysis). An alter-
native is to model forward rates and obtain spot rates as a consequence.

1We shall hint at financial optimization models in Chapter 15.
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With respect to short-rate models, a multifactor model trades off model
tractability and fitting flexibility. A further limitation of short-rate models
is that they rely on a factor that is not really observable. Market models
rely on rates, such as LIBOR rates, that may be directly observed on
markets.

We will mostly rely on short-rate models, despite the fact that these models
may have limited practical value. Short-rate models have a definite pedagogical
motivation, beside their historical value, as they provide us with a simple way
to understand essential concepts.

In Section 14.1, we pursue a PDE approach, which essentially generalizes
the hedging view of Section 13.4.1. We will illustrate how this framework may
be applied in Section 14.2, where we price fixed-income assets using single-
factor models based on the short rate. Then, in Section 14.3, we offer another
viewpoint based on martingale measures, which generalizes the risk-neutral ap-
proach of Section 13.4.2. Finally, in Section 14.4, we consider potential pitfalls
in model calibration, which is an essential task when dealing with incomplete
markets.

14.1 A PDE approach to incomplete markets

In Section 13.4.1, we have derived a pricing PDE on the basis of a hedging
argument. The aim was to hedge a short position in a derivative, by taking a po-
sition in the underlying asset. Here, we consider a single risk factor that, unlike
a stock share, cannot be included in an investment portfolio. To be concrete,
we will refer to a continuously compounded risk-free short rate rt. This may
be interpreted as an instantaneous rate applying to a small time slice [t, t+ δt),
for δt → 0. It is important not to confuse the short rate rt with the rate r(t, T )
applying over a possibly long time period [t, T ]. Both of them are annualized,
as usual, but if we invest over the time period [t, T ] at rate r(t, T ), we face no
interest rate risk. On the contrary, we are subject to reinvestment risk, if we roll
the short rate rt over the time period [t, T ]. In fact, one of the things we have
to check is which kind of term structure dynamics can be generated by a single
risk factor.

We assume that the short rate may be modeled by the following Itô diffusion
model2:

drt = m(rt, t) dt+ s(rt, t) dWt, (14.1)

for given drift function m(rt, t) and volatility function s(rt, t). This family of
models includes GBM, which is not a very sensible model for interest rates, as
it does not display mean reversion, which is a commonly observed feature of
interest rates. We will provide specific examples in Section 14.2.

2Much of the treatment in this section follows [11].
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Let us denote by Z1(rt, t) and Z2(rt, t) the prices of two traded assets,
whose value depends on the short rate rt at time t. These assets can be as
simple as two zero-coupon bonds, which explains the notation, or more complex
interest rate derivatives. Note that a zero may be interpreted as an interest rate
derivative with respect to the short rate rt, and that we do not want to price the
zero using the classical discount factor depending on a known term structure
r(t, T ) at time t.

Imagine that we hold a long position in Z1. We cannot build a hedging
portfolio for Z1 including the underlying risk factor, which is not tradable. Nev-
ertheless, we still can get rid of risk if we include Z2 in the portfolio, as it is a
traded asset, subject to the same risk factor as Z1. Apart from this difference,
we essentially use the same mathematical machinery as in the BSM model for
equity derivatives. Using Itô’s lemma as usual, we may find the stochastic dif-
ferential equations for prices Zi(rt, t), i = 1, 2:

dZi =

{
∂Zi
∂t

+m(rt, t) ·
∂Zi
∂rt

+
1

2
s2(rt, t) ·

∂2Zi
∂r2
t

}
dt+ s(rt, t) ·

∂Zi
∂rt

dWt.

(14.2)
In order to hedge risk, we may set up a portfolio involving both Z1 and Z2 in
the right proportions. Let us build a hedged portfolio as follows:

Π(rt, t) = Z1(rt, t)− φt · Z2(rt, t), (14.3)

for a suitable choice of the hedging ratio φt (which is going to change over
time). If we apply Itô’s lemma to the portfolio, we find

dΠ =

{
∂Π

∂t
+m(rt, t) ·

∂Π

∂rt
+

1

2
s2(rt, t) ·

∂2Π

∂r2
t

}
dt+ s(rt, t) ·

∂Π

∂rt
dWt.

(14.4)
By differentiating Eq. (14.3), we find

∂Π

∂rt
=
∂Z1

∂rt
− φt ·

∂Z2

∂rt
, (14.5)

∂2Π

∂r2
t

=
∂2Z1

∂r2
t

− φt ·
∂2Z2

∂r2
t

. (14.6)

From Eq. (14.5), we see that we obtain ∂Π/∂rt = 0, i.e., we make the portfolio
locally immune to changes in the risk factor, if we choose

φt =
∂Z1/∂rt
∂Z2/∂rt

. (14.7)

This choice of φt eliminates both the term multiplying dWt and the term in-
volving the drift function m(rt, t) in Eq. (14.4), which boils down to

dΠ =

{
∂Π

∂t
+

1

2
s2(rt, t) ·

∂2Π

∂r2
t

}
dt. (14.8)
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Since this portfolio is risk-free, by no-arbitrage, we can also write

dΠ = rtΠ dt. (14.9)

By linking Eqs. (14.8) and (14.9), taking advantage of Eqs. (14.5) and (14.6),
and rearranging, we find{
∂Z1

∂t
+

1

2
s2(rt, t) ·

∂2Z1

∂r2
t

− rtZ1

}
= φt

{
∂Z2

∂t
+

1

2
s2(rt, t) ·

∂2Z2

∂r2
t

− rtZ2

}
.

(14.10)
Substituting φt and rearranging again yield

∂Z1

∂t
+

1

2
s2(rt, t)

∂2Z1

∂r2
t

− rtZ1

∂Z1

∂rt

=

∂Z2

∂t
+

1

2
s2(rt, t)

∂2Z2

∂r2
t

− rtZ2

∂Z2

∂rt

. (14.11)

We note that the drift term m(rt, t) does not play any role, which is consis-
tent with the BSM case. However, here we are relating two derivative prices.
Equation (14.11) is not a pricing equation that we may immediately use. It only
provides us with partial information, which is essentially a consistency condi-
tion for pricing different derivatives depending on the same risk factor rt. To
see this, let us observe that the two ratios in Eq. (14.11) are identical and not
specific of any derivative written on rt. They should be associated with the risk
factor rt itself.3 Therefore, for a generic derivative with value Z(rt, t), we may
define the following function of the short rate and time:

m∗(rt, t)
.
= −

∂Z

∂t
+

1

2
s2(rt, t)

∂2Z

∂r2
t

− rtZ

∂Z

∂rt

, (14.12)

where we change the sign just for the sake of convenience, as this allows to
write the pricing equation in a familiar form:

∂Z

∂t
+m∗(rt, t)

∂Z

∂rt
+

1

2
s2(rt, t)

∂2Z

∂r2
t

= rtZ. (14.13)

We notice that this is quite close to the BSM partial differential equation, but it
involves an unknown function m∗(rt, t). By using the Feynman–Kač represen-
tation theorem, we can express the derivative price as the expected value of the
payoff, where the risk factor follows the risk-adjusted dynamics

drt = m∗(rt, t) dt+ s(rt, t) dWt. (14.14)

Once again, we notice that there is a change in drift, which reflects a change
in probability measure. However, due to market incompleteness, we do not

3We have used the same kind of reasoning when dealing with APT in Example 10.2.
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know a priori which measure we should use, as uniqueness of the risk-neutral
measure requires completeness. The difficulty is that the drift is related to a
market price of risk, as we shall see later. Unlike the BSM case, risk does
play a role here, since we cannot hedge using the underlying factor directly. On
the contrary, in the complete market case of Chapter 13, we find a unique risk-
neutral measure with a well-defined drift. The way out of the dilemma requires
calibrating the model against the quoted prices of liquid and exchange-traded
derivatives. In the case of interest rates, we might use the quoted prices of bonds
or other liquid assets to formulate a model calibration problem and solve the
corresponding optimization model to estimate the function m∗(rt, t). Having
pinned down the right risk-adjusted measure, we may price other derivatives by
using analytical formulas, when available, or by using numerical methods to
solve the PDE, like finite differences, or by estimating the price in expectation
form by Monte Carlo methods.

Model calibration is an example of an inverse problem and may be tack-
led by different approaches, as we discuss in Section 14.4. A basic choice is
between parametric and non-parametric approaches. The function m∗(rt, t) in
its full generality is an infinite-dimensional object, and we may fit an arbitrary
function, in principle. Unfortunately, this may require plenty of data and result
in some overfitting. In terms of robustness, a possibly better approach is to pa-
rameterize the function by choosing a functional form depending on a limited
set of parameters. A natural choice, from this viewpoint, is to use a model that
makes financial sense, like the short-rate models that we describe in Section
14.2. Before doing so, it is useful to understand how the pricing PDE may be
tackled in an artificially simple case.

14.1.1 PRICING A ZERO-COUPON BOND IN A DRIFTLESS
WORLD

To illustrate the overall approach based on the pricing PDE (14.13), let us price
a simple zero-coupon bond, assuming a driftless short-rate process

drt = σ dWt,

whose simplicity will lead to an analytical solution. Note that we consider this
as the risk-adjusted model, and for now we neglect model calibration issues.
This model, per se, is clearly not a realistic one, as it yields a normally dis-
tributed rate, which may easily get negative.4

We consider a zero-coupon bond with unit face value, whose price will be
denoted as Z(rt, t;T ) to make the dependence on the maturity T explicit. As
usual in derivative pricing, we need a terminal condition, which in this case

4We may consider this model as a subcase of the Ho–Lee model, which assumes the differential
equation drt = θt dt+σ dWt, for some given function θt that may be calibrated against market
data.
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refers to the face value of the bond, which is repaid at maturity:

Z(rT , T ;T ) = 1, ∀rT . (14.15)

Since we assume zero drift, the pricing equation (14.13) becomes

∂Z

∂t
+

1

2
σ2 ∂

2Z

∂r2
t

= rtZ.

In order to get a clue about the solution of a differential equation, reasoning by
analogy may be useful. We know that, in a deterministic setting with a constant
rate r, we should find the same formula of elementary financial mathematics in
terms of a discount factor:

Z(r, t;T ) = e−r·(T−t).

Therefore, we may guess a solution of a similar form, in terms of unknown
quantities, and see where this ansatz may lead us. In this case, a sensible guess,
based on analogy with the deterministic price, is

Z(rt, t;T ) = eA(t;T )−B(t;T )·rt ,

for a pair of unknown functions A(t;T ) and B(t;T ). This functional form
makes financial sense, and it separates the dependence on time from the de-
pendence on the state variable rt. In fact, this is an example of a general PDE
solution strategy based on separation of variables. Furthermore, exponential
functions are particularly well-behaved in terms of their derivatives, so there
should be hope!5

The idea is to plug the selected functional form into the pricing PDE and
hope for the best. Given the terminal condition (14.15) on the bond price, we
require

B(T ;T ) = 0, A(T ;T ) = 0.

Then, we calculate the partial derivatives that occur in the pricing PDE:

∂Z

∂t
=
[
A′(t;T )−B′(t;T )rt

]
· Z,

∂Z

∂rt
= −B(t;T ) · Z,

∂2Z

∂r2
t

= B2(t;T ) · Z.

By plugging these partial derivatives into the pricing PDE and simplifying a bit,
we find a condition that does not involve the bond price:[

A′(t;T )−B′(t;T ) · rr
]

+
1

2
σ2 ·B2(t;T ) = rt.

5In fact, this form of solution applies to a whole family of short-rate models yielding a so-called
affine term structure.
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This equation may be rearranged in order to factor the state variable rt:

rt ·
[
1 +B′(t;T )

]
= A′(t;T ) +

1

2
σ2 ·B2(t;T ). (14.16)

A fundamental observation is that this condition must hold for whatever value
of the state variable rt. For this to be the case, both factors in Eq. (14.16) must
be zero, which yields two ordinary differential equations:

B′(t;T ) = −1, (14.17)

A′(t;T ) = −1

2
σ2 ·B2(t;T ). (14.18)

This is the essence of separation of variables: We start from a PDE and boil it
down to ordinary differential equations (ODEs). In this very easy case, the two
ODEs are simple and may be solved in sequence. In fact, Eq. (14.17) is easily
solved:

B(t;T ) = −t+K1,

for some integration constant K1, which is found from the terminal condition:

B(T ;T ) = −T +K1 = 0 ⇒ B(t;T ) = T − t.

Then, we plug this solution into Eq. (14.18) and find the following equation for
A(t;T ):

A′(t;T ) = −1

2
σ2(T − t)2,

which yields

A(t;T ) =
1

6
σ2(T − t)3 +K2,

for another integration constant K2, which is found again by enforcing the ter-
minal condition. Here we have K2 = 0, so that

A(t;T ) =
1

6
σ2(T − t)3.

By putting everything together, we end up with the bond price

Z(rt, t;T ) = exp

{
1

6
σ2(T − t)3 − (T − t)rt

}
. (14.19)

This formula looks a bit weird, when compared with the classical bond price
formula, so it is worthwhile to examine it in some detail and check whether
some basic intuition is preserved. To this aim, it is useful to derive the differen-
tial equation of the bond price using Itô’s lemma. From Eq. (14.19), we find the
required partial derivatives, as usual:

∂Z

∂t
=

{
−1

2
σ2(T − t)2 + rt

}
· Z, (14.20)

∂Z

∂rt
= −(T − t) · Z, (14.21)

∂2Z

∂r2
t

= (T − t)2 · Z. (14.22)
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As a first reality check, we observe that Eqs. (14.21) and (14.22) are consistent
with the familiar bond duration and convexity for a zero. A less intuitive fact is
that the bond’s theta, given in Eq. (14.20), could be negative for a large volatility
σ of the interest rate. We would expect a positive theta, as a zero price should
converge to the face value from below, unless interest rates are negative. Indeed,
in the driftless model that we are considering, the probability of a negative rate
is related to volatility.

If we plug these derivatives into Itô’s lemma, we find

dZ = Z ·
{[
−1

2
σ2(T − t)2 + rt

]
+

1

2
σ2(T − t)2

}
dt− Z · σ · (T − t) dWt

= Z · rt dt− Z · σ · (T − t) dWt.

If we consider a small time slice δt, we may rewrite the differential equation in
approximate form as

δZ

Z
≈ rt δt− σ(T − t)

√
δt εt+δt,

where the increment of the Wiener process is written, as usual, in the form
Wt+δt −Wt =

√
δt εt+δt, where εt+δt is standard normal. This allows us to

interpret the ratio δZ/Z on the right-hand side as an approximation of return on
a small time step δt and to check qualitative properties:

The expected return is

E

[
δZt
Zt

]
≈ rt δt,

which states that the bond return is essentially the risk-free rate and does
not depend on time-to-maturity T − t.
The volatility of return is√

Var

(
δZt
Zt

)
≈ (T − t)σ

√
δt

and depends on the underlying volatility σ, as well as on time-to-maturity.
As we should expect, the volatility function for the bond price goes to zero
as we approach maturity.

As we have pointed out, the short rate is actually an unobservable state
variable. The quality of an interest rate model can be measured in terms of
fit against market prices, but also in terms of realism of the generated term
structure. Hence, let us check which kind of term structure we may generate
with the simple model we are working with. To this aim, we must consider
the continuously compounded interest rate r(t, t + τ), with time-to-maturity
τ = T − t. This may be inferred by inverting the classical bond price formula,

Z(rt, t; t+ τ) = e−τ ·r(t,t+τ),
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which, given Eq. (14.19), implies

r(t, t+ τ) = − logZ(rt, t; t+ τ)

τ
= −σ

2τ2

6
+ rt.

For a small time-to-maturity τ → 0, we find the short rate, but the term structure
is unbounded and decreasing with τ . For any given τ , we see that the increments
in the rate are directly related to the increments in the short rate,

dr(t, t+ τ) = drt,

which implies that interest rates for all maturities are perfectly correlated, re-
sulting in parallel shifts. This is no big surprise, since we have used a single risk
factor, but the term structure does not look at all realistic. At the very least, a
sensible drift term must be introduced into the short-rate model; anyway, there
is only so much we can obtain by a single-factor model, and we might resort to
a multifactor approach.

14.2 Pricing by short-rate models

While a single-factor model based on the short rate looks not quite realistic,
it may provide us with valuable explicit pricing formulas. Analytical formulas
help in building intuition, and they also make the task of model calibration much
easier. A few models for the short rate have been proposed in the literature, and
here we consider two popular ones:

1. The Vasicek model, characterized by a stochastic differential equation
featuring mean reversion:

drt = γ(r̄ − rt) dt+ σ dWt. (14.23)

The Vasicek model is based on the Ornstein–Uhlenbeck process.
2. The Cox–Ingersoll–Ross (CIR) model, which is quite similar to the Va-

sicek model, but differs by a slight change in the volatility term:

drt = γ(r̄ − rt) dt+
√
αrt dWt. (14.24)

The CIR model is an example of a square-root diffusion.

Both models feature mean reversion toward the long term average r̄, with speed
γ. The Vasicek model is more tractable, but it leads to normally distributed
short rates, which may be negative. The inclusion of a square root term in
Eq. (14.24), for a suitable choice of the parameters, prevents negative interest
rates. The square-root diffusion is related to a more complicated distribution,
the noncentral chi-square.
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14.2.1 THE VASICEK SHORT-RATE MODEL

Given the process described by Eq. (14.23), the first step is to figure out how
short rates are distributed according to this model. To try and solve this dif-
ferential equation, we may resort to a typical trick of the trade, related to the
method of integrating factors for deterministic ordinary differential equations.
The trick is to apply Itô’s lemma to the process

f(rt, t) = rte
γt.

The usual drill requires the calculation of partial derivatives:

∂f

∂t
= γrte

γt,
∂f

∂rt
= eγt,

∂2f

∂r2
t

= 0.

Hence, the differential equation for f(rt, t) is

df =
[
γrte

γt + γ(r̄ − rt)eγt
]
dt+ σeγt dWt = γr̄eγt dt+ σeγt dWt.

This equation does not look too bad and can be integrated over the interval
(0, t):∫ t

0

d(rτe
γτ ) = rte

γt − r0 = γr̄

∫ t

0

eγτ dτ + σ

∫ t

0

eγτ dWτ . (14.25)

Since

γ

∫ t

0

eγτ dτ = eγt − 1,

Eq. (14.25) can be rewritten as

rt = r0e
−γt + r̄(1− e−γt) + σ

∫ t

0

eγ(τ−t) dWτ .

This expression includes a stochastic integral with respect to the Wiener pro-
cess, which is normally distributed and has zero expected value. Thus, we may
immediately conclude that the short rate rt, under the Vasicek model, is nor-
mally distributed with expected value6:

E[rt] = r0e
−γt + r̄(1− e−γt). (14.26)

Finding variance is a bit trickier and requires the application of Theorem 11.2,
known as Itô’s isometry:

E

[(∫ t

0

Xτ dWτ

)2
]

= E

[∫ t

0

X2
τ dτ

]
,

6By the way, we can find this expectation by setting σ = 0 and solving the resulting determin-
istic equation.
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where Xt is a stochastic process adapted to the standard Wiener process Wt.
The result allows us to find the variance of the short rate:

Var(rt) ≡ E
[(
rt − E[rt]

)2]
= E

[(
σ

∫ t

0

eγ(τ−t) dWτ

)2
]

= E

[
σ2

∫ t

0

e2γ(τ−t) dτ

]
=
σ2

2γ

(
1− e−2γt

)
. (14.27)

Again, it is important to get an intuitive feeling for Eqs. (14.26) and (14.27):

At time t = 0, the short rate is r0 and its variance is zero, as it should be,
since it is a given initial state.
When t→ +∞, the short rate tends to the long-term average value r̄; the
larger the speed of mean reversion γ, the faster the convergence.
Long-term variance is given by σ2/(2γ). As expected, it is influenced by
the volatility σ. However, γ plays a role, too, and a strong mean reversion
tends to kill volatility.

14.2.1.1 Pricing a zero under the Vasicek model

Since a coupon-bearing bond can be priced as a portfolio of zero-coupon bonds,
the first interest rate derivative that we should price is a zero-coupon bond. We
insist once again that the parameters of the Vasicek model are not the parameters
of the real world, which could be estimated by analyzing a time series of short
rates, but those in the risk-neutral world. Let assume that we have calibrated a
Vasicek model. This means that we have parameters γ∗ and r̄∗ in the pricing
measure, replacing the original γ and r̄, and σ, which is not affected by the
change of measure.7 Let Z(rt, t;T ) be the price of a zero maturing at T . The
bond pricing equation is

∂Z

∂t
+ γ∗(r̄∗ − rt) ·

∂Z

∂rt
+

1

2
σ2 · ∂

2Z

∂r2
t

= rtZ,

with terminal condition Z(rt, T ;T ) = 1.
A common strategy to solve pricing equations is the following, which we

have introduced in Section 14.1.1:

1. We guess the structure of the solution, using insights and experience. In
our case, we may again use analogy with naive bond pricing and guess a
solution of the form

Z(rt, t;T ) = eA(t;T )−B(t;T )·rt ,

for unknown functions A(t;T ) and B(t;T ).

7This claim should be backed by a formal statement, based on the Girsanov theorem, but this is
beyond the scope of this book. We rely on the intuition from the BSM case, where we end up
replacing the drift coefficient in the GBM, but not the volatility.
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2. Note that our guess implies a form of separation of variables. Then, we
may plug our guess and derive ordinary differential equations (ODEs) for
the unknown functions.

To begin with, we find the partial derivatives of the bond price:

∂Z

∂t
=
[
A′(t;T )−B′(t;T ) · rt

]
eA(t;T )−B(t;T )·rt

=
[
A′(t;T )−B′(t;T ) · rt

]
· Z,

∂Z

∂rt
= −B(t;T ) · eA(t;T )−B(t;T )·rt = −B(t;T ) · Z,

∂2Z

∂r2
t

= B2(t;T ) · eA(t;T )−B(t;T )·rt = B2(t;T ) · Z.

Plugging these partial derivatives into the pricing equation yields the following
equation:[
A′(t;T )−B′(t;T ) ·rt

]
·Z−γ∗(r̄∗−rt) ·B(t;T ) ·Z+

1

2
σ2B2(t;T ) ·Z = rtZ,

which may be simplified, by eliminating Z, and rearranged by collecting terms
in rt:[

1 +B′(t;T )− γ∗B(t;T )
]
· rt = A′(t;T )− γ∗r̄∗B(t;T ) +

1

2
σ2B2(t;T ).

(14.28)
Since Eq. (14.28) must hold for any value of rt, we may rewrite it as two ODEs:

B′(t;T ) = γ∗B(t;T )− 1, (14.29)

A′(t;T ) = γ∗r̄∗B(t;T )− 1

2
σ2B(t;T )2, (14.30)

with terminal conditions A(T ;T ) = 0 and B(T ;T ) = 0.
Equation (14.29) is a first-order, nonhomogeneous ODE, which may be

solved as we show in the technical note below. This yields

B(t;T ) =
1− e−γ∗(T−t)

γ∗
.

Then, we plug this solution into Eq. (14.30) and integrate, which yields

A(t;T ) =
[
B(t;T )− (T − t)

](
r̄∗ − σ2

2γ∗2

)
− σ2B(t, T )2

4γ∗
.

Thus, to summarize what we have achieved, the price at time t of a zero-coupon
bond maturing in T , with face value $1, under the Vasicek short-rate model, can
be expressed as follows:

Z(rt, t;T ) = eA(t;T )−B(t;T )rt ,
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where

B(t;T ) =
1

γ

[
1− e−γ(T−t)

]
, (14.31)

A(t;T ) =
[
B(t;T )− (T − t)

](
r̄ − σ2

2γ2

)
− σ2B(t;T )2

4γ
. (14.32)

Given the linearity of pricing, we may use this formula to price a coupon-
bearing bond as well. Thus, we might calibrate the Vasicek model against ob-
served bond prices.

Technical note: Solving first-order nonhomogeneous ODEs

For the sake of completeness, here we give a clue about the approach to solve an
equation like Eq. (14.29). Consider the ODE y′ + ay = f(x), for an unknown
function y(x), with initial condition y(0) = y0. Due to the term f(x), this is a
nonhomogeneous equation, which may be solved by summing the general solu-
tion of the homogeneous part and one specific solution of the nonhomogeneous
equation. The homogeneous part y′ + ay = 0 is easily solved, and its general
solution is

y = Ce−ax,

where the constant C depends on the initial condition. To find a specific solu-
tion, we may use the method of undetermined coefficients, whose details de-
pend on the form of f(x). For instance, when f(x) is a polynomial, we may
try a polynomial of the same order, with unknown coefficients that are found
by plugging the polynomial into the differential equation and solving the result-
ing algebraic equations. This yields a specific solution, which is added to the
general one.

In our specific case, we haveB′ = γ∗B−1, along with a terminal condition.
The solution to the homogeneous equation is

B(t;T ) = Ceγ
∗t.

Since the additional term is a constant, we may try a specific solution like
B(t;T ) = k, for an unknown constant k. Plugging this into the equation, we
easily find

0 = γ∗k − 1 ⇒ k =
1

γ∗
.

The general solution is

B(t;T ) = Ceγ
∗t +

1

γ∗
,

and the terminal condition B(T ;T ) = 0 yields

Ceγ
∗T +

1

γ∗
= 0 ⇒ C = −e

−γ∗T

γ∗
.
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Thus, the desired solution is

B(t;T ) = −e
−γ∗T

γ∗
eγ
∗t +

1

γ∗
=

1− e−γ∗(T−t)

γ∗
.

14.2.1.2 Pricing a bond option under the Vasicek model

The Vasicek model can be criticized, as it relies on a single factor and features
normal, possibly negative interest rates. However, it is simple enough to yield
analytical pricing formulas for some elementary derivatives. The next logical
step is to price a relatively simple option, namely, a call option on a zero-coupon
bond. We have to realize that there are two maturities involved:

The option maturity, TO, i.e., the time at which the option can be exer-
cised, by purchasing a zero-coupon bond at the strike price K.
The bond maturity, TB . Clearly, for the option to make sense, we must
have TO < TB .

Therefore, the option payoff at TO is

max
{
Z(rTO , TO;TB)−K, 0

}
. (14.33)

It can be shown that the price at time t = 0 of a European-style call option ma-
turing at time TO on a zero-coupon bond maturing in TB is, under the Vasicek
model,

Z(0, r0;TB) · Φ(d1)−KZ(0, r0;TO) · Φ(d2), (14.34)

where r0 is the value of the short rate at t = 0, Φ(·) is the familiar CDF of the
standard normal distribution, and

d1 =
1

S(TO)
log

[
Z(0, r0;TB)

KZ(0, r0;TO)

]
+
S(TO)

2
, (14.35)

d2 = d1 − S(TO), (14.36)

S(TO) = B(TO;TB)

√
σ2

2γ

(
1− e−2γTO

)
. (14.37)

To interpret this formula, it is quite useful to note its deep similarity with the
Black–Scholes–Merton price of a vanilla call option on a stock, given in Eq.
(13.19), and note the following:

In Eq. (14.34), Z(0, r0;TB) should be interpreted as the price of the un-
derlying asset, i.e., the bond maturing in TB , whereas Z(0, r0;TO) should
be interpreted as a discount factor from the option maturity TO to time
t = 0.
The terms d1 and d2 in Eqs. (14.35) and (14.36) look much like the similar
terms in the BSM formula.
The term S(TO), whereB(TO;TB) is just the function given in Eq. (14.31),
plays the role of a volatility.
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It is also useful to recall that short rates under the Vasicek model, which relies
on an Ornstein–Uhlenbeck process, are normally distributed, and that the price
of a zero-coupon bond is an exponential of these rates. Hence, the bond price is
lognormally distributed, just like stock prices under the BSM model, and this is
the essential reason behind the observed similarity with the BSM formula.

14.2.2 THE COX–INGERSOLL–ROSS SHORT-RATE MODEL

The CIR model relies on a square-root diffusion process, which is not as easy
to deal with as the Ornstein–Uhlenbeck process underlying the Vasicek model.
Because of this additional difficulty, in this section, unlike the case of the Va-
sicek model, we will state results without any proof. Apart from technicalities,
the essential concepts are not really different. By studying the transition den-
sity of the square-root diffusion process, a link with the noncentral chi-square
distribution can be established. We recall that the chi-square distribution with n
degrees of freedom arises as a sum of n independent squared standard normals,

n∑
i=1

Z2
i ∼ χ2

n.

If we sum nonstandard squared normals, we get the noncentral chi-squared dis-
tribution. More precisely, let us consider a random variable

X =

n∑
i=1

(Zi + ai)
2
.

The corresponding variable is labeled noncentral chi-square with n degrees of
freedom and noncentrality parameter λ =

∑n
i=1 a

2
i . It is possible to generalize

this distribution to a noninteger ν, resulting in a χ′ 2ν (λ) variable. The following
formulas for the relevant moments can be proved:

E
[
χ′ 2ν (λ)

]
= ν + λ, Var

(
χ′ 2ν (λ)

)
= 2(ν + 2λ). (14.38)

THEOREM 14.1 (CIR short-rate model) The transition law from r0 to rt for
the CIR model can be expressed as

rt =
α(1− e−γt)

4γ
· χ′ 2ν (λ), (14.39)

where the degrees of freedom are ν = 4r̄γ/α and the noncentrality parameter
is

λ =
4γe−γt

α(1− e−γt)
· r0.

By applying this theorem to the transition from r0 to rt and using Eq. (14.38),
we find the conditional expectation and variance of rt, conditional on r0. For
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the expected value, we have

E
[
rt |r0

]
=
α(1− e−γt)

4γ
(ν + λ)

=
α(1− e−γt)

4γ

[
4r̄γ

α
+

4γe−γt

α(1− e−γt)
r0

]
= r0e

−γt + r̄(1− e−γt). (14.40)

We notice that the expected value has the same intuitive form as in the Vasicek
model. Variance is a bit trickier:

Var
(
rt |r0

)
=

[
α(1− e−γt)

4γ

]2
· 2(ν + 2λ)

=

[
α(1− e−γt)

4γ

]2
· 2
[

4r̄γ

α
+ 2

4γe−γt

α(1− e−γt)
r0

]
=
r0α

γ

(
e−γt − e−2γt

)
+
r̄α

2γ

(
1− e−γt

)2
. (14.41)

14.2.2.1 Pricing a zero under the CIR model

Since the short rate is no longer normal under the square-root diffusion process,
everything turns out to be more complicated. Nevertheless, a zero-coupon bond
can be priced analytically under the CIR model, even though the formulas are
more complicated than those for the Vasicek model:

Z(rt, t;T ) = eA(t;T )−B(t;T )rt ,

where

B(t;T ) =
2(eψ(T−t) − 1)

(γ + ψ)(eψ(T−t) − 1) + 2ψ
,

A(t;T ) =
2r̄γ

α
log

[
2ψe(ψ+γ)T−t2

(γ + ψ)(eψ(T−t) − 1) + 2ψ

]
,

ψ =
√
γ2 + 2α.

The above formulas show how the CIR model belongs, just like the Vasicek
model, to the general family of short-rate models yielding an affine term struc-
ture.

14.3 A martingale approach to incomplete markets

In Chapter 13, we have seen that a vanilla option on equity may be priced by
solving a PDE or by resorting to a risk-neutral expectation. Conceptually, by
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the Feynman–Kač representation theorem, the two approaches are equivalent.
When resorting to numerical methods, both approaches have their merits, ad-
vantages, and disadvantages, as we have hinted at in Section 13.9. So far, in this
chapter, we have taken a PDE view. Now, let us consider how we can extend the
risk-neutral pricing approach to incomplete markets. We have already seen that,
in PDE terms, we have to replace the drift function with a new one, somehow
reflecting risk. We know that this is related to a change of probability measure,
which in the complete market case, under the BSM model, means replacing the
drift coefficient by the risk-free rate. The BSM equation was obtained under the
assumption of a constant risk-free rate, which we have to relax when dealing
with interest rate derivatives. Using risk-neutral pricing within the complete
market setting, the price at time t of a path-independent, European-style option
maturing in T can be written as

V (St, t) = e−r(T−t)EQn [f(ST ) |St], (14.42)

where f(ST ) is the payoff at maturity, depending on the stock price ST , Qn is
the pricing measure, and the expectation is conditional on the price St of the
underlying asset at time t.

In the incomplete market setting, possibly with stochastic interest rates,
additional complications arise. As we already know, the risk-neutral measure
Qn should be replaced by some risk-adjusted measure Q, which is not unique
in an incomplete market and must be calibrated against market data, in order
to reflect risk factors that cannot be fully hedged away. Furthermore, since we
are dealing with stochastic interest rates, unlike Eq. (14.42), we cannot take
the discount factor outside the expectation. If we use a single-factor short-rate
model, the risk-adjusted pricing approach leads here to a formula like

V (rt, t) = EQ

[
exp

(
−
∫ T

t

rτ dτ

)
· f(rT )

∣∣∣∣∣ rt
]
. (14.43)

If we consider a zero-coupon bond, then f(rT ) = 1, and we find that the zero
price is

Z(t;T ) = EQ

[
exp

(
−
∫ T

t

rτ dτ

)∣∣∣∣∣ rt
]
. (14.44)

This formula is a natural generalization of the simple exponential discount fac-
tor, e−r·(T−t), which we would have with a constant risk-free rate r. Note how
this depends on the whole sample path of the short rate up to maturity, even
if the payoff is path independent. In the more general case of a derivative, the
price in Eq. (14.43) is the expectation of a product of random variables, which
is not quite convenient. It would be nice to factor the expectation of the product
into the product of expectations, but the two random variables are certainly not
independent when dealing with an interest rate derivative.

Pricing may be considerably simplified by taking advantage of the follow-
ing observation. Let us consider again the complete market case, with a con-
stant risk-free rate r. Under the risk-neutral measure Qn, if we assume a GBM
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model, the asset price dynamics is given by the stochastic differential equation

dSt = rSt dt+ σSt dWt

Its solution is

St = S0 exp

{(
r − σ2

2

)
· t+ σ

√
t · ε
}
, (14.45)

where ε ∼ N(0, 1). The bank account equation leads to

Bt = B0 exp(rt). (14.46)

Now, let us consider a process given by the ratio of St and Bt and use Eqs.
(14.45) and (14.46):

Mt
.
=
St
Bt

=
S0

B0
exp

{
−σ

2

2
· t+ σ

√
t · ε
}
. (14.47)

Note that processMt gives the price of asset St using a different numeraire. We
are used to express prices in monetary units, but we may express prices using
any unit we wish. We might divide asset prices by the unit price of a banana,
and express stock prices in bananas. Here we do so using the bank account as a
numeraire and, in order to avoid a certain degree of arbitrariness, it is natural to
choose the initial condition B0 = 1. To find the stochastic differential equation
of Mt, we might use a generalized version of Itô’ lemma, to cope with a ratio
of stochastic processes. However, by comparing Eqs. (14.45) and (14.47), it
is easy to see that the process Mt has no drift. Hence, it is the solution of the
differential equation

dMt = σMt dWt.

This process is driftless and is a martingale.8 Indeed, we may also use proper-
ties of the lognormal distribution to see that Eq. (14.47) implies E[Mt |M0] =
M0. More generally, it turns out that, under the standard risk-neutral measure,
the ratio of any price and the bank account is a martingale. In fact, we may
rewrite Eq. (14.42) at time t = 0 as

V (S0, 0)

B0
= EQn

[
V (ST , T )

BT

]
,

where B0 = 1 and BT = erT .
In an incomplete setting, we may consider different measures and different

numeraires. In particular, it would be very helpful to find a numeraire process
gt, and a corresponding probability measure, such that the ratio ft/gt is a mar-
tingale. Indeed, if are able to do so, the martingale property implies

f0

g0
= Eg

[
fT
gT

]
,

8See Section 11.1.5.
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where the notation Eg[ · ] emphasizes the change of measure in the expectation.
This immediately provides us with a pricing formula,

f0 = g0 Eg

[
fT
gT

]
.

In concrete terms, we must choose a numeraire with price process gt, in such
a way that computing this expectation is reasonably easy. However, doing this
in a rigorous way requires a mathematical machinery to change measure, i.e.,
tools like Radon–Nikodym derivatives and Girsanov theorem. In order to avoid
too many technicalities, we follow [4] and pursue a heuristic, but financially
motivated approach in the following section.9

14.3.1 AN INFORMAL APPROACH TO MARTINGALE
EQUIVALENT MEASURES

We consider two derivatives depending on rt (say, the short rate, but this is not
necessary), with price processes given by

dft
ft

= mf (rt, t) dt+ sf (rt, t) dWt, (14.48)

dgt
gt

= mg(rt, t) dt+ sg(rt, t) dWt, (14.49)

where the standard Wiener process Wt drives both equations, and it is also the
driving risk factor of rt. Hence, we have a common risk factor, shared by all of
the processes involved. There is a slight change of notation with respect to Eq.
(14.2), since we use drift functions mf and mg, as well as volatility functions
sf and sg, without referring to explicit partial derivatives. We do so in order
to focus on the dynamics of the prices of the two derivative assets, leaving
the dynamics of the underlying risk factor aside. Furthermore, Eqs. (14.48) and
(14.49) are related to returns on the two derivatives rather than absolute changes
(we consider relative increments like df/f , rather than increments df ). This will
help us in building financial intuition. Apart from the difference in notation, the
core of the arguments does not change: Since there is a single underlying risk
factor Wt, we may build a risk-free portfolio by following the usual drill. Using
a hedge ratio φt, the value of the hedged portfolio is

Πt = ft − φtgt.

The hedged portfolio process is manipulated as follows (easing notation a bit):

dΠt = dft − φt dgt
=
(
ftmf − φtgtmg

)
dt+

(
ftsf − φtgtsg

)
dWt. (14.50)

9A more careful treatment along this line can also be found in [11, Chapter 21], which is only
based on the link between PDEs and expectations of certain stochastic processes.
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If we choose
φt =

ftsf
gtsg

,

we make the portfolio riskless and, by no-arbitrage, we obtain

dΠt = rtΠt dt = rt(ft − φtgt) dt. (14.51)

By putting Eqs. (14.50) and (14.51) together and simplifying, we find

ftmf − φtgtmg = rt(ft − φtgt),

which may be rewritten as

ft(mf − rt) = φtgt(mg − rt) =
ftsf
gtsg

gt(mg − rt),

which finally implies

mf (rt, t)− rt
sf (rt, t)

=
mg(rt, t)− rt
sg(rt, t)

.
= λ(rt, t). (14.52)

As before, we find that there is a ratio that does not depend on the specific
derivative, but only on the underlying risk factor. We denote this ratio by
λ(rt, t). Now, since the drift function m(rt, t) is related to expected return and
the function s(rt, t) to volatility, this ratio looks much like a Sharpe ratio, and
it may interpreted as a market price of risk, which depends on the underlying
risk factor and the market risk aversion, rather than on the specific derivative.
Hence, for a generic derivative depending on rt, we may write

m(rt, t) = rt + λ(rt, t) · s(rt, t),

which should be interpreted as follows: The required (instantaneous) expected
return m(rt, t) is given by the risk-free short rate rt, plus a risk premium de-
pending on volatility s(rt, t) and market price of risk λ(rt, t).10

Now let us put intuition to good use. What is going to happen in a risk-
neutral world? As we have argued, there is no risk premium in such a world.
Hence, λ = 0, and the drift to be used for pricing purposes is just the risk-
free rate rt. This is what happens under the standard risk-neutral measure, but
in an incomplete market setting, there are multiple measures compatible with
no-arbitrage. These measures correspond to different choices of λ. By choos-
ing the market price of risk, we consider alternative worlds where the prices of
derivatives ft and gt are internally consistent. We may find a remarkably conve-
nient choice of λ as follows. Let us rewrite the stochastic differential equations
(14.48) and (14.49) for the derivative prices, by making λ explicit:

dft =
[
rt + λsf (rt, t)

]
· ft dt+ sf (rt, t) · ft dWt,

dgt =
[
rt + λsg(rt, t)

]
· gt dt+ sg(rt, t) · gt dWt.

Now, we may state the key result.

10Please note again the similarity with APT in Example 10.2.
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THEOREM 14.2 If we choose λ(rt, t) = sg(rt, t), then the ratio ft/gt is a
martingale.

PROOF With such a choice, the two price processes are given by

dft = (rt + sgsf ) · ft dt+ sfft dWt,

dgt = (rt + s2
g) · gt dt+ sggt dWt,

where we streamline notation a bit. In order to find the equation of the ratio
process ft/gt, let us switch to log-prices using Itô’ lemma:

d log ft =

(
rt + sgsf −

s2
f

2

)
dt+ sf dWt,

d log gt =

(
rt +

s2
g

2

)
dt+ sg dWt.

By taking the difference of logs, we find

d log

(
ft
gt

)
= d(log ft − log gt) =

(
sgsf −

s2
f

2
−
s2
g

2

)
dt+ (sf − sg) dWt

= − (sf − sg)2

2
dt+ (sf − sg) dWt.

Finally, by switching back to prices we find:

d

(
ft
gt

)
= (sf − sg) ·

ft
gt
dWt,

showing that the ratio process ft/gt is a martingale under this probability mea-
sure, called the equivalent martingale measure.

The equivalent martingale measure generalizes the standard risk-neutral mea-
sure and accounts for the overall market risk aversion. In fact, an equivalent
name is risk-adjusted measure. What we should do is choose a numeraire asset,
on the basis of convenience, so that the calculation of the expected value is rela-
tively simple. This is not necessarily trivial, as have to work with an alternative
probability measure, which may not be easy to characterize without more so-
phisticated tools from stochastic calculus. However, we may show the potential
of the approach by considering two simple, but quite relevant cases.

14.3.2 CHOICE OF NUMERAIRE: THE BANK ACCOUNT

If we choose a bank account as the numeraire, earning the risk-free short rate
rt, we have

dgt = rtgt dt,
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and the market price of risk is λ = 0. As we said, this corresponds to the
standard risk-neutral world, and

f0 = g0 · EQn

[
fT
gT

]
, where g0 = 1, gT = exp

{∫ T

0

rt dt

}
.

Therefore,
f0 = EQn

[
e−

∫ T
0
rt dt fT

]
. (14.53)

If rt is constant and we assume GBM, we find a BSM-like formula. However,
when rt is stochastic, the expectation involves the product of random variables.
Pricing might be simplified if we choose a more appropriate numeraire.

14.3.3 CHOICE OF NUMERAIRE: THE ZERO-COUPON BOND

The problem with the bank account is that its initial price is given (we choose
g0 = 1 for the sake of convenience), but its future value is random due to
reinvestment risk. If we instead choose, as the numeraire, a risk-free zero-
coupon bond with unit face value, maturing at time T , we have

g0 = Z(0, T ), gT = 1.

Note that we are choosing a bond whose maturity is the same as that of the
derivative we want to price. The terminal value of the numeraire is just gT =
1, the face value of the zero. The current price of the zero is given by the
expectation in Eq. (14.44), but it may also be directly observed on the market.
Hence, the pricing formula becomes

f0 = Z(0, T ) · EQT [fT ], (14.54)

which is much better-looking than Eq. (14.53), as the stochastic nature of the
interest rate is encapsulated in the price of the zero. However, the downside
is that we should use a possibly non-obvious equivalent martingale measure,
where expectation is denoted by EQT [ · ].

To get a clue on how to change measure and calculate the expectation, let
us consider a forward contract on an asset with price process θt, for delivery
at time T . The asset may be a commodity, rather than an investment asset. We
know that the forward price F (0, T ) is chosen in such a way that the value of the
contract now is zero, and that the payoff is θT − F (0, T ) for the long position.
Under the pricing measure, we have

f0 = Z(0, T ) · EQT [θT − F (0, T )] = 0 ⇒ F (0, T ) = EQT [θT ],

i.e., under this measure the forward price is just the expected value of θT . This
is why this martingale measure is call forward risk-neutral. Given the spot–
forward convergence condition θT = F (T, T ), the above result implies

F (0, T ) = EQT [F (T, T )],
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which suggests that forward prices are martingales under the corresponding for-
ward risk-neutral measure.11 This result may be proved rigorously using tools
from stochastic calculus. This choice of numeraire provides us with a justi-
fication for a pricing formula, the Black’s model, which was proposed as an
extension of the BSM formula.

14.3.4 PRICING OPTIONS WITH STOCHASTIC INTEREST
RATES: BLACK’S MODEL

As an application of martingale concepts, we may derive a theoretical justifica-
tion for the Black’s model, originally published in 1976 as an extension of the
BSM pricing model (published in 1973). The model allowed to price options
under stochastic interest rates, and as such it was used by practitioners. How-
ever, a sound justification was obtained later, by using a forward risk-neutral
measure, which corresponds to selecting a zero as the numeraire.

Let us consider a European-style call option, written on an asset with spot
price process S(t) and current forward price F (0, T ). Using Eq. (14.54), as well
as the spot–forward convergence condition S(T ) = F (T, T ), we may write the
current price of the option as

C(0) = Z(0, T ) · EQT
[

max{S(T )−K, 0}
]

= Z(0, T ) · EQT
[

max{F (T, T )−K, 0}
]
.

Now we need to express the expectation under measure QT , which requires
some distributional assumption. In order to extend the BSM model, we assume
that F (T, T ) is lognormal under the forward risk-neutral measure. Since for-
ward prices are martingales under this measure, we have

EQT
[
S(T )

]
= EQT

[
F (T, T )

]
= F (0, T ).

Furthermore, we assume that the standard deviation (volatility) of the logarithm
of F (T, T ) is σF ·

√
T . Then, we may use Theorem 13.3 and write

C(0) = Z(0, T ) ·
[
F (0, T ) · Φ(d1)−K · Φ(d2)

]
, (14.55)

where Φ(·) is the usual CDF of a standard normal and

d1 =
log
[
F (0,T )
K

]
+ 1

2σ
2
F · T

σF ·
√
T

,

d2 =
log
[
F (0,T )
K

]
− 1

2σ
2
F · T

σF ·
√
T

.

As a reality check, the reader may verify that, if we use the simple spot–forward
parity and plug F (0, T ) = S(0) · erT , we recover the familiar BSM formula. In

11Futures prices are martingales under the usual risk-neutral measure. See Section 13.7.6.
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the Black’s model, we use the forward price of the underlying asset, rather than
its spot price. This accounts for the effect of stochastic interest rates, as well as
the fact that the underlying asset may be a commodity that is not an investment
asset. No drift is involved, because of the martingale property, and the critical
input to the model is the volatility σF , which is not readily available. A further
complication is that the formula requires a forward price, whereas only futures
prices may be available (or more reliable due to liquidity). Sometimes, we may
assume that the futures price is a sensible proxy for the forward price. In other
cases, correction factors have been devised.

14.3.5 EXTENSIONS

We have seen that, within an incomplete market setting, we should choose the
pricing measure by a calibration procedure. Apparently, if we choose a nu-
meraire, we also immediately choose a martingale measure. However, we still
need critical inputs, like the volatility σF in the Black’s model of Eq. (14.55). In
fact, one way traders used this model was to quote σF as an implied volatility,
which may be a more useful information for traders than the price itself. When
dealing with more complex derivatives, we need a range of volatilities for dif-
ferent maturities, which must be properly calibrated against liquid securities.

The concepts behind Black’s model have been extended to price more com-
plicated interest rate derivatives, like caps, floors, and swaptions. Standard mar-
ket models have been developed, like the LIBOR market model, where one tries
to rely on inputs that may be obtained by market quotes, rather than by com-
plicate calibration procedures. An alternative is to extend single-factor models
based on the short rate to multifactor models. Another possibility is to model
the dynamics of the forward rates, from which the spot rates may be obtained.
There is a multitude of available models, and no single model seems to be the
best one for every conceivable application. Please see the end-of-chapter refer-
ences for a more specific treatment.

14.4 Issues in model calibration

In principle, model calibration may be achieved by solving a nonlinear least-
squares problem. We select a model depending on a vector β of parameters,
and a set K of traded and sufficiently liquid securities with observed price P ok ,
k ∈ K. The model should estimate prices P̂k(β) as close as possible to the
observed ones, which we try to achieve by solving the optimization problem

min
β

∑
k∈K

[
P̂k(β)− P ok

]2
. (14.56)

If necessary, parameters may be constrained to be within a feasible set. Given
the possible nonlinearity of model prices with respect to parameters, this is
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not necessarily a (seemingly) trivial linear regression problem solved by least-
squares methods. We may apply methods from nonlinear programming, as we
discuss in Section 15.10. Unfortunately, model calibration often results in a
nonconvex optimization problem, which may require expensive global opti-
mization methods, which are outlined in Section 16.2. This may be problematic
if model calibration must be repeatedly updated and CPU time becomes an is-
sue. Luckily, the availability of cheap and more and more powerful hardware,
as well as the progress in optimization software, may ease computational diffi-
culties.

In this section, however, we want to point out some difficulties that go
well beyond the computational side of the coin. These difficulties also apply
to the familiar least-squares case. Hence, we first review the traditional linear
regression problem, pointing out some difficult tradeoffs that must be addressed.
Then, we point out some additional issues that arise when a financial model is
calibrated for pricing purposes.

14.4.1 BIAS–VARIANCE TRADEOFF AND REGULARIZED
LEAST-SQUARES

Estimating a linear model by least-squares looks like a simple business. We
assume that data are generated by an underlying statistical model like

Y = β0 + β1X1 + β2X2 + · · ·+ βqXq + ε, (14.57)

where a target (regressed) variable Y is related to features (regressors) Xj , j =
1, . . . , q, and an error term ε. If we introduce an additional fictitious variable
X0 ≡ 1, we may rewrite the model (14.57) in compact vector form as

Y = βTX + ε.

The error is assumed to be a random variable independent from X, with E[ε] = 0
and Var[ε] = σ2

ε . We also assume that different realizations of the error term
are mutually independent. Hence, conditional on X = x0, we would have

E[Y |X = x0] = βTx0,

and
Var[Y |X = x0] = σ2

ε .

The model is estimated on the basis of a sample of n joint observations,

(Yi, Xi1, Xi2, . . . , Xiq), i = 1, . . . , n,

indexed by i, which are collected into vector Y and matrix X :

Y =


Y1

Y2

Y3

...
Yn

 , X =


1 X11 X12 · · · X1q

1 X21 X22 · · · X2q

1 X31 X32 · · · X3q

...
...

...
...

1 Xn1 Xn2 · · · Xnq

 ,
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where the data matrix X ∈ Rn,q+1 collects observed values of the regressors
and includes a leading column of ones. The data set used to estimate (or fit)
a model is called training or learning sample. Sometimes, a subset of data is
kept apart for out-of-sample model validation purposes. This set is called test
sample.

In order to estimate the parameters β, we may apply ordinary least-squares,
on the basis of the following regression equations:

Yi = b0 + b1Xi1 + b2Xi2 + · · ·+ b1Xiq + ei, i = 1, . . . , n, (14.58)

where ei is the residual for the ith observation and bj is the estimate of param-
eter βj , j = 0, . . . , q. We note that the residuals are the observable counterpart
of errors, and that the approach is justified if we take for granted the above
assumptions about errors. If we collect residuals into vector e ∈ Rn and coeffi-
cients into vector b, the regression equations may be rewritten in the following
convenient matrix form:

Y = Xb + e. (14.59)

Then, we minimize the squared Euclidean norm12 of vector e,

min
b

n∑
i=1

e2
i =‖e‖22= eTe. (14.60)

This is easily accomplished by ordinary least-squares (OLS), which yield

b =
(
XTX

)−1XTY. (14.61)

Here, we are taking for granted that the matrix XTX is invertible, which is not
the case if features are not linearly independent.

Then, in standard statistical theory, some questions are addressed, including
the following ones:

Under which conditions can we assume that estimators are unbiased, i.e.,
E[b] = β?
What about the uncertainty in the estimates, i.e., the standard error of the
least-squares estimators?
How can we check the assumptions about the unobservable errors by an-
alyzing observed residuals?
How can we check if the model fits data well?

One standard way to answer the last question is by checking the coefficient
of determination R2 ∈ [0, 1]. This coefficient measures the ratio of explained
variance against total variance, and it may be used as a measure of fit. Unfortu-
nately, relying on how well data are fitted in sample may be quite misleading.

12We recall that the Euclidean norm L2 of a vector x ∈ Rn is ‖ x ‖2
.
=
√∑n

i=1 x
2
i . We

may also use the L1 norm ‖ x ‖1
.
=
∑n
i=1 | xi |, based on absolute values. This may improve

robustness, but we lose the advantage of an analytical solution.
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There are some basic flaws in this simple picture. To begin with, as evi-
dent from Eqs. (14.57) and (14.58), we take for granted that the functional form
of the estimated model is the same as the underlying data generating process.
Clearly, this is hardly the case. The “true” data generating model may be as-
sumed to be something like

Y = f(X) + ε, (14.62)

where Y is again the target variable, X is a vector of random variables (fea-
tures), and we assume that errors are independent from the features. However,
we do not really know the form of function f(·), which is nonlinear in gen-
eral. The seemingly natural answer is to estimate a model based on a functional
form f̂(·) extending the simple linear model of Eq. (14.58). Indeed, we may
apply nonlinear transformations to the original variables, and we may also ac-
count for potential interactions among them by using products of variables as
features. Using a richer functional form cannot yield a worse R2, as the more
parameters we use, the better the fit against sampled data. We may even push
the idea to the extreme and fit a nonparametric model, like local regression
models or regression trees. But is this a sound approach? The answer is nega-
tive, in general, as long as this may result in overfitting and poor out-of-sample
performance. A large R2 may give a false sense of security, and it does not help
in model selection, i.e., the choice of the functional form of the model we want
to estimate.

To properly frame the problem, we should realize that, in choosing a statis-
tical model, there are some basic tradeoffs that have to be addressed:

Bias vs. variance
Flexibility/fitting vs. interpretability

The last point is relevant to nonparametric models, which may fit data very
well, but lack the interpretability and intuitive appeal of a parsimonious linear
model. To understand what the bias–variance tradeoff is about, let us assume
that data are generated by the unknown data generating process of Eq. (14.62),
and that the usual assumptions about the error term apply. Hence, conditional
on X = x0, we have

E[Y |X = x0] = f(x0), Var[Y |X = x0] = σ2
ε .

In practice, given a random sample of joint observations of (X, Y ), we estimate
a model f̂(X), for a prespecified functional form f̂(·). This yields a forecast,
conditional on X = x0, which we denote by

Ŷ|X=x0
= f̂(x0).

We often suppress conditioning information to ease notational burden, but it is
important to understand its meaning. In fact, we should keep in mind that the
forecast is also conditional on other information. The estimated model depends
on the random sample of joint observations that we use in learning, and this
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in turn depends on multiple realizations of the error term. Hence, we should
regard the forecast Ŷ as a random variable depending on the learning sample.
The actual realization Y that we want to forecast, given that X = x0, is also a
random variable, which is independent from Ŷ , since the future realization of
the error that affects Y is independent from the past realizations that affect the
estimated model. It is important to understand that, in the following, we must
regard both the model and the forecast as random. Conceptually, we should
imagine a random experiment consisting of: (a) multiple estimations of f̂(·),
based on different random learning samples, and (b) forecasting with the result-
ing models for the same setting X = x0. Therefore, to be (overly) precise, we
could say that:

Ŷ|X=x0
is a random variable,

and Ŷ|X=x0,learning sample is a number.

To assess the quality of a forecast, we may consider the expected value of the
squared deviation E

[
(Y − Ŷ )2

]
, also known as MSE (mean squared error).

Note that, in order to compare alternative models with different levels of com-
plexity, MSE should be evaluated out of sample. The MSE may be rewritten as
follows, where everything is conditional on X = x0:

E
[
(Y − Ŷ )2

]
= E

[(
f(x0) + ε− f̂(x0)

)2]
= E

[(
f(x0)− f̂(x0)

)2]
+ 2E

[
ε
]
· E
[
f(x0)− f̂(x0)

]
+ E

[
ε2
]

= E2
[
f(x0)− f̂(x0)

]
+ Var

[
f(x0)− f̂(x0)

]
+ Var

[
ε
]
,

where we use the independence of the future error ε from the errors that had an
impact on the estimate of the model, as well as the assumption E[ε] = 0. Since
f(x0) is a constant, even though an unknown one, its variance is zero, and we
may express MSE as follows:

MSE = E2
[
f(x0)− f̂(x0)] + Var[f̂(x0)] + σ2

ε . (14.63)

We see that MSE, which is what really matters, may be decomposed into three
terms:

1. The bias term, E2
[
f(x0) − f̂(x0)], which is related to the difference

between the functional form f(·) of the true data generating process and
the functional form f̂(·) that we estimate.

2. The variance term, Var[f̂(x0)], which is related to the uncertainty of the
model we estimate.

3. The irreducible variance, σ2
ε , which is related to the uncertainty in the

error term ε.

While the irreducible variance is what it is, we may try to reduce the bias by us-
ing a richer set of variables (features) or a rich nonparametric model. However,
this comes with a price, as it can increase variance. Variance is a consequence
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of the model complexity, since the more parameters we fit, the more estimation
uncertainty we introduce. Furthermore, we also risk an overfitting of the model
to the data in the learning sample.

A consequence of the above discussion is that we may give up a bit of
unbiasedness in order to reduce variance. This may be achieved by assuming
simpler models, but also by resorting to a regularization approach, which is
somehow related to shrinkage estimators, which we have introduced in Example
9.1. The idea is to penalize large regression coefficients to avoid overfitting.
We mention two popular regularized regression methods, differing in the kind
of penalization:

In ridge regression, the classical objective function based on squared
residuals is augmented as follows:

n∑
i=1

(
Yi − β0 −

q∑
j=1

βjXij

)2

+ λ

q∑
j=1

β2
j .

In lasso regression, we use absolute values, rather than squared coeffi-
cients:

n∑
i=1

(
Yi − β0 −

q∑
j=1

βjXij

)2

+ λ

q∑
j=1

|βj | .

In both cases, λ is a penalty coefficient, driving coefficients toward zero (in
the limit). Needless to say, this increases bias, but it possibly improves MSE
because of a reduction in variance. Note that we do not penalize β0, but only
β1, . . . , βq, as including β0 would make the model sensitive to where the origin
of the data is placed. The standard least-squares problem can be written as

min
β
‖Y −Xβ‖22,

where we minimize the Euclidean norm of the residual vector. In regularized
regression, we augment this objective by a norm of vector β−0, i.e., the vector
of coefficients β, with the first component β0 omitted. The ridge regression
problem is

min
β
‖Y −Xβ‖22 +λ ‖β−0 ‖22,

whereas the lasso regression problem uses a different norm in the penalty term

min
β
‖Y −Xβ‖22 +λ ‖β−0 ‖1 .

Additional light can be shed on regularized regression by considering its
link with worst-case robust optimization.13 Financial model calibration is often
regarded as an ill-conditioned problem, because quite different estimated mod-
els may yield a similar performance in terms of fit. In general, if we allow for

13See Section 15.9.
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several, possibly correlated, features, the variance of the estimates will translate
in an ill-conditioned problem. This means that a little perturbation in the input
data may result in drastically different output, i.e., a quite different estimated
model. Given the possible noise affecting market data, this is an obvious rea-
son for concern. To tackle the issue within the linear regression context, let
us assume that the matrix X ∈ Rn×q, collecting the observations of features,
is affected by a perturbation matrix ∆ with the same dimensions. Hence, we
should consider the matrix X as the nominal value of data, which are uncertain
and expressed as

X + ∆.

Depending on ∆, we will find different parameter estimates β̂. We would like
to find a robust estimate, which yields a fairly good fit for a suitable range of
perturbations. Hence, let us define an uncertainty set U for ∆. Now, the
problem is how we may define an uncertainty set for matrices.

We discuss uncertainty sets for vector data at length in Chapter 15. For a
vector, the task is fairly easy. Given a vector a0 ∈ Rn of nominal data, we may
consider a neighborhood of points close to a0, which may be specified as

U =
{
a ∈ Rn : a = a0 + δ, ‖δ‖≤ α

}
,

for a suitable vector norm and a given value of α, which constrains the norm of
the perturbation δ ∈ Rn and is related to the amount of uncertainty. If we deal
with data matrices, we should resort to matrix norms. We may safely omit the
related technicalities and understand that the resulting uncertainty set defines a
neighborhood of the nominal data matrix X . In a robust setting, optimization is
carried out in a worst-case sense, resulting in the following min–max problem:

min
β

max
∆ ∈ U

‖Y − (X + ∆)β)‖ . (14.64)

It can be shown that, depending on the choice of the involved norms, this robust
optimization model is equivalent to ridge or lasso regression.14

14.4.2 FINANCIAL MODEL CALIBRATION

From a technical viewpoint, calibrating a pricing model may be regarded as
solving a regression model on steroids, as we may have to cope with nasty non-
linearities and possibly nonconvexity. These additional difficulties exacerbate
the bias–variance issues and the possible ill-conditioning of statistical learning.
However, there is a financial side to it, too, which is best illustrated by a seem-
ingly simple example.15

14See [12] for details.
15The example is worked out in full detail, on the basis of actual market data, in [11, Chapter
15], to which we refer the interested reader.
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FIGURE 14.1 Hypothetical qualitative shape of a term structure (continuous line) cali-
brated from a short-rate model against market data (dotted line).

Example 14.1 Calibrating a short-rate model

To appreciate the subtle issues that we may face in financial model
calibration, imagine the task of calibrating a short-rate model, like Va-
sicek or CIR. A simple approach could be to collect a set of prices of
zero-coupon bonds with a range of maturities, for which we have an-
alytical pricing formulas, and solve the nonlinear least-squares prob-
lem (14.56). This requires finding a set of liquid zeros with compara-
ble risk (actually, they should be risk-free).

As a check, we should verify the fit between the observed term
structure of interest rates, which is implicit in the bond prices, and
the one generated by the model. Imagine that we obtain the term
structure depicted in Fig. 14.1. As one should expect, the fit is not
perfect, since we have used a single-factor model. However, we do
note a pattern, as the lack of fit is not uniform across maturities. It
seems that the long term rates are matched well enough, whereas the
shorter term rates leave much to be desired. Is there an explanation
for this pattern?

We may find an explanation in terms of bond duration. The ze-
ros with long maturities have a large duration, and their prices are
quite sensitive to changes in yield. Hence, the calibration should re-
ally match the long term rates well. On the contrary, the zeros with
smaller duration are less sensitive, and a mismatch in term of under-
lying interest rates does not affect the quality of the calibration, which
is carried out in term of prices, not rates.

The example is trivial with respect to what is carried out in practice, but it
does raise an important point. The quality of the calibration depends on its use.



14.4 Issues in model calibration 611

We may fit a range of prices, which are nonlinear functions of underlying rates,
fairly well, but what if we use the model to price other assets? The mismatch we
observe on the short end of Fig. 14.1 may not be so critical if we price bonds, but
what if we price a derivative depending on the rates themselves? There must be
a consistency between the assets that we use in calibrating the model and how
the model is used. Careless calibration introduces model risk. We must take
due care in selecting the assets that we use in calibration and in expressing the
objective function that we optimize. Weighted least-squares may be used to this
purpose, as well as some form of regularization.

As we have seen, regularization may be used to ease overfitting and ill-
conditioning issues. To see how overfitting may arise in financial model cali-
bration, let us compare two approaches to deal with stochastic volatility.

Stochastic volatility models. We have already mentioned the Heston stochas-
tic volatility model,

dSt = µSt dt+ σtSt dW1t,

dVt = α
[
V̄ − Vt

]
dt+ ξ

√
Vt dW2t,

where Vt = σ2
t is the variance process and V̄ is its long-term average.

This is a parametric extension of the GBM model, allowing for a stochastic
volatility, which is related to a mean-reverting square root diffusion. Fit-
ting the model means selecting a value for a handful of parameters against
market data.

Local volatility models. A local volatility model, may be considered as a non-
parametric approach to deal with stochastic volatility. The model is again
an extension of GBM,

dSt = µSt dt+ σ(St, t) · St dWt,

but now we are representing volatility as a function σ(St, t) depending ex-
plicitly on time.

Local volatility models have theoretical support as they are related to the iden-
tification of a risk-adjusted probability measure from prices. Clearly, they offer
excellent calibration flexibility, but one should wonder about the potential over-
fitting. After all, what is the financial motivation of volatility as a deterministic
function of time? Furthermore, as argued in [8], there is a considerable danger
in fitting marginals of a multivariate distribution with respect to time, neglecting
the transition probabilities over time itself. If we are pricing a European-style
derivative, what really matters is what happens at maturity. But what if we use
a model calibrated against European-style derivatives (possibly, because that is
the case where we have analytical pricing formulas) to price American-style
derivatives?

Getting back to the mathematical side of financial model calibration, the
problem may be ill-posed and yield unstable solutions over time. This may be
the result of multiple local optima with similar fitting quality or flat regions,
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where different sets of parameters may give similar performance measures for
the assets in the learning sample (but possibly quite different prices for other
derivatives). Regularization by an additional penalty term may be used to make
the optimization model convex and improve problem conditioning. In this case,
the choice of the regularization term is a tad more difficult than with a plain
linear regression by least-squares, and it is beyond the scope of this book. When
nonparametric models are calibrated, regularization may involve the distance
between probability measures, which may be expressed by entropy (see, e.g.,
[2]). As a further application of regularization, we mention its use in procedures
that improve the consistency of model calibration over time.

Further reading
Derivative pricing in incomplete markets is discussed in advanced chap-
ters of [4], which has been the basis of our treatment in Section 14.3. The
case of interest rate derivatives is dealt with, e.g., in [11], which has been
the basis of our treatment in Section 14.1.
An extensive treatment of interest rate models can be found in [6]. Interest
rate derivatives are also treated in depth by [9]. For the use of market
models, you may refer to [10].
You may also find a concise treatment of interest rate models and interest
rate derivatives in [7].
Our discussion on the bias–variance tradeoff is shaped after [5], where
you may also find a treatment of regularized regression and nonparametric
models.
In this introductory book, we do not deal with models featuring jumps.
For this class of models, see [1]. In Chapter 10 of this reference, you
may also find a discussion of pricing and hedging in incomplete markets,
whereas Chapter 13 discusses calibration, including its regularization.
We illustrate a few global optimization methods for nonconvex optimiza-
tion in Section 16.2. See, e.g., [3] for an application to model calibration.
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Part Five

Advanced optimization
models





Chapter Fifteen

Optimization Model Building

In this chapter, we describe a range of optimization models aimed at financial
applications. Emphasis will be almost exclusively on model building, rather
than model solving, which is deferred to the next chapter. To this aim, it is
important to have a broad and clear picture of the types of model formulations
that may be solved by available software tools. Intuition suggests that a large
problem is a harder nut to crack than a small one and that a linear problem is
easier than a nonlinear one. Actually, this is not necessarily true, and we shall
learn that the main problem feature, drawing the line between relatively easy
and difficult problems, is convexity.

We begin, in Section 15.1, with a classification of optimization problems,
revolving around the concepts of convex sets and convex functions. The impor-
tant class of linear programming (LP) models is the topic of Section 15.2. We
have already appreciated the role of LP models in the mathematics of arbitrage
in Section 2.4. Here, we see how it may be an essential tool in solving possi-
bly large-scale problems. The next level of the hierarchy is convex quadratic
programming (QP), which is dealt with in Section 15.3. Convex QP models are
the foundation of the mean–variance portfolio theory illustrated in Chapter 8.
In Section 15.4, we take a detour into the realm of hard, nonconvex problems.
While LPs and convex QPs can be solved quite efficiently, here we add an inte-
grality restriction on a subset of variables. The resulting modeling framework
of integer programming is extremely flexible and powerful, but it may result
in quite challenging problems from a computational viewpoint. When dealing
with integer programming models, it may be essential to formulate the model
in such a way that the available solutions methods may work efficiently. Be-
cause of this reason, in that section, we get a glimpse of the interaction between
proper model formulation and the performances of solution methods, without
going into much details about the latter ones. We get back to convex models in
Section 15.5, where we describe the possibly less familiar family of conic opti-
mization models. The class of conic optimization problems is a generalization
of LP, and it includes second-order cone programming (SOCP) and semidefi-
nite programming (SDP) models, which may be used, among other things, to
tackle optimization problems under uncertainty. Conic optimization models
were not practical tools in the past, but they are now, thanks to the develop-
ment of new interior-point solvers, extending those originally introduced as LP
solution methods.

617
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In the next part of this chapter, we tackle optimization modeling under un-
certainty. This is a quite challenging endeavor, and there are multiple ways to
tackle it. In this case, too, the modeling approach cannot be considered as in-
dependent from the solution method we intend to apply. In Section 15.6, we
consider stochastic programming models, which are related with the stochastic
dynamic programming framework of Section 15.7. The two approaches have
comparative advantages and disadvantages, but may be fruitfully integrated.
Whatever choice we make in dealing with stochastic optimization, we may face
a severe computational challenge. To reduce the computational burden, a pos-
sible modeling and solution alternative is outlined in section 15.8, based on
the optimization of simple decision rules. This idea can be exploited for both
stochastic and robust optimization (described later), and it is halfway between a
modeling strategy and a solution strategy. Whatever solution approach we pur-
sue, stochastic optimization models assume a probabilistic characterization of
uncertainty. Sometimes, this kind of knowledge is difficult to build on the ba-
sis of statistical tools, resulting in some ambiguity in the uncertainty itself. An
alternative framework is worst-case robust optimization, which is the subject of
Section 15.9 and relies heavily on conic optimization.

Finally, in Section 15.10 we provide some examples of generic, not neces-
sarily convex, nonlinear programming models.

15.1 Classification of optimization models

A fairly general statement of an optimization problem is

min
x∈S

f(x), (15.1)

which highlights the following three building blocks:

A vector of decision variables x ∈ Rn, representing a solution of the
problem in mathematical form
A feasible set S ⊆ Rn, also called feasible region, to which x must
belong
An objective function f(·), mapping each feasible solution x ∈ S to a
performance measure f(x) ∈ R, which we are interested in optimizing

This rather dry and abstract statement encompasses an incredible variety of
decision problems. In this book, we consider only finite-dimensional prob-
lems, where decisions are represented by an n-dimensional tuple of real num-
bers, i.e., an element of a finite-dimensional space. In the academic literature,
infinite-dimensional optimal control problems are also considered, where we
must choose functions of continuous time, like u(t), t ∈ [0, T ]. We shall not
consider such problems here. However, in the context of robust optimization,
we must tackle semi-infinite problems, where we have to cope with an infinite
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number of constraints. Some authors refer to optimization in finite-dimensional
spaces as mathematical programming.

Note that there is no loss of generality in considering minimization prob-
lems, as a maximization problem can be easily converted into a minimization
one:

max f(x) ⇒ −min [−f(x)] .

When S ≡ Rn, we speak of an unconstrained optimization problem; other-
wise, we have a constrained optimization problem.

The feasible region S, in concrete terms, is typically described by a set of
equality and inequality constraints, as in the following mathematical program:

min f(x) (15.2)
s.t. hi(x) = 0, i ∈ E,

gi(x) ≤ 0, i ∈ I,
x ∈ X ⊂ Rn.

The condition x ∈ X may include additional restrictions, such as the integrality
of a subset of decision variables. The most common form of this restriction
concerns binary decision variables, i.e., xj ∈ {0, 1}; this trick of the trade is
useful to model logical decisions like “we do it” vs. “we do not.” Simple lower
and upper bounds, describing box constraints like lj ≤ xj ≤ uj , are usually
considered apart from general inequalities, for the sake of computational effi-
ciency. So, we might also have X = {x ∈ Rn | l ≤ x ≤ u}, where vectors l
and u collect the lower and upper bounds on decision variables, respectively.

An optimization problem can be very simple or on the verge of intractabil-
ity, depending on some essential features of its building blocks. Such features
are often more important than the sheer size of the problem. This will be clearer
later, when we consider concrete modeling examples and illustrate the astonish-
ing variety of problems that we may address. For now, it suffices to say that an
essential classification framework involves the following dimensions:

Convex vs. nonconvex problems
Linear vs. nonlinear problems
Deterministic vs. stochastic problems

By far, the most important property of an optimization problem is convexity.
Convexity is a property of sets, in particular of the feasible set S, which can be
extended to a property of functions, as is relevant to the objective function.

DEFINITION 15.1 (Convex sets) A set S ⊆ Rn is said to be a convex set if

x,y ∈ S ⇒ λx + (1− λ)y ∈ S, ∀λ ∈ [0, 1].

Convexity can be grasped intuitively by observing that points of the form λx +
(1 − λ)y, where 0 ≤ λ ≤ 1, are simply the points on the straight-line segment
joining x and y. So, a set S is convex if the line segment joining any pair of
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FIGURE 15.1 An illustration of set convexity.

points x,y ∈ S is also contained in S. This is illustrated in Fig. 15.1: S1 is
convex, but S2 is not. S3 is a discrete set and it is not convex; this fact has
important consequences for discrete optimization problems. It is easy to see
that the intersection of convex sets is a convex set. For instance, a polyhedron is
an intersection of half-planes, and it is a convex set. This does not necessarily
apply to set union. For instance, a possible restriction on a decision variable is

xj ∈ {0} ∪ [lj , uj ],

where lj and uj are both strictly positive. This restriction specifies a nonconvex
set, and it should not be confused with the box constraint lj ≤ xj ≤ uj , which
corresponds to a convex set. An interval is a convex set, but if we add the
singleton {0}, we lose convexity, since the segment joining the origin and a
point in the interval [lj , uj ] includes points outside the set. A variable subject
to such a restriction is called semicontinuous. As a concrete example, imagine
that xj is the weight of asset j in a portfolio. What we want to express is not
that we must invest at least a fraction lj of our wealth in that asset. The point
xj = 0 is feasible, i.e., we may not invest in asset j, but if we do, there are a
lower bound lj and an upper bound uj on its weight. We face an example of a
semicontinuous variable in everyday life, when a minimum purchase quantity
is required by the seller of a good.

Set convexity can be extended to function convexity as follows.

DEFINITION 15.2 (Convex functions) A function f : Rn → R, defined over
a convex set S ⊆ Rn, is a convex function on S if, for any y and z in S, and for
any λ ∈ [0, 1], we have

f
(
λy + (1− λ)z

)
≤ λf(y) + (1− λ)f(z). (15.3)

The definition can be interpreted by looking at Fig. 15.2. If we join any two
points on the function graph with a line segment, all of the segment lies above
the function graph. In other words, a function is convex if its epigraph, i.e.,
the region above the function graph, is a convex set. If the condition (15.3) is
satisfied with strict inequality for all y 6= z, the function is strictly convex.
We illustrate examples of convex and nonconvex functions in Fig. 15.3. The
function in Fig. 15.3(a) is convex, whereas the function in Fig. 15.3(b) is not.
The function in Fig. 15.3(c) is a polyhedral convex function, and it is kinky. This
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FIGURE 15.2 An illustration of function convexity.
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FIGURE 15.3 Convex and nonconvex functions.

example shows that a convex function need not be differentiable everywhere.
Note that, in the second case, we have a local minimum that is not a global one.
Indeed, convexity is so relevant in minimization problems because it rules out
local minima. When solving a minimization problem, it is nice to have a convex
objective function. When the objective has to be maximized, it is nice to deal
with a concave function.

DEFINITION 15.3 (Concave function) A function f(·) is concave if the func-
tion −f(·) is convex.

Thus, a concave function is just a convex function turned upside down. We have
observed that a convex function features a convex epigraph; hence, function
convexity relies on set convexity. A further link between convex sets and convex
functions is that the set S = {x ∈ Rn | g(x) ≤ 0} is convex if g is a convex
function.1

A related property of a convex function is that its sublevel sets Lf (t), de-
fined as

Lf (t)
.
= {x ∈ S : f(x) ≤ t},

1See Problem 15.2.
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FIGURE 15.4 A quasiconvex function and a sublevel set.

are convex (S is the domain on which f is defined and convex). As it turns out,
this property is shared by a larger family of functions, which we call quasicon-
vex. A convex function is quasiconvex, but the converse is not true, as we see
from Fig. 15.4. The function is not really convex, but it features convex sublevel
sets and no local optima. By flipping a quasiconvex function upside down, we
create a quasiconcave function.2

In general, equality constraints like

h(x) = 0

do not describe convex sets. We may understand why, by rewriting the equality
as two inequalities:

h(x) ≤ 0,

−h(x) ≤ 0.

We know that an inequality constraint like g(x) ≤ 0 defines a convex set if g is
convex. However, there is no way in which h(·) and −h(·) can be both convex,
unless the involved function is affine:

h(x) = aTx− b.

It is pretty intuitive that convexity of the objective function makes an uncon-
strained problem relatively easy, since local minima are ruled out. But what
about convexity of the feasible set of a constrained problem? Actually, convex-
ity must be ensured in both the objective function and the feasible set.

DEFINITION 15.4 (Convex optimization problem) The minimization prob-
lem minx∈S f(x) is convex if both S and f(·) are convex. The maximization
problem maxx∈S f(x) is convex if S is convex and f is concave.

2See the Sharpe ratio plotted in Fig. 8.8.
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FIGURE 15.5 A concave problem may feature local optima, but they lie on the boundary
of the convex feasible set.

Note that we also speak of a convex problem when we are maximizing
a concave objective. We speak of a concave problem when we minimize a
concave objective on a convex set. Concave problems are not as nice as convex
problems, as the following example illustrates.

Example 15.1 A concave problem

Consider the following one-dimensional problem:

min − (x− 2)2 + 3

s.t. 1 ≤ x ≤ 4

This is a concave problem, since the leading term in the quadratic
objective is negative, so that the second-order derivative is negative
everywhere. In Fig. 15.5, we show the objective function and the
feasible set. The stationarity point x = 2 is of no use to us, since it is
a maximizer. We see that local minimizers are located at the boundary
of the feasible set. A local minimizer lies at the left boundary, x = 1,
and the global minimizer is located at the right boundary, x = 4.

It turns out that the property illustrated in Example 15.1, i.e., we can find
an optimal solution on the boundary of the (convex) feasible set, applies to
concave problems in general. This kind of structure may be exploited in global
optimization procedures.
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In the following, we will consider the following classes of optimization
problems:

Linear programming (LP), where the objective function and the con-
straints are represented by linear (affine) functions. The class of LP prob-
lems is convex and can be solved by quite robust and efficient procedures
implementing the simplex method or interior-point methods.
Quadratic programming (QP), where constraints are linear but the ob-
jective function involves a quadratic form. QP is convex if the quadratic
form is convex, which is the case when the involved matrix is positive
semidefinite. In finance, this is mostly the case, as the quadratic form we
consider involves a covariance matrix. The covariance is also symmetric.
We shall denote the set of symmetric positive semidefinite n×n matrices
by Sn+. If constraints involve quadratic forms, we have a quadratically
constrained QP (QCQP) problem, which is convex if the quadratic forms
define a convex set. Convex QP and QCQP problems may be solved by
classical nonlinear programming methods or by more recent interior-point
methods.
Mixed-integer LP/QP (MILP, MIQP) problems are obtained when we
require that a subset of decision variables take integer values. There
are quite sophisticated software packages based on branch-and-bound or
branch-and-cut methods to solve such problems. However, they are not
convex and may not be solvable within a reasonable amount of time, when
their structure is difficult or their size is too large.
Second-order cone programming (SOCP) and semidefinite program-
ming (SDP) problems are a relatively recent class of convex optimiza-
tion problems that can be solved by interior-point methods. As we shall
see, they involve feasible sets defined by cones. Semidefinite program-
ming deals with the rather peculiar cone of positive semidefinite matrices.
At present, large-scale SDPs are not easily solvable, but several real-life
problems may be tackled with a reasonable computational effort.
Generic nonlinear programming (NLP) problems are obtained when the
model formulation involves generic nonlinear functions. They are non-
convex in general, and most commercial solvers only find local optima.
For some specific structures, global optimization procedures guaranteeing
the global optimality of the solution may be devised. In general, we may
adopt heuristic global optimization approaches, which do not guarantee
true optimality.

All of the above classes may be formulated as deterministic problems, pro-
vided that there is no uncertainty in the problem data, or uncertain problems. In
the latter case, we may formulate a stochastic or a robust optimization problem,
depending on the way we characterize uncertainty.
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15.2 Linear programming

We deal with a linear programming (LP) model, when the objective function and
all of the constraints are expressed by linear (affine) functions. An LP model
can be formulated as

min

n∑
j=1

cjxj

s.t.
n∑
j=1

dijxj ≤ ei, i ∈ I

n∑
j=1

hijxj = qi, i ∈ E.

An LP problem may involve a number of equalities and inequalities, but it is
easy to see that the former ones can be transformed into the latter ones, and vice
versa. The equation

n∑
j=1

hijxj = qi

can be rewritten as a pair of inequalities:

n∑
j=1

hijxj ≤ qi,
n∑
j=1

hijxj ≥ qi.

By introducing slack variables si ≥ 0, we can also get rid of inequalities:

n∑
j=1

dijxj ≤ ei ⇒
n∑
j=1

dijxj + si = ei.

Note that we trade an inequality for another one, si ≥ 0, which is however a
simple non-negativity bound. In fact, we usually have non-negative decision
variables, but there are exceptions, as is the case when we allow short-selling.
If necessary, a generic unrestricted variable xj can be expressed as a difference
of unrestricted variables, corresponding to the positive and the negative part of
the variable:

xj = x+
j − x

−
j ; x+

j , x
−
j ≥ 0.

Per se, this is not quite correct, as we should also enforce a complementarity
condition, stating that at least one of the two parts is zero, x+

j ·x
−
j = 0; however,

this would introduce a nonlinearity. Usually, these variables are involved in
the objective function, and the complementarity condition will be enforced by
optimality. To see why, if both variables have a cost, expressing xj = 3 by
x+
j = 10 and x−j = 7 is more expensive than using x+

j = 3 and x−j = 0.
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We may cast LPs into a more compact matrix-based form:

min cTx (15.4)
s.t. Ax = b,

x ≥ 0,

where x ∈ Rn, c ∈ Rn, b ∈ Rm, and A ∈ Rm×n. Clearly, such a problem
makes sense if m < n, i.e., if the involved system of linear equations is under-
determined. The model of Eq. (15.4) is an LP in standard form, involving only
equality constraints and non-negative decision variables. Another way to state
the problem is the canonical form, involving only inequalities:

min cTx (15.5)
s.t. Ax ≥ b,

x ≥ 0.

The standard and canonical forms are equivalent, as we may transform either
form into the other one. The standard form is preferred from an algorithmic
viewpoint, since we may take advantage of familiar concepts from linear al-
gebra, as we shall see. Essentially, the constraints state that we must express
vector b as a linear combination of the columns of matrix A, with non-negative
coefficients. The canonical form allows us to visualize the feasible region as an
intersection of halfplanes, i.e., a polyhedron.

A remarkable fact is that an LP is both a convex and concave programming
problem. This implies that any local optimum is also a global one, and that
we may just bother with points on the boundary of the feasible region. More
precisely, we have an optimal solution corresponding to a vertex of the feasible
region, which is polyhedral.

Example 15.2 Illustrating the geometry of LP

Figure 15.6 shows a possible feasible set for an LP where we max-
imize an objective function with respect to two decision variables,
x1 and x2. A polyhedron like this may be generated by three lin-
ear inequalities and two sign restrictions on the decisions. We show
the level curves of the objective, which are parallel lines in an LP
problem. The optimal solution corresponds to the extreme point C.
A change in the coefficients of the objective function would imply a
rotation of the level curves, so that the optimal solution would shift
to B or D. Note that when the level curves are parallel to a face of
the polyhedron, we have multiple optima (actually, a whole edge of
them).

The geometry of LP is exploited in the celebrated simplex algorithm, which
is a clever way to explore vertices of the feasible set and is available in plenty
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FIGURE 15.6 Geometry of linear programming.

of commercial packages. There are also alternative strategies based on interior-
point methods. LP solution methods are outlined in Section 16.3.

We have seen how LP may be used to characterize no-arbitrage conditions
in a simple one-period, discrete-state market model in Section 2.3. In the next
section, we describe a possible model for financial planning.

15.2.1 CASH FLOW MATCHING

In Section 6.3.1, we have considered a simple LP model, which we recall here
for the sake of convenience, to tackle a simplified asset–liability management
problem. The aim is make optimal use of assets to meet a stream of deter-
ministic liabilities Lt at times t = 1, . . . , T . A portfolio exactly matching the
liabilities would be easy to build, if we had a rich set of zeros but, in practice,
we have to use coupon-bearing bonds. Given a set of n bonds, each with current
price Pi (i = 1, . . . , n) and paying a cash flow Fit at time t, we may consider
the following cash flow matching model:

min

n∑
i=1

Pixi

s.t.
n∑
i=1

Fitxi ≥ Lt, ∀t

xi ≥ 0.

The decision variable xi represents the amount of bond i purchased.
As we have observed in Section 6.3.1, this model is quite oversimplified

and based on an inflexible approach. When there is a cash surplus in a time
period, this is not used in any way. In order to reduce the cost of the portfolio,
we might introduce the possibility of reinvesting surplus at time t, as well as
financing shortfall. Let us introduce cash surplus v+

t at time t, which can be
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reinvested at the risk-free rate rft, and cash shortfall v−t , which can be financed
at the risk free rate rft + δ. Here, rft is not an annual rate, but it refers to
the time bucket size selected to build the model. We use the spread δ to take
bid–ask spreads into account, as the rate at which we may lend is not the rate
at which we may borrow money. Given an initial budget b0, the objective could
be to maximize the terminal cash surplus v+

T :

max v+
T

s.t. b0 −
n∑
i=1

Pixi = v+
0 − v

−
0 , (15.6)

n∑
i=1

Fitxi + (1 + rf,t−1)v+
t−1 + v−t

= Lt + v+
t + (1 + rf,t−1 + δ)v−t−1, t = 1, . . . , T

(15.7)

v−T = 0; v+
t , v

−
t , xi ≥ 0.

Constraint (15.6) states that, if the cost of the portfolio we buy exceeds the bud-
get b0, we have to finance an initial shortfall v−0 ; otherwise, we have a surplus
v+

0 . Constraint (15.7) may be interpreted as a cash flow balance for each suc-
cessive time period. We have cash inflows due to coupons and face values of
matured bonds, surplus invested in the previous period, and borrowed money.
We have cash outflows due to liabilities, surplus invested now, and the repay-
ment of debt contracted in the previous time period. Note that we rule out any
outstanding debt at the last time bucket T , since we require v−T = 0.

This model is a slight improvement with respect to the trivial cash flow
matching, but it is hardly satisfying. To begin with, it is deterministic and does
not account for stochastic interest rates. The main limitation is that we cannot
either buy or sell bonds at arbitrary time periods. We may introduce this possi-
bility, but then we should account for the uncertainty in future bond prices. A
demanding, but flexible approach to cope with uncertain bond prices is to build
a stochastic programming model; see Section 15.6.3.2.

15.3 Quadratic programming

Linear programming (LP) is an important case of convex optimization. The
next level in the hierarchy is a quadratic programming (QP) problem like

min 1
2xTQx + fTx

s.t. Ax ≤ b,

Cx = d,

x ≥ 0.
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This is a convex optimization problem, provided that Q ∈ Sn+, where Sn+ is
the set of symmetric positive semidefinite n × n matrices. There is no loss
in generality from considering symmetric matrices, since any quadratic form
may be rewritten in terms of a symmetric matrix Q. We have already met QP
problems when dealing with mean–variance portfolio optimization. We may
trace the efficient mean–variance frontier by solving a sequence of QPs, which
is a computationally easy task. Actually, given state-of-the-art solvers, we can
say that solving a QP is no harder than solving an LP. The real issue, as far as
mean–variance optimization is concerned, is related to statistical estimation, as
we have seen in Sections 9.1 and 10.3. In the next section, we consider a related
problem, Sharpe ratio maximization.

15.3.1 MAXIMIZING THE SHARPE RATIO

We have tackled the maximization of the Sharpe ratio in Section 8.4, where
we have seen that it may be trivially accomplished by solving a system of lin-
ear equations, assuming an unconstrained portfolio. However, additional con-
straints should be considered in practice, which preclude such a simple solution.
Furthermore, as we have observed in Section 8.4.1, the approach we followed
was built on shaky foundations, since the Sharpe ratio is not really a concave
function.3 Thus, the first-order optimality conditions need not be sufficient.

Here, we show that maximizing the Sharpe ratio can be accomplished by
solving a QP, too. This is not quite a trivial fact, as the problem may be formu-
lated as

max
µTw − rf√

wTΣw
=

(µ− rf i)Tw√
wTΣw

(15.8)

s.t. iTw = 1, (15.9)
Aw = b, (15.10)
Dw ≥ c, (15.11)

where w is the vector of portfolio weights, i = [1, 1, . . . , 1]T is a vector with n
elements set to 1, and we also consider additional equality and inequality con-
straints on portfolio composition, possibly including no short-selling restric-
tions or bound on exposures to industrial or geographical sectors.

Under sensible assumptions, we may recast the maximization of Sharpe
ratio as a quadratic program. The logical steps of the transformation are as
follows:

The objective function in Eq. (15.8) looks nasty, but we might try improv-
ing it a bit by flipping the objective upside down and minimizing

√
wTΣw

(µ− rf i)Tw
. (15.12)

3We have very informally argued that the objective function is quasiconcave. See [33] for a full
and rigorous treatment of these issues.
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This is not quite correct, unless we can guarantee that (µ − rf i)Tw > 0,
i.e., that the risk premium for all portfolios is strictly positive. In fact,
it is not true that this condition applies to any portfolio. Nevertheless,
the optimal risky portfolio must be such that its expected return exceeds
the risk-free return. Otherwise, on the mean–risk plane, we would have a
tangency portfolio below the risk-free asset, and a capital allocation line
with a negative slope. If so, in the optimal portfolio, wealth would clearly
be completely allocated to the risk-free asset. Hence, we assume that
there is a feasible portfolio such that its expected return is strictly larger
than the risk-free rate and restrict our attention to portfolios with positive
risk premium.
Under the previous assumption, we may even square the objective in Eq.
(15.12) to get rid of the square root, since the objective function is guar-
anteed to be non-negative. By introducing an auxiliary variable,

t
.
=

1

(µ− rf i)Tw
> 0, (15.13)

we may further improve the look of the objective function by recasting it
as

min t2 ·wTΣw.

Then, by the change of variables

x = tw, (15.14)

we can write the objective as a quadratic form

min xTΣx.

The new variables x can be interpreted as pseudoweights, whose sum is
not necessarily 1.
The change of variables of Eq. (15.14), implies

w =
x

t
,

which is legitimate under the condition t > 0 of Eq. (15.13). Under
the same assumption, we may transform constraints (15.9) (15.10), and
(15.11) as follows:

iTx/t = 1 ⇒ iTx = t,

Ax/t = b ⇒ Ax = tb,

Dx/t ≥ c ⇒ Dx ≥ tc,

which are linear constraints.
Finally, the definition of Eq. (15.13) may be rewritten as a linear con-
straint, too:

(µ− rf i)T ·wt = 1 ⇒ (µ− rf i)T · x = 1.
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Putting all of this together, we conclude that the Sharpe ratio may be max-
imized by solving the following QP:

min xTΣx (15.15)

s.t. iTx = t,

(µ− rf i)T · x = 1,

Ax = tb,

Dx ≥ tc,
t ≥ 0. (15.16)

The inequality constraint of Eq. (15.16) replaces the strict condition t > 0.
This is done to make the feasible set closed, as required by any optimization
software. If we solve problem (15.15) and find a solution x∗, t∗ > 0, then the
desired portfolio is obtained by setting

w∗ =
x∗

t∗
.

Under the assumption of a positive sloped CAL (capital allocation line), we
may rule out t∗ < 0, and the case t∗ = 0 would also correspond to a pathology,
a portfolio with infinite risk premium, not to be expected in the real world.

15.3.2 QUADRATICALLY CONSTRAINED QUADRATIC
PROGRAMMING

In mean–variance optimization, rather than minimizing variance subject to a
lower bound on expected return, we may swap the objectives and maximize
expected return subject to an upper bound on variance. Hence, we end up with
a quadratic constraint like

wTΣw ≤ β,

which is convex, since Σ ∈ S+ (we use S+ to denote a symmetric, positive
semidefinite matrix without reference to its size). More generally, we may con-
sider a quadratically constrained quadratic programming model like

min 1
2xTQx + fTx

s.t. 1
2xTHix + hT

ix ≤ di, i = 1, . . . ,m

Ax = b,

x ≥ 0,

which is convex, provided that all Hi ∈ S+ as well. Efficient solvers, based on
interior-point methods, are available for QCQPs.

A word of caution is needed when dealing with a constraint like

‖Aix + bi ‖2 ≤ cT
ix + di, (15.17)
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where ‖·‖2 denotes Euclidean norm. For y ∈ Rn,

‖y‖2=
√

yTy =

√√√√ n∑
j=1

y2
j .

A simple case of Eq. (15.17) is an upper bound on standard deviation,
√

wTΣw ≤ γ,

which could be squared to yield a bound on variance. Unfortunately, this trans-
formation is unwise in general, since it may transform a convex problem into a
nonconvex one. We will investigate this issue in Section 15.5, where we show
how to deal with a constraint like (15.17) within the framework of conic opti-
mization.

15.4 Integer programming

LPs and QPs are convex problems that we may solve with robust commercial
software. Things get much less pleasant, when we have to restrict some vari-
ables to take only integer values. For instance, we obtain a mixed-integer LP
(MILP) problem when a subset of variables, collected into vector y, is restricted
to assume non-negative integer values:

P (S) min cTx + dTy (15.18)
s.t. Ax + Ey ≤ b,

x ∈ Rn1
+ , y ∈ Zn2

+ .

Here n1 and n2 are the numbers of continuous and integer variables respectively,
and Z+ is the set of non-negative integers. The notation P (S) emphasizes the
feasible set S, which fails to be convex. A mixed-integer QP (MIQP) problem
is obtained similarly, by restricting some variables of a QP model to integer
values. Let us consider a couple of typical examples. As we shall see, the most
common restriction is yj ∈ {0, 1}, which may be used to enforce qualitative
properties on a portfolio.

Example 15.3 Modeling fixed charges

Let us consider an activity, whose level is measured by a continuous
decision variable x ≥ 0. A concrete example would be the amount of
an asset that we purchase. The cost of the activity may include both
a fixed charge f and a variable component c. By a fixed charge, we
mean a cost that is incurred whenever x > 0, in which case the cost
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does not depend on the specific level x of the activity. Note that this
is not the same as a fixed (sunk) cost that is always paid for whatever
level x, including x = 0. The cost function is

C(x) =

{
0, if x = 0,
f + cx, if x > 0.

This function is discontinuous at the origin, and it is clearly not con-
vex.

We may express the cost within an LP framework by introducing
an auxiliary binary decision variable δ, related to x:

δ =

{
0, if x = 0,
1, if x > 0.

If we introduce a suitably large constant M , playing the role of an
upper bound on x, we may relate the continuous variable x and the
binary variable δ by a linear inequality:

x ≤Mδ.

To see how this works, observe that if δ = 0, then x is forced down
to zero, whereas the bound x ≤ M is enforced when δ = 1. This
bound is irrelevant if M is large enough. Then, cost is expressed by
the linear function

cx+ fδ.

It may be argued that this does not forbid the nonsensical case in
which we pay the fixed charge f , but leave x = 0. However, it is easy
to see that such a solution will never be optimal. This kind of mod-
eling trick is called big-M constraint, as we require a suitably large
M (when no sensible bound can be devised). From a computational
viewpoint, the smaller the big-M , the better, as we shall see later.

Example 15.4 Semicontinuous variables

Let us consider how we may represent a semicontinuous variable
within an LP framework. As we have mentioned, a common require-
ment on the level of an activity is that, if it is undertaken, its level
should be in the interval [m,M ]. Note that this is not equivalent to
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requiring that m ≤ x ≤M . Rather, we want something like

x ∈ {0} ∪ [m,M ],

which is a non-convex set (recall that the union of convex sets need
not be convex). Using the same big-M trick as above, we may intro-
duce a binary variable δ and write

x ≥ mδ, xi ≤Mδ.

Semicontinuous variables may be used when the amount of an as-
set in a portfolio must be above a minimum threshold, if the asset is
included in the portfolio.

15.4.1 A MIQP MODEL TO MINIMIZE TEV UNDER A
CARDINALITY CONSTRAINT

Sometimes, our task is not really to be smart and build a portfolio beating a
benchmark, but rather to track a benchmark at low cost. This is the case, e.g.,
when we manage a passive fund tracking an index.4 In other cases, we should
replicate a target portfolio by reducing the number of assets involved, so that
trading and management costs are minimized.

So, let us consider a universe of n assets, indexed by i = 1, . . . , n. We
are given a target or benchmark portfolio with weights wbi ≥ 0, which must
be tracked with a limited number, at most Cmax, of assets. Thus, we need a
tracking portfolio, with weightswi, i, . . . , n, minimizing some distance measure
between the target and tracking portfolios, subject to a cardinality constraint. A
trivial distance metric can be defined by a L1 norm:

n∑
i=1

∣∣wi − wbi ∣∣. (15.19)

By proper model formulation, this metric yields a MILP model. We have just
to introduce auxiliary variables w+

i and w−i , both non-negative, representing
positive and negative deviations from the benchmark, allowing us to express
the absolute value as a piecewise linear function:

wi − wbi = w+
i − w

−
i , i = 1, . . . , n.

4As a relevant example, an exchange-traded fund (ETF) is a passive fund related to a benchmark
that should be tracked as closely as possible. The fund is cheap because it is traded as a security,
rather than distributed through a possibly expensive retail network.
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Then, we may transform the objective function of Eq. (15.19) into
n∑
i=1

(
w+
i + w−i

)
.

However, this distance metric does not take any relationship between asset re-
turns into account. For instance, let us consider two assets, and assume that in
the benchmark we have

wb1 = 0.2, wb2 = 0.1,

whereas in the tracking portfolio we have

w1 = 0.3, w2 = 0.

Then, these two assets contribute the following amount to the distance:

|0.3− 0.2 | + |0− 0.1 |= 0.2.

However, imagine that the two asset returns are perfectly correlated. Then, the
true distance would be zero!

We must account for correlations, and an alternative distance metric is the
tracking error variance (TEV), defined as

Var
(
r̃p − r̃b

)
,

where r̃p and r̃b are the random returns of the tracking and benchmark portfo-
lios, respectively. Clearly, variance of the tracking error would be zero for a
perfect tracking. TEV can be expressed as

n∑
i=1

n∑
j=1

(
wi − wbi

)
σij
(
wj − wbj

)
,

where σij is the covariance between the returns of assets i and j. This objective
is a convex quadratic form.

In order to express the cardinality constraint, we need to introduce a set of
binary variables δi, one for each asset, modeling the inclusion of asset i in the
tracking portfolio:

δi =

{
1, if asset i is included in the tracking portfolio,
0, otherwise.

Binary variables δi and continuous variables wi should be linked by the linear
inequality

wi ≤Mδi,

where M is a suitably large constant. Clearly, if we rule out short-selling, M =
1 would do. As we show later, performance of solution methods depends on the
strength of the model formulation, which suggests using a smaller upper bound:

wi ≤ wiδi.
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Straightforward minimization of TEV, subject to a cardinality constraint, yields
the following model:

min

n∑
i=1

n∑
j=1

(wi − wbi )σij(wj − wbj) (15.20)

s.t.
n∑
i=1

wi = 1,

n∑
i=1

δi ≤ Cmax,

wi ≤ wiδi, ∀i
wi ≥ 0, δi ∈ {0, 1}, ∀i.

This model is an MIQP problem. Note that we assume that short-selling is
forbidden; see Problem 15.4 for an extension of the model.

15.4.2 GOOD MILP MODEL BUILDING: THE ROLE OF TIGHT
MODEL FORMULATIONS

As we have pointed out, the feasible set of an MILP problem is nonconvex,
which spells trouble in general. Furthermore, we may expect that there is no
easy-to-check optimality condition associated with integer programming mod-
els. Traditional optimality conditions involve derivatives of the objective func-
tion, or some augmented version of it, with respect to decision variables; how-
ever, the idea itself does not make any sense, when variables are restricted to
integer values. Indeed, even if we are handed the optimal solution, we cannot
easily check that it is truly optimal. To solve the problem, we have to rely on
some form of enumeration of the feasible solutions. This is implemented in
commercial software based on branch-and-bound methods. These methods are
described in Chapter 16. Usually, we do not need to know too many details
about solution methods, but MILP models are an exception. We have to realize
what it is needed to build a model that is solvable. The key is the “tightness” of
the model.

Example 15.5 Rounding noninteger solutions may not work

The get a concrete feeling for the difficulties in integer programming,
let us consider a pure integer LP borrowed from [35]:

max x1 + x2
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FIGURE 15.7 An integer LP featuring a large integrality gap.

s.t. 10x1 − 8x2 ≤ 13,

2x1 − 2x2 ≥ 1,

x1, x2 ∈ Z+.

We might think that a simple way to get a good solution, even though
not necessarily an optimal one, is to ignore the integrality constraints
and solve the corresponding continuous LP. This need not yield an
integer solution, but by judicious rounding we should be done. If we
relax the integrality requirement, i.e., we just require x1, x2 ≥ 0, we
find the optimal solution

x∗1 = 4.5, x∗2 = 4,

with an optimal objective value 8.5. This looks a fairly good starting
point, as one variable is already integer, and we may easily round the
first one up or down to see what we get. Unfortunately, the solution
(4, 4) is not feasible with respect to the second constraint, and the
solution (5, 4) is not feasible with respect to the first one. Therefore,
both trivially rounded solutions are not even feasible, and we are lost
in our quest for optimality. In fact, the integer optimal solution is
x∗1 = 2, x∗2 = 1, with optimal value 3. We get a clear picture from
Fig. 15.7, where we plot the feasible integer set and the polyhedron
corresponding to the continuous LP. The true feasible set consists of
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two points, and there is a large gap between the integer feasible set
and the continuous LP polyhedron. This implies a significant gap
between the objective function value of the optimal integer solution
and the solution of the corresponding continuous LP.

Example 15.5 may look somewhat pathological, but we have to realize that
in a large-dimensional problem, possibly involving a mix of binary and contin-
uous variables, the geometry is expected to be weird.

We describe the basic ideas of branch-and-bound methods in Section 16.5,
but, for now, it is sufficient to realize that their performance depends on the
quality of the bounds on the optimal value, which we find by relaxing the fea-
sible set to a polyhedron. In Example 15.5, we find an upper bound, with value
9, on the optimal value of the objective function, which is 3, by relaxing the
integrality requirement, since we are maximizing it. Unfortunately, it is a rather
weak and loose bound, in this specific case. In a minimization problem, we
find a lower bound on the optimal value of the objective. In both cases, we find
an optimistic estimate by solving the following continuous (LP) relaxation of
problem P (S) in Eq. (15.18):

P (S) min cTx + dTy (15.21)
s.t. Ax + Ey ≤ b,[

x

y

]
∈ Rn1+n2

+ .

This LP problem features a relaxed feasible set S, which includes the feasible
set S of the MILP problem (15.18). Since S ⊆ S, by solving the relaxed
problem P (S), we find a lower bound on the optimal value of the objective for
P (S).

In Fig. 15.7, we observe a huge gap between S and S. In Fig. 15.8, we
depict a typical example for a pure integer LP. The feasible set consists of the
bullets, which are contained by the outermost polyhedron S. If we were able to
find the smallest convex polyhedron containing S, corresponding to the shaded
polyhedron, enclosed by the dotted line in Fig. 15.8, we would be done: The
LP relaxation would provide us with an integer solution, as all of the vertices
of the inside polyhedron have integer coordinates. Unfortunately, finding the
inside polyhedron, which is called the convex hull5 of S, is quite hard. If there
is a large gap between the two sets, as in Example 15.5, bounds turns out to be
weak and the search process is computationally expensive. It is also difficult

5The convex hull of a set S ⊂ Rn is the smallest convex set including S. In principle, it is the
intersection of all convex sets including S. In slightly more concrete terms, this may be found
by taking convex combinations of the points in S. If S is a discrete and finite set, its convex hull
is a bounded polyhedron.
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FIGURE 15.8 Integrality gap in a pure integer LP.

to find good approximations by rounding a nearly integer solution and carrying
out a limited local search around it. However, we may at least find a model
formulation bridging the gap as far as possible. There are two approaches to
improve the tightness of a model formulation:

We may formulate the model in a more careful way, by choosing alterna-
tive decision variables and rewriting constraints.
We may resort to the automatic generation of cuts, i.e., additional con-
straints that cut some portion of the outer polyhedron without eliminating
integer solutions. The deeper the cut, the closer we get to the convex hull.
Cut generation is a common feature of state-of-the-art software packages.

Example 15.6 Disaggregated vs. aggregated constraints

Consider the four binary variables x0, x1, x2, x3 ∈ {0, 1} and the con-
straints

3x0 ≤ x1 + x2 + x3, (15.22)

and
x0 ≤ x1, x0 ≤ x2, x0 ≤ x3. (15.23)

The two feasible sets of Eqs. (15.22) and (15.23) may look different
but they are, in fact, the same. If we interpret the variables as the
decision to start an activity, we are expressing the fact that we may
start activity 0 only if all activities 1, 2, and 3 are started. If even one
of the preconditions is not met, and the corresponding variable is set
to 0, then the variable x0 must be set to 0 as well.
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Since the two formulations are equivalent, common sense would
suggest that having to do with one constraint is better than dealing
with three of them. This intuition is wrong, and many MILP pack-
ages automatically transform the aggregate constraint (15.22) into the
three disaggregated constraints (15.23). To see why, observe that the
aggregated constraint is just the sum of the three constraints. Gen-
erally, when we add inequality constraints, we relax the feasible set.
For instance, a point x◦ satisfying the individual inequalities

g1(x◦) ≤ 0, g2(x◦) ≤ 0

will certainly satisfy the aggregate inequality

g1(x◦) + g2(x◦) ≤ 0,

but the converse is not true (the sum of negative numbers is negative,
but we may get a negative number by summing a small positive one
and a large negative one).

In the present case, the integrality restriction has the effect that
we do not really relax the constraints by aggregating them, in terms
of integer feasible points; however, this will happen in the continuous
LP relaxation. The result is that the integrality gap will increase.

The kind of reformulation of Example 15.6 can be performed manually,
but state-of-the-art software may do this automatically. Leaving the task to the
software may be a good choice, as only the relevant constraints will be added,
without generating too many of them. In fact, in large-scale cases, the bene-
fit of improving the bound may be overwhelmed by the number of additional
constraints, which may also get into the way of rounding heuristics.

Example 15.7 Making the big-M smaller

In TEV minimization, we have introduced the big-M constraint

x ≤Mδ,

linking the continuous variable x ≥ 0 to the binary variable δ ∈
{0, 1}. Here, M should be a suitably large constant, such that the
constraint is practically ineffective when δ = 1. Choosing a huge M
is no harm, in principle, but it is a bad choice computationally. To
see why, observe the geometry in Fig. 15.9. The feasible set consists
of the origin (corresponding to δ = 0), and a segment of a vertical
line (corresponding to δ = 1). However, the continuous relaxation
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FIGURE 15.9 The effect of the big-M on the tightness of the continuous LP relaxation.

corresponds to a shaded triangle, below the line with slope M . The
smaller the big-M , the tighter the LP bound.

Example 15.8 Cover cuts for a knapsack constraint

Let us consider the pure binary problem:

max 10x1 + 7x2 + 25x3 + 24x4

s.t. 2x1 + 1x2 + 6x3 + 5x4 ≤ 7,

xj ∈ {0, 1}.

This kind of model is known as knapsack problem. We have a set of
items, with given weight and value. We want to find a subset of items
with maximum value, without exceeding the weight capacity of the
knapsack. The problem can be considered as a simple version of a
capital budgeting problem, where investments are indivisible and we
must select the best subset, subject to a single resource budget. If we
relax the integrality condition to xj ∈ [0, 1] and solve the correspond-
ing LP, we obtain

x1 = 1, x2 = 1, x3 = 0, x4 = 0.8,

with objective value 36.2. This objective value is an upper bound on
the optimal value. The solution is easy to interpret in the light of a
possible greedy heuristic. We would like to choose items with a large
value, but this must be traded off against the resource consumption.
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Thus, we may compute a priority pj for each item, by taking ratios of
value and weight:

p1 =
10

2
= 5, p2 =

7

1
= 7, p3 =

25

6
= 4.167, p4 =

24

5
= 4.8.

So, we may select the highest-priority items 2 and 1, but then only
80% of item 4 can be included. The actual solution we find includes
items 2 and 1, providing a rather low value, 17, which is very far from
the upper bound 36.2 and leaves a lot of budget unused. This rule does
not guarantee optimality. In fact, it is easy to see that we are better off
by selecting items 1 and 4, as this choice uses all of the budget and
has value 34. Since the upper bound is 36.2, and all of the problem
data are integer, we are sure that there is no way to find a solution
with profit larger than 36. However, we cannot rule out the existence
of a solution with a value larger than 34, yet, and we wonder whether
the solution {1, 4} is really optimal.

To generate some additional cuts, let us observe that items 1 and
3 cannot be both selected, as their total weight is 8, larger than the
budget. The same applies to items 1, 2, and 4. Hence we may add the
cuts

x3 + x4 ≤ 1,

x1 + x2 + x4 ≤ 2.

They are obviously redundant in the discrete domain, but they are not
in the continuous relaxation. This kind of cut is called a cover cut.
By adding these two cover cuts, the LP relaxation yields a stronger
bound, 34.66667 < 36.2. The bound does show that the solution
{1, 4} is optimal.

Cover and other kinds of cuts are automatically generated by state-of-the-
art commercial software for integer programming. This may improve perfor-
mance considerably, and it also helps the application of clever heuristics that
may generate high-quality integer solutions from almost integer ones. As we
shall see in Section 16.5, this is another key ingredient in branch-and-bound
methods.

15.5 Conic optimization

The classes of convex optimization models we have considered so far (LP, QP)
are standard topics in optimization and operations research courses, and are
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also standard material for quantitative finance courses, even though their use in
financial practice has raised some controversy. Robust and powerful solution
software have been available for a while, and the difficulties in their applica-
tion are mostly of a statistical nature. MILP problems are not convex, but even
though they may be harder to solve to optimality, finding very good solutions
is now feasible with a reasonable computational effort. As far as nonlinear
programming is concerned, most algorithms available in the past were actually
local optimizers. More recently, solvers originally developed for LP have been
generalized to a wider class of convex problems, the family of conic optimiza-
tion models. This family includes second-order cone programming (SOCP)
models and semidefinite programming (SDP) models, which may play a rel-
evant role in financial optimization under uncertainty and are the subject of a
remarkable amount of research. Rather unsurprisingly, conic optimization relies
on the concept of a cone, which we define in full generality as follows.

DEFINITION 15.5 (Cones in Rn) A set C ⊆ Rn is called a cone if, for every
x ∈ C and λ ≥ 0, we have λx ∈ C.

We discuss cones in more detail, along with some examples, in Section
15.5.1, but we may immediately notice the following:

The whole space Rn is a cone.
The non-negative orthant Rn+ is a cone.
The singleton {0}, consisting of the origin of Rn, is a cone.

As we shall see, we may consider cones in a more general setting, as subsets of
a linear space.

It is also useful to get an immediate feeling for the relevance of cones, by
taking a more abstract view of an LP model in standard form:

min cTx (15.24)
s.t. Ax = b, (15.25)

x ≥ 0. (15.26)

The following observations allow us to cast LP within a wider class of convex
problems:

The objective function (15.24) involves the inner product of two vec-
tors c,x ∈ Rn. To generalize the concept, we may consider a finite-
dimensional linear space V , equipped with an inner product 〈·, ·〉V that
maps pairs of elements in V into the real line R. Hence, the minimization
of the objective function may be written as

min 〈c,x〉V .

The equality constraint (15.25) involves a matrix A ∈ Rm×n, mapping a
vector in Rn into a vector in Rm. If we identify Rn and Rm with linear
spaces V and W , respectively, we may generalize A to a linear operator
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A : V −→W . The equality constraint may be thought as

A(x)− b = 0W ,

where 0W is the zero element ofW . Since, as we have seen, the singleton
{0} is a cone, we may rewrite the equality constraint in a more general
and abstract form as

A(x)− b ∈ L,

where L ≡ {0W } ⊆W is a cone. We notice that this also applies to an LP
model in canonical form, involving the inequality constraint Ax−b ≥ 0,
which may be written as

A(x)− b ∈ Rn+.

The non-negative orthant is a cone, too, playing the role of L in this case.
Finally, the non-negativity condition (15.26) may be written in abstract
form as

x ∈ K,

where the cone K is just the non-negative orthant Rn+. If variables are
unrestricted in sign, we take K as the whole space Rn, which is a cone,
too.

Putting all of this together, we define an abstract conic optimization problem as
follows.

DEFINITION 15.6 (Conic optimization problem) Let V and W be (finite-
dimensional) linear spaces equipped with an inner product. Let K ⊆ V and
L ⊆ W be closed convex cones. A conic optimization problem may be ex-
pressed as the following mathematical program:

min 〈c,x〉V
s.t. A(x)− b ∈ L,

x ∈ K,

where c ∈ V and b ∈W , and A(·) is linear mapping from V to W .

In this definition, cones are required to be convex. We consider convex cones in
the next section.

15.5.1 CONVEX CONES

Definition 15.5 of a cone includes what we may naturally associate with the
intuitive idea of a cone, and some more. As we have already pointed out, the
whole space Rn, the non-negative orthant Rn+, and the singleton {0} are cones.
The cone in Fig. 15.10(a) corresponds to the natural view of a cone. Given any
vector x in the shaded region, if we move along the positive direction given by
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FIGURE 15.10 Two cones in R2.

x, i.e., we consider λx, for λ ≥ 0, we stay in the cone. However, the same
applies to the cone in Fig. 15.10(b), which is also a cone, according to the
definition, even if we would intuitively think of it as two joined cones. Figure
15.10 suggests that cones can be:

Pointed or not: The cone of Fig. 15.10(b) is not pointed, as it includes a
whole line, whereas a pointed cone does not include any line.
Convex or not: The cone of Fig. 15.10(b) is not a convex set.
Closed or open: A cone may include its boundary or not.
Polyhedral or not.

The last feature deserves a few more comments. A polyhedral cone has a sort
of pyramidal shape and may be visualized in a couple of ways:

1. As the intersection of half-spaces associated with hyperplanes passing
through the origin.

2. As the conic hull of a finite set of vectors, x(1), . . . ,x(m), which are called
the generators of the cone. The conic hull of a set is the set of points that
can be generated as conic combinations of points in the set, i.e., linear
combinations

m∑
j=1

λjx
(j),

with non-negative coefficients λj ≥ 0.

A relevant example of nonpolyhedral cone is the Lorentz (or ice-cream) cone:

C =
{

(x, t) ∈ Rn+1 : ‖x‖2≤ t
}
.

This cone, displayed in Fig. 15.11, is really what we associate with the idea of
a cone, and we may think of this cone as generated by an infinite number of
generators. For each value of t ≥ 0, we have a horizontal slice of the cone,
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FIGURE 15.11 The second-order cone.

which is a circle of radius t. This is also called second-order cone and, as we
shall see, is a particular case of a norm cone.

DEFINITION 15.7 (Norm cone) Given a norm ‖·‖ on Rn, we may define the
norm cone

K = {(x, t) ∈ Rn+1 : ‖x‖ ≤ t}.

To see that the definition makes sense, we easily check that if (x, t) ∈ K,
then λ(x, t) is in the cone as well, since

‖x‖≤ t ⇒ ‖λx‖ = λ‖x‖ ≤ λt,

where we use the condition λ ≥ 0 and the properties of a norm.6

In optimization, we need to work with proper cones that are pointed, con-
vex, and closed. The following example shows a less familiar and intuitive
cone, which is not a subset of Rn.

Example 15.9 The convex cone Sn+

Let us consider the set Sn+ of symmetric positive semidefinite ma-
trices n × n. It is easy to see that this is a convex cone. Indeed, if
Q1,Q2 ∈ Sn+, i.e., they satisfy the condition xTQix ≥ 0, for any x
and i = 1, 2, then λ1Q1 + λ2Q2 ∈ Sn+, for any λ1, λ2 ≥ 0. In par-
ticular, this holds when the non-negative weights add up to 1, which
implies convexity. To streamline notation, we often write Q � 0
rather than Q ∈ Sn+.

6A norm ‖ ·‖ is a mapping from a linear space into R+, satisfying the following properties: (a)
‖x ‖ = 0 implies x = 0; (b) ‖λx ‖ =|λ | · ‖x ‖, for any real number λ; (c) ‖x + y ‖ ≤ ‖x ‖
+ ‖y‖. The last property is known as triangular inequality.
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FIGURE 15.12 A generic set K ⊂ Rn and its dual cone K∗. Here, 0 is the origin of Rn.

By using the concept of a cone, we may generalize inequalities as follows.
Given two n× n matrices A and B, we may write the generalized inequality

A � B

which should be read as
A−B ∈ Sn+.

More generally, given a cone K within a linear space V and two elements X
and Y of V , we may write

A �K B,

which means
A−B ∈ K.

15.5.1.1 Dual norms and dual cones

A key concept in optimization is duality, which we discuss later, in Section
16.1.4. In model building, we do not need a full understanding of duality, but
there is a concept that proves useful, especially when applying conic optimiza-
tion models to robust optimization.

DEFINITION 15.8 (Dual cone) Given a subset K ⊂ Rn, its dual cone is the
set

K∗ = {y ∈ Rn : yTx ≥ 0, ∀x ∈ K}

In plain English, the dual cone of set K is the set of vectors forming an acute
angle (i.e., the inner product is non-negative) with all vectors in K. The idea is
illustrated in Fig. 15.12. Note that the set K need not be a cone. If K is a cone
and K∗ = K, then we say that K is a self-dual cone.
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Example 15.10 Trivial dual cones

It is easy to see that (Rn)∗ = {0} and ({0})∗ = Rn. The non-negat-
ive orthant Rn+ is self-dual, i.e., (Rn+)∗ = Rn+. To see this, let us first
consider y ∈ Rn+. If y ≥ 0, then we have yTx ≥ 0 for all x ∈ Rn+,
so Rn+ ⊆ (Rn+)∗. On the other hand, if we have a component yi < 0,
then yTei < 0, where ei is the ith unit vector. This implies that, if
y /∈ Rn+, then y /∈ (Rn+)∗, so (Rn+)∗ ⊆ Rn+, and the result follows.

Finding the dual cone may not be easy in general, but in the case of dual
cones of norm cones, there is a general strategy based on dual norms.

DEFINITION 15.9 (Dual norm) Given a dual norm ‖ · ‖, the corresponding
dual norm ‖·‖∗ is defined as

‖u‖∗
.
= max

{
uTx : ‖x‖ ≤ 1

}
.

Example 15.11 The dual norms of L1 and L∞

Let us consider the L∞ norm

‖x‖∞
.
= max
i=1,...,n

|xi | .

To find its dual norm, we have to solve the problem

max{uTx : ‖x‖∞≤ 1}.

The objective function, in a more explicit form, is
n∑
j=1

ujxj ,

to be maximized under the condition that

|xj | ≤ 1, j = 1, . . . , n.

Given the linearity of the objective and the independence of the con-
straints, the maximizer is clearly

x∗j = ±1, j = 1, . . . , n,

where the sign is the same as the sign of the corresponding component
uj , so that their product is positive. Thus, the optimal value is

n∑
i=1

|ui | = ‖u‖1,
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showing that the dual of the L∞ norm is the L1 norm. By a similar
token, the dual of the L1 norm is the L∞ norm (see Problem 15.3).

Example 15.12 The Euclidean norm is self-dual

To find the dual of the L2 norm we have to solve the problem

max{uTx : ‖x‖2≤ 1},

which requires to find a vector x on the unit circle, with maximal
projection on u. Clearly, the optimal solution x∗ must be a unit norm
vector, parallel to u. Hence,

x∗ =
u

‖u‖2
⇒ uT · u

‖u‖2
=
‖u‖22
‖u‖2

= ‖u‖2 .

Thus, we conclude that the Euclidean norm L2 is self-dual.

Given a norm cone, and the dual of the involved norm, the following result
shows how to find the dual cone.

THEOREM 15.10 (Dual of a norm cone) Let ‖·‖ be a norm on Rn, with dual
norm ‖·‖∗. Given the norm cone K ⊆ Rn+1 defined by norm ‖·‖, its dual cone
is

K∗ =
{

(u, v) ∈ Rn+1 : ‖u‖∗≤ v
}
.

Why are dual cones relevant? On the one hand, they are relevant in duality
theory for conic optimization problems, which in turn provides us with the nec-
essary theoretical background for efficient methods to solve conic programs. On
the other hand, they allow us to write an infinite set of constraints in a compact
and convenient way (see Example 15.13). Indeed, Definition 15.8 states that a
vector is in a dual cone if it satisfies an infinite set of inequalities.

15.5.1.2 Matrix inner product and the dual cone of Sn
+

If we want to apply the concepts that we have just introduced to the cone of
positive semidefinite matrices, we need to define an inner product and a norm
for matrices. This is essential in semidefinite programming but, since we do not
consider SDP in much detail in this book, we just give an intuitive glimpse of
the relevant concepts.
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One way to define an inner product between two m × n matrices is the
Frobenius product,

〈A,B〉F
.
=

n∑
i,j=1

aijbij = tr(ATB), (15.27)

where the trace of a square matrix C ∈ Rn×n is defined as7

tr(C)
.
=

n∑
i=1

cii,

i.e., the sum of elements on the diagonal. The transposition in Eq. (15.27) is
needed to make the matrices conform, and the Frobenius product is commuta-
tive, since we get the same result by taking tr(BTA). In fact, this inner product
may be regarded as the standard inner product for vectors, applied to “vector-
ized” matrices, obtained by stacking matrix columns.

If we consider square and symmetric matrices in the set Sn, the above inner
products may be slightly simplified, as we do not need transposition:

〈A,B〉F = tr(AB) =

n∑
i,j=1

aijbij .

The notation
A •B

is often used to denote inner product between matrices when stating SDP mod-
els.

We have observed that the set Sn+ is a cone. A notable fact is that this cone
is self-dual, i.e., (Sn+)∗ = Sn+. This is a consequence of the following fact,
which we state without proof:

tr(AB) ≥ 0, ∀A � 0 ⇐⇒ B � 0.

The essential message is that some formal properties and concepts that apply to
vectors may be extended to matrices, which paves the way to solve SDPs.

15.5.2 SECOND-ORDER CONE PROGRAMMING

Second-order cone programming (SOCP) problems are a generalization of LP
problems, whereby we require that the vector of decision variables is con-
strained by a second-order cone, modulo an affine transformation. As we have
seen, the Lorentz cone defined by the inequality

‖x‖2 ≤ t

7Among the properties of matrix trace, we only recall that tr(AB) = tr(BA), assuming that A
and B are conformable matrices, so that the products are well defined.
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is a convex cone in Rn+1. Since convexity is preserved by an affine map-
ping,8 we may generalize the above inequality by considering the following
affine mapping from Rn to Rk+1:

x −→

[
Ax + b

cTx + d

]
,

where A ∈ Rk×n, b ∈ Rk, c ∈ Rn, and d ∈ R. Then, we require that the
mapped point lies in the second-order (Lorentz) cone in Rk+1:

‖Ax + b‖2≤ cTx + d.

This kind of second-order cone constraint defines a convex set. It is important to
realize that we should not square the constraint in order to get a QCQP problem,
as the resulting quadratic form need not be convex. Since the intersection of
convex sets is convex, we may enforce multiple second-order cone constraints.
A general statement of an SOCP model is

min fTx

s.t. ‖Aix + bi ‖2≤ cT
ix + di, i = 1, . . . , n (15.28)

Fx = g,

where we see that we may also include linear constraints. A non-negativity
constraint x ≥ 0, by a proper setting of parameters, may be expressed as a
second-order constraint like (15.28), showing that SOCP is a generalization of
LP. SOCP problems may be solved by interior-point methods, which we will
not consider in detail in this book. Our aim is just to illustrate their use in
optimization modeling.

Example 15.13 Robust constraints in LPs

Consider an uncertain constraint aTx ≤ b, where

a = a0 + u, ‖u‖∞≤ 1.

In other words, we have a linear inequality where the data vector a
is uncertain, but rather than giving a stochastic characterization, we
assume that it lies within an uncertainty set. The nominal value is
a0, and the uncertainty set is a simple box around the nominal value.
The feasible set is the collection of points x, such that the inequality
is satisfied for every a in the uncertainty set. This kind of constraint,
as we shall see later, is common in robust optimization, and it can
be generalized to data matrices; see Section 14.4.1 for its relationship
with regularized regression.

8See [7].
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The difficulty is that we have to cope with an infinite collection
of inequalities:

aT
0x + uTx ≤ b, ∀u :‖u‖∞≤ 1. (15.29)

Apparently, we have to solve a difficult semi-infinite optimization
problem, but we may find a nice reformulation based on the dual
norm of L∞. Since constraint (15.29) must hold in the worst case,
we may rewrite it as follows:

aT
0x +

(
max
‖u‖∞≤ 1

uTx

)
≤ b.

However, the maximization within the parentheses is just the defi-
nition of the dual norm of L∞, which is L1. Thus, the uncertain
constraint is equivalent to the LP constraint

aT
0x +‖x‖1≤ b.

We see that, in the case of box uncertainty, an uncertain linear con-
straint may be rewritten as a linear constraint. What if we assume an
ellipsoidal uncertainty set for a? As a clue, let us consider a simple
circle with unit radius centered on the nominal data a0, i.e.,

a = a0 + u, ‖u‖2≤ 1.

This uncertainty set is related to the norm L2, which is self-dual.
Hence, the uncertain constraint may be expressed as

aT
0x +‖x‖2≤ b,

which is a second-order cone constraint.

Example 15.14 A chance constraint in LP

Let us consider a random linear constraint aTx ≤ b, where a ∼
N(µ,Σ), and say that we require P{aTx ≤ b} ≥ η. This kind of
constraint is called chance constraint, and it enforces a probabilistic
guarantee, with reliability η, that an uncertain constraint is satisfied.
For a given vector x, we have aTx ∼ N(ν, σ2), where ν = µTx and
σ2 = xTΣx. Using the standard normal CDF Φ(z), we may rewrite
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the constraint as

P

{
aTx− ν

σ
≤ b− ν

σ

}
= Φ

(
b− ν
σ

)
≥ η

⇐⇒ b− ν
σ
≥ Φ−1(η).

Assuming η > 0.5, as it is sensible to do, so that Φ−1(η) > 0, this is
a second-order cone constraint:

µTx + Φ−1(η) ‖Σ1/2x‖2≤ b,

where Σ
1/2 is the square root of the covariance matrix, i.e., a symmet-

ric matrix such that Σ
1/2Σ

1/2 = Σ. Hence, an LP with disjoint (indi-
vidual) chance constraints of this kind, under a normality assumption,
is a convex SOCP.

We shall further discuss chance constraints in Section 15.6.1, and more general
uncertainty sets in Section 15.9.

15.5.3 SEMIDEFINITE PROGRAMMING

In semidefinite programming (SDP) we deal with symmetric semidefinite posi-
tive matrices X in the convex cone Sn+. There are two ways of stating an SDP
model.

1. In the inequality form, we rely on a linear matrix inequality (LMI):

min cTx (15.30)
s.t. x1F1 + · · ·+ xnFn + G � 0,

Ax = b,

where F1, . . . ,Fn,G ∈ Sk are symmetric matrices in Rk×k, and x ∈ Rn
is a vector with elements x1, . . . , xn. In this form, we do not observe a
matrix variable explicitly, but the scalar decision variables must generate
a matrix that is negative semidefinite (of course we may reverse the matrix
inequality to require positive semidefiniteness). Note that A � 0 means
−A � 0, i.e., −A ∈ Sn+.

2. Alternatively, we rely on the matrix inner product and formulate the model
in standard form:

max C •X (15.31)
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s.t. A1 •X = b1,

...
Am •X = bm,

X � 0.

It turns out that the forms (15.30) and (15.31) are equivalent, since they are
related by conic duality. SDPs arise, among other things, in certain robust op-
timization problems with ellipsoidal uncertainty. The mathematics involved is
a bit out of the scope of this book, so we will not consider these cases. Nev-
ertheless, we can show a simple example, where we may appreciate the power
of SDP model formulations. The motivation behind the following toy example
is that covariance and correlation matrices may be subject to estimation un-
certainty, resulting in a distributional ambiguity, e.g., in portfolio optimization.
Anyway, they are required to stay positive semidefinite.

Example 15.15 The most negative correlation coefficient

Consider a correlation matrix for asset returns. Correlation coeffi-
cients may be positive or negative, but common sense suggests that
cycles of negative correlation coefficients may be problematic. For
instance, say that random returns r̃1 and r̃2 are negatively correlated,
and r̃2 and r̃3 are, too. Can r̃1 and r̃3 be negatively correlated as
well? Maybe yes, but only up to a point. Let us consider a fictitious
correlation matrix involving a single correlation coefficient −ρ:

R =


1 −ρ −ρ · · · −ρ
−ρ 1 −ρ · · · −ρ

...
...

...
. . .

...
−ρ −ρ −ρ · · · 1

 .
In this correlation matrix, all of the elements on the diagonal are equal
to 1, since they correspond to correlations of a variable with itself,
and we assume that the correlation is always the same for any pair of
variables (which is not quite realistic) What is the largest value of ρ,
such that R stays in Sn+? This problem may be stated as an SDP:

max ρ (15.32)
s.t. ρF− I � 0, (15.33)

where I is the identity matrix and

F =


0 1 1 · · · 1

1 0 1 · · · 1
...

...
...

. . .
1 1 1 · · · 0

 = i iT− I.
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Here, we use i to denote a vector with all elements set to 1 as usual.
When n = 3, we find ρ = 1

2 , and when n = 4, we find ρ = 1
4 . For

these values of ρ, the matrix R is singular.

15.6 Stochastic optimization

Uncertainty is a feature that may not be ignored in most real-life decision prob-
lems, but in finance it is really crucial. If we consider mean–variance optimiza-
tion, uncertainty does not pose severe difficulties, at least, if we disregard statis-
tical estimation issues. We only consider the first two moments of the random
asset returns, which are collected into the vector of expected returns and the
variance–covariance matrix, boiling down the problem to a simple convex QP
model. However, we may wish to consider alternative risk measures, like con-
ditional value-at-risk (CV@R), or a dynamic model of uncertainty, or a better
model of uncertainty that cannot be summarized by the mean–variance inputs.
Hence, we may need the ability to introduce uncertainty in a more explicit and
direct way into an optimization model.

As a starting point, let us consider how we might introduce uncertainty into
an LP model written in standard form,

min cTx

s.t. Ax = b,

x ≥ 0.

If we assume that the problem data are stochastic, we could represent them by
random variables and consider the following stochastic model:9

min c(ω)Tx

s.t. A(ω)x = b(ω), a.s.
x ≥ 0.

Unfortunately, stated as such, this model is not even posed in a sensible way.
To begin with, we cannot minimize a random objective. By selecting x, we do
not choose a numerical value of the objective function, but only its probabil-
ity distribution. Anyway, we could rank probability distributions by consider-
ing the expected value of the linear objective, a nonlinear expected utility, or a

9The notation “a.s.” stands for almost surely, which means that the constraints are satisfied with
probability 1, i.e., with the possible exception of events with zero probability measure. If we
model uncertainty using a discrete set of scenarios, so that the sample space Ω is finite, we may
write ∀ω ∈ Ω. With continuous random variables, some technical issues may arise, which we
will ignore.
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mean–risk objective, as we have discussed in Chapter 7. What we did not really
consider so far is the feasibility of the solution. Can we find any x such that
the equality constraints are satisfied for every realization of the random data?
Clearly, this is not feasible in practice, and the constraints must be relaxed in
some way. The case of inequality constraints is a bit easier. Requiring

A(ω)x ≥ b(ω), a.s.

might lead to a feasible solution. However, this fat solution could well be overly
expensive. Therefore, we must find some more clever way to formulate con-
straints under uncertainty. There are two standard approaches to deal with fea-
sibility in stochastic optimization:

To allow for a limited probability of violating constraints
To introduce recourse actions, i.e., decisions that are made after the real-
ization of uncertainty, in order to restore feasibility

The first approach leads to chance-constrained models. The second one leads
to stochastic programming with recourse.

15.6.1 CHANCE-CONSTRAINED LP MODELS

One possibility to build a sensible stochastic optimization model is to settle for
a solution with a probabilistic guarantee of feasibility.

We may require that the whole set of constraints is satisfied with a suitably
large probability, i.e.,

P {A(ω)x ≥ b(ω)} ≥ 1− α,

for a suitably small α. In this case, we have a joint chance constraint.
We may require that each individual constraint is satisfied with sufficient
reliability, i.e.,

P
{
aT
i(ω)x ≥ bi(ω)

}
≥ 1− αi, i = 1, . . . ,m.

In this case, we have a set of individual chance constraints.

As a rule, individual chance-constraints are easier to deal with. This leads to
chance-constrained models, which do have a sensible interpretation in terms of
solution reliability. For instance, in portfolio optimization, we may set a target
return, along with a small chance of not achieving it. In an ALM problem, we
might allow for the possibility of not covering the liabilities in every scenario.
The idea sounds natural and quite appealing, but it raises some serious technical
and nontechnical issues.

We have seen in Example 15.14 that some chance constraints may be easily
dealt with by rewriting them as a convex constraint. Unfortunately, this is not
the rule, as the chance-constrained approach may lead to nonconvex optimiza-
tion problems. The essential reason for this nonconvexity is that the union of
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convex sets need not be convex. However, it is sometimes possible to find con-
vex approximations of chance-constrained problems, e.g., by resorting to robust
optimization models. Apart from these technical issues, chance-constrained
models have definite limitations from the financial viewpoint:

They do not consider the flow of information and the sequence of deci-
sion stages. In real life, we plan things ahead of the realization of random
scenarios, but we allow for the possibility of adjusting our decisions. This
dynamic decision process is not considered in chance-constrained mod-
els.
They can lead to quite risky solutions. This is a consideration related to
critical remarks on value-at-risk as a risk measure. An unpleasing event
may be quite unlikely, but can we ignore its consequences? We are not
considering at all what disaster may really occur, even though its proba-
bility is very small. If we miss liabilities, we would like to know by how
much. This issue is clearly related to the reasons why value-at-risk might
be complemented by conditional value-at-risk.
Last but not least, even if we consider a very small α to make the solution
robust, can we really trust our ability to estimate very small probabilities
under distributional ambiguity?

Because of these difficulties, we do not treat chance-constrained optimization
in detail.

15.6.2 TWO-STAGE STOCHASTIC LINEAR PROGRAMMING
WITH RECOURSE

In optimization models with recourse, we take advantage of the dynamic flow
of information and distinguish decision stages. In Fig. 15.13, we depict the
simplest case, where a two-stage decision process is followed and uncertainty
is modeled by a scenario fan. At the first stage, corresponding to the root of
the tree, we take here-and-now, immediate decisions. At the second stage, on
the leaves of the tree, recourse actions are taken, after observing the realized
random variables. We may formalize a two-stage LP model with recourse as
follows:

The first-stage decision x ≥ 0 must satisfy immediate constraints Ax =
b and incur an immediate (first-stage) cost cTx.
At the second stage, a random scenario ω occurs, associated with random
data. Given this information, a second-stage decision (recourse action)
y(ω) ≥ 0 is made.
The second-stage decisions are related to the first-stage decision by inter-
stage constraints, like Wy(ω) + T(ω)x = h(ω).
The second stage decision incurs a cost q(ω)Ty(ω), which is random from
the viewpoint of the root node.
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FIGURE 15.13 A scenario fan for two-stage stochastic programming.

The overall objective is to minimize the sum of the first-stage cost and the
expected value of second-stage cost.

Thus, we obtain the following optimization model:

min cTx + Eω
[
q(ω)Ty(ω)

]
s.t. Ax = b,

Wy(ω) + T(ω)x = h(ω), a.s.
x,y(ω) ≥ 0.

When the recourse matrix W is deterministic, as above, we have a fixed re-
course problem. The more general case with a random recourse matrix W(ω)
may present additional difficulties, which we will ignore in this book.

The model seems to make sense, but it is not quite clear how it could be
solved. In particular, the formulation involves an expectation, which is a mul-
tidimensional integral, when the underlying data are described by a continuous
multivariate distribution. As the reader may imagine, a simple computational
approach is to discretize uncertainty by a finite set of scenarios. Before doing
so, in order to shed more light on the nature of stochastic programming with
recourse, we may recast the model in different way. Let us introduce a recourse
function Q(x) and rewrite the model as the following deterministic equivalent:

min cTx +Q(x)

s.t. Ax = b,

x ≥ 0,

where we define the recourse function

Q(x)
.
= Eξ

[
Q
(
x, ξ(ω)

)]
,

and

Q
(
x, ξ(ω)

) .
= min

y

{
q
(
ξ(ω)

)T
y |Wy = h

(
ξ(ω)

)
−T

(
ξ(ω)

)
x, y ≥ 0

}
.
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Here, we make the presence of random variables (risk factors) ξ(ω) explicit.
This formulation shows that stochastic linear programming is, in general, a non-
linear programming problem. In fact the recourse function Q(x) is nonlinear,
in general, and looks like a “hopeless function:”

It is an expectation with respect to the joint distribution of ξ(ω); hence, it
is a multidimensional integral, if random variables are continuous.
It is a multidimensional integral of a function that we do not really know,
as it is implicitly defined by an optimization problem.

Luckily, in many cases of practical interest, we can prove interesting proper-
ties of the recourse function, most notably convexity. In some cases, Q(x) is
differentiable; in other cases it is polyhedral. This does not imply that it is
easy to evaluate the recourse function, but we may resort to statistical sampling
(scenario generation) and take advantage of both convexity and problem struc-
ture. Another advantage of this view is that it makes the transition to multistage
stochastic programming and stochastic dynamic programming more natural.
We make a decision x here and now, but we cannot only focus on its imme-
diate cost: The future cost-to-go must be accounted for, which is the purpose of
the recourse function.

For computational purposes, we may represent uncertainty by a discrete
probability distribution, resulting in a scenario tree (fan), where ωs is the out-
come corresponding to scenario s.10 Each scenario s ∈ S is associated with
a probability πs and a set of scenario-dependent random data, as shown in the
following LP:

min cTx +
∑
s∈S

πsq
T
sys

s.t. Ax = b,

Wys + Tsx = hs, ∀s ∈ S
x,ys ≥ 0.

This is a plain LP, even though a possibly large-scale one. Note that first-stage
decisions x do not depend on the scenarios, whereas second-stage decisions
ys are subscripted by s ∈ S. Since S is a finite set, we can do without the
“almost surely” technicality and enforce the interstage constraints for all of the
scenarios.

15.6.2.1 An example: CV@R optimization

We have introduced conditional value-at-risk (CV@R) in Section 7.4.3.3, as the
expected loss conditional on the loss being larger than V@R1−α, i.e., value-at-
risk at confidence level 1− α. We leave the holding horizon implicit. Note that
we use α to denote the small probability of the “bad” tail, associated with large

10We have outlined basic scenario generation concepts in Section 11.6.
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losses. Thus, if we consider V@R at level 95%, α = 0.05. We have mentioned
that CV@R is a convex (and coherent) risk measure. We might consider a
mean–risk portfolio optimization model where CV@R replaces variance (or,
rather, volatility) as a risk measure. Given the role of convexity in optimization,
one might expect that the resulting model might not be that bad, but there is no
obvious way to express it. The following result11 provides us with a surprisingly
simple answer.

THEOREM 15.11 (Minimization of CV@R) Let L(x,Y) be a loss or cost
function, depending on a vector of decision variables x and a vector of random
variables Y, with joint density fY(y). Let us define the following function:

H1−α(x, ζ) = ζ +
1

α

∫ [
L(x,y)− ζ

]+
fY(y) dy, (15.34)

where [z]
+ .

= max{z, 0} and ζ ∈ R is an auxiliary variable.

1. For a given choice of x, the corresponding CV@R is obtained by mini-
mizing H1−α(x, ζ) with respect to ζ. The resulting value of the auxiliary
variable ζ is the corresponding V@R1−α.

2. Minimization of CV@R at confidence level 1− α is accomplished by the
minimization of H1−α(x, ζ) with respect to both of its arguments.

We shall not prove the theorem, but we may get a clue about it in the case
of discrete scenarios, under a simplifying assumption.12 To be more specific,
in our setting, the decision variables x may correspond to the allocation of an
initial wealth W0 to a set of n assets, indexed by i = 1, . . . , n. If we denote the
initial asset prices by Pi0, and ignore transaction costs, we have

n∑
i=1

Pi0xi = W0.

The role of the random variables Y is played by the asset prices at the end of
the holding period T . So, let P siT denote the future price of asset i in scenario
s ∈ S, associated with probability πs. Then, the terminal wealth in scenario s is

WT (x; s) =

n∑
i=1

P siTxi,

and loss in scenario s is

L(x; s) = W0 −WT (x; s).

When terminal wealth is larger than the initial wealth, we have a profit, i.e., a
negative loss. Letting ζ ≡ V@R1−α(x), we find

CV@R1−α(x) = E
[
L(x; ·) |L(x; ·) > ζ

]
, (15.35)

11See [30, 31] for a proof and a more careful treatment.
12Here we follow the treatment by [37, pp. 125–127].
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where, with some abuse of notation, we let L(x; ·) denote the random loss
(rather than its realization in a specific scenario s ∈ S). Also note that we
emphasize the dependence of the risk measure on the portfolio choice x.

Remark. When considering discrete distributions, a technical difficulty arises,
related to “splitting atoms.” In general, if we sum the probabilities of scenarios
in a subset of S, we may not be able to match probabilities 1−α and α exactly.
Furthermore, in the same discrete setting, using the strict inequality > rather
than ≥ makes a difference, and we are led to slightly different definitions of
risk measures.13 We will disregard these difficulties and take for granted that
we may obtain 1−α and α exactly by summing probabilities. This is true in the
case that we generate a fairly large number scenarios by Monte Carlo sampling,
so that the probabilities are uniform, and we consider probability levels like
95% or 99%, without too many decimals.

Given our assumption, for every portfolio choice x, we may consider the subset
B(x) ⊂ S of bad scenarios where loss exceeds ζ:

B(x)
.
=
{
s ∈ S |L(x; s) > ζ

}
,

where, by the definition of V@R1−α,∑
s∈B(x)

πs = α.

We can rewrite the conditional expectation of Eq. (15.35) as

CV@R1−α(x) =

∑
s∈B(x)

πsL(x; s)

∑
s∈B(x)

πs
=

1

α

∑
s∈B(x)

πsL(x; s). (15.36)

Let us introduce an auxiliary variable

zs
.
= max

{
0, L(x; s)− ζ

}
, s ∈ S, (15.37)

representing the excess loss with respect to V@R1−α, which is zero if loss does
not exceed the threshold ζ. Then, we may write∑

s∈S

πszs =
∑

s/∈B(x)

πszs +
∑

s∈B(x)

πszs

= 0 +
∑

s∈B(x)

πs ·
[
L(x; s)− ζ

]
=
∑

s∈B(x)

πs · L(x; s)− ζ ·
∑

s∈B(x)

πs

=
∑

s∈B(x)

πs · L(x; s)− ζ · α. (15.38)

13See, e.g., [12].
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Finally, we may rearrange Eq. (15.38) as

ζ +
1

α

∑
s∈S

πszs =
1

α

∑
s∈B(x)

πs · L(x; s),

where the last expression, by Eq. (15.36), is just CV@R1−α(x). This may be
regarded as a discretized version of Eq. (15.34), and it is justified by Theorem
15.11.

Now, let us put all of this together and formulate a computationally viable
portfolio optimization model. Given the discretized price scenarios, we define
the expected future price of asset i as

P iT
.
=
∑
s∈S

πsP siT ,

and write the following mean–risk model:

min ζ +
1

α

∑
s∈S

πszs (15.39)

s.t. zs ≥W0 −
n∑
i=1

P siTxi − ζ, ∀s ∈ S (15.40)

zs ≥ 0, ∀s ∈ S (15.41)
n∑
i=1

P iTxi ≥Wmin
T ,

n∑
i=1

Pi0xi = W0,

x ∈ X ,

where Wmin
T is a minimum target expected wealth, X denotes a feasible set of

portfolios accounting for additional constraints on portfolio composition, and
we use Eqs. (15.40) and (15.41) to linearize the definition of excess loss zs in
Eq. (15.37).

So, we see that the minimization of CV@R boils down to the solution of
a linear programming model. This important result should be tempered by the
difficulty in getting a quantile-based estimate right, when using a limited num-
ber of scenarios. See, e.g., [14] for some critical remarks on the coherence of
risk measures and their estimates. We may also notice that this is only for-
mally a two-stage optimization model. In fact, the second-stage variables zs are
not true decisions, but only “accounting” variables that we need to express the
objective function. In the following, we consider multistage problems where
actual scenario-dependent decisions are to be made.
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15.6.3 MULTISTAGE STOCHASTIC LINEAR PROGRAMMING
WITH RECOURSE

Multistage stochastic programming formulations arise naturally as a generaliza-
tion of two-stage models. Conceptually, we just have to nest recourse functions
corresponding to decision stages, and a rather imprecise statement of a multi-
stage stochastic LP model would look as follows:14

min
A00x0 = b0

x0 ≥ 0

cT
0x0 + E

 min
A10x0 + A11x1 = b1

x1 ≥ 0

cT
1x1 (15.42)

+ E

· · ·+ E

 min
AH,H−1xH−1 + AHHxH = bH

xH ≥ 0

cT
HxH



 .

To understand this model, we may go through the sequence of decision stages:

At the beginning of the first time period, at time t = 0, we select the
decision vector x0; this decision has a deterministic immediate cost cT

0x0

and must satisfy the constraint

A00x0 = b0.

At the beginning of the second time period, at time t = 1, we observe
random data (A10, A11, c1, b1); then, on the basis of this information,
we make decision x1; this second decision has an immediate cost cT

1x1

and must satisfy the constraint

A10x0 + A11x1 = b1.

Note that these data are not known at time t = 0, but only at time t = 1;
the new decision depends on the realization of these random variables and
is also affected by the previous decision.
We repeat the above scheme for all of the time periods up toH−1, where
H is our planning horizon.
Finally, at the beginning of the last time period H , we observe random
data (AH,H−1, AHH , cH , bH ); then, on the basis of this information, we
make decision xH , which has an immediate cost cT

HxH and must satisfy
the constraint

AH,H−1xH−1 + AHHxH = bH .

14See, e.g., [32] for a more detailed discussion.
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The statement of the model is, as we said, rather loose, since we are not really
clarifying the dependence of the random matrices and vectors (A, b, and c) on
the underlying stochastic process ξt, t = 1, . . . ,H , followed by the risk factors.
A critical modeling choice concerns the mutual dependence of this sequence of
random variables:

In the easiest case, they are mutually independent.
In the Markovian case, ξt depends only on ξt−1.
In the most general case, a possibly complicated path dependency should
be accounted for.

By a similar token, in this formulation, we observe that a decision xt depends
directly, though interstage constraints, only on the previous decision xt−1. In
general, decisions may depend on all of the past history, leading to a slightly
more complicated model. However, we may often introduce additional state
variables, in such a way that the above formulation applies. The multistage
stochastic programming framework, in principle, can deal with arbitrary path
dependencies, whereas stochastic dynamic programming (to be discussed in
Section 15.7) deals only with Markovian dependence structures. This is due
to the fact that, in stochastic programming with recourse, uncertainty is rep-
resented by a scenario tree, which can be generated by any path-dependent
process we like. However, we should stress that, in practice, multistage sce-
nario generation is a delicate and complicated task, even more so for financial
applications, as scenarios must be arbitrage-free. Furthermore, the relevant out-
put of a stochastic programming model is the vector of immediate decisions
x0. The remaining decision variables could be regarded as contingency plans,
but the actual realizations of risk factors need not match what we include in
the scenario tree. Hence, it is more likely that the model will be solved again
and again, according to a rolling-horizon logic. On the contrary, dynamic pro-
gramming provides us with a way to generate new decisions dynamically in a
state-dependent manner, as we shall see.

Last but not least, in model (15.42) we do not clarify an important point.
From the perspective of time period t = 0, the decisions x1, . . . ,xH are random
variables, as they will be adapted to the realization of the underlying stochas-
tic process. However, the only information that we may use in making each
decision consists of the observed history so far. Decisions cannot be anticipa-
tive, a point that may be formalized by using measurability concepts that we
have outlined in Supplement S11.1. However, rather than dealing with abstract
formulations, it is best to consider a simple example.

15.6.3.1 A toy example: Asset–liability management

In order to illustrate model building in multistage stochastic programming, let
us consider a simple ALM example borrowed from [6]:

We are given an initial wealth, say, W0 = 55,000, which we may invest
in a set I of broad asset classes, like stocks and bonds.
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FIGURE 15.14 A piecewise linear utility function.

Our aim is to generate enough wealth to meet a single and deterministic
liability, L = 80,000, in T = 3 years.
The portfolio is rebalanced at the beginning of each year. This means that
we will allocate wealth to assets at times t = 0, 1, 2. At time T = 3, we
liquidate the portfolio and (hopefully) meet the liability. We assume that
there are no transaction costs.
Asset returns are uncertain, and we assume that they are a sequence of
independent and identically distributed random variables. In good years,
the return is 25% for stocks and 14% for bonds; in bad years, the return is
6% for stocks and 12% for bonds. Good and bad years are equally likely.
Clearly, these data are not realistic, but an important feature should be
appreciated. No asset dominates the other one and these scenarios are
arbitrage-free.
Our aim is to meet the liability and keep some surplus if possible; how-
ever, we are risk-averse and really do not want to end up with any short-
fall.

One way to represent risk aversion is by a concave utility function, as we have
seen in Chapter 7. To keep it simple and avoid nonlinearities, let us adopt the
piecewise linear utility function depicted in Fig. 15.14. We specify the utility
u(W ) of the random terminal wealth. The utility is zero, when the terminal
wealth W matches the liability L exactly. The slope r = 4 penalizes shortfall
and is larger than the reward q = 1 for surplus. As to uncertainty, the above
assumptions correspond to the (familiar) scenario tree depicted again in Fig.
15.15.

Each node nk corresponds to an event, and a scenario consists of an event
sequence, i.e., a sequence of asset returns. We have eight scenarios in
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FIGURE 15.15 A multistage scenario tree.

the example. For instance, scenario ω2 consists of the node sequence
(n0, n1, n3, n8). Let us denote the set of nodes by N . In our example,

N = {n0, n1, n2, . . . , n14}.

However, we do not make rebalancing decisions at every node. We choose
the initial allocation at root node n0. Then, we rebalance the portfolio at
a subset T ⊂ N of intermediate nodes, which in our case is

T = {n1, . . . , n6}.

Finally, there is a set S ⊂ N of leaf (terminal) nodes at time t = 3,

S = {n7, . . . , n14}.

Each node in S corresponds to a scenario, where we just compare our
final wealth to the liability and assess the utility value.
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For each node, we have a set of branches, labeled by a conditional prob-
ability of occurrence, P{nk | ni}, where ni = a(nk) is the immediate
parent of node nk. Each node n ∈ N , with the exception of the root
node n0, has a unique direct parent node, denoted by a(n); for instance,
a(n3) = n1.
The probability of each scenario depends on the conditional probability
of each node on its path. In the example, each branch at each node is
equiprobable, i.e., the conditional probability is 1/2. Therefore, each sce-
nario in our tree has probability 1/8.

Each node corresponds to a state of the stochastic process, where we have to
make decisions. Let us introduce the following decision variables:

Since we have no transaction costs, we may consider decision variables
xin, the monetary amount invested in asset i ∈ I at each trading node
n ∈ {n0} ∪ T . This kind of decision variable is not appropriate in the
presence of transaction costs, as we shall see later. The initial allocation
xi,n0

is the here-and-now decision, i.e., the initial asset allocation at time
t = 0.
For each terminal (leaf) node s ∈ S, we define surplus and shortfall vari-
ables ws+ and ws−.

Finally, let ps be the probability of reaching the terminal node s ∈ S, and Ri,n
be the multiplicative gain (1 plus return) for asset i during the period that leads
to node n ∈ T ∪ S. Then, our model can be stated as follows:

max
∑
s∈S

ps(qws+ − rws−) (15.43)

s.t.
∑
i∈I

xi,n0 = W0, (15.44)∑
i∈I

Ri,nxi,a(n) =
∑
i∈I

xin, ∀n ∈ T (15.45)∑
i∈I

Risxi,a(s) = L+ ws+ − ws−, ∀s ∈ S (15.46)

xin, w
s
+, w

s
− ≥ 0.

The objective function of Eq. (15.43) is the expected utility, depending on sur-
plus and shortfall at terminal nodes. The initial wealth W0 is allocated at node
n0 among the available assets, as expressed by Eq. (15.44). The constraints in
Eq. (15.45) have a similar meaning, but now the available wealth depends on
the allocation at the parent node a(n), and the return is observed after that al-
location, in the successor node n. This way of expressing constraints ensures
nonanticipativity of the decisions quite naturally. We make the asset allocation
decision before observing asset returns. Finally, in Eq. (15.46), we check termi-
nal wealth at each scenario against the target liability and measure surplus and
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Table 15.1 Solution of the toy ALM example (amounts are measures in thousands).

Node Stocks Bonds

n0 41.4793 13.5207
n1 65.0946 2.16814
n2 36.7432 22.368
n3 83.8399 0
n4 0 71.4286
n5 0 71.4286
n6 64 0

shortfall. Here, we are using a typical trick of the trade to measure positive and
negative deviations from a target.

The solution of this model, for the data in the toy example, yields the deci-
sions listed in Table 15.1. The actual decision to be implemented here and now
would correspond to the initial asset allocation at node n0, but it is worth look-
ing at the solution structure to check the sensibility of the model. A striking fact
is that, while the initial portfolio is diversified, the portfolios at the last rebal-
ancing nodes are not, which may sound weird. Actually, this is a consequence
of two features of this toy model:

We are approximating a nonlinear utility function by a piecewise linear
function, and this may imply “local” risk neutrality, so that we only care
about expected return. For instance, node n3 corresponds to the beginning
of the last year after two consecutive good years. There, we already have
more money than necessary and, given our scenario data, we cannot lose
money. Thus, we only see the second linear segment of the utility func-
tion, and we end up investing everything in stocks, for which expected
return is larger. To overcome this issue, we could use either a nonlinear
programming model or a more accurate representation of utility by more
linear pieces.
The scenario tree has a very low branching factor, and this does not rep-
resent uncertainty accurately. Increasing the branching factor may ease
the problem, but it clearly increases computational burden and requires a
careful check of arbitrage opportunities.

15.6.3.2 A multistage financial planning model with
proportional transaction costs

We may generalize the asset–liability management model of Section 15.6.3.1 as
follows:



15.6 Stochastic optimization 669

We consider a stream of stochastic liabilities. Let Ln be the liability to be
met at each node n ∈ N , where N is again the set of nodes in the tree.
For the sake of simplicity, we do not consider the possibility of receiving
new cash deposits along the way, as it would be the case, e.g., for a pen-
sion fund receiving new contributions. The only way to raise cash is by
selling assets.
We consider a simple form of transaction cost. Whenever we buy or sell
assets, we incur proportional (linear) transaction costs; the transaction
cost is a percentage c of the traded value, for both buying and selling any
asset.15

As we did in the model of Eq. (15.43), we index assets by i ∈ I. The root node
is n0, the set of terminal nodes is S, and we rebalance the portfolio at trading
nodes in the set

T = N \ ({n0} ∪ S),

where \ denotes set difference. We want to maximize the expected utility of
terminal wealth at the leaves of the tree.

The main change in the model is due to the introduction of transaction
costs. Now we cannot just represent the amount of money allocated to each
asset. We have to explicitly account for asset holdings, i.e., number of bonds or
stock shares. We must also specify how many units of each asset we buy or sell.
Thus, we introduce the following decision variables:

zni , the amount of asset i purchased at node n
yni , the amount of asset i sold at node n
xni , the amount of asset i held at node n, after rebalancing
W s, the wealth at terminal node s ∈ S

Variables zni , yni , and xni are only defined at nodes n ∈ N \ S , as we assume
that no rebalancing occurs at terminal nodes, where the portfolio is liquidated,
we pay the liability Ls, and we measure the terminal wealth W s. Let u(W ) be
the nonlinear utility of wealth W . The introduction of transaction costs has two
more implications. We need to consider the initial holdings h

n0

i for each asset
i ∈ I at the root node, and we must represent asset prices, rather than just gains
or returns. Let Pni be the price for asset i at node n.

On the basis of this notation, we may write the following model:

max
∑
s∈S

πsu(W s) (15.47)

s.t. xn0

i = h
n0

i + zn0

i − y
n0

i , ∀i ∈ I (15.48)

15It is easy to generalize the model by introducing proportional transaction costs depending on
the liquidity of each single asset, as well as on the sign of the trade.
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xni = x
a(n)
i + zni − yni , ∀i ∈ I, ∀n ∈ T (15.49)

(1− c)
∑
i∈I

Pni y
n
i − (1 + c)

∑
i∈I

Pni z
n
i = Ln, ∀n ∈ N \ S (15.50)

W s = (1− c)
∑
i∈I

P si x
a(s)
i − Ls, ∀s ∈ S (15.51)

xni , z
n
i , y

n
i ,W

s ≥ 0. (15.52)

The objective (15.47) is the expected utility of terminal wealth. Equation (15.48)
expresses the initial asset balance, taking the current holdings into account; the
asset balance at intermediate trading dates, i.e., at all nodes with the exception of
root and leaves, is taken into account by Eq. (15.49). Equation (15.50) ensures
that enough cash is generated by selling assets in order to meet the liabilities; we
may also reinvest the proceeds of what we sell in new asset holdings. Note how
proportional transaction costs are expressed for selling and purchasing. Effec-
tively, we sell at a price that is lower than the price at which we buy. Equation
(15.51) is used to evaluate terminal wealth at leaf nodes, after portfolio liqui-
dation and payment of the last liability. In practice, we would repeatedly solve
the model on a rolling-horizon basis, so the exact expression of the objective
function is a bit debatable. The role of terminal utility is just to ensure that we
are left in a good position at the end of the planning horizon, in order to avoid
nasty end-of-horizon effects.

15.6.4 SCENARIO GENERATION AND STABILITY IN
STOCHASTIC PROGRAMMING

The key ingredient in stochastic programming models is a scenario tree, and the
quality of the solution depends critically on how well uncertainty is captured.
This topic is related with sample path generation, which was discussed in Sec-
tion 11.6. In principle, we might just sample a dynamic model of risk factors
using Monte Carlo simulation. However, there are some nasty complications
with respect to the easy case in which Monte Carlo sampling is used to price a
European-style option:

The sample size must be kept limited, because we are going to associate
decision variables with states, and the computational burden of solving an
optimization problem, rather than taking a sample mean, may be remark-
able.
We need to generate non-anticipative decisions, which requires a tree
structure prone to an exponential increase of complexity. If we branch
100 successor nodes out of each node in the tree, we have one million
scenarios after three steps.
When pricing a European-style option, we do not simulate any decision
process. An optimization solver, however, will take advantage of any
inconsistency in the scenario tree (most notably, arbitrage opportunities)
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to reap a reward that cannot be actually obtained in the real world, leading
to portfolios that might perform very poorly out of sample.

Plenty of research effort has been dedicated to scenario generation, which we
can only hint at. Whatever scenario generation strategy we select, it is important
to check the stability of the resulting solution, as we discuss in Section 15.6.4.2.

15.6.4.1 Deterministic scenario generation

There are two basic classes of scenario generation approaches.

Stochastic scenario generation. Stochastic scenario generation is based on ran-
dom Monte Carlo sampling, which relies on the brute force of a large sam-
ple size. This is something that we may afford in a two-stage problem, not
so much in a multistage setting. However, performance may be sometimes
improved by applying variance reduction strategies, such as importance
sampling.

Deterministic scenario generation. Rather than using brute force, we may try
to come up with a clever choice of scenarios, using an array of methods
including Gaussian quadrature, low-discrepancy sequences (like Sobol se-
quences), or optimized scenario generation.

All of these strategies may be interpreted within the general framework of nu-
merical integration, also called numerical quadrature. To see why, let us con-
sider the expected value of a function f(x, ξ) depending on a vector x of de-
cision variables and a vector of random variables16 ξ with joint density h(ξ).
By the integration with respect to ξ, we define a function F (x)

.
= Eξ

[
f(x, ξ)

]
,

which may be approximated by a random sample of size S as follows:

F (x) =

∫
f(x, ξ)h(ξ) dξ ≈ 1

S

S∑
s=1

f
(
x, ξs),

where ξs is an observation in the sample. However, we may use a clever (possi-
bly deterministic) sample of points ξs, associated with weights πs, and use the
approximation

F (x) ≈
S′∑
s=1

πsf
(
x, ξs),

where S′ < S. In the context of stochastic optimization, the pairs (πs, ξs) may
be understood in terms of probabilities and values, i.e., as a discrete distribu-
tion approximating the original continuous distribution. Gaussian quadrature
formulas provide us with ways to select the discretization, and low-discrepancy
sequences are used in quasi-Monte Carlo simulation, where the sample is gen-
erated in order to guarantee a “good” coverage of the integration domain.

16We allow some abuse of notation and do not distinguish the random variable ξ̃ from its real-
ization ξ.
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Space does not allow to cover all of these topics, but we have already ap-
preciated the role of moment matching in the calibration of a binomial lattice.17

The idea can be applied to scenario generation as well, as shown in the follow-
ing example.

Example 15.16 Scenario generation by moment matching

Consider a random variable with a multivariate normal distribution,
ξ ∼ N(µ,Σ). The expected values and covariances of the discrete ap-
proximation should match those of the continuous distribution. Fur-
thermore, since we are dealing with a normal distribution, we know
that skewness and kurtosis for each individual variable should be 0
and 3, respectively.

Let us denote by ξsi the realization of the component ξi of ξ,
i = 1, . . . , n, in scenario s, s = 1, . . . , S. Natural requirements are:

1

S

S∑
s=1

ξsi ≈ µi, ∀i

1

S

S∑
s=1

(ξsi − µi)(ξsj − µj) ≈ σij , ∀i, j

1

S

S∑
s=1

(ξsi − µi)3

σ3
i

≈ 0, ∀i

1

S

S∑
s=1

(ξsi − µi)4

σ4
i

≈ 3, ∀i.

Note that, in order to simplify the model, we assume uniform prob-
abilities πs for each scenario. Approximate moment matching is ob-
tained by minimizing the following squared error, with respect to the
set of realized values ξsi :

w1

n∑
i=1

[
1

S

S∑
s=1

ξsi − µi

]2

+ w2

n∑
i=1

n∑
j=1

[
1

S

S∑
s=1

(ξsi − µi)
(
ξsj − µj

)
− σij

]2

+ w3

n∑
i=1

[
1

S

S∑
s=1

(
ξsi − µi
σi

)3
]2

+ w4

n∑
i=1

[
1

S

S∑
s=1

(
ξsi − µi
σi

)4

− 3

]2

.

17See Section 13.3.2.



15.6 Stochastic optimization 673

The objective function includes four weights wk, k = 1, . . . , 4, which
may be used to fine tune performance. It should be mentioned that the
resulting scenario optimization problem need not be convex. How-
ever, if we manage to find any solution with a low value of the “er-
ror” objective function, this is arguably a satisfactory solution, even
though it is not necessarily the globally optimal one. The idea can be
generalized to “property matching,” since we can match other features
that are not necessarily related to moments; see, e.g., [19].

Moment (or property) matching has been criticized, since it is possible to
build counterexamples, i.e., pairs of distributions that share the first few mo-
ments, but are actually quite different. An alternative idea is to rely on metrics
fully capturing the distance between probability distributions. Thus, given a
scenario tree topology, we should find the assignment of values and probabili-
ties minimizing some distance with respect to the “true” distribution. Alterna-
tively, given a large scenario tree, we could try to reduce it to a more manage-
able size by optimal scenario reduction. See, e.g., [17] for more details. We
should mention that a counterargument to proponents of the optimal approxi-
mation approach is that we are not really interested in the distance between the
ideal distribution and the scenario tree. What really matters is the quality of the
solution. For instance, if we are considering a plain mean–variance portfolio
optimization problem, it can be argued that matching the first two moments is
all we need. See, e.g., [22, Chapter 4] for a discussion of these issues.

We also remark a couple of possibly useful guidelines in shaping the struc-
ture of the scenario tree:

1. If the model just aims at a robust first-stage decision, it may be advisable
to use a rich branching factor at the first stage, and a limited branching
factor at later stages (provided that the tree is arbitrage-free).

2. The number of stages can also be limited by using non-uniform time
steps. For instance, the first two time steps could correspond to one
month, and the later ones to one year.

3. A clever way to limit the number of stages is to augment the objective
function with a term measuring the quality of the terminal state. By doing
so, we may avoid myopic decisions and reduce the size of the tree by
limiting the number of stages.

4. Sometimes, we may reduce the effective dimensionality of the problem
by applying data reduction techniques, such as principal component anal-
ysis. However, we must be able to sample the few principal components
accurately and generate corresponding scenarios for all the random vari-
ables involved in the model.
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15.6.4.2 In- and out-of-sample stability

Whatever scenario generation strategy we employ, it is important to check the
stability of the resulting solution. There are quite sophisticated studies on the
stability of stochastic optimization, relying on formal metric spaces concepts.
Here, we only consider a down-to-earth approach following the discussion in
[22].

Let us denote the exact stochastic optimization problem, in a succinct way,
by

min
x

EP[f(x, ξ)],

which involves the expectation of the objective function f(·, ·) under the true
measure P, i.e., the “exact” distribution of the vector ξ of risk factors. The
actual problem we solve is based on an approximate scenario tree T , and can
be denoted by

min
x
f̂(x; T ),

where the notation f̂ emphasizes that we are just estimating the true expected
value of the objective, given a generated scenario tree T replacing the true mea-
sure P. Each scenario tree induces an optimal solution of the approximate prob-
lem. Thus, if we sample trees Ti and Tj , we obtain solutions x∗i and x∗j , re-
spectively, as well as corresponding values of the objective function. If the tree
generation mechanism is reliable, we should observe a certain stability in the
solution output. We may consider stability in the solution itself, but it is easier,
and perhaps more relevant, to check stability in the value of the objective func-
tion. When the objective function is relatively flat, we may find rather different
solutions with comparable performance. After all, if we want to minimize cost
or maximize profit, the value of the objective is what matters most.18

Two concepts of stability should be considered. In-sample stability means
that, if we sample two scenario trees, the values of the solutions that we obtain
should not be too different:

f̂(x∗i ; Ti) ≈ f̂(x∗j ; Tj). (15.53)

This definition does not apply directly, if the scenario tree is generated determin-
istically; in that case, we might compare trees with slightly different branching
structures, in order to check whether the tree structure that we are using is rich
enough to ensure solution stability. This concept of stability is called in-sample,
as we evaluate a solution using the same tree that we have used to find the so-
lution itself. But since the tree is only a limited representation of uncertainty,
we should wonder what happens when we apply the solution in the real world,
where a different scenario may unfold. This leads to out-of-sample stability,
where we compare the objective value that we obtain from the optimization
model to the actual expected performance of the solution.

EP[f(x∗i , ξ)] ≈ EP[f(x∗j , ξ)]. (15.54)

18A different view may be taken when calibrating a pricing model.
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If the trees are reliable, we should not notice a significant difference in perfor-
mance. This kind of check is not too hard in two-stage models, as we should
just plug the first-stage solution into several second-stage problems, each one
corresponding to an observation of the risk factors ξ. Typically, solving a large
number of second-stage problems is not too demanding, especially if they are
just linear programs; as a rule, it takes more time to solve one large stochastic
LP than a large number of deterministic LPs.

Unfortunately, this is not so easy in a multistage setting, where realistic
performance evaluation should be carried out by a costly rolling horizon simu-
lation. To be more precise, we should consider two alternatives:

In the sliding or rolling horizon approach, we solve a multistage problem
with H stages, apply the first-stage solution, observe an out-of-sample
realization of the risk factors for the first time period, and solve again a
multistage problem with H stages starting from the second time period of
the original model.
In the shrinking horizon approach, we solve a multistage problem with
H stages, apply the first-stage solution, observe an out-of-sample realiza-
tion of the risk factors, but then we solve a multistage problem with just
H − 1 stages. At each time step, we reduce the number of stages.

The second approach makes sense when we really have a well-defined horizon
for performance evaluation, and it is computationally cheaper than the first one.
Anyway, while a rolling horizon is technically feasible, it is quite expensive
computationally. A possible (cheaper) alternative is to generate solutions x∗i
and x∗j from trees Ti and Tj , respectively, and then to check the values of the
(approximate) objective functions by swapping the trees. In other words, we
may check whether

f̂(x∗i ; Tj) ≈ f̂(x∗j ; Ti).

The need for out-of-sample evaluation shows a possible trouble with the
stochastic programming approach. Stochastic programming provides us with
a first-stage, here-and-now solution, but there is no obvious way to adapt deci-
sions at later stages when uncertainty unfolds. All of the decisions are generated
explicitly and are associated with nodes in the scenario tree. On the contrary,
alternative approaches, like dynamic programming and decision rules (to be
discussed next), provide us with decisions in feedback form, which makes them
very suitable for out-of-sample simulation and evaluation of policies.

15.7 Stochastic dynamic programming

Multistage stochastic programming with recourse is just one possible approach
to cope with dynamic decision-making under uncertainty, and we may summa-
rize its features as follows:
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1. On the one hand, stochastic programming is a very flexible framework,
since we may consider (in principle) any kind of intertemporal depen-
dence among risk factors.

2. On the other hand, the approach yields a first-stage solution which is
meant to be implemented here-and-now, and a set of future decisions as-
sociated with each node on the scenario tree.

3. However, when we move forward in time and risk factors are realized, we
will be in some state that was not included in the scenario tree, possibly
with no clue about what we should do. We have a decision for each state
of the world in the scenario tree, and nothing else.

It may be argued that, in practice, the last point is not a real problem, as we
shall solve a new multistage problem with new information, and that the role of
decisions at later stages is just to avoid making a myopic immediate decision.
However, as we mentioned, this makes performance evaluation difficult, not to
mention the need for a possibly huge scenario tree. Thus, it would be nice to
have a decision policy in a different form, making the adaptation of decisions to
realized states easier. Ideally, we would like to have a function mapping every
possible future state into the optimal decision. Clearly, it is impossible to find
such a mapping in explicit form, with the exception of problems with a rather
simple structure, especially for problems with a multidimensional and continu-
ous state space. Nevertheless, we may look for suitable approximations. In this
section, we consider one such approach, stochastic dynamic programming. In
Section 15.8, we shall consider parameterized decision rules.

Dynamic programming (DP) is, arguably, the most powerful optimization
principle available. In fact, DP is not a specific algorithm, but rather a principle
that should be adapted to the specific problem at hand. In theory, DP can be
used to deal with:

Deterministic and stochastic problems
Discrete- and continuous-time models
Finite and infinite time horizons
Continuous and discrete state variables
Continuous and discrete decision variables

The price we pay for this generality is that DP is often very difficult, if not
impossible, to apply exactly, and we may have to resort to some approximate
version in order to break the so-called curses of dimensionality.

15.7.1 THE DYNAMIC PROGRAMMING PRINCIPLE

We consider here only stochastic DP19 in discrete-time, over a finite horizon.
States and decision variables are assumed to be continuous variables, but a

19We refrain from using the acronym SDP, when referring to stochastic dynamic programming,
in order to avoid confusion with semidefinite programming problems.
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discrete state component may be easily dealt with.20 The starting point of a
stochastic DP approach is a dynamic model based on a state transition function,
like those we have introduced in Chapter 11:

St+1 = gt(St,xt, εt+1), (15.55)

where St is the random state at time t, xt is the decision made after observing
the state, and εt+1 is a random disturbance occurring after we have made our
decision. We use capital St to point out that we are dealing with a partially con-
trolled stochastic process with random states.21 States may be influenced by our
decisions, but they may be a purely exogenous process, e.g., a scenario of stock
prices. It is important to notice that we are assuming a Markovian dependence
structure, as the next state only depends on the current state, not on the whole
past history; we also assume that the stochastic process of disturbances εt con-
sists of a sequence of i.i.d. random variables.22 We have to make decisions at
times t = 0, 1, . . . , T , over a finite time horizon. When we make decision xt
in state St, we incur an immediate cost or reward ft(St,xt). In finite-horizon
problems, it is also possible to assign a value or cost FT+1(ST+1) to the termi-
nal state.

In a stochastic multistage decision problem, we cannot build the sequence
of optimal decisions x∗t in advance, as they should adapt to information that is
made progressively available over time. In stochastic DP, we look for an optimal
policy in feedback form, i.e., a mapping π(·) from state to decisions:

xt = π(St). (15.56)

The mapping must be admissible, in the sense that we may have to comply
with constraints on decisions and state variables. Let Π be the set of admissible
policies. We want to solve the problem

max
π∈Π

E

[
T∑
t=0

βtft(St,xt) + βT+1FT+1(ST+1)

]
, (15.57)

where we allow for a discount factor β ∈ (0, 1].
Problem (15.57) is intractable, in general, but we may take advantage of its

Markovian structure to decompose it with respect to time, obtaining a sequence
of single-period subproblems. We refrain from a rigorous treatment, complete
with proofs, but the intuition behind stochastic DP is fairly easy to grasp. Let
us define the value function Vt(St), for time t = 0, 1, . . . , T , as the optimal
value obtained by applying an optimal policy starting from state St at time t.
Then, the following Bellman’s equation allows us to find the sequence of value

20See the model in Section 2.1.2 for an example that lends itself naturally to stochastic DP.
21As we have mentioned before, we could also use capital Xt, since the decision process is a
stochastic process, too, in a multistage model, where decisions depend on realized states.
22Actually, this assumption may be partially relaxed.
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functions:

Vt(St) = max
xt∈X (St)

{
ft(St,xt) + β · Et

[
Vt+1

(
St+1

)∣∣St,xt]}. (15.58)

Eq. (15.58) is a recursive functional equation that should be interpreted as fol-
lows:

We are in state St at time t, and we must choose xt within the set X (St)
of actions that are feasible in this state and at this time.
We do so in order to maximize an objective function which includes not
only the immediate reward ft(St,xt), but also the discounted expected
value of the reward that we shall collect in the future.
The future reward depends on what the next state St+1 shall be, condi-
tional on the current state and decision. Indeed, the expectation is condi-
tional, at time t, on St and xt. The next state will be given by the tran-
sition function of Eq. (15.55), so we might also replace the conditional
expectation by

E
[
Vt+1

(
gt(St,xt, εt+1)

)]
.

The value Vt+1(St+1) of the next state is defined under the assumption
that we shall apply an optimal policy from time t + 1 onward. Given the
Markovian structure of the system, the value function only depends on
the initial state, not on the past sample path that leads us to that state.
By optimizing the sum of the immediate reward and the discounted ex-
pected value function, we find an optimal decision and obtain the value
function Vt(St) of the current state.

Equation (15.58) allows us to decompose a multistage problem into a sequence
of single-stage problems, provided that we know the sequence of value func-
tions for each time instant and each state. This is the key Bellman’s principle
underlying DP, and it should be carefully justified, but the intuition is rather
simple. Under Markovian dynamics, and assuming an additive objective func-
tion, lending itself to decomposition with respect to time, we may argue (rather
informally) as follows. Let us consider the optimal policy π∗t , from time t on-
ward, and the optimal policy π∗t+1, from time t + 1 onward. If we consider the
restriction of π∗t from time t+ 1 onward, can it be different from π∗t+1? The an-
swer is “no,” otherwise we might replace this restriction with π∗t+1 and improve
π∗t , contradicting the assumption that π∗t is optimal. In a sense, we may build
an optimal policy by a recursive assembling process of optimal subpolicies.

Assuming knowledge of the value functions, we have an optimal policy in
feedback form, which is applied as follows:

At time t = 0, starting from the initial state s0 (we use the lowercase s,
since this state is known at time t = 0), we find the optimal decision x∗0
by solving the single-stage problem

max
x0∈X (s0)

{
f0(s0,x0) + β · E

[
V1

(
g0(s0,x0, ε1)

)]}
.
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We earn an immediate reward f0(s0,x
∗
0).

After the application of x∗0, we will be at time t = 1 in the observed state
s1 and solve

max
x1∈X (s1)

{
f1(s1,x1) + β · E

[
V2

(
g1(s1,x1, ε2)

)]}
.

We earn an immediate reward f1(s1,x
∗
1).

The process is repeated until we are in state sT at time t = T , where we
solve the last problem,

max
xT∈X (sT )

{
fT (sT ,xT ) + β · E

[
VT+1

(
gT (sT ,xT , εT+1)

)]}
.

We earn an immediate reward fT (sT ,x
∗
T ).

Finally, we end up in state sT+1, where we collect the terminal state re-
ward FT+1(sT+1), if specified.

If necessary, the performance of this policy may be evaluated by Monte Carlo
simulation: We just have to generate sample paths of states, apply the policy
step by step, and cumulate the single-step discounted rewards. Monte Carlo
simulation is very useful to check the performance of approximate policies
or to assess the robustness of a policy against misspecified dynamics of the
risk factors (model risk). This is a significant advantage with respect to mul-
tistage stochastic programming with recourse. However, stochastic DP relies
on Markovian assumptions that are not needed for stochastic programming. It
is also natural to draw an analogy between the value function of stochastic DP
and the recourse function of stochastic programming. However, when we use a
scenario tree and solve a discretized stochastic program, we do not really need
to find the whole recourse function.23 Stochastic DP, on the contrary, requires
finding the value functions in some form. Depending on the problem at hand,
this may be an advantage or a disadvantage.

15.7.2 SOLVING BELLMAN’S EQUATION: THE THREE CURSES
OF DIMENSIONALITY

Clearly, the difficulty of stochastic DP is finding the sequence of value func-
tions. This may be done by unfolding the recursive equation backward from the
last time period. If a terminal state value FT+1(·) is given, then we start from
the terminal condition

VT+1(s) = FT+1(s), ∀s.

Otherwise, we just set VT+1(s) ≡ 0. To be precise, the condition applies to
every possible terminal state s. Then, in order to find the function VT (·), we

23Some specific solution methods for stochastic programming, like L-shaped decomposition,
only require a local approximation of the recourse function near the optimal solution.
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should solve

VT (s) = max
x∈XT (s)

{
fT (s,x) + β · E

[
VT+1

(
gT (s,x, εT+1)

)]}
,

for all possible values of the state variable s at time t = T . Given VT (·), we
step backwards and find VT−1(·) by solving

VT−1(s) = max
x∈XT−1(s)

{
fT (s,x) + β · E

[
VT

(
gT−1(s,x, εT )

)]}
,

for all possible values of the state variable s at time t = T − 1. We proceed
recursively and finally find the value function V1,

V1(s) = max
x∈X1(s)

{
f1(s,x) + β · E

[
V2

(
g1(s,x, ε2)

)]}
,

for all possible states s at time t = 1.
The above recursion does not look too complicated, conceptually, but it is

not generally feasible for a continuous and multidimensional state space. This
is commonly referred to as the curse of dimensionality, but actually there are
three such curses:

1. We should find the value function for a huge number of states. Even if
we try to discretize a continuous state space by a grid, we are in trouble
when the state space is not low-dimensional.

2. When the disturbance is a multidimensional random variable, the expec-
tation in the recursive equations is hard to compute.

3. The single-step optimization problem itself may have to cope with many
decision variables and possibly difficult constraints.

When the problem is low-dimensional, classical tools from numerical analysis
may be able to crack the nut. In general, approximate dynamic programming
strategies need to be applied. This is beyond the scope of this book, but we may
illustrate stochastic DP by a familiar option pricing problem.

15.7.3 APPLICATION TO PRICING OPTIONS WITH EARLY
EXERCISE FEATURES

We have considered a binomial model to price an American-style option in
Section 13.3.4. The approach can be best interpreted (and generalized) within a
stochastic DP framework. We recall that the price of an American-style option
is given by

max
τ

EQn
[
e−rτf(Sτ )

]
,

where the function f(·) is the option payoff, the expectation is taken under the
risk-neutral measure Qn, and τ is a stopping time. Formally, a stopping time
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is a random variable meeting some measurability properties.24 In practice, it
corresponds to a strategy by which we decide, at each time instant, if we should
exercise the option or not. In the case of a Bermudan-style option, the set of
early exercise opportunities is finite, which simplifies the problem. In the case
of an American-style option, we discretize time and consider sample paths

(S0, S1, . . . , St, . . . , ST ),

where, with some abuse of notation, we interpret t as a discrete time index,
leaving the discretization step δt implicit. The price St is the state variable,
which is purely exogenous and not influenced by our exercise decisions. The
transition function, if we assume a GBM model, under the risk-neutral measure,
is

St+1 = St · exp

{(
r − σ2

2

)
δt+ σ

√
δt · εt+1

}
.

The control decision is quite simple: Either we exercise or we do not.25

The option value Vt(St) corresponds to the value function of stochastic DP.
If we denote by ht(St) the intrinsic value of the option at time t, the dynamic
programming recursion for the value function Vt(St) is

Vt(St) = max
{
ht(St) , EQn

[
e−r δt · Vt+1(St+1)

∣∣St]}. (15.59)

The maximization problem is trivial, as we have to choose between two alter-
natives, the intrinsic value and the continuation value, which is the discounted
expectation of the value function at time t + 1. However, we may still suffer
from the other two curses of dimensionality, which are related in this case. On
the one hand, we may have a vector St of state variables, possibly the prices
of the underlying assets of a rainbow option, rather than the scalar St, so that
the value function is a multidimensional object. On the other hand, these prices
will be related with a multidimensional driving stochastic process, rather than a
scalar process εt, which complicates the expectation.

The binomial lattice recursion that we have introduced in Section 13.3.4,

fi,j = max{K − Sij , e−r·δt(πufi+1,j+1 + πdfi,j+1)},

is a simple approximation of Eq. (15.59) and can be applied to low-dimensional
problems. When the number of early exercise opportunities is limited, we may
also use a scenario tree. Otherwise, we have to resort to a finite-dimensional ap-
proximation of the value function. In this case, a common strategy is to choose

24Formally, a stopping time is a measurable random variable with respect to the filtration gener-
ated by the stochastic process of stock prices. In plain English, each stopping time is associated
with a non-anticipative exercise policy, which relies on the sample path observed so far, but
cannot look into the future.
25To be precise, we should introduce a state variable stating if we have exercised or not along
the sample path. Since we consider options that may be exercised at most once, we can dispense
with that. However, there are some energy derivatives that may be exercised multiple times.
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a set of L basis functions ψk(St), k = 1, . . . , L, and to approximate the value
function at each time instant t as follows:

Vt(St) ≈
L∑
k=1

αktψk(St).

The regression coefficients αkt, for time t and basis function k, may be learned
by Monte Carlo simulation of sample paths and least-squares regression.26

Strictly speaking, approximate DP yields a low-biased estimate of the fair
option price, since we find only an approximate optimal policy for a maximiza-
tion problem. The low-biased estimator can be complemented by a high-biased
one, in order to define a proper confidence interval.

15.8 Decision rules for multistage SLPs

In a multistage decision problem under uncertainty, the decisions xt at time
t > 0 (i.e., with the exception of first-stage decision at time t = 0) are random
variables, possibly depending on the whole history of risk factors up to time t,
which we may denote by ξ[t], as well as the sequence of past decisions x[t−1].
We may make this functional dependence explicit by using a notation like

xt
(
x[t−1], ξ[t]

)
.

Finding the exact function providing us with the optimal xt is too demanding
in practice, and some simplification is in order.

In stochastic DP, we simplify the functional dependence by assuming a
Markovian structure embodied in state variables, and the optimal deci-
sions are implicitly defined, in state feedback form, by the sequence of
value functions. The approach is very powerful, but plagued by the curses
of dimensionality.
In stochastic programming, the state space is discretized, and the above
functional dependence boils down to the direct association of decision
variables with the nodes in the scenario tree [see, e.g., the model of Eq.
(15.47)]. The approach is quite flexible, but the scenario tree is subject to
an exponential explosion, and it is very expensive to assess performance
by out-of-sample simulations.

Both approaches have advantages and disadvantages, and they may be consid-
ered as two extremes, leaving room for something in between.

One possible intermediate approach is obtained by assuming a simplified
functional dependence of decision variables with respect to the realization of
risk factors. The simplest functional form is a linear affine function, which is

26See [16, Chapter 8] or [8, Chapter 10].



15.8 Decision rules for multistage SLPs 683

fully specified by a limited set of parameters. Then, given a set of sample paths,
we may optimize the parameters of the decision rules. On the one hand, decision
rules do not provide us with the full power of stochastic programming with
recourse or dynamic programming, since the parameters of the policy function
are given here-and-now and a simple functional form is adopted. On the other
hand, the approach is intrinsically non-anticipative and does not suffer from the
need to sample huge scenario trees.

The idea is best illustrated by a simple example, so let us outline a decision-
rule based optimization approach proposed in [11, Chapter 14]), to which we
refer for more details. We consider a multistage portfolio optimization with no
transaction costs, much like the problem of Section 15.6.3.1. However, here we
deal with a pure asset management problem, where we just optimize a given
function of terminal wealth. To cast the problem within our framework, let us
specify the following:

State variables. We introduce state variables Sit, representing the monetary
amount allocated to asset i = 1, . . . , n at the beginning of time period
t = 0, 1, 2, . . . , T . The (given) initial wealth is

W0 =

n∑
i=1

Si0,

and the (random) terminal wealth is

WT =

n∑
i=1

SiT .

Since we are not considering transaction costs, we might just consider
wealth as the only state variable. However, let us allow for some more
generality and use individual asset allocations as state variables. State vari-
ables at each time instant may be collected into vector St ∈ Rn. The careful
reader should object that these are decision, rather than state variables. In-
deed, they are the decision variables in the model of Eq. (15.43). However,
as we shall see in Eq. (15.61), we are following a different framework,
where they are a consequence of the adopted decision rules, whose param-
eters are the true decision/control variables.

Control variables. The control variables xit, collected into vector xt, are the
monetary amounts of asset i that we buy or sell at the beginning of time
period t. When we buy an asset, we have a positive value of xit, and
negative values correspond to asset sales. Since we are not considering
transaction costs, we do not need to introduce separate control variables for
what we buy and what we sell, unlike the model of Section 15.6.3.2. We
will have to make (nonanticipative) portfolio rebalancing decisions at times
t = 0, 1, . . . , T − 1, and we will observe terminal wealth at time t = T .

Disturbances. The role of disturbances (risk factors) is played by r̃it, the ran-
dom return of asset i = 1, . . . , n in period t = 1, . . . , T (i.e., the period
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from time instant t− 1 to time instant t). We may collect the multiplicative
gains git = 1 + rit into vector

gt
.
=


1 + r1t

1 + r2t

...
1 + rnt

 ≡

g1t

g2t

...
gnt

 ∈ Rn,

as well in the diagonal matrix

Gt
.
=


g1t 0 0 · · · 0

0 g2t 0 · · · 0

0 0 g3t · · · 0
...

...
...

. . .
...

0 0 0 · · · gnt

 ∈ Rn×n.

The role of the diagonal matrix will be clear in the following.

We may enforce a set of constraints on state and control variables. If we rule
out short-selling, we must have St ≥ 0. We may easily introduce any additional
linear constraint on portfolio composition. We also assume that the portfolio is
self-financing, which requires the constraint

n∑
i=1

xit = 0, t = 0, 1, . . . , T − 1. (15.60)

Since we assume frictionless markets, the state transition equation may be writ-
ten as

St+1 = Gt+1 · (St + xt), t = 0, 1, . . . , T − 1. (15.61)

Now, in order to apply numerical optimization, we need a random sample of
returns or gains. Hence, we assume that a scenario generation mechanism yields
a set of m sample paths, indexed by k and collected into vectors and matrices

gkt , Gk
t , k = 1, . . . ,m; t = 1, . . . , T.

Let us also introduce the vector ḡt of (unconditional) expected gains at time t.
It is important to point out that these scenarios are not tree structured. They
are just independent and identically distributed sample paths. We do not need
a scenario tree because of the mechanism by which the control decisions are
generated, which does not allow anticipative decisions.

The simplest structure of decision rules is an affine policy:

xt = x̄t + Θt · (gt − ḡt), t = 1, . . . , T − 1, (15.62)
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where x̄t ∈ Rn and Θt ∈ Rn×n are the policy parameters. For t = 0, we
also introduce x̄0, which is the initial allocation, made before observing the
first realization of the random gains. The key idea is that we have a nominal
value ḡt of the risk factors, to which the decision vector x̄t should correspond.
If there are deviations gt − ḡt from what is expected, a control action will be
taken, depending on the deviations and on the policy parameters in matrix Θt.
The optimization of the decision rules calls for the optimization of x̄t and Θt

for t = 1, . . . , T − 1, as well as x̄0. We remark that these parameters are not
scenario-dependent, so that nonanticipativity is built into the model itself. Using
the sampled scenarios, the state transition equations may be rewritten as

Sk1 = Gk
1 ·
[
S0 + x̄0

]
, k = 1, . . . ,m

Skt+1 = Gk
t+1 ·

[
Skt + x̄t + Θt ·

(
gkt − ḡt

)]
,

k = 1, . . . ,m; t = 1, . . . , T − 1.

Given a set of scenarios and a set of policy parameters, we will find the terminal
wealth for each scenario,

W k
T =

n∑
i=1

SkT , k = 1, . . . ,m,

which we may use in defining a suitable objective function. We might set a tar-
get end-of-horizon wealth W ∗ and penalize shortfall with respect to this target.
We may also use piecewise linear functions, like we did in Section 15.6.3.1,
which will result in a LP problem. To illustrate a variation, let us introduce a
quadratic penalty for shortfall:

1

m

m∑
k=1

[
max{0,W ∗ −W k

T }
]2
.

This is a sort of lower partial second-order moment, which may be optimized
by introducing auxiliary shortfall variables Zk and solving the following QP
problem:

min
1

m

m∑
k=1

(
Zk
)2

s.t. Zk ≥W ∗ −W k
T , k = 1, . . . ,m

n∑
i=1

Si0 = W0

n∑
i=1

SkiT = W k
T , k = 1, . . . ,m

Sk1 = Gk
1 ·
[
S0 + x̄0

]
, k = 1, . . . ,m

Skt+1 = Gk
t+1 ·

[
Skt + x̄t + Θt ·

(
gkt − ḡt

)]
,

k = 1, . . . ,m; t = 1, . . . , T − 1
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iTx̄t = 0, t = 0, . . . , T − 1 (15.63)

iTΘt = 0, t = 1, . . . , T − 1 (15.64)

Zk, Skit ≥ 0.

The model should be rather self-explanatory, and the only constraints that we
should clarify are Eqs. (15.63) and (15.64), which result from the application of
the self-financing constraint of Eq. (15.60) to the affine policy of Eq. (15.62).
Here, as before, i ∈ Rn is a vector with all components set to one.

The clear downside of affine decision rules is some degree of suboptimality,
but we obtain a moderate size LP or a QP, depending on the objective function,
with a considerable reduction of computational effort. Furthermore, once we
have optimized the policy parameters, out-of-sample performance evaluation
by simulation is easily accomplished. More complex rule structures have been
proposed in the literature.

15.9 Worst-case robust models

There are different concepts of robust optimization, as illustrated in [13]. Here,
we only consider robust optimization in the worst-case sense, as proposed in
[2]. The idea is to deal with uncertain parameters ξ that are not associated with
a stochastic characterization of uncertainty, but with an uncertainty set Ξ. The
only thing we know is that value of the uncertain parameters will belong to
the uncertainty set. The emphasis is on constraint robustness in an uncertain
optimization problem like

min
x

f(x; ξ)

s.t. g(x; ξ) ≤ 0,

which should be considered as a collection of problems, indexed by ξ ∈ Ξ.
In order to assign a concrete meaning to the above uncertain problem, we

consider the following worst-case optimization model:

min
x

{
max
ξ∈Ξ

f(x; ξ)
}

s.t. g(x; ξ) ≤ 0, ∀ξ ∈ Ξ.

This problem is called the robust counterpart of the uncertain optimization
problem. We observe that there are two sides of the coin:

Robustness in terms of optimality, i.e., we strive for a solution that will
perform reasonably well for every value of the uncertain parameters.
Robustness in terms of feasibility, i.e., our choice of x should be feasible
for every value of the uncertain parameters.

It is customary to transform the problem in such a way that uncertainty af-
fects only the constraints, by introducing an auxiliary variable z and solving the
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equivalent problem

min z

s.t. f(x; ξ) ≤ z, ∀ξ ∈ Ξ

g(x; ξ) ≤ 0, ∀ξ ∈ Ξ,

To be more specific, we may consider the following robust counterpart of an
uncertain LP:

min cTx

s.t. A(ξ)x ≤ b(ξ), ∀ξ ∈ Ξ,

where we assume a certain objective without loss of generality. The difficulty in
solving the robust LP depends on the kind of uncertainty set that we consider.
We have seen a couple of simple uncertainty sets in Example 15.13. Typical
uncertainty sets are as follows:

Finite set of scenarios: Ξ = {ξ1, ξ2, . . . , ξk}. Scenarios may be obtained
by observations of past outcomes, in which case we often talk about data-
driven optimization.
Interval (box) uncertainty: Ξ = {l ≤ ξ ≤ u}. In this case, for each
uncertain parameter ξk, we give a lower bound lk and an upper bound
uk, collected into vectors l and u, respectively. We can characterize box
uncertainty by using the L∞ norm as follows:

Ξ = {ξ | ξ = ξ0 + Mu, ‖u‖∞≤ 1},

where ξ0 is the vector of nominal values, and M is a diagonal matrix. The
matrix is diagonal, since, in this case, we do not consider any relationship
(e.g., correlation) among parameters.
Polyhedral uncertainty, where Ξ is a (bounded) polyhedron. One way
of specifying the polyhedron is by taking the convex hull of a finite set
of points, Ξ = conv(ξ1,x2, . . . ,xk). This may generalize data-driven
optimization by allowing combinations of past observations. We often
use the term polytopic uncertainty.
In box uncertainty, we use the L∞ norm. If we switch to the Euclidean
norm L2, we may describe ellipsoidal uncertainty sets,

Ξ = {ξ | ξ = ξ0 + Mu, ‖u‖2≤ 1}.

Note that we obtain an ellipse by an affine mapping of the unit ball ‖u‖2
≤ 1. The matrix M need not be diagonal, which allows for correlations
among the parameters. This form of uncertainty set may remind us of
confidence regions in multivariate statistics.

When we use a finite set of scenarios, the robust counterpart has the same basic
form of the corresponding uncertain optimization problem. We just replicate
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the constraints a few times. In the other cases, the uncertainty sets consists of
an infinite number of points, and the robust counterpart is a semi-infinite pro-
gramming problem, with a finite number of variables, but an infinite number of
constraints. Clearly, we may always resort to some form of sampling to make
the semi-infinite problem manageable, but there are lucky cases in which the
robust counterpart turns out to be a tractable convex optimization problem like
an LP, SOCP, or SDP problem. In the next sections, we will illustrate a couple
of examples, without laying down a general theory: We show how a robust LP
problem may be transformed into another LP, at the cost of introducing some
additional variables, or an SOCP problem.

Here, we are considering robust optimization without recourse decisions:
We make a choice of x, which is not adapted in any way after the discovery of
the actual values of the uncertain data. This is fine if we are interested in the
robustness of the solution, but not in the flexibility of adaptation. We may apply
the ideas of stochastic programming with recourse by considering adjustable
robust optimization. Unfortunately, multistage adjustable robust optimization
problems are intractable, in general, and we have to resort to decision rules in
the vein of Section 15.8. In fact, decision rules were originally introduced in
this context and were later proposed for stochastic programming. A fundamen-
tal result, which we claim without proof,27 is that, if we rule out adjustability,
we may evaluate feasibility constraint-wise. This means that we may consider
robustness with respect to each individual constraint, which is a significant sim-
plification. This is a natural consequence of the worst-case approach. For in-
stance, in robust LP we consider individual uncertain constraints like

{aT
ix ≤ bi}[ai;bi]∈Ui ,

which is a collection of constraints for an uncertainty set Ui. Each uncertainty
set Ui consists of a collection of vectors ai and scalars bi, which are stacked
into the column vector28 [ai; bi]. It is customary to express the uncertain data in
terms of affine combinations of uncertain underlying factors ξ ∈ Ξ,

Ui =

{
[ai; bi] = [a0

i ; b
0
i ] +

L∑
k=1

ξk[aki ; bki ] : ξ ∈ Ξ ⊂ RL
}
, (15.65)

where [a0
i ; b

0
i ] is the vector of nominal data, and we consider L risk factors ξk,

k = 1, . . . , L, collected into vector ξ ∈ Ξ.
As a further consideration, a possible objection to the framework of worst-

case robust optimization is that it may lead to overly conservative solutions,
especially in finance. Actually, this depends on the choice of the uncertainty
set, which should be done wisely, in order to trade off risk and reward. As it
turns out, stochastic and robust optimization are not mutually exclusive. For

27See [2] for a discussion, as well as for adjustable robust optimization models.
28This kind of notation, where the semicolon means vertical stacking of column vectors, is not
typical in mathematics, but it comes in handy and is reminiscent of MATLAB syntax.
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instance, given a probabilistic chance constraint, we may find an uncertainty set
that guarantees satisfaction of the uncertain constraint with the required prob-
ability. The advantage is that chance-constrained stochastic programming may
lead to difficult nonconvex problems, whereas robust optimization may provide
us with a convex approximation of the original problem.

15.9.1 UNCERTAIN LPS: POLYHEDRAL UNCERTAINTY

Let us consider the robust counterpart

min cTx

s.t. max
ai∈Ui

aT
ix ≤ bi, i = 1, . . . ,m (15.66)

where c ∈ Rn, x ∈ Rn, and

Ui = {ai | Ciai ≤ di}

is a nonempty polyhedron, where Ci ∈ Rmi,n and di ∈ Rmi . A given vector
x is feasible, if the constraint (15.66) is satisfied for every ai in the polyhe-
dron. Note that we consider here only uncertainty in the vectors ai, while bi is
assumed given (for the sake of simplicity). The uncertainty set for each individ-
ual constraint is a given polyhedron, and we do not need to resort to the more
general formulation of Eq. (15.65).

The key to deal with this problem is LP duality, which was outlined in
Supplement S2.2 and will be more thoroughly discussed in Sections 16.1.4 and
16.3.2. A feasible choice of x must guarantee satisfaction of the constraint
(15.66) for every ai ∈ Ui. Thus, given a choice of x, the worst-case ai is found
by solving a maximization problem, which may be transformed into the dual
minimization problem as follows:

max xTai

s.t. Ciai ≤ di
⇒

min dT
izi

s.t. CT
izi = x,

zi ≥ 0.

Please note that, in the primal maximization problem, x is given and the deci-
sion variables are the components of vector ai; the decision variables in the dual
minimization problem are collected into vector zi ∈ Rmi . The advantage of the
minimization form of the dual is that a given x is feasible, with respect to the ith
constraint, if we can find any zi satisfying the constraints in the dual and such
that its objective function is not larger than the right-hand side bi. The reason
is that, in this duality relationship, any dual feasible solution zi gives an upper
bound on the optimal value of the primal maximization problem. Formally, by
strong duality we have

xTa∗i = dT
iz
∗
i ≤ dT

izi,

where a∗i and z∗i are optimal solutions of the primal and dual problems, respec-
tively, and zi is any dual feasible solution. Therefore, if we find a dual feasible
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solution, such that the corresponding value dT
izi does not exceed bi, we are sure

that the maximum value of the primal will not exceed bi, too. Hence, constraint
(15.66) is satisfied for any ai ∈ Ui, for a given choice of x, if and only if there
exists a zi such that

dT
izi ≤ bi, CT

izi = x, zi ≥ 0.

Therefore, we may formulate the robust LP as

min cTx

s.t. dT
izi ≤ bi, i = 1, . . . ,m

CT
izi = x, i = 1, . . . ,m

zi ≥ 0, i = 1, . . . ,m

with variables x and zi. The good news is that, with polyhedral uncertainty,
the robust counterpart of an uncertain LP is just another LP, with a moderate
increase in size due to the introduction of the auxiliary variables zi. We obtained
a similar result in the simpler setting of Example 15.13.

15.9.2 UNCERTAIN LPS: ELLIPSOIDAL UNCERTAINTY

Here, we introduce another straightforward generalization of Example 15.13,
where we considered uncertainty sets given by “unit balls” with respect to L1

and L2 norms. We consider an ellipsoidal uncertainty set obtained by an affine
mapping of a Euclidean ball,

Ξ =
{
ξ ∈ RL :‖ξ‖2≤ Ω

}
,

with radius Ω. We recall that an affine mapping of a ball is an ellipsoid. Apply-
ing the constraint structure of Eq. (15.65), we find the following collection of
constraints:

[a0]Tx +

L∑
k=1

ξk[ak]Tx ≤ b0 +

L∑
k=1

ξkb
k, ∀ξ :‖ξ‖2≤ Ω.

All of these constraints are satisfied, for a given x, if

max
‖ξ‖2≤ Ω

{
L∑
k=1

ξk ·
[
[ak]Tx− bk

]}
≤ b0 − [a0]Tx.

Here we do not need to resort to LP duality, as we may just recall that the L2

norm is self-dual. In fact, it is easy to see that the solution of a problem of the
form

max βTy

s.t. ‖y‖2≤ Ω
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is
y∗ = Ω

β

‖β‖2
,

with value Ω ·‖β‖2. By plugging the value of the maximum into the constraint,
we find the equivalent form

Ω ·

√√√√ L∑
k=1

([
ak
]T

x− bk
)2
≤ b0 − [a0]Tx,

which can be recast as the SOCP constraint

[a0]Tx + Ω

√√√√ L∑
k=1

([
ak
]T

x− bk
)2
≤ b0.

Hence, an uncertain LP with ellipsoidal uncertainty can be reformulated as an
SOCP.

15.10 Nonlinear programming models in finance

Some financial problems do not fit within the class of nice convex problems
(like LP, QP, and SOCP) for which extremely efficient algorithms are available.
Then, we have to resort to generic nonlinear programming (NLP), where we
have both relatively easy and quite complex problems. Such problems may
arise in the following domains:

Parameter estimation. We are all quite familiar with linear regression by least-
squares, whose solution is so easy that this is not even considered as an
optimization problem. If we consider regularized regression, like ridge or
lasso regression,29 the picture does not change really, as we stay within the
class of easy convex problems. The matter is different if we have to resort to
estimation by maximum likelihood, which may still lead to easy problems
(when we maximize a concave likelihood function), but may get more chal-
lenging when estimating certain time series models. It is interesting to note
that, by framing the estimation problem within numerical optimization, we
may also enforce constraints on the parameters.

Model calibration. We have discussed calibration of pricing models in Sec-
tion 14.4, where we have seen that it may lead to nonconvex, nonlinear
least-squares problems. The matter may get even more involved if we take
a nonparametric approach to model calibration, e.g., when we deal with
pricing measures directly. Then, an infinite-dimensional problem must be
somehow boiled down to a finite-dimensional one.

Portfolio optimization. Mean–variance problems may be formulated as con-
vex QP models, but if we want to maximize a generic utility function, we

29See Section 14.4.1.
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face an NLP problem. Since typical utility functions are concave, we are
still within the domain of convex optimization problems. However, we may
face nonconvex problems when we use optimization to learn certain port-
folio management decision rules.

In the next section, we show how a mean–variance problem may result in a
tough nonconvex problem, if we adopt a simple portfolio management rule
within a multiperiod setting. For another example of NLP in model calibra-
tion, see Section 3.5.2, where bond prices are used to fit a term structure of
interest rates.

15.10.1 FIXED-MIX ASSET ALLOCATION

In Chapter 8, we have considered static, single-period asset allocation mod-
els, whereas in Section 15.6.3.2, we have considered a full-fledged multistage
model, allowing for dynamic portfolio adjustments. An intermediate strategy
can be devised by specifying a fixed-mix, i.e., by keeping portfolio weights wi
constant over time. Note that this does not imply that the monetary amount
allocated to each asset is constant. Wealth will change along the way, but the
fractions allocated to each asset are kept constant. This results in a contrarian,
sell-high/buy-low strategy, since when rebalancing the portfolio, we will sell
assets that overperformed and buy assets that have underperformed over the last
time period.

Let us also assume that we only care about mean and variance of termi-
nal wealth. Unlike the static case, expressing variance of the terminal wealth
is not easily accomplished. Hence, we resort to a set of S return scenarios. A
fixed-mix policy is intrinsically nonanticipative, so that we do not need to gen-
erate a scenario tree. The approach may be considered as an instance of the
more general strategy of learning decision rules. Let Gsit = 1 + rsit denote the
multiplicative gain for asset i, in scenario s, during time period t = 1, . . . , T .
Each scenario is associated with a probability πs, s = 1 . . . , S. The model
we describe here is due to [26], to which we refer for further information and
computational experiments.

Let W0 be the initial wealth and denote the decision variables, the selected
portfolio weights, by wi. Then, wealth at the end of time period 1 in scenario s
will be

W s
1 = W0 ·

n∑
i=1

Gsi1wi.

Note that wealth is scenario-dependent, but the asset allocation is not. In gen-
eral, when we consider two consecutive time periods, we have

W s
t = W s

t−1 ·
n∑
i=1

Gsitwi, ∀t, s.
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Unfolding the recursion, we see that wealth at the end of the planning horizon
is

W s
T = W0 ·

T∏
t=1

(
n∑
i=1

Gsitwi

)
, ∀s.

Within a mean–variance framework, we build a risk-adjusted objective function
depending on terminal wealth. Given a parameter λ related to risk aversion, the
objective function is

max E[WT ]− λ ·Var(WT ).

To express the objective function, we recall that Var(X) = E[X2]−E2[X] and
write the model as

max W0 ·
S∑
s=1

πs ·

[
T∏
t=1

(
n∑
i=1

Gsitwi

)]

+ λ W 2
0 ·


[

S∑
s=1

πs ·

[
T∏
t=1

(
n∑
i=1

Gsitwi

)]]2

−
S∑
s=1

πs ·

[
T∏
t=1

(
n∑
i=1

Gsitwi

)]2


s.t.
n∑
i=1

wi = 1,

wi ≥ 0.

The objective function is a polynomial function of portfolio weights, which
is a difficult nonconcave function to maximize. However, while the objective
function is a bit messy, the constraints are quite simple. Different global opti-
mization methods may be applied to solve this problem. See Section 16.2.

Problems

15.1 Prove that the intersection of convex sets is a convex set.

15.2 Prove that the set S = {x ∈ Rn | g(x) ≤ 0} is convex, if g(·) is a convex
function.

15.3 Prove that the dual of the L1 norm is the L∞ norm.

15.4 We have considered a basic TEV (tracking error variance) minimization
model in Section 15.4.1, where we are given the weights of a benchmark (tar-
get) portfolio that must be tracked, the covariance matrix between assets returns
(assumed known), and the maximum cardinality of the tracking portfolio (num-
ber of assets included). Short-selling was not allowed and we did not consider
transaction costs. Extend the model as follows:
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Short-selling is allowed.
We hold a current portfolio, with given weights, which should be rebal-
anced in order to improve tracking. However, we want to trade off track-
ing against turnover, i.e., changes with respect to the current portfolio.
We do not want to include explicit transaction costs, but we do not want
to change the portfolio too much. Thus, in the objective function, we
want to include the L1 norm distance between the new and the current
portfolio, suitably penalized.
We do not really trust our estimate of the covariance matrix, and we con-
sider a finite uncertainty set consisting ofm covariance matrices (thus, we
consider a simple form of distributional ambiguity). The model should be
robust and minimize the worst-case performance over this set of alterna-
tive matrices.

Formulate the model in such a way that it is solvable by a commercial software
tool implementing a branch-and-bound approach for mixed-integer problems
with linear or quadratic objective and constraints.

15.5 Consider a Bermudan-style Asian option, written on a non-dividend-
paying stock, whose price, under the risk-neutral measure, follows the usual
GBM process. The payoff is based on the arithmetic average of the prices at M
time instants, ti = i · T/M , i = 1, . . . ,M . At maturity tM ≡ T , the payoff is

max

{
1

M

M∑
i=1

S(ti)−K, 0

}
.

The option can only be exercised at the above time instants ti, after observing
the current underlying asset price, based on which the average is updated. At
time tj , the payoff is related to the average cumulated so far, i.e., the intrinsic
value is

max

{
1

j

j∑
i=1

S(ti)−K, 0

}
.

Define the relevant state variable(s) and write the transition function for
each time step.
Define the relevant control variable(s).
Write a dynamic programming recursive equation to define the value
function at a generic time instant when the option can be exercised.

Note: You may consider pricing at time t = 0, just when the option is written.

15.6 Consider the consumption–saving problem of Section 2.1.2. How would
you formulate the problem using multistage stochastic programming with re-
course or stochastic dynamic programming?

15.7 In the classical mean–variance portfolio optimization model, we use
variance/standard deviation as a risk measure, but an alternative is mean abso-
lute deviation (MAD), which is defined as E

[
|X − µX |

]
, for a random variable
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X with expected value µX . In other words, we get rid of the sign of deviations
by taking their absolute value, rather than by squaring them. This may be more
robust to outliers and leads to an LP, rather than a QP model.

We need an optimization model to minimize MAD in terms of monetary
wealth (not return), with a constraint on a target expected wealth at the end of
the holding horizon, while keeping transaction costs under control. We consider
a single holding horizon from t = 0 to t = T , so that the model is static, rather
than dynamic. We have the following information, for a set of N stock shares
in which we may invest:

Current holding of each stock (number of stock shares we hold now, be-
fore rebalancing the portfolio at time t = 0)
Current price of each stock share at time t = 0

A set of M equally likely price scenarios for stock share prices at the end
t = T of the holding horizon
Expected wealth that we wish to achieve at time t = T (a minimum
desired target)

In the objective function, we consider only MAD (the selected risk measure),
but we also have a budget (upper bound) constraint on transaction costs, in order
to limit the cost of trading. Let us assume that we may reduce transaction costs
by trading with a broker that accepts to buy/sell only multiples of a basic lot of
shares. For instance, if the basic lot is 1000, the broker will buy/sell 1000, 2000,
3000, . . ., stock shares. For each lot (of 1000 shares in the example), there is
a fixed transaction cost. We can also buy or sell an arbitrary number of stock
shares using a standard trading platform, where we incur a proportional cost for
each trade (buy/sell), given by a percentage of the amount traded for each stock
share (e.g, 0.5% on the total value of the shares we buy/sell). We are free to use
any mix of broker/platform we want, as the only limit is on the total transaction
cost. The model must be in MILP form.

Further reading
While there are plenty of excellent books on optimization methods, the
coverage of model building is much less extensive. An excellent source of
tricks of the trade in optimization modeling is [35]. A simple introduction
to optimization models, in a general setting, can also be found in [9]. See
also [11], which includes a chapter on financial applications.
More specific references on model building for financial optimization are
[13], [25], and [37].
The many facets of linear programming are covered in [34]. See, e.g., [1]
for a classical account on nonlinear programming, and [7] for a review
of recent convex optimization approaches, ranging from LP to SOCP and
SDP. A nice treatment of semidefinite programming can also be found in
[15].
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A comprehensive reference on integer programming is [36]. An example
of application to finance can be found in [5].
The classical references on stochastic programming are [6] and [21].
We have assumed that a stochastic program is solved after a scenario tree
has been generated. There are, however, alternative strategies based on
interleaving optimization and sampling, until a convergence criterion is
met. Two approaches in this vein are stochastic decomposition [18] and
stochastic dual dynamic programming [28].
An extensive coverage of dynamic programming can be found in [3, 4].
Standard numerical methods for dynamic programming are discussed in
[20] and [27], whereas [29] covers both model building and innovative
solution approaches. See also [10, Chapter 10] for some R code to solve
simple problems by standard numerical stochastic DP.
Option pricing by dynamic programming is the foundation of [24], an
early reference on Monte Carlo pricing of American-style derivatives.
For robust optimization, see [2]. The intractability of multistage robust
optimization models lead to the development of approaches based on de-
cision rules, which are applied to stochastic optimization in [23].

Bibliography
1 M.S. Bazaraa, H.D. Sherali, and C.M. Shetty. Nonlinear Programming.

Theory and Algorithms (3rd ed.). Wiley, Hoboken, NJ, 2006.
2 A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust Optimization. Prince-

ton University Press, Princeton, NJ, 2009.
3 D.P. Bertsekas. Dynamic Programming and Optimal Control Vol. 1 (3rd

ed.). Athena Scientific, Belmont, MA, 2005.
4 D.P. Bertsekas. Dynamic Programming and Optimal Control Vol. 2 (4th

ed.). Athena Scientific, Belmont, MA, 2012.
5 D. Bertsimas, C. Darnell, and R. Stoucy. Portfolio construction through

mixed-integer programming at Grantham, Mayo, Van Otterloo and Com-
pany. Interfaces, 29:49–66, 1999.

6 J.R. Birge and F. Louveaux. Introduction to Stochastic Programming (2nd
ed.). Springer, New York, 2011.

7 S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University
Press, New York, 2004. The book pdf can be downloaded from http:
//www.stanford.edu/~boyd/cvxbook/.

8 P. Brandimarte. Numerical Methods in Finance and Economics: A
MATLAB-Based Introduction (2nd ed.). Wiley, Hoboken, NJ, 2006.

9 P. Brandimarte. Quantitative Methods: An Introduction for Business Man-
agement. Wiley, Hoboken, NJ, 2011.

http://www.stanford.edu/~boyd/cvxbook/


Bibliography 697

10 P. Brandimarte. Handbook in Monte Carlo Simulation: Applications in Fi-
nancial Engineering, Risk Management, and Economics. Wiley, Hoboken,
NJ, 2014.

11 G. Calafiore and L. El Gahoui. Optimization Models. Cambridge University
Press, Cambridge, 2014.
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Chapter Sixteen

Optimization Model Solving

In this final chapter, we provide the interested reader with some background on
the most common methods to solve an optimization model. Given the limited
space, we can only hope to scratch the surface of this huge body of knowledge,
and priority has been given to the essential concepts enabling the user of com-
mercial optimization software to select a specific method among those offered.

In section 16.1, we outline the basic concepts of classical local approaches
to nonlinear programming. By “local,” we mean that these methods aim at find-
ing a locally optimal solution, which may depend on an initial solution provided
by the user and is not guaranteed to be a globally optimal solution. We first deal
with gradient-based as well as derivative-free methods for unconstrained opti-
mization. Then, we outline ideas for dealing with constrained problems, such
as penalty functions and Lagrangian methods. A most important topic that we
discuss is duality theory. In Section 16.2, we describe a few simple approaches
for global optimization of nonconvex functions of continuous variables, namely
genetic algorithms and particle swarm optimization. Section 16.3 deals with
the important topic of linear programming. We describe both the classical sim-
plex algorithm and interior-point methods, and we also show how the general
framework of duality theory may be applied to this specific case. In Section
16.4, we illustrate how concepts from linear programming can be extended to
deal with the more general case of conic programming. Finally, we describe
the basic ideas of branch-and-bound methods for mixed-integer LP models in
Section 16.5.

We shall never discuss convergence of any algorithm, as this is a more the-
oretical topic. Moreover, some of the methods that we describe have a more
general applicability than we illustrate. For instance, we describe global opti-
mization methods, like genetic algorithms and particle swarm optimization, in
the context of continuous optimization, but they may also be applied to discrete
optimization problems. Going the other way around, we present branch-and-
bound methods for integer programming, but they may also be used for con-
tinuous global optimization. The concepts that we outline are all available in
quite popular optimization software, both commercial and academic, for which
we provide web links in Section 16.6. Sometimes, building blocks must be as-
sembled to deal with a nonstandard problem. For instance, difficult stochastic
programming problems and stochastic dynamic programming require adapta-
tion of general ideas, but this is beyond the scope of this book. Nevertheless, a
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grasp of general concepts should enable the reader to tackle the more advanced
literature.

16.1 Local methods for nonlinear programming

Nonlinear programming models are, in general, nonconvex. However, most
nonlinear programming theory and computational methods aim at finding local
optima. Despite these limitations, we do need concepts like penalty functions,
Lagrange multipliers, and duality theory to lay down the foundations of state-
of-the-art interior-point methods for convex optimization. Furthermore, a local
solver may be used as the building block of multistart methods for global opti-
mization.

16.1.1 UNCONSTRAINED NONLINEAR PROGRAMMING

Let us consider the unconstrained problem minx∈Rn f(x). In principle, if the
objective function is differentiable, the following first-order optimality condi-
tion is necessary for local optimality:

∇f(x) = 0. (16.1)

This stationarity condition yields, in general, a system of n nonlinear equations
in n unknown variables, which we might solve by numerical methods. Actually,
numerical analysis is sometimes counterintuitive. Given the potential difficulty
in solving systems of nonlinear equations, we do not tackle optimization prob-
lems in this way. In fact, we may even go the other way around. For instance,
to solve the system of nonlinear equations

hi(x) = 0, i = 1, . . . , n,

a possible strategy is to solve the optimization problem

min f(x) =

n∑
i=1

h2
i (x).

If we find an optimal solution such that f(x∗) = 0, then we have a solution of
the original system of nonlinear equations.1

Nevertheless, the stationarity condition of Eq. (16.1) is useful, as it pro-
vides us with a condition that we may test to check optimality of a given so-
lution. Classical methods for unconstrained optimization are iterative in nature

1For instance, the fsolve function of the MATLAB Optimization Toolbox adopts this ap-
proach.
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and generate a sequence of solutions x(k), k = 1, 2, 3, . . ., starting from a user-
supplied initial point x(0). If the gradient is available, it is quite useful in gener-
ating this sequence, as it gives the direction of steepest ascent for a maximiza-
tion problem, and a direction −∇f(x) of steepest descent for a minimization
problem. However, the gradient may not be available because the function is
discontinuous, or not given in analytical form, as is the case with stochastic op-
timization, or when we can only estimate f(·) by possibly expensive simulation
runs. In such a case, we may resort to derivative-free methods. Some methods
in this class work with a set of solutions, which evolves over iterations, rather
than with a single solution at a time.

16.1.1.1 Gradient-based methods

We want to generate a sequence of points x(k) leading to a local minimizer of
f(·). Given an initial point x(0), we would like to find a search direction δ, along
which the function is decreasing, i.e.,

f
(
x(0) + αδ

)
< f

(
x(0)

)
,

for a suitable stepsize α > 0. In a minimization problem, since the gradient
gives the direction of steepest ascent, we may change its sign and adopt the
steepest descent method:

x(k+1) = x(k) − α(k) ·
∇f
(
x(k)

)
‖∇f

(
x(k)

)
‖
.

Here, we divide the gradient by its norm to define a unit search direction, but it
is not essential. In order to find the step-size α(k), we may use one among the
several available one-dimensional line search strategies. We could stop when
the norm of the gradient is sufficiently close to zero. This condition must be as-
sessed with care, as it depends on the unit of measurement of f(·): In principle,
we might just multiply the objective function by a small positive number, which
does not change the optimal solution, and satisfy the condition immediately!

Clearly, steepest descent is not expected to work with nondifferentiable
functions or nonconvex problems. Unfortunately there are additional issues:
Despite its intuitive appeal, the gradient method may suffer from difficulties
in convergence and zig-zagging behavior, even when it is supposed to work in
theory. The root of the evil is that it relies on a local first-order approxima-
tion (linearization) of the objective function. Among the possible remedies, we
mention:

Newton method. In this approach, we rely on a second-order local model of
the objective, in order to find a displacement δ to be applied to the current
point x(k):

f
(
x(k) + δ

)
≈ f

(
x(k)

)
+
[
∇f
(
x(k)

)]T
δ +

1

2
δTH

(
x(k)

)
δ,
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where H is the Hessian matrix, collecting the second-order derivatives

Hij =
∂2f

∂xi∂xj
.

Since (for well-behaved functions) Hij = Hji, the Hessian matrix is sym-
metric. If H is also positive definite, we find a minimizer for the convex
quadratic approximation by solving the system of linear equations

H
(
x(k)

)
δ = −∇f

(
x(k)

)
,

and then we set x(k+1) = x(k) + δ. In quasi-Newton methods, finite dif-
ferences are used to approximate derivatives, without placing the burden of
finding them (and writing the required code) on the user.

Trust region methods. Another approach is to restrict the step α taken along
the direction provided by the gradient. The rationale is that the first-order
approximation is valid and can be trusted only in a neighborhood of the
current iterate x(k). To find the displacement δ, we could consider the re-
stricted minimization subproblem:

min
δ

f
(
x(k)

)
+
[
∇f
(
x(k)

)]T
δ

s.t. ‖δ‖≤ h(k).

The trust region is delimited by the parameter h(k), which controls the step
length and should be adjusted dynamically. We may compare the predicted
improvement in the objective function (according to the linearized func-
tion) with the actual improvement. A large difference suggests that the
approximation is not reliable and that the step length should be reduced.
Otherwise, the step length can be increased.

16.1.1.2 Derivative-free methods

Derivative-free methods can be used when the objective function might be dis-
continuous, or when it is only possible to evaluate it by simulation. This class of
methods includes several variants of pattern search, as well as some population-
based methods that we describe later, within the framework of global optimiza-
tion. Here we just give a clue about the simplex search algorithm, also known
as Nelder–Mead method.2 This algorithm was originally proposed to optimize
industrial processes, for which a reliable mathematical was not available, and
only experimental performance measures could be taken. Rather than working
with a single point, it uses a simplex of n+ 1 points in Rn. A simplex in Rn is
the convex hull of a set of n+ 1 affinely independent points x1, . . . ,xn+1.3 The

2This method should not be confused with the simplex algorithm for linear programming.
3Affine independence of n+1 vectors in Rn means that the vectors (x2−x1), . . . , (xn+1−x1)
are linearly independent. For n = 2, this means that the three points x1, x2, and x3 do not lie
on the same line and form a triangle. For n = 3, this means that the four points do not lie on the
same plane.
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x2

x1

x3

FIGURE 16.1 Reflection of the worst value point in the Nelder–Mead simplex search
procedure.

convex hull of a set of points is just the set of points that may be obtained by tak-
ing convex combinations (linear combinations whose weights are non-negative
and add up to 1) of the elements of the set. For instance, in two dimensions, a
simplex is a triangle, whereas in three dimensions, it is a tetrahedron.

The rationale behind the method is illustrated in Fig. 16.1, for a minimiza-
tion problem in R2. In this case, the simplex search generates a sequence of
sets consisting of three points, in which the worst one is discarded and replaced
by a new one. For instance, let us assume that x3 is associated with the worst
objective value; then, it seems reasonable to move away from x3, by reflecting
it through the center of the face formed by the other two points, as shown in
Fig. 16.1. Then, a new simplex is obtained and the process is repeated. The
generation of the new point is easily accomplished algebraically. If xn+1 is the
worst point, we compute the centroid of the other n points as

c =
1

n

n∑
i=1

xi,

and we try a new point of the form

xr = xn+1 + α(c− xn+1).

Clearly, the key issue is finding the right reflection coefficient α > 0. If xr turns
out to be even worse than xn+1, we may argue that the step was too long and
the simplex should be contracted. If xr turns out to be the new best point, we
have found a good search direction and the simplex might be expanded.

16.1.2 PENALTY FUNCTION METHODS

Armed with methods for unconstrained optimization, the next logical step is
dealing with constraints. It would be nice to find a way to apply whatever un-
constrained optimization method we like to the constrained case, too. Penalty
function methods are based on the idea of transforming a constrained optimiza-
tion problem into an unconstrained one by penalizing constraint violations.
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h(x)

Large penalty

FIGURE 16.2 Quadratic approximation of the ideal penalty function.

Penalty functions may be a clever idea from a modeling viewpoint, as quite
often treating a constraint as a soft requirement, rather than a hard one, is a
sensible thing to do. They are quite useful when using derivative-free meth-
ods, and they also play a key role in modern interior-point methods for convex
optimization.

Let us start with a problem featuring equality constraints only:

min f(x)

s.t. hi(x) = 0, i ∈ E.

Ideally, we would like to introduce a penalty function that goes to infinity for
points x where any hi(x) 6= 0, and is zero otherwise. This is illustrated as a
dashed line in Fig. 16.2. Clearly, such a discontinuous function is numerically
impossible to deal with, and must be approximated by a smoother one. One pos-
sibility is to resort to a quadratic approximation, which yields the unconstrained
problem

min Ψ(x, σ) = f(x) + σ
∑
i∈E

h2
i (x).

If σ is large enough, the optimization algorithm will, in some sense, first drive
the solution toward the feasible region by minimizing the penalty term; then
it will try to minimize the objective f(·). Actually, convergence difficulties
will arise if we try solving the unconstrained problem with a large value of the
penalty coefficient σ. So, it is advisable to solve a sequence of unconstrained
problems: We choose an increasing sequence of penalty coefficients σk, where
limk→+∞ σk = +∞, which yields a sequence of relaxed unconstrained prob-
lems with optimal solutions x∗k; the solution x∗k is used to initialize the problem
for σk+1.4

4This is an instance of a more general strategy called homotopy continuation, where a numeri-
cally hard problem is approximated by a sequence of easier ones.
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g(x)

Large penalty

FIGURE 16.3 Ideal penalty function for the inequality constraint g(x) ≤ 0, and two
possible approximations.

In the case of inequality constraints,

min f(x)

s.t. gi(x) ≤ 0, i ∈ I,

we must only penalize positive values of the constraint functions gi, as shown in
Fig. 16.3. Again, we may find a continuous approximation of the ideal penalty

P (x) =

{
+∞, if gi(x) > 0,
0, if gi(x) ≤ 0.

Using the notation y+ = max{y, 0}, we may use an augmented objective func-
tion like

f(x) + σ
∑
i∈I

[
g+
i (x)

]2
,

or
f(x) + σ

∑
i∈I

g+
i (x). (16.2)

The two approximated penalty functions are also shown in Fig. 16.3. The first
penalty has the advantage of being a smooth function, whereas the second one
introduces a non-differentiability (even though it is still a continuous function).
However, the kinky function has the advantage of requiring smaller values of
σ, possibly easing numerical difficulties, and may be tackled by non-smooth
optimization techniques.5

All of the penalty functions that we have considered so far are called ex-
terior penalty functions, as the feasible set is approached from outside for in-
creasing values of the penalty coefficient σ. If the optimal solution is on the

5For equality constraints, we could also take the absolute value
∣∣hi(x)

∣∣. In fact, one of the
motivations for research work that was carried out on non-differentiable optimization was the
need to cope with kinky penalty functions.
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FIGURE 16.4 Exterior vs. interior penalty functions.

boundary of the feasible set (which is usually the case, since some inequality
constraints are typically active6 at the optimal solution), a feasible solution is
obtained only in the limit. This may be quite fine when constraints are soft and
express desirable features, rather than a hard requirement. However, in other
cases, we would like to be able to stop the algorithm whenever we want and
still come up with a strictly feasible solution. To overcome this difficulty, an
interior penalty approach can be pursued. The difference between interior and
exterior penalties is illustrated in Fig. 16.4. Both functions approximate the
ideal penalty, but the exterior penalty is the kinky function of Eq. (16.2), which
should be used with a large penalty coefficient σ, whereas the interior penalty
is a barrier function, which should be used with a coefficient σ going to zero.
The barrier function goes to infinity when x tends to the boundary of the feasible
region from the inside. Clearly, interior penalties have the additional require-
ment that we must be able start the algorithm with a feasible point, and we must
avoid long steps driving the search outside the feasible set. One possible barrier
function is

B(x) = −
∑
i∈I

1

gi(x)
.

An alternative is the logarithmic barrier function

B(x) = −
∑
i∈I

log
(
− gi(x)

)
.

6An inequality constraint g(x) ≤ 0 is said to be active at point x∗, if g(x∗) = 0.
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Then, an unconstrained problem,

min f(x) + σB(x),

is solved for decreasing values of σ, until the term σB(x) is small enough.
Logarithmic barriers are widely used in state-of-the art interior-point methods
for conic optimization.

16.1.3 LAGRANGE MULTIPLIERS AND CONSTRAINT
QUALIFICATION CONDITIONS

Penalty function methods are a quite useful numerical tool, but for a sound
theory of constrained optimization we must introduce Lagrangian methods. As
before, let us consider first the equality constrained case:

min f(x) (16.3)
s.t. hi(x) = 0, i = 1, . . . ,m.

The classical Lagrange method requires associating Lagrange multipliers λi
with each constraint, and building the Lagrangian function

L(x,λ)
.
= f(x) +

m∑
i=1

λihi(x),

where λ ∈ Rm collects the multipliers. Then a necessary condition for local
optimality of a feasible point x∗ is that there exist multipliers λ∗i , i = 1, . . . ,m,
such that the Lagrangian function is stationary,

∇f(x∗) +

m∑
i=1

λ∗i∇hi(x∗) = 0. (16.4)

In other words, we need n + m numbers x∗ and λ∗ satisfying the m equal-
ity constraints of problem (16.3) and the n stationarity condition (16.4) for the
Lagrangian function. We will not prove the result, but it is more relevant to ob-
serve its weakness, since it gives a necessary (not sufficient) condition for local
(not global) optimality, assuming differentiability and some additional regular-
ity condition on the constraints (whose role we will appreciate in Example 16.2).
Local optimality may yield global optimality in the convex case, but care should
be taken to avoid pathologies. The next example is free from such difficulties,
and it is useful to understand the rationale behind Eq. (16.4) intuitively.

Example 16.1 Quadratic programming

Consider the quadratic programming problem

min x2
1 + x2

2 (16.5)
s.t. x1 + x2 = 4. (16.6)
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The quadratic form of the objective is convex, and we may use con-
dition (16.4) to find the global optimum. We associate a multiplier λ
with the linear constraint and form the Lagrangian function,

L(x1, x2, λ) = x2
1 + x2

2 + λ(x1 + x2 − 4).

The stationarity conditions,

∂L
∂x1

= 2x1 + λ = 0,

∂L
∂x2

= 2x2 + λ = 0,

∂L
∂λ

= x1 + x2 − 4 = 0,

are just a system of linear equations, whose solution yields x∗1 = x∗2 =
2 and λ∗ = −4. We may notice that the equality constraint can also
be written as 4− x1 − x2 = 0; if we do so, we have only a change in
the sign of the multiplier, which is inconsequential.

We may get an intuitive feeling for the Lagrange conditions by
taking a look at Fig. 16.5, where we can see the level curves of the
objective function (16.5), a set of concentric circles, and the feasible
region corresponding to Eq. (16.6), a line. From a geometric perspec-
tive, the problem calls for finding the closest point to the origin on
the line x1 + x2 = 4. We note that the optimizer is where this line
is tangent to the level curve associated with the lowest value of the
objective. From an analytical viewpoint, the gradient of the objective
function f(x) = x2

1 + x2
2 is

∇f(x1, x2) =


∂f

∂x1

∂f

∂x2

 =

[
2x1

2x2

]
.

This gradient, changed in sign, gives a vector pointing toward the ori-
gin, which is the steepest-descent direction for the objective. At point
x∗ = (2, 2), the gradient is [4, 4]T. The gradient of the constraint
h(x) = x1 + x2 − 4 is

∇h(x1, x2) =


∂h

∂x1

∂h

∂x2

 =

[
1

1

]
.

Note that this vector is orthogonal to the feasible region and is parallel
to the gradient of the objective at the optimizer. In Fig. 16.5, we show



16.1 Local methods for nonlinear programming 709

x2

(0)x

*x
h

f x1

FIGURE 16.5 Geometric interpretation of the Lagrange optimality conditions for a
simple quadratic programming problem.

a non-optimal point x(0), where we cannot move along the steepest
descent direction. However, this direction may be decomposed into
two vectors, one orthogonal and one parallel to the constraint. The
orthogonal direction would lead outside the feasible set, but we may
move along the direction parallel to the constraint and improve the
objective. At the optimal point x∗, we cannot do the same, as the
only available component is orthogonal to the feasible set.

Example 16.1 provides us with an intuitive interpretation of Eq. (16.4). At
the optimal solution, the gradient of the objective should be expressed as a linear
combination of the gradients of the constraints. However, nothing guarantees
that the latter allow us to do so, as they may fail to be a basis. The following
counterexample shows that we should also qualify the constraint in some way.

Example 16.2 The role of constraint qualification conditions

Consider the problem

min x1 + x2

s.t. h1(x) = x2 − x3
1 = 0,

h2(x) = x2 = 0,
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and build the Lagrangian function

L(x1, x2, λ1, λ2) = x1 + x2 + λ1(x2 − x3
1) + λ2x2.

The stationarity conditions yield the following system of equations:

∂L
∂x1

= 1− 3λ1x
2
1 = 0,

∂L
∂x2

= 1 + λ1 + λ2 = 0,

∂L
∂λ1

= x2 − x3
1 = 0,

∂L
∂λ2

= x2 = 0.

However, this system has no solution.

In Example 16.2, the feasible set boils down to the origin (0, 0), which is the
(trivial) optimal solution. Unfortunately, both gradients of the two constraints
at the origin are parallel to vector [0, 1]T, whereas the gradient of the objective
is [1, 1]T. Thus, the gradients of the constraints are not a basis able to express
the gradient of f(·) at the optimal solution. In fact, a proper statement of the
Lagrange theorem requires additional regularity conditions on the constraints,
which are known as constraint qualification conditions. There are alternative
constraint qualification conditions that may be required, and a full listing is
definitely beyond the scope of this book,7 but we mention the following ones:

The gradients of the constraint functions hi(·) are linearly independent at
x∗ (which is where we fail in Example 16.2).
The constraints are linear.
The feasible set includes an interior point. This condition is known as
Slater condition and is quite popular, since it may be easy to check (even
though it may be stronger than necessary). Actually, it applies only to
problems with inequality constraints, and a different statement is needed
for equality constraints.

Indeed, the technicalities involved in constrained optimization may get quite
involved, but for our purposes, it is much more important to get a deeper under-
standing of the economic meaning of Lagrange multipliers. To this aim, let us
consider the perturbed problem

min f(x)

s.t. hi(x) = εi, i = 1, . . . ,m.

The value of the optimal solution, f∗ = f(x∗), will change as a function of the
perturbations εi. Under suitable differentiability conditions, the following result

7See, e.g., [1].
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may be proved:
∂f∗

∂εi
= −λi. (16.7)

Thus, apart from the sign, which is not too relevant in the case of equality con-
straints, Lagrange multipliers play the role of sensitivities of the optimal value
with respect to changes in the right-hand side of the constraints. As we show
below, this interpretation is fundamental in the case of inequality constraints.

Let us now turn to the general constrained problem (PEI) including in-
equality constraints:

min f(x)

s.t. hi(x) = 0, i ∈ E
gi(x) ≤ 0, i ∈ I.

Note that we arrange inequalities as “less-than” constraints, which is the usual
convention and helps the economic interpretation, as inequalities are often re-
lated to budget and resource availability constraints. Then, as in the previous
case, we introduce Lagrange multipliers and build the Lagrangian function

L(x,λ,µ) = f(x) +
∑
i∈E

λihi(x) +
∑
i∈I

µigi(x). (16.8)

Subject to the aforementioned constraint qualification and differentiability con-
ditions, a necessary condition for the local optimality of x∗ is that there exist
numbers λ∗i (i ∈ E) and µ∗i ≥ 0 (i ∈ I) such that

∇f(x∗) +
∑
i∈E

λ∗i∇hi(x∗) +
∑
i∈I

µ∗i∇gi(x∗) = 0,

µ∗i gi(x
∗) = 0, ∀i ∈ I. (16.9)

These conditions are known as Karush–Kuhn–Tucker (KKT) conditions and
are similar to those in the classical Lagrange theorem, with two differences:

1. Multipliers µi associated with inequality constraints are restricted in sign,
µi ≥ 0.

2. There is an additional condition, Eq. (16.9), known as complementary
slackness.

To understand these conditions intuitively, let us interpret inequalities as budget
constraints with a right-hand side εi:

gi(x) ≤ εi. (16.10)

At an optimal solution x∗, the inequality constraint (16.10) can be in two states:

1. We say that an inequality constraint is active at a solution x∗ if it is bind-
ing, i.e., gi(x∗) = εi.
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2. We say that an inequality constraint is inactive if it is nonbinding, i.e.,
gi(x

∗) < εi.

Now, let us consider what may happen, if we perturb an active inequality con-
straint by increasing its right-hand side εi. Since the constraint is active, it
basically behaves as an equality constraint, to which Eq. (16.7) applies. What
we are doing, economically, is increasing the budget, which means that we are
relaxing the feasible set. Since we are dealing with a minimization problem, the
objective function may not change or it may improve, but it certainly cannot get
worse, since the optimal solution of the original problem is still feasible in the
perturbed one. Hence,

∂f∗

∂εi
= −µi ≤ 0,

which implies non-negativity of multipliers associated with inequalities. This
fact may be interpreted economically, if we regard the objective function as a
cost, measured in monetary units. Then, the budget constraint is measured in
resource units, and each multiplier can be interpreted as a resource price (e.g.,
euro per unit of a resource). Therefore, Eq. (16.7) suggests that the multiplier
gives the maximum price that which we should be willing to pay for an addi-
tional unit of resource (to be precise, in a nonlinear problem, this is only true
for a small increment). This is why, in economics, Lagrange multipliers are
known as shadow prices. It is also clear that the shadow price µi should be
non-negative.

If the constraint (16.10) is not active, we are not using the whole budget, so
there is no point in increasing it. If we perturb the constraint by a small amount,
the solution is not going to change, so that the derivative of f∗ with respect to
εi is zero. By the same token, we are not willing to buy any additional amount
of resource, which we are not going to use anyway, so that the shadow price
is zero. Therefore, we are also able to interpret the complementary slackness
condition of Eq. (16.9):

If a resource is not fully used, i.e., gi(x∗) < 0, its shadow price µ∗i must be
zero. Indeed, there is no point in increasing the availability of a resource
that is not fully used.
If the shadow price µ∗i is strictly positive, then the resource budget con-
straint must be active, i.e., gi(x∗) = 0.

Thus, the complementary slackness condition (16.9) rules out the case of a
strictly positive multiplier µ∗i associated with an inactive inequality constraint,
for which gi(x∗) < 0.

From an algorithmic viewpoint, the KKT conditions are not solved directly,
but they are the conceptual basis for computationally viable methods. There are
methods integrating multipliers with penalty functions, known as augmented
Lagrangians. From our viewpoint, the most interesting development related to
Lagrange multipliers is duality theory.
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16.1.4 DUALITY THEORY

Duality is a fundamental concept in optimization, both from a theoretical and an
algorithmic viewpoint.8 We cannot offer a sound theoretical development, but
we may grasp the basics intuitively, with the aim of understanding the role of
duality in linear programming and in the development of primal-dual interior-
point methods.

As a first step, let us fix the nomenclature, by considering the inequality-
constrained9 problem

(P ) min f(x)

s.t. gi(x) ≤ 0, i ∈ I (16.11)
x ∈ S ⊆ Rn.

Problem (P ) is what we want to solve and is called the primal problem. The
actual decision variables x are called primal variables. The set S is any sub-
set of Rn, possibly a discrete one. Here, we neither assume differentiability
nor convexity of the objective function. The results we get are therefore ex-
tremely general. A good way to motivate what we are going to do is to assume
that the constraints (16.11) are “complicating” constraints, in the sense that the
minimization of f(·) subject to x ∈ S would be easy. Thus, we would like to
relax these nasty constraints, which we do by dualizing them and building the
Lagrangian function:

L(x,µ) = f(x) +
∑
i∈I

µigi(x) = f(x) + µTg(x).

Within this framework, the multipliers µ are called dual variables, and the
minimization of the Lagrangian function with respect to the primal variables
x ∈ S, for a given setting of µ, is called the relaxed problem. The solution of
the relaxed problem defines a function w(µ), called the dual function:

w(µ)
.
= min

x∈S
L(x,µ). (16.12)

It is easy to see that the dual function, for any µ ≥ 0, provides us with a lower
bound on the value of the primal optimal solution.

THEOREM 16.1 (Weak duality) For any µ ≥ 0, the dual function is a lower
bound for the optimum f(x∗) of the primal problem (P ), i.e.,

w(µ) ≤ f(x∗), ∀µ ≥ 0.

8To be precise, we deal here only with Lagrangian duality. There are other forms of duality, like
conjugate duality.
9The case of equality constraints is treated similarly. The only difference is that multipliers are
unrestricted in sign.
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PROOF Let us adopt the notation ν(P ) to denote the optimal value of the
objective function for an optimization problem P .

Under the hypothesis µ ≥ 0, it is easy to see that

ν(P ) ≥ ν

 min f(x)

s.t. x ∈ S
µTg(x) ≤ 0

 (16.13)

≥ ν

 min f(x) + µTg(x)

s.t. x ∈ S
µTg(x) ≤ 0

 (16.14)

≥ ν

(
min f(x) + µTg(x)

s.t. x ∈ S

)
. (16.15)

The inequality (16.13) is justified by the fact that, whenever we aggregate con-
straints, we enlarge the feasible set.10 The inequality (16.14) is due to the fact
that we add a non-positive term to the objective function, and we obtain the
final inequality (16.15) by dropping a constraint and relaxing the feasible set
once more.

A lower bound on the optimal value of the primal problem may be useful in a
number of ways. For instance, given a feasible solution of the primal, possibly
obtained by a cheap heuristic approach, we may estimate how far it is from the
optimum. To find a tight and informative lower bound, it is natural to look for
the largest lower bound by solving the dual problem:

(D) max
µ≥0

w(µ) = max
µ≥0

{
min
x∈S
L(x,µ)

}
. (16.16)

The efficient maximization of the dual function should be carried out by algo-
rithms that may depend on the specific problem. However, the dual function
enjoys a nice property11:

THEOREM 16.2 The dual function w(µ) is a concave function.

We have obtained a very general, but weak relationship, since weak duality only
yields a lower bound. So, it is quite natural to wonder whether there are lucky
cases in which a stronger relationship,

ν(D) = w(µ∗) = f(x∗) = ν(P ),

holds. Indeed, under suitable conditions, this stronger property, known as strong
duality, does apply. Common wisdom says that this is the case with primal con-
vex problems, which is not quite correct. There are convex problems for which

10Recall the discussion in Example 15.6.
11See Problem 16.1.
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f(x)

x

FIGURE 16.6 A convex lower bounding function.

a duality gap is observed, i.e., the maximum of the dual is strictly less than the
minimum of the primal. We should require some additional condition, like the
Slater constraint qualification, for strong duality to hold. It can be shown that
strong duality applies to linear programming problems and, in Section 16.3.2,
we shall see how we may take advantage of it.

16.2 Global methods for nonlinear programming

When we deal with tough nonconvex problems, like some model calibration
tasks or the fixed-mix portfolio optimization problem of Section 15.10.1, the
local minimizers provided by classical methods may not be satisfactory. In or-
der to tackle a global optimization problem, we may pursue one of the following
alternatives:

If an optimality guarantee is essential, and we are lucky, the problem may
feature some specific structure that is exploited by ad hoc methods. One
such example is the minimization of a difference of convex functions, and
the minimization of a concave function over a convex set is another one
(where we know that an optimal solution can be found on the boundary
of the feasible set). Otherwise, we have to resort to computationally de-
manding approaches, like branch-and-bound methods. We only describe
these strategies for MILP models later, but the idea is fairly simple. The
domain is partitioned into subregions and a convex lower bounding func-
tion is looked for, as shown in Fig. 16.6. Ideally, we would like to find the
convexified function displayed in the picture, but this is not usually fea-
sible, and a weaker underestimator is obtained. This is used to determine
which subregions may be discarded, when the lower bound has a higher
cost than a feasible solution we already know.



716 CHAPTER 16 Optimization Model Solving

A simpler alternative is to apply a local optimization strategy with multi-
ple starting points. For each possible starting point, we will end up at a
locally optimal solution. Thus, we may think of the domain as partitioned
in attraction basins. Multiple start methods may be rather effective, but
they do not ensure optimality.
We may also resort to stochastic search strategies, trying to escape from
local optimizers. We mention tabu search, simulated annealing, genetic
algorithms, and particle swarm optimization. Some methods in this class
have a physical motivation, like simulated annealing, whereas others have
a biological motivation, like genetic algorithms and particle swarm opti-
mization. A significant advantage of this kind of algorithms is their flex-
ibility, which explains why they are collectively known as metaheuris-
tics, where the name suggests that they are generic principles that require
adaptation. Metaheuristics may also be used for discrete optimization
problems.

In the next two sections, we outline two metaheuristics, namely, genetic al-
gorithms and particle swarm optimization. There are several variants, differ-
ing in the number of parameters to be set and the corresponding complexity
of fine tuning, though some self-adaptive methods are available. Sometimes,
metaheuristics require a considerable amount of computational effort to find
near-optimal solutions. Furthermore, we have to select a suitable representation
of the solution, in order to apply metaheuristics, adding another layer of cus-
tomization. As the reader can imagine, it is easy to get lost because of the sheer
number of proposals and combinations. The key is to experiment with some of
these variants and find the best combination for the specific problem at hand.

16.2.1 GENETIC ALGORITHMS

Unlike other solution methods, genetic algorithms work with a set of solutions
at each iteration, rather than a single point. The idea is based on the survival-
of-the-fittest mechanism of biological evolution, whereby a population of indi-
viduals evolves by a combination of the following elements:

Selection according to a fitness criterion, which in an optimization prob-
lem is related to the objective function.
Mutation, whereby some features of an individual are randomly modi-
fied.
Crossover, whereby two individuals are selected for reproduction and
generate offsprings with features resulting from a mix of their parents’
characteristics.

There is a considerable freedom in the way this idea can be translated into a
concrete algorithm. A critical issue is how to balance exploration and exploita-
tion. On the one hand, biasing the selection of the new population toward high
quality individuals may lead to premature termination; on the other hand, unless
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a certain degree of elitism is used to keep good individuals in the population, the
algorithm might wander around and skip the opportunity of exploring promising
subregions of the solution space.

A key ingredient is the encoding of a feasible solution as a string of fea-
tures, corresponding to genes of a chromosome. For continuous optimization in
Rn, the choice of representing each solution by the corresponding vector x is
fairly natural.12 Let us consider the simplest form of crossover: Given two in-
dividuals x and y in the current pool, a “breakpoint” position k ∈ {1, 2, . . . , n}
is randomly selected and two offsprings are generated as follows:{

x1, x2, . . . , xk, xk+1, . . . , xn

y1, y2, . . . , yk, yk+1, . . . , yn

}
⇒

{
x1, x2, . . . , xk, yk+1, . . . , yn

y1, y2, . . . , yk, xk+1, . . . , xn

}
.

Variations on the theme are possible; for instance, a double crossover may be
exploited, in which two breakpoints are selected for the crossover. The two
new solutions are clearly feasible for an unconstrained optimization problem in
Rn. When constraints are involved, this guarantee is lost in general. We might
enforce hard constraints by eliminating noncomplying individuals, but a usually
better alternative is relaxation by a suitable penalty function.

16.2.2 PARTICLE SWARM OPTIMIZATION

Particle swarm optimization (PSO) methods are another class of stochastic
search algorithms, based on a population of m particles exploring the space
of solutions, which we assume is a subset of Rn. The position of each particle
j in the swarm is a vector

xj(t) =
[
x1j(t), x2j(t), . . . , xnj(t)

]T
∈ Rn,

corresponding to a solution of the optimization problem, which changes in dis-
crete time (t = 1, 2, 3, . . .) according to three factors:

1. Inertia. Each particle is associated with a velocity vector vj(t), which
tends to be maintained.

2. Cognitive factor. Each particle tends to move toward its personal best
p∗j , i.e., the best point that it has visited so far.

3. Social factor. Each particle tends to move toward the global best g∗ of
the swarm, i.e., the best point that has been visited so far by the whole set
of particles.

12The choice is not that obvious for many problems in combinatorial optimization, e.g., when
solutions correspond to permutations of objects.
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The idea is to mimic the interactions of members of a swarm looking for food,
and a classical statement of the algorithm is the following:

vj(t+ 1) = vj(t) + c1r1j(t) ·
[
p∗j (t)− xj(t)

]
+ c2r2j(t) · [g∗(t)− xj(t)] , (16.17)

xj(t+ 1) = xj(t) + vj(t+ 1). (16.18)

Equation (16.17) governs the evolution of the velocity of each particle j =
1, . . . ,m. The new velocity vj(t+ 1) depends on:

The previous velocity vj(t), i.e., the inertia factor.
The difference p∗j (t) − xj(t) between the personal best and the current
position, i.e., the cognitive factor, scaled by a coefficient c1 and multiplied
by a random variable r1j(t); a typical choice is a uniform distribution
U(0, 1).
The difference g∗(t)− xj(t) between the global best and the current po-
sition, i.e., the social factor, scaled by a coefficient c2 and multiplied by
a random variable r2j(t); in this case, too, a typical choice is a uniform
distribution U(0, 1).

Equation (16.18) simply changes each component of the current position ac-
cording to the new velocity. At each iteration, the personal and global bests are
updated when necessary, and other adjustments are used in order to keep veloc-
ities within a given range, as well as the positions, if bounds on the variables
are specified.

PSO can be regarded as a Monte Carlo search approach, and several vari-
ants have been proposed:

In small world methods, the global best position for neighboring particles
is used, rather than the whole swarm.
In quantum PSO, different rules are used to evolve particle positions. A
version of the algorithm generates a new particle position as

xj(t+ 1) = pj(t)± β ·
∣∣pj(t)− xj(t)

∣∣ · log(1/U),

where U is a uniformly distributed random variable, β is a coefficient to
be chosen, and pj(t) is a random combination of the personal and the
global best. The ± is resolved by the flip of a fair coin, i.e., + and − have
both 50% probability.
Some algorithms use Lévy flights, i.e., the shocks to current positions are
generated by using heavy-tailed distributions, which is contrasted against
the normal distribution underlying geometric Brownian motion and stan-
dard random walks.
In the firefly algorithm, the quality of each solution corresponds to the
light intensity of a firefly attracting other particles.
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16.3 Linear programming

There are a few alternative methods to solve LP problems, but the following
two are the most popular ones:

1. The simplex method is the “original” method, developed by George
Dantzig in 1947. The feasible set for an LP problem is a polyhedron, and
we know that, if the problem is feasible and the optimal value is bounded,
a vertex will be an optimal solution (see Fig. 15.6). The simplex method
implements a clever strategy to explore vertices until a locally optimal so-
lution is found, which is also globally optimal, given problem convexity.
The number of vertices is finite but potentially huge, so one should won-
der about the efficiency of the approach. Indeed, a potential pitfall of the
simplex method is that its computational complexity is, in the worst-case,
exponential in the size of the problem. We cannot discuss computational
complexity in any detail here, but it sufficient to say that it relates the
size of a problem with the number of operations carried out by a solution
algorithm. Algorithms featuring polynomial complexity are typically pre-
ferred to those with exponential complexity. However, the number of ver-
tices actually explored is, in practice, usually quite limited. Furthermore,
the performance of the method has been impressively improved over the
years, thanks to developments in numerical linear algebra.

2. Given the exponential complexity of the simplex algorithm, a natural
question was whether a polynomial algorithm could be developed. The
quest for a polynomial algorithm for LP problems ended with a success in
1984, many years after the development of the simplex method, with Kar-
markar’s projective algorithm. However, despite nice theoretical proper-
ties, this is not an industrial strength approach. Truly competitive meth-
ods were developed later, based on logarithmic barriers and primal–dual
algorithms. These methods are called interior-point methods, since they
follow a path within the interior of the feasible set. Later, interior-point
methods for LP were extended to the more general class of conic opti-
mization problems.

For several large-scale problems, interior-point methods do outperform the sim-
plex method, but this is not guaranteed to happen, as exponential complexity
refers to the worst case, rather than to the average case. Apart from compu-
tational efficiency, a solution from simplex method tends to be qualitatively
different, as it is more sparse, which means that more variables are set to zero.
When there are alternative optima, located on a face of the feasible polyhe-
dron, the simplex method yields an extreme solution corresponding to a ver-
tex, whereas an interior-point method will yield a solution corresponding to the
center of this face. Since a more extreme solution may be sometimes preferred,
software packages offer crossover strategies to find an optimal vertex, in case of
alternative optima, given an optimal solution found by an interior-point method.
Furthermore, simplex has better warm-start capability, which is very useful for
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integer programming, as we shall see later. They rely on LP duality, which is
also fundamental in primal-dual interior-point methods and is explored in Sec-
tion 16.3.2.

16.3.1 THE SIMPLEX METHOD

The simplex method deals with LP problems in standard form,

min cTx

s.t. Ax = b,

x ≥ 0,

where A ∈ Rm,n and m < n. Any LP model may be transformed into the
standard form, so there is no loss of generality. As we have pointed out before,
we may rely on geometric intuition to solve the problem:

An LP problem is a convex problem; hence, if we find a locally optimal
solution, we have also found a global optimizer.
An LP problem is a concave problem, too; hence, we know that we may
restrict the search for the optimal solution to the boundary of the feasi-
ble set, which is a polyhedron. Actually, it can be shown that there is
an optimal solution corresponding to a vertex, or extreme point, of the
polyhedron.
So, we need a clever way to explore extreme points of the feasible set.
Geometrically, we may imagine moving from a vertex to a neighboring
one, trying to improve the objective function. When there is no neigh-
boring vertex improving the objective, we have found a local optimizer,
which is also global.

This geometric intuition can be translated into algebraic terms as follows. Let
us consider the matrix A as the collection of its column vectors aj ∈ Rm, for
j = 1, . . . , n:

A =


...

...
...

a1 a2 · · · an
...

...
...

 .
The system of linear equations Ax = b states that we are expressing the right-
hand side vector b as a linear combination of columns of A,

n∑
j=1

ajxj = b.

Since we also require x ≥ 0, this not just a linear combination, but it is a conic
combination. There are n columns in matrix A, but a subset B of m columns
suffices to express b as ∑

j∈B

ajxj = b.
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To be precise, we should make sure that the subset of columns B is a basis, i.e.,
that the columns are linearly independent; let us cut a few corners and assume
that this is the case.

Given a basis B, we have a subset of basic variables, {xj | j ∈ B}, which
may take a nonzero value, and a set of nonbasic variables, {xj |j /∈ B}, which
are forced to zero. A solution corresponding to a basis is called a basic solution.
If, in addition, the basic variables are non-negative, as it is required, we have a
basic feasible solution. The simplex algorithm relies on a fundamental result,
which we state loosely and without any proof:

Basic feasible solutions correspond to extreme points of the poly-
hedral feasible set of the LP problem.

Thus, we may explore vertices by enumerating the finite set of possible bases in
a clever way. We may do that, because it can also be shown that we move from
a vertex to an adjacent vertex by swapping a basic variable for a nonbasic one,
i.e., by changing a single element of the basis (provided that the resulting basis
is also feasible).

Let us formalize the intuition in an algorithmically workable way. If we
have a feasible basis, we can partition the vector x into two subvectors: the
subvector xB ∈ Rm of the basic variables and the subvector xN ∈ Rn−m of the
nonbasic variables. Using a suitable permutation of variables and corresponding
columns, we may rewrite the system of linear equations

Ax = b

as [
ABAN

] [ xB

xN

]
= ABxB + ANxN = b, (16.19)

where AB ∈ Rm,m is nonsingular and AN ∈ Rm,n−m.
Solving an LP amounts to finding a way to express b as a least-cost linear

combination of at most m columns of A, with non-negative coefficients. As-
sume that we have a basic feasible solution x; we will consider later how to
obtain an initial basic feasible solution. If x is basic feasible, it may be written
as

x =

[
xB

xN

]
=

[
b̂

0

]
,

where
b̂ = A−1

B b ≥ 0.

Then, the value of the objective function corresponding to x is

f̂ =
[
cT
B cT

N

] [ b̂

0

]
= cT

Bb̂. (16.20)

Now, we should check whether there are adjacent vertices improving this value.
Adjacent vertices may be obtained by swapping a column in the basis with a
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column outside the basis. This means that one nonbasic variable is brought into
the basis, and one basic variable leaves the basis.

To assess the potential benefit of introducing a nonbasic variable into the
basis, we should express the objective function in terms of nonbasic variables.
To this aim, we rewrite the objective function in Eq. (16.20), making its depen-
dence on nonbasic variables explicit. Using Eq. (16.19), we may express the
basic variables as

xB = A−1
B (b−ANxN ) = b̂−A−1

B ANxN . (16.21)

Then, we rewrite the objective function in terms of nonbasic variables only:

cTx = cT
BxB + cT

NxN

= cT
B

(
b̂−A−1

B ANxN

)
+ cT

NxN

= cT
Bb̂ +

(
cT
N − cT

BA−1
B AN

)
xN

= f̂ + ĉT
NxN ,

where
ĉT
N
.
= cT

N − cT
BA−1

B AN . (16.22)

The quantities in vector ĉN are called reduced costs, as they measure the
marginal variation of the objective function, when the value of a nonbasic vari-
able is changed, while preserving overall feasibility of the solution. If ĉN ≥ 0,
then bringing any nonbasic variable into the basis at some positive value cannot
reduce the overall cost. Hence, it is not possible to improve the current objec-
tive function and the current basis is optimal. If, on the contrary, there exists a
q ∈ N such that ĉq < 0, then, it is possible to improve the objective function
by bringing xq into the basis. When we bring xq into the basis, with a positive
value, two cases may occur:

1. The increase of xq has the effect of decreasing some currently basic and
positive variable. Since we must preserve non-negativity of the solution,
the limit value of xq in the new basis is determined by the first basic value
which takes a zero value, leaving the basis. Now we have a new feasible
basis and the whole process is repeated.

2. The increase of xq does not create any feasibility problem. However,
this means that we may bring xq into the basis, improving the objective
without any bound. If this happens, the problem has an unbounded solu-
tion (which means that a profit goes to +∞ or a cost goes to −∞). For
this to happen, the feasible set must be an unbounded polyhedron. This
is usually a sign of a modeling error, but in finance, it may also be the
consequence of an arbitrage opportunity.

A simple strategy is to choose q such that

ĉq = min
j∈N

ĉj . (16.23)
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In practice, this approach is not efficient, as it ignores the actual value that xq
will take in the new basis, and it may lead to cycles in the algorithm. Commer-
cial software packages avoid this difficulty and implement the simplex method
in an efficient and numerically accurate way.

As a final touch, an initial basis is needed in order to start the iterations.
One possibility is to rely on a penalty function approach. We introduce a set of
auxiliary artificial variables z into the constraints:

Ax + z = b, (16.24)
x, z ≥ 0.

The artificial variables can be regarded as residuals, in the same vein as resid-
uals in linear regression, which we should bring to zero. Assume also that the
equations have been rearranged in such a way that b ≥ 0. Clearly, a basic
feasible solution of the system (16.24), where z = 0, is also a basic feasible
solution for the original system Ax = b. In order to find such a solution, we
can introduce an auxiliary function,

ψ =

m∑
i=1

zi, (16.25)

which is minimized by using the simplex method itself. Finding an initial basic
feasible solution for this artificial problem is trivial: z = b ≥ 0. If the optimal
value of (16.25) is ψ∗ = 0, then we have found a starting point for the original
problem; otherwise, the original problem is infeasible. The minimization of
the auxiliary function is called phase I of the simplex algorithm. The actual
optimization, starting from a basic feasible solution, is called phase II of the
simplex algorithm.

16.3.2 DUALITY IN LINEAR PROGRAMMING

We have appreciated the role of LP duality in Section 2.4, where we have dis-
cussed the mathematics of arbitrage. LP duality can be derived from first prin-
ciples of convex analysis,13 but it may be preferable to cast it within the more
general nonlinear framework and apply the concepts of Section 16.1.4.

Let us consider an LP problem (P1) in the following canonical form:

(P1) min cTx

s.t. Ax ≥ b.

If we dualize the inequality constraints, we obtain the dual problem

max
µ≥0

{
min
x

[
cTx + µT(b−Ax)

]}
= max
µ≥0

{
µTb + min

x

(
cT− µTA

)
x
}
.

13The key concepts are separation theorems and Farkas’ lemma.
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However, x is unrestricted in sign, so the inner minimization problem with re-
spect to x will take only two possible values, −∞ or 0; the latter case occurs
when all of the coefficients multiplying the primal variables are zero. Since we
want to maximize the dual function, we should choose the dual variables µ such
that

cT− µTA = 0.

Then, the dual problem (D1) turns out to be

(D1) max bTµ

s.t. ATµ = c,

µ ≥ 0.

We observe that the dual problem is still an LP problem, resulting from:

1. The exchange of b with c

2. The transposition of A

3. A change in the sense of the objective

Using the same reasoning, we may build the dual of an arbitrary LP problem.14

Note, in particular, that dual variables associated with equality constraints will
be unrestricted in sign. We may also observe that the dual of the dual is the
primal. Hence, by flipping problems (P1) and (D1) a bit, we see that the primal
problem

(P2) min cTx

s.t. Ax = b,

x ≥ 0

corresponds to the dual

(D2) min bTµ

s.t. ATµ ≤ c.

In the LP case, strong duality applies and, since there is no duality gap, if both
primal and dual problems have a finite optimum, we have

cTx∗ = bTµ∗. (16.26)

However, other cases are possible, assuming a primal minimization problem:

The primal is unbounded below, and the dual is infeasible
The dual is unbounded above, and the primal is infeasible
Both problems are infeasible

14See Section S2.2.
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In fact, in Section 2.4, we relied on these properties to find conditions ensuring
absence of arbitrage opportunities. The trick was based on setting up an LP
problem with a trivial objective function identically zero, finding conditions
under which it was feasible or not, and drawing a conclusion about the dual.

Another interesting observation is that the optimality condition for the pri-
mal LP, i.e., non-negativity of the reduced costs, boils down to dual feasibility.
To see this, observe that, if the primal and the dual are both feasible, we may
rewrite Eq. (16.26) using Eq. (16.20):

cT
BA−1

B b =
(
µ∗
)T

b,

which implies (for the optimal basis)(
µ∗
)T

= cT
BA−1

B .

Hence, Eq. (16.22) becomes (for nonbasic variables)

ĉT
N = cT

N −
(
µ∗
)T

AN .

Furthermore, the reduced costs for basic variables are zero, so, from the non-
negativity condition of reduced costs, we obtain the condition

cT− µTA ≥ 0,

which is just feasibility in problem (D2).
Apart from theoretical properties, LP duality has a deep computational

value.

Rather than solving the primal problem, we may apply the simplex algo-
rithm to the dual. By doing so, we obtain the dual simplex algorithm.
In fact, this is the default option in several software packages, as this is
often faster than the primal simplex.
Another interesting observation is that, if we solve an LP problem and
add a constraint that is violated by the optimal solution, we lose primal
feasibility. Hence, if we want to solve the problem with the additional
constraint by primal simplex, we should start again from Phase I. How-
ever, it turns out that the previous optimal solution is still dual feasible
and, if we apply dual simplex, we may warm-start directly with phase II.
As we shall see later, this is what we do in branch-and-bound methods, in
order to cut a noninteger optimal solution of the LP relaxation of a MILP
model.
Primal and dual algorithms may be merged into primal-dual algorithms.
It can be shown that if we have a primal feasible solution x∗ and a dual
feasible solution µ∗, which also satisfy the complementary slackness con-
dition [see Eq. (16.9)], then they are optimal for the primal and the dual
LP, respectively. This is used in the primal-dual interior-point algorithm
of the next section.
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16.3.3 INTERIOR-POINT METHODS: PRIMAL-DUAL BARRIER
METHOD FOR LP

Interior-point methods, unlike the simplex method, move inside the feasible re-
gion and approach the optimal solution on its boundary by decreasing a barrier
function. They mix different ideas based on Lagrangian methods, duality the-
ory, and penalty functions. Actually, there are plenty of variations of the theme,
which are very well treated in [6]. Here, we describe a primal-dual version,
following the treatment in [23].

Let us consider a primal problem and its transformation to standard form:

max cTx

s.t. Ax ≤ b,

x ≥ 0

⇒
max cTx

s.t. Ax + w = b,

x,w ≥ 0.

Here, we introduce slack variables w ≥ 0 in order to characterize the feasible
set in terms of a system of linear equations, which we are good at dealing with
numerically, and a non-negativity constraint stating that the solution must lie in
the positive orthant (which is a cone). By a similar token, we consider the dual
and its transformation to standard form:

min bTy

s.t. ATy ≥ c,

y ≥ 0

⇒
min bTy

s.t. ATy − z = c,

y, z ≥ 0.

The vector z collects the slack variables. We also note that the dual variables
y correspond to Lagrange multipliers of the constraints of the primal, and vice
versa. Multipliers are restricted in sign, as the original problem includes in-
equality constraints.

Let us consider the primal problem in standard form. We can get rid of
the non-negativity constraints by using an interior penalty function based on a
logarithmic barrier:

max cTx + σ
∑
j

log xj + σ
∑
i

logwi

s.t. Ax + w = b.

Then, equality constraints can be dualized by Lagrange multipliers y, yielding
the Lagrangian function

L(x,w,y) = cTx + σ
∑
j

log xj + σ
∑
i

logwi + yT(b−Ax−w).

Now, we can apply the first-order stationarity conditions on the Lagrangian:

∂L
∂xj

= cj + σ
1

xj
−
∑
i

yiaij = 0, ∀j
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∂L
∂wi

= σ
1

wi
− yi = 0, ∀i

∂L
∂yi

= bi −
∑
j

aijxj − wi = 0, ∀i.

These optimality conditions may be rewritten in a compact matrix form,

ATy − σX−1i = c

y = σW−1i

Ax + w = b,

where we introduce a diagonal matrix X and use the familiar vector i:

X =


x1

x2

. . .
xn

, i =


1

1
...
1


To make the meaning of the optimality conditions clearer, let us introduce the
auxiliary vector

z = σX−1i,

and let us rearrange the conditions as follows:

Ax + w = b, (16.27)

ATy − z = c, (16.28)
XZi = σi, (16.29)

YWi = σi. (16.30)

These equations have a nice interpretation in terms of:

1. Primal feasibility, Eq. (16.27)
2. Dual feasibility, Eq. (16.28)
3. Complementary slackness (in the limit, for a penalty coefficient σ → 0)

for the dual, Eq. (16.29), and the primal, Eq. (16.30)

For σ > 0, we have a set of nonlinear equations,

F(ξ) = 0,

where

ξ =


x

y

w

z

 ,
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which may be tackled by numerical iterative methods, like Newton method for
nonlinear equations. In principle, by solving this system of nonlinear equations
for different values of σ, we generate a path (xσ,yσ,wσ, zσ). This path is
called the central path and, for σ → 0, it leads to the optimal solution of the
original LP. There are different approaches to manage the interplay between the
Newton’s steps and the adjustment of the penalty parameter σ.

Interior-point methods feature a polynomial complexity, which is an ad-
vantage over the older simplex method. However, they are less suited to warm
start after adding a constraint, which is relevant, as we shall see, for branch-
and-bound methods.

16.4 Conic duality and interior-point methods

Both LP duality and interior-point algorithms can be generalized to deal with
conic optimization problems. In this section, we give a glimpse of how this is
accomplished, in order to illustrate the beauty and elegance of computational
optimization. We refrain from giving algorithmic details, which are better left
to the specialized literature.

We have already pointed out, in Section 15.5, that we may frame an LP
model in standard form within the more general framework of conic program-
ming. Let us express a primal conic programming problem as follows:

(P ) min 〈c,x〉 (16.31)
s.t. b−A(x) ∈ L,

x ∈ K,

where c ∈ V , b ∈ W , V and W are finite-dimensional linear spaces equipped
with an inner product, K ⊆ V and L ⊆ W are closed convex cones, and
A : V −→ W is a linear operator. This abstract framework includes LP as well
as SOCP and SDP problems, which have wide applicability, including some
stochastic and robust optimization problems, as we have shown in Chapter 15.

In the next section, we show how LP duality may be generalized to find
the dual of problem (16.31). Then, we show how logarithmic barrier functions
may be devised for the second-order cone and the cone of positive semidefinite
matrices, paving the way to interior-point methods for SOCP and SDP.

16.4.1 CONIC DUALITY

To build the dual of the primal problem (P ) defined in Eq. (16.31), we need a
couple of ingredients:

Dual cones. We have introduced dual cones in Section 15.5.1.1. We may find
the dual cones L∗ and K∗, corresponding to L and K, respectively. In
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particular, we recall the following pairs of dual cones:

[Rn]∗ = {0}, [Rn+]∗ = Rn+, [Sn+]∗ = Sn+,

i.e., the dual of the whole space Rn is the origin, and vice versa, and the
positive orthant and the cone of symmetric, positive semidefinite matrices
are self-dual.

Adjoint operator. Given a linear operator A : V −→ W , we define its adjoint
operator AT as a linear operator AT : W −→ V such that

〈y, A(x)〉W = 〈AT(y),x〉V ,

for every x ∈ V and y ∈W . Note that we use the inner products in spaces
W and V , which need not be the same.

The idea of an adjoint operator may sound quite mysterious, but we may regard
it as a generalization of the matrix transposition that is involved in LP duality.
We should interpret matrices as linear mappings between the familiar vector
spaces Rm and Rn, in which case the adjoint boils down to the familiar trans-
pose of a matrix. To see this, consider a matrix A ∈ Rm×n as a linear operator
mapping a vector x ∈ Rn into the vector y = Ax ∈ Rm, and the standard inner
products in Rm and Rn,

〈xa,xb〉Rn
.
= xT

axb =

n∑
i=1

xaixbi,

〈ya,yb〉Rm
.
= yT

ayb =

m∑
j=1

yajybj .

Then, it is easy to see that the adjoint operator of A is the transpose AT:

〈y,Ax〉Rm = yTAx = xTATy = 〈x,ATy〉Rn .

Given all of the above, we can define a conic dual problem, and the following
conic duality theorem can be proven.

THEOREM 16.3 (Conic duality) Consider the primal conic optimization prob-
lem (P ) of Eq. (16.31) and its conic dual,

(D) max 〈b,y〉
s.t. AT(y)− c ∈ K∗,

y ∈ L∗.

If the primal problem (P ) is feasible, has a finite value γ, and has an interior
(Slater) point x̂, then the dual problem (D) is also feasible and has the same
value γ.
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The Slater constraint qualification condition is necessary, in general, to rule
out some pathological cases resulting in duality gaps, but it may be a stronger
condition than necessary. For instance, it is not required in LP duality, but it is
essential in SDP duality.

Now, let us see how the conic duality theorem generalizes LP duality:

If the primal is a minimization problem, the dual is a maximization prob-
lem.
The matrix A is transposed and there is a swap between the cost vector c
and the right-hand side vector b.
If we have inequality constraints in the primal (L = Rn+), the dual vari-
ables y are restricted in sign (L∗ = Rn+).
If we have equality constraints in the primal (L = {0}), the dual variables
y are unrestricted in sign (L∗ = Rn).
If the primal variables x are restricted in sign (K = Rn+), we have in-
equality constraints in the dual (L∗ = Rn+).
If the primal variables x are not restricted in sign (K = Rn), we have
equality constraints in the dual (L∗ = {0}).

As an illustration, let us see how conic duality may be applied to SDP
problems. Consider the primal SDP problem in standard form:

max C •X (16.32)
s.t. A1 •X = b1,

...
Am •X = bm,

X � 0,

where we interpret the matrix inner product • as in Section 15.5.1.2.
Strong duality applies to SDP, since the cone Sn+ of semidefinite positive

matrices has an interior, the open cone Sn++ of positive definite matrices. To
be precise, there must be a symmetric positive definite matrix X̂ such that the
equality constraints hold, A(X̂) = b, where b = [b1, . . . , bm]T, and A(·) col-
lects the matrices Ai and maps Sn+ to Rm.

We also have to find the adjoint operator corresponding to the linear oper-
ator implicit in the equality constraints of the primal, which may be written as
the following map from Sn+ to Rm:

A(X) =


A1 •X

A2 •X
...

Am •X

 =


b1

b2
...
bm

 ∈ Rm.

In order to find the required adjoint operator, we may start from the familiar
inner product in Rm. So, let us introduce a vector y ∈ Rm and proceed as
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follows:

〈y, A(X)〉Rm = 〈y,b〉Rm =

m∑
i=1

yibi =

m∑
i=1

yi(Ai •X)

=

(
m∑
i=1

yiAi

)
•X =

〈 m∑
i=1

yiAi,X
〉
Sn+
,

where we have used linearity of the inner product. We observe that the adjoint
operator AT : Rm → Sn+ is the matrix

∑
i=1 yiAi. Thus, the dual of problem

(16.32) is:

min bTy

s.t.
m∑
i=1

yiAi −C � 0, y ∈ Rm,

which is an SDP written in linear matrix inequality form. Thus, we see that the
two SDP forms introduced in Section 15.5.3 are actually equivalent.

16.4.2 INTERIOR-POINT METHODS FOR SOCP AND SDP

If we look at statements of SOCP and SDP problems, they are basically LP
problems with complicating conic constraints. In SOCP, we have

‖x‖2≤ y, (16.33)

where x ∈ Rn, and in SDP we have

X � 0, (16.34)

where X ∈ Sn. To devise primal-dual interior-point methods, a barrier function
is needed to relax these constraints. It turns out that logarithmic barriers are
quite convenient.

For the second-order cone, the following barrier function can be used:

B(x, y) = log

(
y2 −

n∑
i=1

x2
i

)
.

For SDP, we observe that the determinant of a positive definite matrix is strictly
positive, and it goes to zero for a singular matrix, which is on the boundary of
the cone Sn+. Hence, just like the case of non-negativity constraints in LP, we
might consider the logarithmic barrier

log
(

det(X)
)
.

At first sight, this is a weird and pretty bad choice, as computing the determinant
of a large matrix may be cumbersome. However, we do not really need to
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evaluate the determinant. What we actually need, is to apply the Newton method
for nonlinear equations, in order to follow the central path, just like in the LP
case. To this aim, we need derivatives of the logarithmic barrier function. We
recall that, for a non-negative scalar variable x ∈ R+, we have

d log x

dx
=

1

x
.

It turns out that a surprisingly similar formula applies to the log-barrier for
positive semidefinite matrices:

d log
(

det(X)
)

dX
= X−1,

i.e., we need the inverse of the matrix X. This is not so difficult to prove, but it
requires the definition of a matrix derivative, which we wish to skip. The essen-
tial message is that the same machinery that we use in interior-point methods
for LP can be extended to SOCP and SDP models.

16.5 Branch-and-bound methods for integer
programming

We have already pointed out, in Section 15.4, that the MILP model

P (S) min cTx + dTy (16.35)
s.t. Ax + Ey ≤ b,

x ∈ Rn1
+ , y ∈ Zn2

+ .

is not associated with any easy-to-check optimality condition. A possible solu-
tion approach relies on some form of enumeration of the feasible solutions, by
successive partitions of the feasible region S, which may be explored by a tree
search procedure. The idea is more general and can be applied to continuous
global optimization as well. To be more specific, let us consider a partition of
the feasible set S, i.e., a collection of subsets Sk ⊂ S, k = 1, . . . ,m, such that:

1. Subsets are mutually disjoint,

Si ∩ Sj = ∅, i 6= j.

2. Subsets are collectively exhaustive,

m⋃
k=1

Sk = S.

We associate a subproblem P (Sk) with each subset of S. In practice, the par-
tition is usually created by branching on an integer decision variable. For a
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x  = 01 x  = 11

x  = 12x  = 02 x  = 02 x  = 12

x  = 13x  = 03

FIGURE 16.7 Search tree for a pure binary LP model.

binary decision variable xj ∈ {0, 1}, we may split the feasible set S into two
subsets, where we set xj = 0 and xj = 1, respectively. In the case of a pure
binary LP model like the knapsack problem of Example 15.8, where all vari-
ables are either 0 or 1, it is easy to see that, by successive partitions, we may
explore the whole feasible set by a search tree like the one in Fig. 16.7. To
branch on a general integer variable xj ∈ Z+ = {0, 1, 2, . . .}, we may choose
a positive integer number q and generate two subsets by adding the constraints
xj ≤ q and xj ≥ q + 1, respectively. Note that, by adding these constraints, we
are cutting away a strip of the feasible set, which does not contain any feasible
integer solution. In an MILP problem, there is no need to branch on continuous
variables, as they do not create any difficulty.15 By branching, we generate a
tree of subproblems. We need not generate exactly two child subproblems per
node, but this is the most common branching choice.

A search tree generated in this way, barring some pathological cases with an
unbounded feasible set, allows us to explore the whole feasible set S systemat-
ically, but it has exponential complexity. For an LP problem involving n binary
decision variables, we may create up to 2n subproblems, even though some of
them will turn out to be infeasible. To avoid excessive branching, we adopt a
bounding strategy to eliminate subproblems. Let us assume that we know a
feasible (not necessarily optimal) solution x◦. In a minimization problem

min
x∈S

f(x),

the objective value f
(
x◦
)

is clearly an upper bound on the optimal value f∗,
as an optimal solution x∗ cannot be worse than the feasible solution x◦. Let
us also assume that, for each subproblem P (Sk), we can find a lower bound
β(Sk) such that

β(Sk) ≤ min
x∈Sk

f(x).

15See, e.g., [13] for branching strategies in continuous global optimization.
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Any subset with a bound that is not smaller than the upper bound is not worth
exploring, as we have a guarantee that we will not improve the solution x◦ by
solving the subproblem corresponding to that subset. Formally, if

β(Sk) ≥ f
(
x◦
)
,

then the subproblem P (Sk) may be eliminated from further consideration. This
corresponds to pruning a branch of the search tree, with a corresponding com-
putational saving. For a maximization problem, the roles of lower and upper
bounds are swapped.

One way to find lower bounds is to relax the feasible set, since

S ⊆ T ⇒ min
x∈S

f(x) ≥ min
x∈T

f(x).

For an MILP model like problem (16.35), a lower bound is easily found by
taking its continuous (LP) relaxation:

P (S) min cTx + dTy

s.t. Ax + Ey ≤ b,[
x

y

]
∈ Rn1+n2

+ ,

characterized by a relaxed feasible set S, which is easily solved by the simplex
or the primal-dual barrier methods. Commercial branch-and-bound software for
MILP models is based on such LP relaxations. The relaxed problem at the root
of the search tree will (usually) yield a noninteger solution, i.e., a solution where
the integrality requirement is violated for some integer variable (otherwise, we
already have an optimal solution and stop immediately). A variable that does
not meet the integrality requirement is selected and branched on, in order to
generate two child subproblems, and the process is repeated recursively. When
we branch, we add constraints to each subproblem and generate a finer and finer
partition, consisting of smaller and smaller subsets. This has two effects:

1. Lower bounds tend to increase when we proceed down the search tree.
2. Sooner or later (ruling out pathologies) an integer solution will be found,

providing us with an incumbent solution and an upper bound.

The incumbent solution is the current best integer solution, not necessarily an
optimal one. When solving a subproblem on the search tree, sometimes we find
a better incumbent, which helps pruning the tree; in other cases, we eliminate
a subproblem, because it is infeasible or cannot improve the incumbent. Oth-
erwise, we choose a branching variable and add the child nodes to the tree of
open problems.

Here is an outline of a possible branch-and-bound strategy.

1. Initialization. The list of open subproblems is initialized to P (S); the
value of the incumbent solution ν◦ is set to +∞. At each step, the incum-
bent solution is the best integer solution found so far.
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2. Selecting a candidate subproblem. If the list of open subproblems is
empty, stop: The incumbent solution x◦, if any has been found, is re-
ported as the optimal solution x∗, along with its value; if ν◦ = +∞, the
original problem was infeasible. Otherwise, select a subproblem P (Sk)
from the list.

3. Bounding. Compute a lower bound β(Sk) on ν[P (Sk)] by solving a re-
laxed problem P (Sk). Let xk be the optimal solution of the relaxed sub-
problem.

4. Prune by optimality. If xk is feasible, prune subproblem P (Sk). Further-
more, if f(xk) < ν◦, update the incumbent solution x◦ and its value ν◦.
Go to Step 2.

5. Prune by infeasibility. If the relaxed subproblem P (Sk) is infeasible,
eliminate P (Sk) from further consideration. Go to Step 2.

6. Prune by bound. If β(Sk) ≥ ν◦, eliminate subproblem P (Sk) and go to
Step 2.

7. Branching. Replace P (Sk) in the list of open subproblems with a list of
child subproblems P (Sk1), P (Sk2),. . ., P (Skq), obtained by partitioning
Sk; go to Step 2.

This is just the statement of a principle, and we have to pay attention to
many more issues to come up with a working algorithms. Clearly, efficiency is
obtained if (in the case of minimization):

1. We obtain tight upper bounds, possibly by invoking high quality heuris-
tics trying to find a good integer solution from a noninteger (but close to
feasible) solution.

2. We obtain tight lower bounds by strong model formulations and cut gen-
eration, as we discussed in Section 15.4.2.

Furthermore, the exact way in which we select a branching variable and select
the next subproblem to be solved may have a significant impact on performance.
We may strive for feasibility, in which case we explore subproblems where the
number of noninteger variables is small, or optimality, in which case we give
priority to promising lower bounds. Another issue is how we solve the LP
models at each node of the tree. This is a choice under user control, and a
possible strategy is to use an interior-point method for the root problem, then
cross over to a basic feasible solution, and use dual simplex at each node to take
advantage of warm start.

16.5.1 A MATHEURISTIC APPROACH: FIX-AND-RELAX

Despite the efficiency of branch-and-bound implementations, it may be the case
that we cannot find a provably optimal solution within a reasonable amount
of time. We may resort to problem-specific heuristic approaches, or possibly
adapt one of the metaheuristic principles that we have described for continuous
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nonconvex optimization. An alternative, however, is to use MILP modeling
and solution methods to devise high-quality heuristics, without giving up the
power of mathematical programming. Such approaches are generically labeled
as matheuristics.

The simplest idea is to relax the pruning condition in the exact branch-and-
bound method. As we have pointed out, we may prune a branch of the search
tree, if LB ≥ UB, when dealing with a minimization problem. This condition
may be relaxed to

LB ≥ UB(1− ε),

where ε ∈ (0, 1) is a suboptimality tolerance. By doing so, we look for solutions
improving the incumbent by a minimal relative amount ε. For instance, if we
have a feasible solution with UB = 100 and set ε = 0.05, we only explore
subproblems (subtrees) that could deliver a solution with cost at most 95. If we
stop the search process with the incumbent solution of cost 100, we cannot be
sure that we have not missed a solution with a cost of, say, 97. However, we
know that the percentage deviation from the optimal value is at most ε .

An alternative approach is the fix-and-relax heuristic, originally proposed
in [10]. Consider an MILP where variables xj in set V are required to be bi-
nary, and the remaining variables are continuous. Then, partition the set V into
subsets Vi, i = 1, . . . , k, and solve a sequence of k problems, where problem
r = 1, . . . , k is subject to the following requirements:

xj = x̂j , ∀j ∈ Vi, i = 1, . . . , r − 1 (for r > 1)

xj ∈ {0, 1}, ∀j ∈ Vr
xj ∈ [0, 1], ∀j ∈ Vi, i = r + 1, . . . , k (for r < k)

In practice, we are performing a restricted branch-and-bound search with re-
spect to binary variables in subset Vr, where the other variables are either frozen
to a given value x̂j or relaxed to the interval [0, 1]. The way in which variables
are partitioned is problem-dependent. We may devise a natural hierarchy of
decision variables, as is the case when they refer to successive time periods.

16.6 Optimization software

There is an abundance of both commercial and free optimization software, and
there is no one-fits-all choice. Here, we do not aim at an exhaustive overview,
which would get out-of-date very soon. We just want to give some clues about
the different tools that we may look for, with a short list that is admittedly very
biased by this author’s personal taste and experience, and as such should be
taken with care.

Optimization software come in many guises and building blocks, including:

The solver itself, i.e., the numerical libraries that solve a specific problem
instance
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An interface through an imperative programming language
An interface through a non-imperative algebraic language
Additional interfaces, e.g., modules offering connectivity to an external
database, or a graphical user interface (GUI) to help the user

As it will be clear from the following, all of these elements are mixed and there
is no sharp boundary.

16.6.1 SOLVERS

There are several solvers matching the different kinds of optimization problems
that we have considered. Actually, we have libraries of solvers, and there is no
best option, as every bundle has strengths and weaknesses.

For LP and MILP problems, state-of-the-art packages feature Gurobi16

and CPLEX.17 They include simplex, interior-point, and branch-and-bound
methods, as well as some support for conic problems like QP, QCQP, and
SOCP. They are not able to cope with generic nonlinear programming
problems.
Nonlinear programming libraries, like Minos and CONOPT, are usually
also able to deal with LP, but not integer programming.
SDP solvers are available, but they are not yet industrial strength libraries,
but rather the result of academic research efforts. The same applies to
nonlinear integer programming and global optimization.
Numerical computing environments, like MATLAB, offer optimization
libraries. The MATLAB suite includes an Optimization Toolbox, which
is able to deal with most problems we have described, using a mix of
gradient-based and derivative-free algorithms, as well as simplex and
interior-point methods. The more recent Global Optimization Toolbox
includes multiple start, pattern search, simulated annealing, genetic al-
gorithms, and PSO. As a general rule, the libraries within such generic
numerical computing environments are not competitive with the more
specific products, but they are a reasonable choice for problems up to
moderate size. Furthermore, the availability of a surrounding environ-
ment makes interfacing with the library rather easy and convenient.
Free libraries are also available, such as plenty of R packages. Needless to
say, they are usually not recommended for large-scale applications. Espe-
cially for large-scale MILP problems, the difference in performance be-
tween free and state-of-the-art commercial code can be impressive. How-
ever, there are problems for which free software is quite adequate.

16See http://www.gurobi.com/
17See https://www-01.ibm.com/software/commerce/optimization/
cplex-optimizer/index.html

http://www.gurobi.com/
https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/index.html
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16.6.2 INTERFACING THROUGH IMPERATIVE PROGRAMMING
LANGUAGES

Old numerical libraries came in the form of subroutines that could be called by
generic scientific programming languages like FORTRAN. These languages are
classified as imperative, since a program consists of a sequence of instructions
to be executed in a precise order.

Using these old-style interfaces was awkward, time-consuming, and error-
prone. To understand why, imagine specifying the matrix A of a large-scale LP
model. We have to associate variables with columns and constraints with rows,
and figure out in which position a certain coefficient should be written. Fur-
thermore, the matrix should be stored as a sparse matrix, since most elements
are zero. Writing down the required code in Fortran or C quickly becomes a
nightmare, debugging is difficult, and model maintenance when additional re-
quirements pop up is overly painful. The interface between solvers like Gurobi
or CPLEX with environments like MATLAB and R is just a bit better, and it is
recommended only for problems with a simple and regular structure.

Luckily, the development of modern object oriented programming has im-
proved things considerably. They provide high-level object classes like deci-
sion variables, constraints, expressions, and models, with plenty of convenient
attributes and methods. Class libraries are available within the Microsoft .NET
environment (in C++, Visual Basic, etc.). Gurobi also has a very nice inter-
face with Python, which makes data manipulation quite convenient, possibly
using pandas, and allows the user to develop customized solution procedures,
possibly based on the solution of a sequence of related subproblems. CPLEX
supports this kind of approach, too.

16.6.3 INTERFACING THROUGH NON-IMPERATIVE
ALGEBRAIC LANGUAGES

When we state an optimization problem, we declare things, like constraints
and objective functions, without specifying a solution procedure. An object-
oriented interface in, say, Python allows to describe a model in this vein, but a
more radical approach is based on purely declarative algebraic languages. In an
algebraic language, we define sets, parameters, variables, constraints, as well
as the objective function, without any reference to a solution procedure. Even
better, we may separate the model structure from a specific model instance
which is obtained by associating numerical values with data.

An excellent example of the approach is AMPL,18 which offers a very pow-
erful language to manipulate data and create a wide array of optimization mod-
els. AMPL is not a solver, but a declarative language which may be interfaced
with a rich set of specific solvers, including Gurobi, CPLEX, Minos, CONOPT,
and many others. AMPL also includes an imperative language to build scripts.

18See http://ampl.com/

http://ampl.com/
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This is useful to control solver options and to write applications in which several
models are solved in sequence.

There are some proprietary environments, like IBM OPL, which are spe-
cific to a given solver (IBM CPLEX in this case). GAMS19 is similar to AMPL,
ad it can be interfaced with a range of solvers, whereas CVX20 is a less power-
ful, but quite interesting product, since it is fully integrated within MATLAB,
making the development of full-fledged applications quite convenient. CVX
was originally meant for convex optimization, but it has been extended to cope
with integer programming as well. CVX may be used with MATLAB Opti-
mization Toolbox solvers, as well as Gurobi, and other solvers for SOCP and
SDP problems.

16.6.4 ADDITIONAL INTERFACES

In order to develop an industrial application, we need to be able to instantiate
an optimization model with data. Thus, we need a way to connect with popu-
lar relational databases or, at the very least, with an Excel spreadsheet. By the
same token, the model solution must be saved in a suitable form somewhere.
AMPL, for instance, offers database connectivity for reading and writing rela-
tional database files. The Gurobi Python interface can also take advantage of
data manipulation libraries like pandas.

Especially in finance, we have to rely on external databases that are ac-
cessed through the web. R and Python offer libraries to read from external
websites, like Yahoo’s Finance. MATLAB offers a specific Datafeed Tool-
box to connect with professional financial data providers including Thomson
Reuters’s Datastream or Bloomberg. The extracted data can be used to populate
an optimization model, among other things.

We may also consider interfaces toward the end user, in the form of a GUI
(graphical user interface). MATLAB and Microsoft .NET make the develop-
ment of graphical user interfaces quite convenient. The MATLAB Optimization
Toolbox also offers a simple GUI, but this is meant more as an experimentation
tool than an application interface. IBM also offers the CPLEX Development
Studio, aimed at making model management and experimentation with models
convenient. At the time of writing, other vendors are offering (or developing)
similar user interfaces.

Problems

16.1 Prove that the dual function of Eq. (16.12) is concave.

19See https://www.gams.com/
20See http://cvxr.com/

https://www.gams.com/
http://cvxr.com/
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16.2 Consider the quadratic programming problem

min x2
1 + x2

2

s.t. x1 + x2 ≥ 4,

x1, x2 ≥ 0.

Solve the problem using KKT conditions.
Observe that, if we could get rid of the first inequality, we could decom-
pose the problem into two independent minimizations with respect to each
variable. Hence, dualize the coupling constraint, find the dual function,
and check that the maximum of the dual function is the same as the opti-
mal value of the primal.

16.3 Consider the discrete optimization problem

min cTx

s.t. aTx ≤ b,
x ∈ S =

{
x1,x2, . . . ,xm

}
.

The feasible set consists of a finite collection ofm points in Rn, and we have one
inequality constraint. Dualize the inequality and show that the dual function is a
piecewise linear, nondifferentiable concave function. Where is the dual function
not differentiable?

Further reading
An extensive coverage of linear programming is offered by [21].
A classical account of nonlinear programming methods can be found in
[1]. For an exhaustive treatment of modern convex optimization, the stan-
dard reference is [6]. For a somewhat easier treatment you may have a
look at [7].
A nice treatment of semidefinite programming can also be found in [12].
Mathematical approaches to global optimization are covered, e.g., in [13].
A useful reference for genetic algorithms is [16]. For the original refer-
ences on particle swarm optimization, see [11] and [18]. Several variants
of swarm optimization have been proposed; see, e.g., [24] for the firefly
variant and the use of Levy flights, or [20] for the quantum variant.
An extensive treatment of integer programming can be found in [22].
For more about optimization model building and solving, with specific
reference to financial applications, see [9].
A concrete example of heuristic solution algorithms applied to a financial
problem is provided in [8].
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We did not consider at all any specific algorithm to solve optimization
models under uncertainty.

– For stochastic programming methods, the reader may refer to [5] and
[15].

– Numerical dynamic programming is discussed in [14] and [17], whereas
more recent approximate DP is covered by [19]. You may also refer to
[3, 4].

– Robust optimization is dealt with in [2].
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σ-field, 475

ABS, see asset-backed security
absolute loss, 88
acceptability functional, 301
accrued interest, 230, 233
active constraint, 711
active portfolio management, 49,

358
actuarially fair, 282
adapted process, 447
adjustable robust optimization,

688
admissible policy, 677
affine

function, 622
independence, 702
transformation, 290

affine policy, 684
affine term structure, 585
algebra (of sets), 430, 470
alpha, 354
ambiguity, 69

distributional, 281
American-style option, 507
anchoring, 401
annual percentage rate, 150
annuity, 177
APR, see annual percentage rate
APT, see arbitrage pricing the-

ory
arbitrage

dynamic, 105
instantaneous, 105
opportunity, 50, 52, 125,
155, 468, 722, 725
static, 105
strategy, 104

arbitrage pricing theory, 388

arbitrageur, 52
artificial variable, 723
ask price, 51
asset, 13, 15

exchange-traded vs. over-
the-counter., 14
liquid vs. illiquid, 14
marketable, 20
real vs. financial, 14
tradable, 20
tradable vs. nontradable, 14
valuation vs. pricing, 102

asset–liability management, 50,
69, 262, 263, 266, 417,
668

asset-backed security, 20, 240
attainable

payoff, 128
portfolio, 327
set, 327

augmented Lagrangians, 712
average

arithmetic, 7
geometric, 7

backwardation, 490
balance sheet, 15
bank

commercial, 48
investment, 48
retail, 48

bank discount, 234
banker’s acceptance, 239
barrier function, 706, 726
barrier option, 555
basic

solution, 721
variable, 721

basis point, 160, 238
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price value, 257
basis risk, 494
Bayes’ theorem, 406
Bayesian estimation

normal distribution, 408
Bayesian statistics, 404
behavioral factor, 365
Bellman

equation, 677
principle, 678

bequest (utility from), 79
Bermudan-style option, 507
beta

distribution, 407
function, 407

beta-neutral portfolio, 367, 370
bias–variance tradeoff, 356, 606
bid price, 51
bid–ask spread, 5, 29, 51, 108,

146, 234
bid–offer spread, see bid–ask spread,

51
big-M constraint, 633
binary option, 545
binomial distribution, 407, 527
binomial model, 112, 519
bisection method, 554
Black Monday (of 1987), 36,

563
Black’s formula, 558
Black’s model, 562, 602
Black–Litterman estimator, 385
Black–Scholes–Merton

equation, 533
formula, 531, 534

bond, 24, 109, 584
callable, 44, 240
clean price, 233
convertible, 43, 237
convexity, 99, 587
coupon bearing, 25
coupon rate, 25
dirty price, 233
duration, 587, 610
face value, 25

floating-rate, 26, 188, 221,
232

duration, 254
futures, 239, 265
high yield, 233
indenture, 26, 232
inflation-indexed, 163, 232
junk, 233
maturity, 25
nominal value, 25
off-the-run, 22
on-the-run, 21
option, 593
par value, 25
price, 165
rating, 233
structured, 44
theta, 587
trading at discount, 167
trading at par, 167
trading at premium, 167
zero-coupon, 25, 83

book value, 16, 19
book-to-market ratio, 16, 365
bootstrapping (interest rates), 93,

169
box constraint, 619
box uncertainty, 687
branch-and-bound method, 624,

715
broker, 51
BSM, see Black–Scholes–Merton
bundling, 45, 119
butterfly spread, 110
buying on margin, 55

càdlàg function, 426
CAL, see capital allocation line
calibration, 128
call option, 24
canonical form, 723
capital allocation, 320
capital allocation line, 320, 323,

336, 376, 630, 631
capital asset pricing model, 191,

337, 375
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capital budgeting, 641
capital gain, 22
capital market, 4, 232
capital market line, 376
capital structure, 23
caplet, 238, 518
CAPM, see capital asset pric-

ing model
CARA, see constant absolute risk

aversion
cardinality constraint, 132, 329,

634
cash flow

matching, 262
unbundling, 45

cash-and-carry, 483
CDF, see cumulative probabil-

ity function
CDO, see collateralized debt obli-

gation
CDS, see credit default swap
central path, 728
certainty effect, 402
certainty equivalent, 290
certificate of deposit, 239
chain rule, 258, 447, 452
chance constraint, 284, 652

individual, 656
joint, 284, 656

chance-constrained optimization,
656

change of measure, 541
cheapest-to-deliver bond, 239,

265
chi-square

distribution
noncentral, 594

noncentral, 588, 594
CIR, see Cox–Ingersoll–Ross
clearinghouse, 35
CML, see capital market line
CMS, see swap, constant ma-

turity
coefficient of variation, 285
collateral, 26, 36, 240
collateralized debt obligation, 241

common risk factor, 353
complementary slackness, 711,

725
complete market, 115
compounding, 150

daily, 152
quarterly, 150
semiannual, 150

computational complexity, 719
concave

optimization problem, 623
function, 289, 340, 621, 714
problem, 720

conditional
distribution, 423
expectation, 432, 540
probability, 433

conditional value-at-risk, 304,
308, see also value-at-risk,
conditional, 659

cone, 130, 643
closed, 645

confidence interval, 404, 465
confidence level, 87, 404
conic

combination, 645, 720
duality, 654
hull, 645
optimization, 643, 728
optimization problem, 644

consol bond, 180
constant absolute risk aversion,

294
constant relative risk aversion,

294
constraint qualification, 710
consumption–saving problem, 69,

77
contango, 489
contingent claim, 118
continuation

region, 516
value, 515

continuous compounding, 151
continuous relaxation, 638, 734



746 INDEX

continuous-time stochastic pro-
cess, 420

contrarian strategy, 55, 692
control variable, 76
convenience yield, 490
conversion factor, 239
convex

combination, 289
function, 252, 460, 620

polyhedral, 620
strictly, 620

hull, 638, 702
optimization problem, 622
problem, 720
set, 132, 619

convexity, 184, 301, 619
bond, 84, 266
correction, 219
dollar, 267
of a bond, 185

cornering, 239
corporate finance, 23
correlation, 96

instantaneous, 461
correlation risk, 19, 241, 242
cost-of-carry, 557
counterparty risk, 35
counting process, 426
coupon stripping, 45
cover cut, 642
coverage, 404
covered position, 520
Cox–Ingersoll–Ross model, 461,

588, 610
credit default swap, 233, 241
credit rating, 418, 424
credit risk, 146
cross rate, 29
cross-currency option, 559
cross-hedging, 95, 495
cross-sectional data, 421
crossover strategy, 719
CRR lattice calibration, 524
CRRA, see constant relative risk

aversion

cumulative probability function,
421

currency
base, 28
quoted, 28

currency risk, 171
curse of dimensionality, 680
CV@R, see conditional value-

at-risk

DARA, see decreasing absolute
risk aversion

data-driven optimization, 687
day count, 209, 231
dealer, 51
debt restructuring, 26
debtor, 241
decision

adapted to a filtration, 476
nonanticipative, 476

decision problem
multistage, 277
static, 277

decision variable, 70, 76, 618
semicontinuous, 633

decreasing absolute risk aver-
sion, 294

decreasing relative risk aversion,
294

default, 307
default correlation, 241
default risk, 26, 46, 172, 233
delta, 84
delta-hedging, 532, 538, 547,

566
delta-neutral portfolio, 548, 565
deposit- vs. non-deposit taking

intermediary, 48
derivative, 29
diagonal model, 353
difference equation, 418
differential (of a stochastic pro-

cess), 441
differential equation, 418
digital option, 545
dimensionality, 353
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discount curve, 169
discount factor, 154

forward, 199
subjective, 79

discounted price process, 118
discounting, 154
discrete-event stochastic process,

420, 426
discrete-time stochastic process,

420
discretization error, 445, 464
distribution

beta, 407
binomial, 407
cumulative function, 534
geometric, 436

distributional ambiguity, 694
disturbance, 76
diversification, 301
dividend, 22

policy, 23
divisor, 61
DJIA, see Dow Jones Industrial

Average
dollar duration, 255, 265
dollar-neutral portfolio, 368, 370
dominant strategy, 121
Dow Jones Industrial Average,

60
down-and-out put, 555
DP, see dynamic programming
drift, 458, 459

coefficient, 445
function, 457

DRRA, see decreasing relative
risk aversion, see increas-
ing relative risk aversion

dual
cone, 647, 728
function, 713
norm, 648
problem, 134, 714
simplex algorithm, 725
variable, 713, 726

duality, 133, 647
gap, 715, 724, 730

linear programming, 124,
133, 689, 723
theory, 713

dualization (of a constraint), 713
duration, 84, 182, 248

as investment horizon, 258
analytical formula, 186
Macauley, 183
modified, 183

dynamic problem, 68
dynamic programming, 676

EAR, see effective annual rate
earnings per share, 17
effective annual rate, 151
efficient

frontier, 74, 129, 130, 319,
325, 328, 332
solution, 129, 130

efficient market hypothesis, 103,
382, 399, 423

ellipsoidal uncertainty, 687
elliptical distribution, 343
EMH, see efficient market hy-

pothesis
epigraph, 620
epoch, 3
EPS, see earnings per share
equity, 15, 263
equity tranche, 241
equivalent martingale measure,

438, 600
ETF, see exchange-traded fund,

see exchange-traded fund
Euclidean norm, 605, 632, 649
Euler discretization scheme, 464
EURIBOR, 60, 208
eurodollar, 217

futures, 216, 265
European-style option, 507
event, 469

family of, 470
field of, 470

ex-dividend date, 22
excess return, 321, 353
exchange-traded fund, 50, 634
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execution uncertainty, 116
exercise region, 516
expectation hypothesis, 199
expected shortfall, 300
expected utility, 401
exponential

distribution, 436
random variable, 425

factor analysis, 398
factor model, 80, 353

linear, 82
fat tail, 85
feasible

region, 618
set, 70, 618

Feynman–Kač theorem, 539, 583
field, 430, 470

generated by a partition, 472
filtration, 432, 447, 475

decision adapted to, 476
financial ratio, 16
firefly algorithm, 718
first-order immunization, 549
Fisher’s equation, 162
fix-and-relax, 736
fixed charge, 632
fixed leg, 220
fixed-income market, 26
fixed-mix portfolio, 692
floater, 26, 188, 232

reverse, 232
floating leg, 220
floorlet, 238, 518
foreign exchange

direct quotation, 28
indirect quotation, 28
market, 27

foreign-exchange risk, 26
FOREX, see foreign exchange
forward

contract, 31, 601
curve, 197
discount factor, 212
price, 31, 482

forward contract, 193

forward rate, 580
discretely compounded, 197

forward rate agreement, 194, 209
forward risk-neutral measure, 484,

562, 601
FRA, see forward rate agree-

ment
Frobenius product, 650
functional, 288, 299

risk, 283
vs. function, 281

fund
hedge, 50
mutual, 49

fundamental analysis, 399
fundamental factor, 365
fundamental theorem of calcu-

lus, 441
futures

eurodollar, 217
option, 559
price, 35

gain, 6, 296
additive, 120
discounted, 121
vs. profit, 7

gamma, 84
Gaussian process, 423
Gaussian quadrature, 463, 671
GBM, see geometric Brownian

motion
generalized inequality, 647
generalized inverse function, 87,

306
generalized Wiener process, 443
genetic algorithm, 716
geometric Brownian motion, 88,

445, 457, 523, 531
geometric random variable, 425
geometric series, 148
Girsanov theorem, 420, 590
Glass–Steagall Act, 49
global optimization, 604
global optimum, 708
growth stock, 366
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haircut, 240
Harry Markowitz, 75
heavy tail, 85
hedge tailing, 95
hedger, 51
hedging, 33, 483, 521, 581

minimum variance, 95
perfect, 94
quantity-based, 493, 501
ratio, 494, 496, 582
value-based, 501

Heston model, 462, 568, 611
Ho–Lee model, 219
holding period return, 6
homogeneous function, 337
hurdle rate, 191, 380
hyperbola, 345
hyperparameter, 409

IARA, see increasing absolute
risk aversion

idiosyncratic risk, 326
factor, 353

ill-conditioned problem, 608
implied volatility, 60, 104
importance sampling, 671
inactive constraint, 712
income statement, 16
incomplete market, 115
increasing absolute risk aversion,

294, 341
increasing relative risk aversion,

294
independent increments, 427, 439,

440, 462
index

futures, 326, 368
market-value-weighted, 61
price-based, 61
tracking, 634

infinitely divisible distribution,
441

inflation, 161, 365
rate, 161

inflation risk, 18, 26, 172
information ratio, 361

initial public offering, 47
inner product, 643

for matrices, 650, 653
innovation (in a stochastic pro-

cess), 423
inside quote, 54
insurance, 11
integrating factor, 589
integrator function, 448
interest rate, 421

cap, 238, 518
compounded, 147
floor, 238, 518
forward, 194
simple, 147
spot, 193

interest rate risk, 18, 26, 172
interest rate swap, 30, 220, 255,

266, 518
interior-point method, 627, 719,

728
internal rate of return, 192
interval uncertainty, 687
intrinsic value, 529
inverse problem, 553, 584
IPO, see initial public offering
IRR, see internal rate of return
irreducible variance, 607
Islamic finance, 145
Itô

isometry, 452, 589
lemma, 454, 455, 532, 582,
589, 597
process, 446
stochastic integral, 449

Jensen’s inequality, 289, 460
jump–diffusion process, 427, 440

Karush–Kuhn–Tucker conditions,
711

KKT, see Karush–Kuhn–Tucker
conditions

knapsack problem, 641
kurtosis, 86, 91, 455, 467

excess, 438
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L’Hôpital’s rule, 294
Lagrange multiplier, 330, 707,

726
Lagrangian function, 707
lasso regression, 608, 691
lattice calibration, 523
law of large numbers, 285
law of one price, 108, 113, 120,

517, 519
learning sample, 605
least-squares, 97, 171

nonlinear, 603
ordinary, 605

Lebesgue integral, 473
leverage, 16, 55
leveraged portfolio, 324
Lévy flight, 441, 718
Lévy process, 427, 440, 462
LGD, see loss given default
liability, 15
LIBOR rate, 60, 202, 208, 225,

238, 581
life insurance, 50
likelihood function, 406
limit order book, 53, 462
limit-buy order, 55
limit-sell order, 55
limited liability, 8, 23, 117
linear algebra, 117
linear combination, 118
linear matrix inequality, 653, 731
linear pricing, 165
linear program, 123
linear programming, 73, 117,

263, 300, 624, 625, 662,
719
canonical form, 626
relaxation, 638
standard form, 133, 626

linear regression, 99, 353
linear scenarios, 463
linear space, 118
linker, 26, 232
liquidity, 14, 20, 116, 168
liquidity preference theory, 200
local regression, 606

local volatility, 611
log-return, see logarithmic re-

turn
logarithm (natural), 9
logarithmic return, 9
lognormal

distribution, 10, 445, 458,
459
variable, 460

long position, 31
Long Term Capital Management,

21, 65, 116
long–short portfolio, 367
longevity risk, 18
longitudinal data, 421
lookback

call, 510
option, 434
put, 510

Lorentz cone, 645
loss given default, 233
lottery, 278
low-discrepancy sequence, 463,

671
LP, see linear programming
LP relaxation, 734
LTCM, see Long Term Capital

Management

Macauley duration, 248
Maclaurin series, 9
macroeconomic factor, 365
maintenance margin, 56
margin, 36, 55

buying on, 55
call, 36, 56, 108
maintenance, 36
ratio, 56
trading, 20

marginal distribution, 428
mark to market, 36
market

capitalization, 24
complete, 119
completeness, 128
friction, 51
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incomplete, 119
index, 487
maker, 51, 237
micro-structure, 69
neutral portfolio, 367
portfolio, 376
price of risk, 321, 378, 383,
398, 584, 599
primary, 47, 53
secondary, 47

Markov chain
continuous-time, 425
discrete-time, 79, 424

Markov process, 77, 423, 430,
433

Markov property, 433
martingale, 115, 430, 436, 451,

457, 562, 597, 600
equivalent measure, 115, 128
property, 125

mathematical programming, 619
matheuristic, 736
matrix

positive semidefinite, 624
transposed, 71

maturity
bond, 5
derivative, 30

maximization problem, 619
maximum likelihood, 691
MBS, see mortgage-backed se-

curity
mean reversion, 461, 588
mean squared error, 607
mean value function, 444, 460
mean–risk

model, 73
plane, 129

mean–variance
efficient frontier, 74
portfolio optimization, 70,
319, 629, 673

mean-preserving spread, 288
memoryless

continuous distribution, 425
discrete distribution, 425

property, 436
mental accounting, 401
mergers and acquisitions, 24
metaheuristics, 716
mezzanine tranche, 241
MILP, see mixed-integer linear

programming
minimum variance curve, 331
minimum variance hedging, 495
MIQP, see mixed-integer quadratic

programming
mixed-integer linear program-

ming, 624
mixed-integer quadratic program-

ming, 624, 636
model calibration, 171, 553, 584,

603, 691, 715
model risk, 100, 107, 202, 231,

506, 568, 611, 679
model selection, 606
Modern Portfolio Theory, 75
modern portfolio theory, 279,

319, 341
moment generating function, 455
moment matching, 463, 467, 523,

672
momentum, 365, 399
momentum strategy, 55
money market, 4, 232
monotonicity, 301
Monte Carlo sampling, 444, 463,

671
mortgage-backed security, 45,

240
MPT, see modern portfolio the-

ory
MSE, see mean squared error
multifactor model, 270
multiobjective optimization, 74
multiperiod vs. multistage, 76
multistage decision model, 277

vs. multiperiod, 277

naked position, 520
NASDAQ, 60
NAV, see net asset value
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Nelder–Mead method, 702
Nelson–Siegel model, 171
net asset value, 50
net income, 16
net present value, 153, 191, 380
Newton method

for nonlinear equations, 728
optimization, 701

NLP, see nonlinear programming
no-arbitrage argument, 154
no-arbitrage principle, 102, 165
non-convex set, 634
non-satiation, 289
nonbasic variable, 721
noncentrality parameter, 594
nondirectional trade, 552
nondominated solution, 129, 130
nonhomogeneous equation, 592
nonlinear programming, 604, 624,

691, 700
nonparametric risk model, 93
norm

cone, 646
properties, 646
self-dual, 649

normal backwardation, 490
normal distribution

Bayesian estimation, 408
standard, 534

notional, 209
NPV, see net present value
numeraire, 115, 118, 129, 161,

597

objective function, 618
obligor, 233
ODE, see ordinary differential

equation
OLS, see least-squares, ordinary
optimal stopping, 511
optimality condition

first-order, 700
optimization

constrained problem, 619
model, 70, 580, 584
multiobjective, 129

semi-infinite, 652
uncertain problem, 686
unconstrained problem, 619
vector, 129

option
American-style, 40
American-style put call, 529
Asian, 43, 45, 508
at-the-money, 507
average rate, 510
average strike, 510
barrier, 508, 566
Bermudan-style, 45
binary, 566
call, 39, 106
delta, 521, 546, 563
European-style, 39
European-style call, 526
exotic, 41, 508
gamma, 99, 547, 566
Greeks, 546
hedging, 417
holder, 39
in-the-money, 507
intrinsic value, 507
knock-in, 508
knock-out, 508
long position, 39
lookback, 508
maturity, 39
out-of-the-money, 507
own-and-out put, 508
put, 39, 94, 106
quanto, 559
rainbow, 45, 508
sensitivity, 546
short position, 39
theta, 550, 564
time value, 507
up-and-out, 566
vanilla, 39, 41
vanna, 565, 573
vega, 552, 564
writer, 39

ordinary differential equation,
586
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ordinary least-squares, 353
Ornstein–Uhlenbeck process, 461,

588
orthodox statistics, 404
OTC, see over the counter
out-of-sample performance, 606
over the counter, 14, 43, 508
overnight rate, 239

panel data, 421
par yield, 222
parity relationship, 509, 517, 518
partial differential equation, 533
particle swarm optimization, 717
partition, 432, 471
passive fund, 634
passive portfolio management,

49, 358
payoff (derivative), 30
PDE, see partial differential equa-

tion
PDF, see probability density func-

tion
PE, see price to earnings
pecking order, 232
penalty function, 703

exterior, 705
interior, 706

pension capital, 148
pension fund, 148

defined-benefit, 50
defined-contribution, 50

perpetuity, 179
PMF, see probability mass func-

tion
pointed cone, 645
Poisson

process, 421, 425
compound, 427, 462
inhomogeneous, 427

random variable, 426
polyhedral cone, 645
polyhedral uncertainty, 687
polytopic uncertainty, 687
portable alpha, 370
portfolio

fully invested, 71
insurance, 563
weight, 71

positive homogeneity, 301
positive semidefinite matrix, 624
posterior distribution, 406
precision, 410
prepayment risk, 240
price to earnings, 17
pricing

vs. valuation, 30
pricing equation, 583
pricing functional, 118

linear, 120
non-negative, 124

primal problem, 134, 713
primal variable, 713
primal-dual algorithm, 726
prime rate, 146
principal component analysis,

100, 271, 398, 580, 673
prior distribution, 406
private equity, 23
probability

measure, 469
space, 468

probability density function, 421
probability mass function, 421
probability measure, 430
probability space, 430, 469
prospect theory, 402
protective put, 42
PSO, see particle swarm opti-

mization
purchasing power, 161
put–call parity, 107, 536, 546,

558, 563

QCQP, see quadratic program,
quadratically constrained

QP, see quadratic programming
quadratic program

quadratically constrained,
74

quadratic programming, 73, 300,
624, 628, 707
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quadratic utility, 341
quadratically constrained quadratic

programming, 624, 631
quantile, 87
quanto, 559
quantum PSO, 718
quasi-Monte Carlo

sampling, 463
simulation, 671

quasi-Newton method, 702
quasiconcave function, 341, 622,

629
quasiconvex function, 622

Radon–Nikodym derivative, 420
rainbow option, 681
random field, 163, 422
random variable, 5, 471

measurable, 473
notation, 72

random walk, 423, 441
rating agency, 233
real option, 193
recombining lattice, 463
recourse

action, 657
function, 658
matrix, 658

reduced cost, 722
regime-switching model, 435
regression tree, 606
regularization, 608
reinsurance, 11
reinvestment risk, 27, 44, 46,

150, 172, 240, 581, 601
replicating portfolio, 113
repo

agreement, 57
market, see also repurchase
agreement, 269
rate, 240

repurchase agreement, 57, 240
reset date, 188, 232
return

continuously compounded,
459

gross, 6
holding period, 6
logarithmic, see logarith-
mic return
net, 6
rate of, 6
total, 6

return attribution, 398
return on assets, 17, 57
return on equity, 17, 49, 57
ridge regression, 608, 691
Riemann integral, 446, 448, 473
Riemann–Stieltjes integral, 448
risk

aversion, 287, 290, 322, 693
coefficient of absolute aver-
sion, 292
coefficient of relative aver-
sion, 293
coherent measure, 93
common factor, 80, 82
counterparty, 100
credit, 100
currency, 100
factor, 98
functional, 283, 300
inflation, 100
interest rate, 100
linear model, 81
management, 11, 80
market, 100
measure, 80, 300, 580

coherent, 300
model, 80, 101
noise trader, 116
operational, 102
political, 101
pooling, 11, 46
premium, 11, 290, 321, 332,
437, 630

relative, 293
regulatory, 101
specific factor, 80, 82
subadditive measure, 93
symmetric measure, 84
systemic, 49
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transfer, 11
volatility, 100
volume, 101

risk factor, 659
common, 353
idiosyncratic, 353
specific, 353
systematic, 353

risk nonlinear model, 81
risk-free

asset, 10, 171, 296
rate, 10, 171
return, 10

risk-neutral
decision maker, 73
decision-maker, 79
measure, 114, 438, 519, 541,
561, 562
option pricing, 380
probability measure, 127

ROA, see return on assets
robust counterpart, 686
robust optimization, 569
ROE, see return on equity
rolling horizon, 675

sample covariance, 352
sample mean, 352
sample path, 12, 117, 421
sample path generation, 444
sample space, 430
sampling error, 464
scalarization, 131, 347
scenario, 12, 117, 421, 473

fan, 6
generation, 671
tree, 12, 463

SDP, see semidefinite program-
ming

seasoned offering, 53
second-order cone, 646

programming, 74, 624
securitization, 11, 20, 46, 240
security, 20
security market line, 379
self-dual cone, 647

self-financing portfolio, 539, 684
semi-infinite problem, 618
semi-infinite programming, 688
semicontinuous variable, 620,

633
semidefinite programming, 624,

653
inequality form, 653
standard form, 653

senior tranche, 241
sensitivity analysis, 192
separation of variables, 585
separation property, 337, 376
set

difference, 469
intersection, 469
union, 469, 471

shadow price, 712
shareholder, 19
Sharpe ratio, 323, 336, 337, 356,

361, 378, 599, 622, 629
maximization, 629

short position, 31, 94
short rate, 443
short-selling, 58
short-squeeze, 58
shortfall probability, 300
shrinkage

estimation, 374, 382
estimator, 356, 608

shrinking horizon, 675
sigma

algebra, 471
field, 471

simplex, 702
algorithm, 626
method, 719
search, 702

single-index model, 353, 409,
498

skew (positive), 280
skewness, 85
slack variable, 625, 726
Slater

condition, 710, 715
constraint qualification, 730
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sliding horizon, 675
small world PSO, 718
SML, see security market line
smooth pasting, 516
SOCP, see second-order cone

programming
sojourn time, 425, 436
solution

efficient, 130
nondominated, 130

solvency, 263
special purpose vehicle, 240
specialist, 51
specific risk factor, 353
speculator, 51
spinoff, 24
spot price, 31
spot rate curve, 163
spot–forward convergence, 31,

194, 484
spot–forward parity, 482, 511,

557
spread option, 508
SPV, see special purpose vehi-

cle
square-root diffusion, 461, 588,

594
square-root rule, 89, 550
St. Petersburg paradox, 287
stability

in sample, 674
out of sample, 674

stable distribution, 92
stack-and-roll, 495
standard form (in LP), 720
standard Wiener process, 438
state of the world, 117
state variable, 76, 423
static decision problem, 277
static model, 75
static problem, 68
stationarity condition, 700
stationary increments, 427, 439,

440, 462
steepest descent, 701

direction, 708

stochastic continuity, 440
stochastic differential equation,

443, 582
stochastic dominance

first-order, 311
second-order, 313

stochastic dynamic optimization,
511

stochastic dynamic programming,
676

stochastic integral, 442, 447
stochastic process, 12, 117, 163,

419, 420, 473
predictable, 173
self-similar, 89

stochastic programming, 263, 300
stochastic volatility, 568, 611
stock price, 473
stock repurchase, 24
stock share

common, 23
preferred, 23
split, 24

stock-index futures, 497
stockholder, 19
stop-buy order, 55
stop-loss order, 54
stopping time, 527, 680
Stratonovich stochastic integral,

449, 453
strike price, 39
stripping, 26, 168
strong duality, 714, 724
subadditivity, 301
sublevel set, 621
subordinated bond, 232
subprime mortgage, 46, 240
swap

accrediting, 238
amortizing, 238
basis, 238
constant maturity, 238
curve, 225
dollar duration, 255
forward start, 220
rate, 220, 237
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spot start, 220
valuation, 221

swaption, 225, 238
systematic risk, 496
systematic risk factor, 353

T-bill, 26
tail expectation, 308
tail risk, 91
tailing the hedge, 219, 265, 499
tangency portfolio, 336, 376
Taylor expansion, 9, 84, 98, 291,

454
first-order, 248
second-order, 266

technical analysis, 399
tenor, 209
term structure, 248

estimation, 168
of interest rates, 163, 580

test sample, 605
TEV, see tracking error variance
time

bucket, 3
instant, 3
period, 3

time consistency, 301
time value, 4
TIPS, 232
total probability theorem, 406
trace (of a matrix), 650
tracking error variance, 635
tranching, 46, 241
transaction cost, 116, 669
transition density, 433
transition function, 418
transition probability, 424, 433
translation invariance, 301
transposition, 71
treasury

bond, 26
note, 26

Treynor–Black model, 358
triangular inequality, 646
trust region method, 702
two-fund separation theorem, 348

unbiased estimator, 356
unbounded solution, 722
unbundling, 119, 168
unbundling cash flows, 26
uncertainty set, 609, 686
unconditional distribution, 423
uniform prior, 407
up-and-out call, 566
utility

CARA, 294
CRRA, 294, 297
DARA, 294
DRRA, 294
expected, 288, 670
function, 79, 322, 341, 665,
669, 691
IARA, 294
IRRA, 294
logarithmic, 294, 296
ordinal, 290
power, 294
quadratic, 295
Von Neumann–Morgenstern,
288

value function, 677
value process, 120

discounted, 121
value stock, 366
value-at-risk, 87, 260, 303, 659

absolute, 88
conditional, 304
historical, 93
relative, 88

vanilla option, 507
variance reduction, 465
Vasicek model, 461, 588, 610
vector norm, 605
vector transposition, 71
vega, 84
VIX, 60
volatility, 84, 260, 404, 435, 458,

459
coefficient, 445
function, 457
historical, 553
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implied, 553
smile, 554
stochastic, 462
surface, 554
trading, 552, 564

warrant, 43, 237
Wiener process

correlated, 461
generalized, 443
standard, 438

worst-case optimization, 686

yield, 83, 155
volatility, 260

yield-to-maturity, 145, 175, 179,
250

YTM, see yield-to-maturity

zero, see bond, zero-coupon
zero curve, 163
zero-coupon bond, 154, 582, 590,

601
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