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Preface

This book arises from slides and lecture notes that I have used over the years
in my courses Financial Markets and Instruments and Financial Engineering,
which were offered at Politecnico di Torino to graduate students in Mathemat-
ical Engineering. Given the audience, the treatment is naturally geared toward
a mathematically inclined reader. Nevertheless, the required prerequisites are
relatively modest, and any student in engineering, mathematics, and statistics
should be well-equipped to tackle the contents of this introductory book.! The
book should also be of interest to students in economics, as well as junior prac-
titioners with a suitable quantitative background.

We begin with quite elementary concepts, and material is introduced pro-
gressively, always paying due attention to the practical side of things. Mathe-
matical modeling is an art of selective simplification, which must be supported
by intuition building, as well as by a healthy dose of skepticism. This is the
aim of remarks, counterexamples, and financial horror stories that the book is
interspersed with. Occasionally, we also touch upon current research topics.

Book structure
The book is organized into five parts.

1. Part One, Overview, consists of two chapters. Chapter 1 aims at get-
ting unfamiliar readers acquainted with the role and structure of finan-
cial markets, the main classes of traded assets (equity, fixed income, and
derivatives), and the main types of market participants, both in terms of
institutions (e.g., investments banks and pension funds) and roles (e.g.,
speculators, hedgers, and arbitrageurs). We try to give a practical flavor
that is essential to students of quantitative disciplines, setting the stage
for the application of quantitative models. Chapter 2 overviews the basic
problems in finance, like asset allocation, pricing, and risk management,
which may be tackled by quantitative models. We also introduce the fun-
damental concepts related to arbitrage theory, including market complete-
ness and risk-neutral measures, in a simple static and discrete setting.

N

Part Two, Fixed-income assets, consists of four chapters and introduces
the simplest assets depending on interest rates, starting with plain bonds.
The fundamental concepts of interest rate modeling, including the term

n case of need, the mathematical prerequisites are covered in my other book: Quantitative
Methods: An Introduction for Business Management. Wiley, 2011.

XV
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PREFACE

structure and forward rates, as well as bond pricing, are covered in Chap-
ter 3. The simplest interest rate derivatives (forward rate agreements and
vanilla swaps) are covered in Chapter 4, whereas Chapter 5 aims at pro-
viding the reader with a flavor of real-life markets, where details like day
count and quoting conventions are relevant. Chapter 6 concludes this part
by showing how quantitative models may be used to manage interest rate
risk. In this part, we do not consider interest rate options, which require a
stronger mathematical background and are discussed later.

. Part Three, Equity portfolios, consists of four chapters, where we dis-

cuss equity markets and portfolios of stock shares. Actually, this is not
the largest financial market, but it is arguably the kind of market that
the layman is more familiar with. Chapter 7 is a bit more theoretical
and lays down the foundations of static decision-making under uncer-
tainty. By static, we mean that we make one decision and then we wait
for its consequences, finger crossed. Multistage decision models are dis-
cussed later. In this chapter, we also introduce the basics of risk aversion
and risk measurement. Chapter 8 is quite classical and covers traditional
mean—variance portfolio optimization. The impact of statistical estima-
tion issues on portfolio management motivates the introduction of factor
models, which are the subject of Chapter 9. Finally, in Chapter 10, we
discuss equilibrium models in their simplest forms, the capital asset pric-
ing model (CAPM), which is related to a single-index factor model, and
arbitrage pricing theory (APT), which is related to a multifactor model.
We do not discuss further developments in equilibrium models, but we
hint at some criticism based on behavioral finance.

. Part Four, Derivatives, includes four chapters. We discuss dynamic un-

certainty models in Chapter 11, which is more challenging than previous
chapters, as we have to introduce the necessary foundations of option
pricing models, namely, stochastic differential equations and stochastic
integrals. Chapter 12 describes simple forward and futures contracts, ex-
tending concepts that were introduced in Chapter 4, when dealing with
forward and futures interest rates. Chapter 13 covers option pricing in
the case of complete markets, including the celebrated and controversial
Black—Scholes—Merton formula, whereas Chapter 14 extends the basic
concepts to the more realistic setting of incomplete markets.

. Part Five, Advanced optimization models, is probably the less standard

part of this book, when compared to typical textbooks on financial mar-
kets. We deal with optimization model building, in Chapter 15, and op-
timization model solving, in Chapter 16. Actually, it is difficult to draw
a sharp line between model building and model solving, but it is a fact
of life that advanced software is available for solving quite sophisticated
models, and the average user does not need a very deep knowledge of the
involved algorithms, whereas she must be able to build a model. This is
the motivation for separating the two chapters.



PREFACE xvii

Needless to say, the choice of which topics should be included or omit-
ted is debatable and based on authors’ personal bias, not to mention the need
to keep a book size within a sensible limit. With respect to introductory text-
books on financial markets, there is a deeper treatment of derivative models. On
the other hand, more challenging financial engineering textbooks do not cover,
e.g., equilibrium models and portfolio optimization. We aim at an intermediate
treatment, whose main limitations include the following:

= We only hint at criticism put forward by behavioral finance and do not
cover market microstructure and algorithmic trading strategies.

From a mathematical viewpoint, we pursue an intuitive treatment of fi-
nancial engineering models, as well as a simplified coverage of the re-
lated tools of stochastic calculus. We do not rely on rigorous arguments
involving self-financing strategies, martingale representation theorems, or
change of probability measures.

From a financial viewpoint, by far, the most significant omission concerns
credit risk and credit derivatives. Counterparty and liquidity risk play
a prominent role in post-Lehman Brothers financial markets and, as a
consequence of the credit crunch started in 2007, new concepts like CVA,
DVA, and FVA have been introduced. This is still a field in flux, and the
matter is arguably not quite assessed yet.

= Another major omission is econometric time series models.

Adequate references on these topics are provided for the benefit of the interested
readers.

My choices are also influenced by the kind of students this book is mainly
aimed at. The coverage of optimization models and methods is deeper than
usual, and I try to open readers’ critical eye by carefully crafted examples and
counterexamples. I try to strike a satisfactory balance between the need to il-
lustrate mathematics in action and the need to understand the real-life context,
without which quantitative methods boil down to a solution in search of a prob-
lem (or a hammer looking for nails, if you prefer). I also do not disdain just a bit
of repetition and redundancy, when it may be convenient to readers who wish
to jump from chapter to chapter. More advanced sections, which may be safely
skipped by readers, are referred to as supplements and their number is marked
by an initial “S.”

In my Financial Engineering course, I also give some more information on
numerical methods. The interested reader might refer to my other books:

= P. Brandimarte, Numerical Methods in Finance and Economics: A MAT-
LAB-Based Introduction (2nd ed.), Wiley, 2006

= P. Brandimarte, Handbook in Monte Carlo Simulation: Applications in
Financial Engineering, Risk Management, and Economics, Wiley, 2014



xviii PREFACE

Acknowledgements

In the past years, I have adopted the following textbooks (or earlier editions) in
my courses. | have learned a lot from them, and they have definitely influenced
the writing of this book:

= Z. Bodie, A. Kane, and A. Marcus, Investments (9th ed.), McGraw-Hill,
2010

« J.C. Hull, Options, Futures, and Other Derivatives (8th ed.), Prentice
Hall, 2011

» P. Veronesi, Fixed Income Securities: Valuation, Risk, and Risk Manage-
ment, Wiley, 2010

Other specific acknowledgements are given in the text. I apologize in advance
for any unintentional omission.

Additional material

Some end-of-chapter problems are included and fully worked solutions will be
posted on a web page. My current URL is

= http://staff.polito.it/paolo.brandimarte/

A hopefully short list of errata will be posted there as well. One of the many
corollaries of Murphy’s law states that my URL is going to change shortly after
publication of the book. An up-to-date link will be maintained on the Wiley
web page:

*http://www.wiley.com/

For comments, suggestions, and criticisms, all of which are quite welcome,
my e-mail address is

* paolo.brandimarte@polito.it

PAOLO BRANDIMARTE
Turin, September 2017


http://staff.polito.it/paolo.brandimarte/
http://www.wiley.com/
mailto:paolo.brandimarte@polito.it

About the Companion Website

This book is accompanied by a companion website:

www.wiley.com/go/brandimarte/financialmarkets

The website includes:
« Solutions manual for end-of-chapter problems

Xix


http://www.wiley.com/go/brandimarte/financialmarkets




Overview



Chapter [One

Financial Markets: Functions,
Institutions, and Traded
Assets

Providing a simple, yet exhaustive definition of finance is no quite easy task,
but a possible attempt, at least from a conceptual viewpoint, is the following:'

Finance is the study of how people and organizations allocate scarce
resources over time, subject to uncertainty.

This definition might sound somewhat generic, but it does involve the two es-
sential ingredients that we shall deal with in practically every single page of this
book: Time and uncertainty. Appreciating their role is essential in understand-
ing why finance was born in the past and is so pervasive now. The time value of
money is reflected in the interest rates that define how much money we have to
pay over the time span of our mortgage, or the increase in wealth that we obtain
by locking up our capital in a certificate of deposit issued by a bank. It is com-
mon wisdom that the value of $1 now is larger than the value of $1 in one year.
This is not only a consequence of the potential loss of value due to inflation.?
A dollar now, rather than in the future, paves the way to earlier investment op-
portunities, and it may also serve as a precautionary cushion against unforeseen
needs. Uncertainty is related, e.g., to the impossibility of forecasting the return
that we obtain from investing in stock shares, but also to the risk of adverse
movements in currency exchange rates for an import/export firm, or longevity
risk for a worker approaching retirement. As we show in Chapter 2, we may
model issues related to time and uncertainty within a mathematical framework,
applying principles from financial economics and tools from probability, statis-
tics, and optimization theory. Before doing that, we need a more concrete view

IThis definition is taken from [2].

2This holds under common economic conditions; the exception to the rule is deflation, which is
(at the time of writing) a possibility in Euroland. In this book, we will assume that the standard
economic conditions prevail.



2 CHAPTER 1 Financial Markets: Functions, Institutions, and Traded Assets

in order to understand how financial markets work, which kinds of assets are
exchanged, and which actors play a role in them and what their incentives are.
We pursue this “institutional” approach to get acquainted with finance in this
chapter. Some of the more mathematically inclined students tend to consider
this side of the coin modestly exciting, but a firm understanding of it is neces-
sary to put models in the right perspective and to appreciate their pitfalls and
limitations.

In Section 1.1, we discuss the role of time and uncertainty in a rather ab-
stract way that, nevertheless, lays down some essential concepts. A more con-
crete view is taken in Section 1.2, where we describe the fundamental classes of
assets that are traded on financial markets, namely, stock shares, bonds, curren-
cies, and the basic classes of derivatives, like forward/futures contracts and op-
tions. In order to provide a proper framework, we also hint at the essential shape
of a balance sheet, in terms of assets, liabilities, and equity, and we empha-
size the difference between standardized assets traded on regulated exchanges
and less liquid assets, possibly engineered to meet specific client requirements,
which are traded over-the-counter. In Section 1.3, we describe the classes of
players involved in financial markets, such as investment/commercial banks,
common/hedge/pension funds, insurance companies, brokers, and dealers. We
insist on the separation between the institutional form and the role of those play-
ers: A single player may be of one given kind, in institutional terms, but it may
play different roles. For instance, an investment bank can, among many other
things, play the role of a prime broker for a hedge fund. Furthermore, depending
on circumstances, players may act as hedgers, speculators, or arbitrageurs. The
exact organization of financial markets is far from trivial, especially in the light
of extensive use of information technology, and a full description is beyond the
scope of this book. Nevertheless, some essential concepts are needed, such as
the difference between primary and secondary markets, which is explained in
Section 1.4. There, we also introduce some trading strategies, like buying on
margin and short-selling, which are essential to interpret what happens on finan-
cial markets in practice, as well as to understand some mathematical arguments
that we will use over and over in this book. Finally, in Section 1.5 we con-
sider market indexes and describe some basic features explaining, for instance,
the difference between an index like the Dow Jones Industrial Average and the
Standard & Poor 500.

1.1  What is the purpose of finance?

If you are reading this book, chances are that it is because you would like to
land a rewarding job in finance. Even if this is not the case, one of the reasons
why we aim at finding a good job is because we need to earn some income in
order to purchase goods and services, for ourselves and possibly other people
we care about. Every month (hopefully) we receive some income, and we must
plan its use. The old grasshopper and ant fable teaches that we should actually
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FIGURE 1.1 Shifting consumption forward and backward in time.

plan ahead with care. Part of that income should be saved to allow consumption
at some later time. Sometimes, we might need to use more income than we
are earning at present, e.g., in order to finance the purchase of our home sweet
home.

Now, imagine a world in which we cannot “store” money, and we have to
consume whatever our income is immediately, no more, no less, just like we
would do with perishable food, if no one had invented refrigerators and other
conservation techniques. This unpleasing situation is depicted in Fig. 1.1(a).
There, time is discretized in 7" = 3 time periods, indexed by ¢t =1,. .., T.3 The
income during time period ¢ is denoted by I;, and it is equal to the consumption
C} during the same period:

It:Ct, t:].,,T

3Sometimes, time discretization requires careful thinking about events. Do we earn income
at the beginning or at the end of a time period? In other words, is income earned during time
period ¢t immediately available for consumption during the same time period? We may argue that
income during time period ¢ is available for consumption only during time period ¢+ 1. We shall
discuss more precise notation and concepts in Section 2.1.2. Here, for the sake of simplicity,
we assume that every event during a time period is concentrated at some time instant. We
sometimes use the rather awkward term epoch to refer to a specific point in time. We also often
use the term time bucket to refer to a time period delimited by two time instants.
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This state of the matter is not quite satisfactory, if we have excess income in
some period and would like to delay consumption to a later time period. In
Fig. 1.1(b), part of income I, denoted by Ly 3, is shifted forward from time
period 2 to time period 3. This results in an increase of C'5 and a decrease of
C5. The amount of income saved can be regarded as money invested or lent to
someone else. By a similar token, we might wish to anticipate consumption to
an earlier time period. In Fig. 1.1(c), consumption C5 is increased by shifting
income backward in time from time period ¢ = 3, which means borrowing an
amount of money Bs », to be used in time period ¢ = 2 and repaid in time pe-
riod t = 3. Savers and borrowers may be individuals or institutions, and we
may play both of these roles at different stages of our working life. Clearly, all
of this may happen if there is a way to match savers and borrowers, so that all of
them may improve their consumption timing. This is one of the many roles of
financial markets; more specifically, we use the term money markets when the
time span of the loan is short. In other cases, the investment may stretch over a
considerable time span, especially if savers/borrowers are not just households,
but corporations, innovative startups, or public administrations that have to fi-
nance the development of a new product, the building of a new hospital, or an
essential infrastructure. In this case, we talk about capital markets.

Needless to say, if we accept to delay consumption, it is because we expect
to be compensated in some way. Informally, we exchange an egg for a chicken;
formally, we earn some interest rate R along the time period involved in the
shift.* We may interpret the shift as a flow of money over a network in time
but, unlike other network flows involved in transportation over space, we do not
have exact conservation of flows. With reference to Fig. 1.1(b), we have the
following flow balance equations at nodes 2 and 3:

Cyo =1y — Lo,
Cs3 =13+ Ly 3(1 + R),

stating that we give up an amount Ly 3 of consumption at time 2 in exchange
for an increase (1 + R)Lo 3 in later consumption. The factor 1 + R is a gain
associated with the flow of money along the arc connecting node ¢ = 2 to node
t = 3. This is what the time value of money is all about. The exact value of the
interest rate R, as we shall see in Chapter 3, may be related to the possibility
of default (i.e., the borrower may not repay the full amount of his debt) and to
inflation risk, among other things.

Clearly, there must be another side of the coin: The increase in later con-
sumption must be paid by a counterparty in an exchange. We delay consump-
tion while someone else anticipates it. With reference to Fig. 1.1(c), we have

“In financial practice, whenever an interest rate is quoted, it is always an annual rate. For now,
let us associate the rate with an arbitrary time period.
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the following flow balance equations at nodes 2 and 3:

Bs o
Cy =1 :
2 2+1+R7
03:.[3—3372.

Note that we are expressing the borrowed amount Bs 5 in terms of the money at
time ¢t = 3, when the debt is repaid; in other words B3 » is a flow out of node 3.
This is not essential at all: If we use money at time ¢ = 2, i.e., we consider the
flow Bj , into node 2, the flow balance would simply read

02 = 12 + B;}z,
Cy=1Is— Bi,(1+R).

The two sides of the coin must be somehow matched by a market mechanism.
In practice, funds are channeled by financial intermediaries, which must be
compensated for their job. In fact, there is a difference between lending and
borrowing rates, called bid-ask (or bid—offer) spread, which applies to other
kinds of financial assets as well. Lending and borrowing money through a bank
is what we are familiar with as individuals, whereas a large corporation and a
sovereign government have the alternative of raising funds by issuing securi-
ties like bonds, typically promising the payment of periodic interest, as well
as the refund of the capital at some prespecified point in time, the maturity of
the bond. Corporations may also raise funds by issuing stock shares. Buying
a stock share does not mean that we lend money to a firm; hence, we are not
entitled to the payment of any interest. Rather, we own a share of the firm and
may receive a corresponding share of earnings that may be distributed in the
form of dividends to stockholders. However, the amount that we will receive is
random and no promise is made about dividends, as they depend on how well
the business is doing, as well as the decision of reinvesting part of the earning
in new business ventures, rather than distributing the whole of it.

After being first issued, securities like bonds and stock shares may be ex-
changed among market participants, at prices that may depend on several under-
lying risk factors. Since the values of these factors are not known with certainty,
the future prices of bonds and stock shares are random. In fact, time is inter-
twined with another fundamental dimension in finance, namely, uncertainty.
When we lend or borrow money at a given interest rate, the future cash flows
are known with certainty, if we do not consider the possibility of a default on
debt. However, when we buy a stock share at time ¢ = 0 and plan to sell it
at time ¢t = T, randomness comes into play. Let us denote the initial price by
5(0).> The future price S(T) is a random variable, which we may denote
as S(T,w) to emphasize its dependence on the random outcome (scenario) w.
We recall that, in probability theory, a random variable is a function mapping
underlying random outcomes, corresponding to future scenarios or states of na-
ture, to numeric values. Let w;, ¢ = 1,...,m, denote the i-th outcome, which

3 Depending on notational convenience, we shall write S(¢) or S, as no ambiguity should arise.
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t=0 t=T

FIGURE 1.2 Representing uncertain states of the world by a scenario fan.

occurs with probability 7;. For the sake of simplicity, we are considering a dis-
crete and finite set of possible outcomes, whereas later we will deal extensively
with continuous random variables. A simple way to depict this kind of discrete
uncertainty is by a scenario fan like the one depicted in Fig. 1.2. Therefore,
S(T,w) is arandom variable, and we associate a future price S(7',w;) with each
future state of the world. The corresponding holding period return is defined as
follows.

DEFINITION 1.1 (Holding period return) Let us consider a holding period
[0, T'], where the initial asset price is S(0) and the terminal random asset price
is S(T',w). We define the holding period return as

S(T,w)—S(0
R(w) = (70;)(0)() (1.1)
and the holding period gain as
S(T
Gw) = fg(é;”) =1+ R(w). (1.2)

The gain and the holding period return (return for short) are clearly related. A
return of 10% means that the stock price was multiplied by a gain factor of 1.10.

Remark. The term gain is not so common in finance textbooks. Usually, terms
like total return or gross return are used, rather than gain. On the contrary, terms
like rate of return and net return are used to refer to (holding period) return. The
problem is that these terms may ring different bells, especially to practitioners.
We may use the qualifier “total” when we want to emphasize a return includ-
ing dividend income, besides the capital gain related to price changes. Terms
like “gross” and “net” may be related with taxation issues, which we shall al-
ways disregard. This is why we prefer using “gain,” even though this usage
is less common. We shall not confuse gain, which is a multiplicative factor,
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with profit/loss, which is an additive factor and is expressed in monetary terms.
Furthermore, we shall reserve the term “rate of return” to the case of annual
returns. For instance, interest rates are always quoted annually, even though
they may be applied to different time periods by a proper scaling. We will use
the term “return,” when the holding period may be arbitrary. The following
example illustrates a further element of potential confusion when talking about
return.

W Example 1.1 Different shades of return

Consider a holding period consisting of two consecutive years. In
year one, the return from investing in a given stock share is +10%; in
year two the return is —10%. What was the “average” return?

As it turns out, the question is stated in a very imprecise way. It
might be tempting to say that, trivially, the average return was 0%, the
familiar arithmetic mean of +10% and —10%. However, we cannot
really add returns like this. Over the two years, the gain was

G = (1+0.10) x (1 —0.10) = 0.99,

i.e., we have lost money, as the holding period return was —1% [we
may recall the rule (1 + z)(1 — z) = 1 — 2?]. Indeed, the problem is
that the very term “average” is ambiguous. If what we actually mean
is the expected value of the annual return, which we may estimate by
a sample mean, then we may say that the arithmetic average is, in fact

— 0.10 — 0.10

R, = —s = 0
But if we mean an average over time, we should deal with a sort of
geometric average over two years:

(1+0.10) x (1-0.10) = (1 + R,)* = R, = —0.5013%.

We may also notice that, in this case, an average should refer to a
standard time interval, usually one year. Indeed, we should not con-
fuse the holding period return with an annual (rate of) return. We will
need a way to annualize a generic holding period return.

Returns and gains are random variables. Hence, a natural question is: How
should we model uncertain returns? There is a huge amount of work carried out
on this subject, including plenty of empirical investigation. The next example
shows that there cannot be any single convenient answer.
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W Example 1.2 One distribution does not fit all

The most familiar probability distribution is, no doubt, the normal.
Can we say that the distribution of return from a stock share is nor-
mal? Empirical investigation tends to support a different view, as the
normal distribution is symmetric and features thin tails, i.e., it tends
to underestimate the probability of extreme events. In any case, the
worst stock return we may experience is —100%, or (—1), i.e., we lose
all of our investment (this is related to the limited liability property of
stock shares, discussed later). In other words, the worst gain is 0,
and a stock share price can never be negative. Since the support of a
normal random variable is unbounded, (—oo, +00), according to this
uncertainty model there is always a nonzero probability of observing
an impossible price.

However, let us discuss the matter from a very limited viewpoint,
namely, convenience. One nice feature of a normal distribution is that
if we add normal variables, we get another normal (to be precise, we
should be considering jointly normal variables). This is nice when we
add returns from different stock shares over the same time period. If
we have invested 30% of our wealth in stock share a and 70% in stock
share b, the holding period return for the portfolio is

R, =0.3R, + 0.7R,, (1.3)

where we denote the return of stock shares a and b by R, and R,
respectively, and R, is the portfolio return. To justify Eq. (1.3), let us
consider:

» Initial stock prices S,(0) and Sj,(0)

» Initial wealth W (0)

= Stock prices S, (T") and S,(T") at the end of the holding period

= Wealth W (T') at the end of the holding period

Then, if initial wealth is split as we have assumed, we may write

Wi(0) = 0.35(18/)(0)

= Ny - Sa(0) + Ny, - Sp(0),

0.7 x W(0)

S0+ =g

- S3(0)

where N, and N, are the number of stock shares a and b, respectively,
that we buy. At the end of the holding period, we have

W(T) = Na - Sa(T) + Ny - Sp(T)
=Ny (14 Rqg) - Sa(0) + Ny - (1+ Rp) - Sp(0)
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No - Ry - Sa(0) + Ny - Ry - Sp(0)
w(0)

=W(0) - (140.3-R,+0.7-Ryp)

=W(0)- (14 Rp),

—W(0)- |1+

which gives Eq. (1.3).

If R, and Ry are jointly normal, then R, is a nice normal, too,
which is quite convenient. Furthermore, if the holding period return R
is normal, so is the corresponding stock price S(T") = S(0) - (1+ R).
However, imagine that we take a different perspective. Rather than
considering two stock shares over one time period, let us consider
one stock share over two consecutive time periods. In other words,
we take a longitudinal view (a single variable over multiple time pe-
riods) rather than a cross-sectional view (multiple variables over a
single time period). Let us denote by R(1) and R(2) the two hold-
ing period returns of that single stock share, over the two consecutive
time periods. As we have mentioned, in this case we should not add
returns, but rather multiply gains G(1) and G(2) to find the holding
period gain

G=G(1)-G(?2)
=[1+R1)]-[1+R(2)]
=1+ R(1)+ R(2) + R(1) - R(2).

The last expression involves a product of returns. Unfortunately, if
R(1) and R(2) are normal, their product is not. Hence, the holding
period gain G is not normal, and the same applies to the holding pe-
riod return R = G — 1. We may only say that the holding period
return is approximately normal if the single-period returns are small
enough to warrant neglecting their product.

One way out is to consider the logarithmic return, or log-return
for short,

r =log(l+ R) =logG,

where we use log rather than In to denote natural logarithm. It is inter-
esting to note that, given the well-known Taylor expansion (Maclaurin
series, if you prefer)

22 3 g
log(1 ~Nr——+———+---
og(l+ax)~z 2+3 4+ ,
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for a small x, the log-return can be approximated by the return. Since

log [(1+ R(1)) - (14 R(2))] =log (14 R(1)) +log (1 + R(2))
= (1) +7(2),

we see that log-returns are additive, and if we assume that they are
normal, we preserve normality over time.
Since
S(T)=5(0)-G=5(0)-¢",

the normality of the log-return » implies that the gain and the stock
prices are lognormally distributed, i.e., they may be expressed as the
exponential of a normal random variable. On the one hand, this is
nice, as it is consistent with the fact that we cannot observe negative
stock prices. Furthermore, the product of lognormals is lognormal,
which is nice in the longitudinal sense. Unfortunately, this is not
nice in the cross-sectional sense, since the sum of lognormals is not
lognormal, and we get in trouble when we consider the return of a
portfolio of different stock shares.

To summarize, whatever modeling choice we make, some com-
plication will arise. On the one hand, normal returns/gains (and stock
prices) simplify the analysis of a portfolio over a single holding pe-
riod, but they are empirically questionable and complicate the anal-
ysis over multiple time periods. On the other hand, lognormal gains
(and stock prices) are fine for dynamic modeling of a single stock
share, but they complicate the analysis of a portfolio. We may con-
clude that, whatever we choose, we have to accept some degree of
approximation somewhere. The alternative is to tackle complicated
distributions by numerical methods.

Beside risky assets, we shall also consider a risk-free (or riskless) asset.
This is a peculiar asset for which S(7T',w) is actually a constant across states of
the world. A concrete example is a safe bank account, whereby

B(T,w) = B(0) - (1 + Ry),

for every state of the world (or scenario) w € 2. The rate Ry will be referred
to as risk-free return. If the holding period 7" is one year, we may refer to the
annual risk-free return as the risk-free rate. The above framework to depict
uncertainty does not only apply to stock shares, but to other financial and nonfi-
nancial assets as well, like bonds, commodities, foreign currencies, etc. As we
shall see in Chapter 2, uncertainty motivates some basic problems in finance,
like portfolio optimization and risk management.
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Now, if we may invest wealth at some prespecified and risk-free interest
rate, why should we bother with risky investments? The answer is that risk
is associated with the hope of a larger return, i.e., risky assets come with a
risk premium. Some investors are willing to assume a limited amount of risk
in exchange for the possibility of an increase in future consumption. Other
investors, however, would just like to get rid of risks they bear:

= Imagine a nonfinancial firm subject to research, development, and pro-
duction costs incurred in some currency, for a range of products that are
exported and sold in another currency. For instance, the firm might sign a
contract for the design and construction of a production plant, where the
overall price offered to the client is in US dollars, but actual costs are in-
curred in euro. Adverse fluctuations in currency exchange rates may well
wipe out profit margins. As we shall see, firms may hedge this risk away
using certain derivative assets, such as forward and futures contracts.

With reference to Fig. 1.2, let us assume that the state corresponding to
outcome ws is a “bad state,” i.e., a state in which we will be able only to
afford a very low consumption level, possibly because an adverse event
occurs (like illness, accident, or loss of job). Then, we might consider
purchasing shares of an insurance contract, i.e., an asset whose value is
strictly positive when ws occurs, 0 otherwise. We assume that the insur-
ance payoff is 1 in the bad state, but any other value will do, if assets are
perfectly divisible and we may scale investments up and down at will.

More generally, an investor may shape the probability distribution of her
wealth according to her taste and appetite for risk. A market participant with
a given risk exposure may change it, and this is the essential function of risk
management. Clearly, for any player hedging a risk exposure away, there must
be another market participant willing to assume that risk or part of it. With
respect to this uncertainty dimension, financial markets play the role of a risk
transfer mechanism. For instance, insurance companies do that in exchange
for a premium, and rely on risk pooling and reinsurance contracts to manage
the resulting risk exposure.® One of the main problems in this context is the
definition of a fair insurance premium, which is a standard task in actuarial
mathematics.

Note that an insurance contract is an asset from the viewpoint of the policy
owner, but not a tradable one, as we cannot sell our life insurance policy. How-
ever, an insurance company, for which insurance contracts are a liability, may
pool and sell them to interested investors, using a process called securitization,
which is the creation of liquid securities from illiquid assets.” By doing this, the

SRisk pooling may be considered as a corollary of the law of large numbers. If we aggregate a
large number of small and independent risks, the overall risk should be reduced. This happens,
e.g., with car insurance policies. Risk pooling may fail miserably with strongly correlated risks.
Reinsurance, in a sense, is an opposite mechanism, by which a large risk is fractioned and sold
to third parties.

7See Section 1.2.2.
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risk may be fractioned and sold to investors who are willing to bear part of the
risk for a given price. Securitization is a good example to illustrate the pros and
cons of financial innovation. On the one hand, it allows to create securities that
may offer enhanced return to holders, which is good in a regime of low interest
rates. Furthermore, it may allow to insure against catastrophic risks that could
not be insured otherwise. On the other one, just consider the damage inflicted
to financial markets by the creation of illiquid and opaque mortgage-backed
securities, bundling subprime mortgages and leading to the 2008 financial cri-
sis. The same considerations apply to derivatives, which may be used in quite
different ways by players having different views about the future or different
attitudes toward risk (like hedgers and speculators, discussed later in this chap-
ter). In all of these cases, the fundamental recurring themes are asset pricing
and risk management, which we start considering in Chapter 2.

In later chapters, we will also see that making decisions under uncertainty
is no trivial task, and that in real life, things are complicated by the fact that
the two dimensions that we have considered, time and uncertainty, are actually
intertwined. The resulting picture, illustrated in Fig. 1.3, is a scenario tree,
where uncertainty unfolds progressively over time. The tree consists of a set
of nodes ng, k = 0,1,...,14. Node ny is the root of the tree and represents
the current state of the world. Then, over three time instants, t = 1,2,3, we
observe a sequence of realizations of random variables representing financial
risk factors. The outcomes w; of the sample space are associated with scenarios,
i.e., sequences of nodes in the tree. For instance, scenario ws corresponds to the
sequence of nodes

(nOa ni, Ny, ng).

More formally, each scenario is a sample path of a stochastic process. We
also see that the probability of a scenario depends on conditional probabilities
of events. For instance, the conditional probability of node n4 at time ¢ = 2,
given that we are at node n; at time ¢t = 1, is my)1- Hence, the unconditional
probability of scenario ws is

P(ws) = T1)0 * T4|1 * T9|4-

Since we are at state ng, we may write 7y rather than 1005 but we must be
careful in distinguishing conditional and unconditional probabilities. Stochas-
tic processes and the generation of scenario trees are discussed in Chapter 11.
Dynamic policies in such a context must allow for a way to adapt a strategy
to contingencies, and this leads to challenging multistage optimization models
discussed in Chapter 15.

1.2 Traded assets

Finance revolves around buying and selling assets, pricing them, and assessing
the involved risk. But what are assets, exactly? Open any page of a financial
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t=0 r=1 r=2 t=3

FIGURE 1.3 A scenario tree generalizes the scenario fan of Fig. 1.2 by unfolding uncer-
tainty progressively over time.

journal and you will read about assets such as stock shares, bonds, or deriva-
tives. Indeed, these are the assets that we will mostly deal with in this book; yet,
it is essential to get a broader picture. Generally speaking, an asset is anything
that can be transformed into money by its owner:

= A financial institution, like a pension fund, may rely on a portfolio of
bonds as an asset: The stream of coupon payments is used to pay pensions
to retired workers.

= A nonfinancial firm uses machines and other equipments to produce items
for sale. These items may be innovative products protected by a patent;
the patent is another asset that may be sold.

= An individual may use her human capital, possibly a Ph.D. title, to land
a good, rewarding, and hopefully well-paid job. Unlike other assets, a
Ph.D. title is not marketable.
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* An insurance policy is an asset that can be transformed into money, but
only when a prespecified event occurs, since it cannot be freely traded.

We see that assets may be both tangible or intangible objects that can be trans-
formed into a sequence of cash flows, and they come in plenty of different
forms. To start putting some order, let us introduce a few basic features to help
us in classifying assets:

Real vs. financial. The bonds owned by a pension fund are financial in nature,
whereas manufacturing equipments are real.

Risky vs. risk-free. Stock shares are considered as risky assets, as their future
price and their dividend income are not known with certainty. A certificate
of deposit issued by a very solid bank is perceived as a risk-free asset, since
we know exactly how much money we are going to collect at maturity, even
though the risk of default cannot be ruled out with absolute certainty.

Liquid vs. illiquid. Liquidity refers to the possibility of selling an asset quickly
and at a fair price; both sides of the coin are relevant. If we need a lot of
money immediately, we may sell our home; however, if we really want to
do it quickly, we may be forced to accept a price that is possibly much
lower than its fair value. A similar consideration applies to manufacturing
equipments, which may be very specific and difficult to sell for a fair price.
On the contrary, most stock shares are very liquid and actively traded on
regulated exchanges. Shares of common funds are liquid and can be re-
deemed on short notice, whereas shares of hedge funds may require several
weeks to be liquidated.

Tradable vs. nontradable. Most financial assets are easily traded on markets,
but we cannot sell our own insurance policy. The fact that an asset is non-
tradable does not diminish its importance. For instance, when we age, we
lose a fraction of human capital, as the sheer number of future cash flows
that we obtain from our job gets less and less. If our human capital is a
rather safe asset, then we may initially consider tilting our strategic asset
allocation toward reasonably risky stock shares. When we age, it is a com-
mon advice that we should rebalance the portfolio toward safer assets.

Exchange-traded vs. over-the-counter. Stock shares are traded on regulated
exchanges, just like some simple and standardized classes of derivatives
(vanilla options and futures contracts). Sometimes, we need a more spe-
cific kind of asset for risk management purposes, which may be tailored
by an investment bank according to our requirements. When an investment
bank engineers a very specific asset, this is sold over-the-counter (OTC),
rather than on regulated exchanges. Plain vanilla options are examples of
exchange-traded derivatives, whereas exotic options are OTC assets. Un-
fortunately, a tailored OTC asset will be harder to sell. Typically, we may
only sell it back to the original issuer by closing the contract, and its price
is less easy to quantify as it is not related to a transparent demand—offer
mechanism.
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In the rest of this section, we outline the most common forms of financial as-
sets, namely, stock shares (equity), bonds, and derivatives, as well as foreign
currencies and hybrid assets. Before doing so, it is useful to lay down a (very)
simplified view of a balance sheet, showing the connection between assets, li-
abilities, and equity. We also discuss briefly the difference between assets and
securities.

1.2.1 THE BALANCE SHEET

A cornerstone of corporate finance is the balance sheet, one of the fundamental
documents periodically issued by firms, which is used by investors and stake-
holders to assess the health state of the firm. The essence of a balance sheet
may be schematically represented in the following tabular form:

Assets | Liabilities
‘ Equity

which involves three sections:

1. Assets, as we have seen, can be transformed to positive cash flows, i.e.,
future payments that the firm will receive. Hence, the asset side of the
balance sheet lists what the firm “owns.”

2. Liabilities, on the other hand, are related to negative cash flows, i.e.,
future payments that will have to be covered. Hence, the liability side of
the balance sheet lists what the firm “owes.”

3. Equity is defined as the difference between the total value of the assets
and the total value of the liabilities:

Assets — Liabilities = Equity.

Equity must be positive. When equity is negative, it means that the as-
sets will not be able to generate sufficient cash flows in order to pay the
liabilities, and bankruptcy occurs.

W Example 1.3 The balance sheet and financial ratios

Let us consider the extremely simplified and fictional balance sheet
of a firm, reported in Table 1.1. On the asset side, we have current
assets, which are liquid assets, like cash, or assets that can be con-
verted to cash in the short term, like accounts receivable (money that
will be received from customers). Fixed assets are less liquid and can
be converted to cash, but not so quickly. In the case of equipment, the
value may be questionable, and affected by depreciation and amorti-
zation standards, which may be chosen according to tax management
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Table 1.1 Fictional balance sheet (in $ millions) for Example 1.3.

Assets Liabilities
Current assets Current liabilities
Cash $80 Accounts payable  $300
Accounts receivable ~ $120 | Long-term debt $1800
Fixed assets
Equipment $2500
Total assets $2700 | Total liabilities $2100
Total equity: $600

policies. The liability side can also be partitioned into short-term lia-
bilities, like accounts payable (money that must be paid to suppliers),
and long-term debt (possibly bonds). We may check that the two
sides of the balance sheet, total assets and total liabilities plus equity,
are matched. If ten million shares are outstanding, the book value of
each stock share should be

$600
10
This is the book value of the firm, which need not correspond to the

market value. If the market value of each share is $40, then we say
that the book-to-market ratio is

560
$40

A ratio larger than 1 should suggest that the stock share is under-
priced.

Based on the balance sheet, different ratios may be computed in
order to measure the financial well-being and the solvency of a firm.
A natural ratio is

= $60.

1.5.

Total liabilities ~ $2100 N
T $2700

More specific ratios consider only short-term items. In general, we
aim at measuring the degree of leverage of a firm (or bank), i.e., the
ratio of debt to equity.

Another fundamental accounting document, which we shall not
discuss in detail, is the income statement, which links sales to net
income, taking costs and taxes into account. Let us assume that net

Total debt ratio = 0.78.

Total assets
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income is $200 (million) for our fictional firm. Net income is used to
define important ratios:

= Return on assets (ROA), the ratio of net income to total assets:

$200

—— =~ 0.074
$2700 0

* Return on equity (ROE), the ratio of net income to total equity:

$200
——— ~0.33
$600
» Earnings per share (EPS), the ratio of net income to shares out-
standing:
$200
Remb )|
0 $20
= Price-to-earnings (PE), the ratio of price per share to earning per
share:
840 _
$20

These ratios are also used to classify stock shares as follows:

= Value stocks are stocks that look undervalued, but could deliver
long-term profits to shareholders. They may feature low PE and
price-to-book ratios.

» Growth stocks, on the contrary, look overvalued with respect to
current market, but they may promise further growth opportuni-
ties due to expanding markets, new products, etc. They are gen-
erally rather volatile.

Furthermore, some of these ratios may be used in the multifactor
models of Chapter 9.

We should always keep in mind that the ratios we have just defined may
vary considerably across different industry sectors. Hence, rather than consid-
ering their absolute values, we should compare them against those of similar
firms. By the same token, depending on the nature of the firm we are consid-
ering, the exact kind of items listed in a balance sheet may be very different,
financial or nonfinancial, tangible or intangible, fairly easy or very difficult to
evaluate, liquid or illiquid, as well as short or long term. It is also important to
realize that the cash flows associated with assets and liabilities may be deter-

ministic or stochastic, as the following examples illustrate.
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Manufacturing firms. Specialized equipment for production is an asset, but
a rather illiquid one, just as account receivables (payments to be received
from clients). However, account receivables are usually short-term assets,
and in this sense they contribute to firm’s liquidity, even though they are
not marketable. Assets may also be somewhat intangible, like customer
goodwill or the portfolio of knowledge embedded in human resources. On
the other hand, money that the firm owes to suppliers (accounts payable)
contributes to short-term liabilities. Liabilities also include money that the
firm has borrowed from a bank to finance its short-term operations or its
long-term research and development programs. Alternatively, a large cor-
poration may issue bonds to finance itself. Note that such corporate bonds
are liabilities for the issuer, but they are assets from the viewpoint of bond-
holders, which may be financial intermediaries or individual investors.

Banks. Assets and liabilities for a bank tend to have a financial nature, but they
need not be marketable. One such example is mortgages, unless they are
pooled by a securitization process and sold as mortgage-backed securities.
It is important to understand how the uncertain balance between assets and
liabilities may be a source of risk for banks. Traditional mortgages that
the bank has contracted with its clients and kept in its balance sheet are
long-term assets, whereas the deposits are short-term liabilities, since the
client may withdraw money whenever she feels like it. This maturity mis-
match may result in considerable exposure to interest rate risk, since short-
and long-term assets or liabilities react in different ways to changes in in-
terest rates.® Banks with a proprietary trading desk may hold any kind of
financial asset, including bonds and stock shares. A bank may finance its
operations using deposits, but since they result in short-term and uncertain
liabilities, they may issue certificates of deposits or bonds, which appear in
the liability side of its balance sheet.

Insurance companies. A life insurance company receives periodic payments
that may be invested in financial assets, whose cash flows will be used to
pay, e.g., pensions and annuities, which appear on the liability side. The
financial assets may be more or less risky, just like the liabilities. A life
insurer faces longevity risk and, possibly, inflation risk if pension benefits
are inflation-indexed. By a similar token, a non-life insurer collects premia
from policyholders and is subject to stochastic liabilities related to, e.g.,
loss of property and car accidents.

These examples just give a vague idea of the variety of assets and liabili-
ties that may appear on balance sheet. The picture is complicated by the fact
that the exact way in which items are listed is far from trivial, and it is affected
by accounting standards and regulations, having an impact on tax payments.
Moreover, there may be little agreement on how assets and liabilities are ex-
actly valued. This results in a possibly remarkable discrepancy between the

8We consider interest rate risk management in Chapter 6.
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book value, i.e., the value reported in the balance sheet, and the actual market
value of an item. This is inevitable, when cash flows are stochastic, requiring
a suitable valuation model. Whatever model we choose, model and correlation
risk come into play. To understand correlation risk, let us consider an insurance
company. If there is a large number of uncorrelated and relatively small risk
exposures, like car accidents, the overall value of the liabilities may be fairly
predictable. However, considerable risk is faced when insuring properties with
large values, or when an unexpected increase in correlation among risks intro-
duces a remarkable amount of volatility.” By the same token, if a balance sheet
includes derivatives, which one among the many conflicting valuation models
should be used? And how should we estimate their parameters?'®

Given this complexity, the accounting profession has (reasonably) given
priority to standardization and consistency, rather than financial accuracy and
mathematical sophistication, issuing a set of debatable guidelines and rules. As
the reader can imagine, this is beyond the scope of this book, and a thorough dis-
cussion of accounting documents like balance sheet and income statement can
be found in corporate finance books. Nevertheless, a bit of understanding of
the balance sheet is also necessary for anyone interested in quantitative models
of financial markets. The two primary assets that we describe in the following,
stock shares and bonds, are clearly related to the balance sheet. Whatever as-
sets and liabilities are listed and how exactly, a fundamental principle applies:
If a firm is liquidated and closed down, assets are sold, generating funds that
are used to pay the outstanding liabilities. If any equity remains, this money is
distributed to stockholders (also called shareholders). This is why stock shares
are referred to as equity, and stock markets as equity markets: Stock shares
represent residual claims on equity.!! Note that creditors, possibly bondhold-
ers, have priority over shareholders, and there is a pecking order for creditors
as well. Bond indentures describe bond features like collateralization, i.e., if
firm’s assets are locked as a guarantee against default, and the level of seniority
(priority in the pecking order) associated with the bond. Clearly, these features

An example of unexpected increase in correlation is the increase of defaults on mortgage pay-
ments, when a generalized economic crisis leads to an increase in unemployment. In this case,
default is not due to strictly individual issues, like illness or delinquency. The same may apply
when an increase in the interest rates makes floating-rate mortgages more expensive, making
default the only possible choice for some homeowners.

10 Another issue with derivatives is their exact purpose. In fact, derivatives may be used to
manage risk exposures and improve the balance sheet. However, they may also be used for quite
risky speculation and, sometimes, drawing the line between the two uses is difficult. A pension
fund might use derivatives in a defensive manner, but in order to prevent reckless behavior
by fund managers, their use may be prohibited altogether. By the same token, at the time of
writing, there is considerable controversy, here in Italy, about how public authorities have used
interest rate derivatives in order to manage public debt. Many risk management strategies have
backfired, which is always a possibility and, per se, is no evidence of reckless management. The
problems are: (a) the appropriateness and size of the exposure that was assumed and (b) the
suspiciously high prices that were paid to investment banks.

11By the way, it should be clear why sovereign governments may issue bonds, but not stock
shares.
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have an impact on the riskiness and value of bonds. Furthermore, the stylized
structure of the balance sheet provides us with a useful representation of trad-
ing strategies'? and an essential link between financial markets and corporate
finance.

1.2.2 ASSETS VS. SECURITIES

Sometimes, it may be useful to draw a line separating assets from securities.
Securities are assets that can be readily purchased or sold on financial mar-
kets, like stock shares and bonds; we may also say that securities are tradable
or marketable financial assets. On the contrary, a health insurance policy is an
asset, but it cannot be sold by its owner and cannot be considered as a secu-
rity. Note that this does not mean that nontradable assets have no value. We
should also note that the line between assets and securities is often not so clear.
For instance a mortgage is an asset for a bank, but an illiquid one, as we said.
However, pools of mortgages may be transformed into liquid securities by se-
curitization, whereby tradable mortgage-backed securities are created. Other
kinds of asset-backed securities (ABS) have been created and traded. By a sim-
ilar token, a commodity like oil is not, per se, a security, even though it can be
traded. The point is that an individual investor cannot really buy and store oil.
However, she can take a position related to oil price by using derivatives written
on oil and other nonfinancial commodities. Real estate funds have also been
created to enable retail investors to take a stake in this family of alternative as-
sets, like residential or commercial real estate. Therefore, in this book, we will
not insist too much on the difference, but we will use the term “security” when
the liquidity feature of an asset needs to be emphasized.

We will investigate liquid securities in some detail, but we should always
keep in mind that liquidity is not only related to the specific kind of assets per
se, but to market conditions as well. In conditions of stress, market liquidity
may be severely reduced, putting a lot of pressure on market players in need for
cash.

W Example 1.4 The liquidity trap in thin markets

In a deep and liquid market, a trade has little impact on prices, but
markets may get thin and, needless to say, they have a nasty habit
of doing so at the least favorable moment. Consider a hedge fund
financing the purchase of assets by borrowing money. We will see
later that this strategy is called margin trading. In the balance sheet of
the hedge fund, the borrowed money contributes to the liability side,
whereas the purchased assets are on the asset side. Equity, which is

12gee Sections 1.4.4 and 1.4.5.
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the difference of the two sides of the balance sheet, will float with the
value of assets, whereas the liabilities are what they are. Quite often,
hedge funds purchase rather illiquid and risky assets, either to earn
some additional return, or as a part of a complex trading strategy. In
fact, this is why we can redeem shares of a common fund at short
notice, but doing so with a hedge fund requires much more time, as
complex trading strategies involving illiquid assets are not so easy to
unwind.

Under market stress, a flight to quality may occur, whereby mar-
ket participants sell risky assets in order to rebalance their portfolios
toward safer assets, like sovereign bonds of a quite solid country. As
a result, asset values may be considerably reduced, eroding equity of
hedge funds. The thinner the market, the larger this effect.

Well-intended regulations specify that a minimum safety cash
margin must be maintained in order to preserve equity. Hence, when
equity is eroded, the fund may be forced to liquidate assets to raise ad-
ditional cash. But when this happens in bad times, a vicious feedback
cycle may arise. We need to sell illiquid assets to raise cash, which
in turn leads to further a reduction in the market price of the assets,
forcing additional sales. It may even be the case that potential buyers
are aware of the state of the matter and have a strong incentive to wait
for a further reduction of the price asked by a fund in desperate need
of liquidity.

This liquidity trap was a key factor in the famous near-collapse of
Long Term Capital Management (LTCM) in 1998. As a consequence
of Russian default of bonds, market nervousness ensued, leading to
a drop in the market prices of risky securities, with a huge impact
on the highly leveraged portfolio of the fund. Similar issues arose in
the more recent subprime mortgage crisis: Illiquid assets could not
be liquidated because of a market crunch. Thus, investors in need of
cash were forced to sell liquid securities, like stock shares, leading to
a collapse in equity markets as well.

[

Example 1.5 Are you on-the-run?

Sometimes, there are slight differences in the liquidity of otherwise
equivalent securities. Treasury bonds, i.e., bonds issued by sovereign
governments, are issued and sold on markets at regular time inter-
vals in order to finance public spending and debt. The most recently
issued bonds are called on-the-run, whereas their older relatives are
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called off-the-run. On-the-run bonds are more actively traded, and
liquid, and this has an impact on their price. Some traders may try to
take advantage of this price differential by suitable trading strategies,
buying the cheaper bonds and short-selling the more expensive ones.

1.2.3 EQUITY

As we have pointed out, stock shares represent residual claims on the equity
of a firm, i.e., what remains after liquidating assets and paying liabilities. This
is why we use terms like “equity markets” and, as we shall see later, “equity
derivatives.” Stock shares are risky assets, as suggested by the randomness in
the holding period return of Eq. (1.1). The holding period return as defined there
involves only a capital gain, i.e., a return related to a price change. However,
there is also a possible source of income in the form of dividends distributed to
shareholders. If we denote by D the dividend paid during the holding period
(0,T), the corresponding holding period return is

S(T,w) + D — S(0)

Rlw) = 50)

(1.4)

Dividends may be random or not, depending on the length of the holding period.
Dividends are announced with some advance with respect to the ex-dividend
date,'3 but they are uncertain for the not-so-close future. Actually, if the holding
period is long enough, the exact timing with which dividends are paid is also
relevant, as they may be reinvested in the stock itself or other assets. Thus, to be
more precise, we should consider D in Eq. (1.4) as the value projected forward
to time 7. For instance, if a dividend of €0.60 will be paid in two months and
the holding period is six months,

D =0.60 x e"*4/12,

where 7 is the (continuously compounded) annual interest rate, which we use
to shift the cash flow four months forward.'* Care must be taken with respect
to taxation, as dividend income and capital gains might be taxed in a different
way. We should also mention that an important topic in corporate finance is the

B3To be precise, the ex-dividend date does not necessarily coincide with the date on which
a dividend is paid. Since stock shares change hand continuously, a rule must be established to
specify who is going to receive the dividend. If we buy the stock share after the ex-dividend date,
when the stock share is said to go “ex-dividend,” we are not entitled to receive the dividend, but
the previous shareholder is, even if the dividend will be paid later.

14This operation is the reverse of cash flow discounting, and we will discuss such issues in
Chapter 3.
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dividend policy, i.e., the strategy by which a firm decides whether earning will
be reinvested or distributed in the form of dividends.

When we are stockholders, we are actually the owners of shares of a firm,
which is not the case for bondholders. This raises an important issue: Are we
responsible for illegal behavior by the board of directors or damage caused by
defective products? The answer is no, since stock shares are limited liability
assets. This is essential, especially for large corporations, in order to enable
separation between management and ownership. Apart from legal implications,
this feature implies that stock prices cannot be negative and that the worst-case
return from holding stock shares is —100%. From a mathematical viewpoint,
as we have already mentioned, this also implies that a widely used distribution
like the normal, which features an unbounded support, the whole real line R =
(—00, +00), cannot be a model for stock returns, but an approximation at best.!>

Although this will not play a major role in this book, we must keep in
mind that stock shares have not only an economic nature, but a legal one as
well. In practice, there may be different kinds of stock shares associated with
the same firm, like common and preferred stock shares. The difference may
be in voting rights, which may not be associated with preferred stock shares.
On the other hand, preferred stock shares come with the “promise” of a given
dividend, whereas common stocks do not have any such guarantee. The holder
of a preferred share has priority over holders of common stocks in terms of
dividend payments; however, if no dividend is paid, this does not involve any
default on the part of the firm. On the contrary, if interest on debt is not paid,
a default occurs, with the possibility of the firm being declared bankrupt. This
is a relevant consideration when a firm has to decide on the best way to raise
capital, by issuing either stock shares or debt. The cost of servicing debt is
tax-deductible, which may yield some advantage in terms of taxation. Issuing
new stock shares may dilute property, and it may not be taken well by markets,
resulting in a sudden drop in the stock price. On the other hand, issuing debt
increases the possibility of bankruptcy. This choice of the capital structure is a
fundamental topic in corporate finance.

There are other important features of stock shares that are worth mention-
ing:

* Not all stock shares are publicly traded. Some may be kept under the
control of original owners of a firm in order to have the final say in matters
of management. Furthermore, not all firms are listed on financial markets,
since this requires an expensive process, as some standard requirements
must be met in order to be quoted. Private equity funds may be used to
invest in privately held firms.

Unlike other assets, like bonds or options, stock shares do not have a
maturity. However, unlike energy in physics, stock shares may be cre-
ated and destroyed. Sometimes, new equity is floated in order to raise

15 As we shall see later, the normal distribution may also be unsatisfactory for other reasons, as
it is symmetric and thin-tailed.
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additional capital. Sometimes, equity disappears when shares are re-
purchased by the firm itself.'® It may also be the case that a firm is
delisted or acquired by another firm (not to mention the unpleasing event
of bankruptcy).

» Other exceptional events that may have a relevant impact on the price of
a stock share are:

— Stock splits: Two or more stock shares of the same firm are created out
of a single one. Stock splits may occur when the stock price is quite
large. Increasing the number of outstanding stock shares and reducing
their price may improve liquidity and lower the bid—ask spread. Some-
times, reverse splits occur, which may require some adjustments, e.g.,
to deal with owners of an odd number of shares when the reverse split
is 1-for-2. A reverse split may occur when the stock price is very low.
For instance, a low price may even preclude the listing of a share on
a stock market, and a reverse split may be a corrective action to avoid
delisting.

— Spinoffs: A firm is separated in two firms, and two different stock
shares are created out of each stock share of the original firm.

— Mergers and acquisitions: Two firms are merged into a single one, with
a corresponding merging of pre-existing stock shares.

Once again, all of these operations have rationales and features that are dis-
cussed in detail by books about corporate finance. We observe that their impact
on stock prices must be properly accounted for. If a stock share is currently
traded at a price of $100 and a 2-for-1 split occurs, the new resulting price will
be something like $50, which clearly does not imply a return of —50%. Stock
market indexes, discussed later, should take all of this into due account. By the
same token, derivative contracts must clearly specify how these events are dealt
with.!” A stock split has no effect on the market capitalization of a firm, which
is given by the total number of shares outstanding, times their market price.

1.2.4 FIXED INCOME

Floating stock shares is one way a firm can raise the capital it needs. An alter-
native is to borrow money, which does not necessarily mean literally borrowing
money from a bank. A common way to raise capital in mature financial markets
is issuing a bond. Bonds are also issued by sovereign governments, as well as
by local authorities: Examples are US treasury bonds and municipal bonds. A

165t0ck repurchase may have different motivations, as it may be a way to compensate share-
holders without issuing dividends, or a way to reduce the number of outstanding shares, when
they are deemed to trade at a too low price.

7For instance, we shall see that a typical call option suffers from a drop in the underlying asset
price. Usually, call options are not protected against payment of dividends, but they are against
stock splits.
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bond is a security that, in its simplest form, may be described by the following
main features:

= The face value F, also called nominal or par value, which is the amount
that the issuer promises to pay back to the bondholder.

» The maturity 7', i.e., the time at which the face value will be paid back.

* The coupon rate c, which is the interest rate applied to the face value to
define periodic interest payments that are paid to the bondholder. These
payments are called “coupons” for historical reasons, as bonds were phys-
ical pieces of paper with coupons that were detached to request payment
of periodic interest.

If ¢ = 0, i.e., no coupon is paid along the bond life, we have a zero-coupon
bond, often referred to as a “zero.” If ¢ > 0, we have a coupon-bearing bond.
Usually, coupons are paid twice a year, but different frequencies may be ar-
ranged.

W Example 1.6 A plain coupon-bearing bond

Let us assume that I = $10,000, T = 5, measured in years, and
semiannual coupons are paid, with rate ¢ = 4%. Note that coupon
rates, like all interest rates, are always quoted annually, but should be
adjusted to the actual period they refer to. In this case, since frequency
is semiannual, the actual coupon rate is 2% for six months. This
means that along the bond life there will be ten cash flows to the
bondholder. Attimest =k x 0.5, k = 1,2,...9, measured in years,
the cash flow will be c
3 % F = $200,

whereas the final cash flow at 7 = 5 includes both the last coupon
and the face value, amounting to $10,200.

The choice between funding alternatives depends on the circumstances. Most
firms would not issue a bond for a short-term cash need,!® whereas for a long-
term project, issuing bonds may be a better alternative, at least for a suitably
sized firm. Debt securities are liabilities from the viewpoint of the issuing firm,
which has an impact on both taxes and the risk of bankruptcy. On the one hand,
the cost of servicing debt is tax-deductible; on the other one, however, this
increases the risk of default. As we have hinted at before, the choice between
issuing debt or equity is affected by a tradeoff related to these and other issues,
such as the dilution of property, etc.

18 4 possible alternative is issuing commercial paper.
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Usually, zeros are short-term bonds, whereas coupons are paid for longer-
term maturities. For instance, US treasury bonds may be classified as:

= T-bills, zeros, with maturities up to one year
= T-notes, coupon-bearing, with maturities up to ten years

» T-bonds, coupon-bearing, with longer maturities

Some long-term zeros are in fact traded, but they are often created synthetically
by stripping coupons of long-term coupon-bearing bonds. This is an example
of a financial engineering practice known as unbundling cash flows.'°

Usually, when a bond is issued, the coupon rate more or less reflects the
current level of interest rates. If we compare the uncertainty in dividends of
a stock share against a fixed-rate coupon bond, i.e., a bond where c is declared
and fixed, we may understand why bond markets are referred to as fixed-income
markets. Bonds are the basic fixed-income securities, but, as we shall see, this
name also refers to quite different securities whose cash flows depend on the
level of interest rates. Indeed, the term “fixed-income” is quite a bit misleading.
To begin with, we may have bonds whose coupon rate is not fixed, but depends
on the time-varying level of interest rates. We refer to these bonds as floating-
rate bonds, or floaters. Other bonds pay coupons affected by other variables,
like inflation or even a stock market index (we talk of linkers, in such a case).
In fact, we use the term “fixed-income markets” to refer to a wide array of
securities related to interest rates. They include interest rate derivatives, such
as swaps and options, as well as hybrid securities, like convertible and callable
bonds, discussed later.

While the cash flows of a fixed-rate bond are supposed to be known with
certainty, the bond price itself is affected by the following risk factors:

* Default risk. The bond issuer may default on the coupon payments or
even on the reimbursement of the face value, totally or partially. In fact,
not all bonds are created equal: Collateral guarantees and bond inden-
tures, which may also specify the order in which bondholders are re-
funded in case of bankruptcy, are relevant. In the event of default, part
or all of the face value or coupons may be lost. Debt restructuring may
even result in a change of maturity.

Inflation risk. This is relevant for long-term bonds. Some bonds pay
real-interest’’ coupons, i.e., the coupon rate (or the face value) is adjusted
according to inflation.

» Foreign-exchange risk. This is obviously relevant if we invest in foreign
bonds, which may be denominated in a foreign currency.

« Interest rate risk. We will explore the inverse relationship between
bond prices and interest rates: When interest rates increase, bond prices

19ee Section 1.2.6.4.

201n Section 3.3, we shall see that a nominal interest rate may be eroded by a high inflation rate.
The real interest rate is adjusted for inflation and should reflect actual purchasing power.
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go down and vice versa. A rather paradoxical result is that a floating-
rate bond, with uncertain cash flows, may be less risky than a fixed-rate
bond.?!

Interest rate risk is relevant when we do not plan to hold a bond until matu-
rity. If we sell the bond, there may be considerable uncertainty about its future
price. In fact, defining a holding period return for bonds is actually complicated,
since we should also specify how coupons are used exactly. In an asset—liability
management problem, they might just be used to pay a stream of liabilities. If
they are reinvested, there is uncertainty about the future interest rates at which
this will be done, resulting in reinvestment risk.

1.2.5 FOREX MARKETS

Another huge market is the foreign exchange market (FOREX market for short),
where currencies are exchanged. The involved risk factor is the exchange rate
between pairs of currencies, which is relevant also for international equity and
fixed-income portfolios. Nonfinancial firms are also subject to currency ex-
change variability, which explains the number of FOREX derivatives available.
FOREX markets are also the terrain of plenty of speculative short-term trading.

The institutional arrangements behind FOREX markets are not trivial but,
given their limited role in this book, we leave the related issues to the references.
There is one, somewhat annoying, detail that we have to mention. If we read a
stock market quote and the price of a stock share is, say, $12, we interpret this
as the price of one share. Dimensionally, the quote is dollars per share. Hence,
if we buy 3 shares at that price, from a dimensional viewpoint we spend

dollar

12
share

x 3 shares = 36 dollars.

We would probably never think of a quote in terms how many shares we can buy
with 1 dollar, although sometimes, given an available budget, we must find out
how many shares we may afford to buy; hence, we would not consider share per
dollar as a sensible unit. When we buy commodities, the specific measurement
unit plays a more explicit role. We might buy a certain kind of vegetables for,
say, €3.2 per kilogram. Considering dimensions (i.e., units of measurement), if
we buy 2 kg, we pay
3.2 % x 2 kg = 6.4 euro.
In this case, too, measurement units have a straightforward interpretation when
figuring out prices and cash flows.
Now, if the exchange rate between USD and EUR is quoted as

EUR/USD = 1.1166,

2lgee Section 3.5.6.
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what does it mean? At the time of writing, the value of €1 is larger than the
value of $1, and indeed the above ratio tells that we may buy 1.12 dollars with
1 euro, allowing for some rounding and neglecting transaction costs. Alterna-
tively, we may say that the price of 1 euro is 1.12 dollars. This depends on
the perspective we take, and since FOREX quotes always involve two monetary
units, some clarification is in order.
Quoting exchange rates is about stating an equivalence between two amounts

denominated in different countries. We might write something like

EUR 1 = USD 1.1166, (1.5)
or, equivalently
USD 1 =EUR 1/1.1166 = EUR 0.8956. (1.6)

Let us focus on the first case, Eq. (1.5). We say that

» EUR is the base currency, and we consider EUR 1 as a fixed number

= USD is the quoted currency, and we consider USD 1.1166 as a variable
number

In a currency pair, written as EUR/USD, the currency to the left of the slash is
the base currency, and the currency to the right is the quoted currency.

Depending on which currency is considered as domestic, there are two
types of quotes:

= In direct quotation the domestic currency is the quoted currency, i.e., a
variable amount of the domestic currency is quoted against a fixed amount
of foreign currency. This kind of quotation is also called normal or un-
certain for certain.

= In indirect quotation the domestic currency is the base currency, i.e., a
fixed amount of domestic currency is quoted against a variable amount of
foreign currency. This quotation is also called reciprocal or certain for
uncertain.

For instance, a Eurozone bank quoting as in Eq. (1.5) would use an indirect
quote. A difficulty with FOREX markets is that different quotations are used on
different markets. The choice may depend on the following:

» A matter of perspective, i.e., what our domestic currency is

» A matter of convenience: for instance, a quote like EUR/JPY 115.261,
stating that 1 euro corresponds to 115.261 Japanese yen is convenient,
whereas the reciprocal would be less convenient

* A matter of priority, as the choice is influenced by the fact that there are
some “major” currencies which are more widely traded than other ones

= A matter of local conventions, since, for instance, the conventions in the
UK are different from the conventions in the USA
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A further complication is introduced by bid—ask spreads. The quote in Eq. (1.5)
would more likely read as

EUR/USD 1.1165/67,

stating that the bank is bidding 1.1165 dollars to buy 1 euro, and asking 1.1167
dollars to sell 1 euro. Sometimes, the “three Bs rule” is invoked:

The market maker Buys the Base currency at the Bid (low) price.

Indeed, the Eurozone bank would buy 1 euro for 1.1165 dollars. Needless to
say, a Eurozone bank will also quote an exchange rate like USD/CHEF, which
does not involve any domestic currency, to add to the confusion. In this case,
we have to come up with a cross-rate, starting with a mix of direct or indirect
quotes.

An indirect quote may also be considered as a “quantity quotation,” in the
sense that it gives the quantity of foreign currency needed to buy one unit of
the domestic currency. The direct quote may be considered as a “price quo-
tation,” i.e., the price of one unit of foreign currency in terms of the domestic
currency. In this book, we will deal extensively with derivative pricing, includ-
ing forward/futures contracts on currencies. For the sake of uniformity, we will
always interpret ratios as prices, just as we do in commodity prices, rather than
currency pairs. Hence, assuming that we are US investors, we would consider a
price like

1.1166 dollars per euro,

stating that the price of €1 is $1.1166, so that if we want to buy €200.00, we

have to pay

21.1166 x €200.00 = $223.32.

Note that this is the contrary with respect to a base/quoted currency pair. A
Eurozone investor would consider that as a price at which a euro is sold. We
will neglect bid—ask spreads, and no ambiguity should arise.

1.2.6 DERIVATIVES

Stock shares and bonds are, in a sense, primary assets. They need not be pri-
mary risk factors, as we may build a model relating their prices (or returns) to
underlying risk factors like inflation, oil price, and interest rates.?> However, the
relationship between risk factors and stock share prices/returns is represented
by a mathematical model, possibly estimated by statistical methods, on which
there may be no general agreement.

An incredibly large class of assets has been created on top of primary as-
sets, collectively known as derivatives. A derivative security is a financial asset

228ee Chapter 9 on factor models.
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deriving its value from some other variable, by an explicit formula that is writ-
ten in a contract. For instance, if S; is the random price of an asset at time
t,23 a typical derivative features a payoff f(Sr) at a well-defined time 7', the
maturity of the derivative, for some well-defined function f(-) of the under-
lying asset price at maturity. We insist again on the fact that the function f(-)
is explicitly written in the contract. More complex derivatives feature a payoff
depending on the whole price path until maturity.

If the derivative is written on a stock share or a bond with price .S;, we say
that the latter is the underlying asset. However, S; can be something else, not
necessarily a primary asset. For instance, we may consider:

» The price of a nonfinancial asset, e.g., a commodity like gold or oil, pro-
vided that a well-defined price is quoted on exchanges

« Arisk factor that is not the price of a traded asset, but a financially relevant
variable nevertheless, like an interest rate or a market index,2* or even an
elusive variable like volatility

= A risk factor that is not related to financial assets or prices, as in weather
derivatives

» The price of another derivative, as in compound options or swaptions

We observe that there is room for a considerable variety of derivatives, as they
may depend on a combination of underlying variables, and they also differ in
terms of the function defining the payoff.

Derivatives may be used for opposite purposes, namely, risk hedging and
speculation. Originally, they were meant to be risk transfer mechanisms and
have quite a long history, definitely predating the development of quantitative
finance. However, they have become quite controversial assets, as the volume
of derivatives outstanding is so huge that it often larger than the market of the
underlying primary assets.”’

There are different issues related to derivatives, which may be tackled by
quantitative finance models:

» Pricing®®: What is the fair value of a derivative, and how is it related to
underlying risk factors?

23Depending on convenience, we will write S; or S(t); we will not stick to a single notation, as
no ambiguity actually arises.

24Gee Section 1.5.

B Statistics published by the Bank for International Settlements in 2014 estimated a total no-
tional amount of OTC derivatives of about $630 trillion. Interest rate swaps accounted for $381
trillion. These numbers are impressive but misleading, since the notional amount of an interest
rate swap, as we shall see, overestimates the value of the derivative and the actual cash flows
that will occur. Nevertheless, there is no doubt that this is a huge market.

26 A5 is common in the literature, we will use the term pricing, even though valuation would be
more correct. The fair value of the derivative is only a component of the actual price asked by a
bank issuing derivatives, since this will include a profit margin and some buffer against residual
risk that cannot be hedged away in real life.
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» Hedging: If a market player like an investment bank writes, i.e., creates a
derivative, how can it manage the ensuing risk?

» Portfolio management: How can a derivative be used to change the char-
acteristics of a portfolio, increasing or reducing its exposure to selected
risk factors?

A wide array of derivatives is traded, but here we just want to introduce the
three basic families: Forward contracts, futures contracts, and vanilla options.

We should also notice that, beside quantitative issues, there is a host of
regulatory and legal issues related to derivatives, not to mention how should
they be accounted for in financial statements of banks and firms. These are,
however, outside the scope of this book.

1.2.6.1 Forward contracts

A forward contract is an arrangement between two counterparties, which at
time to agree to buy and sell, respectively, an asset at a prespecified forward
price F'(tg,T) at a later date T, the maturity of the contract. The part agreeing
to buy the asset is said to hold the long position in the contract, whereas the
part agreeing to sell is said to hold the short position in the contract. Note that
the contract is symmetric, in the sense that both parties are forced to comply
with what they have agreed.

The current spot price of the underlying asset when the contract is written,
denoted by S(t¢), is a known number, whereas the spot price S(7") at maturity
is uncertain. At time ¢o the forward price F'(to,T) is established once for all.
During the time interval (to,T") the spot price S(¢) will change randomly. By
the same token, the forward price F'(t,T), observed at time ¢, for delivery at
time 7', ¢t < T, will change as well. This is the forward price for new forward
contracts written at a later time ¢ > {y, but the forward price in previously
arranged contracts will not change. As we shall see, the value of a contract will
depend on the difference between the fixed F'(¢y,T) and the uncertain F'(¢,T)
along the life of the contract.

Both the spot price S(t) and the forward price F(t,T) are stochastic pro-
cesses, which are arguably correlated in some way. We should find a way to
model the relationship between spot and forward price, which may be a non-
trivial task. However, we can immediately see that the following spot—forward
convergence condition must hold at maturity:

S(T) = F(T,T). (1.7)

In fact, F(T,T) is the forward price for an immediate delivery at time ¢t = T,
and it must be the same as the spot price, otherwise two prices would be quoted
for the same item.?’

27Forrnally, this is an example of the law of one price, which is a consequence of the no-arbitrage
principle that we investigate in Section 2.3.
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Payoff Payoff

F(t,,T) S(T) S(T)
" F(t,T) -

(@) (b)

FIGURE 1.4 Payoff from forward contracts: (a) long position, (b) short position.

The value of the contract arises from the payoff that will result at maturity.
The payoff for the long position is

S(T) — Fl(to, T).

To see why, observe that, if S(T") > F'(tg,T), the long position may buy the
underlying asset at the delivery price F(tg, T') and sell it at the current spot price
S(T) at maturity, earning a profit. Note, however, that the payoff may well be
negative, since the long position has to buy at the delivery price, even when this
is larger than the prevailing spot price. Going the other way around, the payoff
for the short position is

F(ty, T) — S(T).

Clearly, the sum of the two payoffs is zero: The profit for the long position is
just the loss for the short position, and vice versa (this is a zero-sum bet, in
some sense). The payoffs are illustrated in the two diagrams of Fig. 1.4, for
the long and short positions, respectively. The long position benefits from an
increase in the spot price, whereas the short position benefits from a decrease in
the spot price. As we shall see in later chapters, it is common jargon to say that
an investor is “long a variable” if she gains from an increase in the variable, and
is “short a variable” if she gains from a decrease in the variable. The variable
may be the price of an asset, an interest rate, and whatnot. When the underlying
variable is not really the price of a deliverable asset, the contract is settled in
cash, i.e., an amount corresponding to the payoff is exchanged (when our payoff
is negative, it means that we owe money to our counterparty). In Chapter 2, we
will see that, using no-arbitrage pricing principles, the forward delivery price
is selected in such a way that the value of the contract is initially zero for both
parties. Thus, payoff and profit coincide, as nothing is paid when entering the
contract. After inception of the contract, the spot price S(¢) and the forward
price F'(¢t,T) will change, and this will affect the value of the contract, which
may drift away from zero.

The fact that the value of a forward contract is initially zero explains why
it may be so attractive for a speculator, at least in principle. In the case of
speculation, the profit from a successful trade in the underlying asset is limited
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by the fact that we have to actually buy (or short-sell) it on the spot market,
which may be limited by the available budget. In principle, nothing is needed
to enter into a forward contract, as the forward price is determined in such
a way that the value of contract at inception is zero. Thus, the return is not
really defined, as the denominator is zero! In practice, it may be the case that
some collateral has to be posted, and in any case there are transaction costs.
Nevertheless, we will see how a considerable leverage may be obtained with
derivatives in general, magnifying both profit and loss opportunities.

The other side of the coin is that a forward contract may be used to eliminate
or reduce risk, i.e., for hedging purposes. Assume that we will have to buy the
underlying asset at time 7" in the future. Since S(7) is uncertain, we face some
risk, but by entering into a long position, we will be able to buy at F'(ty,T) no
matter what, eliminating uncertainty altogether. If the contract is settled in cash
rather than by buying the underlying asset, the net cash flow at time 7" will be

—_— =
payoff purchase cost

which is negative, since we are buying the asset, and is equivalent to a contract
for physical delivery of the asset. A typical case in which derivatives are settled
in cash is when the underlying is a nontradable asset like a stock market index.
In other cases, physical delivery would be possible in principle, but it might be
avoided because of transportation costs and the like.

W Example 1.7 A long hedge

Suppose that in six months we will need 500 ounces of gold, and that
the current (time ¢t = 0) forward price for delivery in 0.5 years (six
months) is

F(0,0.5) = 1250 $/ounce.

Then, we may enter into a long position for 500 ounces to lock that
price. As a practical remark, we shall see that real-life contracts may
be given for standardized sizes, such as, e.g., 100 ounces. If the con-
tract is settled by physical delivery, we shall buy gold at 1250 dollars
per ounce, no matter what. The corresponding (negative) cash flow is

—1250 $/ounce x 500 ounces = —$625,000.

If the contract is settled in cash, and the spot price at maturity turns
out to be 1150 $/ounce, our cash flow will be

[(1150 — 1250) — 1150] $/ounce x 500 ounces = —$625,000,

the same as before. Note that, in this case, we buy at a cheaper spot
price, but this is compensated by a loss on the long forward position.
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If we have to sell the underlying asset, we should enter into a short position,
which just implies a change in sign in Eq. (1.8).

A perfect hedge results if a forward contract matching both the desired ma-
turity and the underlying asset, as well as the contract size, can be agreed. By
the way, note that “perfect hedge” means that risk is completely eliminated, not
that the outcome is necessarily a pleasing one. If we take the long position, as
in Example 1.7, we will regret our decision if the spot price at maturity turns
out to be lower than the delivery price. By the same token, a short position is
not a nice place to be if the underlying spot price increases. Still, risk manage-
ment should be assessed a priori, i.e., ex-ante, not ex-post. The main feature
of forward contracts is that they are actually a private arrangement between the
two counterparties, typically a firm and an investment bank. Forward contracts
are not securities freely traded on regulated exchanges, but rather an OTC agree-
ment. This implies both advantages and disadvantages. On the positive side, the
details of an OTC contract may be tailored according to quite specific needs. On
the negative side:

» Since there is no quoted price, which is driven by demand and offer, pric-
ing a specific contract may be troublesome. Hence, a firm in need for a
hedge might adopt a strategy of competitive pricing, which means asking
around for multiple quotes to compare them. A possibly better alternative
is to establish long-term relationships with a single, trustworthy bank.

The contract is not standardized, hence it is not liquid. Unwinding the po-
sition may be difficult if the hedging needs change. This typically implies
assessing the value of the contract and closing it before maturity by a cash
settlement. Note that this is the result of a negotiation process, possibly
implying the valuation of an illiquid contract, and not the immediate sale
of a security on regulated and liquid markets.

A further issue with forward contracts is counterparty risk. There is only
one cash flow, at maturity, possibly a huge one. Imagine that we hold
a short position in a forward contract written on an asset whose price is
dropping dramatically. We are about to collect a remarkable payoff, but
what if the long position walks away? In fact, only creditworthy firms are
accepted as partners in a forward agreement, but counterparty risk is not
completely eliminated.

The solution to liquidity and counterparty risk issues is represented by futures
contracts, which are the exchange-traded equivalent of forward contracts.

1.2.6.2 Futures contracts

Futures contracts are quite similar to forward contracts, in the sense that the
delivery of an underlying asset or commodity is arranged for a future date, at
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a prespecified futures price?® F'(¢,T) that is continuously quoted on regulated
exchanges. Futures contracts have specific features aimed at easing the difficul-
ties with forward contracts, namely, liquidity and counterparty risk:

= Standardization, to improve liquidity

= Daily marking-to-market through a clearinghouse, to ease counterparty
risk

In order to improve liquidity, futures contracts are standardized. This means
that the range of available underlying assets and delivery dates is limited and
cannot be arranged to perfectly suit very specific needs. For instance, certain
contracts are only available for quarterly delivery, i.e., maturing at four months
per year. This makes the use of futures contracts in hedging more difficult, but
it results in a deeper market, where it is easy to buy and sell futures contracts.
Furthermore, a liquid market is less subject to manipulation and cornering.

L Example 1.8 Cornering in futures markets

Cornering is an illegal practice, whereby speculators accumulate a
significant amount of the underlying asset. When maturity is ap-
proached, the short positions will be forced to buy the asset at large
prices to honor their contracts, if the supply is limited. To circumvent
this difficulty, contracts should be arranged only for underlying assets
with a sufficiently deep market, or alternatively a range of underlying
assets may be eligible for delivery, rather than a single one. For in-
stance, in futures contracts on bonds, a whole range of bonds may be
delivered, not only a specific one. Clear rules define the equivalence
among similar, but not identical, bonds and the coefficients by which
the delivery price is modified if necessary. For instance, bonds with
comparable maturities, but different coupon rates may be included in
the range for acceptable delivery.

The two essential features of futures contracts aimed at easing counterparty
risk are:

1. The existence of a clearinghouse. The clearinghouse consists of a group
of solid financial institutions, and it steps between the long and the short
positions. The institutional arrangement is depicted in Fig. 1.5. Actually,
if we hold the long position, we do not really “see” any corresponding
short position in the contract. We only deal with the clearinghouse, which
assumes the counterparty risk.

28Please note the essential difference between the future spot price, which is uncertain, and the
futures price associated with a derivative contract.
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Margin account Margin account
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FIGURE 1.5 The institutional arrangement of a futures contract. The clearinghouse
manages the margin accounts of the long and short positions.

2. The contracts are marked to market daily. This means that, rather than
settling the contract at maturity, daily cash flows are exchanged at the end
of every trading day. Indeed, both long and short positions are required to
post some margin, in the form of cash or some collateral, on an account
managed by the clearinghouse. If the futures price moves unfavorably, we
will lose some amount of money immediately, rather than at maturity. The
loss is sustained by the margin account, where daily profits are also col-
lected in the case of a favorable movement. There is a minimum amount
that must be maintained on the margin account, the maintenance margin.
If the account level falls below the maintenance margin, a margin call
is issued. Failure to comply with the margin call by posting more cash or
collateral on the margin account has the consequence that our contract is
immediately closed out and assumed by the clearinghouse.

We should note that the actual exposure of the clearinghouse is related to net
position, balancing long and short positions. One proof that the mechanism
does work occurred on October 19th, 1987, a day remembered as the Black
Monday of 1987, when a loss in excess of 20% in the Dow Jones index occurred.
The S&P500 index sustained a similar drop, with a corresponding shock on
index futures. Indeed, some brokers who were members of the clearinghouse
went bankrupt on that day, but the clearinghouse survived and all contracts were
honored.

We will analyze later the full details of futures contracts, as well as their
use for hedging and speculation. For now, we just clarify the mechanics of daily
marking-to-market.”® Imagine that, at time to, an arbitrary moment within a
trading day, we enter into a long position in a futures contract at price F'(to,T').
Say that, at the end of the day, corresponding to time ¢;, when the futures prices
are settled and marking-to-market takes place, the settlement price is F'(t1,T).
The cash flow for the long position at the end of the first day is, for each contract,

F(t,T) — F(ty, T),

which is positive if there is an increase in the futures price. The corresponding
cash flow for the short position is F'(to,T) — F(t1,T). In general, if the set-
tlement price at the end of day ¢, is larger than the corresponding price of the

29The picture is a bit simplified here.
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previous day, i.e., if
F(tva) > F(tk—laT)v

money is drawn from the margin account of the short position and deposited into
the margin account of the long position, and vice versa if there is a decrease in
the futures price. The marking-to-market mechanism generates a series of daily
cash flows for the long position:

F(tm,T) — F(tm—1,T),
where t,,, = T. The last cash flow may also be expressed as
S(T) — F(tym-1,T),

since the futures price at maturity, F'(T,T), converges to the spot price. If we
sum these cash flows, we obtain a telescoping sum:

3 [F(tl,T) - F(ti,l,T)} — F(twm,T) — F(to, T)
1=1
— S(T) — F(to, T). (1.9)

Thus, the net sum of cash flows looks just like the payoff from a forward con-
tract. A similar expression, with a change in sign, applies to the short position.
Now, in the light of this result, one could wonder whether there is a signifi-
cant difference between forward and futures contracts. Indeed, there is a subtle
but important difference between the two: The daily cash flows may be rein-
vested immediately at some interest rate, when positive. Negative cash flows,
i.e., losses, may also be financed at some interest rate. We will prove in Section
12.2 that, if interest rates are deterministic, the forward and the futures price are
the same. However, if the interest rate moves randomly, this will have an effect,
especially if there is a definite correlation between futures prices and interest
rates. This is especially the case with interest rate futures. Thus, forward and
futures prices need not be identical.

Liquidity has another, possibly surprising, effect. As a general rule, futures
contracts do not result in the actual delivery of the underlying asset, and most
futures contracts are closed before maturity. To close a futures contract, all
we have to do is entering into an offsetting position: A long position is closed
by entering into an equivalent short position, and vice versa. This feature is
essential both for hedgers and speculators, who do not really want to buy the
underlying asset, especially if the price of the underlying asset is only a proxy
for the actual risk factor that they are exposed to. For instance, a firm that is
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Table 1.2 An illustration of the mechanics of futures markets. All data are in $.

Trade Settlement Daily = Cumulative Account Margin

Day  price price gain gain balance call
1 1350 16,000
1 1346  —800 —800 15,200
2 1330  —3200 —4000 12,000
3 1334 800 —3200 12,800
4 1315 —3800 —7000 9000 1000
5 1304 —2200 —9200 7800 2200
6 1320 3200 —6000 13,200
7 1330 2000 —4000 15,200
8 1328 —400 —4400 14,800
9 1338 2000 —2400 16,800

exposed to risk factors related to energy or transportation costs may consider
using oil futures as a suitable hedging instrument, but they would certainly not
be interested in the actual trade of oil.

W Example 1.9 Mechanics of futures markets

Table 1.2 illustrates a possible scenario in a trade on gold futures. On
day 1, when the gold futures price is $1350 per ounce, we enter a long
position for two contracts, whose unit size is 100 ounces (hence, each
contract specifies the purchase of 100 ounces of gold at a total price
of $135,000). The initial margin required by the broker is $8000 per
contract, hence, we have to deposit $16,000 on the margin account
immediately. The maintenance margin is $5000 per contract. At end
of day 1, the futures is settled at $1346. Hence, we have a cash flow

$(1346 — 1350) x 200 = —$800

which is actually a loss, as the futures price declined and we hold a
long position. In Table 1.2, we list the settlement price for a sequence
of days, resulting in daily gains, which are cumulated. The margin
account falls below the maintenance margin at the end of day 4. After
marking-to-market, the margin account balance is only $9000, and
$1000 have to be posted in order to restore the maintenance margin.
We get another margin call after the settlement of the next day. At
some time during day 9, when the futures price is $1338, we close the
contract, with a total loss of $2400.
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1.2.6.3 Vanilla options

Options, like forward and futures contracts, concern buying or selling an asset
in the future at a predetermined price. However, options are more complicated
contracts, since they are asymmetric. In forward and futures contracts, the long
and the short position have symmetric obligations, in the sense that both of them
are forced to buy and sell, respectively, the underlying asset at the agreed price,
whether they like it or not. This results in linear payoff functions, and there is a
unique given price such that the value of the contract is zero at its inception. On
the contrary, options feature nonlinear, possibly complicated payoffs. Further-
more, options involve two quite different roles, the option writer and the option
holder, making the contract asymmetric. The option writer is the counterparty
originally creating the option, which is sold to the holder. To get the point, let
us focus on the simplest family of options, namely, vanilla options. Two kinds
of vanilla options are traded, call and put options.

= In a call option, the option holder has the right, but not the obligation, to
buy the underlying asset from the option writer, in the future, at a fixed
price K called the strike price.

= In a put option, the option holder has the right, but not the obligation, to
sell the underlying asset to the option writer, in the future, at a fixed strike
price K.

We immediately notice the asymmetric nature of options: The holder has the
right to a choice, and the option writer will have to comply, no matter what.
The writer of a call option will be forced to sell the asset if the holder exercises
the call option, and the writer of a put option will be forced to buy the asset
if the holder exercises the put option. This immediately suggests that: (a) the
payoff will be nonlinear, (b) the option writer should be compensated for this
obligation, and (c) the option will have a positive value at its inception, unlike
linear contracts. In the case of options, the jargon is misleadingly different from
the case of futures: The option writer is said to hold the short position in the
contract, whereas the option holder holds the long position. Since the option
can be a call or a put, in this case the terminology does not refer to who buys or
sells the underlying asset. The long position should be understood as the side
of the contract that profits from an increase in the value of some asset. The long
position in a futures profits from an increase in the futures price, and the long
position in an option profits from an increase in the option value, for both call
and put options. The short position, on the contrary, profits from a drop in the
futures price or in the option value. Clearly, the option writer earns a profit if
the option expire worthless, without being exercised by the holder, who paid the
option premium. As with forwards/futures, the contract can be settled in cash,
rather than by actual delivery of the underlying asset, if this is not tradable, or
it is not convenient to do so.

If the option can be exercised only at a prespecified time 7', the option ma-
turity, the option is said to be European-style. If the option can be exercised at
any time before and including a time 7', which in this case is an expiration date,
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FIGURE 1.6 Payoff (continuous line) and profit (dotted line) from long positions in
options: (a) call option, (b) put option.

rather than a maturity, the option is said to be American-style. The payoff of a
European-style call option, from the holder viewpoint, is

max{S(T) — K,0}.

To see why, consider that the holder will exercise only if it is convenient to do
so, which is the case if the spot price S(7') at maturity is larger than the strike
price K. In such a case, the holder may buy the asset at K from the option
writer and sell it immediately at S(T) on the spot market. By the same token,
the payoff of the put option, from the holder viewpoint, is

max{K — S(T),0}.

If K > S(T), the option holder may buy the asset on the spot market at S(T),
and force the option writer to take delivery at the strike price K. The payoff and
profit to the long position for a call and a put option, respectively, are depicted in
the diagrams of Fig. 1.6. We immediately observe that the payoffs are nonlinear
(piecewise linear, to be precise). Furthermore, payoff and profit are not the same
thing, unlike the case of linear contracts with initial zero value. Since the payoff
cannot be negative, it must be the case that an option has some positive value
at time ¢ = ty, when the option is written, which is the fair price that the writer
should ask.* Thus, the profit to holders is the payoff shifted down by the option
price. While there is only one “right” forward/futures price, such that the initial
value of the contract is zero, options with different strike prices are traded. We
should expect that the price of a call option, all other factors being equal, is a
decreasing function of the strike price, whereas the price of a put option is an
increasing function of the strike price.

The diagrams for the short position are just the diagrams of Fig. 1.6 turned
upside down, as shown in Fig. 1.7. The option writer is compensated by earning

30We stress again that we confuse “value” and “price.” Option pricing models, as we shall see,
yield a fair value. The actual price will account for profit and some additional fudge against the
risk born by the writer.
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A Payoff/profit A Payoff/profit

S(T)

FIGURE 1.7 Payoff (continuous line) and profit (dotted line) from short positions in
options: (a) call option, (b) put option.

the option price (or premium), but it is important to realize a key difference
between the two roles. If the option expires worthless, the holder will lose the
whole option premium, but this is the worst that can happen. Figure 1.7(a)
shows that there is no bound on the potential loss for a call writer. Thus, two
essential tasks in quantitative finance are finding the fair value of options and
devising ways to hedge the risk of writing options. A significant portion of this
book is devoted to these two problems, and we will find out that they are tightly
linked. We will also see that pricing American-style derivatives is, as a general
rule, much more complicated. To see why, consider the case of an American-
style put option if S(¢) < K att < T, before maturity. The option payoff, if the
option is exercised early at time ¢, is the same as the European-style option, with
S(T) replaced by S(t). Hence, the option holder could earn a positive payoff,
K — S(t), by exercising early, but is this really an optimal choice? Should
the option holder exercise immediately, or wait for a better opportunity? The
answer is not really trivial, as it implies the solution of specific kind of dynamic
stochastic optimization problem, an optimal stopping problem.

We observe that the option payoffs for call and put options only depend
on the value of the underlying asset at maturity (or the early exercise date for
American-style options). The payoff is a simple piecewise linear function that
does not depend on the whole history of the underlying asset price. This is why
these simple options are called vanilla.*' Vanilla options are commonly traded
on regulated exchanges, but several OTC variants, involving multiple assets and
more complicated payoff functions are commonly engineered. These options
are often called exotic options.

Just like futures, options may be used for both hedging and speculation
purposes. Let us illustrate these uses by two simple examples.

31¥anilla is the most basic ice cream flavor.
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@ Example 1.10 A protective put

Let us consider a protective put strategy. We hold an asset, with value
So = S(to), but we are concerned with a possible loss over the hold-
ing period [to, T']. One way to hedge risk is buying a put option with
strike K. Then, the overall portfolio value at maturity is the sum of
the asset value and the option value,

St + max{K — Sp,0} = max{K, St}.

If we look at the total payoff, it seems that the larger the strike, the
better. Clearly, this is too good to be true. Indeed, we should not
forget that the protection from the put option does not come for free,
and it is a safe guess that a put option with a larger strike price will
be more expensive, too. On the contrary, hedging with forward or
futures contracts can be achieved at no initial cost. However, we give
up the whole upside potential (if S grows), whereas this is partially
retained by hedging with options.

[

Example 1.11 A bullish speculation

The current price of an asset is Sy = $100, and we have a strong belief
that it will rise in the near future. One possible strategy is simply to
buy the asset. If we are right and, say, the asset price at some later
time 7 turns out to be St = $120, the holding period return is

120 — 100
100
Now let us assume that a call option with strike price K = $100 costs

$5. If we buy the call option, the return in the above scenario is a
stellar

= 20%.

max{120 — 100,0} — 5 _ 15 — 300%.
5 5

Clearly, there must be some other side of the coin. To get a feeling,

let us assume that we are wrong and the underlying asset price goes

down by 1%. The percentage loss, if we invest in the asset itself, will

be a not too painful 1%: We may be fairly disappointed, but this is a

loss we may well live with. However, the call option return is

max{99 —100,0} =5 -5
5 5

since the option expires worthless and we lose the whole premium.

= —100%,
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1.2.6.4 Hybrid securities, bundling/unbundling, and
securitization

So far, we have considered simple assets like stock shares, plain bonds, and
vanilla options. We have hinted at the possibility of creating more complex as-
sets, like exotic options featuring different payoff structures. One such example
is an Asian option, whose payoff depends on some form of average. The most
natural Asian option involves an arithmetic average over time of the price of a
single underlying asset, like

N
1
max{N;S(tk) —K,O},

where ¢,k = 1,..., N, is a sequence of sampling instants. Such options are
usually not traded on regulated exchanges, but sold OTC. It may sound surpris-
ing, but we may find both European- and American-style Asian options. The
point is that Asian refers to the form of the payoff, whereas the other labels refer
to the possibility of early exercise.

By assembling or disassembling assets and cash flows, a whole world of
possibly quite complex assets can be created by financial engineering. The
building blocks are often stock shares, bonds, and options, and the basic proce-
dures include:

= Cash flow bundling and unbundling
= Addition of option-like features to traditional assets

» Securitization
Let us illustrate the idea with a few concrete examples.

Convertible bonds. A convertible bond is a corporate bond with an optional
component: The holder has the right to exercise an option to transform it into a
prespecified number of stock shares of the same firm. We may regard this kind
of asset as a security bundling a bond and a sort of call option on a stock share.
To be precise, the bundled derivative is often not really an option, but rather a
warrant. The difference is that when a warrant is exercised, a brand new set
of shares is created, diluting equity. Convertible bonds may be appealing to
issuers as a way to raise capital when the stock share price is perceived by the
management as unjustifiably low. Given the embedded option, the price of the
bond will be higher than otherwise. If the stock share price rises, new stock
shares will be issued and the company will stop servicing debt. Otherwise,
the firm will be able to deduct the cost of debt servicing from profit, with a
tax advantage. Convertible bonds may be appealing to investors as well, when
assessing the company risk is difficult, and they offer upside potential if the firm
grows.>

32 Convertibles may also be interesting for sophisticated investors looking for arbitrage oppor-
tunities, which we introduce later. See, e.g., [4].
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Callable bonds. A callable bond is a bond that may be bought back by the
issuer, at a given price, subject to certain limitations. For instance, a bond may
be declared noncallable for a given number of years after its issuance. When an
investor buys a callable bond, she is essentially selling a call option back to the
bond issuer. Hence, all other factors being equal, a callable bond is cheaper than
a noncallable one. The bond issuer will find the call opportunity convenient if
there is a drop in interest rates, since it may refinance debt by issuing brand new
bonds with a reduced coupon rate. This is bad news for the bondholder, as she
will be subject to reinvestment risk: She is forced to get her capital back just
when the bond value is increasing because interest rates are dropping,3 and she
will have to reinvest in new bonds with lower coupons (or old bonds with higher
price and corresponding lower yield).

Structured bonds. A structured bond typically offers a coupon that is not
linked to interest rates, but rather to another index, like a stock market index.
Even if the index return turns out to be negative, the repayment of face value of
the bond is guaranteed. This shows that a structured bond includes an option
element. Indeed, structured bonds were also used to circumvent regulations
forbidding mutual/pension funds from investing in derivatives.

W Example 1.12 A structured bond

A rather fancy, but real-life example of a structured bond is the fol-
lowing:

= Bond maturity is four years.

» At maturity, the payment of the face value is guaranteed, plus a
single coupon; the coupon, too, will be paid at maturity, and no
periodic coupon will be paid.

» The coupon is linked to the monthly average value of a basket of
ten stock shares in the telecommunication industry; since matu-
rity is 4 years, 48 monthly observations of ten stock prices are
involved in the average.

= The average return of the portfolio might well be negative, but in
this case the coupon will just be zero, and no loss will be sus-
tained.

= It will be possible to ask for the anticipated payment of the coupon
every six months, starting from the end of year 2.

= It is also possible to ask for the anticipated repayment of the face
value, but this implies a reduction with respect to the face value.

Bwe will explore the inverse relationship between bond prices and interest rates in Chapters 3
and 6.
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This looks like a very complicated security, but it may be assem-
bled by bundling a zero-coupon bond and an exotic option. The zero
ensures the payment of the face value, which is reduced if early re-
payment is requested. The option is a complicated version of a call.
Let S;(t;) be the price of each underlying stock share, indexed by
j=1,...,10, at time ¢t; = ¢/12, where ¢ = 0,1,2,...48. Note that
we are considering one year as the time unit, as customary in finance,
and for the sake of simplicity we are assuming that one year consists
of 12 identical months, which is not really the case. Finally, let us
consider the following payoff:

| J8 10
max{O,MZZSj‘(ti) K}»

i=1 j=1
where K, the strike, is just the initial value of the portfolio ,

10

K =" S(to)-

j=1
This option has three features:

« It is a rainbow option, as it is written on multiple underlying
assets.

« It is an Asian option, since its payoff is related to the average
price, rather than to a single price at maturity (or early exercise).

= It is a Bermudan-style option, since it features early exercise op-
portunities, but only at a limited set of epochs, corresponding to
t = 2,2.5,3, 3.5 years; thus, it is halfway between American- and
European-style options.

Long-maturity zeros. As we have seen, zero-coupon bonds are typically asso-
ciated with short maturities. However, we may find zeros maturing in 30 years.
These zeros are often created by investment banks that hold long-term, coupon-
bearing sovereign bonds, and strip the coupons creating zeros. This coupon
stripping procedure is an example of the more general idea of cash flow un-
bundling. As we shall see, the availability of a rich array of zeros is useful in
asset—liability management. Furthermore, they are quite sensitive to changes in
the interest rates, and can be used for speculation and hedging purposes.

Mortgage-backed securities. When a bank issues a mortgage to a homeowner,
it creates an asset in its balance sheet. This asset, however, is not liquid. In order
to create a marketable security, the cash flows from a pool of mortgages can be
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bundled together by a securitization procedure, in order to create a mortgage-
backed security that can be traded. A mortgage-backed security can be risky, as
homeowners may default on payments or, on the contrary, they might repay debt
early, if interest rates move in their favor. The former issue exposes the investor
to default risk, whereas the latter issue creates reinvestment risk. Despite these
risks, these securities promised a larger yield than other bonds, which made
them quite popular when they were introduced. Default risk should be somehow
mitigated by risk pooling. It seem sensible to say that a limited amount of
defaults in a pool of mortgages should be not too much of a trouble. The idea
was pushed to the limit when subprime mortgages, i.e., mortgages offered to
homeowners with a high chance of default, were securitized. Unfortunately,
risk pooling works when risks are not quite correlated. When the subprime
mortgage crisis erupted in 2007, correlations increased sharply, proving that,
indeed, some of the underlying risks were not fully understood. As we discuss
in Section 5.5, the matter was further complicated by tranching procedures,
whereby different layers of securities with different risk levels are assembled,
possibly by a second round of securitization. The ensuing crisis lead to the
demise of Lehman Brothers and to a revision of financial engineering practices
that, at the time of writing, is not quite settled yet.

1.3 Market participants and their roles

After discussing securities that are actually traded on financial markets, let us
take a more concrete look at who market participants are and their roles. In Sec-
tion 1.1, we have described the role of financial markets in terms of consumption
timing and risk transfer, which underlines the following functions performed by
financial markets:

= To channel available funds from lenders to borrowers.

» To transfer risk, both for individuals and corporations.

Actually there are many other important functions, which includes the ones
listed below:

= To provide a payment mechanism (e.g., by bank drafts and credit cards).
We will not consider this side of the financial system, but we have to
bear in mind that this is one of the main historical reasons behind the
creation of finance during the Renaissance in Italy, when the needs of
traders facing travel risk had to be met.

= To provide financial services, including the creation and sale of securities
like bonds by both public and private issuers, as well as offering advice
to firms in matters of financial management.

= To create market liquidity, i.e., the possibility of buying and selling assets
quickly and at a fair price, as well as to offer portfolio adjustment facili-
ties. The actual complexity of the information technology infrastructure,
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needed to actually perform trading on markets and to take care of asset
custody, should not be underestimated.

To enable the separation between ownership and management in large
corporations, which cannot always be effectively managed by family own-
ers. Corporate growth would otherwise be impossible much beyond the
size of a firm owned by the original founders. This is a controversial mat-
ter, as it may create problems related to bad incentives and agency issues.
Moreover, the excess of financialization of the economy is under scrutiny,
and with good reason.

It has been claimed that the financial system also plays an information
role, since the wide availability of financial data may be used to gather
valuable knowledge. It may be argued that this is a bit debatable, in the
light of speculation excess and some market anomalies studied by behav-
ioral finance.

In concrete terms, all of these functions (and others) are carried out by an inter-
connected network of actors including

= Households and private investors
= Large corporations and smaller firms

= Governments and other public agencies, including local authorities like
municipalities
= Financial intermediaries like banks, brokers, dealers, market makers, etc.

= Financial service providers like financial advisory firms, common funds,
hedge funds, pension funds, insurance companies, etc.

» Regulatory and supervisory agencies, like the SEC (Security Exchange
Commission) in the USA, the equivalent CONSOB?* in Italy, the Basel
Committee, central banks, etc.

All of these actors are connected by markets, which we may think as a platform
on which transactions can be executed, either over-the-counter or on a computer
network. We will discuss a bit of market structures later, but it is fundamental
to immediately understand the two basic structures: Primary markets and sec-
ondary markets. When securities are created, they are first sold on primary
markets. For instance, a corporation may float equity, possibly by an initial
public offering (IPO), which needs some support from investment banks, un-
der the scrutiny of regulatory bodies. By a similar token, a government may sell
bonds to institutional investors using an auction mechanism. Households do not
have direct access to primary markets, but they operate on secondary markets,
where securities may be freely traded after they are issued.

34 Commissione Nazionale per le Societa e la Borsa.
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W Example 1.13 Selling vs. writing options

A common source of confusion is the nature of the obligations related
to selling an option, like a vanilla call or put. If we sell a call option,
are we obligated to sell the underlying asset to the holder if the option
is exercised? The source of confusion is the kind of market on which
the option is sold. The writer is the one selling the option first on
primary markets. Then the option, assuming it is an exchange-traded
one, may change hands on secondary markets, but the obligation is
only assumed by the original writer. If we buy and then sell an op-
tion, we are just selling the rights to a new holder, incurring a profit
or a loss. To avoid any ambiguity, we shall always use the term “op-
tion writing” when we mean “selling on primary markets,” collecting
the option premium and assuming the obligations stated in the con-
tract. When we talk about “selling” an option, it will always refer to
secondary markets, as part of a trading strategy.

Some specific market players, like brokers and dealers, make sure that there
is sufficient liquidity on markets. Before discussing some of these actors in
more detail, let us underline that they play different, but not mutually exclu-
sive, roles. For instance, governments may be net savers or net borrowers, just
like households. However, we know well that our role can change over time,
since we may borrow money at the beginning of our working life (e.g., un-
der the form of a mortgage) and, hopefully, we become savers as our career
progresses. Of particular interest are some key roles that may be played by in-
vestors, non-financial firms, and financial intermediaries: Hedgers, speculators,
and arbitrageurs. These will be discussed later.

1.3.1 COMMERCIAL VS. INVESTMENT BANKS

Banks come in many forms, including retail banks mostly dealing with house-
holds, commercial banks offering services to small-medium firms, and large
investment banks. Investment banks are often involved in mergers and acqui-
sitions, and they also act as underwriters to help corporations in raising capital
by floating equity or issuing bonds. Usually these securities are bought by in-
vestment banks on primary markets, and then sold on secondary markets. Fur-
thermore, there are different legal entities, like banks floating their own equity
and credit unions. Here, we just want to draw the line between deposit- and
non-deposit taking banks.

A deposit-taking institution, like a retail or commercial bank, may also
collect funds from households, who deposit money on accounts that may be
more or less protected against bankruptcy. Bankruptcy may result from careless
credit distribution decisions by the bank, from the difficulty to collect loans
back due to economic stagnation, or, in extreme cases, from risky proprietary
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trading, i.e., trading that the bank carries out itself, rather than on behalf of its
clients. The recent trend has been to reduce this kind of government-backed
protection.

Large investment banks are non-deposit taking, and must raise capital by
other means, like floating equity, issuing bonds, or borrowing money from other
banks. As we shall see in Section 1.4.4, using debt rather than equity has the
results of boosting ROE by a leverage mechanism. The leverage ratio mea-
sures the amount of debt used with respect to own equity. Roughly speaking,
if ROA is 5%, a leverage ratio of 2 will double ROE. Unfortunately, the same
happens in the case of loss, and when excessive debt is used, bankruptcy risk is
considerably increased.?

Since risky proprietary trading activity may hurt clients of deposit-taking
banks, a line between the two types of banks was drawn in the USA after the
1929 crash (Glass—Steagall Act), which is why investment banks could not take
deposits. This line has been blurred in the last decades. Furthermore, the in-
creasing interconnection among market players has increased systemic risk, i.e.,
the possibility that the collapse of a large institution affects many others by a
domino effect.

1.3.2 INVESTMENT FUNDS AND INSURANCE COMPANIES

Individual investors may feel that they lack the information required to make
sound investment decisions. Furthermore, it may be difficult to properly diver-
sify the risk exposure with a limited budget, as transaction costs preclude the
possibility of many small investments in a broad set of securities. Hence, they
may purchase shares of mutual funds, that are supposedly managed by skilled
professionals who, in exchange for a fee, should provide good return opportuni-
ties to their clients. Shares are continuously created in the case of an open-end
fund. Shares are destroyed when a client redeems her shares of a mutual fund.
On the contrary, closed-end funds have a given number of shares that may be
traded.

There are two basic kinds of fund manager. Active managers try to earn
extra return by skill and by pursuing, for instance, stock-picking and market-
timing strategies. The actual performance of active managers is the subject of
a good amount of controversy. As an alternative, we may consider a passive
manager, who will not try to do any better than the market as a whole, but will
just provide a diversified portfolio tracking a broad index. We shall see that the
passive view has some theoretical support by equilibrium models like the capital
asset pricing model. Clearly, the fee required by a passive manager should be
definitely small with respect to the cost of an active fund.

3 Apparently, the leverage ratio of Lehman Brothers before their collapse was something like
20. LTCM, too, had reduced equity by forcing investors out before their near collapse.

30The collapse of Lehman Brothers affected hedge funds, among other things, as they acted as
prime brokers for these funds.
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The ultimate active fund is a hedge fund. Despite the misleading name,’’

hedge fund managers pursue possibly very risky and nonstandard investment
strategies in order to earn extra return. When we buy a share of a mutual fund,
we are client of the fund. On the contrary, when we buy a share of a hedge
fund, we are partners of the hedge fund, which has a different legal nature.
This is related to the high risk involved, and in fact only wealthy individuals
are allowed to expose themselves to this level of risk. Furthermore, due to the
complex trading strategies and the use of possibly illiquid assets, it may take a
considerable amount of time to redeem shares of a hedge fund. These barriers
are somewhat circumvented by funds of hedge funds.

The ultimate passive fund is an exchange-traded fund, ETF for short,
which is a just passive fund tracking an index. In order to reduce costs, ETF
shares are not distributed through a commercial network, unlike passive mutual
funds, but they traded on exchanges, just like stock shares. This opens a thorny
issue, since the ETF is supposed to track an index, but an uncontrolled demand-
offer mechanism might cause its value to drift away from the fair one.’® Market-
makers guarantee the necessary liquidity and make sure that the ETF value is
kept in line. Furthermore, a deviation from the fair value would create an arbi-
trage opportunity, which will be exploited by skilled investors, assuming liquid
and well-functioning markets.

There are other non-deposit taking financial intermediaries that are engaged
in fund management, namely, pension funds and insurance companies. These
intermediaries face difficult asset-liability management problems, as they col-
lect pension contributions and insurance premia that must be properly invested
in assets, in order to generate cash flows and meet an uncertain stream of li-
abilities. A non-life insurance company may deal with, e.g., a stream of car
accidents or other property damage. A life insurance company faces a similar
task as a pension fund. Liabilities are uncertain because of longevity risk and,
possibly, inflation-indexation. A defined-benefit pension fund must guaran-
tee to retired workers an income that depends on the received wages, according
to prespecified rules. The contribution level may be increased over time, de-
pending on contingencies. Recently, because of decreasing interest rates and
increasing life expectancy, there has been a shift toward defined-contribution
pension funds, in which there is no defined income, and considerable risk is
borne by the retired worker. It may seem that a defined-benefit fund is much
preferable from the worker’s viewpoint. However, we should also consider that
with a company defined-benefit fund it is more difficult to transfer vested bene-
fits, if a worker changes the employer. Furthermore, a firm with a well-funded
pension fund might become the target of hostile takeovers.

3TRisk hedging means reducing risk.

38This cannot happen with a mutual fund, whose net asset value (NAV) is evaluated and re-
ported daily by the fund management.
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1.3.3 DEALERS AND BROKERS

A fundamental requirement of financial markets is liquidity. Hence, there is a
need for institutional players that are continuously available to buy and sell an
asset. These market-makers are also referred to as specialists. This role may be
played by dealers and brokers. It may be the case that the same institution is
both a dealer and a broker, but the two functions are different. To understand the
difference, think of a real estate agent. Her role is to connect two counterparties,
but she does not really own an inventory of houses and apartments. This is the
role of a broker. The broker has no inventory of assets, and as such she does not
suffer from inventory risk. A commission on the trade is paid to the broker to
compensate her. There are also primary brokers associated with hedge funds,
which may need large trades. On the contrary, when we travel around the world
and exchange currencies at an airport, we do business with a dealer. The dealer
does keep an inventory of the assets she trades. Clearly, this inventory entails
some risk. In fact, the dealer is compensated by enforcing a bid—ask spread:*

« The bid price is the price at which the dealer is willing to buy the asset
from us.

» The ask price is the price at which the dealer is willing to sell the asset
to us.

Needless to say, the ask price is larger than the bid price, and their difference
is a measure of market liquidity. We have seen an example of bid—ask spread
in Section 1.2.5 on foreign exchange, and we will see similar examples in the
case of stock shares when we discuss market mechanisms. The same applies to
interest rates, as the rates at which we may lend or borrow money, when dealing
with a bank, are quite different.

Bid—ask spreads are a form of market friction. Other market frictions are
represented by taxes and by transaction costs associated with trades. These fees
may have a fixed and/or a variable component. In general, thanks to the use of
information technology, transaction costs have been reduced over the years.*
For the sake of simplicity, we will usually ignore such frictions, which may be
a sensible approximation for large institutional investors.

1.3.4 HEDGERS, SPECULATORS, AND ARBITRAGEURS

Market participants are often engaged in risk transfer, which is the traditional
purpose of insurance contracts. More recently, a huge market of derivative as-
sets has been developed, connecting hedgers and speculators. Hedgers are ex-
posed to risk factors, like interest rates and currency exchange rates, and would

¥ You may also hear the term bid—offer, but I personally prefer bid—ask, since the difference
between bid and ask sounds much clearer to me than the difference between bid and offer.
4030me argue that the reduction of market frictions and the related increase of transaction fre-
quency is far from being a blessing, as it may lead to market instability. High-frequency algo-
rithmic trading strategies are often blamed for this.
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like to reduce or eliminate that exposure. One possibility is to lock a rate for
the future by forward contracts, for instance. Speculators, on the contrary, have
a definite view about the direction that markets will take, and they are willing
to take a bet on it. Thus, speculators may be willing to “buy volatility” from
hedgers. We should realize that these two roles are not mutually exclusive. In-
deed, there are multiple sources of risk that affect the value of a portfolio of
assets, and a market participant might want to shape her portfolio in such a
way that it is made less sensitive to risk factors on which she does not feel like
betting, and more sensitive to other factors on whose direction she is more con-
fident. Hence, she will increase the exposure to some risk factors, behaving as
a speculator, and at the same time she will reduce the exposure to other risk
factors, behaving as a hedger. As a concrete example, an investor may feel that
she is good at picking stock shares that will perform better than the market as
a whole, but she is unsure about the market direction. In the case of a market
crash, being good at stock-picking and lose less than the market may only be a
partial consolation. As we shall see, she will be interested in taking risks that
are specific to some firms, while getting rid of systematic market risk. Hedgers
and speculators need models to quantify uncertainty in risk factors and to un-
derstand how different sources of risk affect asset prices. On the one hand, we
need tools to measure risk. On the other hand, we also need risk management
approaches and decision models to find the best hedging strategy.*!

Pricing models are also needed to check the consistency of the prices of
assets that depend on common risk factors. For instance, derivatives written on
the same underlying asset should be somehow related. If prices are inconsistent,
trading strategies may be devised in order to take advantage of price misalign-
ment. In technical terms, we talk of arbitrage opportunities, which are exploited
by arbitrageurs. In liquid and well-functioning markets, it may be argued that
arbitrage opportunities should not last long, as arbitrageurs will be quick in de-
tecting and exploiting them, bringing prices back in line. We will investigate
the mathematics of arbitrage in Section 2.3. There, we shall take a simplistic
view of markets, ignoring market frictions, modeling errors, and liquidity is-
sues. Nevertheless, we will be able to develop powerful pricing models based
on the idea that there should be no arbitrage opportunity in market equilibrium.
As usual, market reality is definitely more complex, and the actual arbitrage
strategies may be not so sharp and may fail to work for an array of reasons.
It may also be argued that arbitrageurs are sort of parasites taking advantage
of what other market participants do, without really contributing to any growth
in the real economy. Nevertheless, arbitrageurs play a vital role to the correct
market functioning by keeping prices in line. One example that we have already
hinted at is the need to ensure consistency between prices of an ETF share and
the index that the fund is supposed to track.

4lgee Section 2.2.
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1.4 Market structure and trading strategies

Quantitative finance relies on mathematical models that are, by necessity, an
abstraction of market reality. Finding the right level of abstraction and detail
simplification is definitely an art rather than a science, and we are engaged in a
quest for those models that are inevitably wrong, but hopefully useful. While
we may not be interested in an overly detailed view of market structures and
the institutional mechanisms by which a trade is executed, we must be aware of
some fundamental features that we outline here.

1.4.1 PRIMARY AND SECONDARY MARKETS

We have already hinted at the difference between primary and secondary mar-
kets. A primary market is where a security is first traded. The exact mechanism
depends on the kind of security. For instance, an auction mechanism is used to
introduce new government bonds on the market, but the auction is restricted to
institutional investors. In the case of a stock, we should distinguish an IPQO, i.e.,
the initial public offering of shares of a firm that is first quoted on the market,
from a seasoned offering, where further equity is floated by an already quoted
firm. An IPO may be a costly business, as several requirements are typically
set by regulators and must be met by a firm floating equity on exchanges. A
pool of investment banks is involved in the process, which may also include so-
called “road shows” to present the offering to investors. Anyway, we must keep
in mind that shares need not be traded on an exchange. Some firms are kept
private and possibly owned by private equity funds. A significant part of equity
can also be kept by the original owners to maintain control over management,
and only the rest are floated and are outstanding on secondary markets.

1.4.2 OVER-THE-COUNTER VS. EXCHANGE-TRADED
DERIVATIVES

Not all assets are traded on regulated exchanges, as some are traded OTC. For
instance, forward agreements are negotiated directly between the two counter-
parts, unlike futures. Another example of OTC derivatives are exotic options
with possibly quite complicated payoffs. The advantage of an OTC agreement
is that it may be tailored to meet specific risk hedging requirements. The dis-
advantage is that the lack of a quoted price may put a firm or a public adminis-
tration at disadvantage. Furthermore, nonstandardized assets are rather illiquid,
which means that unwinding the position may be expensive, if not impossible.

1.4.3 AUCTION MECHANISMS AND THE LIMIT ORDER BOOK

As we have mentioned, auctions are used, for instance, when selling sovereign
bonds on primary markets. Here, we consider secondary markets for stock
shares and describe an auction mechanism based on the limit order book.
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Table 1.3 A five-level limit order book for a liquid stock share.

Bid Ask
Quantity Price Price Quantity
130 77.26 77.28 8881
137 77.25 77.31 273
5855 77.23 77.33 115
300 77.22 77.34 272

13,080 77.16 77.35 738

When a market participant issues an order, she may specify a limit price, i.e.,
the maximum (minimum) price at which she is willing to buy (sell) an asset.
The limit order book is structured on two columns:

= On the left, we observe the buy orders, associated with limit prices sorted
in decreasing order. The top level line reports the highest bid price, as
well as the related quantity (possibly related to different orders).

= On the right, we observe the sell orders, associated with limit prices sorted
in increasing order. The top level orders are associated with the smallest
ask price.

A five-level limit order book is reported in Table 1.3. The two top quotes
are called the inside quotes. When limit prices cross each other, a trade takes
place. Otherwise, no trade is executed. Orders need not specify a limit price,
as an investor may just issue an order to be executed at the best available price.
It may happen that a large order is executed at different prices, when its size
exceeds the quantity available in an inside quote. The spread between the in-
side quotes reflects liquidity. We may notice that the bid—ask spread in Table
1.3 is quite small. Table 1.4 tells a rather different story, as there is a much
larger spread, especially in percentage terms, between the inside quotes. A
large spread typically comes with less trades during a day and lower volumes.*?

Quite often, price-contingent orders are used. There are two features: (1)
the kind of order, which may be buy or sell, and (2) the activation condition,
which is related to the price going above or below a threshold level. Therefore,
we have four basic types of price-contingent orders.

« The stop-loss order is a selling order to be activated when the price goes
below a limit. The rationale behind the order is clear: We hold an asset,
and in case of a drop in price we want to cut losses and get rid of it.

“The data reported here are not quite recent but real. They refer to the Paris stock exchange
in 2010, and the first share is a large and well-known French cosmetics producer, whereas the
second one is a less traded producer of containers for overseas shipping.
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Table 1.4 A five-level limit order book for a rather illiquid stock share.

Bid Ask
Quantity Price Price Quantity
108 2191 22.20 100
55 21.90 22.30 206
110 21.85 22.35 232
260 21.88 22.40 100
54 21.77 22.50 100

» The limit-sell order is a sell order activated by a price going above the
threshold. In this case, the idea is that we hold an asset, and we sell it
when a target profit has been achieved.

The limit-buy order is a buy order activated when the price goes below
a limit. This means that the asset is cheap enough to be bought. This
is related to a contrarian strategy, a strategy trying to buy undervalued
stocks.

The stop-buy order is a buy order activated when the price goes above
the threshold. The rationale is that the price is high enough to signal an
increasing trend. This is related to a momentum strategy, i.e., a strategy
trying to chase increasing trends.

High-frequency analysts build models at the limit order level, considering
both prices and volume, with the aim of developing algorithmic trading strate-
gies. Other models at this microstructure level concern the optimal execution
of a large trade in order to minimize market impact. We shall not consider this
operational level in this book.

1.4.4 BUYING ON MARGIN AND LEVERAGE

Buying on margin is a leveraged strategy aimed at boosting returns using debt.
In corporate finance, leverage refers to the ratio of debt over equity. Here we
have a similar use, as leverage means buying an asset by only partially using
our own capital, and borrowing the rest from a broker or a bank.

Imagine that we have a strong view about a specific stock share, a bullish
one in particular. As we have already mentioned, we may use derivatives, rather
than just going long the asset to take advantage of our view, but it may very well
be the case that derivatives written on that specific stock share are not available.
Hence, we may resort to leverage, more specifically, to buying on margin.
We have already met the term margin when dealing with futures contracts and
margin accounts. Here we refer to posting the asset itself as a collateral of our
debt, plus some cash acting as a buffer and guaranteeing the broker that we will
repay the debt even if the asset price drops.
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The mechanism revolves around the concept of margin ratio. Margin re-
quirements specify an initial margin ratio, as well as a maintenance margin.
To grasp the idea, it is useful to refer to the asset-liability—equity triad. In this
case:

» The asset is the amount of stock shares that we have purchased.

= The liability is the money we owe to the broker.

= Equity, as usual, is their difference.

In this case, the margin ratio is defined as the ratio of the value of equity to
the value of assets. If the margin ratio falls below the maintenance margin, we
get a margin call, which means that we have to post additional cash (or other

collateral). Failure to do so will result in our position being liquidated by the
broker. This is best illustrated by an example.

W Example 1.14 Margin trading

Say that the current price of a stock share of Boom Corp is $100,
and we buy 100 shares, for a total amount of $10,000. To finance the
trade, we borrow $4,000 from the broker. The initial situation is as

follows:
Assets Liabilities
Stock $10,000 | Loan from broker $4000
Equity
$6000

The initial margin ratio is

Equity  $6000

Assets  $10,000 60%,

and let us assume that the maintenance margin ratio is 30%. Note that,
for the sake of simplicity, we are not considering the interest payment
to the broker. If things turn sour and the stock price falls to $70 per
share, the new balance sheet will be

Assets Liabilities
Stock $7000 | Loan from broker $4000
Equity
$3000
and the margin ratio now is just
$3000
= 43%.

$7000
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A natural question is: How far can a stock price fall before getting a
margin call? If we let P be price of the stock, the margin ratio is

100P — $4000
100P

The limit price is obtained by setting this ratio to 30% and solving for
P, which yields Py, = $57.14.

The effect of leverage is to boost both profit and loss. To see this, imagine
that our view in the previous example is correct and that the Boom Corp price
rises by 30%. The relevant return is return on equity (ROE), rather than return
on assets (ROA). ROA is the usual rate of return that we consider when dealing
with portfolio management (30% in this case), but ROE is boosted by the fact
that we need to invest only a fraction of the value of the assets. To be a bit more
realistic, let us assume that the broker requires an interest rate of 3% (over the
holding period of the trade). ROE is

$10,000 x 0.30 — $4000 x 0.03

= 48%.
$6000 8%

The more leverage we apply, the better, in the rosy scenario. For instance, if we
increase initial leverage to 50%, ROE is

$10,000 x 0.30 — $5000 x 0.03
$5000

= 57%,

to be compared with the 30% of a normal trade. In practice, with a 50% leverage
we double return, which is eroded by the 3% interest. Clearly, there must be
another side of the coin. Imagine that we are wrong and price plummets to $70.
With a 50% leverage, ROE is

—$10,000 x 0.30 — $5000 x 0.03
$5000

= —63%,

i.e., we double loss and on top of it we have to pay interest on debt.

The example we have considered is rather stylized. The understanding of
margin trading arrangements is essential to interpret what happens in real life,
since it is one of the factors of relevant events like the LTCM demise. The re-
quired cash can also be obtained by posting securities, typically through a repo
agreement,® i.e., a repurchase agreement. This is a sort of collateralized loan,
as relatively safe securities are sold to a counterparty, with the agreement to
repurchase them later at a given price. It is easy to see that this boils down

43See Section 5.4.
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to borrowing money for a given interest rate. Things may really go badly as
feedback effects may arise for large trades on illiquid assets. Imagine that the
asset involved in a margin trade loses value because of a market crash, and we
start getting margin calls. This may be associated with a reduction in market
liquidity, which implies that we have to sell illiquid securities in order to raise
cash. Unfortunately, selling assets in an illiquid market may have a large im-
pact, leading to a further reduction in asset values, so that we are caught in a
feedback cycle, potentially leading to bankruptcy. The larger the leverage, the
more difficult it is to get out of such a situation.

1.4.5 SHORT-SELLING

Short-selling, like buying on margin, is a strategy that can be used for specu-
lative purposes. In this case, however, the bet is a bearish one, as short-selling
profits from a drop in the asset value. The mechanics of a short sale is as fol-
lows:

» Attime ¢t = 0 we borrow the asset through a dealer/broker, then we sell it
and deposit the proceeds plus required margin into an account.

» Attime ¢t = T we close out the position by buying the stock and returning
it to the party from which is was borrowed.

If the asset is a stock share that pays a dividend in the interval (0,7"), a corre-
sponding cash amount must be paid as well. A similar consideration applies to
bonds and coupons. Therefore, when considering profit from a short sale, there
is a change in sign with respect to the usual case:

Profit = initial price — (ending price + dividends).

Of course, the trade will result in a loss if the asset price increases. Furthermore,
borrowing the asset may be expensive, as we must compensate the broker and/or
the asset holder, and possibly limited to a short time interval. Sometimes, a
short-squeeze occurs, i.e., the short position is forced to close the trade at a
very unfavorable time, just when the asset price is rocketing.

In margin trading, we borrow cash to buy an asset, whereas in short-selling
we borrow the asset itself and raise cash, which must be kept into an account
with the broker until the trade is closed. As usual, the lender of the asset protects
herself by requiring the deposit of a margin, in addition to the proceeds of the
short sale. In this case, the margin ratio is defined as equity divided by the
value of the assets owed, which is a liability in this case. This definition of
margin ratio differs from the one we used in the case of buying on margin. As
a mnemonic help, the margin ratio is always defined by dividing equity by the
side that is sensitive to the current value of the traded stock shares, i.e., the asset
side when buying on margin and the liability side when short-selling.
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@ Example 1.15 A short trade

We are strongly bearish about stock shares of DotBomb. Hence, we
sell 1000 shares at the current price of $100. The proceeds, $100,000,
are deposited in our margin account, together with some collateral. If
the initial margin required is 50%, we must deposit a corresponding
amount in cash or rather safe securities, e.g., T-bills. The initial situ-
ation is as follows:

Assets Liabilities
Cash + T-bills $150,000 | Short position in stock $100,000
Equity
$50,000

If we are right, and DotBomb falls to $70, we can close our posi-
tion out and earn $30,000 (neglecting commissions and interest). If,
however, DotBomb rises to $110, the new situation is

Assets Liabilities
Cash + T-bills $150,000 | Short position in stock $110,000
Equity
$40,000
and the margin ratio drops to

$40, 000

—— = 36%.

$110, 000

How much can the stock price increase, before we get a margin call?
If the maintenance ratio is 30%, we must find a stock price P such

that
$150,000 — 1000P

1000P
By solving for P, we obtain Py, = $115.38.

= 30%.

This example, too, is somewhat stylized. We are not considering the cost of
the trade, and the fact that it may be expensive to keep the short position open
for a long time. Just like with buying on margin, a realistic assessment of the
return of a trade should be based on ROE. In this case, the actual investment
is the additional margin that has to be posted, which may be rewarded at a
given interest rate. When short-selling an asset is difficult or expensive, a short
position may also be created by taking a position in a derivative. For instance,
we may sell futures contracts written on the asset, as we shall see in more detail

in Chapter 12.
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Short-selling is a highly controversial strategy, as it is believed by some
to be a way to manipulate and depress the markets. A famous case in point
is George Soros’ bet against the GB pound in 1992, when the UK was forced
to leave the European Exchange Rate Mechanism. When markets crash, short
sales are often prohibited, as they are considered by some as a nasty way to gen-
erate a vicious feedback cycle.** A different view maintains that short-selling is
essential to preserve liquidity, as well as to keep prices in check when markets
roar. We should also consider that short-selling may play a role in hedging and
is not necessarily a speculative strategy. As it happens with many matters in fi-
nance, the jury is out. We have to stress the fact that in later chapters, especially
when discussing pricing by no-arbitrage, we will assume that unlimited short
sales are possible. Clearly, this is a rather idealized view of real markets.

1.5 Market indexes

We are all familiar with stock market indexes like Dow Jones Industrial Average
(DJIA), NASDAQ, Dax, and Nikkei, which are often mentioned on newspapers
and TV news. Some of them have a quite long history (the DJIA has been
computed since 1896), and they are also the underlying factor of several traded
derivatives, like index futures and options. Indexes are tracked and replicated by
index funds and ETFs.*> Most widely known indexes are related to a geographic
area, such as a national stock market, but some indexes, like MSCI (Morgan
Stanley Capital International), refer to world markets. On the other hand, we
may also use more specific indexes, related to a given industry sector, or even
nonfinancial markets, as is the case of indexes for the real estate market.

Indeed, there is a wide variety of indexes, beyond the familiar ones for stock
markets. For instance, the EURIBOR and LIBOR rates are actually indexes,
as they are an average of a set of interbank offered rates. We may also use
bond market indexes, which are a bit more problematic, since bonds, unlike
stock shares, have a maturity. Thus, the pool of bonds in an index must be
continuously updated. Furthermore, we shall see that the volatility of a bond
price gets smaller and smaller as the maturity is approached. An increasingly
important index, VIX, tracks stock market volatility. Intuition would suggest
that such an index should be built by estimating the standard deviation of stock
market return by familiar descriptive statistics. Unfortunately, the usefulness
of such a backward-looking index would be questionable. A forward-looking
index, may rely on the implied volatility of a set of traded options.*®

44Short-selling strategies have always been controversial, as illustrated by significant historical
cases reported in [12]. In the USA, in the midst of political discussions about possible prohibi-
tion of short-selling, the practice was even deemed “unAmerican.”

4SETFs may also be short or leveraged. A short ETF allows to take a short position in the index,
profiting from a market drop. A leveraged ETF multiplies profits and losses by a given factor.
46We will discuss implied volatility in Section 13.6. Here, it suffices to say that it is a volatility
such that option prices predicted by a mathematical model match the actual market prices.
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As we can imagine, the definition of a suitable index is far from trivial
and involves managing extraordinary events as well, such as stock splits, merg-
ers/acquisitions, delistings, etc. In order to get a feeling for the involved issues,
it is interesting to compare two well-known indexes:

» The Dow Jones Industrial Average, which includes 30 blue chips, and is
a price-based index.

» The Standard & Poor’s S&P500 index, which is a broadly based index
involving 500 stock shares, and is a market-value-weighted index.

Generally speaking, we may consider a set of m stock share prices Sk, k =
1,...,m, and define an index

1 m
I= D ;wkska

for a given set of weights wy, and a divisor D. Usually, when defining an
average, we assume that weights add up to 1, which in this case would be ob-
tained by choosing D as the sum of weights. Actually, the divisor is initially
chosen in such a way that the resulting index assumes a “nice” value, say, 100
or 1000. More importantly, the divisor is changed when the index composition
is changed to reflect new market conditions,*’ or when events such as spinoffs
or mergers/acquisitions take place. The defining features of the aforementioned
indexes are:

= Weights wy, are all set to 1 for the DJIA, i.e., the index essentially tracks
a portfolio consisting of one stock share for each name in the index.

= Weights in the S&P500 index correspond to the number of outstanding
stock shares (free-float only); hence, the portfolio reflects the actual mar-
ket capitalization of each firm.

@ Example 1.16 Price-based vs. market-value-weighted indexes

Consider the following scenario:

» Stock share A has an initial price S4(0) = $25, at time ¢ = 0,
which is increased by 20% to S4(T") = $30 at time ¢ = T The to-
tal market capitalization is $500 million (hence, 20 million shares
are outstanding).

4T An interesting market anomaly is the plunge in the price of stock shares that are dropped from
an index. Rationally, this should not imply anything in terms of intrinsic firm value, but the
consequent reduction in trading activity on that stock share may have a significant effect.



62

CHAPTER 1 Financial Markets: Functions, Institutions, and Traded Assets

» Stock share B has an initial price Sp(0) = $100, which drops by
10% to Sp(T) = $90 at time ¢t = T The total market capitaliza-
tion is $100 million (hence, one million shares are outstanding).

A price-based index would initially be

25+ 100

=62.5
2 9

where we assume a divisor D = 2, which is really inconsequential
when considering percentage changes in the index. At the end of the
time horizon, the new index value would be

30 +90
— =

60,

with a drop of 4%. Note that the price drop of the more expensive
stock share dominates here, but this does not reflect the true market
weights. Let us consider a market-value-weighted index, with initial

value
25 x 20 - 108 + 100 x 1 - 108

106

where we set D = 10%. The new index value would be

= 600,

30 x 20-10%+90 x 1-10°
106

= 690,

with an increase of 15%.

‘We notice a relevant difference in the behavior of the two indexes. The dif-

ference may also be reflected in the way the index is adjusted when something
new happens. Consider, for instance, a 2-for-1 stock split. Clearly, a market-
value-weighted index would not be affected, but an adjustment would be needed
for the price-based index in order to preserve the continuity in its value.

L

Example 1.17 Index adjustments

Let us consider how to manage an index for a stock market on which
two stocks are traded. Company A has 50 shares outstanding, with
current price $2, and company B has 10 shares outstanding, with cur-
rent price $10. The current value of a price-based index is 6, whereas
the value of a market-value-weighted index is 100. Let us consider
the following scenario: The price of Company A’s stock increases to
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$4 per share, and Company B’s stock splits 2 for 1 and is priced at $5.
How will the values of the price-based and market-value-weighted in-
dexes change?

To begin with, we have to find the divisors. The current divisor
for the price-based index is clearly D = 2, since

2410

> 6.

Then, it is important to notice that, actually, the second stock price
did not change. The drop from $10 to $5 merely reflects the split.
After the change in price of the first share, without considering the
stock split, the new index would be

4410

> 7.

The new divisor is changed in order to reflect the split without intro-
ducing a discontinuity in the index:
445 9
D’ 7
The divisor for the market-value-weighted index is found as fol-

lows:
2 x50+ 10 x 10

D

However, the stock split is inconsequential for this index and does not
require any adjustment in the divisor. Hence, the new index value is

=100 = D=2

50 x 4420 x5

= 150.
2

An important observation is that indexes are not adjusted when dividends
are paid. This is relevant, as a stock share price experiences a correspond-
ing drop when a dividend is paid, and this will also affect the index, as well
as derivatives written on the index. In option pricing models, the collective
dividend behavior of the stock shares in the index may be approximated by a
continuous-time dividend yield. Also note that the index is nondimensional and
should be regarded as a number, rather than as a price. When defining deriva-
tive payoffs, the index must be multiplied by a given number in order to define
a monetary payoff. For instance, the S&P500 index is multiplied by 250 to be
converted into a monetary value.
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Problems

1.1 Consider assets A; and A,, whose holding period returns R; and R, in
five possible scenarios, are given in the following table:

Scenario  Probability Ry Ry

w1 0.2 0.03  0.09
w2 0.2 0.17 0.16
w3 0.3 0.28 0.10
w4 0.2 0.05 0.02
ws 0.1 —0.04 0.16

Note that the probabilities are not equal, and that returns are not given as a
percentage (if you prefer, you might also write, e.g, Ry (w;) = 3%). Find the
expected value and the standard deviation of the returns of the two assets, as
well as their (Pearson) coefficient of correlation.

1.2 We are pursuing a short-selling strategy, where we have shorted 300 shares
of XYZ, at price €40. The initial margin required by the broker is 50% of the
overall value, and the maintenance margin is 25%. What is the limit price of the
stock before we are slapped with a margin call?

1.3  Consider a European-style call option maturing in five months, with strike
price K = €40, written on a stock share with current price S(0) = €35. We
(very unrealistically) assume that the uncertainty about the stock price at ma-
turity 7' = 5/12 may be represented by eight equally likely scenarios: S(T) €
{20, 25, 30, 35, 40, 45, 50, 55}. Find the expected value of the option payoff.

1.4 Letus consider a market index for a tiny market, on which just 3 stocks are
traded. In this market, 50,000 shares of the first firm are outstanding, 100,000
of the second one, and 80,000 of the third one. The index is a weighted-average
of the three stock prices, reflecting the capitalization of the three firms. The
current stock prices are €50, €30, and €45, respectively. To make the index
easy to read and nondimensional, it is divided by a divisor (established once for
all and kept constant in time; we rule out exceptional events like those described
in Example 1.17); assume that with that choice of divisor, the index now is 118.
We also assume that the stock shares do not pay any dividend.

The following table lists the stock prices (in EUR) for a three-day scenario
(a single sample path):

Day 1 2 3
Price of stock 1 52 48 45
Price of stock2 28 25 30
Price of stock 3 43 40 39

Find the corresponding scenario for the index value.
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Further reading

= Most general books on financial asset management, like [1] and [5], have
one or more sections on financial institutions and market mechanisms.
More detail is provided in specific texts like [8]; see also [14].

= Many useful pieces of information on financial institutions are also given
in [11], with a nice twist toward risk management.

= Market microstructure is dealt with in [7].

The first chapters of [13] specifically cover the market structure for bond
and debt markets. Bond markets, including bonds with embedded op-
tions, are also treated in [6].

* An adequate discussion of FOREX markets is provided by [15].
A full understanding of how financial markets and institutions work can-
not be achieved without some knowledge of real stories. The case of

Long Term Capital Management is described, among others, in [9]. An-
other very useful reading is [3].

= While this book is concerned with financial markets, it is also essential
to acquire some background knowledge on corporate finance, which is
provided, among many others, by [10].
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Chapter 'TWO

Basic Problems in
Quantitative Finance

In the following chapters, we will discuss at length how quantitative finance
methods may be used to solve practically relevant problems. Before embarking
on a detailed investigation, it is important to get a broad overview of the most
relevant themes and their mutual relationships. Bearing this in mind, in this
chapter we introduce simplified versions of the following problems:

Portfolio optimization. Given a set of risky financial assets, whose return is
uncertain, we must decide the fraction of wealth allocated to each of them,
in order to find a satisfactory risk—reward tradeoff, while complying with a
set of constraints.

Risk measurement and management. Measuring risk is not only essential for
financial firms when selecting a portfolio of assets. Nonfinancial firms are
subject to financial risk as well, in terms of exposure to adverse movements
in interest or currency exchange rates. The next logical step is managing
risk, which typically involves hedging some risk factors away by suitable
policies, and possibly taking a position on those risk factors on which we
believe we can place a reasonable bet.

Asset pricing. Finding the fair price of a financial asset is useful when we want
to determine whether it is under- or overpriced, in order to drive portfolio
decisions and, possibly, to detect arbitrage opportunities (a concept that we
will formalize in this chapter). Another typical application is dealing with
over-the-counter (OTC) derivatives, for which quoted prices on regulated
exchanges are not available; prices of OTC derivatives are quoted on re-
quest by investment banks, and we might wonder whether the asked price
is fair or not. Finally, we need an asset pricing model for risk management,
too, since we need to assess the relationships between a set of underlying
risk factors and the price of assets ranging from fairly simple bonds to quite
complex derivatives.

To introduce the first of these themes, in Section 2.1 we describe the classical
Markowitz approach to static portfolio optimization in terms of mean—variance
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efficiency. We also outline possible generalizations, in terms of alternative ways
of tackling the risk—reward tradeoff, as well as dynamic models. In Section 2.2,
we stress the role of models quantifying the sensitivity of portfolio value or re-
turn with respect to underlying risk factors. These models play a key role in risk
management policies by immunization, among other things. From a theoretical
viewpoint, Sections 2.3 and 2.4 are perhaps the key portion of this chapter, as
we introduce a powerful pricing approach based on absence of arbitrage op-
portunities. First, by a set of simple but quite relevant examples discussed in
Section 2.3, we will be immediately able to appreciate both its appeal and its
limitations. Then, we delve a bit into the mathematics of arbitrage in Section
2.4.

In this chapter we also include two supplements. Section S2.1 lays down
the fundamental concepts of multiobjective optimization, which is the foun-
dation of mean-risk portfolio optimization models. Then, in Section S2.2 we
summarize duality for linear programming (LP), which is used in Section 2.4.
LP duality! is essential in many computational approaches, but here we use it
to relate the feasibility of an LP model to the boundedness of another one. The
existence of arbitrage opportunities would lead to an unbounded profit in a cer-
tain LP, but the fact that its dual is feasible precludes the existence of such a
money-making machine.

2.1 Portfolio optimization

In Chapter 1, we have introduced the essential families of securities (equity,
fixed income, and derivatives) that are traded on financial markets. A natural
problem, then, is how to allocate wealth among those different assets, shaping
our portfolio. This gives rise to a wide array of decision problems, differing
with respect to a few essential features:

The role of time. We may tackle static or dynamic problems. In a static prob-
lem, we only consider two time instants, now and the end of the holding
horizon, whereas in a dynamic problem we have to make a sequence of de-
cisions, possibly taking the unfolding of random events into account. Fur-
thermore, we may formulate models in discrete or continuous time. This
has an obvious impact on the complexity of the problem and the way the
inherent uncertainty is represented.

The hierarchical level. Problems may have a more strategic or operational fla-
vor. At a strategic level, we may want to allocate wealth to broad families
of assets, like domestic/foreign stock shares vs. domestic/foreign bonds.
At a lower hierarchical level, say, a tactical one, individual stock picking
may be considered. Going down the decision hierarchy, the time horizon
is normally shorter and shorter. At the operational level, we might even

"'We deal extensively with duality in Sections 16.1.4 and 16.3.2.
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consider the optimal trade execution in real time, which involves market
micro-structure issues, in order to minimize the price impact of a trade.
Algorithmic trading strategies are also concerned with real-time execution
issues.

Asset only vs. asset-liability management problems. A private investor may
consider a portfolio problem in terms of pure asset allocation, but an in-
surance company or a bank must take liabilities into consideration as well.
Therefore, we need a joint characterization of the risk factors affecting both
assets and liabilities. Liabilities might also be considered at the individ-
ual level, too, as we may wish to plan our personal investments account-
ing for future consumption decisions that we have already planned. This
should not be confused with consumption—saving problems, where future
consumption plans are an output of the decision model. This last category
of models is more commonly addressed in the economic literature.

Complexity of the market model. In the simplest static model, we may just
represent the uncertainty in asset returns over the holding period as a mul-
tivariate distribution. This is not as trivial as we might think, as some fea-
tures, like time-varying correlations, fat tails, and asymmetric (skewed) dis-
tributions may be difficult to model. In a dynamic model, we might also
wish to deal with path dependencies, jumps, and stochastic volatilities. Ad-
ditional issues adding realism to a model are related to transaction costs,
bid—ask spreads, as well as the market impact of a trade on an illiquid mar-
ket.

Representation of uncertainty. Classical uncertainty models rely on the tradi-
tional tools of probability and statistics. The more complicated the model,
the more statistical estimation issues arise. However, statistical estima-
tion is based on past data, and the past is not always the major concern
in finance. More sophisticated models may try to incorporate subjective
views about the future, as well as uncertainty about the uncertainty itself,
commonly called model ambiguity. Essentially, we have a single and well-
defined probability distribution in a classical probabilistic decision prob-
lem, but we have several ones in a problem with distributional uncertainty,
and we have none in a robust optimization problem, which relies on a dif-
ferent, nonstochastic framework to represent uncertainty.’

Risk-reward tradeoff. In finance, the quest for increased return has to be tem-
pered with due attention to the corresponding increase in risk. On the one
hand, we might wish to model the degree of risk aversion at an individ-
ual level. In the traditional economic literature, this is addressed by the
introduction of utility functions.> On the other hand, if we think of profes-
sionally managed portfolios for a set of clients, objective risk measures may
be more relevant. Thus, we have to select first a way to measure risk, which

2See Section 15.9.
3See Section 7.3.
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is nontrivial per se, especially in dynamic models, and then a way to trade
risk against expected reward. This tradeoff is particularly difficult when
long-term wealth management objectives are traded off against short-term
risk.

Depending on how we address all of these issues, we may end up with optimiza-
tion models that can be easily solved by a commercial spreadsheet on a laptop,
or with models that are essentially intractable. We start here by considering a
very basic, but quite relevant, static model.

2.1.1 STATIC PORTFOLIO OPTIMIZATION: MEAN-VARIANCE
EFFICIENCY

In this book we will consider the use of optimization models for portfolio de-
cisions, as well as their pitfalls and limitations. When building an optimization
model we have to specify three ingredients:*

1. Decision variables, expressed as real numbers collected into a vector
x e R"?

2. Constraints, like equalities, inequalities, and other restrictions defining
the feasible set S C R™, to which the vector of decision variables should
belong

3. Objective function f(-), to be minimized or maximized

By assembling these building blocks, we obtain an optimization problem in a
rather abstract form,

min (or max) f(x)
st. x€ S,

where s.t. stands for “subject to.” The process of optimization model building is
usually nonlinear, in the sense that there are successive iterations in which these
elements are added and refined, in no specific order, especially when the model
builder works with a client who is trying to rationalize her problem.

There are different sets of decision variables that may be used in portfolio
optimization. In simple models, we may consider the asset weights, i.e., the
fraction of wealth that we allocate to each asset. However, in an asset—liability
model we must consider the need to generate cash flows matching liabilities,
which leads to a different set of decision variables, such as how many units of
each asset we hold, i.e., the actual number of stock shares or bonds. We may
also consider the amount of money allocated to each asset. Furthermore, when
modeling transaction costs within a dynamic setting, we may also need decision
variables representing the amount of assets that we buy or sell at each trading

“We deal with optimization model building for finance in Chapter 15. For a general introduction
to deterministic and stochastic optimization models, you may also see [2, Chapters 12—13].
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date. Naturally, in dynamic models, decision variables are usually indexed by
time.

For now, let us stick to a simple model based on a static set of portfolio
weights, which we denote by w;, ¢« = 1,...,n, where n is the number of assets
that we are considering for inclusion in the portfolio. Portfolio weights may be
collected into vector w € IR™. With this choice of decision variables, a natural

constraint is
n
g w; = 1w = 1,
i=1

where 1 € R" is a column vector with all elements set to 1, and we use T to de-
note vector and matrix transposition.’ This constraint looks pretty innocent, as
it states that weights add up to 1, but it actually defines a fully invested portfolio.
If we do not require full investment, we may rewrite the constraint as 1w < 1.
If we rule out short-selling, we also require a non-negativity condition,

w; >0, 1=1,...,n.

We may also represent this condition in the compact form w > 0, where 0
is a vector collecting n zeros, and the inequality is interpreted componentwise
as usual. These two constraints imply w; < 1. We relax the condition if we
allow short-selling.6 If we include a risk-free asset, it is customary to denote
its weight as wg. If we allow borrowing money to buy stock shares, we may
relax the non-negativity constraint on this weight; as a result, in principle we
might allow asset weights to be larger than 1. As the reader can imagine, this
corresponds to very risky portfolios.” In practice, additional constraints may be
enforced in order to limit exposure to individual assets or sets of assets, defined
on the basis of geography or industrial sectors. These simple constraints may be
expressed as linear inequalities. For instance, let us consider a small universe
of n = 50 assets and imagine that the subset

T = {4,8,15,16,23,42}

corresponds to a specific industry (e.g., consumer electronics) or a geographic
region. We might enforce a lower or an upper bound on the sector exposure,
say 5% and 25%, respectively, by requiring

0.05 < Zwi < 0.25,
el

SIn this book, we will always assume that vectors are column vectors. A row vector will be
denoted as the transposed vector x .

6See Section 1.4.4 for trading strategies based on short-selling and buying on margin.

"The excessive use of leverage by investment banks is well known and led, e.g., to the collapse
of Lehman Brothers. However, individual investors may be prone to the same mistakes. For
instance, in August 2015, Chinese stock markets faced considerable downturn, which hit Chi-
nese small investors very hard, since many borrowed money to invest in a euphoric market that
had experienced an astonishing growth over the recent past. The consequent reduction in the
capacity of consumption of many Chinese small investors was deemed potentially responsible
for severe economic consequences for everyone outside China as well.
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which is just a pair of linear inequalities.

Defining the objective function may be quite tricky in financial problems.
On the one hand, we would like to achieve a large return. On the other hand,
we would like to keep risk under control. Whatever our aim is, we cannot do
anything without a model of uncertainty. In our case, we need to represent
uncertainty in the return of each asset. Let us denote the random return of asset
i, over the holding period, by R;.

A note on notation. In most books on probability theory, ran-
dom variables are denoted by uppercase letters, like X, whereas
a lowercase letter x refers to a realization of the random variable.
Treatments emphasizing measure-theoretic approaches to probabil-
ity use X (w) to insist on the fact that a random variable is actually a
function mapping outcomes w in a sample space {2 to numerical val-
ues. In the economic literature, an alternative notation is sometimes
adopted, where one uses a tilde to denote the random variable: € is
the random variable, and e is its realization. This is certainly conve-
nient when using Greek letters. In this book, we will use letters like
R, r, R, and 7 quite liberally, choosing notation for the sake of con-
venience. The reason is that we shall refer to concepts like holding
period returns, annualized returns, excess returns, nominal interest
rates, and real interest rates, in terms of both random variables and
realizations. Since it is easy to run out of suitable letters, we will
not stick to a single notation throughout the book. Nevertheless,
the context will make what we mean quite clear, and no ambiguity
shall arise.

We assume, for the moment, that we are able to build a suitable characterization
of the joint distribution of the returns of all assets. Then, the portfolio return,
denoted by R,,, can be easily8 related to our decision variables w;,

i=1

The larger the return, the better. However, maximizing the return makes no
sense, as R, is arandom variable. When we choose portfolio weights, we shape
the probability distribution of the portfolio return, but we do not define its exact
value. Then, to make a decision, we must define a way to rank the probability
distributions. An obviously relevant quantity is the expected value of portfolio
return. Let us denote the expected return of individual assets as’

8See the discussion in Example 1.2 for details.
9We use = rather than = when defining something, and = to refer to an identity.
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The expected value of a linear combination of random variables is just the cor-
responding linear combination of expected values. Hence, we find

n
pp = E[Rp] = Zwiﬂi = u'w,
i=1

where we collect expected returns into vector g € R”™.
It seems that a sensible objective would be to maximize the expected port-
folio return, which leads to the following model:

max ,uTW 2.1
st. T'w=1
w > 0.

This is actually a linear programming (LP) problem, and a powerful and reliable
technology is available to solve even large-scale LPs, based on the simplex
algorithm or interior point methods. However, a little thought reveals that the
solution of the above problem is quite trivial: Allocate the whole wealth to
the asset with the largest expected return. Since common wisdom suggests
that portfolios should be suitably diversified, it is clear that there is something
missing: The degree of risk aversion that is likely to impact any investment
choice. As we shall discuss in Chapter 7, when we only consider the expected
value of a random outcome, we are said to be risk-neutral decision makers.
However, most investors are not risk-neutral, but more or less risk-averse. One
way to take risk aversion into account is to introduce a risk measure, i.e., a
function mapping random outcomes into a single number capturing risk, which
is traded off against expected return. This will lead us to the formulation of
mean-risk models.

As we learn in basic statistics, one way to characterize the dispersion of a
random variable is by its standard deviation or, equivalently, its variance. Re-
calling again basic properties of linear combinations of random variables, the
variance of portfolio return as a function of portfolio weights is

n n

012) = Var(R,) = Z Z wioiw; = WEW,

i=1 j=1

where 0;; = Cov(R;, R;) is the covariance between returns of assets ¢ and j,
and covariances are collected into the square covariance matrix 3 € R"*",
Note that the diagonal of this matrix collects the return variances, Var(R;) =

02 = ¢;. There is a good reason to consider standard deviation as the risk

3
measure, rather than variance: Standard deviation is measured in the same units
as return. However, variance may be mathematically more convenient, as it
leads to quadratic programming (QP) problems, which are easy to solve, just

like LPs.!? Actually, the kind of optimization problem we end up with depends

108ee Section 15.1 for a classification of optimization models.
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on how we represent the tradeoff between risk and reward. We discuss details
in Supplement S2.1, where we outline basic approaches to multiobjective opti-
mization, and there are essentially three choices:

1. Form a linear combination of the two objectives, and solve the problem

max pu'w—\-wIw
st. T'w=1
w >0,

where ) is a coefficient related to risk aversion. The maximization of this
risk-adjusted expected return leads to a quadratic programming problem,
if all constraints are linear.

2. Maximize expected return, subject to an upper bound on risk. The risk
budget may be expressed in terms of variance,

wEw < 8,

or standard deviation,

VwWiEw < .

The first choice leads to a quadratically constrained quadratic program
(QCQP; to be precise, the resulting model is a subcase of a QCQP, as
the objective function is linear), while the second one leads to a second-
order cone programming (SOCP) problem. The unfamiliar reader should
not worry about these definitions,!' but we remark that QPs are easier to
solve than QCQPs, and that SOCPs have become efficiently solvable only
after recent algorithmic breakthroughs.

3. The last possibility is to minimize risk subject to a lower bound pi,,;, on
expected return:

min  w'Xw
st. 1T'w=1
MW > fimin
w > 0.

This last possibility also leads to a QP.

Whatever choice we make, a clear difficulty is choosing a sensible value for the
involved parameters, A, 5, ¥, Or fimin, in such a way to find a good tradeoff.
As we shall see, the most common choice is the last one: By changing the
lower bound on expected return, we generate a set of portfolios, which is called
the mean—variance efficient frontier.!> From a computational viewpoint, this

"'More information of these families of convex optimization models is given in Chapter 15.
125ee Chapter 8.
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approach is quite convenient. Furthermore, we do not need to specify the whole
joint distribution of returns, as we just need first- and second-order moments.
This simplicity should not mask the limitations and the difficulties of such a
model:

* Variance and standard deviation are symmetric risk measures, since they
penalize both under- and above-average returns in the same way, even
though the former may correspond to a huge loss and the latter to a wel-
come extra-profit. Hence, they may not be quite adequate to deal with
possibly asymmetric distributions of returns.

= Estimating the covariance matrix X is no easy task.

* What about forecasting expected returns p for the future, rather than col-
lecting past averages that might not be relevant anymore?

We will address all of these issues later on.

Despite all of its pitfalls, the mean—variance model plays a pivotal role in
financial theory, leading to a body of knowledge known as Modern Portfolio
Theory, and it is associated with the name of its inventor, Harry Markowitz.!?
From a theoretical viewpoint, mean—variance efficiency is also related to an im-
portant, albeit controversial, equilibrium model, the capital asset pricing model
(CAPM), which we shall discuss in Chapter 10.

2.1.2 DYNAMIC DECISION-MAKING UNDER UNCERTAINTY: A
STYLIZED CONSUMPTION-SAVING MODEL

The Markowitz mean—variance portfolio model is static, since we have to make
a single decision at time ¢t = 0, and then we just cross our fingers and wait. In
real life, a static model is repeatedly solved, possibly updating the relevant pa-
rameters when new information is acquired, but this is not made explicit in the
model. On the contrary, in a dynamic model we explicitly account for the dy-
namics of uncertain factors, as well as for the possibility of adapting decisions
along the way. When uncertain factors are realized, we gather additional infor-
mation and may revise the plan. If this possibility is explicitly accounted for
in the model, we end up with a challenging multistage decision problem under
uncertainty. We shall discuss approaches to deal with such problems in Chap-
ter 15. Here, we introduce a simple example in order to get acquainted with
the related issues and to discuss important concepts for discrete-time dynamic
modeling.

As we shall see in Chapter 11, we may build dynamic models based on a
continuous- or a discrete-time framework. Time discretization may be a com-
putational necessity, but it may also be a choice dictated by how decisions are

13For his work on portfolio theory, Harry Markowitz was awarded the Nobel Prize in Economics
in 1990. What is less known is that he was also involved in the development of SIMSCRIPT,
an early programming language for discrete-event simulation, and was the recipient of the John
von Neumann Theory Prize for his work in operations research.
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made in the actual problem. Here, we consider a time horizon [0, T'], where we
make decisions at the beginning of time intervals (or time buckets) of length
ot, like months, years, or days. With a slight abuse of notation, we deal with
time instants indexed by ¢t = 0,1, ..., 7, where the time horizon T is assumed
deterministic.'* The building elements of a dynamic decision model under un-
certainty are:

= A set of control/decision variables (e.g., the amounts of each asset that
we buy or sell), denoted by x;, ¢t = 0,...,7 — 1. Note that we do not
decide anything at the last time instant, ¢ = 7', but we just observe the
final outcome.

A set of state variables (e.g., the current level of wealth or the holdings
of a set of assets after portfolio rebalancing or before). We denote state
variables by Sy, ¢t = 0,...,7T; St is the terminal state. We use a capital S
to emphasize the random nature of states.!> The initial state s is given,
but the state evolution is random and is modeled as a stochastic process.
Some states may be affected by our decisions, whereas the evolution is
purely exogenous for other states.

A set of exogenous risk factors, playing the role of disturbances and
affecting the transitions among states. We denote the vector of random
variables corresponding to risk factors by &,(w), ¢ = 1,...,T. Note that
here time indexing starts from ¢t = 1, as the first realization of the risk
factors occurs after we make the initial decision xq. The last realization
of the risk factor, £, occurs after we have made the last decision x7_1,
and it leads to the terminal state S.

A set of cost/reward functions, used in defining the objective function,
depending on control and state variables. We may have a set of functions
ft,t =0,...,T — 1 to define the performance along the state trajectory,
and a function Fr to assign a value (cost or reward) to the terminal state
St.

It is important to understand the difference between a multiperiod decision
model and a truly dynamic model under uncertainty. In a multiperiod but static
problem, at time ¢ = 0 we assign a value to all of the decision variables x;.
Thus, decisions are deterministic functions of time. In a dynamic problem un-
der uncertainty, we do not plan everything in advance. We make decisions along
the way, and we adapt them as uncertainty unfolds: Decisions are a sequence
of random variables, as they depend on the uncertain states that we will observe

1475 be precise, we should choose a time unit, one year as a rule, and consider time instants of
formt; = t-o6t, ¢ = 0,1,...,I, where T' = I - §t. Here, for the sake of simplicity, we are
confusing the integer index with the time instant.

15 Arguaby, we should do the same for the control variables x;, since they will be random
variables, too, if decisions are adapted to the random occurrence of states.



2.1 Portfolio optimization 77

A4

< >t ¢ >ie

I
0 t=1 t=2 t=3 t

\/

FIGURE 2.1 Illustrating time conventions.

in the future.'® We emphasize that time indexing reflects the fact that at each
time instant ¢, ¢t = 0, ..., T — 1, we first observe the state S;, and then we apply
a control action x;, and then we will observe a realization £, , ; (w) of the risk
factors, which will lead to the next state S;;;. A rather generic and abstract
formulation of the resulting optimization problem is the following:

T-1
min B Y fi(S, %) + Pr(Sr) (2.2)
t=0
s.t. Xx; € At(St)

St+1 =Py (Sm Xt, 5t+1(°~’))7

where we denote by A;(S;) the set of feasible control actions at time ¢, possibly
depending on the current state, and by ®, the state transition function at time
t. In this framework, the sequence of decisions x; is a stochastic process, as
it depends on the state trajectory. Note, however, that we are allowed to adapt
decisions to the observed state now, but not to foresee the future state trajec-
tory. For now, we avoid formalizing this requirement explicitly, but it is useful
to define and visualize a suitable convention to define time instants and time
periods, in order to avoid common confusion and ambiguity when dealing with
discrete-time models:

» We consider time instants indexed by ¢t = 0,1,2,... At these time in-
stants, we observe the system state and make a decision.

» By a time interval t, we mean the time interval between time instants
t — 1 and t. After the decision at time instant ¢ — 1, the system evolves
and a new state is reached at time ¢. During the time interval, the random
disturbance will be realized, influencing the transition to the new state.

These definitions are illustrated in Fig. 2.1. Note once more that, with this
timing convention, we emphasize the fact that noise is realized during time
interval ¢, after making the decision at time instant ¢ — 1.

To illustrate the framework, as well as the timing conventions, let us con-
sider a stylized consumption—saving problem, which may be stated as follows:

16We are implicitly assuming that we may define a suitable set of state variables, collecting
all of the necessary information to analyze possible future evolution. Formally, we deal with
Markov processes, discussed in Chapter 11. In more complicated cases, we may have to keep
track of the whole observed history of the risk factors.
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* At time ¢ = 0, the decision maker (or agent) is endowed with an initial
wealth Wy and has to decide the consumed amount Cyy. It is not possible
to borrow money, so 0 < Cy < Wj. Note that ) is a decision to be made,
and not a given liability. What is not consumed is the saved amount,
SO = WO — C().

A second decision to be made at time ¢ = 0 is the allocation of the saved
amount Sy between a risky and a risk-free asset; let ap € [0, 1] be the
fraction allocated to the risky asset, R the rate of return of the risky asset
over the first time interval spanning from ¢ = 0 to ¢ = 1, and 7 the return
of the risk-free asset. We use Ry, rather than Ry, to emphasize that this
piece of information is not known when the decision is made. For the
sake of simplicity, the risk-free return and the distribution of risky returns
are both assumed constant over time. Furthermore, we do not consider
any intertemporal dependence between risky returns, which are assumed
independent over time (they are a sequence of i.i.d. random variables).

At time instant ¢ = 1, the available wealth W7 is the sum of capital and la-
bor (noncapital) income. Capital income depends on the realized random
return R; of the risky asset and the allocation decision «g. The portfolio
gain is
040(1 + Rl) + (1 — O[())(l + Tf).

Labor income, denoted by L;, may be random, too, as it may depend on
an uncertain employment state. Again, our notational choice emphasizes
that this piece of information is not known when the first consumption—
saving decision is made at ¢ = 0. We multiply the portfolio gain by the
saved amount Sy, add labor income, and express the available wealth at
the end of the first time period as follows:

Wi =5y [(Jéo(l + Rl) + (1 — Oéo)(l + Tf)] + L
= (Wo—Co)[1+7rf+ao(Ri —7¢)] + L.

Then, again, W is split into consumption C and saving .57, an allocation
« is chosen, and the process is repeated.

Wealth is a state variable, and the underlying state of employment may
be another one. We assume that the state of employment at time ¢, de-
noted by \;, may take one among three values in the set £ = {«, 3,7},
and L, > Lg > L,. We may interpret 7 as “unemployed,” « as “fully
employed,” and § as an intermediate situation. The dynamics of this state
is modeled by a matrix of time-independent transition probabilities, with
elements

mij =P{ M1 =7 | A =i}, i,j € L. (2.3)

This is the conditional probability that the employment state at time ¢ + 1
will be 7, given that it was ¢ at time ¢. The initial employment state \g is
given, and we assume that the corresponding income is already included
in the initial wealth Wj;. We note that the next employment state transition
depends only on the current state, and not on the whole past history. Thus,
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we only need to specify conditional probabilities and, technically, we are
using a model based on a discrete-time Markov chain, to be discussed
in Chapter 11. Furthermore, the employment state is not influenced by
consumption—saving decisions. The sample path of the employment state
is purely exogenous in this model, whereas wealth is partially endoge-
nous, as it depends on consumption and portfolio allocation decisions.

= All of the above holds, with the natural adjustment of time subscripts, for
all of the time instants uptot =7 — 1.

Now that we have defined control and state variables and their dynamics,
we need to define the objective function, which is a bit trickier, as it requires
to address a risk—reward tradeoff. The consumption C} is a random variable,
so that maximizing consumption does not make mathematical sense. We could
maximize its expected value E[C}] (actually, the sum of these expected values
over time), but this may lead to poor and quite risky decisions. Here, we fol-
low standard approaches in economics and assume that the risk—reward tradeoff
is dealt with by introducing a utility function. We shall consider decision-
making under uncertainty and utility functions in more detail later, in Chapter
7. For now, we may just rely on intuition, and assume an increasing and con-
cave utility function depending on consumption, u(C%). The function should
be increasing, as the more we consume, the better. Furthermore, we shall see
that by choosing a concave utility function, we may model risk aversion. In the
limit, if u(+) is the identity function, we revert back to the expected value of con-
sumption, which characterizes risk-neutral decision-makers. Hence, we might
consider the maximization of the sum of the expected utilities E[u(C})] over
time. Furthermore, we may also consider a term ¢(Wr), accounting for utility
from bequest, i.e., the terminal wealth W that we may leave to the beloved
ones. This additional term represents a value of the terminal state. Actually,
there is another tradeoff that we should address, involving immediate vs. fu-
ture consumption. To account for this, we also introduce a subjective discount
factor 5 € (0, 1) and consider the following maximization problem:

max E [ z_: Bru(Cy) + ﬁT(J(WT)] .

t=0

When £ is large, the impact of later consumption is relevant; when S is small,
i.e., we discount future consumption more heavily, the consequence is that we
are somewhat greedy and emphasize immediate satisfaction. If we assume that,
attime ¢t = T, the terminal wealth W is fully consumed, i.e., we add a terminal
consumption decision Cr = W, the problem boils down to

T
max E [Z Bru(Cy)
=0
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Consumption—saving models are common in economics.!” We will see that
asset-liability management problems, where liabilities are stochastic but ex-
ogenous, rather than endogenous decisions, are more relevant in quantitative
finance.'®

2.2 Risk measurement and management

Risk measurement and management is another major topic in quantitative fi-
nance. In Section 2.1.1, we have considered the standard deviation of portfolio
return as a possible risk measure. However, there are different issues that have
to be considered:

Defining a risk measure. Standard deviation is a symmetric risk measure, as
it is based on squared deviations from the expected value. However, while
we certainly do not like deviations toward huge losses, we are not likely to
complain about windfalls and unexpected profits. Thus, we should look for
alternative definitions leading to asymmetric measures. We shall learn that
some sensible properties of risk measures may not be satisfied by seem-
ingly reasonable risk measures. The issue becomes even thornier when
considering dynamic risk measures.

Defining a risk model. The mean—variance model is deceptively simple: We
just define a risk measure depending on asset returns. However, this re-
quires an estimate of a possibly large covariance matrix, which is by no
means easy to obtain. It might be preferable to rely on a statistical model
of returns, like a factor model, leading to more reliable estimates and fun-
damental insights into the structure of risk, which may be decomposed in
common and specific risk factors. This is also relevant when we consider
the impact of common risk factors on the prices of several assets depend-
ing on them, as is the case with bond prices depending on interest rates
and with complex portfolios of derivatives written on the same underlying
assets. It is also important to realize that, although we will focus primar-
ily on financial risk factors related to volatile equity markets, interest rates,
and currency exchange rates, some nonfinancial sources of risk are also
relevant. A list of examples includes volume, regulatory, and operational
risk.

Risk management. Risk measurement is useful in monitoring the consequence
of decisions, but we need a proper way to make those decisions. Depending
on the specific problem that we are tackling, this may require the choice of
suitable assets to build a hedge and the choice of their mix, or the definition

17Eor an extensive discussion of such models see, e.g., [3].

18This kind of models may be tackled by stochastic programming with recourse or by stochastic
dynamic programming. See Chapter 15.
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of a portfolio optimization model that is likely to be more complex than the
static mean—variance model.

Statistical and computational issues. The precise way in which we address
the above issues has a significant impact on how, in concrete terms, we deal
with computational challenges in risk measurement and management. For
instance, measuring the risk of a derivative portfolio may call for repeated
repricing of derivatives subject to uncertain risk factors, which in turn may
require extensive Monte Carlo simulation runs. The computational effort
is related to the need for reliable estimates of the selected risk measure.
Furthermore, there is little point in formulating a sophisticated decision
model, if there is no robust and efficient way of solving it.

In the following sections, we make the above points more concrete by simple
examples, paving the way for a deeper treatment in later chapters.

2.2.1 SENSITIVITY OF ASSET PRICES TO UNDERLYING RISK
FACTORS

We often need to evaluate how asset prices depend on a set of risk factors. There
is a huge variety of models that are used in finance, but a fundamental line must
be drawn between linear and nonlinear models.

2.2.1.1 Linear risk factor models

Asset prices themselves, or their rates of return, may be considered as the pri-
mary risk factors we have to deal with. They are related by the simple relation-
ship

S(T) = 5(0)- (1 + R),

where R is the holding period return over the time span [0,7]. However, we
must also consider how the returns of different assets are related one to another,
e.g., by estimating their covariance matrix. Given a joint sample of two ran-
dom variables, observed at times t = 1,...,T, say, R;; and Rj;, which are the
returns of two stock shares over consecutive holding periods, the estimation of
the covariance o0;; may be accomplished by calculating the sample covariance,

1
L P —
J T—lt

T
(Rit — Ri)(Rje — R;),

=1

where R; and R; are the two sample means for each asset. This seems pretty
trivial, but a little thought shows that this is not the case at all. What if we are
considering a universe of n = 500 assets? The covariance matrix is a symmet-
ric matrix consisting of 250,000 entries. A rough cut and imprecise calculation
suggests that the sample size 7" must be large enough to estimate about 125,000
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parameters with sufficient accuracy. To be precise, we need n(n — 1)/2 covari-
ances and n variances; hence, we need an estimate of
n-(n—1 n-(n+1
n-+ ( ) = ( ) = 125,250
2 2

parameters. Unfortunately, even if a suitably large data set were available, many
data would be so old as to be irrelevant. An alternative strategy is to introduce a
statistical model trying to capture the source of covariance explicitly. One such
model is a simple linear factor model,

Ri=a;i+» BuFy+e, i=1,...n, (2.4)
k=1

relating the random return of asset i to a set of m common risk factors Iy,
k=1,...,m, with m < n, and one specific risk factor ¢; for each stock share.
The reader with a minimal statistical background will recognize this as a linear
regression model, where «; is a constant contributing to expected return, and
Bik 1s the sensitivity of stock share ¢ to risk factor k. For instance, the oil
price should be a relevant risk factor for stock shares in the automotive industry,
whereas this common risk factor might play a less relevant role for stocks in
the telecommunication industry. We will see how stock betas may be used to
shape the exposure of a portfolio to common risk factors. The specific risk
factor ¢; is related to the peculiarities of a stock share. The contribution of
specific risk factors to overall portfolio risk may be arguably reduced by proper
diversification, whereas more subtlety is required when dealing with common,
systematic risk factors. A linear factor model may ease statistical issues. It is
easy to see that, if all of the factors are mutually uncorrelated,'® the covariance
can be expressed as

m
Oij = Zﬂmﬂjkaia i # Js

k=1
where J,% is the variance of factor Fj,. When considering variance, we find

m

2 __ 2 2 2
0; =04 = E BikCi + 05,
k=1

where o2, is the variance of the specific factor. We observe that with this struc-
ture, the estimation of the covariance matrix requires the estimation of m x n
betas, m common factor variances, and n specific variances. In the case we
were considering, if n = 500 and m = 3, this amounts to 2003 parameters,
with a reduction of two orders of magnitude with respect to the naive approach.
Apart from statistical issues, a factor model provides us with very useful in-
sights about the structure of a risk exposure, and it may be used to change the

19We shall consider the matter in full detail in Chapter 9.
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exposure itself, possibly making a portfolio insensitive to some risk factors or,
on the contrary, to expose the portfolio to some risk factors on which we are
confident to make a good bet.

2.2.1.2 Nonlinear risk factor models

Linear models may be used when dealing with an equity portfolio, but they
may be not so adequate when dealing with a portfolio of derivatives. Consider
the price at time ¢ of a vanilla call option written on an underlying stock share,
whose current price is S;. The option price will depend, among other factors, on
S, but in a nonlinear way. At present, we are not yet equipped to consider the
kind of dependence exactly, but a quick look at the nonlinear payoff depicted in
Fig. 1.6 provides us with some intuition about the kind of relationship between
the option price and .S;.

An easier case in which we may grasp the nonlinear relationship between
an asset price and the underlying risk factors is the case of a zero-coupon bond
and the level of interest rates. We will consider bond pricing and the impact of
interest rate risk at length in Chapter 3, but the nature of the relationship is easy
to grasp in terms of discounted cash flows. If a zero with face value F' matures
in exactly 1" years, and the relevant annual interest rate is Ry r, the fair bond
price is

F
(1 + RO,T)T '

The notation P, (0; Ro 1, T") suggests that this is the price at time ¢ = 0 of a zero,
maturing at time ¢t = T, depending on the interest rate Ry 7.>° By “relevant”
interest rate we mean an annual rate which applies to an investment horizon of
T years, for an investment with a default risk comparable to that of the zero-
coupon bond. It is important to realize that Ry 7, like any interest rate, refers
to a single year; on the contrary, when referring to stock markets, we often use
a holding period return, which need not be annualized. In this case, the interest
rate Ry may also be interpreted as an annual yield, i.e., the annual growth
factor of the initial investment in the zero. Later, this pricing equation will be
better justified by no-arbitrage arguments, but for now it is enough to understand
how future cash flows should be discounted in order to find their present value.

Equation (2.5) immediately shows that the bond price is a function of the
interest rate, and that an increase in Ry r will imply a drop in P,(0; Ro,r,T).
To get a feeling for this kind of risk, let us consider three zeros, all with face
value F' = 100, maturing in 3, 10, and 30 years, respectively, and let us assume,
for the sake of simplicity, that there is a single relevant interest rate applying to
all maturities. For instance, if Ry 7 = 4%, the price of the first zero is

100

P.(0; Ror, T) = 2.5)

20We shall introduce and motivate a more complete notation in Chapter 3. In fact, the price of a
coupon-bearing bond depends on a whole range of interest rates with different maturities.
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Table 2.1 Interest rate risk and the effect of zero-coupon bond maturity.

T (years) 3 10 30

P.(0;0.04,T) 8890 67.56 30.83
P.(0;0.05,T) 8638 61.39 23.14
% loss —2.83 —9.13 —24.96

If the rate increases to 5%, the new price is

100
P,(0;0.05,3) = ———= = 86.38,
( ) (1+0.05)3
with a corresponding loss of
86.38 — 88.90 — _9.83%.

88.90

In Table 2.1, we observe the effect of this increase in the interest rate for the
three maturities. We clearly see that maturity plays a key role, and that a long-
maturity zero is a quite risky asset. Maturity also plays a role in the risk of a
coupon-bearing bond, but we will see that the coupon rate is also relevant. Thus,
we need some specific measures of risk for bonds. More generally, when there is
anonlinear dependence with respect to a risk factor, we may approximate it with
a Taylor expansion to the first or second order, which requires first- and second-
order derivatives. We shall see that, for a bond, these sensitivities with resect
to interest rates are captured by duration and convexity. By a similar token, in
the case of options, we will consider sensitivity measures such as delta, gamma,
and vega, which relate the option price to the current price of the underlying
asset and the current level of its volatility. Sensitivities to risk factors provide
us with useful information and play a relevant role in strategies to immunize a
portfolio with respect to selected risk factors, possibly in an approximate way.

2.2.2 RISK MEASURES IN A NON-NORMAL WORLD:
VALUE-AT-RISK

Variance and standard deviation are the two dispersion measures that we learn
in basic statistics. Standard deviation of return is referred to as volatility in
finance, and it seems a simple and relevant risk measure. While volatility is
certainly relevant, it might not tell the whole story. The key issue is that stan-
dard deviation is a symmetric risk measure, taking into account extra potential
for profit in the same way as extra potential for loss. As such, standard devia-
tion may be a suitable risk measure in the case of symmetric distributions, most
notably the normal. Indeed, two parameters, expected value and standard devi-
ation, tell everything we need to know about a normal distribution. However,
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empirical analysis does not quite support the view that returns are normally
distributed.

A first issue is skewness, i.e., lack of symmetry. Probability distributions
for profit-loss are not symmetric in general, as the following examples suggest:

» Consider the payoff of a call option, as shown in Fig. 1.6. Even if we
assume that the distribution of the underlying asset price at maturity is
normal, the nonlinearity of the payoff changes the nature of its distribu-
tion, which is skewed.

» The option payoff cannot be negative, unlike a normal variable. Another
relevant risk factor that cannot take negative values is the volatility itself,
which is a fundamental risk factor for derivatives.

= Interest rates cannot be negative as well, and the nonlinearity of the re-
lationship between the price of a zero-coupon bond and the interest rate
contributes to the non-normality of bond returns.

But how can we measure skewness? Let us recall that the expected value is
the first-order moment of a random variable, whereas variance is the second-
order central moment.2! A formal definition of a skewness coefficient relies on
a third-order central moment:

E _ 3
L= B =) —#) J, 2.6)
o

Essentially, this is the third-order moment of the standardized variable. Stan-
dardization is necessary, as we want to capture skewness irrespective of location
and scale.?? The odd exponent, unlike the case of variance, preserves the sign
of deviations, and the information provided by skewness is illustrated in Fig.
2.2. The density on the left has positive skewness, and it is skewed to the right.
The other density has negative skewness, and it is skewed to the left. As we can
imagine, skewness is zero for a symmetric distribution, and a nonzero skewness
suggests lack of normality.

A less obvious, but quite relevant feature of a normal distribution is its thin
tails. This means that extreme events are not quite likely. We learn in basic
statistics that, if X ~ N(u, 0?),

P{u—30 < X < ju+ 30} ~0.9973,

which means that most realizations are within three deviations from the ex-
pected value. We also learn that Student’s ¢ distributions are heavier tailed, i.e.,
they feature more significant uncertainty, especially with few degrees of free-
dom. Heavy (or fat) tails are relevant in finance, as they are related to extreme
events like stock market crashes (and rallies). Fat tails are measured by the

2IThe moment of order & of a random variable X is defined as my = E[XF]. The central
moment of order k of X is defined as M, = E[(X — p)*], where 4 = E[X].

221t is easy to see that skewness of a random variable X (as well as kurtosis, to be defined
shortly) is insensitive to affine transformation a 4 b.X, subject to the restriction b > 0.
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FIGURE 2.2 An illustration of positive and negative skewness.

kurtosis coefficient, which relies on a fourth-order central moment:

4
K= M. 2.7
g
We observe that the fourth power disregards the sign of deviations with respect
to the expected value, unlike skewness, but it emphasizes large deviations much
more than the second power of variance. It can be shown (using, e.g., the mo-
ment generating function) that kurtosis is always 3 for a normal distribution,
whatever o is. On the contrary, other distributions show fatter tails, a property
captured by a kurtosis in excess of 3. The information provided by kurtosis is
illustrated in Fig. 2.3. The distribution with kurtosis « = 9 is a Student’s ¢, and
it features fatter tails than the standard normal, which has x = 3.

When a profit-loss distribution features significant skewness and kurtosis,
standard deviation is less appropriate as a risk measure, and alternatives may be
defined. Furthermore, from a different viewpoint, practitioners might appreci-
ate risk measures expressed in a more straightforward way, i.e., in terms of a
potential monetary loss. This sets any kind of risk on a common ground and
is more easily perceived by management. One way to cope with these issues
is to define asymmetric, quantile-based risk measures in monetary terms. A
well-known example is value-at-risk.

2.2.2.1 A quantile-based risk measure: Value-at-risk

One way to define asymmetric risk measures, overcoming some of the difficul-
ties with standard deviation, is to resort to quantile-based risk measures. The
idea is to focus on the bad tail of the distribution, where losses are incurred. Let
us consider the portfolio loss Ly, over a holding period [0, H], and evaluate its
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FIGURE 2.3 An illustration of kurtosis.

quantiles. Note that loss is measured in monetary terms, which sets all kinds
of risk on a common ground. For the sake of simplicity, let us assume that Ly
is a continuous random variable. Then, we define the value-at-risk, with time
horizon H, at confidence level 1 — o, as a number V@R, _, g such that

P{Ly <V@Ry_qpu}=1—a. 2.8)

For instance, if we set = 0.05, we obtain VQR at 95%, for time horizon H.
Quite often, short horizons are considered like, e.g., one day. The probability
that the loss exceeds V@R is «.2 Tt is common to denote value-at-risk as VaR,
where the last capital letter should avoid confusion with variance.?* However,
we prefer the less ambiguous notation V@QR. Informally, V@R aims at mea-
suring the maximum portfolio loss one could suffer, over a given time horizon,
within a given confidence level.

When considering a discrete set of scenarios, we should consider Ly as a
discrete random variable and modify the definition of value-at-risk as

V@R _o g =inf {VeR|P{Lr <V} >1-a}. (2.9)

This is just the definition of the generalized inverse of the cumulative distri-
bution function (CDF) of loss, which boils down to Eq. (2.8) in the case of a
continuous random variable with a continuous and strictly increasing (hence,
invertible) CDF. Actually, one could also define another measure by using strict

23We stick to the statistical convention that « is the small area associated with the tail of a
probability density function (PDF), but sometimes the opposite notation is adopted.
24Arguab1y, the lowercase letter in the middle should also avoid confusion with VAR, which
usually refers to vector autoregressive models in econometrics and time series analysis.
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inequality in Eq. (2.9),
inf {V eR|P{Ly <V} >1-a}.

Since such technicalities are not relevant, for a continuous random variable with
an invertible CDF, and are not needed to grasp the essentials of value-at-risk,
we defer a more detailed treatment to Section 7.4.3.

Actually, there are two possible definitions of V@R, depending on the ref-
erence wealth that we use in defining loss. Let W be the initial portfolio wealth.
If Ry is the random return over the holding period, the future wealth is

Wy =Wo(1+ Ry).

Its expected value is
EWg] = Wo(1 + p),

where p is the expected holding period return. The absolute loss over the hold-
ing period is related to the initial wealth:

@ =Wy — Wy = —WoRy. (2.10)

The quantile of absolute loss at level 1 — « is the absolute V@R at that confi-
dence level. We define a relative VQR if we take the expected future wealth as
a reference in evaluating the relative loss

= EWg]| - Wy = Wo(u — Ru). (2.11)

Quite often, we are interested in small holding periods, like one day. The rea-
son is that V@R may be used by banks to decide how much cash they should
set aside as a fudge against short-term losses. If the bank is in need for cash
in a very short time period, it may be difficult to liquidate assets to generate
liquidity, especially when markets crash. If the holding period return is short,
it turns out that drift is dominated by volatility. Technically, this means that the
expected return is small compared to standard deviation. This may be shown
by resorting to continuous-time models for stock share prices, like geometric
Brownian motion. Since such models will be treated later, in Chapter 11, we
provide here an intuitive justification.

W Example 2.1 The square-root rule

Let us consider a sequence of i.i.d. (independent and identically dis-
tributed) variables over time, X;,t = 1,..., H. Let u and o be the
expected value and standard deviation, respectively, for each variable
X;. If we sum variables over the H time periods, we define a new

variable,
H
v=> X,
t=1
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and find
(2.12)

and

2.13)

Note that we are writing the variance of a sum as a sum of variances,
which is wrong in general, but it is fine under the assumption of in-
dependence (actually, lack of correlation is enough). Thus, we find
that the expected value scales linearly with time, whereas the stan-
dard deviation scales with the square root of time. The two functions
are compared in Fig. 2.4. We may observe that, for a large H, the
expected value dominates, but roles are reversed for a small H going
to zero. We shall refer to this fact as the square-root rule.

This seems to suggest that, for a small time period, volatility does
dominate drift, but the conclusion is not really warranted. To be-
gin with, random returns should be multiplied, rather than summed.
However, if we consider summing log-returns, or an approximation
valid for small daily returns, we may claim that the reasoning makes
sense. The assumption of independence of returns over time is bit
more critical, but there are models based on this idea. Probably, the
most delicate point is that we should consider “slicing” a random vari-
able, i.e., expressing a given Y as a sum of terms X, for a small time
interval 6t. If we add independent (uncorrelated) normals, we do get
anormal. But can we slice a normal into smaller normals? We should
resort to a more sophisticated concept related to self-similar stochas-
tic processes. Indeed, we will use such a process, the Wiener process,
based on a normal distribution. We cannot come up with a rigorous
analysis here, but empirical data do suggest the idea that, on a short
time interval of length d¢, drift goes to zero more rapidly than volatil-
ity does. Put another way, we cannot reject the null hypothesis that
return over Jt is zero.

Assuming that the square-root rule holds, for a short time period H we have
w=E[Rg] ~ 0.

Hence, Eq. (2.11) boils down to Eq. (2.10), and there is no difference between
absolute and relative value-at-risk. In this book, we will always consider ab-
solute V@R. Nevertheless, we should keep in mind that relative V@R may be
more relevant to longer-term risks, as those faced by a pension fund.
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FIGURE 2.4 An illustration of the square-root rule.

The loss Ly is a random variable depending on a set of risk factors, possi-
bly through nonlinear transformations linked to bond or option pricing models.
In fact, estimating V@R, for a real-life portfolio is a nontrivial exercise requir-
ing:

= The definition of a set of risk factors and the characterization of their joint
distribution. Note that correlations may not be enough. Correlations and
volatilities do characterize a multivariate normal distribution, but we can-
not take normality for granted. Incidentally, as we show in the examples
below, under a normality assumption there would be little point in us-
ing V@R, as this would provide us with little additional information with
respect to standard deviation.

= The definition of pricing models linking asset prices to the underlying risk
factors.

= The estimation of a quantile, most likely by numerical methods, like
Monte Carlo sampling.

These tasks may be daunting in practice, but let us just illustrate V@R with a
couple of small examples.

W Example 2.2 Elementary V@R calculation

We have invested $100,000 in Quacko Corporation stock shares, whose
daily volatility is 2%. This means that the volatility of asset return is

o = +/Var(Ry) = 0.02,
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where the holding period H is one day and Ry is the daily return.
For the sake of simplicity, let us assume that the return is normally
distributed. Given the square-root rule, we have

Rp ~N(0,0%) = N(0,0.02%).
Loss over the holding period is
Ly =-Woy- Ru,

where the initial wealth W is $100,000. The expected value of loss
is E[Ly] = 0, and its volatility is

g, = \/Var(LH) = \/(—I/Vo)2 . Var(RH) = WO cOH-

We know that quantiles of a normal distribution are related to quan-
tiles z;_,, of a standard normal variable. If we want daily V@R with
99% confidence level, we find

V@RQ,QQJ = 20.99 X $100,000 x 0.02
= 2.3263 x $100,000 x 0.02
= $4652.70.

Therefore, we are “99% sure” that we will not lose more than $4652.70
in one day.

The assumption of normality of returns can be dangerous, as the normal
distribution has a relatively low kurtosis; alternative distributions have been
proposed, featuring fatter tails, in order to better account for tail risk, which is
what we are concerned about in risk management. Nevertheless, the calculation
based on the normal distribution is so simple and appealing that it is tempting
to use it even when we should rely on more realistic models. In practice, we
are not interested in VQR for a single asset, but in V@R for a whole portfolio.
Again, the normality assumption streamlines our task considerably.

W Example 2.3 V@R in multiple dimensions

Suppose that we hold a portfolio of two assets: We have invested
W4 = $10,000 in stock share A and W = $20,000 in stock share
B. We assume that daily returns are jointly normal with the following
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parameters:
oa=2%, op=3% p=0.4,

where p is the correlation coefficient. We are interested in the daily
V@R, so we disregard drift again, with confidence level 99%.

We first compute the volatility of the holding period return of the
whole portfolio:

op = \/Wiai + 2WaWgpoaop + Wio

= 10000 x \/12 +0.0224+2-1-2-0.4-0.02-0.03 4 22 - 0.032
= §704.2727.

Therefore
V@Rfigg’l = 20.99 - 0p = 2.326348 x 704.2727 ~ $1638.38.

It is interesting to compare the risk of the overall portfolio with the
risks of the two individual positions:
V@Rg‘&,&1 = 20.99 - Wa - 04 = 2.326348 x 10000 x 0.02
$465.27,
V@R{fgg’l = 20.99 - Wp - op = 2.326348 x 20000 x 0.03
~ $1395.81,
V@R 491 = 1638.38
< 1861.08 = V@R{' g9 ; + VAR g9 ;.

Q

We observe that the risk of the portfolio is less than the sum of the
two risks. The amount of this reduction depends on the correlation.
The two quantities would be the same for perfect positive correlation,
p = 1, whereas overall risk would be minimized with perfect negative
correlation, p = —1.

In Example 2.3, we take advantage of the stability property of the normal
distribution, i.e., the sum of jointly normal random variables is still a normal
random variable. In general this is not true, and even if we assume that the
underlying risk factors are normally distributed (which does not make sense for
volatility risk and correlation risk), the portfolio loss would not be normally
distributed because of nonlinearities. Monte Carlo methods may be used in
more realistic cases.
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What we have just illustrated is the simplest parametric approach to V@R
estimation. It is simple because of the assumption of normality, because we
are able to capture the joint distribution of the risk factors, and because the risk
model is trivially linear (indeed, the asset prices themselves are the risk factors).
One of the most difficult issues is to capture the joint dependence of the risk
factors. Correlations tell the whole story in the normal case, but not in general.
Furthermore, the correlation themselves may change over time, especially when
markets crash. Hence, we should also mention that a completely different route
may be taken, based on historical V@R. Rather than assuming a specific joint
distribution, we may rely on a nonparametric approach based on resampling
historical data. The advantage of historical data is that they should naturally
capture dependence. Hence, we may combine them, according to bootstrap-
ping procedures, to generate future scenarios and estimate V@R by historical
simulation.

A further effect of the normality assumption is that we observe a reduction
in risk through portfolio diversification. This makes sense, and it is formally
referred to as subadditivity property. If we consider two random variables X
and Y, representing two losses, the subadditivity property of a risk measure R
mapping random variables to real numbers is

R(X +Y) <R(X) +R(Y),

i.e., the risk of the sum (the aggregate portfolio) is not larger than the sum
of risks (of the individual portfolios). In the normal case, VQR is essentially
related to standard deviations, since these are used to find quantiles. It is easy
to see that the standard deviation of a sum of two random variables X and Y is
not larger than sum of standard deviations:

Ox4y = \/a§( +2poxoy + 0%

< \/O'g( + 20x0y —1—0%
= (Ux-l-()'y) =0x + 0y, (214)

where the inequality depends on the upper bound on the correlation between
X and Y, p < 1. Hence, we see that V@R is subadditive under a normality
assumption. Unfortunately, this depends on the fact that V@R does not really
tell us anything more than standard deviation in the normal case, but the nor-
mality assumption itself is not quite realistic. In fact, as we shall see in Section
7.4.3, value-at-risk is not subadditive in general and lacks a fundamental feature
that characterizes coherent risk measures, which will be introduced in Section
7.4.1.

2.2.3 RISK MANAGEMENT: INTRODUCTORY HEDGING
EXAMPLES

The ability to measure risk is certainly necessary in finance, but it may of little
use without a way to manage risk. We must devise strategies to reduce risk
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exposures or eliminate them altogether, if we can and wish doing so. This can
be done by shaping the portfolio in such a way as to obtain a specific exposure
to underlying risk factors, or by including additional assets in the portfolio,
like derivative contracts. We can introduce some essential concepts by simple
examples involving linear contracts like forward and futures contracts. More
sophisticated models are needed when considering nonlinear instruments like
options.

2.2.3.1 Perfect hedging and forward contracts

Perfect hedging is achieved when risk is eliminated completely, i.e., when future
cash flows, or returns, are made deterministic. Imagine that we hold N units of
an asset with current price Sy, which we plan to hold for a time period of length
T. The future asset price St is uncertain, but if we sell NV forward contracts
(i.e., take a short position), with price Fp = F(0,T') and maturing at 7', at the
end of the holding period we will be able to sell the asset at the arranged forward
price. Alternatively, if the contract is settled in cash, the total net cash flow at
time 7" is

N-Sy + N-(Fo—Sr) =N-Fy, (2.15)

Sell asset  Short position payoff

which is equivalent to selling the asset directly to the counterparty of the for-
ward contract, i.e., the long position. If risk is measured by standard deviation,
we clearly see that risk has completely eliminated, i.e., we have a perfect hedge.
This does not imply that perfect hedging is the best choice, since we have also
eliminated any potential for additional profit. If the price St turns out to be
large, the loss on the short position eliminates all of the profit from the spot
trade.

If we wish to retain a portion of the upside potential, we may take an alter-
native policy and rely on options. If we buy N put options with price Py and
strike K, the equivalent cash flow at time 7' is

N -Sr+ N - -max{K — St,0} —N-PBy-¢&T=N. [max{K, St} —Po-erT].

Note that, in order to take the time value of money into proper account, we have
to project the cash flow —N - P forward in time, which requires multiplying it
by a factor involving a risk-free rate r.2> If the maturity T of the hedge is short,
this may be neglected. Depending on the realization of the random variable S,
the cash flow may be positive or negative; therefore, we have not eliminated the
possibility of a loss related to paying the premium for an option that we might
not use, but we retain some upside potential. Apparently, it is a clever choice to
choose a put option with a large strike price K; needless to say, a large strike

25See Section 3.1 for an extensive discussion. In this case, the “growth” factor is a positive
exponential function, as we assume a continuously compounded interest rate. Alternatively,
we could project cash flows backward in time, multiplying future cash flows by a negative
exponential, playing the role of a discount factor back to time ¢ = 0.
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price will be reflected in a large price Fy, making the cost of this insurance
excessive. The choice must balance the potential for down- and upside, and it
may depend on individual risk preferences.

2.2.3.2 Minimum variance hedging and futures contracts

Equation (2.15) shows that a perfect hedge may be achieved, but this assumes
that a forward contract for the desired underlying asset and maturity can be
arranged. However, forward contracts are traded OTC, and not on regulated
exchanges. Thus, the resulting hedge may be expensive?® and not quite liquid,
which means that unwinding positions when necessary may be awkward. As we
have seen, we may resort to futures contracts, but since these are standardized, a
perfect hedge is not quite feasible, since we cannot match the risk exposure and
the maturity perfectly. Nevertheless, we may consider a futures contract with a
maturity close to our time horizon, written on an asset whose price process is
correlated to the price process of the asset we are interested in, resulting in a
cross-hedging strategy.?’

W Example 2.4 Cross-hedging

Consider a firm that needs to purchase plastic for packaging the goods
it produces. Arranging a forward contract on plastic may not be quite
reasonable, but since plastic is made out of oil, the oil price is a cor-
related risk factor. We do not really want to take a long position in a
forward contract on oil and actually buy it. However, we may take a
long position in oil futures and then close our position, before the ma-
turity of the hedging instruments, without having to take the physical
delivery of oil.

If the hedge consists of a futures contract, the overall cash flow will not be
zero because of asset and maturity mismatches; nevertheless, we might be satis-
fied by minimizing its variance. To be precise, when using futures contracts, we
should also account for another relevant difference with respect to forward con-
tracts: Due to daily marking-to-market, there is a sequence of daily cash flows.
This difference may be relevant or not, depending on the time horizon, as well
as the volatility of interest rates and their correlation with the price processes
Sy and F}. In principle, the hedge should be adjusted dynamically, by a strategy
called tailing the hedge. We will see how to deal with this in Chapter 12. For

267 may seem that a hedge based on a forward contract cannot be “expensive,” since no cash
flow occurs at the beginning. However, the forward price Fp might be not quite fair, and there
could be a bid—ask spread between the prices offered to short and long positions.

2TWe will have a more detailed look at hedging with linear contracts, like forward and futures,
in Section 12.3.
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the sake of simplicity, let us ignore the issue and assume that a futures contract
essentially behaves like a forward contract.

We may establish a cross-hedge with the aim of minimizing the resulting
cash flow variance. In such a case, we must also determine a suitable hedging
ratio h, i.e., the number of the futures contracts that we buy or sell for each unit
of the asset. Unlike the case of perfect hedging, /h need not be 1. So, let us
consider a hedge with maturity 77, based on a futures contract maturing at time
Ty, where T1 < T», written on some underlying standardized asset. By maturity
of the hedge, we mean the time instant at which we close the futures contracts,
by taking an opposite position, and sell our assets (or, alternatively, we assess
the value of our portfolio). We assume again that we hold NV units of an asset
that we wish to sell at 77. Using the same reasoning that leads to Eq. (2.15), the
cash flow at time 77 is

Ci=N- [STl +h- (FO — Fr, )} . (2.16)

Since the future contract matures at 75, after the maturity 77 of the hedge, and it
is typically written on a different underlying asset, we do not have spot—futures
price convergence; hence, Fr, # S, in general. Note that we may easily close
a futures contract before maturity and that the resulting cash flow for a short
position, if we neglect the time value of money, is the difference between the
initial and terminal futures prices, when the hedge is closed. We may easily find
the hedge ratio h that minimizes the variance of the total cash flow,?

m}}n Var[ST] + h - (FO — P’T1 )}
= Var(Sr,) + h®*Var(Fr, ) — 2hCov(Sr,, Fr,),

where we get rid of the irrelevant N. This is clearly a convex parabola, as a
function of h, and the first-order optimality condition,

QhVaI‘(FTl) - QCOV(ST1 y FTl) = 07
yields the optimal hedge ratio,

- COV(ST1 y F‘T1 )

h* = Var(Fr,) (2.17)

The hedging ratio A* will be negative, if the correlation between St, and Fr,
is negative, in which case we should take a long position in the futures, even
though we want to sell our assets. If we denote the standard deviation of the
futures price at 7} by o, the standard deviation of the spot price at T} by og,
and their (Pearson) correlation coefficient by p, we may write

W =p- Z—i 2.18)

281f we do not really want to sell the asset, we may consider the variance of 6.S + h - § F', where
0S8 = S1, — So and 0F = Fp, — Fy. Thus, we are interested in the variation of wealth, rather
than in cash flows. Since prices at time ¢t = 0 are known, they do not contribute to variance, and
the two expressions are equivalent.
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This looks very similar to what we are familiar with from the theory of simple
linear regression models. There, the optimal slope of the regression line is given
by the ratio of the covariance between the target and the explanatory variable to
the variance of the explanatory variable. This slope, obtained by least-squares
minimization of residuals, minimizes the variance unexplained by the model.
Here, we have a similar expression for the hedge ratio, which minimizes the
residual variance of the hedged portfolio. Essentially, we regress the spot price
on the price of the hedging instrument. By the way, we observe that, if there
is no hedge mismatch in terms of underlying asset price and maturity of the
futures contract, then we have perfect correlation and identical variances, due
to the convergence of spot and futures prices, and we revert back to perfect
hedging, where h* = 1.

Clearly, we should find hedging instruments that are as much correlated
as possible with our risk exposure (positively or negatively, it does not really
matter, as this is only reflected in a change of sign in ~2*). Nothing forbids, in
principle, using more than one hedging instrument. The mathematics involved
is not quite different, and it basically requires solving a system of linear equa-
tions. However, as we shall show in Example 2.5, we should not forget that
there might be nonfinancial risk factors at play. Indeed, in practice, hedging is
not such a simple problem as Eq. (2.18) might suggest:

» Real-life contracts have a standardized volume, so the hedging ratio may
have to be somehow rounded, resulting in an over- or under-hedging error.

» We need an estimate of parameters like standard deviations and correla-
tions. These may be obtained from past data, but there is no guarantee
that these parameters are constant in time, especially in stressed market
conditions. Estimation and modeling errors might affect the performance
of the hedge.

Sometimes, we cannot disregard the impact of daily marking-to-market
of futures contracts, which calls for dynamic adjustments. Since this may
be costly to implement, further hedging errors might result.

In the minimum-variance formulation, we end up with a least-squares
problem, a very simple convex optimization problem. We observe that the
degree of risk aversion and the possible market views do not play any role
in determining the solution. However, more sophisticated optimization
models may be necessary to better match the hedge with investors’ views
and appetite for risk.

2.2.3.3 First-order immunization

So far, we have mostly considered linear models. The factor model of Eq. (2.4)
is linear, and the hedging equations involving forward/futures contracts are also
linear, since their payoff diagrams are linear.”’ Due to linearity, the required

2See Fig. 1.4.
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mathematical machinery is rather simple. However, the payoff from vanilla call
and put options is not linear at all. Actually, it is piecewise linear at maturity, but
if we close the hedge before maturity by selling the options, we should expect
a more complicated dependency on the underlying risk factors. The matter is
even more involved when considering exotic derivatives. Also bonds may be
considered as interest rate derivatives, with a price depending in a nonlinear
way on the relevant risk factor, the interest rate. Actually, as we shall see,
the whole term structure of interest rates is involved, as different interest rates
apply to different maturities. Thus, we are lead to consider nonlinear hedging
problems.

One possibility to tackle such problems is to approximate the nonlinear
problem by linearization strategies; another one is to resort to possibly so-
phisticated optimization models. Let us consider the first idea, linearization,
which is pursued by taking advantage of Taylor expansions to the first order.
Let us illustrate the concept in a generalized and abstract framework, whereby
the value V' of a portfolio depends on several risk factors, which we denote by
R;,i=1,...,m. When the underlying risk factors change by an amount § R;,
there will be a corresponding change §V in the portfolio value. The change in
the value of V' may be approximated to the first order as follows:

1%
oV ~ .
OR;

i=1

OR;.

Now let us consider m hedging instruments (assets) with unit prices H;, j =
1,...,m, which are sensitive to the same risk factors as V. Observe that the
number of hedging instruments matches the number of risk factors. We may
approximate the change 0 H; in H; in the same way as 0V,

0H; ~ Xm:
i=1

If we include ¢; units of each hedging instrument in the overall portfolio, the
value of the hedged portfolio is

0H; )
8Ri~5Rl, j=1...,m.

VA=V 4+ ¢H;.
j=1

The coefficients ¢; play the same role as the hedging ratio » when using futures
(see Eq. 2.16). Note that some additional budget may be required to set up the
hedge, as we may need to pay for the insurance, e.g., in the case of call or put
options. Actually, this need not be the case, as some derivatives (like interest
rate swaps), have zero initial value, just like forward and futures contracts. For
the moment, let us neglect this issue.
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The approximated change in value of the hedged portfolio is

SV =6V +> ¢ 0H,

J=1

ZBV 6R+Z<¢] oH,; 6R>

i=1

= i_n: ( Z% ) (2.19)

One clear issue is: How can we obtain the required partial derivatives, i.e., first-
order sensitivities to risk factors? In simple cases, like plain bonds and vanilla
options under a suitable market model, they may be obtained by differentiating
an explicit pricing formula. Alternatively, they may be obtained by numerical
and/or statistical methods, possibly by fitting a linear regression model by least-
squares. In fact, the coefficients of a linear regression model may be considered
as first-order sensitivities of an approximate linearized model.

The portfolio is approximately immunized, to the first order, if the condi-
tion V' = 0 is met for whatever perturbation § R; may occur. Hence, all of
the coefficients multiplying the factors dR; in Eq. (2.19) must be set to zero,
which requires the solution of a system of m linear equations in the m unknown
variables ¢;:

Depending on the specific context, first-order immunization may translate to
approaches known as duration matching for fixed-income portfolios and delta-
hedging for option trading, as we shall see. As we may expect, the actual per-
formance of such policies may not be completely satisfactory:

= We are immunizing to the first order, but when the underlying factors
change, first-order sensitivities change, for nonlinear hedging instruments.
Hence, hedge adjustments may be needed, and we may incur in signifi-
cant transaction costs.

We may improve performance by using second-order sensitivities, too. In
the case of bonds, second-order sensitivities are related to bond convexity,
and in the case of options they are related to option gamma. Again, we
may use explicit formulas or numerical methods to obtain these sensitivi-
ties, but the fact remains that we are perfectly hedged for small perturba-
tions. Practitioners might argue that an imperfect, but more robust hedge
might be preferred.

We have matched the number of hedging instruments and the number of
risk factors. However, there may be factors that are simply not hedgeable.
In such a case, we may still try to minimize the variance of the hedge, or
another suitable risk measure. Furthermore, the number of risk factors
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can be too large to be practical. In interest rate risk management, there is
an infinite number of risk factors in principle, i.e., an interest rate for each
possible maturity. However, we may take advantage of the relationships
among risk factors to reduce the complexity from both a computational
and financial perspective.>

Last but not least, whenever we use a model, like a factor model or a pric-
ing model, we are subject to model risk. The model itself may be wrong,
or our estimates of critical parameters may turn out to be inadequate to
cope with changed market conditions.

2.2.4 FINANCIAL VS. NONFINANCIAL RISK FACTORS

So far, we have only considered financial risk related to, e.g., uncertain stock
share returns and the impact of interest rate on bond prices. We have also mainly
assumed the viewpoint of a financial institution or an individual investor. From
a mathematical perspective, this is enough motivation to develop quantitative
tools to tackle the related problems. However, we must bear in mind that finan-
cial risk factors have an impact on nonfinancial players and that nonfinancial
risk factors have an impact on financial players, too. In this section, we give a
broader view of risk categories, with some examples showing the role of nonfi-
nancial factors.

Beside market risk and interest rate risk, we should consider currency
risk (foreign-exchange risk, if you prefer). This is relevant to financial insti-
tutions investing in foreign assets, as well as to nonfinancial firms with inter-
national operations. Signing a contract that prescribes a future payment in a
foreign currency implies exposure to adverse movement in the exchange rate.
Hence, nonfinancial firms may also be interested in using derivatives to mit-
igate this exposure. Inflation risk is another important category. We should
realize that risk factors need not be uncorrelated. There is an interplay between
inflation risk and interest rate and currency risk.

We should also be concerned with counterparty and credit risk. Coun-
terparty risk is relevant, e.g., in OTC markets: The counterparty in a forward
contract may fail to comply with his obligations. Credit risk is related to the
possibility of default on a loan, and has a severe impact on both corporate and
noncorporate bonds. Both categories of risk may have to do with the financial
health of a nonfinancial player, as well as with general economic conditions.

There are also specific risk categories that are relevant to specific assets. For
instance, volatility risk refers to the impact of volatility on derivative prices.
Vanilla call and put options are both sensitive to a change in volatility, in the
same way: The larger the volatility, the larger the price. This should not be

30A well-known data reduction technique that is frequently proposed is principal component
analysis. See, e.g., [2, Chapter 17].
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confused with market risk, as volatility risk is nondirectional,?! i.e., it is not
related to prices going either up or down.

When building sophisticated pricing models, we are introducing model
risk. Model risk may be considered as nonfinancial in the sense that it is not re-
lated with market variables, but it is clearly related to financial market modeling.
Other nonfinancial risk categories are regulatory and political risk. Changes
in bank regulations and government policies may have an impact on financial
markets.

On the corporate side, a form of risk which is important to financial insti-
tutions is volume risk. In the hedging examples we have considered, we have
taken for granted the knowledge of IV, i.e., the units of the asset we have to buy
or sell. However, this amount may be related to business contingencies, as the
following example illustrates.

W Example 2.5 Volume risk in forward contracts

In Section 2.2.3.1, we have considered perfect hedging, and we have
taken for granted that we know the size of the required hedge. Con-
sider the case of a US firm that will need an amount of N euro in
six months. The firm could buy the euros now, but this would be bad
for liquidity. An alternative is to take a long position in a forward
contract for an amount N, locking the price.

So far, so good. But we should ask why the firm needs that
amount of currency. Imagine that the firm has anticipated the need
to buy a set of components from a supplier in the eurozone, to assem-
ble a given number of equipments for a client in the USA. The amount
N depends on how many items the client plans to order, which deter-
mines the number of components needed. What happens if, maybe
because of economic recession, the client cuts the order by a signif-
icant amount? Now the US manufacturer has to buy an excessive
amount of euros, at a locked forward price, and the hedge is not per-
fect anymore. If the dollar drops with respect to euro, no harm done:
The firm will end up with a windfall payoff, but speculation on cur-
rencies is not its core activity. If, on the contrary, the euro drops, the
firm will have to buy euros that it does not need, at a large price, just
when the business is turning sour. Chances are that the risk manager
will find himself in an uncomfortable spot when trying to explain this
to his boss. Overlooking volume risk may be dangerous, indeed.

In practice, quantifying a risk exposure is far from trivial. In a complex
organization, it may be difficult to assess how much hedging is really needed.

315ee Section 13.6.
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This is especially true when considering a multinational firm with many differ-
ent currencies involved. Sometimes, opposite cash flows in the same currencies
may provide a sort of natural hedge, but this may be nontrivial to assess by
checking accounting statements. It is also difficult to associate volume risk
with reliable probabilities. For instance, imagine that the volume risk is related
to business expansion opportunities, depending on whether some contracts will
be signed or not by potential customers. Historical data may be of very lit-
tle help, and subjective probabilities may be difficult to assess. Robust models
might be needed, and an approximate hedge which works more or less well in
any scenario might be preferable to a perfect hedge working perfectly only in
one scenario.

Last, but not least, we should also consider operational risk. Loosely
speaking, this is a catch-all risk category accounting for risk due to errors, sys-
tem malfunctions, and wrong data/information creeping in the system. A few
examples may illustrate the relevance of operational risk:

» Order execution critically relies on information technology (IT) infras-
tructure. Imagine the effect of a computer network crashing at a most
critical moment. Such an event may be due to a system malfunction or
to a catastrophic event, like a flood or an earthquake. Proper countermea-
sures should be taken in order to ensure business continuity.

Algorithmic trading relies on sophisticated algorithms, executed at max-
imum speed. War histories abound on the dire consequences of obscure
software bugs or improper installation of wrong software versions.

In other cases, strange market behavior may be attributed to human error.
A well-known example is the fat finger mistake, whereby a wrong number
is entered. Imagine adding a trailing ‘0’ to the price of a trading order.

In a more and more interconnected world of big data, the consequences of
a mistake or wrong information may be remarkable. In 2008, stock shares
of United Continental Holdings Inc. (UAL, the parent company of United
Airlines) plunged by 75%, allegedly because an investors’ newsletter re-
ported news of UAL filing for bankruptcy. Actually, that was news six
years old, popping up from a Google search, and it had nothing to do
with relevant market information. Imagine the effect of these search en-
gine issues on trading strategies based on sentiment analysis.

2.3 The no-arbitrage principle in asset pricing

We have argued that we need mathematical models to find the fair value of
assets, especially derivatives. The output of valuation models is just one ingre-
dient in determining the actual price, even though we use the term asset pricing
rather than asset valuation. The actual price will include a profit margin, as
well as some fudge to allow for model errors and risk factors that cannot be
hedged. The cornerstone of such models is the no-arbitrage principle. In-
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formally, an arbitrage opportunity is a trading strategy that requires no initial
commitment of money and will result in a riskless profit. The basic idea is that
such a nice money-making machine (or free lunch, if you prefer) should not
exist, since market participants will immediately take advantage of any oppor-
tunity like that, making it disappear quite fast. The idea is somewhat related to
the efficient market hypothesis (EMH) in financial economics.?> Despite its
simplicity and appeal, the principle is not free from controversy. In particular, it
is criticized by behavioral financial economists, who argue against a completely
rational approach to finance.??

W Example 2.6 A behavioral joke

An illuminating joke on the controversy about the EMH goes more
or less like this. A well-known professor of the rational school of
thought is walking and chatting with a student. The student notices a
banknote lying on the sidewalk and points it out to the professor, who
replies: “There is no banknote on the sidewalk, as if there were one,
someone would have already picked it up.”

2.3.1 WHY DO WE NEED ASSET PRICING MODELS?

Several assets, like stocks, bonds, and exchange-traded derivatives, are quoted
on regulated markets, where prices are driven by the interplay between demand
and offer. So, one may well wonder why we should bother developing mathe-
matical models to find prices that we should better read on a computer screen.
Indeed, pricing assets seems like a daunting task, which should take into ac-
count several issues:

» Uncertain risk factors

= Liquidity issues

= Wealth and risk aversion of market participants

» Information asymmetries and different market views
At best, we may hope to come up with a reasonably simplified model that does
not produce blatantly absurd prices.

Actually, there are several reasons for the development of asset pricing
models:

323ee Chapter 10 for a related discussion of equilibrium models. Roughly speaking, the EMH
states that asset prices immediately incorporate all relevant information, and there is no bias due
to irrational behavior or information asymmetry.

3See Section 10.5.
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» Pricing quoted assets is useful to calibrate a model in terms of underlying
factors. For instance, a bond price depends on interest rates. Hence, if
we are provided with a pricing model, we may estimate the underlying
interest rates by observing bond prices. This is also quite relevant when
we want to infer something about unobservable parameters like volatility,
on the basis of observed option prices. Historical price volatility may be
estimated on the basis of past asset prices, but what we may really need
is an estimate of the current volatility (even better, a forecast of future
volatility). Given a model relating option prices with volatility, we may
come up with an implied volatility, which is a market consensus view,
rather than a historical volatility.

If we have a well-defined view about the underlying factors of the price
of a security, we might observe a discrepancy between the quoted and fair
prices and take advantage of it by a suitably designed trading strategy.
For instance, if we believe that the current level of implied volatility is
too low and that it is going to increase, we could buy derivatives that are
long volatility (i.e., their price is increasing with respect to volatility). If
markets move as we predict, a considerable profit might result.

Some assets, like OTC derivatives, are not really quoted. When a firm
asks an investment bank to engineer a derivative for a specific hedging
requirement, it may wish to check whether the asked price is reasonably
fair. Pricing models may provide the firm with an estimate of the fair
value.

In risk management applications, we need a model telling us how asset
prices are expected to react to moves in underlying risk factors. For in-
stance, we do not want to consider the price of each bond or derivative as
a risk factor by itself, as it would be quite difficult to come up with a sen-
sible model accounting for their correlations. Rather, we should focus on
a limited number of common factors, affecting the whole set of securities,
and assess price sensitivities by a parsimonious model.

In this book, we will always price securities under the assumption that no arbi-
trage opportunity is available. As we shall see, this does not necessarily guar-
antee the uniqueness of prices.

2.3.2 ARBITRAGE STRATEGIES

There are different ways of defining an arbitrage strategy in theory, and dif-
ferent ways of carrying it out in practice. All of them, however, lead to a safe
way of making money, without the need of an initial capital. This should not be
confused with investing in the risk-free asset, where we do make a sure profit,
but we need some initial capital. Such a nice money-making machine, as sug-
gested by economic common sense, should not exist. Or, at the very minimum,
it should exist for a very short amount of time, since someone will take immedi-
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ately advantage of it, pushing prices back in line. We may distinguish different
types of arbitrage:

[

= Instantaneous arbitrage, where we trade at a given time instant, without

committing any resource, and we gain an immediate riskless profit.

= Static arbitrage, which involves trading at two time instants, say, ¢ = 0
and ¢ = T, and results in the creation of a riskless profit without commit-

ting any resource.

» Dynamic arbitrage, which involves trading at multiple time instants and

will not be considered in this chapter.

Example 2.7 An instantaneous arbitrage

Suppose that a stock share is traded on two markets, one with prices
denominated in euros and the other one in dollars. Now imagine that
we observe the following prices:

* The current exchange rate is 1.34$ /€ (by which we mean that the
price of one € is $1.34)

» The stock share price is €50 on the first market and $68 on the
second market

It is easy to see that these prices are not in line. If we take the first
two as correct, the price of that stock share should be

$
1.34= = .
€50 x 1.3 c $67

We may buy the stock share on market 1 and sell it immediately on
market 2, with a risk-free profit of $1. If many players pursue the
same strategy, the ensuing pressure on prices will push them back in
line and eliminate the misalignment.

As one can imagine, instantaneous arbitrage also implies that three currency
exchange rates involving three currencies should be consistent. Let us denote
by S, Jy the price of currency y in units of z. Then, given currencies a, b, and ¢,
we must have:

Sa/b = Sa/c X Sc/b'

A violation of this relationship allows a triangular arbitrage. Note that we are
not considering transaction costs, as well as execution uncertainty due to delays,
which may affect the actual execution of an arbitrage strategy.
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@ Exam ple 2.8 A static arbitrage with an immediate profit

Consider the following situation:
» The price of a stock share is currently $55. The stock share will
not pay any dividend in the next six months.

» Two options, a call and a put, are traded on that stock share, ma-
turing in six months and with the same strike price, $60. The price
of the call option is $2, and the price of the put is $7.

* The risk-free rate, with semiannual compounding, is currently 4%
(this means that by lending money for six months we gain 2% of
the capital; see Section 3.1).

Now, consider the following trade at time ¢ = 0:
» Write the put option to a counterparty (which will be the holder
of the put option).
» Short the stock share.
= Buy the call option (we are the holders of the call option).

* Buy a riskless zero-coupon with face value, $60, which is equiv-

alent to investing
60

1+ 0.02
for six months, at the risk-free rate.

~ $58.83

Note that the overall cash flow at time ¢ = 0 is
7+ 55 —2—58.83 =1.17.

We are actually making some money, which is equivalent to saying
that we have bought a portfolio with negative value.

At maturity, at time ¢ = 0.5 measured in years, one of the follow-
ing three cases will occur:

1. If the stock price is exactly $60 no option is exercised, and we
use the face value of the bond to buy the stock share and close the
short position.

2. If the stock price is larger than $60, the put is not exercised by
its holder, and we use the call to buy the stock share at $60 and
close the short position, where the cash needed is provided by the
zero-coupon bond.

3. If the stock price is smaller than $60, the put is exercised by its
holder: We have to buy the stock share at $60, and we use it to
close the short position; again, the cash needed is provided by the
zero. The call is not exercised.
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Whatever the case, we always break even and the net cash flow at
maturity is zero.

The trade that we have used may look somewhat mysterious, but it is related
to the put—call parity relationship that we will consider later, in Chapter 13. In
this kind of arbitrage, there is a portfolio with negative value at time ¢ = 0, and
its value is always zero at ¢ = 7. Buying the portfolio results in an immediate
profit now, with no possibility of losing money in the future. We may consider
another kind of arbitrage in which the net cash flow is zero now, and we may
only make a profit in the future.

@ Exam ple 2.9 A static arbitrage with deferred profit

Let us consider two assets, a and b, with current price
5a(0) = 5(0) =1,

at time ¢ = 0. At a later time t = T, the asset prices, denoted by
Se(T,w) and Sp(T,w), are random variables whose value depends
on the realized scenario w. Let us assume that there are three possi-
ble scenarios w;, ¢ = 1,2, 3, with prices given in Table 2.2. Let us
consider a portfolio in which we hold an amount h, and h; of the
two assets, respectively. We notice that profit/loss is given as follows,
depending on the scenario/state of nature:

State wi: he(2—1)+hy(1 —1) =h,
State wy:  he(0—1)+ hp(0—1) = —hg — hy
State ws:  he(2—1) 4+ hy(2 — 1) = hg + hp.

If we choose h, = 1 and h;, = —1, the net cash flow at ¢t = 0 is
zero, we have a profit in state wq, and no profit/loss is incurred in the
remaining states. More generally, in this example any portfolio with
hq + hy =0, hy > 0, is an arbitrage strategy.

We may observe that the source of the anomaly is that asset a
dominates asset b, state by state. We will consider conditions pre-
cluding this anomaly in Section 2.4.2.

In practice, the term “arbitrage” may refer to strategies that are actually
somewhat risky, as they rely on price misalignments spotted by a specific asset
pricing model. Such an arbitrage strategy is subject to model risk. Another
source of potential trouble, in an arbitrage strategy unfolding over time, is the
need for liquidity in the short term. A strategy might be potentially successful
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Table 2.2 Asset prices at time ¢ = T in state w, for Example 2.9.

State w1 w2 w3
Price So (T, w;) 2 0 2
Price Sy (T, w;) 1 0 2

in the long term, but result in unsustainable short-term losses because of margin
calls on leveraged or short positions. In this book, we consider deterministic and
somewhat idealized arbitrage strategies, whereas statistical arbitrage strategies
are often pursued in practice.

We will investigate the nature of arbitrage strategies, as well as their rela-
tionship with dominant strategies, in Section 2.3, for the simple case of a finite
number of possible scenarios (states of nature), i.e., a discrete probability dis-
tribution. The concept may be extended to the continuous case, at the price of
a more sophisticated mathematical machinery. Here, we want to consider a few
examples illustrating practically relevant consequences of the assumption that
arbitrage opportunities cannot exist for a long time in well-functioning markets.

2.3.3 PRICING BY NO-ARBITRAGE

Several pricing models assume that arbitrage opportunities do not exist. To
be more precise, the pricing principle based on lack of arbitrage opportunities
assumes that they may exist, but arbitrageurs are very quick to take advantage
of them and their trading strategies make prices realign. Pricing by no-arbitrage
is a relatively simple principle, leading to much simpler pricing approaches
than full-fledged equilibrium models, as it does not require any information
about wealth endowments, market views, and degrees of risk aversion of market
participants.

In Section 2.4, we discuss in more detail the mathematics of (no-)arbitrage,
but parts of its consequences are rather intuitive:

= We cannot have two different risk-free interest rates in the same economy.
Otherwise, one would borrow at the lower rate to invest at the higher one.
Clearly, this assumes a market with no bid—ask spread on rates, i.e., rates
to borrow or lend money are the same.

= Assets or portfolios that will have the same value in the future, whatever
scenario occurs, must have the same value now. This is essentially a law
of one price, which again assumes a frictionless market with no transac-
tion costs.

= Assuming that we may bundle and unbundle assets and cash flows freely,
i.e., no friction is involved and we can synthesize an asset as a linear com-
bination of other assets, we will also see that pricing is a linear operator.
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We may get a clue about the power of no-arbitrage by looking at a few
simple, but instructive examples.

L) Example 2.10 Relative bond pricing

Consider two bonds maturing in five years. The first one has coupon
rate 9% (assume a single annual coupon) and its price is 104.36 (face
value is 100). The second one has coupon rate 7% (annual coupon,
again) and its price is 96.3. What is the price of a zero-coupon bond
maturing in five years?

It seems that we have very little information, but we may easily
find the only price of the zero that is in line with the other two bond
prices. We have just to realize that the two coupon-bearing bonds
have synchronized cash flows:

Cl,t =1, CQ,t =9, t= ]-7 21 3,4
Crs =107, Cas =109,

whereas the zero has only one cash flow at maturity, C,5 = 100.

We may easily build a portfolio consisting of the two coupon-
bearing bonds, replicating the cash flow of the zero, by solving the
following set of linear equations:

9I1 + 7172 =0
10921 4+ 107z = 100,

where x; and x5 are the amount of the two bonds in the replicating
portfolio. Solving the system yields

Note that the first position takes a negative value, i.e., we should sell
the first bond short. The value of the replicating portfolio is

—g x 104.36 + g x 96.3 = 68.09,

which must be the price of the zero, if we rule out arbitrage opportu-
nities. Note that we are implicitly assuming that default risk is negli-
gible for all of the bonds involved, that short-selling is possible, and
the market is frictionless.

Example 2.10 is a straightforward application of the law of one price. Let
us investigate another example in this vein, involving options.
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FIGURE 2.5 A butterfly spread.

@ Example 2.11 Butterfly spreads and the law of one price

Consider a weird derivative with the payoff W depicted in Fig. 2.5,
depending on the price St of a certain underlying asset at time ¢ = 7.
The breakpoint prices, K; < Ko < K3, are such that

K1+ K3

K> 5

The payoff is piecewise linear, and the slopes on the range with strictly
positive payoff are +1 and —1. This payoff corresponds to a common
trading strategy, called butterfly spread. When K is close to the
current price Sy of the underlying asset, the strategy is essentially a
bet on low volatility, i.e., we make a profit if the asset price does not
move away from Sy. Now imagine that, at time ¢ = 0, three call op-
tions on the same asset are available, with strike prices K7, K5, and
K, respectively. These three options mature at time ¢t = T, and let
C;(0), i = 1,2, 3 denote their prices.

It is easy to see that the butterfly spread may be synthesized by
taking a long position in one option with strike K7, a long position
in one option with strike K3, and a short position in two options with
strike K5. To see this, observe that the value of the portfolio of call
options matches the butterfly spread for any price St. This is summa-
rized in Table 2.3. When Sp < K7, all of the call options have zero
payoff (we say that they are out-of-the-money) and are not exercised
at maturity; hence, the total payoff from the option portfolio is zero,
as in Fig. 2.5. For St € [K1, K>), the first option has a positive pay-
off (we say that it is in-the-money), and the total payoff is Sp — K.
The other cases are treated similarly, as shown in Table 2.3. Summing
the payoffs of the three options in each possible case yields the payoff
of Fig. 2.5.

Therefore, we have a portfolio and an asset with the same value
in each possible state in the future. Then, by the law of one price, the
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Table 2.3 Decomposing a butterfly spread.

Scenario St < K1 K, < St < Ko K> < St < K3 K3 < St
Payoff option 1 0 Sr — K1 St — K1 St — K
Payoff option 2 0 0 —2(St — K2) —2(St — K2)
Payoff option 3 0 0 0 St — K3
Total payoff 0 St — K1 K3 — St 0

initial value of the asset must be the initial value of the portfolio,
C1(0) — 2C2(0) + C3(0),

no more, no less. Otherwise, the law of one price would be vio-
lated and we could make an immediate profit by shorting the more
expensive portfolio and buying the cheaper one, knowing that we will
always break even at maturity. In this case, we would essentially buy
a portfolio with a negative initial value, which means that we earn a
profit by buying it, but with zero value (no commitment at all) for the
future.

[

Exam pIe 2.12 cCash-and-carry arbitrage and forward prices

Suppose that the current spot price for an asset is Sy = $50, the cur-
rent forward price for delivery in one year is Fy = $53, and the annual
risk-free interest rate is 3%, with annual compounding. Attime ¢t = 0
we may:

1. Borrow $50 to buy the asset.

2. Enter into a long position to sell the asset in one year at the for-
ward price.

In one year, we will have to repay
$50 x 1.03 = $51.5.

Hence, we may sell the asset at Fy = $53, cashing in a risk-free
difference of $1.5. In this case, we have a zero net cash flow at time
t = 0, and a sure profit at maturity.
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FIGURE 2.6 One-step binomial model for option pricing.

The last example is particularly puzzling. Common sense would suggest that
the fair forward price should be related to the expected value of the spot price
at maturity. However, under suitable market assumptions, the example suggests
that no-arbitrage implies a different forward price. We will have more to say
about pricing forward contracts in Chapter 12.

2.3.4 OPTION PRICING IN A BINOMIAL MODEL

Options are nonlinear instruments and, as we shall see in Chapter 13, their pric-
ing involves a quite sophisticated mathematical machinery. However, we may
get a clue on how we may price an option by adopting the simplest uncertainty
model we may think of, the single-step binomial model. Consider a single time
interval of length 7. The underlying asset price at the beginning of the time
step is Sp; the price St at the end of this period is a random variable, taking
values u.Sy or dSy, where d < wu, with probabilities p,, and pg4, respectively.
The single-step binomial model, which is essentially a coin-flipping model, is
illustrated in Fig. 2.6.

An option is written on the asset, and its payoff can be f,, or f;, depending
on the outcome. For instance, for a call option with strike K, we have

fu = max{0,uSy — K},
fa = max{0,dSy — K}.

We would like to find the current option price f;. Common sense would suggest
that the fair option value should be related to the expected value of its payoff.
Since, however, the payoff will be received at time ¢ = T', we should discount
it somehow. If the interest rate is continuously compounded, we shall see that
this requires a discount factor consisting of a negative exponential. Hence, a
seemingly sensible guess is (please note the question mark!)

fo ; 6_TT . E[fT] = e_TT : [pufu +pdfd} . (220)

However, Example 2.12 suggests some caution with this intuition, since it may
fail for forward contracts. Moreover, in Example 2.10, we have solved a pricing
problem very easily by a replication strategy, and we can try with the same
approach here.
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Assume that a riskless asset is traded, with initial price By = 1 and fu-
ture price B, = By = ¢"T, where r is the continuously compounded risk-free
rate. This asset may essentially be regarded as a risk-free bank account or a
zero-coupon bond maturing at 7.3* Using the two traded assets, we may set
up a portfolio replicating the option payoff. In order to find this replicating
portfolio, let us denote the number of stock shares in the portfolio by A and the
amount of cash by W. The initial value of the replicating portfolio is

IIp = ASy + ¥,
and its future value, depending on the realized state, will be either
I, = ASou+ We'" or Iy = ASyd+ Te'T.

To find the composition (A, ¥) of the replicating portfolio, we require two con-
ditions, matching the option payoff state by state:

ASou + el = f,,
ASyd + Vel = fa-

Solving this system of two linear equations in two unknown variables, we find

_ fu B fd
_— m, (2.21)
R S - Zf u (2.22)

In order to avoid arbitrage, by the law of one price, the initial value of this
portfolio must be exactly fj:

fo=ASy+ ¥
_Ju—ta g ufa —dfu
u—d Cu—d
T erT rT
—e { — fu fd} (2.23)

It is important to note that this relationship does not depend on the objective
probabilities p,, and pg. In particular, the option price is not the discounted
expected value of the payoff, which could have been a seemingly reasonable
guess, expressed in Eq. (2.20). However, Eqgs. (2.20) and (2.23) do look quite
similar. The latter can be interpreted as an expected value, provided that we
introduce new “probabilities,”

34If we assume a constant and continuously compounded risk-free rate r, there is no difference
between depositing $1 in a bank account, which will grow to $e”7', and buying a bond with face
value $e”7 at the current price of $1. However, things are quite different if we consider a bank
account with a nonconstant interest rate, exposing us to reinvestment risk. Hence, it is better to
interpret the risk-free asset as a bank account. We will clarify this matter in Section 14.3.3.
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However, can we really say that these are probabilities? A first check is that,
indeed, they add up to 1,
Ty +mg =1,

which is fine. However, probabilities should also be non-negative. It is easy to
see 7, and 74 are positive if d < e"? < u, which must be the case if there is no
arbitrage strategy involving the riskless and the risky asset. If we had

el < d<u,

then the risk-free asset would always be outperformed, and we could make an
unbounded profit by borrowing cash and investing it in the risky stock share;
the future value of the stock shares, in this case, will always be larger than the
debt we have to repay. On the contrary, if

d<u<eT,

then we should sell the stock share short and invest the proceeds in the risk-free
asset, with the guarantee that we will have enough cash to buy back the stock
share and close the short position. Thus, assuming that no arbitrage opportunity
exists, we may interpret m, and m, as probabilities and write the option price
as the discounted expected value of payoff, under a new probability measure
defined by those probabilities:

fo=e""T Eq,[fr] =" - (mufu + 7afa)- (2.24)

The notation Eg,[ -] points out that expectation is taken with respect to a dif-
ferent probability measure. The probability measure Q,, is also called risk-
neutral. To understand why, let us write the expected value of St under prob-
abilities 7, and 74:

EQn [ST] = m,Sou + T4 Sod
rT T
:SO-<6 4y i=c d)
u—d

= Spe" 7. (2.25)

We see that the return of the risky stock share is exactly the risk-free rate r.
This would be true in a world of risk-neutral investors, who do not require any
compensation for bearing risk and only care about expected values, as we shall
see in Chapter 7. In such a risk-neutral world, the expected return of any asset
would just be the risk-free rate.

Another interesting insight is obtained if we consider the ratio between
prices S; and B;. Under QQ,,, a rearrangement of Eq. (2.25) yields, recalling that

By =1,
So St
20 _gn 2T
B, ¥ {BT] ’

i.e., the expected value of the ratio at time ¢ = T is just the current value of
the ratio. As we shall see in Chapter 11, this is a property characterizing a
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family of stochastic processes called martingales. We leave it as an exercise
(see Problem 2.6) to check that the ratio f;/B; is a martingale, too, under Q,,.

The condition

by [ 2]

By Br
implies the pricing relationship of Eq. (2.24). This is why Q,, is also known
as equivalent martingale measure. In our simple setting, dividing S; by B,
essentially amounts to discounting the asset price. However, the idea is more
general, and we may consider dividing by the price of an almost arbitrary asset,
playing the role of a numeraire, under the condition that its price is strictly
positive (to avoid trouble with division by zero). Alternative numeraires are
associated with different probability measures, which leads to powerful pricing
approaches.

We observe that the replication argument boils down to the trivial fact that
we are expressing the vector [f,, f4]T in the bidimensional space R? as a lin-
ear combination of two linearly independent vectors [S,,, S4]" and [eT, e"T]|T
forming a basis. When an arbitrary payoff can be replicated by a set of spanning
assets, we say that the market is complete. The trouble with this assumption is
that market completeness implies that derivatives are redundant, so why should
we bother with them? As one can imagine, real-life markets are incomplete,
i.e., there are payoffs/derivatives that cannot be replicated by trading in elemen-
tary assets. We shall investigate the matter in more detail in Section 2.4, but the
bottom line is the following:

= A market model does not allow arbitrage opportunities if and only if there
exists an equivalent martingale measure.

= The equivalent martingale measure is unique if and only if the market
model is complete.

Depending on the market model, proving all of this may be relatively simple or
quite demanding but, as we have seen, the essential insights can be obtained by
a simple binomial model. Clearly, a replication argument works under the as-
sumption of market completeness. In this case, the equivalent martingale mea-
sure is unique and may be interpreted as risk-neutral. As we shall observe in
Section 13.3, the argument may be recast in terms of hedging the risk of option
writing. This second approach may have the advantage of applying to incom-
plete markets, too. Furthermore, arbitrage-free but incomplete markets allow
the existence of multiple equivalent martingale measures. Hence, incomplete
markets require a calibration procedure to find the “right” martingale measure.
This amounts to finding a model matching the market prices of traded deriva-
tives, and then applying the model to price OTC securities, as we shall see in
Chapter 14.
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2.3.5 THE LIMITATIONS OF THE NO-ARBITRAGE PRINCIPLE

Whenever we use the no-arbitrage principle, it is a good idea to remind our-
selves of the assumptions, hidden or otherwise, that we are making. In fact,
there are some limitations in its use, since we neglect features of real-life mar-
kets.

* We neglect market frictions, i.e., bid—ask spreads and transaction costs, as
well as the effect of taxes and the difference in interest rates for borrowing
and lending. Usually, the effect of transaction costs and other frictions is
that there is a range of arbitrage-free prices, rather than a unique price.

Some trades may work in the long term, but may be adversely affected
by liquidity issues. This may happen if prices move in an unfavorable
way in the short term, with the potential effect of receiving a sequence of
nasty margin calls. We also have to cope with limits to short-selling, a
usual ingredient of arbitrage strategies, as well as inventory costs (which
are relevant when trading commodities).

Another feature of real-life markets is the presence of market players with
bounded rationality, as well as asymmetric information. Some role may
be played by noise trader risk, i.e., the risk of price movements caused
by uninformed traders, which may be irrational from the viewpoint of an
informed trader, but may well affect prices in the short term.

Another assumption we make is that we can observe prices and immedi-
ately operate on markets. Actually, an order must be issued and executed
in an environment featuring faster and faster dynamics, due to the perva-
sive role of information technology. As a result, a trade may suffer from
execution uncertainty.

Last, but not least, we should be aware of model risk. Some assets may
look relatively mispriced according to a pricing model, but we may not
be sure that the model itself and the estimates of its parameters are quite
correct.

A well-known real-life example of the above issues is represented by the de-
bacle of the Long Term Capital Management (LTCM) hedge fund in 1998.
The fund used convergence strategies, based on the detection of price misalign-
ments, under the assumption that, sooner or later, security prices will be brought
back in line (this is an extremely simplified view of the actual strategies em-
ployed). Under extreme market conditions, however, models may break down
and prices may take unexpected routes. In the LTCM case, this was caused by
a potential default on Russian bonds, which caused a flight to quality, i.e., mas-
sive sales of risky assets to invest in safe ones. Thus, prices did not converge
at all, and the gaps widened, leading to massive losses. With highly leveraged
positions, these losses cannot be sustained because of liquidity issues, even if
convergence does take place in the long term.
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2.4 The mathematics of arbitrage

The mathematics of arbitrage relies on stochastic models for asset prices, inter-
est rates, and other risk factors. In Section 2.3.4, we have seen how, in a simple
binomial setting, where we assume market completeness, we may replicate any
payoff by a portfolio consisting of two spanning assets. Market completeness
in the binomial case means that the payoffs of the two spanning assets are lin-
early independent and are a basis for the two-dimensional space R?. Clearly,
two states do not make an excellent model of uncertainty. If we increase the
number of scenarios to m, we may represent uncertainty more accurately, but
if we pursue the same approach as before, we would need a set of m spanning
assets forming a basis for R™. This does not seem practically sensible, if we
are considering an option written on a single underlying asset. As we shall see
in Chapter 13, the trick is to introduce dynamic replicating portfolios, based
on cash and the underlying asset. If we allow for trading in continuous time,
we may even be able to cope with a continuous random variable modeling un-
certainty. We will deal with such models in Chapter 11, but developing the
mathematics of arbitrage in that context requires tools from stochastic calcu-
lus and functional analysis, beyond the scope of this book. Here, we restrict
the analysis to static trading strategies and finite-dimensional models, which al-
low us to use simpler tools from linear algebra and linear programming. This
is sufficient to get the fundamental insights, without bothering too much with
advanced mathematical machinery. Nevertheless, the uninterested reader may
safely skip this section.

We consider a single-period market, where trading occurs at dates ¢ = 0
and ¢ = T. The sample space {2 consists of m possible states of the world
(scenarios) Q = {wy,ws, ..., wn}, with probability measure p(w) > 0, Vw €
Q. Hence, we deal with quite simple stochastic processes with sample paths
Y(t,w), t € {0,T}.% Since the initial state is known, when we refer to time
t = 0 we may suppress dependence of the process on w to improve readability.
Thus, we will write Y (0) and Y (7', w) when referring to the initial and terminal
states, respectively. On this market, n + 1 securities are traded:

* n “risky” securities, indexed by ¢ = 1,. .., n, with price process S;(t,w),
where the initial price is strictly positive, S;(0) > 0, and the terminal
price is non-negative, S;(7,w) > 0. This non-negativity condition is
satisfied by stock share prices, since equity shares are a limited liability
asset, as well as by derivatives with a non-negative payoff, like call and
put options.

* A “bank account,” associated with a price process B(t¢,w), such that
B(0) =1and B(T,w) > 0.

35 A stochastic process is a sequence of random variables over time. Here, we just have one
random variable at time ¢ = 7', but it is a good idea to strive for generality.
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Note that the bank account could correspond to a truly risk-free asset, where
there is no randomness and B(T,w) = B(T) for every w, but this need not be
the case. The strict positivity condition on B is important when we use it as a
numeraire, i.e., when we consider the discounted price processes

Sf(t,w)iB(tw), ,..

S, M.

The discounted price process for the bank account is, trivially,
B! (t,w) = 1.

For the sake of convenience, we will assume that B(T,w) = 1+ r, where r is a
risk-free holding period return.
The questions that we want to address in this simple market model are:

= Is the market model sensible? A sensible market model should not allow
for riskless money-making machines.

» How can we price contingent claims, i.e., securities offering a defined
payoff X (w) for each state w at time ¢ = T'? The contingent claim is a
contract C, associated with a function X : 2 — R. In concrete terms,
this will be a derivative with a well-defined payoff.

A static trading strategy may be described by the vector h = [hg, hy, ..., h,]T €
R"*1, representing the holding of each security, where h refers to the bank
account. We fix h at time ¢ = 0 and see the result at time ¢ = T, at the end
of the holding period. In this static setting, the trading strategy boils down to a
portfolio; things are more complicated in a dynamic setting. In any case, there
should not exist a trading strategy creating riskless money out of nothing.

The payoffs of all of the contingent claims form a linear space of ran-
dom variables.*® The numerical values taken by X (w) can be collected into
a payoff vector in R™, which we identify with the function itself. Thus, in
our finite-dimensional setting, the space of random variables boils down to the
linear space of vectors in R™, on which we may take arbitrary linear combi-
nations. Note that the basic securities in the market model have a given initial
price, but contingent claims have not. We would like to define a sensible pricing
functional I, mapping the random variable X (w) (the payoff of the contingent
claim) to a real number (its price).

30From a mathematical viewpoint, the term linear space, which is equivalent to vector space
in our setting, refers to a set of objects that can be linearly combined: If x and y belong to a
linear space L, so does the linear combination ax + by, where a and b are real numbers. From
a financial viewpoint, this means that we may bundle and unbundle assets forming other assets,
without incurring in any transaction cost.
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Let us define the vector of initial prices of the n + 1 traded securities,

1
S51(0)
V= |50) | e R,

and the matrix of asset prices (payoffs) at ¢t = T,

1+?" Sl(T,wl) Sn(T,wl)
7 1"f'r 51(1—.""‘}2) Sn(j?wz) eRmX(nJrl).
1+7r S1(T,wm) - Su(T,wm)

Note that we choose to associate columns with assets and rows with states of
the world. For a given trading strategy h, the initial portfolio value is V'h,
and the vector of terminal values in each state of the world is Zh. Trading
strategies generate payoffs that are linear combinations of the columns of Z.
These columns span a linear subspace of R™, but not necessarily the whole
space.

A traded security is redundant if its payoff may be generated by a trading
strategy based on the other securities. We say that the market is complete if
any contingent claim may be replicated by a trading strategy. Otherwise, the
market is incomplete. Clearly, the market is complete if the set of columns in
Z (securities) spans not only a linear subspace, but the whole linear space R™.
This is the case if the rank of Z is m, i.e., the matrix has full row-rank.

2.4.1 LINEARITY OF THE PRICING FUNCTIONAL AND LAW OF
ONE PRICE

Let us consider contingent claims C, C,, and C}, whose respective payoffs are
related by
X(w) = aXa(w) + BXp(w).
The financial counterpart of this linear combination is related to the possibility
of:
* Bundling securities, whereby we buy « units of C, and § units of Cj,
and sell one unit of C

» Unbundling securities, whereby we buy one unit of C' and sell « units of
C, and f3 units of C}.
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In either case, the net payoff will be zero. If we compare the prices of the three
contingent claims, we see that the pricing functional IT must be linear:

(X) =(aX, + fX})
= O‘H(Xa) + ﬂH(Xb)

If there are no transaction costs, any difference would lead to a money-making
machine (sell the expensive claim and buy the cheap one) ensuring an immedi-
ate profit with no net obligation in the future.

The linearity of the pricing functional also implies a common sense result:
A contingent claim with zero payoff in every state must have zero price. All
of this is essentially related to the law of one price: Two contingent claims
with the same payoff in every state must have the same price. If the law of
one price is violated, then we can easily build money-making machines. Note,
however, that we may build money-making machines even if the law of one
price is satisfied. As a simple example, consider a binomial model where

el < d <,

i.e., the risk-free gain is smaller than the gain of the risky security in every state.
The law of one price is not violated, since the payoffs of the two secutities are
different (in fact, linearly independent). Nevertheless, such a model would im-
ply a clear arbitrage opportunity, as we have seen, based on borrowing cash and
investing in the risky security. A similar consideration applies to the securi-
ties in Table 2.2. These two cases have one thing in common: The payoff of
a security dominates, state by state, the payoff of another security. Therefore,
the law of one price is a necessary, but not a sufficient condition for sensible
market models and pricing mechanisms. We have to investigate in more detail
trading strategies and define two concepts: Dominant strategies and arbitrage
opportunities.

2.4.2 DOMINANT STRATEGIES

For a given trading strategy h, we define the value process (a stochastic pro-
cess),

V(t,w) = hoB(t,w) + Y hiSi(t,w),
=1

for t € {0, T}, and the additive gain®’ (a random variable),

G(w) = V(T,w) — V(0) = hor + En: hi - 68 (w),

i=1

37In this book, we refer to gain as a multiplicative factor. In this section, gain is defined in
additive terms of profit/loss, i.e., as a difference of values. In order to conform to existent
literature, we avoid the introduction of another term, but no ambiguity should arise.
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where §.5;(w) = S;(T,w) — S;(0). Since discounting is so relevant in pricing,
we will use the bank account as a numeraire and define the discounted price and
value processes as

VE(t,w) = ho + Y hiS;(t,w),

i=1

Si(tw) =

respectively, as well as the discounted gain,
G (w) = V*(t,w) — Zh 657 (w

where 05 (w) = S (T,w) — S;(0). Note that the discounted price process for
the bank account is by construction constant over time, B*(T,w) = B*(0) = 1,
for every w € . Hence, the discounted gain for the bank account is always
zero. Furthermore, since B(0) = 1,

V*(0) = V(0) = ho + ihisi(c))

If the law of one price holds, , We cannot find two trading strategies h and h
associated with value processes V and v, respectively, such that

V(T,w) =V(T,w), VYweQ,

but XA/(O) > V(0). A market where the law of one price is violated cannot be in
equilibrium, as we may generate money out of nothing by buying the cheaper
security and short-selling the more expensive one. We would earn an immediate
positive cash flow and break even in every future state of the world. However,
even if the law of one price holds, we may still build a money-making machine
by looking for a dominant strategy. A trading strategy h is dominant if there
exists another strategy h, such that

~ ~ ~

VO)=V(0), V(T,w)>V(T,w), YweQ. (2.26)

By buying the dominant strategy and selling the dominated one, we have a net
zero cash flow now, and we make money for sure in the future. Again, this
would be a money-making machine.

Since we may take linear combinations of trading strategies, it is easy to see
that there exists a dominant strategy if and only if there exists a trading strategy
such that

V(0) =0, V(T,w) >0, YweQ. (2.27)

To see this, just take the difference (17 — V) in Eq. (2.26). We may also build
a different type of money-making machine. Let us assume that a bank account
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exists in our market model. Then, there exists a dominant strategy if and only if
there exists a trading strategy such that

V() <0, V(T,w)>0, YweQ. (2.28)

The two conditions in Egs. (2.27) and (2.28) are not equivalent if we consider
a market with no bank account. For instance, let us consider two contingent
claims (allowing for negative payoffs) such that

3 2

-3 =2

In this market model, we may easily find a dominant strategy according to Eq.
(2.28). For instance, the portfolio [2, —3]T has

V(0)=2x1-3x1<0,
and payoffs

V(T,w) =2%x3-3%x2=0,
V(T,w2) =2 % (=3) —3 x (=2) =0.
However, we cannot find a dominant strategy according to Eq. (2.27), since this

requires
h1><1+h2><1:0 = h1:*h27

which implies

V(T,wl):hl ><3—h1 ><2:h1,
V(T,(UQ> = hy X (—3) — hy X (—2) = —hl,

and these two payoffs cannot be both strictly positive.

However, the existence of a bank account security, which we take as a risk-
free asset for the sake of simplicity, ensures that we may transform any domi-
nant strategy of one type into a dominant strategy of the other type. To see this,
let us assume that the condition (2.27) holds for a strategy h, and let us rewrite
it in terms of discounted value process,

VH0)=0, V*(T,w)>0, YweQ, (2.29)

which is equivalent to Eq. (2.27), since the price process of the bank account is
strictly positive. Note the implication

VN0)=0 = hy=- hS;(0).
=1

Furthermore, Eq. (2.29) implies that the discounted gain for h is also strictly
positive,
G*(w) >0, Ywe.
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Now, let us define the minimum discounted gain for h as 6 = min,cq G*(w),
and consider a strategy h where

ho=ho— == h;S(0) -4,
=1

hi:hi, 2:1,,n
As a consequence, the discounted gain G* for the strategy his
G*(w) = G*(w) — 6.

The intuitive idea is to subtract § from the discounted gain of portfolio h, so
that the condition G*(w) > 0 becomes G*(w) > 0 for portfolio h. The same
amount is subtracted from the initial value of portfolio h, which is zero, so that
the initial value of portfolio his strictly negative. This amounts to borrowing
an additional amount § of cash, whose discounted value is still § at time ¢ = T'.
Then, we have

V*(0) = =6 < 0,
VAT, w) = V*(0) + G*(w) = =0+ G*(w) >0, YweQ,

showing that strategy h satisfies the conditions (2.28). We may also go the other
way around, by reversing the argument and transforming a strategy satisfying
Eq. (2.28) into a strategy satisfying Eq. (2.27). Thus, within our framework, we
may associate dominant strategies with the conditions (2.28).

Why should we prefer the formulation of Eq. (2.28) to Eq. (2.27)? The
point is that the inequalities V' (T',w) > 0 on future payoffs are not strict, and
they will define a closed set, when we use them to write an optimization model.
On the other hand, a strict inequality like V (7T, w) > 0 defines an open set,
so that the existence of a minimum or a maximum cannot be guaranteed (but
only an infimum or a supremum). In fact, in concrete, how can we look for a
dominant strategy? We may solve the following linear program (LP):

min V'h (2.30)
s.t. Zh >0,

whereby we minimize the initial value of the portfolio, subject to a non-negativity
condition on the terminal payoff. Note that this LP is feasible, as h = 0 is a
feasible solution. However, it could be unbounded below, leading to an infinite
profit. If this is the case, it means that the market model allows for arbitrage
opportunities. How can we find a condition precluding this? One possibility is
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to take advantage of LP duality.® The LP (2.30) has a dual:

max 0'w (2.31)
st. Z'm=V
w >0,

where w € R™ is the vector of dual variables. If the dual is infeasible, the
primal is unbounded below, and there is a dominant strategy. However, if the
dual is feasible, its objective value is just zero, which must also be the value of
the dual, ruling out a dominant strategy.

To summarize our findings, the absence of a dominant strategy is related
to the existence of a non-negative pricing functional. In fact, the equality
constraints in problem (2.31) may be read as

L= (1+47)) m(w), (2.32)

Jj=1

for the bank account (the asset corresponding to ¢ = 0), and as

m

Si(0) = w(w)Si(T,wj),  i=1,...,n, (2.33)

j=1

for the risky securities. Thus, we observe that absence of dominant strategies
leads us to a linear, non-negative pricing functional, giving the current value of
an asset as a linear combination of the payoffs in the possible future states. Note
that the law of one price requires that the pricing functional is linear, and an
additional non-negativity condition is required to rule out dominant strategies.
If we rescale r, introducing q = 7 - (1 + r), we obtain what we may interpret
as a probability measure, since Eq. (2.32) implies

m

D alw) =1,

j=1
q(w) >0, Yw € Q.

Furthermore, this probability measure allows to express the security prices in
Eq. (2.33) as a discounted expected value:

m

5i(0) = ZQ(WJ‘) :

j=1

Si (T, (.dj)

i=1,...,n. 2.34
]_+7" ) ? ) 7n (3)

Let us explore the more general implications of the above reasoning in
terms of pricing: The existence of dominant strategies would imply illogical

3B3ee Supplement S2.2 for a quick overview, and Section 16.1.4 for a more thorough treatment.
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asset prices, and this is precluded by the existence of a linear and non-negative
pricing functional, associated with vector q. Since, intuitively, we have to dis-
count future cash flows somehow in asset pricing, it turns out to be quite conve-
nient to work with discounted values. Let us observe that we may ensure consis-
tency in prices if there is a non-negative vector q = [q(w1), g(w2), - - ., ¢(wm)]" €
R™, such that for every trading strategy, we have

V0 = D)V (1) = S ate) g @39)

This is just obtained from Eq. (2.34), multiplying asset prices S; by the re-
spective portfolio holdings h;, in order to find the portfolio value. To see the
financial implication of Eq. (2.35), let us compare two trading strategies with
payoffs V(T,w) and V(T,w), respectively, such that V(T,w) > V(T,w) for
every state w. We may observe that if the pricing functional q in Eq. (2.35) is
non-negative, a trading strategy featuring a larger payoff than another one, in
every future state, cannot have a smaller initial value, and therefore it cannot be
dominant.

If we denote by Eg,[-] the expectation under the probability measure de-
fined by q, we observe that the expected value of the discounted value process
under Q,, is constant:

V*(0) = Eq, [V*(T,w)]

We have already met this kind of condition in the binomial model. In the more
general multiperiod case, this will be referred to as a martingale property.

2.4.3 NO-ARBITRAGE PRINCIPLE AND RISK-NEUTRAL
MEASURES

The existence of a non-negative pricing functional precludes the existence of
dominant trading strategies. But what if we weaken the condition in Eq. (2.27)?
Let us formally define an arbitrage opportunity as a trading strategy such that:

V(0) =0,
V(T,w) >0, VweQ, (2.36)
E[V(T,w)] >0

Here, we do not require that the payoff if strictly positive in every future state,
but only that it is strictly positive in at least one state and non-negative in
the other states. Since the requirements defining an arbitrage opportunity are
weaker than those defining a dominant strategy, the conditions precluding the
existence of a dominant strategy must be strengthened in order to preclude
the existence of an arbitrage opportunity. As it turns out, the pricing mea-
sure/functional must be strictly positive.
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Observe first that the conditions of Eq. (2.36) may be restated in terms of
discounted values,

V*(0) =0,
VHT,w) >0, YweQ, (2.37)
E[V*(T,w)] > 0,

or, equivalently, in terms of discounted gain,
G*(w) >0, Yw € Q; E[G*(w)] > 0. (2.38)

These conditions essentially state that the discounted gain of the portfolio is
never negative, and it is strictly positive in at least one state, so that the expected
value is strictly positive (we assume states w with strictly positive probability
under the real measure). Also recall that the discounted gain of the risk-free
asset is always zero, so we may just focus on the n risky assets.

Now, let us write an LP model whose aim is to generate an arbitrage oppor-
tunity satisfying condition (2.38):

n

min Z 0-h; (2.39)
i=1
st Y y=1 (2.40)
j=1
yi =Y Giw)hi, j=1,...,m (2.41)
=1

y; = 0, j=1...,m,

where G (w;) = 5] (w;) is the discounted gain of asset ¢ in state j. The
objective function of Eq. (2.39) is identically zero, but this is not really essen-
tial, since we want to check if a trading strategy we would love really exists.>
Equation (2.41) introduces auxiliary variables y;, representing the discounted
gain from the strategy h for each state of the world; these variables are required
to be non-negative, as in Eq. (2.38), and are introduced for the sake of con-
venience. Equation (2.40) may look arbitrary, but since we may scale trading
strategies at will, it is just a convenient way of requiring strict positivity of the
expected discounted gain in at least one state.** Now, let us associate a dual
variable my with constraint (2.40), and dual variables 7; with each constraint
(2.41), and write the dual of the LP problem (2.39). To this aim, it is useful to

39Quite often, we use powerful optimization methods to solve a feasibility problem, i.e., to find
a solution satisfying a set of demanding constraints. In this case, it is a common practice to use
a dummy objective identically zero.

400nce again, beware of strict inequalities in optimization, as they define open sets. Existence
of an optimal solution can be guaranteed when the objective function is continuous and the
feasible set is closed and bounded.
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write the equality constraints (2.40) and (2.41) in matrix form, so that we may
observe the shape of the technological matrix of the primal LP problem (2.39),
which is transposed in the dual:

— _ hl
0 0 - 0 1 1 e 1 1
GT(wl) G;(wl) G;(wl) -1 0 - 0 h- 0
Gi(w2) Gi(wz) -+ Gh(w2) 1 ... 0 A
. . : Y1 :
|G (wm) G3(wm) -+ Grlwm) 0 0 - —1] :
Lo |

Note that the first n columns of the matrix correspond to the unrestricted vari-
ables h;, and the last m columns correspond to the non-negative variables y;
(in case you got lost, you may wish to recall that subscript ¢ refers to assets,
and subscript j refers to states). Note that the right-hand side vector has a one
in the first position, corresponding to constraint (2.40), and is zero otherwise,
as in constraint (2.41). By transposing the matrix and taking into account the
non-negativity restrictions on variables y;, we find the following dual LP:

max 7o
st. Y Giwy)mj=0, i=1,...,n (2.42)
j=1
-1 <0,  j=1,...,m. (2.43)

Note that the dual has a trivial feasible solution, with value o = 0, where all
dual variables are set to zero. Thus, we are not in the pathological case in which
both primal and dual LPs are infeasible. Hence, the primal will be infeasible
(i.e., there is no arbitrage opportunity) if and only if the dual is unbounded
above. If we can let 1y — +o0, while satisfying constraints (2.42) and (2.43), it
must be the case that we find strictly positive values ;, one per state j, such that
constraint (2.42) is satisfied. If they exist, the values m; > 0 may be rescaled
to values ¢; = ¢(w;) > 0 in such a way that their sum is 1, yielding a strictly
positive probability measure ¢(w) such that

m

Eg, [G*(w)] =Y G*(wj)a(w;) =0, (2.44)

j=1

where the notation Eg, [ - | points out that the expectation is taken with respect
to this measure, and not using the probabilities p(w) of the market model.

The probability measure QQ,, is called risk-neutral, since the expected re-
turn of risky assets under @, is just the risk-free return. To see why, observe that
Eq. (2.44) states that the expected discounted gain is zero, which is the case if
the expected holding period return is, in fact, the risk-free rate r. Also note that,
in the more general case of a different numeraire with price process B(t,w),



128 CHAPTER 2 Basic Problems in Quantitative Finance

if the expected discounted gain is zero, then the discounted price processes are
martingales. Thus, we conclude that there is no arbitrage strategies if and only
if there exists a strictly positive risk-neutral (martingale) probability measure.
We remark again that non-negativity of the probability measure is needed to
rule out the existence of dominant strategies. However, since arbitrage strate-
gies are weaker than dominant strategies, we have to tighten the non-negativity
condition to strict positivity.

Note that this probability measure need not be unique in general. When
considering generic numeraire assets, the term equivalent martingale measure
is preferred, since the discounted price process of securities is a martingale
under such a measure. For any trading strategy, if Q,, is a martingale measure
we have

V(0) = V*(0) = Eq,[V*(0)] = Eq, [V(T,w) — G*(w)]

V(T,w
~Eq. | ~ Eq, [6"(@)
B(T,w —_—
e = 0 by Eq. (2.44)
_ V(T,w)
= Eq, [ B(TM)} (2.45)

Thus, under a martingale measure, the initial value of a trading strategy is just
the discounted expected value of its payoff.

The last issue we have to consider is market completeness. If the market
is complete, any contingent claim can be replicated by a trading strategy. How-
ever, if the market is not complete, there are contingent claims that cannot be
replicated. Consider the subspace of contingent claims that can be replicated
by a trading strategy. This is the subspace of the attainable payoffs. Absence
of arbitrage opportunities implies the absence of dominant strategies, which in
turn implies the law of one price. Hence, under a no-arbitrage assumption, the
price of any attainable contingent claim is just the discounted expected value
of its payoff, under any risk-neutral measure. If the number of states is equal
to the number of linearly independent securities, then any contingent claim is
attainable and can be replicated, i.e., the market is complete. The law of one
price makes sure that the value of an attainable contingent claim must be the
same under every risk-neutral measure. It is not difficult to prove that if the
market is complete, then the risk-neutral measure is unique, so that we find one
well-defined price for all contingent claims. If a contingent claim is not at-
tainable, however, it can be shown that its discounted expected value is not the
same for the whole set of risk-neutral measures. Hence, we do not find a unique
arbitrage-free price, but a range of such prices. In practice, when the market is
incomplete, we may pursue a calibration strategy, whereby a risk-neutral mea-
sure is selected, matching market prices of exchange-traded derivatives, and
used to price OTC derivatives.*!

4gee Chapter 14.
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The bottom line of our reasoning can be summarized as follows:

= There are no arbitrage opportunities in the market, if we can find a strictly
positive equivalent martingale probability measure.

= If the market is complete, then this probability measure is unique and may
be interpreted as risk-neutral, if we use a risk-free asset as a numeraire
(which amounts to the usual discounting). If the market is not complete,
then there are multiple martingale measures.

These findings generalize and are consistent with the insights we gathered from
the binomial pricing model. Further generalization may be obtained by con-
sidering dynamic trading strategies, possibly in continuous time. The essen-
tial messages do not change, but continuous-time trading requires sophisticated
mathematical machinery, since pathologies may occur that have to be ruled out.
This requires a more careful and demanding treatment, which is beyond the
scope of this book.

S2.1 Multiobjective optimization

When trading off expected reward and risk, it may be difficult to find a com-
promise solution between conflicting requirements. This is a common issue
in multiobjective optimization, where we have to trade off conflicting require-
ments that cannot be reduced to a single performance measure. In this book, we
will limit our treatment to two objectives, which may be visualized on a plane.
A common approach, in multiobjective optimization, is to trace the frontier of
efficient, or nondominated, solutions.

Letx € S C R™ be a vector representing our decision, which is constrained
to be in the feasible set .S, and let 77(x) denote the expected reward (e.g., wealth
or return) and £(x) denote the corresponding risk measure (like standard devia-
tion). From a mathematical perspective, each feasible solution is characterized
by a pair of objective values, which can be depicted as illustrated in Fig. 2.7,
on a mean-risk plane. Note that good solutions are on the North—West corner,
where expected reward is maximized and risk is minimized. Formally, we could
consider a “vector” optimization problem:

o 7(x)
max l E(x) ] (2.46)
st. x€eS,

where we consider —£(x), since risk should be minimized. However, stated as
such, the problem has no meaning, and this is why we quote “max.” The dif-
ficulty is that vectors on a plane are not a well-ordered set. If we consider the
three solutions represented by black bullets in Fig. 2.7, there is no objective way
to spot the best one, as the choice may depend on the degree of risk aversion
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FIGURE 2.7 Schematic illustration of the concept of efficient solution.

of the decision maker. However, it stands to reason that the two solutions rep-
resented by hollow circles should not be considered, as there is an alternative
which is better from both points of view.

DEFINITION 2.1 Given the vector optimization problem (2.46), a feasible so-
lution x* is said to be an efficient or nondominated solution, if there is no
other solution X € S such that

m(x) > w(x*)  and  {(x) < {(x7)

with a strict inequality for at least one of the two objectives. The set of nondom-
inated solutions is called the efficient frontier.

In Fig. 2.7, two shaded regions are displayed. They are two cones,*? rooted at

a specific solution. One is the cone of dominated solutions, i.e., the solutions
that are dominated by the vertex of the cone. The two dominated solutions,
in fact, are located in a dominated cone and are not efficient. The dominating
cone is the cone of solutions that dominate the vertex of the cone. For that
efficient solution, the dominating cone is empty. The efficient frontier is the set
of solutions with an empty dominating cone. When dealing with a continuous
mathematical program, the efficient frontier might be a continuous curve, as
illustrated in Fig. 2.8. In fact, this is the qualitative shape that is obtained by
solving the mean—variance portfolio optimization problem described in Section
2.1.1.

In order to trace the efficient frontier, we need to find a way to recast the
problem so that it can be tackled by standard optimization software. To this

“2We define a cone formally in Section 15.5. Here we are dealing with a shifted cone, really.
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FIGURE 2.8 The efficient frontier in the continuous case.

aim, we can scalarize the problem according to some strategy, boiling the vector
problem down to a family of single-objective optimization problems depending
on one or more parameters. The first and perhaps more intuitive approach is to
devise a weighted linear combination of the two objectives. One possibility, in
our mean-risk framework, would be to introduce a parameter y € [0, 1], which
expresses the relative importance of the objectives. Then, we let v span its
range, and we solve a sequence of problems with objective

maxy - 7w(x) — (1 - 7) - £(x).

One difficulty with this approach is the interpretation of . It is a bit easier to
introduce a single parameter A\ and solve a sequence of scalarized problems:

max 7(x) — A(x) (2.47)
st. x€S.

In this case, A is related to risk aversion and, even though we obtain the pure risk
minimization case, corresponding to v = 0, only in the limit when A — +o0, it
may be easier to find guidelines in value selection. For instance, in the mean—
variance case, values of \ in the interval [2, 4] are considered sensible.*?

This approach, based on weighted combinations or a risk aversion parame-
ter, is clearly intuitive and guarantees that all of the solutions that we generate
are efficient. However, there is no guarantee that all of the efficient solutions

43 A word of caution is needed in this case. Even though we may consider standard deviation
as a risk measure, variance is used in the model for the sake of computational convenience, as
this leads to a convex quadratic programming problem, which can be solved very efficiently.
Conceptually, this does not change the matter, as variance and standard deviation are closely
related. However, we should consider that the efficient frontier is plotted on a plane which
involves a transformed version of the underlying risk measure. The mentioned sensible range of
values for A applies when variance is used in the scalarized objective, not standard deviation.
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FIGURE 2.9 A simple scalarization may not be able to detect all of the efficient solutions.

will be generated in this way. The issue is illustrated in Fig. 2.9, where the
dotted lines correspond to level curves of the scalarized objective, for different
values of A. In fact, the objective function (2.47) is constant along lines on the
(&, ) plane, whose slope depends on the risk aversion coefficient A\; maximiza-
tion of the scalarized objective requires moving to North—West. It is easy to see
that two out of the three efficient solutions can be detected by suitably setting
the risk aversion coefficient, but we cannot generate the third one. This does not
occur in Fig. 2.8, where the plot of the efficient frontier looks essentially like
the boundary of a convex set. A situation similar to Fig. 2.8 may occur when
dealing with discrete optimization problems, or when dealing with arbitrary ob-
jective functions, possibly lacking suitable concavity/convexity properties. An
interesting case, portfolio optimization with cardinality constraints, is described
in Sections 8.2.3 and 15.4.1.

An alternative scalarization approach is based on the idea of transforming
one objective into a constraint. In the mean-risk case, we may minimize risk,
subject to a constraint on minimum expected reward,

min  £(x)
st. xe S,
m(x) > a,

or maximize expected reward, subject to a risk budget,

max 7(x)
st. x€e S,
§(x) < B.

We may trace the efficient frontier by solving a sequence of scalarized problems
for varying values of « or 3. It is worth noting that this second approach does
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not suffer from the aforementioned difficulty in generating the efficient frontier.
Actually, the choice of the scalarization approach usually depends on computa-
tional convenience, as well as the ease in choosing and interpreting the value of
the involved parameter.

S$2.2 Summary of LP duality

Optimization model building and solving are described in more detail in Chap-
ters 15 and 16, which include sections on duality in mathematical programming
and, more specifically, duality in linear programming (LP duality). In this Sup-
plement, we just give the bare essentials of LP duality, as is relevant to this
chapter.

W Example 2.13 A trivial LP problem

To begin with, what follows is an example of an LP problem:

max x1 + 2xo (2.48)
st. x1+ax2 <4
T1,T2 Z 0,

where s.t. stands for “subject to” the list of constraints. We observe
that all decision variables occur in a linear fashion (no powers, no
products, no fancy functions), and it is easy to see that the optimal so-
lution is 7 = 0, 25 = 4, with optimal value of the objective function

f*=8.

All LP models can be recast in the standard form:

min  c'x (2.49)
st. Ax=Db
x>0,

where x,c € R, A € R™*", and b € R™. To leave room for optimization,
the linear system of equations defining the constraints must be underdetermined,
i.e., we must have m < n.

@ Exam ple 2.14 Recasting an LP problem in standard form

For instance, we may recast problem (2.48) in standard form by chang-
ing the sense of the objective and by introducing a non-negative slack
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variable s to transform the inequality into an equality:

min  — x7 — 229 (2.50)
st. x1+xo+s=4

z1,Z2,8 > 0.

The standard form is algorithmically convenient, and it also allows to analyze
LPs in full generality without bothering too much about specific cases.

Given any optimization problem, one of the following cases may occur:**

= The problem is feasible and there is a finite optimal solution. Note that
the optimal solution need not be unique.*’

= The problem is infeasible, i.e., the feasible set is empty. In this case, we
conventionally say that the minimum value is +oo, and the maximum
value is —oo in the case of a maximization problem.

» The optimum is unbounded, i.e., we can reduce the cost (or maximize
profit) without bound, while staying within the feasible set. In this case,
we conventionally say that the minimum value is —oo, and the maximum
value is o0 in the case of a maximization problem.

Sometimes, we are only interested in finding a solution satisfying a set of con-
straints. In such a case, we resort to optimizing a fictional objective, which turns
out to be a nice computational way to solve a difficult system of equalities and
inequalities. Alternatively, we may wish to show that the feasible set is empty,
i.e., we cannot find a solution with some desired features. This is what happens
in the mathematics of arbitrage, when we want to show that a certain trading
strategy cannot exist, under certain conditions. Duality theory may come in
handy in this setting.

Any (primal) LP problem is associated with a dual problem. In the case of
problem (2.49), its dual is

max b'w (2.51)
st. Alr <c,

where w € R™ is the vector of dual variables. We notice a simple pattern: The
cost vector ¢ and the right-hand side vector b are swapped, and the matrix A
is transposed. Duality may be introduced as a special case of more general La-

4o be precise, it might happen that we find a finite inf but not a finite min, if the feasible set
is open, as in the case min z, s.t. > 2. However, we disregard this case.

431n the LP case, in fact, we may have an infinite number of optimal solutions, since any convex
combination of two optimal solutions has the same value, given the linearity of the objective
function, and is feasible, given the convexity of the feasible set.
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grangian duality for nonlinear programming,*® or by using separation theorems
for convex sets (rephrased in the form of Farkas’ lemma). Under quite general
conditions, weak duality applies, stating that the maximum of the dual problem
cannot be larger than the minimum of the primal problem. In the LP case, a
stronger duality condition applies and the following cases are possible:

* The primal and the dual are both feasible, in which case the two optimal
objectives are the same.

» The primal and the dual are both infeasible (a rather uncommon and
pathological case).

» The primal is infeasible and the dual is unbounded (above).

= The dual is infeasible and the primal is unbounded (below).

Furthermore, it turns out that the dual of the dual problem is just the original
primal problem.

W Example 2.15 Finding the dual of a standard LP

In the case of problem (2.50), we have

Hence, we immediately find the dual:

max 4m
1 -1
s.t. 1|7 | =2
1 0

Here, we have a single dual variable , since our trivial LP has one
constraint, and we should just maximize 7, subject to simple upper
bounds. By taking the most restrictive bound, we find

T = =2,

corresponding to an objective value of —8, which is the same as the
primal value [recall the change in sign of the objective with respect to
the original problem (2.48)].

46See Section 16.1.4.
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Table 2.4 Rules to find the dual of an arbitrary LP.

Primal (minimize) Dual (maximize)
ith constraint > b; ith variable > 0
ith constraint < b; ith variable < 0
ith constraint = b, ith variable unrestricted
jth variable > 0 jth constraint < ¢;
jth variable < 0 jth constraint > ¢;
jth variable unrestricted jth constraint = ¢;

Finding the dual of an LP by first recasting it in standard form may be quite
inconvenient. In Table 2.4, we summarize the rules to transform a primal prob-
lem in general form into the corresponding dual. In this table, we assume that
the primal problem is in minimization form, so that the corresponding dual is
in maximization form; however, the two columns may be swapped (if we build
the dual of the dual problem, as we said, we just find the original primal).

@ Example 2.16 Infeasible dual of an unbounded primal

Let us change the sense of the inequality in problem (2.48):

max x71 + 2x9 (2.52)
st. 1+ x0 > 4

x1, T2 > 0.

Clearly, the problem is unbounded. Applying the rules of Table 2.4,
swapping the columns corresponding to primal and dual problems,
we immediately find its dual:

min 4x
1 1
S.t. >
1 2
<0,

which is clearly infeasible, since the first two conditions on the dual
variable 7 are not compatible with the third one.
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As a further check, we may work with the equivalent standard
form of problem (2.52),

min — x1 — 2T9
st. x1+x—s=4

T1,T2,S 2 07

whose dual is

max 4q
1 -1
s.t. 1]1¢g< [-2],
-1 0
with dual variable q. The variable substitution 7 = —gq yields the

same infeasible dual as above.

Problems

2.1 You are the manager of a pension fund, and your fee depends on the
achieved annual return. You can play it safe, and allocate wealth to a risk-free
portfolio earning 4% per year (with annual compounding). Alternatively, you
can pursue an active portfolio management strategy, whose return is modeled
by a normal random variable with expected value 8% and standard deviation
10%. Your fee depends on the realized performance, according to the following
table:

Annual return R Fee
R < 0% $0
0% < R<3% $50,000
3% < R<9%  $100,000
12% <R $200,000

= Assume that you do not care about your own risk, so that you just consider
expected values. Which one is the better strategy for you?

» What is the standard deviation of your fee, if you take the active strategy?
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2.2 The annual returns of two stock shares are represented by the following
linear factor model:

Ry =0.03+ 1.2R,, + €1,
Ry = 0.04 + 0.8R,, + €2,

where the common factor R,, represents a systematic market risk (e.g., the
return on a stock market index), and €; and ey are specific risk factors. We
assume that all of the risk factors are uncorrelated and normally distributed with
the following parameters (expected value and standard deviation):

Factor m o

R 0.04 025
€1 0 0.30
€2 0 0.40

You have invested 40% of your wealth in the first asset and 60% in the second
one. Find the probability that the realized annual return is negative, i.e., you
lose money.

2.3 You have bought on margin 100 zero-coupon bonds, with face value
€1000, maturing in three years. At present, the annual yield (annual return with
annual compounding) of the bonds is 4.3%. The initial margin ratio is 50%, and
the maintenance margin is 20%. Assuming that we neglect the passage of time,
for which yield will you get a margin call?

2.4 You hold a long position in an asset, whose price is correlated with two
commodity prices. The two commodities are the underlying assets of two fu-
tures contracts maturing at time 7. There is no futures contract available on
your asset, which you are going to sell at time Ty < Tp. Thus, you want
to build a minimum variance hedge based on the two futures. Assuming that
you know all of the relevant statistical information, and that we disregard issues
related to marking-to-market, margin calls, etc., find the optimal hedge ratios.

2.5 The annual return of a risky financial portfolio, denoted by R,,, can be
described by the following linear regression model:

R, = 0.057 + 3.4F, — 2.6F, + ¢,

where F} and F5 are mutually correlated risk factors and ¢ is another risk factor,
which is independent from the other two. All risk factors are assumed normally
distributed with expected value zero. The standard deviations of F} and F5 are
0.1 and 0.12, respectively, and their correlation coefficient is 0.48; the standard
deviation of the third risk factor is 0.2.

» Assume that the annual risk-free return is ry = 2.5% (annual compound-
ing). What is the probability that the risky portfolio outperforms the risk-
free investment?
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= Assume that you have invested €1,000,000 in the risky portfolio. Find
the annual VQR at 95% confidence level. Note: In this case, since the
time horizon is one year, you cannot neglect the expected value of return
(unlike daily V@R).

2.6 Prove that, under the equivalent martingale measure Q,, of Section 2.3.4,
the ratio f;/B; is a martingale.

2.7 Letus consider a market on which three assets, indexed by ¢ = 1, 2, 3, are
traded, with current price

51(0) = 52(0) = 55(0) = 1.

The asset values in the future, at time ¢t = 7', depend on which state will be
realized. We consider three possible scenarios wi, we, and w3, with probabilities
55%, 30%, and 15%, respectively. The corresponding asset values are given in
the following table:

State Sy (T,u)) SQ(T,UL)) S3 (T, w)

w1 1 3 1.2
w2 3 1 1.2
w3 0 0 1.2

We note that asset 3 is risk-free, and that state ws is a “bad” state. Imagine an
insurance contract against the occurrence of the bad state, whose payoff is O if
states wy or ws occur, and 1 if state w3 occurs. What is the fair price of this
insurance contract? Do you need further information about risk aversion?

Further reading
= In this chapter, we have outlined a few mathematical programming mod-
els; a simple introduction to such models may be found in [2].

= A good reference for a general introduction on mathematical finance, cov-
ering a lot of ground, is [7].

= For an overview of value-at-risk, you may refer to [8].

» Example 2.5 on volume risk has been inspired by the Harvard Business
School case [5].

= Section 2.4 follows the treatment by [10]. You may also see [6] or [9].
* An overview of multiobjective optimization is given, e.g., in [4].
» To see more on LP and LP duality you may refer, e.g., to [1] or [11].
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Fixed-income assets






Chapter 'Three

Elementary Theory of Interest
Rates

The time value of money is one of the key ingredients in finance. We need
a way to move cash flows backward and forward in time, in order to analyze
and compare investment opportunities, as well as to come up with financial
plans. In this chapter, we introduce the fundamental concepts related to interest
rates, such as compounding frequencies, discount factors, the term structure of
interest rates, and forward rates.

Interest rates are a key risk factor in the pricing of fixed-income assets,
which include a multitude of securities, ranging from plain bonds to rather com-
plicated interest rate derivatives. In this chapter, we only deal with elementary
bond pricing, which can be accomplished without the need for dynamic models
accounting for the uncertainty about interest rates in the future. Such advanced
models shall be introduced in Chapter 11, whereas we rely here on a static pic-
ture of interest rates. Despite its (apparent) simplicity, this enables us to tackle
some quite relevant problems:

= Given two bonds, how can we compare their return?

= Given a set of bond prices, how can we check whether there are arbitrage
opportunities?

» How can we estimate the amount of money that we need to save each
year, during our working life, in order to achieve a given target wealth at
retirement?

» How can we measure the interest rate risk of a plain bond?

As an introduction to the issues involved in comparing investment opportunities,
let us consider the following simple example.

L) Example 3.1 Two investment opportunities

A friend of ours needs to borrow money, say, $10,000. He will give
that money back in one year, and to compensate us for our help, he
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will top $400 on it. Should we accept his proposal? Of course, we
might do so just because he is a very dear friend of ours, but let us
analyze the situation rationally as an investment analysis problem.
Analyzing an investment requires some sort of relative comparison
between comparable alternatives. Hence, let us say that our bank
offers an interest rate of 3% for a deposit of one year. This means
that if we lend our money to the bank, we will receive $10,300 in one
year, which is less than the $10,400 offered by our friend. Another
way to compare the two alternatives is to consider the return on the
loan,

10,400 — 10,000

10,000

a return larger than the 3% offered by the bank. Thus, it would seem
that we might be better off by lending to our friend.

Actually, comparing the two proposals may not be so trivial. We
should also consider the possibility of not getting the money back
at all, if a default occurs. Arguably, the bank should be financially
more reliable than our friend, so the two interest rates might not be
quite comparable, and we need a way to bring risk into the picture.
Furthermore, taxes and more or less hidden fees or transaction costs
may play a role as well. In this chapter, we do not consider additional
complications like market frictions or uncertainty in cash flows, due
to default and other risk factors. We assume that the interest rates
that we analyze are, in a sense to be made clear, risk-free. Last but
not least, in this simple example, we are comparing two opportunities
resulting in cash flows that do not differ in their timing. What if we
have to compare sequences of cash flows occurring at different times?

= 4%’

Interest rates have to do with the time value of money: $10,000 now is not
the same as $10,000 in one year. To cope with more realistic and interesting
problems than Example 3.1, we need the ability to shift money back and forth
in time in order to compare different cash flow sequences on a common ground.
The time value of money is the subject of the first two sections of this chap-
ter. In Section 3.1, we show how interest rates are used to shift cash flows and
money forward in time. There, we also introduce the fundamental concept of
compounding, as well as the difference between quoted and effective rates. In
Section 3.2, we consider shifting cash flows and money backward in time by
discount factors. We justify discounting by the no-arbitrage principle and show
the connection between discount factors and interest rates. Different ways of
measuring rates can be adopted, and it is essential to pay attention to how rates
are expressed in terms of compounding frequency. However, it is important to
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realize that interest rates may be quoted in different ways, according to conve-
nience, but they are just different expressions of the same thing.

In Section, 3.3, we briefly discuss the fundamental difference between
nominal and real interest rates, accounting for inflation. In Section, 3.4, we
move on to a fundamental feature of interest rates: They differ as a function
of maturity. Even a cursory look at rates quoted on a newspaper shows that an
interest rate for a time period of six months is not the same as an interest rate for
a longer period, say, five years. Usually, rates are larger for longer maturities,
but this is not always the case, and theories have been proposed to explain these
patterns.

Armed with these elementary concepts, we shall then examine the foun-
dations of elementary bond pricing in Section 3.5. By “elementary” we mean
that, as we have anticipated, we rely only on a deterministic analysis of cash
flows; more advanced bond pricing models take into account the stochastic na-
ture of interest rates and will be discussed in Chapter 14. Nevertheless, we will
show that pricing floating-rate bonds, which feature stochastic cash flows, may
boil down to a surprisingly simple formula. We also introduce a commonly
used measure of bond return, yield-to-maturity (YTM), as well as a simplified
view of interest rate risk. Elementary bond pricing and YTM are related to
fundamental concepts in investment analysis, like net present value (NPV) and
internal rate of return (IRR). NPV and IRR are discussed in more detail within
the framework of corporate finance. Hence, in Section 3.6, we shall just have
a brief discussion of NPV and IRR. We also hint at more sophisticated analysis
tools based on real options.

We close the chapter with Section 3.7, where we discuss another essential
concept related with the term structure of interest rates, namely, the relationship
between spot and forward rates. This paves the way for the analysis of interest
rate risk management strategies and a few simple interest rate derivatives, which
will be introduced in Chapter 4. In that section, we also consider a possible
explanation of the term structure of interest rates.

It is worth mentioning that in this chapter, as in the rest of the book, we take
for granted that it is perfectly legitimate to lend money and expect a reasonable
compensation for it. We just rule out the application of unreasonable interest
rates, which amounts to usury and is in fact forbidden by the law. However,
there are cultures in which this is simply forbidden, and different arrangements
are required; a notable example is Islamic finance. We will not consider such
issues.

Remark. As we shall see, interest rates are applied to time periods of quite
different length. For comparison purposes, they are always quoted on a common
annual basis. A rate shall always refer to one year, whereas a return may refer
to an arbitrary holding period.
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3.1 The time value of money: Shifting money forward in
time

Suppose that we deposit an amount L in a bank account for one year. If we part
ways with hard-earned money, even though for a limited span of time, we may
require a compensation in the form of an annual interest rate r,' meaning that
after one year the deposit will grow to

W1 = L(l + ’f’).
A little thought raises a few questions:

1. What if we want to borrow, rather than lend money? Should we expect to
pay the same interest rate that we earn from a deposit?

2. Are we sure that we will get our money back, or is default an unpleasing
possibility?

3. What if we want to invest L only for a fraction of a year?

4. What if we want to invest L for more than one year?

As we may expect, the first issue is reflected by a spread between the interest
rate that is bid when we invest money and the larger rate that is asked when
we borrow money. In general, whatever asset we are dealing with, we face a
bid—ask spread. This applies, for instance, to currency exchange rates quoted by
a dealer, as well as to stock prices traded through a broker. If a retail bank steps
in as an intermediary between savers and borrowers, it has to make a living by
applying a spread between the two rates. For instance, the bank will collect
deposits that are rewarded at a given interest rate, but it will require a larger rate
on loans and mortgages.

The second issue is related to credit risk, i.e., the risk that a default oc-
curs. If we lend money to a bank, we should consider the possibility that the
bank goes bankrupt.” When the bank lends us money, it takes into account the
possibility that we will not be able to repay the debt, for reasons that might be
independent of our good will. The default on the part of a client is normally
more likely than the default on the part of a bank, and this will also contribute
to a spread between lending and borrowing rates, since common sense suggests
that credit risk will imply a larger interest rate. The prime rate quoted by banks
is the interest rate offered to their best clients when they need financing, but
this is definitely not the rate offered to normal clients. By the same token, large
institutional investors may afford borrowing funds with a minimal spread.

In this chapter, we shall neglect bid—ask spreads and credit risk; hence,
we only deal with risk-free rates and their connection with time. As we may

In this section, we denote by r the interest rate applying to a holding period corresponding to
one year; we will introduce a more precise and useful notation later.

’In many countries, bank deposits are guaranteed by the government, but only up to some limit.
At the time of writing, there is strong political pressure to eliminate or at least reduce any such
protection.
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imagine, in normal market conditions, a larger rate is associated with longer-
term investments. If we lock the money for five years rather than one, more
often than not we will be compensated by a larger annual interest rate. If, on
the other hand, we have a bank account from which we may withdraw money
whenever we need or feel like it, the rate that we should expect to earn from
our deposits will be much lower (possibly zero). Time is also essential when
we need to shift money forward and backward in time, among other things, in
order to compare investment opportunities. We must do so both for long and
short time intervals, in order to deal with issues 3 and 4 above.

3.1.1 SIMPLE VS. COMPOUNDED RATES

As we have observed, when an annual interest rate r applies to a single year, an
amount L now is equivalent to an amount L(1 + r) in one year. If we invest
only for a fraction o € (0, 1) of a year, one possible idea is prorating the rate,
i.e., to apply the formula

L(1+ ar). 3.1

For instance, if the annual rate is 5% and we invest for six months, according to
Eq. (3.1) we will earn 2.5% of L. In principle, we may apply the same concept
when o > 1. However, when the investment spans a long time interval, quite
often interest is paid periodically along the way, and not only at the end of the
time horizon. The interest we receive at the end of each time period can be
immediately reinvested, so that we can earn interest on interest. For instance, if
the money is invested for n years, and we assume that the rate will not change
over time (no reinvestment risk), capital will grow as follows:

L-(1+7)-(1+7r)---(14+7)=L-(1+7r)" (3.2)

n times

The mechanism underlying Eq. (3.1) is called a simple interest rate. The al-
ternative of Eq. (3.2) corresponds to a compounded interest rate.

L) Example 3.2 Simple vs. compounded rates

Say that the annual rate is 5%, and we invest $1000 for two years. The
wealth at the end of the holding period depends on how the interest
rate is applied. Under the simple interest rate rule of Eq. (3.1), wealth
after two years is

L-(142r) =1000 x (1+2 x 0.05) = $1100.

If interest is paid annually and it may be immediately reinvested,
wealth after two years will stem from the application of Eq. (3.2),

L-(1+7)-(1+7)=1000 x (1+0.05)2 = $1102.50.
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The slight difference between the two amounts is due to the com-
pounding mechanism, since

A47)-A+r)=1+2r+r>>1+2r

and the term 2 corresponds to interest earned on interest.

Clearly, if compounding is applied over a large number of years, it implies
an exponential increase of wealth. The impact is not so remarkable in Example
3.2, where the time horizon is rather short, but it may be quite relevant for the
long-term investments that are associated with pension funds.

W Example 3.3 Building pension capital

Suppose that we are going to work for the next 7" years, and that at
the beginning of each year we contribute an amount L to a pension
fund, which is invested at an annual rate r for the future time periods
(years) until retirement. If annual compounding applies, what is our
wealth at retirement?

To formalize the problem, let us introduce time instants (epochs)
t=0,1,...,T. We invest money at epochs ¢t = 0 throught =T — 1,
for a total of T" contributions, and we need to evaluate wealth at epoch
t = T'. The key is that what we contribute at time ¢ is invested for 7'—¢
time periods. As a result, wealth at retirement is

WT:ZL.(HT)T—t:L-(Hr)TE;(1}LT> :

t=0 t=

To figure out the sum, we recall a property of the geometric series,
—+o0
Y-
11—«
k=0

for |« |< 1. Moreover, we may express a finite sum as the difference
between two infinite sums:

T +oo +oo
Zakzzak_zak
k=0 k=0

k=71+1
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400 “+o0
_ § ak, _ aT—'rl X E Oék
k=0 k=0

170[7'+1
- 1l -«
In our case, )
a= <1, T=T-—1.
1+7r
Therefore, we find
-1
5 (e - 2
t=0 lL+r 1— !
1+7r
14+ A4nT-1 (14T -1
1+ nT (1471 -1 r(14r)TL°
Hence, )
+r
Wr=L- @ +r)"—1]. (3.3)

r

As a quick check, observe that the formula yields Wy = L - (1 + r)
for T' = 1. For instance, if L = $10,000, » = 5%, and T = 30 years,

1.05
Wao = 10,000 x 005~ (1.05%° — 1) = $697,607.90.

The interest rate has a remarkable impact. If r = 4%, the above
amount drops to $583,283.40.
If simple interest applies, wealth at retirement is

T T
Wr=> (1+k)L=LT+rL-> k.
k=1 k=1

It is easy to see that

d T(T +1)

Sok= O,

2
k=1

which implies
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If the above 5% rate is applied with no compounding, wealth at re-
tirement is only

0.05 x 31
Wso = 10,000 x 30 x (1 i ;) — $532,500,

which is less than what we would obtain with 4% and compounding.

Example 3.3 aims at showing how remarkable the impact of compounding
may be, a concept that we further elaborate on in the following. However, there
are many issues that we did not take into due account:

1. We have assumed that the rate r does not change over time. When we roll
investment over time, rates may move unfavorably, and we face reinvest-
ment risk.

2. We did not consider inflation. Over a long planning horizon, we should
note the difference between real and nominal rates, which we briefly dis-
cuss in Section 3.3.

3. We did not consider taxation. Taxes may be applied immediately, when
money is contributed to a fund, or later, when we collect the terminal
wealth. Deferred taxation may make a remarkable difference.

4. We only considered the accumulation phase, i.e., when capital is built,
but not the decumulation phase, when capital is used for periodic pension
payments. Randomness in the residual lifetime after retirement plays a
key role; longevity risk is dealt with in actuarial mathematics.

3.1.2 QUOTED VS. EFFECTIVE RATES: COMPOUNDING
FREQUENCIES

A further relevant point is that, so far, we have only considered annual com-
pounding, i.e., interest is earned at the end of each year. But what if interest
is compounded at a higher frequency? If interest is earned semiannually or
quarterly, we may reinvest it earlier, and this should yield some advantage.
Interest rates are always quoted in annual terms, even though they may ap-
ply over quite different time periods. In this way, we may compare interest
rates across different maturities. The quoted rate is referred to as the annual
percentage rate. However, this rate may apply to a smaller time interval, like a
semester or a quarter, and interest may be earned n times a year and immediately
reinvested. Let us denote the annual percentage rate by APR,,, where n refers
to the compounding frequency, i.e., the number of compounding periods within
a single year: With semiannual compounding, n = 2, and with quarterly com-
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pounding, n = 4. As the following example illustrates, a higher compounding
frequency implies a larger effective annual rate, which we denote by EAR,,.

@ Exam ple 3.4 The effect of compounding frequency

Let us consider again an annual percentage rate of 5%. If we invest
$1000, with no compounding, wealth after one year is

W1 = 1000 x 1.05 = $1050.

Now, what if interest is earned semiannually? The typical convention
is that if the annual rate APR, is compounded semiannually, it means
that a rate APR, /2 applies to each semester. Hence,

W, = 1000 x 1.025% = 1050.625.

While the quoted rate APR; is 5%, the equivalent effective annual
rate EAR,, with semiannual compounding, is a bit larger and can be
found as follows:

1000 x (1 + EARy) = 1050.625 = EAR:2 = 5.0625%.
By a similar token, with quarterly compounding we find
W = 1000 x (1.0125)* = 1050.945,

which corresponds to an effective annual rate EAR, = 5.0945%.

Example 3.4 shows that, given a quoted APR,,, a higher compounding fre-
quency implies a larger EAR,,. The general formulas are obtained by the fol-
lowing equality, which relates wealth after one year using the two rates:

1+EARn:<1+APR”),
n

which implies

EAR, = (1 + APR”) -1, (3.4)
n
and

An obvious question is: What happens when the compounding frequency is
taken to the limit, i.e., n — “4o00? This limit is referred to as continuous
compounding, and in order to find the answer we have just to recall what we
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know from basic calculus:

1 n
lim (1 + ) =e,
n—-+oo n
where e =~ 2.71828, the Euler number. This implies

lim (1+£) =e".
n

n—-+oo

More generally, if we invest L at a continuously compounded rate r for 7 years,
W, =Le"7,

where 7 need not be an integer number. When compounding in continuous time,
the relationship between the quoted and the effective rates, denoted by APR,
and EAR, respectively, is found by observing that

1+ EAR, = PR,
which in turn implies?

EAR,, = MR — 1 (3.6)
APR,, = log(1 + EARL,). (3.7

To get a feeling for the impact of the compounding frequency, in Table 3.1
we fix an effective rate of 5% and calculate the corresponding APR,,, for a
few standard values of n, using Eqgs. (3.5) and (3.7). We observe that, when
n increases, a lower APR,, suffices to obtain the target EAR. Furthermore, at
the displayed precision level, daily and continuous compounding are practically
equivalent. In Table 3.2, we reverse the roles of the two rates, and for a quoted
rate of 5% we show the corresponding EAR,, obtained by applying Egs. (3.4)
and (3.6). We observe that by increasing n we increase EAR,,, and that daily
and continuous compounding are quite close again.

Continuously compounded rates may look like a mathematical abstraction
and, indeed, they are not really available. Nevertheless, we observe what fol-
lows:

1. Daily compounding, i.e., n = 365, yields essentially the same rates as
continuous compounding, as we have observed in Tables 3.1 and 3.2 .

2. The use of continuous compounding streamlines many calculations, as
we shall see later in this chapter, e.g., when dealing with forward rates.

3. Continuous compounding provides us with a powerful modeling frame-
work in continuous time, based on stochastic differential equations, which
are quite useful to represent uncertainty in interest rates and to price in-
terest rate derivatives, as we shall see in later chapters.

3We always use log to denote the natural logarithm with base e, rather than In, since we never
use decimal or binary logarithms.
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Table 3.1 Calculating the APR,, that yields a given effective rate of 5%, for different
compounding frequencies n.

Period Frequencyn  APR,

1 year 1 0.05000
6 months 2 0.04939
1 quarter 4 0.04909
1 month 12 0.04889
1 week 52 0.04881
1 day 365 0.04879
Continuous o0 0.04879

Table 3.2 Calculating the EPR,, obtained by applying a fixed annual percentage rate of
5%, with different compounding frequencies n.

Period Frequencyn  EAR,,

1 year 1 0.05000
6 months 2 0.05063
1 quarter 4 0.05095
1 month 12 0.05117
1 week 52 0.05125
1 day 365 0.05127
Continuous 00 0.05127

3.2 The time value of money: Shifting money backward
in time

When planning our financial future, we need to shift money into the future,
possibly by making some educated guess about future interest rates. By trans-
forming a sequence of cash flows spread over time into a single equivalent cash
flow at one time instant, we may also compare different prospects. When an-
alyzing investment opportunities, we do so by shifting cash flows back to time
t = 0, i.e., now. On the one hand, this is clearly convenient, as this provides
us with an idea of the present value of a sequence of cash flows; indeed, the
net present value (NPV) is a cornerstone in investment analysis.* On the other
hand, moving money forward in time may require some hypothesis about un-
certain interest rates in the future, which is subject to forecast error. On the
contrary, when we shift money back in time, we only use given rates applying

4See Section 3.6.1.
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from now to some maturity.’ Since we transform money now into money in the
future multiplying by a growth factor, it stands to good reason that when money
is shifted backward, we should do the opposite, i.e., divide by a growth factor.
For instance, one question we might want to answer is: What is the value now
of $10,000 in one year? If we apply a 5% interest rate, the answer is

10,000
1.05

= $9523.81.

This the amount of money that, if invested now at 5% for one year, would
give us exactly $10,000 at the end of the time horizon. We also know that
we should consider some form of compounding when dealing with multiple
periods. Hence, the present value of $10,000 in two years is

10,000
(1.05)2

$9070.295.

Not surprisingly, this value is considerably smaller than the previous one. More
generally, the present value of an amount L in n years, when an annual rate r is
applied, is
L

A (3.8)
This fundamental operation is called discounting and the factor 1/(1 + )™ is
called discount factor. Equation (3.8) assumes that cash flows occur at times
corresponding to integer multiples of one year and that annual compounding is
adopted. We need a way to generalize this formula, and we shall see how in
Section 3.2.2. Before doing so, it is quite instructive to formally motivate the
use of discount factors. As it turns out, discounting is a pervasive concept in
finance, and it plays a key role in asset pricing, where it may be justified by
no-arbitrage arguments. We shall illustrate the idea by pricing a simple asset, a
riskless zero-coupon bonds.

3.2.1 DISCOUNT FACTORS AND PRICING A ZERO-COUPON
BOND

Consider a riskless zero-coupon bond maturing in one year, with face value
$1000. We should clarify that by “riskless” we mean that there is no default
risk. The face value will be certainly redeemed at maturity. What is the fair
price of such a bond now? As we have already hinted at in Section 2.2.1, in
order to find the answer, we have to ask what risk-free interest rate applies to a
time horizon of one year. Let us assume that it is 4%. Then, the fair bond price

now Sh()uld be
1.()4

5 Things are not so simple, actually, as we may have to use rates that reflect the risk of the
investment.
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reasonably rounded to $961.54. More generally, the fair price of a zero-coupon
bond with face value F’, maturing in n years, is

o
(1+r)n’

where 7 is the annual interest rate, applying to an investment horizon of n years.
We may use a risk-free rate, if we assume that default risk is irrelevant for that
bond; otherwise, the discount factor should incorporate a risk premium. When
referring to bonds, the interest rate r plays the role of an annual yield and is
typically denoted by y. Also note that the fair price does not consider the impact
of transactions costs and the presence of a bid—ask spread.

Since cash flow discounting is a common sense operation, this pricing for-
mula may look deceptively obvious. Actually, there is a strong justification for
the use of discounting in pricing assets featuring deterministic cash flows: The
no-arbitrage argument. Any other price would lead, under some idealized as-
sumptions about financial markets, to an arbitrage opportunity. To see this, let
us assume that the bond price is lower than the one given above, say, $940.00.
In such a case, an arbitrageur could step in and apply the following strategy:

» She may borrow $940.00 at 4% and use this amount to buy the bond.
* In one year, she will collect $1000, i.e., the face value of the bond.
* She will also have to repay the debt, which will amount to

940 x 1.04 = 977.6.

To this aim, she will use part of the face value of the bond. The rest yields
a sure profit of
1000 — 977.6 = $22.4.

Note that this profit is risk-free and does not require any initial capital. If a
profit of $22.4 does not look quite impressive, imagine scaling up the trading
strategy by a large multiplicative factor. The point is that, if the bond price is
$940.00, then the implied annual yield y of the bond is found by solving the
simple equation
1000 1000
940 = 11y = y= 940 1 =~ 6,383%. (3.9)
This yield is larger than the risk-free rate of 4%, and such a misalignment cannot
persist for long, as the above strategy would be applied by many arbitrageurs
trading large volumes of the zero, pushing prices and rates back to a set of
consistent levels.
On the other hand, what if the price is larger than the fair price, say, $990?
In this case, the arbitrageur should reverse the above trade and pursue the fol-
lowing strategy:

» She may sell the bond short and invest the proceeds, $990, at 4% for one
year.
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* In one year, she will collect
990 x 1.04 = $1029.60,

which is sufficient to pay the bond face value back to the legitimate bond-
holder, earning a risk-free profit of $29.60.

As usual, this simple kind of arbitrage strategy amounts to selling an expensive
asset and buying a cheap one. In this case, the asset value is related to a risk-free
interest rate, and we cannot have two different risk-free rates in an economy.
Actually, despite the simplicity and appeal of the reasoning, we must be aware
of all of the hidden assumptions behind it. Indeed, we are assuming an idealized,
frictionless market in which:

= There is no distortion due to taxes

= There is no limit to borrowing

» There is no limit to short-selling

» There are neither commissions nor bid—ask spreads

= There is no difference between borrowing and lending rates

Clearly, these assumptions do not match reality exactly, and they may be ap-
proximately true only for large institutional investors. This leaves room for
some misalignment in prices, but the argument is approximately valid. Inciden-
tally, in Section 2.4.1, we have seen that pricing functionals should be linear.
Since a coupon-bearing bond may be considered as a portfolio of zeros, we may
use a set of discount factors, with different maturities, to price a coupon-bearing
bonds, too, as we shall see in Section 3.5.

We close this section by an example illustrating how we may use the con-
cepts that we have just introduced, most notably the annual bond yield, to com-
pare assets.

W Example 3.5 Comparing zeros

Let us consider the prices of three zero-coupon bonds with face value
$1000 and different maturities, as reported in Table 3.3. Given the
bond prices, we may compute their annual holding period return, or
yield, in other words. For instance, the holding period return for the
zero Zso maturing in 30 years is calculated as

1000 — 231.38

~ 332.19%.
231.38 %

When compared with this seemingly stellar return, the holding period
return for the bond Zj 5, maturing in six months, just pales away.
However, it is clear that such a comparison makes no sense at all.
We should come up with a common ground for a comparison, and a
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Table 3.3 Comparing three zero-coupon bonds with three maturities.

Bond  Maturity Price ($) Holding period return ~ Annual yield

Z0.5 6 months 980.58 1.98% 4.0%
Zo 2 years 915.73 9.20% 4.5%
Z30 30 years 231.38 332.19% 5.0%

natural choice is expressing the return on an annual basis. We may
invert the pricing formula to find the annual yield on each bond,

F F o\

where P, (T) is the price of a zero-coupon bond maturing in T'. Carry-
ing out this calculation gives the last column in Table 3.3. We observe
that, indeed, the annualized return on longer maturity bonds is larger,
which is usually the case. Plotting interest rates for different maturi-
ties provides us with a picture of the term structure of interest rates,
as we shall see in Section 3.4, and an increasing structure may be jus-
tified by risk considerations. Thus, the return of the long-term bond
in Table 3.3 is not really surprising (and just a bit less exciting, when
compared with the yields of the other two bonds).

Example 3.5 is, in a sense, closer to reality, since information about interest
rates and yields is squeezed out of market price data. Then, we may check
whether a set of bond prices is consistent or not. It is important to observe that,
in order to get a meaningful comparison, we should analyze a set of bonds with
similar features in terms of default risk and liquidity.

The careful reader may wonder about the application of Eq. (3.10) when
maturity 7" is not an integer number. For instance, for the bond maturing in six
months, we set 7' = 0.5 and find

2
> ~1=0.04. 3.11)

1 1
P.(0.5) = 980.58 — —000 = < 000

(1+y)0s 980.58

We shall dig the issue in more depth in Section 3.2.2.
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3.2.2 DISCOUNT FACTORS VS. INTEREST RATES

In Example 3.5, we have considered the prices of three zeros. On the one hand,
the price of a zero implies a well-defined discount factor. On the other hand, to
compare the three bonds, we have to find an annualized yield, which is essen-
tially an annual interest rate implied by the bond price. Note that we assume that
bonds are free from default risk, and that the corresponding rates are risk-free.
However, we have also seen that there are different ways of compounding inter-
est rates. Furthermore, we have to cope with the fact that all of these quantities
are subject to random changes over time.

Before carrying out any further investigation, we need to introduce a suit-
able notation:

» Z(t,T) is the price at time ¢ of a zero-coupon bond with face value of
$1 and maturing at time 7', where time is measured in years. Actual
bonds do not have a face value F' of $1, but, by linearity of pricing, we
may immediately find the price at time ¢ of a bond maturing at time 7" as
follows:

P.(t,T)=F-Z(,T). (3.12)

Thus, Z(t,T) is the discount factor at time ¢ for deterministic cash flows
at time 7.

» r,(t,T) is the annual interest rate for the time interval (¢,7"), where in-
terest is compounded n times per year. Note that the relevant time span
need not be one year, but we always quote annualized rates.

« (¢, T) is the annual interest rate applying to the time interval (¢,7),
where interest is compounded in continuous time.

The choice of compounding may be dictated by opportunity. If the interest rate
applies to a time period of six months, it is convenient to quote it as r2(0,0.5),
which is the annual rate, whereas the actual rate on the time period will be
r2(0,0.5)/2.

@ Example 3.6 From annual rates to cash flows

Let us consider investing €10,000 for six months, at an annual per-
centage rate 72(0,0.5) = 5%, with semiannual compounding. After
six months, we will obtain

r2(0,0.5)

€10,000 x (1 + =

) = €10,250.

Quoting a rate with annual compounding is not quite convenient in
this case. To see why, let us recall that we may convert a rate with
semiannual compounding to a rate with annual compounding, and
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vice versa, using the relationship

2
(1+%2) — 147

In principle, for the above investment, we might quote an annual rate

2
0.05
r1(0,0.5) = <1 + 2) — 1 =0.050625.

Then, the cash flow after six months should be calculated as

€10,000 x /1 + r1(0,0.5) = €10,000 x v/1.050625
= €10,250. (3.13)

We find the same result as before, but in a somewhat twisted way.

Equation (3.13) provides us with a justification for Eq. (3.11), where we
have used a discount factor

1

V/1+71(0,05)

This does not look quite natural, but it is fine if we just need a common ground
for a comparison. Indeed, in Example 3.5, we have compared the prices of three
zeros, P, (0,0.5), P,(0,2), and P, (0, 30), with face value F' = 1000, in terms of
the annually compounded interest rates r1(0,0.5), r1(0,2), and (0, 30). We
may do the same using semiannually compounded rates. The only essential
requirement is that we must be consistent in the rates we use.

Often, semiannual compounding is assumed in practice, as coupon-bearing
bonds usually pay semiannual coupons. As we shall see, continuous compound-
ing is also very convenient from a mathematical viewpoint. It is important to
understand, though, that the way we measure interest rates has no impact what-
soever on bond prices and discount factors. Our choice will be merely dictated
by convenience or by adherence to market practice. What really matters, in
bond pricing, is the set of discount factors. We may use different ways of quot-
ing an annual interest rate, but the discount factor is always the same. A good
way to understand this is to realize that we may measure space in kilometers or
miles, but the distance between Boston and Los Angeles is what it is.

Since we find it much easier to deal with annualized interest rates, it is
important to relate rates and discount factors. We have already used a simple
relationship between the price of a zero-coupon bond, maturing in exactly m
years, and an interest rate with annual compounding, which we may now ex-

7(0,0.5) =
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press in a more precise way:

F
147t t+m)]™

P.(t,t+m) = =F-Z(t,t+m). (3.14)

In Section 3.1.2, we have learned that we may shift money forward in time using
different compounding rules. By the same token, we may adopt different com-
pounding rules to move money backward in time, based on rates with different
compounding. The relationship of Eq. (3.14) may be stated more generally by
using a discount factor depending on a discretely compounded rate r,, (¢, T) as

follows:
1

n(T—t) '
{1 4 ralt T)]

Z(t,T) = (3.15)

Note that we raise the denominator to a power related to time-to-maturity, which
is (T — t) years, but is expressed as a number of compounding periods (n per
year). We may also go the other way around:

m(t,T)=n- ! - 1] . (3.16)

[z

If we resort to continuous compounding, the equivalent relationships look much
nicer:

Z(t,T) = e "®T)(T=0) (3.17)
log Z(t,T)
tT) = ——o2 ) 1
r(t,T) s (3.18)

Note that, in order to go from discount factors to rates, we need natural loga-
rithms. Since Z(¢,T) < 1, the logarithm is negative, and the minus sign in front
of it yields a non-negative interest rate in Eq. (3.18).

It is also important to notice that time-to-maturity is 7" — ¢, and not T}
sometimes we will use 7 = T'— ¢ to denote time-to-maturity. We insist on using
a generic current time ¢, rather than ¢ = 0; in this way, we will be able to study
the stochastic evolution of prices and rates in time. Since interest rates are not
constant, for a given maturity 7', the zero prices P, (¢, T) and the corresponding
discount factors Z(¢,T) are stochastic processes with respect to ¢. By a similar
token, if we fix time-to-maturity 7 and we consider the rate r(¢,t + 7) as a
function of ¢, we obtain another stochastic process. This will be essential when
we consider randomness in interest rates. Since changes in interest rates are
numerically small, it may be useful to introduce a suitable unit to measure them.

DEFINITION 3.1 (Basis point) A change of one basis point corresponds to a
change of 0.0001 (i.e., 1% of 1%) in an interest rate.

For instance, if an interest rate increases from 4% to 4.6%, we say that it has
increased by 60 basis points. One hundred basis points correspond to a change
of 1%.
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3.3 Nominal vs. real interest rates

In Table 3.3, we may notice how a zero maturing in 30 years offers a remarkable
holding period return. The return may look less remarkable when annualized,
but there is a further reason of concern, when holding a security with such a
long maturity: What about the real value of the face value that we will redeem
at maturity? We should keep in mind that one of the essential functions of finan-
cial markets is to allow for consumption shifts over time. The nominal value of
the bond is measured by a monetary amount, but its real value should be mea-
sured in terms of the provided ability to consume, i.e., in terms of purchasing
power. The purchasing power of money is typically eroded over time, a fact
that is measured by an inflation rate. Inflation may be hard to measure, as we
have to define what we purchase exactly. Monetary authorities define a basket
of goods and services that yields an index, whose composition is updated to re-
flect consumption trends and technological innovation. At the time of writing,
inflation rates are rather low in Europe, but in the past there have been periods
of very high inflation, and the issue is quite relevant, e.g., to a pension fund.
Thus, even if the monetary amount of our invested wealth increases by a
nominal interest rate, we might be concerned by its real increase, net of inflation
effects. To figure out the relationship between real, nominal, and inflation rates,
let us consider the monetary price S; of a financial asset. The nominal rate of
return r; at time ¢ is related to the asset price:
S =5 S

S l4m= 2t
Si—1 A

Tt

Now, let us consider the monetary price F; of a consumption good, which we
may identify as the reference basket for computing inflation. The inflation rate
14 and the price level F} are related by

F
Fo_1

1+ =

Now, let us consider the real value of the financial asset in term of consumption,
i.e., purchasing power, which is given by S; /F;.% Hence, the real rate of return
R; is related to the real asset value as follows:

St/Ft o 1+’f’t
Si—1/Fio1 1+1i

1+ R = (3.19)
For the sake of simplicity, let us streamline notation and eliminate dependency
on time. Therefore, let i; be the observed annual inflation rate with annual
compounding. This means that the average of prices has increased by a factor
1 + 1 over the last year. Note that here we are talking about the observed
inflation rate for the past, not the expected one for the future. Given the nominal

SWe may say that the asset price is measured in units of the basket of goods, which plays the
role of a numeraire. As we shall see, using suitable numeraires plays a key role in asset pricing.
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rate 1 over the same period, the real interest rate R;, with annual compounding,
is given by rewriting Eq. (3.19) and solving for R;:

, -
1+R1:1;t:1 N 31:7”11“’11. (3.20)

Note that this is the exact relationship, whereas the rule of thumb Ry ~ r; — 4
is often used. This can be justified, when rates are small enough, as follows:

1+7’1:(1+R1)(1+21):1+R1+Z1+R121%1+R1+Zl
= Ri~ry—iq. (321)

If we use continuously compounded rates, it turns out that the rule of thumb of
Eq. (3.21) is actually exact:

T

L= o R=r—i (3.22)

el

As we shall see a few times in the following, formulas involving continuously
compounded rates are indeed often simpler than the corresponding formulas for
discretely compounded rates.

W Example 3.7 The joint impact of inflation and tax rates

In this book, we do not consider taxes and their impact on return in
detail, but let us assume that we are subject to a tax rate ¢ on the capital
growth. This means that the nominal after-tax return rate is 74 (1 — ¢).
Using the approximation of Eq. (3.21), the real after-tax return is

Tl(l —t) — 1 = (Rl +i1)(1 —t) — 1 = Rl(l —t) — i1t

The product term ¢;¢ shows how tax and inflation rates compound in
reducing the real increase of wealth.

The inflation index measures the past impact of inflation, but what about
the impact of the expected future inflation? Economic common sense suggests
that long-term interest rates should be somehow affected by the expectation
about future inflation. A very simple formula expressing this view is Fisher’s
equation,

1 (Oa 1) = Rl (07 1) + EO[il]a

where we use a more careful notation [rates are given at time ¢ = 0 and will
apply to the time period (0, 1)] to insist on the fact that we are looking forward
into the future and everything is conditional on information at time ¢ = 0. As
we have already observed, more often than not, rates for long maturities are
larger than short-term interest rates. Inflation risk is a contributing factor, but
not the only one, and certainly not in a simple way as suggested by Fisher’s
equation. We will refrain from discussing the impact of inflation any further,
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but we emphasize that a long-maturity bond, even if held until maturity, need
not be a perfectly risk-free asset. It may be argued that indexing by inflation
is required to make the asset truly risk-free. We will briefly consider inflation-
indexed bonds in Chapter 5.

3.4 The term structure of interest rates

Let us consider two individuals, who want to borrow money from a bank. The
first borrower will repay her debt in one year; the second one will repay his
debt in ten years. All other things being equal, we would expect that the annual
rate required for the longer-term loan will be higher. There could be different
reasons behind this difference, since, in the long-term:

= There is a larger default risk.
= Inflation may have a larger impact.

= The money is locked for a longer period, with a corresponding reduction
in liquidity, which means that more favorable investment opportunities
could be lost.

It is a matter of fact that if we look at the set of rates r(¢, t+7) at a fixed time
instant ¢, for different times-to-maturity 7, we observe a nonconstant function
of 7. This function defines the term structure of interest rates, also called
the zero curve or spot rate curve.” Sometimes, we will use the notation (¢, -)
to emphasize that we refer to the full term structure observed at time ¢. The
term structure may have different shapes, as depicted in Fig. 3.1. More often
than not, the structure is indeed increasing, but there are cases in which this
is not true. Decreasing curves are sometimes observed, and humps may also
be observed during the transition from an increasing to a decreasing structure
and vice versa. Note that here we are considering (¢, t + 7) as a deterministic
function of 7 for a fixed ¢t. If we fix 7 and let time ¢t move forward, we will
observe a quite jagged stochastic process like the one depicted in Fig. 3.2.8 If
we consider the rate as a joint function of both ¢ and 7, we obtain a random
field.

Now, two questions are in order:

1. How can we estimate the term structure?

2. How can we explain the shape of the term structure?

To answer the first question, we can take advantage of the link between the
whole term structure and the price of coupon-bearing bonds. In Section 3.5.2,

7Sometimes, the term yield curve is used, but we will avoid it, as there is some possibility of
confusion between yield of a zero and yield-to-maturity of a possibly coupon-bearing bond.
Yield-to-maturity for bonds with the same maturity will differ if their coupon rates are different,
as we shall see in Section 3.5.4.

8The picture has been obtained by simulating one of the stochastic short-rate models described
in Chapter 14.
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FIGURE 3.1 Different shapes of term structures.
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FIGURE 3.2 Evolution of an interest rate over time, for a given time-to-maturity. Time
is measured in days on the horizontal axis.
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we describe how bond prices may be used to estimate the term structure. The
answer to the second question is definitely trickier. In fact, different theories
have been proposed to explain the term structure:

= The expectation theory

= The market segmentation and preferred habitat theories

» The liquidity preference theory
We will investigate in a little more detail the last one, which may be thought

as a generalization of the expectation theory, in Section 3.7, after introducing
forward rates.

3.5 Elementary bond pricing

We have seen that the price at time ¢ of a risk-free zero-coupon bond maturing at
time 7T is related to a discount factor Z(¢, T') by Eq. (3.12), where the discount
factor in turn may be expressed in terms of interest rate, as in Egs. (3.15) or
(3.17). The application of discounting is a consequence of the no-arbitrage
principle. The same principle may be applied to price a more complex coupon-
bearing bond by a simple decomposition approach. By taking advantage of
the linearity of pricing, each individual future cash flow may be regarded as a
zero-coupon bond, as we show in Section 3.5.1. To do so, we need a whole
set of discount factors and, unless the term structure is flat, they correspond to
different interest rates. In Section 3.5.2, we show how the link between bond
prices and rates may be used to estimate the term structure.

To further complicate the matter, the set of underlying interest rates may
also reflect the risk in the bond. Common sense suggests that, in presence of
default risk, a larger interest rate will be commanded. For the sake of simplic-
ity, we will just assume that the bond is free of default risk, and we will deal
with risk-free interest rates. However, we should also realize that, in concrete,
defining and measuring a risk-free rate is not as easy as it might seem, and the
very concept is subject to some misunderstanding; we elaborate on this theme
in Section 3.5.3.

This is an extensive section, where we shall also introduce essential con-
cepts like yield-to-maturity and duration. We will show their relevance in in-
terest rate risk management. To close the section, we will consider the pricing
of a simple floating-rate bond, which leads to some possibly counterintuitive
findings.

3.5.1 PRICING COUPON-BEARING BONDS

Let us consider a risk-free bond with face value F', maturing at time 7', paying
a coupon with constant rate ¢ every six months; we will denote the price of this
bond at time ¢ by P.(¢,T), to distinguish it from the price P, (¢, T') of a zero with
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the same face value. Semiannual coupons are the most common case, but this
need not be an absolute rule. Note that, consistently with market conventions,
the coupon is expressed in annual terms, but the actual coupon paid every six
months is F' - ¢/2. The current time is denoted by ¢ as usual, and we assume
that m coupons will be paid, at times 7;, ¢ = 1,...,m. The last time instant
coincides with maturity, 7,, = T, where the face value is also repaid. Hence,
the bond is essentially a stream of cash flows timed as follows, assuming F' =

100:
(100 X E T; ) (100 X = ) (100 X (1 + *C) T, )
27 1 2 m 1 2 sdtm | -

By linearity of pricing,’ the bond may be decomposed as a portfolio of m —
1 zero-coupon bonds with face value 100 x ¢/2, maturing at times T;, i =
1,...,m — 1, respectively, and a zero-coupon bond with face value 100 x (1 +
¢/2), maturing at time 7,,,. To find the price of the bond, we have just to price
the individual zeros and add everything up:

100 100
P.(t,T) = 2X CozaT) + 2 24Ty +
100
X Z(t, Tyr) + 100 x (1 n g) - Z(t,T)
c m
=5 2 P:(tT) + P:(t. Tn). (3.23)

i=1

We observe that the bond price depends on an array of discount factors, i.e.,
on the whole set of underlying risk-free rates. If we express discount factors in
terms of discretely compounded rates, we obtain

¢ — 1
P.(t,T) = = +
222 +rntTym'”%ﬂ [+ 70 (t, Tpn) /)™ T
(3.24)
A similar formula applies if we use continuous compounding:
c m
_m. |€ —r(t,T3)-(Ti—t) | —7(t,Tm)-(Trn—t)
P.(t,T)=F 2226 +e (3.25)

We insist again: There is no conceptual difference between Egs. (3.24) and
(3.25), as the discount factors are just the same. They are only expressed in
two different ways, and the latter one will prove to be more convenient, but this
amounts to measuring the same objects using different units of measurement.

9See Section 2.4.1.
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L) Example 3.8 Bond prices and coupon rates

Let us consider a bond with face value $1,000, paying semiannual
coupons with rate 4%, and maturing in two years. Each coupon pay-
ment amounts to $20. We assume a term structure consisting of the
following continuously compounded rates:

7(0,0.5) = 3.7%, r(0,1) = 4.0%,
r(0,1.5) = 4.2%, r(0,2) = 4.3%.

The bond price is

PC(O7 2) =920 x 670.037><0.5 420 x 670.04><1 420 x 670.042><1.5

+ 1020 x e~ 29372 = $993.57.
If the coupon rate is 6%, the price increases to

P.(0,2) = 30 x e~ %-037x0:5 | 3() 5 70-04x1 4 3() ¢ o~0-042%15

+ 1030 x e79037x2 — ¢1031.56.

The bond prices in Example 3.8 reflect the face value of $1,000. However,
the face value is not quite relevant, and usually bond prices are quoted as a
percentage of the face value. For the two bonds of Example 3.8, this would
correspond to 99.357 and 103.156, respectively.! We observe that, depending
on the relationship between interest rates and the bond coupon rate, the price
may be below or above the face value. This is expressed as follows.

DEFINITION 3.2 (Trading at premium and at discount) Ifthe bond price is
larger than the face value, we say that the bond trades at premium. If the bond
price is smaller than the face value, we say that the bond trades at discount.
If the bond price corresponds to the face value, we say that the bond trades at
par.

Clearly, a zero always trades at discount and, if there is no change in the interest
rates, its value will increase over time. When a bond trades at premium, its price
will decrease over time, reflecting the fact that valuable coupons are detached.
When a bond is issued, the coupon rate is usually set in such a way that the bond
initially trades approximately at par.

10We shall discuss the practicalities of bond price quoting in Section 5.2.2.
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3.5.2 FROM BOND PRICES TO TERM STRUCTURES, AND VICE
VERSA

Equations (3.24) and (3.25) link bond prices to the term structure of interest
rates and may used in two ways:

1. To use observed!'! bond prices to estimate a term structure of interest
rates.

2. To find the fair value of a bond, given a term structure; a discrepancy
between the fair value and the observed price might indicate that some
bonds are either over- or underpriced, relative to other bonds, which may
suggest an arbitrage opportunity.

Estimating the term structure at time ¢ = 0 amounts to finding a set of risk-free
rates (0, T;), for a set of maturities 7;, ¢ = 1, ..., m, such that a pricing model
matches observed asset prices. The full term structure may then be recovered
by a suitable interpolation strategy. If we had a broad set of zero-coupon bonds,
issued by an extremely creditworthy issuer, we would have a rich set of discount
factors Z(t,T;) from which rates could be easily obtained. There are a few
problems, however.

= A T-bill would be a suitable zero-coupon bond as far as rates on USD are
concerned, but such bonds are not available for long maturities. Long-
term zeros are traded, but they result from stripping coupons from long-
term bonds (a process called cash flow unbundling). Such bonds are ac-
tually issued by banks and, therefore, they are subject to some credit risk
that would affect our estimate.

* Another issue is liquidity: Market prices are not necessarily the same as
fair prices, a difference that may be due to liquidity and other factors, like
the occasional flight to quality.

= It has been argued that even T-bills may not be the best choice since their
price may be affected by bank regulations, which require banks to hold a
stock of T-bills.

This is why further assets are often brought into the picture, i.e., interest rate
derivatives like interest rate futures and swaps. These are extremely liquid as-
sets and are sold with a wide range of maturities. The presence of a clearing-
house for futures and the limited credit exposure associated with a swap make
counterparty risk almost irrelevant.

For the sake of illustration, let us consider basic procedures to estimate
the term structure with a set of generic bonds. Let us assume that we have
selected m bonds, indexed by k£ = 1,...,m, with cash flows C}; at times T},
1 = 1,..., m. Note that the number of bonds is the same as the number of time

11Here, we use the term observed rather than quoted bond price. The reason is that, as we shall
see in Chapter 5, the quoted bond price is not the cash price, as it does not consider accrued
interest from the next coupon.
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Table 3.4 Data for bootstrapping in Example 3.9.

Maturity 0.5 1 1.5 2
Coupon rate 0% 6% 3% 5%
Price 984.62 1023.12 985.13 1014.69

instants. If a bond matures at time T; < T, all cash flows for i > j are zero.
The cash flows should be discounted by discount factors Z(t,T;), denoted by
Z; for the sake of simplicity, to yield the observed price P?. Thus, we just have
to solve the following system of linear equations:

PP =CiZy+ CioZo+ CisZs+ - - - CimZi,
Py = CnZy + CoaZn + Co3Z3 + -+ ComZm
Pé) =C3121 4+ C3025 + C33Z3 + - - - C3p iy, (3.26)

P’r(;L = leZl + OmQZQ + Cm3Z3 + - OmmZm-

Note that, since we have a set of m unknown discount factors and a set of m
equations, assuming that bonds are linearly independent, we will find exactly
one set of discount factors, from which we may deduce a set of interest rates.

A particular case of this procedure is obtained when cash flows have a stair-
case structure, i.e., bond k has exactly k cash flows at times 77, ...,7). This
means that the first bond is a zero (or a bond with just one coupon left) maturing
at 77, that the second bond pays a coupon at time 77 and matures at time 75,
etc. We find a system of linear equation, whose matrix is lower triangular:

Py =CinZz;
Py =CunZy + CypZsy
Pg = 03121 + ngZQ + 03323 (327)

Pno@ = leI +Cm2Z2+Cm3Z3+CmmZm

This system is solved by forward substitution, finding one discount factor at
each step, as shown in the following example. This textbook approach is known
as bootstrapping the zero curve. Actually, what we do, when solving the
system of Eq. (3.26) or Eq. (3.27), is finding the discount curve, i.e., the curve
of discount factors Z (¢, T'), which is then converted to the zero curve of interest
rates.
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L) Example 3.9 Bootstrapping a term structure

Let us consider the bond prices of Table 3.4, where we assume that
all face values are 1000 and coupons are semiannual, and find the
implied continuously compounded rates. The price of the first zero
maturing in six months yields the first discount factor immediately:

084.62
2(0,05) = "0 = 098462
log Z(0,0.5

= 70,0.5) = —% — 0.031.

The second bond has two cash flows, 30 and 1030, in six months and
one year, respectively. Hence

1023.12 = 30 - Z(0,0.5) + 1030 - Z(0, 1)
1023.12 — 30 x 0.98462
2(0.1) = — 0.96464
= Z0.1) 1030

log Z(0,1)
1

= 7(0,1) = = 0.036.

By a similar token,

985.13 = 15 - Z(0,0.5) + 15 - Z(0,1) + 1015 - Z(0, 1.5)
985.13 — 15 x 0.98462 — 15 x 0.96464
= Z(0,15) = . . — 0.94176

1015
log Z(0, 1.5)
———— =0.04.
1.5 0.0

= 7r(0,1.5) =

The last step yields (0, 2) = 0.042.

There are few issues with the above procedures, as it may be difficult to
find a good set of risk-comparable bonds that are not affected by liquidity is-
sues and feature a synchronized sequence of cash flows. In general, it may be
better to use a larger number of securities. This leads to an overdetermined
system, where we have more equations than unknown variables, but we can
find a solution in the least-squares sense. Let ﬁk(Zl, ..., Zm) be the price pre-
dicted for bond £ as a function of the discount factors. We would like to find
a set of discount factors such that the predicted prices are as close as possible
to the observed prices. Hence, given a set of n > m bonds, we may solve the
optimization problem:

n 2

. o B
er?.l,%m;[Pk Bi(Zy,e i Zm)| - (3.28)
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If ﬁk(Zl, ..., Zny) is a linear function of the discount factors, this is a simple
linear least-squares problem, which is quite easy to solve. In a more general set-
ting, this is a nonlinear optimization problem, typically a nonconvex one, which
requires numerical methods for its solution.'? This would be the case, if we cal-
ibrate directly in terms of interest rates. This kind of model calibration has a
wide scope of applicability and can be applied to quite sophisticated pricing
models for derivatives. Note that, in solving Problem (3.28), we are still as-
suming a set of synchronized cash flows. A more flexible procedure should rely
on a set of arbitrarily timed cash flows; a suitable interpolation approach may
be adopted to find discount factors at generic time instants as a function of the
subset {Z1,...,Z,}. Last, but not least, we have assumed a non-parametric
approach whereby we directly solve for the discount factors. An alternative ap-
proach would be to parameterize the zero or the discount curve and estimate
the parameters of the curve. Note again that we may express prices in terms of
discount factors or interest rates. A parametric model of the curve of interest
rates, which we do not illustrate in detail, is the Nelson—Siegel model:

r(0,T) = fo+ (B + B2) - - (1= e 7/™ ) = e/,

The model depends on parameters Sy, 81, (2, and 71, and it is clearly more
parsimonious than a model relying on several interest rates. This may sacrifice
fit in favor of more robustness to liquidity and other issues. If the model may
look a bit peculiar, it is because the Nelson—Siegel model, as many others, is
actually a model for the forward rates, which we describe later in Section 3.7.
Modeling the forward rates often turns out to be a more convenient approach
than dealing with the spot rates directly. Given the forward rates, it is easy to
find the spot rates.

3.5.3 WHAT IS A RISK-FREE RATE, ANYWAY?

In the rest of this book, we will often refer to risk-free rates or risk-free as-
sets. However, since the term might be somewhat misleading, it is necessary to
clarify what we really mean by risk-free rate and risk-free asset.

Consider, for instance, a T-bill, i.e., a short-maturity zero issued by the
US treasury. In portfolio theory, when talking about a risk-free asset, the T-
bill is quite often given as a concrete example, and its yield is proposed as a
risk-free return over a holding period corresponding to its maturity. But is a
T-bill a really safe asset? To find an answer, we must list and comment on the
potentially relevant sources of risk for its holder:

» Currency risk. A T-bill may be a safe asset for an investor whose cur-
rency is the US dollar, but not for all investors.

12We deal with nonconvex optimization in Section 16.2. Further issues with model calibration
are discussed in Section 14.4.
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= Inflation risk. Since the T-bill has very short maturity (say, three or six
months), inflation risk is not likely to be that relevant. Nevertheless, it
would be relevant for a zero with longer maturity.

Interest rate risk. From the bond pricing formulas, it is clear that bond
prices are subject to change if interest rates change. Later, we will see
that the impact may be large or small, depending on bond maturity and
coupon rates. For a T-bill, the impact is limited and, probably, an investor
will hold the bond until maturity. However, if a long-term zero is sold
along the way, a possibly consistent loss may be incurred.

Default risk. A T-bill is considered virtually risk-free from this view-
point. Bonds issued by other governments are not so safe, and the same
applies to corporate bonds.

Therefore, if we assume the US dollar as the reference currency and we rule
out default risk, we may say that a T-bill is a reasonably safe asset. We can buy
the asset now for a price F - Z(0,T'), and we will receive the face value F at
maturity. Thus, the corresponding holding period return is deterministic, rather
than stochastic, as is the case with stock shares.

The price of a zero is related to a discount factor Z (¢, T'), which is related in
turn to an interest rate (¢, T') (let us use the one with continuous compounding).
Typically, when we talk about risk-free rates, we do not want to bring inflation
and currency risk into the picture, and we assume that the investment is held for
the whole time horizon to which the interest rate applies. So, can we say that
the rate that we may calculate from a T-bill price is a risk-free rate? As we have
pointed out before, some practitioners could object that the price of T-bills is
somewhat affected by regulations requiring banks to hold some T-bills, which
may have an impact on its price. Hence, they suggest that risk-free rates should
be estimated on the basis of other quite liquid securities, like certain interest rate
derivatives. We might disregard this issue, but it still remains a fact that a risk-
free rate is defined with reference to a given time horizon. Using estimation
procedures that we have outlined in Section 3.5.2, we may estimate the term
structure of risk-free rates r(¢,T) at time ¢, which for fixed ¢ is a deterministic
function of T'. However, the interest rate as a function of ¢ is not deterministic.
Indeed, when we will build continuous-time models for interest rates, we will
see that they are based on stochastic processes, just like stock share prices. The
idea of modeling a risk-free rate by a stochastic process may sound confusing,
and some clarification is in order. If we invest at rate r(¢,7") at time ¢ and we
just collect the reward at time 7', indeed, there is no risk involved. However, if
we consider a process defined as

r(t,t+7)

for a fixed time-to-maturity 7, as a function of ¢, this is in fact a stochastic pro-
cess. Risk-free rates do move and we are subject to not only the aforementioned
interest rate risk, but also to reinvestment risk. The second kind of risk is asso-
ciated with rolling a short-term investment forward in time. Consider a strategy
whereby we invest in T-bills maturing in three months. When a T-bill matures,
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t=0 =1 =2 r=3

FIGURE 3.3 A scenario tree for a risk-free rate.

we reinvest its face value in a freshly issued T-bill. When we buy a T-bill, we
know how much wealth we will have when it matures in three months, but we
do not know the future prices of new T-bills, because the future interest rates,
as well as the corresponding discount factors, are random.

Another way to understand reinvestment risk is to compare a bank account,
whose interest rate will be reset at times 77, 75, . . ., T,,, to a zero-coupon bond
maturing at 7},,. Assuming continuously compounded rates, the money invested
in the zero will grow by a known multiplicative gain factor,

exp [r(t, Tm) - (T — 1)].
The gain factor for the bank account is

exp [r(t,Ty) - (T1 = t) +7(T1, T2) - (T = T1)+
st T(Tm—la Tm) : (Tm - Tm—l)} .

In this expression, only r(¢,77) is known at time ¢, even though each rate
r(T;—1,T;) will be given at the beginning of the corresponding time interval.
From a formal viewpoint, all of this is related to the concept of a pre-
dictable stochastic process and it may be visualized by the scenario tree of
Fig. 3.3. This tree is not meant to be realistic in any way, but the key message
is how interest rates are associated with nodes. The return of a stock share over
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the time period (¢,t + 6t),

S(t +0) — S(t)
S(t) ’

is only known at time ¢ + 6, the end of the time interval. However, the interest
rate r(t,t + dt) is known at time ¢, the beginning of the time interval. Hence,
in the scenario tree of Fig. 3.3, the rates for all of the successors of any node
are the same.'> However, if we keep rolling the investment over time, we face
reinvestment risk, and we cannot predict the final outcome exactly. For instance,
the scenario w; corresponds to a sample path in which the rate is 5% on the time
interval (0,1), 4% on the time interval (1,2), and 3% on the time interval (2,3),
Thus, the holding period return for this scenario is

Rp(w) =1.05 x 1.04 x 1.03 — 1 = 12.476%.

We note that this is the same result we obtain in scenario ws. However, the
corresponding return for scenarios w7 and wg is

RH(OJ7) = RH(OJs) =1.05x1.06 x1.04 -1 = 15.752%.

The concept of a predictable stochastic process is easy to grasp in discrete time,
whereas more technicalities are involved in the case of continuous time.

3.5.4 YIELD-TO-MATURITY

Pricing a bond at time ¢ requires the knowledge of a full term structure r(¢, -),
since different interest rates enter the pricing formula. If we like to be picky, we
could denote the price of a coupon-bearing bond maturing at 7" by

P.(;T,r(t,-)).

But what can we say about the return of the bond? It should be clear that there
is no reason to believe that any one of the rates involved in the pricing formula
defines the holding period return. It should be even clearer that the coupon
rate should not be confused with the bond return. To be more concrete, let us
consider the following two bonds:

» Bond Bj pays a 3% coupon and sells for 96.08

= Bond B pays a 9% coupon and sells for 132.18
Clearly, in comparing the two bonds, maturity plays a role, but even if maturity
is the same, how can we compare the two assets? The second bond offers a

very palatable coupon, but it is very expensive. By the way, we notice that a
coupon-bearing bond may have a price significantly larger than the face value,

BThis may be expressed in terms of the filtration to which the process is adapted, as we will
see in Chapter 11.
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which is impossible for zeros. It stands to reason that when coupons are paid,
the overall value of the second bond will be reduced,'* since we strip a cash
flow out. The first bond is much cheaper and its value will arguably increase,
when maturity is approached; however, its coupon is much less attractive. We
clearly see the need of a single number giving us a feeling for the relative value
of the two investments.

Actually, assessing the return from holding a bond is not trivial at all. A first
point is: Why are we holding that bond? If we are holding the bond as a way
to meet a stream of future liabilities, the bond return, per se, might not be very
relevant. Assuming that we are interested in an asset-only portfolio, what is the
holding period over which we want to assess the return? Are we holding the
bond until maturity, or are we planning to sell it along the way? In the former
case, we do not have any uncertainty about the cash flows, but in the latter one,
we face some uncertainty about the price at which we will sell the bond, as the
interest rates are stochastic. Uncertainty in future interest rates has an impact
even if we hold the bond until maturity. In fact, we will reinvest the cash flows
from coupons along the way, but at which interest rates? Thus, for a given time
horizon, the bond return is a random variable, and its characterization requires
a specification of a stochastic model of interest rates. The answer depends on
our assumptions and will not be the same for other market participants with
different expectations. Clearly, if we want to find a simple and manageable
answer, we must adopt some drastic simplification.

A simple, even though limited, answer is provided by yield-to-maturity,
or YTM for short. YTM is a single interest rate that, when used to define
discount factors in a bond pricing formula, matches the observed bond price
P.(t,T). YTM is a feature of a specific bond, hence we will use a simpli-
fied notation, whereby y,, and y are the yields with discrete and continuous
compounding, respectively, without reference to time. For instance, if we use
semiannual compounding, which is a common practice, since most bonds pay
semiannual coupons, we define the semiannually compounded yield y- as the
solution of the following equation:

1 1

+
y2>2'(Ti7t) ( y2)2-(Tm7t)
14 = 14 =
( + 2 + 2

The idea can be extended to any compounding period in order to define y,,. In
the case of continuous compounding, we have

(3.29)

c m
P.(t,T)=F- 5;

P.(t,T)=F -

g D evliTh 4 ey'<Tmt>] : (3.30)

i=1

Note that we just associate one yield y,, or y with the whole sequence of cash
flows. We may think of YTM as a sort of average between interest rates in the

14 A full picture is given in Fig. 5.1.
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term structure. Indeed, it is the interest rate that would yield the observed bond
price in the case of a flat term structure. Computing YTM requires numerical
methods, as shown in the following example.

W Example 3.10 The link between YTM and interest rates

Let us assume that the following term structure prevails on markets:
r1(0,1) = 4%, r1(0,2) =4.5%, r1(0,3)=5%.

A bond maturing in three years, paying a 3% annual coupon, has fair
price
3 3 103
Pyy = — 4+ —— + —— = 94.6071.
%= 104 " 10452 105
Note that the coupon rate is lower than all of the relevant rates, and
the bond sells at discount. To find YTM, with annual compounding,

we have to solve the nonlinear equation
3 n 3 n 103
L+y Q+w)? (T+w)

which can be transformed into the polynomial equation

5 = 94.6071,

10323 + 322 + 3z — 94.6071 = 0,

where © = 1/(1 + ;). This equation has a single real root, as well as
two complex conjugates that we ignore,

1—x

= 0.0498.

r=09526 = y =

Note that the “average” is tilted toward the largest rate, correspond-
ing to the last cash flow, which includes the face value and is much
larger than those consisting of coupons only. A similar bond, with 9%
coupon, has fair price

9 9 109
Py, = — 111.0537.
9% = 104 T 10452 T 1.05 0537

This bond sells at premium, and its yield is 0.0495. This is a bit
smaller, as the first and second cash flows are relatively larger.

The difference in YTM may be quite significant. We omit the
details, but if we consider similar bonds, paying one annual coupon
with rates 3% and 9%, respectively, maturing in 20 years, and we
assume that the term structure consists of annually compounded rates,
increasing linearly over time from 2% to 5%, the two bond prices are

Pyy =79.12,  Pyy, = 161.97,

with yields
Y1,3% = 462%, Y1,9% = 4.31%.
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The careful reader might wonder whether there is any guarantee that, in
general, we find a single YTM, if any. Indeed, a general polynomial equation
of degree n may have up to n real roots, not necessarily positive (complex
conjugate roots are of no use to us). We discuss this matter later in Section
3.6.2, when dealing with the internal rate of return of a cash flow sequence. We
can anticipate that, in the case of a bond, it can be shown that there is exactly
one real and positive root, so that there is no ambiguity in calculating YTM.

Example 3.10 clearly shows that, unlike interest rates, we cannot associate
YTM with a specific maturity, as it depends on the peculiarities of each bond,
such as the coupon rate and, possibly, liquidity. Despite this observation, it is
instructive to see the impact that YTM may have on bond prices if we consider
it as a single, catch-all risk factor. We shall do so in Section 3.5.5. Furthermore,
while pricing a bond using YTM is a crude simplification with respect to a
full-fledged term structure, it may help intuition building by providing us with
simple bond price formulas.

@ Example 3.11 Pricing annuities

Annuities are assets that provide a stream of periodic payments over a
period of time. This may correspond to the buyer’s lifetime in the case
of life insurances and pension funds in the decumulation phase (when
the accumulated wealth is depleted in order to provide pension pay-
ments). Pricing an annuity under longevity risk requires tools from
actuarial mathematics. Furthermore, the long time span involved im-
plies considerable uncertainty about future interest rates. The picture
may be further complicated if the annuity is inflation-indexed.

Here, we consider a simple annuity providing fixed payments
over a given time horizon, disregarding interest rate risk. Such an
annuity is just a bond whereby no face value is redeemed, and it may
be priced given a term structure of interest rates. It is useful to find an
explicit formula, under the further simplification of a flat term struc-
ture, e.g., for a given annually compounded yield:

Tl(nﬂ) =Y,

where 75,7 = 1,...,m, is the set of time instants at which a payment
is made. Using y; makes sense if we consider annual payments (in
practice, typical annuities involve monthly payments). The price of a
unit annuity, paying $1 at each relevant epoch, is

i 1
A=D Ty

i=1

We may find a compact expression for this value, by relying on the
geometric series and using the same trick as in Example 3.3. If we
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consider a € (0, 1),

m —+o0 +oo +oo —+oo
E azzg o' — E a'=a- g o/—g o'
i=1 i=1 i=0

i=m+1 i=m

B 1 a™ | afl-a™)
TN Ca 1l T 1—a

Plugging o« = 1/(1 + y1), we find

A= (3.31)

1+1y1[1_(11+1yl)m} :;1[1_(1+y1)’“]

1—
1+

It is important to see the connection between this formula and Eq.
(3.3). In that case, we have cash flows L at times ¢ = 0,...,7 — 1,
and we are evaluating the terminal wealth W at time 7. Here, we
have cash flows C' = 1 attimes ¢ = 1,..., T, and we are evaluating
the annuity A at time ¢ = 0. To see the equivalence, we can shift W
backward in time by 7" 4 1 time periods, to time ¢ = 0. This requires
dividing Eq. (3.3) by (1 + )7+

Wr o L . 14y
14+y)™ Q4y)™ oy

(@ +y)" —1]

which is consistent with Eq. (3.31).

The formula for an annuity immediately yields a formula to price a bond as
a function of YTM. We just have to add the discounted cash flow corresponding
to the face value. If we consider a hypothetical bond maturing in 7" years and
paying a single coupon per year, at rate ¢, the bond price is

cF 1 F

Note that this formula applies only when the bond is issued or just after the
payment of a coupon. In the more realistic case of semiannual coupons, we find
c/2-F [ } n F

Y2/2 (T+y2/2)%T] (1 +y2/2)2T

Note that, in this case, the number of coupons, i.e., the number of time periods is
2T'. We may also come up with a formula for a continuously compounded yield

P.(0,T) =
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y, but since all of these variations do not contribute much to intuition building,
let us stick with the annually compounded yield y; and assume that coupons are
paid annually, for the sake of simplicity.

A question that we should address is: Why is yield-to-maturity called that
way? To find the answer, imagine that we buy a bond when it is issued and keep
it until maturity, for exactly 7 years, reinvesting the coupons at the risk-free
rate. In practice, we do not really know the future rates at which coupons will
be reinvested, but let us assume that all of them are just given by y;. Then,
wealth at maturity 7, just after collecting the last coupon plus the bond face
value, can be found by shifting cash flows forward in time:

T
Wr =Y cF-(1+y)" '+ F
t=1

TR F

=1+y)"- Z (1+y)t * 1+y)T

t=1

= (1 + yl)T : Pc(07T)

Thus, we see that y; gives the holding period return, assuming that the bond
is kept until maturity, and that the term structure of interest rates is flat and
constant over time. Clearly, these assumptions do not match the real world, but
YTM may provide us with a rough-cut estimate of how much a bond yields,
which is good enough for a comparison.

Furthermore, YTM is very useful to build some fundamental intuition. To
see how, let us observe that Eq. (3.32) may be rewritten in two ways:

cF F-(1-c/y1)

P.(0,T) = " + EIEST (3.33)
and P.(0,T) 1 1
W t) ¢y
F oy { (1+ yl)T] TR (3-34)

Note that the second expression shows that the bond price, relative to its par
value, is a weighted average of the ratio between coupon rate and yield, ¢/y1,
and 1.

@ Example 3.12 Pricing a perpetuity

By using Eq. (3.33) and taking the limit for 7" — +o0, it is easy to
find the price of a perpetuity, i.e., an annuity where 7" — +oo, paying
an annual amount C', which may be thought as a fraction c of a virtual

nominal F': o
P.(0,00) = —

. (3.35)
Y1
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The notation suggests the interpretation of this security as a coupon-
bearing bond with infinite maturity. For instance, if y; = 5% and
C = 10,000, we have

10,000

PC(O,OO) = 0.05

= 2,000,000.

Note that 5% of this value is exactly the annual payment, i.e., what
is required to pay the annual coupon while keeping the capital intact,
assuming that it will be reinvested at a rate y; = 0.05 forever. Given
the stochastic nature of interest rates, this will be hardly the case.

A real-life example of a perpetuity was the British consol, a kind of perpet-
ual bond. Equation (3.34) is extremely useful to investigate the relationships
between YTM, coupon rate ¢, and bond price.

W Example 3.13 A key result

What happens if the value of YTM and the coupon rate ¢ are the
same? By applying Eq. (3.33), we find
cF  F-(1-c/c)
P.(0,T) = . + Axar — F.

Thus, when ¢ = y1, the bond trades at par.

By the same token if ¢ > y;, by using Eq. (3.34), we see that
the bond price is an average between 1 and a number larger than 1.
Hence, P.(0,7) > F and the bond trades at premium. On the con-
trary, if ¢ < y1, then P.(0,7) < F and the bond trades at discount.
We also notice that the longer the maturity, the smaller the weight of
1 in Eq. (3.34), and the larger/smaller the bond price as a function of
the coupon rate. A long-term bond with a large coupon rate is, in fact,
quite expensive.

Usually, when a bond is issued, the coupon rate is chosen in such a way that the
bond trades approximately at par. This means that the coupon rate reflects the
“general” level of interest rates, i.e., a sort of average provided by YTM.

3.5.5 INTEREST RATE RISK

Since a bond price is the sum of discounted cash flows, it is clear that there is
an inverse relationship between interest rates and bond prices. The impact of
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Table 3.5 The interaction of coupon rates and maturities when yield is increased.

Y1 = 4% Y1 = 5%
T (years) 3 10 30 3 10 30
c=0% 88.90 67.56 30.83 86.38 61.39 23.14
c=3% 97.22 91.89 82.71 94.55 84.56 69.26
c=9% 113.88 140.55 186.46 | 110.89 130.89 161.49
% loss

T (years) 3 10 30

c=0% —2.83 —9.13 2496

c=3% =275 =798 —16.27

c=9% —2.62 —6.88 —13.39

a change in the term structure depends on the exact kind of change, which is
not so trivial to analyze, as it may involve a vertical shift, a change in slope,
or a twist in curvature. Here, we analyze interest rate risk with reference to
a simplified setting, where we only consider an uncertain YTM with annual
compounding. In Chapter 6, we will see that this is essentially equivalent to
considering a parallel shift in the term structure, which is indeed a limited view.
However, a simplified analysis is a good starting point to build intuition and get
acquainted with a few essential concepts.

Let us consider the bond prices given in Table 3.5. Prices refer to bonds
differing in coupon rate and maturity: (a) the coupon rates are zero, 3% or
9%, and a single coupon is paid per year; (b) for each possible coupon rate, we
consider three bonds maturing in 3, 10, or 30 years. The resulting nine bonds are
priced for two different values of YTM, 4% and 5%, in order to assess how the
two bond features interact with changes in yield. We also give the percentage
loss associated with the increase in YTM.

The lower part of the table shows that loss may be considerable when YTM
increases by 100 basis points. The table also suggests that impact is:

= More significant for long maturities

= Less significant for large coupon rates

From a financial viewpoint, these observations may be explained by considering
that, for a zero-coupon bond, an increase in maturity is just bad news. There
is just one cash flow at maturity, and it is more heavily discounted when yield
is increased. However, an increase in YTM has a partially positive effect on a
coupon-bearing bond, if held up to maturity: Coupons can be reinvested at a
larger rate. Clearly, such good news are more relevant for a bond with a large
coupon rate.
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The intuition may be reinforced and made more precise by introducing an
important measure of interest rate risk: duration. Here we give a classical
definition of duration that, as we shall see in Chapter 6, is rather limited. For
the sake of simplicity, we will assume that one coupon is paid per year. Let us
consider the bond price as a function of the annually compounded yield y;,

Cy

T
(1+y1)t

23

t=1

Note that C; denotes the generic cash flow at the end of year ¢. Let us take the
first-order derivative of this function:

T T
P tC
= : 3.36
ay ) = Z (1 +y1)+! 1+ylz 1+y1 (3:30)

t=1 t=1

This formula measures the first-order sensitivity of the bond price with respect
to y1, and it looks much like the bond price formula with two differences:

1. There is a leading coefficient multiplying the sum, whose negative sign
makes good sense, as bond price is decreased if yield is increased.'

2. The sum consists of terms in which each discounted cash flow is multi-
plied by its time of payment.

In real life, changes in yield may be relatively small, but not infinitesimal. Nev-
ertheless, a simple measure of sensitivity, allowing us to write useful approx-
imations, may come in handy. Let dy; be a small change in the annual yield,
and let 9 P be the corresponding change in the bond price. Using Eq. (3.36), we
may write

£
LTS S D =L i
oY1 L+ = (1+u) L+ P
Y =i U A
=1 — 1+ Zwtt (3.37)
b Z Ck b 4
(14y1)F

I5The fraction 1/(1 4 y1) is a bit annoying, but it is the result of discrete compounding. If we
use continuous compounding, we take derivatives of a exponential functions, which are much
nicer.
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where we define weights

Cy
1 t
w0, = T( + 1)
e

Cr
Z (14y1)*

1

It is easy to see that these weights indeed add up to 1, as they consist of dis-
counted cash flows divided by their total sum, which is just the bond price P.
Now we may rewrite Eq. (3.37) as follows:

5P 1

— &~ ——— D0 3.38
P 1+y1 mac Y1, ( )

where we define the Macauley duration, as

SR

— (L+u1) )

Dyac = 22 o Z (339)
k t=1

2 (L+y1)k

The definition of Macauley duration involves a weighted sum of time instants,
where weights are related to discounted cash flows, and is dimensionally mea-
sured in years. It is called duration, since it provides us with a sort of maturity
taking cash flows into account. It is easy to see that the Macauley duration for
a zero is just its maturity, whereas duration is smaller than maturity for coupon-
bearing bonds.

To get rid of the leading fraction in Eq. (3.38), we may introduce the mod-
ified duration, defined as

1

Dimod = ——— * Dinac, 4
od 1+y1 ac (3 0)

leading us to the following first-order approximation, linking a change in yield
to the percentage change in bond price:

oP
? ~ _Dmod 5?/1 (341)

W Example 3.14 A numerical illustration of duration

Let us check the application of duration to the bonds that we con-
sidered in Table 3.5. The duration of each zero corresponds to its
maturity. So, using Eq. (3.41), the prediction of the price of the zero
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maturing in three years is, after the increase of yield,
P(375%) ~ P(374%) ' (1 — Dimod - 5:‘/1)

= 88.90 x (1 X 3 % 0.01) = 86.3356.

_
1+0.04

This is fairly close to the exact price, which is 86.38. We notice that
the duration-based prediction is somewhat pessimistic, as the actual
bond price after the increase in yield is larger. The same calculation
for the bond maturing in 30 years gives

P(3;5%) ~ 30.83 x (1 x 30 x o.o1> = 21.9367.

1
1+0.04

In this case, the prediction is definitely pessimistic with respect to the
actual price, which is 23.14.

Table 3.6 also shows the Macauley duration of the six coupon-
bearing bonds of Table 3.5, featuring different maturities and coupon
rates. These values may be obtained by direct application of the def-
inition, which is somewhat inconvenient when 30 cash flows are in-
volved, or by an analytical formula that we shall prove later. Let us
check the accuracy for the 9% bonds maturing in 3 and 30 years:

1
P (3:5%) ~ 113.88 x [1— —— x 2.77 x 0.01
0% (3; 5%) x ( 11004 =00~ >
— 110.8468
1
Poo (30: 5%) ~ 186.46 x (1 — —— x 15.50 x 0.01
o9 (30; 5%) X( 11001 " % )

= 158.6703.

Again, by comparing the approximations with the exact prices in Ta-
ble 3.5, we see that the approximation is pessimistic, but pretty accu-
rate for a short maturity, a bit less for a long maturity. We will discuss
this matter further in Example 6.1.

Example 3.14 shows that the approximate price predicted by duration is
pessimistic, in the sense that it overestimates the drop in the bond price when
yield is increased. By the same token, when there is a drop in yield, the actual
bond price will be larger than what we predict using duration. This is a conse-
quence of the convexity of the price—yield relationship. In fact, if we assume a
continuously compounded yield y, the bond price is a sum of negative exponen-
tials, like Ce¥*, which are convex in . The same applies to discount factors
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Table 3.6 Macauley duration for the bonds of Table 3.5.

T (years) 3 10 30
c=0% 3 10 30
c=3% 291 872 19.10
c=9% 277 750 1550

involving an annually compounded yield y;.'® A linear approximation always
underestimates a convex function (see Fig. 6.1). Needless to say, the practical
relevance of duration has nothing to do with the approximation per se, as we
may easily reprice the bond. The approximation, as we shall see, is relevant to
define hedging strategies against interest rate risk. A look at Table 3.6 seems
to suggest that duration is smaller for larger coupon rates. Furthermore, we
might also guess that duration is increased when time-to-maturity is increased.
Actually, the first guess is correct, but the second one is not. We investigate
qualitative properties of duration in Section 3.5.5.1.

Equations (3.39) and (3.40) illustrate the traditional definitions of duration,
which may be easily adapted to semiannual or continuously compounded yields,
y2 and y. The annoying distinction between Macauley and modified duration
disappears when using y, as exponential functions yield nicer derivatives than
rational functions, as we shall see later.

Duration is not only useful as a risk measurement tool, but also as a concept
leading us to risk management strategies for fixed-income portfolios. We shall
not elaborate too much on the traditional definition, though, since it is subject
to significant limitations:

= We have defined duration with reference to YTM, which is equivalent to
considering a flat term structure. What about a more realistic term struc-
ture? We will see that what we are doing amounts to assuming that the
term structure is only subject to parallel shifts, but this does not account
for changes in slope or curvature, which may be observed in practice.

Duration is a first-oder sensitivity measure providing us with a first-order
approximation. Indeed, Example 3.14 shows that the approximation may
be not quite satisfactory. We may improve the approximation by intro-
ducing a second-order sensitivity measure, bond convexity.

If we define duration using cash flows, we are in trouble when these are
uncertain. A simple case is a floating-rate bond, discussed in Section
3.5.6, and the observation also applies to some derivatives such as vanilla
interest rate swaps. Luckily, there is an easy way to redefine duration in a
more general way.

16Convexity is further discussed in Section 15.1.
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FIGURE 3.4 Duration as a center of gravity of discounted cash flows.
We shall pursue these further developments in Chapter 6.

3.5.5.1 Qualitative properties of duration

To investigate the properties of duration, it may be useful to find an analyti-
cal expression.!” We do so for the Macauley duration in the case of annually
compounded yield. The following analytical formula for Macauley duration is
proved in Supplement S3.1:

1 Ty —c)—(1+
D=1y Lty Tn—o-(0+y)

, (3.42)

soe [(1+y1)T - 1} +u
where c is the coupon rate of the bond and 7 is time-to-maturity. It is important
to realize that this formula may be of limited practical use as it disregards the
term structure and assumes that time-to-maturity is an integer number of years
(or periods, if we do not consider annual yield, but rather a semiannual one). In
other words, it applies when the bond is issued or immediately after the payment
of a coupon. Nevertheless, it is useful for a qualitative investigation.

From Eq. (3.42), we immediately see that, in fact, the sensitivity of duration
with respect to the coupon rate is negative. The coupon rate ¢ occurs with a neg-
ative sign in the numerator of the ratio, and a positive sign in the denominator.
Hence, an increase in ¢ will decrease duration. This is actually intuitive, and we
may understand why by looking at Fig. 3.4. If we interpret duration as a center
of gravity of time instants, weighted by cash flows, increasing the coupon rate
c has a large effect on cash flows on the left, much less on the last cash flow on
the right, corresponding to maturity. Financially, if yield is increased, the loss
on the bond value is partially offset by the opportunity of reinvesting coupons
at a larger rate. The larger the coupon rate, the less interest rate risk we observe.

Now what about time-to-maturity? For a zero-coupon bond, duration is just
time-to-maturity; hence, increasing 7" also increases duration. Intuition might
suggest that the same applies to coupon-bearing bonds, but this is not necessar-

17The treatment in this section follows [2, Chapter 4].
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FIGURE 3.5 Duration as a function of time-to-maturity (measured in years), for bonds
with coupon rates of 2% and 10%.

ily true. One starting observation is that when 7" goes to infinity, duration tends
to a limit which is independent of the coupon rate:

1
lim Dpae=1+ —.
T—+oo Y1
To see this, note that 7" occurs linearly in the numerator of the ratio in Eq. (3.42),
but exponentially in the denominator. Thus, the limit of the ratio is zero. As a
reality check, let us consider the price of a perpetuity, as given in Eq. (3.35):
C N dP.(0,00)  C

P.(0,00) = — ==
( ) Y1 diyr i

Y1 C 1
= Dmod C y% n
1 1
= Dpac=14y1) —=14—.
Y1 Y1
Duration will always tend to this limit as 7" increases, but convergence need not
be monotonic from below, as shown in Fig. 3.5. The plot illustrates convergence
to the limit (D, = 11) when y; = 0.1. Two bonds are considered, one with
small coupon rate ¢ = 0.02, and one with large coupon rate ¢ = 0.1. We see
that when c is smaller than y;, we may have nonmonotonic convergence. To
get some intuition about this counterintuitive effect, we may have a look at Fig.
3.4 again. When time-to-maturity is increased from 7" to 7" + 1, we add a new
discounted cash flow (14 ¢)F/(1+4y:)" ", adding mass to the right end of the
cash flow sequence, but we reduce the mass at 7', which is also located at the
right end, by F/(1 + y1)T. If ¢ is small with respect to y;, the net effect may
well be a shift to the left of the center of gravity. Hence, a reduction of duration
may result.
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3.5.6 PRICING FLOATING RATE BONDS

Pricing a fixed-coupon bond looks like a rather simple affair, if we do not con-
sider default risk. We have a sequence of deterministic cash flows, and all we
need is a term structure of interest rates to discount them. However, what about
pricing a floater, i.e., a floating-rate bond? As a starting point, let us clarify how
a floating-rate bond works.'® Let us consider a bond, issued at time ¢ = Ty, pay-
ing semiannual coupons at times 7;, ¢ = 1, ..., m, where T, is maturity, when
the face value F' is also redeemed. At time Tj the semiannually compounded
spot rate r2(To, Top + 0.5) = ro(Ty, T1), applying to the first semester, is ob-
served and used to define the first coupon rate. Thus, the first coupon payment
will be F' - ro(Tp, Tp + 0.5)/2. At time ¢ = 0.5, the first coupon is paid and the
new rate ro(Tp + 0.5, Ty + 1) = ro(T1, T>) is observed and used to set the next
coupon rate. More generally, at time 7; a coupon C; is paid, given by the rate
observed six months before:

C;=F - -r(T-1,T3)/2,

where T; = T;_1 + 0.5.'° Thus, coupon dates are also reset dates, and we
always know the amount of the next coupon in advance, even though the whole
sequence is uncertain.

Let us denote by Py(t,T) the price at time ¢ of the floater maturing at time
T. Pricing a floater seems like a complicated affair involving stochastic cash
flows, and the following questions arise:

= Should we define a stochastic model describing the evolution of interest
rates over time?
= Is a floater more or less risky than a fixed-coupon bond?
The answer to first question is, luckily, in the negative. Rather surprisingly,

pricing a floater is much easier than pricing a fixed-coupon bond. To see why,
let us consider the last cash flow at maturity 7" = T,,,

Tr—1,Tm

which consists of the face value of the bond and a last coupon, determined at
Tn—1 and paid six months later. The value of the bond at time 7, _; results
from discounting this cash flow:

L4 re(Tin-1,Tm)/2
1 + 7ﬂ2(ﬂn—17 Tm)/2

Pi(Ty_1,T)=F F. (3.43)

Thus, when the rate is reset for the last time at time 7},,_1, the bond price is
exactly the face value F, since the same random rate is used to both define and

18Gee also the discussion in Section 3.5.3.

19For the sake of simplicity, we assume that semesters consist of the same number of days,
which is not really true.
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discount the cash flow. If we step back to time 7;,,_o, the bond price may be
found by considering the bond as a portfolio consisting of:

= A zero-coupon bond with face value
Cp—o=F- 7'2(Tm—27 Tm—l)/za

corresponding to next (second-to-last) coupon.

= An asset, the bond itself, after stripping the second-to-last coupon, whose
value at time T;,_; will be F', no matter what, as we have seen in Eq.
(3.43).

Thus,
L4 r(Tn—2,Tm-1)/2 _
1+T2(Tm—27TnL—1)/2

Unfolding the recursion, we see that at each reset date, just after the previously
determined coupon has been paid, the bond price is exactly F'. In particular, the
bond trades at par when it is issued. Thus, we see that the bond price is known
at reset dates, even though the future cash flows are not. This is a consequence
of no-arbitrage, and it also implies that a floating-rate bond is not affected by
interest rate risk, at least at reset dates.

In order to price the bond at a generic epoch ¢ between two reset dates,
T;,—1 < t < T;, we have just to discount the next coupon, fixed at the last reset
time 7;_; and paid at time 75, plus the bond value at the next reset time:

T‘Q(TZ‘17TZ‘):| .

F.

Pi(Tp—2,T)=F

(3.44)

Py(t,T) = Z(t,T;) - F - [1+ 5

Thus, between two reset dates, the bond price is related to a discount factor
Z(t,T;) that changes with time, and there is some interest rate risk. However,
risk is essentially related to the price of a zero maturing in less than six months.

Now, what about the duration of a floating-rate bond? Clearly, the classical
definition of Eq. (3.39) cannot be applied as it requires knowledge of a sequence
of random cash flows. However, if we interpret the value in Eq. (3.44) as the
price of a zero with time-to-maturity 7; — ¢, we may suspect that duration for
such a bond is the time to the next coupon, rather than time-to-maturity. We
will see in Chapter 6 that this is indeed the case.

W Example 3.15 The risk of a floating-rate bond

It is interesting to compare the risk of a fixed- and a floating-rate
bond. Let us consider a bond with face value ' = $1000, paying
semiannual coupons, maturing at time 7, = 4.75 (four years and
nine months), and let us assume that the term structure is flat and
given by a semiannually compounded yield yo = 4%. Given the
time-to-maturity, the next reset date is 73 = 0.25, i.e., three months
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from now, and ten coupons will be paid over the bond life. Then, the
coupon rate was reset three months ago, and let us assume that the
observed rate was 3%. Hence, the next coupon amounts to

0.03

$1000 x o $15.

Note that the relevant discount factor, using the semiannual yield over

0.25 years, is
1

V14 0.04/2°

Z(0,0.25) =

and so the price of the floater is

1015
Pf(0,4.75;4%) = ——— = $1005.00.

v/1.02

If the term structure is shifted up to 5%, the new bond price is

1015
P;(0,4.75;5%) = ——— = $1002.55,
V1.025

with a very limited loss:

1002.55 — 1005.00

= —0.24%.
1005.00 024%

It is easy to see that this loss would be the same for a bond maturing
in 100 years! The reader is invited to compare these values with the
corresponding ones for a fixed-coupon bond.

A comparison with Table 3.5 shows that, somewhat paradoxically, a floating-
rate bond featuring stochastic cash flows may be less risky than a fixed-coupon
bond, with deterministic cash flows. But is this really the case? The answer is
a bit more complicated and depends on the intended use of bonds. If we buy
a bond and plan to sell it shortly, there is no doubt that a floater is less risky.
However, if we plan to hold the bond until maturity and use coupons to finance
a stream of fixed liabilities, the picture may be different. Thus, the message is
that risk must always be analyzed within a context.

3.6 A digression: Elementary investment analysis

The elementary approach to pricing a coupon-bearing bond and the concept
of yield-to-maturity are related to a couple of fundamental tools in investment
analysis, namely, the net present value and the internal rate of return, respec-
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tively. Any textbook on corporate finance spends some pages discussing the
pros and cons of these approaches in the context of capital budgeting. Since
this is a book on financial markets, we will steer away from these discussions.
Nevertheless, seeing the connection between investment analysis and asset pric-
ing is quite useful.

3.6.1 NET PRESENT VALUE

Consider an investment project characterized by a stream of cash flows C; at
epochst =0,1,...,7T. Cash flows may also be negative, corresponding to cash
outflows related to investing money in the project. If we consider building a
plant or designing a new product or service, it is quite likely that Cy < 0, as
this is the initial capital outlay but, in a complex project, there may be staged
investments along the planning horizon, before revenue (hopefully) turns some
cash flows into the positive.

If the cash flows were certain, analogy with bond pricing suggests that we
could evaluate the investment by calculating its net present value (NPV) as
follows:

NPV = Cy + 1 + C2 2+“'+LT

L+rm(0.1) - [1471(0,2)] [1+71(0,7)]

T
; 1+ 1 (0 t)]

where we are using a term structure of risk-free rates with annual compounding.
When pricing a bond, Cy = —P,.(0,7) < 0 corresponds to the cash outflow to
buy the bond at its current price. The next cash flows for¢ = 1,...,7 — 1
correspond to coupon payments Cy = ¢F > 0, and the final cash flow at bond
maturity includes the face value, Cr = c¢F' + F > 0. If NPV > 0, then the
investment is worth pursuing; otherwise, it is better to use the required capital
in some other way.

However, such ventures are very rarely risk-free and there may be consid-
erable uncertainty about future cash flows, which are actually stochastic. One
approach to deal with this issue is to consider the expected value of the future
cash flows, and to account for uncertainty by discounting cash flows using a rate
that includes a risk premium. To avoid further difficulties, a single hurdle rate
R is used to discount all of the expected cash flows:

~ E[C/]
NPV = ; TrRY

Clearly, the difficulty in applying the approach lies in the estimation of expected
cash flows and the choice of an appropriate hurdle rate. One idea to estimate
an appropriate risk premium is related to the capital asset pricing model, as we
shall see in Chapter 10.
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3.6.2 INTERNAL RATE OF RETURN

When a valuation model, like the NPV, requires uncertain inputs, such as the
hurdle rate R, a good idea is to check the impact of uncertainty on decisions
by sensitivity analysis. In particular, useful information is provided by finding
a limit value marking the difference between two different courses of action.
Since the sign of the NPV depends on R, we may find the critical rate R such
that the resulting NPV is zero. Such a rate is called internal rate of return, or
IRR for short. This is obtained by solving the nonlinear equation

~ E[C]

NPV(R) = ; Oy 0.

This is actually a polynomial equation, since we may use substitution of vari-
ables,

_ 1
“TirR
and solve?”
T
> E[C)Z =o.
t=0

Then, given a root z, we find the corresponding IRR

rR=17%
z
We immediately observe that YTM is just the IRR for a bond. When the IRR
exceeds a critical value, corresponding to an investment of comparable risk,
the investment that we are analyzing is worth pursuing. Otherwise, we will be
better off by considering an alternative investment.

Clearly, we are interested in roots leading to real and positive values of IRR,
but what if such roots are not unique? Indeed, we know from the fundamental
theorem of algebra that a polynomial of degree 7" has T roots, possibly com-
plex conjugates. It may well be the case that there are multiple IRRs, typically
when the sign of cash flows alternates, and this is why many theorists in corpo-
rate finance claim the definite superiority of NPV over IRR (some practitioners
disagree). Luckily, the situation is much easier when dealing with YTM of a
bond. In such a case, there is one negative leading cash flow Cj < 0, followed
by a stream of positive cash flows, and it can be shown that there is a unique
IRR > 0.

20Any numerical computing environment, like MATLAB, provides us with tools to solve poly-
nomial equations. We should not use generic procedures for nonlinear equations, as these are
meant to find one root of the equation near an initial point provided by the user, whereas more
specific procedures for polynomial equations find all of them.
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3.6.3 REAL OPTIONS

As we have mentioned, in the corporate finance literature there is some con-
troversy surrounding the use of NPV and IRR and their relative advantages and
disadvantages. The situation is further complicated by the fact that, in a real-life
capital budgeting problem, we should not consider single investments, but sets
of competing ones, possibly under a budget constraint. The uncertainty in their
cash flows may also be affected by correlations.

However, both approaches suffer from a quite important limitation. They
consider cash flows as exogenously given, whereas in real life they depend on
our decisions. To see the point, imagine a project consisting of a set of inter-
related activities. It may be possible to execute them in some sequence over
time, and condition our decisions on the observation of relevant risk factors.
If a project is turning into a disaster, a wise course of action could be to just
cut our losses and abandon it.2! We may also scale an investment up or down,
depending on the unfolding of uncertainty over time. In other cases, it may be
worth delaying the project, in order to gather more information and reduce the
level of uncertainty.

Traditionally, these planning problems under uncertainty have been ana-
lyzed using decision trees.?> But after the considerable success of quantitative
methods for financial option pricing, the name real options has been coined,
in order to reflect their link with the real economy. There are some standard
real options that are used to analyze flexible investment strategies, like delay
options, abandonment options, growth options, etc. From a methodological
viewpoint, there is an interesting difference with respect to the more traditional
valuation approach, where we discount expected cash flows using a hurdle rate
that reflects a risk premium. As we shall see, when dealing with option pricing,
the approach is to use the risk-free rate for discounting, but to adopt a different
probability measure in order to compute expectations.

3.7 Spot vs. forward interest rates

In Section 1.2.6.1, we have introduced forward contracts, which allow us to buy
or sell an underlying asset in the future at a fixed delivery price, rather than
facing uncertainty of future spot prices. A similar concept may be introduced
for interest rates, even though they are not tradable assets. The current term
structure 7(0, -) at time ¢ = 0 consists of an array of spot interest rates, which
apply to time periods starting immediately. In this section, we show how to find

21 A well-known behavioral bias is the sunk-cost syndrome: We tend to insist on an unfortunate
endeavor, since we have already paid some cost that we cannot recover (irreversible investment).
However, from a rational viewpoint, this should be regarded as a sunk cost that should not
influence future decisions. Most of us experiment this syndrome, when we insist on watching a
horrible movie, because we have paid the ticket, rather than just walk away.

22566, e.g., [1, Chapter 13].



194 CHAPTER 3 Elementary Theory of Interest Rates

rates that apply to a time period starting somewhere in the future. Such rates are
called forward rates. In order to understand the nature and the role of forward
rates, let us consider the following hypothetical situation:

» We are at time ¢ = 0, and we will receive a payment in six months, at
time ¢ = 0.5.

= We will need that money only in one year, at time ¢ = 1. Hence, we
would like to invest it for the six-month period (0.5, 1).

= The problem is that we know the spot rates (0, 0.5) and (0, 1), but there
is some uncertainty about the future spot rate?® (0.5, 1).

In general, uncertainty in the future spot prices of commodities, indexes, and
other assets may be hedged away by resorting to forward or futures contracts.
By the same token, we can use interest rate derivatives to manage interest rate
risk.

It is easy to see that, if we assume that all rates are free from default risk,
there must be a well-defined forward interest rate for time intervals in the future,
in order to rule out arbitrage opportunities. Let us denote by f(¢,T1,T3) the
continuously compounded forward rate observed at time ¢ for a future time
interval (T, T5), where t < T; < T,. We already know that, when the maturity
of a forward contract is approached, there is a convergence between spot and
forward prices. By the same token, when 77 = ¢, we must have

T(T17T2) = f(T17T17T2)~

Forward rates are indeed quoted and offered in real-life markets, in the form of
forward rate agreements (FRAs), which we shall discuss in Chapter 4. For now,
let us just discuss how to relate spot and forward rates on the basis of financial
theory.

In the above hypothetical situation, we can show that the knowledge of spot
rates (0, 0.5) and (0, 1) implies knowledge of the forward rate f(0,0.5,1). To
see how this results from application of the no-arbitrage principle, let us con-
sider the following two strategies to invest money for one year, on the interval
(0,1):

1. The straightforward possibility is to invest an arbitrary sum L at the spot
rate 7(0,1). At time ¢ = 1, our wealth will be

L. er0nx1
2. Alternatively, we might invest L for the initial six months at the spot

rate r(0,0.5), and then on the next semester (0.5,1) at the forward rate
£(0,0.5,1). Wealth after one year will be

L. ¢r(0,0.5)%0.5  f(0,0.5,1)x0.5

BThe future spot rate should not be confused with the futures rate, which underlies interest rate
futures contracts. Futures contracts on interest rates will be discussed later, in Section 4.3.
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r(0,1)

r(0,0.5) £(0,0.5,1)

FIGURE 3.6 Comparing two investment paths.

Since both strategies start with the same money L and are riskless, wealth in
one year must be the same:

5 5 5
L- 6'r(0,1)><1 . er(070.a)><0.o . ef(070.aq,1)><0.5,

which implies
~ 7(0,0.5) + £(0,0.5,1)

r(0,1) = : (3.45)
and
£0,0.5,1) = D = %’_55' r(0,05) (3.46)

It is useful to visualize the two strategies as paths over time, as shown in Fig.
3.6. If we multiply the capital growth along any path, we implicitly define a
path rate. If the capital growth were larger along one of the two paths, it would
be possible (under the usual somewhat idealized market conditions) to create an
arbitrage strategy by borrowing money at the smaller path rate and immediately
investing it at the larger path rate.

Equation (3.45) seems to suggest that the spot rate for the longer maturity
is related to an arithmetic average of the spot rate for the shorter maturity and
the forward rate. Indeed, we may generalize it as follows, if we consider time
intervals of length 7 and 7o corresponding to maturities 73 = 7 and T =
71 + T2, respectively. In this case, no-arbitrage requires

eT(O,TQ)XTQ — eT(O,Tl)XTl . ef(O;TlaTZ)X(T27T1)
Y

which implies

r(0,T1) - Ty + f(0,T1,T3) - (Tp — T1)

0,75) =
’I“( ) 2) T
~r(0,7) T+ f(O, T, T+ TR) T
T+ T2 ’
and
T5) - Ty — Nk
F0.77, 1) = (0T T 2O T

T, -1
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The equivalence of returns over time paths may be generalized to arbitrary
pairs of paths over time, involving arbitrary time intervals, along with their

forward rates. If we consider time instants 7y, 77, . . ., T;,, where Ty = 0, corre-
sponding to time intervals of length 7, = T;—T;_1,7 = 1, ..., n, by no-arbitrage
we find

n

Ti - f(O»TiflaTi)
1

n
D7
i=1

where, in order to streamline the expression, we use the identity

r(0,T,) = = , (3.47)

’I"(O,Tl) = f(0,0,Tl)

for the first time interval. Indeed, if we use continuous compounding, spot rates
may be considered as weighted averages of forward rates. Clearly, if we have
the set of spot rates (0, 7;), we may find the set of forward rates f(0,T;,7}),
T; < T}, and vice versa.

W Example 3.16 Spot and forward curves

Assume that we are given a set of forward rates for annual invest-
ments:

£(0,0,1) = 2.0%, f(0,1,2) = 2.2%,
£(0,2,3) = 2.4%, f(0,3,4) = 2.3%.

Using Eq. (3.47) we may directly find the corresponding spot rates:

0,1) = 2.0%,

r(0,2) = w —2.19%,

0.3 20 2.?)% £24% o0

#(0,4) = 2.0% + 2.2% Z 2.4% + 2.3% 99959,

It is interesting to notice that spot rates are increasing, even though the
forward rates are not. We will discuss this matter further in Section
3.7.4.

Going the other way around requires a little more work, as it
involves a triangular system of linear equations, much in the same
vein as the bootstrapping procedure of Example 3.9.
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The example suggests that the information provided by the spot rate curve
may also be captured by a forward rate curve.

3.7.1 THE FORWARD AND THE SPOT RATE CURVES

Just like we define the spot rate curve (¢, T) at time ¢, as a function of T', we
may define a forward curve f(¢,T,T + A) at time ¢, for a fixed A, as a function
of T'. In Section 3.4, we have observed that the term structure of (spot) interest
rates is more often than not increasing, but it may take different shapes. It is
interesting to investigate the relationships between the spot rate and the forward
rate curves. We know that no-arbitrage enforces the condition

r(t,T)- T+ ft, T, T+A)-A=rt,T+A)-(T+A),
which implies

r(t, T+ A) - (T+A)—r(t,T)-T

f&,T,T+A)= A
(T HA)(T+A) —r(t,T)-T+r(t,T) - A—r(t,T) A
- A
=rt,T)+ (T +A)- r(t’T+AA) —rt,T) (3.48)

Equation (3.48) shows that the forward rate can be expressed as a spot rate plus
a term involving an increment ratio. We observe that, for a given epoch 7" and
time increment A, if the spot curve is increasing, the forward curve is above
the spot curve. If the spot curve is decreasing, then the forward curve is below
the spot curve. If we take the limit of the increment ratio for A — 0, we find
an expression involving the partial derivative of the spot rate with respect to
maturity:
or(t,T)
or -
This expression involves the instantaneous forward rate, i.e., a rate for a very
small time interval. This concept is related to a short rate, which we will explore
in detail in the context of continuous-time stochastic models for interest rates.
Here, we observe that when the partial derivative is zero, i.e., when the spot rate
has a maximum or a minimum, forward and spot rates take the same value. This
is illustrated in Fig. 3.7 for the case of a maximum in a humped term structure.
It is worth noting that, in the context of dynamic models of interest rates
under uncertainty, building a realistic and tractable model of a set of spot rates is
not quite trivial. Some modeling approaches take an indirect route and represent
forward rates directly, from which spot rates may be obtained.

lim f(t,T,T+A)=rt,T)+T- (3.49)
A—0

3.7.2 DISCRETELY COMPOUNDED FORWARD RATES

We have used continuously compounded forward rates but, by the same token,
we may define discretely compounded forward rates f,(¢,77,7T%). Actually,
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FIGURE 3.7 Comparing spot and forward curves.

discretely compounded rates are used in the definition of interest rate deriva-
tives like, e.g., forward rate agreements. However, they are much less conve-
nient to work with, since all of the calculations become more intricate. As an
illustration, let us consider two consecutive time spans of ¢ and j years, respec-
tively, and rates with annual compounding, denoted by r; and f;. Then, the
no-arbitrage condition becomes

(147100, M) = [+ 71(0,0)] [t + £1(0,4,7 + )],

where N = i+ j. If we consider a collection of N annual forward rates f;(0,7—
1,7),i=1,..., N, we find

(14710, N)]™ = [14 £1(0,0,1)] - [14 f1(0,1,2)] -+ [14 f1(0, N =1, N)],
where f1(0,0,1) = r1(0,1). This implies

N 1N
(0, N) = [H (1+f1(0,i— 1,1'))1 1.

i=1
We notice that the annually compounded spot rate for IV years is related to a
geometric average of forward rates, rather than being directly given by an arith-
metic average as in the continuously compounded case. By using no-arbitrage,
we may find any spot rate given forward rates, and any forward rate given spot
rates. However, the calculations get a bit messy, especially if we consider semi-
annual or shorter compounding. In this book, we will mostly use continuous
compounding for the sake of simplicity, unless we have to stick to market con-
ventions.

3.7.3 FORWARD DISCOUNT FACTORS

We emphasize once again that compounding issues arise when we want to quote
annualized rates in a convenient way, but we are just applying different units to
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measure the same thing. What actually matters is the discount factor, which
may be written in different ways as a function of spot rates:

1 1
Z(t,T) = e "TT=1) = = :
L+rED [ T)/2" Y
By the same token, we may find useful a forward discount factor, denoted by
F(t,T1,T>). No-arbitrage implies an interesting relationship among forward
and spot discount factors:

Z(t7 TQ)
F(t,T1,T3) = ——=. 3.50
(t, 11, T») 20, T)) (3.50)
As a quick reality check, notice that the forward discount factor must be less
than 1, and in fact, under ordinary economic conditions, we have Z(t,T2) <
Z(t,Ty), for Ty < T5. Equation (3.50) may look more familiar when rewritten
in terms of rates:

Z(t,Ty) = e~ Tt T2) (Ta—t) _ o—r(t,T1)(Ta—t)— f(t,T1,T2) (T2~ T1)

= Z(t,Ty)-F(t, Ty, Ty).

3.7.4 THE EXPECTATION HYPOTHESIS

In this section, we investigate in slight more detail the expectation hypothesis as
a theory explaining the term structure of spot rates. We analyze this hypothesis,
disregarding alternatives, because it has an interesting connection with forward
rates. Let us consider continuously compounded rates and a time period con-
sisting of two consecutive years. We know that the spot rate for a time interval
of two years is an average of spot and forward rates along a time path:

r(0,1) + f(0,1,2)

r(0,2) = 5 . (3.51)

Now, the pure expectation hypothesis relates the spot rate over two years to the
expectation of the spot rate for the second year, i.e.,
2 r(0,1) + E[r(1,2)]

r(0,2) 2 ! , (3.52)

where the question mark emphasizes that this is just a hypothesis. A comparison
between Egs. (3.51) and (3.52) would suggest that the forward rate for a time
interval is an expectation of the future spot rate on the same time interval, in
this case:

£(0,1,2) = B[r(1,2)]. (3.53)

This would suggest that forward rates should be predictors of future spot rates,?*
but is this consistent with what we know about forward rates?

24 A similar question may be asked when dealing with forward contracts on stock shares or
foreign currencies. Evidence shows that, in general, forward prices are not really good predictors
of spot prices.
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If the structure is increasing, i.e., 7(0,2) > r(0,1), Eq. (3.48) implies that
the forward rate f(0, 1, 2) is larger than the spot rate (0, 1), but then Eq. (3.53),
in turn, would imply
r(0,1) < E[r(1,2)],

i.e., an increase in the future one-year spot rate is expected next year. However,
we have observed that the term structure is usually increasing, and how can it be
the case that we expect an increase in spot rates most of the time? This does not
sound quite reasonable. Furthermore, Example 3.16 shows that we may have
increasing spot rates, even when forward rates are not increasing.

Thus, the pure expectation hypothesis expressed by the equality (3.53) does
not seem quite plausible, and it must rather be the case that there is a gap be-
tween the forward rate and the expected spot rate,

£(0,1,2) > E[r(1,2)].

Usually, an inequality like this may be explained in terms of a risk premium.
The liquidity preference theory assumes that a risk premium is required in
order to give up liquidity. By introducing a risk premium 7 (0, 1,2), we may
write

f(0,1,2) = E[r(1,2)] + 7(0,1,2).

If there is a positive risk premium, an increasing term structure may result, even
though there is no expectation of an increase in the spot rates.

@ Exam pIe 3.17 The effect of a liquidity premium

Let us consider an array of continuously compounded spot interest
rates for time periods of one year:

r(0,1), =(1,2), r(2,3), r(3,4),...
Say that no increase is expected and
r(0,1) = 4% = E[r(1,2)] = E[r(2,3)] = E[r(3,4)] = - - -
If the risk premium is
w0,k k+1) = 1%, k=1,2,3,...,
the one-year forward rates are

£(0,0,1) = 7(0,1) = 4%,
F0,k,k+1) =E[r(k, k+1)] + 7(0, k, k + 1)
=5%, k=1,2,3,...
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Then, the term structure is an average of forward rates,

T—1

1
T(OvT):;Zf(kavk—’_l)» T:17213a"'1
k=0

which in this specific case yields

r(0,1) = 4%,

r(0,2) = w = 4.5%,

7(0,3) = w = 4.67%,
r(0,4) = 4%+ 5% + 5% + 5% _ A75%.

4

Thus, we observe an increasing term structure, even though there is
no expected increase in the spot rates.

It may even happen that an increasing term structure results from
decreasing expected spot rates, if the liquidity premium is increasing.
For instance, let us consider

r(0,1) = 4%, E[r(1,2)] =3.7%5%, E[r(2,3)] = 3.5%,
and
7(0,1,2) = 0.5%, =(0,2,3) =1.0%.
Then, in this case, we find

£(0,0,1) = 4%,  f(0,1,2) = 4.25%, £(0,2,3) = 4.5%,

and
r(0,1) = 4%,
r(0,2) = w = 4.125%,
r(0,3) 4%+ 4.25% +4.5% _ 4.95%.

3

The resulting term structure is increasing, even though rates are ex-
pected to drop.

Example 3.17 shows that an increasing term structure need not imply that
spot rates are expected to increase. However, if the term structure is decreas-
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ing, we may say that a decrease in the spot rates is expected, unless we assume
negative liquidity premia. This may occur when an economic slowdown is an-
ticipated.

3.7.5 A WORD OF CAUTION: MODEL RISK AND HIDDEN
ASSUMPTIONS

The relationship between spot and forward rates looks rather obvious. The
no-arbitrage argument sounds compelling, and no sophisticated mathematical
model is actually used. In particular, there seems to be no place for any stochas-
tic modeling issue. However, hidden assumptions may creep in without we
realizing it. We have assumed that interest rates are risk-free, but when we step
into the real world, things may be different, and we must refer to real-life quoted
rates. As we shall see in later chapters, a widely used interest rate is LIBOR,
which is an average of interbank rates. To be precise, it is a trimmed average
of rates applying to interbank unsecured loans. Since a bank may default, this
rate cannot be really considered risk-free, but under normal conditions the de-
fault risk was considered negligible. Indeed, only trustworthy banks may be
included in the panel defining a LIBOR rate, for the very reason that it refers
to unsecured loans. Something changed when the credit crisis erupted in 2007
and led, among other things, to the Lehman Brothers collapse in 2008. Due
to the ensuing credit crunch, the LIBOR rates skyrocketed abruptly. While a
risk-free rate essentially captures the time value of money and does not depend
on the counterparties involved in a transaction, when credit risk is involved, the
specific counterparty matters. Under an extreme stress, even the panel of banks
involved in the definition of LIBOR rates may change.

Real-life forward rates play a role in forward rate agreements, as well as in
interest rate swaps, which we will introduce in Chapter 4. The relevant feature
of these derivative contracts is that the payoff is related to the difference between
a floating and a fixed rate, applied to a notional amount. The notional amount
is not really exchanged and, since the actual payoff is related to a difference of
cash flows, default risk is less relevant than in other transactions. In a risk-free
setting, a forward rate agreement may be replicated by transactions in spot rates,
just like the forward rate may be related with spot rates. However, under market
stress, an increasing gap was observed between the forward rates implied by
spot LIBOR rates and the actual market rates of forward rate agreements, so
that the standard equations that are proposed in classical textbook treatments,
the present one included, broke down.

It is important to note that, before 2007, the standard replication argu-
ment had been consistent with market data for years, but the situation changed
abruptly, creating a difficult puzzle to solve. The message is that we may rely
on implicit model assumptions, even when we are not using sophisticated mod-
eling frameworks, and this may result in model risk. More details can be found,
e.g., in [8] or [9, Chapter 4].
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S3.1 Proof of Equation (3.42)

Let us consider the price of a coupon-bearing bond, paying one coupon per year
at rate ¢, when time-to-maturity is an integer number 7' of years: We know that,
after a coupon payment, when there are T years to maturity, the bond price is

cF 1 1
Fely) = o {1 - (1+y1)T} T

The face value F is irrelevant if we want to find Macauley duration,

14y dP(y1)
P.(y1) dy

Hence, we may set F' = 1 and rewrite the bond price as

Dmac =

P.(y1) = yil [C' (1 —(1 +y1)7T) +y1(1 +y1)7T:| .

The form of the duration definition suggests the opportunity of taking the deriva-
tive of the logarithm of the bond price. In fact, using the chain rule for compos-
ite functions, we have

dlog P.(y1) 1 ' dP.(y1)

dy: Pe(y1)  dy

Now we have
log P.(y1) = —logy1 + log{c- [1 -1+ y1)_T} +yr(1+ yl)_T} :

and by taking its derivative we find

dlogPe(y)) _ 1 eI (Ly) "7 4 (1+y) " = Tyi(L+y) "
i " e [1= (Ut y)~T] + (L4 )T
_ 1 " - (1+y) " +1 =Ty (1 +y1)""
b e[+ -1] +n

Now, to find Macauley duration, we multiply by —(1 + y;) and simplify:

14+ T+ 1+y1)—Ty
Dmac = -

Y1 c-[(1+y1)T—1}+y1

1 Tp-o-(
ST I  € Sl Rl S 1 I
n c-[(1+y1)T—1}+y1

which proves Eq. (3.42).
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Problems

3.1 Assume that the prices of zero-coupon bonds, with face value 1000, ma-
turing in 1, 2, 3, and 4 years are

947.87, 885.81, 815.15, 757.22,
respectively.

= Find the term structure of interest rates.
= Find the one-year forward rates.

= Let us consider the zero maturing in two years and assume that, on a very
short time interval, the change in the corresponding rate is modeled by
a normal random variable with expected value 0 and standard deviation
0.01. Find the 95% V@R, if you have invested €100,000 in that bond.
Hint: You may take advantage of a first-order approximation based on
duration, and then compare the result against the exact one.

3.2 Consider a riskless bond paying one coupon per year with coupon rate
5%, maturing in three years, and with face value $1000. The forward rates with
continuous compounding are:

£00,0,1) =3.7%, f(0,1,2) =4.5%, f(0,2,3) =5.1%.
Find the bond price.

3.3 A bond with face value 100 matures in two years and has just paid a
coupon. The bond pays one coupon per year and the coupon rate is 6%. If the
bond price is 102, what is its yield-to-maturity?

3.4 A corporate bond (subject to default risk) matures in three years, pays
one coupon per year, at rate 9% of a face value €1000, and trades at €960.
The term structure for risk-free rates is flat at 7% (annual compounding). A
bank offers an insurance against default, for a price of €200. This insurance
covers both future coupons and the repayment of whole face value (for the sake
of simplicity, we do not consider partial default). Should we accept the offer?

3.5 A bond portfolio consists of two bonds: A zero-coupon bond maturing in
three years and a coupon bond with a single (annual) coupon of 4%, maturing
in two years. Both bonds have a face value of €1000, and we hold 10 bonds of
the first kind and 20 of the second one. Interest rates are subject to uncertainty,
and we consider the following three term structure scenarios:

Scenario  Probability One year Two years Three years

w1 0.2 3.1% 3.8% 4.3%
w2 0.5 32% 3.3% 3.5%
w3 0.3 3.0% 2.9% 2.8%

The three scenarios consist of annually compounded spot rates for maturities of
1, 2, and 3 years (note that, in general, making sure that scenarios are realistic
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and arbitrage-free is not trivial). We neglect the passage of time, i.e., we assume
that these scenarios apply to the immediate future and are based on an instan-
taneous change in the term structure. Find the expected value of the portfolio
wealth after the realization of the random scenario.

3.6 We hold a fixed-income portfolio including two bonds: A zero maturing
in three years, and a coupon-bearing bond paying one coupon per year with
coupon rate 4%, maturing in two years. The face value is €1000 for both bonds,
and we have invested €53,000 and €93,000 in the two bonds, respectively (let
us assume infinitely divisible assets, i.e., we may buy fractions of a bond). We
are given the following risk-free forward rates, with annual compounding:

fl(O,Ov]-) = 3%7 f1(07172) = 4%7 f1(07273) = 5%.

The price of the two bonds is also related to sovereign risk, i.e., all of the interest
rates used in pricing are incremented by a spread that is currently 2.3%. This
rate reflects default risk on sovereign debt. Let us assume that the spread is
subject to a random shock on the very short term, which is uniformly distributed
between —1% and +2%. Find V@R at 99% confidence level on the short term
(in other words, we do not consider the effect of time on the bond prices).

3.7 How would you price a floater with a spread ¢ on observed interest rates?

3.8 How would you price a reverse floater, neglecting the possibility of nega-
tive rates?

Further reading
* We have not covered some institutional issues in bond trading, which are
dealt with in [13].

= For a treatment of elementary interest rate and bond mathematics, see [3]
or [11].

» A more extensive coverage of interest rates and related issues can be
found in [4], [7], [12], and [14].

» A more detailed investigation on the term structure of interest rates is
described in [2, Chapter 9].

= A specific book on interest rate risk management is [5].

= Dynamic stochastic models for interest rate risk management are covered
in [6] and [10].
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Chapter [Four

Forward Rate Agreements,
Interest Rate Futures, and
Vanilla Swaps

In this chapter, we consider a few simple interest rate derivatives, which are the
natural counterparts of the forward and futures contracts introduced in Section
1.2.6, when the underlying variable is an interest rate. We will also appreciate
a relationship with forward interest rates, introduced in Section 3.7.

In Chapter 3, we have repeatedly used the concept of risk-free rate and
have shown how risk-free rates can be estimated from bond prices. However,
if we want to trade derivatives whose underlying variable is a risk-free rate, we
need a very precise reference rate, on which financial institutions may formally
and legally agree, not just an estimate. In Section 4.1, we introduce two such
rates, the LIBOR and EURIBOR rates. These are essential rates, as they are
the underlying variables of several derivatives, but they cannot be considered
risk-free, as the painful experience during the 2008 credit crunch has shown.

Then, we move on to consider three simple families of interest rate deriva-
tives:

1. Forward rate agreements, in Section 4.2
2. Eurodollar futures, in Section 4.3
3. Vanilla interest rate swaps, in Section 4.4

A stylized presentation of simple forward rate agreements and vanilla swaps
may rely only on no-arbitrage arguments, without the need for dynamic stochas-
tic models, which are necessary to analyze options. We just use concepts like
bond pricing and forward rates, which have been introduced in Chapter 3. The
resulting pricing models are quite useful, but we have to keep in mind that we
are implicitly assuming that everything is risk-free.!

IThe assumption that there are no issues with credit and liquidity risk is important and must be
made explicit to grasp the limitations of the reasoning lines that we shall pursue. Recent trends
in derivative valuation pay due attention to the cost of funding a transaction, which are affected
by credit issues. See, e.g., [5, Chapter 4].
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The contracts that we describe are quite simple, but extensively traded on
both regulated financial markets and OTC. Interest rate swaps are actually OTC
derivatives, even though swap rates are readily available, and according to statis-
tics provided by the Bank for International Settlements, the notional amount of
outstanding contracts in December 2014 was a staggering $381 trillion. As we
shall see, the notional amount of swaps grossly overstates the actual market
value, but it gives a clue about the relevance of this kind of market. We should
also mention that, in real life, there are plenty of institutional details that we will
neglect in the mathematical presentation here; some of these details are covered
in Chapter 5. The use of simple interest rate derivatives for risk management is
discussed in Chapter 6.

4.1 LIBOR and EURIBOR rates

The seemingly intuitive concept of a“risk-free” rate is actually an elusive one.”

The risk-free rate is not really constant in time, and when we try to squeeze risk-
free rates out of bond prices or other securities, we may face difficulties due to
liquidity and credit risk. Hence, when derivatives are written on an interest rate,
which is supposed to be risk-free, it is important to specify what rate is used
exactly and who is in charge of quoting it.

A widely used set of interest rates is defined by considering interbank of-
fered rates:

» LIBOR (London interbank offered rate) rates result from a trimmed aver-
age of a set of rates offered by banks to other banks operating in London,
in need of liquidity.

« EURIBOR (Euro interbank offered rate) rates are defined similarly, by
averaging rates offered by banks in the eurozone.

The LIBOR is quoted for a set of currencies, and available maturities are in the
range up to one year.

Rates are related to unsecured loans, i.e., not backed by any collateral.
However, they were supposed to be almost risk-free, since they refer to rel-
atively short-term loans among solid institutions. Actually, during the credit
crunch crisis ensuing after the subprime mortgage crisis, those rates increased
considerably, because of the lack of trust among banks. The price was paid,
among others, by homeowners whose floating mortgage rates were related to
LIBOR or EURIBOR plus a spread. We remark that the plain textbook treat-
ment that we offer here is traditional and assumes that no credit or liquidity
issue affects rates, but in stressed conditions this is not quite true. We should
also mention the possibility that rates are manipulated by bank cartels. That this
is not a remote possibility is shown by the fines that have been paid by banks
found guilty of such manipulations. Alternative rates have been proposed to

2See Section 3.5.3.
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overcome issues with LIBOR/EURIBOR, but the message does not change: In
order to trade interest rate derivatives, we need a well-defined and official rate.

4.2 Forward rate agreements

A forward rate agreement, or FRA for short, is an OTC agreement between
two counterparties, which is stipulated at time ¢ = 0 as follows:

» The two parties agree on a notional amount of money N and a time pe-
riod (T1,T») in the future. Let A = Ty — T3 be the length of the time
interval (measured in years, also called tenor) and let n = 1/A be the
corresponding compounding period. Usually, A is a fraction of a year,
like a quarter or a semester, corresponding to n = 4 and n = 2, respec-
tively.

= One party will pay a fixed interest rate on the notional, for the time period
(T1,Ts). This rate is agreed at ¢ = 0 and we will denote it by K,,, to
reflect the compounding frequency. Hence, the party paying fixed should
pay

N-A-K,. 4.1)

» The other party will pay a floating interest rate on the notional, for the
time period (77, 75). This rate is floating in the sense that it is unknown
at t = 0 and will be set at T} by observing the future spot rate r,, (77, T3).
Thus, the floating payer should pay

N-A-ro(Ty, Ts). 4.2)

Note that we are using discretely compounded rates to reflect market practice,
even though continuously compounded rates may be more convenient mathe-
matically. We should also note that we are disregarding an important real-life
complication: How many days are included in a quarter or a semester? This
really depends on which months happen to be included, as a month may have
30, 31, or even 28 days (29 in leap years). Such day count issues are discussed
in Section 5.1.

The two cash flows in Egs. (4.1) and (4.2) are figurative and do not occur
in practice, as only the actual net difference will be paid. From the viewpoint
of the party paying fixed, the cash flow at time 7% will be

Wixed(TQ) =N-A- [Kn - ’I"n(Tl,TQ)} 5
which is reversed for the party paying floating,
‘/float(TQ) =N-A-. [Tn(Tla T2) - Kn] = *‘/ﬁxed(TQ)-

These expressions give the payoff of contract, i.e., its value at time 7». However,
the payoff is actually determined at time 7%, when the spot rate 7, (77, T3) is
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observed. Hence, a contract may also be arranged so that the cash flow takes
place at time 77, in which case the payoff will be discounted using the spot rate
Tn (T1 s TQ ) .

Now, there are two related questions, which are common with forward con-
tracts on other assets:

= How can we define a fixed rate K,, such that the fair value of the contract
at time ¢ = 0 is zero?

* What is the value of the contract at a generic epoch 0 < t < T;?

As we show in the following, we already know where to look for the first an-
swer: We just use forward rates defined in Section 3.7 and set K,, = f,, (0,77, 7T%).
However, we need something more to answer the second question. We illustrate
two views. The first one is based on hedging/replication arguments and will
also prove essential when dealing with options. The second one decomposes
the FRA into two bonds. We will meet again both views when dealing with
interest rate swaps later in this chapter.

The value of an FRA may be needed to assess the market value of a port-
folio including an FRA, according to marking-to-market principles. Further-
more, it may be useful, for instance, to determine the fair value at which the
two counterparties could agree to cancel the contract, or to assess the loss in
case of bankruptcy of a counterparty. We should keep in mind that FRAs, as
well as swaps, are of a different nature from eurodollar futures. The latter are
liquid futures contracts, easily closed out by reversing the position. FRAs and
swaps, just like forward contracts written on other underlying assets, are OTC
contracts.

4.2.1 A HEDGING VIEW OF FORWARD RATES

In Section 2.3, we have used a replication argument to price an option. The
idea is related to hedging risk away by synthesizing a position that eliminates
a given risk exposure. We may apply the same principle to deal with an FRA.
Consider a firm that will have to borrow a given amount of money NV for a time
interval [Ty, T»] in the future. As before, let A = T5 — T} be the length of the
time interval and n = 1/A be the corresponding compounding frequency per
year. At time ¢t = 0, the future spot rate r,, (17, 73) is not known and the firm
faces interest rate risk, since the current spot rate can increase. The firm may
hedge this risk away by contracting an FRA, whose rate is locked now, with a
bank. But what is the fair rate K, that the firm and the bank should agree on (if
we do not consider credit risk)?

Let us take the viewpoint of the bank. The bank is subject to interest rate
risk, because the actual spot rate r, (77, T>) may well be different from the
agreed rate. What the bank does not want to do is collecting the necessary
amount N at time ¢ = T} from another bank, as this may occur at a bad moment
(i.e., when the spot rates are larger than the contracted fixed rate). And even if
the bank has that money, it might lose more valuable investment opportunities
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N-[1+A-K,]
N A
A
% 5 =
0 lﬂ T,
N v

—N-Z(0,T,)/ Z(0,T,)

FIGURE 4.1 Hedging a forward contract.

if interest rates rise. From the bank’s viewpoint, two cash flows will occur in
the future:

= At time ¢t = T} the bank will see a negative cash flow —N, i.e., it will
lend N to the firm.

= At time ¢t = T5 the bank will see a positive cash flow
N- [1+A-Kn], 423)

i.e., it will receive the capital back, plus earned interest.

These cash flows are depicted in Fig. 4.1 as continuous arrows. In order to
hedge those two cash flows now, in such a way that there is no uncertainty at
all, the bank should synthesize opposite cash flows (the dashed arrows in Fig.
4.1), offsetting those of the trade with the firm. How can it achieve this aim?

To begin with, if the bank wants to synthesize a positive cash flow IV at
time 77, it may buy a zero-coupon bond with face value N maturing at 7;. If
we assume, for the sake of convenience, zeros with unit face value, we may
think of buying /V unit zeros. The price of these bonds now is

N -Z(0,Ty),

which corresponds to a negative cash flow for the bank at ¢ = 0. Now the bank
should offset this negative cash flow at time ¢ = 0, so that the initial net cash
flow is zero. Furthermore, it has to offset the positive cash flow at time 75,
resulting from the trade with the firm. The solution is selling a zero maturing
at time 75. Since the price now of $1 at time T is the discount factor Z (0, T5),
and the cash flow at time zero (to buy the bond maturing at 77) is —N - Z (0, Ty),
the bank may sell

N -Z(0,Ty)

Z(0,T»)

units of the zero maturing in 75. Note that this amount is nondimensional, as it
measures a number of unit zeros traded. If we imagine multiplying the amount

(4.4)
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in Eq. (4.4) by the bond face value, $1, this is the money that the bank will have
to pay at time 75 to the bondholders, a negative cash flow. If the hedge has to
work, this must exactly offset the cash flow given in Eq. (4.3), i.e., the positive
cash flow at time 75 resulting from the trade with the firm. The hedge is perfect
if

Z(0,Tv)
N - [1 A'Kn} =N.Z22Y
! 7(0.1)
which implies
1 Z(0,T3)

1+A K, Z(0,T1) 4-5)
As a quick reality check, observe that the ratio on the right-hand side of Eq.
(4.5) should be less than 1, and in fact Z(0,T») < Z(0,T}), since T; < T.
Furthermore, the ratio on the left-hand side has the typical form of a discount
factor. If we rearrange Eq. (4.5) slightly,

1
Z(0,Th) - TTA K, Z(0,T),

we see a clear message: If we discount from 75 to 77, and then from 73 to now,
t = 0, we must get the same value that we find when discounting directly from
T5 to now. This sounds suspiciously like the kind of argument that we have
seen when we introduced forward rates in Section 3.7. The only difference is
that now we are discounting cash flows, moving them backward in time rather
than moving them forward to see capital growth, but this is inconsequential.
Indeed, in Section 3.7.3 we introduced a forward discount factor, F'(¢t, Ty, T»),
and by comparing Eq. (3.50) with Eq. (4.5), we see that the fixed rate K,, must

be such that )

1+A-K,
Note that discount factors, unlike rates, do not depend on whatever compound-
ing we use. If we use discrete compounding with frequency n, we find

= F(0,T1,T3).

Kn = fn(O»TlaTQ)a

i.e., the fixed rate must be the current forward rate for the tenor of the FRA. If it
is convenient, we may also use the equivalent rate f(0, T3, T%) with continuous
compounding. Indeed, we find ourselves again on familiar ground, if we express
discount factors in terms of continuously compounded rates,

67T2-7‘(U,T2) Z(O,TQ)

— o (T2=T1)-f(0,T1,T2) _ _
F(O’leTQ) € e—T1-7(0,T1) Z(O,Tl)’

which implies the known relationship between spot and forward rates,

Ty - r(0,T5) — Ty - (0, T
£0.77, 1) = 2 ;) o 0.1 (4.6)
2 — 41

Using this kind of hedging argument may seem a useless complication. Af-
ter all, we find something that was easily obtained by linking spot rates with



4.2 Forward rate agreements 213

forward rates by no-arbitrage. However, this approach allows us to answer the
second question: What is the value of an FRA contract after its inception? The
two bonds form a hedging portfolio with zero value at ¢ = 0, as the bank buys
and sells zeros in such way that the net cash flow at times ¢ = 0 is zero. Neglect-
ing the nominal value N, the value of the portfolio at time ¢ is related to a long
position in one zero maturing at 77 and a short position in Z(0,71)/Z(0,Tz)
bonds maturing at T5:

Z(0,T
1 2(T3) - Z - 20.T5), @)

where we write “1” explicitly to point out that we are using one bond with price
Z(t,Ty) and Z(0,T1)/Z(0,T) bonds with price Z(¢,T5). These numbers of
bonds in the hedge do not change over time, but the bond prices do change and
depend on ¢. The initial value is (somewhat trivially) zero when ¢ = 0, but it
will change as time goes by and interest rates move randomly.

It is interesting to rewrite Eq. (4.7) in terms of discretely compounded for-
ward rates, in order to get a better feeling, consistent with market practice:

1-Z(t,Ty) —

01 [LE

1 1

=Z(t,Tp) - {F(t,ThTQ) B F(o,Tl,Tz)]

=Z(t,T2) - 1+A- fut,T1,T2) =1 = A f,(0,T1,T3)]

= Z(t,To) - A [fo(t, T1, o) — fn(0,T1, T5)] . (4.8)

Equation (4.8) gives the value of an FRA with unit nominal value from the view-
point of the floating payer, at a time ¢ < T;.> Remember that, in our motivating
example, the bank pays floating to the firm. The value for the fixed payer is ob-
tained by changing the sign, and for a generic nominal we just multiply by V.
To interpret the result, we note that the value is obtained by evaluating the future
payoff, which is uncertain and will be known only at time 77, by replacing the
future spot rate r,, (11, T5) with the forward rate f,, (¢, 71, T); the payoff is then
discounted from time 75 back to time ¢. Thus, we are using the forward rate as
if this were a predictor of the future spot rate, which is a nontrivial result. The
discussion about the pure expectation hypothesis in Section 3.7.4 showed that
forward rates do not really predict spot rates; here, we use them in this manner,
but only for valuation purposes.

3The value of the contract for ¢ € [T, T>] is trivially found by discounting the payoff, which is
set at time 74 and received at time T5.
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4.2.2 FRAs AS BOND TRADES

To find the value of an FRA, we may also use another clever trick, which we
will meet again when dealing with swaps. The idea is to add the payment of the
notional to both legs of the FRA. Clearly, this does not change the net payment
in any way, but it allows us to recast the FRA as a difference of two bonds, a
fixed- and a floating-rate one. The payment on the fixed leg, for a fixed rate K,
is

N- [1 TA. Kn},

and its value at time ¢ < 75 is obtained by straightforward discounting,
Vired () = Z(1,T3) - N - [1 +A- Kn]
The payment on the floating leg is only known at t = 711,
N1+ 8, m)],

but we may find its value at time ¢ < 77, by using the same approach that we
used in Section 3.5.6 to price a floating-rate bond. Its value at 77 is just the face
value,

Z(T1,Ts) - N - [1 YA rn(Tl,Tg)} — N,

since, on the left-hand side, we have the product of two random terms canceling
each other. Thus, the value of the floating leg at time ¢ < T is

Wloat(t) = Z(tyTl) -N.

The value of the FRA, from the viewpoint of the floating payer, iS Viixed(t) —
Vioat(t). By using, once more, the link between discount factors and forward
rates,?

_ Z(taTl)
1+Afn(t7Tl7T2)_ Z(t,TQ)’ (49)
the FRA value may be rewritten as follows:
Vfixed (t) - Vfloat(t)
=N-[Z(t,Tz) - (1+A-K,) - Z(t,T1)]
_ Z(t,T)
=N-Z(t,Ts) [(1+A-K,) Z.T)
=N-Z(tT) [(1+ A Ky) = (1+A- fult, 1, T2))]
=N-Z(t,Ty)- A [K, — fult, T1,T2)]. (4.10)

By setting the value of this contract to zero at ¢ = 0, we find again the condition
K, = fn(0,T1,T,). For a later time 0 < ¢ < T3, disregarding the nominal
value N, we find the same result as Eq. (4.8): We have to replace the unknown
future spot rate r,, (77, 73), in the formula for the payoff of a forward contract,
by the current forward rate f,,(t,T1,T5).

4See Section 3.7.3 on forward discount factors.
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Table 4.1 Sample evolution of a term structure.

Time to maturity 7 7(0,7)  r(0.25,0.25 + 7)

T=0.25 3.0% 3.1%
7 =0.50 3.2% 3.3%
T=0.75 3.5% 3.7%
7 =1.00 4.0% 4.1%

4.2.3 A NUMERICAL EXAMPLE

An FRA with a nominal value of $100 million is agreed at ¢ = 0 for the semester
(0.5,1). A set of continuously compounded rates for various maturities is given
in Table 4.1. The table shows the known term structure at time ¢ = 0, as well as
one possible future scenario at time ¢ = 0.25. We want to answer the following
questions:

1. What is the payment on the fixed leg?

2. If the term structure after three months is the one shown in the rightmost
column in Table 4.1, what is the value of the FRA for the fixed payer?

The first step is finding the fixed payment, which means finding the semian-
nually compounded forward rate f>(0,0.5, 1), using Eq. (4.6). Then, in order
to apply Eq. (4.10), we also have to find the relevant forward rate after three
months, i.e., f5(0.25,0.5,1).

The current continuously compounded forward rate for the time interval
[0.5,1] is

1 x7(0,1) — 0.5 x 7(0,0.5) _ 0.04 — 0.5 x 0.032
1-05 h 0.5

which corresponds to f2(0,0.5,1) = 2 x (e25x0-0%8 — 1) = 0.04858064. The
fixed payment is therefore determined as

= 4.8%,

£(0,0.5,1) =

100 - 10% x 0.5 x 0.04858064 = $2,429,032.

At time ¢ = 0.25, we need to recalculate the new forward rate f2(0.25,0.5,1)
for the tenor [0.5, 1]. Note that three months have elapsed, and now the relevant
spot rates are

r(0.25,0.5) =3.1% and r(0.25,1) =3.7%,
which implies

0.75 x 7(0.25,1) — 0.25 x 7(0.25,0.5)

0.75—0.25

0.75 x 0.037 — 0.25 x 0.031
_ X = x — 4.0%,

£(0.25,0.5,1) =




216 CHAPTER 4 FRAs, Interest Rate Futures, and Vanilla Swaps

which corresponds to
£2(0.25,0.5,1) = 2 x (e%7%0%% — 1) = 0.04040268.

Now, from the viewpoint of the fixed payer, the FRA value after three months
is

Viioat (0.25) — Viixed (0.25)
= N x Z(0.25,1) x (0.75 — 0.25) x [f2(0.25,0.5,1) — £2(0,0.5,1)]
= $100 - 108 x ¢~ 0-75%0-037 » 0.5 % [0.04040268 — 0.04858064]
= —$397,706.86.

The result we find may look counterintuitive: There is an increase in the
whole term structure, which should be good news to the fixed payer, who re-
ceives the floating rate. Nevertheless, her position is losing value. The puzzle
may be explained by considering that in the pricing equation, the forward rates
are used as if they were predictors of future spot rates. The forward rates im-
plied by the initial term structure suggest an increase in the spot rates, which
does indeed take place after three months, but by a lower amount than pre-
dicted. If we denote by 7o(T7, 1) the “forecast” at time ¢ = 0 of the future spot
rates at time 77 with maturity 75, we see that

0.5 x 0.032 — 0.25 x 0.03
0.5—-0.25

70(0.25,0.5) = £(0,0.25,0.5) =

=0.034 > 0.031,
0.75 x 0.035 — 0.25 x 0.03
0.75 — 0.25

70(0.25,0.75) = £(0,0.25,0.75) =

= 0.0375 > 0.037,
1 x0.04 -0.25 x 0.03

70(0.25,1) = £(0,0.25,1) = —

= 0.04643 > 0.041.

Furthermore, the forward rate for the time period [0.5, 1] goes from 4.858% at
time ¢ = 0 down to 4.0403% at time ¢ = 0.25.

The reader may also note that, in this case, we do not really need the semi-
annually compounded forward rates, since we could use the continuously com-
pounded ones to find the fixed payment directly:

100 - 10% x (%7008 — 1) = $2,429,032.

The message is that, if we want to find the value of an FRA where the fixed rate
is quoted according to market practice, we must be careful about compounding.

4.3 Eurodollar futures

In this section, we briefly outline one kind of futures contract written on interest
rates. We defer a discussion of futures contract on bonds to Section 5.3.2, as
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they involve some important institutional details. A bond futures depends in a
nonlinear way on interest rates through the bond price, i.e., the price of a traded
asset; eurodollar futures are an example of a linear contract directly defined
on interest rates, which are not traded assets. We consider eurodollar futures
because they are widely traded and practically relevant, and they also give us the
opportunity of discussing a fundamental point: the difference between futures
and forward rates.’

The term eurodollar may be misleading, as it has nothing to do with forex
markets. By eurodollars we mean US dollars deposited on a non-US bank ac-
count. Eurodollar futures are very liquid and actively traded futures, whose
underlying variable is the three-month LIBOR on dollar deposits. Interest rate
futures are available for other currencies as well, based, e.g., on EURIBOR or
Euro LIBOR. They can be used:

= To lock interest rates for future time periods
= To change the risk exposure of a fixed-income portfolio

» To speculate on interest rate movements

Contract maturities are standardized (March, June, September, December) up
to ten years in the future.® Contracts are also available for the other months, but
only short-term ones (i.e., within the current year). The nominal contract size is
$1,000,000, to which the futures rate is applied over a three month period (0.25
years).

Let L (t, T, T + 0.25) be the LIBOR futures rate at time ¢, with quarterly
compounding, for the time interval [T, T + 0.25]. This futures rate, not to be
confused with the forward rate, is implicit in the quoted futures price. In fact,
the quote does not give the rate directly, but implicitly. The futures quote at
time ¢ is given as

100 x [1 — L (¢, T, T + 0.25)].

For instance, if the quoted futures price when taking a position in the contract
is 97.22, the related futures rate is

100 — 97.22
f = - =
L 100 2.78%.

Also note that a change of 1 basis point in the underlying futures rate implies a
price change of $25, since

1,000,000 x 0.0001 x 0.25 = 25.

Let us illustrate this point with an example.

SThis is a more general point concerning the relationship between forward and futures prices.
As we shall see later, it can be shown that they should be the same under the assumption of
constant interest rates. Clearly, this assumption is nonsensical when dealing with interest rate
derivatives.

SFor further details, see http://www.cmegroup.com/trading/interest-rates/
stir/eurodollar_contract_specifications.html
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@ Example 4.1 Daily cash flows in eurodollar futures

Let us consider a scenario in which the settlement price at the end of
day k is 99.28. Suppose that the settlement price at the end of day k+1
was 99.33, which implies a drop of 5 basis points in the underlying
futures rate. Then, at the end of day k + 1, the long position gains
$125.

We recall that, in forward and futures contracts, the long position gains
from an increase in the forward/futures price. Thus, if the quote increases,
as in Example 4.1, the long position makes a profit, which means that the long
position gains when interest rates fall. Hence, a long position may hedge against
a fall in interest rates. The short position has an opposite exposure.

L) Example 4.2 Locking rates by eurodollar futures

To see how, in principle, an investor can lock an interest rate for a fu-
ture time interval [T, T + 0.25], imagine that she takes a long position
in one contract when the quote is 97.22 (futures rate is 2.78%). If the
spot rate at maturity is 2.5%, the final settlement futures price will be
97.50, and if we disregard the time value of the daily cash flows, the
net gain will be

$25 x (97.50 — 97.22) = $700.

She will invest $1,000,000 at the spot rate 2.5% for three months,
earning
$1,000,000 x 0.025 x 0.25 = $6250.

Adding the $700 profit from the futures position, she earns a total of
$6950 and, apparently, she has the same gain as with a locked rate of
2.78%,

$1,000,000 x 0.25 x 0.0278 = $6950.

However, we have disregarded the possibility of investing daily prof-
its (and the need of financing daily losses) due to marking-to-market
of futures contracts. In other words, we are considering the futures
contract as a forward.

For short time periods, it may be the case that the difference between futures
and forward rates is not quite remarkable but, when dealing with an extended
period of time, the difference cannot be disregarded. To see why, let us consider
a contract with a payoff related to the difference (77, 7>) — K, where K is a
contracted rate (forward or futures).
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1. When marking-to-market is applied, intuition suggests that positive cash
flows will be realized when interest rates rise; these are daily cash flows,
and they can be immediately reinvested at higher rates. On the other hand,
if interest rates drop, negative cash flows will occur; however, they may
be financed at a lower rate. This makes marking-to-market a welcome
feature with respect to a forward. Hence, due to demand—offer mecha-
nism, the contracted rate K for a forward contract will tend to be smaller
in order to make the forward contract more attractive and compensate for
the lack of marking-to-market.

2. Furthermore, a forward contract is essentially settled at time 75 (even if
the contract is settled before, at time 77, the payoff is just the discounted
payoff that one would earn at time 75). A futures contract with the above
payoft, which is settled at time 77, is preferable to a contract settled at 75.
This has the effect of reducing the forward rate, too.

The above argument is purely intuitive, but the difference between forward and
futures rates (as well as between forward and futures prices for contracts on an
underlying asset or commodity) may be analyzed by using the tools of stochastic
calculus that we shall cover later. We just reinforce the intuition by mentioning a
correction that can be used to recover forward rates from observed futures rates.
The corresponding forward rate may be obtained by a “convexity correction.”
One such correction (related to the Ho—Lee model, which is a short-rate model
based on stochastic differential equations) is

1
F(0,T1,T5) = 74 (0,11, To) — 3 o*Th Ty,

where rates are continuously compounded and o is the volatility of short-term
rates. We refrain from discussing the correction in any detail, but we point out
the intuition: The forward rate tends to be smaller than the futures rate, and
the difference is significant when volatility is large and for long maturities. On
the contrary, when volatility is zero, there is no difference between forward
and futures rates. Indeed, as we mentioned before, forward and futures prices
should be the same in the case of constant interest rates, as we shall prove in
Section 12.2.

A further consequence of daily marking-to-market is that, in general, a
hedge based on futures contracts is more difficult to set up than a hedge based
on forward contracts. For long maturities, the strategy should be dynamically
adjusted by tailing the hedge (this will be further discussed later in Section
12.3.4).

We should also keep in mind the institutional side of the coin: Futures rate
may be easily recovered by observing quite liquid exchange-traded securities.
On the contrary, FRAs are over-the-counter contracts. Forward rates are implied
by the term structure, which may be estimated on the basis of observed fixed-
income asset prices, as we have discussed in Section 3.5.2. However, we recall
that liquidity issues and other distortions may complicate this task.
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FIGURE 4.2 An illustration of swap cash flows.

4.4 Vanilla interest rate swaps

A vanilla interest rate swap is an agreement between two counterparties that will
exchange periodical cash flows expressed as an interest on a nominal amount
N. There are two legs in the swap:

= The fixed leg, associated with cash flows related to a fixed interest rate

= The floating leg, associated with cash flows related to a floating interest
rate

To understand the swap mechanics, please refer to Fig. 4.2:

» Interest rates will apply to time periods [T;_1,7;], ¢ = 1,...,m. We
assume, for the sake of simplicity, that A = T; — T;_; is constant and
independent from i, but this is not the necessarily case in real life. Rates
are assumed to be compounded n = 1/A times per year, where usually
n=2orn=4.

= At time ¢t < Tj the contract is arranged and a fixed rate K,,, the swap
rate, is established. If ¢t < T}, we speak of a forward-start swap contract.
If t = T}, we have a spot-start swap, which is the only case we consider

here.

* The floating rate will be reset at time instants 7y, 71, ..., T;,—1, Where,
for instance, the LIBOR rate L,,(T;_1,T;) is observed.

» Payments will occur at times 71,75, ...,T,,, when the floating rate is

also reset (with the exception of 7;,,). On the floating leg, a payment
L,(T;—1,T;) - A - N is made at time 7;. On the fixed leg, a payment
K,, - A - N is made at time T;.

The two cash flow sequences are illustrated in Fig. 4.2. Needless to say, for the
sake of convenience, only the net difference of the two cash flows is paid. Here
we only consider this extremely simple swap agreement, but in practice there
are many variations on the theme.” For instance, the frequencies of the fixed and
the floating leg need not be the same; we assume so for the sake of simplicity.
As a matter of fact, there is a huge market of interest rate swaps, which, like any

7See Section 5.3.1.
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derivative, may be used to change the nature of assets or liabilities, to speculate
on interest rates, or to hedge interest rate risk.

There are two basic questions, which we have already considered when
dealing with FRAs: How is the fixed rate K, chosen at the inception of the
contract, and how can we find the fair value of the contract at a later time?
We may answer both questions by finding a way to value a swap contract, and
then enforcing an initial value zero, just like we did with FRAs. There are two
equivalent ways to value a vanilla interest rate swap:

1. As the difference of a fixed- and a floating-rate bond (which requires in-
cluding a fictitious payment of notionals at maturity 7,).
2. As a portfolio of FRAs with a range of maturities, 77, ..., Ty,.
The first approach is, in a sense, a horizontal decomposition of the cash flows in
Fig. 4.2, where floating-rate flows are drawn on the upper side of the figure, and
fixed-rate flows are on the lower side. On the contrary, using FRAs is a vertical
decomposition with respect to time, resulting in pairs of cash flows occurring at

the same time instant. These two approaches mirror those we have discussed in
Sections 4.2.1 and 4.2.2, respectively, and have advantages and disadvantages:

« If the payment frequency is not the same on the two legs, we cannot use
the approach based on a sequence of FRAs.

» However, when dealing with forward-start swaps, using FRAs may be
more natural.

4.4.1 SWAP VALUATION: APPROACH 1

Let us assume that we want to value the swap at time ¢, Ty < ¢t < 77, when m
payments are still due. The value of the fixed leg is the value of a fixed-coupon
bond,

m
Piea(t, T) = N - |> K- A-Z(t,T) + Z(t,T) | -
i=1
Note that we include a fictitious payment of the notional amount at maturity
T = T,,, which is not going to occur, as it is exactly offset by the same payment
on the floating leg. The value of the floating leg is the value of a floating-coupon
bond, where the first coupon is related to the already observed rate L., (1o, T1):

]Dfloat(t7T) = Z(tyTl) N - [1 + Ln(T()a Tl) : A] :
The swap value, from the fixed payer viewpoint, is
Pﬂoat(ta T) - Pfixed (tv T)

If we consider the initial swap value, at t = T, the swap rate is chosen in such
a way that the initial swap value is zero:

Pixed (T07 T) = Pf|oat(T07 T) = N.
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Table 4.2 Term structure for Example 4.3.

Time to maturity ~ Spot rate (0, )

T=0.5 2.3%
T=1.0 2.6%
T=15 2.8%
T=20 3.0%

The swap rate is then found as a solution of the following equation:

m
N\ Kn-A-Z(To,Ti) + Z(To, Trn) | = N,

i=1
which yields
1 1-Z(To,Tm
anf-#. 4.11)
A
Z Z(TOa E)
i=1
The swap rate is essentially a coupon rate such that the fixed-coupon bond sells

at par. This rate is also called the par yield. This swap rate is quoted by dealers
(with a bid—ask spread) for various maturities.

L

Example 4.3 Finding the swap rate

The current term structure of (continuously compounded) interest rates
is given in Table 4.2. We want to find the swap rate for a contract ma-
turing in two years with semiannual payments.

To find the swap rate, let us assume a nominal value of 1 (which
is actually irrelevant) and solve the equation

% x (e705X0028 4 (—1x0.026 | (—15x0.028 4 =2x0.03)
4 672><0‘03 — 17

which yields
K> ~ 3.015%.

Clearly, we may just apply Eq. (4.11) and find the same result. The
swap rate K, with semiannual compounding corresponds to K =
0.0299 with continuous compounding.
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Table 4.3 Term structure for swap valuation in Examples 4.4 and 4.5.

Time to maturity ~ Spot rate (0, )

T=0.25 4.3%
7T=0.75 4.7%
T=125 5.0%

@ Example 4.4 Swap valuation

A swap was agreed in the past, with swap rate Ko = 6% and a no-
tional of $100 million. A payment occurred three months ago, and
the LIBOR rate was reset to 5%, with semiannual compounding. Pay-
ments will occurin 3, 9, and 15 months, and the current term structure
of (continuously compounded) rates is given by Table 4.3. We want
to find the swap value from the fixed payer viewpoint.

Let us price the fixed-rate bond first:

Pfixed —3x 6—0.25><0.043 +3x 6—0.75><0.047 +103 x 6—1.25><O.O5

= 102.6236,

where we express value in millions of dollars. The floating-rate bond
price is

Prioat = (100 + 2.5) x e~ 025%0:043 — 101 404.
Then, the swap value for the fixed payer is

Proat — Prixed = 101.404 — 102.6236 = —$1,219,534.

4.4.2 SWAP VALUATION: APPROACH 2

If we regard the swap as a portfolio of FRAs, we know that, for valuation pur-
poses, we may replace the random future spot rates by the corresponding for-
ward rates, as we have seen in Section 4.2.1. The value of the swap, from the
fixed payer’s viewpoint, is

N'A’Z [falt, Tio1,Ty) — K| - Z(8,T). (4.12)

i=1
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To show that we find the same swap value as before, let us set t = T}, decom-
pose the sum, and express the forward rate using discount factors:

m

N> [ falTo, Tioa, Th) = K| - A Z(Ty, Th)

B [ Z(Ty, T—1) G
=N (M 1> Z(Ty,T3) ;Kn A - Z(Ty, T;)

M= 1M

(Z(To, Tio1) — Z(T0,T2)) = > Kn - A+ Z(Ty, Ty)
1 i=1

(2

=N- (]_—Z(T(),Tm)) _Zm:KnAZ(TO’T%)
i=1

By setting this to zero, we find the same result as Eq. (4.11). In the second line
we use Eq. (4.9) to link forward rates and discount factors. We get to the last
line by using a telescoping sum and the identity Z (T, Tp) = 1.

@ Exam ple 4.5 Swap valuation (continued from Example 4.4)

We use the data in Table 4.3 once more, but now we need the forward
rates for the relevant maturities in order to “predict” the cash flows on
the floating leg for the second and third payment:

0.75 x 0.047 — 0.25 x 0.043

£(0,0.25,0.75) = oF = 0.049,
£2(0,0.25,0.75) = 2 x (e2:949%0-5 _ 1) = 0.04960518,

1. .05 —0. .04
£(0,0.75,1.25) = 1202005 ; 50 75X 0.047 _ ) 0545
£2(0,0.75,1.25) = 2 x (e29545%05 _ 1) = (.05524935.

The first cash flow is known, since it is related to the last observed
LIBOR rate.
Then, we calculate and discount the net “forecasted” cash flows:

100 - 106

2
+ ¢ 0-047X0.75 5 (0.04960518 — 0.06)

+ 7 %05%125 5 (0.05524935 — 0.06)] = —$1,219,534.

Vowap = x [e70-043%0-25 5 (0.05 — 0.06)

The result, of course, is the same as with approach 1.
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4.4.3 THE SWAP CURVE AND THE TERM STRUCTURE

If we consider a range of swap rates for different maturities and we plot them,
we find the swap curve. As we mentioned in Section 4.1, LIBOR rates are not
available for long maturities. If one wants to extend the LIBOR curve to long
maturities, swap rates may be used. Actually, other fixed-income securities
may be used. One possible advantage of using swap rates is that they feature
good liquidity properties and limited credit risk, the factors that may hinder the
possibility of estimating a term structure of truly risk-free rates by using plain
bonds.

M Example 4.6 Extending the LIBOR curve by using swap rates

Let us assume that LIBOR rates for 6 and 12 months are 3% and
3.3%, respectively, with continuous compounding. We would like to
find the LIBOR rate for 18 months, and we consider the quoted swap
rate for a contract maturing in 18 months with semiannual payments.
The quoted rates are

bid 3.5%, ask 3.7%,

which reflect the bid—ask spreads observed in real-life markets (see
Section 5.3.1). Let us take the average, 3.6%, as the swap rate. Note
that these rates are to be considered as semiannually compounded
and define cash flows, rather than discount factors. The swap rate is
such that a fixed-coupon bond with coupon rate 3.6%, maturing in
18 months, trades at par. Assuming an arbitrary face value of $1, we
have to solve the following equation:

1— 0.036 % 6,0.03><0,5 + 0.036 « 670,033><1
2

n <1 n 0-036> « e~ L(0,1.5)x1.5
2 )

which yields L(0, 1.5) ~ 3.575%, with continuous compounding.

Once again, we stress the fact that, in Example 4.6, we have mixed LIBOR
and swap rates as if they are both risk-free. After the credit crunch of 2008,
this practice is a bit questionable. Nevertheless, the example shows that swaps
may be used to estimate a term structure of interest rates. Indeed, even more
complicated derivatives, namely, swaptions (options on swaps), are used to this
purpose.
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Problems

4.1 The current LIBOR rates for maturities of three and six months are 4.3%
and 4.7%, respectively (with continuous compounding). We also have the fol-
lowing eurodollar futures market quotes:

Maturity  Price
6 months 94.9
9 months 94.5
12 months  94.2

Price a risk-free bond maturing in one year, paying semiannual coupons, with
coupon rate 6%. For the sake of simplicity, we ignore day counts and we assume
that all months consist of 30 days. Furthermore, we assume that there is no
significant difference between forward and futures rates.

4.2 Aninvestment bank agrees on an interest swap contract with a firm. Semi-
annual payments are arranged: the firm pays six-month LIBOR, whereas the
bank pays a fixed rate of 4% with semiannual compounding. The notional value
is €20 million and the maturity is four years. After exactly 28 months the firm
goes bankrupt and defaults. Let us assume that, when default occurs, the term
structure is flat, at 5% with continuous compounding, and that the last relevant
LIBOR observation was 7%. What is the profit/loss for the bank?

Further reading

= More information on the simple interest rate derivatives that we have dis-
cussed in this chapter can be found in general books on fixed-income
assets, like [4] and [6].

= A detailed treatment of eurodollar futures can be found in [1].

= For swaps and their variants, the reader may refer, e.g., to [2] or [3].
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Chapter [Five

Fixed-Income Markets

‘We have introduced the fundamental concepts related to interest rates and fixed—
income assets in Chapter 3. Then, in Chapter 4, we have introduced simple
interest rate derivatives that may be used, among other things, to manage in-
terest rate risk, as we shall illustrate in Chapter 6. In this chapter, we take a
short break to deal with some topics that are quite relevant for the profession.
Mathematically inclined readers may not be interested in certain nasty details
of real markets, and indeed they can skip this chapter if they are only interested
in the intellectual pleasure of quantitative models. However, there is little value
in overly sophisticated and fragile models, without any understanding of the
pitfalls and issues that are so pervasive in financial markets, especially in the
fixed-income case. Due to space constraints, we will not be able to present an
extensive picture, but it is important to get at least a feeling for some issues
that do play an important role in practice. The choice of topics is somewhat
arbitrary, and it has been made to illustrate just a few among the most essential
issues.

* When calculating interest in elementary treatments, we deal with time
measured in years or months. For the sake of simplicity, we pretend that
every month is just the same and consists of 30 days, but this is not really
the case. We have to consider the difference between months consisting
of 30 or 31 days, and possibly 28 (or 29 in leap years).! Market practice
may be rather peculiar and this leads to day count conventions, which are
discussed in Section 5.1.

Bonds may look like simple assets, whose prices can be obtained by
straightforward discounting of cash flows. However, both market conven-
tions and available assets are a bit more complex. Some additional details
on bond markets are given in Section 5.2, where we deal with actual bond
price quotes and bonds with embedded options, namely, callable and con-
vertible bonds. We also hint at the issues related to bond ratings.

'When dealing with interest accrual, Saturdays and Sundays do matter. The picture is different if
we consider equity markets, and specifically trading-induced volatility. It is common to consider
a year consisting of 250 or 252 active trading days.

229
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= In Section 5.3, we extend the treatment of elementary interest rate deriva-
tives by considering additional features of swaps and bond futures/op-
tions.

* We should not disregard money markets, i.e., fixed-income markets with
very short maturities. A relevant example is the market of repurchase
agreements (repo for short) which we outline in Section 5.4, along with
other securities that firms may use for short-term liquidity needs.

= Finally, in Section 5.5 we consider the securitization of illiquid assets to
create fixed-income securities. We outline mortgage-backed securities,
since they are a prominent example of this process and allow us to under-
stand tranching issues.

The last item in the list is quite relevant, as it opens the door to the dangerous
world of credit risk, which is beyond the scope of this book, yet cannot be
ignored.

5.1 Day count conventions

When dealing with interest rates and bond mathematics, we usually treat time in
a very straightforward fashion. For instance, if we have to discount a cash flow
with a continuously compounded rate of, say, 4%, over a three-month period,
we just use a discount factor like e~0-04%0-25 since three months amount to a
quarter of a year. However, what if the quarter includes February? Is this quarter
the same, in terms of how many days are included, as a quarter including August
and July? In real life, whenever we have to discount or calculate cash flows, e.g.,
when analyzing an interest rate swap, care is needed.

This kind of question is also relevant when dealing with accrued interest
in bond trading. Imagine that we want to buy a bond with a face value of
$10,000 and paying semiannual coupons at rate 5%. The settlement date is
April 20th, year ¢, and the bond matures in two years, on September 15th, year
t + 2. Assuming semiannual coupons, the last coupon (2.5% of the face value,
i.e., $250) was paid on March 15th, and the next one will be paid on September
15th. Hence, the current bondholder is about to sell the bond, but she has kept
the bond in her portfolio for more than one month: How much of the next
coupon payment is she entitled to? The easy answer is that we should prorate
the interest rate of the whole period, a semester, in proportion to the fraction of
the period that has elapsed from the last coupon payment. Using simple-minded
approach, one month over six should amount to 1/6 ~ 0.1667, but by doing so
we are ignoring exact day counts. The actual number of days elapsed from the
last coupon payment is 36 (the last 16 days of March, plus the first 20 days of
April). The number of days between March 15th and September 15th is 184,
hence, one possible answer is

36
2 — =~ $48.91. 1
$50><184 $48.9 (5.1)
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In doing so, we have used one of the possible day count conventions, which is
based on the ratio of actual number of days. However, there are other possibili-
ties, as one may consider a year consisting of 12 months of 30 days, a practice
that made life much simpler when computers were not available. Among the
possible day count conventions, we mention:

1. Actual/Actual, which yields the result of Eq. (5.1).
2. 30/360, in which case the above calculation would be

35
2 — =~ $48.61.
$50><180 $48.6

In this case, we consider equal months consisting of 30 days and a year
consisting of 360 days.

3. Actual/360, in which case the above calculation would be
36
250 x — = $50.00.
5250 x 755 =¥

As we notice, the impact of different conventions is not quite negligible. Actu-
ally, there are other possibilities, and we must also pay attention to leap years.
Hence, we must be careful and keep in mind that different kinds of bonds, e.g.,
treasury vs. corporate, are subject to different conventions.

The careful reader might object that computing accrued interest is not re-
ally needed. If the bond is traded between two coupon payments, all we have
to do is to properly discount cash flows by the selected day count convention.
However, we should consider the fact that the market price is determined by
factors, such as liquidity, which are not quite addressed by simple pricing for-
mulas. Furthermore, as we discuss in Section 5.2, quoting bond prices requires
setting the accrued interest apart from the actual bond price.

Last but not least, day count conventions play an important role in several
interest rate derivatives, as they contribute to determining the payoff. Strange
as it may sound, the misspecification of the payoff in interest rate derivatives is
a potential danger and is one of the facets of model risk.

5.2 Bond markets

Bonds, like stock shares, are first issued on primary markets, possibly with the
support of investment banks acting as underwriters. They are then traded on
secondary markets, on which they may be more or less liquid. The procedure
to issue bonds on primary markets is typically based on auctions, whose details
may differ, depending on the nature of the bond (e.g., treasury vs. corporate).
While bonds may look quite simple, when compared with exotic derivatives,
they come in a variety of forms and may be classified according to the following
criteria:

Issuer. As we have already mentioned, the issuer may be a central government
(for treasury/sovereign bonds) or a corporation (corporate bonds), but there
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are alternative issuers, like municipalities or other public agencies. The
kind of issuer may have an impact on taxation rules, as well as day count
conventions.

Maturity. Short-term bonds are usually zero-coupon bonds, whereas long-
term bonds are coupon-bearing bonds. Long-term zeros may be synthet-
ically created by stripping coupons, however. US treasury bonds are clas-
sified according to time to maturity as follows: T-bills (maturity up to a
year), T-notes (maturities up to ten years), and T-bonds (longer maturities,
possibly thirty years). The market for short-term securities is called money
market, whereas the term capital market refers to securities with longer
maturities. There are other money market instruments, like banks’ cer-
tificates of deposit, banker’s acceptances, and repos, which we discuss in
Section 5.4.

Rules to determine cash flows. In a plain bond, cash flows are linked to a
fixed coupon rate applied to the face value. However, floaters and link-
ers are traded as well. In floaters (floating-rate bonds), coupons depend on
the current level of interest rates. Usually, the coupon rate increases with
interest rates, as it may be given by the six-month LIBOR L{ ., observed
at each reset date, plus a spread. In reverse floaters, the coupon rate is
reduced by an increase of rates and it may be given as

maX{Oa K - LB.S}a

to preserve non-negativity. With linkers, the coupon rate may depend on
some other reference quantity, possibly linked with equity markets. A quite
relevant example is an inflation-indexed bond, where the face value (and,
as a consequence, the coupons) is indexed by the inflation rate. A TIPS
(treasury inflation-protected security) is an example of inflation-indexed
bond.

Embedded options. As we discuss in Section 5.2.3, bonds may have embed-
ded options, like the possibility of early repayment of face value by the
issuer (callable bonds) or the possibility of conversion to equity (convert-
ible bonds). These should not be confused with options written on bonds.

Collateral. The price of a bond depends not only on interest rates, but also on
the credit rating of the issuer. When default is a possibility, we cannot dis-
count cash flows using a risk-free rate. However, the rating does not only
depend on the issuer, as bonds may have different provisions for a collat-
eral, as well as the specification of a “pecking order” in case of default.
Senior bonds are relatively protected against default, whereas subordinated
debentures have a lower degree of protection for the investor. Issuers’ as-
sets are first used to pay senior bondholders in case of default, and they may
not be sufficient to pay holders of subordinated bonds. These features are
specified in bond indentures. Needless to say, subordinated bonds offer a
higher yield, as they trade at a lower price than senior bonds.
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5.2.1 BOND CREDIT RATINGS

Corporate and sovereign bonds are debt instruments, subject to default risk. In
the event of default, the bond issuer (often referred to as obligor) will fail to
repay a part or the whole of his debt. Statistical modeling of loss given default
(LGD) is an active research area. In order to help investors in assessing the
creditworthiness of a bond issuer, rating agencies like Moody’s and Standard &
Poor’s associate a credit rating with each bond, assessing the ability of obligors
to meet their repayment obligations.

Each rating agency has a rating scale. For instance, the Standard & Poor’s
scale includes credit ratings like the following:

= AAA, which corresponds to the prime grade.
* AA+, AA, AA—, the high grade bonds.
* A+, A, A—, and BBB+, BBB, BBB—, medium grade.

These ratings correspond to investment grade bonds. Down the scale we meet
ratings from BB+ to B—, which are flagged as non-investment grade and spec-
ulative. The rating CCC flags risky bonds, and ratings beginning with a D are
reserved to bonds in default.

Non-investment grade bonds are also referred to as high yield, since their
relatively low price is associated with higher yields. Junk bonds are quite spec-
ulative, and some institutional investors are forbidden to include them in their
portfolio. Credit derivatives, like credit default swaps may be used to insure
bonds against defaults.

5.2.2 QUOTING BOND PRICES

Imagine that the (ask) price of a bond with face value $1000 is quoted as 112.08,
which must be interpreted as a percentage of face value. Does it mean that we
have to pay $1120.80 to buy that bond? The answer is not quite so simple. To
begin with, we must be aware of market conventions. For instance, US treasury
bonds are quoted in 32nds, so that 0.08 does not really mean 8 cents, but rather
$8/32 = $0.25. Leaving this issue aside, the quoted price does not include the
accrued interest related to the next coupon to be paid. The current bondholder
is entitled to some fraction of the next coupon, as she held the bond for the
corresponding fraction of the time period on which interest accrues. The quoted
price is just the clean price, whereas the actual cash price is called dirty price
and is obtained by taking into account the time elapsed from the last coupon
payment.

W Example 5.1 Dirty vs. clean bond price

Let us consider a bond paying semiannual coupons with 6% coupon
rate on a face value of $1000, which means that the bond pays $30
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every six months. Let us ignore day count issues, for the sake of
simplicity, and assume that the last coupon was paid two months ago.
Accrued interest is obtained by prorating the next coupon as follows:

2
$30 x i $10.

If yield is lower than the coupon rate, the bond shall trade at premium,
say, at a quoted price of 112.08. Thus, the cash price would be

Clean price + Accrued interest = 1120.80 + 10.00 = $1130.80.

In practice, this calculation should be carried out according to the
relevant day count convention pertaining to the specific bond at hand.

Setting the accrued interest component apart makes sense because it is
money that the bondholder is entitled to. However, one could just discount
cash flows properly and this would account for everything, so why should we
quote the clean price? The plots in Fig. 5.1 help to explain why this is conve-
nient. Whenever a coupon is paid, we observe a jump in the bond price, since a
cash flow is eliminated from the cash flow sequence that gives the bond price.
The figure shows the effect for two bonds trading at premium and at discount,
respectively. When the bond trades at premium (the case on the left in Fig. 5.1,
where the coupon rate is larger than yield-to-maturity), we observe a decreasing
lower envelope, to which a jagged price path is superimposed. When the bond
trades at a discount, the lower envelope is increasing. Bond price jumps may
also be observed because of shocks related with interest rate and credit risk,
which may be a good reason for concern, whereas a jump due to a coupon pay-
ment is physiological. The clean price eliminates these “natural” jumps, so that
they are not confounded with the effect of true risk factors.

When dealing with short-term zeros, like T-bills, still another convention
may be used. Suppose that the quote for a T-bill maturing in three months (90
days) is 4.90. Clearly, this is not the bond price. Short maturity bonds may be
quoted in terms of a bank discount with respect to the face value. The bill’s
discount is annualized on the basis of a 360-day convention, and this is then
reported as a percentage of par value. This means that the actual bank discount
for this T-bill is

90
4. — =1.22
90% x 360 5%,
and a bond with $10,000 par value could be purchased for
$10,000 x (100% — 1.225%) = $9877.50.

In real life, a dealer may quote two discounts, reflecting bid—ask spreads. For
instance, the relevant discount, if we want to sell a bond, could be 4.91 (which is
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FIGURE 5.1 Plot of clean (dashed line) and dirty (continuous line) bond prices. Time-
to-maturity is five years, yield is 5%, and coupon rate is 7% (left) and 3% (right). On the
horizontal axis, time is expressed in days.

larger). This quoting approach is a traditional method, with a few shortcomings.
In fact, it is based on a 360-day convention, which does not reflect the exact
return for the investor. For the T-bill we are considering, the return over 90 days
is
$10,000
$9877.50

which can be annualized as

—1=1.01240 — 1 = 1.24%,

365
1.24% x 90 = 5.03%.
In this book, we will not consider all of these difficulties, but they are relevant
in the real life. Furthermore, a possible ambiguity arises when dealing, e.g.,
with options on bonds. Does the strike price refer to the clean or the dirty price
of the bond? The exact terms of the agreement must be carefully checked and
specified.

5.2.3 BONDS WITH EMBEDDED OPTIONS

Some bonds come with packaged options. This is the case with structured
bonds, where the repayment of the face value is promised, and the possibility
of a coupon depending on some other factor, like the return on an equity port-
folio, is offered. The guarantee of a non-negative coupon may be engineered
by bundling an option with the underlying bond.? Structured bonds were used
to circumvent regulation forbidding certain funds to invest in options directly.
Here, we illustrate two more examples of bonds with embedded options.

%See Example 1.12.
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FIGURE 5.2 Decomposing the trade on a callable bond.

5.2.3.1 Callable bonds

Callable bonds are bonds that can be repurchased by the issuer before maturity.
To understand the rationale behind callable bonds, imagine a firm issuing long-
term debt when yield is relatively large, say, 6%. Coupon rates will reflect the
general level of interest rates and credit spreads. Imagine that yield drops. This
is extremely good news for the bondholder, as she could sell the bond for a
large price (at premium). However, the firm will regret issuing the bond, as
now it could collect capital at a considerably smaller cost. If a call provision is
embedded in the bond, the issuer may indeed refinance the debt by repurchasing
the old bonds and issuing brand new ones, featuring a smaller coupon rate.

Hence, the bondholder is exposed to reinvestment risk and must be compen-
sated for that. Indeed, the price for a callable bond is smaller than a noncallable
one. We may understand the point by thinking that the holder of a callable bond
has a long position in the bond and a short position in a call option on the bond
itself. In other words, the bondholder implicitly sells a call option to the issuer,
as shown in Fig. 5.2.

@ Exam pIe 5.2 Finding the implicit call option price

The continuously compounded risk-free rates with maturities of 6, 12,
18, and 24 months are, respectively, 2.2%, 2.7%, 3.1%, and 3.49%. A
callable bond, with no default risk, following the usual market condi-
tions, with coupon rate 9%, maturing in two years, trades for €101.12
(face value is 100). What is the value of a call option on the corre-
sponding noncallable bond?

We notice that the bond has a large coupon rate, 9%, with respect
to prevailing rates. Indeed, the bond sells at premium, but 101.12
does not seem large enough. Indeed, the price difference between a
plain bond and a callable bond is just the value of the call (we assume
that there is no default risk). The noncallable bond price is:

4.56_0'022X0'5 +4.5€_0'O27X1 _~_4'5e—0.03><li5

+ 104.5¢70-0349x2 — 110 59,

Then, the value of the call option is 110.59 — 101.12 = $9.47.
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In Example 5.2, we have taken a simple approach to find the value of a
callable bond, assuming that there is no mispricing on markets. However, we
need pricing models to detect arbitrage opportunities and to measure and man-
age risk. As we shall see, pricing options linked with interest rates is not quite
trivial.

With a callable bond, the bondholder sells a call option; with puttable
bonds, the bondholder also buys a put option, allowing her to sell the bond
back and to collect the face value earlier. Clearly, a puttable bond is more ex-
pensive than a plain bond. A similar risk is associated with prepayment risk on
mortgages. This kind of risk affects mortgage-backed securities and requires
careful modeling.

5.2.3.2 Convertible bonds

Convertible bonds can only be issued by corporations, as they offer the possi-
bility of converting the bond to a prespecified number of stock shares of the
issuing firm, at a given price. Thus, a convertible bond includes an equity op-
tion. To be more precise, what is embedded is typically a warrant, rather than
a call option. The peculiar feature of a warrant is that a brand new stock share
is created when the bondholder exercises the conversion option. Hence, it is
immediately understood that a warrant can only be issued by the corporation
itself, rather than by an investment bank.

A convertible bond may be appealing to the issuer, as it is a way to issue
debt at a somewhat lower price, as a convertible bond is less expensive than a
plain bond. It may also be a more palatable way to raise equity since markets,
under certain circumstances, may perceive the issuing of new equity as a bad
signal. From the investors’ viewpoint, convertible bonds offer the possibility of
taking advantage of the firm upside potential, without incurring the risk of stock
trading.

5.3 Interest rate derivatives

In Chapter 4, we have considered simple interest rate derivatives, like vanilla
swaps and Eurodollar futures. In this section, we introduce more complicated
swaps, and point out important institutional details about derivatives written on
bonds.

5.3.1 SWAP MARKETS

We have seen in Section 4.4 that a swap rate may be determined in such a way
that the current value of a swap contract is zero. Swap contracts are actually
quoted by dealers (market makers), and a realistic quote on markets could be

Bid : 4.99, Ask : 5.03,
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for maturity of, say, seven years. As usual, for any security or contract, there is
a bid—ask spread. This means that if we are floating-rate payers, we will receive
a fixed-rate of 4.99%, and we will have to pay 5.03% if we are floating-rate
receivers. An alternative way to quote a swap rate may be in terms of spread
with respect to a reference bond yield. For instance, a quote like 48—51 implies
that the dealer is willing to pay 48 basis points above the bond yield, when
receiving the floating rate, and is asking 51 basis points above, when paying
the floating rate. Another practical complication is that the two payments need
not be synchronized. Payment on the fixed leg may occur every six months,
whereas payments on the floating leg may be linked to the three-month LIBOR,
in which case they occur every three months. Day count conventions must also
be specified and may be different on the two legs.
Furthermore, non-vanilla swaps are actively traded:

= The notional amount may change in time. In amortizing swaps, the no-
tional is reduced over time, whereas it is increased in accrediting swaps.

= The swap may be based on floating-for-floating payments, where the two
legs are linked to different markets and/or different maturities. This is the
case with basis swaps.

= Another example of floating-for-floating swap is a constant maturity
swap (CMS), whereby a floating rate is exchanged for a particular swap
rate. For instance, the three-month LIBOR could be exchanged for an
eight-year swap rate.

Another common kind of derivative is a swaption, i.e., an option giving the
holder the possibility of entering into a swap contract with a predetermined
swap rate at some later time.

5.3.2 BOND FUTURES AND OPTIONS
There are two broad families of derivatives related to interest rates.

= Some contracts, like Eurodollar futures, are directly written on a quoted
interest rate. Since an interest rate is not a traded asset, such contracts
specify a notional to which the interest rate is applied and are settled in
cash. Other examples of such contracts are interest rate caps and floors.
Caps and floors are portfolios of caplets and floorlets, respectively, much
like a swap is a portfolio of forwards. A caplet has payoff

N - A -max {Ln(Tl—laTl) — Kn, 0},

where N is a notional amount and L, (T;_1,7;) is an interest rate, pos-
sibly LIBOR for tenor [T}, T;_1], with the appropriate compounding fre-
quency, where A = T; — T;_1 = 1/n. The time interval up to maturity
T, is partitioned in subintervals indexed by ¢ = 1,...,m. A cap has the
effect of limiting the interest rate exposure on debt, as the derivative will
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pay any interest in excess of the cap rate K,,. The payoff of a floorlet is
N-A-max {K, — L,(T;-1,T;),0}.

* On the contrary, the underlying asset of bond futures and options is an
actual bond. Hence, the dependence on the interest rate is mediated in
a nonlinear way by the bond price, which may be also sensitive to other
risk factors. Furthermore, the contract prescribes the actual delivery of
the underlying asset, rather than being settled in cash.

The last point has important consequences, as the short position has to actually
deliver the bond, unless the contract is closed out before maturity. This raises a
set of important issues related to the risk of cornering the short positions. The
contract could be written on a specific bond, say, a certain T-bond maturing in
15 years. However, especially for relatively illiquid bonds, speculators could
purchase large amounts of the underlying assets before delivery, cornering the
holders of short positions and forcing them to buy at high prices in order to
comply with their obligations. Note that, given the variety of bonds in terms of
coupon rates and maturities, cornering would be easier to carry out in this case
than in equity markets.

Thus, rather than requiring a specific bond, these contracts specify a range
of acceptable bonds. For instance, a contract may prescribe the delivery of
a treasury bond that, when the futures matures, will have at least 15 years to
maturity and is not callable before, say, 10 years. Clearly, such bonds may
have different coupon rates and quite different prices. The short position has
the possibility of choosing the cheapest-to-deliver bond. Since not all bonds
are the same, a conversion factor is prescribed to convert the futures price into
the bond delivery price when the contract is finally settled.

5.4 The repo market and other money market
instruments

The term “money market” refers to securities and trades aimed at satisfying the
need of financial and nonfinancial firms for short-term funding. Banks in need
of short-term liquidity for treasury management may use the interbank market,
which leads to the definition of important reference rates such as LIBOR and
EURIBOR. The shortest maturity loans are related to overnight rates, which
may follow dynamics that are not quite related with the term structure of interest
rates for longer maturities.

A bank may also issue a certificate of deposit, which offers clients an inter-
est rate for a possibly short-term deposit (say, three months). A firm may issue
a banker’s acceptance, which is a debt instrument guaranteed by a bank, is-
sued as a part of a commercial transaction, and then possibly sold on secondary
markets much like a T-bill.

These securities are fairly safe, given the short time horizon, but they can-
not be considered completely risk-free, which is reflected in the interest rate
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underlying the transaction. One possibility that a borrower may use in order to
reduce the interest rate is to provide some collateral. Good collateral is liquid
and risk-free. Clearly, a corporation may offer real estate and machinery as a
collateral, but we cannot really say that these are liquid assets. Now imagine
a bank or a corporation holding some safe treasury bond. They could sell the
bond to raise liquidity, but an alternative is to use it as a collateral. A convenient
way for doing so is a repurchase agreement. Repurchase agreements are so
common that a whole market, referred to as repo market, has grown. The un-
derlying idea is fairly simple: The borrower sells a security to the lender, under
the agreement to repurchase the same security at some later time for a slightly
larger price. The difference between the two prices implies the payment of in-
terest at a rate, called the repo rate. Since there is a collateral, the transaction is
fairly safe, and the borrower may raise short-term liquidity without the need to
actually liquidate assets. To be on the safe side, the lender may request a hair-
cut, which is a reduction of the value of the collateral asset, to protect against
possible loss on the guarantee. The effect of the haircut to the borrower is to
increase the cost of raising short-term cash.

5.5 Securitization

Securitization is a way to engineer new assets by converting illiquid assets, such
as a pool of mortgages, into a tradable security. The institutional arrangements
are beyond the scope of the book,® but the general idea is that asset-backed
securities (ABS) collect the cash flows from a pool of assets and are sold as
bonds. In the specific case of a mortgage-backed security (MBS), there are
two risks that the investor is subject to:

» The prepayment risk: If interest rates drop, the homeowner may find it
convenient to terminate the old mortgage and open a new one at a lower
rate. This kind of risk is similar to the reinvestment risk of a callable
bond.

= The default risk, as homeowners may fail to comply with periodic pay-
ments.

Default risk can be diversified away by pooling mortgages, unless risks are
strongly correlated. In normal economic conditions, defaults on mortgages
are supposed to be uncorrelated. Furthermore, a default may be covered by
the house itself, which is a collateral on the loan. Unfortunately, what hap-
pened during the subprime mortgage crisis is that economic downturn resulted
in a large number of defaults, which turned out to be correlated. Furthermore,

3For instance, the bank has to set up a special purpose vehicle, SPV, to manage the cash flows
from the pool of mortgages to owners of mortgage-backed securities.
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house prices dropped. This made default a good option to homeowners,* as they
could default, give up the old home, and buy a new one at reduced prices. Thus,
loss on the collateral was sustained. Because of securitization, losses were not
sustained by reckless banks originating risky mortgages, but by the investors
holding the MBSs.

It is worth emphasizing that ABSs are sometimes improperly referred to as
derivatives. 1t is true that the value of such a security depends on something
else, but this applies to whatever security we trade, including stock shares and
bonds. ABSs should not be considered as derivatives, since this link is not
formalized by a precise mathematical formula written into a contract.

An important concept related to securitization is tranching, a mechanism
by which different securities, with different risks, are issued. The idea is that
losses are sustained by different tranches in a well-defined sequence. To keep it
simple, we may imagine that an ABS is tranched into the following three levels:

= The equity tranche, which is the first one to face any loss. For instance,
the equity tranche may have to cover the first, say, 5% of loss. The equity
tranche consists of cheap, but speculative-level securities.

» The mezzanine tranche, which has to sustain, say, the next 15% of loss.

= The senior tranche, which is supposed to be fairly safe, as it has to sus-
tain only the loss in excess of the previous levels.

This kind of arrangement is common to other securities, like collateralized
debt obligations (CDO), or credit default swaps (CDS), which are a credit
derivative. A set of names (debtors) is pooled, and a security is created that
will refund its holder in case of default. A counterintuitive feature of this kind
of assets is related to default correlation.

W Example 5.3 Correlation risk and tranching

Common wisdom suggests that increasing correlation between risk
sources has an adverse effect on investors. Actually, there may be
somewhat paradoxical results. Imagine an ABS (or a CDO), where
loss is related to default on the part of 100 debtors, and all potential
losses are the same in monetary terms. The probability of default is
2% for each debtor. Consider an equity tranche liable to pay the first
5% of defaults. What is the probability of losing the whole value of
the asset?

If default events are both equiprobable and independent, the prob-
ability distribution of the number X of defaults is a binomial random
variable, with probability 0.02 and size 100. The probability of a total

4Some homeowners were, in fact, speculators taking advantage of a prolonged period of in-
creased real estate value.
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loss for the equity tranche is

P{X >5}=1-P{X <4}

4
—1- Z <120> x 0.02% x 0.98100—k

k=0
=1-(0.1334+0.271 + 0.273 + 0.182 + 0.090)
~ 5.08%.

If correlation is increased to 1, i.e., in the case of perfect correlation,
there are only two scenarios:

= A name defaults, hence, all of them do the same, with probability
2%, which is the probability of total loss.

= No one defaults, with probability 98%.

Therefore, we notice that increasing the correlation reduces the risk of
losing the whole value of an equity tranche asset, contrary to common
wisdom.

Remark. We notice that we are using the term “correlation” in a
somewhat improper way, as the correlation coefficient refers to val-
ues of numerical random variables, whereas we are talking about cor-
relation of events. The meaning can be made more precise, but we
disregard these technical issues.

On the contrary, a senior tranche covering the last 80% of de-
faults is fairly safe with independent defaults, as the probability of
observing more than 20 defaults is negligible. However, total loss has
probability 2% in the case of perfect correlation. Hence, an increasing
correlation increases risk in this case, as one would expect.

Clearly, this example is a limit case, but it shows that the effect
of correlation risk may be counterintuitive.

A second example may be useful to understand the hidden risks in securi-
tization, as well as what happened during the financial crisis in 2007-2009. Let
us consider Fig. 5.3, where a second-level securitization of the original mezza-
nine tranche is illustrated. Since the assets in the mezzanine tranche were fairly
risky, they were not easily sold to investors. This suggested the possibility of
yet another level of securitization, whereby assets in the mezzanine tranche
were pooled, repackaged, tranched again, and sold. As before, let us assume
that in the original ABS created by the first-level securitization, the first 5%
of loss is sustained by the equity tranche and the next 15% by the mezzanine.
As shown in Fig. 5.3, this 15% may be further tranched in CDOs, created by
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FIGURE 5.3 An illustration of second-level tranching.

a second-level securitization. Let us assume that the percentages for the three
new tranches are 10%, 25%, and 65%, respectively.’ One might assume that
the senior tranche of the second-level security was fairly safe, but let us analyze
a few scenarios.

1. If the loss on the original ABS is 10%, the first 5% is sustained by the
equity tranche, and the second 5% is sustained by the mezzanine tranche.
This 5% actually amounts to 33.3% (one third, 5% out of 15%) of the
total potential loss of the original mezzanine tranche. This means that the
equity tranche at the second level sustains a 10% of loss and is wiped out,
and that the mezzanine tranche in the second-level CDO has to sustain
33.3% — 10% = 23.3% of the loss deriving from the original mezzanine
tranche, which amounts to 23.3/25 = 93.2% of the second-level potential
loss. The senior tranche of the CDO is safe in this scenario.

2. A slight increase in loss on the original assets, say, from 10% to 13%, has
a significant impact. Now the original mezzanine tranche loses
13-5
15
of its value, which means that the mezzanine tranche of the CDO is wiped
out, too, while the senior tranche loses
53.3 — (10 + 25)
65

=53.3%

= 28.2%

of its value.

3. If the loss on the first-level ABS is 15%, the original mezzanine tranche
loses 10/15 = 66.7% of its value. Hence, the senior tranche of the se-

cond-level CDO loses
66.7 — (10 + 25
—((35 +2) _4s5%

of its value.

5We use the same numbers as [2, Chapter 8], which is the basis for the treatment here.
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Thus, we realize that senior tranches at the second level of securitization were
actually quite risky. Despite this fact, these second-level CDOs received quite
good ratings from specialized agencies, possibly due to a conflict of interest,
since the agencies in charge of rating these securities were paid for this service
by the investment banks originating them.

Problems
5.1 The risk-free rates with maturities of 6, 12, and 18 months are, respec-

tively, 2.3%, 2.8%, and 3.2% (with continuous compounding). We also have
the following swap rates:

Maturity Bid  Offer
2 years 34 3.6
25years 3.6 3.9
3 years 39 4.2

We assume semiannual payments, and the swap rates are semiannually com-
pounded (this is consistent with market conventions). For the sake of simplicity,
we neglect day count issues and take for granted that all months consist of 30
days. A callable bond with no default risk has coupon rate 10% and matures in
two years. The bond trades for €97.12. What is the value of a call option on
the corresponding noncallable bond?

5.2 Using the same logic as Problem 5.1, how could you price the put option
within a puttable bond?

Further reading
= A general introduction to fixed-income markets can be found in [5], where
institutional details about auction markets are also given.
* A more quantitative introduction can be found in [3] or [6].
= Conversion factors for bond derivatives are described in [2, Chapter 6].
= More information on interest rate swaps can be found, e.g., in [4].
= For an introduction to credit risk modeling see, e.g., [1].
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Chapter [Six

Interest Rate Risk
Management

This is the final chapter of a sequence dealing with the elementary mathematics
of interest rates and basic fixed-income securities, and it kind of summarizes
all we have seen from Chapter 3 on. We had a taste of what interest risk is in
Section 3.5.5, where we have seen that a shift in the level of interest rates may
have a significant impact on the value of a bond. There, we have considered
the bond price as a function of one risk factor, yield-to-maturity (YTM), and
we have introduced the classical concept of duration for fixed-coupon bonds.
However, this is just an approximation, since a bond price actually depends on
the whole term structure of interest rates. From Section 2.2.3.3, we also know
how first-order immunization against multiple risk factors may be achieved by
using a set of hedging instruments and by measuring the first-order portfolio
sensitivities to each risk factor. In this chapter, we analyze duration in more
depth and extend it in order to deal with a broader set of securities, most notably
interest rate swaps, and show in more detail how risk factor sensitivities may
be used to measure and manage interest rate risk. Later, we shall need more
sophisticated stochastic models in order to cope with interest rate options, which
provide additional flexibility to the risk management toolkit.

The classical definition of duration has several limitations, and a more flex-
ible one is provided in Section 6.1, allowing us to cope, e.g., with floating-rate
bonds and swaps. We also introduce dollar duration to deal with securities
whose value is zero. We dig deeper into the concept of duration in Section 6.2,
where we interpret it as an investment time horizon and provide some connec-
tion between this sensitivity measure and proper risk measures. We deal with
the application of duration to classical immunization in Section 6.3, pointing
out some of its limitations. We also outline an alternative approach, based on
cash flow matching, which may be further refined as a full-fledged optimization
model. Then, in Section 6.4, we show how interest rate derivatives like swaps
can be used to change the interest rate exposure of a fixed-income portfolio.
Since duration is a first-order sensitivity measure, immunization may be refined
by the introduction of a second-order sensitivity, convexity, which is defined in
Section 6.5. Adding convexity to the picture may improve the quality of our
risk management approaches, but it nevertheless deals with the exposure to a
single risk factor. Immunization may be improved if we consider multiple risk
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factors, as we outline in Section 6.6. The resulting approaches rely, e.g., on
factor durations, and still aim at achieving perfect immunization for small per-
turbations. It might be argued that it is better to be imperfectly hedged against
larger perturbations, but this requires more sophisticated optimization models,
like those we cover in Chapter 15.

6.1 Duration as a first-order sensitivity measure

The price of a bond depends on a whole array of interest rates, associated with
maturities corresponding to cash flow times, i.e., periodic coupon payments as
well as repayment of the face value at bond maturity. We denote, as usual, the
continuously compounded rate at time ¢, with maturity 7', by r(¢,T).! We use
r(t,-) to denote the whole term structure at time ¢t. We denote the price at time
t of a generic asset depending on the term structure by P(t, r(t, )) This asset
may be a plain bond with fixed coupons, of course, but also a more complicated
bond, like a floater, or even an interest rate derivative. We will refer to this asset
as a generic fixed-income security. The shape of the term structure can change
in an array of ways, including a parallel shift, as well as a change in slope or
curvature. Let us consider an instantaneous parallel shift dr, transforming the
structure as follows:

r(t,)) = F(t,-)=r(t,-)+or (6.1)

Let § P be the corresponding change in the price of a given fixed-income secu-
rity. We define duration as follows, by taking the limit for §r — 0,

. 1dP dP . 0P
DP = — F %7 where % = (Sly}gl() W . (62)
This immediately gives the approximate relationship
0P
7 —Dp -, (6.3)

which is just a first-order Taylor expansion.

‘We notice that this definition of duration is different from the classical def-
inition of Macauley duration that we have given in Section 3.5.5. We recall the
definition of Eq. (3.39) for the sake of convenience:

zT: tC,
, (L4y1)

- .
Ck
Z (1+y1)k

In this chapter, we mostly use continuously compounded rates for the sake of mathematical
convenience. When it is essential to conform to market practice, we use semiannually com-
pounded rates.
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The key point is that the definition we use here does not involve cash flows
C, at time ¢t. We also recall that classical Macauley and modified durations
differ because of the use of a discretely compounded yield. Here, we adopt
continuously compounded rates, so that the difference disappears, and consider
a parallel shift in the rates themselves, rather than a change in yield-to-maturity,
which is a somewhat fictitious quantity. Nevertheless, we may easily reconcile
all of the above concepts in simple cases, as we show below.

Let us consider a bond with cash flows C; at times 13,7 = 1,..., m, where
T, is the bond maturity. The bond price is

m

m
P(tr(t,) = S CiZ(t,T) = Y Cre™(Tim0 70T,
=1 =1

where the discount factors Z(¢,T;) are expressed as a function of continuously
compounded rates. Given the shift of Eq. (6.1), the bond price will change to

P(tv F(ta )) = Z Cie_(Ti_t).[r(uTi)—i_ér]~
=1

Let us consider the bond price as a function of a single variable, s = Jr, corre-
sponding to the shift:

F(s) = ZCie_(Ti_t)‘["'(taTi)J"s].
i=1

Since we are interested in a small shift dr — 0, let us evaluate the derivative of
the bond price with respect to s, for s = 0:

dF
ds

s=0 s=0

i [_(Ti — t)Cie_(T'i_t)'["'(t’Ti)"'s]}
i=1
= —i(Ti —t)-C;- Z(t,Ty)

=1

If we divide the last expression by —P, we may see that the definition of Eq.
(6.2) is consistent with the definition of Macauley duration, which in this case

1S
m

> (Ti—t)-Ci- Z(t,Ty)

=1
Dmac =

S 62T
i=1

However, there are a few critical differences that we may summarize as follows:

» As we have already noted, the classical definition of Macauley duration
differs from the definition of modified duration in the case of discrete
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compounding, possibly leading to confusion. The use of continuously
compounded rates simplifies all of the matter considerably® and is more
consistent with the continuous-time stochastic models that we will have
to introduce in order to cope with interest rate options.

Usually, duration is defined with respect to yield-to-maturity, whereas
here we make a connection with one possible change in the term structure.
Duration is a single-factor sensitivity measure, but we may have to cope
with multiple factors, or with more complex changes in the term structure.
The new definition makes all of this more explicit.

Defining duration in terms of cash flows is not feasible, when these are
stochastic, as in the case of a floating-rate bond. However, if we define
duration directly as a sensitivity of the bond price, we can apply it to
fixed-income assets featuring stochastic cash flows, too. An even less
obvious point is: What if the bond is callable and the implicit option is
exercised, so that the bond does not get to mature?

The last observations are essential if we want to broaden the range of fixed-
income securities that we use in interest rate risk management, in order to in-
clude interest rate derivatives. A notable example is an interest rate swap. The
classical definition of duration cannot be applied to swaps, since cash flows are
not deterministic. Furthermore, neither the definition in Eq. (6.2) can be ap-
plied, as it may involve division by zero. Indeed, at its inception, the value of
a swap is zero, which makes the above definition useless. This issue will be
solved by introducing the concept of dollar duration. In the rest of the section,
we find the duration of simple securities, as well as the dollar duration of vanilla
swaps.

6.1.1 DURATION OF FIXED-COUPON BONDS

Let us find the duration of a zero-coupon bond with face value F' = 100. Its
price is

P.(t,r;T) =100 Z(t,T) = 100 - e "1 (=)
where we may use the streamlined notation P, (¢, r; T) to denote its price, which

depends only on the rate for a single maturity, (¢, T'), which we may just denote
by r for the sake of simplicity. The first-order derivative with respect to r is

dPpP, o (T—
—= = 100- [—(T—t)-e (T t>] — (T—1) P.(t,T),
r
which implies
1 dP.
D,=—— = (T —1t).
P, dr ( )

2 Also the expression of forward rates as a function of spot rates is simpler with continuous
compounding.
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Hence, the duration of a zero is just its time-to-maturity, which is coherent with
the classical definition, if we use continuous compounding. Let us reconsider
the kind of calculations that we carried out in Example 3.14.

@ Example 6.1 A numerical check

Let us check the accuracy of the approximation in Eq. (6.3) for a
couple of zeros maturing in 3 and 20 years, respectively. If the con-
tinuously compounded yield r is 3%, we have

P.(0,0.03;3) = 100 x ¢~ %03%3 = 91.39312,
P.(0,0.03;20) = 100 x e~ 293%20 — 54 88116.
Note that, in practice, prices should be rounded to cents, but we re-
frain from doing so, in order to better illustrate numerical accuracy.
If there is an upshift by ten basis points,
P.(0,0.031;3) = 100 x e~ %031%3 = 91.11935,
P.(0,0.031;20) = 100 x e~ %-031%20 — 53 79444,

The approximate prices ﬁz predicted by the duration approximation
are:

P.(0,0.031;3) = P.(0,0.03;3) - (1 — 3 x 0.001) = 91.11894,

P.(0,0.031;20) = P.(0,0.03;20) - (1 — 20 x 0.001) = 53.78354.

We observe that the approximation seems a bit less accurate for the
longer maturity zero, and that the duration approximation is some-
what “pessimistic,” in the sense that it gives a lower price than exact
repricing. A similar pattern occurs if there is a downshift by ten basis

points:

P.(0,0.029;3) = 100 x e~ 9-029%3 = 91.66771,
P.(0,0.029;20) = 100 x e~0-029%20 — 55 98984,

P.(0,0.029;3) = P.(0,0.03;3) - (1 + 3 x 0.001) = 91.6673,
P.(0,0.029; 20) = P,(0,0.03;20) - (1 + 20 x 0.001) = 55.97879.

Again, we observe that duration predicts a lower price than the exact
one. When a larger shift occurs, accuracy is less impressive. For
instance, if there is an increase by 100 basis points, we have
P.(0,0.04;3) = 100 x e %-04%3 = 88.69204,
P.(0,0.04;20) = 100 x e~ %0420 = 44,9329,
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A P’Z(t’r;T)

r

»
>

FIGURE 6.1 The price P, (¢, T;r) = F-exp (— 7 (T'—t)) of a zero is a convex function
of the rate r, and it is globally underestimated by the tangent line at any point.

but the first-order approximation based on duration yields

P.(0,0.04;3) = P,(0,0.03;3) - (1 — 3 x 0.01) = 88.65132,

~

P.(0,0.04;20) = P.(0,0.03;20) - (1 — 20 x 0.01) = 43.90493.

The last approximation, in particular, is rather inaccurate and overly
pessimistic, with a percentage error of

43.90493 — 44.9329
44.9329

= —2.28%.

In Example 6.1, we have observed that the linear approximation based on du-
ration is pessimistic, i.e., it underestimates the actual bond price. Actually, this
is not quite surprising, since the relationship between the risk factor and the
bond price involves an exponential, which is a (differentiable) convex function
and is globally underestimated by the tangent line at any point (see Fig. 6.1).
More generally, the price—yield relationship is convex. We may better account
for this nonlinearity by introducing bond convexity, as we shall see later, which
involves a second-order approximation.

To find the duration of a coupon-bearing bond, whose price will be denoted
by P, (t, r(t, )), it may be useful to decompose it into a portfolio of zeros and
take advantage of the linearity of derivative as an operator. Let us consider a
portfolio consisting of N; bonds with price P; and N5 bonds of price P,. The
portfolio value is

W =Ny -P,+ Ny Ps.



6.1 Duration as a first-order sensitivity measure 253

The duration of the portfolio is just

1 dWw
Dw = =0
o () o (42
- N;Ifl Dy + N;‘? D,
= w; Dy + wy Do, (6.4)

where D1, Do are the two bond durations and w1, w9 are the weights of the two
bonds in the portfolio. Thus, we observe that the duration of a bond portfolio
is just the weighted combination of the individual bond durations. This can be
easily generalized to a portfolio consisting of any number of bonds.

If we decompose a coupon bond maturing at 7" into a portfolio of m zeros
maturing at times 73,7 = 1,..., m, where T,,, = T, we have

—1

3

P, (t; T(t’ )) = g

i=1

Pt T) + (14 5) P(t, T,

which may be considered as a portfolio of m zeros with weights

5P, T5) .
w; = 270 i=1,...,m—1,
P, (tv T(t7 ))
o (1 + %) : Pz(tazrm,)
T R(trt)

Thus, the duration of a coupon-bearing bond is

m
D, = Zwi (T; = t)
=1

m—1

STSP(LT) - (Ti— 1) + (1 + g) P.(t,T) - (T — 1)

i=1

.
Pe(t;r(t, )

which is again consistent with the classical definition.

@ Exam ple 6.2 Duration of a coupon-bearing bond

Consider a bond maturing in 18 months, paying semiannual coupons
at annual rate 5%, with face value $10,000. The term structure is flat,

|
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and the continuously compounded rate is 3%. The current bond price
is
P. — 250 x ¢~ 0-5%0.03 | 950 o—=1x0.08 | 1(j 95() x ¢~ 1-5%0.03
¢ )
= 10,287.86.

Its duration is
1
= —— X (
10,287.86
+ 1.5 x 10,250 x e~ 15%0-93) = 1.4643.

Dp 0.5 x 250 x ¢~ 0-5%0.03 L 1 950 5 o~1x0.03

We note that duration is fairly close to bond maturity, since there is a
large terminal cash flow with respect to coupon payments.

6.1.2 DURATION OF A FLOATER

In Section 3.5.6, we have learned how pricing of a floating-rate bond is sur-
prisingly simple. We need the following information, assuming semiannual
coupons:

= The interest rate at the last reset time, which determines the amount of the
next coupon payment.

= The time of the next reset time, when the next coupon will be paid.

= The current interest rate for a maturity corresponding to the next reset
time.

If we denote the last and the next reset times by 7;_; and T, respectively, the
next coupon payment will be

Ci=F. 7”2(Tz'717Ti)’

2
where we use a semiannually compounded rate to conform to market practice.
We assume that 7; is not the bond maturity, as in that case no future uncertain
cash flow is involved. Since we know that the bond trades at par at the reset
times, the floating bond price is

Pi(t;r(t,) = (Ci + F) - e~ (Timt) T,

Essentially, this is the price of a zero maturing at the next reset time. Thus,
duration is just
D = T, —t.
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We note that duration does not depend on bond maturity, and that the duration
of a floater is smaller than the duration of a fixed-coupon bond with the same
maturity. Hence, the interest rate risk of a floating-rate bond is rather limited
(see Example 3.15).

6.1.3 DOLLAR DURATION AND INTEREST RATE SWAPS

We have seen, in Section 4.4, that the value of a vanilla interest rate swap can
be expressed as the difference between the prices of a fixed- and a floating-rate
bonds. Hence, we might argue that the duration of a swap is related to the
difference of the two bond durations. Unfortunately, this idea does not work in
general, as the value of an interest rate swap may well be zero. By a similar
token, we may hold a bond portfolio with long and short positions, possibly
amounting to a current value of zero.
To overcome this issue, we define the dollar duration as
g . dP

Dy = o (6.5)
Clearly, if the value P of the security (or portfolio of securities) is not zero,
duration and dollar duration are related as follows:

$
Dy =P - Dp.
For instance, in the case of a zero,

P,  d

e d— [F . e*r-(Tft)} — —(T _ t) F. efr-(Tft)7
r r

and so
D¥=Pp, (T -1).

Assume that we hold a portfolio of fixed-income securities, indexed by ¢ =
1,...,m, and let N; and Df denote the number of units and the dollar duration
of each security, respectively. Then, using linearity of the derivative operator
again, it is easy to see that the dollar duration of the portfolio is

D?;,:iNi~Df.

=1
An immediate consequence is that the dollar duration of a swap is

$ _ NS $
D - Dﬂoat - Dfixed

swap

for the fixed-rate payer, and

$ _ NS $
D - Dfixed - Dfloat

swap

for the floating-rate payer. Since the duration of a floater is smaller than a fixed-
coupon bond with corresponding maturity, we notice that the dollar duration for



256 CHAPTER 6 Interest Rate Risk Management

the fixed-rate payer will be typically negative. Hence, by entering into a swap
agreement, an investor may reduce the duration of a fixed-income portfolio,
without the need of additional capital, since the initial value of the swap is zero.
Another advantage of swaps is that they relieve us from the possibly difficult
task of taking extended short positions in bonds.

W Example 6.3 Dollar duration of a swap

Let us consider a swap with the following features:

= Nominal amount, $100,000

» Maturity, 14 months, so that cash flows will occur in 2, 8, and 14
months

» Swap rate, 3.4% with semiannual compounding, so that the fixed
payment is

0.034

100,000 x = $1700

The current term structure, with continuous compounding, is
r(0,2/12) = 3%, r(0,8/12) =3.5%, r(0,14/12) = 4%.

At the last reset time, four months ago, the six-month rate was 3.8%
with semiannual compounding, so that the next floating payment will

be 0.038
' = $1900.

100,000 x

The value of the fixed-rate bond is

Priveq = 1700 x e 0:03x2/12 | 1700 x ¢0-035%8/12

+ 101,700 x e~ 0:04x14/12 — $100,415.35,

and its dollar duration is

2 8 234
Dﬁxed — E X 1700 X 670.03><2/12 + E X 1700 X 670.030X8/12

14
+ 15 X 101,700 x e~ 0:04x14/12 — 114 629.33.
The value of the floating-rate bond is
Prioar = 101,900 x ¢~0-03x2/12 — $101,391.77,

and its dollar duration is

2
Di .. = Th 101,900 x e~9-03%2/12 _ 16 898.63.
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Hence, taking the viewpoint of the fixed payer, the value of the swap
is
Pswap = Pfloat - Pfixed = $97642,

and its dollar duration is

D3 \ap = Diioat — Diyeg = —$97,730.70.
Let us consider an instantaneous parallel upshift of ten basis points in
the term structure. According to the dollar duration approximation,
the new swap value can be approximated by

Pawap & Pagap — D2, - 0.001 = $1074.15.

swap

If we reprice the swap exactly, we find the following values after the
shift:

Pred = 1700 x ¢~ 0031x2/12 4 170() x ¢—0-036x8/12

+ 101,700 x e~ 0041 x14/12 — ¢700,300.79,

Proat = 101,900 x e~*031=2/12 — §101,374.87,
pswap == -Pfloat - pfixed == $107409,

showing the accuracy of the approximation for a small shift.

We should note that, unlike plain bonds, the value of the swap
may be increased by a rise in the the interest rates, which shows the
potential of swaps for hedging interest rate risk. The increase in the
swap value is slightly overestimated by the first-order approximation,
whereas the /oss on a bond is overestimated when using this kind of
approximation. The explanation is provided by convexity vs. con-
cavity (sometimes referred to as negative convexity) of the nonlinear
functions that we are approximating to the first order.

A related concept is the price value of a basis point, denoted as PV01 or
PVBP, which is the dollar loss for a perturbation Jr = 0.0001, i.e., an increase

of one basis point, which is just

PV01 = —D% x 0.0001.

6.2 Further interpretations of duration

A deeper understanding of the meaning of duration, as well as its limitations,
may be acquired by linking it with interest rate risk in different ways. In this
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section, we disregard the full term structure and consider yield-to-maturity (an-
nually or continuously compounded, according to convenience) as the single
risk factor. This clearly limits the practical applicability of our findings, but not
their conceptual usefulness.

6.2.1 DURATION AND INVESTMENT HORIZONS

Consider a plain zero maturing in five years, which is the bond duration, too.
If our investment horizon is exactly five years, we do not care about a possible
increase in yield. The bond price will drop if yield rises, but we will just recover
the loss under the increased yield, and we will receive the face value anyway,
at maturity. This is not true if the investment horizon is smaller than the bond
duration, i.e., if we plan to sell the zero before its maturity. Now what if we
are considering a coupon-bearing bond? In this case, we know that an increase
in yield implies a drop in the bond price, but this may be somehow mitigated
by the possibility of reinvesting coupons at a larger rate. The contrary happens
when yield drops: We have a welcome capital gain, but we also suffer from
coupon reinvestment risk. In both cases, we have contrasting effects, and the
final outcome may also depend on our investment horizon.

As it turns out, Macauley duration is an investment horizon such that we
are indifferent to small changes in yield. To see this, let us consider a bond
maturing at time 7', with price P.(y;) depending on the annually compounded
yield y;. Say that we plan to hold the bond for a time period of length H < T.
If the yield does not change, and we reinvest coupons at a rate y; and sell the
bond at ¢ = H, wealth will be

Pe(y1) - (1 +yn)™. (6.6)

If yield changes instantaneously by an amount dy; and then remains constant,
wealth at time ¢ = H will be

Pe(ys +01) - (1+y1 + dy1) ™. ©.7)
By equating Egs. (6.6) and (6.7), we may find the indifference horizon H. This
is much easier if we take logarithms:
log P.(y1) + H - log(1 + y1) =log P.(y1 + 61) + H - log(1 + y1 + dy1).
Let us rearrange this equation and divide by dy; :
log Pe(y1 +01) —log Pe(y1) _ . log(1 +y1 +d1) —log(1 +41)
oY1 oY1
For a small perturbation dy;, we may replace these ratios by the derivative of a

logarithm. We recall that, by using the chain rule for the derivative of a com-
posite function, we find
dlog f(x) _ f'(z)

dx flz)
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Hence, we obtain
1 1

. P - _H. ,
Pe(y1) (1) 1+u
where the right-hand side includes the ratio between the derivative of the func-

tion 1+y;, which is just 1, and the function itself. A slight rearrangement shows
that H is just the Macauley duration:

H:_(1+y1)' 'Pc/(yl)EDmac-

1
PC(yl)

Let us illustrate this finding with a simple example.

@ Example 6.4 Duration and investment horizons

Let us consider a bond with face value $10,000, maturing in three
years, and paying an annual coupon at rate 6%. If annual yield is 4%,
the bond price is

600 600 10,600

P.(4%) = 104 + 1022 108 = $10,555.02,
and its Macauley duration is
1 600 600 10,600
Dpac = ———— X |1 X — +2 3 : = 2.84.
= 1055502 | S To4 T o2 TP X 1088

If yield does not change, we reinvest coupons at 4%, and sell the bond
at time H = 2.84, wealth will be

_ _,, 10,600
Wi (4%) = 600 x 1.O4*5171 4600 x 104572 4

= $11,797.82.

To understand this expression, note that the first two cash flows are
reinvested up to time ¢ = 2.84, whereas the third cash flow is dis-
counted from time ¢ = 3 to ¢t = 2.84. If yield is increased by 50 basis
points, wealth will be

10,600

W (4.5%) = 600 x 1.045%%4~1 + 600 x 1.045%5472 + {5251

= $11,797.85.

Indeed, up to an approximation error, future wealth at the right time
horizon is insensitive to small changes in yield.
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6.2.2 DURATION AND YIELD VOLATILITY

Duration may be considered a measure of interest rate sensitivity for fixed-
income securities, but not a risk measure, unless we link it with an uncertainty
model. If we consider the continuously compounded yield y as a risk factor,
then the approximate relationship

0P
Z ~_-D-§
P Yy
implies that the standard deviation of bond return o is proportional to the stan-

dard deviation of yield:
opP
Var<P> ~ D?.Var(0y) = o= Doy,

where o, is the standard deviation of the perturbation dy, i.e., yield volatility.
Thus, duration is a factor determining volatility, which is a symmetric risk mea-
sure. In general, when we have a short time horizon and a low risk tolerance, a
wise suggestion is to invest in short-duration money market securities.

6.2.3 DURATION AND QUANTILE-BASED RISK MEASURES

In order to overcome some limitations of volatility, which is a symmetric risk
measure, we have introduced quantile-based risk measures like value-at-risk
(V@R) in Section 2.2.2.> Duration may be used to find an approximation of
such measures. The idea is pretty simple, if we assume a one-factor risk model
under a normal distribution. If dy ~ N (uy, 05), from the relationship

0P~ —P-Dp-dy,

we immediately find that the loss Lp = —J P is normally distributed, too, with
parameters
/LL:P~DP~[J,y, O'L:P~Dp~0'y.

® Example 6.5 Bond VGR

Consider a bond maturing in 18 months, paying semiannual coupons
at rate 5%, with face value $10,000. The term structure is flat, so
we identify interest rate r and yield y, which is 3% with continuous
compounding. We assume that this rate is subject to an instantaneous
shock, characterized by a normal distribution with u,. = 0% and o, =
0.5%, and we want to find V@R at confidence level 99%.

3See Section 7.4 for a more in-depth treatment.



6.3 Classical duration-based immunization

261

The current bond price is

P, =250 x e~ 05X0:03 4 950 5 ¢=1x0.03 1 10,250 x = 1-2%0-03
= $10,287.86.

Its duration is
Dp = (0.5 % 250 x e—0-5X0.03 | 1 950 5 —1x0.03

1.5 % 10,250 x e‘1'5X0'03>/10,287.86
— 1.4643.

The approximated V@R is given by

20.99 - 0p - P-Dp = 2.3263 x 0.005 x 10,287.86 x 1.4643
= $175.22.

The exact V@R, in this simple case, can be found by just repricing
the bond with the worst rate at 99% confidence level,

Tworstoo% = 0.03 + 2.3263 x 0.005 = 0.0416,
which gives

Pc,worst99% = 250 x 670‘5X0‘O416 + 250 % 671><0.0416

410,250 x e~ 15x0-0416 — ¢10 114.14.
Hence, the exact value-at-risk is
V@R = 10,287.86 — 10,114.14 = $173.72

which is fairly close to the approximation.

We notice that the duration approximation does a good job in Example 6.5,
where the estimate is slightly pessimistic because of a convexity effect. The ac-
tual problem lies in the normal approximation itself, which is pretty debatable.
We should also notice that we have not considered the effect of time, as we have

assumed an instantaneous shock.

6.3 Classical duration-based immunization

Duration is not only a way to measure interest rate sensitivity, but also a tool to
immunize a portfolio against interest rate risk. The idea is just an application
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of the general approach introduced in Section 2.2.3.3, and it is best illustrated
in the context of asset—liability management (ALM) problems. For the sake
of simplicity, we consider a stream of deterministic liabilities L;, to be paid at
times T}, j = 1,...,m. On the asset side, we have to choose a fixed-income
portfolio able to provide cash flows sufficient to cover the liabilities. This kind
of problem, with some more realistic twists, is common to insurance companies
and pension funds, among others. In this section, we pursue two ideas for setting
up the asset portfolio:

= Matching the whole stream cash outflows over time.

= Matching the present value of assets and liabilities, making sure that some
immunization guarantee is met.

6.3.1 CASH FLOW MATCHING

A portfolio exactly matching the liabilities would be easy to build if we had a
rich set of zeros, with maturities corresponding to the time instants at which
liabilities are to be met. Denoting by N; the holding of each zero maturing at
time T, with face value F};, we would just set

assuming asset divisibility. The current value of the asset portfolio would just
match the present value of the liabilities:

PV 4 (r(0, - ZNF - Z(0,Ty) Zm: T;) = PV (r(0,-)),

j=1

where we use discount factors Z(0, T;) associated with the current term struc-
ture (0, -). Assuming that bonds are free from default risk, any change in the
term structure would be irrelevant.

In practice, such a rich set of zeros, including long maturities, may not be
available, or it may be expensive, not to mention default risk on the long term.
Hence, we could consider a set of n bonds, possibly coupon-bearing ones, with
current prices F;, ¢ = 1,...,n, paying at time j a cash flow denoted by Fj;.
Let us assume, for the sake of simplicity, that bond cash flows and liabilities
are synchronized. Then, we may consider the following cash flow matching
model:

n
E Pix;
i=1

n
S.t. ZFijmiZLj j=1....m

szOa
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where x; is the amount of each bond that we buy. This is a simple linear pro-
gramming model, which may be easily solved by commercial software. A little
thought, however, suggests that this model is too naive to be of any practical
use:

» The cash flow timings need not be perfectly synchronized, and we should
manage liquidity by short-term investing or borrowing.

= The model is static and does not consider the possibility of buying or
selling bonds along the way.

= The solution is likely to be too expensive, as the approach is essentially
based on a superhedging strategy, where any cash surplus is of no use.

A more sophisticated modeling approach, allowing for dynamic trading, should
be considered, as we shall discuss in Chapter 15. Unfortunately, this model
should account for the stochastic nature of interest rates and bond prices, and
this may result in a quite challenging stochastic programming problem. A more
down-to-earth idea is to rely on first-order immunization.

6.3.2 DURATION MATCHING

In asset-liability management, the first and foremost concern is solvency, which
is to say that equity,

E=PVA(r(0,)) — PV.(r(0, ),

should never be negative. In insurance management, some safety buffer (tech-
nically speaking, a reserve) is maintained, so that equity is strictly positive. For
the sake of simplicity, let us assume that we wish to find a minimum cost port-
folio, where equity is zero, and that the only relevant risk factor is the annually
compounded yield y;. Hence, we are satisfied when

PVa(y1) = PVL(y1)- (6.8)

Unfortunately, a change in yield may have a different impact on assets and
liabilities, so that equity may get negative. If there is a small change Jy; in
yield, solvency will not be affected if

5PV GPV,
oY1 oy

(6.9)

which means that the two dollar durations are the same. Using the relationships
between dollar duration, duration, and classical Macauley duration, we find:

D% =D} = PVa(y)-Da=PVi(y) Dy

D D
> Pt P =P P

which, given Eq. (6.8), boils down to saying that the two Macauley durations
must be the same. This is also consistent with the interpretation of Macauley
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duration as an investment horizon such that small changes in yield have no effect
on terminal wealth.

In order to match Dy, mac, We may use two bonds, with prices P, and P,
and Macauley durations D1 mac and Dg mac, respectively. In order to match the
value of assets and liabilities, we must hold bond amounts /N7 and N5, such that

Ny - Pi(y1) + No- Pa(y1) = PVr(y1).

By dividing both sides of the equality by PV 4 (y1) and recalling that the duration
of a bond portfolio is the weighted average of the individual durations,* we end
up with the following system of linear equations:

’U.)1+U)2:1

wy - Dl,mac + wa - D2,mac = DL,mam

where w; and w9 are the weights of the two bonds in the portfolio. Using the
substitution wy = 1 — w1, the second equation immediately gives

o DL,mac - D2,mac

w = —=>"
Dl,mac - D2,mac

Expressing the whole thing in terms of bond holdings, we finally obtain

PVA DL.mac - D2 mac PVA Dl mac — DL.mac
= - 2 N2 = 2 -

N, : , : .
Pl Dl,mac - D2,mac P2 Dl,mac - D2,mac

(6.10)

This classical approach looks simple enough, but we should mention a few
difficulties:

= In principle, we might find a negative bond holding, which means that
we should sell a bond short. This is not easily arranged for an extended
period of time.

The duration will change over time, and we need to periodically rebalance
the asset portfolio, incurring transaction costs.

= Another reason to rebalance the asset portfolio is that some bonds will
mature along the way. If we want to bracket a target duration with positive
weights, we shall need a bond with a smaller duration and another bond
with a larger duration than the liability, which means that a bond will
mature early and will need to be replaced.

= We are only immunized to the first order against a single risk factor (or,
equivalently, only against small parallel shifts in the term structure).

These difficulties may be eased by using more than two bonds, and by exten-
sions that we discuss in the following: (a) taking advantage of the flexibility of
interest rate derivatives; (b) introducing second-order sensitivities (bond con-
vexity); (c) introducing multifactor models.

4See Eq. (6.4).
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6.4 Immunization by interest rate derivatives

Using bonds as hedging instruments has some disadvantages in terms of cost,
liquidity, and limits to short positions. In this section, we apply the generic
framework introduced in Section 2.2.3.3 to interest rate risk immunization by
simple interest rate derivatives. First-order immunization relies on duration or
dollar duration. We consider here one risk factor, which may be a parallel shift
in the term structure or a change in YTM. We should note that, when we con-
sider YTM, different assets will have different yields, but they are affected in
the same way by a parallel shift.

Let us consider a fixed-income portfolio, whose value at time ¢ is P(¢; (¢, -)),
where we emphasize dependence on the full term structure (¢, -) at time ¢. If
we include ¢ units of a hedging instrument H, the value of the hedged portfolio
is

Py(t;r(t,)) = P(tr(t, ) + oH (r(t, ).
Given an instantaneous shock dr, we find
5Py = Py(t;r(t,) +0r) — Pa(t;r(t, ) = %57" + qﬁ%ér.
By setting § P, = 0, we find the hedging ratio ¢ in terms of durations,
Dp-P
Dy -H’

which works with bonds, but not with a swap or a futures with initial value
H = 0. In terms of dollar duration we have

DP~P-57”+¢DH'H'5T:0 = ¢=—

(6.11)

D$
DY - 6r+¢DS, - 6r =0 = ¢=—-—L (6.12)
DH

@ Exam ple 6.6 Hedging interest rate risk with bond futures

Futures contracts that are sensitive to interest rates may be used as
hedging instruments against interest rate risk. However, if we use
bond futures, a complication arises, as we should consider the du-
ration D%, of the bond that is likely to be actually delivered (the
cheapest-to-deliver bond that we mentioned in Section 5.3.2) as well
as its conversion factor CF. In this case, Eq. (6.12) reads

Using eurodollar futures or similar contracts avoids this trouble. In
any case, hedging over a long time horizon using future contracts
may require tailing the hedge, in order to account for daily marking-
to-market.




266 CHAPTER 6 Interest Rate Risk Management

6.4.1 USING INTEREST RATE SWAPS IN ASSET-LIABILITY
MANAGEMENT

As we have seen in Section 6.3.2, a concern in asset—liability management prob-
lems is to keep equity,
E=A-1,

at a safe level. Interest rate swaps are quite convenient, since they do not require
initial cash outlays and allow to modify the interest rate risk exposure in a very
flexible way by taking the fixed- or floating-payer positions with a range of
maturities.

Let us denote the dollar duration of assets and liabilities by D% and D%,
respectively. If we do not hedge, the dollar duration of equity,

D}, = DS - D§,

may be far from zero, exposing us to interest rate risk. As we have seen in
Section 6.1.3, the dollar duration of a swap is
$ _ns $
Dswap - Dﬂoat - Dfixed'
The exact sign of the difference does not matter, as we may easily reverse the
swap by taking the opposite position. We may choose the notional NV in such a
way that the hedged portfolio has zero dollar duration:
D% — DS
$ $ $ $ L A
DE:DA+N'Dswap7DL:O = N:T
swap
Note again that we do not change the original value of equity, as the initial value
of the swap is zero.

6.5 A second-order refinement: Convexity

Duration-based hedging relies on first-order sensitivities. One way to improve
the accuracy and the performance of hedging strategies is to adopt a second-
order approximation. To this aim, we may introduce (bond) convexity,

1d*P
Cp =

TR (6.13)

Convexity may be applied to any fixed-income security or portfolio, even though
it was originally introduced for bonds. A look at Fig. 6.1, where we observe the
convex relationship between bond price and yield, suggests that convexity is
positive for a plain bond. By using convexity, we can write a second-order
Taylor expansion of the relative change in P:

0P
- ~ —DP'(ST'—F%'CP'(&T‘)Q.
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It is important to notice that bond convexity is not the derivative of duration.
Just as with duration, it is also convenient to introduce dollar convexity":
d*P
Ccy = —. 6.14
L) ( )
Just like we have done with duration, we may find the convexity C, of a
zero-coupon bond first. Since

P,(t,T) = F . "1 (T=1)

9
we have

d?P,
= (T PO (g2 p,

and

C, = (T —1t)>. (6.15)
It is also easy to see that the convexity of a fixed-income portfolio is just the
weighted combination of the individual convexities. More precisely, if the value

of the portfolio is
i=1

where N; and P; are the holdings (how many units) and the price of security i,

respectively, then
C = Z wiCi,
i=1

where C; is the convexity of asset ¢ and the weights are
N; - P;

w; = .

%
As an immediate consequence, the convexity of a coupon-bearing bond is

1 mflc
“T R l; 5 P=(t.T) (T~ )°

+ (1 + g) PL(t,Tn) - (T — )2 (6.16)
In Eq. (6.16), we find a formal verification that convexity is positive for a plain
bond. As we noticed in Example 6.1, the convexity effect explains why the
first-order approximation by duration is somewhat pessimistic with respect to
the true changes in bond prices when yield is shifted. Now, let us see how the
approximation is improved by adding a second-order term.

SIn Section 13.5, dealing with option price sensitivities, we will appreciate the similarity of
dollar duration and convexity with option delta and gamma, respectively.
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W Example 6.7 A numerical check (continued)

Let us check if and by how much using convexity improves the ap-
proximation of the bond price changes that we have considered in
Example 6.1. As we have seen there, the prices of two zeros maturing
in 3 and 20 years, respectively, are

P.(0,0.03;3) = 100 x e~ %03%3 = 91.39312,

P.(0,0.03;20) = 100 x e~ 903%20 — 54 88116,
when yield is 3%, and they drop to

P.(0,0.04;3) = 100 x e~ %-04%3 — 88 69204,
P.(0,0.04;20) = 100 x e~ %-94%20 — 44 9329,

when there is an increase by 100 basis points. If we use both duration
and convexity, we find the approximations

P.(0,0.04;3) = P.(0,0.03;3) - (1-3x%0.01+ % x3%x0.017)
= 88.69245,
P.(0,0.04; 20) = P,(0,0.03;20) - (1—20x0.01+ % x 20° x 0.01°)
= 45.00255.

These approximations are definitely more accurate than those pro-
vided by a first-order expansion. For the second zero, the percentage
error drops (in absolute value) from 2.28% in Example 6.1 to

45.00255 — 44.9329
44.9329

= 0.155%,

when adding the second-order term.

We should note the following:

= Convexity is a nice property of a bond, since a larger convexity means a
larger profit when yield drops and a smaller loss when yield rises. This is
too good to be true, and one should expect that this is paid somehow in
terms of bond price.

» We may improve the immunization of an asset-liability portfolio by set-
ting both duration and convexity of equity to zero. This requires addi-

SWhen dealing with option price sensitivities in Section 13.5.3, we shall see the related link
between option gamma (convexity) and option theta (option price decay with time). A large
gamma is associated with a faster option price decay.
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tional hedging instruments, but it does not increase computational com-
plexity significantly. However, it is still true that we are considering only
a single risk-factor, and that we are perfectly hedged against small pertur-
bations. When dealing with multiple risk factors, we have to cope with
second-order cross-sensitivities, which may actually increase complexity.

6.6 Multifactor models in interest rate risk management

Duration-based immunization is a first-order approach aimed at hedging against
a single risk factor. Introducing convexity does not really change the picture,
since it introduces a second-order approximation that still copes with a single
risk factor. Since the term structure involves multiple risk factors, we may have
to take a different approach. In the following example, we illustrate how dura-
tion fails to cope with nonparallel shifts in the term structure, which is typically
affected by changes in slope and curvature, too.

W Example 6.8 The effect of nonparallel shifts

Let us consider again the coupon-bearing bond of Example 6.2. If
the term structure is flat and the continuously compounded rate is
3%, we have seen that the bond price and durations are P.(0;0.03) =
$10,287.86 and Dp = 1.4643, respectively. Thus, the dollar duration
of this bond is

DS, =10,287.86 x 1.4643 = $15,064.21.

Suppose that we hedge interest rate risk with a short position in a
zero maturing in six months, with a face value of $10,000, like the
coupon-bearing bond. The price of this hedging instrument is

H(0;0.03) = 10,000 x ¢~ 03%0-5> — §9851 12,
its duration is 0.5, and its dollar duration is
D% = 9851.12 x 0.5 = $4925.56.

Hence, the short position should consist of

15,064.21

= 4925.56
units of the zero. We neglect rounding issues, and we assume that
the short sale is feasible, possibly through the repo market. No initial
cash outlay is needed (we ignore haircuts, margins, etc.). Hence, the
current value of the hedged portfolio is just the bond price:

Vi (0;0.03) = $10,287.86.

= —3.06
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Let us assume that there is a parallel upshift by 100 basis point,
i.e., the new term structure is flat at 4%. This is assumed to be instan-
taneous and takes place at time ¢ = 0. The new bond prices are easily
computed,

P.(0;0.04) = $10,138.33, H(0;0.04) = $9801.99,
and the value of the hedged portfolio changes to

Vi (0;0.04) = P.(0;0.04) + ¢ - [H(0;0.04) — H(0;0.03)]
=10,138.33 — 3.06 x (9801.99 — 9851.12)
= $10,288.67,

which is very close to the initial one, with some difference due to con-
vexity effect. The loss on the coupon-bearing bond is compensated by
the profit from the short position on the zero.

However, what if the shift is nonparallel? Let us assume that the
new term structure is not flat anymore:

7(0,0.5) = 3.8%, 7(0,1) = 4.0%, 7(0,1.5) = 4.2%.

Note that, on the average, the new interest rate is 4%, as with the
parallel shift. The new bond prices are

P.(0;7(0,-)) = 10,109.66, H(0;7(0,-)) = 9811.79,
and the value of the hedged portfolio is only

Vi (0;7(0,)) = 10,109.66 — 3.06 x (9811.79 — 9851.12)
= $10,230.01.

In this case, the drop in the price of the zero is not enough to com-
pensate the loss on the bond and we end up being under-hedged. The
overall loss (—0.56%) does not look quite impressive, but this hap-
pens because the maturity of the coupon-bearing bond is rather short
(see Problem 6.5). Probably, we would be better off with a zero with a
longer maturity, but the general point is that, since we are dealing with
three risk factors, we must introduce additional hedging instruments
and assess individual sensitivities for each risk factor.

In order to deal with multiple risk factors, we have to introduce a multifac-
tor model. Unfortunately, the whole term structure (¢, -) consists of a virtually
infinite set of risk factors. The resulting complexity may be reduced in a few
ways:
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* One approach is to introduce factor durations, possibly durations corre-
sponding to rates at carefully selected maturities. Then, first-order immu-
nization may be carried out as suggested in Section 2.2.3.3.

A slightly different approach relies on an alternative way of finding fac-
tors. One idea is to take linear combination of rates, e.g., by principal
component analysis. Then again, factor durations are put to good use.

These two approaches have one thing in common: They aim at perfect
immunization for small changes in the risk factors. It has been argued that
it may be preferable to be approximately hedged against large changes in
the risk factors. To achieve this objective, one may resort to scenario-
based optimization models, like those we introduce in Chapter 15. In that
case, too, we need a suitable multifactor model to generate scenarios.

We note that the idea of factor models is not limited to fixed-income assets.
Models in this vein for equity portfolios are discussed in Chapter 9. In that
case, the structure is somewhat different. Generally, multifactor models for
fixed-income portfolios deal with similar factors, i.e., rates or combination of
rates, and perhaps credit spreads. In the equity case, the factors are substantially
different, as we shall see, and range from macroeconomic factors like inflation
rate or oil price, to financial factors like the amount of financial leverage of a
specific firm or a broad market index. They may also include behavioral factors
like market momentum.

Problems

6.1 In five years, you will have to pay a single and deterministic liability,
amounting to $10,000. The only asset you may use is a bond paying a 7%
annual coupon and maturing in six years. At present, yield is 6% with annual
compounding.

= Assuming asset divisibility, how much should you buy of this bond?

» What is the performance of the resulting ALM policy if yield goes up or
down by 100 basis points? How do you explain the result? Assume that
the change is immediate and instantaneous.

6.2 In five years, you are going to pay €20,000 to purchase a machine for
your firm. Consider a portfolio consisting of a zero-coupon bond maturing in
seven years and a coupon bond with coupon rate 5% (the bond pays one coupon
per year), maturing in three years. The term structure is flat, and the rate is now
4% with annual compounding. Assume a face value of €1000 for both bonds.

* Build an immunized portfolio. What is the problem with your choice of
bonds?

= Repeat the procedure, but now consider the same zero and a similar coupon
bond maturing in six years. Is this portfolio easy to implement?
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6.3 In six years, you will have to pay a single, deterministic liability for an
amount of €30,000. Consider a portfolio consisting of a zero maturing in eight
years and a bond paying a single annual coupon with rate 4%, maturing in four
years. The term structure is flat at a rate of 3.5%, with annual compounding.
Assume a face value of €1000 for both bonds.

= Build a first-order immunized portfolio and check its performance for an
immediate shift of £50 basis points.

= Repeat the procedure, but now include another zero maturing in three
years, in order to match both duration and convexity of the assets and the
liability. Compare the performance against the previous portfolio.

6.4 Your portfolio consists of two sovereign bonds: A zero maturing in three
years and a coupon bond maturing in two years, paying a single annual coupon
at rate 4%. Assume a face value of €1000 for both bonds. The one-year risk-
free forward rates are 3%, 4%, and 5%, respectively, with annual compounding
(Actually, the first rate is the annual spot rate, and the last one applies to an
investment over the time interval [2, 3]). The amounts invested in the two bonds
are €53,000 and €93,000, respectively (assume asset divisibility). The two
bonds have been issued by the same government, and the price is influenced by
a spread due to specific country risk. The spread is 2.3% at present (applying
uniformly to every maturity), and it is subject to a random shock, which we
assume uniformly distributed between —1% e +2% (hence, the new spread will
be in the range between 1.3% and 4.3%). Neglecting the passage of time, find
value-at-risk at probability level 97%.

6.5 Repeat the analysis of Example 6.8, but now consider a bond maturing
in five years. For the nonparallel shift, assume a new term structure of rates
linearly increasing from 3% to 5%, so that the average is 4% in both cases,
parallel and nonparallel shifts. In the second case, the rates for the ten maturities
(six months, one year, one year and a half, all the way up to five years) are

3%, 3.22%, 3.44%, 3.67%, ..., 4.56%, 4.78%, 5%.

Do you still observe a small loss as in Example 6.8? What if you increase the
maturity of the zero to three or five years?

Further reading

= General textbooks on fixed-income securities, like [3] and [5], include
extensive sections on interest rate risk management, dealing in more depth
with all of the topics that we have outlined in this chapter. Example 6.8 is
a simplified version of a case discussed in [5, Chapter 4].

= For a more specific treatment, you may consult [2] and [4].

» For a comprehensive reference, also covering the use of interest rate deriva-
tives in interest rate risk management, see [1].
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Part Three

Equity portfolios






Chapter [Seven

Decision-Making under
Uncertainty: The Static Case

Uncertainty is the rule in most financial decision-making problems. The proto-
typical case is the allocation of wealth to a set of assets with uncertain returns.
If we make a here-and-now decision and observe the return of the portfolio af-
ter a given holding period, we are considering a static decision problem, since
we disregard the possibility of adjusting our decisions along the way, when we
observe the actual unfolding of uncertain risk factors. This is not to say that,
in reality, the portfolio will not be adjusted after a while, possibly by solving
the same model again; the point is that this is not explicitly considered in the
decision model itself. On the contrary, multistage decision models take into
account the possibility of updating decisions, depending on the incoming infor-
mation flow over time. It is important to avoid a potential confusion between
multistage and multiperiod models. A multiperiod problem requires the plan-
ning of decisions to be executed over a sequence of time instants. However, if
the plan is specified here and now, once for all, the problem is actually static,
as there is no dynamic adaptation. The solution of a multiperiod problem is a
sequence of numbers, representing the decisions that are supposed to be imple-
mented, no matter what. On the contrary, the solution of a multistage problem
consists of a set of random variables, since decisions will be contingent on the
realization of uncertain states. We may also explicitly express decisions as func-
tions of the uncertain states or, alternatively, as functions of the realization of
random risk factors.

In this chapter, we lay down the conceptual foundations of decision-making
under uncertainty in the static, single-period case. It is useful to consider port-
folio decisions as an application framework to understand the related issues;
however, what we describe here is also relevant for asset pricing. Here, we do
not consider either model building or solution algorithms.! In Chapter 8, we
discuss a specific relevant case in detail, mean—variance portfolio optimization,
whereas in Chapter 15 we outline more advanced models, including multistage

'A very simple introduction to deterministic optimization models and solution algorithms is
given in Chapter 12 of [4]. Chapter 13 therein describes some models for decision-making
under uncertainty, including, but not limited to financial problems.
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ones. Here, we introduce three possible approaches to decision-making under
uncertainty that are relevant to finance:

= Utility functions
= Mean-risk models

= Stochastic dominance

We start with a few simple introductory examples in Section 7.1. Then,
in Section 7.2, we show that financial decision-making cannot rely on simple
maximization of expected wealth or expected return. Risk should be carefully
accounted for. One way for doing so, albeit not quite a practical one, is by
introducing expected utility, as we illustrate in Section 7.3. A more practical
approach is based on the definition of suitable risk measures and the solution of
a mean-risk optimization problem. Mean-risk models, as we show in Section
7.4, are the foundation of the ubiquitous mean—variance portfolio optimization
framework. However, there is no reason why we could not replace standard
deviation (or variance) of return by an alternative risk measure. We have al-
ready introduced value-at-risk in Section 2.2.2. Here, we discuss some basic
properties that a coherent risk measure should satisfy. As it turns out, value-at-
risk is not quite satisfactory in this respect. Then, in Section 7.5, we outline a
third approach, stochastic dominance. This last section is included for the sake
of completeness, but it is not needed for the remainder of this book and may
be safely skipped. We also include a couple of theorem proofs in Supplement
S7.1, which may be safely skipped, too. Usually, we do not include complete
and overly rigorous proofs, given the introductory nature of this book. However,
some of them may be instructive and useful to the interested reader.

7.1 Introductory examples

A couple of simple examples may help in framing the kind of problems that we
want to tackle in this chapter.

W Example 7.1 A choice among lotteries

Consider the choice among the four lotteries depicted in Table 7.1.
These lotteries are characterized by uncertain payoffs, which we model
by four discrete random variables L;(w), ¢ = 1,2, 3, 4, taking values
corresponding to three equally likely outcomes wy, we, and ws. For
each L;(w), in the table we also report its expected value y; and stan-
dard deviation ;. Which lottery should we choose?

It is easy to see that lottery L, would not be chosen, since its
payoff is dominated by L, (as well as by Ls):

L4(wk) S Ll(wk)a k= 172a37
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Table 7.1 Choice among four lotteries.

Lottery w1 wa w3 i g;
Ly (w) 100 200 300 200 81.65
(w) —800 200 1200 200 816.50
L3 (w) 150 200 244 198 38.40
(w) 100 200 150 150 40.82

with strict inequality in scenario ws. Lottery Lo is obtained from L
by shifting a payoff of 900 units from scenario w; to ws. Thus, we
do not change the expected value, but the payoff has a much larger
variability, as measured by the standard deviation. Many would agree
that, since the expected value is the same and there is less uncertainty,
lottery L, should be preferred to L.

Actually, this is a matter of individual taste and depends on how
much we like or dislike taking risk. If we are risk-averse, chances
are that we may even like L3 the most. This lottery is obtained from
L, by increasing the payoff for event w; by 50 and decreasing the
payoff for ws by 56. Thus, the expected value p3 is only 198, but the
standard deviation is considerably reduced.

In Example 7.1, we have only considered expected value and standard de-
viation of a lottery. Indeed, there is a large body of knowledge, broadly referred
to as modern portfolio theory, which revolves around this view. However, this
may not quite enough. As we said, if we compare the payoffs of lotteries L,
and L4 in Table 7.1, state by state, the latter is clearly dominated. However,
we cannot reach a clear conclusion by just considering expected value and stan-
dard deviation of the two payoffs, since py < p1 and o3 > 4. One issue is
that standard deviation does not capture the features of a very skewed random
variable, associated with an asymmetric probability distribution. Example 7.2
below further illustrates this point.

W Example 7.2 A dominated lottery

Let us consider the two lotteries described in Table 7.2. Note that
the states of nature (outcomes) are not equiprobable. We find the ex-
pected value and the standard deviation of the payoff of lottery L;(w)
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Table 7.2 A dominated lottery.

State w1 w2 w3
Probability 04 04 02
Payoff L1(w) 10 50 100
Payoff Ly(w) 10 50 500

as follows:

1 = 0.4 x 10 + 0.4 x 50 + 0.2 x 100 = 44
o1 =4/0.4 x 102+ 0.4 x 502 + 0.2 x 1002 — 442 ~ 33.23

By the same token, for lottery Lo(w) we find ug = 124 and o9 =
188.85. If we compare the two alternatives in terms of expected value
and standard deviation, there is an unclear tradeoff between the two
lotteries, as the second one is more attractive in terms of expected
payoff, but it looks riskier. However, if we compare the payoffs state
by state, L (w) is clearly dominated by Ls(w). The problem is that
the large payoff of lottery Lo(w) in state ws increases not only the ex-
pected value, but also standard deviation. Its distribution is positively
skewed, and a symmetric deviation measure, like standard deviation,
does not properly account for this feature. We should also notice that,
if we introduce a negative skew, standard deviation will not tell the
difference with respect to a corresponding positive skew.

We have considered simple lotteries that may be represented by a discrete
random variable X that takes values x; with probabilities p;, corresponding to
scenarios (also called outcomes or states of the world) w;, 7 = 1,...,m. Inrisk
management, this random variable usually represents loss, rather than profit,
return, or payoff. We may also consider continuous random variables, as is
common in asset allocation problems.

W Example 7.3 Static asset allocation

We are endowed with wealth W, that we should allocate among a
set of n assets with current price S;p, ¢ = 1,...,n. At the end of a
holding period of length 7', the prices of the assets are represented by
continuous random variables S;r(w). If we assume that assets are in-
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finitely divisible and short-selling is not allowed, our decision can be
represented by decision variables h; > 0,7 = 1,...,n, corresponding
to the holding of each asset, i.e., the number of stock shares of firm 4
included in the portfolio.

Decision variables are subject to a budget constraint,

Zn: hiSio = W,
i=1

and define a random variable,
Wr(w) =Y hiSir(w),
i=1

which is the random terminal wealth for each outcome w € .

In this case, the problem does not just require ranking a few sim-
ple lotteries. By choosing the portfolio holdings we define a continu-
ous probability distribution of terminal wealth, and we might choose
the most preferred one by defining and optimizing a suitable func-
tional F'(-), mapping a random variable into the set of real numbers:

max F[Wp(w)].

hiyeoishp

We are talking about a functional rather than a function, since we
are mapping random variables (which are function themselves, and
not just numerical variables), to real numbers. If we can find a suit-
able functional F(-), we may map a possibly complicated preference
structure into the simple ordering of real numbers.

Throughout the chapter, we assume that we have a credible stochastic char-
acterization of the probability distribution of uncertain risk factors. The distri-
bution may be considered as an objective assessment of uncertainty, but it is
most likely to be at least partially subjective. The difference is that, ideally, all
market participants should agree on a truly objective representation of uncer-
tainty. On the contrary, market views are to some extent subjective. In more
sophisticated models, we explicitly consider distributional ambiguity and look
for a robust solution. In such a case, we could be uncertain about a set of plau-
sible probability distributions, or we might even take a radical view and give up
the idea of a stochastic representation of uncertainty. In this chapter, for the sake
of simplicity, we assume that a reliable stochastic representation of uncertainty
is available.
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7.2 Should we just consider expected values of returns
and monetary outcomes?

Whenever we bet money on a lottery or invest wealth in risky assets, we pay
due attention to the expected value of the payoff, i.e., a monetary outcome, or
to expected return. The expected value is quite likely to be the first feature we
consider, when dealing with a probability distribution. However, let us ask the
following questions:

» Given a set of assets or alternative financial portfolios, should we just se-
lect the one with the largest expected return? No doubt, this would make
life much easier when dealing with decision-making under uncertainty.
However, as we show below, this does not take risk into account and may
lead to quite unreasonable decisions. As a general rule, larger expected
returns come with a larger exposure to risk, and this leads to the need of
assessing difficult risk—return tradeoffs.

Should we consider an asset with negative expected return for inclusion
within a portfolio? Even if we suspect that expected return does not tell
the whole story, one is tempted to think that there is little good to be
expected from such an asset, unless short-selling is allowed. However,
this simplistic view does not consider the correlations between returns.
An asset with a negative expected return may be negatively correlated
with other assets and contribute to reducing risk. Derivatives such as
futures and forward contracts are in fact included in an asset portfolio
(possibly a nonfinancial one, involving commodities) to reduce risk by
exploiting a negative correlation. In real life, indeed, we often purchase
insurance, which is an asset with (hopefully) negative expected return, as
we expect to pay the insurance premium but hope that a severe accident
will not occur.?

Given a financial asset with an array of random payoffs, can we just con-
sider the expected value of the payoff to price the asset fairly? This is a
relevant question, when dealing with derivatives and insurance contracts.
If an insurance company faces a large set of small-scale and independent
risks, it may be argued that finding the actuarially fair price of an insur-
ance policy, by estimating the expected cash outflow for the company,
may be a good strategy. However, this need not apply in general, and
the insurance business can get quite dangerous when risks turn out to be
correlated.’

Among other things, these questions show the link between the three basic prob-
lems of asset allocation, risk management, and asset pricing.

ZAsa further, but quite different example, lottery tickets have a negative expected payoff, since
it is unlikely that we will win. So, it seems that we may be risk lovers, at least in the small.

3A good lesson in this respect comes from the default risks on mortgages in 2008, leading to the
subprime crisis and the ultimate demise of Lehman Brothers.
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7.2.1 FORMALIZING STATIC DECISION-MAKING UNDER
UNCERTAINTY

In this section, we consider possible ways of formalizing a static problem under
uncertainty. A generic optimization model may be written as

min f(x),

where:

= x € R"™ is the vector of decision variables
= S C R"™ is the set of feasible solutions

 f(-) is the objective function, mapping solutions (vectors in R™) into a
numerical evaluation of their quality (a number in R)

In finance, the objective function is likely to be related to a monetary outcome,
like profit/loss, or to a return. Depending on the choice of the objective func-
tion, the problem may be a minimization or a maximization one. In most fields
of practical interest, some data or parameters of the optimization model are
uncertain. One way of stating this is by considering a vector of random vari-
ables &(w), where w € Q is a random outcome, corresponding to a scenario,
within the sample space (2. Then, the objective function becomes a function
f (x, 13 (w)) of both controllable and uncontrollable variables, and the feasible
set may be random, too. This may have two consequences:

= The quality of the solution that we find is random and may turn out to be
not quite what we expect.

= Possibly worse, the solution may even turn out to be infeasible for some
realizations of the random data.

As we have pointed out before, in Example 7.3, a specific choice xq of the de-
cision variables defines the distribution of a random variable Yy = f (xo, I3 (w)),
and we need a way to rank probability distributions. The simplest choice is to
rank distributions by the corresponding expected value. Thus, we might con-
sider an optimization problem like

min B[ (x, £(w))].

However, just taking the expected value of an objective like cost or profit may
not account for different attitudes toward risk. Thus, in general, we may con-
sider a transformation of the random performance measure f (x, 13 (w)), say,
Ro [ f (x7 ¢ (w))} , which should be considered as a risk functional. In concrete,
as we shall see later, we may consider utility functions or mean-risk models.

Actually, stating an optimization problem under uncertainty in a precise
way is not quite trivial, as different approaches may be pursued to model the
interplay of decisions and observations, i.e., how to define a dynamic decision
strategy, as well as how to cope with potential infeasibility of decisions made
before knowing the values of uncertain data. To be more concrete, let us assume
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that the feasible set is explicitly described by a set of inequalities:
gi(x,é(w))go, i=1,...,m.

Clearly, for a given x, we cannot be sure that the inequality will be satisfied for
every value of £. If we insist on guaranteed feasibility in every scenario,* an
overly fat solution may be obtained. Here, too, we may introduce functionals
Ri,i=1,...,m, and require

Ri[gi(x,ﬁ(w))] <0, 1=1,...,m.

A naive approach would be to require that the expected value of the constraint
function g; is negative or zero, but this would be a very weak statement of
an uncertain constraint. To see why, consider a standard normal distribution,
where the expected value is zero, but the probability of a strictly positive value
is 50%. As an alternative, we may settle for a probabilistic satisfaction of the
constraints. We may introduce a set of individual chance constraints,

P{gi(x,&(w)) <0} > 1 —a, i=1,...,m,
or a joint chance constraint,
P{gi(x,6w)) <0, i=1,....m}>1—a.

We should ask whether chance constraints are a suitable modeling framework,
which means: (a) whether they allow us to express a financial decision-making
problem in a sensible way, and (b) whether they lead to model formulations that
may be efficiently solved. We will discuss this matter in Section 15.6.1.

We note again that, in a static decision problem under uncertainty, the solu-
tion is not dynamically adapted according to contingencies. Furthermore, it is
practically impossible to find feasible solutions to problems involving random
equality constraints. To this aim, we may take advantage of a more flexible
modeling framework, stochastic programming with recourse, which will be in-
troduced in Chapter 15.

7.2.2 THE FLAW OF AVERAGES

In common wisdom, we often consider loose statements of the law of large
numbers, which is typically referred to as the “law of averages.” Here, we
rather consider the flaw of averages.> A comparison of the lotteries in Table 7.1
suggests that ranking alternatives on the basis of the expected value is probably
neither safe nor sensible. Let us consider a few further examples reinforcing the
point.

4Technically, we say that constraints are satisfied almost surely, i.e., with the exception of a set
of null measure. Alternatively, we say that constraints are satisfied with probability one. When
dealing with a finite set 2 of discrete outcomes, this boils down to the satisfaction of constraints
in every discrete scenario.

5See [16].
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W Example 7.4 A single bet vs. multiple repeated bets

Consider a simple lottery based on the flip of a fair coin: If it lands
tails, we win €10, otherwise we lose €5. Should we play this lottery?
The expected payoff is €2.5, and most people answer that they would
be willing to take the gamble. If we spice things up and scale the
payoff by a factor of one million, the answer turns probably negative.
Sure, an expected payoff of €2.5 million is quite palatable, but the
considerable risk of losing €5 million makes the gamble not attractive
to most people.

However, imagine playing the gamble repeatedly many times,
say, one thousand times. Our answer could change if we are allowed
to settle the score at the end of the game. Let X; be the payoff of flip
number i, ¢ = 1,...,n, where n is the number of independent and
identically distributed flips. Thus, the variables X; are i.i.d. random
variables. Let Y = >""" | X; be the total payoff, and let us denote the
common expected value and standard deviation of the variables X;
by ux and oy, respectively. Then, the coefficient of variation of Y,
under the hypothesis of independent flips, is

.oy _ynox Cx
Cy = ——= = T
lwy | nux  Vn

(7.1)

where we assume pux > 0. If n is large, the expected overall payoff
becomes virtually certain (this is an informal glimpse of the law of
large numbers). However, if we may go bankrupt along the way (i.e.,
we settle each flip of the coin individually, rather than assessing the
overall profit/loss at the end of the game) or risks are correlated, this
is not true anymore.

The natural interpretation of Example 7.4 is in terms of a bet repeated over
time. An alternative view, which is relevant to insurers, concerns multiple bets
taken at the same time. Indeed, Eq. (7.1) shows why an insurer providing cov-
erage for a large number of uncorrelated risks may rely of expectations, plus
some fudge consisting of reserves. However, correlated risks are much more
dangerous. For an insurer, the random variables X; correspond to losses. Let us
assume that losses are pairwise correlated in the same way and that the common
correlation coefficient is p. Then, the variance of the total loss becomes

Var(Y) = > Var(X;) + Y ) Cov(X;, X;)
i=1 i=1 j=1
J#i
2 2
=nox +n-(n—1)pok

=nok - [1+ (n—1)p].
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In the limit case p = 1, we have Var(Y) = n?0% = Var(nX) and there is no
diversification of risk, in the sense that the coefficient of variation becomes

no
Cy = —% = Cx.
nypx
As an example of correlated risks, we may think of home insurance in a re-
gion prone to earthquakes, or mortgage defaults under economic recession, as
it happened during the subprime mortgage crisis.

W Example 7.5 Putting all of our eggs in one basket

Consider an investor who must allocate her wealth to n assets. The
return of each asset, indexed by ¢ = 1, ..., n, is a random variable R;
with expected value p; = E[R;]. Asset allocations may be expressed
by decision variables w;, representing the fraction of wealth invested
in asset 7. If we rule out short-selling, these decision variables are
naturally bounded by 0 < w; < 1. If we assume that the investor
should just maximize expected return, she should solve the problem

n
max Z i W5
i=1
n
S.t. sz‘ =1
=1

This is a simple model that we have already met in Section 2.1.1, Eq.
(2.1), and we know its quite trivial solution: Just pick the asset with
maximum expected return, ¢* = argmax;—1,... n [, and set w;« = 1.
It is easy to see that this concentrated portfolio is a very dangerous bet.
In practice, portfolios are diversified, which means that decisions de-
pend on something beyond expected values. Furthermore, one would
also include additional constraints on portfolio composition, bound-
ing exposure to certain geographic areas or types of industry, and they
would render the above trivial solution infeasible. However, it may
be necessary to add many such additional constraints to find a sensi-
ble solution; this means that the solution is basically shaped by the
constraints that the decision maker enforces in order to rule out bla-
tantly inadequate portfolios. Incidentally, if short-selling is allowed,
the decision variables are unrestricted, and the expected value of fu-
ture wealth goes to infinity. In fact, one would short-sell assets with
low expected return, to raise money to be invested in the most promis-
ing asset. This is clearly risky and should be carefully disciplined.
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The next example is more akin to pricing a risky asset. It provides good
evidence that pricing by the expected value of the payoff (possibly discounted,
in order to take time value of money into account) does not seem a plausible
approach.

L) Example 7.6 St. Petersburg paradox

Consider the following proposal. We are offered a lottery, whose out-
come is determined by flipping a fair and memoryless coin. The coin
is flipped until it lands tails. Let k& be the number of times the coin
lands heads; then, the payoff we get is $2¥. Now, how much should
we be willing to pay for this lottery? Even if we are unlucky and the
game stops at the first flip, so that & = 0, we will get $1, so we should
be willing to pay at least this amount.

We may consider this as an asset pricing problem and set the
expected value of the payoff as the fair price for this rather peculiar
asset. The probability of winning $2* is the probability of observing k
consecutive heads followed by the tails that stops the game, after £+ 1
flips of the coin. Given the independence of events, the probability of
this sequence is 1/2%+1, i.e., the product of k£ + 1 individual event
probabilities. Then, the expected value of the payoff is

= 1 k 1 1 1
sz+12 =lx1+ix24+lxd+..
k=0

:%+%+%+...

= +400.

This game looks so beautiful that we should be willing to pay any
amount of money to play it! No one would probably do so. True, the
game offers huge payoffs, but with vanishing probabilities. Again,
we conclude that expected values do not tell the whole story.

The idea that most decision makers are risk-averse is intuitively clear, but
what does risk aversion really mean in formal terms? To get a clue, let us
compare two simple lotteries:

1. Lottery a1, which is actually deterministic and guarantees a sure payoff p
2. Lottery ao, which offers two equally likely payoffs ;1 + § and pp — 6

The two lotteries are clearly equivalent in terms of expected payoff, but a risk-
averse agent will arguably select lottery a;. More generally, if we consider
a random variable X, representing a payoff, and we add a mean-preserving
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spread, i.e., an independent random variable ¢ with E[¢] = 0,° this addition
is not welcome by a risk-averse decision maker and the lottery X is preferred
to X + €. This idea may be further formalized and made operational by using
different approaches that are discussed in the following.

7.3 A conceptual tool: The utility function

Given a set of lotteries, a decision maker should be able to pick the preferred
one; or, given any pair of lotteries, the decision maker should be able to tell
which one she prefers or state that she is indifferent between them. If so, she
has a well-defined preference relationship among lotteries. Since preference re-
lationships are a bit cuambersome and difficult to deal with, we could map each
lottery to a real number measuring the attractiveness of that lottery to the deci-
sion maker, and then use the standard ordering of real numbers to rank lotteries.
Such a function cannot be just the expectation, as this disregards risk aversion.
A theoretical answer, commonly put forward in economic theory, can be found
by assuming that decision makers order uncertain outcomes by a suitably cho-
sen functional, rather than by straightforward expected monetary values. For
an arbitrary preference relationship, a functional representing it may not exist
but, under a set of more or less reasonable assumptions,’ such a mapping does
exist and can be represented by an expected utility. A particularly simple form
of expected utility functional, which looks reasonable, but it is only justified by
specific hypotheses on the preference relationship that it represents, is the Von
Neumann-Morgenstern expected utility, defined as

U(X) =E[u(X)],

for a suitably chosen function u(-). For a simple lottery a represented by a
discrete random variable with n outcomes z; and probabilities p;, this boils
down to

Ula) = szu(xz)

To be precise, we refer to function u(-) as the utility function, which is related
to a certain payoff. On the contrary, U(-) is the expected utility functional, as
it maps random variables to the real line. If u(x) = z, then the expected utility
functional boils down to the expected value of the payoff. Alternative choices
of the utility function u(-) model different attitudes toward risk. For financial

SFor the sake of convenience, when using Greek letters we denote by € a random variable and
by e a realization of that variable. This notation is common in economics. In statistics, one
typically uses X and = with the corresponding pair of meanings, but this is not quite convenient
with Greek letters.

"The discussion of these assumptions is best left to books on microeconomics or decision the-
ory; we should mention that most of them seem rather innocent and reasonable, under most
circumstances, but they may lead to surprising effects in paradoxical cases.
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problems, it is reasonable to assume that utility u(-) is a strictly increasing func-
tion, since we prefer more wealth to less. Formally, this property is referred to
as non-satiation.

Beside the requirement of increasing monotonicity, the utility function is
typically assumed to be concave. It is easy to see that concavity may express
risk aversion. For the sake of convenience, we recall that a function f is said to
be concave on a domain S C R", if

FOX+(1=Ny) = A0+ (1= Nf(y), ¥xyeS el (7.2)

In words, the value of the function for a convex combination of points in the
domain is larger than the corresponding convex combination of the function
values.® Since a convex combination is a linear combination with non-negative
weights adding up to one, we immediately see the link with expected values. If
we consider a lottery featuring two possible outcomes, x; and x5, with proba-
bilities p; = p and p, = 1 — p, respectively, a risk-averse decision maker would
prefer not taking chances:

u(E[X]) = u(pz1 + (1 — p)z2) > pu(z1) + (1 — p)u(zz) = E[u(X)]. (7.3)

This may be generalized to a generic, possibly continuous random variable by
recalling Jensen’s inequality for a concave function u of a random variable X:

u(E[X]) > E[u(X)]. (7.4)

W Example 7.7 Concavity and risk aversion

Let us consider again the sure lottery a;, which guarantees a payoff p
with probability one, and lottery as, obtained by the mean-preserving
spread €, featuring equally likely outcomes —4 and §. Concavity im-
plies risk aversion, since

Ular) = ul) > bulp—6) + Su(p+6) = Uaz).

Since the inequality is not strict, we should say that lottery a; is at
least as preferred as as, and the decision maker could be indifferent
between the two.

As a numerical illustration, let us consider the logarithmic utility
u(x) =logx, and u = 10,5 = 5:

U(a1) = log 10 = 2.3026,
Ulaz) = 3log5 + 3 log 15 = 2.1587.

Figure 7.1 illustrates the role of concavity in describing risk aversion.

8See Section 15.1 for more details on convex and concave functions.
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A u(x)

wE[X])
E[u(X)]

\{

u—-06 CE,(X) u U+0

FIGURE 7.1 How concave utility functions imply risk aversion; the certainty equivalent
is also shown.

It is fundamental to observe that the specific numerical value that the utility
function assigns to a lottery is irrelevant per se; only the relative ordering of
alternatives is essential. In fact, we speak of ordinal rather than cardinal utility.
Given the linearity of expectation, we also see that an affine transformation of
the utility function w(-) has no effect, provided it is increasing. To see this, let
us consider @(z) = au(x) + b instead of u(x), where a > 0. Then, the ranking
of alternatives according to u is clearly preserved by u, since

U(X)=E[u(X)] = E[au(X) +b] = aU(X) +b.

Concavity implies risk aversion, from a qualitative viewpoint, but we would
also like to come up with some quantitative way to measure risk aversion. We
have said that a risk-averse decision maker would prefer a certain payoff to an
uncertain one, when the expected values are the same. She would take the gam-
ble only if the expected value of the risky lottery were suitably larger than the
certain payoff. In other words, she requires a risk premium. The risk premium
depends partly on the risk attitude of the decision maker, and partly on the un-
certainty of the gamble itself. We will denote the risk premium by p, (X)%;
note that this is a number that a decision maker with utility u(-) associates with
arandom variable X. The risk premium is implicitly defined by the condition

u(E[X] - pu(X)) = U(X). (7.5)

The risk premium also defines a certainty equivalent, i.e., a sure and guar-
anteed payoff CE, (X)), such that the agent would be indifferent between this
certain amount and the uncertain lottery:

CE,(X) = E[X] — p(X).

9Hopefully, no confusion will arise with the usual notation for the correlation coefficient p.
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Note that the certainty equivalent is smaller than the expected value, and the
difference is larger when the risk premium is larger. These concepts may be
better grasped by looking again at Fig. 7.1.

L) Example 7.8 Certainty equivalent and risk premium

In Example 7.7, we have seen that the sure lottery a; is preferred to
as by a decision maker characterized by a logarithmic utility. Let us
find the corresponding certainty equivalent for lottery as. We need a
sure amount = CEjog(a2), such that

u(z) =logx = U(ag) = 2.1587.

Hence,
CEjog(az) = e*'7%7 = 8.6603,

and the risk premium is

Plog(az) = 10 — 8.6603 = 1.3397.

We may interpret the risk premium as the additional expected payoff that
a risk-averse decision maker requires to switch from the risk-free alternative a;
to the risky alternative ao, or the amount that she is willing to give up in order
to get rid of the risk of as.

Example 7.8 points out a difficulty with the risk premium concept: It mixes
the intrinsic risk of a lottery!'® with the subjective risk attitude of the decision
maker. Thus, we might wish to separate the two sides of the coin. Consider a
lottery X = x + €, where x is a given number and € is a random variable with
E[¢] = 0 and Var(€) = 0. Hence,

E[X] =2, Var(X)=o%

Let us assume that the random variable € is a “small” perturbation, in the sense
that any possible realization ¢ is a relatively small number. Hence, we may ap-
proximate both sides of Eq. (7.5) by Taylor expansions. Consider, for instance,
the expression u(z + €). Since only numbers are involved here, we may write

u(z +€) mu(z) + e () + 1e2u” ().

By using this approximation for the random variable €, under the assumption
that its realizations are small enough, and taking expected values, we may ap-

10Here we assume that the risk is related to objective probabilities, but the same concept would
apply in the case of a subjective assessment of probabilities, if we disregard distributional am-
biguity.
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proximate the right-hand side of Eq. (7.5) as follows:

U(X) = Efu(z + 8] ~

(z) + 20" (z). (7.6)

In the second-to-last line, we have used the well-known identity Var(é) =
E[é?] — E2[¢] = E[¢?] — 0. We may also approximate the left-hand side of Eq.
(7.5), which involves only numbers, by a first-order expansion around E[X] =
x:

u(E[X] = pu(X)) = u(z) — pu(X)u'(2). (7.7
By equating the two approximations (7.6) and (7.7) and rearranging, we find
L' (@) ,
X)=—- 7.
Pu(X) 2 W () g (7.8)

Since we assume that the utility function is concave and strictly increasing, the
right-hand side of Eq. (7.8) is well-defined and positive.!! We observe that
the risk premium is factored as the product of a term depending on the agent’s
subjective risk aversion, represented by the utility function u(-), and another one
depending on the intrinsic uncertainty of the lottery, represented by the standard
deviation o. This justifies the following definition of the coefficient of absolute
risk aversion:
u”(x)

W)

The more concave the utility function, i.e., the larger v”(z) in absolute value,
the larger the risk aversion. We have observed that, given the linearity of the
expectation operator, transforming the utility function u(x) by an increasing
affine transformation is inconsequential. Indeed, the definition of the risk aver-
sion coefficient is consistent with this observation, as it is easy to see that the
coefficients for u(z) and @(z) = au(x) + b are the same.

We should also note that the coefficient R?(x) may change considerably as
a function of x. If we consider the asset allocation problem of Example 7.3,
we may use expected utility as the functional of terminal wealth W (w), which
we should maximize with respect to the vector h of the asset holdings. Let us
denote by R), the corresponding holding period return of the portfolio. Then,
we should maximize

RY(z) = — (7.9)

UWr) = E[U(WO 1+ Rh))].

In general, the solution may change as a function of Wy. From an investor’s
perspective, in fact, risk aversion may depend on the current level of wealth.

"'We recall that, for a differentiable concave function of one variable, we have u”’ (z) <0.
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By a similar token, we may define the coefficient of relative risk aversion.
This is motivated by considering a multiplicative, rather than additive, shock on
an expected value z: X = x-(1+¢€). Here E[¢] = 0 and Var(€) = o2, as before,
but

E[X] =2, Var(X)=a2%">

The mean is preserved again, but the random variable € is related to a return in
this case. Then, we may consider a relative risk premium 7, (X) as the fraction
of wealth that the decision maker is willing to give up in order to avoid taking

chances,
— CE, (X
Tu(X) = L“(),
T

which implies
pu(X) =2 — CE,(X) =7y (X) - 2.

Now, using a first-order Taylor approximation as before, we may write
u(CE, (X)) = u(E[X] — pu (X)) = u(z) — pu(X)u'(z)
= u(zr) — T (X) - 2u/ (). (7.10)

The utility of X can be approximated by a second-order expansion, for a real-
ization e:

w(X) = u(z + re) ~ u(x) + v (z)xe + %UH(Q?)13262.

By taking expectations and observing that E[¢?] = o2, we find

E[u(X)] ~ u(z) + %u”(m)xzaz. (7.11)

Putting Eqgs. (7.10) and (7.11) together and rearranging yield

1 1
Ly (I)IO,Q
2 u/(x)

mu(X) =
which suggests the definition of the relative risk aversion coefficient,

Ry(@) =~

(7.12)

The only difference with respect to the absolute coefficient is the multiplication
by .

7.3.1 A FEW STANDARD UTILITY FUNCTIONS

Beside listing some common utility functions, in this section, we want to il-
lustrate how to classify them according to some relevant criteria. This is best
illustrated by a simple example.
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W Example 7.9 Logarithmic utility

A typical utility function is the logarithmic utility:
u(x) = log(x). (7.13)

Clearly this makes sense only for positive values of wealth. It is easy
to check that, for the logarithmic utility, we have

Rir) =1, Ri)=1

Hence, logarithmic utility has decreasing absolute risk aversion, but
constant relative risk aversion.

The coefficients of absolute and relative aversion may be decreasing, con-
stant, or increasing with respect to their argument. Hence, utility functions may
belong to one of the following families:

» Decreasing, or constant, or increasing absolute risk aversion, denoted by
DARA, CARA, and TARA, respectively.

= Decreasing, or constant, or increasing relative risk aversion, denoted by
DRRA, CRRA, and IRRA, respectively.

Thus, logarithmic utility is DARA and CRRA. Furthermore, it may be thought
of as a limit case of the more general family of power utility functions:

=7 —1

, v > 1. (7.14)
11—~

u(x) =

To understand the reasons behind the parameterization with respect to v, let us
find the coefficient of relative risk aversion of power utility:

W"(z) = —7a~ 0D,
27
T — . - —
R (x)=x-v prors el

Furthermore, using L’Hopital’s rule,'? we find'?

1-v _1 —1 Ll
lim = = lim “log(x) -7 = log(z).
=1 1—7 y—1 -1

12L’Hépital’s rule is used to find the limit lim, s+, f(x)/g(x), in the case where both functions
f(+) and g(-) tend to zero. Subject to technical conditions, the limit is limz ., f'(z)/g’ (z).

3 Here, we are also using the derivative of the function f(x) = a® = e®1°8¢, whichis f'(z) =
a” - loga.
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We may also consider the exponential utility function
u(x) = —e %, (7.15)

for a > 0. Note that this is an increasing function, and it is easy to interpret the
parameter «:

_a2e—ax

Ri(z) = T = @
Hence, we conclude that the exponential utility is CARA. This feature may be
somewhat at odds with intuition, as one might expect that wealthier individuals
are less averse to risk. It is important to remark that some utility functions have
been used in the academic literature, because they are easy to manipulate, but
this does not imply that they always model realistic investors’ behavior.'#
Another common utility function is quadratic utility:
A

u(z) =x — 51'2. (7.16)
Note that this function is not monotonically increasing and makes sense only
for z € [0,1/A]. Another odd property of quadratic utility is that it is TARA:
A dR%(x) A2

= > 0.

a —
Ru(w) = - dx (1 - Ax)?

This implies, for instance, that an investor becomes more risk-averse if her
wealth increases, which is usually considered at odds with standard investors’
behavior. Nevertheless, it may be argued that, since any concave utility function
may be locally approximated by a quadratic utility function, this provides a use-
ful tool anyway. Furthermore, quadratic utility emphasizes the role of variance,
since we have

A (Var(X) + E*[X]) . (7.17)

UX)=E [X—AXQ} = BE[X] -3

2
A decision maker with quadratic utility is basically concerned only with the
expected value and the variance of an uncertain outcome. In chapter 8, we will

discuss the connection with mean—variance portfolio optimization (see Section
8.5).

W Example 7.10 Logarithmic utility and portfolio choice

Consider the following stylized portfolio optimization problem:

= We represent uncertainty in asset return by a binomial model:
There are two possible states of the world in the future, the up
and down states, with probabilities p and ¢ = 1 — p, respectively.

145ee Problem 7.1 for an example concerning the odd behavior of the exponential utility func-
tion.
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= There are two assets: one is risk-free, the other one is risky.

* The risk-free asset has gain R in both states (recall that multi-
plicative gain is one plus holding period return; in other words,
$1 grows to $Ry).

* Current price for the risky asset is Sy and its gain is « in the up
state and d in the down state. Hence, the two possible risky asset
prices are uSy and dSy. We use gain, rather than holding period
return, to streamline notation.

« Initial wealth is Wj and the investor has logarithmic utility.

In this problem, there is actually one decision variable, which we may
take as ¢, the number of stock shares purchased by the investor. To
get rid of the budget constraint, we observe that §5j is the wealth
invested in the risky asset, and Wy — .5 is invested in the risk-free
asset. Then, future wealth will be, for each of the two possible states:

Wu = 55()1& + (VV() - 53())Rf = 55()(’& — Rf) + I/V()Rf,
W4 = 6Spd + (Wo — §So)Rf = 5So(d — Rf) + W()Rf,

and expected utility is plog(W,,) + qlog(Wy). The problem is then
max plog {0So(u — Ry) + WoRy}
+ qlog {5SO(d —Ry)+ WORf}.
Let us write the first-order (stationarity) condition for optimality:

v So(u — Ry) +q- So(d — Ry) _
5SO(U—Rf)+W0Rf 5S0(d—Rf)+WoRf

In order to solve for J, we may rearrange the equation a bit:

550(’U, - Rf) + W()Rf _ 755()((1 - Rf) + W()Rf
pSo(u — Ry) aSo(d—Ry)

Straightforward manipulations yield
0 . WoRy 6 WoRy

p pSo(u—Ry)  q qSo(d— Ry)

and

s [1 n 1} __ WoRy[q(d — Ry) + p(u — Ry)]
P9 pgSo(u — Ry)(d — Ry)
Then, one last step yields
Wo  (u—Ry)(Ry —d)’
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This relationship implies that the fraction of initial wealth invested
in the risky asset does not depend on the initial wealth itself. We
have derived this property in a simplified setting, but it holds more
generally for logarithmic utility and is essentially due to its CRRA
feature.

Example 7.10 shows how the features of each utility function may affect
the solution of decision problems. One must be aware of the implied behavior,
when choosing a specific utility function. Once again, we recall that, in this
chapter, we are dealing with static decision problems. The definition of a utility
function gets much more complicated in the case of multistage problems, as
intertemporal issues arise.

7.3.2 LIMITATIONS OF UTILITY FUNCTIONS
Utility functions have been subjected to much criticism over the years:

» They rely on critical assumptions about the underlying preference rela-
tionships and may lead to paradoxes.

» They assume a significant degree of rationality in decision makers, who
may be affected in real life by lack of information and cognitive limita-
tions, leading to behavioral anomalies that are not explained within the
standard utility framework. Some experiments shows that the observed
behavior of decision makers may contradict the expected utility paradigm,
as we discuss in Section 10.5.

= They aim at modeling subjective risk aversion, but a portfolio manager
has to cope with multiple clients, and she should certainly not make de-
cisions according to her own degree of risk aversion. Objective risk mea-
sures may be preferable.

« It is difficult to elicit a specific utility function from a decision maker.

In Section 7.4, we resort to an alternative approach, based on mean-risk mod-
els. The idea is to introduce an objective risk measure, which is a functional
mapping random variables into real numbers, and trade expected profit/return
against risk. This leads to a multiobjective optimization problem. As we have
seen in Supplement S2.1, one possibility to cope with multiple objectives is to
form a linear combination of two objective functions. For instance, when deal-
ing with a random return R, a natural idea is to define a risk-adjusted expected
return,

E[R] — %AVar(R). (7.18)
This mean-risk objective looks much like an expected quadratic utility, even
though a comparison with Eq. (7.17) shows that they are not exactly the same.
We shall introduce alternative risk measures to cope with asymmetric risks.
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Before doing so, we may take advantage of the streamlined form of Eq. (7.18)
to show how we might try to estimate the risk aversion coefficient ) in a simple
case.””

W Example 7.11 Estimating risk aversion

Say that we own a piece of real estate and we want to insure it against
a disaster that may occur with probability p. If disaster strikes, our
loss is 100% of the property value. Risk may be represented by a
Bernoulli random variable:

= With probability p, return is —1 (we lose 100% of the property).
» With probability 1 — p, return is 0.

Then,

E[R|=px(-1)+(1—p)x0=—p,
Var(R) = p x (1) + (1 —p) x 0> = p* = p(1 — p).

Note that the expected return is negative, as we are facing a potential
loss. By abusing proper quadratic utility a little bit, let us consider the
mean-risk form of Eq. (7.18),

U(R) = E[R] — $AVar(R).

In this specific case, the utility score is, for a given risk aversion co-
efficient ),

U=—p—3p(1—p)
We may consider insuring the property for a given premium. The
more we are willing to pay, the more risk-averse we are. If we are
willing to pay at most v, then the utility of the certain equivalent loss
of —v is equal to the above utility score:

U=-v = v=p+3ip(l—p).

As a reality check, observe that a risk-neutral investor (A = 0) would
just pay p, the expected loss. Given the insurance premium v that
we are willing to pay, this relationship allows to figure out a sensible
value of )\, since

yo2v-p)
p(1—p)
To get a more intuitive feeling, imagine that p is small (1 — p =~ 1), so
that
vp+ %/\p.

157he example is borrowed from [3, Chapter 6].
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Let us try a few values of \:

A=0 = v=p,
A= = v~ 1.5p,
A=2 = v=2p

A=3 = v=25p.

Therefore, for each unit increment in the risk aversion coefficient, we
should be willing to pay another 50% of the expected loss.

In portfolio optimization, it is commonly agreed that A\ ranges
between 2 and 4.

7.4 Mean-risk models

The framework of expected utility suffers from the limitations that we have
outlined in Section 7.3.2. Arguably, the most critical one is that a utility func-
tion mixes objective risk measurement and subjective risk aversion in decision-
making. This is quite evident in the concept of risk premium. Hence, prac-
titioners in financial industry prefer to rely on the concept of a risk measure.
From a mathematical viewpoint, we should arguably talk of a risk functional,
since what we need is a way to map a random variable X (w), which is itself a
function, to a real number:
& X(w) =R

We will use both terms interchangeably. Armed with a risk measure, we may
tackle the problem of finding a satisfactory risk-reward tradeoff by using con-
cepts of multiobjective optimization, as discussed in Section S2.1. This results
in mean-risk optimization models.

If we choose variance or standard deviation as risk measures, we end up
with the mean—variance portfolio optimization model that we have introduced
in Section 2.1.1. Mean—variance optimization relies on variance for the sake of
computational convenience, as this choice leads to a simple quadratic program-
ming model. However, the underlying idea is actually using standard deviation
as a risk measure. Standard deviation can be considered as a risk measure: the
smaller, the better. However, while standard deviation captures the dispersion of
a probability distribution, is it really a good risk measure? Example 7.2 clearly
shows that symmetric risk measures, like standard deviation or variance, may
fail with skewed distributions. As an alternative, we have considered value-at-
risk, which is an asymmetric risk measure, in Section 2.2.2.

Value-at-risk is an example of asymmetric risk measure based on quantiles.
However, we may easily define an asymmetric risk measure based on variance,
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namely, semivariance. If X is a random variable modeling profit or return, its
semivariance is defined as

B[ (max{0, ux — X})°]. (7.19)

In practice, we consider only negative deviations with respect to the expected
value. The idea can be generalized and made more flexible, if we introduce neg-
ative deviations with respect to a minimum target that we wish to achieve, i.e.,
shortfall amounts. Let us denote the random terminal wealth associated with a
portfolio by Wr. If we choose a target wealth W ,;,,, we may be interested in
evaluating the portfolio performance in terms of shortfall probability,

P{WT < Wmin } )
or expected shortfall,
E [ max{O, I/Vmin — WT}] .

Shortfall is zero if we achieve or exceed the target, so we are penalizing un-
derachievement in an asymmetric way. Expected shortfall, when used within
portfolio optimization modeling, may result in simple linear programming prob-
lems.'® To this aim, we should discretize the expectation by generating a finite
set of scenarios, as customary in stochastic programming. If we wish to penalize
large shortfalls more heavily, we may consider the expected squared shortfall,

E [( max{0, Win — WT}) 2] )

which may be tackled by quadratic programming.
How do these measures compare against each other? In order to provide a
sensible answer, we must clarify the desirable properties of a risk measure.

7.4.1 COHERENT RISK MEASURES

A single-period risk measure is a functional £(-) mapping a random variable
X (w) to the real line. The random variable might be interpreted as the value of
a portfolio, or a profit or loss, i.e., a change in value. Furthermore, loss might
be relative with respect to an expected future target, or an absolute loss. In this
section, we list some desirable properties of a risk measure. In the literature,
different statements of these properties may be found, depending on the inter-
pretation of X (w). Here, we assume that the random variable represents a profit
or the value of a portfolio. Hence, the larger the random variable, the better, but
the risk measure is defined in such a way that it should be minimized.
The following set of properties characterizes a coherent risk measure:

16gee Chapter 15.
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» Normalization. Consider a random variable that is identically zero, X =
0. It is reasonable to set £(0) = 0; if we do not hold any portfolio, we are
not exposed to any risk.

» Monotonicity. If X; < X,,!7 then £(X) > £(X5). In plain English, if
the value of portfolio 1 is never larger than the value of portfolio 2, then
portfolio 1 is at least as risky as portfolio 2.

* Translation invariance. If we add a fixed amount « to the portfolio, the
risk measure is affected: £(X + a) = &(X) — a. If a > 0, risk is reduced.

= Positive homogeneity. Intuitively, if we double the amount invested in a
portfolio, we double risk. Formally: £(bX) = b¢(X), for b > 0.

» Subadditivity. Diversification is expected to decrease risk; at the very
least, diversification cannot increase risk. Hence, it makes sense to as-
sume that the risk of the sum of two random variables should not exceed
the sum of the respective risks: {(X +Y) < £(X) +£(Y).

We are dealing only with a single-period problem; tackling multiperiod prob-
lems may complicate the matter further, introducing issues related to time con-
sistency, which we do not consider in this book.'8

Remark. An interesting implication of translation invariance is

E(X +€(X)) =€(X) —£(X) =0.
Thus, the risk measure of a portfolio with random value X may be interpreted as
the minimum amount of additional capital that is needed to make the portfolio
acceptable, where a portfolio X is said to be acceptable if its risk measure
is £(X) < 0. In fact, risk measures (functionals) may also be interpreted as
acceptability functionals.

We have listed theoretical requirements of a risk measure, but what about
the practical ones?

* Clearly, a risk measure should not be overly difficult to compute. Unfor-
tunately, computational effort may be an issue, if we deal with financial
derivatives whose pricing itself requires intensive computation.

= When solving a portfolio optimization model, convexity is a quite impor-
tant feature. Positive homogeneity and subadditivity may be combined
into a convexity condition:

X + (1= NY) <AX) + (1= NEY),  YAaelo1].

Thus, apart from theoretical considerations, a coherent risk measure may
be practically preferable from a computational viewpoint.

17Since we are comparing random variables, the inequality should be qualified as holding almost
surely, i.e., for all of the possible outcomes, with the exception of a set of measure zero. The
unfamiliar reader may consider this as a technicality.

18The essence of time consistency of a multiperiod risk measure is that if a portfolio is riskier
than another portfolio at time horizon , then it is riskier at time horizons ¢ < 7 as well. See,
e.g. [2].
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* Another requirement is that the risk measure should be easily communi-
cated to top management. A statistically motivated measure, character-
izing a feature of a probability distribution, may be fine for the initiated,
but a risk measure expressed in hard monetary terms can be easier to
grasp. We also note that specific sensitivity measures, like bond duration
(and the option Greeks that we shall meet later), do not enable us to sum-
marize all risk contributions, irrespectively of the nature of the different
positions held in the portfolio. These difficulties led to the development
of value-at-risk.

7.4.2 STANDARD DEVIATION AND VARIANCE AS RISK

MEASURES

We are aware that a major limitation of standard deviation and variance is their
symmetry, since they measure dispersion without paying attention to direction
of variability. Let us run a more formal check by asking whether they meet the
coherence requirements.

= The normalization requirement is met, but we know that, for any real
number a,
Var(X + a) = Var(X).

Hence, variance and standard deviation are not translation invariant. We
find a translation invariant measure, however, if we consider

£(X) = —E[X] + A/ Var(X),
since
(X +a)=-E[X +a]l+ A/ Var(X +a) =§(X) —a.

* Monotonicity fails, as we have seen in Example 7.2. More generally, if
we have a random variable bounded by a constant,

Xi(w) <«

and we consider Xo(w) = «, the monotonicity condition fails since
Var(X;) > 0 and Var(X3) = 0.

* Let us consider positive homogeneity. Since
Var(bX) = b*Var(X),

this condition fails for variance, but it is met by standard deviation (just
take the square root).

= Let us complete the picture with subadditivity. Since

Var(X1 + XQ) = Var(Xl) + Var(XQ) + 200V(X17X2),
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variance fails to meet subadditivity when covariance is positive. How-
ever, if we consider standard deviation and we express covariance using
the correlation coefficient p;5 < 1, we see that standard deviation is sub-
additive:

_ 2 2
OX14+Xs = \/le + 0%, +2p120x,0x,

2 2 _
< \/UX1 +o%, +20x,0x, =0x, +0x,.

Hence, the picture is not quite encouraging for standard deviation and vari-
ance as risk measures, but standard deviation looks a bit better. From a practi-
cal viewpoint, when dealing with the return of a simple portfolio, variance may
result in simple optimization problems, i.e., convex quadratic programs. How-
ever, this is not necessarily true when considering more complicated optimiza-
tion models, where scenarios in terms of underlying risk factors are generated
and mapped to asset prices by a nonlinear pricing model, and a stochastic pro-
gramming model is solved.!® Furthermore, while standard deviation or return
or wealth may make sense, variance of wealth, which is measured in squared
monetary units, cannot be really be interpreted. Even standard deviation of
wealth may fail to convey a precise perception of directional risk. Neverthe-
less, these measures are broadly used in the context of modern portfolio theory,
which relies on mean—variance optimization. As we shall see, this provides us
with useful insights, like the capital asset pricing model, and it may be some-
times justified, since quadratic utility can approximate a generic concave utility
function locally.

7.4.3 QUANTILE-BASED RISK MEASURES: V@R AND CV@R

We have introduced value-at-risk, in Section 2.2.2.1, as a quantile of the proba-
bility distribution of loss. There, we have considered typical textbook examples
relying on normality, in order give a simple picture. However, in practice, es-
timating V@R is far from trivial for a complex trading book involving exotic
derivatives, as well as equity or fixed-income assets. Whatever approach we
use for its computation, VQR is not free from some fundamental flaws, which
depend on its definition as a quantile. We should be well aware of them, es-
pecially when using sophisticated computational tools that may lure us into a
false sense of security. The following example shows how a quantile cannot
distinguish between different tail shapes.

W Example 7.12 Different shapes of a tail

Consider the two loss densities in Fig. 7.2. In Fig. 7.2(a), we observe a
normally distributed loss and its 95% V@R, which is just its quantile

195ee Chapter 15.
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FIGURE 7.2 Value-at-risk can be the same in quite different situations.

at probability level 95%; the area of the right tail is 5%. In Fig. 7.2(b),
we observe a sort of truncated distribution, obtained by replacing the
tail of the normal PDF with a uniform density. The tail accounts for
5% of the total probability. By construction, VQR is the same in both
cases, since the areas of the right tails are identical. However, we
might not associate the same risk with the two distributions. In the
case of the normal distribution, there is no upper bound to loss; in
the second case, there is a clearly defined worst-case loss. Whether
the risk for density (a) is larger than density (b) or not, it depends on
how we measure risk exactly; the point is that V@R cannot tell the
difference between them.

One way to overcome the limitations of a straightforward quantile, while
retaining some of its desirable features, is to resort to a conditional expectation
on the tail. This observation has led to the definition of alternative risk mea-
sures, such as conditional value-at-risk (CVQR), which (informally) is the
expected value of loss, conditional on being to the right of V@QR. For instance,
the conditional (tail) expectation yields the midpoint of the uniform tail in the
truncated density of Fig. 7.2(b); the tail expectation may be larger in the nor-
mal case of Fig. 7.2(a), because of its unbounded support. In this section, we
investigate the properties of both V@R and CV@R in terms of coherence and
computational viability.

7.4.3.1 A remark on quantiles

When defining quantile-based risk measures, there is no particular difficulty
with standard continuous distributions featuring a continuous and strictly in-
creasing CDF

Fx(z) =P{X < z}.
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A Fx(x)

FIGURE 7.3 The link between quantiles and the CDF.

Fy(x)

1.00
0.85

v x
0 1 2 3 4 5

FIGURE 7.4 A noninvertible CDF of a discrete random variable.

In such a case, the CDF is invertible and the quantile x;_,, at probability level
1 — « is easily found:

Fx(z1_a)=1l—a = x1_,=F'(1-a), (7.20)

where a € [0,1] is the probability mass on the right tail (which is supposed
to be small if we are considering a loss). This is illustrated in Fig. 7.3. Given
a numerical value zg, the CDF Fx(x3) gives the corresponding probability
B = P{X < zg}. Going the other way around, given the probability 1 — «,
inversion of the CDF yields the corresponding quantile x_,.

However, the case of a discrete random variable is more involved, as the
CDF is piecewise constant and not invertible. Figure 7.4 shows the CDF for a
discrete random variable with the following PMF:

T | o 1 2 3 4 5
px(z) [ 005 020 030 025 010 0.10

Here,
Fx(3) =0.8, Fx(4)=0.9,
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and we are in trouble when looking for the quantile x g5. Then, we may define
the quantile as the smallest number x;_,, such that Fx(x1_,) > 1 — . This
relies on the definition of a generalized inverse function:

T1—o =min{z: Fx(z) > 1—a}.

The generalized inverse function boils down to the standard inverse, when the
CDF is continuous and strictly increasing. In the numerical case that we are
considering, we find

To.85 = 4,

which makes sense in terms of “staying on the safe side.” The intuitive idea
is that the value 4 “covers” loss with a 90% guarantee, which is larger than
necessary, but the value 3 offers a guarantee of only 80%. This looks innocent
enough, but we should wonder about the possibility of defining quantiles using
a strict inequality, as in

inf{z: Fx(z)>1-a},

where we really have to use inf, since the strict inequality does not guarantee
the existence of a minimum. Actually, the question is not trivial and leads to
alternative definitions of quantiles and risk measures, which may differ in terms
of coherence. For the sake of simplicity, we will cut a few corners as usual.?”

7.4.3.2 Is value-at-risk coherent?

In this section, we consider a continuous random variable L, modeling loss
over the time horizon 7" for which we want to evaluate V@R. We assume that
its CDF is invertible, so that value-at-risk with confidence level 1 — «, for the
given time horizon 7', is the usual quantile VQR;_, 7, such that

P{Lr <V@R;_qr}=1—a, (7.21)

and we may disregard technical complications. If we consider an affine trans-
formation aLr + b of loss, with ¢ > 0, we may manipulate Eq. (7.21) and
find

P{aLr +b<aV@R;_, 7 +b} =1—aq,

showing translation invariance®! and positive homogeneity. Value-at-risk is
clearly normalized and monotonic, but what about subadditivity? If we restrict
our attention to specific classes of distributions, such as the normal, VQR is
subadditive (see Problem 7.4). However, this depends on the fact that quantiles
of a normal distribution are related to the standard deviation, which is subad-
ditive. The following counterexample is often used to show that VQR is not
subadditive in general.

20For a deeper analysis, see, e.g., [6].

2l this case, the constant b is added, rather than subtracted, which seems at odds with the
previous definition of translation invariance. The point is that the random variable L represents
a loss, rather than a profit.



7.4 Mean—risk models 307

@ Example 7.13 V@R is not subadditive

Let us consider two zero-coupon bonds, whose issuers may default
with probability 4% (over some time horizon that we leave implicit).
Say that, in the case of default, we lose the full face value, $100 (in
practice, we might partially recover the face value of the bond). Let
us compute the V@R of each bond with confidence level 95%. We
represent the loss for the two bonds by random variables X and Y,
respectively, which take values in the set {0,100}. Since loss has a
discrete distribution in this example, we should use the more general
definition of V@R provided by the generalized inverse. The proba-
bility of default is 4%, and 1 — 0.04 = 0.96 > 0.95; therefore, we
find

V@R0.95 (X) = V@R0.95 (Y) = $O
= V@R g5 (X) + V@R .95 (Y) = $0.

Now what happens if we hold both bonds and assume independent
defaults? We will suffer:

+ A loss of $0, with probability 0.96% = 0.9216
* A loss of $100, with probability 2 x 0.96 x 0.04 = 0.0768
» A loss of $200, with probability 0.042 = 0.0016

Now the probability of losing $0 is smaller than 95%, and
P{X +Y <100} = 0.9216 + 0.0768 > 0.95.
Hence, with that confidence level,
V@QRg.95(X +Y) =100 > V@R 95(X) + VQRg.95(Y),

which means that risk, as measured by V@R, may be increased by
diversification.

The lack of subadditivity also implies that minimization of V@R may not
result in convex portfolio optimization problems. When uncertainty is repre-
sented by sampled scenarios, it turns out that it is not even a differentiable
function of portfolio weights.?? This is not to say that V@R is not useful and
relevant. In fact, it is used to assess capital requirements for banks, i.e., to deter-
mine the liquidity needed as a buffer against short-term loss. However, it must
be used with care, and alternative measures have been proposed for the same

purpose.

22See, e.g., [5, pp. 615-618].
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7.4.3.3 Conditional value-at-risk

Conditional value-at-risk, CV@R, is an asymmetric risk measure related to tail
expectations and, as such, bears some similarity with expected shortfall (in fact,
the two concepts are sometimes confused). However, in expected shortfall, we
fix a target a priori; here, the threshold is given by V@QR. Informally, CVQR is
defined as a conditional tail expectation?® of loss over a time horizon T', where
the threshold is V@R with probability level 1 — a:

CV@R_qr =E[Lr | Ly > VAR _o 1]. (7.22)

Since CV@R looks like a complication of V@R, it seems reasonable to
expect that it is an even more difficult beast to tame. On the contrary, CV@QR is
much better behaved:

= It can be shown that CV@R is a coherent risk measure.

= A consequence of coherence is that CV@R is a convex risk measure.
The last point is quite relevant in terms of optimization modeling, as it sug-
gests that minimization of CV@R and optimization subject to an upper bound
on CV@R may result in relatively simple convex problems. We will consider

CV@R optimization later, in Section 15.6.2.1. For now, let us consider an ex-
ample in which, rather unsurprisingly, CV@R is easy to find.

W Example 7.14 CVG@R in the normal case

In the case of a normally distributed loss, L ~ N(ur,02), we may
find an explicit expression for CV@QR. Let us consider a standard
normal loss Z ~ N(0, 1) first, where V@R, _, = z1_,, the familiar
quantile for the standard normal distribution. We have

E[Z|Z > z1_4]
1t 1 e
== . —z%/2g
= X e X
« /z1 V2T
11 [T

=—— e Ydy (variable substitution y = x2/2)
Q2T 2 2
1 1

e
a2

2
Zl-a

-y

—+oo

23 As we have already noted, there are some critical issues in the careful definition of quantile-
based risk measures, especially when dealing with discrete distributions. We disregard such
subtleties. We should also mention that the term “average value-at-risk” is also used to refer to
CVa@R.
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1 1 2 1
[ —2i_a/2 = —
a 2776 a¢(zl—a)7

where ¢(z) is the PDF of the standard normal, as usual. For instance,
if @ = 0.05 (note that this is the small area on the right tail of the loss
distribution),

E[Z|Z > z9.05] = x ¢(1.6449) = 2.0627.

1
0.05
In the case of a generic normal loss L ~ N(u, 02), we just destandard-
ize by considering

L=p+0Z, q-o=p+021_q

Hence,
E[LIL>q_ol =E[p+0Z|Z > z1_4]
=u+o0-ElZ|Z > z_4]
(o2
=pu+ o d(z1-a). (7.23)

For instance, if L ~ N(—50, 2002), where the negative expected loss
corresponds to a positive expected profit of 50, we find

200
CV@Rog5 = —50 + 5= x ¢(1.6449) = 362.54.

7.4.4 FORMULATION OF MEAN-RISK MODELS

The exact formulation of a mean-risk model depends on both modeling and
computational convenience. As we have seen in Supplement S2.1, there are
different scalarization strategies to boil a multiobjective problem down to a se-
quence of single-objective problems. In the mean-risk case, we are dealing with
a model where:

= We represent a portfolio by the vector x of decision variables, constrained
by a feasible set S C R".
= We want to maximize an expected profit/return 7(x).

» We want to minimize a risk measure £(x).
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In practice, we must select a scalarized model, which may be obtained by defin-
ing a risk-adjusted mean,

max  7(x) — A(x)
st. xe S,

or by requiring a minimum expected reward,

min  £(x)
st. x€ S,
m(x) = B,

or by defining a risk budget,

max 7(X)
st. xe &S,
§(x) <.

Depending on the selected risk measure and the adopted scalarization, we for-
mulate one of the mathematical programming problems to be discussed later, in
Chapter 15. They range from manageable linear programming models to dif-
ficult nonconvex problems. Furthermore, the scalarizations involve a choice of
parameters A, 3, or -y, which may have a more or less intuitive meaning to the
decision maker. Efficient solvers are available for a wide class of (convex) opti-
mization problems, enabling us to tackle many practically significant problems.

7.5 Stochastic dominance

In principle, the framework of utility functions allows to find a complete or-
dering of portfolios. However, utility functions are difficult to elicit, and an
investor might be reluctant to commit to a specific utility. The mean-risk frame-
work may provide us with a partial ordering of alternatives, as well as a set of
efficient portfolios. The stochastic dominance framework is a third alternative
framework, resulting in a partial ordering that may be related to broad families
of utility functions.

To get the intuition and a possible motivation, let us consider again the two
lotteries of Example 7.2. The example shows a limitation of mean—variance
analysis, since one lottery is clearly dominated by the other one, yet, we have
an unclear tradeoff in terms of mean and variance. We may introduce a concept
of dominance between random returns/payoffs X and Y fairly easily. We say
that X dominates Y if?*

Y(w) < X(w), YweQ, (7.24)

24 As usual, the condition should be better qualified, as it applies with the possible exception of
a subset of the sample space §2 with null measure. If the random variables are discrete, this is
not relevant.
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and
P{Y < X} >0.

In other words, X is never worse than Y, and X is strictly better than Y in some
scenarios. Note that there is no clear relationship between this concept of domi-
nance and efficiency. Nevertheless, assuming that investors are nonsatiated, i.e.,
they prefer more to less, no one would prefer Y to X. This concept of (strict)
dominance is quite simple and intuitive, but it is not likely to be very useful in
practice. It is unlikely that it will establish a rich preference relationship be-
tween portfolios. Actually, under a no-arbitrage assumption, we should expect
that we never detect this kind of dominance.?

Hence, we must weaken the idea of strict dominance in order to find a
more useful concept. To get a further clue, let us fix a target payoff/return 8 and
assume that

P{X < g8} < P{Y <g}.

What does this condition suggest about the choice between X and Y? Since
P{X < g} = 1-P{X > B}, we may rephrase the condition in terms of
complementary probabilities as follows:

P{X >3} > P{Y > j}.

If we consider ( as a target performance, we see that the probability of ex-
ceeding the target is larger for X than for Y. This may suggest that X is a
better investment than Y, but actually this conclusion is not warranted, as the
relationship could be reversed for other values of the target 5. However, if we
assume that this relationship holds for every possible target, we come up with
the following definition.

DEFINITION 7.1 (First-order stochastic dominance) Consider random vari-
ables X andY. We say that X has first-order stochastic dominance over'Y if

P{X<B} < P{Y<f}, VBeR

and
P{X <~} < P{Y <~}, for some v € R.

Note that the condition in Definition 7.1 may be restated in terms of the CDF of
the two random variables:

Fx(B) < Fy(B), VBER
Fx(v) < Fy (%), for some v € R.

In plain English, if we plot the two CDFs, Fx is never above Fy, and it is
strictly less somewhere.

258ee Section 2.4 for the link between dominance and arbitrage opportunities.
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Table 7.3 An example of first-order stochastic dominance.

State w1 w2 w3 w4 Ws
Probability 02 02 02 02 02
Return rx (%) 3 4 5 6
Return ry (%) 7 6 5 3 3

Return 3 (%) 2 3 4 5 6 7 8
P{rx <p} 00 02 04 06 08 1.0 1.0
P{ry <} 00 04 04 06 08 1.0 1.0

W Example 7.15 First-order stochastic dominance

Let us consider the two investments described in Table 7.3. The first
table gives the percentage return of the two investments in five states
of the world. Clearly, there is no state-by-state dominance between
the returns of the two alternatives. The second table shows the two
CDFs for relevant values of return. Note that the CDF does not bear
any relationship with the states of the world. The CDF of rx never
exceeds the CDF of ry and is strictly less at one point (return 3%).
Hence, rx first-order stochastically dominates 7y .

In Definition 7.1, we are essentially assuming that investors prefer more
to less, which is expressed by a strictly increasing utility function. This fact is
formalized as follows.

THEOREM 7.2 If X and Y satisfy the condition in Definition 7.1, then
E[u(X)] > E[u(Y)],

for every utility function u satisfying the condition v'(z) > 0 for all x (u is
differentiable and strictly increasing).

Actually, it turns out that the condition is necessary and sufficient, and we shall
just sketch a proof in Supplement S7.1. We may get a glimpse of intuition by
considering the following relationship in distribution between random variables
X andY:

v2x4e, (7.25)

where ¢ is a nonpositive random variable. We should carefully note the funda-
mental difference between Eq. (7.24) and Eq. (7.25). In the latter case, we are
not requiring a strong state-by-state condition,

Y(w) = X(w) + &(w), Yw € Q,
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with £(w) < 0, but only a weaker condition in terms of distribution, which is
actually a way to rephrase first-order stochastic dominance. Then, if the utility
function wu is strictly increasing, we find

E[u(Y)] = E[u(X +¢)] < E[u(X)].

First-order stochastic dominance is easier to observe in the real world than
an unreasonable state-by-state dominance, but it is still too strong and may not
allow to compare alternatives in many significant cases. To see why, let us
consider the specific case u(xz) = =z, i.e., the utility function is the identity
function, which is to say that the investor prefers more to less but is risk-neutral.
We clearly see that the condition in Theorem 7.2 implies

E[X] > E[Y].

This means that we cannot compare distributions with the same expected value,
which is a significant limitation. To overcome this difficulty, a weaker condition
has been introduced.

DEFINITION 7.3 (Second-order stochastic dominance) Let us consider ran-
dom variables X andY. We say that X has second-order stochastic dominance
overY if

B B
/ P{X <s}ds < / P{Y < s}ds, VB € R,

and
gl 8!
/ P{X <s}ds< / P{Y < s}ds, for some v € R.

Definition 7.3 involves integrals of the CDF of random variables, which we
may denote by

ﬁx(x);/w Fx(s) ds_/w P{X < s}ds. (7.26)

Hence, the condition of second-order stochastic dominance may be restated as
follows:

Fx(p) < Fy(p), VAeR
Fx(7) < Fy(7), for some v € R.

First-order stochastic dominance implies second-order dominance; hence, it is
a stronger concept. This is reflected in a weakened version of Theorem 7.2,
whereby we add a condition related to risk aversion.

THEOREM 74 If X and Y satisfy the condition in Definition 7.3, then
E[u(X)] > E[u(Y)},

Sfor every utility function u satisfying the conditions u'(z) > 0 and u" (x) < 0
for all x (u is differentiable, strictly increasing, and concave).



314 CHAPTER 7 Decision-Making under Uncertainty: The Static Case

Stochastic dominance is an interesting concept, allowing us to establish a
partial ordering between portfolios, which applies to a large range of sensible
utility functions. Unfortunately, it is not quite trivial to translate the concept
into computational terms, in order to make it suitable to portfolio optimization.
Nevertheless, it is possible to build optimization models including stochastic
dominance constraints with respect to a benchmark portfolio (see the chapter
references).

S7.1 Theorem proofs

S7.1.1 PROOF OF THEOREM 7.2

The proof that we sketch here is rather limited, as we only deal with the case
of random variables with a common bounded support [a, b], for finite a,b € R.
Nevertheless, it is simple enough and rather instructive. We assume that the
random variables X and Y are continuous with densities (PDFs) fx(z) and
fv (y), related with the CDF as usual:

Fx(x) =P{X <z} and fx(z) = Fy ().

We assume differentiability throughout. We should consider the difference of
the expected utilities, which may be written as follows:

b b
E[u(X)] - Efu(Y)] = / u(e) fx (z) da — / w(y) fy (y) dy

b b
— [ u) P o~ [ ut)Fy ) v
Now we use integration by parts for both integrals. For instance,
b b
/ w(z)F (z) dz = u(b)Fx (b) — u(a)Fx(a) — / o' () Fx (z) dx

b
= u(b) — / v (z)Fx(x) dx,

since the assumption of bounded support implies F'x (b) = 1 and Fx(a) = 0. A
similar relationship applies to Y, and we find

b b
E[u(X)] — Eu(Y)] = / W (4) Fy (y) dy — / o (@) Fx () do

b
_ / /() [Fr(2)  Fx(2)] d. (7.27)

Now we observe that, for every z, u/(z) > 0, by the assumption of increas-
ing monotonicity, and Fy (z) — Fx(z) > 0, by the assumption of first-order
dominance. Hence, the integral is positive, which proves the theorem.



PROBLEMS 315

S7.1.2 PROOF OF THEOREM 7.4

The proof, under similar assumptions about bounded support and differentiabil-
ity of the involved functions, is quite similar to that of Theorem 7.2. We use
the function ﬁx (z), i.e., the integral of the CDF that we have introduced in Eq.
(7.26), so that

Fx(z) = Fi ().

We start from Eq. (7.27) and, since risk aversion involves the second-order
derivative u” (), we integrate by parts once more as follows:

Efu(X)] — E[u(Y)] = / ’ W'(2) [Fy(z) - FX(Z)} dz

— ' (b) [Fy(b) - ﬁx(b)} —'(a) [F}(a) - ﬁx(a)]

=0

_ /ab u”(2) {ﬁy(Z) — ﬁx(z)} dz,

where the second term vanishes, since Fx(a) and Fx(a) are integrals on an
interval [a, a] with zero measure. Hence,

Fy(a) = Fx(a) =0.

The result now follows from the assumptions u’(z) > 0, u”(z) < 0, and the
definition of second-order stochastic dominance.

Problems

7.1 Consider an exponential utility function u(z) = —e™**, with a strictly
positive a. An investor characterized by this exponential utility has to allocate
an initial wealth W, between a risk-free and a risky asset. We assume a binomial
uncertainty model, so that the risky asset has two possible gains (not returns)
R, and R,, with probabilities 7, and 74, respectively. Let ¢ be the wealth
allocated to the risky asset; it is possible to borrow cash as well to short-sell
the risky asset. How does ¢ change as a function of initial wealth W,? Do you
think that your utility function is exponential?

7.2 An investor endowed with an initial wealth Wy = 1 (e.g., in euro) maxi-
mizes the expected value of the quadratic utility function u(z) = az — bx?/2,
where z is the terminal wealth obtained by investing in n risky assets. Accord-
ingly, the investor chooses a portfolio. Another investor, with a different initial
wealth of Wy = K, by optimizing the same utility function, chooses a different
portfolio (in the sense that the asset weights are different).

* How do you explain the difference?
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FIGURE 7.5 PDF of a triangular distribution.

« If the second investor changes the coefficient b to ¥, he finds the same
portfolio as the first investor. What is the relationship between b and &’?

Note: This problem is borrowed from [13].

7.3 The value of your real estate property is $100,000. In case of a fire, your
property may be lost or damaged, depending on how severe the accident is. Let
us assume that the following scenarios give the residual value of your property
in the future, depending on the possible occurrence of a fire:

State  Residual value  Probability

w1 $100,000 0.95
w2 $50,000 0.04
w3 $1 0.01

State w; means that no accident occurred. Assume that your preferences are
represented by a logarithmic utility depending on wealth, which is why we do
not consider a residual value of $0, but $1. What is the maximum price that
you would be willing to pay for an insurance guaranteeing coverage of any
loss? Note: In the three states, the insurance will pay $0, $50,000, and $99,999,
respectively, so that the value of your property is preserved.

7.4 Consider random variables L; and Lo, modeling loss from two portfolios,
and assume that they are jointly normal. Show that, in this case, value-at-risk is
subadditive.

7.5 Figure 7.5 shows the probability density function (PDF) of a generic tri-
angular distribution with support (a,b) and mode ¢. For such a distribution,
expected value and variance are given by the following formulas:

at+b+e
Blx] = S0
Var(z) = a2+b2+czfabfacfbc'

18

Say that the profit from a financial portfolio, with a holding period of a few
weeks, has a triangular distribution with parameters (in €) a = —75,000, b =
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55,000, and ¢ = 40,000, so that the maximum possible loss is €75,000. Find
V@R at level 95%. Note: The drawing of Fig. 7.5 is not in scale and is just
meant as a qualitative hint.

7.6 Consider the following payoff distributions for two independent invest-

ment opportunities:?
Investment A Investment B
Payoff  Probability Payoff Probability
4 0.25 1 0.33
5 0.50 6 0.33
12 0.25 8 0.33

Compare the two alternatives in terms of stochastic dominance. Hint: You may
plot the CDF, which is piecewise constant, and its integral, which is piecewise
linear, for the two alternatives.

Further reading

= Decision-making under uncertainty is a topic of general interest, which is
treated in different ways by different academic and practitioner commu-
nities. A thorough treatment of utility theory can be found, e.g., in [12],
which is a treatment with a more economic flavor.

There is an array of excellent books offering a treatment in a more finan-
cial vein, dealing with both utility theory and stochastic dominance. A
concise, yet quite broad coverage of portfolio theory is offered in [11].
You may also see [7]. A more extensive treatment is offered in [9] or
[10].

The concept of coherent risk measure was introduced in [1].

Risk measures are dealt with extensively in books with a more compu-
tational twist, especially stochastic programming. You may see [15], as
well as [14]. A quite readable chapter on risk measures can also be found
in [6].

We have defined the concept of stochastic dominance, but portfolio op-
timization using this framework is more challenging than using utility
functions or risk measures. See, e.g., [8] or [17].
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Chapter [ElCONT

Mean—Variance Efficient
Portfolios

This chapter is fairly technical and is meant to be a bridge between the gen-
eral framework of mean—risk models, which we introduced in Section 7.4, and
Chapters 9 and 10, where we describe factor and equilibrium models. Here,
we adopt standard deviation as a risk measure, momentarily setting aside the
critical remarks that we made in Section 7.4.1, in order to develop the the-
ory of mean—variance efficient portfolios, which is the foundation of a body
of knowledge broadly known as modern portfolio theory (MPT). In portfo-
lio optimization, variance is typically used, rather than standard deviation, but
this is just a matter of computational convenience. Despite its deceptive sim-
plicity and the limitation of symmetric risk measures, MPT provides us with
useful insights. Everything hinges on the determination of an efficient frontier
of risky portfolios and the selection of an optimal portfolio mixing risky assets
with a risk-free asset. The risk-free asset may be thought as a safe zero-coupon
bond with maturity corresponding to the portfolio holding period, or a safe bank
account offering a constant interest rate.

The theory, in its basic form, only deals with a single-period decision prob-
lem. To fix ideas, we will essentially consider equity portfolios, even though, in
principle, any asset would do, since we may consider the holding period return
from whatever asset, including a bonds and commodities. A further limitation
of our treatment is that we do not consider transaction costs, taxes, etc., but the
basic model can be extended to account for these and additional problem fea-
tures. The resulting optimization models are quadratic programming problems
that, per se, are certainly not hard to solve with numerical optimization meth-
ods.! A deeper limitation is of a statistical nature and concerns the reliability
of the input data and of the resulting portfolio. We feed the optimization model
with estimates of expected values and covariances of asset returns, but they are
noisy estimates. Estimation errors may be magnified by the optimization pro-
cess, resulting in unreliable and possibly weird solutions. Remedies have been
proposed, including the Black-Litterman approach (Section 10.3) and robust
optimization (Section 15.9).

ISee Chapter 16.
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Despite all of its limitations, the MPT framework sheds light on the funda-
mental decomposition of risk into systematic and idiosyncratic (specific) com-
ponents. Another useful idea that we derive from MPT is the decomposition of
the overall portfolio problem into independent subproblems: (1) the selection
of a risky portfolio, and (2) its mixing with the risk-free asset. We will take
a step-by-step, top-down process, whereby in Section 8.1 we first consider the
simple problem of how wealth should be allocated between the risk-free asset
and a generic risky portfolio. This leads to the definition of the capital allo-
cation line (CAL). Then, in section 8.2, we consider in detail the problem of
tracing the mean—variance efficient frontier, which leads us to an important sep-
aration property, as we shall see in Section 8.3. The property suggests that if all
investors have the same view about the probability distribution of returns, then
they should invest in the same risky portfolio, irrespective of their subjective
risk aversion. Risk aversion should come into play only in the capital allocation
between the optimal risky portfolio and the risk-free asset. The optimal risky
portfolio can be found by maximization of a measure, the Sharpe ratio, trading
off risk and expected reward, which we tackle in Section 8.4. In Section 8.5,
we discuss whether and to what extent the theory of mean—variance efficient
portfolios may be reconciled with the theory of expected utility. We close the
chapter with some considerations about the stability of the portfolios generated
by mean—variance optimization. As we illustrate in Section 8.6, a naive mean—
variance approach may yield unreliable and unstable solutions, which would be
hardly trusted by any portfolio manager.

We close the chapter with two technical sections, Supplements S8.1 and
S8.2, where we prove some properties of the efficient portfolio frontier and
give an explicit solution of a simplified portfolio optimization problem. These
supplements may be safely skipped.

In this chapter we use some basic concepts in multiobjective optimization.
The unfamiliar reader may refer to Supplement S2.1.

8.1 Risk aversion and capital allocation to risky assets

In this section, we consider a simple introductory problem, the capital allocation
between a single risky asset and a risk-free one, over a given holding horizon.
We will denote the risk-free return over the holding period as r,? and the return
of a risky portfolio by the random variable ,> with expected value and variance

2We use the term risk-free return, rather than rate, as 7 is not annualized and may refer to an
arbitrary holding period.

3There are two main conventions to denote random variables. We may use X for random vari-
ables and z for their realizations. As an alternative, we may use # for random variables and x
for their realizations. We mostly use the first convention in this book but, since in this chapter
we shall use r for return and R for excess return, here we adopt the second one to avoid any
ambiguity.
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denoted by
E[fj=p and  Var(f) = o?,

respectively. We will denote the fraction of wealth allocated to the risky asset
by x, so that the corresponding fraction allocated to the risk-free assetis 1 — x.
Hence, the random return of the resulting portfolio is

Fp(z) = aF + (1 — x)ry,
with expected return and standard deviation given by

(@) = Elip(@)] = wp+ (1= a)rg =rp+a-(u—ry), 8D
op(@) = /Varlr, @)] =20, 8.2)

respectively. Please note that if we allow a negative value of x, which corre-
sponds to short-selling the risky portfolio, we have to use an absolute value in
Eq. (8.2). It is also useful to introduce the following fundamental concepts.

DEFINITION 8.1 (Excess return) The excess return R of a risky asset (or a
portfolio) is its return in excess of the risk-free return:

Ri’Ffo.

DEFINITION 8.2 (Risk premium) The risk premium 7 of a risky asset (or a
portfolio) is its expected return in excess of the risk-free return:

ﬂ'iE[R] =pu-—ry,
i.e., the expected excess return.

Remark. The concept of risk premium of definition 8.2 should not be confused
with the utility theoretic concept of Eq. (7.5), which is related with a specific
utility function and a certainty equivalent. Nevertheless, we may see some sim-
ilarity between the two concepts, since the risk premium that we consider here
does measure a compensation required to take a risk. To better grasp the idea,
we may consider the ratio

N By

g

as a market price of risk, i.e., the expected compensation that is expected by
the market (rather than by an individual decision maker) per unit of risk. The
relationship may be rewritten as

w=rs+ Ao,

which sheds further light on the matter. If the market price of risk is zero, then
p = 7. This kind of reasoning will play a role in the risk-neutral pricing of
options, as we shall see in Chapter 14. However, we should be careful about an
interpretation that relies on the standard deviation of a single asset, rather than
its contribution to the overall risk of a portfolio.
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Table 8.1 Data for Example 8.1. The risk-free return is r ; = 3%.

Portfolio  Risk premium  Expected return  Risk (St. dev.)

P1 4% 7% 10%
P2 7% 10% 20%
P3 2% 5% 30%

In order to find the most preferred portfolio, we have to trade off expected
return and risk. Given the background concepts introduced in Chapter 7, we
may use a mean-risk approach, adjusting expected return and building a sort of
expected utility function as follows:

U(z) = pp(z) — Xl (z), (8.3)

where A corresponds to the degree of risk aversion. Such a function is essen-
tially a quadratic utility function and disregards higher-order moments. We may
consider this function as a sort of utility function,* with all of the pitfalls that we
have outlined in Chapter 7, or as the scalarized objective function of a mean—
risk model.

W Example 8.1 A numerical example

Let us consider three portfolios, with expected return and standard
deviation given in Table 8.1. Comparing P1 and P2, we observe that
the former is less risky than the latter, but it features a lower expected
return. The choice between the two depends on the degree of risk
aversion. In Figure 8.1, we plot the expected utility of Eq. (8.3) for
a range of values of A, which results in a plain straight line for each
portfolio. We observe that there is a critical value for which a decision
maker would be indifferent between P1 and P2. On the contrary,
P23 looks always worse than the other two alternatives. Indeed, we
observe from Table 8.1 that it features the smallest expected return
and the largest risk.

In general, the values of an expected utility can be used to rank alternatives,
but they have no concrete financial meaning; indeed, we speak of ordinal, rather
than cardinal utility. In this specific case, however, the utility score can be
interpreted as a certainty equivalent return, i.e., a risk-free return that would

4We should note that the interpretation of Eq. (8.3) as a quadratic utility function is a bit impre-
cise. See Eq. (7.17) and the discussion in Section 8.5.
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FIGURE 8.1 Plots of expected utility as a function of risk aversion in Example 8.1.

provide the investor with the same utility as the risky portfolio. In practice,
sensible values for A are usually considered to lie in the range between 2 and 4.

Now, as we said, the problem is to find an allocation between the risky
portfolio and the risk-free asset. We may get a feeling for the involved tradeoff
by plotting the range of portfolios that we can form as a function of z, on a
mean-risk plane with coordinates o, (z) and y,(x). To this aim, let us assume
x > 0 [to get rid of the absolute value in the expression of ¢, (x)] and eliminate
x between Egs. (8.1) and (8.2). We solve the latter equation for = and plug it
into the former one, which yields

pp(x) =75 + ap().

HTf

o
Thus, on the mean-risk plane, the portfolios trace the line shown in Fig. 8.2,
which is called the capital allocation line (CAL). The CAL has an intercept r ¢
and a slope given by a ratio trading off risk and reward:

s, =" (8:4)

Op

This ratio, called Sharpe ratio, relates the risk premium of the portfolio with
its volatility, and it is also known as reward-to-volatility ratio. In the case of a
single risky asset, the Sharpe ratio of the portfolio does not really depend on z,
the decision variable defining the portfolio. In fact, if we assume > 0 and use
Egs. (8.1) and (8.2), we find

g _tw@) —ry rpta-(pory)—ry  pory
P op(x) xo o
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FIGURE 8.2 The capital allocation line.

Hence, the Sharpe ratio of the portfolio boils down to the Sharpe ratio of the
risky asset. In Fig. 8.2, the two bullets correspond to the two assets that we
are considering, and the CAL has positive slope, since we assume that the risky
asset has positive risk premium. The portion of line connecting the two bullets
is spanned by z in the range [0, 1]. For > 1 we have a leveraged portfolio,
in which expected return is boosted by borrowing money at the risk-free rate in
order to increase the investment in the risky asset.’ For z < 0 we are selling
the risky asset short. The picture does not show the corresponding line, which
has the same intercept as the CAL, but a negative slope. Since, in this case, the
risk premium is positive, portfolios with z < 0 are clearly dominated and not
efficient.

8.1.1 THE ROLE OF RISK AVERSION

The CAL defines the universe of possible portfolios, whereas risk aversion de-
termines which one is selected. To this aim, let us maximize the expected utility
of Eq. (8.3),

1
Ul)=ry+a(p—rys)— 5)@202,

with respect to x. Since this function is differentiable and concave, it suffices to
write the first-order optimality condition,

U'(z) = (p—r7s) — Aza® =0,

which yields the optimal allocation to the risky asset,

-Tr
v = (8.5)

3 Here, we are assuming that cash may be borrowed or lent at the same rate. See Problem 8.1 to
find out what happens in the case of different rates.
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If the risk premium is positive, =* is positive as well. We also notice that, quite
sensibly, this allocation is increasing with respect to the risk premium p — 7y,
and decreasing with respect to risk o and risk aversion A\. The expression of
the optimal portfolio depends on a ratio trading off risk premium and risk, even
though it is not really a Sharpe ratio, as it involves variance rather than standard
deviation.

8.2 The mean-variance efficient frontier with risky
assets

In capital allocation, we consider a given portfolio of risky assets as the only
risky asset available to investors. But how can we choose that portfolio of risky
assets? Here, we stick to measuring risk by standard deviation of return, within
a mean—variance framework. This leads us to tracing the efficient frontier of
portfolios of risky assets on the mean-risk plane. We deal with the case of two
risky assets first, and then we move on to the case of n assets. Before doing so,
we should ask why we should include multiple assets in a portfolio. Combining
n risky assets should allow us to strike a better balance between risk and reward.
However, as we show below, there is a limit to the amount of risk reduction that
can be achieved by pure diversification.

8.2.1 DIVERSIFICATION AND PORTFOLIO RISK

Common sense suggests that holding a diversified portfolio should reduce risk.
Indeed, we know from inferential statistics that, given a sample of i.i.d. (inde-
pendent and identically distributed) variables, the variance of the sample mean
X goes to zero when the sample size goes to infinity. In fact,

Var(X Var( ZX) 12 Xn:Var(Xz) _ 2

which vanishes for an increasing sample size n. However, this holds under an
assumption of independence.® Such an assumption is not quite realistic in a
financial context. If we consider an equally weighted portfolio (w; = 1/n), the
variance of its return includes not only contributions from individual variances,
but also from the whole array of covariances:

n n n
PO EED SERE 9 ot
=1 1=1 j=1

J#i

where 02 = Var(7;) and 0;; = Cov (74, 7;).

6Actually, assuming that correlation is zero would be sufficient.
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In order to figure out what happens when we push on diversification, by
letting n — +o00, let us define an “average variance,’

and an “average covariance,’

1 n n
Cov=——— i
nin—1) ; ; J
Jj#i
Then, the return variance of the equally weighted portfolio is
1
= - .52 4
n

n—1

o - Cov.

2
P

We immediately notice that, for an increasing value of n, the first component of
variance does indeed go to zero, but the second one does not. There is a nondi-
versifiable component of risk. In financial markets, we have to distinguish:

= An array of idiosyncratic risk factors, associated with specific firms.
These specific components of risk are nonsystematic and may be elim-
inated by diversification.

* A market risk component, which is a systematic and nondiversifiable
risk factor.

This will be more apparent when dealing with factor models in Chapter 9, where
we shall also see how we might hedge systematic risk by using long—short port-
folios. This, however, assumes that short-selling is allowed.”

8.2.2 THE EFFICIENT FRONTIER IN THE CASE OF TWO RISKY
ASSETS

To build intuition, let us consider first the simple case of only two risky assets,
say, A; and A,, with expected returns 1 and po, and standard deviations of
return o1 and o9, respectively. The returns are not necessarily independent,
and we denote their coefficient of correlation by p12. The asset weights in the
portfolio are denoted by w; and ws, subject to the constraint

wy 4+ we = 1. (8.6)

Hence, the expected return of the portfolio is a linear (affine) combination of
the two expected returns:

Up = W11 + Wall2.

"To hedge market risk, we may also use derivatives like index futures or options. In particular, a
short position in an index futures may be used to emulate a short position in the market portfolio,
as we show in Chapter 12.
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Variance is

2 2 2 2 2
o, = wioy + 2p12W1 W20 102 + W505.

The minimum variance portfolio can be found by straightforward minimization®
and is, for two assets:

2
05 — P120102

wg =1 —wi. 8.7
O'% — 2p120_10_2 ¥+ 0'%’ 2 1 ( )

w1 =

As we have seen in Section 2.1.1, we might trace the efficient frontier of port-
folios by setting a range of target portfolio returns pi,. In the case of two
risky assets, the resulting optimization problem is a bit dull, since the additional
constraint

W11 + W22 = Mmin,

together with Eq. (8.6), immediately give the resulting portfolio:

o Mmin — U2 o M1 — Hmin

N g = — TR

1 — o B — p2

To figure out the qualitative shape of the efficient frontier, let us consider ex-
pected return and variance as a function of w = wy:

w1

pp = w(p1 — p2) + 2, (8.8)
O'g = wQJf + 2p12w(l —w)or02 + (1 — w)2cr§. (8.9)

By letting w range over the whole real line, i.e., assuming that short-selling is
possible, we may plot a curve on a mean-risk plane. In this case, we find a
curve corresponding to the whole set of attainable portfolios, which we may
call the attainable set. The qualitative shape of this set is outlined in Fig. 8.3
for three specific values of correlation, p12 € {—1,0,1}, assuming that short-
selling is not allowed, so that w € [0, 1]. In order to rule out pathological cases,
we assume p1 # puo and o1 # oo. If we allow short-selling, the plots stretch
beyond the extreme points corresponding to assets A; and As. Let us consider
the two limit cases first.

Case p;, = 1. In this case,

op = \/wza% +2w(l —w)oro9 + (1 —w)20% = \/(wm + (1 - w)ag)2
=|w(o1 — 02) + 02| .

Note that, to be fully general, we have to consider the absolute value. If we
rule out short-selling and use Eq. (8.8) to eliminate the portfolio weight, we

find
Hp — M2
o, = ——-(01 —03) + 09,
P i — (o1 2) 2

80ne possibility is to use a Lagrange multiplier to deal with constraint (8.6), as we shall see in
the general case of n assets. In this simple case, we may just eliminate wo and solve an uncon-
strained problem with respect to w1, by enforcing the usual first-order optimality condition.
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FIGURE 8.3 Plotting the mean—risk tradeoff curve for portfolios including two risky
assets.

which is a linear relationship between standard deviation and expected re-
turn. In the case of Fig. 8.3, ;1 < po and 01 < o9, so the slope is positive.
Also note that we may find a portfolio with zero risk by choosing

g

w=—"">1,
092 — 01
which implies short-selling asset As.
Case p;, = —1. By a similar token, in this case we find

2
Op = \/(wgl — (1 =w)oz)” =lw(oy + 02) — 02| .
Now, we attain zero risk by setting

02
o1+ 09

In this case, w € [0, 1] and we may get rid of risk without resorting to short-
selling. The set of attainable portfolios corresponds to two line segments,
even if we require w > 0.

For intermediate values of correlation, we have a nonlinear curve featuring a
minimum variance portfolio. In Supplement S8.1, we show that the exact shape
is a hyperbola. Note that the plot corresponding to all of the attainable portfolios
is not the efficient frontier, as only the portion of the attainable set curve above
the minimum variance portfolio is efficient.

An interesting observation is that a sensible portfolio may include a dom-
inated asset. To see this, let us consider asset As, which happens to lie on the
mean-risk curve in Fig. 8.3, and imagine tracing the frontier with only the two
assets A; and As. Since Ag is on the previous attainable set, it means that its
expected return and standard deviation may be replicated by a portfolio includ-
ing A; and As, which implies that we get exactly the same attainable set by
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using A; and Aj. Clearly, asset A; is dominated by As, and in the case of
perfect positive correlation, p;3 = 1, the set of attainable portfolios with no
short-selling would be a line segment joining A; and Ag, with a negative slope,
and it would consist of nonefficient portfolios. However, Fig. 8.3 shows that,
for certain values of correlation, it might be worthwhile to include a dominated
asset into a portfolio, as this could reduce the overall portfolio risk. This is espe-
cially true for a negative correlation. Thus, we should not analyze the individual
risks of assets, but their contribution to the overall risk within a well-diversified
portfolio.’

8.2.3 THE EFFICIENT FRONTIER IN THE CASE OF N RISKY
ASSETS

Given the basic intuition provided by the case of two risky assets, let us now
consider a portfolio including n risky assets with expected value p and covari-
ance matrix 3. As we have said,'? the case of n risky assets may be tackled by
two alternative scalarization approaches (assuming fully invested portfolios):

* One possibility is enforcing a constraint on a target expected return fipin
and letting it range over a suitable interval:

min % TS w

T

st. iw=1,

T
KW = Umin,

wherei=[1,1,...,1]".
= An alternative is setting up a (sort of) utility function characterized by a
risk aversion parameter \:

A
max ;LTW — §WTEW (8.10)
st. i'w=1. (8.11)

We may interpret this scalarized objective as a risk-adjusted expected re-
turn. By letting \ range from 0 to +oo, we trace the efficient frontier.

Quite often, these two approaches are equivalent, but they are not in general. As
a counterexample, let us consider tracing the mean—variance efficient frontier
subject to a cardinality constraint. This means that we limit the number of
assets that may have a nonzero weight in the portfolio. In this case, the second
scalarization approach does not necessarily work. To see why, consider Fig. 8.4.
Here, we show the possible shape of an efficient frontier involving three assets,

This concept will be more evident in Section 10.2, where we deal with the role of beta in the
capital asset pricing model and introduce the security market line.

10gee Supplement S2.1.



330 CHAPTER 8 Mean—Variance Efficient Portfolios

—
=

-

o
1

FIGURE 8.4 Qualitative sketch of a cardinality-constrained efficient frontier.

where the maximum cardinality is two. We may find a sort of “union” of three
frontiers, each one corresponding to a pair of assets. This frontier does not look
like the boundary of a convex set, and the risk-adjusted objective of Eq. (8.10)
may fail to generate the whole frontier.!!

In our simple setting, we may work with either scalarization approach but,
for the sake of convenience, we pursue the second approach in this section,
leaving the first one to Supplement S8.2. As a first step, let us find the min-
imum variance portfolio. This portfolio is obtained by letting A — o0 in
the maximization problem (8.10), which is easily solved by using the Lagrange
multiplier method. We plug the equality constraint (8.11) into the Lagrangian
function, associated with a multiplier v:

L(w,v) = %WTEW +v-(1- iTw) .

Stationarity with respect to portfolio weights yields a system of linear equations,
which is solved under the assumption of a full-rank (invertible) covariance ma-
trix:

Sw-rvi=0 = w=vX i

Plugging this vector of weights into constraint (8.11) immediately yields the
value of the multiplier,

1 > 1
—_— = Wﬂ< L=, 8.12
i~ S 1 Y (8.12)

UV =
Then, the minimum variance of the resulting portfolio is

9 1

* T *
oo =(Whi) Twh, = ——
min min min . —1e?
it

which is just the Lagrange multiplier.

' We face a similar issue in Fig. 2.9. The problem with a cardinality constraint may be solved
using the mixed-integer modeling tools that we shall discuss in Section 15.4.1.
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The case of finite risk aversion can be tackled along the same lines, and it
is a useful exercise to prove that:

E*li 1 (iTE—li) 2_111/ _ (iTE_ll,l,) E_li

Yo =1 ’ @13)
Ty —1 sTy—1s Ty —1 T —1,,)2
e ae BT 1(TETH) (W) - (T2 )
S S S PR it » B14)
2
e L LTS (1) - (TS )
(07)" = (W) Zw = SRRy iT> 1 ’
(8.15)

As a reality check, we may note that if A goes to infinity, the portfolio of Eq.
(8.13) boils down to the minimum variance portfolio.
We may streamline Egs. (8.14) and (8.15) by introducing suitable constants

_ =
A= e
o (T27) (W) — (2 )
- it ’
1
e

and rewriting the two equations as follows:

. B B_(u*—A)Q
Y = X B
B (u*— A)?

*2_ —_— ——
(o) —C+>\2 C+ iz )

The last equation can be rearranged as

which is the equation of a hyperbola,'? assuming that B > 0 and C' > 0."3 To
be precise, since risk aversion A is supposed to be positive, we only draw a por-
tion of a hyperbola. The resulting curve is depicted in Fig. 8.5. Unlike the case
of two assets, this curve does not correspond to the whole set of attainable port-
folios, but only to the portfolios minimizing variance for given target expected
return. Thus, we should talk of the minimum variance curve (or min-variance

12Supplement S8.1 describes a similar analysis for the case of two assets.

B3The inequality C' > 0 is a consequence of the positive definiteness of the inverse of a positive
definite matrix. Hence, it holds if we assume that the covariance matrix X is positive definite,
not only semidefinite, so that i"™=~'i > 0. The inequality B > 0 is a consequence of the
Cauchy-Schwartz inequality applied to vectors p and i, where we consider an inner product
involving matrix £ ~1; therefore, (i, ) = i g and || |?= (u, ) = "= 10
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\Lq

FIGURE 8.5 The set of minimum variance portfolios, for given target expected returns,
with n risky assets. The portion above the overall minimum variance portfolio is the effi-
cient frontier.

set). The dotted portion of the min-variance set, below the point corresponding
to the minimum variance portfolio, is not efficient. The efficient frontier is the
portion of the plot above the minimum variance point.

8.3 Mean-variance efficiency with a risk-free asset: The
separation property

In this section, we examine the structure of the efficient frontier when a risk-free
asset is introduced. As it turns out, the efficient frontier is just a straight line,
mixing a risky portfolio and the risk-free asset, just like in the CAL. Further-
more, all investors should hold the same risky portfolio.

First, let us tackle the problem formally. Let wy be the weight of the risk-
free asset, earning the risk-free return r¢. The problem

A
max wory + w'w — §WT2W
S.t.  wp + i'w= 1,
can be rewritten as an unconstrained problem by eliminating w:

A
max w'mw — §WT2W,

where m = p — ryi is the vector of risk premia. We apply the first-order opti-
mality condition to the unconstrained maximization problem,

T —AXw =0,
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which immediately yields

w = %2*17:, (8.16)
1
wi=1-wi=1- XiTE*%r. (8.17)

As before, we assume a full-rank, invertible covariance matrix. As a reality
check, we observe that when A\ — +oo the whole wealth is allocated to the
risk-free asset. We may build further intuition by considering a couple of simple
examples.

W Example 8.2 The case of uncorrelated assets

Suppose that asset returns are uncorrelated, so that ¥ is a diagonal
matrix, with entries o;; = af. Then, the weight for each risky asset ¢
in the optimal portfolio, which also includes the risk-free asset, is

T

17
W, — .
¢ A a? )\Uf

e Lpizry

In this simplified case, portfolio weights depend in an obvious way
on the risk aversion coefficient )\, the risk premium 7;, and risk o;.
We also observe that this solution is formally identical to the case of
simple capital allocation; see Eq. (8.5).

(m

Example 8.3 The case of two correlated assets

The covariance matrix for two correlated assets is

D O'% pPo102
pPO102 O'% ’
whose inverse is
1 p
271 1 O'% 0109
=1 ) .
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Clearly, the inverse exists if we rule out the case of perfect correlation
(p # £1). Then, the weights in the optimal portfolio are

* 1 1 o
wi=———5 | 5 —
A1 —p2) \ o2 p0102 ’

W — 1 T2 m
27N - p2) \ 03 palog ’

* * *
wy =1 —wj] —w,.

Note that, since we do not constrain the portfolio in any way, the
weight of an asset can be positive or negative, depending on the sign
and the size of the risk premia, on the volatilities, and on the correla-
tion. For instance, let us rewrite the weight of asset 1 in terms of the
Sharpe ratios S1 = w1 /01 and Sy = 7o /0y:

*
wy, =

1

——— (51 — pS?). 8.18
A(l—pQ)al( 1 — pS2) ( )
With a sufficiently large correlation, so that there is no diversification
effect, if Ss is sufficiently larger than S;, we should sell the first asset
short.

These expressions are useful to check the sensitivity of the port-
folio composition to the input data and to challenge our intuition.
What about the sensitivity to risk aversion? We see that
owy 1

ah T oA
which may be positive or negative. If we hold a long (positive) po-
sition in the risky asset 1, increasing risk aversion will decrease its
weight. However, if asset 1 is sold short, increasing A will increase
the portfolio weight, in the sense that it is shrunk towards zero (we
reduce the amount of short-selling).
An easy finding is

owy 1
om M1 —p?)o?

>0,

which makes good sense: The larger the risk premium of an asset,
the larger the corresponding portfolio weight. One would expect that
increasing the risk premium of the other asset will drive the portfolio
weight down, which is not necessarily true. In fact,

Owi _ —p

87r2 )\(]. —p2)0'10'2.
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correlation:
owy P2

dos A1 — p?)oo3’

with negative correlation.
The sensitivity of w] with respect to o is trickier:

owy 1 T 2
= —2—=
do1 A1 -p?) ( o} + pa%ag
1

- (-2 .
)\(1 _ p2)0% ( Sl + pSQ)

short-selling in this case.

This is clearly due to a diversification effect.

the mean—variance optimal portfolio (see Section 8.6).

In the case of negative correlation, increasing mo will increase both w}
and wj, because of a diversification effect. This effect is less strong
when risk aversion and volatilities are large, and it is increasing with
the absolute value of the correlation. By a similar token, the effect of
increasing the volatility of the other asset depends on the sign of the

When correlation is positive, increasing the volatility of the second
asset increases the weight of the first one, but the contrary applies

If the two Sharpe ratios are positive and close enough, this sensitivity
will be negative, which corresponds to our intuition. However, the
sensitivity can be positive. For instance, this may happen if risk pre-
mia are both positive, as well as correlation, but asset 1 has a smaller
Sharpe ratio, so that it is sold short. An increase in volatility will in-
crease its weight, in the sense that we should reduce the amount of

The analysis of sensitivity with respect to correlation is left as
an exercise. We only observe that if risk premia are positive and we
change a positive correlation into a negative one, without changing
its absolute value, we will increase the exposure to both risky assets.

The bottom line of this example, with respect to the uncorrelated
case of Example 8.2, is that introducing correlation makes the portfo-
lio behavior less intuitive. In practice, we should also be aware that
uncertainty in parameters may be interpreted as an effect of statistical
estimation noise, which may have an adverse effect on the stability of

Equation (8.16) has an important implication: Within a mean—variance
framework, the relative composition of the risky portfolio does not change as
a function of risk aversion. The coefficient X scales the weights of the risky
assets in the portfolio uniformly. Hence, the overall portfolio does depend on
risk aversion, but only in the way the risk-free asset is mixed with a risky port-
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FIGURE 8.6 CALs and the tangency portfolio.

folio. The risky portfolio only depends on the covariance matrix and the vector
of risk premia. Let us explore this finding in a more intuitive way by comparing
different portfolios that we may build by mixing the risk-free asset with a risky
portfolio.

To begin with, it is never optimal to consider a nonefficient risky portfolio.
To see this, let us consider a nonefficient portfolio wye. If this portfolio is not
efficient, there must exist another, efficient portfolio w, dominating it. Two
possibilities should be considered, in terms of expected return and risk:

1. pine < e and one > 0e
2. pine < pte and ope > 0¢

In the first case, let wy be the weight of the risk-free asset. The expected return
of the portfolio including the efficient portfolio is

wory + (1 —wo)pe > wory + (1 — wo) fhne,

whereas variance is
(1 —wp)*0? < (1 —wp)’op,

ne*

Hence, we are better off mixing the efficient portfolio with the risk-free asset.
The second possibility is treated similarly, leading us to the conclusion that we
should never mix a nonefficient portfolio with the risk-free asset.

Now, let us consider different CALs mixing the risk-free asset with an effi-
cient risky portfolio, as depicted in Fig. 8.6. It is immediately apparent that:

= All of the portfolios on the line CAL1 are dominated by the portfolios on
the line CAL2.

= The line CAL2 is associated with a tangency portfolio, which is the effi-
cient portfolio corresponding to the maximum CAL slope.

= Since the slope of the CAL is a Sharpe ratio, in order to find the optimal
risky portfolio, we have to maximize the Sharpe ratio itself. We will
address this task in Section 8.4.



8.4 Maximizing the Sharpe ratio 337

The bottom line of the reasoning is that we have found a separation property,
telling us that the portfolio choice problem may be decomposed into two inde-
pendent tasks:

= Determination of the optimal risky portfolio (purely technical),

= Allocation of available wealth between the risk-free asset and the risky
portfolio (this depends on subjective preferences).

The fact that all investors should hold the same portfolio, independently from
their risk attitude, will have important consequences, leading us to the capital
asset pricing model in Chapter 10. However, this conclusion relies on some
critical assumptions. Investors are assumed to be mean—variance optimizers,'*
and they are supposed to share a common view about risk premia, volatilities,
and correlations, i.e., they use the same data in the same way. As we shall
see in Chapter 9, issues in the statistical estimation of expected returns and
covariances are not quite negligible, not to mention the fact that we should use
forecasts for the future, rather than estimates based on past data.

8.4 Maximizing the Sharpe ratio

The tangency portfolio is found by maximizing the slope of the CAL, which in

turn requires finding a risky portfolio maximizing the Sharpe ratio, trading off

risk premium and standard deviation. The corresponding optimization model is
T

max Zzwl (/’Ll_rf) _ W :SP(W)

VwiEw wixw
S.t. Z w; = ].,

where the vector 7 collects the asset risk premia. We allow short sales, as we
have done so far, so there is only one constraint normalizing portfolio weights.
We can tackle the problem by introducing Lagrange multipliers, but we may
also take advantage of a clever trick. In fact, it is easy to see that the Sharpe
ratio function Sp(w) is a homogeneous function of degree zero, i.e.,

Spaw) = Sp(w), Va > 0.

Geometrically, this means that the Sharpe ratio is constant along rays emanating
from the origin, on which it is not defined, because of division by zero (see Fig.
8.7). Hence, we can disregard the weight normalization constraint and solve an
unconstrained optimization problem, where we maximize the Sharpe ratio as a
function S, (x). The vector x collects a set of pseudoweights x;, which will be

14See Section 8.5 for a connection with the theory of utility functions.
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normalized after solving the unconstrained problem, in order to find weights:

Zq
wj

ek

To find the optimal portfolio, we have to write the usual first-order optimality
conditions for the function

m'x
Sp(x) = .
i (XTEX)l/ 2
Hence, we should solve the system:
08, _, 05, _, 25,
T " Oz,

To figure out the solution, let us generalize the reasoning and consider the max-
imization of a function like

fx)
9(x)

0(x) =

The first-order conditions are

OF o d) - L i) g i) 29 = _
e (x) = 5f(x) - g72(x) e = O k=1,...,n,

which, assuming g(x) # 0, can be simplified and rewritten as

of _ 1) 99 _
dun 2 g(x) Dap’ k=1,...,n.

If we use a more compact vector form, we end up with the equation

1f(x)
=_—". . 1
Vi) = 5 VI (8.19)
In our specific case, we may take advantage of the specific form of functions
f(+) and g(+) to solve Eq. (8.19):

* g(x) is a quadratic form, and we know from matrix theory that the gradi-
ent of the quadratic form x"Xx is 2Xx.

» The gradient of the linear function f(x) = 7 'x is just vector 7.

» Finally, the term f(x)/g(x) is just a number, which can be safely be disre-
garded. In fact, we may think that it is included in vector x in the resulting
equation, whose solution must be normalized anyway.

So, the first-order optimality conditions boil down to a system of linear equa-
tions, which is readily solved under the assumption of a full-rank covariance
matrix:

Sx=7 = x=X 'm. (8.20)
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It is interesting to note that the shape of this solution is essentially the same
as that given in Eq. (8.16), where the portfolio is scaled by the risk aversion
coefficient A to give the mix with the risk-free asset. Finally, the solution in
terms of pseudoweights must be normalized, in order to obtain the weights of a
fully invested risky portfolio.

L) Example 8.4 Maximizing the Sharpe ratio: A numerical example

The following example is taken from [4, Chapter 6]. Consider three
assets with expected returns, standard deviations, and correlation ma-
trix given by:

0.14 0.06 1.0 05 0.2
u=,0081|, o=]003|, R=]05 1.0 04
0.20 0.15 02 04 1.0

Assume further that the risk-free return is 5%. Then, we should solve
the following system of linear equations (Note: There is an incon-
sistency, as returns have been multiplied by 100 and covariances by
100 x 100, but this is inconsequential; why?):

14 —-5=36x1 +0.5 X6 X325 +0.2%x6x 15z3
8—5=0.5%x6x3x;+92 4+ 0.4 x 3 x 15x3
20—5=0.2 x 6 x 1521 + 0.4 x 3 x 1525 + 225x3.

The system can be simplified to

1 =4z + x5 + 223
1= 31’1 +3IC2 +6$3
5 = 6x1 + 62 + 7Hx3,

whose solution is

14 1 3

1‘12@7 352:@, 9032@-

The sum of the three variables is 18/63. Dividing the pseudoweights
by this normalization factor, we get the actual portfolio weights

14 1 3
w2 = -, w3

wr = =, = —.
18 18 18
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FIGURE 8.7 Plotting the Sharpe ratio S,(x), as a function of pseudoweights 1 and 5.
We show a surface plot and the corresponding contour plot.

8.4.1 TECHNICAL ISSUES IN SHARPE RATIO MAXIMIZATION

We have maximized the Sharpe ratio by enforcing the first-order optimality con-
dition, but how can we be sure that this is correct? Indeed, a more careful anal-
ysis is needed, as the Sharpe ratio is not a concave function. To see this, let us
consider the case in Fig. 8.7, which shows the surface and the contour plots in
a case involving two risky assets. In the surface plot, we notice the singularity
at the origin, where the Sharpe ratio is not defined. The plot shows that the
function is not concave at all. The contour plot shows that the Sharpe ratio is
constant along rays emanating from the origin, which is expected, as it is a ho-
mogeneous function of degree zero. Unfortunately, this questions the validity
of Eq. (8.20), since it is not at all obvious that the first-order conditions are suf-
ficient for optimality. However, we are only interested in the Sharpe ratio for a
normalized vector of weights. So, we may consider a section of the surface plot,
corresponding to the line x; +x2 = 1, where normalization is enforced. On that
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FIGURE 8.8 A section of the Sharpe ratio surface plot, obtained by enforcing the nor-
malization condition z; + z2 = 1 on the pseudoweights. The Sharpe ratio is displayed as
a function of z1 = ws.

line, we set Sp,(z1, x2) = Sp(w1, 1 —w,) and plot the Sharpe ratio as a function
of x1 = wy, as shown in Fig. 8.8, we see that the first-order stationarity condi-
tion looks indeed necessary and sufficient for optimality. The function is clearly
not convex, but it is indeed unimodal, as it is first increasing, then decreasing.
Technically, a function like this is quasiconcave.'> In Section 15.3.1, we shall
see that, in fact, the maximization of the Sharpe ratio can be recast as a convex
optimization model. The resulting formulation is a convex quadratic program,
where we may include additional constraints on the portfolio composition.

8.5 Mean-variance efficiency vs. expected utility

In this chapter, we have often used a kind of utility function involving mean
and variance of return. This function may be interpreted as a risk-adjusted ex-
pected return that bears some resemblance to expected quadratic utility, which
we know has some peculiar properties,'® since it is not monotonically increas-
ing and is IARA. Hence, we could and should ask whether the mean—variance
framework is consistent with the expected utility framework. The question can
be recast as follows: If we maximize expected utility, do we find a mean—
variance efficient portfolio? The answer is “not necessarily.” In fact, this is no
big surprise, since in MPT we consider a symmetric risk measure and disregard
higher order moments (e.g., skewness and kurtosis).

15See Section 15.1 for a discussion of convexity and concavity, as well as quasicon-
vex/quasiconcave functions.

165ee Section 7.3.1.
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Let us consider a quadratic utility function of end-of-horizon wealth,

w(W) =W — %WQ,

with A > 0, which is increasing on the range W < 1/A. If we assume that
initial wealth is unitary, terminal wealth boils down to one plus return, i.e., a

multiplicative gain. Let us consider a random terminal wealth W, with

u:E[W], 02=Var(W).
The expected utility of W is
E[u(W)] =E[W] - %E[Wﬂ = g(,ﬁ +0%) =U(p,0?), (821

which only depends on expected return y and variance o2. We should notice
the difference between the legit expected quadratic utility of Eq. (8.21) and the
the risk-adjusted expected return,
A o
H—= 50- )
which is used in mean—variance optimization. They differ by a term involving
the squared expected return 2. Nevertheless, we also observe that

ou
— =—-A <0,
do?
hence, only minimum variance portfolios can be optimal, for a given pu. Fur-
thermore
ou
O

which is positive on the range for which quadratic utility is increasing. Hence,
a portfolio maximizing expected quadratic utility will also be mean—variance
efficient. In this sense, we may say that mean—variance optimization is justified
if we assume a quadratic utility.

It can also be shown!” that, for a generic utility function, the optimal portfo-
lio is mean—variance efficient in the case of a multivariate normal distribution of
return. The result depends on the shape of the density function of a multivariate
distribution,

:1—A/J,

—;ex —lx— > (x —
fx(x) = 2 deiD) p{ 5 (X =)= u)}~ (8.22)

The level curves of this density are ellipses determined by the quadratic form
involved in the argument of the exponential function, which depends on the

7See [7, p. 97].
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vector of expected values p and the covariance matrix 3. The result can be
generalized to the family of elliptical distributions. This family includes the
multivariate normal, as well as the multivariate version of Student’s ¢. In both
cases, the density depends on the quadratic form inside Eq. (8.22),'® so that its
level curves are elliptical.

It has been argued that mean—variance optimization relies on questionable
assumptions, since elliptical distributions are symmetric and quadratic utility
has some odd features. Supporters of the approach, in turn, argue that quadratic
utility may be considered as a local, second-order approximation of a more
generic utility function.'”

8.6 Instability in mean—variance portfolio optimization

The output of any portfolio optimization procedure depends on the input data,
which may be affected by statistical estimation noise. A robust procedure
should not be too sensitive to such noise. Furthermore, one may wish to choose
the input data in order to reflect possible views about the future. For instance,
there may be little point in estimating expected returns or risk premia by a sam-
ple average of recent data. The sensitivity analysis of Example 8.3 shows that
perturbations in the input data may have quite different consequences, depend-
ing on the specific case.

To further investigate the issue, let us consider a numerical example origi-
nally proposed in [6]. The investment opportunities consist of seven assets, as
well as the risk-free asset. The risk premia are as follows:

m = [3.9%, 6.9%, 8.4%, 9%, 4.3%, 6.8%, 7.6%)] .

The correlations among the excess returns, over an investment horizon, are
given by the following symmetric matrix:

[1.000 0.488 0.478 0.515 0.439 0.512 0.491]
1.000 0.664 0.655 0.310 0.608 0.779
1.000 0.861 0.355 0.783 0.668

R=| - : . 1.000 0.354 0.777 0.653
1.000 0.405 0.306

1.000  0.652

1.000 |

and the vector of volatilities is

o = [16%, 20.3%, 24.8%, 27.1%, 21%, 20%, 18.7%) .

18Sce, e.g.. [1, pp. 124-128].
195ee the discussion in [9] and [10].
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FIGURE 8.9 Effect of a perturbation in the risk premia on asset allocation.

Based on these data, we may easily build the covariance matrix 3. The risk
aversion coefficient is set to A = 2.5, and short-selling is allowed.
The resulting portfolio weights are

w = [0.0064, 0.0114, 0.0650, 0.0406, 0.1165, 0.1312, 0.6295]T.

We observe that the largest allocation is not to the asset with the largest risk
premium, as volatilities and correlations have an impact on the solution.
Now, let us introduce the following perturbation on the risk premia:

5w = [0%, 0%, —0.8%, 2.4%, 0%, —0.8%, 0%] .

As we shall see later, when discussing the Black-Litterman model in Section
10.3, this could be supposed to reflect a change in the portfolio manager’s view
with respect to equilibrium risk premia. Essentially, one asset is expected to
outperform two other assets, whereas the premia for the four remaining assets
are not perturbed. The resulting portfolio now is

w = [—0.0582, —0.0316, —0.4879, 0.8185, 0.1502, —0.2254, 0.6837] ,

which is dramatically different from the previous one. The sum of these weights
is not 1, as the difference is allocated to the risk-free asset. We notice an impres-
sive shift in the weights of the assets involved in the perturbation, which results
in extreme positions and heavy short-selling. The weights of the other assets
are affected as well. The difference is visualized in Fig. 8.9. Increasing the risk
aversion coefficient will have an impact the absolute values of the weights, but
not on their relative change, as the effect of increasing A is just to scale weights
uniformly down and to increase the weight of the risk-free asset.
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The example shows the swings and the extreme positions that may arise
as a consequence of estimation noise or investors’ views. Furthermore, there
seems to be no sensible way to express the confidence in these subjective views.
One possible remedy would be to control this behavior by enforcing constraints
on the portfolio composition but, by doing so, the portfolio would be defined
by our way of defining constraints, rather than by translating data and views to
decisions.

There are alternative strategies to deal with such issues. One possible ap-
proach, due to Black and Litterman, is to take advantage of an equilibrium
model, the capital asset pricing model, to integrate subjective views. The ap-
proach, which is discussed in Section 10.3, may be regarded as a shrinkage
estimation or a Bayesian estimation approach. Alternative approaches have
been proposed along similar lines, and the overall idea is to reduce the noise
in the estimates that we feed into the optimization model. The Treynor—-Black
model of Section 9.3 is also similar in spirit. Essentially, we should follow the
market, adding a little twist on a few selected assets, for which we trust our
views or private information. A more recent stream of research tackles estima-
tion uncertainty within the optimization model, by applying robust optimization
approaches. See Section 15.9.

S8.1 The attainable set for two risky assets is a
hyperbola

Let us rewrite, for the sake of convenience, the equations describing the attain-
able set on the mean-risk plane,

Yy =w(pr — p2) + pz, (8.23)

r? = w?o? 4+ 2w(l — w)orz + (1 — w)?o3, (8.24)

where the coordinates of each point are y = 1, and = = o,.
The equation of a hyperbola is usually given in the standard form

(x—h)? (y-k? _

- s 1. (8.25)

We should eliminate the parameter w in Eqs. (8.23) and (8.24) and recast the
result in the form of Eq. (8.25). To this aim, let us solve for w in Eq. (8.23)

we YTk
H1 — M2
and plug this result into Eq. (8.24) to find
o2 = W= p2)?0% 4+ 2(y — pa) (p — y)ora + (i — y)*o3
(11 — p2)?
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This expression may be rearranged as
, By?-2Cy+D

= (8.26)

where
A= (1 — p2)?,
B = 0‘% — 2012 +U§,
C =otps + o3p1 — o12(p1 + p2),
D = oips + o5u3 — 20124 fia-

Since we assume (3 # pe2, we have A > 0. We also see that B > 0, since we
do not consider perfect correlation, i.e., we assume p12 € (—1,+1). Now we
may use the standard trick of completing the square:

c\> ¢> D
2 _ _ A T 132
By —-2Cy+D =8B <y B) o2 + 5 B(y— k)" + H,
where o o
BD —
k = — H = .
B’ B
Therefore, we may recast Eq. (8.26) as
Ay 2 132
2o By-k"+H - 2* -k
A H/A H/B

We already know that A, B > 0, and in order to make sure that this is a hy-
perbola we need to prove that H > 0 as well. This implies a rather lengthy
(and boring) calculation, involving plenty of trivial algebra and simplifications,
showing that

BD — 02 = (O’% — 2012 + O'S) . (O’%/L% + O'S,U,% — 20’12,[1,1#2)
2 2 2
— [oFp + 051 — 012 (i1 + p12)]
= Aafag(l — pfg) >0,
under the assumption —1 < p12 < 1. We note that the center of the hyperbola

is on the vertical axis. For the limit cases p;2 = £1, the hyperbola degenerates
to a pair of lines, as we have seen in Section 8.2.2.

S$8.2 Explicit solution of mean—variance optimization in
matrix form

In Section 8.2.3, we have solved a multiobjective optimization problem by re-
lying on a scalarized mean-risk objective function, which plays the role of a
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risk-adjusted expected return. Here, we take the alternative scalarization route,
where we minimize risk, subject to a constraint on expected return. We have to
solve the quadratic program

min  iw'Sw (8.27)

st W = fimin, (8.28)

i'w=1, (8.29)

where i = [1,1,...,1]". When inequality constraints are added to this model,

possibly including constraints forbidding short-selling, we have to resort to nu-
merical solution methods, but in this case the problem may be solved in closed
form. Let us introduce Lagrange multipliers?® +; and 72, associated with con-
straints (8.28) and (8.29), respectively, and build the Lagrangian function

LW, 71,72) = AW EW + 91+ (ftmin — B'W) +72 - (1 —i'w).

The first-order optimality condition for the Lagrangian yields a system of linear
equations,
VW‘C(W771aFY2) =Xw — AV 72i = 05

which is solved assuming that the covariance matrix has full rank:
w=m3"u+pI i (8.30)
If we premultiply Eq. (8.30) by u" and use Eq. (8.28), we find the scalar equa-
tion
pw =y WS 4 o p ST = i, (8.31)

By a similar token, if we premultiply Eq. (8.30) by i" and use Eq. (8.29), we
find
i'w=yi' 2 +pi'Z =1 (8.32)

Therefore, in order to find the multipliers, we have to solve a system consisting
of the two linear equations (8.31) and (8.32). Let us streamline notation by
introducing

A=y, B=p' 2 li=i"sly, Cc=i'2 7l
The Cramer’s (determinant) method applied to the system

Ay + Bz = pimin
B’yl + C’}/Q =1
yields

_ C,U/rnin - B _ A - B,Umin
Y= AC_BQ7 Y2 = AC_B27

205¢e Section 16.1.3 for details about the Lagrange multiplier method.
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which may be plugged into Eq. (8.30) to find the portfolio weights of the min-
imum variance portfolio corresponding to the target return pi,,;,. It is also easy
to see that, by introducing suitable vectors g and h depending on A, B, and C,
we may write the portfolio weights as a linear function of the target return:

w =g + hpmin. (8.33)

When g5, ranges over the real line, we trace the set of minimum variance
portfolios for a given target, whose upper portion, above the minimum variance
portfolio, is the efficient frontier. Equation (8.33) has a further implication: Ev-
ery portfolio on the minimum variance set may be expressed as a linear function
of the target expected return. Let us consider two portfolios on the curve,

w; =g+ h/'Lmin,la Wo =g+ hﬂmin,Qa
and take an affine combination
awy + (1 — a)way = g+ hlapmin,1 + (1 — @)fimin,2),

for an arbitrary value of «. The resulting portfolio must be the minimum vari-
ance portfolio for the target expected return afimin,1 + (1 — &) ftmin,2, and this
shows that we may find any portfolio on the minimum variance set by taking
combinations of just two portfolios on the set. This result is known as two-fund
separation theorem. Clearly, this applies under the rather unrealistic assump-
tion that there are no additional constraints on the portfolio composition. A
further consequence is that, since we know from Supplement S8.1 that the set
of attainable portfolios built by combining two assets is a hyperbola, the mini-
mum variance set is a hyperbola in the case of n > 2 assets, too.

Problems

8.1 Let us consider the CAL with different borrowing and lending rates. In
practice, you may borrow money only at a rate rf > ry. What is the shape of
the CAL in this setting?

8.2 Show that the general formula of Eq. (8.12), for the minimum variance
portfolio, boils down to Eq. (8.7) in the case of two risky assets.

8.3 Analyze the sensitivity of the optimal portfolio in Example 8.3 with re-
spect to the correlation coefficient p.

8.4 Prove Egs. (8.13-8.15).

8.5 Find the optimal risky portfolio maximizing the Sharpe ratio analytically,
for the case of two assets with parameters 1, p2, 01, 02, and p.

8.6 The efficient market hypothesis (EMH), in its strong form, implies that
asset returns over time are independent random variables. An investor does
not believe the EMH and thinks that there is some degree of persistence in
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return. She estimates the following relationship between the random returns on
an index at time periods ¢t — 1 and ¢:

ft =a-+ b7~'t71 + €.

Note that, if b is positive, we have persistence in return. Assume that we know
the parameters of the model, as well as the variance of the random shock term ¢;
(whose expected value is zero). We use this statistical model to make portfolio
choice on the basis of a mean—variance function

E[f,] — A - Var(7,),

where 7, is the holding period return for a time period consisting of two consec-
utive time periods ¢ and ¢ + 1. In the portfolio, we mix the index and a risk-free
asset with constant return 75 for each time period. Find the optimal portfolio
weights.

Hint: Which assumption could we make, in order to make the problem manage-
able, if the returns are small enough?

Further reading
= Mean—variance optimization is a traditional topic, and an account of mod-
ern portfolio theory can be found in [4].

= A succinct, yet accurate treatment is offered in [8], whereas [5] offers a
more extensive coverage.

For the mathematically inclined reader, a good reference is [7].
= The mathematics of the efficient frontier is also dealt with by [2].

= The effect of distributional ambiguity is best investigated by considering
out-of-sample performance. The experiments carried out in [3] show that
a naive, equally weighted portfolio may yield remarkably robust perfor-
mance.
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Chapter INine

Factor Models

In Chapter 8, we have investigated the mathematics of mean—variance portfolio
optimization. From a computational viewpoint, this leads to rather easy opti-
mization models, but things are far from trivial from a financial perspective.
One could question the use of a symmetric risk measure, as well as a model
neglecting multiperiod dynamics, transaction costs, etc. Some of these issues
may be addressed by introducing more sophisticated optimization models, but
an essential question remains: How can we provide the optimization model with
suitable inputs? The mean—variance model, in its basic form, does not seem to
require much: A vector of expected returns and a covariance matrix. Appar-
ently, all we need is simple inferential statistics to estimate these parameters.
Reality, unfortunately, is a tad more complicated. To begin with, we would be
better off with forecasts rather than estimates based on past history. Moreover, a
huge amount of data would be needed to estimate a covariance matrix reliably,
and these data are simply not available. Last but not least, the solution of the op-
timization problem critically depends on the reliability of the estimates, leaving
all of the mean—variance optimization framework to rest on shaky foundations.
As we have seen in Section 8.6, the resulting portfolio may be quite sensitive
to perturbations in the data. In this chapter, we consider factor models as a
possible remedy. As we shall see, factor models have deep practical and theo-
retical implications since, augmented with additional assumptions, they lead to
equilibrium models like CAPM and APT, discussed in Chapter 10.

We start by discussing statistical estimation issues for portfolio optimiza-
tion in Section 9.1. Then, we introduce the single-index model in Section 9.2,
showing how a single factor may ease these difficulties. We also show how to
maximize the portfolio Sharpe ratio within the single-index model. Then, be-
fore generalizing the idea to multifactor models, we explore the implications of
the single-index model in terms of practical portfolio management. The model,
despite its simplicity, points out the role of systematic and specific risk factors,
and it sheds light on the contrasting views associated with passive and active
portfolio management. Active and passive strategies may be actually blended,
in order to tilt the portfolio away from a passive benchmark in a limited way,
depending on a set of views that we feel reliable enough. In Section 9.3, we
illustrate one way of doing so, the Treynor—Black model. Later, in Section
10.3 we will describe an alternative approach, the Black—Litterman model. In
practice, models relying on multiple factors are used, and they are outlined in

351
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Section 9.4. Section 9.5 shows how factor models may be used to shape the risk
exposure of a portfolio.

This chapter revolves about equity portfolios, but factor models have a
much larger applicability. As we have outlined in Section 6.6, multiple risk fac-
tors, related to a set of interest rates with different maturities, should be taken
into account for fixed-income portfolio management. This also applies to port-
folios including derivatives, where not only underlying asset prices or interest
rates, but also model parameters, such as volatility, are relevant risk factors. The
main difference is that we consider here statistical /inear models, whose aim is
to explain the return of a primary security, a stock share, whereas fixed-income
and derivative securities involve nonlinear pricing models.

In this chapter, returns refer to an arbitrary holding period, not necessar-
ily one year. Thus, we shall never use the term “rate,” and return should be
interpreted as a holding period return, not annualized.

9.1 Statistical issues in mean—variance portfolio
optimization

The Markowitz approach to mean—variance efficiency and its variations need

two crucial inputs: The vector of expected returns g and the covariance matrix

3. Naive thinking may suggest that all we have to do is collect a sufficient

amount of data and estimate these inputs by sample mean and sample vari-

ances/covariances. Given a sample of realized returns r;;, for assets indexed

by i = 1,...,n, over time periods t = 1,...,7T, sample means and sample
covariances are given by

1 1 «

R; = TZT“’ Sij = ﬁZ(Tit — 7)) (rje — 75),

t=1 1

t=

respectively. However, as we may expect (pun intended), we need expected
returns for the future, rather than sample averages from the past. Clearly, some
subjective assessment would be needed, and it is difficult to think that accurate
predictions may be found for a large number of assets. For the moment, let us
pretend that the data generating process of returns is constant over time, so that
estimates based on past data make sense. How reliable are our estimates?

To get a clue, let us consider a universe of n = 500 firms. The covariance
matrix consists of 500 x 500 = 250,000 entries. Actually, since 0;; = 0;, the
matrix is symmetric. Therefore, about half of that amount, 125,000 parameters,
is really needed. A more accurate assessment is that we need

» 500 variances o;; = 02,
=n x (n—1)/2 = 124,750 covariances o;;, i > j,

amounting to a total of 125,250 entries. Clearly, estimating such a huge number
of parameters reliably is a hopeless endeavor. We would need an extremely
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long time series, which is certainly not available for new firms (say, Facebook).
Moreover, even when have a long time series for firms like, say, IBM, these
data are hardly all relevant, since the market conditions, and possibly the firms
themselves, have changed considerably over time. One way to simplify the task
is to reduce dimensionality by spotting common risk factors, such as market
return, inflation, economic growth, oil price, etc., which explain the return of
a stock share together with firm-specific factors. This simplification may also
be useful for forecasting purposes, as it is certainly easier to predict a few key
variables than a large array of returns.

9.2 The single-index model

The simplest factor model consists of a linear relationship between the return
of each asset, represented by the random variables 7;, ¢ = 1,...,n, and a sin-
gle common risk factor, related to market return, represented by the random
variable 7);. The market return may be proxied by a relevant index, such as
S&P500, which is why such a model is referred to as single-index model. It
may be convenient to express the single-index model in terms of excess returns
of each asset, }?i = 7; —rf, and of the market index, R M = 7 —ry. Then, the
single-index model is given by the linear regression model

Ri:ai+BiRM+€1;, 1=1,...,n, 9.1

where the error term ¢; is interpreted as a specific risk factor of asset i. We also
use terms like systematic and idiosyncratic risk factors to refer to common and
specific factors, respectively. We make the following assumptions:

» The specific risks are random variables with expected value E[¢;] = 0.
This makes sense, as any predictable component should be included in
the intercept a;.

= The systematic and specific risks are uncorrelated. We know from the
theory of linear regression that, after estimating the model using ordinary
least-squares, we indeed have COV(R M, €)= 0.

Last but not least, a further important assumption is the lack of correlation
among specific risks,

COV(éi,gj) = O, /) 7& j

This condition characterizes a diagonal model, since the covariance ma-
trix for the errors is diagonal. Indeed, if idiosyncratic factors are truly
specific, this assumption should hold. However, this is a debatable con-
dition, and it holds only if the single common factor really accounts for
all of the common risk. When multiple common risk factors, possibly
related to macroeconomic conditions, are at play, a single factor will not
account for the whole correlation, and this may be reflected in correlated
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errors. Nevertheless, the diagonality assumption will prove to be quite
convenient.

Before delving into statistical issues, it is important to interpret the single-
index model in terms of contribution to risk premium. According to the index
model, ~ R

m; = E[R;] = a; + BiE[Ry] = o + Bimar,
i.e., the risk premium' of asset i depends on:

= A specific risk premium «;, depending on the exposure to specific risk.
Intuitively, securities with a negative alpha are overpriced, and their weight
should be reduced; they could even be sold short.

= The degree of exposure to the systematic risk, which is rewarded accord-
ing to the coefficient (3;, measuring the sensitivity of each individual asset
to the common risk factor.

From the theory of linear regression by least-squares, we recall that
o COV(Ri,RM) OiM
Var(Rys) o3
Thus, the exposure of an asset to systematic risk is related to its covariance

with the market return.> The total risk of an asset is the sum of systematic and
specific risks:

Bi

o = 303 + o2, ©2)
where 02, and o2, are the variances of Ry, and &, respectively. We recall from
Section 8.2.1 that there is a limit to how much risk may be diversified away.
Now we may get a deeper understanding of that finding: Specific risks can be
reduced by straightforward diversification in long-only portfolios. To reduce
systematic risk, we may have to short-sell assets (or use derivatives), unless we
find a suitable set of stock shares with positive and negative betas, offsetting
each other. We should also observe that estimating 3; by a linear regression
model, based on a sample of past observations, may make sense if we do not
expect too many changes with respect to the past. On the contrary, we should
not expect good results by estimating the specific risk premium «; using past
data. Forecasting «; requires considerable skills in security analysis, and the
“quest for alpha” is a typical endeavor of active portfolio managers.

9.2.1 ESTIMATING A FACTOR MODEL

It is easy to figure out why the factor model is much easier to deal with than
estimation of a full covariance matrix. Variances are given by Eq. (9.2), which

"n order to avoid confusion, let us recall that we denote by p; = E[#;] and uy = E[7y]
the expected returns of the individual assets and the index, respectively, and by 7; = E[R;] =
wi —ryand 7y = E[Rys] = par — 7y the corresponding risk premia.

2We will meet this expression again in Chapter 10, when discussing the capital asset pricing
model.
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requires the betas and the variances of the systematic and specific risk factors.
The covariance between assets returns, under the diagonal model, is the product
of betas and the market risk:

COV(Ri,éj) = ﬁiﬂjd?\/[, 7 7é j

As to the correlation, it is the product of correlations with the common risk

factor: ) ) )
_ BiBjom _ (Bioyr) - (Bioar) _
Pij = = = Pim * Pjm-
0i0; (oionm) - (oj00)

The expected returns may be found from Eq. (9.1), which requires an estimate
of the alphas. Hence, in order to feed a mean—variance optimization model, we
need to estimate:

* The 2n parameters «; and 3;,i =1,...,n

= The expected value 1y, (or, equivalently, the risk premium 7j,) and the
variance o3, of the common risk factor

« The n variances o2 of idiosyncratic risk factors

The total number of these parameters is 3n + 2, rather than the

n(n —1)

2
n + 5

parameters required by the full covariance matrix model. In the case of n = 500
assets, the total is 1502 parameters, which should be compared with the 125,250
entries of the full covariance matrix (to which 500 expected returns should be
added).

The reduction in estimation complexity achieved by a single-index model
is certainly relevant, but we are faced with a daunting task anyway. In order to
tackle it, the index model suggests a decomposition, as well as an organizational
decentralization of the portfolio management task:

» Macroeconomic analysis may be used to estimate/forecast the risk pre-
mium and the risk of the market index.

= Statistical analysis may be used to estimate/forecast the beta coefficients
of all securities and their residual variances.

= The alpha value distills the incremental risk premium attributable to (le-
gitimate) private information developed from security analysis.

Different specialists may tackle each of these subtasks. An array of statistical
techniques may be used, and here we just mention one.

W Example 9.1 Shrinkage estimators and beta

In inferential statistics, we learn about the most obvious and desir-
able property of an estimator: The expected value of the estimator,
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which is a random variable, should just be the value of the unknown
parameter. In such a case, we say that the estimator is unbiased. For
instance, it is easy to show that the sample mean is an unbiased esti-
mator of the expected value. However, another feature of an estimator
is its variance. If the value of the estimator is too sensitive to the input
data, the corresponding instability in estimates may adversely affect
the quality of the resulting decisions.

Sometimes, we may reduce variance by accepting a moderate
amount of bias. In fact, a relevant issue in statistical modeling is
the need to address the bias—variance tradeoff. One example of this
idea is the introduction of shrinkage estimators, i.e., estimators that
shrink variability by mixing the sample estimate with a fixed value.
For instance, the following adjusted estimator of beta has been pro-
posed:

ﬂadj = %Bsample + %

The idea is to take a weighted average between the sample estimate
and a fixed value, which in this case is 1. A unit beta is, in some sense,
a standard beta, as it implies that the risk of the asset is just the same
as the market portfolio. Furthermore, when firms grow and diversify
their lines of business, there is an empirical tendency of beta to move
towards 1.

Shrinkage estimators introduce an amount of bias, but reduce sampling
variability. A similar concern is addressed by regularized regression models,
which we discuss in Section 14.4.1. The Black-Litterman model of Section
10.3 may also be interpreted as a sort of shrinkage estimator, where we merge
different knowledge sources.

9.2.2 PORTFOLIO OPTIMIZATION WITHIN THE SINGLE-INDEX
MODEL

It is useful to see how the simple problem of maximizing the Sharpe ratio of an
unconstrained portfolio may be tackled within the single-index framework. Let
portfolio weights be denoted by w;. Then, the portfolio excess return is

n

R, = Zwi(ai + BiRy + &) = iwiai + Rur iwzﬂi + iwigi
i—1 =1 =1

=1
=op + ﬁpRJ\/[ + gpu 9.3)

where

ap =Y wiai,  Bp=Y wib; 9.4)
i=1 i=1
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are the portfolio alpha and beta, respectively, and

n
€p = E W; €5
i=1

accounts for specific risks. Then, the portfolio risk premium is

Ty = E[Rp] =ap+ ﬂpﬂ']\,{, 9.5)

where ), is expected excess return (risk premium) of the market portfolio
(more generally, the expected value of whatever common risk factor we choose),
and the portfolio variance is

2 2 2 2 2 2 2 2
o, =0By0n + Zwi o5 = Byon + 05, (9.6)
i

where 02, = 3. wio?; is the residual variance of the portfolio, i.e., the compo-
nent associated with specific risks.
Finally, we may express the Sharpe ratio as

n n
g Wi + T g w; B;
i=1 =1

_ = - 2 ; . 9.7)
(zwi@) P3ute?
=1 =1

As we have seen in Section 8.4, we may maximize the Sharpe ratio by solving a
system of linear equations in terms of asset pseudo-weights z;, which have to be
renormalized to yield true weights w;. Using Eq. (8.20), we write the first-order
optimality conditions:

p
Op

0’?\45]@ (Zl’zﬁl> +L13k0'52k, = ay + 7 Bk, k=1,...,n, (9.8)

i=1

or

n 2
o ap + T
Z%ﬂz‘+l’k(ﬁk+ o >= b 5 Mﬂk, E=1,...,n. (9.9
i1 o Mﬂk o Mﬁk
i#k

All we have to do is solve this system of linear equations and then normalize the
pseudo-weights. Clearly, the solution is so easy because we allow short-sales
and are essentially dealing with an unconstrained optimization problem.3

3See Section 15.3.1 for a general reformulation of Sharpe ratio maximization.
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9.3 The Treynor-Black model

The single-index model sheds more light on the financial issues involved in the
statistical estimation of risk premia and risk exposures. The estimation of the
asset betas and the variances of the risk factors may be considered as the task
of specifying a risk model, as they are essentially related with the estimation of
covariances. The estimation of alphas, the specific risk premia, is a task of a dif-
ferent nature, as it implies the analysis of future perspectives of individual stock
shares. This is a typical task of active portfolio managers, whereas passive port-
folio management essentially requires tracking an index. In Chapter 10, we will
discuss the capital asset pricing model (CAPM), which is an equilibrium model,
rather than a statistical model. According to CAPM, all alphas should be zero
in equilibrium, i.e., the only risk premium is related to the portfolio exposure to
the undiversifiable systematic risk, since specific risks can be diversified away
and are not rewarded. The practical consequence is that, according to CAPM,
there is no point in pursuing active strategies based on stock-picking.

Even without taking such a radical view, there is no doubt that generating
alpha is difficult and arguably feasible only when analyzing a limited number of
assets. Hence, assuming that we trust our alpha generation skills and we want
to tilt away from a market portfolio, we should do so in a limited manner. This
is the idea underlying the Treynor—Black model, which considers a portfolio
including n individual assets and the market (index) portfolio as asset n + 1.
All of the notation that we have introduced in Section 9.2.2 applies, changing
the upper limit of sums from n to n + 1, with the conditions:

Qpt1 = apr = 0,
Bn-l—l = ﬁM = 17
Oent+l = 0eM = 0.
It is important to understand that the last condition does not imply that the mar-
ket portfolio is riskless. We are only saying that it has no residual (specific)
risk.
Rather than just maximizing the Sharpe ratio numerically, we take a decom-

position approach that helps in building intuition and gaining financial insights.
The overall portfolio selection can be broken down as a top-down process:

= Allocate available wealth between the risk-free asset and an optimal risky
portfolio.

= Decompose the optimal risky portfolio into a passive and an active com-
ponent.

= Find the optimal active portfolio.

It is also convenient to change notation slightly, in order to better express the
above decomposition:

= wyy is the weight of the passive component of the overall portfolio.
» wy is the weight of the active component of the overall portfolio.



9.3 The Treynor-Black model 359

»w;, i = 1,...,n, are the weights of each individual asset in the active
portfolio. These weights add up to 1 and are used to determine the com-
position of the active portfolio; the actual weights of each asset 7 in the
overall portfolio depend on both w 4 and w;.

The capital allocation between the risky portfolio and the risk-free asset is
accomplished as we discussed in Section 8.1. As a first step to find the risky
portfolio itself, let us maximize the Sharpe ratio of a portfolio including the
following two components:

= The passive (market) portfolio.
= The active portfolio, characterized by the following features:

n n n

2 2 2

g = E wie, fa= E wifi, e = E Wi O¢j-
i=1 i=1 i=1

Note that o2, is just the active risk component, not the overall variance of the
active portfolio. Let us apply optimality condition (9.9), which in this case is a
system of two linear equations:

o3 Ba(@aBa+an) + 1402, =aa+ Bamy 9.10)

orr (xaBa+an) =mr. 9.11)

By plugging Eq. (9.11) into Eq. (9.10), we immediately obtain

aa
TA=—.
4 N
Then, from Eq. (9.11) we find
M A
TMm = o2 BAUT'
M €A

By normalizing pseudo-weights, we find the weight of the active component,

A

2

wa = TA o Oca
B ™ aqpc
TA+2TMm — 4+ (1—Ba) 5
M OcaA

The weight of the passive component of the risky portfolio is just wy; = 1—w4.
We may rewrite the weight of the active portfolio as

0

w4
=4 9.12
WA =T (1= Bl (9.12)
where )
wl = QA% (9.13)

W]L[/UJQW
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is the weight of the active portfolio when 54 = 1. In order to grasp the message
behind Eq. (9.12), we observe that wy is a ratio expressing the relative reward—
risk tradeoffs of the active and the passive components of the risky portfolio.
The tradeoffs are not exactly expressed as Sharpe ratios, as they involve vari-
ances rather than standard deviations, but the interpretation is similar. Let us
assume that the active and passive risk premia a4 and 7, are positive, so that
wf{, > 0, and consider the sensitivity of w4 with respect to 54:

ows (wh)?

9Ba [14(1—Ba)uy]”

This sensitivity is not defined for a critical value of 34, where we divide by
Zero:

1+ wh
W= > 1.
BA w%

Otherwise, the sensitivity is always positive, and w 4 is an increasing function of
Ba. In fact, w4, as a function of 34, is a hyperbola with horizontal and vertical
asymptotes. We observe that

0
Wy

Cl+wh

Ba=0 = wA <1,

which increases to w9 when 34 = 1. This increases and goes to infinity when
Ba approaches the critical value 7. In this range, we may interpret this be-
havior by observing that the larger the systematic risk of the active portfolio,
the less effective is the diversification obtained from the market portfolio, and
hence the larger the weight of the active component. However, beyond the criti-
cal value, the weight of the active component would get negative, which means
that the active component is sold short, and it is increasing toward the horizon-
tal asymptote w4 = —1 for large 8 4. This kind of behavior may require rather
pathological assumptions about the problem data, but it illustrates the potential
intricacies of unconstrained portfolio optimization.

To find the composition of the optimal active portfolio, we can analyze its
contribution to the Sharpe ratio of the risky portfolio. The excess return of the
risky portfolio, as a function of the excess returns of the active and the passive
components, is

R, = ’LUARA + (1 — wA)RM
=wa(aa+ BaRy +éa)+ (1 —wa)Ry
=waoa + [ —wa(l — Ba)| Ras + waéa.
Then, we find the risk premium and variance of the risky portfolio:
Tp =waaa + [1—wa(l = Ba)] 7, (9.14)

012,: [1—111,4(1—6,4)}20%/[—&—10%0314. (9.15)
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Hence, the squared Sharpe ratio of the overall portfolio is:

5 112] _ {wAaA + [1 —wa(l *5,4)]”1\4}2. (9.16)

"oy [L—wa(l - Ba)]’03, + wdo?,

By plugging the optimal weight w4 of the active portfolio, given by Eq. (9.12),
into Eq. (9.16), and carrying out a bit of algebra, as shown in detail in Supple-
ment S9.1, we find the following fundamental relationship:

2
aA
S =53+ { ] : (9.17)
OcA
where Sy, is the Sharpe ratio of the market portfolio and /04 is called
the information ratio of the active portfolio. Clearly, the Sharpe ratio of the
market portfolio is constant and, in order to maximize S, we should maximize
the information ratio of the active component. Let us express the information
ratio in more detail:
n
> e
i=1

Note that the passive component does not contribute anything, since both aj,
and o) are zero. Using the optimality conditions of Eq. (9.9) again, to maxi-
mize the information ratio, it is easy to see that we obtain the equations

2 .
o = 05T t=1,...,n,
since we are assuming a simple diagonal model, where specific risks are uncor-
related. Hence, the weights of individual assets in the active portfolio should be

proportional to the ratio
2

€19

x; = /o
which makes sense, as this ratio trades off the active risk premium c; against
active risk o2;. If we plug zy, into the squared information ratio, we obtain

{Mr (Eema)’ _ (Suat/at)’ 5 {a}

OcA Oci

B 229%20?@ B Ziazia?/afi B

from which we observe that each asset in the active portfolio contributes its
individual squared information ratio to the overall squared information ratio.

Taking into account the normalization within the active portfolio, and its
weight in the overall portfolio, we find the true weight of each individual asset
in the risky portfolio,
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9.3.1 A TOP-DOWN/BOTTOM-UP OPTIMIZATION PROCEDURE

The process of building the overall portfolio, according to the Treynor—Black
model, may be thought as a conceptual top-down decomposition of portfolio
optimization. To actually implement it, we have to go bottom-up, finding the

active portfolio first. This may be summarized by the following procedure*:

1.

Compute the pseudo-weights of each individual asset in the active port-
folio,
0 Q .
w; = —, i=1,...,n.
g

€l

. Scale pseudo-weights so that they add up to 1,

w?

i
Wi =m0
D k1 W

. Compute alpha and residual variance of the active portfolio,

n n

2 2 2

ay = g w;g, Ocp = E Wi o5,
i=1 i=1

. Compute the “initial” position of the active component in the risky port-

folio,
2
aA/JeA
5
/oy

W, =

. Compute beta of the active portfolio,

Ba = Z w; 3.
i—1

. Adjust the weight of the active portfolio,

wh

w* = — .
A 1+(1—BA)U)%

. Find the weights of the n individual assets and the passive component,

* * . * o *
w; = WHw,, wy =1 —wj.

. Compute the features of the risky portfolio,

Bp = wis + Bawl,
Tp = Bp’frl\/[ + T,UZOZA7

02 = (wi; + Bawi)?03; + [whoeal®.

4Here,

we are following [1].
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To fully understand these expressions, we should think that the weight
wy, of the passive component multiplies a unit beta. Also note that the
weight w? of the active component multiplies o3, in the formula for a]%;
therefore, the active portfolio has an impact on the overall contribution of
systematic risk.

9. Solve the capital allocation problem, taking into account subjective risk
aversion.

W Example 9.2 Numerical illustration of the Treynor-Black model

Let us consider four assets with the following features:

a;  56% —04% 74% 0.0%
Bi 1.3 1.8 0.7 1.0
o 28% 21% 30%  24%

We also have:
’I“f = 4%, KUy = 12%, ON = 24%.
Therefore, the risk premia are

v = par — 1 = 8%,
m=o;+ Bimy (1=1,2,3,4) = [16%,14%,13%,8%)]"

In Step 1, we find the unscaled pseudoweights in the initial portfolio,

w?

70

07143, —0.0907, 0.8222, 0],

which, after normalization in Step 2, yield the weight w; of each asset
in the active portfolio,

[0.4940, —0.0627,0.5687, 0] .

We notice a small short position for the asset with negative alpha, and
a zero position for the asset with no specific risk premium. These
individual weights are large, but this does not necessarily imply a
large final position. The alpha and the residual variance of the active
portfolio are calculated as in Step 3:

aa = 7%, o2, = 0.0484.
Step 4 yields the “initial” position of the active portfolio,

w = 1.0410.
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In Step 5 we find its beta,
Ba =0.9274,

which is used in Step 6 to find the weight of the active portfolio,
wy = 0.9678,

which is fairly large. Then, in the next steps, we find the weight of
the index,
wh; = 0.0322

and the weight w; of each asset within the optimal risky portfolio,
[0.4782, —0.0607,0.5504, 0] ".

We notice that these weights have been only partially moderated by
the index, because of the peculiarity of the data we are using. How-
ever, let us see what overall portfolio would an investor with risk aver-
sion A = 4 choose. We recall from Section 8.1 that the optimal allo-
cation to the risky portfolio is

«_ o
N o2’
The risk premium and the variance for the risky portfolio are given by
Tp =Wy + BpTar
=whoa + [(1—wh) - 1+wl - Balmm
= 0.9678 x 0.07 4 [0.0322 + 0.9678 x 0.9274] x 0.08
= 14.21%,

and
o) = Broa +witoy = 0.0951,

respectively. Therefore, the weights of the risky portfolio and of the
risk-free asset are

x* =0.3735, 1—2* =0.6265,
respectively. Then, the actual weight of the index is
- (1 —w}) =0.3735 x 0.0322 = 1.2%,

and the actual weights of individual assets are given by z* - w’ - w,
which yields
[0.1786, —0.0227,0.2056, 0] .
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9.4 Multifactor models

The single-index model is quite useful conceptually, but it is unlikely that a
single common factor may explain the systematic component of stock returns
completely. One consequence is that the resulting model is not diagonal, i.e.,
we find specific residual risks that are not uncorrelated. The other consequence
is that we are not able to assess risk and forecast alpha accurately. Multifactor
models have been proposed as a generalization of the single-index model:

f?i:ai"'Z»Bz‘ij"'gi, i=1,...m,

j=1

where we include m common risk factors Fj, as well as a specific risk factor
€; for each asset . Specific risks are assumed uncorrelated, and the coefficients
B;; measure the exposure (sensitivity) of asset ¢ to systematic risk factor j. The
above model is written in terms of excess returns, but we are free to use returns
as well.

There is considerable latitude in the selection of factors:

= We may use market-related financial factors such as different indexes or
a set of given benchmark portfolios. In this case, it is quite natural to use
returns as systematic factors.

= We may use financial factors that are related to accounting measures com-
monly used in corporate finance, like the book-to-market ratio. These are
called fundamental factors. In this case, the interpretation of factors as
return is less natural.

» We may use macroeconomic factors, like inflation or oil price. Again,
factors like these are not interpreted as returns.

= It is also possible to use behavioral factors, like momentum, which are
related to market anomalies.’

When a factor Fj is not directly related to a return, we often estimate the
model in such a way that E[FJ] = 0, i.e., the expected value of the factor is
included in the constant term. Thus, the factor should be interpreted as an unan-
ticipated surprise with respect to an expectation. This is common for macroe-
conomic factors, like inflation, not for fundamental factors.

@ Exam ple 9.3 The three-factor Fama-French model

A well-known factor model is the three-factor Fama—French model
[2]. The model extends the single-index model, based on market risk,

SIndeed, there is no contradiction between behavioral finance and quantitative models. What is
ruled out in behavioral finance is the transition from factor models to equilibrium models, as we
discuss in Section 10.5.
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by introducing two additional factors related to the company size and
the company book-to-market ratio. Company size takes into account
the empirical difference in return between small and large capitaliza-
tion firms. The book-to-market ratio takes into account the difference
between value and growth stocks. Value stocks are characterized by
a high book-to-market ratio, i.e., the market price is small with re-
spect to the book value of the firm, which suggests that the stock is
underpriced. Value investing is a strategy based on investing on stock
shares which are expected to outperform the market if their market
value approaches their intrinsic value. Growth stocks are not cheap,
but the rationale of investing in a growth stock is that the firm has a
sustainable competitive advantage and is able to generate increasing
cash flows over time.
The regression model is specified as follows:

Ryt — Ryt = o + Bi - Ryre + 85 - SMBy + hy - HML; + ey,

where R;; is the return on asset ¢ in month ¢, Ry, and R are the
corresponding risk-free return and market return, respectively, SMB;
(small minus big) is the difference in return between diversified port-
folios consisting of small and big cap stocks, and HML; (high minus
low) is the difference in return between diversified portfolios consist-
ing of high and low book-to-market stocks.

The seminal three-factor Fama—French model has been extended in several
ways, both by introducing additional factors and by changing the model struc-
ture. A significant pitfall of the linear models that we consider here is that the
effect of a factor is proportional to its level and does not interact with other fac-
tors in any way. To get the point, consider a low value of book-to-market ratio.
A reasonably small value might suggest an undervalued stock,® but a very small
value does not necessarily imply an even better investment opportunity. This
could be accounted for by a nonlinear function reaching its maximum at a sen-
sible value that should be estimated. As another example, consider the amount
of dividend payout. It may be difficult to assess its impact outside any context.
A firm that does not pay dividends may be a growing firm, which invests net
income in new products or services, or, on the contrary, a firm struggling with
poor performance. A firm that pays rich dividends may be a good “cash cow,” or
a firm that is not investing anything in order to maintain its competitive position.
These considerations suggest the opportunity of introducing factor interactions
into the model.

5We should always bear in mind that the stated book value of a firm may rely on questionable
asset valuations, not to mention the latitude in accounting practice.
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9.5 Factor models in practice

As we shall see in Chapter 10, factor models, under suitable but controversial
hypotheses, are the foundation of well-known equilibrium models like CAPM
and APT. Even if one does not believe these assumptions, factor models may be
used for practical purposes, including the following ones:

= Factor models may be used to spot potential for excess return in a portfo-
lio, i.e., to “generate alpha.”

» Factor models may be used for performance and risk attribution, i.e., to
understand which factors contribute to the realized return of a given port-
folio.

* By combining assets with known exposures to common risk factors, we
may shape the portfolio risk and make it selectively insensitive to un-
desired risk factors. Otherwise, we may increase the exposure to a risk
factor on which we feel like making a bet.

(m

Example 9.4 A market-neutral long—short portfolio

A market-neutral portfolio is a portfolio which is not exposed to
systematic risk. The only source of return is specific risk. Such a
portfolio is also referred to as beta-neutral, since its betas with re-
spect to systematic risk factors are zero. A possible rationale behind
such a portfolio is that we may have a view about the relative per-
formance of stock shares, but we do not feel safe in making a bet on
the direction of the market as a whole. The analysis may suggest that
some stocks have positive alpha, and other stocks have negative al-
pha. However, investing in the positive alpha stocks may still result
in a loss if the market takes a negative turn. We might find only a
partial consolation in a portfolio losing less than the index. Thus, we
may take a long—short strategy, whereby we short-sell the stocks with
negative alpha in order to neutralize the overall beta, i.e., the exposure
to portfolio risk.

Let us consider a stylized example of the strategy. We have a
subset of n assets, characterized by the single-index model

RZ‘:CY-FBRJ\/[—F@Z‘, 1=1,...,n.
We assume that o > 0 and g are the same for all of these assets. We
also have another subset of n assets, characterized by the single-index
model
RiZ—Oé—FﬂRM—f—gi, t=n+1,...,2n,

where again we assume that the numerical values of the involved pa-
rameters are the same and identical to those of the first subset of as-
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sets. Note that the assets in the second set have negative alpha and, as
such, are natural candidates for short-selling.

Imagine that we go long for a total amount of $V in an equally
weighted portfolio of the stocks in the first subset, and we short the
same dollar amount in an equally weighted portfolio of the stocks in
the second subset. Note that, if we do not consider transaction costs,
the initial value of this long—short portfolio is zero. For this reason,
such a portfolio is said to be dollar-neutral. We cannot define return
for this portfolio, but its profit/loss is

n 2n

ﬁZ%Z(O&—&-,@RMﬁ-Q)—% Z (—Oé-i-BRM—ng>
=1 i=n+1
= 2aW + €,

where
n 2n
R Z~ Z -
€y = — €; — €;
P n : i » i
=1 1=n+1

accounts for specific risk. Note that the portfolio is, in fact, market-
neutral, and that for large n the total contribution of specific risk is
diversified away (see Problem 9.3).

Clearly, Example 9.4 is based on an oversimplified picture, but it illustrates
a possible strategy to build a market-neutral, long—short portfolio. Long—short
portfolios need not be dollar-neutral. A common strategy is 130-30, which
means that 30% of the portfolio value is shorted, in order to increase investment
in stocks that, we believe, will outperform. More realistic strategies in this vein
are used by some hedge funds. When short-selling is not readily applicable, one
way to get rid of systematic risk is by taking a position in suitable derivatives,
such as a short position in index futures.’

S9.1 Proof of Equation (9.17)

As a preliminary step, let us solve Eq. (9.12) for w%, which yields

0 _ wA
wAi—l—wA(l—ﬁA)' (9.18)

7See Section 12.3.3.
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We also slightly rearrange Eq. (9.13) as

2
ATy

W = (9.19)

5
TMO p

This allows us to rewrite the squared Sharpe ratio in Eq. (9.16) as follows:

w 2

{A o+ 7TM:| 0 2
2 — 1—wa(l —Ba) _ (whaa +mar)
? wh o2, + o, (wh)?024 + 0%

(9.20)

[1—wa(l—=pa)]?
By plugging Eq. (9.19) into Eq. (9.20), we find
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which is the sum of squared information ratio and squared Sharpe ratio of the
market portfolio, as in Eq. (9.17).

Problems

9.1 You have estimated the following single-index model for two asset re-
turns:

7o = 0.14 4 0.8 + &4,
7, = 0.08 + 1.27y; + &,

where 7,7, €,, and €, are uncorrelated random variables with zero expected
value (the expected value of the market return has been included into the con-
stant term of the regression) and standard deviations 20%, 30%, and 25%, re-
spectively. The model is expressed in terms of returns, not excess returns. Find
the weights of the minimum variance portfolio (we are only considering risky
assets, not the risk-free asset).

9.2 A pension fund manager has chosen a portfolio consisting of the risk-free
asset, with annual return 3% (annual compounding), and two risky assets. The
holding period return can be expressed by the following factor model:

Fi = i + B Fy + BinFy + &, i =a,b,

with the following parameters:
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Asset 7 a; Bix  Biz
i=a 0.01 0.8 1.2
i=b 0.03 -04 0.3

All factors are normally distributed with the following parameters:
Fy ~N(0.03,0.30%), Fy ~ N(0.13,0.40%),
€a ~ N(0,0.40?), & ~ N(0,0.50%).

Each specific risk factor is uncorrelated with the other factors, whereas the cor-
relation coefficient between the two systematic factors is 0.68. The portfolio
weight of the risk-free asset is 40%, and the rest of the portfolio is equally al-
located to the risky assets. The manager receives a bonus depending on the
realized annual return: if it is at least 9%, the bonus is €200,000; if the return
exceeds 12%, she will receive additional €100,000. What is the expected value
of the bonus earned by the manager?

9.3 This problem is a numerical illustration of Example 9.4. Consider a
single-index model, in which all assets have unit beta. The volatility of each
specific risk is 30%, and you are considering a universe of 20 stocks, half of
which have alpha +2% and half have alpha —2%. You go long $1 million
with an equally weighted portfolio consisting of the stocks with positive alpha,
and short $1 million of a similar portfolio of stocks with negative alpha. Note
that the resulting portfolio is both dollar-neutral and beta-neutral. What are the
expected profit and risk of the long—short portfolio? How does your answer
change if you consider 50 or 100 stocks?

9.4 You have invested $100,000 in asset A; and $250,000 in asset A5. The
annual returns are represented by a single-index model with parameters

o = 07%, Qg = —0.3%)7 51 = ].1, ﬂg = 0.8.

The annual return of the market portfolio has expected return 7% and stan-
dard deviation 37%. The volatilities of the specific risks are 22% and 31%,
respectively, on an annual basis. Assuming that the risk factors are normally
distributed, find the annual and the daily value-at-risks, with confidence level
99%.

9.5 Letus consider a multifactor model that we want to use in mean—variance
portfolio optimization, using the risk-adjusted form of the objective function
with risk-aversion coefficient \. We want to build a long—short portfolio that is
both dollar- and beta-neutral. The first requirement means that the net invest-
ment is zero. The second requirement implies that the resulting portfolio has
no exposure to systematic risk. This kind of portfolio, in principle, can be used
to generate portable alpha. Portable alpha is a strategy by which we may add
alpha to a portfolio without changing its systematic risk exposure, and without
the need for more capital.

» Write the optimization model, using portfolio weights as decision vari-
ables.



Bibliography 371

= Note that we do not have asset covariances, but we use the multifactor
model parameters. How does beta-neutrality simplify the model?

* Write down the optimality conditions, using Lagrange multipliers.

Hint: For the second question, you may write the model in either compact
matrix form or in the more explicit form. If you take the former route, you
may use the following fact: Let X be an n-dimensional random vector with
covariance matrix X, and consider the transformed variable Z = AX, where
A € R™*"_ Then, the covariance matrix of Z is 3, = AX, AT,

Further reading

= A concrete illustration of how factor models may be used in quantitative
portfolio management is given in [5], which also includes a chapter on
nonlinear models. See also [4].

 To appreciate the several flavors of regression models, you may have a
look at the introductory treatment in [3], where the bias—variance tradeoff
is carefully discussed.

» The Treynor—Black model was originally introduced in [6]. Our presen-
tation follows the one provided in [1].
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Chapter 'Ten

Equilibrium Models: CAPM
and APT

This chapter might be regarded as an outgrowth of Chapter 9 on factor models,
as there is a clear relationship between single and multiple factor models and
the equilibrium models we treat here. The single-index model is related with the
capital asset pricing model (CAPM), and multifactor models are related with ar-
bitrage pricing theory (APT). However, equilibrium models require much more
than a statistical model, as they rely on cruc