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Preface

The purpose of this book is to bring together recent research on performance
measurement, from both academic and practitioner perspectives. As in previ-
ous edited works by ourselves, we start with some survey chapters to allow
readers to refresh their knowledge.

Before we describe the contents of this book, it is worth considering a
number of themes in performance measurement that are of current interest.
First, there are issues such as how to deal with complex multi-period portfolio
returns where the assets may be derivatives and returns non-linear and non-
normal. Second, there are issues to do with short performance histories; third,
there are problems to do with benchmark failure as many indices have recently
experienced unprecedented levels of entry and exit. Finally, there are deep
issues connecting the volatility of markets to the use of benchmarks; if all
managers are rewarded in the same way and are measured against the same
yardsticks, we get herding behaviour and the possibilities of excess volatility
and panic.

While the book does not claim to answer and resolve all the above questions
and issues, it does address them.

The first chapter by Nathalie Farah deals with the financial theory rele-
vant to performance measurement. Next, Guoqiang Wang discusses issues of
econometrics and statistics associated with performance measurement.

Dr Emmanuel Acar and Andrew Pearson discuss the real-world problems
associated with stochastic exposures, i.e. when portfolio weights are them-
selves random. Focusing on Value at Risk, they show how awareness of
stochastic exposures/stochastic cash flow information can be incorporated into
an improved performance measurement methodology.

Gaurav Amin and Dr Harry Kat use recent theoretical results to evalu-
ate performance in hedge funds, their methodology is particularly suited to
dynamic trading strategies.



xii Preface

Professor David Blake and Professor Allan Timmermann investigate the
merits of different benchmarks used in the UK and USA. This is a research
area of great topicality as indices such as the FT100 have recently been found
wanting as a choice of benchmark.

Frances Cowell brings a practitioner’s perspective onto the issue of per-
formance evaluation via simulation and the methodology that lies behind a
performance simulator.

Dr Soosung Hwang and Professor Mark Salmon use the theory of copulae
and 14 UK investment trusts to analyse the non-linear dependency properties
of standard performance measures. For those not familiar with copula theory,
this is a powerful technique for modelling non-standard correlations.

Professor Bob Korkie, who has made many important contributions to per-
formance issues in finance, has contributed two chapters. The first is a detailed
case study of a Canadian investment company, Nesbitt Burns. The second,
joint with Dr Turtle, is a theoretical paper addressing the changing opportunity
set in an intertemporal context. This set is equivalent to the feasible mean-
variance space in a one period world and hence one can measure performance
by considering frontier slopes.

Dr Mark Lundin and Dr Stephen Satchell investigate performance issues
in a long–short framework and advocate a particular measure of risk.
Dr Emanuela Sciubbia presents an analysis of performance from the
perspective of economic theory.

David Spaulding considers the important issue of how to calculate rates of
return. His chapter contrasts various methods and demonstrates that the dif-
ferences can be significant. Professor Ian Tonks, in the final chapter, presents
an analysis of UK pension fund performance focusing on whether there is an
optimal fund size.

John Knight and Stephen Satchell



Contributors

Emmanuel Acar works at Citibank as a Vice-President within the FX Engi-
neering Group. He was previously (since 1990) a proprietary trader at Dresd-
ner Kleinwort Benson, BZW, and Banque Nationale de Paris’ London Branch.
He has experience in quantitative strategies, as an actuary and from having
done his PhD on the stochastic properties of trading rules.

Gaurav S. Amin graduated as a Bachelor of Commerce from the Univer-
sity of Mumbai, India. He holds an MBA from Narsee Monjee Institute of
Management Studies, Mumbai, India, and an MSc (with Distinction) in Inter-
national Securities, Investment and Banking from the ISMA Centre at the
University of Reading, UK. He is currently pursuing a PhD degree at the
ISMA Centre, doing research on hedge fund performance.

David Blake is Professor of Financial Economics at Birkbeck College in the
University of London and Chairman of Square Mile Consultants, a training
and research consultancy. Formerly Director of the Securities Industry Pro-
gramme at City University Business School and Research Fellow at both the
London Business School and the London School of Economics. His research
interests include the modelling of asset demands and financial innovations, the
investment behaviour and performance of pension funds and mutual funds,
and pension plan design. He has published in major economics and finance
journals in all these fields. He is author of numerous books on financial topics,
the most recent of which is Financial Market Analysis.

Frances Cowell works in London for Vestek-Quantec, a subsidiary of Thom-
son Financial. Before joining Quantec in 1998, she was part of the Quantitative
Investments team at Natwest Investment Management in Sydney, where she
was responsible for domestic and international indexed equity portfolios and



xiv Contributors

indexed balanced portfolios. Experience in applying quantitative solutions to
domestic equity portfolios has enabled her to proceed to construct investment
strategies combining physical assets and derivatives; exploiting inconsistent
pricing between related instruments; and subsequently to design portfolios
with pre-specified return and risk characteristics.

Nathalie Farah is a PhD candidate at the Faculty of Economics and Polit-
ical Science at the University of Cambridge. She is researching in portfolio
theory and performance measurement. She completed her MSc in Finance
and Economics at the London School of Economics after obtaining her BA
in Economics at the American University of Beirut, Lebanon. She plans to
make a career in investment consulting.

Soosung Hwang is a Lecturer in Finance in the Faculty of Finance and the
Deputy Director of the Financial Econometrics Research Centre, City Univer-
sity Business School, London. He is also an Honorary Research Associate of
the Department of Applied Economics, Cambridge University. He received
his PhD from Cambridge University and his research interests include finance,
financial econometrics and forecasting.

Harry M. Kat is currently Associate Professor of Finance at the ISMA Centre
Business School at the University of Reading. Before returning to academia
he was Head of Equity Derivatives Europe at Bank of America in London,
Head of Derivatives Structuring and Marketing at First Chicago in Tokyo and
Head of Derivatives Research at MeesPierson in Amsterdam. Dr Kat holds
MBA and PhD degrees in Economics and Econometrics from the Tinber-
gen Graduate School of Business at the University of Amsterdam. He is a
member of the editorial board of The Journal of Derivatives and The Journal
of Alternative Investments and has (co-)authored numerous articles in well-
known finance journals such as The Journal of Financial and Quantitative
Analysis, The Journal of Derivatives, The Journal of Financial Engineering,
Applied Mathematical Finance and The Journal of Alternative Investments.
His new book Structured Equity Derivatives was published in July 2001 by
John Wiley & Sons.

Bob Korkie is Head of Investment Research and Risk Management at
OPTrust. He is formerly Professor of Finance at the University of Alberta and
has been a visiting professor in Austria, France, Turkey and the United States.
He is an affiliate member of the Society of Financial Analysts, and principal of



Contributors xv

RMK Financial Consulting. He has an undergraduate degree in Engineering,
an MBA (both Saskatchewan) and a PhD (University of Washington). His
research has been published in numerous financial journals and magazines.

Mark Lundin is the Head of Quantitative Research at Fortis Investment
Management in Brussels. His interests and activities primarily involve the
application of advanced techniques to investing in and trading the financial
markets. Before joining Fortis, Mark was a Research Scientist at Olsen &
Associates Research Institute for Applied Economics in Zurich where he
developed real-time, high-frequency trading models and performed multivari-
ate financial research. Mark is an ongoing external technical referee for Risk
Magazine and an independent referee for IEEE Transactions on Neural Net-
works in Financial Engineering. He holds a PhD in Particle Physics from
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Chapter 1

The financial economics
of performance measurement

NATHALIE FARAH

ABSTRACT

This chapter aims to provide insights into the different performance
measures that have been constructed over the years with the aim of
better evaluating and assessing the fund manager’s abilities. Indeed,
the finance literature has for some time been interested in this matter,
first because superior ability and outperformance by definition con-
tradict the efficient market hypothesis and second because there is a
very important need to justify active management and the high fees
that fund managers tend to charge. After reviewing various perfor-
mance measures and techniques, it is clear that there are still many
questions concerning the extent to which these measures apply in the
real world.

1.1 INTRODUCTION

The quest for active portfolio managers who can deliver abnormal excess
returns and beat a specified benchmark has been crucial for the portfolio
management industry. Indeed, finding an accurate and reliable measure able
to assess and compare the performance of various fund managers has been
stimulating the finance literature for a long period.

Since the tremendous growth that the mutual and pension fund industry
experienced – in the US, for example, over $5.5 trillion are currently man-
aged by the mutual fund industry, with roughly $3 trillion managed in equity
funds (Chen, Jegadeesh and Wermers, 2000) – there has been a great deal of
attention directed towards portfolio performance measurement.
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On the one hand, investors sought a method that could value the service
rendered by active management and justify the fees and expenses they were
paying. On the other hand, fund managers wanted to illustrate the importance
of their role and justify why one should buy an actively rather than a passively
managed portfolio.

Academic studies found this subject fascinating and tried to devise diverse
methods to tackle the number of issues at stake: measuring any abnormal
performance and assessing the superior ability of fund managers, examining
whether there is any persistence in the performance of the actively managed
funds, and finally constructing appropriate benchmarks that allow a genuine
comparison between active and passive management. The importance of these
issues lies in the fact that it is also a test of efficient market hypothesis:
managers making abnormal returns contradict this crucial hypothesis.

Before presenting the various measures that the researchers have con-
structed over the years to answer these important questions, this review starts
by defining some of the key concepts to performance evaluation, allowing
the reader a better and easier understanding of the discussion that follows.
Starting by distinguishing active and passive management, this chapter defines
the activities and decisions a fund manager engages in, in order to generate
abnormal performance. Understanding the intuition behind these processes is
the first step towards grasping the methods developed to evaluate them.

In managing funds, two different techniques can be used: passive and
active. Passive portfolio management entails what is commonly referred to
as a ‘buy-and-hold strategy’, where the weights on the securities constituting
the portfolio are set at the beginning of the investment period and are then
held constant until the end, with only minor changes. The assumptions that lie
behind passive portfolio management are market efficiency and homogeneity
of expectations. Indeed, if markets are efficient, the fund manager cannot cap-
italize on any mispricing of securities and gain from actively trading them.
Moreover, if all investors have homogeneous expectations, the fund manager
cannot take advantage of any differences in the securities market expecta-
tions regarding returns and risk to generate abnormal performance from active
trading (Blake, 1994).

In contrast, the assumptions behind active management are that markets are
not ‘continuously efficient’ and that investors do have heterogeneous expec-
tations regarding securities risk and returns. In fact, active managers believe
that they have the ability both to obtain better estimates of the true securities’
risk and return and to spot any mispricing of securities, making use of this to
generate excess returns. As a result, managers frequently adjust their portfolio
weights to follow different strategies and identify any opportunities to ‘beat
the market’. (Blake, 1994).
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Active management, thus, demands the mastering of different skills needed
to optimally perform the activities it requires: asset allocation, security selec-
tion and market timing. Indeed, as a first step, the fund manager must decide
on the allocation of his portfolio across a number of broad asset classes, such
as bond, shares, cash or any money-market securities. This is referred to as
asset allocation and represents one of the fundamental and most important
decisions in the management of the fund, since it not only dominates the
performance of most portfolios (Blake, 1994), but also accounts for a large
part of the variability in their return (Sharpe, 1992).

Once the proportions in each asset class have been chosen, the manager has
now to decide on which particular securities to hold within each asset class.
This is referred to as security selection. In this activity, the fund manager
uses his assumptions and information about the market to take advantage
of any mispricing1 that he believes is occurring. Indeed, the fund manager
accepts that ‘most shares are fairly priced but a few are either underpriced or
overpriced’ (Blake, 1994) and uses the information he has about the mispricing
to gain abnormal returns. If a manager does have superior ability and can
identify the over- and/or underpriced securities then he can game on his skills
and generate excess returns.

Furthermore, according to Jensen (1968), ‘a manager’s forecasting ability
may consist of an ability to forecast the price movements of individual secu-
rities and/or an ability to forecast the general behaviour of security prices in
the future’.

The first ability describes security selection skills while the second refers
to the fund managers’ ability to time the market.

An active fund manager engages in market timing by changing the beta
of his portfolio over time, depending on his expectations about the mar-
ket. For instance, if the fund manager has positive (negative) information
about the market, he would increase (decrease) his portfolio’s beta, aiming at
capitalizing on his expectations. If the fund managers possess real superior
forecasting abilities, then they would be able to provide the investors with
excess abnormal returns.

Note that timing abilities can also be used if managers have expectations
about stocks with certain characteristics. Indeed, if the fund manager believes
that stocks with specific characteristics (size, book to market, etc.) are going
to experience high returns, he could tilt his portfolio weights towards them,
in an attempt to time those various stock characteristics.

1A mispricing of a security happens when for an informed investor its expected return (or risk
estimate) is different from the market belief. If a security is underpriced (overpriced), it is expected
to rise (fall) in price.
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To summarize, the difference between selection and timing abilities can be
described as follows: while selectivity mirrors the ability to choose invest-
ments that will do well relative to the benchmark portfolio, timing ability
mirrors the ability to forecast the return of the benchmark portfolio (Grinblatt
and Titman – hereafter referred to as GT – 1989b).

Assessing whether active managers have genuine superior abilities in com-
pleting these tasks, and whether the high fees and expenses that they charge
are justified by those superior abilities in the form of excess returns, is the
aim of the performance literature. Consequently, the literature has devised,
over the years, several different performance measures that help determine
these issues.

Having defined the terms and notions used in the performance evaluation
world, this chapter will present next a literature survey of the variety of per-
formance measures and techniques that have been constructed throughout the
years to evaluate whether active managers have genuine superior abilities. The
aim is to discover if active managers do actually possess superior information
that could allow them to ‘beat the market’ and generate abnormal returns.

1.2 THE SHARPE RATIO

The first measure discussed is the Sharpe ratio (Sharpe, 1966), a very com-
monly used way to determine the excess return earned per unit of risk. It is
formulated as follows:

SRi = Ri − Rf
σi

(1.1)

where:
Ri is the mean return on fund i over the interval considered
Rf is the average risk free rate over the interval considered and
σi is the standard deviation of the return on fund i over the interval

considered.

This ratio is a measure of ‘reward per unit of risk’ (Sharpe, 1966).

1.3 THE TREYNOR MEASURE

A similar measure to the Sharpe ratio is the Treynor measure (Treynor, 1965),
which uses the systematic risk βi of the fund as a measure of its risk instead
of its standard deviation:

Ti = Ri − Rf
βi

(1.2)
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The Treynor measure adjusts the excess reward earned by the fund for its
systematic risk, the capital asset pricing model’s beta.

Next, this review moves to one of the most widely used measures in the
empirical performance literature, the Jensen measure (Jensen, 1968, 1969).

1.4 THE JENSEN MEASURE

1.4.1 The theory and the aim behind the Jensen measure

Jensen (1968, 1969) created a measure of abnormal performance based on the
CAPM model of Sharpe (1963, 1964), Lintner (1965) and Treynor (1961).
This measure, however, allows for the abilities of the fund managers to be
reflected by the inclusion of an intercept in the traditional equation:

R̃j t − RFt = αj + βj [R̃Mt − RFt ] + ũj t (1.3)

where the error term ũj t should be serially independent and E(ũjt ) = 0.
This expression hence measures the deviation of the portfolio evaluated

from the security market line. Particularly, it aims at picking up the manager’s
ability to forecast future security prices and thus at measuring his security
selection skills.

The benchmark used to compute this measure is assumed to be mean-variant
efficient from the perspective of an uninformed observer. Consequently, a
passively managed fund is expected to generate a zero intercept, while an
actively managed fund whose manager possesses some superior information
or abilities is expected to generate a positive intercept. Note that various
customized benchmarks such as style indexes or multiple-benchmarks models
are used throughout the literature to calculate the Jensen alpha.

However, Jensen (1968) acknowledged that by making βj stationary over
time in the above model, his measure does not account for the manager’s
abilities to ‘time the market’. Indeed, he affirms that a manager can easily
change the risk level of his portfolio, in an attempt to ‘outguess the market’.

Since the managers can possess two kinds of forecasting abilities, security
selection and market timing, Jensen recognized the need for ‘an evaluation
model which will incorporate and reflect the ability of the manager to forecast
the market’s behaviour as well as his ability to choose individual issues’.

Consequently, assuming that the fund manager has a ‘target’ risk level that
he wishes to maintain on average, Jensen (1968) modified the above model
to include such forecasting abilities by expressing the portfolio’s systematic
risk at any time t as follows:

β̂j t = βj + ε̃j t (1.4)
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where:
βj is the ‘target’ risk level which the portfolio manager wishes to

maintain on average through time
ε̃j t is a normally distributed random variable that has a 0 expected value.

According to Jensen (1968), ε̃j t is ‘the vehicle through which the manager
may attempt to capitalize on any expectations he may have regarding the
behaviour of the market factor π̃ in the next period’. Hence, if the fund
manager has some positive expectations about the market, he can game on
them by increasing the risk of his fund, i.e. by making ε̃j t positive. Jensen
expresses this relationship more formally as:

ε̃j t = aj π̃t + w̃j t (1.5)

where the error term is assumed to be normally distributed with a 0 expected
value. A fund manager who possesses some forecasting ability will be char-
acterized by a positive aj .2

Replacing this in equation (1.3), Jensen (1968) obtains the following:

R̃j t − RFt = αj + (βj + ε̃j t )[R̃Mt − RFt ] + ũj t (1.6)

The authors then affirm that the least squares estimator of β̂j , assuming that
the forecast error w̃j t is uncorrelated with the market factor π̃t , can be shown
to be equal to:

E(β̂j ) = cov[(R̃j t − RFt), (R̃Mt − RFt)]
σ 2(R̃M)

= βj − ajE(R̃M) (1.7)

If aj = 0, then this generates an unbiased estimate of the fund manager’s
selection abilities.

If aj is positive, i.e. if the fund manager does have any forecasting ability,
equation (1.7) shows that βj will be biased downward and hence α̂ will be
biased upward. As a result, Jensen (1968) concludes that if the fund manager
possesses some superior ability, then this model will definitely give evidence
of it since it tends to ‘overstate their magnitude’.

1.4.2 The various caveats and problems that face the Jensen measure

Although the Jensen measure is widely used throughout the performance eval-
uation literature, it has been subject to many criticisms (Jensen, 1972 and Roll,
1978). The most important ones are related to:

2Jensen (1968) notes that aj cannot be negative since this would be a sign of irrationality.
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1. Benchmark inefficiency
The Jensen approach, being based on the CAPM model, necessitates the use
of a benchmark to conduct the performance evaluation. This, however, has
been pointed out to be the source of two problems. First, Roll (1978, 1979)
claimed that the Jensen measure is not a genuine and reliable indicator of the
true performance of a fund because of the lack of an appropriate benchmark
with which to compute its beta. Indeed, many empirical studies demonstrated
the mean-variance inefficiency of the CAPM benchmarks, showing that they
exhibit various biases such as dividend-yield or size biases. Roll has also
shown, along with many other researchers, that the Jensen measure can be
sensitive to the choice of the benchmark, and thus can lead to the adoption
of different conclusions, depending on the benchmark used.

2. Timing ability
Jensen (1972) showed that the Jensen measure, due to the bias in its estimate
of the systematic risk of a market timing strategy, could provide biased con-
clusions about market timers and assign them negative performance. Indeed,
successful market timing activities by the fund manager being evaluated can
lead to ‘statistical bias’ in the Jensen measure, in that such a fund would
generate negative performance numbers (GT, 1994).

To illustrate this point, GT (1989b) provided an example of such a situa-
tion. They assumed a case where an informed investor receives information
about the market behaviour in the form of two ‘signals’: positive information
indicates that the excess return on the benchmark will be above its uncondi-
tional mean at rH and negative information indicates that it will be at point
rL, below the unconditional mean. This informed investor is also restricted to
a choice between a high beta portfolio and a low beta portfolio as shown in
Figure 1.1.3

If the investor is a ‘market timer’, he will be at point A (B) when he
receives the positive (negative) signal, choosing the high (low) beta portfolio.

From the point of an uninformed investor, the risk of this strategy is mea-
sured by ‘the slope of the dotted line’, i.e. higher than either of the high- or
low-beta portfolios. Furthermore, this figure plotted by GT (1989b) shows that
the Jensen measure, represented by the intercept C of the dotted line, could
assign a negative performance to a genuine superior investor, ‘erroneously
indicating that the informed investor is an inferior investor’.

3. Separation of the selection and timing abilities
Jensen (1972) observed that using equation (1.1) and information solely on the
return data, it is quasi-infeasible to separate the security selection and timing

3These lines pass through the origin since GT (1989b) assume the benchmark is mean-variance
efficient.
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rL rH

B

Excess return of the
managed portfolio

Excess return of the
benchmark portfolio

Low beta
portfolio

High beta
portfolio

A

C

Figure 1.1 This graph illustrates the statistical bias in the Jensen measure, which can lead to
biased conclusions about market timers

abilities’ effect on performance. Indeed, according to him, in order to achieve
this separation and measure the manager’s timing abilities, one needs to know
‘the market-timing forecast, the portfolio adjustment corresponding to that
forecast and the expected return on the market’. Consequently, in his article,
Jensen (1972) first makes two main assumptions: the market timer attempts to
forecast the actual return on the market portfolio, and the forecasted return and
the actual return on the market are assumed to have a joint normal distribution.
Then he shows that under these assumptions, the correlation between the
market timer’s forecast and the realized return on the market can be used to
measure the market timer’s ability (Henriksson and Merton, 1981).

This problem is also described in Lehmann and Modest (1987) who discuss
this issue and explain how it can be quite problematic. Indeed, Lehmann and
Modest (1987) start with a K-factor linear model for securities returns and
then express the following return generating process for N individual assets:

R̃ t = BR̃mt + ε̃ t (1.8)

where:
R̃ mt is a K × 1 vector of returns on the reference portfolios
B is the N ×K matrix of factor sensitivities

R̃ t and R̃ mt denote excess returns above the riskless rate or zero-beta
return where appropriate.
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Consequently, they write the return on any mutual fund portfolio as

R̃pt =
N∑
i=1

wi(s t )R̃it =
N∑
i=1

[wi(s t )b
′
i R̃ mt + wi(s t )ε̃ it ] (1.9)

where:
wi(s t ) is the weight of the ith security in the portfolio at date t
b′
i is a 1 ×K vector consisting of the ith row of B
s t is a vector of signals received by the fund manager for predicting
R̃ mt and ε̃ t .

Equation (1.9) can be reformulated as:

R̃pt = β ′
pt
R̃ mt + ε̃pt (1.10)

where:

β ′
pt

=
N∑
i=1

wi(s t )b
′
i = β ′

p
+ x(s t )′

ε̃pt =
N∑
i=1

wi(s t )ε̃ it (1.11)

According to the authors, ‘the elements of β
′
p are the target or average sen-

sitivities of the fund to the K common factors, and x(s t ) are the time t
deviations from β

′
p selected by the manager in attempts to time factor move-

ments. Similarly, if the manager possesses stock-selection ability, ε̃pt will not
have a zero population mean’.

As a result, any change in β
pt

will mirror the manager’s timing abilities
while ε̃pt will illustrate his security selection skills.

Now, to come back to the Jensen measure, Lehmann and Modest (1987)
perform the usual security market line regression, the regression of R̃pt on
R̃ mt (as in equation (1.10)):

E∗[R̃pt | R̃ mt ] = α̂ p + β̂ ′
p
R̃ mt (1.12)

where:

α̂p =
[
ε̄p − cov{x′

t R̃ mt , R̃ mt }′
−1∑
m

Rm + E{x′
t R̃ mt }

]

β̂
p

=
[
β
p

+
−1∑
m

cov{x′
t R̃ mt , R̃ mt }

]
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ε̄p =
N∑
i=1

cov{wi(s t ), ε̃it }
∑
m

= E[{R̃mt − Rm}{R̃mt − Rm}′]

Rm = E[R̃mt ] (1.13)

As for the notation, the authors use E∗[X | Y ] as ‘the minimum-variance lin-
ear estimator of X given Y (i.e. the regression function)’, x′

t as a ‘shorthand’
for x(s t )

′, cov{x′
t R̃ mt , R̃ mt } as the K × 1 vector of the covariances between

x ′
t R̃ mt and the K elements of R̃ mt .
In this model, the coefficient α̂p denotes ‘the usual Jensen performance

measure’.
Using the above format, the authors conduct the following analysis:

• If the fund manager possesses no security selection skills and no timing
abilities, i.e. ε̄P = 0 and E{x′

t R̃ mt } = cov{x′
t R̃ mt , R̃j t} = 0 for all j =

1, . . . , K , the Jensen measure will be equal to 0 and the above model will
show no evidence of abnormal performance:

E∗[
↔
Rpt | R̃ mt ] = β

′
p
R̃ mt (1.14)

• If the mutual fund manager ‘possesses stock selection ability but no market-
timing ability’, the model will give evidence of some superior performance:

E∗[
↔
Rpt | R̃ mt ] = ε̄p + β ′

p
R̃ mt (1.15)

where ε̄p � 0 under mild restrictions.
• Finally, if managers possess both market-timing and security selection abil-

ity, the Jensen measure could turn out to be positive or negative depending
on the terms in the above expression for α̂p.

Hence, Lehmann and Modest (1987) conclude that ‘the Jensen measure cannot
be used to evaluate managers since α̂p could be positive even if the manager
were both an unsuccessful stock picker and a perverse market timer and
conversely could be negative if the manager were both a successful stock
picker and a successful market timer’.

In conclusion, although the above studies and many others have shown that
the Jensen measure can be associated with many problems, it is still widely
used, in combination with other measures, in various empirical studies to
assess abnormal performance.
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1.5 THE TREYNOR–MAZUY MEASURE

In the traditional CAPM model, the return on a portfolio is a linear function
of the return on the market portfolio. In their study, however, Treynor and
Mazuy (1966) claim that for market timers, this should not apply. Indeed,
according to them, market timers, being able to forecast market returns, will
increase (decrease) their holdings of the market portfolio when the return on
it is high (low). As a result, the relationship between the fund’s return and
the market return should not be linear and thus the authors propose that a
quadratic regression could actually pick up any market timing ability. For
Lehmann and Modest (1987), ‘the basic idea was quite simple; market timers
should make money when the market rises or falls dramatically, that is, when
the squared return on the market is large’, hence the inclusion of this extra
term can be of great value.

To be more precise, the Treynor–Mazuy measure aims at picking any beta
variation that is associated with the return on the benchmark:

βj = θ1 + θ2(R̃Mt − RFt ) θ2 � 0

Replacing this in equation (1.3) gives the following:

R̃j t − RFt = αj + θ1[R̃Mt − RFt ] + θ2[R̃Mt − RFt ]2 + ũj t (1.16)

Selectivity abilities are picked up by the intercept of this regression while the
product of θ2 and the variance of the benchmark return captures timing ability
(GT, 1994). Indeed, after studying this regression’s slope coefficients, Jensen
(1972) and Adamti et al. (1986) confirmed the relation between θ2 and timing
ability.

However, although the Treynor–Mazuy measure is a ‘promising advance’
by the fact that it can actually pick up timing abilities, it still faces the same
problem as the Jensen measure: the inability to evaluate separately the effects
of the security selection and timing abilities on funds’ performance.

In effect, going back to the Lehmann and Modest (1987) model discussed
above, this can be clearly demonstrated. For simplicity reasons, the authors
consider the one-factor version of their model:

R̃pt = βpt R̃ mt + ε̃pt

and then write the ‘associated’ quadratic regression as

E[R̃pt | R̃mt , R̃
2
mt ] = α∗

p + b∗
1pR̃mt + b∗

2pR̃
2
mt (1.17)
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Lehmann and Modest (1987) formulate the regression slope coefficients as:

(
b∗

1p

b∗
2p

)
=
(

var

[
R̃mt

R̃2
mt

])−1

cov

[
R̃pt ,

(
R̃mt

R̃2
mt

)]

=
(
σ 2
m σ3m

σ3m σ4m

)−1
[
β̄pσ

2
m + cov(xt , R̃2

mt )

β̄pσ3m + cov(xt , R̃3
mt )

]

=
[
β̄p
0

]
+ 1

σ 2
mσ4m − σ 2

3m

[
σ4m −σ3m

−σ3m σ 2
m

] [
cov(xt , R̃2

mt )

cov(xt , R̃3
mt )

]

=
[
β̄p
0

]
+
[
γ1p

γ2p

]
(1.18)

where:
σ3m and σ4m are the skewness and the kurtosis of R̃mt

β̄p is the target β of the mutual fund.

They also express the intercept of the quadratic regression as:

α∗
p = ε̄p + β̄P R̄m + cov(xt , R̃mt )− b∗

1pR̄m − b∗
2pR̄

2
m

= ε̄p + cov(xt , R̃mt )− γ1pR̄m − γ2pR̄
2
m (1.19)

Using this formulation of the Treynor–Mazuy measure, the authors show
the ability of this measure to detect timing ability. Indeed, if the manager
possesses no timing abilities, then cov{xt , R̃2

mt } and cov{xt , R̃3
mt } will be equal

to 0, which implies that in equation (1.19), γ1p = γ2p = 0 and hence, b∗
1p =

β̄p, the target beta, and b∗
2p, the coefficient on R̃2

mt , is equal to 0 signifying
the absence of timing abilities.

In contrast, if the manager does possess timing abilities, then cov{xt , R̃2
mt }

and cov{xt , R̃3
mt } will be different from 0, and hence, b∗

2p will also be non-zero,
revealing the manager’s timing abilities.

However, the authors also show that the Treynor–Mazuy measure is still
not able to evaluate the separate effects of the manager’s timing and selection
abilities on performance, unless one imposes additional ‘restriction on dis-
tribution and preferences’. In fact, they claim that even if in equation (1.18)
cov{xt , R̃2

mt } = 04 and hence one can estimate the values of β̄p and γ2p, it is
still impossible to distinguish the ‘two sources of abnormal performance’ in
equation (1.19).

4Which implies that there is ‘no co-skewness between the fluctuations in the fund beta and the
return on the factor’.
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To overcome this problem, Henriksson and Merton (1981) offered a solution
consisting of two different tests, to be discussed next.

1.6 PARAMETRIC AND NON-PARAMETRIC TESTS OF MARKET
TIMING ABILITIES

Using a model of market timing developed in Merton (1981), Henriksson
and Merton (1981) developed two tests, a parametric and a non-parametric
test, that aim at solving two crucial issues: detecting whether superior tim-
ing abilities do exist and measuring the separate effects of security selection
and timing abilities on funds’ performance. The non-parametric test, which
assumes that the forecasts made by a market timer are observable, offers one
main advantage: it does not need the CAPM framework. Indeed, according
to the authors, this test does not ‘require any assumption about either the
distribution of returns on the market or the way in which individual security
prices are formed’. Furthermore, this test takes into account the fact that the
market timer may possess different skill levels in predicting up and down
markets.

Now, when the market timer’s forecasts are not observable, Henriksson and
Merton (1981) propose an alternative test, the parametric test of forecasting
ability. The latter, however, does require the additional assumption of a CAPM
or a multifactor pricing model of securities prices.

This review starts with a brief description of the model of market timing
forecasts developed in Merton (1981), which is followed by an exposition of
the non-parametric and parametric tests developed in Henriksson and Merton
(1981). In so doing, this review follows the notation and presentation used in
Henriksson and Merton (1981).

1.6.1 The starting point: Merton (1981)’s model of market
timing forecasts

In his model of market timing forecasts, Merton (1981) assumes that the
market timer forecasts solely whether Zm(t) > R(t) or Zm(t) ≤ R(t), where
Zm(t) is the return on the market portfolio and R(t) is the risk-free rate.

In fact, Merton (1981) defines γ (t) as ‘the market timer’s forecast variable’,
which can take two values: 0 if at time t − 1 the market timer forecasted that
in period t , Zm(t) ≤ R(t) and 1 if he forecasted that at time t , Zm(t) > R(t).

As a result, the author formulates the conditional probabilities of a correct
forecast as:

p1(t) ≡ prob[γ (t) = 0 | Zm(t) ≤ R(t)]
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and

p2(t) ≡ prob[γ (t) = 1 | Zm(t) > R(t)]

Merton (1981) ascertained that under the assumption that these conditional
probabilities are independent of the magnitude of |Zm(t)− R(t)| and hence
only rely on whether Zm(t) exceeds R(t) or not, ‘the sum of the conditional
probabilities of a correct forecast, p1(t)+ p2(t), is a sufficient statistic for
the evaluation of forecasting ability’.

In particular, Merton (1981) showed that this sum being equal to one,
i.e. p1(t)+ p2(t) = 1, is a necessary and sufficient condition for a market
timer’s forecast to have ‘no value’. Consequently, he demonstrated that testing
whether p1(t)+ p2(t) is equal to one or not is a test of a market timer’s abili-
ties, the null hypothesis of no forecasting abilities beingH0:p1(t)+ p2(t) = 1,
where p1(t) and p2(t) need to be estimated.

Now, using the above model of market timing forecasts, Henriksson and
Merton (1981) constructed a non-parametric test of forecasting abilities for
the case of observable market timer’s forecasts.

1.6.2 The non-parametric test of forecasting abilities

To achieve their target, the authors started by constructing a methodology
that ‘determines the probability that a given outcome from [the] sample came
from a population that satisfies the null hypothesis’. Indeed, Henriksson and
Merton (1981) wrote the following expressions for p1(t) and p2(t),

p1 = E

[
n1

N1

]
and 1 − p2 = E

[
n2

N2

]

where they defined N1 as the number of observations where Zm ≤ R, n1 as
the number of successful predictions given Zm ≤ R,N2 as the number of
observations where Zm > R and finally n2 as the number of unsuccessful
predictions, given Zm > R.

Next, using the null hypothesis, they obtained that:

E

[
n1

N1

]
= p1 = 1 − p2 = E

[
n2

N2

]

which gives that:

E

[
n1 + n2

N1 +N2

]
= E

[
n

N

]
= p1 ≡ p
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where N is defined as the total number of observations and n as the number
of times the market timer’s forecast was Zm ≤ R.

As a result, given that under the null hypothesis, n1/N1 and n2/N2 have
identical expected values and ‘are both drawn from independent subsamples’,
Henriksson and Merton (1981) confirmed the need to estimate only one of
the two expressions.

Combining the above analysis, the null hypothesis and Bayes’ theorem, the
authors derived the following expression for the probability that n1 = x given
N1, N2 and n:

P(n1 = x | N1, N2, m) =

(
N1

x

)(
N2

m− x
)

(
N

m

) (1.20)

where ‘the market timer forecasts m times that Zm ≤ R (i.e. m = n). . . [and]
he is correct x times and incorrect m− x times (i.e. n1 = x and n2 = m− x)’.

The expression in equation (1.20) led Henriksson and Merton (1981) to the
conclusion that the probability distribution of n1, which represents under the
null hypothesis the probability distribution for the number of correct forecasts
given that Zm ≤ R, is a ‘hypergeometric distribution and is independent of
both p1 and p2’. Hence, there is no need anymore to estimate the unconditional
probabilities.

Given this result and the fact that in this case the market timer’s forecasts
are assumed to be known, Henriksson and Merton (1981) affirmed that it is
now very easy to test the null hypothesis since all the variables necessary to
achieve that aim are observable.

Consequently, the authors move on to the construction of confidence inter-
vals for testing H0. Following the distribution of n1 fixed by the expression
in equation (1.20), the authors first determined the ‘feasible range’ for n1 as
being:

n1 ≡ max(0, n−N2) ≤ n1 ≤ min(N1, n) ≡ n̄1 (1.21)

Next, the authors presented the confidence intervals of a standard two-tail test
of the null hypothesis that rejects H0 if n1 ≥ x̄(c) or if n1 ≤ x(c), where c is
the probability confidence level and x̄ and x are the solutions to the following
equations:

n̄1∑
x=x̄

(
N1

x

)(
N2

n− x
)

(
N

n

) = (1 − c)
2
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and

x∑
x=x 1

(
N1

x

)(
N2

n− x
)

(
N

n

) = (1 − c)
2

However, arguing that a one-tail test might be more appropriate to their
model, the authors also presented the confidence interval of a one-tail test
of the null hypothesis where H0 is rejected if n1 ≥ x∗(c), x∗(c) being the
solution to

n̄1∑
x=x∗

(
N1

x

)(
N2

n− x
)

(
N

n

) = 1 − c

Noting that for small samples, the calculation of the above confidence inter-
vals can be quite simple, the authors admitted that for large samples, however,
things could get very complicated. To remedy for that, Henriksson and Merton
(1981) pointed out that for large samples it is possible to ‘accurately’ approx-
imate the hypergeometric distribution by a normal distribution whose mean
and variance are the mean and variance of the hypergeometric distribution of
equation (1.20):

E(n1) = nN1

N

and

σ 2(n1) = [n1N1(N −N1)(N − n)]
[N2(N − 1)]

Finally, as mentioned earlier, this test takes into account the fact the mar-
ket timer might possess different skills in predicting up and down markets
(p1(t) �= p2(t)). Nonetheless, Henriksson and Merton (1981) accounted also
for the case where one has reason to believe that the market timer might
have the same skill in forecasting up and down markets, i.e. the case where
p1(t) = p2(t) = p(t).

In this situation, they formulated the null hypothesis of no forecasting
abilities as H0:p(t) = 0.5 and defined the distribution of outcomes drawn
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from a population that satisfies this null hypothesis as the following binomial
distribution:

P(k | N,p) =
(
N

k

)
pk(1 − p)N−k =

(
N

k

)
(0.5)N

where k is the number of correct predictions and N is the total number of
observations.

Hence, in their article, Henriksson and Merton (1981) provided a thorough
analysis of timing abilities by offering a non-parametric test that helps deter-
mine whether such superior abilities do exist. Nevertheless, all the above
discussion was conducted for the case where one assumes that the market
timer’s forecast can be observed. This is not, however, always the case.

1.6.3 The parametric test

Indeed, acknowledging that in many cases the market timer’s forecasts are
not part of the available information, Henriksson and Merton (1981) proposed
also a parametric test that aims at overcoming this problem.

In effect, this alternative test does not necessitate that one observes the
market timer’s forecast but it does, however, require the assumption of a
particular generating process for the securities’ returns. The innovation of
this test is that, using only the securities’ returns data, not only does it allow
the evaluation of a market timer’s abilities but it also allows the separate
measurement of the effects of selection and timing abilities on performance.

First, following the previous empirical studies, the authors assumed that the
returns on securities can be described within the CAPM framework.

Next, they assumed that the market timer vary his portfolio’s systematic risk
depending on his forecast; more particularly, they supposed that the market
timer has two target betas from which he can choose, conditional on whether
he forecasted that Zm(t) ≤ R(t) or not.

Denoting β(t) as the portfolio’s beta at time t , the authors formulated this
model in the following manner: β(t) is equal to η1 when the market timer
forecasts that Zm(t) ≤ R(t) and to η2 when he forecasts that Zm(t) > R(t).

Given that the market timer’s forecasts are not observable, β(t) is to be
considered a random variable and the authors thus denoted its unconditional
expected value b as:

b = q[p1η1 + (1 − p1)η2] + (1 − q)[p2η2 + (1 − p2)η1]

where q is the unconditional probability that Zm(t) ≤ R(t).
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Now, defining the random variable θ(t) = [β(t)− b] as the ‘unanticipated
component of beta’, Henriksson and Merton (1981) wrote the return on the
forecaster’s portfolio as:

Zp(t)− R(t) = λ+ [b + θ(t)]x(t)+ εp(t)
where x(t) = Zm(t)− R(t).5

Using the above equation, the authors showed that by performing a simple
least squares regression analysis, they could measure ‘the separate increments
to performance’ from the manager’s selection and timing abilities.

Indeed, writing the regression specification as:

Zp(t)− R(t) = α + β1x(t)+ β2y(t)+ ε(t) (1.22)

where y(t) ≡ max [0, R(t)− Zm(t)] ≡ min[0,−x(t)], β̂2 represents the mar-
ket timer’s forecasting abilities and α̂ his selection abilities.

After various calculations, Henriksson and Merton (1981) demonstrated that
using this regression specification, the following could be derived:

p lim β̂1 = σpxσ
2
y − σpyσxy

σ 2
x σ

2
y − σ 2

xy

= b + θ̄2 = p2η2 + (1 − p2)η1 (1.23)6

and

p lim β̂2 = σpyσ
2
x − σpxσxy

σ 2
x σ

2
y − σ 2

xy

= θ̄2 − θ̄1 = (p1 + p2 − 1)(η2 − η1) (1.24)

and

p lim α̂ = E(Zp)− R − p lim β̂1x̄ − p lim β̂2ȳ = λ (1.25)

Consequently, Henriksson and Merton (1981), using the regression
equations (1.22), (1.24) and (1.25), offered a method that permits the
estimation of the ‘separate contribution’ of security selection and market

5The authors also show that:

E(θ | x) = θ̄1 = (1 − q)(p1 + p2 − 1)(η1 − η2) for x(t) ≤ 0 and

E(θ | x) = θ̄2 = q(p1 + p2 − 1)(η2 − η1) for x(t) > 0

and thus E(Zp | x > 0) = R + (b + θ̄2)E(x | x > 0)+ λ and

E(Zp | x ≤ 0) = R + (b + θ̄1)E(x | x ≤ 0] + λ.
6Where according to the authors p lim β̂1 = E[β(t) | x(t) > 0].
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timing to performance, a very important contribution to the performance
evaluation literature.

Next, this review presents a performance evaluation method developed by
Grinblatt and Titman (GT, 1989b) that tries to rise above some of the problems
facing the earlier measures such as the Jensen measure.

1.7 THE POSITIVE PERIOD WEIGHTING MEASURE

In response to the timing related biases of the Jensen measure, GT (1989b)
proposed a new measure, the Positive Period Weighting (PPW) measure, with
the aim of overcoming these problems.

This new measure, of which the Jensen measure is shown to be a special
case, is defined by the authors to be a weighted sum of the period by period
excess returns of the portfolio being evaluated.

It is formulated as follows:

α∗ =
T∑
t=1

w̃t r̃pt

such as

w̃t = w(r̃Et , T )

p lim

[
T∑
t=1

w̃t r̃Et

]
= 0

|p lim[Twt ]| >∞
T∑
t=1

w̃t = 1

w̃t > 0, t = 1, . . . , T

where r̃pt is the period t excess return of the portfolio being evaluated and
r̃Et is the period t excess return on the efficient portfolio chosen as the
benchmark.

In their article, GT (1989b) proved this measure to be very useful. Indeed,
they showed that with the PPW, an uninformed investor would generate
zero performance while an informed investor, with selectivity and/or timing
abilities, would generate positive performance if ‘the selectivity and timing
information is independent and the investor is a positive market timer’.

Moreover, the authors pointed out that ‘an interesting interpretation’ of
their measure would be to choose as weights the investor’s marginal utilities.
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In this case, α∗ would measure the incremental change in an investor’s util-
ity from adding ‘a small amount’ of the evaluated portfolio’s excess return
to his ‘unconditionally optimal’ portfolio. In a subsequent paper, GT (1994)
implemented this notion to test the sensitivity of performance to the different
measures, using for weights the marginal utilities of an investor with a power
utility function.

The results showed that the Jensen and Positive Period Weighting mea-
sures were almost identical irrespective of the benchmark used. However,
the authors attributed this to the fact that ‘most mutual funds fail to suc-
cessfully time the market’. Indeed, they claimed that these two measures
are substantially different for funds that succeed in timing the market and
hence, according to GT (1994) ‘for some purposes, employing the Positive
Period Weighting measure in lieu of the Jensen measure could still be worth-
while’.

1.8 CONDITIONAL PERFORMANCE EVALUATION

In a new perspective, Christopherson, Ferson and Turner (1999) claimed that
the previous studies ‘rely upon unconditional performance measures, those
whose estimates of future performance ignore information about the changing
nature of the economy. Thus, unconditional measures can incorrectly measure
expected excess return when portfolio managers react to market information
or engage in dynamic trading strategies. These well-known biases make it
difficult to estimate alpha and beta’.

This is mainly the intuition behind the notion of Conditional Performance
Evaluation (CPE) supported by Ferson and Schadt (1996) and Ferson and
Warther (1996) who recommend the CPE because it can generate more accu-
rate expectations about excess return and risk. This is a due to the fact that this
method ‘implicitly assumes that a portfolio’s alphas and betas change dynam-
ically with changing market conditions’ and that fund managers are able to
respond to available information about market conditions by modifying the
fund’s alphas and betas (Christopherson, Ferson and Turner, 1999).

To present the methodology behind the CPE, this review follows the expo-
sition of Christopherson, Ferson and Turner (1999).

First, the dynamic changes in the beta were incorporated in the traditional
model by Ferson and Schadt (1996). Indeed, assuming that available pub-
lic information, as measured by a vector of market information Z, is fully
reflected in market prices, the authors proposed the following:

βp(zt ) = b0p + B ′
pzt (1.26)
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where:
zt = Zt − E(Z) is a normalized vector of the deviations of Zt , from the

unconditional means
Bp is a vector with the same dimension as Zt , whose

‘elements measure the sensitivity of the conditional beta
to the deviations of the Zt from their means’

b0p is the ‘average beta’.

As a result, equation (1.3) can be rewritten as:

rpt+1 = αp + b0prbt+1 + B ′
p[zt rbt+1] + µpt+1 (1.27)

and in the absence of abnormal performance, the conditional alpha αP will
be equal to zero.

Ferson and Schadt (1996) discovered that the term zt rbt+1, which can be
interpreted as the covariance between the conditional beta and the conditional
expected market return, given Zt , is the origin of many significant measure-
ment errors in the estimation of the unconditional alphas. Consequently, one
can obtain more reliable estimates of the alphas from equation (1.27), by
‘controlling’ for this covariance (Christopherson, Ferson and Turner, 1999).

Next, the dynamic changes in the alpha of the fund are accounted for by
Christopherson, Ferson and Glassman (1998) who proposed a similar model
to Ferson and Schadt (1996). Their methodology expressed the conditional
alpha as follows:

αpt = ap(zt ) = a0p +A′
pzt (1.28)

Consequently, the final modified version of the traditional model presented in
equation (1.3) is:

rpt+1 = a0p + A′
pzt + b0prbt+1 + B ′

p[zt rbt+1] + µpt+1 (1.29)

This model allows the researcher to take into consideration the fact that
investors do react to various market information by changing their portfo-
lio’s alphas and betas accordingly, hence incorporating the dynamic nature of
the alphas and betas.

Comparing the conditional and unconditional alphas in an empirical setting,
Christopherson, Ferson and Turner (1999) conclude that conditional alphas are
better predictors of future performance and that using them ‘can improve on
the current practice of performance measurement’.

In the pursuit of even more accuracy in abnormal performance measure-
ment, many studies tried to improve upon the model of securities returns with
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the aim of controlling and adjusting better for the risk of the funds. Next, this
review discusses such attempts.

1.9 THE 4-INDEX MODEL OF PERFORMANCE EVALUATION

With the aim of constructing a more accurate measure of performance and
examining whether past information can carry information about the future,
Elton, Gruber and Blake (1996) developed a 4-index model in which they
included the following indexes: the S&P Index, a size index, a bond index
and a value/growth index.

Elton, Gruber and Blake (1996) justified their choice of the size index by
relating to a previous study by Elton et al. (1993) where a ‘failure to include
an index of firm size as a risk index led to a substantial overestimate of
the performance of funds that hold small stocks and an incorrect inference
concerning average performance’. As for the value/growth index, the study
used it in order to separate any performance due to the particular type of the
fund from performance due to superior skills by the fund manager. Using
Elton, Gruber and Blake (1996)’s notations, the model is the following:

Rit = ai + βiSPRSP t + βiSLRSLt + βiGV RGV t + βiBRBt + εit (1.30)

where:
Rit = the excess return on fund i in month t (the return on the fund

minus the 30 day Treasury-bill rate)
RSPt = the excess return on the S&P 500 Index in month t
RSLt = the difference in return between a small-cap and a large-cap stock

portfolio, based on Prudential Bache indexes in month t
RGVt = the difference in return between a growth and a value stock

portfolio, based on Prudential Bache indexes in month t
RBt = the excess return on a bond index in month t , measured by

par-weighted combination of the Lehman Brothers Aggregate Bond
Index and the Blume/Keim High-Yield Bond Index

βik = the sensitivity of excess return on fund i to excess return on index
k(k = SP, SL,GV,B)

εit = the random error in month t .

The intercept from this 4-index regression, ai , is the basis of Elton, Gruber
and Blake (1996)’s measure of risk-adjusted performance. Indeed, the authors
used this intercept to calculate both a ‘1-year alpha’ and a ‘3-year alpha’, the
method depending on which period is being considered.

In the first period, referred to as the ‘selection period’, Elton, Gruber and
Blake (1996) used these two measures alternatively to select and rank the port-
folios. They calculated the ‘1-year alpha’ for a fund i at time t by regressing
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equation (1.30) over the previous 3 years, estimating the value of ai , and then
adding to it the average monthly residual of the previous 1 year.

On the other hand, the ‘3-year alpha’ is calculated as just the value of ai
from regressing equation (1.30) over the previous 3 years.

In the second period, referred to as the ‘performance period’, Elton, Gruber
and Blake (1996) calculated the relevant alpha by regression equation (1.30)
over the full period, estimating the ‘overall’ value of ai and then adding to it
the average of the monthly residual over the performance period. However,
if at some point in the period under consideration, the fund being studied
merged or changed its name or policy, Elton, Gruber and Blake (1996) adopted
the following procedure instead: ‘the alpha in the performance period is a
weighted average of the alpha and residuals on the selected fund through the
month of the merger or policy change and the average alpha plus average
residuals on the surviving funds for the remaining months in the evaluation
period’. The authors did consider other rules but did not find any significant
change in the results.

Using these performance measures to conduct their performance evaluation,
Elton, Gruber and Blake (1996) discovered that both the 1-year and 3-year
selection alpha signal future performance and that the information thereby
obtained works for ‘periods 3 years in the future as well as 1 year in the future’.

Hence, using the above method could help in detecting any persistence in
fund mangers’ superior skills.

1.10 CARHART’S 4-FACTOR MODEL

In the same spirit of the previous study, particularly in the context of choosing
high performing funds and studying whether past performance is indicative of
future performance, Carhart (1997) set up a 4-factor regression model which
characterizes the fund by what is commonly called a ‘4-factor alpha’.

The target here is first to adjust for the risk of the portfolio due to its
various characteristics such as size, investment objective or momentum style
and then calculate whether there is any performance left that is related to the
active manager’s skill.

This model is described using Jain and Wu (2000)’s notations:

Rit − Rft = α4i + β1i (Rmt − Rft )+ β2iSMB t + β3iHMLt

+ β4i momentum t + error it (1.31)

where:
Rit = the return on fund i in month t
Rft = the risk-free rate in month t
Rmt = the return on a market portfolio in month t
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SMB t = the return on portfolios of small minus large firms in month t
HMLt = the return on portfolios of high minus low book-to-market

stocks in month t
momentumt = the rate of return on portfolios of high minus low momentum

(prior 1-year return) stocks in month t .

Using differences in returns to measure the different characteristics such as
size, value/growth and momentum has two advantages: first, there is almost
no correlation between the indexes constructed in this manner and second it is
easier to grasp the extent of the indexes’ effect on risk-adjusted performance
since they represent ‘zero-investment portfolios’. (Elton, Gruber and Blake,
1996).

In conclusion, Carhart (1997)’s 4-factor alpha is an estimate of the net
returns earned by the fund manager after adjusting for the fund’s risk, which
is done by controlling for its various characteristics.

1.11 RISK-ADJUSTED PERFORMANCE

Modigliani and Modigliani (1997) claimed that given the importance of eval-
uating the performance of fund managers without ignoring the risk factor, and
given that the traditional methods such as the Jensen measure or the Treynor
ratio that achieve this objective are not very easy to grasp by any average
investor, there is a crucial need for developing a new performance measure
that could deal with both these issues.

As a result, the authors ‘propose an alternative measure of risk-adjusted
performance (RAP) that is grounded in modern finance theory and yet easy
for the average investor to understand’.

Indeed, Modigliani and Modigliani (1997) constructed a method that entails
first adjusting the risk of the portfolio under consideration to the risk of the
benchmark portfolio, calculating the returns on this ‘risk-matched’ portfolio
and finally comparing the returns on this new portfolio to the returns on the
benchmark.

To match the risk of the evaluated portfolio to the market portfolio,
Modigliani and Modigliani (1997) used leverage, referring to it as ‘a key tool in
achieving optimal investment performance’, to obtain the following equation:

RAP(i) = (σM/σi) (r(i)− rf )+ rf (1.32)

where:
RAP(i) = the annualized risk-adjusted performance of fund i

σM = the annualized standard deviation of ‘market’ returns
σi = the annualized standard deviation of returns for fund i
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r(i) = the average annual return for fund i
rf = the annual risk-free return.

This equation implies that if the fund being studied is more (less) risky than
the market portfolio, then the returns on the funds are ‘scaled down (up)’
(Lobosco, 1999).

The authors also reformulated this equation in order to obtain a risk-adjusted
performance measure based solely on excess returns, RAPA:

RAP(i)− rf = (σM/σi)(r(i)− rf )
and hence,

RAPA(i) = (σM/σi)(r(i)− rf ) (1.33)

The authors note that by examining equation (1.33) and comparing it to the
Sharpe ratio (Sharpe, 1966) where

RAPA(i) = σM
(
r(i)− rf
σi

)

and

SRi = r(i)− rf
σi

one can notice that both measures will produce the same rankings, i.e. ‘the
portfolio that is best by the RAP criteria is also best by the Sharpe mea-
sure (and conversely)’. The only difference according to Modigliani and
Modigliani (1997) is that their risk-adjusted measure gives results in basis
points which is easier to understand.

Once the returns on the risk-matched portfolio are calculated, they are
compared to the returns of the chosen benchmark in order to discover whether
there is any risk-adjusted abnormal performance.

1.12 STYLE/RISK-ADJUSTED PERFORMANCE

Noting that the results obtained by using Modigliani and Modigliani (1997)’s
RAP measure may not be generated by the superior abilities of the fund
manager but the style mandate that he is following, Lobosco (1999) proposed
a ‘supplemental’ measure to the RAP that tries to ‘compensate for these style
effects’: the style/risk-adjusted performance measure (SRAP ).

Indeed, since the RAP measure does not control for the style of the fund
under evaluation, the performance results could be due to the particular style
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doing well or badly during the period of study and not to any management
skills. But by controlling for the style, one can obtain ‘a valuable additional
perspective’.

Lobosco (1999) designed the following method to calculate the SRAP of
fund i:

(a) Calculate Modigliani and Modigliani (1997)’s RAP of fund i: RAP (i).
(b) Perform a Sharpe style analysis7 calculation (Sharpe, 1992) to find the

Sharpe style index corresponding to fund i.
(c) Calculate the RAP of this style index: RAP (Sharpe style index of fund i).
(d) Finally calculate the relative RAP of fund i versus its Sharpe style index,

which gives the style/risk-adjusted performance measure of fund i:

Relative RAP = SRAP = RAP(i)− RAP (Sharpe style index of fund i)

The risk-adjusted performance relative to the Sharpe style index is the style/
risk-adjusted performance.

1.13 THE SHARPE STYLE ANALYSIS

According to Sharpe (1992), ‘a passive fund manager provides an investor
with an investment style, while an active manager provides both style and
selection’. Hence, to evaluate the performance of a fund manager that is not
related to the style mandate he is following, one needs to adjust and control
for the style factor, i.e. the returns that reflect management skills would be
‘the difference between the fund’s return and that of a passive mix with the
same style’.

In effect, to develop his style analysis, Sharpe (1992) used a regression
equation that takes the form of an asset class factor model:

R̃i = [ bi1F̃1 + bi2F̃2 + . . .+ binF̃n] + ẽi (1.34)

where:
R̃i represents the return on asset i
F̃j represents the value of the j th factor, j = 1, . . . , n
ẽi represents the non-factor component of the return on asset i
bi1 through bin represents the sensitivities of the fund’s return to factors

F̃1 through F̃n.

7The Sharpe style analysis will be discussed next.
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Sharpe (1992) ascertained that one very important assumption here is that the
factors are the only source of correlation among returns, i.e. the non-factor
return for one asset (ẽi) is assumed to be uncorrelated with that of every
other (ẽj ).

Sharpe also noted that ‘the terms in the brackets can be termed as the return
attributable to style and the residual component as the return attributable to
selection’.

Now, to find the style of a fund i, i.e. to perform the style analysis, Sharpe
(1992) used quadratic programming to find the best set of asset class exposures
(the bij values) that minimizes the variance of the unexplained returns ẽi
where:

ẽi = R̃i − [ bi1F̃1 + bi2F̃2 + . . .+ binF̃n] (1.35)

This is, however, subject to two constraints: the coefficients must lie between
0 and 1 and they have to sum to 1.

Once the bij values are solved for, they are used to form the style benchmark
for the fund being evaluated.

To summarize, Lobosco (1999) described Sharpe style analysis as finding
‘the weighted average of a set of market indexes that most closely tracks the
returns of the portfolio being analysed’.

The next study to be discussed presented three different measures that aim
at measuring the different aspects of a manager’s performance.

1.14 THREE INNOVATIVE MEASURES THAT CAPTURE
THE DIFFERENT FACES OF A MANAGER’S
SUPERIOR ABILITIES

As discussed earlier, a successful active manager engages in various activities
such as security selection and market timing, with the aim of showing his
superior abilities by generating abnormal performance.

In order to assess those superior skills and benchmark them, Daniel et al.
(1997) devised several measures that decompose funds’ returns – after con-
trolling for style – making it easier to detect any superior management skills.
To achieve that, Daniel et al. (1997) developed also a new method to construct
benchmarks, where ‘the benchmark portfolios are matched to stocks on the
basis of size, book-to-market and prior-year return characteristics’. According
to Daniel et al. (1997), this is a ‘more precise method of controlling for style-
based returns than the method of decomposing performance with factor-based
regressions used by Carhart (1997)’ (Wermers, 2000).
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The method used to construct these benchmarks and control for style is
presented first, then the various performance decomposition measures will be
discussed. This will be done using the notation and the exposition presented
in Wermers (2000).

1.14.1 Defining the benchmarks

According to Daniel et al. (1997), the construction of their relevant bench-
marks follows the next steps:

1. First, all stocks are ranked, at the end of each June, by their market
capitalization.

2. Quintile portfolios are formed and then each quintile is further subdivided
into book-to-market quintiles, based on their book-to-market data as of the
end of December immediately prior to the ranking year.

3. Finally, each of the resulting 25 fractile portfolios is further subdivided
into quintiles based on the 12-month past return of stocks through the end
of May of the ranking year.

This ranking method generates 125 fractile portfolios, each possessing a dis-
tinct combination of size, book-to-market and momentum characteristics. This
procedure is repeated at the end of June of each year. Next, value-weighted
returns are computed for each of the 125 fractile portfolios, and the bench-
mark for each stock during a given quarter is the buy-and-hold return of the
fractile portfolio of which that stock is a member during that quarter (Wermer,
2000).

Therefore, as Wermers (2000) summarizes it, ‘the characteristic-adjusted
return for a given stock is computed as the buy-and-hold stock return minus
the buy-and-hold value-weighted benchmark return during the same quarter’.

Having presented the procedure behind the construction of the benchmarks
used by Daniel et al. (1997) to compute their performance measures, this
review presents next an exposition of the measures themselves.

1.14.2 Measuring the manager’s selection abilities: the characteristic
selectivity measure

The Characteristic Selectivity measure is an evaluation of the ability of the
fund manager to select outperforming funds within stocks with same charac-
teristics, i.e. it aims at answering the following question: after controlling for
style, does the fund manager have selection abilities?
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It is computed as follows in quarter t :

CSt =
N∑
j=1

w̃j,t−1

(
R̃j,t − R̃bj,t−1

t

)
(1.36)

where:
w̃j,t−1 = the portfolio weight on stock j at the end of the quarter t − 1
R̃j,t = the quarter t buy-and-hold return of stock j

R̃
bj,t−1
t = the quarter t buy-and-hold return of the characteristic-based

benchmark portfolio that is matched to stock j at the end of
quarter t − 1.

Wermers (2000) pointed out the existence of one qualification with this mea-
sure: it accounts solely for the effect of three characteristics. There might
be numerous more stock characteristics that could affect the performance
evaluation results, leading perhaps to an over- or underestimation of the man-
agement’s skills.

1.14.3 Measuring the manager’s timing abilities: the characteristic
timing measure

The second measure developed by Daniel et al. (1997) is one that aims at mea-
suring the fund manager’s ability to time stocks characteristics. It is referred
to as the Characteristic Timing measure.

Indeed, according to Wermers (2000), the intuition behind this measure is
that ‘managers can generate additional performance if size, B/M or momentum
strategies have time-varying expected returns that the manager can exploit by
‘tilting’ his portfolio weights towards stocks having these characteristics when
the returns on the characteristics are highest’.

To quantify the manager’s ability to exploit his timing skills, the Charac-
teristic Timing measure is computed as follows during quarter t :

CTt =
N∑
j=1

(
w̃j,t−1R̃

bj,t−1
t − w̃j,t−5R̃

bj,t−5
t

)
(1.37)

The first term is the quarter t return of the quarter t − 5 matching characteristic
portfolio for stock j (R̃

bj,t−5
t ) (times the portfolio weight at the end of quarter

t − 5) while the second is the quarter t return of the quarter t − 1 matching
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characteristic portfolio for stock j (R̃
bj,t−1
t ) (times the portfolio weight at the

end of quarter t − 1).
Thus, ‘a fund manager who increases the fund’s weight on stock j just

before the payoff to the characteristic of stock j is highest, will exhibit a
larger CT measure’ (Wermers, 2000).

1.14.4 Measuring the effectiveness and superiority of a manager’s style
mandate: the average style measure

The third and last measure proposed by Daniel et al. (1997) is the Aver-
age Style measure. It is designed to measure the returns earned by the fund
manager as a result of the particular style mandate he was following.

It is computed as follows in quarter t :

ASt =
N∑
j=1

w̃j,t−5R̃
bj,t−5
t (1.38)

Examining the expression for the Average Style measure, we can see that it
entails the following.

At time t − 5, Daniel et al. (1997) propose to match the stocks held by each
fund being evaluated with its characteristic-adjusted benchmark, following
of course the method described earlier. Then, the Average Style measure is
computed as the sum over all stocks or funds of the product of the quarter
t return on this benchmark portfolio and the quarter t − 5 portfolio weights.
Wermers (2000) duly notes that ‘by lagging weights and benchmark portfolios
by one year, returns due to timing characteristics are eliminated’. Indeed,
timing characteristics usually involve taking position within one year and not
before.

Conducting an empirical application of these measures, Wermers (2000)
discovered, by examining funds’ gross returns over the 1976 to 1994 period
and comparing them to the corresponding average return of the CRSP value-
weighted index, that the difference is 1.3% per year: 0.75% of it can be
attributed to stock-selection abilities, 0% to timing skills, and the final 0.55%
to the style followed by fund managers. However, once he considers the net
returns, the results change; indeed, the funds underperform a broad market
index by 1% per year.

Next, Blake, Lehmann and Timmermann (1999) proposed a method that,
instead of decomposing securities returns as earlier, decomposes portfolio
weights in order to measure managers’ superior abilities.
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1.15 DYNAMICS OF PORTFOLIO WEIGHTS: PASSIVE
AND ACTIVE MANAGEMENT

Blake, Lehmann and Timmermann (1999) undertook an innovative study that
examines the performance of multiple-asset-class portfolios and assesses it in
terms of market timing and security selection. Furthermore, they employed a
new approach to decomposing portfolio weights changes and studying their
dynamics, with the aim of finding a measure of ‘the relative importance of
passive and active management, both in the short and long run’.

1.15.1 Decomposing portfolio weights

As a first step, the authors used a simple decomposition, in the spirit of
the work by Brinson, Hood and Beebower (1986), that pinpoints the causes
of portfolio weights changes and as a first step applied it to the aggregate
portfolio. Using Blake, Lehmann and Timmermann (1999)’s notation and
exposition, weights must satisfy the following ‘accounting identity’:

Wjt ≡ Wjt−1(1 + rj t + NCFj t ) (1.39)

where:
Wjt is the total holdings in asset class j at the end of month t across

all funds in the sample
Wt is the total holdings across all assets classes
rj t is the rate of return on UK pension funds’ holdings of asset class j

NCFj t is the rate of net cash flow into that asset class during month t .

The expression of the portfolio weight of asset class j (ωjt ) is thus:

ωjt = Wjt

Wt

=
Wjt−1

Wt−1

(
Wjt

Wjt−1

)
Wt/Wt−1

= ωjt−1
1 + rj t + NCFj t

1 +
M∑
k=1

ωkt (rkt + NCF kt )

(1.40)
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Now, taking log-differences,

: log(ωjt ) = log(1 + rj t + NCFj t )

− log

[
1 +

M∑
k=1

ωkt (rkt + NCF kt )

]
(1.41)

Thus, a close approximation of the above equation would be

: log(ωjt ) ≈ rj t − rpt + NCFj t − NCFpt (1.42)

where:
rpt is the value-weighted total return

NCFpt is the value-weighted net cash flow into the total portfolio during
month t .

Blake, Lehmann and Timmermann (1999) point out that the first term in the
decomposition above, (rj t − rpt ), measures the extent to which changes in
aggregate weights are due to any differences in returns across assets while
the second term, (NCFj t − NCFpt ), measures the extent to which changes in
aggregate weights are due to any ‘shifts’ in net asset cash flows across asset
classes.

The importance of this decomposition lies in the fact that:

shifts due to the 1st component arise from the passive investment strategy
of ‘buy-and-hold’, reinvesting asset income in the same asset categories, and
distributing any net inflows in the pension fund according to the ex post asset
allocation. In contrast, revisions associated with the 2nd component result from
the active strategy of rebalancing the portfolio by redirecting cash flows across
asset groups. (Blake, Lehmann and Timmermann, 1999)

Blake, Lehmann and Timmermann (1999) also consider the fund-specific
version of this decomposition. For fund i:

: log(ωijt) ≈ rijt − ript + NCF ijt − NCF ipt (1.43)

Subtracting the two equations from each other gives the following:

: log(ωijt )−: log(ωjt ) ≈ [(rijt − ript )− (rj t − rpt )]
+ [(NCF ijt − NCF ipt )− (NCFj t − NCFpt )]

≡ ψijt

According to the authors, this is a useful ‘baseline’ model in the form of a
‘fixed effects dummy variable model’ where ‘: log(ωjt ) is a time effect across
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funds, and the composite residual on the right-hand side is a fund-specific
effect with a nonzero mean’. Applying it to a sample data of 306 pension
funds in the UK, the authors found that the model fits well on average. The
model also shows evidence that in the long run individual funds exhibit a slow
mean reversion towards a ‘commonly changing strategic asset allocation’ but
in the short term they do tend to deviate from it.

1.15.2 Assessing the importance of active versus passive management

In addition, Blake, Lehmann and Timmermann (1999) made use of this simple
decomposition by Brinson, Hood and Beebower (1986) to compare the impor-
tance of active versus passive management in explaining portfolio returns.

Indeed, using the equation above and assuming there are M asset classes,
they wrote the following arithmetic identity:

M∑
j=1

ωajt rajt ≡
M∑
j=1

ωnjt rnj t +
M∑
j=1

ωnjt (rajt − rnj t )



Total Normal Return from security
return return selection

+
M∑
j=1

(ωajt − ωnjt )rnj t +
M∑
j=1

(ωajt − ωnjt )(rajt − rnj t )


Return Residual
from return

market
timing

(1.44)

where:
ωnjt is the ‘normal’ or strategic asset allocation of a fund in the j th asset

class at time t
ωajt is the actual portfolio weight
rnj t is the ‘normal’ portfolio return
rajt is the actual portfolio return

and the ‘normal’ return is the return on the benchmark that one
wishes to use.

Blake, Lehmann and Timmermann (1999) discussed here two possible choices
for the normal weights.



34 Performance Measurement in Finance

The first is by Brinson, Hood and Beebower (1986) and takes the follow-
ing form:

ωnjt =

T∑
t=1

ωajt

T
(1.45)

for all t . According to this expression, the appropriate choice for the normal
weights is the average portfolio allocation over the sample. Blake, Lehmann
and Timmermann (1999) affirmed that this choice could work if the funds are
in a state of equilibrium: they have reached their ‘target portfolio decomposi-
tion’ and they possess stationary long-run investment positions. However, this
is very unrealistic since portfolio weights are non-stationary. To account for
this factor, Blake, Lehmann and Timmermann (1999) proposed to include
a trend in the weights, ‘letting the normal portfolio weights increase (or
decrease) linearly in time between the initial and terminal weights’.

Consequently, their measure of the ‘normal’ portfolio weights is the fol-
lowing:

ωnjt = ωaj1 + (t/T ) (ωajT − ωaj1
)

The authors stress one important property of this measure: given that∑M
j=1(ωajT − ωaj1) = 0, the normal portfolio weights have to lie between

0 and 1 at each point in time.
The next study tried to overcome the problems associated with the use

of benchmarks in assessing portfolio performance by devising a method of
performance evaluation that does not require the use of a benchmark.

1.16 THE PORTFOLIO CHANGE MEASURE

Most of the performance measures devised and utilized in the literature require
the use of a benchmark. However, as discussed earlier, many studies have
pointed to the various biases that the use of a benchmark could lead to, such
as the sensitivity of the performance measures to the choice of the bench-
mark, the dividend-yield and size biases related to any CAPM and APT-based
benchmarks, etc.

In an attempt to overcome these problems, GT (1993) realized that most
of these measures forgo one important aspect of the portfolio under con-
sideration: its composition. According to them, taking portfolio composition
into consideration leads to a performance measure that does not necessitate
the use of a benchmark and hence eliminates the bias that occurs when one
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is used. This idea originates from a paper by Cornell (1979), in which he
proposed an alternative measure, the Event Study Measure. In their study, GT
(1993) discuss the Event Study Measure and then construct a more advan-
tageous way to achieve the same goal, the Portfolio Change Measure. The
main value behind developing such a measure, according to the authors, lies
in the fact that since it does not require the use of a benchmark, any evidence
of abnormal performance that it discovers cannot be attributed to benchmark
inefficiency.

The intuition lying behind these two measures is the positive correlation
existing between an informed investor’s portfolio weights and future returns.
They both find the sum of the time series of these covariances to be an
‘intuitive measure of performance’ since it can be viewed as ‘the difference
between the realized return of the managed portfolio and its expected return
conditioned on the portfolio manager being uniformed’ (GT, 1993). However,
according to GT (1993), the Portfolio Change Measure is characterized by two
advantages: it is free from survivorship bias and statistical inferences are much
easier to compute from it.

In effect, the Event Study Measure ‘calculates the difference between the
returns of assets when they are in the portfolio (the event period) with their
returns at later dates (the comparison period). The basic idea is that the assets
held by informed portfolio managers will have higher returns when they are
included in the portfolio than when they are not included’. (GT, 1993).

The Portfolio Change Measure also takes into account the advantages that
an informed manager has. In effect, according to the authors, the motivation
behind their measure is that for an informed manager, there could exist a
correlation between his portfolio holdings and future returns. This is because
such a manager possesses a changing vector of expected returns and hence
can use this to increase (decrease) his holdings of the assets whose expected
returns have increased (decreased). For an uninformed manager, however, the
correlation between his portfolio holdings and future returns would be zero
since ‘his vector of expected returns is constant over time’.

Both measures provide an estimate of the sum of these time series covari-
ances between portfolio holdings and returns:

cov =
N∑
j=1

(
E[wjRj ] − E[wj ]E[Rj ]

)
(1.46)

However, in order to separate and show the difference between the Event
Study measure and their measure, the authors reformulated the above equation
in two ways, the first being the ‘foundation’ of the Event Study measure while
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the second the ‘foundation’ for their measure:

cov =
N∑
j=1

E[wj(Rj − E[Rj ])] (1.47)

and

cov =
N∑
j=1

E[(wj − E[wj ])Rj ] (1.48)

The authors noted the major and crucial difference between the two measures:
while the Event Study Measure necessitates an estimate of the unconditional
return E[Rj ], the Portfolio Change Measure needs an estimate of the expected
weight.

Affirming that these two identities hold at the sample covariance level as
well, GT (1993) wrote the following:

s cov(wj , Rj ) =

T∑
t=1

wjt (Rjt − R̄j )

T
=

T∑
t=1

(wjt − w̄j )Rjt
T

(1.49)

where:
s cov = the sample covariance between the weights and returns of asset j
wjt = the portfolio weights at the beginning of the period t (with sample

mean w̄j )
Rjt = the portfolio return from date t to date t + 1 (with sample

mean R̄j ).

Examining these expressions, GT (1993) pointed out that using past returns
to estimate expected returns and using future holdings to estimate expected
holdings can result in obtaining a biased estimate of the covariance.8

Consequently, summing over all assets, they formulated the two perfor-
mance measures in the following manner:

Event Study measure =

T∑
t=1

N∑
j=1

[wjt (Rjt − Rj,t+k)]

T
(1.50)

8The authors offer an example to illustrate this claim in the case of the Event Study Measure: ‘a
contrarian strategy of picking stocks that have previously experienced a price decline induces a
positive sample covariance between portfolio weights and returns since it picks stocks that tend to
have downward biased sample means’.
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and

Portfolio Change measure =

T∑
t=1

N∑
j=1

[Rjt (wjt −wj,t−k)]

T
(1.51)

where:
Rj,t+k, the period t + k return for each asset, is assumed to proxy for its

period t expected return in the Event Study Measure
wj,t−k, the period t − k portfolio holdings, is assumed to proxy for its

expected holdings for the Portfolio Change Measure.

As mentioned earlier, GT (1993) advocated two advantages that their new
measure has over the Event Study Measure. First, the computation of statistical
test of significance is very easy and simple using their new measure. This is
because the Portfolio Change Measure represents the ‘average dollar returns
of a zero-cost portfolio’ which, under the null of an uninformed investor, are
serially uncorrelated while ‘using future returns as performance benchmark
[in the Event Study Measure] induces serial correlation in the time series of
returns’. Second, since the Event Study Measure uses future returns in its
computations, it relies very much on the survival of the assets or funds held
in its portfolio. The Portfolio Change Measure, in contrast, uses only past and
current weights, and hence it is free of survivorship bias at all time.

However, GT (1993) do recognize that their analysis can be subject to
two possible limitations. First, if the mean returns of assets are not constant
over the period studied (as it was crucially assumed in this study), investors
can ‘game’ on the two equations above. For instance, ‘portfolios that include
assets when their expected returns are higher than usual (perhaps because they
are temporarily riskier) will realize positive ‘performance’ with the measures’.
Second, if there exists an upward trend in the unconditional expected returns,
then the Portfolio Change Measure can give evidence of positive performance
even if the investor is uninformed.

The authors suggested that to assess the importance of these two problems,
one can perform a regression where the returns on the zero-cost portfolio
are the dependent variable and the returns on the different market indexes
are the independent variables. If the bias in the Portfolio Change Measure
is negligible, then one would expect the average systematic risk obtained
from the above regression is to be ‘close to 0’. They also suggest using the
intercept from this regression as the performance measure, claiming that this
performance measure will still be less subject to the benchmark biases than
the traditional measures.
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In the following discussion, this review discusses ways of studying some of
the traditional behaviour of managers and their effect on funds’ performance.

1.17 THE MOMENTUM MEASURES

Momentum investing refers to the tendency of some fund managers to trade
based on past returns: they tend to purchase stocks that possess past high
returns, ‘past winners’, and sell the stocks that possess low past returns, ‘past
losers’.

Many studies have examined this behaviour, finding various evidence of
its existence in fund managers’ investment decisions and of its effect on the
performance of funds (see, for example, Jegadeesh and Titman (1993)).

In order to assess whether the evidence of abnormal performance in gross
returns data they discovered in earlier studies9 was actually due to superior
manager abilities or just to following momentum strategies, Grinblatt, Titman
and Wermers (1995) constructed a measure aimed at assessing the extent to
which fund managers follow such a strategy and the effect this have on funds’
performance. Indeed, Grinblatt, Titman and Wermers (1995) ascertained that:

If either irrationality or agency problems generate these trading styles, then
mutual funds that exhibit these behaviours will tend to push the prices of stocks
that they purchase above their intrinsic values, thereby realizing lower future
performance. However, if this type of behaviour arises because informed port-
folio managers tend to pick the same underpriced stocks, then funds that exhibit
these styles should realize high future performance.

To assess the importance of momentum investing in fund managers’
behaviour, Grinblatt, Titman and Wermers (1995) offer the following momen-
tum measure:

M = 1

T

T∑
t=1

N∑
j=1

(w̃j,t − w̃j,t−1)R̃j,t−k+1 (1.52)

where:
w̃j,t is the portfolio weight on security j at date t

R̃j,t−k+1 is the return of security j (j = 1, . . . , N) from date t − k to date
t − k + 1, the historical benchmark period.

The purpose of this measure is ‘to measure the degree to which a fund man-
ager tilts his portfolio in the direction of stocks that have experienced high

9Grinblatt and Titman (1989a) and (1993).
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returns in some historical benchmark period, and away from stocks that have
experienced low returns’ (Grinblatt, Titman and Wermers, 1995).

However, in order to apply this measure to empirical data, Grinblatt, Titman
and Wermers (1995) altered it in order to account for the fact that while data
on portfolio weights are on a quarterly basis, the data on stock returns are
monthly. Given that they possessed data for 41 quarters, the authors wrote
the following expression for the momentum measure:

M = 1

120

40∑
t=1

3∑
i=1

N∑
j=1

(w̃j,3t − w̃j,3t−3)R̃j,3t−3 k+i (1.53)

Claiming that ‘the most recent returns are probably of the greatest interest to
portfolio managers’, Grinblatt, Titman and Wermers (1995) studied the above
equation for k = 1, referred to as ‘lag-0 momentum’ (L0M), and for k = 2,
referred to as ‘lag-1 momentum’ (L1M).

Furthermore, for even more precise measuring, the authors decomposed
each of the L0M and L1M measures into two parts: ‘Buy L0M’, ‘Sell L0M’,
‘Buy L1M’, ‘Sell L1M’, where ‘a high Buy (Sell) L0M or L1M measure
for a fund means that it bought winners (sold losers) strongly, on average’
(Grinblatt, Titman and Wermers, 1995).

For instance,

Buy L0M = 1

120

40∑
t=1

3∑
i=1

∑
w̃j,3t>w̃j,3t−3

(w̃j,3t − w̃j,3t−3)(R̃j,3t−3+i − R̄j )
(1.54)

and

Sell L0M = 1

120

40∑
t=1

3∑
i=1

∑
w̃j,3t<w̃j,3t−3

(w̃j,3t − w̃j,3t−3)(R̃j,3t−3+i − R̄j )

(1.55)
Moreover, to cover another aspect of momentum measuring, its effect on port-
folio trades, Grinblatt, Titman and Wermers (1995) constructed a ‘turnover-
adjusted L0M’ (TAL0M):

TAL0M = 1

120

40∑
t=1

3∑
i=1

N∑
j=1

(w̃j,3t − w̃j,3t−3)R̃j,3t−3+i

∑
w̃j,3t>w̃j,3t−3

(w̃j,3t − w̃j,3t−3)
(1.56)
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This measure adds to the L0M measure since it can show evidence of ‘extreme’
momentum investing that the L0M cannot capture easily. Indeed, according to
the authors, ‘A mutual fund that trades very little, but buys high past extreme
winners and sells past extreme losers, will have a very high TAL0M measure
even though the unmodified L0M measure will be very small’.

The TAL0M measure was also expressed in the form of ‘Buy TAL0M’ and
‘Sell TAL0M’, for w̃j,3t > w̃j,3t−3 and w̃j,3t < w̃j,3t−3, respectively.

Applying these measures to data on quarterly holdings for 274 mutual funds
between 1974 and 1984, Grinblatt, Titman and Wermers (1995) found small
but statistically significant evidence of momentum investing, more evidence,
however, of buying past winners than of selling past losers. This was even
more corroborated by the results from the TAL0M and Buy TAL0M measures,
which established that for their sample ‘buying winners [was] the chief method
of momentum investing’.

Next, to assess how much this behaviour of momentum investing affects
the funds’ performance, Grinblatt, Titman and Wermers (1995) used the per-
formance measure (α) developed in their earlier study, GT (1993), for a lag
k = 4 quarters. In effect, depending on the sign of the L0M and L1M mea-
sures, the authors split their sample of funds into momentum and contrarian
investors and then study their performance.

The results showed that momentum strategies and performance are ‘highly
correlated’: In contrast to the contrarian investors, the investors who had the
tendency of buying past winners did earn abnormal performance.

1.18 THE HERDING MEASURES

Herding behaviour refers to the tendency of mutual funds to buy and sell
the same stocks at the same time. This strategy could also have a crucial
impact on funds’ performance and must be differentiated from any evidence
of superior skills by fund managers.

To measure funds’ herding behaviour, Lakonishok, Schleifer and Vishny
(1992) proposed the following equation, referred to by Grinblatt, Titman and
Wermers (1995) as the ‘Unsigned Herding Measure’10:

UHM i,t = ∣∣pi,t − p̄t ∣∣− E ∣∣pi,t − p̄t ∣∣ (1.57)

where:
pi,t equals the proportion of funds, trading in stock i during quarter t ,

that are buyers

10We follow here the exposition and notation presented by Grinblatt, Titman and Wermers (1995).
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p̄t is the expected value of pi,t and is calculated as the mean of pi,t
over all stocks during the quarter t . It represents thus, for the average
stock, the proportion of funds trades during quarter t that are buys.

Furthermore, for more accurate assessment of whether the herding behaviour
goes beyond random trading and whether it is stronger on the buy or sell
side, Grinblatt, Titman and Wermers (1995) subdivided their data into two
groups: ‘Stock i during quarter t was considered to be a ‘buy herding’ stock-
quarter if pi,t > p̄t ; similarly, stock ‘sell herding’ categorization occurred
when pi,t < p̄t ’.

The results from Grinblatt, Titman and Wermers (1995)’s study showed
that there is evidence of herding behaviour, but it is very small and not sta-
tistically significant. The authors offered two possible explanations for these
findings: it might be due to the fact that the sample of investors considered in
their study was too broad or to the fact that all quarters were considered even
those with ‘very little trading’. Indeed, the evidence of herding behaviour
increased substantially when the study considered quarters with five or ten
trades respectively.

Next, to construct their herding behaviour measure, Grinblatt, Titman and
Wermers (1995) started by using the Unsigned Herding Measure (UHM) to
develop a new measure that assesses the extent to which particular funds ‘go
with the crowd’, the ‘Signed Herding Measure’ (SHM), which according to
the authors ‘provides an indication of whether a fund is ‘following the crowd’
or ‘going against the crowd’ in a particular stock during a particular quarter’:

SHM i,t = Ii,t × UHM i,t − E[Ii,t × UHM i,t ] (1.58)

where SHM i,t ≡ 0 in the case where less than 10 funds traded stock i during
quarter t .

Otherwise:

Ii,t = 0 if
∣∣pi,t − p̄t ∣∣ < E ∣∣pi,t − p̄t ∣∣

In this case, SHM i,t is also 0 since the stock-quarters show
‘negative herding’ – the proportion of buys is less than the
expected proportion, i.e. less than the average.

= 1 if pi,t − p̄t > E
∣∣pi,t − p̄t ∣∣ and the mutual fund is a buyer of

stock i during quarter t or if −(pi,t − p̄t ) � E ∣∣pi,t − p̄t ∣∣ and
the fund is a seller, i.e. here, the fund trades with ‘the herd’.

= −1 if pi,t − p̄t < E
∣∣pi,t − p̄t ∣∣ and the mutual fund is a seller of

stock i during quarter t , or if −(pi,t − p̄t ) � E ∣∣pi,t − p̄t ∣∣ and
the fund is a buyer, i.e. here, the fund trades ‘against the herd’
in that stock.
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The authors provided as well an explanation of the method behind calculating
the second term in the above equation: E[Ii,t × UHM i,t ].

Indeed, they affirmed that under the null hypothesis of no herding, ‘the
number of trading funds that are buyers is binomially distributed’. Conse-
quently, for stock i and quarter t , they proposed that

E[Ii,t × UHM i,t (p)] = ∑
p:p−p̄>E|p−p̄|

(2p − 1)UHM (p)Pr(p)

− ∑
p:−(p−p̄)>E|p−p̄|

(2p − 1)UHM (p)Pr(p)

where:
p = the proportion of funds trading in stock i in quarter t that are buyers
n = the number of funds trading in stock i in quarter t
p̄ = the proportion of trading funds in the population that are buyers; it is

calculated in the same manner as was earlier described for
equation (1.57)

and where for the n discrete values that p can assume:

Pr(p) =
(
n

np

)
p̄np(1 − p̄)n−np

To complete this analysis, Grinblatt, Titman and Wermers (1995) presented
their measure of herding behaviour for an individual fund k; they construct it
by replacing the SHM in equation (1.53), for k = 1:

FHM k = 1

120

40∑
t=1

3∑
i=1

N∑
j=1

(w̃j,3t − w̃j,3t−3)SHMj,3t−3+i (1.59)

According to the authors, the intuition behind this measure goes as follows.
If this individual fund k exhibited herding behaviour in quarter t , i.e. it

followed the crowd by buying or selling the same stock during that quarter t ,
FHM will have a positive increment in that quarter since it will then be equal
to either:

• the product of a positive SHM (in the case where the herding behaviour
of the crowd was manifested by collective buying in a given stock) and
a positive difference in weights (since this particular fund did follow the
crowd and revised his portfolio holding by buying that stock); or

• the product of a negative SHM (in the case where the herding behaviour of
the crowd was manifested by collective selling) and a negative difference
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in weights (since this particular fund did follow the crowd and revised his
portfolio holding by selling that stock).

Now, if the individual fund k did not exhibit herding behaviour in quarter
t , i.e. it did not follow the crowd in that quarter, FHM will have a negative
increment in that quarter since it will be equal to either:

• the product of a positive SHM (in the case where the herding behaviour
of the crowd was manifested by collective buying in a given stock) and a
negative difference in weights (since this particular fund did not follow the
crowd and revised his portfolio holding by selling that stock); or

• the product of a negative SHM (in the case where the herding behaviour of
the crowd was manifested by collective selling) and a negative difference
in weights (since this particular fund did not follow the crowd and revised
his portfolio holding by buying that stock).

And so, ‘funds that tend to buy (sell) when other funds are also buying
(selling) will be characterized as herders by this measure’ (Grinblatt, Titman
and Wermers, 1995).

1.19 STOCKHOLDINGS AND TRADES MEASURE

Another approach to mutual fund performance measurement is to focus not
on funds’ returns or portfolio holdings but rather on the performance of the
stocks held and actively traded by those funds.

As a matter of fact, Chen, Jegadeesh and Wermers (2000) claimed that the
measures relying on the traditional approaches might not be powerful enough
to find any evidence of superior management skills. However, in their opinion,
‘active stock trades are expected to represent a stronger manager opinion
than the passive decision of holding an existing position in a stock, since
the latter may be driven by non-performance related reasons such as concern
over transaction costs and capital gain taxes’ and hence, studying the patterns
and the performance of stocks held and traded by funds may reveal much
more information about any abnormal performance earned by the managers’
stock-picking abilities.

Consequently, Chen, Jegadeesh and Wermers (2000) proposed constructing
measures that study the funds’ holdings and trades of stocks and then using
these measures to assess the funds’ performances and to detect any superior
management skills.

The intuition behind Chen, Jegadeesh and Wermers (2000)’s methodology
goes as follows:

If mutual funds have stock-picking skills, then stocks widely held by funds
should outperform their benchmarks. Similarly, stocks that are newly purchased
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should outperform their benchmarks, while stocks that are newly sold should
not outperform their benchmarks. On the other hand, if the average mutual
fund manager has no talent for picking stocks, then one should find no relation
between stock returns and the level of mutual fund holdings or trades.

Moreover, the authors examined the turnover level of the stocks held and
traded by funds to detect whether any evidence of excess performance justifies
a strategy of frequent trading.

1.19.1 A brief presentation of the different measures

To achieve that, the authors proposed first a measure of ‘aggregate stock
holdings’ that aims at evaluating ‘which stocks are most widely held by
mutual funds at the end of a given quarter’:

FracHoldings i,t = Number of shares held i,t
Total shares outstanding i,t

Where:
Number of shares heldi,t = the aggregate number of shares in stock i held

at the end of quarter t by all mutual funds.
Total shares outstandingi,t = the total number of stock i shares outstanding

as of that date.

This measure will be identical for all stocks if all funds were invested in
the market portfolio; however, if funds are actively managed, then they will
be characterized by different FracHoldings measures. Now, if managers do
possess some stock-picking abilities, it should follow that the stocks with
‘larger FracHoldings measures’ are associated with ‘higher future returns’
than those with ‘smaller FracHoldings measures’. (Chen, Jegadeesh and Wer-
mers, 2000).

Next, Chen, Jegadeesh and Wermers (2000) proposed a measure of the
‘aggregate trades of a stock by mutual funds’ which they define as being ‘the
quarterly change in the FracHoldings measure for that stock’. For stock i,
during quarter t , it is formulated as:

Trades i,t = FracHoldings i,t − FracHoldings i,t−1

Here also, the authors affirmed that if fund managers do engage in active
management, the Trades measure will be different across stocks.

Chen, Jegadeesh and Wermers (2000) pointed out that the Trades measure
resembles the ‘Portfolio Change Measure’ developed by GT (1993). However,
these two measures differ on two crucial points. First, contrary to the Portfolio
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Change Measure, the Trades measure evaluates the net share trades by all
funds. This constitutes a major difference since as the authors show ‘if a small
fund buys a stock, while a large fund sells the same number of shares of that
stock, the Portfolio Change Measure will be positive. . . [whereas] the Trades
will be 0’. Second, changes in portfolio holdings are not only caused by active
management, but they also occur in the context of a passive strategy because of
the natural variations in stock prices. The Portfolio Change Measure cannot
distinguish between these two effects and hence can reflect both of them,
leading it to be somewhat biased towards ‘past winners’. In contrast, the
Trades measure detects only the changes due to active trading and ‘will not
change when there are no net buys or sells by funds, in aggregate’.

Finally, Chen, Jegadeesh and Wermers (2000) examined ‘the performance
of stocks held and traded by funds with varying levels of portfolio turnover’
to assess whether frequent trading is justified by abnormal returns. They use
the CRSP definition11 of turnover of fund k during quarter t :

Turnover k,t = min(Buysk,t , Sellsk,t )

TNAk,t

where:
Buysk,t (Sellsk,t ) = the total value of stock purchases (sales) during year t

by fund k
TNAk,t = the average total net assets of fund k during year t .

1.19.2 Applying the above measures to performance evaluation

To apply their newly constructed measures to the evaluation of funds’ perfor-
mance, Chen, Jegadeesh and Wermers (2000) started by constructing deciles
based on the FracHoldings and Trades measures: stocks are ranked according
to their FracHoldings and Trades respectively and then they are divided into
deciles where decile 1 contains the 10% most widely held (or traded) stocks,
decile 2 contains the next 10%, and so on.

Having ranked the stocks from the most widely held (traded) decile to the
least widely one, Chen, Jegadeesh and Wermers (2000) performed various
calculations that aim at analysing the characteristics, returns and performance
of the holdings and trades of funds as well as assessing any stock-picking
abilities by fund managers. They also identified stocks bought (Buys) and
sold (Sells) by funds in order to detect any difference in their performance.

11According to Chen, Jegadeesh and Wermers (2000), this measure ‘captures fund trading that is
unrelated to investor inflows or redemptions’ because ‘this definition of mutual fund turnover uses
the minimum of buys and sells, since the dollar value of the buys minus sells is equal to the net
inflow (or outflow) of money from investors (controlling for changes in fund cash holdings)’.
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Next, to evaluate the correlation between fund performance and turnover,
the authors ‘add new evidence to this issue by examining whether stocks held
and traded by high turnover funds outperform stocks held and traded by low
turnover funds’.

To achieve this target:

(a) They start first by ranking the funds at the end of a quarter according to
their turnover level in the previous ‘calendar’ year.

(b) Then, the authors separate the funds into quintiles where the quintile with
the highest turnover level is called ‘high turnover funds’ and the one
with the lowest turnover level is referred to as ‘low turnover funds’. The
quintiles are reconstructed once per year.

(c) Finally, Chen, Jegadeesh and Wermers (2000) calculate the FracHoldings
and Trades measures for each stock ‘separately for high turnover and for
low turnover funds’.

To evaluate the performance of these quintiles, the authors calculate unad-
justed and characteristic-adjusted (following the methodology by Daniel et al.
(1997) for all holdings Buys and Sells of high and low turnover funds.

The results show that stocks that are widely held do not outperform the ones
that are not. Once trades are examined, it was shown that stocks that were
‘recently bought’ outperformed those that were ‘recently’ sold, but only for the
first year after the trades were completed. In addition, the authors discovered
that most of the persistence in performance is due to the momentum effect in
stocks. Indeed, there was only very weak evidence of superior stock-picking
abilities by fund mangers.

Finally, Chen, Jegadeesh and Wermers (2000) showed that the performance
of high turnover funds possessed only ‘marginally better stock selection skills’
than the low turnover funds. Hence, frequent trading does not necessarily
mean that fund managers possess genuine superior abilities; it could be only
due to ‘noise’ trading.

1.20 CONCLUSION

This review has presented the reader with a wide presentation of the most
important techniques developed over the years, which aim at thoroughly
assessing funds’ performance. All of these methods attempt to answer the
crucial questions that prevail in the portfolio management industry: do some
managers possess genuine superior abilities that can ‘beat the market’ and is
their abnormal performance persistent?

However, the ability of theory to analyse real-world situations is clearly very
limited. Most notions of performance relative to a benchmark are based on
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some assumptions of the theory of aggregation. In many cases, the assump-
tions are not appropriate. How to measure performance in a world that is
dynamic and where there are qualitatively different investors (informed ver-
sus noise traders) seems a long way from the sort of analysis presented in this
chapter. Indeed, most of these measures cannot account for the full spectrum
of variables that determine the managers’ performance in the real world, and
thus performance measurement remains a very hot and debatable issue in the
financial literature circle.

REFERENCES

Adamti, A., Bhattacharya, S., Pfleiderer, P. and Ross, S.A. (1986) On timing and selec-
tivity, Journal of Finance, 41(3), 715–730.

Blake, D. (1994) Pensions Schemes and Pension Funds in the United Kingdom , Oxford
University Press.

Blake, D., Lehmann, B.N. and Timmermann A. (1999) Asset allocation dynamics and
pension fund performance, Journal of Business , 72(4), 429–461.

Brinson, G.P., Hood, L.R. and Beebower, G.L. (1986) Determinants of portfolio perfor-
mance, Financial Analysts Journal , July/August, 39–48.

Carhart, M. (1997) On persistence in mutual fund performance, Journal of Finance, 52,
57–82.

Chen, H., Jegadeesh, N. and Wermers, R. (2000) The value of active mutual fund man-
agement: an examination of the stockholdings and trades of fund managers, Journal
of Financial and Quantitative Analysis , 35(3), 343–368.

Christopherson, J.A., Ferson, W.E. and Glassman, D.A. (1998) Conditioning manager
alphas on economic information: another look at persistence in performance, Review
of Financial Studies , 11(Spring), 111–142.

Christopherson, J.A., Ferson, W.E. and Turner, A.L. (1999) Performance evaluation
using conditional alphas and betas, Journal of Portfolio Management , Fall, 59–72.

Cornell, B. (1979) Asymmetric information and portfolio performance measurement,
Journal of Financial Economics , 7(December), 381–390.

Daniel, K., Grinblatt, M., Titman, S. and Wermers, R. (1997) Measuring mutual fund per-
formance with characteristic-based benchmarks, Journal of Finance, 52, 1035–1058.

Elton, E.J., Gruber, M.J., Das, S. and Hlavka, M. (1993) Efficiency with costly infor-
mation: a reinterpretation of evidence for managed portfolios, Review of Financial
Studies , 6, 1–22.

Elton, E.J., Gruber, M.J. and Blake, C.R. (1996) The persistence of risk-adjusted mutual
fund performance, Journal of Business , 69(2), 133–157.

Ferson, W.E. and Schadt, R. (1996) Measuring fund strategy and performance in chang-
ing economic decisions, Journal of Finance, 51, 425–462.

Ferson, W.E. and Warther, V.A. (1996) Evaluating fund performance in a dynamic
market, Financial Analysts Journal , 52, 20–28.

Grinblatt, M. and Titman, S.D. (1989a) Mutual fund performance: an analysis of quar-
terly portfolio holdings, Journal of Business , 62(3), 393–416.



48 Performance Measurement in Finance

Grinblatt, M. and Titman, S.D. (1989b) Portfolio performance evaluation: old issues and
new insights, Review of Financial Studies , 2(3), 393–421.

Grinblatt, M. and Titman, S.D. (1993) Performance measurement without benchmarks:
an examination of mutual fund returns, Journal of Business , 66(1), 47–68.

Grinblatt, M. and Titman, S.D. (1994) A study of monthly mutual fund returns and
performance evaluation techniques, Journal of Financial and Quantitative Analysis ,
29(3), 419–444.

Grinblatt, M., Titman, S.D. and Wermers, R. (1995) Momentum investing strategies,
portfolio performance, and herding: a study of mutual fund behavior, The American
Economic Review , 85(5), 1088–1105.

Henriksson, R. and Merton, R. (1981) On market timing and investment performance.
II. Statistical procedures for evaluating forecasting skills, Journal of Business , 54(4),
513–533.

Jain, P.C. and Wu, J.S. (2000) Truth in mutual fund advertising: evidence on future
performance and fund flows, Journal of Finance, 55(2), 937–958.

Jegadeesh, N. and Titman, S.D. (1993) Returns to buying winners: implications for stock
market efficiency, Journal of Finance, 48(1), 65–91.

Jensen, M. (1968) The performance of mutual funds in the period 1945–1964, Journal
of Finance, 23, 389–416.

Jensen, M. (1969) Risk, the pricing of capital assets, and the evaluation of investment
portfolios, Journal of Business , 42, 167–247.

Jensen, M. (1972) Optimal utilization of market forecasts and the evaluation of invest-
ment portfolio performance, Mathematical Methods in Investment and Finance, G.P.
Szego and Karl Shell (eds), Amsterdam, North Holland.

Lakonishok, J., Schleifer, A. and Vishny, R.W. (1992) The structure and performance
of the money management industry, Brookings Papers: Microeconomics , 339–379.

Lehmann, B.N. and Modest, D.M. (1987) Mutual fund performance evaluation: a
comparison of benchmarks and benchmark comparisons, Journal of Finance, 42(2),
233–265.

Lintner, J. (1965) The valuation of risk assets and the selection of risky investments
in stock portfolios and capital budgets, Review of Economics and Statistics , February,
13–37.

Lobosco, A. (1999) Style/risk adjusted performance, Journal of Portfolio Management ,
Spring, 65–68.

Merton, R.C. (1981) On market timing and investment performance. I. An equilibrium
theory of value for market forecasts, Journal of Business , 54(July), 363–406.

Modigliani, F. and Modigliani, L. (1997) Risk-adjusted performance, Journal of Portfolio
Management , Winter, 45–54.

Roll, R. (1978) Ambiguity when performance is measured by the securities market line,
Journal of Finance, 33, 1051–1069.

Roll, R. (1979) A reply to Mayers and Rice, Journal of Financial Economics , 7,
391–400.

Sharpe, W. (1963) A simplified model for portfolio analysis, Management Science, Fall,
277–293.



The financial economics of performance measurement 49

Sharpe, W. (1964) Capital asset prices: a theory of market equilibrium under conditions
of risk, Journal of Finance, 19(4), 425–442.

Sharpe, W. (1966) Mutual fund performance, Journal of Business , 39, 119–138.
Sharpe, W. (1992) Asset allocation: management style and performance measurement,

Journal of Portfolio Management , Winter, 7–19.
Treynor, J.L. (1961) Toward a theory of the market value of risky assets, unpublished

manuscript.
Treynor, J.L. (1965) How to rate management of investment funds, Harvard Business

Review , 43, January/February, 63–75.
Treynor, J.L. and Mazuy, F. (1966) Can mutual funds outguess the market?, Harvard

Business Review , 44, 131–136.
Wermers, R. (2000) Mutual fund performance: an empirical decomposition into stock-

picking talent, style, transaction costs, and expenses, Journal of Finance, 55(4),
1655–1695.



Chapter 2

Performance evaluation:
an econometric survey

GUOQIANG WANG

ABSTRACT

In this chapter, we present a survey of the various econometric meth-
ods used in the literature of performance evaluation. We discuss
the statistical properties of various performance measures such as
Sharpe ratio, Jensen’s alpha and Treynor index, and compare these
measures with Morningstar’s risk-adjusted rating. This chapter also
explores the relationship between performance measurement and
portfolio efficiency, and analyses regression-based test procedures
for performance difference. The various methods used to classify
mutual funds’ style and the empirical results of mutual fund from
non-US nations are also examined.

2.1 INTRODUCTION

Performance evaluation (or measurement) has been a central concern in fin-
ance since the 1930s, when Cowles (1933) published his work ‘Can stock
market forecasters forecast?’. Recently, this topic has become even hotter. For
example, the whole of the September 2000 issue of the Journal of Financial
and Quantitative Analysis was contributed to performance measurement. It
is not a surprise given the dramatic growth of the mutual fund industry.
Now trillions of dollars are invested in all kinds of assets worldwide by
institutional portfolio managers. From a social perspective it is important to
know whether these investors as a group add value to the portfolios they
manage or whether they merely generate wasteful transaction costs through
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their active management. At the micro level it is important to know how
to select a portfolio manager with the ability to add value to the portfolio
he manages. Performance evaluation seeks to address both of these issues.
In particular, it studies whether superior returns can be generated by active
managers who are better able to collect and interpret information that helps
forecast securities returns. No matter which perspective is assumed in the
research, certain econometric methods have to be applied to mutual fund data
in order to detect any abnormal performance and their causes.

While there exist a few excellent surveys on performance evaluation, for
example Ippolito (1993) and Grinblatt and Titman (1995), they have a different
emphasis rather than the econometric one, which is our central concern in this
survey.

Ippolito (1993) documented the empirical results of US mutual fund per-
formance over a 30-year period (1962–1991). During the first half of this
period, starting with the publication of Jensen and Sharpe’s classical work on
mutual fund performance, most research showed that mutual funds underper-
formed common market indexes. And it is commonly believed that mutual
fund investment performance is consistent with the original version of the effi-
cient market hypothesis that expenditures on research and trading are wasted
because securities prices already reflect all available information. However,
most of the empirical studies over the second half of this period contradict
the hypothesis that funds’ fees and expenses are wasted. They are generally
consistent with the hypothesis that mutual funds are sufficiently successful
in finding and implementing new information to offset their expenses. The
results fit neatly into a modified version of the efficient markets hypothesis,
which takes account of the simple proposition that information is not free.
It is worth pointing out here that different empirical findings about perfor-
mance result from different samples of mutual fund data and the econometric
methods employed.

Grinblatt and Titman (1995) is the most comprehensive and incisive sur-
vey up to now on performance evaluation. Their concern is more about the
foundation of modern financial economics underlying performance evalua-
tion. The research on performance evaluation coincided with the inception
of modern asset pricing theory. Jensen and Sharpe’s work was based on the
Capital Asset Pricing Model (CAPM). Later multi-factor pricing models or
Arbitrage Pricing Theory (APT) took shape in the 1970s, and a large amount
of research based on APT followed in the 1980s. Due to the unavoidable error
of misspecification of any theoretical model, researchers have pursued more
robust performance measures which can substantially reduce or eliminate the
need of a benchmark model. To achieve this goal, more or less, the data about
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the funds’ portfolio weights must be available. Once again, the issue of data
and econometric methods come into play.

In this survey, we try to fill the gap created by the lack of a comprehen-
sive and up-to-date summary of econometrics employed in the literature of
performance evaluation. In section 2.2, the statistical properties of different
performance measures, e.g. Sharpe ratio and Treynor index, are discussed. In
section 2.3, a more elaborate point, mutual funds style, is explored. It is not
enough to study the mutual funds in general, as the universe of mutual funds
is centred on a few clusters of portfolios with similar characteristics and per-
formance patterns. The so-called Style Analysis has become more and more
popular these days and will be studied in this section. The empirical results
of mutual fund performance in different countries besides the US are sum-
marized in section 2.4 to show that performance evaluation is data-oriented.
Section 2.5 concludes.

2.2 STATISTICAL PROPERTIES OF PERFORMANCE MEASURES

Mutual fund performance measures are typically based on one or more sum-
mary statistics of past performance. Measures that attempt to take risk into
account incorporate a measure of historical return and a measure of histori-
cal volatility or loss. A fundamental question arises naturally associated with
investment decisions; whether the statistics derived from past performance
have at least some predictive content for future performance. Although there
is ample evidence that past performance measures are highly imperfect predic-
tors of expected future return, both practitioners and academics are inclined to
adopt the assumption that statistics from historical frequency distributions are
reliable predictors of corresponding statistics from a probability distribution
of future returns, in other words, portfolio returns should follow a stationary
distribution.

There are three general classes of two parameter performance measures
dependent on their definition of risk. The first class includes performance
measures based on total risk (volatility) of return, the Sharpe ratio (1966) and
its variation belong to this category. The second class is comprised of mea-
sures based on systematic risk (beta or covariance) of return, Treynor’s index
(1965) and Jensen’s alpha (1964) are the two most prominent examples. The
third class does not require a measure of risk, for example the Cornell (1979)
procedure which computes the sample mean return prior to the test period
and computes the sample mean’s prediction errors in the test period. Due to
the unpopularity of the third class of measures, this survey will concentrate
on the study of the first two classes.
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2.2.1 Single comparison: Sharpe ratio, Treynor index
and Jensen’s alpha

Suppose we have a portfolio, i, with a return Ri . We also observe a benchmark
portfolio, denoted by m, with return Rm. Let the excess return be given by
ri = Ri − Rm, and r̄i be the sample mean excess returns. The Sharpe ratio is
defined by

sh = r̄i

si
(2.1)

where si is the sample standard deviation of ri . This ratio captures the expected
excess return per unit of risk measured by volatility of excess returns. As a
measure of risk, volatility is appropriate for quadratic utility or multivariate
spherically symmetric returns. However, since sh is not defined relative to
any particular data generating process, it has wider applicability.

Due to the use of excess returns instead of returns themselves, it is important
to appreciate that the Sharpe ratio always refers to the differential between two
portfolios. We can think of this differential as reflecting a self-financing invest-
ment portfolio, with the first component representing the acquired asset and the
second reflecting the short position – in cash or in some other asset – taken
to finance the acquisition.

In the case of i.i.d. normal returns, Miller and Gehr (1978) show that (2.1)
is a biased estimator and
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is the unbiased estimator that can be employed in its place. Using a Taylor
series expansion and assuming normality, Jobson and Korkie (1981) use the
result,
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and show empirically that (2.4) approximates (2.2) to three significant figures
even when the sample size T is as low as 12. Further, under these conditions,
the asymptotic distribution of (2.4) is normal

N
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σi
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1

T

(
1 + µ2

i

2σ 2
i

))
(2.5)

from which confidence intervals and hypothesis tests can be derived.
If one wishes to measure performance relative to a systematic measure

of risk, it is essential first to establish a benchmark model against which
performance should be measured. The Treynor index (Treynor, 1965) makes
explicit use of the estimated systematic risk (beta) derived from the empirical
version of the traditional CAPM,

rit = αi + βirmt + εit (2.6)

where rit and rmt are fund and market excess return, respectively. Specifically,
performance is measured by

T ri = r̄it

β̂i
(2.7)

so that excess returns are divided by a systematic risk measure when eval-
uating performance. It is well known that β̂i = sim

s2
m

in the CAPM, where sim
is the sample covariance between portfolio i and market portfolio, m, s2

m the
variance of market portfolio. Similar to the case of the Sharpe ratio, Jobson
and Korkie (1981) derived an approximation of unbiased estimator for the
Treynor index,
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where ρ2
im is the true correlation between portfolio i and market portfolio, m.

And the asymptotic distribution of the Treynor index may be derived as

T ri ∼ N
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(2.9)

While the asymptotic results are valid, they may be poor in small samples.
Pedersen and Satchell (2000) derived the cumulative distribution function
of the Treynor index, and thus obtained very accurate interval estimates of
this index.

Based on a similar asset pricing model underlying the Treynor index,
Jensen’s alpha is the arithmetic difference of the portfolio’s return from its
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expected return. In the case of the CAPM (2.6), Jensen’s alpha is simply
defined as the intercept term α̂.

α̂ = rit − β̂irmt (2.10)

Consequently, its properties can be deduced by standard linear regression
techniques and are well known. Fabozzi and Francis (1977) consider Jensen’s
alpha in a log-linear CAPM model, but concluded that the change in model
specification did not change the estimate of α̂ significantly. Conner and Kora-
jczyk (1986) examine the econometric properties of Jensen’s alpha when
the underlying model is a general APT. Given the standard assumptions of
the multiple linear regression model such as the non-correlation between the
regressors and error terms, and a multi-normally distributed error term, a
consistent estimator of α can be generated from both APT and CAPM.

Since Jensen’s classical work in the 1960s, Jensen’s alpha has become one
of the most influential performance measures. One reason for its popularity
is that it is easily computed by finding the intercept in a linear regression.
Second, Jensen’s alpha can be interpreted as the difference between the return
of the measured portfolio and the return of a passive portfolio consisting
of beta units of the benchmark excess returns. Hence it explicitly puts the
actively managed funds and passively managed funds such as index funds into
comparison, which is one of the central topics in performance measurement.

The application of Jensen’s alpha requires the specification of a benchmark,
which turns out to be one of the most controversial issues in performance
measurement. Up to now, the well-received performance benchmark proposed
in the literature include:

1. Equally-weighted index.
2. Value-weighted index.
3. Price-weighted index.
4. Fama and French’s 3-factor portfolio.
5. Carhart’s 4-factor portfolio.
6. Grinblatt and Titman’s 8-portfolio benchmark.
7. Ferson and Schadt’s conditional expectation model.

A great amount of empirical research has concluded that the benchmark does
matter in evaluating performances – see the summaries by Grinblatt and Tit-
man (1995).

Only the first two moments of return – mean and variance are taken into
account in the CAPM model, and the same is true of the above performance
measures. If return distributions are asymmetric and investors value skewness,
those measures may not be adequate. To alleviate the problem that may be
associated with asymmetric rates of return, several researchers have developed
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other performance measures based on higher moments. For example, Ang
and Chua (1979) constructed an excess return index using the three moment
CAPM developed by Kraus and Litzenberger (1976). This index incorpo-
rates investors’ preference for positive skewness of returns. Prakash and Bear
(1986) developed a composite performance measure incorporating skewness
based on the Kraus and Litzenberger skewness preference model. The Prakash
and Bear measure has the desirable property of reducing to the Treynor index
in the absence of skewness.

Stephens and Proffitt (1991) generalized the Prakash and Bear performance
measure to account for any number of moments. The Stephens and Proffitt
methodology is essentially the same as that of the Prakash and Bear except
the Stephens and Proffitt measure was developed from Rubinstein’s (1973)
n parameter pricing model rather than from Kraus and Litzenberger’s three
moment CAPM. The Stephens and Proffitt measure reduces to the Prakash
and Bear measure in the two moment case. Stephens and Proffitt (1991) apply
their measure to evaluate the performance of 27 internationally diversified
mutual funds. They note that higher moment performance measures seem
to be appropriate for evaluating international mutual fund portfolios, as they
empirically find that the distributions of fund returns are not symmetric.

2.2.2 Industry practice: Morningstar’s risk-adjusted rating

In the financial markets of United States, the most popular performance mea-
sure is neither the Sharpe ratio nor Jensen’s alpha, rather the ‘risk-adjusted
rating’ (RAR) produced by Morningstar Inc. The popularity of Morningstar’s
measure justifies a separate subsection in this survey to discuss its property.
To calculate its ratings, Morningstar first classifies funds into one of four
categories: domestic equity, international equity, municipal bond and taxable
bond. For each category, more narrow peer groups are defined. In mid-1997,
for example, there were 20 domestic equity categories, nine international
equity categories, five municipal bond categories and ten taxable bond cate-
gories. The risk-adjusted rating (RAR) is calculated by subtracting a measure
of the fund’s relative risk (Rrisk) from a measure of its relative return (Rri):

RAR = Rri − Rrisk i (2.11)

= ri

Brg(i)
− risk i

Briskg(i)
(2.12)

Each of the relative measures in (2.7) for a fund is computed by dividing the
corresponding measure for the fund by a denominator that is used for all the
funds in a specified peer group, which will be explained later. Morningstar
computes four sets of star ratings: the first three cover the last 3, 5 and 10
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years, but the most popular (overall) measure is based on a combination of
the 3-, 5- and 10-year results.

Morningstar’s measure of a fund’s return is the difference between the
cumulative value obtained by investing $1 in the fund over the period, VRi ,
and the cumulative value obtained by investing $1 in US T-bills, VRb .

ri = VRi − VRb (2.13)

The denominator used to calculate the relative returns is obtained through two
steps. First, the returns for all the funds in a group, g(i), are averaged. If the
result is greater than the increase in value that would have been obtained with
T-bills, the group average is used. Otherwise, the growth in value for T-bills
is used. Thus,

Brg(i) = max{Ei∈g(i)[ri],VRb − 1} (2.14)

and

Rri = ri

Brg(i)
(2.15)

To measure a fund’s risk, Morningstar first computes the fund’s excess return
(ER) for each month by subtracting the return on a short-term T-bill from
the fund’s return. Next, it converts all the positive monthly excess returns to
zeros. Finally, it takes a simple mean of the resulting ‘monthly losses’ and
reverses the sign to give a positive number. Thus,

risk i = −Et [min
t

{ERit , 0}] (2.16)

The result is defined as a measure of the fund’s ‘average monthly loss’. The
base used to calculate the relative risk for all the funds in a group is simply
the average of all the risk measures for the funds in that group:

Briskg(i) = Ei∈g(i)[risk i] (2.17)

Morningstar ranks the RARs for all the funds in a peer group. Funds that fall
in the top 10% of the resulting distribution receive five stars; those in the
next 22.5% get four, the next 35% get three, the next 22.5% get two, and the
bottom 10% get one.

Unfortunately, the properties of RAR statistics are complex, and it is impos-
sible to derive their distribution analytically even if the funds’ returns are
assumed to be i.i.d. normal cross-sections and over time. Because RARs
represents the difference between two relative values, each of which can be
considered to equal the result obtained by raising (one plus the geometric
mean return) to the T th power, where T is the number of months in the
overall period, we can only approximate such statistics through some more
traditional ones.
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Rearranging equation (2.7) gives

RAR = 1

Brg(i)

(
ri − Brg(i)

Briskg(i)
· risk i

)
(2.18)

Note that 1
Brg(i)

and Brg(i)
Briskg(i)

are the same for all the funds in a given group.

From the perspective of investors in that group, the above two terms can be
regarded as constants. Thus, the statistic property of RAR mainly depends on
ri and riski . To begin, consider return ri . Denote G as the sample geometric
mean return,

ri = (1 +Gi)T − (1 +Gb)T (2.19)

A close approximation for the geometric mean of a series is given by sub-
tracting one-half of the sample variance s2 from the sample arithmetic mean,
A. Thus,

ri �
(

1 + Ai − s2
i

2

)T
−
(

1 +Ab − s2
b

2

)T
(2.20)

Under the normal distribution, A and s2 follow the normal and chi-square
distribution, respectively, but we do not know the exact distribution of the
term, (1 + A− s2

2 )
T .

Letting p(x) be the probability of the state of the world x and ERix be the
excess return on fund i in state x, then risk i for fund i is defined as

risk i = −∑
x

p(x) · min{ERix , 0} (2.21)

Interestingly, this formula reminds us of the option pricing formula. Using a
relationship given in Triantis and Hodder (1990), it can be shown that for a
normal distribution, we can get a close formula for risk i which is very close
to the Black–Scholes formula,

risk i = si · φ(−z)− (Ai − Rb) ·�(−z) (2.22)

where

z = Ai − Rb
si

(2.23)

Rb = the known risk−free interest rate (2.24)

φ() = the standard normal density function (2.25)

�() = the standard cumulative normal distribution function (2.26)
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In short, RAR is a non-linear function of sample mean and variance. It
is shown in Sharpe (1998) that the relationship between RAR and Ai is
monotonic and close to linear in some given region (Ai ∈ [3%, 10%], si ∈
[10%, 20%]).

Because Morningstar’s measure does not assume any asset pricing model,
we can compare it with the Sharpe ratio. Morningstar’s measure is best suited
to answer questions posed by an investor who places all of his or her money
in one fund. The excess-return Sharpe ratio is best suited to answer questions
posed by an investor who allocates money to one fund and also to borrowing
or lending. When an investor decides to allocate his or her money into a port-
folio of funds, neither Morningstar’s measure nor the excess-return Sharpe
ratio is an appropriate performance measure. The reason is simple: when
evaluating the desirability of a fund in a multi-fund portfolio, the relevant
measure of risk is the fund’s contribution to the total risk of the portfolio.
This contribution will depend on the fund’s total risk and, more importantly
in most cases, on its correlations with the other funds in the portfolio. Neither
the Morningstar RAR measure nor the Sharpe ratio incorporates any infor-
mation about correlations. Therefore, excessive reliance on either measure
for selecting funds could seriously diminish the effectiveness of the resulting
multi-fund portfolio. Rather, Jensen’s alpha can be utilized in the correlation
case to be explained later.

In a recent study by Blake and Morey (1999), it is found that low ratings
from Morningstar generally indicate relatively poor future performance. Sec-
ond, there is little statistical evidence that Morningstar’s highest-rated funds
outperform the next-to-highest and median-rated funds. Third, Morningstar
ratings, at best, do only slightly better than the alternative predictors in fore-
casting future fund performance.

2.2.3 Misspecification and errors-in-variables

Despite the popularity of Jensen’s alpha, critics point to two faults, measure-
ment error and specification error. Measurement error is due to benchmark
error and error structures arising from non-synchronous trading. Previously,
the errors resulting from non-synchronous trading appeared to be the most
serious when securities were traded infrequently and at low prices so that
price changes tend to occur in discrete intervals.

Recently, the opposite is the case, as funds trade much more frequently
than before. Goetzmann, Ingersoll and Ivković (2000) address the bias asso-
ciated with parametric measurement of market timing skill based on monthly
returns when timers can make daily timing decisions. Simulations suggest
that the standard parametric measure of timing skill is weak and biased
downward when applied to the monthly returns of daily times. They proposed
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an adjustment that mitigates this problem without the need to collect daily
returns. Even after adjustment, their empirical tests show that very few funds
exhibit statistically significant timing skill.

Benchmark error has been identified by Roll (1978) and is still a con-
tentious issue. Roll argued that according to CAPM, all portfolios should
lie on the security market line, and any observed deviation (abnormal perfor-
mance) may well be nothing but measurement error due to improper selection
of the benchmark. He showed that two benchmark portfolios lying inside the
mean-variance efficient frontier could reverse the rankings of a group of pas-
sive portfolios. On the other hand, a benchmark portfolio that is mean-variance
efficient cannot distinguish between passive portfolios. Passive portfolios, like
all securities, lie on the security market line in this case.

Statistically, benchmark error is a version of the errors-in-variables prob-
lems and is due to using incorrectly measured variables or proxy variables
in regression models. Several approaches can be employed to correct for the
errors-in-variables problems and to obtain consistent estimates and their stan-
dard errors. These approaches include grouping methods, direct and reverse
regression methods and methods with latent variables, which have been sum-
marized in Maddla and Nimalendran (1996). In the performance literature,
Rahman, Fabozzi and Lee (1991) applied direct and reverse regression meth-
ods to derive upper and lower bounds for Jensen’s alpha based on CAPM.
However, the extension to APT proves to be hard and requires further research.

Specification error, on the other hand, arises from adopting the wrong func-
tional form in the model. Failure to use the correct functional form may result
in bias in estimating the parameters of the model. A recent study by Kothari
and Warner (1998) pointed out the misspecification in performance measure-
ment could be astonishing. They calculated standard mutual fund performance
measures, using simulation procedures combined with random and random-
stratified samples of NYSE and AMEX securities and then tracking simulated
fund portfolios over time. These portfolios’ performance is ordinary, and well-
specified performance measures should not indicate abnormal performance.
Regardless of the performance measure used, there are indications of abnormal
fund performance, including market-timing ability, when none exists.

Fabozzi, Francis and Lee (1980) employed Box and Cox’s transformation
technique to correct the potential misspecification in CAPM. Jagannathan and
Korajczyk (1986) proposed two methods of testing the specification of perfor-
mance measurement models, which explores the fact that the misspecification
most likely causes a non-linear relation between fund returns and regressors
in model (2.6). The first test is the White (1980) test on linearity that involves
looking at the difference between the OLS and WLS parameters. The second
test is to include additional variables (specifically, non-linear transformations
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of some of the regressors). If the model is linear, then the regression coefficient
on the additional variables should be close to zero. Neither test was reported
to have higher relative power in this chapter.

2.2.4 Performance measurement and portfolio efficiency

Most empirical studies of fund performance indicate that both outperformance
and underperformance are common phenomena. Given this, it is natural to ask
whether the difference in performance is statistically significant. There are two
ways to test this proposition: the first test, which has been well documented
in Grinblatt and Titman (1995), is to test whether the past performance of
a mutual fund is a good indicator of its future performance. The second is
to simultaneously estimate the regression models for each fund return and to
jointly test the restriction that their Jensen’s alphas are equal to each other.

H0:α1 = α2 = . . . = αk (2.27)

This test does not quantify differential performance. It merely rejects or fails
to reject the hypothesis that all funds have the same risk-adjusted returns.
However, this test relates closely to the issue of portfolio efficiency and has
profound implications for optimal portfolio selection.

To set the stage, define rit the fund return, i = 1, . . . , N, t = 1, . . . , T . Each
fund return is modelled by a CAPM-like regression model,

rit = αi + βirmt + εit (2.28)

It is assumed that the disturbances εit are independent over time and jointly
normally distributed, each period, with mean zero and non-singular cross-
sectional covariance matrix #, conditional on the vector of market returns
rm. If we modify (2.27) a little bit

H0:α1 = α2 = . . . = αk = 0 (2.29)

this is exactly the null hypothesis about the efficiency of the benchmark
portfolio m in the system of (2.28). To test hypothesis (2.29), Gibbons, Ross
and Shanken (1989) derive the F -statistic with degrees of freedom N and
T −N − 1, which equals (T −N − 1)N−1(T − 2)−1 times the Hotelling T 2

statistic

Q = T α̂′#̂−1α̂/[1 + r̄2
m/s

2
p] (2.30)

where r̄2
m and s2

p are the sample mean and standard deviation of market excess

return; α̂ is the N-vector of OLS intercept estimates and #̂ is the unbiased
estimate of #, computed from cross-products of OLS residuals divided by
T − 2.
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In the language of performance measurement, α̂ and r̄m/sp are the sample
Jensen’s alpha and Sharpe ratio. These interpretations of tests for mean-
variance efficiency in terms of performance measures can be found in Gib-
bons, Ross and Shanken (1989), and Jobson and Korkie (1982, 1984, 1989).
More interestingly, the Hotelling T 2 statistic can easily be interpreted as the
percentage increase in squared Sharpe ratios scaled by T . As Q in equation
(2.30) equals

T [sh(∗)2 − sh(m)2]/[1 + sh(m)2] (2.31)

where sh(∗) is the sample Sharpe ratio with maximum squared value over all
portfolios. Examining the numerator of (2.31), other things being equal, the
larger the F -statistic is, the lower is the squared Sharpe ratio for benchmark
portfolio m in relation to the maximum squared sample ratio. Thus, the F -
statistic is large when m is much worse performing than ex post minimum
variance portfolio.

From equation (2.31), the F -statistic is distributed, under the alternative,
as non-central F with non-central parameter

λ = T [sĥ(∗)2 − sĥ(m)2]/[1 + sĥ(m)2] (2.32)

In this context, ˆsh(m) may be viewed as a constant, and hence the non-
central parameter in (2.32) is just the population counterpart of the sample
statistic, Q, in (2.30). Under the null hypothesis that m is a minimum-variance
portfolio, m attains the maximum squared ex ante ratio. In this case, λ equals
zero and we have a central F distribution as earlier. In other words, there is
no difference in performance among all the funds if the benchmark portfolio
is mean-variance efficient.

In order to implement the F -test, the residual covariance matrix #̂ must
be invertible, which requires that N be at most equal to T − 2. Analysis in
Gibbons, Ross and Shanken (1989) suggest that much smaller values of N
should be used in order to maximize power, however. That is related to the fact
that the number of covariances that must be estimated increases rapidly with
the number of assets. Grinblatt and Titman (1989) obtain a similar conclusion.

Given the OLS estimates of the regression parameters in (2.6) and the initial
mean-variance efficient portfolio of the benchmark m, it is straightforward
to determine the new optimal portfolio weights – see DeRoon and Nijman
(2001). The new optimal portfolio weights are determined by the vector of
Jensen’s alphas, the Sharpe ratio of the benchmark and the covariance matrix
of the residuals of the OLS regression of ri on each element of the efficient
benchmark portfolio m. If there is only one fund, its weight in the new optimal
portfolio will increase with the fund’s Jensen’s alpha.
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2.3 MUTUAL FUNDS STYLE

Today’s investors face the large and growing number of mutual funds avail-
able in the financial marketplace. For example, by reading fund names equity
funds range from ‘aggressive growth’ funds holding low-dividend, high-
growth stocks to ‘income’ funds seeking high-dividend equities. However,
it is not enough to determine the funds style from their name and/or objec-
tive statement. Style analysis of mutual funds is an important tool to help
investors to characterize differences between funds, and has received consid-
erable attention from both the financial practitioners and academics.

2.3.1 Mutual fund misclassification

Mutual fund classes are one way for investors searching for the ‘right’ fund
to simplify their decision making. In addition to allowing investors to tailor
their choice of mutual funds to their own risk-acceptance levels and income
needs, the classification system also allows financial institutions, mutual fund
data vendors and individual investors to rate objectively the performance of
mutual funds within their respective categories, thus avoiding comparisons
between apples and oranges.

Classification systems for US equity funds group most funds according to
either their investment objectives, such as the growth, or the type of assets in
which they concentrate their investments, as in the case of small-capitalization
funds. For example, in Morningstar’s classification system, the objective
dimension consists of value, blend and growth while the asset dimension
includes large, medium or small capitalization.

Under the present classification system, many equity funds exhibit
behaviour that is inconsistent with that of their class. DiBartolomeo and
Witkowski (1997) regress a fund’s returns against the returns of the various
objective indices and classify the fund as belonging to the objective group
whose index provides the best fit. The objective group indices are equal
weighted returns of all funds in that objective group. The process of fund
classification and objective indices calculation is iterated until every objective
index consists of funds that are actually classified into that objective group.
Their results suggest that 9% of all equity funds are seriously misclassified
and another 31% are somewhat misclassified. Two factors emerge as the most
likely reasons for misclassification:

1. The ambiguity of the current classification system.
2. Competitive pressures in the mutual fund industry and compensation struc-

tures that reward relative performance.
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Mutual funds managers can game on benchmark assets by investing in secu-
rities that are not in accordance with their stated investment objective or
style.

Brown and Goetzmann (1997) focus on the question of whether fund clas-
sifications are useful in providing benchmarks for evaluating historical fund
performance and in explaining differences in future returns among funds.
Like DiBartolomeo and Witkowski (1997), they conclude that the current
classification system is inefficient in answering these questions. For instance,
growth funds typically break down into several categories that differ in com-
position and strategy. Monte Carlo simulations on out-of-sample data show
that this misclassification has a significant effect on investors’ ability to build
diversified portfolios of mutual funds. They propose a generalized style clas-
sification method, a variation on the switching regression technique, in which
funds are assigned to style classes based on the sensitivity of their returns to
eight factors selected by the authors.

Indro et al. (1998) examine a sample of 770 actively managed funds in a
recent 3-year period. Their results indicate that style consistency is far from
the norm for many funds. Funds that changed both style strategies were the
worst-performing group. Funds that changed one strategy did no better than
style-consistent funds, where performance was also not uniform. Compared
to the S&P 500, value-large-cap stock funds were the most mean-variance
efficient style-consistent funds.

Chan, Chen and Lakonishok (1999) also provide some examples of incon-
sistent styles. Particularly, funds with poor past performance are more likely
to change styles. When funds deviate from the benchmark they are more
likely to favour growth stocks with good past performance. Other evidence
suggests that growth funds have better style-adjusted performance than value
funds. These results are not sensitive to style identification procedures.

Besides using historical fund returns, Kim, Shukla and Tomas (2000)
employ discriminant analysis and classify funds based on their attributes
(characteristics, investment style and risk/return measures). They find that
the stated objectives of more than half the funds differ from their attributes-
based objectives, and over one-third of the funds are severely misclassified.
However, contrary to the reports in the financial press, they do not find that
mutual funds are gaming their objectives, i.e. deviating from their stated
objectives to earn a higher relative performance ranking.

2.3.2 Return-based style analysis

In order to avoid misclassification, Sharpe (1988, 1992) has proposed an
econometric technique to determine the mutual fund’s investment style which
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only requires a time series of historical fund returns. This technique involves
a constrained regression that uses several asset classes to replicate the his-
torical return pattern of a portfolio. The basic econometric framework is the
following:

rit = αi + βi1f1 + βi2f2 + . . .+ βiKfK + εit , i = 1, . . . ,M (2.33)

where rit denotes the mutual fund i return at time t , fk is the asset class
factor, βik is a factor loading that expresses the sensitivity of the fund return
to the factor-mimicking portfolio return fk . Compared with the standard least
squares estimation, we impose two extra constraints on parameters βs:

K∑
j=1

βij = 1, ∀i (2.34)

βij ≥ 0, ∀i, j (2.35)

The constraints are imposed to enhance an intuitive interpretation of the coef-
ficients. First to interpret the coefficients as style weights within a portfolio,
the coefficients (factor loadings) are required to add up to one. Second, coef-
ficients should be positive to reflect the short-selling constraints most fund
managers are subject to. A quadratic programming technique is proposed to
derive point estimates for the style weights. The ultimate idea is to check
whether the estimated style weights correspond with the targeted investment
style of the mutual fund.

A crucial ingredient that may heavily affect the outcome of return-based
style analysis is the choice of appropriate factors. While Sharpe (1992) uses a
detailed 12-asset class factor model, simpler models often yield more sensible
results, for instance in Lobosco and DiBartolomeo (1997). This is because
many routinely selected factor-mimicking market indexes are highly corre-
lated and often are prima facie likely to be linear combinations of other
indexes. Thus the following prerequisites should be met before any reli-
able results can be obtained. First, the factors should be mutually exclusive.
Second, they should not be linear combinations of other factors. A way to
control for this possible problem is to look at cross-correlations and standard
deviations. If correlations between specific factors are too high, we could
consider dropping some of them to diminish multi-collinearity problems.

Another shortcoming in Sharpe’s style analysis is the fact that only point
estimates of the style exposure have been reported, ignoring the information
that is available in the distribution of the parameter estimates. A practical
reason is that the style weights need to meet particular constraints and deriving
their distribution is not a straightforward task. Lobosco and DiBartolomeo
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(1997) use the jackknife technique to isolate the portion of one market index’s
returns that are independent of the other market indexes used in the style
analysis. Then the approximate standard deviation of style weights can be
derived using Taylor’s expansion, which increases with the standard error of
the style analysis, and decreases with the number of fund returns and the
independence of one market index from the other market indexes used in the
style analysis. Monte Carlo simulation, verifies the efficacy of their procedure
to some degree.

Similarly, Otten and Bams (2000b) proposed a technique that is a combina-
tion of the Kuhn–Tucker algorithm and Monte Carlo simulation. The principle
behind the Kuhn–Tucker algorithm lies in the treatment of the inequality
constraints on the style weights (coefficients). When a particular constraint is
non-binding then its estimator is equal to the OLS estimator. When the partic-
ular constraint is binding then its estimator is equal to the Lagrange estimator.
Beforehand it is not known which constraints will be binding and which will
be non-binding. Therefore the estimators for all possible combinations of bind-
ing and non-binding restrictions are considered and the combination that leads
to the lowest residual sum of squares and also meets all constraints leads to
the optimal estimate. Empirical tests on a sample of UK equities funds demon-
strate that the number of misclassified funds decreases by about 50% if the
statistical significance of these style deviations is taken into account.

Unfortunately, the above methods are valid only in the special case in
which none of the true style coefficients are zero or one, and there are
often cases in practice where zero or unit coefficient values appear plausible.
Kim, Stone and White (2000) apply recently developed results for obtaining
confidence intervals in constrained regression and the Bayesian approach to
the constrained normal linear regression model, to obtain statistically valid
asymptotic precision measures for style coefficients, regardless of their true
values. Monte Carlo simulation demonstrates that the finite sample property
of asymptotic measures is reasonably satisfactory.

A more profound debate is whether all the constraints imposed in Sharpe’s
style analysis are reasonable. The portfolio and positivity constraints imposed
by style analysis are useful in constructing mimicking portfolios without short
positions. Such mimicking portfolios can be used, e.g., to construct efficient
portfolios of mutual funds with desired factor loadings if the factor loadings
in the underlying factor model are positively weighted portfolios. Under these
conditions style analysis may also be used to determine a benchmark port-
folio for performance measurement. Attribution of the returns on portfolios
of which the actual composition is unobserved to specific asset classes on
the basis of return-based style analysis is attractive if moreover there are no
additional cross-exposures between the asset classes and if fund managers
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hold securities that on average have a beta of one relative to their own asset
class. On the other hand, DeRoon, Nijman and Horst (2000) argue that if such
restrictions are not met, and in particular if the factor loadings do not gen-
erate a positively weighted portfolio, the restrictions inherent in return-based
style analysis distort the outcomes of standard regression approaches rather
than improve the analysis. For example, whether the optimal weights of the
portfolios with desired exposure are inconsistent or not depends on which
regression is used, constrained or unconstrained.

Besides the return-based style analysis, there exists another approach, the
so-called characteristics-based style analysis which uses actual portfolio con-
stituents as input. One example is Daniel et al. (1997). They develop bench-
marks based on the characteristics of stocks held by the portfolios that are
evaluated. Specifically, the benchmarks are constructed from the returns of
125 passive portfolios that are matched with stocks held in the evaluated port-
folio on the basis of the market capitalization, book-to-market and prior-year
return characteristics of those stocks. Based on these benchmarks, ‘Char-
acteristic Timing’ and ‘Characteristic Selectivity’ measures are developed
that detect, respectively, whether portfolio managers successfully time their
portfolio weights on these characteristics and whether managers can select
stocks that outperform the average stock having the same characteristics.
Their results show that mutual funds, particularly aggressive-growth funds,
exhibit some selectivity ability, but that funds exhibit no characteristic timing
ability.

Because up-to-date holdings of mutual funds are often not available,
characteristics-based style analysis is not so popular as return-based style
analysis.

2.4 INTERNATIONAL EMPIRICAL RESULTS OF PERFORMANCE

Most performance measurement models were developed from US data. In
order to mitigate any data mining bias and ensure an objective assessment
of these theories, it is a valuable exercise to study managed funds in other
countries. So far, there have been many empirical studies on mutual funds in
non-US nations.

Blake and Timmerman (1998) used a large sample containing the complete
return histories of 2300 UK open-ended mutual funds over a 23-year period
to measure UK fund performance. They found some evidence of underperfor-
mance on a risk-adjusted basis by the average fund manager, persistence of
performance and the existence of a substantial survivor bias. Similar findings
have been reported for US equity mutual funds. New findings not previously
documented for non-US markets include evidence that mutual fund performance
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varies substantially across different asset categories, especially foreign asset cat-
egories. They also identified some new patterns in performance related to the
funds’ distance from their inception and termination dates: underperformance
intensifies as the fund termination date approaches, while, in contrast, there is
some evidence that funds (weakly) outperform during their first year of existence.

Dahlquist, Engström and Söderlind (2000) studied the relation between
fund performance and fund attributes in the Swedish market. Performance
is measured as the alpha in a linear regression of fund returns on several
benchmark assets, allowing for time-varying betas. The estimated performance
is then used in a cross-sectional analysis of the relation between performance
and fund attributes such as past performance, flows, size, turnover and proxies
for expenses and trading activity. The results show that good performance
occurs among small equity funds, low fee funds, funds whose trading activity
is high and, in some cases, funds with good past performance.

Horst, Nijman and de Roon (1998) found that Dutch mutual funds mainly
investing in Netherlands equity show relative outperformance of the passive
portfolio of indices reflecting the mutual fund’s investment style. Moreover,
the same group of funds provide an extension of the mean-variance efficient
investment set for Dutch investors, even after taking short sales restrictions
into account, indicating that a domestic market effect might be present.

Otten and Bams (2000a) gave an overview of the European mutual fund
industry and investigated mutual fund performance using both unconditional
and conditional asset-pricing models. The performance of European equity
funds is investigated using a survivorship bias controlled sample of 506
funds from the five most important mutual fund countries: France, Ger-
many, Italy, the Netherlands and the United Kingdom. This is done using
the Carhart (1997) 4-factor asset-pricing model with factor-mimicking port-
folio for size, book-to-market and stock price momentum. The overall results
suggest that European mutual funds, and especially small cap funds, are able
to add value, as indicated by their positive after cost alphas. If management
fees are added back, four out of five countries exhibit significant outperfor-
mance at an aggregate level. Finally, they detected strong persistence in mean
returns for funds investing in the UK. The strategy of buying last year’s win-
ners and selling last year’s losers yields a return of 6.08% per year, which
cannot be explained by common factors in stock returns.

Hallahan and Faff (1999) examined the market timing ability of a segment
of the Australian investment fund industry, namely, equity trusts, over the
period 1988–1997. The approach followed involves running both quadratic
excess returns market model and dual-beta excess returns market model regres-
sions. In addition, some specification tests are applied. The results suggest that
for their sample over the period examined, there is little evidence of market
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timing ability. Further, there is no clear dominance of one market timing
model over the other. They did find, however, that a cubic market model
specification does fit the data quite well for nearly one-third of their sample.

Recent empirical evidence has suggested that the Japanese mutual fund
industry has underperformed dramatically over the past two decades. Con-
jectured reasons for underperformance range from tax-dilution effects to high
fees, high turnover and poor asset management, which are challenged by
Brown et al. (1998). They show that this underperformance is largely due to
tax-dilution effects and not necessarily to poor management. Using a broad
database of funds which includes investment trusts closed to new investment,
it is concluded that once an instrument for the time-varying tax-dilution expo-
sure is included in a factor model, there is little evidence of poor risk-adjusted
performance. A style analysis of the industry demonstrates that managers
appear to pursue tax-driven dynamic strategies.

From the above empirical results of fund performance in other developed
countries, it seems that the methodology developed mainly for US mutual
funds can be readily passed on to studying data from developed countries.
This is not a surprise as modern financial theory originated from developed
financial markets which become more and more integrated and similar.

2.5 CONCLUSION AND FUTURE RESEARCH

The purpose of this survey is to summarize the econometric methods employed
in the literature of performance measurement. The most often used technique
is linear regression, from the single regressor case of CAPM to the multi-
regressor case of APT and other linear factor pricing models. A great amount
of valuable insights about mutual fund performance have been gained from
these simple models.

On the other hand, even though regression is one of the most mature area
in econometrics, its application in performance measurement is still limited.
The statistical property of performance measures and style weights are more
asymptotic than in terms of small sample. This is a huge deficiency given
that usually only monthly fund returns are available to academics. Even for
10-year periods, there are only 120 observations which are extremely small
compared to the frequency of other financial time series.

Non-parametric methods may also be worth exploring. Only few papers
discuss non-parametric analysis of performance measurement. Pesaran and
Timmermann (1994) show that the Henriksson–Merton (1981) test of market
timing is better interpreted as an exact test of independence within a 2 × 2
contingency table in which the column and row sums are fixed. Considering
the serious misspecification issues found in parametric performance models,
more similar research should be done.
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Undoubtedly, performance evaluation is a data-oriented and -intensive exer-
cise. In the early days, fund returns were the only input of the performance
evaluation models. Now, a full set of fund characteristics is also available,
such as its portfolio holding, tenure, management fee, trading frequency, and
so on. There has been some work on incorporating all this fund information to
determine fund performance, by using different data mining techniques such
as decision tree and meta analysis. Due to the scope of this survey, they will
be covered in a future update.
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Dahlquist, M., Engström, S. and Söderlind, P. (2000) Performance and characteristics of

Swedish mutual funds, Journal of Financial and Quantitative Analysis , 35, 409–423.
Daniel, K., Grinblatt, M., Titman, S. and Wermers, R. (1997) Measuring mutual fund per-

formance with characteristic-based benchmarks, Journal of Finance, 52, 1035–1058.
DeRoon, F. and Nijman, T. (2001) Testing for mean-variance spanning: a survey, Journal

of Empirical Finance, 8, 111–155.
DeRoon, F. Nijman, T. and Horst, J.R. (2000) Evaluating style analysis, working paper,

Tilburg University.
DiBartolomeo, D. and Witkowski, E. (1997) Mutual fund mis-classification: evidence

based on style analysis, Financial Analysts Journal , Sept./Oct., 32–37.
Fabozzi, F. and Francis, J. (1977) Stability tests for alphas and betas over bull and bear

market conditions, Journal of Finance, 32, 1093–1099.



Performance evaluation: an econometric survey 71

Fabozzi, F., Francis, J. and Lee, C. (1980) Generalized functional form for mutual fund
returns, Journal of Financial and Quantitative Analysis , 15, 1107–1120.

Gibbons, M., Ross, S. and Shanken, J. (1989) A test of the efficiency of a given portfolio,
Econometrica , 57, 1121–1152.

Goetzmann, W.N., Ingersoll, J. and Ivković, Z. (2000) Monthly measurement of daily
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Chapter 3

Distribution of returns generated
by stochastic exposure: an application

to VaR calculation in the futures markets

EMMANUEL ACAR AND ANDREW PEARSON

ABSTRACT

Stochastic exposures are frequently encountered in the world of
finance. For instance, corporate companies are faced with uncertain
cash flows in a tendering situation. Active investors also change their
exposure to the market according to their anticipations. In other words,
the directional views are captured by the changing weights over the
period. The market timing ability is best rendered by the performance
returns, which are the result of the by-product between the stochastic
exposure and the market returns. Our goal here is not to forecast the
excess returns generated by active timers but rather to highlight the
commonality of uncertain exposure and its effect on Value at Risk
calculations, both theoretically and empirically, in the futures markets.
Examples of stochastic weights are chosen from popular strategies
used by traders. They encompass both discrete and continuous
distributions of cash flows. Raw calculations using the absolute value
of end of day positions grossly underestimate Value at Risk. The error
is largest at the 99% confidence level, where it is the most needed,
because of lack of historical information. Considering instead that
profits and losses follow a normal distribution provides more accurate
calculations. However, treating the cash flow as a stochastic variable
has the potential to improve further Value at Risk calculations. In
the case of continuous exposures, the improvement is marginal and
subject to the perfect knowledge of the distribution of market returns.
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In the case of simple discrete exposure(s), the distribution of the
uncertain cash flow can be worked out ex ante using analytical results
independent of the underlying markets. We show that incorporating
such information drastically improves Value at Risk calculations.

3.1 INTRODUCTION

When market risk is calculated, it gives the loss in value of a portfolio over a
given holding period with a given confidence level. This calculation assumes
that the composition of the portfolio does not change during the holding
period. However, variable exposures are frequent in the world of finance
and real life examples can be found within corporations, banking or asset
management. Corporate companies are faced with uncertain cash flows in a
tendering situation. Imagine a company that plans to make a bid of a specified
amount of units in a foreign currency to acquire another firm domiciled in the
foreign country. It may not be desirable for the takeover company to hedge
the potential currency exposure. Indeed if the takeover is not accepted the
optimal strategy retrospectively was to do nothing. However, if the takeover
was certain full hedging should have been recommended. Takeover-contingent
foreign exchange call options have been priced (Kwok, 1998: 104–107). A
more general problem consists in modelling the uncertain cash flows such
that an optimal hedging strategy can be designed ex ante. Brown and Toft
(2001) derive optimal hedging strategies using vanilla derivatives (forwards
and options) and custom ‘exotic’ derivative contracts for a value-maximizing
firm that faces both price and quantity risks. They find that optimal hedges
depend critically on price and quantity volatilities, the correlation between
price and quantity, and profit margin.

Within banking, Jorion (2001) notes that traders change positions actively
during the trading day whereas Value at Risk (VaR) is measured over a one-
day horizon assuming that the current positions are ‘frozen’ over that time
span. Despite this, he observes that empirical results for eight large banks
indicate that on a quarterly basis VaR measures offer strongly significant pre-
dictions of the variability of trading revenues. Berkowitz and O’Brien (2001)
independently compare, for a sample of six large dealer banks, daily VaR
data as reported to regulators against subsequent trading profits. They find
that VaR estimates tend to be conservative; that is, too high. The problem
acknowledged in both papers is that the profits and losses refer to broad trad-
ing income including both the revenues generated by market-making activities
and proprietary trading. The income generated by the purchase and sales of
trading instruments on behalf of clients tends to be smoother than proprietary
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directional bets. A good illustration is provided by the Bankers Trust 1994
annual report reproduced in Chew (1996: 210). On the one hand, the statistical
significance of the trading profits reported in both papers, Jorion (2001) and
Berkowitz and O’Brien (2001), tend to be extremely high as measured by the
T-statistics which roughly vary between 3.8 and 22. On the other hand, a pure
directional bet is considered as very successful when the T-statistic reaches 2.
This can be seen by studying the performance of alternative investments over
long periods of time (see Managed Account Reports1). Although interesting,
studies on banking profits can be difficult to interpret. Indeed, a too high VaR
estimate may reflect a change of management policy rather than a method-
ology issue. Implementing corrective actions when directional losses start to
develop is not uncommon.

Within asset management, there is a growing literature which modelizes
the effect of stochastic weights within portfolios. Directional trading rules are
typical examples of strategies affecting the distribution of return (Acar and
Satchell, 1998). Extension of this work and its relevancy to hedge fund man-
agement has been investigated by Lundin and Satchell (2000). Generalization
to active fund management and relative returns has been recently formulated
in Hwang and Satchell (2001).

The purpose of this chapter is to highlight the direct effect of uncertain
exposures on Value at Risk calculations both theoretically and empirically.
Whereas corporations’ cash flows are difficult to analyse for confidentiality
reasons and banking profits are unfiltered, we have chosen to concentrate
our examples on popular strategies used by active investors and directional
traders. They encompass both discrete and continuous distributions of cash
flows. The market timing ability is best rendered by the performance returns,
which are the result of the by-product between the stochastic exposure and
the market returns. Deans (2000) provides numerous examples of profit and
loss calculation for backtesting. He especially recommends the use of profit
and loss histograms to detect if the distribution is approximately normal,
skewed, fat-tailed or if it has other particular features. This is why section 3.2
discusses the distribution of performance returns when the exposure is stochas-
tic. Section 3.3 quantifies the implications for Value at Risk calculations.
Section 3.4 illustrates trading returns in the futures markets. Section 3.5 sum-
marizes our findings and proposes new avenues for future research.

3.2 DISTRIBUTION OF PERFORMANCE RETURNS

It is clear that no money manager or trader has control over the market
returns denoted X. The best a trader can do is to time his entry and exit

1http://www.marhedge.com/
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in the market via his exposure, labelled B (long, squared or short). In other
words, the directional views are captured by the changing weights over the
period. The market timing ability is best rendered by the performance returns
Z = BX. Our goal here is not to forecast the excess returns generated by
active timers but rather to quantify the risk taken by active money managers
under the random walk assumption. Then we will assume no forecasting
ability, which implies that active timing either based on discretion or trading
rules cannot generate profits above and beyond the buy-and-hold returns. In
statistical terms, this means that there is independence between the exposure
B and the forthcoming returns X. Despite violating the inner purpose of using
a forecasting strategy, the random walk assumption is nevertheless useful in
giving us a proxy for VaR calculations. Indeed, it is critical for performance
returns to include several different contributions other than those related to
market risk measurement, namely leverage and timing.

We are interested in establishing the distribution of the performance returns
resulting from the product of two independent random variables. B, the
stochastic exposure, follows either a discrete or continuous distribution. X,
the market returns, is supposed in this section to follow a normal distribution
with mean µx and volatility σx .

3.2.1 Discrete exposure

Let’s suppose that the exposure B =




0 with probability p0

b1 with probability p1

b2 with probability p2
...

bn with probability pn

with
∑n
i=0 pi = 1, pi ≥ 0, i = 0, . . . , n and bi �= 0, i = 1, . . . , n

In this case, the performance returns Z = BX satisfy:

Prob[Z < z] =
n∑
i=1

pi�

(
z− biµx

|bi |σx
)

if z < 0

Prob[Z = 0] = p0

Prob[Z < z] = p0 +
n∑
i=1

pi�

(
z − biµx

|bi |σx
)

if z > 0

where � is the cumulative function of a normal distribution N(0, 1).
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Two examples are given below. Their practical relevancy and economic
justification are postponed to section 3.3.

B =




−1 with probability 0.363879
−1/3 with probability 0.136121
+1/3 with probability 0.136121
+1 with probability 0.363879

(3.1)

B =
{

0 with probability 0.5
1 with probability 0.5

(3.2)

3.2.2 Continuous exposure

If a trader follows a very large number of strategies, the resulting exposure
may well be approximated by a normal distribution. This could also include
the case of corporates tendering the markets. A good example is provided
by the car industry where the sale of a car can be assimilated as a ‘mini’
tender to market. We still assume that the market returns X follow a normal
distribution with mean µx and volatility σx and the exposure B follows a nor-
mal distribution with mean µb and volatility σb. Cornwell, Aroian and Taneja
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Normal exposure (0, var = 0.5)

Figure 3.1 Cumulative function of performance returns
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(1978) provide an algorithm to numerically evaluate the distribution of the
product of two normal variables Z = BX. Their findings take into account
possible non-zero correlation between the two variables B and X. It’s worth-
while noting that when both µx = µb = 0, the variable Z is nothing else than
the covariance between two normal variables over a sample of two observa-
tions. The exact distribution can be found in Johnson, Kotz and Balakrishnan
(1995: 600, formula 36.120). When σx = σb = 1, this is a modified Bessel
function of the second kind.

Figure 3.1 highlights the cumulative function of the Z variable for both
types of exposure B: discrete as given by formulations (3.1) and (3.2), or
normal with zero mean and variance equal to 0.5. This also assumes that the
market returns follow a standardized normal distribution with mean zero and
unit standard deviation.

3.3 IMPLICATIONS FOR VAR CALCULATIONS

The performance returns Z = BX do not usually follow a normal distribution
when the exposure B is stochastic even if the market returns, X, are generated
by a normal distribution. This has potentially large implications on the way
VaR is calculated. VaR is a single number estimate of how much a trader
can lose due to the price volatility of the instrument he holds. VaR is usually
reported at the 95% level of confidence meaning that there is only a 5%
chance that the portfolio will fall by more than the VaR. Let’s recall that the
‘Exact’ VaR at the critical level of α is given by the quantile cEα which is
deduced from the equality Prob[Z < cEα ] = 1 − α.

When the theoretical quantile is not known, risk managers tend to use either
empirical estimates or crude calculations labelled as the normal assumption or
raw method. With the normal assumption, the risk manager simply believes
that the distribution of performance returns follows a normal distribution with
mean zero and variance σ 2

z . Then the VaR at the critical level of α is equal
to: cNα = σz q1−α where q1−α is the (1 − α) quantile of a standardized normal
distribution. For instance, if α = 95%, q1−α = q5% = −1.645. With the raw
method, the risk manager calculates every day the VaR as being proportional
to the market’s exposure. Over long period of time and assuming constant
market volatility, the average VaR is just: cRα = E(|B|) q1−ασx .

VaR can always be formulated as a coefficient of proportionality to the
underlying market volatility and that is the convention adopted in this chapter.
If we look at an investor being exposed to the euro against dollar exchange
rate and the underlying currency market’s volatility is 10%, a VaR of −1.2
at a confidence level of 95% will mean that there is only a 5% chance that
the portfolio will fall by more than −12% (= −1.2∗10%).
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Table 3.1 Analytical value at risk

Confidence Basket exposure (1) Binomial exposure (2) Normal exposure (3)

Exact Normal Raw Exact Normal Raw Exact Normal Raw

95% −1.49 −1.57 −1.35 −1.28 −1.47 −0.82 −1.13 −1.47 −0.93
96% −1.60 −1.68 −1.43 −1.41 −1.58 −0.88 −1.26 −1.58 −0.99
97% −1.74 −1.81 −1.54 −1.55 −1.72 −0.94 −1.43 −1.72 −1.06
98% −1.92 −1.99 −1.68 −1.75 −1.91 −1.03 −1.68 −1.91 −1.16
99% −2.20 −2.27 −1.90 −2.05 −2.19 −1.16 −2.11 −2.19 −1.31

Table 3.1 compares the three VaR, Exact, Normal and Raw, when the mar-
kets X follow a standardized normal distribution, with zero drift and unit
variance, and the exposure B is stochastic as given by examples (1) to (3).
It is interesting to note that the raw calculations systematically underestimate
the true VaR because this fails to capture the stochastic nature of the exposure.
The normal assumption is far less damaging but still systematically overstates
risk especially when the exposure follows a continuous distribution. Note that
approximating the performance returns by a normal distribution makes indis-
tinguishable the binomial exposure of type (2) and the continuous exposure
of type (3).

The Bank for International Settlements’ requirement for calculation of reg-
ulatory capital is a 99% confidence interval (Basel Committee, 1996). In
practice, most organizations use a confidence level of 95% or/and 99% for
their in-house requirements (Hawkins, 2000). This is why the rest of this
chapter will concentrate on only these two VaR numbers.

3.4 ACTIVELY TRADING THE FUTURES MARKETS

Futures contracts are probably the best financial markets to investigate the
effect of stochastic weights. Low transaction costs allow high frequency of
trades. The ability to short the market is also a key feature of active timers. We
have chosen to restrain ourselves to the currency markets for the numerous real
life examples of uncertain exposure which can be found there: active hedging,
technical trading and tendering situations, among others. We now detail the
trading process and dataset used to illustrate both discrete and continuous
exposures.

3.4.1 Discrete exposure

According to Managed Account Reports, a tracking agency which reports the
performance of alternative investments, most of the futures funds are managed
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by systematic traders (around two-thirds) while discretionary traders constitute
the remainder. Systematic traders primarily rely on trading programmes or
models that generate buy and sell signals.

The simplest rule of this family is the single moving average which says:
when the rate penetrates from below (above) a moving average of a given
length m, a buy (sell) signal is generated. If the current price is above the
m-moving average, then it is left long, otherwise it is held short. Lequeux
and Acar (1998) recall that most commodities trading advisers (CTAs) do
not trade a single strategy but rather allocate capital to a few. The authors
then show that single moving averages of length 32, 61 and 117 can be
used to replicate the portfolio of trading rules followed by CTAs. Further-
more, Acar and Lequeux (2001) work out the exposure’s probability under
the assumption of a normal random walk without drift using well-known
results on orthant probabilities. They find that there is a 36.3879% chance
that the price is above (or below) three moving averages, therefore generating
a long (short) position of +(−)100%. There is a 13.6121% chance that the
price is above only two moving averages out of three, corresponding to a long
position of 33.33% = (2 − 1)/3. There is also a 13.6121% chance that the
price is above only one moving average out of three, implying a short position
of −33.33% = (1 − 2)/3. If a proprietary trader or currency fund manager
applies this portfolio of trading rules in the futures markets for which under-
lying returns are denoted X, he will exhibit performance returns Z = BX

where B is given by equation (3.1).
An even simpler example of discrete stochastic exposure is given by an

active currency overlay programme. For the sake of clarity, we consider a
yen-based investor being long of dollar assets. The benchmark is unhedged.
Then a forecasting strategy is used to predict the dollar against yen move.
This could be based on technical trading rules or on exogenous information
such as fundamental variables. The only thing we know is that up and down
forecasts are expected with equal probability.2 Then if a long dollar position is
triggered, the investor sticks to its unhedged benchmark. On the other hand, if
a short dollar position is generated, the investor decides to hedge his position
and therefore buy the Futures contracts, quoted in reciprocal terms, which
earns returns X for the period. In other words, the relative performance or
excess returns over the benchmark is simply equal to Z = BX where B is
given by equation (3.2).

2For illustrative purposes we have used the single moving average of length 117 days to generate
the signals. Under the normal random walk without drift assumption, the VaR numbers should
remain the same as long as buy and sell signals are generated with the same probability. It is
only if the trading rule generates significant profits that the VaR number is likely to be different
(smaller).
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Table 3.2 Daily returns 21 July 1983 to 15 February 2001

Currency contracts EUR JPY GBP CHF CAD

Average 0.0004% 0.0027% 0.0066% −0.0040% −0.0010%
Standard deviation 0.712% 0.726% 0.683% 0.778% 0.298%
Skewness 0.16 0.71 0.07 0.17 −0.24
Kurtosis 2.20 8.00 3.68 2.03 4.61
Minimum −3.31% −4.21% −4.48% −3.99% −2.25%
Maximum 4.83% 8.27% 4.55% 4.97% 1.99%

Table 3.2 displays the summary statistics of the daily futures contracts.
The first available contract has been chosen and rollover implemented on
the day before last expiration. More precisely, we study the main five con-
tracts: euro (Eur), Japanese yen (Jpy), pound sterling (Gbp), Swiss franc
(Chf), and Canadian dollar (Cad). All these contracts are quoted in recip-
rocal terms; that is, dollar value of one foreign currency unit. Prior to 10
December 1999, the Deutschmark futures contracts had been used as a proxy
for the euro.

Figures 3.2 to 3.7 provide VaR estimates for both trading strategies as a
function of the methodology being used. All the results have been standardized
by the underlying market volatility such that they can be compared. Our goal
here is not to assess how easy or difficult it is to predict market volatility but
rather assuming the market volatility to be known, what are the consequences
of stochastic exposure? In addition to the empirical estimate, we indicate the
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Figure 3.2 Basket of moving averages, 95% confidence level
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Figure 3.3 Basket of moving averages, 99% confidence level
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Figure 3.4 Binomial overlay, foreign currency base, 95% confidence level

raw calculations, the assumption of normal profits and losses as well as the
theoretical distribution of the stochastic weights. The latter approach outper-
forms the others at the 99% confidence level and it is increasingly obvious the
more the distribution of profits and losses departs from the normal assumption
(binary weights). The raw calculations uniformly underestimate risk.
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Figure 3.5 Binomial overlay, US dollar currency base, 95% confidence level
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Figure 3.6 Binomial overlay, foreign currency base, 99% confidence level

3.4.2 Continuous exposure

Sometimes, traders combine technical trading rules with their fundamental
view of the markets and the resulting trading process can no longer be
formalized. In other words these money managers do not follow a predeter-
mined forecasting strategy but rather watch a multitude of indicators including
chartism, economics and flows. Then they might decide to leverage their
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Figure 3.7 Binomial overlay, US dollar currency base, 99% confidence level

positions according to the cumulative score reached by adding the individ-
ual output/exposure initiated by each of the variables. A good proxy may
well be provided by the commitments of traders’ reports.3 All of a trader’s
reported futures positions in a commodity are classified as commercial if
the trader uses futures contracts in that particular commodity for hedging
as defined in the Commission’s regulations. Then we may see the total net
commercial position as an aggregate of individual overlay programmes. The
non-commercial activity regroups, among others: proprietary traders, com-
modity trading advisers and commodity pool operators,4 many of whom apply
some kind of trading rules. Therefore this will encompass a complex general-
ization of trend-following strategies. Table 3.3 indicates summary statistics on
the net (long minus short) positions of both commercial and non-commercial
traders reported on a weekly basis. The euro contract is not reported because
for over a year the Deutschmark contract was traded in parallel rendering
difficult the interpretation of individual volume. Compared to previous sim-
ulations, we added the Australian dollar contract. Distributions are rather
normal with very little skewness and kurtosis. Such a cash flow is therefore
best modelled by continuous stochastic exposures.

The VaR generated by the open positions of both commercial and non-
commercial traders are indicated in Figures 3.8 to 3.11. All the figures have
been standardized by dividing by the product of market and quantity volatility.

3http://www.cftc.gov/cftc/cftccotreports.htm
4Statistics breaking down non-commercial positions have been analysed in the crude oil, heating
oil and gasoline futures markets (Weiner, 1999).



Table 3.3 Weekly net positions 30 September 1992 to 27 March 2001

Jpy Gbp∗ Chf Cad Aud

Non
commercial

Commercial Non
commercial

Commercial Non
commercial

Commercial Non
commercial

Commercial Non
commercial

Commercial

Average −13,966 22,075 −414 1,053 −6,024 10,281 −2,009 −4,451 −472 436
Standard deviation 21,248 30,523 13,060 19,609 14,981 22,143 13,388 18,493 4,693 7,654
T -statistic −13.85 15.24 −0.66 1.11 −8.47 9.78 −3.16 −5.07 −2.10 1.19
Minimum −66,697 −62,162 −40,297 −54,307 −52,472 −59,113 −38,022 −69,983 −10,202 −29,916
Maximum 53,902 87,361 43,779 52,210 44,644 60,386 45,809 40,667 20,329 14,800
Kurtosis −0.12 −0.48 0.17 −0.56 −0.04 −0.56 0.57 0.38 2.43 1.26
Skewness 0.41 −0.50 0.18 −0.19 0.13 −0.31 0.25 −0.38 0.71 −0.55

∗Starting date = 26 January 93.
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Figure 3.8 Non-commercial positions, 95% confidence level
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Figure 3.9 Commercial positions, 95% confidence level

Empirical values give the quantiles actually observed whereas the raw and
normal profit and loss illustrate alternative VaR calculations as explained in
section 3.3. ‘Product of Normal’ stands for the exact quantile value under
the assumption that both market and exposure follow independent normal
distributions with known means and variances. To understand how the shapes
of individual distributions, flows and markets, affect the overall VaR, we used
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Figure 3.10 Non-commercial positions, 99% confidence level
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Figure 3.11 Commercial positions, 99% confidence level

a bootstrap methodology. Both flows and market returns were bootstrapped
without replacement and independently. The VaR was then averaged over 200
similar simulations. These results are given for purpose of completeness only
since they are only marginally closer to the empirical observations. This may
well be due to the ‘insight’ nature of the bootstrap methodology and could
exhibit little predictive power.
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The raw methodology as expected by our theoretical results underestimates
the true VaR. At the 99% level, empirical VaR are on average 60% higher than
the crude estimates and up to 100% (higher). Considering that the profits and
losses follow a normal distribution provides mixed results: underestimation
of risk at the 99% level, reversing to slight overestimation at the 95% level.
The product of two normal distributions tends to overestimate risk across the
board.

Whereas it is clear that the raw methodology is unacceptable, choosing
between the other calculations is not straightforward. When the number of
observations is low, the tails of the distribution cannot be easily estimated and
the ‘empirical’ quantiles may be inaccurate given the lack of historical infor-
mation. It may then be tempting to suppose that the profits and losses follow
a normal distribution and extrapolate the corresponding quantile. Standard
deviation of returns requires far fewer observations to be properly measured
than extreme quantiles. In other words, the confidence interval of the standard
deviation estimator is a lot smaller than the extreme quantiles. The analytical
results assuming that both market and exposure follow a normal distribution
are also attractive but this supposes that the parameters are known. In real life
such a methodology will require the estimation of four parameters against one
for the normal assumption of profits and losses. It is therefore possible that
degree of accuracy is inversely related to the number of parameters having to
be estimated.

3.5 CONCLUSION

The purpose of this chapter has been to highlight the existence of uncertain
exposure and its effect on Value at Risk calculations both theoretically and
empirically in the futures markets. In many instances such as active trading or
tender’s situations, the exposure itself is uncertain. Raw calculations using the
absolute value of end of day positions grossly underestimate value at risk. The
error is the largest at the 99% level, where it is the most needed because of
lack of historical information. Considering instead that the profits and losses
follow a normal distribution provides more accurate calculations. However,
treating the cash flow as a stochastic variable has the potential to improve
further Value at Risk calculations. Very often, exposure is uncertain and can-
not be easily modelled ex ante, or requires a large number of parameters to
achieve a sufficient fit. In that instance, the difficulty in precisely estimat-
ing the parameters specifying the uncertain exposure may well overcome the
potential gains. Nevertheless this chapter has shown that there are real life
cases where the exposure follows a simple discrete distribution and parame-
ters can be accurately estimated ex ante. The clearest example has been given
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by the use of popular trading rules. In that case, the distribution of the uncer-
tain exposure can be worked out using analytical results independent of the
underlying markets. Incorporating such information improves drastically VaR
calculations while reducing the degrees of freedom. The results are especially
conclusive when using the Bank for International Settlements’ requirement of
a 99% confidence interval. The rarer the extreme events, the harder it will be
to make accurate predictions using empirical observations. The importance of
theoretical modelling grows the closer the confidence interval is to 100%.
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Chapter 4

A dynamic trading approach to
performance evaluation

GAURAV S. AMIN AND HARRY M. KAT

ABSTRACT

In this chapter we introduce explicit dynamic trading strategies as
a tool for performance evaluation. The advantage of using dynamic
trading strategies for benchmarking is that this can be done without
having to make any assumptions about fund return distributions. As a
result, unlike traditional performance measures, the proposed method
can be applied to funds with normal as well as non-normal return
distributions. Applying the proposed method to 13 different hedge
fund indices over the period May 1990–April 2000, we find 12 of the
13 indices to be inefficient on a stand-alone basis, with the average
efficiency loss amounting to 3%. The same hedge fund indices score
much better when seen as part of an investment portfolio though. Due
to their weak relationship with the index, seven of the 12 hedge fund
indices classified as inefficient on a stand-alone basis are capable of
producing an efficient payoff profile when mixed with the S&P 500.

4.1 INTRODUCTION

Performance evaluation deals with the question whether investment managers
are able to generate a superior risk-return trade-off for their investors, i.e.
whether fund managers offer investors value for money. Although typically
advertised as such, there is no good reason to expect this to be the case.
Fund managers may all be experts in their field, but the presence of certain
special skills does not guarantee superior performance. The opportunity costs
of potentially poor diversification across assets as well as through time, the
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transaction costs incurred and the management fees charged, all have to be
borne by the investor. The question therefore is not whether fund managers
have special skills per se, but whether they have enough skill to compensate
for all these costs, which can be very substantial. Only in that case can we
speak of truly superior skill and performance.

Answering the above question is not easy since it requires the construction
of a performance benchmark that tells us what classifies as ‘normal’ and what
does not. Since the 1960s, a respectable number of authors have worked on
this problem. Building on the asset pricing model in fashion, they derived
benchmarks which are now known as the ‘Sharpe ratio’ and ‘Jensen’s alpha’,
for example. Later work concentrated specifically on the question whether
investment managers are any good timing the ups and downs of the market.
With only a limited set of historical returns available, this is a very hard ques-
tion to answer, even with the large econometrical toolkit nowadays available.

All benchmarks developed so far suffer from the same drawback: they
require explicit assumptions about the return generating process. Typically,
they require fund and index returns to be normally distributed. In the early
days of performance evaluation, when investment managers followed tradi-
tional long-only, non-leveraged, non-mechanical strategies, this was not an
unrealistic assumption. Over the past 20 years, however, this has changed.
Nowadays, more and more managers use options and/or follow some explicit
dynamic trading strategy, like portfolio insurance, for example. It is well
known that this yields return distributions that are far from normal.

In this chapter we present a performance benchmark that does not require
any assumptions about the return generating process. It deals with normal
distributions and any other type of distribution in exactly the same way. We
apply the proposed evaluation procedure to the returns of 13 hedge fund
indices over the period May 1990–April 2000. Hedge funds follow highly
dynamic trading strategies and make extensive use of derivatives. This pro-
duces highly non-normal return distributions which makes them an interesting
test case.

4.2 TRADITIONAL PERFORMANCE MEASURES

Practitioners typically use either one of two performance measures: the Sharpe
ratio and Jensen’s alpha.1 The first measure was introduced in Sharpe (1966)
and is calculated as the ratio of the average excess return and the return
standard deviation of the fund in question. As such it measures the excess

1An extensive bibliography on performance evaluation can be found on www.stern.nyu.edu/
∼sbrown/performance/bibliography.html
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return per unit of risk. The benchmark value is the Sharpe ratio produced
by the relevant market index. Theoretically, the Sharpe ratio derives directly
from the CAPM. Assuming all asset returns to be normally distributed (or,
less plausible, that investors have mean-variance preferences), the CAPM tells
us that in equilibrium the highest attainable Sharpe ratio is that of the market
index. A ratio higher than that therefore indicates superior performance.

The alpha measure was introduced in Jensen (1968) and equals the intercept
of the regression given by:

(Rh − Rf ) = α + β(Ri − Rf )+ eh (4.1)

where Rh is the fund return, Rf is the risk-free rate and Ri is the total return
on the relevant market index. Alpha measures the excess return that cannot
be explained by a fund’s beta. An alpha higher than zero indicates superior
performance. Like the Sharpe ratio, Jensen’s alpha is deeply rooted in the
CAPM and therefore relies heavily on the assumption of normally distributed
returns. According to the CAPM, in equilibrium all (portfolios of) assets with
the same beta will offer the same expected return. Any positive deviation
therefore indicates superior performance.

It is important to note that, although both stemming from the CAPM, both
measures take a different perspective when looking at fund performance. The
Sharpe ratio implicitly assumes that investors invest in nothing else than the
fund in question, i.e. it evaluates fund performance on a stand-alone basis.
Alpha, on the other hand, evaluates fund performance in a portfolio context
by incorporating the correlation characteristics of the fund in the evaluation
(via the fund beta). A fund with a Sharpe ratio higher than that of the market
index will also have a positive alpha. The reverse need not be true, how-
ever, i.e. underperformance on a stand-alone basis does not necessarily imply
underperformance in a portfolio context.

The above performance benchmarks both assume that fund returns are nor-
mally distributed, which in many cases is not a bad assumption. However,
what happens if fund returns are not normally distributed? Suppose we had
a stock index, like the S&P 500, for example, with a monthly price return
that was normally distributed with an expected value of 1.24% (14.88% per
annum) and a volatility of 3.59% (12.43% per annum). These estimates were
obtained from monthly S&P 500 data over the period May 1990–April 2000.
The index is worth $100 and pays a continuous dividend yield of 2.65% per
annum. The risk-free rate is 5.35%. This yields a Sharpe ratio for the index
of 0.28. According to the Black–Scholes (1973) option pricing model, an
ordinary at-the-money call on the index with one month to maturity would
cost $1.55. Now suppose we bought the index and wrote the call. Writing
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the call eliminates all upside potential but retains all downside risk. In return,
we receive $1.55 for the call. Creating this payoff profile requires no special
skills. However, this is not the conclusion one would draw from the portfo-
lio’s alpha and Sharpe ratio. By writing the call, alpha goes up from zero to
0.34 and the Sharpe ratio rises from 0.28 to 0.42. This is purely the result of
the changed shape of the return distribution though. By giving up all upside,
the monthly standard deviation drops from 3.59% to 1.67%. The expected
return drops as well, but this is partially compensated by the option premium
that is received. As a result, the Sharpe ratio goes up. Although the above is
just a simple example, it makes it painfully clear that traditional evaluation
methods may very easily reach the wrong conclusion when dealing with a
non-normal distribution.2

4.3 A NEW PERFORMANCE MEASURE

To evaluate the performance of funds with a non-normal return distribution
correctly, the entire distribution has to be taken into account. Ideally, this
should be done without having to make any prior assumptions regarding the
type of distribution. The performance measure we propose in this chapter
does exactly that. It is based on the following reasoning. When buying a fund
participation, an investor acquires a claim to a certain payoff distribution. If
we wanted to investigate whether a fund manager had any superior investment
skills the most direct line of attack would therefore be to re-create the payoff
distribution that he offers to his investors by means of a dynamic trading
strategy in stocks and bonds and compare the cost of that strategy with the
price of a fund participation. If the manager in question indeed had superior
skills, the strategy should be more expensive than the fund participation. Of
course, the same payoff distribution can be generated in many different ways.
The critical issue is therefore to find the strategy that does so most efficiently,
i.e. at the lowest cost. We will return to this shortly, but first we will explain
the proposed procedure.

Having collected monthly return data on the fund to be evaluated, the first
step is to use these returns to create an end-of-month payoff distribution,
assuming we invest $100 at the beginning of the month. The same is done
for a well-diversified market index. We do not make any assumptions about
the distribution of fund returns. We do, however, explicitly assume the index

2Bookstaber and Clarke (1985) discuss the shortcomings of mean-variance analysis when used to
evaluate the performance of optioned portfolios. Over the years there have been several ad hoc
attempts to solve this problem. Only recently, Leland (1999) has developed a skewness adjustment
that has a sound theoretical basis in the early work of Rubinstein (1976).
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Figure 4.1 Cumulative probability distribution
This figure shows the cumulative probability distribution of the end-of-month payoff of a fund and
the S&P 500 (excluding dividends). S&P 500 returns are assumed to be normally distributed.

to be normally distributed. The reason for this will become clear later. An
example of the resulting cumulative distributions can be found in Figure 4.1.

The next step is to construct a payoff function that, in combination with the
index distribution, yields exactly the same end-of-month payoff distribution as
produced by the fund. Since there are many functions that will map one distribu-
tion into the other, we make the additional assumption that the payoff function
must be a path independent non-decreasing function of the index value at the
end of the month. There is a special reason for this, which we will discuss later.
Under the latter assumption, constructing a payoff function is quite straightfor-
ward. Suppose that the fund distribution told us there was a 10% probability of
receiving a payoff lower than 100. We would then look up in the index distri-
bution at which index value X there was a 90% probability of finding an index
value higher than X. If we found X = 95, the payoff function would be con-
structed such that when the index ended at 95 the payoff would be 100. Next,
we would do the same for a probability of 20%. If the fund distribution told us
there was a 20% probability of receiving a payoff lower than 110 and the index
distribution said there was a 80% probability of finding an index value higher
than 100, the payoff function would be constructed such that when the index
ended at 100 the payoff would be 110. This procedure is repeated until we get
to 100%. An example of a typical payoff function (using steps of 0.2% instead
of 10% as in the above example) can be found in Figure 4.2.
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Figure 4.2 Payoff function
This figure shows an example of a payoff function resulting from the mapping procedure discussed
in section 4.3. Given the S&P 500 distribution, this payoff function implies the same payoff
distribution as the fund in question.

The third step consists of finding the initial investment required by the
self-financing dynamic trading strategy, trading the index and cash, that gener-
ates the above payoff function. This is no different from what is usually done
to price derivatives contracts. We can therefore use standard derivatives pric-
ing technology and calculate the price of the derived payoff function as the
discounted risk neutral expected payoff. Since the payoff is not a neat function,
however, we will have to do so using Monte Carlo simulation instead of a more
elegant analytical or numerical technique. The easiest approach is to assume
we live in the world of Black and Scholes (1973), which explains why in step
2 we assumed index returns to be normally distributed. Having constructed a
payoff function, we can in that case generate end-of-month index values using
the discretized and risk neutralized geometric Brownian motion given by

S(t + δt) = S(t) exp
((
r − q − 1

2σ
2
)
δt + σ

√
δtϕ

)
(4.2)

where S(t) is the starting value of the index, r is the risk-free rate, q is the
dividend yield on the index, σ is the index volatility, δt is the time step (one
month) and ϕ is a random variable with a standard normal distribution. From
the index values thus generated we subsequently calculate the corresponding
payoffs, average them and discount the resulting average back to the present
at the risk-free rate to give us the price of the payoff function in question.
If the price thus obtained is higher than $100, we take this as evidence of
superior performance and the other way around.
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The above efficiency test has a solid theoretical foundation in the work of
Cox and Leland (2000) and the payoff distribution pricing model of Dybvig
(1988a, 1988b). Cox and Leland showed that in the world of Black and
Scholes (1973) all path dependent strategies are inefficient in the sense that the
same payoff distribution can also be obtained by a path independent strategy,
but at lower costs. In addition, from Dybvig (1988a, 1988b) we know that
any investor who maximizes expected utility and prefers more money to less
will want his wealth at the end of his investment horizon to be a monotonic
non-increasing function of the state-price density. Investment strategies that
do not have this feature will be inefficient, i.e. stochastically dominated by
other strategies. In the world of Black and Scholes (1973) with a positive risk
premium the state-price density is a decreasing function of the terminal value
of the index. This means that for a strategy to be efficient, final wealth must be
a monotonic non-decreasing function of the terminal index value. Intuitively,
this is a plausible result. A non-decreasing payoff will be positively correlated
with the index. As a result, the rebalancing trades required by the strategy
generating that payoff will tend to be relatively modest, which serves to
keep trading costs down. In short, what we use as a benchmark is the cost of
the cheapest self-financing dynamic trading strategy that generates the same
payoff distribution as the hedge fund in question. By doing so we test whether a
hedge fund manager has sufficient skill to compensate not only for transaction
costs and management fees (which simply do not exist in a Black–Scholes
world), but also for the inefficiency costs of potentially poor diversification
across assets as well as through time.

We are not the first to approach performance evaluation from a contingent
claims perspective. Glosten and Jagannathan (1994) approximate mutual fund
payoffs by a portfolio consisting of the index and a limited number of ordinary
index calls. Agarwal and Naik (2000) show that simple option strategies are
able to explain a significant part of the variation in hedge fund returns over
time. Fung and Hsieh (2001) show that the returns from trend following
strategies are similar to those from lookback straddles. Finally, Mitchell and
Pulvino (2001) find that the returns from risk arbitrage strategies are very
similar to the results from writing ordinary put options. All these authors
link fund payoffs with specific option payoffs. Our efficiency test, however,
does not do so. Apart from requiring the payoff to be a path independent
non-decreasing function of the index, it is fully determined by the empirically
observed distribution of fund returns.

4.4 SAMPLING ERROR

Because the available dataset will always be limited, the efficiency test will
be confronted with a sampling error. Since we do not make any assumptions
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about the nature of the distributions involved, a formal study is problematic.
We can, however, obtain a good indication of the possible extent of the error
by studying the efficiency test’s application on a payoff function that we know
to be efficient, such as the index plus short call package discussed earlier in
section 4.2, for example. Since the payoff of this package is hampered neither
by transaction costs or management fees nor by inefficient diversification, the
test should produce a value of exactly 100. If we had only a limited number
of observations available, however, this need not always be the case.

To investigate the extent of the possible error we generated 120 end-of-
month index values (corresponding with 10 years of data) and calculated
the corresponding payoffs from the index plus short call package, as before
assuming monthly index returns to be normally distributed with a mean of
1.24% (14.88% per annum) and a standard deviation of 3.59% (12.43% per
annum), and a monthly dividend yield of 0.22% (2.65% per annum). Next, we
applied the efficiency test to the 120 payoff values thus obtained, assuming
the S&P 500 to follow a geometric Brownian motion with a volatility equal
to the above standard deviation and a drift equal to the difference between the
risk-free rate and the above dividend yield. The former was set equal to the
10-year historic mean of the 3-month USD LIBOR rate (5.35%). We repeated
the above procedure 20,000 times. A frequency distribution of the annualized
error, i.e. the difference between the actual test result and 100, can be found
in Figure 4.3.
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Figure 4.3 Sampling error
This figure shows the frequency distribution of the annualized errors from performing the efficiency
test on a combination of the index and a short at-the-money call. To calculate the errors we
first sampled 120 end-of-month index values and calculated the corresponding payoffs from the
combination. Subsequently, we applied the efficiency test to these data and calculated the sampling
error as the difference between the test result and 100. To obtain the frequency distribution shown,
this procedure was repeated 20,000 times. The normal distribution shown has the same mean
(−0.05) and standard deviation (2.14) as the sampling error distribution.
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Figure 4.3 shows that with only 120 observations the efficiency test may
produce an error that significantly differs from zero. The error distribution,
however, has a high peak around zero, meaning that, compared to a normal
distribution, there is a relatively high probability of a small error. In addition,
Figure 4.3 shows that the efficiency test is unbiased. The average error is
−0.05. We repeated the above analysis for a number of other (efficient) payoff
profiles as well, which yielded similar results.

4.5 HEDGE FUNDS AND HEDGE FUND RETURNS

A hedge fund is a pooled investment vehicle that is privately organized,
administered by professional investment managers, but not widely available
to the public. Due to their private nature, hedge funds have fewer restric-
tions on the use of leverage, short-selling and derivatives than more regulated
vehicles such as mutual funds. This allows for investment strategies that dif-
fer significantly from traditional non-leveraged, long-only strategies. As we
will see, due to the special nature of the investment strategies adopted by
hedge fund managers, hedge fund returns tend to exhibit a high degree of
non-normality. It is therefore interesting to see what our test has to say about
the efficiency of hedge funds and whether this is any different from what
traditional benchmarks would tell us.

Hedge funds are a very heterogeneous group. There are, however, a number
of ‘ideal types’ to be distinguished. Zurich Capital Markets, which is the
source of the data we will use, uses the following main and subcategories:

Global: International
Funds that concentrate on economic change around the world and pick stocks
in favoured markets. Make less use of derivatives than macro funds (see
below).

Global: Emerging
Funds that focus on emerging markets. Because in many emerging markets
short-selling is not permitted and without the presence of futures markets,
these funds tend to be long only.

Global: Established
Funds that look for opportunities in established markets.

Global: Macro
These funds tend to go wherever there is a perceived profit opportunity and
make extensive use of leverage and derivatives. These are the funds that are
responsible for most media attention.
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Event Driven: Distressed Securities
Funds that trade the securities of companies in reorganization and/or
bankruptcy, ranging from senior secured debt to common stock.

Event Driven: Risk Arbitrage
Funds that trade the securities of companies involved in a merger or acquisi-
tion, typically buying the stocks of the company being acquired while shorting
the stocks of its acquirer.

Market Neutral: Long/Short Equity
This category makes up the majority of hedge funds. Exposure to market risk
is reduced by simultaneously entering into long as well as short positions.

Market Neutral: Convertible Arbitrage
Funds that buy undervalued convertible securities, while hedging all intrinsic
risks.

Market Neutral: Stock Arbitrage
Funds that simultaneously take long and short positions of the same size
within the same market, i.e. portfolios are designed to have zero market risk.

Market Neutral: Fixed Income Arbitrage
Funds that exploit pricing anomalies in the global fixed income (derivatives)
market.

Fund of Funds: Diversified
Funds that allocate capital to a variety of hedge funds.

Fund of Funds: Niche
Funds that invest only in a specific type of hedge funds.

With the industry still in its infancy and hedge funds under no formal obliga-
tion to disclose their results, gaining insight in the performance characteristics
of hedge funds is not straightforward. Fortunately, many hedge funds release
monthly return information to attract new and accommodate existing investors.
These data are collected by a number of parties that, among others, use them
to calculate a number of hedge fund indices. In what follows we use the
indices calculated by Zurich Capital Markets over the period May 1990–April
2000.3 All these 13 indices are equally weighted and correspond with the
fund classification discussed earlier. The 13 indices considered are listed
below with the number of funds included as of April 2000 between brack-
ets: Event Driven (106), Event Driven: Distressed (45), Event Driven: Risk

3 Zurich Capital Markets 2001. No claim to original US Government works. All rights reserved.
Reproduced from www.marhedge.com



Table 4.1 Hedge funds index return characteristicsa

Mean
(%)

Median
(%)

Maximum
(%)

Minimum
(%)

Std. dev.
(%)

Skewness Kurtosis Jarque–
Bera

S&P 500 1.4594 1.7237 12.0853 −11.1118 3.6460 −0.2373 1.0581 19.9825∗
GL EST 1.5176 1.4950 9.4000 −9.4200 2.6817 −0.4860 5.2187 29.3373∗
GL EMER 1.2913 1.0550 19.3300 −26.2500 4.9667 −1.0786 11.2347 362.3179∗
MKT ARB 1.2417 1.1100 14.1300 −4.7800 2.1551 4.3819 27.2839 3332.556∗
EVENT DIST 1.2068 1.3650 6.0500 −9.2200 2.1938 −0.9483 6.5708 81.7394∗
GL MACRO 1.1863 0.6650 8.6100 −5.3600 2.1264 0.7830 4.8976 30.2674∗
GL INTL 1.1669 1.3600 7.9200 −10.1500 2.0618 −1.1506 9.9069 265.003∗
EVENT-DRIV 1.1162 1.1350 4.7400 −5.6100 1.2454 −1.3217 10.3978 308.5748∗
EVENT RISK 1.0768 1.0750 4.6800 −6.9100 1.3404 −1.6370 12.6030 514.6788∗
FUND DIV 0.9558 1.0000 6.1500 −6.4200 1.4860 −0.6267 8.4144 154.4364∗
FUNDOFFUND 0.9130 0.8850 4.5000 −6.4000 1.3809 −1.1858 9.0826 213.1098∗
MKTNEUTRAL 0.9124 0.9500 2.3400 −0.6100 0.4348 −0.0557 4.4526 10.6118∗∗
FUND NICHE 0.8827 0.8750 5.9300 −5.8700 1.5453 −0.2789 7.0183 82.2909∗
MKT LONG 0.8682 0.8500 2.7600 −1.0300 0.4962 0.3005 5.4686 32.2763∗

∗Significant at 1%.
∗∗Significant at 5%.
aThis table shows the mean, median, maximum, minimum, standard deviation, skewness, kurtosis and the results of the Jarque–Bera (1987) test
calculated from the monthly returns of 13 hedge fund indices and the S&P 500 over the period May 1990 to April 2000. The hedge fund indices
are: Event Driven (EVENT-DRIV), Event Driven: Distressed (EVENT DIST), Event Driven: Risk Arbitrage (EVENT RISK), Fund of Funds
(FUNDOFFUND), Fund of Funds: Niche (FUND NICHE), Fund of Funds: Diversified (FUND DIV), Global: Emerging (GL EMER), Global:
Established (GL EST), Global: International (GL INTL), Global: Macro (GL MACRO), Market Neutral (MKT NEUTRAL), Market Neutral:
Long/Short (MKT LONG) and Market Neutral: Arbitrage (MKT ARB).
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Arbitrage (61), Fund of Funds (265), Fund of Funds: Niche (232), Fund of
Funds: Diversified (33), Global: Emerging (85), Global: Established (245),
Global: International (34), Global: Macro (58), Market Neutral (231), Market
Neutral: Long/Short (109), and Market Neutral: Arbitrage (122).

Table 4.1 provides information on the monthly return characteristics of the
S&P 500 and the 13 hedge fund indices over the 10-year period studied. The
S&P 500 return is a total return, i.e. it includes dividends. All returns use
continuous compounding. The return distribution of most hedge fund indices
appears to be highly skewed. The last column in Table 4.1 shows the results
of the Jarque–Bera (1987) test for normality, which confirms that for none of
the index return distributions normality is a satisfactory approximation.

4.6 EVALUATION OF HEDGE FUND INDEX PERFORMANCE

The above results clearly indicate that hedge funds generate non-normal
returns. Correct evaluation of hedge fund performance requires a performance
measure that takes this into consideration. First, however, we take a look at
the results that one would obtain if one used traditional performance measures
to detect superior performance.

Using monthly total return data from May 1990 to April 2000, we calcu-
lated the alphas and Sharpe ratios of the S&P 500 and the 13 hedge fund
indices. We used three-month USD LIBOR as a proxy for the risk-free rate
and the S&P 500 as the relevant market index. The results can be found
in Table 4.2. Eleven indices show significant positive alphas. Twelve indices
generate a Sharpe ratio higher than that of the S&P 500. We also plotted the
means and standard deviations of the 13 indices in traditional mean-standard
deviation space together with a number of other equity, bond and commodity
indices. The results can be found in Figure 4.4. From this graph it is clear that
most of the hedge fund indices combine a relatively high mean return with
a relatively low standard deviation. In terms of mean and standard deviation,
the hedge fund indices are definitely more attractive than the other indices,
which is in line with the message from these indices’ alphas and Sharpe
ratios.

Next, we applied our efficiency test to the monthly returns of the 13 hedge
fund indices, using the same S&P 500 parameter values as in section 4.4. Note
again that over the period studied the ex post risk premium has been relatively
high, which potentially allows for significant inefficiency costs. The evalua-
tion results can be found in Table 4.3. Twelve of the 13 indices show signs of
inefficiency with the average efficiency loss on these 12 indices amounting to
3.00% per annum. With an average efficiency loss of 4.15%, the three fund of
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Table 4.2 Traditional performance measures hedge fund indicesa

Alpha (%) Sharpe
ratio

S&P 500 0.0000 0.2796
MKT ARB 0.7443∗ 0.3720
GL EST 0.5445∗ 0.4018
EVENT RISK 0.5357∗ 0.4751
GL MACRO 0.4998∗ 0.3510
EVENT-DRIV 0.4713∗ 0.5429
EVENT DIST 0.4591∗ 0.3495
GL INTL 0.4501∗ 0.3526
MKTNEUTRAL 0.4319∗ 1.0865
MKT LONG 0.3901∗ 0.8629
FUND DIV 0.3283∗ 0.3471
FUNDOFFUND 0.2971∗ 0.3425
FUND NICHE 0.2464 0.2865
GL EMER 0.1965 0.1714

∗Significant at 1%.
aThis table shows the alphas and Sharpe ratios of 13 hedge fund
indices based on monthly return data from May 1990 to April 2000.
The hedge fund indices are: Event Driven (EVENT-DRIV), Event
Driven: Distressed (EVENT DIST), Event Driven: Risk Arbitrage
(EVENT RISK), Fund of Funds (FUNDOFFUND), Fund of Funds:
Niche (FUND NICHE), Fund of Funds: Diversified (FUND DIV),
Global: Emerging (GL EMER), Global: Established (GL EST),
Global: International (GL INTL), Global: Macro (GL MACRO),
Market Neutral (MKT NEUTRAL), Market Neutral: Long/Short
(MKT LONG) and Market Neutral: Arbitrage (MKT ARB).

funds indices make an important contribution to this figure. Excluding the lat-
ter, the average efficiency loss drops to 2.61%. Obviously, this is a completely
different conclusion than what traditional performance measures tell us, which
underlines the importance of incorporating the whole return distribution in the
evaluation process.

To gain insight into the sensitivity of the above results for outliers we removed
the top and bottom 2.5% of the return observations, leaving 114 instead of
120 monthly returns. The overall results did not change much. The correlation
between the results from 120 observations and 114 observations was 0.94. To
see how sensitive the above results are for the choice of reference index, we
performed the same exercise using the Dow Jones Industrial (DJI) index instead
of the S&P 500. The DJI is substantially different from the S&P 500. The former
is made up of only 30 stocks, while the latter contains 500. In addition, instead
of being value-weighted like the S&P 500 and most other major stock market
indices, the DJI is one of the few price-weighted indices in the world. Using
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Figure 4.4 Mean-standard deviation plot
This figure plots the 13 hedge fund indices as well as some other market indices into mean-
standard deviation space. All parameter estimates are based on monthly return data from May
1990 to April 2000. The hedge fund indices are: Event Driven (EDRI), Event Driven: Distressed
(EDSec), Event Driven: Risk Arbitrage (Erarb), Fund of Funds (FF), Fund of Funds: Niche (FFNic),
Fund of Funds: Diversified (FFDiv), Global: Emerging (GLEmer), Global: Established (GLEst),
Global: International (GLInt), Global: Macro (Mac), Market Neutral (MkNeu), Market Neutral:
Long/Short (MNL/S) and Market Neutral: Arbitrage (MNStAr). The other indices are: S&P 500
(S&P), Nasdaq (NASDq), Russell 2000 (Rus 2000), Morgan Stanley World index excluding US
(WorldIdxUS), and Goldman Sachs Commodities index (Comm).

Table 4.3 Hedge fund index efficiencya

Efficiency yearly

EVENT DIST −2.8685
EVENT RISK −1.1157
EVENT-DRIV −1.6807
FUND DIV −3.6614
FUND NICHE −4.8756
FUNDOFFUND −3.9225
GL EMER −7.2672
GL EST −0.7388
GL INTL −2.4846
GL MACRO −3.0333
MKT ARB 0.1380
MKT LONG −2.4836
MKTNEUTRAL −1.8591

aThis table shows the annual (monthly times 12) efficiency loss
(−) or gain (+) of 13 hedge fund indices based on monthly return
data from May 1990 to April 2000. The hedge fund indices are:
Event Driven (EVENT-DRIV), Event Driven: Distressed (EVENT
DIST), Event Driven: Risk Arbitrage (EVENT RISK), Fund of
Funds (FUNDOFFUND), Fund of Funds: Niche (FUND NICHE),
Fund of Funds: Diversified (FUND DIV), Global: Emerging (GL
EMER), Global: Established (GL EST), Global: International (GL
INTL), Global: Macro (GL MACRO), Market Neutral (MKT NEU-
TRAL), Market Neutral: Long/Short (MKT LONG), and Market
Neutral: Arbitrage (MKT ARB).
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the DJI as our reference index, the results again did not change very much. The
correlation between the S&P 500 results and the DJI results was 0.99.

By construction, our mapped payoffs are heavily correlated with the index.
In reality, however, the relationship between hedge fund and stock market
returns is rather weak. For example, over the period studied the average cor-
relation between the S&P 500 and the individual hedge funds in the Zurich
database was only 0.29. The efficiency test used so far does not take this
into account as it aims only to replicate the hedge fund indices’ payoff distri-
butions and not their correlation profile. If we were to introduce an explicit
correlation restriction into the efficiency test, i.e. require our trading strategies
to replicate not only the indices’ payoff distributions but also their correla-
tion with the index, the hedge fund indices would come out better as the
additional restriction would make our replication strategies more expensive.
Unfortunately, technically this is much easier said than done. We therefore
decided on the following procedure.

First, we formed portfolios of hedge fund indices and the S&P 500, with
the fraction invested in hedge funds ranging from 0% to 100% in 1% steps.
Subsequently, we ran the same efficiency test as before on these portfolios’
120 monthly returns while checking for the existence of a combination of
hedge fund index and S&P 500 that offers a risk-return profile that cannot
be obtained with a mechanical trading strategy at a lower price. Roughly
speaking, this procedure tests whether the relationship between the hedge fund
indices and the S&P 500 is sufficiently weak to make up for the efficiency
loss observed on a stand-alone basis. Table 4.4 shows for every hedge fund
index, the highest efficiency value achieved and the mix at which this occurs.
From Table 4.4 we see that when mixed with the S&P 500, seven of the 12
indices that were found to be inefficient on a stand-alone basis are able to
produce an efficient payoff profile, i.e. a payoff profile that cannot be obtained
otherwise at a better price. In all seven cases the most efficient mix consists
of around 20% hedge fund index and 80% S&P 500. The above strongly
suggests that the main attraction of hedge funds lies not in their stand-alone
risk-return properties but in their weak relationship with other asset classes.
From an efficiency point of view, hedge funds should therefore not be held
in isolation but always in combination with other assets.

4.7 CONCLUSION

In this chapter we have introduced dynamic trading strategies as a tool for
performance evaluation. Because the method does not make any assumptions
about fund return distributions, it can be applied to funds with normal as well
as non-normal return distributions. The test appears to be unbiased, while
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Table 4.4 Hedge funds index portfolio efficiencya

Maximum efficiency Investment in
S&P 500

EVENT DIST 0.2790 79%
EVENT RISK 0.3142 81%
EVENT-DRIV 0.1936 78%
FUND DIV 0.0000 100%
FUND NICHE 0.0000 100%
FUNDOFFUND 0.0000 100%
GL EMER 0.3844 83%
GL EST 0.7331 82%
GL INTL 0.3475 81%
GL MACRO 0.1363 78%
MKT ARB 0.6032 77%
MKT LONG 0.0000 100%
MKTNEUTRAL 0.0000 100%

aThis table shows the efficiency test results on portfolios constructed
by investing in varying proportions in the hedge fund indices and the
S&P 500. The second column shows the maximum efficiency level
achieved. The third column gives the percentage to be invested in the
S&P 500 to obtain that maximum efficiency level. The hedge fund
indices are: Event Driven (EVENT-DRIV), Event Driven: Distressed
(EVENT DIST), Event Driven: Risk Arbitrage (EVENT RISK),
Fund of Funds (FUNDOFFUND), Fund of Funds: Niche (FUND
NICHE), Fund of Funds: Diversified (FUND DIV), Global: Emerging
(GL EMER), Global: Established (GL EST), Global: International
(GL INTL), Global: Macro (GL MACRO), Market Neutral (MKT
NEUTRAL), Market Neutral: Long/Short (MKT LONG) and Market
Neutral: Arbitrage (MKT ARB).

with 120 observations sampling error risk does not seem to be prohibitively
high. We applied the proposed method to 13 different hedge fund indices. On
a stand-alone basis we found 12 of the 13 indices to be inefficient, with the
average efficiency loss amounting to 3%. The hedge fund indices score much
better when seen as part of an investment portfolio though. Due to their weak
relationship with the index, seven of the 12 hedge fund indices classified as
inefficient on a stand-alone basis are capable of producing an efficient payoff
profile when mixed with the S&P 500. The best results are obtained when
around 20% of the portfolio value is invested in hedge funds.
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Chapter 5

Performance benchmarks for institutional
investors: measuring, monitoring and

modifying investment behaviour

DAVID BLAKE AND ALLAN TIMMERMANN

ABSTRACT

The two main types of benchmarks used in the UK are external asset-
class benchmarks and peer-group benchmarks. Peer-group tracking
is much more prevalent with pension funds and mutual funds than with
life funds. However, the use of customized benchmarks that reflect the
specific objectives set by particular funds is increasing. Benchmarks
influence the type of assets selected and, equally significantly, the
type of assets avoided. Peer-group benchmarks have a tendency to
distort behaviour, particularly when combined with a fee structure that
does not promote genuine active management. The outcome tends
to be herding and closet index matching.

The main alternatives to peer-group benchmarks are: single-index
benchmarks with time-varying coefficients, multiple-index bench-
marks and fixed benchmarks. The first two alternatives have recently
been discussed in the academic literature but have yet to catch on in
the practitioner community.

There are also benchmarks based on liabilities. These are generally
related to real earnings or consumption growth or to the discount rate
on liabilities. Explicit liability-based benchmarking is currently not very
common, but is likely to become so in the light of both the increasing
maturity of pension funds, various regulatory and financial reporting
developments, and the Myners Review of Institutional Investment.
Liability-driven performance attribution explicitly takes the liabilities
into account.
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The US has similar external asset-class and peer-group bench-
marks as the UK. Other countries tend to use fixed or bond-based
benchmarks.

In conclusion, we find that benchmarks are important, but so are
fee structures. They can either provide the right incentives for fund
managers or they can seriously distort their investment behaviour.

5.1 INTRODUCTION

The issue of performance benchmarks for institutional investors has gen-
erated a great deal of controversy recently. Are they set too low, making
them very easy to beat? Are they set too high, making them hard to beat
unless fund managers take on excessive risks? Is the frequency of assess-
ment against the benchmark (typically on a quarterly basis) appropriate for
long-term investors? Do they introduce unintended (and undesired) incentives,
such as the incentive for fund managers to herd together or to avoid hold-
ing securities (such as those of micro-cap, small-cap, unquoted or start-up
companies) that are not included in the benchmark? How, if at all, should
performance against the benchmark influence the fund manager’s compensa-
tion. How should the fund’s liabilities be taken into account when assessing
the fund’s performance. This chapter examines and assesses the benchmarks
that are currently used by institutional investors in the UK. It also looks at
possible alternatives to these benchmarks and briefly reviews what happens
in other countries.

5.2 WHAT BENCHMARKS ARE CURRENTLY USED
BY INSTITUTIONAL INVESTORS?

Performance benchmarks in the UK have been around since the early 1970s.
They are an essential part of the investment strategy of any institutional
investor and help both to define client/trustee expectations and to set targets
for the fund manager. Benchmarks can be set in relation to liabilities and can
therefore change if the liabilities change, say, as a result of increasing maturity.
Benchmarks might also be influenced by regulations (e.g. a Minimum Fund-
ing Requirement1 (MFR)), accounting standards (e.g. Financial Reporting
Standard 172 (FRS17)), or client/trustee preferences (e.g. trustees might prefer

1Introduced in the UK by the 1995 Pensions Act and operating from 1997, but it was announced
in the March 2001 Budget that it would be scrapped.
2Issued by the Accounting Standards Board in November 2000 and coming fully into force in June
2003.
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to minimize the volatility of employer contributions into a pension plan than
minimize the average level of employer contributions, given that, in final
salary plans, the pension is funded on a balance of cost basis).

The benchmark, appropriately set, has important implications for how the
actions of the fund manager are interpreted. An appropriate benchmark rec-
ognizes formally that the strategic asset allocation or SAA (i.e. the long-run
division of the portfolio between the major categories of investment assets,
such as equities, bonds and property) is a risk decision relative to the liabili-
ties, rather than an expected return decision. In other words, the SAA, properly
interpreted, is not an investment decision at all: instead it is determined largely
by reference to the maturity structure of the anticipated liability cash flows. In
contrast, the stock selection and market timing (i.e. tactical asset allocation)
decisions are investment decisions and it is the fund manager’s performance
in these two categories that should be judged against the benchmark provided
by the SAA.

5.2.1 Single-index benchmarks and peer-group benchmarks

The two main types of benchmarks used in the UK are external asset-class
benchmarks and peer-group benchmarks. These benchmarks are used by both
‘gross funds’ (i.e. those without explicit liabilities) and ‘net funds’ (i.e. those,
such as pension funds, with explicit liabilities). When external performance
measurement began in the early 1970s, most pension funds selected cus-
tomized benchmarks (which involved tailoring the weights of the external
benchmarks to the specific requirements of the fund). Shortly after, curiosity
about how other funds were performing led to the introduction of peer-group
benchmarks. More recently, following the recognition that the objectives of
different pension funds differ widely, there has been a return to customized
benchmarks.

The WM Company,3 for example, uses the following set of external bench-
marks to assess the performance of the pension funds in its stable:

• UK equities: FTA All Share Index.
• International equities: FT/Standard & Poor World (excluding UK) Index.
• North American equities: FT/Standard & Poor North America Index.
• European equities: FT/Standard & Poor Europe (excluding UK) Index.
• Japanese equities: FT/Standard & Poor Japan Index.
• Asia – Pacific equities: FT/Standard & Poor Asia – Pacific (excluding

Japan) Index.

3The WM Company is one of the two key performance measurement services in the UK, the other
is CAPS (Combined Actuarial Performance Services).
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• UK bonds: British Government Stocks (All Stocks) Index.
• International Bonds: JP Morgan Global (excluding UK) Bonds Index.
• UK index-linked bonds: British Government Stocks Index-linked (All

Stocks) Index.
• Cash: LIBID (London Inter-Bank Bid Rate) 7-day deposit rate.
• UK Property: Investment Property Databank (IPD) All-Property Index.
• International Property: Evaluation Associates All Property Index (a US

index to reflect the fact that most international property investments are
held in the US).

• Total portfolio: WM Pension Fund Index (based on all the funds monitored
by WM).

All these indices assume that income is reinvested (gross of tax) and the
returns are calculated on a value- and time-weighted basis. These benchmarks
have the virtues of being independently calculated and immediately publicly
available. However, some of them (most notably cash and international equi-
ties and bonds) have weightings that can differ substantially from those of
the pension funds. Some indices are subject to measurement problems, par-
ticularly the property indices. Further, the external benchmarks include only
the securities of relatively large companies.

The WM Company also uses peer-group indices for pension funds:

• WM50 Index for very large funds.
• WM2000 Index for small and medium-sized funds.

These are designed to reflect the fact that UK pension funds have portfolio
weights that can differ substantially from those of the external indices. For
example, UK pension funds tend to have a higher weight in Europe and a
lower weight in the US than a global market-weighted index (ex UK). They
also reflect the fact that large (mainly mature) funds have a very different
asset allocation from that of smaller (less mature) funds. Both sets of indices
are gross of the following costs: transactions costs (dealing spreads and com-
missions) and running costs (management and custody fees, property security
and insurance costs).

Peer-group tracking is less prevalent with life funds than with pension funds.
WM has constructed a with-profits universe mainly as a result of the curiosity
of life offices to know how competitors are performing, but acknowledges that
the product range of life offices is too great to make meaningful peer-group
comparisons. Most benchmarks for life funds are based on external indices.
In comparison, peer-group comparisons are more common with unit trusts
and are used for promotional purposes.
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5.2.2 Evaluating the single-index benchmarks

How are they constructed?
The first question that must be asked with any external index-based bench-
mark is: how was it constructed? Suitable index-based benchmarks have to
be constructed on a value- and time-weighted basis. This essentially means
that the constituents of the index are weighted according to their market cap-
italizations and that the timing of reinvested income is not allowed to distort
the measured return. Other types of indices such as price-weighted indices
(which simply sum up the prices in the index regardless of market capitaliza-
tion) and geometric indices (which simply multiply together the prices in the
index regardless of the market capitalization) would not make suitable bench-
marks. This is because it is impossible for any real-world portfolio to mimic
the behaviour of either of these two indices. However, while it is impossible
for a real-world portfolio to mimic, say, a geometric index, it would not be
difficult for the real-world portfolio to beat this index: anyone who knows
Jensen’s inequality will understand why! (see Blake (2000: 590–591)).

Even with benchmarks constructed on a value- and time-weighted basis,
there are practical considerations to take into account before using them to
assess performance. First, benchmarks can be constructed without having to
incur the kinds of costs that face real-world fund managers, such as brokers’
commissions, dealers’ spreads and taxes.

Second, the constituents of the benchmark change quite frequently. While
this involves no costs for the benchmark, it involves the following costs for
any fund manager attempting to match the benchmark. The deleted securities
have to be sold and the added securities have to be purchased: this involves
both spreads and commissions. In addition, when the announcement of the
change is made, the price of the security being deleted tends to fall and the
price of the security being added tends to rise and these price changes are
likely to occur before any fund manager has the chance to change his portfolio.
A bond index-based benchmark is even more expensive to beat: over time,
the average maturity of a bond index will decline unless new long-maturing
bonds are added to replace those that mature and automatically drop out of
the index.

Third, the benchmark assumes that gross income payments are reinvested
costlessly back into the benchmark on the day that the relevant stock goes
ex-dividend. In practice no fund manager would be able to replicate this
behaviour: dividends and coupon payments are not made until some time
after the ex-dividend date, the payment is generally made net of income or
withholding tax, there are commissions and spreads incurred when reinvest-
ing income and the trickle of dividend or coupon payments that are received
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at different times are going to be accumulated into a reasonable sum before
being reinvested. All these factors cause a tracking error to develop between
the benchmark and any real-world portfolio attempting to match the bench-
mark, and leads to the real-world portfolio invariably underperforming the
benchmark. So tracking error has to be recognized as an inevitable part of the
process of fund management, both for active and passive strategies.

Why are they difficult to beat?
Apart from these practical considerations, there are other reasons why an
institutional investor might find it difficult to beat an external index-based
benchmark. First, there may be restrictions placed on fund managers which
prohibit them from even attempting to match the index, let alone beat it.
We can consider some examples. There can be trustee-imposed prudential
limits on the maximum proportion of the fund that can be invested in a sin-
gle security. For example, most trustees place a limit of 10% on the fund’s
investment in the shares of a single company. When the market weighting of
Vodaphone in the FTSE100 index rose above 10% during 2000, fund man-
agers were obliged to sell Vodaphone shares to bring their portfolios within
the 10% limit and the FTSE100 index compilers were asked to introduce
a new benchmark in the form of a ‘capped’ FTSE100 index that limits the
weight of any security to 10%. As another example, some countries place reg-
ulatory limits on the holdings of certain securities by foreign investors: e.g.
for national security reasons there might be limits on the foreign ownership
of defence sector stocks.

Second, investors may not wish to be represented in some of the markets
covered by the index. For example, a global emerging markets index would
cover all continents, but investors might choose to avoid certain regions such
as Africa, the Middle East or Russia.

Third, there is the so-called ‘home country bias’, the preference for secu-
rities from the home market. If UK pension funds were fully diversified on
a global basis, they would hold less than 10% of their assets in the UK and
more than 90% abroad. Yet UK pension funds which are the most diversi-
fied internationally of all the world’s pension funds hold around 80% of their
assets in the UK and only about 20% abroad.

Why should this be the case if the most diversified and hence the least
risky portfolio possible is the global index? The only defensible answer to
this question is that UK pension fund liabilities are denominated in sterling
and, for liability matching purposes, pension fund managers select a high
weight for sterling-denominated assets. It cannot really be justified on the
grounds of risk. In the last 10 years, UK pension funds would have performed
much better had they held the global index: although the Japanese market fell
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markedly, the rise in the US market more than compensated for this as well
as outperforming the UK by a handsome margin (see, e.g., Timmermann and
Blake (2000)).

Finally, even if an index is chosen as a benchmark, no index currently
in use contains the shares and bonds of all the companies in the economy,
although it should if it is to be an efficient index.

Why is there a bias against small companies and venture capital?
The external indices listed above contain the securities of only relatively
large companies. This is a particularly important issue for new companies
which find it difficult to obtain equity capital to finance their start-up or to
expand in their early years. The gap in the provision of equity finance for
small companies in the UK was first identified by the Macmillan Committee
on Finance and Industry in 1931 (and is known as the ‘Macmillan gap’).
The Macmillan gap was still present when the Wilson Committee to Review
the Functioning of Financial Institutions reported in 1980 and made these
comments about pension funds:

In law, their first concern must be to safeguard the long-term interests of their
members and beneficiaries. It is, however, possible for fiduciary obligations to
be interpreted too narrowly. Though the institutions may individually have no
obligation to invest any particular quantity of new savings in the creation of
future real resources, the prospect that growth in the UK economy over the
next two decades might be inadequate to satisfy present expectations should be
a cause of considerable concern to them. The exercise of responsibility which
is the obverse of the considerable financial power which they now collectively
possess may require them to take a more active role than in the past . . . in
more actively seeking profitable outlets for funds and in otherwise contributing
to the solutions of the problems that we have been discussing. (Wilson (1980:
259–260)).

The pension funds’ defence against this criticism rested on the argument
that the costs of investing in small companies were much higher than those
of investing in large companies. The reason for this is as follows. Small
companies are difficult, and therefore expensive, to research because they
are generally relatively new and so do not have a long track record. Also,
their shares can be highly illiquid, and pension funds, despite being long-
term investors, regard this as a very serious problem. Further, pension fund
trustees place limits on the proportion of a company’s equity in which a fund
can invest. For example, a pension fund might not be permitted by its trustees
to hold more than 5% of any individual company’s equity. For a company
with equity valued at £1 m, the investment limit is £50,000. A large pension
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fund might have £500 m of contributions and investment income to invest per
year. This could be invested in 10,000 million-pound companies or it could
be invested in 50 large companies. It is not hard to see why the pension fund
is going to prefer the latter to the former strategy, even if it could find 10,000
suitable companies in which to invest.

Related to the criticism that pension funds are unwilling to invest in small
companies is the criticism that pension funds have been unwilling to supply
risk-taking start-up or venture capital to small unquoted companies engaged
in new, high-risk ventures. Venture capital usually involves the direct involve-
ment of the investor in the venture. Not only does the investor supply seed-
corn finance, he also supplies business skills necessary to support the inventive
talent of the company founder. This can help to reduce the risks involved. The
reward for the provision of finance and business skills is long-term capital
growth. The problem for pension funds is that, while they have substantial
resources to invest, they do not generally have the necessary business exper-
tise to provide the required support. Further, while venture capital investments
only ever take up a small proportion of the total portfolio, they take up a dis-
proportionate amount of management time. Also the performance in the early
years can be poor. As a result, pension funds remain largely portfolio investors
rather than direct investors. In other words, they prefer to invest in equity from
which they can make a quick exit if necessary, rather than make a long-term
commitment to a particular firm.

Not only do pension funds tend to avoid the risks of direct investment,
they tend also to be risk-averse when it comes to portfolio investment. They
seek the maximum return with the minimum of risk, and the investment
managers of pension funds tend to be extremely conservative investors, devoid
of entrepreneurial spirit. As G. Helowicz has pointed out, pension funds:

do not have any expertise in the business of, or a commitment to, the com-
panies in which they invest. Shares will be bought and sold on the basis of
the potential financial return. It therefore follows that the potential social and
economic implications of an investment decision have little influence on that
decision. (Benjamin et al. (1987: 98))

The other main factor is the legacy of the great inflation of the 1970s and the
stop-go policies of governments at the time. UK investors with highly cyclical
venture capital investments experienced substantial losses during every ‘stop’
phase.

UK pension funds have in recent years responded to the above criticisms.
For example, some of the larger funds have established venture capital divi-
sions. But they invest only about one-tenth of what US pension funds invest
as a proportion of assets: 0.5% of total assets in 1998 as against 5% in the
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US, according to the British Venture Capital Association. The venture capital
industry raised three times more funding in 1998 from overseas pension funds
and insurance companies than from their UK equivalents: 37% of the total
as against 13%. Moreover, most of the venture capital in the UK is used to
finance management buy-outs in existing companies, rather than to finance
green field site development.

Nevertheless, it appears to be the case that the ‘statement of investment
principles’ and the ‘statement on socially responsible investment’ required by
the 1995 Pensions Act have focused the attention of pension funds on these
issues in a way that was absent before the Act. The same is likely to be true
of the ‘principles of institutional investment’ that will be introduced following
the Myners Report.4 It is possible that establishing a suitable venture capital
benchmark might help to promote pension fund investment in new start-
ups as well. It certainly appears to be the case that behaviour soon follows
measurement when a performance benchmark is established: very quickly,
the benchmark changes from being a tool of measurement to a driver of
behaviour.

5.2.3 Evaluating the peer-group benchmarks

What is the effect of peer-group benchmarks?
This question has recently been addressed by Blake, Lehmann and Tim-
mermann (2000). They find that the answer depends to a large extent on
the industrial organization of and practices within the fund management
industry.

The UK fund management industry is highly concentrated, with the top five
fund management houses accounting for well over 50% of the funds under
management (it was as high as 80% in 1998). This contrasts with the US
where the top five fund managers account for less than 15% of the market.
There is also a much lower turnover of fund management contracts in the
UK than in the US, implying that client loyalty can help smooth over periods
of poor performance more effectively than in the US. In addition, there is
a single dominant investment style in the UK (namely balanced multi-asset
management), which contrasts with the much wider range of styles in the

4Myners (2001). The principles cover: effectiveness of decision making by well-informed fund
trustees, clarity of investment objectives for the fund, adequacy of time devoted to the strate-
gic asset allocation decision, competitive tendering of actuarial and investment advice services to
trustees, explicit investment mandates for fund managers, shareholder activism, appropriate bench-
marks, performance measurement of fund managers and advisers, transparency in decision making,
publication of mandates and fee structures via the statement of investment principles, regularity of
reporting the results of monitoring of advisers and fund managers.
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US (e.g. value, growth, momentum, reversal, quant and single asset-class
management).

Further, the remuneration of the fund manager typically depends solely
on the value of assets under management, not on the value added by the
fund manager and there is typically no reward for outperforming either
the external or peer-group benchmark and no penalty for underperforming
these benchmarks. However, the long-term success of any fund management
house depends on its relative performance against its peer group. The large
fund management houses in the UK have lost business in recent years not
because of their poor absolute performance, but because of their poor relative
performance.

These differences in industrial organization and practice have led to sig-
nificant differences in investment performance between pension funds in the
UK and US. Blake, Lehmann and Timmermann (2000) found that, during the
1980s and 1990s, the median UK pension fund underperformed the market
index by a fairly small 15 basis point p.a., whereas the median US pension
fund underperformed by a much wider margin of 130 basis points p.a.5 At
the same time, the dispersion of pension fund returns around the median was
much greater in the US than in the UK (603 basis points for the 10–90 per-
centile range, compared with 311 basis points in the UK).6 These results,
illustrated in Figure 5.1, clearly indicate that genuine active fund manage-
ment is much more prevalent in the US than in the UK: UK pension fund
managers display all the signs of herding around the median fund manager
who is himself a closet index matcher.

What role do fee structures play?
Fee structures appear to provide a disincentive to undertake active manage-
ment in the UK, while relative performance evaluation provides a strong
incentive not to underperform the median fund manager. While UK pension
fund managers are typically set the objective of adding value, their fees are
generally related to year-end asset values, not to performance. Genuine ex ante
ability that translates into superior ex post performance increases assets under
management and, thus, the base on which the management fee is calculated.
However, this incentive is not particularly strong and active management
subjects the manager to non-trivial risks.

The incentive is weak because the prospective fee increase is second order,
being the product of the ex post return from active management and the
management fee and thus around two full orders of magnitude smaller than

5The US results come from Lakonishok, Shleifer and Vishny (1992: 348).
6The US results come from Coggin, Fabozzi and Rahman (1993: 1051).
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Probability
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Source: Blake, Lehmann and Timmermann (2000).
Note: A = 10th percentile of funds; B = 90th percentile of funds

Figure 5.1 The dispersion of returns on UK and US pension funds in excess of the
market index

the base fee itself. Moreover, the ex post return from active management of
a truly superior fund manager will often be negative and occasionally large
as well, resulting in poor performance relative to managers who eschewed
active management irrespective of their ability. The probability of relative
underperformance large enough to lose the mandate is likely to be at least an
order of magnitude larger than the proportional management fee. Hence, the
risk of underperformance due to poor luck outweighs the prospective benefits
from active management for all but the most certain security selection or
market timing opportunities.

How successful are active fund managers?
The next result concerns the active management abilities of UK pension fund
managers, that is, their skill in outperforming a passive buy-and-hold strat-
egy. There are two principal types of active management: security selection
and market timing. Security selection involves the search for undervalued
securities (i.e. involves the reallocation of funds within asset categories) and
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market timing involves the search for undervalued sectors (i.e. involves the
reallocation of funds between sectors or asset categories).

Blake, Lehmann and Timmermann (1999) decomposed the median total
return earned by pension fund managers into the following components:

Component Percentage

Strategic asset allocation 99.47%
Security selection 2.68%
Market timing −1.64%
Other −0.51%

Total 100.00%

The most important task of pension fund managers is to establish and
maintain the SAA and the decomposition reveals that, of the median total
return over the sample period of 12.06% p.a., 12.00% p.a. (or 99.47% of
the total) was due to this essentially passive activity. In terms of the active
components, the average pension fund was unsuccessful at market timing,
generating a negative contribution to the total return of −1.64%. Security
selection was more successful, making a positive contribution to the total
return of 2.68%. Even so, the overall contribution of active fund management
at just over 1% of the total return (or about 12 basis points p.a.) is less than the
annual fee that active fund managers typically charge (which range between
20 basis points for a £500m fund to 75 basis points for a £10m fund7).

Finally, the study by Blake, Lehmann and Timmermann (2000) found
that above-average performance by a particular fund manager (so-called ‘hot
hands’ in investment performance) was very short-lived: it rarely lasted more
than a year. Studies of US fund managers have found persistence in perfor-
mance extending out to two or three years, but no longer (Hendricks, Patel
and Zeckhauser, 1993).

Is there a role for performance-related fees?
One way of providing appropriate incentives to those fund managers who
believe that they can generate superior investment performance is to use
performance-related investment management fees. In one example of this,
the fee is determined as some proportion, f1, of the difference between the
fund’s realized performance, gt , and some benchmark or target, g∗

t , plus a base

7Pensions Management (September 1998).
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fee to cover the fund manager’s overhead costs, set as a fixed proportion, f2,
of the absolute value of the fund (Vt in period t):

Performance-related fee in period t = f1(gt − g∗
t )Vt + f2Vt (5.1)

This would reward good ex post performance and penalize poor ex post
performance, whatever promises about superior ex ante performance had been
made by the fund manager. The fund would have to accept a reduced fee or
even pay back the client if gt was sufficiently below g∗

t (although the latter
case generally involves credits against future fees rather than cash refunds).

Another possibility that is less extreme since it does not involve refunds is:

Performance-related fee in period t = fiVt (5.2)

where fi is the fee rate if the fund manager’s return is in the ith quartile.
An example of this second type of fee structure is that of the Newton

Managed Fund whose particular fee structure is listed in Table 5.1. Figure 5.2
illustrates how this fee structure might work in practice. The chart shows the
distribution of fees payable to the manager of a middle-sized fund, based
on a Monte Carlo simulation. The 90% confidence interval for the fees lies
between 0.22 and 0.45% p.a., while there is a 25% chance that the fee will
exceed 0.37% p.a. and a similar chance that it will be less than 0.31% per
annum. A mean annual charge of 0.34% implies a total take of approximately
8.9% of the terminal fund value over an investment horizon of 25 years.

The level set for the target g∗
t will have important implications for the

outcome. If the target is unrealistic and outside the range of performance
expected by a skilled fund manager, the only way the manager can reason-
ably achieve the stipulated performance is by increasing the volatility of his
investment strategy, i.e. by increasing risk. This is highly relevant in practice
as some targets are very hard to achieve. Examples of these are: ‘beat the
median fund by 2 percentage points over a three-year rolling period’, or ‘be

Table 5.1 Newton Managed Fund

Quartile rank Fund size

Up to £10m £10–£50m Above £50m

1st 0.94% 0.59 0.04
2nd 0.79 0.44 0.03
Median 0.69 0.34 0.02
3rd 0.59 0.24 0.01
4th 0.44 0.09 0.01

Source: Newton Fund Managers.
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The Monte Carlo simulation assumes the following: a fund with a 25-year investment
horizon, a distribution of returns which is normal with a mean of 9% p.a. and a standard
deviation of 18%, and 1000 replications.  Based on long-run returns reported in Credit
Suisse First Boston's Equity-Gilt Study (2000), such a portfolio would be invested 35%
in equities and 65% in bonds.

Figure 5.2 Frequency distribution of performance-related fees

in the upper quartile of performance’. There is an unconditional probability of
75% of failing to achieve the second target! Clients/trustees are beginning to
accept that high targets will most likely be associated with greater volatility in
performance, unless the client has a priori information that the fund manager
is genuinely capable of delivering the target performance.

Clients/trustees are also beginning to accept that targets based on the
peer-group median or peer-group distribution are very likely to distort fund



122 Performance Measurement in Finance

manager behaviour. This is partly because the median performance is really an
outcome rather than a target. Whereas a fund manager knows the composition
of an external index prior to making his own investments and so knows how
much he is overweight or underweight in different securities, he will not know
for sure what the asset allocation of the median fund manager is until the end
of the performance period. All fund managers will be in the same position and
this provides a strong incentive for fund managers not to deviate too far from
each other. Hence, we find that there is a tight distribution of fund managers
around the median fund manager who, in turn, generates a performance little
different from that of a passive index matcher. Those fund managers who
beat the median fund by 2 percentage points over a three-year rolling period,
or who end up in the upper quartile of performance, are therefore more likely
to do so by chance than by skill.

All this suggests that the target g∗
t should be set in relation to an external

benchmark rather than to a peer-group benchmark if clients/trustees wish
their fund managers to pursue genuinely active fund management strate-
gies. However, this makes quartile-based fee structures virtually impossible to
implement, since information on the distribution of returns around the median
value of the external index is not collected centrally.

It is particularly important for the fee rate to be symmetric about the
target g∗

t , so that underperformance is penalized in exactly the same way
that outperformance is rewarded. The worst possible fee structure from the
client/trustee’s point of view would be one that rewarded outperformance but
did not penalize underperformance. An example of this would be:

Performance-related fee in period t = max[0, f1(gt − g∗
t )Vt ] + f2Vt

(5.3)
This particular fee structure would simply encourage the fund manager to take
risks with the client/trustee’s assets. If the fund manager’s risk taking paid off,
he would receive a large fee. If, on the other hand, performance was disastrous,
the fund manager would still get the base fee. All the risk of underperformance
(at least in the short term) therefore falls on the client/trustee.

How frequently should fund managers be assessed?
A final issue of importance concerns the frequency with which fund managers
are assessed against the benchmark. Despite having very long-term investment
objectives, the performance of pension fund managers is typically assessed on
a quarterly basis. This is said to provide another disincentive from engaging
in active fund management because of the fear of relative underperformance
against the peergroup and the consequent risk that an underperforming fund
manager will be replaced.
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The frequency with which fund managers have their performance assessed
ought to be related to the speed with which market anomalies are corrected.
Suppose, as argued above, the benchmark has been set in relation to the SAA.
Then it is the fund manager’s performance in the two active strategies of stock
selection and market timing that should be judged against the benchmark
provided by the SAA. So the critical question is how long does it take for
undervalued stocks to become correctly priced or for market timing bets to
succeed? If financial markets are relatively efficient, then pricing anomalies
should be corrected relatively quickly. This appears to suggest that a relatively
short evaluation horizon is appropriate. To illustrate using a somewhat extreme
example, if a market timing bet that involves, say, a significant underweighting
of the US stock market, has not paid off after 10 years, then we might be
tempted to say that the bet was a bad one.

However, two points speak against the use of relatively short evaluation
horizons. The first has to do with time-variations in the investment opportu-
nity set as represented by the relative expected returns and the conditional
variances and covariances between the different asset classes. Many studies
in the finance literature suggest that the first and second moments of returns
on different asset classes vary systematically as a function of the underlying
state of the world. Nevertheless, there is considerable uncertainty about how
best to model such variations. But it seems reasonable to expect a successful
market timing strategy to be linked to the ability to anticipate changes in the
underlying economic state. This tends to evolve over fairly long periods of
time, as exemplified by the 10-year expansion in the US economy up to 2000.
If clients want fund managers to time swings in the business cycle, a long
evaluation horizon would seem more appropriate.

The second justification for using a longer investment horizon is that per-
formance is measured with so much noise that it is in effect impossible to
assess true fund management skills based on a short performance horizon.
Under reasonable assumptions,8 it is possible to generate the following rela-
tionship between the length of the performance record and the power of the
test for assessing fund management skills:

Power Required data record

25% 3.5 years
50% 8 years
90% 22 years

8See the Appendix.
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Figure 5.3 Power function – probability of correctly detecting abnormal performance

These figures are derived from Figure 5.3. The power of the test measures
the probability of correctly rejecting the null hypothesis that the fund manager
generates no abnormal performance. It is clear from the figures that it takes
a long time to detect with reasonable confidence that the performance of the
fund manager is abnormal. And this result is dependent on an unchanging
investment opportunity set which is in itself an unlikely eventuality over a
22-year time horizon.

5.3 WHAT ARE THE ALTERNATIVES?

Recently, the academic literature has begun to investigate alternative bench-
marks, based on extensions to the Capital Asset Pricing Model (CAPM).
They help to identify the sources of any under- or outperformance by fund
managers. There are also fixed benchmarks.

5.3.1 Single-index benchmarks with time-varying coefficients

The external benchmarks considered above are single-index benchmarks that
can be justified by the CAPM, invented by Nobel prize winner Bill Sharpe
and now one of the cornerstones of modern finance theory.

What is the CAPM?
The CAPM decomposes the expected return on a fund into two parts. The
first is the return on a riskless asset such as Treasury bills: all professional
investors should be expected to generate a return exceeding that on Treasury
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bills! The second is the additional return from taking on ‘market risk’. This,
in turn, has two components: the ‘market risk premium’ (otherwise called the
‘excess return on the market’ or the ‘market price of risk’), and the ‘quantity’
of market risk assumed by a particular fund as measured by that fund’s ‘beta’.

The market risk premium is measured by the difference between the
expected return on the market index and the risk-free rate. The principal
market index in the UK is the FTA All Share Index and many equity fund
managers have this index as their single-index benchmark. The historical
long-run market risk premium for the UK is about 6% p.a.

The beta of a fund measures the degree of co-movement between the return
on the fund and the return on the market index. Technically the beta is cal-
culated as the ratio of the covariance between the returns on the fund and
the market to the variance of the return on the market. It is also equal to the
product of the standard deviation of the return on the fund and the correlation
between the returns on the fund and the market. These are exactly the same
formulae as the slope or beta coefficient in a time-series regression of the
excess return on the fund on an intercept and the market risk premium, which
explains how a beta coefficient is so named. If the standard deviation of the
return on the fund or the correlation between the returns on the fund and the
market are high, then the fund’s beta will be high. The beta of the market
index itself is unity. If the fund beta exceeds unity, the fund is more volatile
than the market: a beta of 1.1 implies that the fund is 10% more volatile than
the market so that if the market rises or falls by 20%, the fund will rise or
fall by 22%.

The CAPM can be expressed as follows:

Excess return on fund = Alpha + Beta of fund × Market risk premium
= Alpha + Market risk of fund (5.4)

where the excess return on the fund is the difference between the realized
return on the fund and the risk-free rate. The CAPM is illustrated in Figure 5.4.

If the excess return on the fund exceeds the market risk of the fund, then
the fund has generated an above-average performance. The difference between
the excess return on the fund and the market risk of the fund is called the
fund ‘alpha’ (sometimes it is called the ‘Jensen alpha’ after its inventor). A
successful fund manager therefore generates a positive alpha. However, it is
important to recognize that a fund return exceeding the market index return
does not necessarily imply a positive alpha. It is possible for a fund to take
on a lot of market (i.e. beta) risk and generate a return higher than the market
index return, but nevertheless generate a negative alpha: this would indicate
that the market risk assumed by the fund manager was not fully rewarded.
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Beta (A)

Source : Blake (2000: Fig.14.8); Note: M, excess return on the market index (which has a
beta of unity), A − positive excess return of fund A, B − negative excess return of fund B. 
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Figure 5.4 The Capital Asset Pricing Model

This is the case for fund manager B in Figure 5.4: although B generated
a return above that of both the market and fund manager A, A is a more
successful fund manager.

How has the CAPM been extended?
This is how a single-index benchmark with constant coefficients for alpha
and beta operates within the context of the CAPM. A recent development
has been to make the beta coefficient of the CAPM time-varying, that is to
allow for predictable time-variation in the beta coefficient on the grounds that
fund managers should not be credited with using publicly available informa-
tion concerning changes in investment opportunity sets when making their
investment decisions (see Ferson and Schadt (1996); even more recently,
Christopherson, Ferson and Glassman (1998) have extended this procedure to
allow for time-varying alpha coefficients).

The beta coefficient is made a linear function of a set of predetermined
variables: the lagged values of the short-term yield on T-bills, the long-term
yield on government bonds and the dividend yield on an equity index such
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as the FTA All Share Index; these are all standard regressors with a long
tradition in the literature on the predictability of stock returns. So the beta
coefficient in this case is determined as follows:

Beta of fund = B(0) + B(1) × T -bill yield lagged
+ B(2) × Government bond yield lagged
+ B(3) × Dividend yield lagged (5.5)

When Blake and Timmermann (1998) substituted this beta equation into the
CAPM equation above and applied it to UK unit trusts over the period
1972–1995, they found it raised the estimate of alpha for the UK balanced
sector from −0.74 to −0.52. In other words it lowered the estimate of under-
performance slightly for that sector. It made little difference to other sectors,
however.

5.3.2 Multiple-index benchmarks

Another recent innovation has been the use of multiple-index benchmarks.
For example, Elton et al. (1993) pioneered the use of a ‘four-index’ bench-
mark consisting of the excess return on large-cap stocks (i.e. a large-cap risk
premium), the excess return on small-cap stocks (i.e. the small-cap risk pre-
mium), the difference between the returns on an equity growth index and an
equity income index (i.e. a growth minus income factor) and the excess return
on bonds (i.e. a bond risk premium). The multiple-index CAPM therefore
becomes:

Excess return on fund = Alpha + Beta (1) × Large-cap risk premium
+ Beta(2) × Small-cap risk premium
+ Beta(3) × (Growth−Income)
+ Beta(4) × Bond risk premium (5.6)

Again, a successful fund manager will generate a positive alpha after tak-
ing into account these four factors. In other words, a successful active fund
manager will be one who does more than simply buy a portfolio of large-cap
stocks, small-cap stocks, growth stocks and corporate bonds.

A variation on this model has been applied to UK unit trusts by Blake and
Timmermann (1998). For the UK Equity General sector, for example, they
found the following three-index model for the sample period 1972–1995:

Excess return on fund = −0.16 + 0.86 × Market risk premium
+ 0.33 × Small-cap risk premium
− 0.07 × Bond risk premium (5.7)
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This indicates that after taking into account market risk, small-cap risk and
bond risk, a typical unit trust from the UK Equity General sector generated
a negative alpha (i.e. underperformed on a risk-adjusted basis) by 16 basis
points p.a. on average.

The wider use of multiple-index benchmarks which include small-cap and
micro-cap indices might well help to encourage institutional investors to con-
sider their investments in these sectors more carefully since they would now
have a specific reference point in the form of a performance benchmark.

5.3.3 Fixed benchmarks

Another possibility is to use a fixed benchmark. This in a sense is what was
implied by the long-term financial assumptions of the MFR9:

• Rate of inflation – 4% p.a.
• Effective rate of return on gilts – 8% p.a.
• Effective rate of return on equities – pre-MFR pension age – 9% p.a.
• Effective rate of return on equities – post-MFR pension age – 10% p.a.
• Rate of increase of GMP under Limited Revaluation – 5% p.a.
• Rate of statutory revaluation for deferred benefits – 4% p.a.
• Rate of LPI increase in payment – 3.5% p.a.
• Rate of increase in post-1988 GMPs – 2.75% p.a.
• Rate of increase in S148 Orders – 6% p.a.
• The real rate of return on index – linked stocks is I where (1 + I ) =

1.08/1.04.

The problem with fixed benchmarks is their arbitrary nature. Even if they are
based on historical experience, there is no guarantee that they would provide
accurate forecasts for the future. For example, the extraordinary performance
of the UK stock market over the last quarter century has generated an equity
risk premium approaching 10%. It would be highly inappropriate to use this
figure to set a benchmark for equities over the next 25 years.

5.4 BENCHMARKS BASED ON LIABILITIES

5.4.1 Liability benchmarks

What are the key liability benchmarks?
The benchmarks considered so far, appropriately adjusted for the relevant
universe, are suitable for any institutional investor without matching liabilities,

9See ‘Current Factors for Use in MFR Valuation’ in Guidance Note 27 of the Faculty and Institute
of Actuaries, 1998, B27.11–12.
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such as a defined contribution pension fund or a unit or investment trust. They
are also used in practice by defined benefit pension funds which do have
matching liabilities. However, it is important to consider explicit liability-
based benchmarks. For example, the liabilities of a final salary pension plan
depend on expected earnings growth; they also depend on other factors such
as forecasts of life expectancy and the discount rate used for discounting
liabilities.

One natural benchmark would therefore be earnings growth. A related
benchmark might be GDP growth. Earnings growth and GDP growth are
related in the long run, since the share of wages in national income does not
trend significantly over time: in fact in long-run dynamic equilibrium, earnings
growth and GDP growth will be the same. However, over the course of any
business cycle, the growth rates in these two variables can differ substantially.

Another natural benchmark for pension funds would be the growth rate
in consumption expenditure, since a pension plan’s purpose is to finance
consumption expenditure in retirement. Strictly speaking the weights for the
consumption expenditure index should reflect the pattern of expenditure by
the elderly, which might have a higher weight in medical expenses and a
lower weight in foreign holidays, say, than younger more active cohorts of
the population. Again in long-run dynamic equilibrium, the growth rates in
GDP and consumption expenditure will be the same (otherwise the savings
ratio will tend towards either zero or unity).

Why are they easy to beat?
A benchmark based on the growth rate of liabilities would be a fairly easy one
to beat, since the returns on funds with a substantial weighting in equities tend
to exceed the growth rate of liabilities whether measured by earnings growth,
GDP growth or consumption growth. There is a good technical reason why
this should be the case: it has to do with what is known as the ‘dynamic
efficiency’ of the economy.10

It is possible for economies to accumulate too much productive capital (that
is, the plant equipment and machinery used by workers to produce the goods
and services that consumers wish to buy). As more capital is accumulated, its
return falls: this is because the additional capital is being applied to increas-
ingly marginal and less productive investment opportunities. When there is
too much capital, the return falls below the growth rate of the economy. When
this happens, the economy is said to be ‘dynamically inefficient’: everyone in
the economy would be better off if there was less saving and investment and
more consumption. With less investment, the capital stock falls (as depreciated

10See, e.g., Blanchard and Fischer (1989).
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capital is not replaced) and the return on capital rises above the growth rate
of the economy as measured by the GDP growth rate. When this happens,
the economy is in a state of dynamic efficiency.

Most of the key economies in the world have been assessed as being dynam-
ically efficient.11 This means that, in such economies, the returns on financial
assets such as equities (which represent claims on the capital stock) will on
average exceed the growth rate of GDP, even though there will inevitably be
some years when this does not happen. So a passive strategy of holding a
broadly based equity portfolio will generate a return that is likely to exceed
wage growth, GDP growth or consumption expenditure growth in most years.

How should future liabilities be discounted?
The discount rate for discounting future liabilities provides another possible
benchmark if it is set independently of the return on the assets in the fund.
Some asset-liability models use the weighted-average return on the assets in
the fund as the discount rate for liabilities: obviously this could not be used
as a benchmark. Others use the yield on long-term government or corporate
bonds.

The 1995 Pensions Act’s MFR norms, for example, used government bond
yields to determine the present value of pensions in payment12:

The current gilt yields to be used for valuing pensioner liabilities should be
the gross redemption yield on the FT-Actuaries Fixed Interest 15 year Medium
Coupon Index or the FT-Actuaries Index-linked Over 5 years (5% inflation)
Index, as appropriate. In the case of LPI pension increases, either fixed-interest
gilts with 5% pension increases or index-linked gilts with a 0.5% addition to
the gross redemption yield should be used, whichever gives the lower value
of liabilities. Similar principles should be applied for other pensions which are
index-linked but subject to a cap other than 5%.

The justification for using a bond yield is that pensions-in-payment liabilities
are less risky than equities and hence should be discounted at a lower yield.
On the other hand, pensions-in-payment liabilities are not risk free, and so
the discount rate should be higher than that on Treasury bills. This suggests
that a bond yield provides an appropriate discount rate. The Faculty and
Institute of Actuaries chose the above government bond yields to calculate
pensions-in-payment liabilities under the MFR.13

11See Abel et al. (1989).
12See ‘Current Factors for Use in MFR Valuation’ in Guidance Note 27 of the Faculty and Institute
of Actuaries, 1998, B27.11–12.
13The MFR allowed the accruing liabilities of active workers to be discounting using a weighted
average of long-run gilt and equity yields, with the weights reflecting the asset mix in the fund.
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However, for financial reporting purposes, the Accounting Standards Board
requires, in FRS17, that all pension liabilities (including those relating to the
accumulating liabilities of active members as well as pensions in payment)
are valued using an AA corporate bond yield.14

Whichever particular bond yield is used, a fund with a heavy equity com-
ponent is likely to beat a benchmark based on either government or corporate
bond yields in most years, on account of the sizeable positive equity risk
premium in the UK financial markets. On the other hand, since equity values
are more volatile than those of bonds, there will also be a greater chance of
producing periodic deficits in the fund.

Explicit liability benchmarking, although currently not very common, will
soon become so for a number of reasons. First, there is the increasing maturity
of pension funds: the crystallization of liabilities in terms of a specific stream
of pensions-in-payment will inevitably move pension fund asset holdings
towards bonds as the natural matching asset. Second, the financial reporting
developments just mentioned will introduce a common liability benchmark
for all schemes. Third, the replacement of the MFR with a scheme-specific
funding standard, as announced by the government in March 2001 and rec-
ommended by the Myners Review (2001), will lead to the introduction of
scheme-specific liability benchmarks.

5.4.2 Measuring the performance of pension funds using liability-driven
performance attribution

‘Liability-driven performance attribution’ (LDPA) is the name given to the
framework for analysing performance measurement and attribution in the case
of asset-liability managed (ALM) portfolios, that is, portfolios whose invest-
ment strategy is driven by the nature of the investing client’s liabilities.15

We can illustrate the LDPA framework using the following balance sheet
for an asset-liability managed pension fund16:

Assets Liabilities

Liability-driven assets A Pension liabilities L

General assets E Surplus S

14This was the same yield chosen by the equivalent US accounting standard, FAS87.
15See Plantinga and van der Meer (1995).
16The components of the balance sheet are measured in present value terms. Also for simplicity
of exposition, we assume that L relates to accrued past service; thus future contributions are
excluded from the balance sheet: actuaries call this the ‘accrued benefits method’ of valuing
pension liabilities.
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Suppose that the ‘pension liabilities’ (L) generate a predetermined set of
future cash outflows. The fund manager can meet these cash outflows by
investing in fixed-interest bonds (A) with the same pattern of cash flows;
these bonds constitute the ‘liability-driven assets’ (LDAs) in the balance sheet
above.17 Suppose that the pension fund ‘surplus’ (S) is invested in ‘general
assets’ (E). These can be any assets matching the risk-return preferences
expressed by the pension scheme’s sponsor (e.g. equities). The surplus is
defined as assets (A+ E)minus liabilities (L).18 The return on the surplus is
defined as:

rSS = rEE + rAA− rLL (5.8)

where:
rS = the rate of return on the surplus
rE = the rate of return on the general assets
rA = the rate of return on the liability-driven assets
rL = the payout rate on the liabilities.

Both the pension liabilities and the liability-driven assets will be sensitive to
changes in interest rates. Higher interest rates reduce the present value of pen-
sion liabilities. Similarly, higher interest rates reduce the value of fixed-interest
bonds, since a given stream of fixed-coupon payments is worth less today
when yields on alternative assets are higher.19

Assuming that interest rate risk is the only source of risk to this portfolio,
we can use equation (5.8) to derive a decomposition of portfolio performance
as follows. First, we rewrite the return on the general assets as:

rEE = rES + rE(E − S) (5.9)

and the return on the liability-driven assets as:

rAA = rAL+ rA(A− L) (5.10)

17If the pension liabilities are indexed to uncertain real wage growth or to future inflation then
the liability-driven assets will be the assets most likely to match the growth rate in earnings or in
inflation over the long term (e.g. indexed bonds, equities and property). But to keep the analysis
simple, we assume that the cash flows on future pension payments are known.
18Following the 1986 Finance Act, the surplus in UK pension funds cannot exceed 5% of the value
of the liabilities. Following the 1995 Pensions Act, the deficit in pension funds cannot exceed 10%
of the value of the liabilities and must be reduced to zero within a maximum of ten years.
19It is theoretically possible to structure the liability-driven assets in such a way that the pension
fund is immunized against interest rate movements. When this happens, the surplus will not respond
to interest rate movements. Immunization is explained in Blake (2000: Chap. 14).
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Then we can divide each side of (5.8) by S and substitute (5.9) and (5.10) to
get the LDPA20:

rs = rES + rE(E − S)

S
+ rAL+ rA(A− L)

S
− rL

L

S

= rE + λ(rA − rL)+ γ (rE − rA)

= rE + λ(rA − r̄A)+ λ(r̄A − rL)+ γ (rE − rA) (5.11)

or:

Rate of return on the surplus = Rate of return on the general assets
+ Rate of return on the LDAs due to

security selection
+ Rate of return on the LDAs due to

market timing
+ Rate of return from a funding

mismatch

where:

λ = L

S
= financial leverage ratio

γ = L− A

S
= E − S

S
= funding mismatch ratio

r̄A = the expected return on bonds when they are correctly priced
on the basis of the spot yield curve (i.e. when the future
coupon payments are discounted using the appropriate spot
yields) (see, e.g., Blake (2000: Chap. 5)).

The four-component LDPA in (5.11) can be explained as follows:

1. The rate of return on general assets (rE). This can be analysed using
standard techniques, e.g. comparing performance against a pre-agreed peer-
group or external benchmark, as outlined in sections 5.2 and 5.3 above.

2. The rate of return on the liability-driven assets due to stock selection in
terms of, say, credit quality management or sector management. This fol-
lows because rA is the actual return generated by the bonds chosen by
the fund manager, whereas r̄A is the benchmark return on the bonds if

20In the case where the surplus is exactly zero, the decomposition in (5.11) is not defined. The
fund manager has just generated a sufficient return to meet the payout rate on liabilities. The LDPA
in this case would be based on rL = rE(E/L)+ rA(A/L) where (E/L) is the portfolio weight in
general assets and (A/L) is the portfolio weight in liability-driven assets (see (5.8)).
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they were correctly priced according to the spot yield curve: (rA − r̄A) is
therefore the excess return arising from the stock selection skills of the
fund manager.

3. The rate of return on the liability-driven assets due to market timing, that
is, from choosing a portfolio of bonds with a maturity structure that differs
from that of the underlying liabilities, thereby deliberately leaving the
portfolio partially exposed to interest rate risk.

4. The rate of return from a funding mismatch, that is, from active manage-
ment of the liability-driven assets such that part of this category is invested
in riskier general assets such as equities.

We can illustrate the LDPA using an example. Suppose that a pension fund
has the following balance sheet at the start and end of the year:

Assets Liabilities
Start End Start End
year year year year

Liability-driven Pension
assets (A) 900 997 liabilities (L) 1,000 1,107

General assets (E) 150 169 Surplus (S) 50 59

1,050 1,166 1,050 1,166

We will assume that the liability-driven assets are bonds, while the general
assets are equities (and that equities have no yield curve effect). The value
of the liabilities is calculated as the present value of the liability cash flows
using appropriate spot yields as discount rates. We have the following returns
on the components of the balance sheet:

Component Actual rate Benchmark rate
of return (%) of return (%)

Bonds rA = 10.78 r̄A = 10.66 (assumption)
Equities rE = 12.67 r̄E = 13.30 (assumption)
Liabilities rL = 10.70

The actual rates of return are found by taking the difference between the
end-of-year and start-of-year values as a ratio of the start-of-year values. The
benchmark return on bonds is calculated in a similar way but based on start-
and end-year present values of coupon payments using appropriate spot yields.
The benchmark return on equities is simply the realized return on a relevant
index, e.g. the FTA All Share Index.
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Using equation (5.11) with λ = L/S = 20 and γ = (L− A)/S = 2 (using
start-of-year values), the LDPA is determined as follows:

Component Return (%)

1. General assets (rE) 12.67
2. Security selection (λ(rA − r̄A)) +2.40
3. Market timing (λ(r̄A − rL)) −0.80
4. Funding mismatch (γ (rE − rA)) +3.78

Total 18.05%

The total rate of return on the surplus of 18.05% is made up of 12.67%
from the performance of the general assets, 2.40% from successful stock
selection of the bond portfolio, 3.78% from a successful funding mismatch,
and a loss of 0.80% from market timing. The security selection and market
timing effects are magnified by a high leverage ratio (λ) of 20 (the minimum
that is permissible since the surplus may not (in the long term) exceed 5%
of liabilities), while the funding mismatch effect is magnified by a smaller
funding mismatch ratio (γ ) of 2. The positive net return of 1.60% from
active fund management (i.e. the sum of the returns from security selection
and market timing) and the positive net return from a funding mismatch help
to generate a high surplus return. However, this cannot conceal the fact that
the fund manager underperformed the benchmark in terms of general assets
by 0.63%.

The LDPA therefore tells us a great deal about the investment skills of the
pension fund manager when he or she is constrained on the liability side of
the balance sheet. The only additional information that is required over the
current performance measurement framework is as follows: the present value
of the pension liabilities (as determined by the pension scheme’s actuary),
together with the payout rate on these, and the value of the liability-driven
assets, together with a customized benchmark return on these.

5.5 WHAT HAPPENS IN OTHER COUNTRIES?

5.5.1 USA

Benchmarking is usually done on an asset class basis against well-known total
return indexes. Thus the performance of domestic equity managers is assessed
relative to the S&P 500 total return index, fixed-income managers relative to
the Lehman aggregate, etc. The other kind of benchmarking is relative to the
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average within a peer group. Thus the average of all equity managers who
subscribe to Lipper’s performance service becomes the benchmark for all the
managers in that ‘universe’.

5.5.2 Japan

No definite benchmarks have been established yet in Japan. Tentatively, the
annual rate of return from the Treasury bond (with a maturity in excess of
10 years) plus 0.1% is used, which is just equivalent to the investment per-
formance from the Fiscal Investment and Loan Program.

5.5.3 Germany

There are four different pension vehicles in Germany.

(1) Direct commitments (book reserves)
Since there are no separate funds, there is no investment choice. Fifty-seven
per cent of total occupational pension liabilities in Germany are financed
through direct commitments.

(2) Support funds
There are no portfolio restrictions for support funds whatsoever. Instead,
investment decisions are made solely by the employer. Therefore, there is
either no communicated benchmark at all, or the employer selects the bench-
mark on a discretionary basis. There are more than 5,000 support funds in
Germany but they account for only 8% of total pension assets.

(3) Direct insurance
Currently, the benchmark is 4% p.a. However, there is a public debate about
whether this is too high since interest rates are currently low. Therefore,
the government is considering lowering the benchmark to 3.5%. There are
numerous direct insurance contracts in Germany and they account for 12%
of total pension assets.

(4) Pension funds
Pension funds are the only vehicle where having a proper benchmark would
make sense. However, pension funds are not required to make detailed infor-
mation about their investment returns, etc. publicly available. This kind of
information need only be disclosed to the regulator. Currently, there are
180 pension funds in Germany and they account for 22% of total pension
assets.
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5.5.4 Italy

Mixes of well-known indices like JPM bond and MSCI stocks in varying
proportions. The exact benchmark of each pension fund is not made public.
While it can be requested from the fund, this is a long process.

5.5.5 Chile

The benchmark is the average of the return of the other pension funds (AFPs).
The use of market indices has been rejected because the local market bench-
marks are of questionable applicability. Pension funds are subject to a number
of investment constraints, not taken into account in the existing benchmark,
e.g. the weights in the benchmark are changed every quarter but the pension
funds invest with a very long horizon.

5.6 CONCLUSION

Performance benchmarks are important for three key reasons: they help to
measure the investment performance of institutional fund managers, they pro-
vide clients/trustees with a reference point for monitoring that performance
and they can also have the effect of modifying the behaviour of fund man-
agers. But benchmarks are not the only factor of importance: fee structures
also have a major impact.

At the same time, there needs to be a much greater understanding by
clients/trustees of the nature of active fund management. At its simplest,
an active portfolio can be interpreted as a passive portfolio plus a set of
active side bets against the market. The passive component of the portfolio
is the strategic asset allocation and, if the benchmark is set appropriately, the
performance of the SAA should exactly match the benchmark. The active
components should beat the benchmark if the fund manager’s side bets are
successful and it should be possible to assess this fairly quickly if financial
markets are relatively efficient.21

A good benchmark combined with a suitable fee structure would there-
fore enable an above-average fund manager to deliver, on a systematic basis,
superior investment performance without taking on excessive risks. The fact
that the evidence indicates that fund managers cannot systematically deliver
superior investment performance over extended periods is more an indication
of the efficiency of financial markets than of the ineffectiveness of either the
benchmark or the particular fee structure.

21Although we also showed that the noise generated by changing investment opportunity sets can
make it difficult to assess genuine fund management skill over short horizons.
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In addition, a good benchmark would be one that did not have built-in
biases either in favour of or against particular asset classes. In particular, a
dynamic financial system demands that there is no bias against start-up capital,
and so a good benchmark would contain the appropriate market weighting
in venture capital securities. A good benchmark might therefore be based
on a multiple of indices that covers all the key asset categories as well as
liabilities. In turn, a good fee structure has an appropriate performance-related
element.

There are, of course, unsuitable benchmarks and fee structures. Peer-group
benchmarks provide a strong incentive not to underperform the median fund
manager, while fee structures based on the value of assets under management
do not provide a particularly strong incentive to engage seriously in active
fund management. We should not be surprised to find that the outcome is
herding around the median fund manager who, in turn, is doing little more
than match the index. In other words, this benchmark and fee structure have
the effect of modifying the behaviour of the fund manager from that which
was agreed with the client/trustee. This is rational behaviour by the fund
manager since his long-term survival in the industry depends on his rela-
tive performance against other fund managers. But it is certainly not what
the client/trustee intended. Similarly, a fee structure that awarded outperfor-
mance of a benchmark without penalizing underperformance would lead to
the fund manager taking risks with the client/trustee’s assets in a way that the
client/trustee did not intend. As a final example, the maturing of net investors
such as pension funds suggests that scheme-specific benchmarks that reflect
the maturity of a particular scheme’s liabilities become increasingly appropri-
ate, while, correspondingly, those based on external or peer-group benchmarks
become less so.

Benchmarks are important, but so are fee structures. They can either provide
the right incentives for fund managers or they can seriously distort their
investment behaviour.

5.7 APPENDIX: DERIVING THE POWER FUNCTION

Suppose a fund’s monthly excess returns are generated by the equation:

Rt = α + βRmt + εt , εt ∼ N(0, σ 2)

where Rt is the excess return on the fund in period t , over and above the
risk-free rate of return, β is its beta, Rmt is the excess return on the market
portfolio in period t , εt is the residual in period t and α measures the fund’s
genuine ability to outperform. How long will it take for the trustees to detect
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with reasonable statistical reliability whether the fund produces abnormal per-
formance? To answer this question, suppose that α = −0.1 and it is known
that β = 1 and σ = 0.5. For continuously compounded monthly returns data
these parameter values correspond to a fund that underperforms the index by
1.2% per year while the idiosyncratic risk is 6% per year. Assuming that the
size of the statistical test for the fund manager’s ability to add value, p, is the
standard 5%, we can illustrate the difficulty of conducting statistical inference
about management skills by calculating the power function for a test of the
null hypothesis:

H0(no abnormal performance): α = 0

against the alternative hypothesis:

H1(abnormal performance): α 	= 0

We do so by computing how many months of data are needed to ensure
a 10, 25 or 50% probability of correctly identifying the fund’s abnormal
performance. The null hypothesis is rejected if:

|Z| ≡
∣∣∣∣ ᾱ − α0

σ/
√
n

∣∣∣∣ > z1−p/2

where ᾱ = ∑n
t=1 (Rt − Rmt )/n is the estimated mean performance and α0 is

the value of α under the null hypothesis of zero abnormal performance. z1−p/2
is the (1 − p/2) quantile of the distribution of the performance test statistic.
The null is rejected if:

ᾱ < α0 − z1−p/2σ/
√
n

or

ᾱ > α0 + z1−p/2σ/
√
n

Otherwise it is accepted. Suppose that, under the alternative hypothesis, the
fund manager’s performance is α1, so that ᾱ ∼ N(α1, σ/

√
n). Then the rejec-

tion probability can be computed from:

P(ᾱ < α0 − z1−p/2σ/
√
n) = P

(
ᾱ − α1

σ/
√
n
<
α0 − α1 − z1−p/2σ/

√
n
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√
n

)

= P

(
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α0 − α1
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√
n

− z1−p/2
)

= &

(
α0 − α1
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√
n

− z1−p/2
)
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where &(·) is the cumulative density function for a standard normal variate.
Likewise, by symmetry of the normal distribution,

P(ᾱ > α0 + z1−p/2σ/
√
n) = P

(
Z >

α0 − α1

σ/
√
n

+ z1−p/2
)

= &

(
α1 − α0

σ/
√
n

+ z1−p/2
)

For example, if p = 0.05 so that z1−p/2 = 1.96 and α0 = α1 = 0, then
P(Z < −2) = P(Z > 2) = 0.025, so that the power of the test equals the
size of the test at 5%.

However, if α0 = 0, α1 = −0.1, σ = 0.5, we get the following relation
between power (the probability of correctly rejecting the null) and sam-
ple size:

P(Reject H0|α1, α0, σ, n) = Power(α1, α0, σ, n)

= &

(
α0 − α1

σ/
√
n

− z1−p/2
)

+&

(
α1 − α0

σ/
√
n

+ z1−p/2
)

= P(Z < −1.96 + 0.2
√
n)

+ P(Z < −1.96 − 0.2
√
n)

This relationship is used to calculate the results in the main text.
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Chapter 6

Simulation as a means of portfolio
performance evaluation

FRANCES COWELL

ABSTRACT

Conventional return and attribution analysis has some serious limita-
tions, including:

• It has difficulty in distinguishing between chance and skill as the
primary determinants of portfolio returns.

• It does not provide information about the investability or efficiency
of the benchmark.

• It does not comprehensively quantify the impact of constraints.
• It does not easily quantify the contribution of mid-period transac-

tions and market timing.
• It can only be applied to portfolios with completely transparent

holdings.
• It does not facilitate ‘what-if’ analyses.
• Multi-period attribution analysis has limited validity because the

investment opportunity set is subject to continuous change.

Simulation can address some of these shortcomings by using Monte
Carlo selection to derive, from a given investment universe, a large,
unbiased sample of portfolios that comply with given portfolio con-
straints and specifications. For any given performance measurement,
such as return or tracking error, a distribution of outcomes can be
obtained.

Simulations are carried out at the asset allocation level for a bal-
anced portfolio of nine asset classes, comparing the distribution of
returns obtained under unconstrained and two levels of constraints
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and allowing some inferences about the impact of constraints. A
second set of simulations quantifies the impact of portfolio design on
the observed tracking error of an international equity portfolio, allowing
the conclusion that holding constraints designed to limit tracking error
actually increase it. A third set of simulations tests the relationship
between maximum number of stocks allowed on tracking error for a
domestic equity indexed portfolio.

6.1 INTRODUCTION

Despite increasingly sophisticated techniques for portfolio return and attribu-
tion analysis, there remain limits to the inferences that can be drawn from
the results they give. A single period attribution analysis, for example, can
identify which relative imbalances contributed to return variation from bench-
mark, but cannot say with certainty whether those imbalances and the results
to which they contributed were due to deliberate portfolio construction choices
or the result, essentially, of luck. For investors choosing between investment
managers and strategies, this lack of information can pose serious problems.

A positive active return can be achieved by an investment manager through
either luck or skill. If the result is due to skill, the investor can reasonably
conclude that this skill is likely to be repeated in future, and is therefore
worth paying active management fees. If, on the other hand, the result is due
mainly to chance, then subsequent active returns are as likely to be positive as
negative and the investor will prefer either to invest in an indexed portfolio
or to engage an investment manager who has demonstrated skill. Similar
logic applies to selecting investment strategies. Observed positive returns to
a strategy can be the result of either chance or strategy design and the ability
to distinguish between the two is imperative for selecting a strategy that will
yield positive results in the future.

Other aspects of portfolio performance that are often not adequately
addressed by conventional return and attribution analysis include:

• The suitability and investability of the benchmark.
• The impact of constraints.
• The contribution of mid-period trading activity.

An important feature of a benchmark is that it should be investable. In other
words, the investment manager should be able to buy all the assets in the
benchmark in benchmark proportions without incurring excessive transactions
costs. Not all benchmarks comply with this. Many investors work around
this problem by using peer groups as benchmarks on the basis that, being
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actual portfolios, they are necessarily investable. Peer-group benchmarks have
many merits, but suffer from the shortcoming that they encourage investment
managers to conform to popular portfolio structures and can discourage active
decision taking. For portfolios using non-peer-group benchmarks, a reasonable
question to ask is whether the chosen benchmark is the most appropriate to
the portfolio. A benchmark that is not fully investable will nearly always
give exaggerated portfolio active returns and high tracking error. Conversely,
attractive active returns that are attributed to skill on the part of the investment
manager may simply be the result of the benchmark being ‘easy to beat’ given
the universe of available investments. Most return and attribution analysis
techniques do not add significant information about the relative investability
or efficiency of the benchmark.

Related to the problem of benchmark selection is the vexed question of
constraints. Many investors impose constraints on portfolio holdings as a
means of containing risk. Often, however, the net effect of these constraints
is merely to hamper the ability of the investment manager to achieve optimal
diversification, resulting in increased risk for return or poor return for risk
taken. Quantification of the impact on portfolio performance of holding and
other constraints is very difficult using conventional return and attribution
methods, since they can only quantify the marginal impact on assets actually
constrained, without offering insight into how these constraints affect selection
of the remainder of the portfolio.

Perhaps a more important limitation of conventional return and attribu-
tion analysis is the difficulty of quantifying the impact of mid-period trading
activity. Comprehensive analysis of the contribution to portfolio return of tra-
ding activity requires analysis of each individual trade, itself necessitating the
establishment and maintenance of an extensive database, including daily secu-
rity prices and individual transaction details. Moreover, the resulting analysis,
itself comprising large amounts of data, can be difficult to interpret.

Multiple period return and attribution analyses can often highlight persistent
characteristics of a portfolio or management style and point to potentially
significant patterns that could persist in future periods. But the validity of
such analyses are usually limited because:

• Investment managers rarely employ precisely the same investment strate-
gies over extended periods for actively managed portfolios.

• Even with a consistent approach to portfolio selection, changes in personnel
within the investment management company mean that the range of skills
and strengths within the company are subject to constant change, which is
reflected in portfolio performance and often in investment policies.

• The investable universe is subject to continuous change as a result of new
issues and privatizations, and as mainstream investors increasingly accept
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new instruments, such as derivative instruments, exchange-traded funds and
emerging markets securities.

• Data, tools and analysis techniques available to investment managers are
continuously evolving, placing inevitable pressure on investment managers
to upgrade and modify portfolio construction, analysis and monitoring tech-
niques.

• Regulatory and tax environments are subject to continuous change, forcing
investment managers to modify their approaches accordingly.

• Maintaining a reliable database of portfolio performance for the purpose of
multiple period portfolio comparisons for even a moderately comprehensive
range of investments is extremely difficult.

Portfolio return analyses therefore can usually span only a relatively small
number of periods, so that the results obtained nearly always fail to meet any
test of statistical significance or reveal persistent performance patterns.

The uncertainties implicit in traditional return and attribution analysis leave
plenty of room for speculation by investors that persistent outperformance
of benchmarks is due principally to luck or a particularly ‘easy’ mandate
specification; and conversely claims by investment managers that persistently
poor performance is the result of very tight or conflicting constraints. These
are claims that are difficult to reliably support or refute using conventional
return and attribution analysis.

Traditional attribution analysis cannot be applied to funds that do not reg-
ularly offer transparency of holdings to investors. Evaluation of such funds
is limited to comparison with their stated benchmarks or with funds with
similar stated investment objectives – comparisons of which may be of limi-
ted validity because of differences in objectives, focus, investment universe
or constraints, and because there are often only a small number of similar
portfolios available for comparison.

Conventional return and attribution analysis does not facilitate ‘what-if’
analyses, aimed at exploring the performance effect of changing various port-
folio selection parameters, for example altering the scope of the investment
universe and testing changes in hedging policy.

Moreover, these problems are all equally acute at the level of asset
allocation for balanced portfolios and security selection for specialist sector
portfolios.

6.2 OBJECTIVES OF SIMULATIONS

The objectives are:

• To distinguish portfolio outcomes that are due to chance from those
resulting from deliberate investment choices and systemic biases in
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portfolio construction; and from this to identify evidence of skill in port-
folio construction.

• To determine the relative efficiency of the benchmark.
• To quantify the contribution to return of intra-period trading and market

timing.
• To evaluate the impact of constraints and perform other ‘what-if’ analyses.
• To identify persistent strengths and weaknesses of an investment strategy

over consecutive investment periods.

A partial solution can be obtained by means of simulation. The objective
of this approach is to provide a large unbiased sample of portfolios, each
selected from the same universe of investments and conforming to the same
benchmark and other specifications as the target portfolio.

Thus a candidate portfolio might be assigned a single period performance
p value of 0.86. Compared to the returns of 100 portfolios selected at random
from the same investment universe and subject to the same constraints, the
candidate portfolio would be expected to outperform 86 of them.

Altering portfolio selection parameters, for example to broaden or narrow
the investment universe or modify constraints, can, by introducing a control,
isolate the performance impact of the relevant parameters, facilitating ‘what-
if’ analyses and thus adding insight into the forces affecting overall portfolio
outcomes.

Comparing actual performance to a comparable buy-and-hold portfolio can
quantify the impact of intra-period trading activity and market timing.

This approach is equally valuable for asset allocation within balanced port-
folios and for security selection within specialist sector mandates.

6.3 METHODOLOGY

Each simulation is defined by an investment universe of assets, together with
required constraints on portfolio holdings and imbalances, hedging policy,
maximum and minimum number of assets, portfolio turnover, transactions
costs and any other guidelines to which portfolio construction is subject.
From the universe of assets a large number of portfolios are selected using a
Monte Carlo sampling approach. Portfolios conforming to the constraints and
specifications given are retained, while those not conforming are discarded.
For each simulated portfolio are calculated a range of performance measure-
ments, giving a distribution of outcomes. Actual portfolios and benchmarks
are compared to the sample of portfolios selected at random.

6.4 ADVANTAGES OF SIMULATION

Applying simulation to the problem of performance evaluation presents a
number of advantages.
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1. Actual portfolio outcomes are compared to a large, unbiased sample of
possible outcomes rather than a small number of actual ‘peer’ portfolios.

2. Sample selection is controlled so that the simulated portfolios are subject
to exactly the same constraints and limitations as the actual portfolio. By
contrast, the mandate specifications for ‘peer’ portfolios can differ in small
but often important details.

3. The simulation of a random peer group for comparison avoids the judge-
mental and other biases inherent in live peer group comparisons.

4. By systematically altering or suppressing constraints and limitations, the
marginal impact of each on simulation outcomes can be isolated, in effect
providing a control, and thus providing the capability of conducting ‘what-
if’ analyses.

5. Comparing actual portfolio outcomes with those from a ‘buy-and-hold’
equivalent can help quantify the impact of trading activity.

6. It can be applied to any portfolio of traded assets, and therefore is equally
valid for asset allocation and security selection, including fixed interest.

7. Derivative, such as futures, options and swaps are easily incorporated
into the simulation. Indeed, provided that the appropriate price data are
available, there is no impediment to including any investment instruments,
whether exchange-traded or over-the-counter.

8. Simulation requires slightly less data than conventional return and attri-
bution analysis (mid-period transaction data are generally not required),
and although greater computing resources are generally called for, most
problems can be accommodated using a standard desktop computer.

6.5 EXAMPLES OF PORTFOLIO SIMULATION

To illustrate some of the potential applications, portfolio simulation is applied
to four frequently occurring portfolio evaluation situations.

1. Simulations 1 and 2 compare the effectiveness of 1,000 and 5,000 uncon-
strained simulations for asset allocation for a portfolio comprising nine
asset classes.

2. Simulations 3 and 4 evaluate the same nine-asset class portfolio with two
sets of holding constraints.

3. Simulations 5, 6, 7 and 8 show the impact, in terms of return and tracking
error, of a portfolio comprising only listed equity index futures contracts
relative to global equities benchmark.

4. Simulations 9, 10 and 11 show the impact on the tracking error of a
domestic indexed portfolio of constraining the maximum allowable number
of stocks.
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6.5.1 Single period tactical asset allocation

This is a typical short-term asset allocation problem with the benchmark set
as the strategic asset allocation. Table 6.1 sets out portfolio and benchmark
allocations, together with holding constraints and forecast returns for each
asset class.

At the end of the first quarter the portfolio return is −3.59% compared
to the benchmark of −3.48%, implying annualized returns of −13.61% and
−13.21% for the portfolio and benchmark respectively, an annual active return
of −0.40%.

Noting that the actual portfolio allocations are not very different from
benchmark, the investor is interested to know if the constraints are inhibit-
ing active return. A series of simulations was carried out to evaluate the
performance impact of constraining relative portfolio allocations.

The first simulation, constraining only negative holdings, and applying
1,000 simulations, yields the results in Figure 6.1.

The mean of this distribution is −5.09% and the standard deviation is
3.00%. Given the non-normal shape of the distribution (the skew is 0.33 and
the kurtosis is 2.29), it was decided to increase the number of simulations.
Applying more simulations gives only a slightly more normal-looking result,
as in Figure 6.2, which applies 5,000.

The mean of this distribution is −5.13% and the standard deviation is
3.03%, with a skew of 0.32 and kurtosis of 2.34.

Table 6.1 Portfolio, benchmark and expected returns

Asset name Asset class Portfolio
holdings

Benchmark
holdings

Expected
return

JPM France Traded French Composite Bonds 2.00% 5.00% −3.00%
JPM Germany Traded German Composite Bonds 2.00% 5.00% −4.50%
JPM UK Traded UK Composite Bonds 2.00% 5.00% −2.50%
JPM US Traded US Composite Bonds 2.00% 5.00% −2.50%
CAC 40 French Equities 10.00% 10.00% 12.00%
DAX German Equities 10.00% 10.00% 12.00%
FTSE All Share UK Equities 25.00% 20.00% 18.00%
S&P 500 US Equities 45.00% 30.00% 25.00%
TOPIX Japanese Equities 2.00% 10.00% −4.50%

Portfolio expected return 17.81%
Benchmark expected return 12.43%
Expected active return 5.38%
Expected tracking error 2.85%
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Figure 6.1 Asset allocation with 1,000 simulated portfolios

For this problem, it appears that 1,000 simulations are sufficient to give an
indication of the distribution of all possible outcomes.

From this analysis, an interesting question to pose is: what portfolio char-
acteristics yielded an active return of 10.0%? Examining an outlier portfolio
can answer this question. A portfolio giving a quarterly active portfolio of
2.5% is set out in Table 6.2.
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Figure 6.2 Asset allocation with 5,000 simulated portfolios
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Table 6.2 Ten per cent Active return portfolio

Asset name Asset class Portfolio
holdings

Benchmark
holdings

Active
holdings

JPM France Traded French composite bonds 0.00% 5.00% −5.00%
JPM Germany Traded German composite bonds 10.93% 5.00% 5.93%
JPM UK Traded UK composite bonds 2.26% 5.00% −2.74%
JPM US Traded US composite bonds 46.28% 5.00% 41.28%
CAC 40 French equities 0.71% 10.00% −9.29%
DAX German equities 0.00% 10.00% −10.00%
FTSE All Share UK equities 0.14% 20.00% −19.86%
S&P 500 US equities 29.99% 30.00% −0.01%
TOPIX Japanese equities 9.71% 10.00% −0.29%

With nearly half held in US Fixed Interest and a further 30% in US Equities,
this portfolio challenges the principles of prudent diversification for a global
portfolio. Its observed tracking error is 5.54% and its expected tracking error
is 5.57%.

6.5.2 Asset allocation with holding constraints

Most investment managers would be reluctant to implement portfolios with
such extreme allocations and risks. In fact many investors insist on imposing
constraints to keep actual portfolio allocations reasonably close to benchmark.
Table 6.3 shows typical holding constraints.

Imposing these constraints with 1,000 simulations gives the distribution of
outcomes as shown in Figure 6.3.

The mean of the distribution is −3.11% and the standard deviation is 1.33%.
It shows that the likelihood of achieving an active return of more than 1.5%
is quite low. Applying looser constraints, as set out in Table 6.4, gives the
results set out in Figure 6.4.

Table 6.3 Asset allocation with typical constraints

Asset name Portfolio
holdings

Benchmark
holdings

Min. holding Max. holding

JPM France Traded 2.00% 5.00% 0.00% 10.00%
JPM Germany Traded 2.00% 5.00% 0.00% 10.00%
JPM UK Traded 2.00% 5.00% 0.00% 10.00%
JPM US Traded 2.00% 5.00% 0.00% 10.00%
CAC 40 10.00% 10.00% 5.00% 20.00%
DAX 10.00% 10.00% 5.00% 20.00%
FTSE All Share 25.00% 20.00% 10.00% 30.00%
S&P 500 45.00% 30.00% 10.00% 50.00%
TOPIX 2.00% 10.00% 0.00% 20.00%
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Figure 6.3 Asset allocation with typical constraints

This distribution has a mean of −2.96% and a standard deviation of 1.31%,
suggesting that this relaxation of holding constraints is still insufficient to
deliver the required active return.

Results
The results of Figures 6.1 to 6.4 are summarized in Table 6.5.

Conclusions
From this it can be concluded that the results given by 1,000 simulations
are not greatly improved by extending this number to 5,000. It also can be
concluded that, in this instance, the holding constraints are not the main source
of disappointing returns, but appear to be contributing to both positive returns
and increasing the likelihood of extreme returns.

Table 6.4 Asset allocation with relaxed constraints

Asset name Portfolio
holdings

Benchmark
holdings

Min. holding Max. holding

JPM France Traded 2.00% 5.00% 0.00% 15.00%
JPM Germany Traded 2.00% 5.00% 0.00% 15.00%
JPM UK Traded 2.00% 5.00% 0.00% 15.00%
JPM US Traded 2.00% 5.00% 0.00% 15.00%
CAC 40 10.00% 10.00% 0.00% 50.00%
DAX 10.00% 10.00% 0.00% 50.00%
FTSE All Share 25.00% 20.00% 5.00% 60.00%
S&P 500 45.00% 30.00% 5.00% 80.00%
TOPIX 2.00% 10.00% 0.00% 50.00%
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Figure 6.4 Asset allocation with relaxed constraints

6.5.3 International equity indexed portfolio invested using
exchange-traded equity futures

Given the costs in terms of transactions, custodian and other administrative
costs of investing in a diversified portfolio of international equities, many
investors choose to replicate such a portfolio using mainly, or uniquely, futures
and other derivative contracts. This approach has the advantage of significantly
reducing the costs associated with international equity investing, an advantage
that can be important in the case of a unitized portfolio where units are
bought and sold frequently, necessitating purchases and sales of the assets
held in the portfolio. The advantage of low transactions costs is offset by
the disadvantage, as Figures 6.5 to 6.8 show, of significant return variation
from benchmark, translating to an unavoidably high tracking error. In order
to minimize this tracking error, the investment manager imposes constraints

Table 6.5 Evaluation of constraints on asset allocation

Simulation Description Number of
simulations

Mean Standard
deviation

Skew Kurtosis

1 Unconstrained
quarterly return

1,000 −5.09% 3.00% 0.31 2.29

2 Unconstrained
quarterly return

5,000 −5.13% 3.03% 0.32 2.34

3 Typical constraints
quarterly return

1,000 −3.11% 1.33% −0.95 3.33

4 Loose constraints
quarterly return

1,000 −2.96% 1.31% −1.22 4.24
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Figure 6.5 International equities with constraints on country allocations
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Figure 6.6 International equities with constraints on country allocations
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Figure 6.7 International equities unconstrained
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Figure 6.8 International equities unconstrained

on individual country allocations, keeping them close to the nominal country
weights in benchmark.

For the period in question the portfolio returned −22.10% and the bench-
mark −21.26%. The investment manager uses simulations to show that this
result is difficult or impossible to avoid. Figures 6.5 and 6.6 show return and
tracking error respectively for the constrained portfolio, while Figures 6.7 and
6.8 show the same analysis with no holding constraints.

In Figure 6.5 the mean of this distribution is −19.73%, the standard devi-
ation is 0.87%, with skew and kurtosis of 0.16 and 2.71, respectively. In
Figure 6.6 the mean of this distribution is 4.81%, the standard deviation is
0.13%, with skew and kurtosis of 0.38 and 2.62, respectively.

With a mean tracking error of 4.81% the portfolio was unlikely to
deliver index-like performance unless some of the constraints were relaxed.
Figures 6.7 and 6.8 show return and tracking error with no limits on country
allocation.

In Figure 6.7 the mean of this distribution is −14.26%, the standard devi-
ation is 6.50%, with skew and kurtosis of −0.37 and 3.30, respectively. In
Figure 6.8 the mean of this distribution is 11.45%, the standard deviation is
2.99%, with skew and kurtosis of 1.27 and 6.59, respectively.

Results
The results of Figures 6.5 to 6.8 are summarized in Table 6.6.

Conclusions
Figures 6.5 to 6.8 show that relaxing the constraints increased both the track-
ing error and the mean return, and made achieving index-like returns even
more unlikely.
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Table 6.6 Evaluation of constraints for international equities

Simulation Description Mean Standard
deviation

Skew Kurtosis

1 Country holding
Constraints annual
return

−19.73% 0.87% 0.16 2.71

2 Country holding
Constraints
tracking error

4.81% 0.13% 0.38 2.62

3 Unconstrained
annual return

−14.26% 6.50% −0.37 3.30

4 Unconstrained
tracking error

11.45% 2.99% 1.27 6.59

6.5.4 Domestic equity indexed portfolio with varying allowable maximum
number of holdings

While classic domestic equities indexed portfolios often apply full replication
to achieve index returns with very low tracking error, many investors prefer
a sampling approach, which while increasing tracking error, can significantly
reduce transactions costs, especially where the benchmark comprises a large
number of stocks. The reasoning is sound enough, since the effect of tracking
error on relative return can be either positive or negative, while the effect of
transactions costs is always negative. The question is: how many stocks should
the portfolio hold to achieve the best balance of tracking error and transactions
costs. By quantifying the distribution of tracking error for various numbers
of portfolio holdings, simulation can help, as shown in Figures 6.9 to 6.11.
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Figure 6.9 S&P 500 portfolio: 400 holdings allowed
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Figure 6.10 S&P 500 portfolio: 300 holdings allowed
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Figure 6.11 S&P 500 portfolio: 200 holdings allowed

In Figure 6.9 the mean of this distribution is 25.85%, the standard deviation
is 4.85%, with skew and kurtosis of 2.57 and 16.3, respectively. In Figure 6.10
the mean of this distribution is 30.59%, the standard deviation is 6.94%, with
skew and kurtosis of 2.66 and 14.29, respectively. In Figure 6.11 the mean
of this distribution is 32.43%, the standard deviation is 6.79%, with skew and
kurtosis of 2.81 and 10.63, respectively.

Results
Figures 6.9, 6.10 and 6.11 show that increasing the maximum number of
allowable holdings does reduce tracking error, as summarized in Table 6.7.

Conclusions
Increasing the allowable number of stocks by itself reduces the mean track-
ing error achievable as well as the range of tracking errors likely, and so
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Table 6.7 Maximum holdings and tracking error

Simulation Description Mean tracking error Standard
deviation

Skew Kurtosis

9 400 stocks 26.85 4.85 2.57 16.30
10 300 stocks 30.59 6.94 2.66 14.29
11 200 stocks 32.43 6.79 2.81 10.63

potentially the accuracy of tracking error forecasts. However, simply allow-
ing a large number of stocks does not by itself achieve low tracking error:
this measure needs to be complemented with other constraints, such as direct
tracking error constraints or appropriate holding constraints.

6.6 APPLICATIONS

6.6.1 Long–short simulation

The simplest form of simulation is a long-only portfolio benchmarked to a
balanced or equity index; however, the same methodology can be applied
to long–short or market neutral portfolios to evaluate active return. The
technique can be very powerful for analysing and evaluating hedge funds,
especially those investing in unlisted assets or derivatives. The potential value
of simulation can be significant, particularly where the investment manager’s
remuneration is based on active return.

6.6.2 Multiple period simulations

The advantages of single period simulation can in some cases be extended to
multiple period simulation. By augmenting the single period simulation inputs
of investment universe, portfolio limitations, constraints and guidelines with
trading and rebalancing rules, the simulation can generate a sample of multiple
period portfolio outcomes highlighting, in addition to portfolio active return,
tracking error and other characteristics, the range of portfolio turnover required
to achieve given outcomes, and the related range of transactions costs.

Multiple period portfolio simulations can combine insights from portfolio
analysis over time with the advantages of a large sample of possible out-
comes within a period. The analysis therefore has the potential to highlight
the strengths and weaknesses of an investment manager or investment strat-
egy in different economic and market conditions. Because the time interval
can be set to correspond with the history of a particular portfolio or strategy,
or the tenure of a particular manager or analyst, simulating an investment
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strategy over time can provide a rigorous analysis that avoids the problems
of discontinuity that plague real-life multiple period performance analyses.

6.6.3 Selection of metric

While the most obvious application of simulations is to compare portfolio
returns with a sample of possible active returns, additional insight can often be
derived by applying specialized metrics according to portfolio objectives. For
example, when evaluating indexed portfolios, it is probably more appropriate
to apply a tracking error metric to the analysis. Thus, for a given maximum
number of assets, the distribution of tracking error can be derived, facilitating
the evaluation of tracking performance, both ex ante and ex post.

Specialist portfolios, such as those designed to track growth and value
indices, can be evaluated according to a style metric to show how the port-
folio’s exposure to a given style compares with all possible portfolios.

6.6.4 Solutions to practical problems

The ability to isolate the impact of portfolio constraints and other elements
of portfolio construction, simulations can add considerable insight into the
forces driving portfolio returns, specifically:

• Benchmark evaluation is facilitated by comparing the benchmark outcome
with the distribution of random outcomes. This can quantify the amount
of skill required to match or exceed benchmark outcomes with respect to
the population of all possible outcomes. This can be especially power-
ful when investment management fees are determined by portfolio active
return.

• Constraint evaluation can help quantify the extent to which holding and
other constraints contribute to or hinder portfolio performance. Simulation
can therefore help define the most effective and appropriate investment
mandates.

• What-if analysis is greatly facilitated by allowing individual aspects of
investment policy to be evaluated in isolation against a control.

• Quantifying the impact of trading activity is facilitated by comparing the
buy-and-hold portfolio with the actual portfolio result and the distribution
of all possible results. Similarly, estimation of the potential impact of trans-
actions costs can be effected by varying the rate of transactions costs for
each asset in the investment universe.

• Performance comparison of non-transparent funds can be assisted by apply-
ing simulation techniques whereby fund performance is compared to a
random sample of all possible outcomes for the period. The additional



Simulation as a means of portfolio performance evaluation 159

insight to be derived is particularly significant where traditional return
attribution is prohibited by lack of portfolio holding information.

6.7 SUMMARY AND CONCLUSIONS

Portfolio simulation works by selecting a random sample of portfolios from a
given investment universe to conform to given limitations and guidelines. The
portfolios thus selected can then provide a meaningful comparison for real-
life portfolios. Comparisons can be based on ex post active return, portfolio
tracking error, portfolio style or any quantifiable portfolio characteristic. The
metric can be chosen to meet the precise objectives of the analysis. These
comparisons can help address some of the gaps left by conventional return
and attribution analysis, specifically:

• By providing a large sample of comparable portfolio outcomes, simulation
can help identify skill on the part of investment managers.

• Comparing the benchmark to the sample of portfolio outcomes can help
determine the suitability and investability of the benchmark.

• By carrying out control simulations with and without portfolio constraints,
their impact on portfolio performance can be quantified and ‘what-if’ ana-
lysis facilitated.

• Comparing actual portfolio outcomes to simulated buy-and-hold portfolios
can help evaluate intra-period trading and market timing.

The potential benefits of single period simulation can be extended to multiple
period, enabling evaluation of portfolios in a variety of market conditions.
The methodology can be applied to any portfolio comprising traded assets,
both exchange-traded and over-the-counter, including asset allocation, equity,
fixed interest, futures, options, commodity and market-neutral portfolios.

The examples in this chapter show that simulation sometimes confirms
expectations, as in Figures 6.5 to 6.8, but can often yield unexpected results,
for example it can show that constraints designed to control risk may have
little or no impact, as in Figures 6.3 and 6.4, or that, to be effective, port-
folio guidelines need to be complemented with other portfolio construction
parameters, as in Figures 6.9 to 6.11.



Chapter 7

An analysis of performance
measures using copulae

SOOSUNG HWANG AND MARK SALMON

ABSTRACT

We have carried out a detailed comparison of the statistical properties,
and the relationships between a set of five performance measures
using 14 UK-based investment trusts over a sample period ranging
from 1980 to 2001. Our results suggest very clearly that there is
almost no difference between Jensen’s alpha, the Treynor–Mazuy
(TM) measure and the Positive Period Weighting (PPW) measure
over our sample period and among our set of investment trusts.
This would seem to indicate that there is no timing ability within
these fund managers. The Sharpe ratio clearly provides different
signals regarding performance than the other measures and is the
only absolute measure in the set of measures we have considered.
While simple correlation analysis suggests that there is a high degree
of dependence between most of the measures we show that there is
a lack of significant concordance between the Sharpe ratio and all the
other measures. This reflects the inadequacy of correlation analysis
with non-Gaussian data. We have also shown that the Sharpe ratio
exhibits negative left tail area dependence with respect to Jensen’s
alpha, TM and PPW but is independent in the left tail, when poor
performance is indicated, from the higher moment (HM) measure of
Hwang and Satchell. Jensen’s alpha, TM and the HM measure do
not seem to show any significant asymptotic left tail dependency. All
the measures appear to be asymptotically independent in their upper
tail when good performance is indicated. These results are further
refined by non-asymptotic quantile regression results which indicate
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finite sample dependency of the HM measure and Jensen’s alpha
throughout the body of their conditional distribution and in the left tail
but not the upper tail.

7.1 INTRODUCTION

Studies of portfolio performance evaluation began in the 1960s along with
the development of modern asset pricing theory. Treynor (1965), Treynor
and Mazuy (1966) and Jensen (1968, 1969), for instance, used the CAPM
to introduce portfolio performance measures. As finance theory developed
so did performance measurement, for instance Connor and Korajczyk (1986)
and Lehmann and Modest (1987) introduced APT-based measures, there are
the positive period weighting measures of Grinblatt and Titman (1989), the
intertemporal marginal rates of substitution-based measures of Glosten and
Jagannathan (1994), the measures of Chen and Knez (1996) based on the law
of one price and/or no arbitrage, and the higher moment measure of Hwang
and Satchell (1998).

While the early CAPM-based performance measures have well-recognized
deficiencies, in particular that they rest either on a false assumption that asset
returns are normally distributed and thus distributed symmetrically or that
investors have mean-variance preferences and thus ignore skewness, they still
appear to be the most widely accepted for evaluating portfolio managers
within the finance industry, see, for instance, the AIMR Performance Presen-
tation Standards Handbook (1997). This would seem to deny the practical
relevance of the theoretical arguments which led to the development of more
refined measures, such as those indicated above. This chapter asks the simple
question of whether or not this view is justified. We take a pragmatic approach
by comparing several measures using times series of monthly returns for 14
UK-based investment trusts over a sample period running from January 1980
to February 2001.

Our objective on one level is crude and is simply to examine whether or not
there are significant differences between the different performance measures
and then, if so, in what states of the market they occur. We adopt a slightly
different statistical approach to similar comparative exercises in that we are
interested in determining where in the range of their potential values these
measures are likely to provide different signals of performance or in other
words when they are likely to be more dependent or independent of each
other. They may, for instance, provide similar assessments when in their
extremes but not when close to their average values – or vice versa. This we
feel may be a critical practical concern for a fund manager uncertain as to
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which performance measure to adopt. Since the different measures represent
different transformations of non-Gaussian return series we would expect to
find that simple correlation analysis would be inadequate since it is only
applicable in the context of elliptic distributions and even in that case only
measures linear association.1

As an alternative we adopt the relatively recently developed theory of cop-
ula functions and associated dependency measures to examine more general
forms of association between the different performance measures rather than
just simply their normalized covariation. In particular we consider their con-
cordance which enables us to consider general positive (or negative) depen-
dency rather than simple linear association. We then examine the dependency
between the performance measures as they take values in the tails of their
distributions by asking the question: what is the probability that measure A
will be beyond its 95th percentile given that measure B is also beyond its 95th
percentile? In other words we quantify their tail area dependency given that
this may be the most important area for many critical practical decisions. We
then also examine, through bivariate quantile regressions, the significance of
their association throughout the range of their distribution. Finally we demon-
strate how copulae may be used as aggregator functions to combine different
but statistically dependent performance measures into a single measure. Fol-
lowing the literature on forecast combination we may expect an increase in
efficiency and a reduction in bias by combining performance measures as long
as the dependence between the individual components is properly taken into
account in constructing the aggregate.

In the next section we briefly introduce the performance measures used
in this study; the Sharpe ratio, Jensen’s alpha, the Treynor–Mazuy measure,
the Positive Period Weighting measure, and a higher moment measure. We
then compare these measures using data on the 14 investment trusts before
introducing the notion of a copula and related dependency measures.

7.2 PERFORMANCE MEASURES

Several issues are of immediate importance when we seek to evaluate the
performance of a portfolio although the relationship between the risk carried
by the portfolio and the return is clearly paramount. Different concepts of
risk, either relative or absolute, are employed and the notion of ‘risk’ itself
may be measured more generally using quantiles than the traditional use of
the second moment. Some measures such as Jensen’s alpha calculate relative
returns after considering the systematic risk of the portfolio in the CAPM

1More importantly in the context of performance evaluation perhaps is the fact that correlation is
not independent of montone changes of the underlying data.
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framework, while others such as the Sharpe ratio simply use the return and
variance of the portfolio itself.

Another issue is the measurement of any superior timing ability as distinct
from the stock selection ability in the fund manager. The difference between
these two turns on whether private information lies in market aggregates
or is firm-specific. For example, suppose that a fund manager has a portfolio
which includes Microsoft. When he receives favourable information regarding
Microsoft, he will increase his holding in Microsoft and this has nothing to do
with the forecast of the market. Thus selectivity information is related to non-
priced risk, while timing information is related to priced risk, see Grinblatt and
Titman (1995) for a more detailed discussion on this topic. Another critical
issue is the sensitivity to the choice of reference index and the need to select
an efficient benchmark as again emphasized by Grinblatt and Titman (1994).

In the following section we briefly introduce the five performance measures
we use below. Although the rationale and theoretical justification of these
measures are to a degree different, empirically they may behave in a similar
manner under many situations. How they differ in practice is a question of
empirical evidence which we provide in the next section.

7.2.1 Traditional performance measures2

Treynor (1965) was the first to incorporate risk into a performance measure
by considering the portfolio’s rate of return with respect to the market rate of
return. Jensen’s (1968) extension is simpler and one of the most widely used
in practice. Jensen’s alpha, αJp , calculates the performance of a portfolio by
measuring the deviation of a portfolio’s return from the securities market line:

rpt − rf = αJp + βp(rmt − rf )+ εpt (7.1)

where rpt represents the portfolio’s return at time t , rf is the risk-free rate, rmt

is the market return at time t , βp denotes the systematic risk of the portfolio.
Notice that Jensen’s alpha is the expected excess return of the portfolio less
the product of the expected excess return of the market portfolio and the
portfolio’s beta.

The second measure we use is the Treynor–Mazuy (TM) statistic introduced
in Treynor and Mazuy (1966). For a portfolio manager with forecasting power,
the return on the managed portfolio will not be linearly related to the market
return. This arises because he will gain more than the market when the market
return is forecast to rise and he will lose less than the market when the market

2Our objective here is not to provide a detailed theoretical comparison of the measures which
can be found in a number of existing surveys but simply to provide the basis for the comparative
analysis below.
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is forecast to fall. Thus, his portfolio returns will be a concave function of
market returns. Using the following quadratic model,

rpt − rf = αp + β1p(rmt − rf )+ β2p(rmt − rf )2 + εpt (7.2)

Treynor and Mazuy (1966) showed how the significance of β2p provides evi-
dence of the overperformance of a portfolio. Admati et al. (1986) suggested
conditions under which αp in (7.2) can be interpreted as the selectivity com-
ponent of performance (i.e. the ability to forecast the returns on individual
assets) and E(β2p(rmt − rft)2) interpreted as the timing component of perfor-
mance (i.e. the ability to forecast market returns). The Treynor and Mazuy
measure we use below is then given by

TM = αp + β2pE((rmt − rf )2) (7.3)

The Sharpe ratio (SR) (Sharpe, 1966) is simply the reward per unit of vari-
ability:

SR = E(rpt − rf )
σp

(7.4)

where σp is the standard deviation of portfolio returns. The measure is simple,
easy to understand and widely used.

The fourth measure we consider is the higher moment (HM) measure intro-
duced by Hwang and Satchell (1998). Portfolio returns are invariably not
normally distributed and higher moments such as skewness and kurtosis need
to be considered to adjust for the non-normality and to a degree account
for the failure of variance to measure risk accurately. In these cases, a higher
moment CAPM should prove more suitable than the traditional CAPM and so
a performance measure based on higher moments may also be more accurate
than the measures outlined above. Assuming the validity of the three-moment
CAPM and a quadratic return generating process of the form3:

rpt − rf = a0p + a1p(rmt − rf )+ a2p{rmt − E(rm)}2 + εpt (7.5)

we can define a performance measure of a portfolio under the three-moment
CAPM as

ap = µp − λ1µm − λ2(βpm − γpm) (7.6)

3Kraus and Litzenberger (1976) showed that the three-moment CAPM is consistent with the
quadratic market model in (7.5).
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where:

λ1 = γ 2
mγpm − (θm − 1)βpm
γ 2
m − (θm − 1)

(7.7)

λ2 = γmσm

γ 2
m − (θm − 1)

(7.8)

with µp = E(rpt − rf ), µm = E(rmt − rf ), σm = E[{rmt − E(rmt)}2]1/2, and

γm = E[{rmt − E(rmt)}3]

σ 3
m

, θm = E[{rmt − E(rmt)}4]

σ 4
m

(7.9)

and

βpm = E[{rpt − E(rpt )}{rmt − E(rmt)}]
E[{rmt − E(rmt)}2]

,

γpm = E[{rpt − E(rpt )}{rmt − E(rmt)}2]

E[{rmt − E(rmt)}3]
(7.10)

Note that γm and θm are the skewness and kurtosis of the market returns, and
βpm and γpm are beta and coskewness, respectively. If the market returns are
normal, then λ1 = βpm and λ2 = 0 and thus (7.6) is equivalent to Jensen’s
alpha.4

We also use the Positive Period Weighting (PPW) measure introduced by
Grinblatt and Titman (1989). This measure is designed so that if selectivity
and timing information are independent and the portfolio manager is a positive
market timer, then the PPW measure assigns positive performance to stock
selection ability and/or timing ability.5 The PPW measure is obtained in two
steps. First, we have to select a weighting vector {wt }Tt=1. The next step is to
compute performance as a weighted average of the period-by-period portfolio
excess returns:

αpp =
T∑
t=1

wt(rpt − rft ) (7.11)

where
∑T
t=1wt = 1, and wt > 0 for all t . Notice that

∑T
t=1wt(rmt − rft) = 0

for the market portfolio. There are many sets of weights which satisfy these

4See Hwang and Satchell (1998) for detailed discussion of the properties of the higher moment
performance measure.
5See Grinblatt and Titman (1989) for further discussion on the PPW measure.
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conditions and we use weights derived from the marginal utilities of an
uninformed investor with a power utility function, as in Grinblatt and Tit-
man (1994).

The first three measures above may be classified as traditional performance
measures and although they are widely used, there are problems with each
of them. The Sharpe ratio, for instance, does not consider systematic risk
which is the real risk in Markovitz’s mean-variance world. On the other
hand, a major problem with Jensen’s alpha is that it can assign negative
performance to a market timer because it is based on an upwardly biased
estimate of systematic risk for a market-timing investment strategy; see Jensen
(1972) for further discussion. The Treynor and Mazuy (TM) measure seems
to be superior to the Sharpe ratio and Jensen’s alpha in the sense that the
timing and selectivity ability of portfolio managers can be decomposed. The
higher moment performance measure also suffers from the same difficulties
as Jensen’s alpha but does account for non-Gaussianity. Notice that in the
absence of market timing and with the assumption of normality, Jensen’s
alpha, the Treynor and Mazuy measure, the higher moment measure and the
PPW measure are all expected to be identical. The empirical tests of Grinblatt
and Titman (1994) and Cumby and Glen (1990) find that Jensen’s alpha, the
TM measure and PPW are indeed highly correlated. Hwang and Satchell
(1998) showed, using emerging market data, that the higher moment measure
can rank portfolios quite differently from the other measures when returns
are not normal. As the AIMR performance presentation standards handbook
(AIMR, 1997:90) states:

The use of a variety of measures with an understanding of their shortcomings
will provide the most valuable information because no one statistic can consis-
tently capture all elements of risk of an asset class or a style of management.

However, as we discuss below, an aggregate measure, which properly
accounts for the joint dependence between the constituent performance
measures may well serve to compensate for the deficiencies in any one of
the individual measures.

7.3 EMPIRICAL RESULTS

We now use data on the 14 UK investment trusts to consider how these five
performance measures behave in practice under differing market conditions
from January 1980 to February 2001. The FTSE All Share and three-month
UK Treasury bill are used as the benchmark and risk-free return, respec-
tively. This period is one of extraordinary growth in the index until 1999 with
significant adjustments due to the crash of 1987 and following the Russian
Crisis of August 1998.
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We note that the choice of a benchmark portfolio is a critical issue in
performance analysis. Roll (1978) suggested that the benchmark portfolio
should be mean-variance efficient for uninformed managers, while it should
be mean-variance inefficient for portfolio managers with forecasting ability.
Our choice of the FTSE All Share Index as a benchmark portfolio may not
satisfy these conditions, but this value-weighted market portfolio is the most
widely used benchmark in empirical studies.

We first provide some statistical properties of the trusts and the benchmark
returns and then the five performance measures are analysed for the entire
sample period.

7.3.1 Data

Table 7.1 reports the basic statistical properties of the returns from our bench-
mark and the 14 UK investment trusts over the sample period. The monthly
mean return ranges from 1.1% to 1.6% (13% to 19% in annual terms) with
standard deviations between 4% and 8% (14% to 28% in annual terms). This
performance is exceptionally high when compared with returns over longer
horizons such as the last 100 years for US equities, see Cochrane (1997).
Panel B of Table 7.1 also reports the same statistical properties when the
1987 market crash is excluded. As expected mean returns increase and stan-
dard deviations, skewness and excess kurtosis decrease. However, none of the
returns are normally distributed, as indicated by the Jarque–Bera statistics,
all showing a negative skew and leptokurtosis.

In panel C of Table 7.1, we report estimates of the correlations between
the return series. As might be expected all the correlation coefficients are
high and in particular all the correlations with the benchmark portfolio are
larger than 0.5 and in fact except for four investment trusts they are all larger
than 0.8. The correlations between the different investment trusts are also
generally very high but we note that Invesco English & International Trust
shows the lowest correlation with the benchmark portfolio and also with the
other investment trusts.

7.3.2 Performance of the UK investment trusts for the entire
sample period

We next calculate the five performance measures over the entire sample
period; see Table 7.2. As in Grinblatt and Titman (1994) and Cumby and
Glen (1990), we find that Jensen’s alpha, TM and PPW, provide virtually
identical results. For these three, the top five and bottom five investment



Table 7.1 Statistical properties of the benchmark portfolio returns and 14 UK investment trust returns

Mean STD Skewness Excess kurtosis J & B statistics

A. 1987 market crash (October 1987) included

FTSE All-share 1.352 4.866 −1.553 7.600 713.362∗
Edinburgh Investment Trust (The) PLC 1.367 5.870 −1.099 5.065 322.652∗
Fleming Mercantile Inv Trust PLC 1.373 5.707 −1.091 3.556 184.197∗
Henderson Smaller Companies Investment Trust PLC 1.299 7.718 −0.783 3.824 180.752∗
Govett Strategic Investment Trust PLC 1.198 6.940 −1.434 5.970 464.305∗
City of London Investment Trust (The) PLC 1.543 5.939 −1.239 6.199 471.725∗
Merchants Trust (The) PLC 1.458 6.158 −1.134 4.658 284.045∗
Securities Trust of Scotland PLC 1.438 5.868 −1.320 6.232 484.823∗
Fleming Claverhouse Inv Trust PLC 1.584 6.272 −0.853 3.286 145.014∗
Murray Income Trust PLC 1.594 5.756 −0.955 3.858 196.065∗
Dunedin Income Growth Inv Trust PLC 1.452 5.928 −0.862 4.551 250.698∗
Temple Bar Investment Trust PLC 1.524 5.918 −0.911 3.515 165.887∗
TR Property Investment Trust PLC 1.135 7.011 −1.018 3.972 210.903∗
Throgmorton Trust (The) PLC 1.113 7.133 −0.547 2.943 104.342∗
INVESCO English & International Trust PLC 1.209 8.372 −0.271 4.125 183.157∗

Notes: A total number of 254 monthly log-returns from January 1980 to February 2001 has been used for the calculation.
∗represents significance at 5% level.



B. 1987 market crash (October 1987) excluded

FTSE All-share 1.479 4.434 −0.623 1.290 33.932∗
Edinburgh Investment Trust (The) PLC 1.505 5.452 −0.398 1.051 18.321∗
Fleming Mercantile Inv Trust PLC 1.485 5.428 −0.757 2.026 67.394∗
Henderson Smaller Companies Investment Trust PLC 1.443 7.383 −0.475 2.809 92.718∗
Govett Strategic Investment Trust PLC 1.357 6.476 −0.895 2.985 127.721∗
City of London Investment Trust (The) PLC 1.692 5.454 −0.370 0.772 12.042∗
Merchants Trust (The) PLC 1.598 5.751 −0.536 1.314 30.333∗
Securities Trust of Scotland PLC 1.580 5.424 −0.593 1.933 54.230∗
Fleming Claverhouse Inv Trust PLC 1.712 5.941 −0.418 1.246 23.731∗
Murray Income Trust PLC 1.718 5.417 −0.442 1.255 24.858∗
Dunedin Income Growth Inv Trust PLC 1.589 5.519 −0.144 0.678 5.714∗
Temple Bar Investment Trust PLC 1.652 5.566 −0.379 0.737 11.791∗
TR Property Investment Trust PLC 1.289 6.581 −0.479 1.092 22.236∗
Throgmorton Trust (The) PLC 1.255 6.773 −0.098 1.062 12.300∗
INVESCO English & International Trust PLC 1.312 8.226 −0.198 4.279 194.668∗

Notes: A total number of 253 monthly log-returns from January 1980 to February 2001 except October 1987 has been used for the calculation.
∗represents significance at 5% level.

(continued overleaf )
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C. Correlation matrix for the market portfolio and 14 investment trust (1987 market crash included)

FTSE All-share 1.000
Edinburgh 0.888 1.000
Fleming Mercantile 0.806 0.773 1.000
Henderson Smaller Companies 0.770 0.755 0.806 1.000
Govett Strategic 0.805 0.781 0.844 0.808 1.000
City of London 0.878 0.833 0.741 0.703 0.760 1.000
Merchants 0.865 0.845 0.731 0.656 0.746 0.860 1.000
Securities Trust of Scotland 0.892 0.876 0.762 0.747 0.779 0.848 0.877 1.000
Fleming Claverhouse 0.864 0.800 0.763 0.704 0.773 0.808 0.797 0.800 1.000
Murray 0.840 0.827 0.716 0.648 0.727 0.848 0.875 0.852 0.783 1.000
Dunedin Income Growth 0.845 0.842 0.717 0.626 0.729 0.822 0.858 0.823 0.827 0.823 1.000
Temple Bar 0.852 0.794 0.698 0.616 0.707 0.838 0.852 0.817 0.793 0.832 0.821 1.000
TR Property 0.702 0.648 0.665 0.602 0.685 0.710 0.689 0.667 0.600 0.646 0.641 0.653 1.000
Throgmorton 0.756 0.678 0.794 0.755 0.786 0.714 0.662 0.707 0.714 0.661 0.644 0.687 0.637 1.000
INVESCO 0.529 0.495 0.616 0.644 0.606 0.497 0.478 0.563 0.525 0.431 0.465 0.449 0.463 0.621 1.000

Notes: A total number of 254 monthly log-returns from January 1980 to February 2001 has been used for the calculation.



Table 7.2 Performance of 14 UK investment trust returns for the entire sample period

Sharpe
ratio

Rank Jensen’s
alpha

Rank Treynor–
Mazuy

Rank HM
measure

Rank PPW
measure

Rank

Edinburgh 0.1016 9 −0.0246 9 −0.0177 9 0.0264 10 −0.0328 9
Fleming Mercantile 0.1055 8 0.0512 7 0.0638 6 0.1442 4 0.0525 6
Henderson Smaller Companies 0.0684 10 −0.1833 11 −0.1868 12 −0.2095 13 −0.1770 11
Govett Strategic 0.0616 11 −0.2416 13 −0.2152 13 −0.0472 11 −0.2446 13
City of London 0.1300 2 0.1507 4 0.1605 2 0.2230 2 0.1417 4
Merchants 0.1117 7 0.0523 6 0.0570 7 0.0870 7 0.0465 7
Securities Trust of Scotland 0.1137 6 0.0429 8 0.0563 8 0.1416 5 0.0360 8
Fleming Claverhouse 0.1296 3 0.1665 2 0.1534 3 0.0696 9 0.1696 2
Murray 0.1431 1 0.2473 1 0.2495 1 0.2633 1 0.2423 1
Dunedin Income Growth 0.1149 5 0.0845 5 0.0844 5 0.0836 8 0.0792 5
Temple Bar 0.1274 4 0.1511 3 0.1447 4 0.1041 6 0.1538 3
TR Property 0.0520 13 −0.2283 12 −0.1763 11 0.1553 3 −0.2295 12
Throgmorton 0.0479 14 −0.3042 14 −0.3103 14 −0.3494 14 −0.2953 14
INVESCO 0.0524 12 −0.0957 10 −0.0941 10 −0.0839 12 −0.0771 10

Notes: A total number of 254 monthly log-returns from January 1980 to February 2001 has been used for the calculation.
HM represents Hwang and Satchell’s (1998) Higher Moment CAPM performance measure and PPW represents Positive Period Weighting measure by
Grinblatt and Titman (1989). Jensen’s alpha, Treynor–Mazuy, HM and PPW measures are multiplied by 100.



172 Performance Measurement in Finance

trusts are the same and the performance values are very similar. This pro-
vides indirect evidence that timing ability does not exist at least in these UK
investment trusts.

However, the results for the Sharpe ratio show some differences from these
three measures. The obvious difference being that the estimated Sharpe ratios
are always positive, while the others are not. This arises essentially because
the Sharpe ratio is not a relative performance measure given the performance
of a benchmark and the positive values of the Sharpe ratio effectively reflect
the positive performance in the benchmark portfolio over the sample period.
In addition, measures such as Jensen’s alpha and TM are based on non-
diversifiable risk, while the Sharpe ratio is based on total risk. Despite these
differences, generally the Sharpe ratio provides a similar pattern in the ranks
of the investment trusts. Thus empirically, these results suggest that if we are
only interested in ranks between the performance of the different portfolios,
the Sharpe ratio, which is a simple and straightforward measure, may be good
enough.

Finally, we can see that the HM measure provides quite different results;
for example, TR Property which is ranked between 11th to 13th by the other
measures is ranked 3rd by the HM measure. The statistical properties in
Table 7.1 do not show any particular pattern in the returns of TR Prop-
erty but the estimate of coskewness (γpm) for this investment trust is the
smallest (−2.02) which implies that the HM measure for the trust will be
increased.6

Several investment trusts appear to perform better using the HM mea-
sure, i.e. Edinburgh, Fleming Mercantile, Govett Strategic, City of London,
Merchants, Securities Trust of Scotland, Murray Income and TR Property,
while Henderson Smaller Companies, Fleming Claverhouse, Templer Bar and
Throgmorton appear worse under the HM measure. Generally, investment
trusts appear to perform better than the benchmark when the higher moment
systematic risk such as the coskewness is taken into account. This suggests that
the managers of these trusts maintain their portfolios better in the presence of
large negative and positive shocks than can be explained in the mean-variance
world.

So we suggest that when returns are normal and portfolio managers show
no timing ability, then four measures, Jensen’s alpha, TM, HM and PPW, are
likely to provide very similar results. However, given the evidence for non-
normality (as shown in Table 7.1) there are significant differences between
the HM measure and the other three. These results are consistent with those

6Note that using the estimates of σm, γm, and θm in Table 7.1, we find that λ2 is always negative.
Thus for a given beta, any large negative coskewness will increase the value of the HM measure.
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of Hwang and Satchell (1998) who found significant differences between
the measures for highly non-normal emerging market returns. The slight dif-
ferences between the three other measures, Jensen’s alpha, TM and PPW,
indirectly suggest that there is no significant timing ability shown by these
portfolio managers.

7.3.3 Time varying properties of the performance
of the UK investment trusts

The results in Table 7.2 do not show us how the 14 investment trusts per-
form over time and hence under different market conditions and this would
seem to be operationally important since many organizations examine their
performance on a daily and hence a dynamic basis. Are the ranks between the
portfolios relatively stable or do they change over time as market conditions
change? If we find that performance does not change dramatically over time
then we could potentially construct a hedge portfolio with the portfolios and
obtain excess returns.

The five performance measures are now calculated for each investment
trust using rolling windows of 60 monthly returns. That is, the first value is
calculated using the first 60 monthly returns, i.e. January 1980 to December
1984, and the second is obtained using the 60 monthly returns from February
1980 to January 1985, and so on. Using this approach, we obtain a time series
for each performance measure that consists of 195 monthly observations from
December 1984 to February 2001 for each investment trust.

Figure 7.1 provides examples of estimates of the five performance measures
over time and Table 7.3 reports some statistical properties of the measures.
First of all, the relationship between the performance measures can clearly
vary quite widely over time. Note in particular that the Sharpe ratio can be
seen generally to have noticeably moved down during the 1987 crash and
then up with the UK’s withdrawal from EMU in 1992, but for some trusts
can be relatively unaffected by the Russian Crisis in August 1998.

The other relative measures, except the HM measure, do not generally show
particularly large changes around the 1987 crash. Figure 7.1 indicates that the
HM measure for Edinburgh shows a big downside movement around the 1987
crash while the other investment trusts show a much smaller reaction. This
suggests that the HM measure does not always respond in the same way to
negative (positive) shocks but it depends critically on the coskewness.7 Over
the entire sample period, TR Property performs better using the HM measure.

7The high ranking of TR Property with the HM measure in Table 7.2 can be seen in Figure 7.3b.
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Figure 7.1a Edinburgh
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Figure 7.1b TR Property
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Table 7.3 Statistical properties of performance measures for selected investment trusts

Sharpe ratio Jensen’s alpha Treynor–Mazuy HM PPW

A. Edinburgh

Mean 0.095 −0.145 −0.125 −0.003 −0.158
STD 0.068 0.227 0.226 0.335 0.227
Skewness 0.221 0.009 0.048 0.248 0.055
Excess kurtosis −0.199 −0.896 −0.981 −0.523 −0.867

Correlation matrix
Sharpe ratio 1.000
Jensen’s alpha −0.219 1.000
Treynor–Mazuy −0.205 0.990 1.000
HM 0.112 0.670 0.725 1.000
PPW −0.266 0.994 0.979 0.593 1.000

Autocorrelations Lag 1 0.930 0.961 0.960 0.968 0.961
Lag 2 0.844 0.926 0.927 0.929 0.929
Lag 3 0.764 0.900 0.906 0.895 0.908
Lag 4 0.689 0.864 0.872 0.864 0.875
Lag 5 0.618 0.830 0.840 0.836 0.844

B. TR Property

Mean 0.032 −0.471 −0.435 0.219 −0.477
STD 0.151 0.748 0.786 0.698 0.727
Skewness −0.313 −0.445 −0.436 −0.496 −0.473
Excess kurtosis −0.490 −0.743 −0.820 0.031 −0.661

Correlation matrix
Sharpe ratio 1.000
Jensen’s alpha 0.958 1.000
Treynor–Mazuy 0.951 0.997 1.000
HM 0.816 0.830 0.837 1.000
PPW 0.950 0.999 0.996 0.829 1.000

Autocorrelations Lag 1 0.984 0.985 0.987 0.975 0.984
Lag 2 0.965 0.969 0.972 0.947 0.967
Lag 3 0.940 0.950 0.956 0.918 0.947
Lag 4 0.913 0.929 0.937 0.885 0.924
Lag 5 0.882 0.902 0.913 0.846 0.897

C. Invesco

Mean 0.083 −0.198 −0.169 0.239 −0.198
STD 0.175 1.011 1.014 1.042 1.004
Skewness −0.153 −0.528 −0.589 −0.851 −0.521
Excess kurtosis −0.415 −0.357 −0.323 0.431 −0.340

Correlation matrix
Sharpe ratio 1.000
Jensen’s alpha 0.937 1.000
Treynor–Mazuy 0.940 0.999 1.000
HM 0.833 0.895 0.909 1.000
PPW 0.933 0.999 0.996 0.881 1.000

(continued overleaf )
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Table 7.3 (continued)

Sharpe ratio Jensen’s alpha Treynor–Mazuy HM PPW

Autocorrelations Lag 1 0.984 0.982 0.983 0.980 0.981
Lag 2 0.962 0.958 0.959 0.958 0.956
Lag 3 0.935 0.933 0.935 0.935 0.929
Lag 4 0.908 0.909 0.911 0.913 0.903
Lag 5 0.881 0.884 0.888 0.887 0.879

Notes: HM represents Hwang and Satchell’s (1998) Higher Moment CAPM performance measure
and PPW represents Positive Period Weighting measure by Grinblatt and Titman (1989). Jensen’s
alpha, Treynor–Mazuy, HM and PPW measures are multiplied by 100. The bold numbers represent
significance at 5% level.

The statistical properties of the measures reported in Table 7.3 show little
difference between Jensen’s alpha, TM and PPW; the measures are either
negatively skewed (Invesco), platykurtic (Edinburgh), or both (TR property).
Figure 7.2 shows a typical example of the empirical kernel density estimates
for the performance measures for the case of the TR Property Trust. The
effectively common density shown by Jensen’s alpha, TM and PPW can
be compared with the distinctly different distributional shapes presented by

3.0
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2.0

1.5

1.0

0.5

0.0

Sharpe ratio

HS Measure

−3 −2 −1 10 2−4

Figure 7.2 Kernel density estimates for the TR property trust
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the Sharpe ratio and the HM measure. In addition, since they are highly
autocorrelated and cross-correlated these measures move together over time
and there really is relatively little difference between these three measures. The
correlation matrices in Table 7.3 also show that in most cases the correlation
coefficients between these three measures are larger than 0.99 although we
have to be very wary of the utility of correlation as a measure of dependence
given the apparent non-normal distribution of the performance measures. Once
again, we find little evidence of timing ability in the investment trusts.

However, the statistics of the Sharpe ratio are again different from those of
these three measures showing much less variation. For the Edinburgh Trust,
the Sharpe ratio is not significantly correlated with any of the three measures
nor the HM measure, while for TR Property and Invesco it is highly correlated
with all the others. The estimates of skewness and excess kurtosis suggest that
normality may be assumed only for the Sharpe ratio and even then only for
a subset of the trusts. The HM measure is relatively less correlated with
the three measures above with estimates of the cross-correlation coefficients
generally less than 0.9.

Finally, we provide a comparison of the performance for eight investment
trusts by performance measure in Figures 7.3a to 7.3c.8 These plots show that
there is no one investment trust which always performs better than the others.
Murray Income Trust, which is the best among the 14 investment trusts for
all five performance measures in Table 7.2, belonged to the top group during
1991 to 1995, but after 1997 this is no longer true. Since the ranking does
not change rapidly, we could choose an investment trust which has performed
well and expect it to perform well in the future if the horizon is relatively
short. So there is some persistence in performance over time.

Figure 7.4 shows a typical multivariate scatter plot of the performance mea-
sures, in this case for the City of London Trust, and we can see the clear
dependence structure. Jensen’s alpha, Treynor and the PPW measures again
essentially provide identical information over time whereas the other two
measures, HM and SR, differ from these three in different ways.

Inspecting the time series plots in Figure 7.1 we can see the different pat-
terns taken by the Sharpe ratio, Jensen’s alpha and HM measures. First of
all, while the HM measure behaves similarly to Jensen’s alpha it seems to be
more volatile than Jensen’s alpha over time. The volatility in the HM measure
supports the view that it is more sensitive to large shocks in the market than
Jensen’s alpha. In addition, the estimates of the HM measure are spread more

8Note that we only report results for Jensen’s alpha among the set Jensen’s alpha, TM and PPW
since these three appear to show such little difference.
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Figure 7.3a Sharpe ratios for the 14 UK investment trusts
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Figure 7.3b Jensen’s alpha for the 14 UK investment trusts
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Figure 7.4 Multivariate scatter plot of performance measures for the City of London Trust

widely than those of Jensen’s alpha which are in turn spread more widely
than those of the Sharpe ratio.

The Sharpe ratio seems also to be sensitive to big market movements such
as the market crisis of 1987, Sterling’s withdrawal from EMU in 1992, the
Russian crisis in 1998, etc. The effect of these episodes on the Sharpe ratio
is stronger than on the other measures since all except the Sharpe ratio are
relative measures and thus far less sensitive to jumps in the benchmark.

Interestingly, Jensen’s alpha and the HM measure both show that these UK
investment trusts performed well up to 1993, but soon after that point, the
performance measures begin to show a dramatic decrease until 1999. If we
assume that the betas of the investment trusts are very close to one, this means
that during this period it became very difficult to outperform the benchmark.
On the other hand, during the early sample period, i.e. early 1980s, beating the
benchmark was probably easier than in late 1990s. However, these indications
of performance relative to the benchmark portfolio cannot be seen in Sharpe
ratio and the movement in Sharpe ratio roughly matches the UK market
movement over the same period.

This fairly standard form of descriptive analysis of the patterns of behaviour
identified above between the different performance measures can provide only
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casual insight. We need to move beyond correlation analysis to properly assess
their interdependence given the non-Gaussianity of the performance measures
shown in Figure 7.2. We now turn to consider how the use of copula functions
can help us to quantify the relationships between the performance measures
by assessing their statistical dependence more accurately.

7.4 COPULAE

7.4.1 A brief introduction to copulae

A copula is simply a function that links univariate marginals to their joint
multivariate distribution or alternatively it is a joint distribution function with
uniform marginals. Such a function is simply defined as follows:

C(u1, u2, . . . , uN) = Pr[U1 ≤ u1, U2 ≤ u2, . . . , UN ≤ uN ] (7.12)

with U1, U2, . . . , UN uniform random variables. Suppose we have a portfolio
with N assets whose returns follow univariate marginal distribution functions
F1(x1), F2(x2), . . . , FN(xN) then the copula will describe their joint distribu-
tion. The copula function C combines or couples the marginals together to
give their joint density such that:

C(F1(x1), F2(x2), . . . , FN(xN)) = F(x1, x2, . . . , xN) (7.13)

given the univariate marginal

Fi(xi) = C(F1(+∞), F2(+∞), . . . , Fi(xi), . . . , FN(+∞)) (7.14)

This follows directly from:

C(F1(x1), F2(x2), . . . , FN(xN))

= Pr[U1 ≤ F1(x1), U2 ≤ F2(x2), . . . , UN ≤ FN(xN)]
= Pr[F−1

1 (U1) ≤ x1, F
−1
2 (U2) ≤ x2, . . . , F

−1
N (UN) ≤ xN ]

= Pr[X1 ≤ x1, X2 ≤ x2, . . . , XN ≤ xN ]

= F(x1, x2, . . . , xN) (7.15)

Conversely, for a given multivariate distribution, there exists a copula function
that links its marginals. Moreover Sklar (1959) proved that if the marginal
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distribution functions are continuous then we can be assured that the copula
is unique.9

Since the multivariate distribution contains all the information that exists
on the dependence structure between the variables, in our case the different
performance measures, the copula must contain precisely the same informa-
tion10 and hence it captures exactly how the different performance measures
are related to each other. Moreover since the copula is defined on the trans-
formed uniform marginals it holds this information on dependence irrespective
of the particular marginals of the underlying performance measures. So a sim-
ple procedure to analyse the multivariate distribution or dependence between
the non-Gaussian performance measures would be to start by determining the
marginal distribution relevant to each measure and then estimate the relevant
copula from the data to give the multivariate distribution of the performance
measures. Then given the estimated copula we can move to consider exactly
where in their range spaces the different performance measures will provide
different signals of portfolio performance. In other words where they may be
jointly dependent or relatively independent.

Finance has traditionally assumed a multivariate Gaussian distribution for
returns and in terms of copulae, this is equivalent to assuming that (i) the
marginal density functions of each asset’s return is Gaussian and (ii) that the
copula that links univariate marginals is a particular copula, in fact a Gaussian
copula. If we assume two random variables X ∼ N(0, 1), Y ∼ N(0, 1), with
correlation coefficient ρ(X, Y ) = ρ and if their joint distribution is bivariate
Gaussian, then F(X, Y ) = CGauss

ρ (#(x),#(y)) with CGauss
ρ being the Gaus-

sian copula such that for (u, v) ∈ [0, 1]2:

CGauss
ρ (u, v) =

∫ #−1(u)

−∞

∫ #−1(v)

−∞
1

2π(1 − ρ2)1/2

× exp

(
−(s2 − 2ρst + t2)

2(1 − ρ2)

)
dsdt (7.16)

However, if we chose C �= CGauss
ρ , the joint distribution function F(x, y) =

C(#(x),#(y)) will no longer be multivariate Gaussian but will still be a well-
defined distribution. The Gaussian is one of a large number of parametric
copula that could be used to join marginals and an important issue is the
statistical identification of such copula. In the Gaussian copula considered here
there is a single parameter, ρ, the correlation coefficient, that simultaneously

9 For a detailed discussion of copulae and their applications in statistics see, Joe (1997) or Nelsen
(1999).
10Since it cannot be held in the marginal distributions.
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parameterizes the copula and the dependency between the variables. More
general copulae may be parameterized or defined by several parameters and
different measures of dependency may be expressed as different functions
of these parameters. Measures of dependency need not necessarily be easily
expressed as functions of these parameters but may instead be defined as
functions of the copula map itself. A two parameter copula is, for example,
given by

C(u, v; θ, δ) = {1 + [(u−θ − 1)δ + (v−θ − 1)δ]
1
δ }− 1

θ (7.17)

= η(η−1(u)+ η−1(v))

where η(s) = ηθ,δ(s) = (1 + s 1
δ )

− 1
θ and the lower tail area dependency mea-

sure is 2− 1
δθ and the upper tail area dependency measure is 2 − 2

1
δ (which is

independent of θ). More generally, having more than one parameter facilitates
the measurement of different types of dependency.

A central result is that if the random variables X1, . . . , Xn are independent
then the copula function that links their marginal is the product copula:

C(F1(x1), F2(x2), . . . , FN(xN)) = F(x1)F (x2) . . . , F (xN) (7.18)

and tests for independence can be based on the distance of the empirical copula
to this product copula. More generally the copula is a function defined over
the range of the random variables when transformed into a uniform [0,1] space
and hence we can examine the varying dependence structure throughout the
entire range of the potential variation of the performance measures. This is in
contrast to the use of a single number such as the correlation which is assumed
to apply globally and to accurately measure a common degree and form of
dependence throughout the entire range of values taken by the variables.
This is an assumption which is only valid if the performance measures were
distributed elliptically.

7.4.2 Measuring dependency using copulae

Let us start by briefly recalling the failure of correlation as a measure of
association.

The inadequacy of correlation
The standard definition of the Pearson correlation coefficient is

ρ =

1

n

n∑
i=1

(xi − x̄)(yi − ȳ)

σxσy
(7.19)
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with

x̄ = 1

n

n∑
i=1

xi and ȳ = 1

n

n∑
i=1

yi (7.20)

and

σ 2
x = 1

n

n∑
i=1

(xi − x̄)2 and σ 2
y = 1

n

n∑
i=1

(yi − ȳ)2 (7.21)

As pointed out by Embrechts, McNeil and Straumann (1999), the success of
correlation is due to its properties for linear analysis, especially for the linear
combination of risk factors F , where var(α�F) = α� cov(F )α. It provides,
however, only a measure of linear association. There are many problems
with using correlation to describe multivariate dependence in more general
situations, however. In particular;

• σ 2
x and σ 2

y have to be finite for ρ to be defined. For example, consider an
extreme value type II (Fréchet) distribution with parameter τ = −α−1 so
that

∫∞
0 xr dFX(x) = ∞ for r > α. Correlation is then not defined in this

quite reasonable and important case for financial applications.
• Independence always implies zero correlation but the converse is true only

for an elliptic distribution such as the Gaussian.
• Correlation is not an invariant measure whereas the copula function is

invariant to strictly monotone transformations.

The fundamental reason why the Pearson correlation fails as an invariant
measure of dependency is that it depends not only on the copula but also
on the marginal distributions of the data. Thus the correlation is changed
by potentially non-affine transformations in the marginal variables and there-
fore the units in which we express our data. It is formally not a geometric
quantity.

7.4.3 Concordance: scale invariant dependence measures

Despite the impression created by the common usage of correlation to mea-
sure dependence it is in fact often far from straightforward to define exactly
what form of dependence we are interested in and then to select a statistic that
captures exactly what we need to measure. As emphasized above the desire
to use a measure that is invariant leads naturally to copula-based measures
since the copula captures those properties of the joint distribution which are
invariant under almost surely strictly increasing transformations. So invariant



184 Performance Measurement in Finance

measures of dependency will be expressible solely in terms of the copula
of the random variables. The most widely used scale invariant measures of
association are Kendall’s τ and Spearman’s ρ both of which measure con-
cordance. Concordance between two random variables arises if large values
of one variable tend to occur with large values of the other and small values
occur with small values of the other; otherwise they are said to be discordant.
So concordance picks up non-linear associations between the performance
measures that correlation might miss completely.

Suppose that (X1, Y1) and (X2, Y2) are independent and identically dis-
tributed random vectors with possibly different joint distribution functions
H1 and H2 with copulae C1 and C2 respectively, but with common mar-
gins. The population version of Kendall’s τ is defined as the probability of
concordance minus the probability of discordance,

τ = τX,Y

= P [(X1 −X2)(Y1 − Y2) > 0] − P [(X1 −X2)(Y1 − Y2) < 0] (7.22)

Nelsen shows that this may be re-expressed simply in terms of the copulae as

Q = Q(C1, C2) = a

∫∫
I 2
C2(u, v) dC1(u, v)− 1 (7.23)

Spearman’s ρ is defined as follows. Let Ri be the rank of xi among the x’s
and Si be the rank of yi among the y’s. The Spearman rank order correlation
coefficient is:

ρS =

n∑
i=1

(Ri − R̄)(Si − S̄)
√√√√ n∑
i=1

(Ri − R̄)2
√√√√ n∑
i=1

(Si − S̄)2
(7.24)

which again may be expressed in terms of copulae as

ρC = 12
∫∫

[0,1]2
(C(u, v)− uv) dudv (7.25)

Spearman’s rank correlation coefficient is essentially the ordinary correlation
of ρ(F1(X1), F2(X2)) for two random variables X1 ∼ F1(.) and X2 ∼ F2(.).
Notice the explicit contrast with the product copula in this case. Essentially
these two measures of concordance measure the degree of monotonic depen-
dence as opposed to the Pearson correlation which simply measures the degree
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of linear dependence. They both achieve a value of unity for the bivariate
Fréchet upper bound (one variable is an increasing transformation of the
other) and minus one for the Fréchet lower bound (one variable is a strictly
decreasing transform of the other). These two properties do not hold for the
standard correlation coefficient making these two concordance measures more
attractive as general measures of dependency or association.

Table 7.4 provides a comparison between the measures of concordance and
correlation between the performance measures for the Fleming Calverhouse
Trust. What is clear from this comparison is that simple correlation analysis
suggests that all the measures are significantly positively related while both
concordance measures clearly suggest a lack of concordance between the
Sharpe ratio and all the other measures.11 This implies that we should expect
all the performance measures to move in the same direction, either linearly
or non-linearly, except the Sharpe ratio. While standard correlation analysis
suggests all are linearly related, Kendall’s τ and Spearmans’s ρ indicate that
there is no monotone dependency between the Sharpe ratio and the other

Table 7.4 Comparison between the measures of concordance and correlation between
the performance measures for the Fleming Calverhouse investment trust

Sharpe ratio Jensen’s alpha Treynor–Mazuy HM PPW

A. Pearson’s correlation coefficient

Sharpe ratio 1.000
Jensen’s alpha 0.199∗ 1.000
Treynor–Mazuy 0.191∗ 0.994∗ 1.000
HM 0.147∗ 0.470∗ 0.556∗ 1.000
PPW 0.230∗ 0.996∗ 0.988∗ 0.470∗ 1.000

B. Kendal’s τ

Sharpe ratio 1.000
Jensen’s alpha 0.049 1.000
Treynor–Mazuy 0.050 0.994∗ 1.000
HM 0.118∗ 0.373∗ 0.397∗ 1.000
PPW 0.053 0.955∗ 0.903∗ 0.340∗ 1.000

C. Spearman’s ρ

Sharpe ratio 1.000
Jensen’s alpha 0.060 1.000
Treynor–Mazuy 0.065 0.993∗ 1.000
HM 0.168∗ 0.506∗ 0.543∗ 1.000
PPW 0.067 0.996∗ 0.984∗ 0.458∗ 1.000

Notes: ∗represents significance at 5% level.

11Similar results were found for the other Investment Trusts.
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measures. Superficially these results might appear to be contradictory but
really serve to question the value of correlation analysis on data that is non-
Gaussian. More importantly for our current objectives it allows us to formally
isolate the distinction between the use of relative and absolute risk measures
in performance analysis. It is also clear once again that the Treynor, Jensen’s
alpha and the PPW measures are very tightly related whether we think in
terms of correlation or concordance. There is a weaker association between
HM and these three but it is still significantly different from zero.

We could from this point consider a range of alternative dependency mea-
sures between the performance measures based on copulae such as positive
quadrant dependence or positive function dependence (see Joe, 1997) but have
instead chosen to examine the relationship between the measures as they take
large or small values since we feel this is a case that it is likely to be most
important in practice. A manager needing to make a decision based on when
one performance measure is taking extreme values might be reassured by
the knowledge that the same signal is likely to be provided by some other
performance measure.

Tail area dependence
The relationship between the performance measures under extreme market
conditions, and hence when the measures themselves are likely to take extreme
values, can be captured by examining the potential common behaviour in the
tails of their distributions or in other words notions of tail area dependency.
If two random variables, in our case performance measures, X and Y fol-
low marginal distribution functions FX and FY respectively then a standard
definition of upper tail dependency, λU , is given by

λU = lim
u→1

P(Y > F−1
Y (u)|X > F−1

X (u)) (7.26)

and the variables will be asymptotically upper tail dependent if λU ∈ (0, 1]
and upper tail independent if λU = 0 provided the limit λU ∈ [0, 1] exits.12

In other words we look to see if two measures simultaneously lie in suitably
defined tail areas of their marginal distributions. This form of dependence,
which again is quite distinct from correlation in the non-Gaussian case, can
again be derived directly from the copula function linking the two performance
measures (see Joe, 1997) and so will be invariant and independent of the form
of the marginal distributions. An equivalent definition is that a copula C shows
upper tail dependence where λU ∈ (0, 1] and when

λU = lim
u→1

(1 − 2u+ C(u, u))/(1 − u) (7.27)

12Similar definitions hold for lower tail dependency.
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Poon, Rockinger and Tawn (2001) have recently discussed applications of
(upper) tail dependence measures in finance and considered χ defined by

χ = lim
s→∞P(Y

∗ > s|X∗ > s) (7.28)

where 0 ≤ χ ≤ 1, and the value of s is the extreme event for each vari-
able, and

X∗ = − 1

logFX(X)
(7.29)

Y ∗ = − 1

logFY (Y )
(7.30)

are the original random variables transformed to unit Fréchet marginals so
that they are defined on a common scale and events of the form {X∗ > s}
and {Y ∗ > s} correspond to equally extreme events for each variable. In other
words

P(X∗ > s) = P(Y ∗ > s) ∼ s−1 as s → ∞ (7.31)

and X∗, Y ∗ possess the same dependence structure as (X, Y ). When χ > 0, the
two variables are asymptotically tail area dependent since χ measures depen-
dence that is persistent in the limit. However, when χ = 0, the two variables
are asymptotically independent but not necessarily exactly independent and
the distinction is important; consider, for instance, a bivariate normal case
with any value of the correlation coefficient less than 1 which would imply
χ = 0. Exact independence implies

P(X∗ > s|Y ∗ > s) = P(X∗ > s) (7.32)

which clearly goes to zero as s → ∞. When there is exact dependence tradi-
tional extreme value methods will impose asymptotic dependence regardless
of whether or not the true distribution shows asymptotic independence and
hence they will overestimate P(X∗ > s, Y ∗ > s) and other probabilities of
joint extreme events and hence a bias emerges. χ describes the degree of
asymptotic dependence if the variables are asymptotically dependent and it
will be zero for all asymptotically independent variables so χ cannot describe
the degree of asymptotic independence.

Coles, Heffernan and Tawn (1999) have therefore developed a different
measure, χ̄ , which is defined by

χ̄ = lim
s→∞

2 log Pr(X∗ > s)
log Pr(Y ∗ > s,X∗ > s)

− 1 (7.33)
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where −1 < χ̄ ≤ 1 and this provides an accurate measure of asymptotic inde-
pendence since it describes the rate that P(X∗ > s|Y ∗ > s) goes to zero.
When χ̄ = 0, the two variables are independent in the tails, and when χ̄ < 0
(χ̄ > 0), the two variables may be interpreted as being negatively (positively)
associated. χ and χ̄ together therefore provide all we need to assess the
degree of association between the performance measures in their tails; χ for
asymptotic dependence and χ̄ for asymptotic independence.

If we define Z = min(X∗, Y ∗), we can estimate χ̄ , following Poon,
Rockinger and Tawn (2001), by using the standard Hill estimator as

̂̄χ = 2

nu

nu∑
j=1

log
(
zj

u

)
− 1 (7.34)

var(̂̄χ) = (̂̄χ + 1)2

nu
(7.35)

where zj are those, nu, observations that exceed u. χ is estimated by

χ̂ = unu

n
(7.36)

var(χ̂) = u2nu(n− nu)
n3

(7.37)

If ̂̄χ is significantly less than 1 (i.e. if ̂̄χ + 1.96
√

var(̂̄χ) < 1) then the infer-
ence is that the performance measures are asymptotically independent and χ
is taken to be zero. Only if there is no significant evidence to reject χ̄ = 1 is
χ then estimated (under an assumption that χ̄ = 1).

Table 7.5 provides estimates of χ̄ for the five performance measures for
the Fleming Claverhouse Trust. We took the upper (lower) 2% of the total
observations (given the 195 monthly observations implies four observations)
to define the extreme case.13 The table shows that for the left tail, the Sharpe
ratio is negatively associated with Jensen’s alpha, TM and PPW, but inde-
pendent of HM. On the other hand, Jensen’s alpha, TM and HM do not
show any significant asymptotic left tail dependency. This result would seem
to be important and indicates the value of this analysis since it implies all
the dependency we have already noted between these performance measures
comes about when they take values from within the body of their distribu-
tions or from their right tail and not from their left tail behaviour, when they
indicate poor performance.

13We also estimated the independency measure for 4% and found that the results are similar to
those in Table 7.5. We recognize that the results in Table 7.5 may be affected by the small number
of observations.
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Table 7.5 Measures of extreme tail independency for the five performance measures for the
case of Fleming Claverhouse

Sharpe
ratio

Jensen’s
alpha

Treynor–
Mazuy

HM

A. Left tail

Jensen’s alpha Independence measure −0.7824∗
Standard error (0.1088)
Correlation 0.1987∗

Treynor–Mazuy Independence measure −0.8797∗ 0.3078
Standard error (0.0601) (0.6539)
Correlation 0.1912∗ 0.9943∗

HM Independence measure −0.4173 −0.1670∗ 0.4369
Standard error (0.2914) (0.4165) (0.7185)
Correlation 0.1470∗ 0.5275∗ 0.5560∗

PPW Independence measure −0.7859∗ 0.3078 0.3078 −0.2799∗
Standard error (0.0957) (0.6539) (0.6539) (0.3600)
Correlation 0.2301∗ 0.9965∗ 0.9882∗ 0.4702∗

B. Right tail

Jensen’s alpha Independence measure 0.8899
Standard error (0.9450)
Correlation 0.1987∗

Treynor–Mazuy Independence measure 0.5805 0.3946
Standard error (0.7903) (0.6237)
Correlation 0.1912∗ 0.9943∗

HM Independence measure −0.3664∗ 0.0618 0.1277
Standard error (0.3168) (0.5309) (0.5043)
Correlation 0.1470∗ 0.5275∗ 0.5560∗

PPW Independence measure 1.5945 0.0462 0.1913 −0.2874∗
Standard error (1.2972) (0.5231) (0.5957) (0.3563)
Correlation 0.2301∗ 0.9965∗ 0.9882∗ 0.4702∗

Notes: The results are obtained with the 195 performance measures reported in Table 7.3. The
independence measures are calculated as in Poon, Rockinger and Tawn (2001).
∗represents significance from at 5% level.

The results for the right tail, however, are quite different from those of
the left tail. None of them are significantly different from zero and thus we
conclude that all performance measures are independent in the right tail, in
other words when we see large performance values.

Therefore on the basis of these results, when performance measures such
as Jensen’s alpha, TM and PPW show very large decreases the Sharpe ratio
will tend to increase while the HM would not show any particular pattern. On
the other hand, when any performance measure indicates that the portfolio
performs very well, we will tend not to find any particular pattern between
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any of the measures despite the fact that correlation analysis indicates a very
high association between Jensen’s alpha, TM and PPW.

7.4.4 Quantile regressions

Given how these tail area dependency results differ so strongly from the
standard correlation results in Table 7.3 we extended this form of analysis
in order to investigate how the conditional dependence between the perfor-
mance measures may vary throughout the entire range of their conditional
distributions. Regression methods are one of the most common tools used to
capture multivariate dependency. However, given that the performance mea-
sures are non-Gaussian it is far from obvious that we should be interested
in the conditional mean of the dependent variable rather than some other
function of their conditional density. We may instead be interested in the
relationship at particular quantiles, say the median, and it is then natural to
consider computing quantile regressions and again since the copula captures
the entire joint distribution it can be used to make this a relatively easy exer-
cise. Quantile regression thus enables us to explore the conditional dependence
of each performance measure given another performance measure’s value at
any particular range of quantiles and in this way we can extend the tail
area dependency analysis into the body of the conditional distribution and
explore the dependency structure within the entire conditional density of a
performance measure.

If we assume an Archimedean form of the copula14 so that the conditional
distribution of Y given X1 . . . Xk is given by

FY (y|x1 . . . xk) = φ−k{ck + φ[Fy(y)]}
φ−k(ck)

(7.38)

where ck = φ[F1(x1)] + . . .+ φ[Fk(xk)] + φ[FY (y)]. Elementary statistics
show us that the regression function may be rewritten as

E(y|x1 . . . xk) =
∫ ∞

0
[1 − FY (y|x1 . . . xk)] dy

+
∫ 0

−∞
[FY (y|x1 . . . xk)] dy (7.39)

14A general family of copulae is the archimedean form in which Cφ(u, v) = φ−1(φ(u), φ(v)) for
u, v ∈ (0, 1]2 where φ is a convex decreasing function with domain (0, 1] and range [0,∞) such
that φ(1) = 0. Several standard copula belong to this family for different choices of generator
function φ, see Nelsen (1998).
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Genest (1987) has shown that using Frank’s copula (with an Archimedean
generator function φ(t) = ln( eαt−1

eα−1 )) we can write the regression function
directly as

E(Y |X1 = x) = (1 − e−α)xe−αx + e−α(e−αx − 1)

(e−αx − 1)(e−α − e−αx)
(7.40)

Instead of calculating the conditional mean function we can compute the
median or any other quantile of the conditional distribution in a similar way.
If we define the p′th quantile to be the solution yp of the equation

p = FY (yp|x1 . . . xk) (7.41)

or for the bivariate case

p = FY (yp|X1 = x) = C1�F(x), FY (yp)� (7.42)

whereC1 is the partial derivative with respect to the first argument in the copula.
So for a specified proportion p and x value we can solve equation (7.42) for the
required percentile. In the examples below we have been restricted by software
constraints to imposing a linear functional form on these quantile regressions.

So we have examined the conditional dependence between the different
performance measures by running bivariate quantile regressions at the 1%,
5%, 10%, 25%, 50%, 75%, 90%, 95% and 99% levels. The results are reported
in Table 7.6 for the case of the Fleming Claverhouse Trust. Note that the
column heads indicate the explanatory variable in explaining the conditional
quantile of the indicated performance measure for the relevant table and the
stars indicate significant coefficient values at the 5% level.15

From panel A of Table 7.6 we can see that the Sharpe ratio only really
provides any explanatory power for Jensen’s alpha in the upper half of the
distribution and this is most strong in the extreme tail (the 99th quantile).
On the other hand, the higher moment measure indicates significant positive
dependence throughout the distribution.

Panel B of Table 7.6 indicates virtually no power in explaining the higher
moment measure by the Sharpe ratio except at the 75th and 90th quantiles
whereas Jensen’s alpha would seem to be significantly related to the higher
moment measure almost throughout the entire distribution.

Finally panel C of Table 7.6 shows some conditional dependence in
explaining the Sharpe ratio by Jensen’s alpha above the 90% quantile and
the higher moment measure is only significant around the 25th and 50th
quantiles. These results reinforce the conclusions drawn earlier from the tail

15Notice that these quantile regression results may be regarded as estimates of exact rather than
asymptotic quantile dependency as developed above with the taila rea dependency measure.
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Table 7.6 Conditional dependence between the different performance measures for the case
of the Fleming Claverhouse trust

Sharpe ratio HM

Intercept Slope Intercept Slope

A. Quantile regression results for Jensen’s α

1% −0.409∗ 1.113 −0.136∗ 0.437∗
5% −0.121∗ 0.000 −0.092∗ 0.381∗

10% −0.158∗ 0.557∗ −0.051∗ 0.347∗
25% 0.028 0.090 0.015 0.366∗
50% 0.124∗ −0.017∗ 0.107∗ 0.478∗
75% 0.206∗ 0.516∗ 0.198∗ 0.727∗
90% 0.302∗ 0.514∗ 0.326∗ 0.399∗
95% 0.323∗ 0.678∗ 0.405∗ 0.280∗
99% 0.352∗ 1.055∗ 0.497∗ 0.591∗

Sharpe ratio Jensen’s α

Intercept Slope Intercept Slope

B. Quantile regression results for HM

1% −0.442∗ 0.418 −0.378∗ 0.313∗
5% −0.319∗ 0.139 −0.299∗ 0.551∗

10% −0.235∗ 0.256 −0.227∗ 0.482∗
25% −0.080∗ −0.025 −0.151∗ 0.799∗
50% 0.030∗ 0.235 −0.076∗ 0.788∗
75% 0.102∗ 0.870∗ 0.074∗ 0.614∗
90% 0.124∗ 1.290∗ 0.268∗ 0.310∗
95% 0.144∗ 1.480 0.333∗ 0.291∗
99% 0.157 1.672 0.365∗ 0.357

HM Jensen’s α

Intercept Slope Intercept Slope

C. Quantile regression results for Sharpe ratio

1% −0.045∗ 0.386 −0.002 −0.366
5% −0.012 0.026 0.023 −0.069

10% 0.024∗ 0.109 0.027∗ 0.027
25% 0.070∗ 0.188∗ 0.069∗ −0.042
50% 0.134∗ 0.108∗ 0.134∗ 0.081∗
75% 0.195∗ 0.040 0.194∗ 0.125
90% 0.265∗ −0.117 0.214∗ 0.358∗
95% 0.305∗ −0.110 0.229∗ 0.356∗
99% 0.401∗ 0.312 0.289∗ 0.269∗

Notes: ∗represents significance at 5% level.
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area dependency measure but provide deeper insights as to when we may
expect to draw conflicting conclusions regarding performance by adopting
one measure rather than another. Again the Sharpe ratio appears as an outlier
providing relatively limited explanation for the other two measures and in
turn only really showing joint dependence with Jensen’s alpha in the upper
tail of the bivariate distribution. Jensen’s alpha is seen to be related to the
HM measure throughout the body of the conditional distribution except in the
right-hand tail confirming the previous tail area dependency result.

7.5 AN AGGREGATE PERFORMANCE MEASURE

It has been shown quite widely in the literature (see, for instance, Diebold
(1997)) that combining forecasts generated from different models can reduce
offsetting biases, and also that the combined forecast can have a lower
variance given the interdependence between the forecasts. These advantages
clearly seem to be worth pursuing within the context of performance
measurement through the proper construction of an aggregate of several
potentially competing performance measures. As with forecast combination
it may not make sense to combine forecasts that arise from different models
that are theoretically inconsistent but when this is not the case the view may
be taken that different models simply reflect parts of a more complex data
generation process and may legitimately be combined.

From this point of view we would exclude the Sharpe ratio from consid-
eration in the aggregate performance measure below since it differs from the
others we have considered in that it is not a relative measure. Moreover given
the common information being generated by Jensen’s alpha, the Treynor and
PPW measures we will just consider the question of how to construct an
aggregate performance measure from one of these, Jensen’s alpha and the
higher moment measure.

Jouini and Clemen (1996) have proposed the use of copula functions to
aggregate expert opinions in a decision problem and we shall apply their
methodology as an illustration of the method below. There are a range of
statistical issues which need to be pursued in following up our suggestion to
construct an aggregate performance measure which we do not have space to
resolve here but we believe the approach is powerful and worth pursuing. We
take Jensen’s alpha and the HM measure as representing the evaluations of two
‘experts’ as to the true underlying performance of a fund and hence describe
the methodology for the bivariate case, although the approach can easily
be extended to consider the aggregation of a greater number of underlying
performance measures if required. Each of the separate performance mea-
sures follows a distinct distribution, say F1(x) and F2(x) and our problem
is then essentially to aggregate these distributions taking into account their
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interdependence. This sort of question has a long history in statistics (see
Genest and Zidek (1986)) and has been applied in many areas. The sim-
plest approach is to construct an aggregate distribution as an average F̄ (x) =
[F1(x)+ F2(x)]/2 but this ignores the relative accuracy of the two estimates
and the fact that they may be dependent, and this is clearly the case in our
context from the results given above. It is not straightforward to account for
the dependence in any aggregation procedure but given the properties of cop-
ulae, outlined above, it is obvious that they capture precisely the information
required. Jouini and Clemen adopt a Bayesian approach where the decision
maker has access to the historical record and hence empirical distributions of
the separate performance measures which he uses to derive the posterior distri-
bution for the aggregate performance measure. The decision maker’s problem
is essentially one of constructing a likelihood function that brings together
the information from the experts and then, by applying Bayes’ theorem to the
likelihood function and prior, to derive the required posterior distribution from
which the aggregate performance measure may be calculated together with
any required confidence intervals for a systematic analysis of performance.

Given the observed non-Gaussianity of the performance measures shown
in Figure 7.2 above and following Jouini and Clemen we could regard the
different observed performance measures as being median-based estimates of
the underlying true measure of performance x and there will be some corre-
lation rx between the errors made by the two different performance estimates
and the underlying measure. The posterior distribution for x, the underlying
measure of performance, given two expert distributions F1(x) and F2(x) with
densities f1(x) and f2(x), can be written as

fdm(x|f1, f2) = f1(x)f2(x)c[1 − F1(x), 1 − F2(x)] (7.43)

where c[·] is the copula density function that captures the dependence struc-
ture between the two performance measures. One of the outstanding statistical
issues that needs to be resolved before implementing this approach is the
proper choice of copula in aggregating performance measures. In the demon-
stration that follows we use a Gaussian copula for simplicity, but notice that
this assumption in no way implies that the joint distribution of the separate
performance measures is bivariate normal since their marginal distributions are
clearly non-Gaussian. Using the Gaussian copula then gives us the following
relatively simple formula for the posterior:

fdm(x|f1, f2, rx) = f1(x)f2(x)

(1 − r2
x )

1/2
exp{−rx(rx(#−1[1 − F1(x)])

2

− 2#−1[1 − F1(x)]#
−1[1 − F2(x)]

+ rx(#−1[1 − F2(x)])
2)/2(1 − r2

x )} (7.44)
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where #−1[·] is the inverse of the standard normal cumulative distribution
function with correlation coefficient rx . This posterior distribution then pro-
vides all the information needed to construct the aggregated performance
measure and to conduct inference on it in any decision framework. The ques-
tion now turns on how to extract the aggregate performance measure from
this distribution and this depends on the specification of the decision maker’s
utility or loss function. We could simply use the mean or the median of this
distribution but as emphasized by Christoffersen and Diebold (1997), what
function of the non-Gaussian posterior distribution serves as the optimal esti-
mator of the underlying performance measure will depend critically on the
asymmetric loss function the fund manager is almost certainly going to hold.
In particular we expect that fund managers would be substantially more loss
averse than for an equivalent profit on the up side. This issue is much more
complex than can be developed here but see Hwang and Salmon (2002) for
an extended discussion of performance measure aggregation.

7.6 CONCLUSIONS

We have carried out a fairly detailed comparison of the statistical properties
and the relationships between a set of five performance measures using 14
UK-based investment trusts over a sample period ranging from 1980 to 2001.
Our results suggest very clearly that there is almost no difference between
Jensen’s alpha, the Treynor–Mazuy (TM) measure and the Positive Period
Weighting (PPW) measure over our sample period and among our set of 14
investment trusts. This would seem to indicate that there is no timing ability
within these fund managers. The Sharpe ratio clearly provides different sig-
nals regarding performance than the other measures and is the only absolute
measure in the set of measures we have considered. While simple correlation
analysis suggests that there is a high degree of dependence between most
of the measures, we have shown that there is a lack of significant concor-
dance between the Sharpe ratio and all the other measures. This indicates
the inadequacy of correlation analysis with non-Gaussian data. We have also
shown that the Sharpe ratio exhibits negative left tail area dependence with
respect to Jensen’s alpha, TM and PPW but is independent in the left tail from
the higher moment measure of Hwang and Satchell, that is when poor perfor-
mance is indicated. Jensen’s alpha, TM and the HM measure do not seem to
show any significant asymptotic left tail dependency. All the measures appear
to be asymptotically independent in their upper tail when good performance is
indicated. These results are further refined by non-asymptotic quantile regres-
sion results which indicate finite sample dependency of the HM measure and
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Jensen’s alpha throughout the body of their conditional distribution and in the
left tail but not the upper tail.

Given the question we raised at the outset of this work, we have found that
there are important statistically significant differences between the perfor-
mance measures we have analysed and how they behave in different market
conditions. A performance manager would have to take care in justifying
which criteria he wanted to use to properly measure performance since the
results may differ widely depending on his decision. In particular the standard
choice of the Sharpe ratio (cf. the AIMR handbook) seems to be an outlier
in many ways when compared to the other relative measures in this study.
Moreover, as can be seen from Figures 7.2 and 7.3, the Sharpe ratio provides
substantially less discrimination than the other measures we have considered,
both over time and hence market conditions and over fund style. We have
also discussed how to properly construct an aggregate performance measure
taking into account the joint dependence of the individual measures.
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Chapter 8

A clinical analysis of a professionally
managed portfolio

BOB KORKIE

ABSTRACT

This is a study of a professionally managed Canadian equity and
money market portfolio that is available to the public in a wrap
account. The study’s results indicate that the portfolio had significant
abnormal performance in the analysis period. The study employs per-
formance analysis technology that ranges from the various definitions
of values and returns as supported by AIMR standards through to
martingale pricing methods. Where possible, statistical tests of sig-
nificance accompany the analyses. The evidence suggests that the
Canadian Growth Portfolio’s significant abnormal performance came
primarily from the management’s ability to select superior assets. The
estimated long run, value added by management, after fees, was an
additional 3% of managed assets per year.

8.1 INTRODUCTION

This chapter presents the results of a long-run, comprehensive study of the
trading strategy of a professionally managed portfolio, called the ‘Canadian
Model Growth Portfolio’ by its agent-managers at Nesbitt Burns. Unlike
almost all published portfolio studies, this study begins with the buy/sell
transactions, which occurred within the study period. Therefore, the study is
able to assess the information trades of portfolio managers in a clinical setting.
The transactions data allows a much expanded and more precise evaluation
of the portfolio’s performance than is otherwise possible. Because of the size
and stature of Nesbitt Burns, the results should add to our understanding of
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the efficiency level of the equity market, as well as reflect on the information
processing abilities of the Nesbitt Burns analysts and managers.1

The study employs performance analysis technology that ranges from the
various definitions of values and returns as supported by AIMR standards
through to martingale pricing methods.2 Where possible, we have ensured
that statistical tests of significance accompany the analyses. The evidence
suggests that the Canadian Growth Portfolio had significant abnormal perfor-
mance primarily due to the management’s ability to select superior assets. The
estimated long run, after fees, value added by management, was an additional
3% of managed assets per year.

We begin with a description of the portfolio and its stated investment objec-
tives and policies.

8.2 THE PORTFOLIO

Nesbitt Burns has been one the largest and most prestigious Canadian invest-
ment companies and is the result of a 1994 merger between Nesbitt Thompson
and Burns Fry, two Canadian investment companies that trace their roots back
to 1912 and 1925, respectively. Nesbitt Burns is a subsidiary of the Bank of
Montreal but is a separate corporate entity, at the time of writing. The firm
manages many classes of investment portfolios, domestic and international.
Financial claims to their portfolios are sold in different forms including mutual
funds and wrap accounts.

The ‘Canadian Model Growth Portfolio’, hereafter called simply ‘the port-
folio’, began in May of 1984 and was initially known as the ‘Capital Appre-
ciation Portfolio’. According to Nesbitt Burns, the portfolio was designed for
investors seeking above average long-term growth with the objective of cap-
ital preservation. The portfolio is classified as an equity portfolio; although,
it has contained a significant interest bearing component. The portfolio was
sold in wrap accounts to clients with a minimum investment of $100,000.

Originally, the portfolio invested in ten top-rated stocks with diversification
being an important but not exclusive factor. Cash holdings up to 35% were
permitted. The portfolio’s investment policies have changed a number of times
since May 1984.

• In July 1993, a sector diversification policy was announced stating that
‘further diversification will be achieved by targeting seven industry sectors

1The Brendan Wood International Survey of Canada’s institutional investment community had
ranked Nesbitt Thomson research as either first or second in every year from 1980 to 1993 (NT
Alert, 14 October 1993).
2AIMR is the acronym for Association for Investment Management and Research.
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for the portfolio’. In September 1993, the policy changed from holding ten
stocks to holding up to 15 stocks rated highly by Nesbitt Burns research
analysts. The objective of the change was to achieve better diversification
via industry sector selection of a larger number of stocks. This policy was
implemented in December 1993.

• In July 1994, the maximum number of sectors was increased from seven.
• In June 1995, the maximum number of stocks was increased to 20.
• In February 1996, the investment policy was revised such that the portfolio

has full exposure to the TSE300 at all times, investing in 25 selected stocks,
with portfolio industry weightings reflecting the weights of all major sectors
of the TSE300. Cash holdings were limited to a maximum of 5% of the
portfolio’s value. An objective was to outperform the TSE300 by 2%/year
over a three-year period.

Based upon this policy history, subperiod analyses over the period 5/84
to 2/89, 2/89 to 12/93 and 12/93 to 12/96 were performed. The first two
periods are approximately equal partitions of a period when the investment
policy was fixed at ten stocks. The third period represents a policy change
to a larger stock set beginning to track the sectors of the TSE300 index yet
maintaining the bottom-up stock selection in industry sectors. For brevity,
only the analysis of the overall period is presented in this chapter.

Management fees were quoted as 2% of portfolio value but were charged as
0.5% quarterly in advance. Fees were not reported or deducted from the quoted
portfolio value until the first quarter of 1996. Prior to 1996, our representative
investor submits quarterly payments for the fees based upon the closing value
at the end of the previous quarter. The post-January 1996 reports are after
fees and therefore no cash contributions are required.

8.3 THE DATA

The portfolio’s accounts may be broadly classified into the asset (common
stocks) account and the cash account. Nesbitt Burns reported the portfolio’s
account transactions to its claimants and other parties via the monthly report
‘Canadian Model Growth Portfolio Update’. The reports included the details
of every buy/sell transaction, redistribution, cash account interest payment,
dividend receipt, and so on from the portfolio’s creation in May 1984 until
the study end at the close of December 1996. In total, there were 1,134
transactions, including 459 buy/sell transactions.

Because the asset compositions of the interest bearing portion of the portfo-
lio are not specified in the reports, the asset is called simply the ‘cash account’
here. Nesbitt Burns names the cash account the ‘Freedom Plus’ account. The
firm provides no documentation as to the source of the interest posted to this
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account. Here, we simply take the amount of interest stated in the reports as
being the amount posted to the cash account.3

The portfolio’s value is indexed by Nesbitt Burns to approximately
$100,000 at the close of 31 May 1984; the reported value using the Nesbitt
Burns, May 1984, portfolio report is $101,500. Using DataStream and the
CFMRC (Canadian Financial Markets Research Center) database closing
prices, the portfolio value is $101,291 at the close of 31 May 1984. We
have used this latter number in our analysis in order to maintain the accuracy
of the portfolio value and its returns. Book and market values are reported
every month providing a means to partially validate our price and return data
that was obtained from our secondary data sources.4

Index data for performance measurement was obtained from DataStream
except for the weights on the TSE35TRI index, which were collected from
the Toronto Stock Exchange Monthly Review, and the Scotia McLeod bond
index returns, which were obtained from Scotia McLeod publications.

The detailed form of the data permitted us to construct portfolio invento-
ries, trading statistics, and financial sources and uses statements. In addition,
we constructed benchmark returns with identical contributions, with and with-
out fees. We performed exhaustive attribution analysis, attributing returns to
asset timing and asset selectivity, as well as attributing these partitions to
individual stock levels. Measures of arbitrage return, style, market timing,
mean-variance performance, and portfolio efficiency and diversification were
calculated. Various estimates of management’s value added were obtained,
including estimates based upon martingale pricing methods. The details and
results are presented in the next section.

8.4 THE ANALYSES

8.4.1 Portfolio inventory and trading summary

Table 8.1a contains a summary of the inventory and trading characteristics
of the Nesbitt Burns Canadian Growth Portfolio (henceforth ‘the portfolio’).
Over the entire analysis interval, the portfolio does not hold many assets

3It is possible that Nesbitt Burns added interest to the account on an ad hoc basis. With this type
of policy, it is possible to smooth the performance of the portfolio making it appear less volatile or
able to avoid declines in value. Regardless, the portfolio claimants would have received the reported
amount of ‘Freedom Plus’ interest. Actual average interest paid per month, as a percentage of the
previous month’s closing cash balance, was 1.03 times the average of the 1-month T-bill returns,
which is suggestive of a policy tied to market short rates.
4There were some significant errors in the CFMRC database as well as missing price data for
previously listed stocks. In these cases, the data was obtained from DataStream and the Toronto
Stock Exchange Review.
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Table 8.1a Inventory and trading summary, 5/84–12/96

Total number of traded assets (including cash) 110
Average number of portfolio assets per month (including cash) 13.5
Standard deviation of number of portfolio assets per month 0.55
Average stay in the portfolio (in months) 17.27
Number of buy orders 225
Value of buy orders $3,235,919.15
Number of sell orders 202
Value of sell orders $3,115,980.30
Average monthly portfolio value $326,765.75
Turnover:

average monthly buys as a fraction of average portfolio value 6.5%
average monthly sales as a fraction of average portfolio value 6.3%

Total fees $81,146.65

nor does it trade heavily. The average number of assets held is 13.5 per
month with each stock staying an average of 17.27 months. This is suggestive
of marginal diversification; however, as noted earlier, the portfolio’s policy
changed in 1993. The evidence from 12/93–12/96 shows that diversification
and turnover have increased consistent with the policy change. Turnover is
about 6.5% of average portfolio value per month, which is suggestive of a
buy-and-hold policy due to a lack of management information signals that
would trigger trades.

Table 8.1b summarizes the sources of the portfolio’s value increase over
the 151-month analysis interval. The value increased from $101,291 to
$676,024.25. Interest on the cash account and dividends were about equal
and amounted to about $69,000 or 23% of the portfolio’s value increase.
Consistent with the portfolio’s policy, the relative value of the cash account
decreased considerably over the analysis interval. Cash infusions were
required to pay the portfolio fees. Because of the change in the fee reporting
procedure that occurred in 1996, when fees began being subtracted from the
cash account, infusions by the representative owner were less than the actual
fees of the portfolio.

8.4.2 Comparative returns and portfolio values

Table 8.2a provides the terminal values of an equivalent dollar investment in
each of the benchmark alternatives, before and after fees. Benchmark cash
contributions were made at the same dates as in the managed portfolio.5 That

5‘With fees’ calculations were performed including the representative owner’s cash contributions
that were required prior to 1996. ‘Without fees’ calculations excluded the fees deducted by Nesbitt
Burns commencing in 1996.
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Table 8.1b Sources of the change in portfolio value, 5/84–12/96

Values Totals

Initial portfolio value at 5/84 close

Cash account $25,475.00
Asset account $75,816.00

$101,291.00
Change in cash account

Add: Cash infusions $69,063.65
Dividends $68,888.50
Interest received $64,150.00
Asset sales $3,121,044.35

Subtotal $3,323,146.50
Less: Cash withdrawals $0.00

Fees $81,146.65
Interest paid $0.00
Asset purchases $3,243,478.85

Subtotal $3,324,625.50

Net −$1,479.00

$576,212.25
Change in asset account

Terminal portfolio value at 12/96 close

Cash account $23,996.00
Asset account $652,028.25

$676,024.25

is, the before fees value of a benchmark, I , evolved according to the formula

VIt = VIt−1(1 + rI t ) + Cpt

where Cpt is the cash contribution made to the portfolio in month t and rI t
is the published monthly return on the benchmark.

Each benchmark has the same initial dollar investment of $101,291, on
31 May 1984. With fees, the portfolio’s investment accumulated to $676,024
on 31 December 1996. No other Canadian benchmark achieved as large a
terminal value, before or after fees. Investment in either of the two US equity
indexes (S&P500 or the Wilshire 5000) achieved a larger terminal value;
however, US stocks were not permitted in the Canadian Growth Portfolio.

The value’s time series are shown in Figure 8.1, for four assets. It is clear
from the chart that the portfolio infrequently fell below the TSE300 value
during the analysis period, which is suggestive of stochastic dominance of
the TSE300 by the portfolio.
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Table 8.2a Comparative portfolio values

Asset name Closing value Closing value at 12/96
at 5/84

with fees without fees

Portfolio $101,291.00 $676,024.25 $690,263.79

Benchmarks:
1 month T-bill $101,291.00 $269,255.42 $281,588.35
TSE300TRI $101,291.00 $363,787.17 $377,837.74
Smlgovta $101,291.00 $558,516.31 $571,947.70

Other benchmarksb:
MSCIworld $101,291.00 $593,213.08 $605,758.72
S&P500TRI $101,291.00 $736,296.26 $750,056.77
WIL5000TRI $101,291.00 $681,023.11 $694,643.12

aSmlgovt represents the Scotia McLeod long-term government bond benchmark.
MSCIworld is the Morgan Stanley World Index. WIL5000TRI is the Wilshire5000
index. All benchmarks include distributions.
bThese values are approximately hedged against US/CDN exchange rates.
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Figure 8.1 Value plots 31/5/84–31/12/96

Table 8.2b contains the return measures for the portfolio and the bench-
marks. Holding period returns (also termed ‘time weighted’ or ‘linked’ returns)
represent the returns received by investors who made no cash contributions
or withdrawals in the analysis interval. The ‘with fees’ return was largest for
the portfolio among the Canadian benchmarks. Without charging fees on the
benchmarks, the with-fees portfolio return still exceeded all but the Scotia
McLeod bond return. With or without benchmark fees, US indices’ returns
exceeded the portfolio’s returns. The IRR or ‘dollar weighted’ return accounts
for the cash contributions that were required for the payment of the portfo-
lio’s fees. Because of the relatively small size of these cash contributions,
the results are similar to the time weighted returns. It is apparent that the
portfolio has succeeded in its objective of returning 200 basis points more
than the TSE300 benchmark.
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Table 8.2b Comparative returns (annual effective), 5/84–12/96

Asset name Holding period return (time weighted) IRR (dollar weighted)

with fees without fees with fees without fees

Portfolio 13.87% 16.48% 13.91% 16.48%

Benchmarks:
1-m T-bill 3.96% 8.46% 4.66% 8.46%
TSE300TRI 6.93% 11.03% 7.68% 11.03%
SMlgovt 11.74% 14.75% 11.99% 14.75%

Other benchmarksa:
MSCIworld 13.04% 15.27% 12.59% 15.27%
SP500TRI 14.54% 17.25% 14.78% 17.25%
WIL5000TRI 13.69% 16.53% 13.99% 16.53%

aThese returns are approximately hedged against US/CDN exchange rates.

Table 8.2c summarizes some statistical properties of the assets that indi-
cate a desirable monthly return distribution. The portfolio has a larger mean
return than all benchmarks excepting the two US equity benchmarks. It has
smaller unconditional volatility and larger unconditional skewness than the
corresponding TSE300 values; however, both the portfolio and the TSE300
have significantly negative skew. The beta of 0.83 and standardized coskew-
ness of 0.83 (both computed with the TSE300) indicate that the portfolio is
less responsive to index movements and would contribute to increasing the
positive skewness of an index portfolio, respectively. The portfolio’s returns
are significantly autocorrelated at lag 1 because of the presence of the large
interest bearing cash account and the well-known autocorrelation in interest
rates. The portfolio’s autocorrelation facilitates better forecasting precision
than for the uncorrelated TSE300. This is indicative of less total risk than
measured by the portfolio’s unconditional volatility of 3.71%/month.

Overall, the comparative values and returns indicate that the portfolio per-
formed very well considering its policies. After fees, the portfolio outper-
formed the relevant benchmarks without fees. However, this analysis does
not consider the details of the assets’ risks. Figure 8.2 shows the portfolio’s
location in average return–total risk space. It is apparent that the managed
portfolio dominates some benchmarks but not others. The analysis of the
portfolio, considering risk, is the subject of the remaining analysis sections.

8.4.3 Market timing and style analyses

In this section, we establish the relationships between the portfolio’s returns
and a number of other benchmarks. To accomplish this, the Treynor–Mazuy



Table 8.2c Comparative monthly returns moments (without fees), 5/84–12/96

Asset name Mean Median Max. Min. Standard
deviation

Standard
skewness

Beta
with

Standardized
coskewness with

Returns serial
correlation

Squared returns
serial correlation

TSE300 SMlgovt TSE300 SMlgovt lag 1 lag 12 lag 1 lag 12

Portfolio 1.35% 1.37% 10.99% −18.67% 3.71% −0.70 0.83 0.31 0.83 5.23 0.12 −0.05 −0.01 −0.03
(p-value) (0.00) (0.76) (0.00) (0.00) (0.001) (0.06) (0.25) (0.46) (0.35)

Benchmarks:
1-m T-bill 0.68% 0.68% 1.14% 0.23% 0.23% 0.09 0.00 0.01 0.98 0.63 0.98 0.59

(p-value) (0.00) (1.00) (0.61) (0.255) (0.13) (0.00) (0.00) (0.00) (0.00)
TSE300TRI 0.96% 1.03% 11.80% −22.50% 3.93% −1.22 1.00 0.37 0.00 −0.10 −0.05 −0.03

(p-value) (0.001) (0.00) (0.00) (0.00) (0.50) (0.09) (0.26) (0.34)
SMlgovt 1.19% 1.36% 8.46% −6.36% 2.72% −0.08 0.18 1.00 0.06 0.01 −0.01 0.01

(p-value) (0.00) (1.00) (0.69) (0.00) (0.00) (0.23) (0.47) (0.43) (0.47)

Other benchmarks:
MSCIworld 1.32% 1.23% 14.67% −14.50% 5.06% −0.13 0.65 0.40 0.01 0.05 0.19 0.02

(p-value) (0.001) (0.001) (0.52) (0.00) (0.002) (0.46) (0.25) (0.01) (0.38)
SP500TRI 1.42% 1.59% 13.43% −21.52% 4.16% −1.00 0.81 0.46 −0.02 −0.05 0.05 −0.03

(p-value) (0.00) (0.25) (0.00) (0.00) (0.00) (0.42) (0.26) (0.29) (0.37)
WIL5000TRI 1.37% 1.63% 12.80% −22.78% 4.17% −1.23 0.83 0.41 0.03 −0.04

(p-value) (0.00) (0.24) (0.00) (0.00) (0.00)
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Figure 8.2 Average returns and volatilities (computed over 5/84–12/96)

(1966) timing regression and Sharpe (1988, 1992) style regression were per-
formed, in all cases without fees.

Market timing
Table 8.3a contains the results of the excess return quadratic regression

rpt − rft = αpI + βpI (rI t − rft ) + γpI (rI t − rft )
2 + ept , t = 1, 2, . . . , 151

which was run separately with the equity and bond indexes as independent
variables, and where the subscripts p, I and f indicate the portfolio, a market
index, and the 1-month T-bill, respectively. The portfolio’s alpha is signifi-
cantly positive but the portfolio’s gamma indicates insignificant equity market
timing. The portfolio’s gamma computed against the SMlgovt is significantly
negative indicating perverse timing with respect to the bond market. The
lack of equity market timing is consistent with the portfolio’s policy of not
attempting to time the market.

Table 8.3a shows that the poor bond market timing is due to the equity
market’s relation with the bond market rather than poor performance on the
part of the portfolio’s managers. The TSE300 has a more significantly negative
timing gamma with the bond market than does the portfolio.

Style analysis
Style analysis measures a portfolio’s exposure to variations in the returns on
major asset classes. A style regression forces the intercept to zero and requires
that the sum of the coefficient weights adds to one. Although not discussed
in the style literature, this is quite similar to the spanning tests of Huberman
and Kandel (1987), where one is interested in whether K style benchmarks
provide the same mean-variance portfolio opportunities as the K benchmarks
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Table 8.3a Traditional measures of market timing and selectivity,
5/84–12/96

Regression in decimals Indexes

TSE300TRI SMlgovt

Portfolio selectivity alpha 0.004 0.011
(p-value) (0.005) (0.003)

Portfolio market timing gamma −0.021 −7.905
(p-value) (0.951) (0.008)

Portfolio regression R-squared 0.772 0.095

TSE300 selectivity alpha 0.008
(p-value) (0.044)

TSE300 market timing gamma −9.579
(p-value) (0.002)

TSE300 regression R-squared 0.127

Table 8.3b Style analysis, 5/84–12/96

Regression
statistics

1-m T-bill TSE300TRI SP500TRI S&P/BARRA
500TRI

MSCIworld

Growth Value

Style weights 0.152 0.749 −2.767 −2.711 5.550 0.027
(p-value) (0.000) (0.000) (0.142) (0.136) (0.133)

Regression
R-squared 0.850
(p-value) (0.000)

Spanning
p-value (0.006)

aAll non-Canadian benchmarks’ returns are approximately hedged against US/Can exchange rates.

and the portfolio. Our set of style benchmarks is shown in Table 8.3b, where
the test results of the regression restrictions are also shown.6

As one would expect given the portfolio’s policies, the T-bill and TSE300
are important descriptors of the portfolio’s returns. However, US benchmarks
describing the S&P500 equity market and S&P/BARRA growth and value
styles are also important.7 Ceteris paribus, the portfolio is negatively related
to the S&P500 and the US growth indices and positively related to the T-bill,

6Here we allow shorts on the style indexes because they are closely related to the returns on the
Nesbitt Burns portfolio. The spanning test permits a one-step approach to estimation and testing
that avoids some of the problems of the two-step approach suggested in Sharpe (1988).
7The Scotial McLeod long government bond, MSCI world index, gold fix and BZW small cap
growth and value bogies were also used but were insignificant.



A clinical analysis of a professionally managed portfolio 209

Canadian market and the US value indices. Because value indexes are defined
by stocks that have large book-to-market and low price-earnings ratios, the
positive relation with the value index seems consistent with the portfolio’s
policy of undervalued stock selectivity.

Despite the relatively large R2 of 0.85, the significant spanning test (p-value
of 0.006) indicates that there is an insufficient number of style benchmarks
to describe all of the portfolio’s style. This is probably due to the trading
activities of the managers that impart a non-linear structure to the returns.
This implies that the standard style regression has misspecification errors
that are due to omitted assets and an incorrect functional form. We will
adjust for this deficiency in the subsequent section on management value-
added.

8.4.4 Attribution analysis

We have selected an attribution technique that has its roots in the relationship
between a portfolio’s weights and the returns on its constituent assets. This is
a different approach from attribution to style factors. The procedure is adapted
from Korkie (2001) and is described in the following section, excluding the
development of the test statistics. This analysis has some extremely desirable
properties in that the attribution does not depend on an asset pricing model,
it exhausts 100% of the portfolio’s returns, it has well-behaved statistical
tests, and it can be performed at any level of asset aggregation within the
portfolio. The analysis is particularly useful for the portfolio manager who
employs a number of analysts. Stocks may be easily grouped by sector or
analyst to determine their respective contributions to the portfolio’s return.
However, part of the analyses does require a benchmark whose asset weights
are observable every month in the analysis interval and which is appropriate
in the context of the portfolio’s policies.

The attribution technique
In a month t , the continuously compounded portfolio return is

r∗
pt = ln(1 + rpt ) = ln


 Nt∑

j=1

xjpt−1(1 + rj t )




where Nt is the number of portfolio assets and xjpt−1 is the beginning of
month t weight on asset j . Because the month t is short, the continuously
compounded portfolio return can be written approximately as the weighted
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sum of the individual assets’ continuously compounded returns8

r∗
pt ≈

Nt∑
j=1

xjpt−1 ln(1 + rj t ) =
Nt∑
j=1

xjpt−1r
∗
j t

Partitioning the weights into a benchmark component and a self-financing
component results in a portfolio return of

r∗
pt ≈

Nt∑
j=1

xjI t−1r
∗
j t +

Nt∑
j=1

xj�t−1r
∗
j t

where xjI t−1 is the index weight and xj�t−1 is the asset’s weight in the self-
financing portfolio, �. This latter portfolio is the risky arbitrage portfolio that
is the managed portfolio’s sidebet against its benchmark, I .

Due to the additivity property of continuously compounded returns, the
T -month portfolio return may be written as the sum

R∗
pT =

T∑
t=1

r∗
pt ≈

T∑
t=1

Nt∑
j=1

xjpt−1r
∗
jpt

and a similar expression may be written for the arbitrage portfolio, R∗
�T .

Henceforth, the superscript ∗ is omitted from the formulae with the under-
standing that the returns are continuously compounded. By using the definition
of covariance, this T -month portfolio return may be written as the sums

RpT ≈ T

N∑
j=1

x̄jpr̄j + T

N∑
j=1

cov(xjpt−1, rj t )

where x̄jp is the average weight on asset j, r̄j is the average return on asset
j , and their product, r̄j x̄jp, is j ’s ‘asset selectivity’ component. The covari-
ance between the weights and the returns for an asset j is its ‘asset timing’
component in portfolio, p.

Over all N assets, this decomposition attributes the portfolio’s holding
period return to two components,

RpT = Portfolio selectivity + Portfolio timing

where the first component is

Portfolio selectivity = T

N∑
j=1

x̄jpr̄j

8In traditional attribution analysis, such as Brinson and Fachler (1985), this is a common assumption.



A clinical analysis of a professionally managed portfolio 211

and the second component is

Portfolio timing = T

N∑
j=1

cov(xjpt−1, rj t )

The intuition of these formulae is that the portfolio selectivity is the sum of
the individual assets’ selectivities. This will be large if large average return
assets are held with average weights that are also large. The portfolio timing
is the sum of the individual assets’ timing. This number will be large if the
portfolio allocates large weights to individual assets in advance of periods
when their returns are also large. Passive portfolios will have no portfolio
timing whereas actively managed portfolios may have significantly negative
or positive timing components. Noise traders will have zero timing.

For ease of interpretation in the following application, the components are
expressed as the fractions, the sum of which will add to one thereby attributing
100% of the portfolio’s return to timing and selectivity. Similarly, the indi-
vidual asset results may be expressed as fractions for ease of interpretation.
The importance of each asset in the portfolio’s attribution may be determined
by computing each asset’s fractional contribution

Selectivity proportion of assetj = T x̄pj r̄j

Portfolio selectivity + Portfolio timing

Timing proportion of assetj = T × cov(xpjt−1, rj t )

Portfolio selectivity + Portfolio timing

Return proportion of assetj = T x̄pj r̄j + T × cov(xpjt−1, rj t )

Portfolio selectivity + Portfolio timing

The advantage of these expressions is that the selectivity and timing fraction
of any asset j will add up to the return contribution fraction of the same asset.
Additionally, the sum of the return fractions over all of the assets will add up
to one.

A similar partitioning of the arbitrage portfolio’s T -month return is
obtainable resulting in the selectivity and timing components of the arbitrage
portfolio.

The attribution results
Table 8.3c contains our attribution analysis, which attributes the portfolio’s
return to the selection of assets and to the ability to time the purchase of
individual assets. The table contains two panels. The first panel attributes the
return on the portfolio over the period 5/84 to 12/96; whereas the second
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Table 8.3c Attribution of the portfolio’s monthly return performance

Asset class Average Portfolio returns Portfolio returns proportions

weight
Average Selectivity Timing Average Selectivity Timing

Portfolio, 05/84 to 12/96

Cash 0.21 0.16% 0.15% 0.01% 0.12 0.11 0.01
Stocks 0.79 1.19% 1.26% −0.07% 0.88 0.93 −0.05
Total 1.00 1.35% 1.41% −0.06% 1.00 1.04 −0.04
(p-value) (0.000) (0.000) (1.000)

Sidebet portfolio to the TSE35, 05/87 to 12/96 a

Cash 0.19 0.08% 0.08% 0.00% 0.34 0.32 0.02
Stocks −0.19 0.16% 0.04% 0.12% 0.66 0.16 0.50
Total 0.00 0.24% 0.12% 0.12% 1.00 0.48 0.52
(p-value) (0.133) (0.293) (0.000)

aThe monthly return averages on the portfolio and the TSE35TRI are 1.016% and 0.772%, respec-
tively in this period. Therefore, the sidebet portfolio return averages 0.244%/month.

panel attributes the return on the sidebet or risky arbitrage portfolio between
the portfolio and the TSE35 benchmark. The portfolio’s monthly return aver-
age was 1.35% before fees. The selectivity component was significant and
contributed 104% (or 1.41% return per month) and the timing component
contributed −4% (or −0.06% return per month). This was consistent with
the portfolio’s policies that were oriented to buying and holding the best
stocks from the TSE sectors. On average, cash occupied 21% of the portfolio
but contributed 12% of the portfolio’s return compared to the stocks’ return
contribution of 88% with a 79% average weight.

Not shown are specific stock contributions but some highlights are as fol-
lows. Power Corp., with an average weight of 2.2%, made the largest return
contribution to the portfolio of 7.5% of the portfolio’s return (2.9% from
selectivity and 4.6% from timing). National Business Systems, with a weight
of 0.6%, made the smallest return contribution of −2.9%, which came pri-
marily from trading the stock too often (−3.2% from timing). Bombardier,
with an average weight of 2.3%, had the largest selectivity contribution of
5.5% but this was offset by trading the stock too often (−3.8% from timing).
Woodwards had the smallest selectivity contribution of −0.3%.

These results suggest that the portfolio’s trades in the same stock have a
neutral effect on the portfolio’s long-run return. They win on some and lose
on others such that they would be about as well off by simply holding the
stock in its long-run proportions.

The stocks can be aggregated according to the recommending analyst or
sector, whose performance can be determined and evaluated. For example,
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the six bank stocks as a group had an average portfolio weight of 8.4% and
in the aggregate contributed 10.5% of the portfolio’s return, of which 9.8%
was from selectivity and 0.6% from asset timing. The bank recommendations
seem sound in that there was a good selectivity contribution and no return
was lost from the timing of sales and purchases.

An alternative and related attribution analysis is obtained from the second
panel where the sidebet portfolio, that costlessly changes an investment in the
TSE35 to an investment in the Nesbitt Burns portfolio, is analysed.9 In this
analysis, we explain the source of the additional 0.24% in average monthly
return obtained by the portfolio over the TSE35 index. Because the TSE35
index weights and returns were available only from 5/87, the analysis interval
is three years shorter.

The sidebet portfolio has an average monthly return of 0.24% (significant at
0.13) that arises from approximately equal amounts of timing and selectivity,
relative to the TSE35. Over the analysis period, the additional holding period
return amounts to 3.48%/year. The monthly standard deviation changes from
4.12% on the TSE35 to the portfolio’s 3.62% for a marginal decline of 0.50%
on the portfolio. The sidebet portfolio is self-financing and yet results in a
marginal increase in return and a marginal decrease in volatility, when a
change is made from holding the TSE35 to holding the portfolio.10

About 34% of the sidebet return comes from the cash account and the
remaining 66% from the stock positions. In other words, both the stock and
cash accounts contributed to the sidebet return. The timing component arises
from the positive relation between a stock’s weight in the sidebet portfolio and
that stock’s return in the analysis interval; whereas, the selectivity component
comes from holding the stock’s average weight throughout the interval.11 For
example, Renaissance Energy contributed 21% of the sidebet return most of
which (17% of the 21%) was due to the changing weights of RES in the
sidebet portfolio. (RES was bought three times and sold four times by Nesbitt
Burns and entered the TSE35 within the analysis interval.) TD Bank was
bought or sold a total of 13 times with a timing contribution of 16% of
its 17% return contribution (TD was in the TSE35 throughout the analysis
interval). Potash Co. had a contribution of 8% of the sidebet return; but a buy

9The sidebet portfolio is also termed the risky arbitrage portfolio, the active portfolio or the
self-financing portfolio.
10Note that the standard deviation of the sidebet portfolio of 1.8% is not equal to the marginal
standard deviation of 0.5%.
11The benchmark TSE35 portfolio will have some timing component to it simply because the
weights on the components change due to stock issues, deletion from the index, and any momentum
effects. Therefore, the sidebet portfolio may not have the same timing and selectivity as the portfolio
itself.
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and hold would have been better because the timing contribution was −7%
and the selectivity contribution was 15%. (POT was bought or sold five times
in the portfolio and was not contained in the TSE35.)

It is apparent that the portfolio earned a superior return from its asset
selection, which is consistent with its policies. Overall, the portfolio has added
an additional return via a combination of asset selectivity and timing and has
decreased total risk relative to the TSE35 benchmark. The portfolio’s fees
seem to have been more than offset by its improved performance; although
this issue is addressed in detail in our value added section.

8.4.5 External risk–return performance

In this section, an evaluation of the portfolio’s risk–return performance is
performed. The intention is to determine whether the portfolio was a good
asset to hold either alone or with other benchmarks before fees and considering
risk and return at the margin.

Portfolio held alone
If portfolio p is held alone, in the sense that no other assets are in the owner’s
portfolio, then ‘total risk’ is the relevant measure of risk for the asset. Typ-
ically, we measure total risk using standard deviation, sp, of p’s monthly
returns. The average excess return per unit of total risk is

Shp = r̄p − r̄f

sp

which is called the ‘Sharpe measure’ of performance or the ‘reward to volatil-
ity ratio’. The statistic for testing the equivalence of the Sharpe performances
of the managed portfolio and an index, I , follows a standard normal distri-
bution and is calculated from

z = sI (r̄p − r̄f ) − sp(r̄I − r̄f )√
θ̂

where:

θ̂ = 1

T

[
2s2

ps
2
I − 2spsI spI + 1

2
r̄2
ps

2
I + 1

2
r̄2
I s

2
p − r̄pr̄I

2spsI
(s2

pI + s2
ps

2
I )

]

and s2
pI is the square of the covariance between monthly returns on I and p.12

Table 8.4a contains the results of the hold alone analysis. The table pro-
vides the Sharpe measures of the portfolio and benchmarks together with tests

12See Jobson and Korkie (1981) for the details of the test.



Table 8.4a External portfolio analysis, portfolio held alone, 5/84–12/96

Item Portfolio’s and benchmarks’ total risk–return properties

Portfolio 1-m T-bill TSE300TRI SMlgovt MSCIworld SP500TRI WIL5000TRI

Mean return: per month 0.0135 0.0068 0.0096 0.0119 0.0132 0.0142 0.0137
Standard deviation: per month 0.0371 0.0023 0.0393 0.0272 0.0506 0.0416 0.0417
Excess return to volatility

(Sharpe ratio):
0.1792 N.A. 0.0697 0.1865 0.1257 0.1779 0.1655

Difference from TSE300
benchmark Sharpe ratio:

0.1095 N.A. 0.0000 0.1168 0.0560 0.1082 0.0957

(p-value) (0.004) N.A. N.A. (0.119) (0.244) (0.027) (0.038)
Difference from SMlgovt

benchmark Sharpe ratio:
−0.0073 N.A. −0.1168 0.0000 −0.0608 −0.0086 −0.0210

(p-value) (0.471) N.A. (0.119) N.A. (0.275) (0.465) (0.416)

All non-Canadian benchmarks’ returns are fully and costlessly hedged against US/CDN exchange rates.
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of the null hypotheses of equality of the portfolio Sharpe and respectively the
TSE300 or the Scotia McLeod Government bond indexes. The portfolio sig-
nificantly (0.004) outperformed the TSE300, but not the bond index. The US
indices also outperformed the TSE300 but the MSCI world index did not.

When evaluating a portfolio manager, hired to manage a dedicated Cana-
dian equity portfolio, the benchmarks should include only Canadian equity
benchmarks like the S&P/TSE60, for example. The portfolio’s large excess
return per unit of total risk of 0.179 is consistent with the results of the
previous analyses that point to abnormally good portfolio performance from
a portfolio held alone and in competition with competing benchmarks of a
similar class. The result is not likely due to chance.

Portfolio held with benchmarks
It is possible that some managed portfolios are not good held alone but they
make good additions to an existing portfolio. In this case, the portfolio’s total
risk is no longer relevant. Rather, the relevant risk is the amount of risk that
the portfolio adds to the new portfolio formed from the managed portfolio
and the existing portfolio. For example, if the investor already owns a well-
diversified domestic portfolio such as the TSE300, then the question is, how
much risk does p add to the portfolio resulting from the combination of p and
the TSE300?13 We can determine if there is any improvement to be obtained
versus simply holding the TSE300 benchmark. Improvement can occur only
if the benchmark portfolio is not the most efficient portfolio when combined
with the managed portfolio. We investigate this by checking whether the
Jensen alpha is zero or equivalently whether the Treynor measures of the
portfolio and TSE300 are equal. If their associated statistical hypotheses are
not rejected, then no improvement to the benchmark is obtained by holding
the portfolio with the benchmark.

The Treynor measure of an asset, p, is defined as the reward per unit of
non-diversifiable risk given by

T rpI = r̄p − r̄f

βpI

where βpI is the beta of p against I obtained by running the excess return
regression

(rpt − rft) = αpI + βpI (rI t − rft ) + ept ; t = 1, 2, . . . , T

and αpI is the Jensen alpha of p computed against the index I .
The use of alpha to rank portfolios is inappropriately prevalent in the market

and in academic literature, in my opinion. For example, Morningstar Inc.’s

13Much of the following analysis and discussion is based on Korkie (1983, 2001).
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mutual fund ratings (from 5 stars to 1 star) are based upon the size of a
measure closely related to alpha. However, neither the alpha nor the Treynor
performance measures directly the amount of improvement obtained by adding
the evaluated portfolio to the benchmark index. It is quite possible that a
rational investor prefers to add a portfolio with a smaller alpha (or Treynor)
than a larger alpha (or Treynor).14

The magnitude of the improvement, from adding the portfolio to the bench-
mark, is useful information because we can then compare the magnitudes
of improvement with other competitive portfolios. In other words, we can
rank the competitors based upon their performance contribution to a bench-
mark. The improvement measure is called the Treynor–Black ‘appraisal ratio’,
which is defined as the squared value of alpha divided by s2

e , the unex-
plained variance (unsystematic risk) from the excess return market model.15

That is,

ARpI = α2
pI

s2
ep

which is also commonly written in its square root form. It can be proven that
the appraisal ratio equals the difference in the squared Sharpe performances

Sh2
m − Sh2

I = ARpI = α2
pI

s2
e

Therefore, it indirectly measures the improvement obtained by adding the
portfolio to the benchmark index. That is, Shm − ShI is the amount of this
improvement from holding the benchmark, I , to holding the optimal combi-
nation, m, of the portfolio and the benchmark. Notice that the improvement
is calculable from ARpI and is non-zero only if αpI is non-zero.

The preceding formulae show why you may use appraisal ratios to rank
portfolios in terms of their desirability to hold with a given benchmark, I .
Suppose that you own the index I . The larger the ARpI , the larger is the
resulting optimal Sharpe performance, Shm, that is obtainable by optimally
combining the portfolio, p, and your index portfolio. If a second portfolio has
a larger ARpI , it will be preferred because it adds more performance to your
index portfolio, I . Therefore, you would purchase the second portfolio to add
to your existing assets. However, one must be cognizant of the significance
levels of the alpha and the appraisal ratios.

14Discussions of these, largely ignored, ranking problems are contained in Larcker, Gordon and
Pinches (1980), Jobson and Korkie (1984), Korkie (1986) and Korkie and Laiss (1990).
15See Treynor and Black (1973) and Jobson and Korkie (1984).
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Table 8.4b shows the results of optimally combining the portfolio with
one of the TSE300, the Scotia McLeod bond index, or the currency hedged
S&P500. The significant (p-value = 0.003) alpha from the TSE300 regres-
sion indicates that the TSE300 may be improved by creating a new portfolio
from the TSE300 and the Nesbitt Burns portfolio.16 Similarly, the Scotia
McLeod bond portfolio may be improved in combination with the managed
portfolio. Identical information is obtained from the test of the equivalence
of the portfolio’s Treynor measure and the respective benchmarks’ Treynor
measures. The significant alpha indicates that the Treynor measures are sig-
nificantly different, indicating that the benchmarks may be improved with the
addition of the portfolio.

The maximum amounts of improvement, measured by the difference in
the maximum Sharpe performance and a benchmark’s Sharpe, are 0.187 and

Table 8.4b External portfolio analysis, portfolio held with an index and before fees, 5/84–12/96

Index

TSE300TRI SMlgovt

Indicators of index inefficiency in a two asset set with the portfolio:

Jensen alpha: 0.0044 0.0051
(p-value) (0.003) (0.091)

Portfolio’s excess return to beta ratio (Treynor measure): 0.0081 0.0218
Index excess return to beta ratio (Treynor measure): 0.0028 0.0051

Differences: 0.0054 0.0167

Measures of index improvement from adding the portfolio to the index:
Maximum Sharpe measure from the portfolio held with the respective

index:
0.2573 0.2345

Index Sharpe measure: 0.0701 0.1874

Difference: 0.1872 0.0470
Appraisal ratio (Treynor–Black measure): 0.0613 0.0110

(p-value) (0.003) (0.091)

Other properties of the two asset IOS
Portfolio’s weight required for the portfolio/index optimum: 3.2229 0.4074

vertex mean: per month 0.0124 0.0124
vertex standard deviation: per month 0.0369 0.0242
T-bill average return 0.0068 0.0068
tangent mean: per month 0.0222 0.0125
tangent standard deviation: per month 0.0612 0.0246

All non-Canadian benchmarks’ returns are fully and costlessly hedged against US/CDN exchange
rates.

16Equivalently, the benchmark is not efficient in the two asset set formed from the portfolio and
the benchmark.
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0.047 in the respective cases of the TSE300 and the SMlbond. The maxi-
mums were computed from the appraisal ratio shown in the table. The other
properties panel shows that the portfolio would be held in a long posi-
tion with both benchmarks, indicative of good performance. However, in
the case of the TSE300, maximum improvement is obtained by shorting the
TSE300.

Overall, the portfolio has been a good portfolio for investors to hold alone.
For those investors already owning a portfolio similar to the bond or equity
market indexes of Canada, the addition of the managed portfolio would have
enhanced an index’s performance. None of these results appears due to chance.

8.4.6 Internal performance analyses

Here, some reasons for the portfolio’s external performance are investigated.
From Table 8.5a, we determine whether the portfolio had effective asset
weights that were efficient relative to optimal weightings and relative to naı̈ve
equal weights. From Table 8.5b, we determine whether the portfolio had suf-
ficient assets in the portfolio by comparison with a customized benchmark
and by testing for the change in the investment opportunity set arising from
additional assets.

The statistical test for unconditional efficiency measures the distance from
the Markowitz (1952) efficient set as the difference in the Sharpe measures of
the tangency portfolio, Shm, and the managed portfolio, Shp , and is given by

FN−1,T−N =
(
T − N

N − 1

)(
Sh2

m − Sh2
p

1 + Sh2
p

)

which follows an F -distribution with N − 1 and T − N degrees of freedom.
The tangency is on the investment opportunity set formed from N − 1 assets
and T return observations.17

Table 8.5a indicates that the portfolio dominates the equal weight portfolio
constructed from the portfolio’s stocks: it has a larger mean and a smaller
volatility. Additionally, the portfolio is not significantly (0.993) different from
the efficient tangency portfolio even though the tangency portfolio implicitly
allows for short sales in this particular test. The portfolio would be located
even closer to an efficient portfolio that did not permit shorts.

The expression
√
ac − b2 is called the ‘performance of an N-asset set’,

because the larger its value the greater is the size of the investment opportunity

17See Campbell, Lo and MacKinlay (1997) for a summary of the tests.
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Table 8.5a Mean-variance efficiency of the portfolio, 5/84–12/96

Portfolio mean return: per month 1.35%
Portfolio standard deviation: per month 3.71%
Equal weight portfolio mean return: per month 1.29%
Equal weight portfolio standard deviation: per month 4.30%

Maximum tangent portfolio Sharpe ratio created from the portfolio’s assets: 0.56
Portfolio Sharpe ratio: 0.18
Distance from efficient set, Shm − Shp : 0.38

(p-value) (0.993)
Number of assets used in the opportunity set 50
Number of monthly returns used in the calculation 150

set. A measure of the improvement obtained from adding the extra (N − N1)

assets to the investment opportunity set of N1 assets is therefore

�P =
√
ac − b2 −

√
a1c1 − b2

1

where a, b and c are the Lintner (1965), Merton (1972) and Roll (1977)
efficient set constants calculated from two asset sets of size N and N1 < N ,
respectively. The statistical test for spanning utilizes

F2(N−N1),2(T −N)) =
(

T − N

N − N1

)
√
c + ac − b2 −

√
c1 + a1c1 − b2

1√
c1 + a1c1 − b2

1




which follows an F -distribution with 2(N − N1) and 2(T − N) degrees of
freedom. A summary of efficiency tests, spanning tests and related literature
is available in Jobson and Korkie (1989).18

Table 8.5b has mixed results regarding the number of portfolio assets. On
average the portfolio held 12.5 stocks, which theoretically would be consid-
ered a marginally sufficient number. However, the policy change in 1993
increased that number such that 33 stocks were held at the close of 12/96.
A portfolio formed from the T-bill and the TSE300, with the same average
return, provided a much larger volatility resulting in a lower Sharpe measure
of 0.07 compared to 0.18. This specialized benchmark requires borrowing at
the T-bill and investing the proceeds into the TSE300 to give a weight of 2.39
in the TSE300. Therefore, the portfolio seems sufficiently well diversified.

To examine if there was a sufficient number of assets considered for the
portfolio, the entire asset set contained in the portfolio at any time in the 5/84
to 12/96 interval was obtained. Its opportunity set was measured against the
same opportunity set augmented by the TSE300 index. There is a significant

18A detailed treatment of spanning is in Kan and Zhou (2000).
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Table 8.5b Portfolio diversification and opportunity set spanning, 5/84–12/96

Portfolio

Average number of portfolio assets (including cash) 13.5
Portfolio average return: per month 1.35%
Portfolio standard deviation: per month 3.71%
Portfolio Sharpe ratio 0.18

Specialized benchmark created from TSE300 and T-bill
Benchmark standard deviation (with same average return as the portfolio) 9.40%
Benchmark Sharpe ratio 0.070
Benchmark weight in the TSE300 2.39

Spanning
Performance measure of the portfolio’s asset set plus the TSE300 benchmark 173181.66
Performance measure of the portfolio’s asset set 89498.51
Spanning difference in the asset sets, �P : 83683.14

(p-value) (0.00)

increase in the investment opportunity set obtained by adding the TSE300
benchmark to the set as indicted by the spanning test p-value of 0.00. How-
ever, our previous external analysis indicated that an optimal combination of
the portfolio and the TSE300 would have required a short position on the
TSE300. Because the managed portfolio does not permit shorts, we may ten-
tatively conclude that the portfolio selected from a sufficient number of assets.

8.4.7 Management value-added

Arguably, the most important measure of a managed portfolio’s performance
is the value added by its management. If the value added by management does
not exceed the portfolio’s fees and expenses on a present value basis, then the
portfolio does not represent a positive NPV investment. In general, a manager
is creating an asset whose payoffs are contingent upon the payoffs from assets
that are traded and priced in the market. Because of the active trading, the
payoffs are likely to be a non-linear function of the traded assets’ payoffs.
The value added by management is non-zero when this non-linear contingent
claim has a theoretical value that exceeds the present value of the fees. The
task is to identify the functional form of the contingent claim and to price it.

Here, I adopt two procedures for this valuation. The first is based on the
expected utility derived from the distribution of monthly portfolio payoffs. It
uses the certainty equivalent valuation obtained from an exponential utility
function with a risk aversion parameter derived from the equity market. Build-
ing on the work of Henrikkson and Merton (1981), Glosten and Jagannathan
(1988, 1994), Korkie, Nakamura and Turtle (2001) and Korkie and Turtle
(2002), the second method estimates and prices the portfolio’s replicating
contingent claim.
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Certainty equivalent valuation
Consider a portfolio with a random monthly payoff from a $1 investment of
(1 + rpt ), where rpt is the monthly return in decimal form. If the portfolio
returns are normally distributed, the possible dollar payoffs and returns are
completely described by the mean and standard deviation of return (r̄p, sp).
A rational investor choosing this portfolio is paying for a gamble that must
have a positive expected return exceeding the known riskless return, rft ; oth-
erwise, the investor will choose the riskless Treasury bill. To value the return
moments, (r̄p, sp), a utility function is required that incorporates an investor’s
risk aversion and converts a monetary payoff to a utility value.

The ‘exponential utility’ function is given by

U(1 + rpt ) = 1 − e−(1+rpt )/a

where e = 2.718 . . . is Euler’s number and a is the ‘risk tolerance’ of the
investor. Because there are many possible monthly returns and therefore utility
values, one requires the payoffs’ expected utility value that is calculable from
the moment generating function and is given by

E[U(1 + rpt )] = E[1 − e−(1+rpt )/a] = 1 − e− (1+r̄p−s2
p/2a)

a

By the definition of certainty equivalent, this expected utility must be equal
to the utility value of a riskless dollar payoff represented by θ , where

E[U(1 + rpt )] = U(θ) = 1 − e−θ/a

Equating the two expected utility equations shows that the certainty equivalent
value of the portfolio is

θ = 1 + r̄p − s2
p

2a

indicating that value is reduced with larger volatility and smaller risk toler-
ance. The value added from the portfolio is therefore the present value of θ ,
calculated at the riskless return, less the initial dollar invested. Here, I use the
average monthly Treasury bill return, r̄f , resulting in the certainty equivalent

Certainty equivalent value addedp =
1 + r̄p − s2

p

2a
1 + r̄f

− 1 =
r̄p − s2

p

2a
− r̄f

1 + r̄f

The remaining implementation problem is the determination of the investor’s
risk tolerance a. This may be obtained from the implied risk tolerance of a
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market index that is appropriate for benchmarking the portfolio’s performance.
Because a market index is not managed, its certainty equivalent value added is
zero. By calculating the mean and volatility of the index, (r̄I , sI ), the market’s
risk tolerance can be calculated from the preceding equation set to equal zero.
That is, risk tolerance based on index I is

aI = s2
I

2(r̄I − r̄f )

The portfolio’s value added is then obtained by substituting aI for a result-
ing in

Certainty equivalent value addedp

=
r̄p − s2

p

2aI
− r̄f

1 + r̄f
=

r̄p − s2
p(r̄I − r̄f )

s2
I

− r̄f

1 + r̄f

From 5/84 to 12/96, the TSE300 average return and volatility were 0.96%
and 3.93% per month, respectively and the T-bill average return was 0.68%.
The market’s implied risk tolerance was therefore

aI = s2
I

2(r̄I − r̄f )
= 0.03932

2(0.0096 − 0.0068)
= 0.281

In the same interval, the Canadian Growth Portfolio average return and volatil-
ity were 1.35% and 3.71% per month, respectively. After substitution, the
monthly value added by management before fees was

Certainty equivalent value addedp =
r̄p − s2

p

2aI
− r̄f

1 + r̄f

=
0.0135 − 0.03712

2 × 0.281
− 0.0068

1 + 0.0068
= 0.0042/month per dollar invested

This is equivalent to 0.42% of assets under management per month or on an
annual basis about 5.2%/year.

Replicating contingent claim pricing19

An active portfolio manager actively buys and sells assets creating a poten-
tially complex description of a function that relates the portfolio’s monthly

19The specifics of this approach are developed in Korkie and Turtle (2002) and the managed
portfolio’s price is also shown in Korkie (2001). See Kon and Jen (1978) and Fabozzi, Francis
and Lee (1980) for an early look at functional form as well as Fung and Hsieh (1997).
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payoffs to the contingent and traded assets. In most cases, there is no plan by
the manager to provide a specific type of payoff; rather, the resulting payoff
is simply the result of active and dynamic trading on the part of the manager.
The implication is that the Henrikkson and Merton (1981) timing call option
is quite restrictive and not universally applicable to all portfolios. A variation
on the approach uses derivative or ‘Martingale methods’ to value any type of
payoffs that portfolio management has provided.

If the portfolio’s monthly returns can be defined by a function of style
portfolios’ returns, then we will be able to price the portfolio’s management
value added. The most difficult aspect of the process is identifying a good
functional relationship between the portfolio’s monthly returns and the style
portfolios’ monthly returns. The monthly returns may be arbitrarily closely
fit using higher order polynomials of the style portfolios’ returns. For the
Canadian Growth Portfolio, a quadratic regression is estimated with three
style indexes, I1, I2, I3, as in

rpt = αp + βp1rI1t + λp1r
2
I1t + βp2rI2t + λp2r

2
I2t + βp3rI3t + λp3r

2
I3t + ept

With this return in decimal form, the portfolio’s dollar payoff in one month’s
time, ignoring the error term, is

1 + rpt = 1 + αp +
3∑

k=1

βkprIkt +
3∑

k=1

λpkr
2
Ikt

= 1 + αp +
3∑

k=1

(λpk − βpk) +
3∑

k=1

(βpk − 2λpk)(1 + rIkt )

+
3∑

k=1

(λpk(1 + rIkt )
2)

where (1 + rIkt ) is the dollar payoff on index Ik . Assuming that the portfolio
and index prices follow lognormal diffusions in the month, one can price
the preceding payoffs using Martingale methods. That is, one can price the
payoffs by taking the expectation under the risk-neutral probability measure.
The discounted, at rf , claim prices are a Martingale and the discounted value
of the payoff can be shown to be

V =
1 + αp +

3∑
j=1

(λpk − βpk)

(1 + rf )
+

3∑
k=1

(βpk − 2λpk) + (1 + rf )

3∑
k=1

λpk{eσ 2
Ik }
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The intuition of this valuation is that the first term is the present value
of fixed payments one month hence. The second term is the values sum of
βpk − 2λpk units of each of the three marketed indexes, each with a unit
price of $1. The third term is the sum of the values of λpk units of each
index’s squared payoff, where σ 2

Ik is the variance of index k’s continuously
compounded monthly return. Similar to options, the value increases with the
underlying indexes’ volatilities, which are assumed constant here.

A portfolio manager delivering the payoffs has a value added for a $1
investment equal to the net present value

Management value added = NPV = V − 1

=
1 + αp +

3∑
j=1

(λpk − βpk)

(1 + rf )

+
3∑

k=1

(βpk − 2λpk)

+ (1 + rf )

3∑
k=1

λpk{eσ 2
Ik } − 1

A three index style regression was fit to the 5/84–12/96 monthly returns
on the Canadian Growth Portfolio with the following results

rpt = 0.003 − 1.31rT Bt + 216.36r2
T Bt + 0.836rT SEt

− 0.025r2
T SE − 0.013rBt + 0.139r2

Bt + ept

R2 = 0.78

where TB is the 1-month T-bill, TSE is the TSE300TRI and B is the Scotia
MacLeod long Government bond index. Applying the valuation formula and
utilizing the average T-bill return of 0.0068 for discounting, the management
value added per dollar invested is

=
1 + αp +

K∑
j=1

(λpj − βpj )

(1 + r̄f )
+

K∑
j=1

(βpj − 2λpj ) + (1 + r̄f )

K∑
j=1

λpj {eσ 2
Ij } − 1

= 1 + 0.003 + 216.36 + 1.31 − 0.025 − 0.836 + 0.139 + 0.013

1 + 0.0068
+ (−1.31 − 2 × 216.36 + 0.836 + 2 × 0.025 − 0.013 − 2 × 0.139)

+ (1 + 0.0068)(216.36e0.0000005 − 0.025e0.001616 + 0.139e0.000726) − 1
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Table 8.6 Value added by portfolio management in the Canadian Growth Equity Portfolio
(values are estimated from data over the analysis interval, 5/84–12/96)

Valuation method Valuations

Fees: annualized compounded per cent of asset value 2.1%

Expected utility method
Estimated value added using exponential utility with the equity market

benchmark’s risk tolerances:
Before fees value added: per dollar of asset value per month $0.0042
Before fees value added: per cent of asset value per year 5.2%

Derivative valuation method
Estimated value added using a quadratic three index model

Before fees value added: per dollar of asset value per month $0.0044
Before fees value added: per cent of asset value per year 5.4%

= 216.499 − 433.444 + 217.949 − 1

= $0.004406/month

That is, the value-added is about 0.44% of the value of assets under manage-
ment each month or about 5.4% per year.

The Table 8.6 summarizes the results of the two pricing methods that pro-
duced very similar annual values added of close to 5%. After annual fees of
2%, it is apparent that the managers of the Canadian Growth Portfolio were
able to add value to the managed portfolio in the amount of about 3%/year
of the assets under management.

8.5 CONCLUSIONS

The foregoing analysis provides evidence that the Nesbitt Burns Canadian
Growth Portfolio significantly outperformed the market, for the analysis period
of more than 12 years. Value added by management was worth about an
additional 3% of assets under management. The value added came primarily
from management’s ability to select stocks. Because this is a clinical study,
there is a clear selection bias that might prevent us from extrapolating our
conclusions to other time periods of the same portfolio or other managed
portfolios.
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Chapter 9

The intertemporal performance
of investment opportunity sets

BOB KORKIE AND HARRY TURTLE

ABSTRACT

Investment opportunity sets (IOS) are the feasible set of expected
returns and risks available from a set of risky assets, unrestricted
by an asset pricing model. We consider the development, estimation
and stochastic evolution of IOS conditional on time and instrument
variables. We model conditional means and volatilities as functions
of economic and time series information instruments satisfying pre-
scribed rationality conditions. Our IOS contain both small and large
risk assets, the performance of which we measure with an unbiased
estimator of the limiting IOS slope and a new spanning test for a con-
tinuous risk IOS. Non-rejection of the spanning test may be viewed as
a necessary condition for a subset representation of the performance
of the asset universe. An iterated generalized method of moments
(GMM) is employed to estimate the sequence of conditional IOS.
Substantial predictable intertemporal variation in the IOS is present.
Spanning tests are sensitive to the instrument set chosen and the
imposition of conditional moment rationality restrictions.

9.1 INTRODUCTION

The fundamental investment-consumption decisions of economic agents are
dependent on available investment opportunities. A great deal of financial
research has been devoted to the asset pricing problem of describing the
conditional mean relation among financial assets over time and to the perfor-
mance measurement of managed portfolios. Little research has been devoted
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to describing and estimating the conditional investment opportunity set (IOS),
unencumbered by any asset pricing model, or to measuring the performance
of a portfolio’s assets, as opposed to the portfolio itself. We focus on the esti-
mation, evolution and performance of assets with a large range of volatilities,
especially small risk assets that produce a continuous risk structure. The pro-
cedure can be applied to a specific set of assets under portfolio management
or to broader set definitions. In Chapter 8, we examined the performance of
a managed Canadian portfolio; in this chapter, we address sets of US fixed
income and equity assets.1

Examples of assets with small risks include: a cash account, rollovers of
short-term bills and bonds within an IOS time interval, bills and bonds with
maturity close to the interval, and any asset portfolio with a large weight on a
near-default-free asset with maturity arbitrarily close to the interval.2 Condi-
tionally, any asset (including common stock) with highly predictable returns
and small prediction error variance has small risk. Thus, richer information,
which is a rationale for active trading, provides assets with relatively smaller
conditional risk. Inclusion of any of these nearly riskless assets imparts a
substantial change in the representation of the investment opportunity set and
its performance.

Our development departs from the usual definition of the conditional IOS as
a hyperbola in mean-standard deviation space. Consideration of a continuous
risk structure in a rational economy results in an IOS that can be described by
a single ray emanating from the riskless rate. This ray is not the usual capital
allocation line that occurs as a result of a tangency in the CAPM. Rather the
ray arises solely from the existence of small, non-zero risk assets in the IOS.
The continuous risk structure IOS represents a considerable simplification
because it is fully described using a bivariate stochastic process of the riskless
rate and the IOS slope. The slope is a measure of the performance of the entire
asset set in the sense that an IOS with a larger slope spans the return and risk
possibilities of an IOS with a smaller slope.

The conditional IOS depends on well-known efficient set constants that are
functions of conditional means and covariances for the assets. We empiri-
cally describe conditional means and volatilities as linear functions of pre-
determined information instruments with unknown coefficients. Information
instruments include both time series and economic regressors. To facilitate
estimation of the coefficients and the conditional moments that define the
opportunity set, Muth’s rationality conditions are extended to all equations

1See Korkie and Turtle (1998).
2A typical time interval (t, t1] is one month; although, the small risk argument holds for any finite
interval providing the assets are available.



The intertemporal performance of investment opportunity sets 231

that describe moment dynamics. These conditions are restrictions on the rela-
tions between the information instruments and the forecast errors that result
from the conditional mean and volatility specifications. These rationality con-
ditions are essential in order to avoid return error predictability using known
information.

Rationality requires that conditional mean and conditional volatility errors
display no own or cross lag relationships. For example, predictability of
mean disturbances with prior volatility disturbances implies an omitted mean
regressor. Because our estimation approach does not impose any asset pric-
ing restrictions, conditional moments are estimated only under the restrictions
of rational forecasts of the underlying investment opportunity set.3 Given
estimates of the parameters for conditional moments, conditional efficient
set constants and the conditional IOS are then computed from an asset set
encompassing a large range of volatilities.

Goodness of fit performance tests for one IOS relative to another are
measured by unconditional and conditional spanning tests, adapted specif-
ically to the continuous risk structure IOS. We differentiate existing tests
in the literature based on the information set employed in the inference
procedure. The spanning restriction is a zero intercept in the multivariate
regression of the asset superset raw returns on the asset subset raw returns.
This result is a special case of traditional spanning tests, which have a
zero intercept in an excess return regression and the sum of coefficients
equal to one.

A well-specified IOS is a necessary condition for any asset pricing inves-
tigation: the spanning and rationality conditions are part of the specification.
We observe that the spanning performance of an asset set is sensitive to the
asset universe considered, the instruments included and the rationality restric-
tions employed. We contend that omission of the rationality conditions would
seriously misspecify the spanning performance test.

Much of our development considers the existence of assets with total risks
that are arbitrarily near zero for the data interval considered. These assets
impart a special shape to the opportunity set that we present in section 9.2.
The conditional regression restrictions for one investment opportunity set to
span another are developed in section 9.3. Rationality conditions, conditional
moment specifications and test statistics are developed in section 9.4. Results

3Previous work has provided mixed results regarding the sign, significance and stability of the
intertemporal relationship between conditional means and conditional variances. These prior results
seem to depend quite strongly on the asset universe, the estimation procedure and the possible
restrictions. Representative research includes Fama and Schwert (1977), French, Schwert and Stam-
baugh (1987), Chan, Karolyi and Stulz (1992), Gallant, Rossi and Tauchen (1992) and Whitelaw
(1994).
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of the GMM estimation and testing of the overidentifying restrictions are pre-
sented in section 9.5. Finally, in section 9.6, we offer concluding comments.

9.2 INVESTMENT OPPORTUNITY SETS WITH CONTINUOUS
RISK STRUCTURES

This section presents the conditional investment opportunity set that reflects
the continuum of volatilities available on traded financial assets. We begin
by presenting the familiar conditional IOS hyperbola as described in Merton
(1972). Next we discuss the conditional IOS in the context of a continuous risk
structure. The resultant IOS represents a considerable simplification because
it can be described by a bivariate process governing the IOS vertex and slope.

An investment opportunity set represents the risk and return possibilities
from a set of risky financial assets held over a fixed time interval, (t, t1], such
as one month. For convenience, the time subscript t is omitted in all notation
and it is implicit that an opportunity set is conditional on information at a
given point in time, and for a given interval length.

Following Merton (1972), the conditional investment opportunity set is
described by a hyperbola in mean-standard deviation space,

f (σp) = µp = b

c
±
[(
a − b2

c

)(
σ 2
p − 1

c

)]1/2

(9.1a)

where µp = X′
pµ is the conditional mean of the portfolio determined by the

(n× 1) vector of portfolio weights, Xp, and the (n× 1) vector of asset means,

µ; σp =
√
X′
p�Xp is the conditional standard deviation of the portfolio deter-

mined by the portfolio weight vector, Xp, and the (n× n) covariance matrix
of asset returns, �; and a = µ′�−1µ, b = e′�−1µ and c = e′�−1e are the
efficient set constants determined by the mean vector, µ, covariance matrix
inverse, � and the (n× 1) vector of ones, e.4

The hyperbola’s asymptote equations are described by,

g(σp) = b

c
±
[
a − b2

c

]1/2

σp (9.1b)

and the mean and standard deviation of the least risky or vertex portfolio are
µo = b/c and σo = 1/

√
c, respectively.

4For tractability in our empirical work, we assume a non-singular covariance matrix of asset returns.
More general results can be shown using generalized inverses when the covariance matrix is of
less than full rank (c.f. Graybill (1969), Buser (1977) and Ross (1977)).
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A restricted set of risky assets, such as common stocks, is a coarse approxi-
mation to the actual investment opportunity set faced by economic agents. As
demonstrated by Stambaugh (1982) and Kandel (1984), asset omissions almost
surely cause a misspecification of the opportunity set. Here, we are interested
in the omission of risky assets with risks arbitrarily close to zero.5 To pro-
ceed, we define a continuous risk structure opportunity set in terms of the
volatilities on available traded assets. The development and proof of the con-
tinuous risk structure investment opportunity set, described by equation (9.2),
is available in Korkie and Turtle (1997).

Definition: A continuous risk structure investment opportunity set is a
feasible set of expected returns and risks from financial assets with a sequence
of volatilities arbitrarily close to zero, for all bounded time intervals. The
continuous risk structure IOS can then be described by the mean equation,

µp = rf ± slσp (9.2)

where rf represents the known riskless rate for the interval (t, t1], and sl
denotes the finite IOS slope.

Because the vertex mean, b/c, has converged to the known riskless rate, rf
determines the minimum or zero risk portfolio’s return and the IOS slope, sl,
can be estimated using

√
a − b2/c or

√
a − brf .

The investment opportunity set depends mathematically upon the current
level of interest rates through both the IOS vertex and the IOS slope. This is
not surprising given an abundance of early empirical research on the subject.
For example, Fama and Schwert (1977) find that the spread between stock
and bond returns is related to the interest rate level. In addition, they find that
stock returns are negatively related to anticipated inflation rates, which may be
proxied by the Treasury bill rate (Fama and Gibbons, 1984). Geske and Roll
(1983) explain the causality in the linkage between interest rates and stock
returns, which is supported in Solnik (1984) and James, Koreisha and Partch
(1985). In Fama (1984), term premia predict future spot rates of interest. In
Chen, Roll and Ross (1986), the Treasury bill rate is in the term structure shift
factor. In Keim and Stambaugh (1986), term structure spreads are important
determinants of conditional expected returns. Ferson (1989) found that the
information contained in one month Treasury bill rates implies time variation

5Stambaugh (1982) and Kandel (1984) describe the robustness of mean-variance parameters used
in asset pricing tests to omitted assets. Although they were not concerned specifically with the
omission of nearly riskless assets, in general they find that the omission of assets causes potentially
severe measurement error in the parameters of the investment opportunity set.
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in the risks of individual assets. In the modern theory of the term structure,
the level of interest rates depends upon the uncertainty in future rates.

The continuous risk structure opportunity set is considerably easier to esti-
mate than the usual conditional hyperbola. At any time, the riskless rate, rf ,
is known and only the slope parameter requires estimation. Therefore, the
stochastic evolution of the opportunity set can be parsimoniously described
by a bivariate process describing the evolution of the interest rate and the IOS
slope. Much research, such as Chan et al. (1992) has addressed the interest
rate process; however, little research has addressed the slope process. In the
following section, we empirically investigate the discrete time process gener-
ating the IOS slopes. Because the rf is common to all, one IOS outperforms
another IOS if its slope is larger. Over time, we determine if one conditional
IOS sequence outperforms another via a conditional spanning test.

9.3 MEASURING THE PERFORMANCE OF INVESTMENT
OPPORTUNITY SETS

A well-defined investment opportunity set is one that is sufficiently similar to
the investment opportunities provided by the market’s population of invest-
ment opportunities. Because the latter is unobservable, financial economists
have measured the ‘goodness of fit’ of one set to another by tests of set inter-
section and spanning, usually accompanied by an asset pricing hypothesis.
These tests have been conducted by MacKinlay and Richardson (1991), using
Hansen’s (1982) generalized methods of moments (GMM), and the tests have
been extended to examine richer information sets and conditional asset pricing
in Ferson, Foerster and Keim (1993), for example.

Our primary interest is in the ‘goodness of fit’ of an investment opportunity
set rather than asset pricing; hence, a spanning test is of prime importance.
The spanning hypotheses and the accompanying test statistic are expressible in
terms of regression coefficient restrictions or equivalently in terms of restric-
tions on the opportunity set constants.6 We begin first with the point estimate
of the slope that can be interpreted as the performance of the asset set.

9.3.1 Point estimates of the IOS slope

In a random sampling with τ return observations from a multivariate normal
population of n assets with parameters (µ,�), an unbiased estimator of the

6Roll (1977) shows the regression restrictions, and Huberman and Kandel (1987) develops the
spanning test statistic for the restrictions. An application is in Lehmann and Modest (1988). Jobson
and Korkie (1989) express the Roll, and Huberman and Kandel results in terms of restrictions on
the efficient set constants. Kan and Zhou (2000) have a detailed analysis of spanning and stochastic
discount factor tests.
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squared slope is shown in Korkie and Turtle (1997) to be

(
â − b̂2

ĉ

)
(τ − n− 1)

(τ − 1)
− (n− 1)

τ

For the continuous risk structure IOS, the unbiased squared slope estimator
is obtained by substituting the limiting value of the vertex mean result-
ing in

(â − b̂rf ) (τ − n− 1)

(τ − 1)
− (n− 1)

τ

This unbiased estimator indicates that the maximum likelihood estimator of
the slope is positively biased. If the slope is interpreted as a market price of
risk, the ML estimate of the risk price is expected to be too large. The bias
worsens as the number of assets increases.7

These expressions are estimators of the set’s performance in any specific
period, from which the efficient set constants are derived.

9.3.2 Spanning conditions for a continuous risk structure IOS

In this section, the linear spanning restrictions are developed for the case of
an opportunity set with a continuous risk structure. The results apply to either
conditional or unconditional opportunity sets.

Define a partition of the return vector

r =
(
rn1

rn2

)

with partitioned mean vector and covariance matrix given by

µ =
(
µn1

µn2

)

7The investment opportunity set formed from the moments of asset returns has been used for
estimating the risk aversion of a representative market agent (Mehra and Prescott, 1985) as well as
establishing volatility bounds on the intertemporal marginal rate of substitution (Gallant, Hansen
and Tauchen, 1990). An advantage of the continuous risk structure IOS considered here is that
the IOS slope, or total risk price, is constant for all standard deviations. An unbiased estimator of
this continuous risk structure IOS slope may prove useful in future investigations of market risk
preferences and the equity premium puzzle. This has considerable implications for studies that infer
intertemporal marginal rates of substitution from the location of the investment opportunity set.
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and

� =
(
�n1n1 �n1n2

�n2n1 �n2n2

)

respectively. Now consider two locally continuous risk structure opportunity
sets with n1 and n assets, respectively as

µp = rf ±
√
an1 − bn1rf σp (9.3a)

and

µp = rf ±
√
an − bnrf σp (9.3b)

respectively. The n1 assets are a subset of the larger set of n = n1 + n2 assets
and all efficient set constants are defined relative to the underlying set of n1

or n assets. Both opportunity sets are defined to have assets of sufficiently
small risks such that the global minimum variance portfolio is of negligible
risk in both cases.

The spanning question may then be posited as a test of the equality of IOS
slopes, shown in equation (9.3). Equal IOS slopes are equivalent to the subset
in (9.3a) spanning the superset in (9.3b), in which case,√

an − bnrf =
√
an1 − bn1rf ⇔ �a = �brf

where the marginal efficient set constants are

�a = an − an1 =
(
µn2 −�n2n1�

−1
n1n1
µn1

)′

×�−1
n2n2n1

(
µn2 −�n2n1�

−1
n1n1
µn1

)
�b = bn − bn1 =

(
en2 −�n2n1�

−1
n1n1
en1

)′

×�−1
n2n2n1

(
µn2 −�n2n1�

−1
n1n1
µn1

)
and where

�n2n2n1 = �n2n2 −�n2n1�
−1
n1n1
�n1n2 .

8

The constants �a and �b are expressible in terms of the coefficients in
the multivariate regression of the raw returns from the n2 assets on the raw

8Partition expressions can be found in Morrison (1967). Marginal efficient set constants are defined
in Jobson and Korkie (1989).
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returns from the n1 assets. Let αn2 be the (n2 × 1) vector of intercepts and
βn2n1 be the (n2 × n1) matrix of slope coefficients in9

rn2 = αn2 + βn2n1rn1 + εn2 (9.4)

where E(εn2) = E(εn2rn1) = 0 and 0 is the (n2 × 1) null vector.
Then from the definitions of the regression estimators, one can express

�a = α′
n2
�−1
ε αn2 (9.5a)

�b = (en2 − βn2n1en1)
′�−1
ε αn2 (9.5b)

�c = (en2 − βn2n1en1)
′�−1
ε (en2 − βn2n1en1) = 0 (9.5c)

where �ε is the (n2 × n2) covariance matrix of the errors, and en1 and en2

are conformable vectors of ones, βn2n1 = �n2n1�
−1
n1n1
, �n1n1 is the (n1 × n1)

covariance matrix of the n1 assets, and �n2n1 is the (n2 × n1) matrix of covari-
ances between the n2 and the n1 assets.

From (9.3) and (9.5), the necessary and sufficient condition for spanning in
a continuous risk structure is,

�a −�brf = [αn2 − rf (en2 − βn2n1en1)]
′�−1
ε αn2 = 0

For two asset sets of equivalently small minimum risk, �c = 0, which occurs
if and only if en2 − βn2n1en1 = 0. Imposing this condition on the previous
equation produces the simple spanning restriction,

α2j = 0, ∀j = n1 + 1, n1 + 2, . . . , n (9.6)

Condition (9.6) is the restriction of a zero intercept in the multivariate regres-
sion of the n2 asset raw returns on the raw returns of the n1 assets, when
the opportunity set has a locally continuous risk structure. Therefore, a test
of whether the n1 asset opportunity set spans the n asset set is a test of the
restriction (9.6).10

9Because the opportunity set is conditional on t and an information set, the regression is a relation
on the conditional return space at time t , rather than on unconditional returns. This will affect the
possible tests of the restrictions; for example, Ferson, Foerster and Keim (1993) require that ratios
of the conditional betas are fixed in their spanning tests, which may be unrealistic.
10Similarly, a test of (µ, σ ) efficiency of a single portfolio p is equivalent to a test of whether

µp − rf
σp

=
√
an − bnrf

or whether α2j = 0, ∀j = 2, 3, . . . , n, in the multivariate regression of the n2 = n− 1 asset raw
returns on the raw returns of the portfolio, p.
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The spanning test in the case of continuous maturity opportunity sets dif-
fers from the traditional spanning test of Huberman and Kandel (1987). The
traditional spanning test examines the joint restriction of a zero multivariate
intercept and the unit sum of the slope coefficients in a raw return regression.
The simplified test statistic in this chapter follows from the small risk assets in
a continuous risk structure opportunity set and requires only a zero intercept.

A well-specified conditional opportunity set is one that has sufficiently
many assets to statistically span all relevant asset supersets. This is a differ-
ent approach from asset pricing tests that seek a small set of n1 assets that
intersects a larger set of n assets. The advocated approach here is first to find
a proxy to the population opportunity set; asset pricing investigations would
follow thereafter.11

9.4 RATIONALITY RESTRICTIONS ON CONDITIONAL RETURN
MOMENTS AND GMM ESTIMATION

Section 9.3 has developed the restrictions necessary for one asset set to
span another set, given the assets’ conditional moments and the existence
of a continuous risk structure opportunity set. These spanning restrictions are
independent of the conditions that must accompany rational forecasts of the
moments of the assets’ multivariate return distribution. We now consider the
implications of rational forecasts on the general specification of conditional
moments and the estimation of the conditional IOS.

9.4.1 A general specification of the conditional return moments

Let rt be the (n× 1) vector of returns on the n assets in the investment
opportunity set,

rt = µt + et , et ∼ D(0, σ 2
t ) (9.7a)

where the (n× 1) conditional return means are µt = E[rt |φµt−1], et is the
(n× 1) vector of errors for the conditional mean return forecasts, and φµt−1 is

11Given an approximately continuous risk structure opportunity set, the mean return on any asset,
j , may be written in terms of the conditional moments of any asset, m, located on the upper
boundary of the set as µj = rf + (µm − rf ) σjm

σ2
m

= rf +√
a − brf σj ρj ,∀j , where ρj = ρjm is the

conditional correlation between the returns on j and m. Any efficient portfolio m is sufficient to
describe the cross-section of expected asset returns. In the case where m is the market portfolio,
then the equation describes the myopic, conditional CAPM in an IOS that approximates the locally
continuous risk structure IOS.
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the information set for returns at t − 1. An element of the (n× 1) vector of
conditional standard deviations or volatility is defined in terms of the error as

σjt = {E[e2
j t |φσt−1]}1/2 = (ψ2

j t + σ 2
ηj )

1/2 (9.7b)

where the return error magnitude and its expectation, respectively, are

|ejt | = ψjt + ηjt (9.7c)

and ηjt ∼ D(0, σ 2
ηj ) is the homoskedastic error for the conditional error mag-

nitude equation, φσt−1 is the information set for standard deviations at t − 1,
and φσt−1 ∪ φµt−1 = φt−1 is the complete information set. To obtain (9.7b), the
conditional mean must be orthogonal to the instruments contained in φσt−1
and φµt−1.

Let {Zt−1} = {Zµt−1;Zσt−1} be the (L× 1) instrument set for the information,
φt−1, thereby making µt and σt unknown functionals of {Zt−1}, where {Zµt−1}
denotes the mean instruments and {Zσt−1} denotes the volatility instruments.
The elements of {Zµt−1} may include lagged values of rt and errors (e.g. ARCH
and VAR terms) as well as economic variables affecting means. Similarly, the
elements of {Zσt−1} may include lagged values of |et | and ψt (e.g. AGARCH
terms), as well as economic variables affecting conditional volatilities.

We model absolute errors and standard deviation rather than variance;
because, empirical univariate evidence supports models of magnitude or stan-
dard deviation, rather than variance models. For example, work by Taylor
(1986), Davidian and Carroll (1987), Pagan and Schwert (1990), Schwert
(1989), Nelson and Foster (1994), Hentschel (1995) and Korkie, Sivakumar
and Turtle (2002) support the use of standard deviation and AGARCH mod-
els. Glosten, Jagannathan and Runkle (1993) estimate variance-based systems
using a variety of linear and non-linear functional forms. They find that the
GARCH-M model is misspecified without the inclusion of other instruments
including asymmetric responses of conditional variance to unexpected return
shocks. This asymmetry is supported by Engle and Ng (1993).

Although alternative specifications are available (e.g. Gallant Rossi and
Tauchen (1992)), modelling conditional error magnitude allows us to specify
a simple model with the ability to capture important changes in both first
and second moments. Our approach results in conditional volatility equation
disturbances, ηjt , of the same units as conditional return mean equation distur-
bances, ejt , and requires only one equation per variate in the system; whereas,
a full covariance system requires n(n+ 1)/2 equations. We also developed
and tested a model based on a Cholesky decomposition of the second moment
matrix of mean equation disturbances. Preliminary evidence suggests that a
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simpler model with direct emphasis on the evolution of conditional volatilities
has better ability to capture system dynamics.

9.4.2 Rationality restrictions on conditional return moments

To this point, no explicit assumptions were made about the construction of
the expectations, E[rt | φµt−1] and E[|et | | φσt−1]. We require that these expec-
tations satisfy the rationality conditions associated with conditional expec-
tations. The basic premise underlying our specification of the conditional
moments, which define the opportunity set, is rational expectations after
Muth (1960, 1961).12 Rationality conditions are applied to both conditional
first and second moments to ensure that forecasts do not contain system-
atic errors. This avoids problems induced by temporal relationships between
conditional moments that may cause irrational forecasts, as well as potential
instability in relationships among the contemporaneous conditional moments
(Whitelaw, 1994).

There are a number of alternatives available for implementing rationality.
The strongest requirement is that the errors from equations (9.7a) and (9.7b)
are mutually independent of the instrument set {Zt−1}. A weak requirement
is that the errors and the instruments are pairwise uncorrelated. The pres-
ence of correlation violates rational expectations in the sense that errors are
predictable with the mean or volatility instruments. This causes systematic
misspecification of the investment opportunity set. The most common imple-
mentation of rationality requires that the mean and volatility instruments are
uncorrelated with the mean and volatility errors. Applying this restriction to
mean and volatility disturbances we have the conditions,

E[ejtZlt−1] = 0 and E[ηjtZlt−1] = 0, i, j = 1, 2, . . . , n;

l = 1, 2, . . . , L (9.8)

9.4.3 Conditional mean and volatility specifications and derived
conditional covariances

We adopt a linear specification for means and volatilities conditioned upon
selected information instruments that include both time series regressors and
economic factors.13 All instruments are in the information set at time t − 1. An

12An early integration of estimation and means rationality is in Cumby, Huizinga and Obstfeld
(1983).
13Assuming that expectations and covariances are constant linear functions of the instruments is a
common practice. See Harvey (1989) and Shanken (1990), for example.
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asset’s volatility equation models the correlation between the volatility instru-
ments and the mean error magnitude, |et |, resulting in significant coefficients
on the instruments. However, if functional correlation also exists between the
mean instruments and the |et |, then the mean instruments may also be signifi-
cant in the volatility equation.14 Thus, instruments with significant coefficients
in both the mean and the volatility equations are correlated with the return
and functionally correlated with the return error. Significant coefficients on
mean equation instruments alone imply that instruments are correlated with
the return; significant coefficients on the volatility equation instruments imply
that the instruments are functionally correlated with the mean error.

Following (9.7), we estimate equations of the following form to define
conditional expected excess returns, µt , in

Rt = µt + et
= α0 + αKFKt + φ1Rt−1 + φ2|Rt−1| + et (9.9a)

where Rt is the (n× 1) excess return vector in period t , FKt is a (K × 1)
vector of predetermined economic information variables, φ1 and φ2 are (n× n)
coefficient matrices for VAR and absolute VAR terms, and et is the disturbance
vector.

In a similar manner, we write conditional error magnitudes as mixed
AGARCH models, which include asymmetric response coefficients as
proposed by Glosten, Jagannathan and Runkle (1993),

|et | = ψt + ηt
= β0 + βKFKt + ϕ1 pos(et−1)+ ϕ2|et−1| + ηt (9.9b)

where |et | is the (n× 1) vector of absolute values of the excess return con-
ditional mean error in period t , βK is the (n×K) coefficient matrix for FKt
a (K × 1) vector of predetermined economic information variables, ϕ1 and
ϕ2 are (n× n) coefficient matrices for the vector of lags of positive mean
disturbances,

pos(ejt−1) =
{
ejt−1 for ejt−1 > 0
0 otherwise

for j = {1, 2, . . . , n}

14Functional correlation means that functions of the basic variables are correlated implying that the
basic variables are dependent. In this case, the basic variables are the instruments and the errors.
For example, ejt is uncorrelated with Zlt−1 but they are functionally correlated because |ejt | is
correlated with Zlt−1.
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and absolute values of lagged mean disturbances, |et−1|, respectively. The
volatility disturbance vector is given by ηt with homoskedastic variance
vector, σ 2

η . An asset’s conditional volatility is obtained by substituting the
estimated ψ2

j t and σ 2
ηj into equation (9.7b) to obtain the estimated volatilities,

σ̂j t , j = 1, 2, . . . , n.
Our subsequent implementation of the IOS estimation requires the covari-

ances as well as the preceding means and volatilities. We do not directly
estimate conditional covariances between assets’ returns; rather, we assume
constant conditional correlations, ρij , calculated from pairs of the assets’ stan-
dardized return residuals,

ωjt = ejt

σjt
, j = 1, 2, . . . , n, t = 1, 2, . . . , T

Then, the conditional covariance matrix is

�t = diag(σt )ρ diag(σt )

where diag (σt ) is the diagonal matrix of the vector of conditional volatilities,
σt , and ρ is the (n× n) correlation matrix constructed from standardized
return residuals. If correlations are truly time varying, our econometric model
is underspecified in equations (9.7).

9.4.4 Iterated GMM estimation of the conditional means and volatilities

In this section, we discuss the GMM estimation of the IOS over time, which
simultaneously imposes rationality restrictions through moment restrictions.
We begin by specifying a linear model in various economic and time-series-
motivated instruments. We allow instruments to vary by equation to avoid
finite-sample bias problems associated with using too many instruments and
to allow us to choose enough useful instruments per equation to improve the
asymptotic efficiency of our estimates.

Equations (9.9a) and (9.9b) determine the (n× 1) mean equation distur-
bance vector et = {ejt} and the (n× 1) vector of volatility disturbances ηt =
{ηjt}. The conditional moments disturbance vector is therefore

ut(θ) =
[
et
ηt

]
(9.10)

where θ represents the true vector of model parameters contained in
equations (9.9). Other models for spanning tests will have a model specific
disturbance vector, discussed in section 9.4.5.
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Following Hansen (1982), we define the model moment conditions based
on a set of information instruments, Zt−1, and a selected parameter vector, θ ,
as the Kronecker product

gt(θ) = ut(θ)⊗ Zt (9.11)

To impose the rationality restrictions, E[gt(θ)] = 0 from (9.8), the following
quadratic form is minimized,

C(θ) = ḡ(θ)′Wḡ(θ)

by choice of a parameter vector, θ̂ , for a given symmetric non-singular weight-
ing matrix, W , where

ḡ(θ) = 1

T

T∑
t=1

gt(θ) = 0

is the empirical moment equivalent of E[gt(θ)] = 0.
For a given set of mean and volatility regressors in (9.9), we begin with

an initial weighting matrix, W1, equal to the identity matrix. C(θ1) is then
minimized to produce an initial parameter vector, say θ̂1. A new weighting
matrix, W2, is then calculated according to

Wj+1 = T

[
T∑
t=1

gt (θ̂j )gt (θ̂j )
′
]−1

(9.12)

C(θ2) is then minimized to produce θ̂2, and the weighting matrix is updated for
the next iteration. This process continues until the gradient vector is numer-
ically zero. In general, updates to the W matrix for the j + 1st iteration are
constructed from the j th iteration parameter vector using (9.12).15

The sample statistic,

2 = T C(θ̂) (9.13)

is asymptotically distributed as a χ2 random variable with m− p degrees of
freedom, where m is the number of orthogonality conditions and p is the
number of parameters.

The variance–covariance matrix for the final resultant parameter vector, θ̂ ,
is computed as

VCOV(θ̂) =
[
T

(
∂ḡ(θ̂)′

∂θ

)
W

(
∂ḡ(θ̂)

∂θ ′

)]−1

(9.14)

15Further discussion of the iterative GMM approach can be found in Ferson and Foerster (1994).
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where W denotes the value of the weighting matrix based on the final and
convergent iteration of the estimation.

Under the null hypothesis, the system (9.9) is overidentified because we
choose only a limited number of regressors from the information set to model
conditional means and volatilities. If the chi-square statistic of overidentifying
restrictions from 2 is significant, then the orthogonality conditions are vio-
lated. This occurs if the instrument set regressors do not adequately specify
the conditional means and volatilities. In the following section, we estab-
lish the instruments and orthogonality conditions for various combinations of
rationality and spanning performance of the asset sets.

9.4.5 GMM spanning and rationality tests

An objective of the analysis is to obtain an investment opportunity set from a
small set of assets with performance that is representative of a larger popula-
tion IOS. We test this objective by considering the spanning restriction given
by (9.6) and at the same time we determine the importance of the rationality
restrictions. We follow previous studies in using the instrument set only as
overidentifying restrictions on (9.4). These tests, as in previous literature, are
actually ‘quasi-conditional’ because mean equations only contain the spanning
assets as regressors, volatility equations are not modelled, and the implemen-
tation of an intercept restriction in this context requires an assumption on
the constancy of betas or their ratios, the latter described in Ferson, Foerster
and Keim (1993). Depending upon the test, listed below, the instrument set
consists of spanning assets, economic instruments, or both.

Unconditional spanning tests
We use the term ‘unconditional spanning’ to refer to IOS spanning tests in
unconditional moments in which only spanning assets are included as GMM
test instruments and no additional conditioning information is employed.

To implement the test, we follow Newey and West (1987), MacKinlay
and Richardson (1991) and Ferson, Foerster and Keim (1993).16 Define the
(n× 1) disturbance vector constructed from equation (9.4),

εn2t = rn2t − (αn2

...βn2n1)


 1
. . .

rn1t


 , t = 1, 2, . . . , T (9.15)

16MacKinlay and Richardson (1991) find that the GMM statistic is more robust to normality
departures and more powerful than the Wald statistic.
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where the n1 spanning assets are a proper subset of the total number of n
assets, rn2t is the (n2 × 1) vector of raw returns on the n2 = n− n1 assets, rn1t

is the (n1 × 1) vector of raw returns on the n1 assets, αn2 is the (n2 × 1) vector
of estimated intercepts, and βn2n1 is the (n2 × n1) matrix of coefficients on the
spanning assets. The sample moment restrictions are then constructed from

gt(βn2) = {εn2t ⊗ [rn1t , Zt−1]} (9.16)

and the βn2 = (αn2

...βn2n1) parameters are estimated by minimizing the GMM
χ2 statistic.

To perform the unconditional spanning test, we estimate βn2n1 under the
zero-intercept restriction αn2 = 0 and we consider an instrument set, {Zt−1},
given only by a constant and the (n2 × 1) vector of spanning assets. The GMM
‘goodness-of-fit’ χ2 statistic, similar to (9.13) with n2 degrees of freedom
and denoted 21, is used to test the multivariate zero-intercept restriction for
unconditional spanning.

Conditional tests of rationality
Conditional tests of rationality examine rationality restrictions on disturbances
from (9.4). To implement the conditional test of rationality, we estimate the
unrestricted intercept model (9.4) subject to rationality conditions that distur-
bances are uncorrelated with the overidentifying instruments. The instrument
set, {Zt−1}, is expanded to include the (n2 × 1) vector of spanning assets
and the additional economic instruments. The GMM χ2 statistic, denoted 22,
with degrees of freedom given by the number of overidentifying restrictions,
is used to test the restriction. The orthogonality instruments are defined in
the subsequent tables. This test does not appear in Ferson, Foerster and Keim
(1993).

Conditional tests of rationality and spanning restrictions
Finally, joint tests of rationality and spanning are implemented using the
GMM test statistic, 23, for the restricted zero intercept and overidentified
model from (9.4). This test is similar to the test for rationality using 22

except that the estimation is with a zero intercept and the instrument set,
{Zt−1}, is expanded to include a constant, the (n2 × 1) vector of spanning
assets, and the additional economic instruments. Therefore, it is the same test
as used in Ferson, Foerster and Keim (1993).

These tests allow the researcher to disentangle the effects of spanning
and rationality restrictions. We wish to determine if previous studies’ rejec-
tions in spanning tests may be rejections of both spanning and rationality,
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thereby implying misspecified models. Our testing framework demonstrates
the dependence of spanning tests on joint rationality restrictions and makes
the importance of rationality restrictions clear. It is entirely possible for nei-
ther spanning restrictions nor rationality restrictions to hold, for both to hold,
or for either set of restrictions to hold. A well-specified system should span
the asset universe and meet prescribed rationality conditions.

9.5 EMPIRICAL ANALYSES

9.5.1 The asset and instrument data

The data consists of 14 monthly excess return series that are used as assets in
the multivariate analysis, along with nine series that are used as information
instruments. Data is from January 1965 to December 1999; because of the use
of up to 12 lags of return variables, the analysis period is 1/1966 to 12/1999,
inclusive. As in Fama and French (1989), we choose assets to develop a
continuous maturity structure IOS that occurs in an integrated financial market
of short- and long-term debt and equity markets. The 14 assets include excess
returns of one month holding period returns on the following assets; US
Treasury bills with three months to maturity, five year Treasury bonds, 30 year
Treasury bonds, the CRSP value weighted index and ten equal weighted size-
based decile portfolios.17

Table 9.1 reports summary statistics of sample means, standard deviations,
skewness and kurtosis for each of the assets. The first two columns show
the unconditional sample means and standard deviations for all excess return
series. As expected, the Treasury bill series displays a relatively small uncon-
ditional sample mean and standard deviation. The value weighted equity

Table 9.1 Summary excess return statistics for the sample period from January 1966 through
December 1999

Asset series Mean*102 Std. dev.*102 Standard
skewness

Kurtosis Normality
test

RTB3t 0.0513 0.1081 40.698 374.99 0.00
R5Bt 0.1229 1.6910 0.0251 −2.985 0.00
R30Bt 0.0944 3.1178 0.0031 −2.999 0.00
REt 0.5335 4.5091 0.0042 −2.999 0.00

Sample means, standard deviations, skewness, and kurtosis are presented for one month holding
period, excess returns on three month Treasury bills, RTB3t , five year Treasury bonds, R5Bt , thirty
year Treasury bonds, R30Bt , and the CRSP value weighted index, REt , respectively. The final
column reports p-values from Bowman and Shenton (1975) tests for normality.

17The asset set is similar to the set in Evans (1994), who studies the ICAPM.
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portfolio shows a substantially larger portfolio mean and standard deviation.
This sample period produced smaller 30 year bond portfolio performance than
the five year bonds. This smaller sample mean comes without a substantial
reduction in the unconditional standard deviation. Short maturity Treasury
bills tend to be the most right skewed relative to the small skewness in the
remaining assets. All excess return series display marked leptokurtism relative
to the normal distribution. The final column of the table reports the Bowman
and Shenton (1975) test for normality, which is distributed as a χ2 random
variable. In general, we conclude that the excess return series have significant
departures from normality.

We choose a large set of information instruments to proxy for the infor-
mation set facing investors at the beginning of any investment period. Our
conditional moment estimates are directly influenced by the instrument set
used. We seek information instruments that are economically meaningful as
found in previous research. In addition, we include time series instruments
to proxy for missing economic variables and to mitigate possible microstruc-
ture effects. All information instruments used as conditioning information in a
month t conditional moment equation, are known at the beginning of month t .

Economic information instruments for conditional mean and volatility
equations include a constant, the first difference in one month Treasury bill
returns, the excess junk yield on corporate bonds rated Baa by Moodys, one
lag of Standard and Poors 500 dividend yield, the first difference of the lag
of the natural logarithm of total volume on the NYSE and a January dummy
variable.

Existing literature using variants on these economic regressors is well
established. Previous research examining changes in the riskless rate include
Campbell (1987) and Schwert (1989). In our context, this variable measures
changes in the continuous risk structure vertex location from one period to
the next. Yields on long-term bonds and spreads between high-yield debt and
comparable Government debt have been included in various forms in many
studies requiring economic motivations for conditional asset means (c.f. Chen,
Roll and Ross (1986), or Fama and French (1989)). Lamoureux and Las-
trapes (1990) find contemporaneous volume may be used as a regressor in
conditional volatility equations to eliminate ARCH effects. We include first
differences of lagged volume as information instruments in both mean and
volatility equations to accommodate both information arrival and microstruc-
ture explanations for volume. Lagged volume is also motivated by the findings
of Gallant, Rossi and Tauchen (1992) and Conrad, Hameed and Niden (1994).
Further discussion of important predictor variables can be found in Keim
and Stambaugh (1986), Breen, Glosten and Jagannathan (1989) Kandel and
Stambaugh (1989) and Jegadeesh (1991).
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The inclusion of lags of own excess returns and absolute values of own
excess returns in the conditional mean equations allows us to capture asym-
metric responses to lags of own excess returns. In a similar manner, own lags
of both positive conditional mean disturbances and absolute values of condi-
tional mean disturbances, in volatility specifications, admit general moment
relationships as suggested by Bodurtha and Mark (1991) and Glosten, Jagan-
nathan and Runkle (1993).

9.5.2 Estimates of the conditional return moments under rationality

In this section, we present the empirical results of our model of conditional
means and volatilities for returns on three month US Treasury bills, the five
and thirty year bond indexes, and the equity index. Conditional means, µt ,
and volatilities, σt , are modelled using equation (9.9a) and equation (9.9b)
combined with (9.7b), respectively. For parsimony, we restrict our attention
to the special case of only own time series effects, in which case φ1, φ2, ϕ1,
and ϕ2 are diagonal.

Table 9.2 reports estimation results for the conditional expected returns and
volatilities, given by (9.9). Panel A reports mean equation parameter esti-
mates and asymptotic t-statistics, followed by conditional volatility equation
results in panel B. We first selected a subset of our information instruments
as regressors to model conditional means and conditional volatilities. Infor-
mation instruments not included as regressors are reported as blank spaces
in the table. Heteroskedastic t-statistics are reported in parentheses below all
parameter estimates. In panel C, we report the GMM goodness of fit test of
the rationality restrictions.

Interpreting the conditional mean specification in panel A shows that the
three month Treasury bill series displays a significant coefficient on prior
one month Treasury bill changes, lagged dividend yields, January, as well as
lagged absolute own excess returns. The strong significance and positive coef-
ficients for absolute own excess return lags suggest an intuitively appealing
positive relationship between excess return shocks of either sign and condi-
tional means for both short-term Treasury bills and five year bonds. We find
little evidence of a January seasonal in conditional means, with the exception
of a significant positive coefficient for three month Treasury bills. Positive
changes in NYSE volume appear to be weakly negatively related to con-
ditional means on debt instruments. This may suggest an interesting timing
effect related to asset allocation choices between equity and debt instruments.
Equity returns are significantly related to one month Treasury bill changes
and increase insignificantly with default premia, as measured by the excess
yield on junk bonds. The former indicates that increases in the short-term



Table 9.2 GMM estimation results for the sample period from January 1966 through December 1999

Asset Information instruments
Regressand

Const.*102 rT B1t − rT B1t−1 Excess Baa
yield

S&P500
div yieldt−1

ln(volt−1)–
ln(volt−2)

Jan Rjt−1
∣∣Rjt−1

∣∣

Panel A. Mean equations

RTB3t −3.1400 −0.2680 0.0062 −0.0990 0.0372 0.2737
(−1.68) (−3.67) (2.81) (−2.91) (3.42) (3.70)

R5Bt −0.0785 −1.3932 −0.6516 0.0600 0.1698
(−0.76) (−1.29) (−1.31) (1.25) (2.53)

R30Bt −0.0589 −1.9196 −1.5016 0.0492 0.0778
(−0.28) (−1.12) (−1.72) (0.98) (1.06)

REt 0.0591 −5.9053 1.4059 0.7918 0.0554
(0.14) (−2.32) (1.32) (0.95) (1.17)

Asset
Regressand

Const.*102 rT B1t − rT B1t−1 Excess Baa
yield

S&P500
div yieldt−1

ln(volt−1)–
ln(volt−2)

Jan pos(ejt−1)
∣∣ejt−1

∣∣

Panel B. Error magnitude equations

|eT B3t | −0.0470 0.0090 0.2681
(−3.07) (4.92) (4.29)

|e5Bt | −0.1692 0.1408 −0.0348 −0.01
(−0.72) (5.34) (−0.52) (−0.14)

(continued overleaf )



Table 9.2 (continued)

Asset Information instruments
Regressand

Const.*102 rT B1t − rT B1t−1 Excess Baa
yield

S&P500
div yieldt−1

ln(volt−1)–
ln(volt−2)

Jan pos(ejt−1)
∣∣ejt−1

∣∣

|e30Bt | 0.4345 0.1832 0.0510 0.0147
(1.19) (4.74) (0.77) (0.24)

|eEt | 2.4829 −2.3285 0.1330 0.8939 −0.2500 0.1791
(4.78) (−3.86) (2.48) (1.88) (−4.73) (3.95)

Panel C. GMM Goodness of Fit Test, 2 χ2 value p-value

21.50 0.716

Excess returns are computed for one month holding periods on three month Treasury bills, RTB3t , five year Treasury bonds, R5Bt , thirty year Treasury
bonds, R30Bt , and the CRSP value weighted index, REt , respectively. Mean equation information instruments include a constant, the first difference of
one month Treasury bill returns (rTB1t − rTB1t−1), excess yields on Corporate bonds rated Baa by Moody’s (excess junk yield), one lag of Standard
and Poors 500 dividend yield, one lag of the first difference of the natural logarithm of total volume on the NYSE (ln(volt−1)− ln(volt−2)), a January
dummy, one own lag for each regressand (Rjt−1 for j ∈ {TB3,5B,30B,E}), and one own lag of the absolute value of each regressand (

∣∣Rjt−1
∣∣ for

j ∈ {TB3,5B,30B,E}). Error magnitude equations model the absolute value of mean equation disturbances,
∣∣ejt ∣∣ for j ∈ {TB3,5B,30B,E}, as linear

functions of information instruments that include a constant, the first difference of one-month Treasury bill returns, excess yields on Corporate bonds
rated Baa by Moodys, one lag of Standard and Poors 500 dividend yield, a January dummy, one own lag of each regressand’s positive residual,

pos(ejt−1) =
{
ejt−1 for ejt−1 > 0
0 otherwise

for j ∈ {TB3,5B,30B,E}, and one own lag of the absolute value of each regressand’s residual. Mean and absolute

error equation regressors are chosen from the information instrument set to ensure a parsimonious fit as determined by the GMM test statistic. Rationality
restrictions are imposed. Heteroskedastic-consistent t-statistics are reported in parentheses for the included regressors.
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interest rate result in changes in expected returns. The latter is consistent with
a positive relation between the default and equity premium over the business
cycle.

In Panel B, we find that conditional volatilities of all assets are significantly
dependent upon known instruments, especially dividend yields. Conditional
equity volatility appears nonlinearly related to prior equity disturbances as
indicated by the significant coefficients on both pos(ejt−1) and |ejt−1|. Equity
volatility is negatively related to the excess Baa yield. Equity volatility also
appears positively related to January and dividend yields. The latter may
suggest that an increase in dividend yields increases leverage, and hence
volatility. Alternatively, dividend increases may imply an increase in earnings
potential.

The reported χ2 goodness of fit test statistic of 21.50 in panel C shows
that the model is not rejected based upon the chosen information instru-
ment set. Thus, given the information instruments selected, we do not reject
the rationality restrictions. Therefore, we conclude that we have a well-
specified set of conditional moment equations estimated under our rationality
restrictions.

9.5.3 Estimates of the conditional IOS

In this section, we empirically demonstrate the behaviour of the continuous
risk structure IOS using excess returns on three month US Treasury bills, the
five and thirty year bond indexes, and the equity index. Given the GMM coef-
ficients’ estimates from equations (9.9a) and (9.9b) and the residual variance
from (9.9b), conditional mean and volatility vectors are constructed.

The estimated conditional mean vector, µ̂t , is computed as the sum of
the one month Treasury bill rate plus the conditional excess mean return,
constructed using Table 9.2 parameter estimates. The estimated conditional
covariance matrix, �̂t , is then constructed as described in section 9.4.3 using

�̂t = Diag(σ̂t )ρ̂ Diag(σ̂t ) (9.17)

where Diag(σ̂t ) is the diagonal matrix of the conditional vector of estimated
volatilities, σ̂t , and ρ̂ is the (n× n) estimated correlation matrix constructed
subsequent to estimation from estimated standardized model residuals,

ω̂j t = êj t

σ̂j t
, j = 1, 2, . . . , n, t = 1, 2, . . . , T (9.18)
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From the estimates of µ̂t and �̂t , the efficient set constants, ânt = µ̂′
t �̂

−1
t µ̂t ,

b̂nt = e′�̂−1
t µ̂t , and ĉnt = e′�̂−1

t e, are constructed. These constants enable us

to specify the ML estimate of the intertemporal IOS slope

√
ât − b̂2

nt

ĉnt
and

vertex b̂nt
ĉnt

, for each month t .
The figure consolidates the estimation results in a 3-dimensional graph of

the estimated intertemporal IOS. The date is presented on the foremost axis,
with conditional volatility and conditional mean represented as depth and
height, respectively, in the figure. Variability in the riskless rate is visible in
the ‘σ = 0’ plane along the date axis. The upper asymptote for the tradi-
tional hyperbola can be seen for any particular ‘date plane’. The graph shows
markedly different trade-offs between conditional mean and volatility over
time. In particular, variability in low volatility assets appears more important
than previous research has recognized.
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Figure 9.1 Conditional means and the efficient set over time
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9.5.4 Tests of rationality and spanning

Table 9.3 reports the unconditional and conditional tests of spanning and ratio-
nality developed in Section 9.4.5. For comparability with earlier research, we
expand our analysis to include an additional ten equally weighted, size-based,
decile portfolios as well as the equity index, the five and thirty year bond
indexes, and the three month US Treasury bill return series.

Unconditional spanning results
Panel A of the table reports the unconditional spanning tests for a variety
of asset sets and spanning asset subsets. In all cases, we consider an asset
universe comprised of ten decile portfolios and a subset of the three month
Treasury bill, five year bond, thirty year bond and equity index as spanning
assets. We begin with an asset universe consisting of the ten decile portfolios
and then add spanning assets from largest to smallest variability to test the
spanning hypothesis. The final column of the table reports 21, the computed
χ2 statistic with n2 degrees of freedom. For example, the first row considers
an asset universe consisting of the equity portfolio in addition to the ten decile
portfolios. The spanning test statistic of 183.53 with an associated p-value of
0.0001 shows that the equity index is insufficient to span this asset set at the
5% level.

The spanning tests reported in the final column of panel A are subject to
the assumption of a continuous risk structure opportunity set. For example,
the unconditional spanning test, examining whether only the equity portfolio
spans the space of the ten decile portfolios and the equity portfolio, is poorly
specified. In this case, the smallest risk asset does not satisfy the continu-
ous risk structure assumption. Notice that this test is also uninteresting for a
more important reason – the opportunity set of possible investment alterna-
tives omits important assets. When the opportunity set of assets is corrected to
include readily available low risk investment alternatives, the test will again
be well specified. Using the continuous risk structure spanning test implic-
itly assumes that the global minimum portfolios have equivalent and small
standard deviations.

The remaining rows of panel A suggest that unconditional spanning is
difficult to obtain. In particular, even when the spanning asset set includes
the equity index, the bond index, and both the five month and two month US
Treasury bill return series, the asset universe is not spanned.18

18Additional tests that consider the smallest and fifth decile portfolios as spanning assets lead to
smaller test statistics, but do not alter the unconditional spanning inferences.
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Table 9.3 Unconditional and conditional tests of rationality and spanning for the sample period from January
1966 through December 1999

Panel A. Unconditional χ2 tests

Asset set Spanning assets Spanning test
statistic, 21

rD1t , rD2t , rD3t , . . . , rD10t , rEt rEt 183.53
(0.0001)

rD1t , rD2t , rD3t , . . ., rD10t , rEt , r30Bt rEt , r30Bt 145.37
(0.0001)

rD1t , rD2t , rD3t , . . . , rD10t , rEt , r30Bt , r5Bt rEt , r30Bt , r5Bt 139.65
(0.0001)

rD1t , rD2t , rD3t , . . ., rD10t , rEt , r30Bt , r5Bt , rT B3t rEt 191.54
(0.0001)

rEt , r30Bt 167.49
(0.0001)

rEt , r30Bt , r5Bt 153.37
(0.0001)

rEt , r30Bt , r5Bt , rT B3t 77.57
(0.0001)

Panel B. Conditional χ2 tests

Additional information instruments Test statistics

Rationality 22 Spanning and
rationality 23

rDjt−1 54.062 121.97
(0.0001) (0.0001)

rDjt−1, rDjt−2 88.049 139.14
(0.0001) (0.0001)

rEt−1, r30Bt−1, r5Bt−1, rT B3t−1 90.450 154.51
(0.0001) (0.0001)

rEt−1, r30Bt−1, r5Bt−1, rT B3t−1, rEt−2, r30Bt−2, r5Bt−2, rT B3t−2 124.52 174.97
(0.0011) (0.0001)

rDjt−1, rEt−1, r30Bt−1, r5Bt−1, rT B3t−1 129.55 171.08
(0.0001) (0.0001)

rDjt−1, rEt−1, r30Bt−1, r5Bt−1, rT B3t−1, 163.38 190.93
rDjt−2, rEt−2, r30Bt−2, r5Bt−2, rT B32t−2 (0.0001) (0.0001)

rDjt−1, j = 1, 2, . . . 10 163.21 221.21
(0.0001) (0.0001)

rDjt−1, rDjt−2, j = 1, 2, . . . 10 246.26 277.40
(0.0143) (0.0013)

rDjt−1, j = 1, 2, . . . 10, rEt−1, r30Bt−1, r5Bt−1, rT B3t−1 239.56 258.16
(0.0001) (0.0001)

rDjt−1, rDjt−2, j = 1, 2, . . . 10, rEt−1, r30Bt−1, 328.23 342.99
r5Bt−1, rT B3t−1, rEt−2, r30Bt−2, r5Bt−2, rT B3t−2 (0.0250) (0.0176)

Asset sets are constructed from one month holding period total returns on three month Treasury bills, rTB3t ,
five year Treasury bonds, r5Bt , thirty year Treasury bonds, r30Bt , the CRSP value weighted index, rEt , and
ten equally weighted CRSP size portfolios, rD1t , rD2t , rD3t , . . ., rD10t , respectively. GMM χ2 test statistics are
reported with associated p-values in parentheses. Unconditional tests are based upon the GMM system estimated
under the no-intercept restriction with no additional instruments. The notation, rDjt−1 or rDjt−2, is used to refer
to the inclusion of one or two own lags of decile size portfolio returns, respectively, as additional information
testing instruments. Conditional tests examine rationality restrictions in isolation, and joint tests of spanning and
rationality for a variety of instrument sets.
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Conditional spanning and/or rationality results
Panel B of the table considers conditional tests of rationality, and joint tests
of rationality and spanning. Following the development of Section 9.4.5, con-
ditional tests of rationality are reported first, (22), followed by joint tests of
spanning and rationality, (23). Our joint tests of spanning and rationality are
comparable with Ferson, Foerster and Keim’s (1993) tests. However, our anal-
ysis makes clear the dependence of rationality restrictions on the information
instruments. In general, rejection of joint spanning and rationality tests may
be due to a rejection of either rationality or spanning.

All rows of panel B are based on the largest asset set considered in panel A,
including ten decile portfolios, the equity index, the thirty year bond index,
the five year Treasury bond, and the three month Treasury bill. The spanning
assets again include the equity index, both bond indices, and the three month
Treasury bill. We consider a variety of additional information instruments to
provide overidentification of the system and to examine the sensitivity of tests
to different rationality constraints. In the first and second rows of panel B,
we consider the inclusion of one or two own lags of the total returns on each
of the ten decile portfolios, rDjt−1 or rDjt−1 and rDjt−2, respectively. In the
third and fourth rows, we consider the inclusion of one or two lags of all
spanning portfolio returns, rEt−1, r30Bt−1, r5Bt−1, rT B3t−1, or rEt−1, r30Bt−1,
r5Bt−1, rT B3t−1 and rEt−2, r30Bt−2, r5Bt−2, rT B3t−2, respectively. The next two
rows consider one or two own lags of the total returns on each of the ten
decile portfolios and the spanning portfolios, rDjt−1, rEt−1, r30Bt−1, r5Bt−1,
rT B3t−1, or rDjt−1, rEt−1, r30Bt−1, r5Bt−1, rT B3t−1 and rEt−2, r30Bt−2, r5Bt−2,
rT B3t−2, respectively. The final four rows of the table examine the importance
of extending the instrument set. In particular, rather than include only own lags
of decile portfolio returns as instruments, we now include lags of all decile
portfolios as instruments for each test asset. The difference between 23 and
22 is itself a χ2 test statistic with degrees of freedom given by the differences
in degrees of freedom for 23 and 22. In our example, the degrees of freedom
for this marginal test is always ten (the number of intercept restrictions). The
difference may be interpreted as the significance of the spanning restriction
alone (marginal to the imposed rationality restrictions). For example, the final
two statistics in Table 9.3 differ by 14.76 and the associated p-value is 0.15.
The rejection of rationality by 22 and the lack of significance in the difference
23 −22 suggests that the spanning rejection is due primarily to the rationality
restrictions.

9.6 CONCLUDING REMARKS

The performance of managed portfolios is a function of both the asset sets
as well as the selected weights. The analysis presented here allows one to
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analyse the performance of the sets, distinct from the performance of the
asset allocation and security selection weights.

In this chapter, we develop, estimate, and examine the intertemporal per-
formance of continuous risk structure investment opportunity sets (IOS). We
empirically estimate conditional IOS evolution using GMM. The continu-
ous risk structure IOS is estimated without asset pricing restrictions; how-
ever, rationality restrictions on conditional means and volatilities are imposed.

Conditional moments are constructed from a large set of information instru-
ments. Conditional mean information instruments include changes in the
riskless rate, excess yields on low grade bonds, dividend yields, changes in
equity market volume, a January dummy, own excess return lags, and abso-
lute own excess return lags. Conditional volatility information instruments
replace own lags of excess returns with positive realizations of own lags of
mean equation residuals and replace absolute values of own lags of excess
returns with absolute values of own lags of mean residuals. We find only a
small set of information instruments is required to capture conditional mean
and volatility dynamics.

We extend previous spanning tests and integrate tests of spanning and
rationality in a conditional setting. In general, we observe that rejections of
spanning restrictions in the extant literature may be caused by a rationality
failure, a spanning failure, or a failure of both sets of restrictions. In general,
we find that rationality conditions are rejected suggesting previous tests may
be misspecified. It seems that a large and diverse instrument set is required
to prevent rationality rejections.
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Chapter 10

Performance measurement of portfolio risk
based on orthant probabilities

MARK LUNDIN AND STEPHEN SATCHELL

ABSTRACT

Portfolio risk estimation and risk budgeting play central roles in per-
formance measurement and the development of future performance
expectations. The risk aspect of investing provides the standardization
necessary for the comparison of strategies and the measurement of
success on equal scales. In this discussion, the volatility character-
istics of investment portfolios are re-examined from the perspective
of long/short investment strategies and long-only investment strate-
gies which are underweight or overweight assets with respect to a
benchmark. An alternative formulation for the description of portfolio
risk proposed by Acar and Satchell (1998) is expanded upon. The
standard and commonly accepted variance/covariance framework
accounts for correlation between assets. However, a new formulation,
based on orthant probabilities, extends standard portfolio risk esti-
mation in order also to account for potential correlation between the
asset selection decisions which periodically occur in the investment
process. The differences between the two approaches suggest that
conventional estimates may not apply to the absolute risk estimation
of long/short strategies or to the benchmark relative risk of long-only
strategies. The orthant probability-based estimate of portfolio volatility
is found to be systematically greater than that provided by commonly
employed methods and may help explain both the underforecasted
absolute risk of some alternative investment strategies as well as
the underforecasted tracking error of more conventional investment
strategies.
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10.1 INTRODUCTION

The past 20 years have been witness to a healthy expansion of the alternative
investment industry, which caters largely to the sophisticated investor. Hedge
funds and managed futures funds account for a large subsection of this field.
Although the number and size of such investment funds remain small com-
pared to conventional mutual funds, their growth has risen by more than 25%
per year since the late 1980s (Ackermann, McEnally and Ravenscraft, 1999).
These vehicles often offer enhanced diversification through the possibility to
participate in a wide variety of financial instruments, many of which are not
available in traditional investment products. A primary motivation for this is
the provision of enhanced portfolio returns in market environments in which
traditional equity and fixed income strategies offer limited opportunities. One
path towards this end is to hold short positions in addition to long. In practice
this can be achieved by the selling of assets which are not actually held, but
rather which have been borrowed for this express purpose, or by the selling
of derivative securities. Losses by some of these hedge funds have prompted
questions of the reliability of the implemented risk hedges, especially during
periods of higher volatility.

For any investment portfolio, risk can primarily be controlled by holding a
reasonably large number of different assets whose returns are as uncorrelated
as possible. Some alternative investment strategies aim for what is perhaps
the natural extrapolation of risk diversification by being simultaneously long
and short on different securities. In such a strategy, investors seek to profit by
exploiting pricing inefficiencies between related securities, while neutralizing
some or all of their exposure to global, or local, market risk. However, pre-
vious authors have theorized that this may be difficult to achieve in practice,
since an investor may inevitably use similar techniques in performing asset
selection and obtaining relative asset portfolio weightings (Richards, 1999).
Even if returns on different trades are uncorrelated, results suggest that the
variances of returns can be correlated. This can lead to the distribution of
returns for a given investment strategy being more fat-tailed, or the realiza-
tion of larger gains or losses with greater frequency than would normally be
expected. Risk in and of itself is not a bad thing and risk tolerance is required
if exceptional returns are desired. However, accurate estimates of potential
losses are crucial to preservation of assets and investment strategies should
be systematically moderated in view of positions taken.

Researchers and investors alike have also identified a related risk estimation
problem with respect to more conventional long-only investment strategies.
In such a strategy, portfolio managers are typically assigned a benchmark
portfolio which corresponds to a client’s risk appetite. Active managers are ex-
pected to deviate from this benchmark, becoming overweight or underweight
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in individual assets according to their current market views. In this benchmark
relative context, a long-only strategy in absolute terms can be viewed as a
long/short strategy in benchmark relative terms. One method for controlling
the extent to which these benchmark deviations are allowed is the allocation
of an acceptable window of risk measured, not in absolute terms, but with
respect to the benchmark itself (Litterman et al., 2000). A common measure
of this relative risk is the standard deviation of portfolio returns minus bench-
mark returns, or tracking error (Roll, 1992). In constructing the portfolio, the
investment manager is expected to make some estimate, or forecast, of the
tracking error that will result. There are various methods for producing such a
risk forecast and these vary in terms of sophistication and success. However,
one common thread to most, if not all, methods is that they tend to systemat-
ically underforecast tracking error which is subsequently realized afterwards.
This can lead to serious, long-term difficulties as performance measurement
monitoring is typically set in place to ensure that risk budget windows are
not systematically violated.

In this discussion, the volatility characteristics of investment portfolios
are re-examined from the perspective of long/short investment strategies.
The conclusions drawn from these investigations also facilitate discussion
of the implications for long-only investment strategies. An alternative for-
mulation for the description of portfolio risk proposed by Acar and Satchell
(1998) is outlined in section 10.2. The standard and commonly accepted vari-
ance/covariance framework accounts for correlation between assets. However,
the new formulation, based on development of orthant probabilities, extends
standard portfolio risk estimation in order also to account for potential corre-
lation between the relative asset weighting decisions that periodically occur in
actively managed long/short investment strategies. The difference between the
two approaches suggests that conventional risk estimation may not apply to
long/short strategies in absolute terms or to long-only strategies in benchmark
relative terms. Within this framework, an instantaneous estimation of associa-
tion is introduced as a stochastically varying gauge of similarity between asset
weighting decisions at the time of portfolio construction or adjustment. For
a given investment subperiod, this approach is viewed as more accurate than
historical measures of association which estimate an average correlation over
a previous, often arbitrarily selected, time period. A generalized, multivariate
orthant probability structure is then developed for variance estimation involv-
ing investment portfolios containing any number of assets. The implications
of the new risk formulation for long-only and long/short investment strategies
are discussed in section 10.3.

The orthant probability risk framework is then applied to the description of
the value added by one particular style of long/short asset management, the
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market neutral investment strategy, which is described in section 10.4. Monte
Carlo simulations are performed in order to compare conventional long/short
portfolio volatility estimates with the orthant probability based formulation,
the latter also accounting for the correlation between asset weighting deci-
sions. Taken as a step-ahead investment subperiod risk forecast, the orthant
probability-based estimate of portfolio volatility is systematically greater than
that provided by the standard and commonly accepted method of estimation.
The source of this additional risk component is the result of a ‘peso problem’
related phenomenon (Krasker, 1980); the consideration of events which have
small probabilities of occurrence, but with important consequences when they
do occur. Neglect of similarities within asset selection processes is potentially
a major source of both long/short portfolio absolute risk underestimation and
long-only portfolio, benchmark relative risk underestimation, and is discussed
in the conclusions of section 10.5.

10.2 ORTHANT PROBABILITY DESCRIPTION
OF PORTFOLIO DISTRIBUTIONS

It has been recognized for some time that, while portfolio returns have a
conditional linearity property in individual asset returns, unconditionally the
situation is more complex. In this case, one would expect a bilinear pattern
or something much more involved. The analysis which follows represents a
worked example whereby the distribution of portfolio returns with stochastic
weights is revealed.

Investment portfolio gains and losses, or returns, are realized by changes in
individual asset prices over an investment subperiod ranging from some given
time t − 1 to time t . For a portfolio of N assets, this return on investment
(Rt ) is commonly described by a linear combination of the products of asset
weights applied at the beginning of the investment subperiod (wi,t−1) and
individual asset returns which are realized over the subperiod duration (ri,t ):

Rt =
N∑
i=1

wi,t−1ri,t (10.1)

Acar and Satchell (1998) have proposed separation of the magnitude and
sign of weights on portfolio assets in order to formulate the probabilities for
long/short combinations. Investment return at time t can then be alternatively
described as the linear combination of equation (10.2):

Rt =
N∑
i=1

wi,t−1ri,t =
N∑
i=1

δi,t−1ωi,t−1ri,t (10.2)
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where ωi,t−1 represents the absolute magnitude of the weight applied to asset
i at time t − 1. δi,t−1 refers to the sign of the weight applied to asset i
at time t − 1. For a long-only investment portfolio δi,t = 1 for all i and
all t . The product of the two, δi,t−1ωi,t−1, can be considered as a ‘trad-
ing model’ decision which supplies an investment weight to the ith asset
in a portfolio and for a given investment subperiod. For a long/short port-
folio strategy there exist a priori no restrictions on assets’ weights and
δi,t ∈ {−1,+1}, though constraints which specify leveraging limits can easily
be applied.

One can expand the latter part of equation (10.2) for the case of a simple
two asset portfolio:

Rp,t = δ1,t−1ω1,t−1r1,t + δ2,t−1ω2,t−1r2,t (10.3)

whose characteristic function can be derived in the usual manner via the
bivariate normal probability distribution function (pdf). The characteristic
function is important because, when expanded in powers, it can be used
to yield the moments of the distribution and in this case is therefore also a
moment generating function (mgf). However, if desired, one can also express
the global mgf as a linear combination of orthantized mgfs which contain the
probabilities for being long or short on both assets in all possible combinations
or quadrants:

E[eizRp,t ] = Pr[δ1,t−1 > 0, δ2,t−1 > 0]E[exp(iz(ω1,t−1r1,t + ω2,t−1r2,t ))]

+ Pr[δ1,t−1 > 0, δ2,t−1 ≤ 0]E[exp(iz(ω1,t−1r1,t − ω2,t−1r2,t ))]

+ Pr[δ1,t−1 ≤ 0, δ2,t−1 > 0]E[exp(iz(−ω1,t−1r1,t + ω2,t−1r2,t ))]

+ Pr[δ1,t−1 ≤ 0, δ2,t−1 ≤ 0]E[exp(−iz(ω1,t−1r1,t + ω2,t−1r2,t ))]

(10.4)
The individual probabilities of equation (10.4) can be solved under normal
distribution assumptions by considering that the standard form of the Cauchy
distribution1 is the distribution of the central Student-t with one degree of
freedom and is thus the distribution of the ratio U /V where U and V are
independent, centred, unit normal distributions with correlation ρUV . This
result can be used to derive the quadrant bivariate normal orthant probabilities,

1The standard form here refers to location of the distribution at zero and scale equal to one. These
quantities are analogous to mean and standard deviation, respectively.
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e.g. Pr[δ1 > 0, δ2 > 0], where (δ1ω1, δ2ω2) has a standard bivariate normal
distribution with mean equal to zero:

Pr[δ1,t−1 > 0, δ2,t−1 > 0]

= 1

4
+ 1

2π
arcsin(ρ12,t−1(δ1,t−1ω1,t−1, δ2,t−1ω2,t−1)) (10.5)

Pr[δ1,t−1 > 0, δ2,t−1 ≤ 0]

= 1

4
− 1

2π
arcsin(ρ12,t−1(δ1,t−1ω1,t−1, δ2,t−1ω2,t−1)) (10.6)

Pr[δ1,t−1 ≤ 0, δ2,t−1 > 0]

= 1

4
− 1

2π
arcsin(ρ12,t−1(δ1,t−1ω1,t−1, δ2,t−1ω2,t−1)) (10.7)

Pr[δ1,t−1 ≤ 0, δ2,t−1 ≤ 0]

= 1

4
+ 1

2π
arcsin(ρ12,t−1(δ1,t−1ω1,t−1, δ2,t−1ω2,t−1)) (10.8)

where ρ(δ1,t−1ω1,t−1, δ2,t−1ω2,t−1) is the correlation between asset positioning
decisions (or trading models), and should not be confused with the correla-
tion between assets themselves. Equation (10.5) is most commonly known
as Sheppard’s theorem on median dichotomy and holds only for the partic-
ular case of the multivariate mean being equal to zero (for various proofs
of equations (10.5)–(10.8), see Sheppard (1898), Kepner, Harper and Keith
(1989), Stigler (1989), Farebrother (1989), Johnson, Kotz and Balakrishnan
(1994) and Acar and Satchell (1998)). In practical terms, equation (10.5) is
an expression of the probability of holding, or being long on, both assets in a
two asset investment portfolio. Equations (10.6) and (10.7) then refer to sim-
ilar probabilities for being long the first asset and selling (or being short) the
second asset or being short the first asset and long the second, respectively.
The remaining equation (10.8) expresses the probability for being short of
both assets.

One should note that, although the correlations between asset positioning
decisions have been written as time varying quantities, this is not pertinent to
the validity of equations (10.5)–(10.8). In theory, these could also be written
as non-stochastic quantities. We have chosen here to do so out of practical
considerations regarding the precision of the description of portfolio returns
in view of the fact that establishing the theoretical correlation between trad-
ing rules has been demonstrated to be an extremely difficult task (Brock,
Lakonishok and LeBaron (1992)). In practical time series analysis, correla-
tion between variables is usually estimated over a sample period which is
long enough to guarantee sufficient statistical significance for the application
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at hand. Very often, however, the analyst neglects the fact that this estimated
correlation may actually be an average of a time varying correlation. As is
often done in the case of asset returns themselves, this type of historical
estimate can also be performed in order to gauge the correlation between
asset positioning decisions. However, a difference between the two exists; for
a given investment subperiod, the weights applied to portfolio assets is known
exactly, at least at the fixed point in time that positions are taken.2

This difference is especially important where an investment subperiod step-
ahead forecast is concerned. In this context, there is little or no uncertainty
about the similarity between asset positioning decisions as the weights applied
to assets deliver a more precise estimate of association than the covariation
of these decisions over time. Therefore we propose an ‘instantaneous’ mea-
sure of association between asset positioning decisions; one whose definition
is dependent only on asset weights for an investment holding period run-
ning from time t − 1 to time t . This definition is described concisely as the
following:

At the beginning of a given investment subperiod, the similarity between two
asset weighting decisions is equal to the cosine of the angle between the two-
dimensional Cartesian space vector formed by the weights and the isometric
reflection of this vector against the mirror line x = y (corresponding to perfect
correlation). The transformation from the original vector to this particular
reflection defines a Jacobi transformation matrix which is diagonal with zeros
on the main diagonal and with ones in non-main diagonal matrix elements.

This geometrical definition is invoked in view of the Cartesian-vector inter-
pretation of product–moment correlation. The positions taken on two assets at
time t − 1 can be considered as forming a vector, �a, in two-dimensional Carte-
sian space (abscissa component = δ1ω1, ordinate component = δ2ω2) which
originates at the origin and ends at the point (δ1,t−1ω1,t−1, δ2,t−1ω2,t−1). Cor-
relation between the two asset weighting decisions (ρ12) presumably exists,
but in the absence of further information (for example, weights on the two
assets during another investment subperiod) there is no observable variance
or covariance and therefore product–moment correlation is not defined. Now
define another vector, �b = �ar , as the isometric reflection of �a against the mirror
line δ1ω1 = δ2ω2 (a 45◦ line representing perfect correlation between trad-
ing models). Given �a12,t−1 = (δ1,t−1ω1,t−1, δ2,t−1ω2,t−1), the reflection vec-
tor is then defined as �b12,t−1 = (δ2,t−1ω2,t−1, δ1,t−1ω1,t−1). If δ1,t−1ω1,t−1 
=
2Currency denominated asset weights change during an investment subperiod due to fluctuations
in unrealized assets’ values. Deviations from starting values can only be controlled by reducing
the duration of the investment subperiod (or points at which risk estimation occurs).



268 Performance Measurement in Finance

δ2,t−1ω2,t−1, then �a and �b are linearly independent and, by symmetry, the
weights on the two assets in each vector have equal correlation, ρ12. Vector
correlation is related to sample correlation and, for two independent vectors,
each containing equally correlated asset weights, can be defined via the law
of cosines (see, for example, Rencher (1995)) which is given in vector form
in equation (10.9):

ρ12,t−1(δ1,t−1ω1,t−1, δ2,t−1ω2,t−1) ≡ cos θ�a,�b = cos θ�a′, �ar = �a′, �ar√
(�a′ �a)(�a′

r �ar)
(10.9)

If δ1,t−1ω1,t−1 = δ2,t−1ω2,t−1, then �a and �b are linearly dependent (since one
can be written as a linear combination of the other) and the correlation between
them (and the set of asset weights) is one, by definition.

There exist various alternative measures of association and the one preferred
may depend on the application at hand. For a given investment subperiod, the
instantaneous measure of association defined in equation (10.9) may differ
greatly from the overall average correlation of asset allocation (trading model)
decisions. However, a historically estimated, sample dependent average of
what is very likely to be a time varying quantity is viewed as less precise for
the application of a step-ahead forecast than that conditional only on current
assets’ weights.

Returning from our digression on estimation of the correlation between
asset positioning decisions, we insert the results of equations (10.5)–(10.8)
into the characteristic function of equation (10.4), yielding equation (10.10):

E[eizRp,t ] =
(

1

2
+ 1

π
arcsin(ρ12,t−1(δ1,t−1ω1,t−1, δ2,t−1ω2,t−1))

)

× exp

(
−z2

2
(ω2

1,t−1σ
2
r1 + ω2

2,t−1σ
2
r2

+ 2ω1,t−1ω2,t−1σr1σr2ρ(r1, r2))

)

+
(

1

2
− 1

π
arcsin(ρ12,t−1(δ1,t−1ω1,t−1, δ2,t−1ω2,t−1))

)

× exp

(
−z2

2
(ω2

1,t−1σ
2
r1 + ω2

2,t−1σ
2
r2

− 2ω1,t−1ω2,t−1σr1σr2ρ(r1, r2))

)
(10.10)
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It should be recalled that this derivation refers to a bivariate normal distri-
bution whose financial interpretation is that of two trading models whose
positions are distributed equally around zero. The second moment of this
portfolio description can then be obtained as the second derivative of the
moment generating function3 (mgf) with z = 0:

µ2 = ω2
1,t−1σ

2
r1 + ω2

2,t−1σ
2
r2 + 2ω1,t−1ω2,t−1σr1σr2ρ(r1, r2)

× 2

π
arcsin(ρ12,t−1(δ1,t−1ω1,t−1, δ2,t−1ω2,t−1)) (10.11)

This result differs from the conventional description of bivariate variance of a
linear combination of assets. There are various methods for derivation of this
commonly accepted quantity, all of which are formulated in terms of asset
weights as they were written previously in equation (10.1). For purposes of
comparison, we remind the reader of this form in equation (10.12):

µ2 = w2
1,t−1σ

2
r1 +w2

2,t−1σ
2
r2 + 2w1,t−1w2,t−1σr1σr2ρ(r1, r2) (10.12)

whose multivariate generalization is the product of the vector of asset weights,
the asset set covariance matrix and the transpose of the vector of asset weights.
Equation (10.11) does not necessarily refute the familiar result described
by equation (10.12). Rather, it makes the additional consideration of also
accounting for the correlation which exists between asset positioning deci-
sions. However, one can ascertain the conditions under which equation (10.12)
is valid by setting equations (10.11) and (10.12) equal to each other and elim-
inating like quantities in order to obtain:

2

π
arcsin(ρ12,t−1(δ1,t−1ω1,t−1, δ2,t−1ω2,t−1)) = ω1,t−1ω2,t−1

w1,t−1w2,t−1
∈ {1,−1}

(10.13)
The ratio of the product of the absolute magnitudes of asset weightings
to the weighting themselves is equal to +1 if weightings are like-signed
(w1,t−1w2,t−1 > 0), and equal to −1 if unlike signed (w1,t−1w2,t−1 < 0).
Equation (10.12) then appears fully valid under the assumption that the
correlation between asset positioning decisions is unity in absolute magnitude
and whose sign is determined as follows:

ρ12,t−1(δ1,t−1ω1,t−1, δ2,t−1ω2,t−1) = 1 if
ω1,t−1ω2,t−1

w1,t−1w2,t−1
= 1

= −1 if
ω1,t−1ω2,t−1

w1,t−1w2,t−1
= −1 (10.14)

3Note that the first moment obtained through the mgf is equal to zero, and therefore µ2 = µ′
2 −

µ′
1 = µ′

2. In addition, Stuart and Ord (1994) point out that for many formal purposes it is sufficient
to write θ = iz, and treat it as real in order to avoid negative even moments.
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This result is equivalent to defining the covariance matrix of assets’ decisions
to be singular. Under conditions in which the correlation between asset posi-
tioning decisions is less than unity in absolute magnitude, equation (10.11) can
therefore be viewed as producing a more accurate estimate than the conven-
tional description of portfolio variance as it does not require the simplifying
assumptions of relation (10.14).

In the absence of full correlation (or anti-correlation) between asset posi-
tioning decisions, equation (10.11) also implies the rather startling conclusion
that the portfolio covariance matrix should account for the covariance in the
asset weighting process, in addition to the covariance between asset returns
themselves. Examination of the terms of equation (10.11) dictates that the
combination of the two should be written as:

cov(w1,t−1r1, w2,t−1r2) = ω1,t−1ω2,t−1σr1σr2ρ(r1, r2)

× 2

π
arcsin(ρ12,t−1(δ1,t−1ω1,t−1, δ2,t−1ω2,t−1))

(10.15)
Equation (10.15) reduces to the conventional formulation of asset variance
for the case where both assets are one and the same.

Recapitulating, equation (10.11) uses the bivariate normal orthant,
long/short quadrant framework in order to formulate the variance of a two
asset portfolio by considering that correlation between asset positioning
decisions may also play a role. For a portfolio of N assets, a generalized
normal orthant formulation of portfolio variance would involve 2N sections.
Although the bivariate linear combination may be used in order to derive
useful insights, it is of little or no use in financial practice unless it can be
expanded to include larger numbers of assets. As with the bivariate normal
orthant probabilities of equations (10.5)–(10.8), solutions to trivariate octant
probabilities are also known exactly. However, an exact multivariate solution
(or even one involving a fixed number of variates greater than three) has thus
far eluded statistical science.

Our inability to arrive at a generalized 2N sections framework can be cir-
cumvented in the portfolio context by considering the investment portfolio
from the O(N2), N-variate perspective in which orthant probabilities are
exactly known. This is precisely what is used in the conventional formu-
lation of portfolio variance; a combination of the pairwise covariances of
assets’ marginal distributions.4 Equation (10.15) can then be used to arrive at

4For a portfolio of any number of assets, this is usually written as σ 2 = x�x′, where x is a vector
of asset weights, � is the asset covariance matrix and x′ is the transpose of x.
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a generalized multivariate formulation of equation (10.11) for a portfolio of
N assets:

µ2 =
N∑
i=1

N∑
j=1

ωi,t−1ωj,t−1σriσrjρ(ri, rj )

× 2

π
arcsin(ρij,t−1(δi,t−1ωi,t−1, δj,t−1ωj,t−1)) (10.16)

Given equation (10.15), the proof for this multivariate generalization can
trivially be derived from the bivariate case via induction, or by any of the other
methods used to derive the conventional multivariate variance formulation
(e.g. the delta-method or by integrating over assets’ moments).

The nature of equation (10.16) differs from the description of portfolio
variance which we are most familiar with and deserves further elucidation.
The implications of this distributional characterization for several investment
strategies are discussed in section 10.3. For reasons of tractability, illustrations
are made using the most basic application of a portfolio of two assets.

10.3 IMPLICATIONS FOR ABSOLUTE AND RELATIVE RISK

Investment strategies can broadly be classified as either passive or active and
as either long only (conventional investment style), long/short (typical hedge
fund style) or short only. The discussion which follows is applicable for active
as well as passive investment strategies; the only difference between the two is
the duration (or number) of holding periods. The implications of the orthant-
normal distributional characterization of equation (10.16) are discussed for a
simple two asset long/short investment strategy in section 10.3.1. For such
a portfolio, a benchmark of zero cumulative return is most appropriate. As
a consequence of this absolute performance benchmark, absolute risk is the
pertinent measure of portfolio volatility.

Section 10.3.2 outlines the consequences of the orthant-normal framework
for estimation of the relative risk of long-only investment strategies. The more
commonly employed long-only investment strategy involves being fully, or
close to fully, invested by buying and holding assets which are in line with
a predetermined asset subset. This subset is commonly defined according
to a benchmark portfolio. Asset managers, primarily active ones, attempt to
provide returns in excess of the benchmark by becoming underweight or over-
weight in assets with respect to the same benchmark. As a direct consequence
of this relative performance measurement, portfolio volatility is also esti-
mated with respect to the benchmark. In modern investment analysis this is
commonly referred to as tracking error. At least in theory, conclusions drawn
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regarding long-only strategies should be equally valid for short-only strategies.
Both involve truncations of the asset weighting distributions which are equal
in magnitude (at least in our particular examples), though one restriction is
implemented from below and the other from above.

10.3.1 Absolute risk of long/short investment strategies

Assuming positive correlation between assets, the commonly accepted port-
folio risk formulation(equation (10.12)) implies that a two asset portfolio
consisting of a long position in one asset plus a short position in another
asset reduces global portfolio volatility. This occurs as the last term of the
equation becomes negative and risk is effectively subtracted. At the same
time, however, equation (10.11) reduces fully only to equation (10.12) for the
case where ω1,t−1 = ω2,t−1; in this case the instantaneous measure of asso-
ciation between long and short investment decisions is −1 and the orthant
probability-based description of portfolio volatility reduces fully to the con-
ventional definition.

However, for the more likely situation in which long and short passive
investment decisions are not exactly matched in size (ω1,t−1 
= ω2,t−1),
equation (10.11) relates that the rate at which risk is reduced, increases only
geometrically according to the correlation between trading model signals,
rather than linearly according to the comparative size of the long and short
positions as related by equation (10.12).

The standard formulation of risk makes no attempt to account for cor-
relation between trading model decisions applied to assets. In the case of
the long/short investment strategy, equation (10.12) tends to underestimate
volatility compared to the alternative formulation related in bivariate form
by equation (10.11). For a simple two asset portfolio with equal asset risks
(σr1 = σr2) the distribution of portfolio variance as a function of asset corre-
lation and asset selection correlation can be seen graphically in Figure 10.1.

The conclusions already drawn by thoughtful examination of the bivari-
ate version of the orthant probability variance framework call for verifica-
tion. This is obtained empirically in section 10.4, where comparisons are
made between the conventional multivariate estimation of portfolio variance
and equation (10.16), the mutivariate form of the orthant probability-based
formulation.

10.3.2 Relative risk (tracking error) of long-only
investment strategies

Relative portfolio risk, or that with respect to a benchmark, has been collec-
tively termed ‘tracking error’, even if there exists more than one acknowledged
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Figure 10.1 Portfolio variance for a simple two asset investment as a function of correlation of
assets and trading rules correlation. Risk of both assets were taken to be equal

method for estimating it. Ex post, or backward looking, tracking error is typ-
ically defined as the annualized standard deviation of portfolio returns minus
returns of a relevant benchmark (Roll, 1992). Ex ante, or forward looking,
tracking error estimates often involve assumptions on the characteristics of
assets’ distributions, such as is the case for equations (10.11) or (10.12). The
currently available ex ante tracking error estimation methods vary in terms of
their sophistication and forecasting power.

The difference between forecasted and realized tracking error is a very
relevant issue for investors today, as such risk budgeting estimations are
increasingly used to control and measure performance. To date, little has
appeared on the subject in the academic literature. Quantitative financial ana-
lysts, however, have empirically identified tracking error forecasting methods
which provide good forecasts on shorter time horizons, for example one month
(Scowcroft, 1999). Disappointingly, these same methods tend to underfore-
cast realized tracking error by typically 25% on a six month time horizon,
degrading further to as much as a 40% under estimation on a one year
time horizon and a 50% under estimation on a two year time horizon. The
problem is not consistent with the expected increasing random noise typical
to forecasting errors as time horizon increases. Rather, realized estimations
tend to be consistently greater than forecasts as opposed to both under and
over. More discussion on the challenges and recent developments in tracking
error estimation and forecasting, along with other references can be found in
Brown (2001).

We note that the absolute risk of an investment portfolio which has equal
probability to be long or short on assets is no different from the relative risk
of a portfolio which has equal probabilities to be overweight or underweight
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assets with respect to benchmark weights. The previously described orthant-
normal framework should hold for both; only the benchmark with respect
to which the portfolio is tilted differs. Empirical results on absolute portfolio
risk follow in section 10.4; these results are therefore equally valid for relative
risk, or tracking error of a symmetric, benchmark tilted strategy. One possible
explanation for the systematic increase over time of tracking errors, based on
the orthant-normal framework, is discussed in the conclusions of section 10.5.

10.4 EMPIRICAL COMPARISONS USING SIMULATED LONG/SHORT
INVESTMENT STRATEGIES

The distributional form of asset positioning decisions has been assumed to be
mean = 0, multivariate normal. This is a requirement of the normal-orthant
framework derivation obtained in section 10.2, but also tends to lead to more
generalizable results which are independent of any particular trading strategy
or set of trading rules. However, in order to derive realistic conclusions, empir-
ical testing should, presumably, most realistically be performed via trading
simulations using actual returns of financial assets whose return distributions
exhibit non-normal behaviour. For such tests to be performed, however, it is
first required that an actual long/short investment strategy be selected. This is
the case even if one assumes that stochastically varying, individual asset posi-
tioning decisions exist. Section 10.4.1 attempts to clearly define one potential
strategy, that which has become known as market neutral investing. Such a
strategy is then used in order to perform Monte Carlo simulations, the results
of which are discussed subsequently in section 10.4.2.

10.4.1 Market neutral investment portfolios

The description of portfolio returns given in equation (10.2) can be further
separated between market or benchmark related returns, Rm,t , and residual
returns (αi,t ) derived from individual assets which deviate from the market,
as in equation (10.17):

Rp,t =
N∑
i=1

δi,t−1ωi,t−1(βi,tRm,t + αi,t ) (10.17)

where βi,t links each asset to the market portfolio and is proportional to the
covariance between an individual asset’s returns and market returns:

βi,t = covt−1[ri, Rm]

vart−1[Rm]
(10.18)
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Long/short portfolios are said to be neutral if long positions are offset by equal
amounts of short positions. The power of such a constraint in terms of risk
reduction during all market conditions is the underlying reason that a hedge
fund earns its title (see, for example, Liang (1999), Ackermann, McEnally
and Ravenscraft (1999) and references therein). A currency neutral strategy
implies the following constraint:

N∑
i=1

δi,t−1ωi,t−1 = 0 (10.19)

However, a more generalizable market neutral investment strategy, beta neu-
tral, specifies global neutrality with respect to the market or portfolio of
available assets:

N∑
i=1

δi,t−1ωi,t−1βi,t = 0 (10.20)

There are a number of methods of varying sophistication for enforcing port-
folio beta neutrality. Section 10.4.1 contains a description of Monte Carlo
simulations which obtain beta neutrality by simple normalization of positive
or negative weights for a given investment subperiod. An enforced constraint
of beta neutrality then provides a portfolio independent of market returns and
equation (10.17) can be reduced to equation (10.21):

Rα,t =
N∑
i=1

δi,t−1ωi,t−1αi,t (10.21)

Similarly, portfolio risk can be expressed for a beta neutral portfolio in terms
of residual risk by adapting equation (10.16) to account for the beta neutral
constraint of equation (10.20):

µ2α =
N∑
i=1

N∑
j=1

ωi,t−1ωj,t−1σαiσαjρ(αi, αj )

× 2

π
arcsin(ρij,t−1(δi,t−1ωi,t−1, δj,t−1ωj,t−1)) (10.22)

The value added by a beta neutral investment strategy can be estimated
through the information ratio, which measures achievement ex post, and
forecasts opportunity ex ante (looking forward). The information ratio defines
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a mean-variance point on the residual feasible set of investment opportunities:

IRt = Rα,t

µ2α
=

N∑
i=1

δi,t−1ωi,t−1αi,t

N∑
i=1

N∑
j=1

ωi,t−1ωj,t−1σαiσαjρ(αi, αj )

×
2

π
arcsin(ρij,t−1(δi,t−1ωi,t−1, δj,t−1ωj,t−1)) (10.23)

10.4.2 Monte Carlo simulations of active, beta neutral risk

Monte Carlo simulations involving a diversified portfolio of financial
instruments were performed in order to gauge the application of
equation (10.16) versus the more commonly recognized (multivariate version
of) equation (10.12). Four years of daily returns (26/10/95 to 26/10/99) were
generated from the 45 assets reported in Table 10.1. The group of assets
consisted of 30 stock indices, 11 bond indices and four foreign exchange
rates. Distributional characteristics of individual asset returns are also reported
along with characteristics of a benchmark static portfolio consisting of equal
weights on all 45 assets. Also reported in Table 10.1 are estimations of
the product–moment correlations between assets and the benchmark market
portfolio over the entire study period.

Monte Carlo simulations involved an active (daily adjusted) long/short
investment strategy based on randomly distributed trading signals for all
assets. Trading signals were derived from normal (0,0.37) random number
generators. A normal distribution was selected in order to conform to the
normal-orthant derivations derived in section 10.2. In addition, however, it
is worth noting that this common distributional type relatively well approx-
imates a typical distribution of indicator-based trading model signals. These
typically have a much greater probability to be neutral than fully short or fully
long a particular asset. Random trading signals less than zero were interpreted
as weights applied to short a particular asset while those greater than zero
were interpreted as weights indicating asset purchase. An absolute value of
a trading signal equal to one was defined as being fully long or short to the
credit limit allowed for each asset. Credit limits for all assets were equal.
Regardless of how small the standard deviation which defines a normal dis-
tribution is, there still remains some finite possibility for values greater in
magnitude than unity, indicating an exposure greater than the assigned credit
limits. Therefore, any random trading signals generated with a magnitude
greater than unity were reset to 1 or −1. A standard deviation which was a
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Table 10.1 Distributional characteristics (estimated ex post) of daily returns of individual assets
contained in the Monte Carlo market portfolio. Also reported are the individual correlations

between individual asset daily returns and market returns over the five year historical sample

Instrument Mean (%) Std. dev. (%) Sum (%) Min. (%) Max. (%) Corr.

S&P 500 0.08 1.07 78.88 −7.11 4.99 0.58
Nikkei 225 0.00 1.43 −1.68 −5.96 7.66 0.47
CAC 40 0.09 1.28 98.13 −5.63 6.10 0.81
DJ Euro STOXX 50 0.10 1.23 100.21 −5.65 6.22 0.88
All Ordinaries 0.03 0.85 30.30 −7.45 6.07 0.52
FTSE 100 0.05 1.01 54.35 −3.66 4.35 0.78
DAX performance 0.09 1.40 91.88 −8.38 6.11 0.79
SMI 0.08 1.24 80.56 −5.23 7.46 0.79
TOPIX 0.01 1.17 7.36 −5.25 6.60 0.48
Nikkei 300 0.01 1.24 10.79 −4.98 7.10 0.49
ATX 0.02 1.18 21.53 −8.70 5.26 0.67
OMX 0.09 1.38 95.80 −6.88 11.02 0.75
AEX 0.09 1.34 98.34 −6.12 5.73 0.81
KOSPI 200 −0.02 2.40 −22.48 −11.60 10.02 0.31
Hang Seng 0.03 2.05 26.27 −14.73 17.25 0.55
IBEX 35 0.10 1.39 106.48 −7.34 6.32 0.75
Budapest BUX 0.14 2.30 150.85 −18.03 13.62 0.58
ALSI 0.02 1.19 18.50 −11.85 6.70 0.65
DJ STOXX 50 0.09 1.19 97.23 −5.09 6.51 0.88
TSE 35 0.06 1.08 59.10 −7.69 5.19 0.60
Dow Jones IA 0.07 1.04 77.34 −7.45 4.86 0.59
MIB 30 0.08 1.54 87.79 −6.43 6.97 0.71
Nasdaq 100 0.14 1.80 144.00 −10.38 6.72 0.43
MSCI Taiwan Index 0.05 1.62 49.05 −7.09 9.17 0.21
Bel20 0.08 1.01 84.57 −4.48 4.48 0.74
S&P 400 Midcap 0.06 0.99 58.91 −6.62 4.54 0.64
Russell 2000 0.03 0.92 33.36 −6.32 4.19 0.64
Bovespa 0.09 2.80 97.09 −17.23 28.82 0.50
PSI 0.09 1.34 93.75 −15.29 9.49 0.62
FTSE mid 250 0.03 0.59 35.23 −5.15 3.04 0.70
JPM GBI US 0.00 0.27 −3.76 −1.56 0.85 0.04
JPM GBI Japan 0.00 0.26 2.55 −1.31 1.11 −0.08
JPM GBI Europe 0.03 0.20 33.52 −1.06 0.84 0.15
JMP GBI Australia 0.00 0.33 1.93 −2.08 1.21 0.04
JPM GBI UK 0.01 0.33 10.90 −2.18 1.83 0.07
JPM GBI Germany 0.00 0.20 0.40 −0.92 0.83 0.10
JPM GBI Switzerland 0.04 0.45 46.34 −2.49 1.99 0.46
JPM GBI Sweden 0.01 0.26 6.37 −1.29 1.17 0.17
JPM GBI Spain 0.02 0.24 15.73 −1.37 0.89 0.17
JPM GBI Canada 0.00 0.29 4.62 −1.79 1.25 0.14
JPM GBI Italy 0.02 0.25 20.32 −1.11 1.06 0.22
USD/JPY 0.00 0.80 3.54 −6.58 3.57 0.10
USD/CHF 0.03 0.61 28.65 −3.36 2.49 0.46
GBP/USD 0.00 0.44 4.61 −1.96 2.01 −0.27
EUR/USD −0.03 0.52 -26.31 −1.70 2.29 −0.31

MARKET 0.05 0.57 46.95 −2.94 2.72 1.00
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factor of 2.7 times smaller than one was used in order to avoid excessive tail
peaks in the random distributions at +1 or −1. This distributional censoring
introduces a bias on the order of 0.7% of events, but is implemented in an
attempt to keep simulations financially realistic.

For all results which follow, simulated trading signals were generated for ten
successive times and applied to the four year sample period of actual historic
returns in order to boost statistics (resulting in 10,440, events). Individual
trading signals were then further constrained to ensure Beta market neutrality
of the active portfolio, as defined by equation (10.20). This was achieved by
comparison of the sum of long and short positions and reductive normalization
of the greater of the two in order to ensure perfect beta neutrality. All asset
weights were then multiplied by a common factor which ensured 100% market
exposure as measured by the sum of the absolute values of trading weights.
As a first step, all randomly distributed trading signals were ensured to be
uncorrelated.

Although the trading signals were uncorrelated as estimated on average over
the entire sample period, on a daily basis discrete instantaneous measures of
association between trading signals can exist according to equation (10.9).
Daily, step-ahead portfolio risk was then forecasted using equation (10.16),
which takes into account the daily similarity of trading model signals as
defined by equation (10.9). In addition, time varying daily risk was forecasted
using the commonly accepted definition of portfolio standard deviation (mul-
tivariate generalization of equation (10.12)). Each method requires as input a
daily forecast of the standard deviations and betas of individual assets, along
with a forecast of the correlation matrix of assets. These quantities were esti-
mated historically for each new investment subperiod (the subsequent day)
via the previous year of daily returns in a moving window fashion. Presum-
ably, a better forecast can be obtained for these quantities, but this should not
effect our goal of gauging the relative merits of the step-ahead risk forecast
provided by equation (10.16).

Table 10.2, column 2 provides the standard deviation of daily returns pro-
vided by an active, beta neutral, investment strategy driven by daily varying,
randomly distributed and uncorrelated trading signals. This quantity is esti-
mated at the end of the total data period and therefore is not available on a
daily basis as a forecast. However, it can be considered as an estimation of the
average risk over the entire active investment period and serves as a bench-
mark for comparison of the accuracy of the two measures of stochastically
varying risk forecasts. Column 3 reports the average of daily portfolio standard
deviation forecasts as calculated by the orthant probability-based formulation
of standard deviation which includes daily, instantaneous measures of asso-
ciation between trading signals. Column 4 of Table 10.2 reports the average
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Table 10.2 Comparison of estimated standard deviation of daily returns for: (a) A static
investment strategy composed of an equally weighted combination of the assets listed
in Table 10.1. (b) An active, beta neutral, investment strategy driven by daily varying
randomly distributed and uncorrelated trading signals. (c) The average of daily portfolio
standard deviations as calculated by the orthant probability-based formulation of standard
deviation which includes daily similarity between trading signals. (d) The average of
daily portfolio standard deviations as calculated by the standard formulation of standard
deviation. Standard errors are also reported

(a) σ
Equal market

(b) σ
Time varying

portfolio

(c) σ̄
Equation (10.16)

(d) σ̄
Equation (10.12)

0.567 % (0.178 ± 0.008)% (0.188 ± 0.001)% (0.168 ± 0.001)%

of daily forecasts of portfolio standard deviations as calculated by the stan-
dard formulation (multivariate generalization of equation (10.12)). Finally, for
purposes of comparison only, Table 10.2, column 1 reports a daily standard
deviation of returns derived from a static investment strategy composed of
an equally weighted combination of the assets listed in Table 10.1. Standard
errors are also reported.

Table 10.2 confirms the assertion of section 10.3.2; on average, daily vary-
ing risk forecasts as estimated by the orthant probability-based definition of
equation (10.16) exceeds daily varying risk forecasted according to the stan-
dard definition (multivariate generalization of equation (10.12)). It is also
interesting to note that Table 10.2 reflects the fact that a static long invest-
ment strategy with the portfolio net asset value divided equally among the
45 assets and which is always 100% invested, delivers a daily risk of 0.57%.
The time varying, beta neutral, fully invested portfolio with trading models
defining asset weights on a daily basis delivers a daily risk of only 0.18%, or
roughly a factor of three times lower risk with equal market exposure.

These results apply only to the case of trading signals which are, on average,
uncorrelated, even though strong correlations can exist for a particular invest-
ment subperiod. Given the persistent correlation between individual assets and
even among different asset classes, this assumption may not be fully valid and
two vital questions immediately present themselves. First, does the standard
estimation taken as a naı̈ve forecast systematically underestimate ex post esti-
mated risk? Second, does the orthant probability-based estimation method
which accounts for correlation between trading signals produce results which,
on average, overestimate realized risk to roughly the same extent?

In order to address these questions, further Monte Carlo simulations were
generated using appropriate mixtures of random signal generators in order to
produce trading signals for individual assets which are equally correlated one
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to another. This was achieved by linear combination of each of the 45 daily
asset trading signals derived from independent, normally distributed random
number generators with a separate, 46th random normal distribution. This mix-
ing produced 45 new asset trading signals which were, on average, correlated
equally one to another. The magnitude of these correlations is then in relation
to the fraction taken from the 46th random normal distribution. Following this
process, the 45 distributions were corrected to ensure their width remained
constant and finally to ensure 100% investment for the entire, final portfolio.

Results are shown in Figure 10.2, where the ex post (estimated) standard
deviation of active (beta neutral) investment strategy returns is reported (tri-
angles) as a function of the product–moment correlation induced between
randomly distributed trading model signals. Also reported are the average of
daily varying risk estimations for both the standard estimation method (mul-
tivariate generalization of equation (10.12)) and the orthant probability-based
estimation method which accounts for daily varying correlation between trad-
ing signals (equation (10.16)). Standard errors for these estimations were also
calculated and in all cases lie within the data markers.

Step ahead forecasts compared to ex post (estimated)
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Figure 10.2 Monte Carlo estimated standard deviations of daily returns derived from an active,
beta neutral, investment strategy as a function of induced correlation between randomly distributed
long/short trading signals. Reported are the ex post estimations of portfolio standard deviations
(triangles), the average of time varying standard deviations according to the orthant probabil-
ity-based definition of risk described by equation (10.16) (darkened circles) and the average of
time varying standard deviations estimated according to the commonly accepted multivariate form
of equation (10.12) (empty circles)
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Figure 10.2 provides evidence to support useful conclusions. The stan-
dard forecast estimation of active investment strategy risk (empty circles,
representing equation (10.12) taken as a step-ahead forecast) systematically
underestimates actual portfolio risk measured ex ante as the standard devia-
tion of portfolio returns (triangles). The underestimation is on average a factor
of 0.94 and does not appear to depend on the correlation induced between
trading models. This is an expected consequence of the orthogonality of secu-
rity returns, an important result of which is the variance inequality derived
by LeRoy and Porter (1981) and Shiller (1981) (see also Campbell, Lo and
MacKinlay (1997) and Lo and MacKinlay (1999) for in-depth discussion of
the implications for variance ratios):

var[r∗
t ] = var[rt ] + var[r∗

t − rt ] ≥ var[rt ] (10.24)

where rt is the asset return at time t , and r∗
t is the realized return. The variance

inequality describes the fact that a forecast conditional on historical estimates
cannot be more variable than the quantity it is forecasting. In our portfolio
context, a naı̈ve portfolio risk forecast based on a finite sample of past asset
returns will not be greater than that estimated in-sample, while the realized
volatility does have the potential to be greater.

On the contrary, the orthant probability-based forecast estimation method,
which accounts for time varying measures of association between trading
signals (darkened circles representing equation (10.16) taken as a step-ahead
forecast), systematically overestimates realized portfolio risk (triangles rep-
resenting the standard deviations of portfolio returns over the entire study
period). This overestimation is (on average) a factor of 1.06 for the case
of uncorrelated trading model delivered weightings and increases as correla-
tion approaches 0.50. Beyond this level, the overestimation again decreases
as the realized estimation of risk accelerates more quickly. Empirical com-
parison of the normal-orthant probability-based formulation of volatility with
ex post estimated volatility provides evidence of a ‘peso problem’ related
phenomenon (Krasker, 1980). The risk forecast based on the normal orthant
volatility formulation is on average greater than ex post estimated volatility
due to the potential occurrence of events which have small probability but
important potential consequences. When these events are not realized in a par-
ticular sample period, the normal-orthant forecast appears overly conservative.

At all correlation levels the orthant probability-based definition provides a
step-ahead forecast which is consistently more conservative than the forecast
arrived at through the conventional method (empty circles). The enhanced
forecast magnitudes are a result of the fact that the orthant probability-based
methodology includes information which is independent of the previous finite
sample periods used to estimate individual asset volatilities. This information
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is the potential danger of correlation between the processes of making deci-
sions about individual asset weights.

One also notes an asymptotic structure in the orthant probability-based
forecast estimation which is not present in the ex post estimation. This struc-
ture is a direct result of the arcsine of trading model correlation present in
equation (10.16). First, the risk forecast tends to be reduced at low correlation
between trading models. When combining the risk of two assets, their individ-
ual risk is added in quadrature in the conventional way. However, a third term
in the summation which involves correlation between assets is also dependent
on correlation between asset weighting decisions. This latter term tends to be
reduced at lower trading model decision correlation, a possibility that doesn’t
exist in the standard formulation (equation (10.12)). Second, at higher lev-
els of correlation between trading model decisions, risk forecasts tend to be
boosted as the non-linear effect of the arcsine again becomes apparent.

10.5 CONCLUSIONS

The volatility characteristics of investment portfolios have been re-examined
from the perspective of long/short investment strategies. An orthant
probability-based formulation for the description of portfolio risk proposed by
Acar and Satchell (1998) was discussed. The standard and commonly accepted
variance/covariance framework accounts for correlation between assets. How-
ever, the new formulation extends standard portfolio risk estimation in order
also to account for potential correlation between the asset selection and
weighting decisions which may periodically occur. The differences between
the two approaches suggest that conventional estimation methods may not
apply fully to the absolute risk of long/short strategies or the benchmark rela-
tive risk of long-only strategies, even under normal distribution assumptions.

Within this framework, an instantaneous estimation of association is intro-
duced as a gauge of the similarity between asset weighting decisions at the
time of portfolio construction or adjustment. For a given investment subpe-
riod, this approach is viewed as more accurate than historical measures of
association which estimate an average correlation over a previous, often arbi-
trarily selected, time period. In addition, a generalized, multivariate-orthant
probability structure has been developed for variance estimation of portfo-
lios containing any number of assets. This was achieved by circumventing
the 2N orthant sections framework and reducing the problem to a pairwise
asset consideration of order N2. This is similar to the treatment prescribed
by the conventional variance estimate of multivariate linear combinations. To
date, statistical science has provided an exact solution only for bivariate and
trivariate orthant probabilities and the multivariate step is viewed as a critical
necessity in view of the investment portfolio application.
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This framework was then applied to the description of the value added
by market neutral investment strategies. It is interesting to note that Monte
Carlo results indicate that beta neutral investment strategies can be less risky
than standard passive long investment strategies by a factor of 3 (as mea-
sured by the square root of the second moment of distributions with normal
assumptions).

Monte Carlo results indicate that the commonly accepted method of esti-
mating portfolio risk, when taken as a naı̈ve step-ahead forecast, slightly but
systematically underestimates active investment risk. This is the result of a
variance inequality, previously observed in the literature, which dictates that
a naı̈ve portfolio risk forecast based on a finite sample of past asset returns
cannot be greater than that estimated in-sample, while the realized volatility
can be.

Simulations also indicate that the orthant probability-based method, taken
as a step-ahead risk forecast, appears to overestimate volatility on average,
when compared to ex post estimated volatility. The source of this additional
risk is information which is independent of historical sample estimates of
asset volatilities and correlations. Specifically, it is the correlation which
exists between asset selection/weighting decisions. Empirical comparison of
the orthant probability-based formulation of volatility with ex post estimated
volatility provides evidence of a ‘peso problem’ related phenomenon. The
risk forecast using the normal-orthant formulated volatility is on average
greater than ex post estimated volatility due to the additional consideration of
events which have small probabilities of occurrence, but important potential
consequences when they do occur. When these events are not realized in a
particular sample period, the normal-orthant-based forecast appears to have
been overly conservative in its estimate. This additional risk component may
explain both the underforecasted absolute risk of some alternative investment
strategies as well as the underforecasted tracking error of more conventional
investment strategies.
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Chapter 11

Relative performance and herding
in financial markets

EMANUELA SCIUBBA

ABSTRACT

We consider a stylized model of a financial market where assets are
traded over two periods by three agents: two fund managers and a
third large trader who represents the rest of the market. Fund man-
agers are rewarded at the end of the second period by a bonus that
is awarded to the manager who obtains the best cumulative perfor-
mance. We show that, even when information is symmetric, inefficient
herding may be observed as an equilibrium outcome. Herding among
fund managers occurs when the size of the rest of the market is large,
but finite, so that the impact of the herd on equilibrium prices is not
negligible and indeed destabilizing for asset prices.

11.1 INTRODUCTION

11.1.1 Motivation

The aim of this chapter is to assess the influence of relative performance
incentives on portfolio choices and on asset price dynamics. We ask whether,
to what extent and with which consequences on asset prices, portfolio choices
can be affected by the fact that professional money managers aim at maxi-
mizing their relative, rather than absolute, performance.

Institutions hold an increasing portion of the value of equities. US institu-
tional investors, who owned only 6.1% of all equities in 1950, now hold a
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total of $6.3 trillion, equivalent to 49.6% of total outstanding equities.1 Pri-
vate and public pension funds alone hold together $3.1 trillion, or 24% of
equities. In Europe, the presence of institutional investors has not reached the
same magnitude as in the US, but becomes increasingly conspicuous. In 1997,
managed funds as a percentage of GDP were 70% in Italy, 59% in Germany,
93% in France, 58% in Spain, 197% in the Netherlands and 174% in the UK.2

Not only do institutional investors hold the largest share of equities, but
they also account for most of the trading volume with their trading activity;
most institutional investors follow strategies of actively picking and trading
stocks. As a result, large institutions have become increasingly important
in determining market prices. Understanding the behaviour of stock prices
therefore requires an understanding of the investment strategies of institutional
investors.

The common belief is that institutional investors move in and out of stocks
in a herd-like manner. The idea that investors in general are influenced by
the decisions of other investors dates back at least to Keynes’ well-known
metaphor of the beauty contest.3 In particular, when it comes to institutional
investors, both casual empiricism and empirical evidence4 suggest that their
portfolio decisions display herding behaviour. Fund managers are aware of
this and often bluntly admit to following the crowd. Lakonishock, Shleifer and
Vishny (1992) report from an interview to a pension fund manager: ‘Institu-
tions are herding animals. We watch the same indicators and listen to the same
prognostications. Like lemmings, we tend to move in the same direction and
at the same time. And that, naturally, exacerbates price movements’ (p. 25).
This latter observation is a major concern for practitioners and a challenge
for financial economists: is herding behaviour destabilizing for stock prices?

The issue does not have an obvious answer. In general terms, one could
be tempted to define herding as behaviour patterns that are correlated across
individuals. However, if many investors are purchasing promising ‘hot’ stocks,
correlated action might be due to the fact that they have all received positive
relevant information on the same stocks. If so, investors are indeed making
the market more efficient and speeding up the process of adjustment of prices
to fundamentals. On the contrary, the notion of herding that one tends to

1American data are from the New York Stock Exchange Fact Book, 1998. For a better comparison
with European data that follow, note that in the US the capital held by institutions in 1998 was
72% of GDP.
2European data are from the Bank of Italy (1998).
3Keynes (1936) claimed that professional investors behave like judges in a beauty contest who
vote on the basis of contestants’ expected popularity with other judges rather than on the basis of
their absolute beauty.
4See for example Lakonishock, Shleifer and Vishny (1992) and Grinblatt, Titman and Wermers
(1995).
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associate with institutional investors is instead a negative one that leads to
systematic suboptimal decision making.5

Recent empirical studies6 have provided extensive evidence of inefficient
herding behaviour by fund managers and have showed that the impact of
institutional trading on stock prices has often been destabilizing.7 Most of
these studies have been motivated by the stock market crash of October 1987
and by the analysis of the crash itself made by the Brady Commission (Brady
et al., 1988), that mainly blamed institutional investors who followed formal
and informal dynamic hedging strategies, or ‘portfolio insurance’ policies.
As Lakonishock, Schleifer and Vishny (1992) point out, hedging strategies
can clearly prove destabilizing if they lead institutions to ‘jump on the band-
wagon’ and buy overpriced stocks and sell underpriced stocks, causing further
divergence of prices from fundamentals.

Why do money managers herd? Grinblatt, Titman and Wermers (1995)
study the correlation between the tendency of individual funds to herd and
the fund performance and observe that the relation is indeed controversial.
It is not at all clear that herding behaviour pays off in terms of absolute
performance.

Two recent empirical studies have investigated the relation between perfor-
mance and tendency to herd, but in the opposite direction: successful money
managers will display a higher tendency to herd. Brown, Harlow and Starks
(1996) and Chevalier and Ellison (1997) test the hypothesis that managers
with either extremely good or bad relative returns at mid-year have incentives
to alter the characteristics of their portfolios and change their risk profiles.
Worst performing funds will take more risks, while better performing funds
will tend to lock in their gains and ‘index’ the market. They examine port-
folio changes in the last quarter of the year and attribute this striking result
to the strong relationship between the inflow of new investment in the fund
and the fund’s past relative performance. In order to maximize investment
inflow, money managers have to maximize the ranking of their funds. The
flow–performance relationship works as an implicit incentive contract for the
fund manager. Finally, the current system of assessing and reporting fund
performance on an annual basis causes the ‘end of the year’ effect. Calendar
year data appears to be the most generally available to consumers: listings

5See for example Banerjee (1992) and Bikhchandani, Hirshleifer and Welch (1992).
6See, for example, Cutler, Poterba and Summers (1990), De Long et al. (1990), Grinblatt, Titman
and Wermers (1995) and Lakonishock, Shleifer and Vishny (1992), on the 1987 crash. Frankel and
Froot (1990) study herding behaviour in the foreign exchange market.
7The empirical literature on ‘excess price volatility’ is too vast to try and attempt a review here.
Seminal contributions are, for example, Shiller (1981a, 1981b, 1984) and Summers (1986). For an
extended review of the empirical literature on the topic, see Shiller (1990).
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of mutual funds, accompanied by calendar year returns, are published on an
annual basis in many news, business and financial publications.

Ashton, Crossland and Moizer (1990) report some interesting interviews
with money managers. They admit a tendency to herd: ‘Fund managers as
a group are complete wimps basically. There is fund manager risk aversion
which I am sure you are becoming aware of, which is the desire to be in with
the crowds, so that if everybody gets it wrong, then it doesn’t matter’ (p. 8).
They confirm that relative performance is what matters: ‘The fact of the matter
is, if you are in the top decile. . ., you get patted on the head by the client. If
you are in the bottom decile, you’ll probably be fired. So the temptation is to
be in the 3rd to the 7th and that means not deviating usually from the [index].
And because the [index] is what everybody else is doing, we’re all chasing
our own tail’ (p. 8). ‘It does not matter what your absolute performance is. It
doesn’t matter if you’re plus 200%, if the market’s plus 210%. What I have
to do is to ensure that this fund can act as a window for our sales force. It’s
got to be median or above, otherwise we can’t sell it’ (p. 9).

In this chapter we do not question relative performance evaluation. We
take such incentive schemes as given and we aim at providing a theoretical
framework to study the relation between relative performance evaluation of
fund managers, herding behaviour and destabilization of asset prices.

We consider a stylized dynamic model of a financial market where two assets, a
risk-free and a risky asset, are traded over two periods by three agents: two fund
managers and a third large trader who represents the rest of the market. Fund
managers are rewarded at the end of the second period by means of a bonus that
is awarded to the manager who obtains the best cumulative performance. The
information on fundamentals is symmetric: all agents know the correct proba-
bility distribution over the return of the risky asset. Portfolio decisions are taken
simultaneously by all agents at the beginning of each time period, and markets
clear. We assume that rewards to fund managers are purely based on rank. In
section 11.4.1 we discuss to what extent our results may extend to a model with
mixed compensation schemes, based both on rank and absolute performance.

Our main result is that, even though information is symmetric, relative
performance incentives serve as a coordination device for fund managers to
herd. Herding can be observed as an equilibrium outcome under interesting
economic circumstances. After a good realization of the risky asset and if the
risky asset is still likely to yield a high payoff in the future, fund managers
may herd on the safe asset. After a bad realization of the risky asset and if
the risky asset is still likely to yield a low payoff in the future, fund managers
may herd on the risky asset. Clearly the herding behaviour we obtain in
equilibrium is inefficient. Relative performance evaluation may fail to provide
the right incentives, and, as a result, fund managers might not pursue expected
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wealth maximization. This happens because of the dynamic framework that we
are adopting. After one of the two fund managers has acquired a leadership
position, in the last stage of the game his opponent might have no better
alternative than to force him into an inefficient equilibrium.

More in detail, fund managers play a two-stage game, where they both
prefer to play different strategies in at least one of the two stages, so that
each of them has a positive chance of ending the first stage of the game in a
leadership position. Suppose that, when they reach the beginning of the second
period, one of the two fund managers displays superior interim performance.
In the second stage, the game between fund managers becomes asymmetric
and optimal strategies differ across the two players. In order to have a chance
to catch up, the laggard wants to differentiate himself as much as possible
from the leading manager; on the contrary, the leading manager wants to
imitate the follower, to ensure that he stays ahead. However, if the wealth
gap between the two funds is large enough, then the laggard may not have
any possibility of catching up and will find it optimal to herd with the leader.
It might happen, in fact, that by the end of the first period, the performance
gap between the two funds is so large that only the riskiest strategy (the one
that pays the highest payoff with the smallest probability) allows the laggard
fund to catch up with the leader. The leading fund manager recognizes that
the follower has a dominant investment strategy and, to ensure that he stays
ahead, optimally chooses exactly the same portfolio as his opponent. Herding
constitutes an equilibrium since the laggard has clearly no better alternative
than his dominant strategy.

We characterize the conditions that may lead to herding as an equilibrium
outcome. If the risky asset paid a high payoff in the first stage, herding in
the safe asset may occur in the second stage if the probability of a good
realization of the risky asset in the next stage is high enough. If the risky
asset paid a low payoff in the first stage, herding in the risky asset may
occur in the second stage if the probability of a high realization of the risky
asset in the next stage is sufficiently low. The herding outcome we obtain
is, therefore, inefficient. Moreover, interestingly enough, inefficient herding
occurs when the size of the rest of the market is large, but finite, so that
the impact of herding on equilibrium prices is not negligible and we can
conclude that the presence of institutional investors is indeed destabilizing
for asset prices.

This result proves particularly surprising in the light of the fact that we
obtain herding behaviour and price destabilization, without assuming any
degree of asymmetric information. It would seem reasonable to expect that
the presence of information asymmetries, as in Gennotte and Leland (1990),
should reinforce our results.
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11.1.2 Related literature

There are at least three strands of literature that are related to this chapter:
the literature on the economic rationale for relative performance evaluation
and its effects; the vast literature on herding in financial markets; and finally
the literature on excess volatility and price crashes.

It is well known that relative performance evaluation can enhance efficiency
in a single-principal multi-agent setting. Mookherjee (1984) considers the sit-
uation where the agent’s output depends not only on effort and idiosyncratic
noise, but also on a common shock experienced by other agents. In these
circumstances the optimal contract is based on relative performance evalu-
ation. Nalebuff and Stiglitz (1983) consider a rank order tournament, i.e. a
compensation scheme in which contestants’ rewards are based on their ordi-
nal positions alone and not on the size of their output, and show that such a
structure is preferable to individualistic reward structures when environmental
uncertainty is large. They prove that, in the limit, as the number of contestants
becomes large, the outcome of a rank order tournament approximates first best.
Gibbons and Murphy (1989) find similar properties for a relative performance
evaluation scheme for chief executive officers. They also suggest that relative
performance evaluation distorts workers’ incentives whenever agents can take
actions that affect the average output of their reference group; for example,
when they get to choose their co-workers, or when they can collude.

Most of these contributions, however, analyse the agency problem in a static
setting. Meyer and Vickers (1997) show that, in a dynamic setting, compar-
ative performance evaluation has an ambiguous impact, and that it is not
guaranteed that it enhances efficiency. Indeed, some recent work8 proves that
relative performance evaluation might be undesirable in specific dynamic set-
tings; for example, when agents not only choose the level of effort (expected
return) but also the riskiness of their actions (variance). This is particularly
relevant for money managers, who clearly control both the expected return
and the risk of their portfolios. Hvide (2002) studies a situation where agents
also get to decide on the riskiness of their actions. He proves that a con-
tract that ranks agents according to the relative closeness of their output to
a benchmark (rather than ranking them against each other) can be beneficial
to limit the risk that the agent might be willing to take. He argues that this
could serve as a rationale for the fact that sometimes modest outcomes are
more highly rewarded than very high performances.

Hvide and Kristiansen (1999) also look at the efficiency of relative
performance evaluation when agents can decide on risks to be taken. Dif-
ferently from Hvide (2002), they analyse how well contests select talented

8See, for example, Hvide (2002), Hvide and Kristiansen (1999) and Palomino and Prat (1999).
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agents, rather than how well contests provide the right incentives to elicit
effort. Their main result is rather counterintuitive: a better quality of the
pool of contestants might reduce the efficiency of the contest. This happens
because a more competitive tournament (a tournament with participants of
higher quality) induces agents to adopt riskier strategies, which might harm
the selection of high quality individuals. Riskier projects create more noise
in the selection contest, thereby reducing the informativeness of the rank.

Finally, Palomino and Prat (1999) develop a general model of delegated
portfolio management with the feature that the agent can control the riskiness
of the portfolio. In the static case, the optimal contract is a bonus contract,
based on relative performance. In the multi-period case, the bonus contract is
no longer first-best. The intuition for their result lies in the fact that in a dynamic
setting the agent can revise his portfolio choice after observing his performance
at intermediate stages. This is particularly true if we believe that investors can
evaluate the agent’s performance less often that he can revise his portfolio
decisions. The same idea is in the empirical work by Chevalier and Ellison
(1997): mutual fund managers control investment volatility continuously, while
investors receive performance information at discrete time intervals.

In the setting that we investigate, the results by Palomino and Prat are put
to work in a market setting. We show that a bonus contract may indeed prove
inefficient and we characterize the type of distortion that it may cause both
on portfolios and on asset prices.

Within the literature on relative performance evaluation, some contributions
have also looked at the problem of information acquisition. Eichberger, Grant
and King (1997) look at a model where fund managers are rewarded on the
basis of relative performance and have to decide whether to gather information
and how to allocate their portfolios. They find that there are multiple equi-
libria, so that relative performance evaluation might or might not provide the
right incentives. Gümbel (1998) considers a similar model in a market setting.
Interestingly enough, he obtains efficient herding as an equilibrium outcome.
Herding in information acquisition is induced by the principal (agents want
to acquire the same piece of information as their competitors) and it increases
the informational efficiency of prices.9

9Herding in information acquisition due to relative performance incentives is also one of the results
of Maug and Naik (1996) and Palomino (1999). Palomino (1999) considers an oligopolistic market
model à la Kyle (1985) where fund managers that aim at maximizing relative performance, decide
on both information acquisition and portfolio composition. He finds that, in portfolio decisions,
relative performance evaluation leads to overly-risky strategies. Moreover, a risk neutral (or weakly
risk averse) fund manager will invest too little in information acquisition; a strongly risk averse fund
manager, on the contrary, invests too much in information. Maug and Naik (1996) find conditions
such that better informed fund managers ignore their own superior information to reduce deviations
from the benchmark.
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There is a clear similarity and several important differences between Gümbel
(1998) and this chapter. In Gümbel, the author obtains herding in equilibrium
as an effect of relative performance evaluation. However, in Gümbel herding
is in the information acquisition policy, while we obtain herding in portfolios.
Moreover, in Gümbel herding is efficient and makes asset prices more informa-
tive, while in this chapter herding can also be inefficient and drive asset prices
further away from fundamentals. Finally, the market structure in Gümbel is an
oligopoly à la Kyle (1985), while we look at a competitive market.

This chapter is close in spirit to some recent work by Cabral (1999) and
Palomino and Prat (1999). Cabral considers an infinite-period race where play-
ers choose between alternative growth technologies. He provides sufficient
conditions under which, in equilibrium, the leader chooses a safe technology
and the laggard a risky one; and conditions under which the laggard prefers to
differentiate from the leader whereas the leader prefers to imitate the follower.
Palomino and Prat analyse competition over two investment periods between
two money managers that have ranking-based objectives. They derive condi-
tions on intermediate performances under which managers play conservative
and overly risky strategies and find that, if the difference in performances in
the first period is large, the interim winner has incentives to minimize the
level of risk undertaken in the second period to lock in his gain of the first
period.

This chapter shares some of the intuition for its results with Cabral (1999)
and Palomino and Prat (1999). However, we adapt their analysis to a financial
market setting, with the main difference that Cabral and Palomino and Prat
only analyse the game between contestants, while we also look at the market
equilibrium and at the effects of contestants’ behaviour on endogenous asset
prices.10

The second strand of literature that is related to this chapter is the litera-
ture on herding behaviour. Within the research on herding we can distinguish
two different views: a non-rational view, that attributes inefficient herding
behaviour to imitation and mimicry instincts and to investors’ psychology;
and a rational view, that shows that inefficient herding may obtain as an
equilibrium outcome of a game played by fully rational investors. The rational

10General equilibrium implications of fund managers’ compensation fees are also studied by Cuoco
and Kaniel (1999). They develop a continuous-time market model and analyse the implications on
portfolios and asset pricing of different types of fund managers’ compensation fees. They find
that symmetric (fulcrum type) performance fees, that also penalize funds’ underperformance with
respect to the benchmark, tilt fund managers’ portfolios towards stocks that are represented in
the benckmark. On the contrary, asymmetric compensation fees that reward performance without
penalizing underperformance to the same extent, may tilt funds’ portfolios towards stocks that have
a very low correlation with the benchmark.
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view (which this chapter adopts) has centred on three different approaches,
that can be summarized as follows: presence of payoff externalities, infor-
mational cascades and principal–agent models. An example within the first
approach is given by models of information acquisition. Agents might herd
on information acquisition as they find it worthwhile to acquire further infor-
mation only if other agents also do.11 In the model we propose there is neither
information acquisition externalities nor other payoff externalities, but herding
is still obtainable as an equilibrium outcome.

The second approach provides the most common explanation of herding. It
builds on the idea that agents gain useful information from observing previous
agents’ decisions, to the point that they optimally and rationally completely
ignore their own private information, and herd. Informational cascades have
been introduced12 by Bikhchandani, Hirshleifer and Welch (1992), Banerjee
(1992) and Welch (1992). In this chapter decision making is simultaneous and
information is symmetric, so that social learning and informational cascades
have no role.

Here, herding occurs because of relative performance incentives, so that our
framework is closer to the third approach, where herding is obtained as an
outcome of agency problems. A similar perspective is adopted by Scharfstein
and Stein (1990). They develop a model where managers are concerned about
their reputation and therefore simply mimic the investment decisions of other
managers, ignoring substantial private information. A ‘sharing the blame’
effect drives them to herd. A crucial feature of their model is that they assume
that a manager does not know his quality; however, he knows that if he is
smart he will observe the same signal as other smart managers in the market.

A similar setting is developed by Zwiebel (1995). He obtains the same
result as Scharfstein and Stein (1990), but with a different information struc-
ture. He assumes that managers know their own ability; however, because
of reputational concerns, they still refrain from undertaking innovations that
stochastically dominate the industry standard and get locked in inferior equi-
libria. Zwiebel calls this type of behaviour ‘corporate conservatism’.

The main differences between Scharfstein and Stein (1990) and Zwiebel
(1995) and this chapter are the following: first of all, herding behaviour in
our setting does not stem from reputational concerns, but from relative perfor-
mance evaluation. We assume that fund managers have the same ability and
the same quality of information. Second, and most importantly, we analyse a
market setting, where the effect of herding on asset prices is also studied.

11See, for example, Gümbel (1998).
12See also Gale (1996) that argues on the robustness of some of the results obtained by the literature
on social learning and informational cascades.



294 Performance Measurement in Finance

Finally, this chapter is also related to the literature on price crashes and
in particular to the literature that studies the role of the behaviour of insti-
tutional investors in price crashes.13 Gennotte and Leland (1990) develop a
financial market model where a relatively small amount of dynamic hedg-
ing strategies can cause asset prices to fall significantly. The driving force
of their result lies in the fact that, even if there are only a few hedgers,
there are traders who infer information from market prices. As a result, the
effects of hedging activity on asset prices are magnified. A similar setting
is in Jacklin, Kleidon and Pfleiderer (1992). They examine the role played
by formal and informal dynamic hedging strategies in the market crash of
October 1987. They provide a theoretical underpinning for the stylized fact
that, in the period prior to the crash, prices are higher than fundamentals
would imply. The intuition for their result is that information on the extent
of portfolio insurance is revealed only slowly through time, so that, prior to a
crash, the market is indeed underestimating the size of hedgers that are active
in the market. When the amount of portfolio insurance is fully revealed, the
price falls.

In this chapter we obtain excess volatility. The driving force in our case
is not the presence of hedgers, but the custom of rewarding money managers
according to their relative performance.

11.1.3 Overview

The outline of the rest of this chapter is as follows. In section 11.2 we present
the basic structure of our model in a simplified setting: we look at a two-period
investment model where investors choose between alternative assets whose
returns are assumed to be exogenous. In sections 11.2.1 and 11.2.2 we respec-
tively solve for the equilibria of the game played by investors in the last and
interim stages. In section 11.2.3 we summarize and characterize all the differ-
ent equilibrium paths that we can obtain in the two-stage game. Section 11.2.4
shows that one important simplifying assumption that we use in the analysis
is without loss of generality in our setting. Finally section 11.2.5 highlights
some of the features of this simple model and suggests how to extend it to a
financial market model, where asset prices are indeed endogenous.

In section 11.3 we extend our analysis to a financial market model and we
present our main results. In particular, in section 11.3.1 we look at the game
played by fund managers in the interim stage; in section 11.3.2 we prove

13Another approach to price crashes is, for example, in Bulow and Klemperer (1994). They argue
that when buyers can also decide on the timing of their purchases, then ‘willingness to pay’ is
much more elastic than demand to price. They show how this feature may lead to ‘frenzies’ (all
agents buying at once) and ‘crashes’ in a simple auction setting.
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existence and uniqueness of a market clearing equilibrium for each stage of
the game; finally, in section 11.3.3 we present the main results of our analysis:
we characterize sufficient conditions for inefficient herding to be obtained as
an equilibrium outcome in the second stage of the game and we show that
the herding behaviour thus obtained is indeed destabilizing for asset prices.

In section 11.4 we examine the robustness of our analysis in less simplified
environments and we suggest directions for future research.

Section 11.5 concludes the chapter.
For ease of exposition, all proofs are in the appendix.

11.2 A MODEL WITH LINEAR TECHNOLOGIES

Consider a simple two-period investment model where investors, at the begin-
ning of each time period, choose between two alternative technologies to store
wealth: a safe technology A and a risky technology B. Both technologies are
linear, so that, if wealth available for investment at the beginning of period
t (end of period t − 1), wt−1, is invested in the safe technology A, the total
return at the end of period t is:

wt = Awt−1

If the risky technology B is chosen for investment in period t , then the
investment income at t is:

wt = B̃twt−1

where B̃t is equal to BH with probability p > 0 and to BL with probability
(1 − p) > 0. We assume that BL < A < BH .

There are two professional investors that manage identical wealth endow-
ments at t = 0, both normalized to be equal to 1. Investors choose technologies
twice (at t = 0 and at t = 1) and cash investment incomes twice (at t = 1
and t = 2). Technology choices last for one period only, so that investors may
or may not adopt the same technology twice. Investors have no other way to
store wealth, so that the initial endowment is entirely invested in the tech-
nology chosen for the first period. Similarly, the investment income from the
first period is entirely invested in the technology chosen for the second period.
We also assume that investors cannot hold ‘portfolios’ of technologies, but
only invest in one technology at a time. In what follows (see section 11.2.4),
we show that this assumption is without loss of generality in our setting: if
investors care only about their ranking, they prefer to hold ‘extreme portfo-
lios’, where only one technology is represented.14

14When investors also care about their absolute performance, they have an incentive to diversify.
However, in section 11.4 we argue that how our main results should prove robust to such changes
in the model, provided that the reward component based on ranking is large compared to the reward
component based on absolute performance.
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The economic agents that get to choose which technology to adopt are
indeed professional investors managing clients’ money, rather than their own.
Hence we assume that they do not derive utility directly from the investment
incomes that they obtain on behalf of their clients. Investors in our model
only care about their compensation. The investor that ends up with the largest
wealth at t = 2 obtains a strictly positive bonus; in case of tie, nobody gets
the bonus.15 This latter feature implies that investors will never want to adopt
the same sequence of technologies, with the result that a tie will never be
observed in equilibrium.

11.2.1 The bonus stage

In the simple world we are describing, fund managers play a two-stage game,
where payoffs (the bonus) are distributed only at the end of the second stage.
Players aim at reaching the leadership position in order to win the bonus. We
can solve the game backwards: call the two stages of play interim and bonus
stage respectively, and focus on the bonus stage first.

We need to fix a history for the interim stage. Suppose that investors choose
different assets in the first stage of play, so to reach the bonus stage with
‘leader’ and ‘follower’ roles. Moreover, consider the case B̃1 = BH first.
After a ‘good’ realization of the risky technology in the interim stage, at
t = 1, the player who invested in technology B is the leader and the player
who invested in the safe technology A is the follower. Call asymmetric bonus
subgame the game that leader and follower play against each other in the
bonus stage, after having played asymmetrically in the first stage. Let us call
player i and player j the leader and the follower at date t = 1, respectively.
Also let us follow the convention of having the interim follower as first (row)
player and the interim leader as second (column) player.

In the asymmetric bonus subgame, if both managers invest in the same
technology (strategy profiles AA and BB), then clearly the interim leader
(player i) will win the bonus with probability 1. If they invest in different
technologies then the interim follower might (or might not) catch up with the
interim leader. In particular, if, in the bonus stage, follower and leader invest
in the risky and safe technologies respectively (strategy profile BA), player
i’s wealth is equal to BHA and player j ’s wealth is equal to AB̃2. As a result,
if in the second stage B̃2 = BH , we have a tie (and nobody gets the bonus), if
B̃2 = BL then player i wins the bonus. If we normalize the size of the bonus

15This assumption simplifies our analysis. It also finds support by the empirical evidence: Brown,
Harlow and Starks (1996) and Chevalier and Ellison (1997) show that the fund’s new money
flow-performance relationship, that acts as an implicit incentive contract for the fund manager, is
convex. ‘Real’ leaders are more generously compensated.



Relative performance and herding in financial markets 297

to 1, expected payoffs to the interim follower and leader, with the strategy
profile BA, are 0 and (1 − p), respectively. One last case to consider is the
strategy profile AB; when the interim follower invests in the safe technology
and the interim leader in the risky one, then the follower might indeed have the
chance to outperform the leader. The outcome will depend on our parametric
assumptions. If A2 > BHBL then the follower will outperform the leader and
win the bonus. If, on the contrary, A2 < BHBL, then the interim leader will
stay leader and get the bonus. Finally, if A2 = BHBL, we have a tie and none
of the investors wins the bonus.

The asymmetric bonus subgame that interim leader and follower play, under
these three different parametric assumptions, can be summarized by the fol-
lowing payoff matrices, where bold payoffs identify equilibria:

1. If A2 > BHBL:

Follower/Leader A B
A 0; 1 1 − p; p

B 0; 1 − p 0; 1

2. If A2 < BHBL:

Follower/Leader A B
A 0; 1 0; 1
B 0; 1 − p 0; 1

3. If A2 = BHBL:

Follower/Leader A B
A 0; 1 0; p

B 0; 1 − p 0; 1

In case (1), the asymmetric bonus subgame has a unique Nash equilibrium,
AA. When players reach the second stage of the game with non-identical
wealth, after a good realization of the risky technology in the first stage, both
players will play safe in the bonus stage and invest their whole endowment
in the safe technology. In case (2), Nash equilibria for the asymmetric bonus
subgame (in pure strategies) are: AA, AB, BB. Players will either both invest
in the safe technology, or both in the risky technology, or, finally, both adopt
the same technologies they had chosen in the interim stage (i.e. leader and
follower will respectively invest in the risky and the safe technology). In case
(3), Nash equilibria for the asymmetric bonus subgame (in pure strategies)
are: AA, BB.
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Similarly, we can examine what is the play in the bonus stage, after the
history B̃1 = BL for the interim stage. Once again, suppose that investors
choose different assets in the first stage of play, so to reach the bonus stage
with ‘leader’ and ‘follower’ roles. In this case, we call player i the player who
invested his endowment in the safe technology in the interim stage, so that i
is the interim leader at t = 1. We call j the player who invested his wealth
in the risky technology in the interim stage, so that j is the interim follower
at t = 1. In the bonus stage, if both players invest in the same technology,
clearly player i (the interim leader) will stay leader and win the bonus with
probability 1. If they invest in different technologies, then the interim follower,
under some conditions, outperforms the interim leader. Like above, different
parametric assumptions imply different sets of equilibria for the asymmetric
bonus subgame (equilibrium payoffs are in bold):

1. If A2 < BHBL:

Follower/Leader A B
A 0; 1 0; p

B p; 1 − p 0; 1

2. If A2 > BHBL:

Follower/Leader A B
A 0; 1 0; p

B 0; 1 0; 1

3. If A2 = BHBL:

Follower/Leader A B
A 0; 1 0; p

B 0; 1 − p 0; 1

As one might have expected, the results we obtain are symmetric to what we
found in the previous case above. In case (1), the asymmetric bonus subgame
has a unique Nash equilibrium, BB. In the last stage of game, if players have
non-identical wealth and after a bad realization of the risky asset in the interim
stage, both players play risky and invest their whole endowment in the risky
technology. In case (2), Nash equilibria for the asymmetric bonus subgame (in
pure strategies) are: AA, BA, BB. Players will either both invest in the safe
technology, or both in the risky technology, or, finally, both adopt the same
technologies they had chosen in the interim stage (i.e. leader and follower will
respectively invest in the risky and the safe technology). In case (3), Nash
equilibria for the asymmetric bonus subgame (in pure strategies) are: AA,



Relative performance and herding in financial markets 299

BB. Once again, in the second stage of play, investors will adopt the same
technology in equilibrium.

Let us now consider a different history for the interim stage. Suppose that
investors choose the same technology to store wealth in the first period. The
two fund managers (identical at t = 0) will reach the bonus stage with iden-
tical wealth endowments. Since there is no ‘interim leader’, investors play a
symmetric subgame in the bonus stage, where they both try to reach for the
leadership.

Recall that we are assuming that in the case of a tie nobody gets the bonus;
fund managers have to outperform their opponents in order to qualify for the
reward.16 As a result, in the symmetric bonus subgame investors will choose
to store wealth in different technologies. Payoffs can be summarized by the
following matrix, where equilibrium payoffs are denoted in bold.

First player/Second player A B
A 0; 0 1 − p; p
B p; 1 − p 0; 0

In this case the (pure strategies) Nash equilibria of the symmetric bonus
subgame are AB and BA.

Summarizing, depending on parametric assumptions, the bonus subgame
that follows an asymmetric play in the interim stage may display one, two or
three Nash equilibria. All equilibria are payoff equivalent. In particular it is
always possible for the interim leader to keep his leadership in equilibrium and
win the bonus with probability one at the end of the second stage. Whenever
investors play asymmetrically in the interim stage, the actual bonus winner is
in fact determined by the end of the first period.

On the contrary, when investors play symmetrically in the first period, the
bonus winner is to be determined in the second stage of the game. In this
case, the bonus subgame always has two Nash equilibria. Both equilibria are
asymmetric and they are not payoff equivalent. Depending on how likely the
risky asset is to yield a high payoff (the value of the probability p), each fund
manager will be better off in one equilibrium rather than in the other.

11.2.2 The interim stage

Solving the game backwards, we can now ask which strategies will fund man-
agers optimally choose in the interim stage, given the equilibrium outcomes
of the following subgames.

16Recall footnote 15 above.
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The payoffs to fund managers who invest asymmetrically in the first stage
(strategy profiles AB and BA) are easy to compute. When investors play
different strategies in the first stage of the game, the asymmetric bonus sub-
game displays payoff equivalent Nash equilibria. Hence, solving the game
backwards, one does not need to distinguish between different equilibrium
outcomes in the bonus stage. In fact, along any equilibrium path which starts
with investors following asymmetric play, the interim leader is guaranteed to
be bonus winner, so that expected payoffs to each of the players are indeed
equal to the probabilities of becoming interim leaders. As a result, the expected
payoff to a fund manager that invests in the risky technology, while his oppo-
nent is investing in the safe technology, is equal to p; his opponent’s expected
payoff is (1 − p).

When investors choose the same technology in the first stage of play (strat-
egy profiles AA and BB), the bonus subgame displays two Nash equilibria
which are not payoff equivalent. Hence, expected payoffs in the interim stage
are conditional on the specific equilibrium that prevails in the second stage
of the game. We can therefore distinguish between four different cases.

1. Suppose, first, that after symmetric play in the first stage (strategy profiles
AA and BB), the equilibrium AB prevails in the second stage of the
game, so that the first player wins the bonus with probability (1 − p) and
the second player wins the bonus with probability p. In the interim stage
the payoff matrix would look as follows:

First player/Second player A B
A 1 − p; p 1 − p; p

B p; 1 − p 1 − p; p

The (pure strategies) Nash equilibria of the game played in the interim
stage depend on the value of p. If p is small (in particular, if p < 1/2),
then AA and AB are equilibria. If p is large (in particular, if p > 1/2),
then BB and AB are equilibria.

2. Suppose, on the opposite, that after both AA and BB in the first stage,
the equilibrium BA prevails in the second stage of the game, so that the
first player wins the bonus with probability p and the second player wins
the bonus with probability (1 − p). In the interim stage the payoff matrix
would look as follows:

First player/Second player A B
A p; 1 − p 1 − p; p

B p; 1 − p p; 1 − p
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The (pure strategies) Nash equilibria of the game played in the interim
stage depend on the value of p. If p is small (in particular, if p < 1/2),
then AA and BA are equilibria. If p is large (in particular, if p > 1/2),
then BB and BA are equilibria.

3. Suppose, now, that after AA in the first stage, the equilibrium that pre-
vails in the second stage is AB and that, after BB in the first stage, the
equilibrium that prevails in the second stage is BA. In the interim stage
the payoff matrix would look as follows:

First player/Second player A B
A 1 − p; p 1 − p; p

B p; 1 − p p; 1 − p

The (pure strategies) Nash equilibria of the game played in the interim
stage depend on the value of p. If p is small (in particular, if p < 1/2),
then AA and AB are equilibria. If p is large (in particular, if p > 1/2),
then BB and BA are equilibria.

4. Finally, suppose that after AA in the first stage, the equilibrium that pre-
vails in the second stage is BA and that, after BB in the first stage, the
equilibrium that prevails in the second stage is AB. In the interim stage
the payoff matrix would look as follows:

First player/Second player A B
A p; 1 − p 1 − p; p

B p; 1 − p 1 − p; p

The (pure strategies) Nash equilibria of the game played in the interim
stage depend on the value of p. If p is small (in particular, if p < 1/2),
then AA and BA are equilibria. If p is large (in particular, if p > 1/2),
then BB and AB are equilibria.

11.2.3 Equilibrium paths

In the previous two sections we have solved the two-stage game between
fund managers by backward induction. We can now finally summarize and
characterize the whole equilibrium paths.

The game between fund managers clearly displays a multiplicity of equi-
libria. However, we can conveniently distinguish between two types of equi-
librium paths, according to players’ behaviour in the first stage of the game.

Symmetric play in the first stage
If the two players invest in the same technology in the interim stage (strategy
profiles AA and BB), then they will invest in different technologies in the
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bonus stage. In particular, if the risky technology has a higher probability
than the safe technology of paying the highest return (i.e. p > 1

2 ), then both
players will invest in the risky technology in the first stage. Hence we will
observe BB in the first period, followed by either AB or BA in the bonus
stage. On the contrary, if the safe technology has a higher probability than the
risky technology of paying the highest return (i.e. p < 1

2 ), then both players
will invest in the safe technology in the first stage. Hence we will observe
AA in the first period, followed by either AB or BA in the bonus stage.

Along these equilibrium paths fund managers ‘herd’ in the first stage of
play. They both invest in the risky asset if it pays a high payoff with a suffi-
ciently large probability; they herd on the safe asset if its risky alternative has
a small probability of yielding a high payoff. Herding in this case cannot be
asserted to be necessarily ‘inefficient’. In fact the behaviour of fund managers
is consistent with the maximization of the expected value of some increasing
and concave function of wealth.

Throughout the rest of this chapter we call ‘efficient’ a herding behaviour
that is consistent with expected utility maximization, while we call inefficient
the behaviour which is not consistent with the maximization of the expected
value of an increasing and concave function of wealth.

Asymmetric play in the first stage
If the two players invest in different technologies in the interim stage (strategy
profiles AB and BA), then in the bonus stage we might have either one or
two or even three payoff equivalent Nash equilibria, depending on parameter
values and on the realization of the risky technology in the interim stage.
Interestingly enough one notices that the only equilibrium outcome which all
parametric specifications have in common is such that in the second period
investors herd in the technology which has been the least successful in the
first period. In particular, fund managers herd in the safe technology in the
bonus stage, if the risky technology has paid a high payoff in the interim stage.
On the contrary, they herd in the risky technology in the bonus stage, if the
risky technology has paid a low payoff in the interim stage. Moreover, the
expected return of the risky technology plays no role in such an equilibrium
outcome and indeed both players might find themselves optimally investing
in the risky technology even when it yields a lower expected return than the
safe technology.

For the insights that they provide, and namely for the fact that they might
lead to inefficient herding, these equilibrium paths are more interesting than
the first ones. For this reason in what follows we will mainly focus on the
behaviour of fund managers after asymmetric play (i.e. we will concentrate
on the behaviour of fund managers in the asymmetric bonus subgame).



Relative performance and herding in financial markets 303

11.2.4 Do fund managers hold ‘Extreme’ portfolios?

In the model described in this section, we have assumed that fund managers
can either invest in the safe technology or in the risky technology: they cannot
invest their endowments in a diversified portfolio of technologies. We can
show that, so long as investors are rewarded on the basis of their relative
performance, this assumption is without loss of generality. Namely, even
if allowed to hold portfolios of technologies, they would optimally choose
‘extreme’ portfolio compositions and invest their entire endowments in only
one of the available technologies.

For example, let us consider the asymmetric bonus subgame after a good
realization of the risky technology in the interim stage. We know from our
previous analysis that, when fund managers cannot diversify, under the para-
metric condition A2 > BHBL, the unique Nash equilibrium of the asymmetric
bonus subgame is AA, i.e. both players will choose the safe technology. We
can easily prove that, even when we assume that money managers can diver-
sify their portfolios (and hence consider a larger strategy space for the two
players), under the same parametric conditions, ‘all the money in safe’ is still
a Nash equilibrium of the extended subgame.

Suppose, in fact, that the interim follower is having all his endowment
invested in the safe technology. It is clearly a best reply for the interim leader
to mimic his opponent’s portfolio. Hence ‘all the money in safe’ is what the
leader will rationally choose to do. Suppose, now, that the interim leader is
having all his endowment invested in the safe technology; does the interim
follower have an incentive to deviate from ‘all the money in safe’? If he
diverts part of his resources to the risky technology, he cannot do any better,
as our parametric conditions guarantee that catching up with the interim leader
is excluded anyway. If we assume that there is a small (even lexicographic)
cost in investing in two technologies (or assets) rather than one, then clearly
the follower will strictly prefer to herd with the leader, rather than holding
a diversified portfolio that costs him more and yields the same expected
bonus.

Moreover, the assumption of a small (even lexicographic) cost for diver-
sification implies that (for example, in the same parametric case we have
considered above) ‘all the money in safe’ for both fund managers is the
unique Nash equilibrium, also in the subgame where the strategy space is
given by portfolios of technologies.

In fact, any strategy profile such that one fund manager is investing in
an ‘extreme’ portfolio and the other fund manager is investing in a mix of
technologies cannot be an equilibrium. The player who is holding a diversified
portfolio, can optimally respond with a single technology (the same as his
opponent’s if he is the interim leader; the one that his opponent is not adopting,
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if he is the interim follower). If he deviates from the candidate equilibrium,
his expected bonus will be the same and he will save on lexicographic costs.

Similarly we can show that we cannot have an equilibrium where both fund
managers hold diversified portfolios. Suppose in fact that a fund manager
is facing an opponent that is holding a diversified portfolio, then he can
optimally respond to his opponent by using a single technology. Once again,
his expected bonus will be the same and he will save on lexicographic costs.

Following similar arguments we can show that fund managers optimally
choose to hold ‘extreme’ portfolios in the symmetric bonus subgame and in
the interim stage.

Clearly, if we consider a framework where fund managers are not com-
pensated on the basis of their relative performance only, but also on account
of their absolute performance, fund managers will retain some incentives to
diversify. In section 11.4.1, however, we show how and to what extent our
analysis might hold in a more general setting.

11.2.5 Towards a market model

The model we have described in this section is extremely simple. Yet it seems
to provide a plausible explanation of how relative performance incentives
lead to herding behaviour. It allows us to characterize the resulting herding
behaviour as (possibly) efficient, when it occurs in the first stage of the game,
and as (possibly) inefficient when it occurs in the second stage. Within this
simple model we can also show how this latter type of herding outcome
(herding in the bonus stage) is path dependent in a rather counterintuitive
fashion. In particular, we showed that, after a good realization of the risky
technology, investors might in fact abandon it and move in a herd like manner
towards the available alternative, the safe technology. Symmetrically, after a
bad realization of the risky technology, all fund managers might abandon its
safer alternative. Both effects are well known in the empirical literature in
finance respectively as the ‘lock-in effect’ and the ‘gambling effect’.17

However, we would encounter serious difficulties in stretching the validity
of this simple model’s implications to the functioning of a financial market.
This is primarily because of the fact that in the technologies’ adoption model
that we have described, rates of return (A and B̃t ) are exogenously given as
parameters of the model. In a financial market, on the contrary, one would
expect rates of return to depend on asset prices and hence to be a market
outcome. In section 11.3 we try to overcome this problem, modelling a similar
relative incentive structure within a competitive market, so that rates of return
are endogenous. We will show that a market model retains all the interesting

17See, for example, Chevalier and Ellison (1997) and Brown, Harlow and Starks (1996).



Relative performance and herding in financial markets 305

features of the simple model with linear technologies. In particular, we prove
that inefficient herding can be observed as an equilibrium outcome. Moreover,
we show that the same counterintuitive path dependency as in the model with
linear technologies obtains in the market model: provided that they reach the
second stage of the game with non-identical wealth and under some simple
parametric conditions, fund managers herd on the safe asset, if the risky asset
just paid a high return; on the contrary, they herd on the risky asset, if it just
paid a low return in the interim stage.

Moreover, in the next section we show that a market model displays a
clear advantage with respect to the simple model with linear technologies.
The fact that the values of A, BH and BL are not exogenous in a market
model, besides from being more realistic, helps our results. In fact we are
able to identify simple parametric conditions on the probability distribution
of the returns of the risky asset and on the market size, such that in the
second stage of the game (and after asymmetric play in the interim stage)
conditions equivalent to A2 > BHBL when B̃1 = BH in the interim stage, and
A2 < BHBL when B̃1 = BL in the interim stage, are endogenously obtained.
The parametric conditions needed to obtain our herding result clearly suggest
that herding behaviour in the bonus stage is inefficient. Namely the fund
managers’ demand for the risky asset is decreasing in the probability of the
risky asset paying a high payoff, which is inconsistent with the maximization
of any increasing and concave utility function of wealth. Moreover, we show
that inefficient herding among fund managers occurs when the size of the rest
of the market is large, but finite, so that the impact of the herd on equilibrium
prices is not negligible and indeed destabilizing for asset prices.

11.3 A MARKET MODEL

We consider a market where two assets are traded: a safe asset A and a risky
asset B. In each period there is one unit of each asset available: one unit
of asset A pays a known payoff wA at the end of each period, irrespective
of the state of nature; one unit of asset B pays wHB with probability p and
wLB with probability (1 − p). We assume that wLB < wA < wHB . Denote the
market prices of the two assets, in period t , by ρAt and ρBt . (Ex post) rates
of return are:

At = wA

ρAt
(11.1)

BHt = wHB

ρBt
(11.2)

BLt = wLB

ρBt
(11.3)
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There are three different investors in this market: investors i and j , fund
managers who are motivated by relative performance incentives identical
to what we described for the model with linear technologies, and a trader
endowed with a logarithmic utility function which is representative of the
rest of the market.18 At t = 0, the two fund managers have identical wealth
endowments, which we normalize to be equal to 1; the rest of the market has
wealth equal to M . Investing in the two available assets is the only way to
store wealth, so that the entire endowment is invested in the first stage and
the entire investment income obtained in the first stage is reinvested in the
second stage. The objective of the two fund managers is to win the bonus at
the end of the second stage; the objective of the rest of the market, in each
stage, is to maximize the expected log of end of period wealth.19

All traders are price takers. However, the two fund managers take their
portfolio decisions strategically to outperform each other and win the bonus.

11.3.1 The interim stage

In the interim stage, the two fund managers behave exactly as we have
described in section 11.2.2 for the model with linear technologies. Since in the
case of a tie nobody wins the bonus, fund managers who are initially endowed
with identical wealth will try and differentiate their investment strategies in
at least one of the two stages. If they invest in the same asset in the interim
stage, then only asymmetric equilibria are possible in the bonus subgame. In
equilibrium, the asset on which both money managers herd in the first period
is the one with higher probability of paying the highest return. As we argued
in the previous section, this behaviour can be consistent with some type of
expected utility maximization. Hence when fund managers herd in the first
stage of play their behaviour is not inefficient in the sense used in this chapter.

Matters get more interesting if we focus, instead, on asymmetric play
in the interim stage. Suppose that, in the first period of trade, each fund
manager entrusts his unitary wealth endowment to a different asset. Recall
from section 11.2.4 that, if investors only care about their ranking, they will

18Our choice to model the trader that is representative of the rest of the market as a logarithmic
utility maximizer, finds support in the literature on survival of traders in financial markets. Loga-
rithmic utility maximization is the ‘fittest’ behaviour in a risky environment like the one modelled
here: in a financial market with heterogeneous traders, logarithmic utility maximizers will domi-
nate, determine asset prices asymptotically and drive to extinction any other trader who does not
behave as a logarithmic utility maximizer, at least in the long run. See, for example, the seminal
paper by Blume and Easley (1992) and some recent work by Sciubba (1999a) and (1999b).
19Another clear advantage of logarithmic utility is that the ‘myopic’ optimization problem that we
are solving period by period (maximizing expected log of end of period wealth) yields the same
results as a dynamic optimization problem, over both periods and with any discount rate.
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optimally choose not to diversify and will instead hold ‘extreme’ portfolios.
Hence, one of the two money managers will demand 1/ρA,1 of asset A; his
opponent will demand 1/ρB,1 of asset B.

The rest of the market will choose a portfolio so as to maximize the expected
log of end of period wealth. At the end of the interim stage, at t = 1, the
wealth of the logarithmic trader that has chosen a portfolio with weights α1

and (1 − α1) in assets A and B respectively, is as follows:

w̃
log
1 = α1A1 + (1 − α1)B̃1

where B̃1 = BH1 with probability p and B̃1 = BL1 with probability (1 − p).
The subscript denotes time. In this market model rates of return are time
dependent as they are endogenously determined by market prices. In particu-
lar, in the interim stage:

A1 = wA

ρA,1
(11.4)

BH1 = wHB

ρB,1
(11.5)

BL1 = wLB

ρB,1
(11.6)

The logarithmic trader chooses α1 so as to maximize E[log w̃log
1 ]. The first

order condition yields:

α1 = (1 − p)
BH1

BH1 −A1
+ p

BL1

BL1 − A1

Therefore, the portfolio weight invested in the risky asset can be written as:

β1 ≡ (1 − α1) = A1

(BH1 − A1)(A1 − BL1 )
[E(B̃1)− A1]

where E(B̃1) = pBH1 + (1 − p)BL1 .

11.3.2 Equilibrium

In order to solve for equilibrium prices we have to consider market demands
for each asset. Asset prices (hence rates of return) will be different in the
three different strategic scenarios for the two fund managers (both invest in
A; one invests in A and the other invests in B; both invest in B).
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In what follows, we will concentrate on those equilibrium paths that start
with the two fund managers playing asymmetrically.20 The reason for doing
so is that, when fund managers herd in the first stage, the market model
adds no further insight to the analysis that we have already conducted in the
previous sections for the simple model with linear technologies. Hence, let us
assume that in the interim stage one of the two fund managers is investing in
asset A and his opponent is investing in asset B.

Since both fund managers are endowed with identical wealth, we do not need
to distinguish whether it is i rather than j who invests in the safe as opposed to
the risky asset, and vice versa: asset prices will be the same in both cases. One
of the two fund managers will invest his unitary wealth in the safe asset and
the other fund manager will invest his unitary wealth in the risky asset. Since
they have identical wealth, the two strategic scenarios that we will observe in
equilibrium display the same relative prices. Market clearing requires

ak1 ≡ ρA,1

ρB,1
= α1M + 1

(1 − α1)M + 1
(11.7)

where α1 is clearly a function of the relative price of the safe asset k1. Equi-
librium in this economy requires the relative price to satisfy equation (11.7)
and no arbitrage. No arbitrage requires that ∀t = 1, 2:

BLt < At < BHt

Simple manipulation allows us to state the following:

Remark 1. No arbitrage in this economy is satisfied when

wA

wBH
< kt <

wA

wBL

From equation (11.7) we can also claim the following:

Proposition 1 (Equilibrium in the interim stage). In the interim stage there
is always one and only one market clearing equilibrium.

Proof. See appendix.

11.3.3 The bonus stage

As before, it is convenient to fix a history for the interim stage. First, consider
the case B̃1 = BH1 , so that the fund manager who invested in the risky asset

20However one could follow similar arguments to those suggested here to prove existence and
uniqueness of market clearing equilibrium in each of the two stages along the equilibrium paths
that start with both fund managers playing symmetrically.
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is the interim leader (call him player i) and the fund manager who invested
in the safe asset is the interim follower (call him player j ).21

If B̃1 = BH1 , at t = 1 the wealth of the logarithmic trader available for
investment in the bonus stage is:

w
log
1 = α1A1 + (1 − α1)B

H
1

We can easily show that the portfolio weights chosen for the bonus stage are
the same as the ones chosen for the interim stage. In fact, for a logarithmic
trader portfolio weights do not depend on wealth available for investment.

At the end of the second stage, at t = 2, the logarithmic trader has wealth
equal to:

w̃
log
2 = [α2A2 + (1 − α2)B̃2]wlog

1

The log trader chooses α2 so as to maximize

E[log w̃log
2 ] = E[log{α2A2 + (1 − α2)B̃2}] + logwlog

1

and as a result the level of wealth available for investment has no role in the
maximization problem (it does not appear in the first order condition).

Therefore portfolio weights as a function of asset prices are as in the interim
stage:

α2 = (1 − p)
BH2

BH2 − A2
+ p

BL2

BL2 − A2

β2 ≡ (1 − α2) = A2

(BH2 − A2)(A2 − BL2 )
[E(B̃2)− A2]

As a result, existence and uniqueness of market clearing equilibrium in the
bonus stage and for each of the strategic scenarios for fund managers, can
be proved in the same way as for the interim stage, using the no arbitrage
condition.

Proposition 2 (Equilibrium in the bonus stage). In the bonus stage there is
always one and only one market clearing equilibrium.

Proof. See appendix.

We consider now the strategic interaction between the two fund managers
in the bonus stage. Consider the asymmetric bonus subgame that follows
the history BH1 in the interim stage. To find out how the asymmetric bonus

21Recall that we are concentrating on those equilibrium paths that start with fund managers playing
asymmetrically.
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subgame will be played by the two fund managers we need to ask who wins
the bonus under the four different strategic scenarios. No arbitrage guarantees:

BL2 < A2 < B
H
2

1. If AA, then the leader ends up with wealth equal to BH1 A2 and the follower
with wealth A1A2. Clearly the leader stays leader and wins the bonus.

2. If BB, then the leader ends up with wealth equal to BH1 B̃2 and the follower
with wealth A1B̃2. Irrespective of the realization of the random return, the
leader stays leader and wins the bonus.

3. If AB (follower in the safe, leader in the risky), then the leader ends up with
wealth equal to BH1 B̃2 and the follower with wealth A1A2. If B̃2 = BH2 ,
then clearly the leader gets the bonus. If B̃2 = BL2 , then the follower might
be able to outperform the leader.

4. If BA (follower in the risky, leader in the safe), then the leader ends
up with wealth equal to BH1 A2 and the follower with wealth A1B̃2. If
B̃2 = BL2 , then the leader stays leader and wins the bonus. If B̃2 = BH2 ,
then the follower might be able to outperform the leader.

We want to characterize sufficient conditions so that AA is a Nash equilib-
rium of the asymmetric bonus subgame. For the interim leader, imitating the
follower is always a best reply. On the contrary, the interim follower will in
general have an incentive to differentiate his portfolio choice from the leader’s,
in order to still enjoy some positive chance of catching up. However, if the
wealth gap between the two fund managers is large enough, then the interim
follower has no positive chance of outperforming the leader and as a result, he
will not have any incentive to deviate from our candidate equilibrium, where
both fund managers invest in the safe asset. More in detail: if both fund man-
agers invest in the safe asset, then the leader wins the bonus with probability 1,
so that the expected payoff to the follower is equal to zero. Clearly the leader
has no incentive to deviate. We can show that if the risky asset pays a high
payoff with a sufficiently high probability and the rest of the market is large
enough, the price of the risky asset is so high that the return that the follower
might get, even if he invests his whole portfolio in the risky asset and the
risky asset pays a high payoff, would not be sufficient for the follower to catch
up with the leader, so that in fact he has no incentive to deviate from AA.

An intuitive explanation of why this happens is as follows. When the risky
asset is very likely to pay a high payoff (i.e. p is large), the demand for the
risky asset by the logarithmic utility maximizer that represents the rest of the
market is also very high. When the size M of the market is sufficiently large,
the impact of the logarithmic utility maximizer on asset prices is substantial.
As a result, a high demand for the risky asset will rise its price and lower
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its return in both states of nature (BL2 and BH2 ). In order to catch up with
the leader the follower needs to outperform his opponent in the second stage
by an amount large enough, that would also cover for the initial wealth gap.
His only chance to do so is investing in the safe asset A. In fact, if he plays
safe and his opponents play risky, then he might make it if the interim leader
gets a low return, as BL2 is particularly low. If the follower invests in the
risky asset instead, then, even if the risky asset pays a high payoff, he has no
chance to outperform the leader since BH2 is quite low.

A simple diagram can be useful to understand what is the role of the
parametric conditions that we pose. Consider the diagram in Figure 11.1. The
situation depicted in the figure corresponds to a large value of p. The risky
asset is very likely to pay a high payoff; as a result, market demand for the
risky asset is quite high; hence its price is also high and its return relatively
low, in both states of nature. Clearly a large market size M reinforces the
effect on rates of return. Now, suppose that in the first trading period the risky
asset paid a high payoff. The initial disadvantage of the follower with respect
to the interim leader can be represented by the distance between A and BH .
Since BH is not very high with respect to A, the follower might still succeed
in catching up with the leader. However, his only chance to do so is investing
in the safe asset hoping that his opponent will invest in the risky asset and
get a low return. In this case his initial (small) disadvantage will be more
than compensated by his (large) overperformance, that can be represented by
the distance between BL and A. Clearly rates of return are endogenous and
vary from period to period. However, the parametric conditions we pose on
p and M guarantee that something very similar to what we have depicted in
the diagram in Figure 11.1 is at work. As a result, playing safe becomes a
dominant strategy for the follower. The good outcome of the risky strategy
is not ‘distant’ enough from the outcome of the safe strategy and would not
allow catching up, not even if the follower got lucky. The leader’s best reply
is to imitate his opponent, so that he also plays safe.

BL BHA

Figure 11.1 Rates of return for large p and large M

We can therefore state the following:

Proposition 3 (Herding in the safe asset: lock-in). After a good realization
of the risky asset in the interim stage, if the market is large enough with
respect to each of the two funds, and the probability of a good payoff from
the risky asset is high enough, we obtain equilibrium herding in the safe
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asset. Formally, if B̃1 = BH1 , ∃M < ∞ and ∃p̄ < 1 such that, ∀p ≥ p̄ and
∀M ≥ M , AA is a Nash equilibrium of the asymmetric bonus subgame.

Proof. See appendix.

We therefore get herding in the safe asset as an equilibrium outcome of
the game played by fund managers. Interestingly enough, herding in the safe
asset takes place when it is inefficient: it occurs when the risky asset pays a
good payoff with a sufficiently high probability. The fund managers’ portfolio
weight in the safe asset is increasing in the probability of the risky asset paying
a high payoff, which is inconsistent with the maximization of the expected
value of an increasing and concave function of wealth. Whatever the utility
function of the actual investors, we can assert that fund managers take actions
that are inconsistent with its maximization. The herding that occurs in these
circumstances is therefore inefficient as defined above.

Remark 2. After a good realization of the risky asset in the interim stage,
if the market is large enough with respect to each of the two funds, and the
probability of a good payoff from the risky asset is high enough, we obtain
inefficient equilibrium herding in the safe asset.

Consider now a different history for the interim stage. Suppose that in the
interim stage the risky asset paid a low payoff, so that B̃1 = BL1 . As in the
previous case, in order to find out how the asymmetric bonus subgame will be
played we need to ask who wins the bonus under the four different strategic
scenarios. No arbitrage guarantees:

BL2 < A2 < B
H
2

1. If AA, then the leader ends up with wealth equal to A1A2 and the follower
with wealth BL1 A2. Clearly the leader stays leader and wins the bonus.

2. If BB, then the leader ends up with wealth equal to A1B̃2 and the follower
with wealth BL1 B̃2. Irrespective of the realization of the random return, the
leader stays leader and wins the bonus.

3. If AB (follower in the safe, leader in the risky), then the leader ends up with
wealth equal to A1B̃2 and the follower with wealth BL1 A2. If B̃2 = BH2 ,
then clearly the leader gets the bonus. If B̃2 = BL2 , then the follower might
be able to outperform the leader.

4. If BA (follower in the risky, leader in the safe), then the leader ends
up with wealth equal to A1A2 and the follower with wealth BL1 B̃2. If
B̃2 = BL2 , then the leader stays leader and wins the bonus. If B̃2 = BH2 ,
then the follower might be able to outperform the leader.

We want to characterize sufficient conditions such that BB is a Nash equi-
librium of the bonus subgame following asymmetric play in the interim stage.
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The reasoning is the same as above. For the interim leader, imitating the
follower is always a best reply. On the contrary, the interim follower will in
general have an incentive to differentiate his portfolio choice from the leader’s,
in order to still enjoy some positive chance of catching up. However, if the
wealth gap between the two fund managers is large enough, then the interim
follower will see forgone any positive chance of outperforming the leader and
as a result, he will not have any incentive to deviate from our candidate equi-
librium, where both fund managers invest in the risky asset. More in detail: if
both fund managers invest in the risky asset, then the leader wins the bonus
with probability 1, so that the expected payoff to the follower is equal to
zero. Clearly the leader has no incentive to deviate. We show that if the risky
asset pays a low payoff with a sufficiently high probability and the rest of the
market is large enough, the price of the safe asset gets so high that the return
that the follower might get, investing even a small portion of his wealth in the
safe asset, would not be sufficient for the follower to catch up with the leader,
not even if the leader invested his whole wealth in the risky asset and got a
low return, so that in fact the follower has no incentive to deviate from BB.

An intuitive explanation of why this happens is as follows. When the risky
asset is not very likely to pay a high payoff (i.e. p is small), the demand for the
risky asset by the logarithmic utility maximizer that represents the rest of the
market is also very small. When the size M of the market is sufficiently large,
the impact of the logarithmic utility maximizer on asset prices is substantial.
As a result, a low demand for the risky asset will lower its price and raise
its return in both states of nature (BL2 and BH2 ). In order to catch up with
the leader the follower needs to outperform his opponent in the second stage
by a large amount, that would also cover for the initial wealth gap. His only
chance to do so is investing in the risky asset B. In fact, if his opponent plays
safe and he plays risky, then he might make it if he gets lucky, as BH2 is
particularly high. If the follower invests in the safe asset instead, then, even
if his opponent plays risky and gets a low return, the follower has no chance
to outperform the leader since BL2 is still quite high.

As above, we can help our intuitive understanding of this result with the aid
of a diagram. Consider the diagram in Figure 11.2. The situation depicted in
Figure 11.2 corresponds to a small value of p. The risky asset is very unlikely
to pay a high payoff; as a result, market demand for the risky asset is quite
low; hence its price is also low and its return relatively high, in both states of

BL BHA

Figure 11.2 Rates of return for small p and large M
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nature. Clearly a large market size M reinforces the effect on rates of return.
Now, suppose that in the first trading period the risky asset paid a low payoff.
The initial disadvantage of the follower with respect to the interim leader can
be represented by the distance between BL and A. Since A is not very high
with respect to BL, the follower might still succeed in catching up with the
leader. However, his only chance to do so is investing in the risky asset hoping
that his opponent will invest in the safe asset and that his own risky investment
will pay a high payoff. In this case his initial (small) disadvantage will be more
than compensated by his (large) overperformance, that can be represented by
the distance between A and BH . Clearly rates of return are endogenous and
vary from period to period. However, the parametric conditions we pose on
p and M guarantee that something very similar to what we have depicted in
the diagram in Figure 11.2 is at work. As a result, playing risky becomes a
dominant strategy for the follower. The outcome of the safe strategy is not
‘distant’ enough from the bad outcome of the risky strategy and would not
allow catching up, not even if his opponent got a low return. The leader’s
best reply is to imitate his opponent, so that he also plays risky.

We can therefore state the following:

Proposition 4 (Herding in the risky asset). After a bad realization of the
risky asset in the interim stage, if the market is large enough with respect to
each of the two funds, and the probability of a bad payoff for the risky asset
is high enough, we obtain equilibrium herding in the risky asset. Formally, if
B̃1 = BL1 , ∃M̂ < ∞ and ∃p̂ > 0 such that, ∀M ≥ M̂ and ∀p ≤ p̂, BB is a
Nash equilibrium of the asymmetric bonus subgame.

Proof. See appendix.

We therefore get herding in the risky asset as an equilibrium outcome of the
game played by the two fund managers. Interestingly enough, herding in the
risky asset occurs whenever it is most inefficient, i.e. when the risky asset pays
a bad payoff with a sufficiently high probability. As above, we find that the fund
managers’ portfolio weight in the safe asset is increasing in the probability of the
risky asset paying a high payoff, which is inconsistent with the maximization of
the expected value of an increasing and concave function of wealth. Whatever
the utility function of the actual investors, we can assert that fund managers
take actions that are inconsistent with its maximization. The herding that occurs
in these circumstances is therefore inefficient as defined above.

Remark 3. After a bad realization of the risky asset in the interim stage, if
the market is large enough with respect to each of the two funds, and the
probability of a bad payoff for the risky asset is high enough, we obtain
inefficient equilibrium herding in the risky asset.
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In summary, given some parametric conditions, inefficient herding can be
observed as an equilibrium outcome, whenever fund managers are motivated
by relative performance incentives. Herding occurs when the rest of the market
is large enough with respect to the fund managers, but it is not necessarily
infinite. As a result, the two fund managers are not negligible with respect to
(the rest of) the market and their demands will significantly affect equilibrium
prices. A clear consequence of inefficient herding is therefore the presence of
price movements that cannot be fully reconciled with the maximization of the
expected value of any increasing and concave function of investors’ wealth.
Figure 11.3 illustrates the impact of herding behaviour on asset prices. We
can plot22 the market clearing conditions and identify equilibrium price ratios
(ρA/ρB), under three different scenarios:

1. fund managers maximize, along with the rest of the market, a logarithmic
function of wealth (equilibrium price ratio EL);

2. fund managers, motivated by relative performance incentives, herd on the
safe asset (equilibrium price ratio ES);

3. fund managers, motivated by relative performance incentives, herd on the
risky asset (equilibrium price ratio ER).

One can notice how equilibrium asset prices are significantly different in
the three cases considered, so that herding has a non-negligible impact on
asset prices.

0 ER

EL ES

(rA/rB)

Figure 11.3 Impact of herding behaviour on asset prices

22For a more detailed explanation of the diagrams in Figure 11.3, see the Proof of Propositions 1
and 2 in the appendix.
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11.4 EXTENSIONS

11.4.1 Mixed compensation scheme

One might ask what are the effects on portfolio choice and asset prices of
a compensation scheme for fund managers that rewards both absolute and
relative performance. We believe that our results are robust, at least to a
certain extent, to such changes in the model.

As we argued in section 11.2.4, one main consequence of partially reward-
ing fund managers according to their absolute performance is the fact that
they would no longer choose to hold extreme portfolios, but instead diversify
across the two different available assets. Provided that they are at least par-
tially rewarded on the basis of their relative performance, they would still be
after a leadership position, so that they would choose to hold different port-
folios in at least one of the two stages. Suppose the symmetry between the
two fund managers is broken by the time they get to the end of the first stage,
so that each of them reaches the bonus stage either in a leader or follower
position. The wealth gap between them implies that there will still exist a set
of portfolios such that the leader wins the bonus with probability one and a
herding equilibrium will be possible on one of such portfolios. Clearly the
smaller the portion of their compensation that is based on relative, rather than
absolute, performance, the closer to optimality their portfolio choice will be.
So that the herding outcome will get less and less inefficient, the closer to
zero the portion of their compensation linked to relative performance. How-
ever, we believe that our findings on inefficient equilibrium herding would be
robust, so long as fund managers receive a small, but positive, compensation
for their relative performance.

11.4.2 A multi-period model with endogenous expectations

The present setting could be extended to an n-period model and the inefficient
herding results would prove robust. In fact, in the last period (or possibly
before) the fund managers would find themselves in a bonus stage game, that
they would play in a similar fashion as in the last stage of a two-period model.

The possibility of obtaining robustness of our results in an n-period setting
leads us to what we believe is a valuable and interesting extension of our
simple framework. In the present model we have assumed that everyone in
the market knows the probability distribution over the payoffs of the risky
asset. Suppose that the actual value for p, the probability that the risky asset
will pay a high payoff, is not initially known. Traders start from a common
prior and revise their beliefs in a Bayesian fashion, after each realization of the
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risky asset.23 If a sufficiently long sequence of good realizations for the risky
asset occurs, the belief that traders attach to a good realization of the risky
asset increases monotonically until it reaches the threshold level that triggers
the lock-in effect: fund managers will suddenly leave the risky asset. As a
result, the price of that same asset that yielded high payoffs and looked very
promising for the future suddenly falls. We believe that this consideration
could shed some light on price crashes. In particular, it would provide an
alternative explanation to Jacklin, Kleidon and Pfleiderer (1992) of the fact
that in the period prior to the crash, prices are higher than would be implied
by fundamentals. Here, as in Jacklin, Kleidon and Pfleiderer, in the period
prior to the crash, asset prices are overpriced; when herding occurs, prices
suddenly fall.

11.5 CONCLUDING REMARKS

We build a model of dynamic competition between money managers who are
motivated by relative performance incentives. We consider a stylized financial
market where two assets are traded over two periods by three agents: two fund
managers and a third large trader who represents the rest of the market. Unlike
the third trader, that makes his portfolio choices maximizing expected utility
from investment income, the two fund managers only care about their ranking,
as they want to maximize the probability of obtaining a strictly positive bonus
that is awarded at the end of the second period to the fund manager who
displays the best cumulative performance over the two periods.

We show that inefficient herding between fund managers can be observed
as an equilibrium outcome in the second trading period. Our main result is
to characterize sufficient conditions such that herding obtains. We show that
such an herd occurs when the size of the rest of the market is large, but
not necessarily infinite. Hence the impact of the herd on equilibrium prices
is not negligible and fund managers’ behaviour is indeed destabilizing for
asset prices. We also prove that the direction of the herd crucially depends
on funds’ past performances and, in particular, on the realization of the risky
asset in the period prior to the herd. If, prior to the herd, the risky asset yields
a high payoff and it is very likely to keep on yielding high payoffs in the
future, then fund managers might herd on the safe asset; on the contrary, if
the risky asset yields a low payoff and it is very likely to keep on yielding

23The main difference between this approach to herding and the traditional ‘Bayesian’ herding
approach (as in, for example, Banerjee (1992), Bikhchandani, Hirshleifer and Welch (1992), and
Welch (1992) is that here information does not need to be asymmetric. Everyone in the market
observes the same signals and updates his beliefs identically. Information asymmetries would of
course reinforce the results.
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low payoffs in the future, then a herd might develop in the risky asset. Hence
we characterize the resulting herding behaviour as inefficient: ranking-based
competition between fund managers makes them take portfolio decisions that
cannot be reconciled with the maximization of the expected value of any
increasing and concave function of wealth.

Our results are consistent with the empirical observations of Brown, Har-
low and Starks (1996) and Chevalier and Ellison (1997). From a theoretical
perspective, our findings should be compared to Cabral (1999) and Palomino
and Prat (1998): our main contribution with respect to their papers is that we
consider a similar incentive structure to theirs in a market setting, where asset
prices are endogenous and therefore the effects of herding on market prices
can be ascertained.

11.6 APPENDIX

Proof of Proposition 1 (Equilibrium in the interim stage). In the interim
stage market clearing requires:

k1 ≡ ρA,1

ρB,1
= α1M + 1

(1 − α1)M + 1

where α1 and (1 − α1) are portfolio weights of the logarithmic trader in the
safe and risky assets respectively. Recall that:

α1 = (1 − p)
BH1

BH1 −A1
+ p

BL1

BL1 − A1

which can be rewritten as follows:

α1 = (1 − p)
wHB /ρB,1

wHB /ρB,1 − wA/ρA,1
+ p

wLB/ρB,1

wLB/ρB,1 − wA/ρA,1

And finally:

α1 = (1 − p)
(wHB /wA)k1

(wHB /wA)k1 − 1
+ p

(wLB/wA)k1

(wLB/wA)k1 − 1

Similarly one obtains:

(1 − α1) = −(1 − p)
1

(wHB /wA)k1 − 1
− p

1

(wLB/wA)k1 − 1
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Hence market clearing requires:

k1 =
(1 − p)

(wHB /wA)k1

(wHB /wA)k1 − 1
M + p

(wLB/wA)k1

(wLB/wA)k1 − 1
M + 1

−(1 − p)
1

(wHB /wA)k1 − 1
M − p

1

(wLB/wA)k1 − 1
M + 1

(11.8)

We can solve for equilibrium by computing the solutions of (11.8), which
is a third order equation in k1. Equation (11.8) generally admits three solu-
tions, but only one also satisfies no arbitrage conditions. In fact, with simple
manipulation, (11.8) can be rewritten as:

F(k1) = G(k1)

where:

F(k1) ≡ (1 − p)
1 + (wHB /wA)

(wHB /wA)k1 + 1
+ p

1 + (wLB/wA)

(wLB/wA)k1 + 1
(11.9)

G(k1) ≡ 1

M
· k1 − 1

k1
(11.10)

We can plotF(k1) andG(k1) on a diagram (Figure 11.4), to obtain a geometrical
proof of our claim. The solid line is F(k1) and the dotted line is G(k1). They
intersect three times; however, only one intersection corresponds to a price
ratio such that no arbitrage is guaranteed: F(k1) has two vertical asymptotes in
wA/w

H
B and in wA/wLB . From remark 1, we know that a price ratio satisfying

no arbitrage has to be such that: wA/wHB < kt < wA/w
L
B , so that the only price

ratio that at the same time clears the markets and satisfies no arbitrage in the
interim stage is k∗

1 (as denoted on the diagram in Figure 11.4).

Proof of Proposition 2 (Equilibrium in the bonus stage). In the bonus stage,
when the two fund managers operate in different markets (i.e. each of them
invests in a different asset), the proof is identical to the proof of proposition 1.
When both fund managers invest in the risky asset, market clearing requires:

k2 =
(1 − p)

(wHB /wA)k2

(wHB /wA)k2 − 1
w

log
1 + p

(wLB/wA)k2

(wLB/wA)k2 − 1
w

log
1

−(1 − p)
1

(wHB /wA)k2 − 1
w

log
1

−p 1

(wLB/wA)k2 − 1
w

log
1 + (wL1 + wF1 )

(11.11)
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F(k1)
G(k1)

0 k1 k1
∗

Figure 11.4 Market clearing in the interim stage

where wlog
1 , wL1 and wF1 are respectively the investment incomes of the rest

of the market, the leader and the follower at the end of the interim stage.
Equation 11.11 admits only one solution that also satisfies no arbitrage. In
fact, with simple manipulation, (11.11) can be rewritten as:

F(k2) = G ≡ wL1 + wF1

w
log
1

where:

F(k2) ≡ (1 − p)
1 + (wHB /wA)

(wHB /wA)k2 + 1
+ p

1 + (wLB/wA)

(wLB/wA)k2 + 1

We can plot F(k2) on a diagram (see Figure 11.5), to obtain a geometrical
proof of our claim. The solid line is F(k2), which equals G twice; F(k2) has
two vertical asymptotes in wA/wHB and in wA/wLB . From remark 1, we know
that a price ratio satisfying no arbitrage has to be such that: wA/wHB < kt <
wA/w

L
B , so that the only price ratio that at the same satisfies equation (11.11)

and no arbitrage in the bonus stage is k∗
2 (as denoted on the diagram in

Figure 11.5). Similarly one can show that one and only one equilibrium exists
when both fund managers invest in the safe asset. Market clearing requires:

k2 =

(1 − p)
(wHB /wA)k2

(wHB /wA)k2 − 1
w

log
1 + p

(wLB/wA)k2

(wLB/wA)k2 − 1
w

log
1

+ (wL1 + wF1 )

−(1 − p)
1

(wHB /wA)k2 − 1
w

log
1 − p

1

(wLB/wA)k2 − 1
w

log
1

(11.12)
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F(k2)
G

0

G

k2 k2
∗

Figure 11.5 Herd in the risky asset: market clearing

Equation (11.12) admits only one solution that also satisfies no arbitrage. In
fact, with simple manipulation, (11.12) can be rewritten as:

F(k2) = Q(k2)

where:

F(k2) ≡ (1 − p)
1 + (wHB /wA)

(wHB /wA)k2 + 1
+ p

1 + (wLB/wA)

(wLB/wA)k2 + 1
(11.13)

Q(k2) = −w
L
1 + wF1

w
log
1 k2

(11.14)

We can plot F(k2) and Q(k2) on a diagram (see Figure 11.6), to obtain
a geometrical proof of our claim. The solid line in the diagram is F(k2),
while the dotted line is Q(k2). They intersect twice; F(k2) has two vertical
asymptotes in wA/wHB and in wA/wLB . From remark 1, we know that a price
ratio satisfying no arbitrage has to be such that: wA/wHB < kt < wA/w

L
B , so

that the only price ratio that satisfies equation (11.12) and no arbitrage in the
bonus stage is k∗

2 (as denoted on the diagram in Figure 11.6).

Proof of Proposition 3 (Herding in the safe asset: lock-in). We want to
characterize conditions such that AA is a Nash equilibrium of the asymmet-
ric bonus subgame, after B̃1 = BH1 in the interim stage. Consider the interim
leader first: if he does not deviate, his expected payoff is 1, since he is guar-
anteed to keep his leadership and win the bonus; clearly he has no incentive
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F (k2)
Q(k2)

0

k2

k2

∗

Figure 11.6 Herd in the safe asset: market clearing

to deviate. Consider now the follower: if he does not deviate, his expected
payoff is zero; he will deviate if he can do better than zero. If the follower
deviates from AA, then the strategy profile becomes BA: the performance of
the interim follower is A1B̃2, while the performance of the interim leader is
BH1 A2; in fact, if B̃1 = BH1 , then it must be the case that, in the interim stage,
interim leader and follower invested respectively in the risky and safe asset.
If B̃2 = BL2 , then clearly:

A1B̃2 = A1B
L
2 < B

H
1 A2

so that the leader stays leader and wins the bonus. Hence, when B̃2 = BL2 , the
interim follower has no incentive to deviate from our candidate equilibrium.
As a result, the only situation in which the interim follower might indeed
obtain a strictly positive payoff is the case B̃2 = BH2 . It is sufficient to have:

A1B
H
2 ≤ BH1 A2 (11.15)

to guarantee that the interim follower has no incentive to deviate from the can-
didate equilibrium. Simple manipulation shows that (11.15) is equivalent to:

k2 ≤ k1 (11.16)

where kt ≡ ρA,t/ρB,t , for t = 1, 2. Recall that, when in the interim stage
B̃1 = BH1 and in the bonus stage the strategy profile is BA (follower in the
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risky, leader in the safe), by simple market clearing:

k2 = α2M
′ + BH1

(1 − α2)M ′ + A1
(11.17)

where:

M ′ = α1A1M + (1 − α1)B
H
1 M (11.18)

Substituting (11.18) into (11.17), we find that condition (11.16) requires:

α1α2M + (1 − α1)α2(w
H
B /wA)k1M + (wHB /wA)k1

α1(1 − α2)M + (1 − α1)(1 − α2)(w
H
B /wA)k1M + 1

≤ k1 (11.19)

We can express (11.19) as an inequality for M as:

[(1 − α1)(w
H
B /wA)k1 + α1][(1 − α2)k1 − α2]M ≥ [(wHB /wA)− 1]k1

(11.20)

Inequality (11.20) is satisfied when both:

(1 − α2)k1 − α2 > 0 (11.21)

and:

M ≥ M ≡ [(wHB /wA)− 1]k1

[(1 − α1)(w
H
B /wA)k1 + α1][(1 − α2)k1 − α2]

(11.22)

The last step in our proof is to find conditions such that (11.21) is satisfied.
Recall that by no arbitrage k1 is bounded below by wA/wHB . Hence:

(1 − α2)k1 − α2 > (1 − α2)
wA

wHB
− α2 = wA

wHB
− α2

(
wA

wHB
+ 1

)

It follows that (11.21) is necessarily satisfied when:

wA

wHB
− α2

(
wA

wHB
+ 1

)
≥ 0

which can be reformulated as:

α2 ≤ wA

wA + wHB
(11.23)
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We can finally show that a sufficiently large value for p implies α2, and a
fortiori (11.21). Recall that:

α2 = (1 − p)
wHB k2

wHB k2 −wA
− p

wLBk2

wLBk2 − wA

so that (11.23) can be rewritten as:

(1 − p)
wHB k2

wHB k2 − wA
− p

wLBk2

wLBk2 − wA
≤ wA

wA + wHB

which implies:

p ≥ p̄ ≡ (wHB k2)/(w
H
B k2 − wA)− wA/(wA + wHB )

(wHB k2)/(w
H
B k2 − wA)+ (wLBk2)/(w

L
Bk2 − wA)

(11.24)

Summarizing: p ≥ p̄ and M ≥ M guarantee that (11.16), and hence (11.15)
are satisfied, so that the interim follower has no incentive to deviate from
the candidate equilibrium. Notice that p̄ < 1 and M < ∞, so that parameter
values such that the conditions we pose are satisfied indeed exist.

Proof of Proposition 4 (Herding in the risky asset). We want to characterize
conditions such that BB is a Nash equilibrium of the asymmetric bonus
subgame, after B̃1 = BL1 in the interim stage. Consider the interim leader
first: if he does not deviate, his expected payoff is 1, since he is guaranteed to
keep his leadership and win the bonus; clearly he has no incentive to deviate.
Consider now the follower: if he does not deviate, his expected payoff is zero;
he will deviate if he can do better than zero. If the follower deviates from
BB, then the strategy profile becomes AB: the performance of the interim
follower is BL1 A2, while the performance of the interim leader is A1B̃2; in fact,
if B̃1 = BL1 , then it must be the case that, in the interim stage, interim leader
and follower invested respectively in the safe and risky asset. If B̃2 = BH2 ,
then clearly:

A1B̃2 = A1B
H
2 > BL1 A2

so that the leader stays leader and wins the bonus. Hence, when B̃2 = BH2 , the
interim follower has no incentive to deviate from the candidate equilibrium. As
a result, the only situation in which the interim follower might outperform the
leader and gain a strictly positive payoff is the case B̃2 = BL2 . It is sufficient
to have:

A1B
L
2 ≥ BL1 A2 (11.25)
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to guarantee that the interim follower has no incentive to deviate from the can-
didate equilibrium. Simple manipulation shows that (11.25) is equivalent to:

k1 ≤ k2 (11.26)

where kt ≡ ρA,t/ρB,t , for t = 1, 2. Recall that, when in the interim stage
B̃1 = BL1 and in the bonus stage the strategy profile is AB (follower in the
safe, leader in the risky), by simple market clearing:

k2 = α2M
′ + BL1

(1 − α2)M ′ + A1
(11.27)

where:

M ′ = α1A1M + (1 − α1)B
L
1 M (11.28)

Substituting (11.28) into (11.27), we find that condition (11.26) requires:

α1α2M + (1 − α1)α2(w
L
B/wA)k1M + (wLB/wA)k1

α1(1 − α2)M + (1 − α1)(1 − α2)(w
L
B/wA)k1M + 1

≥ k1 (11.29)

We can express (11.29) as an inequality for M as:

[(1 − α1)(w
L
B/wA)k1 + α1][α2 − (1 − α2)k1]M ≥ [1 − (wLB/wA)]k1

(11.30)

Inequality (11.30) is satisfied when both:

α2 − (1 − α2)k1 > 0 (11.31)

and:

M ≥ M̂ ≡ [1 − (wLB/wA)]k1

[(1 − α1)(w
L
B/wA)k1 + α1][α2 − (1 − α2)k1]

(11.32)

The last step in our proof is to find conditions such that (11.31) is satisfied.
Recall that by no arbitrage k1 is bounded above by wA/wBL . Hence:

α2 − (1 − α2)k1 > α2 − (1 − α2)
wA

wLB
= α2

(
wA

wLB
+ 1

)
− wA

wLB
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It follows that (11.31) is necessarily satisfied when:

α2

(
wA

wLB
+ 1

)
− wA

wLB
≥ 0

which can be reformulated as:

α2 ≥ wA

wA + wLB
(11.33)

We can finally show that a sufficiently small value for p implies (11.33), and
a fortiori (11.31). Recall that:

α2 = (1 − p)
wHB k2

wHB k2 −wA
− p

wLBk2

wLBk2 − wA

so that (11.33) can be rewritten as:

(1 − p)
wHB k2

wHB k2 − wA
− p

wLBk2

wLBk2 − wA
≥ wA

wA + wLB

which implies:

p ≤ p̂ ≡ (wHB k2)/(w
H
B k2 −wA)−wA/(wA +wLB)

(wHB k2)/(w
H
B k2 − wA)+ (wLBk2)/(w

L
Bk2 − wA)

(11.34)

Summarizing: p ≤ p̂ and M ≥ M̂ guarantee that (11.26), and hence (11.25)
are satisfied, so that the interim follower has no incentive to deviate from
our candidate equilibrium. Notice that p̂ > 0 and M̂ < ∞, so that parameter
values such that the conditions we pose are satisfied indeed exist.
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Chapter 12

The rate-of-return formula
can make a difference

DAVID SPAULDING

ABSTRACT

The purpose of this chapter is to present a discussion concerning the
strengths and weaknesses of different ways of calculating rates of
return. Difficulties associated with cash flows and daily volatilities are
identified. Some calculations demonstrate that the different methods
can give surprisingly different answers.

12.1 INTRODUCTION

Since the mid-1980s, we’ve identified numerous ways to calculate rates of
return. The simplest approach:

ROR = EMV − BMV

BMV
(12.1)

where:
EMV = ending period market value
BMV = beginning period market value
ROR = rate of return

works perfectly. Unless, of course, there are cash flows. And since we first
started to measure rates of return, we’ve realized that cash flows cause us the
greatest challenge. And strive as we may, they still can be problematic.

Some of the formulae can be grouped into a category called ‘approximation
methods’, because we know they have some inaccuracies, usually because of
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irregular pricing of the portfolio. Until the 1980s, it was common for the
securities within portfolios to be priced on a weekly or monthly basis. This
was especially true of fixed income securities. Even today, we find firms that
don’t do daily pricing because of the costs for pricing services.

The formula proposed by the Investment Council Association of America
(ICAA)1 and the early formula offered by Peter Dietz2 assumed that cash flows
occurred at the middle of the measurement period. While this assumption
didn’t usually cause much of a problem, we quickly learned that when large
cash flows (usually considered flows greater than or equal to 10% of the
portfolio’s market value) took place early or late in the period, the accuracy
could suffer greatly.

Consequently, we saw the introduction of day-weighting factors that assured
that the flow would be included in the formula for only the number of days
the money was available to the manager. Dietz’s day-weighting formula,3

later referred to as the ‘modified Dietz by the Association for Investment
Management and Research (AIMR)’,4 was such a formula. We’ll demonstrate
the use of this factor below.

Day-weighting methodologies still only produce approximate rates of return.
Inaccuracies arise because of market volatility, and the more volatility, the
greater the inaccuracy. The industry has therefore continued to try to improve
the accuracy of these numbers. There’s also been pressure (from portfolio
managers and clients) to have returns measured more frequently to enhance
both internal and client reporting. Consequently, we’re moving to daily rates
of return.

There is another reason we’re seeing a shift to daily: both the Global Invest-
ment Performance Standards (GIPS) and the Association for Investment
Management and Research’s Performance Presentation Standards (AIMR-
PPS) call for revaluing the portfolio whenever a cash flow occurs, by January
2010.5

There’s a common belief that by moving from mid-point to day-weighting,
and then to daily rates of return, that our returns are more accurate. But are
they?

This chapter contrasts some of the more popular methods of deriving
returns and demonstrates that the differences can be significant. And that
cash flows can create some huge problems for us, if they’re not properly
handled.

1ICAA (1971), page 7.
2Dietz and Kirschman (1983), page 622.
3Dietz and Kirschman (1983), page 623.
4AIMR (1993), page 21.
5AIMR (1999), page 7; AIMR (2001), page 15.
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12.2 ALTERNATIVE METHODOLOGIES TO MEASURE PERFORMANCE

The mid-point Dietz formula has been a very simple approach to deriving
rates of return. It enhances the basic equation shown above by introducing a
treatment for cash flows (C):

ROR = EMV − BMV − C

BMV + 0.5 × C
(12.2)

The numerator (EMV − BMV − C) provides us with the net amount of
money realized during the period. By multiplying the cash flows by one-half
(0.5) in the denominator, we’re saying that the flow was only available to the
manager for half the time.

The appeal of this formula is its simplicity. Problems arise when flows,
especially large ones, take place early or late in the period – the mid-point or
‘0.5’ assumption no longer works.

To improve the treatment of flows and eliminate this distortion, we can
day-weight the flows. To do this, we introduce the Wi term, or the ‘weighting
factor’. It’s derived as follows6:

Wi = CD −Di

CD
(12.3)

where:
CD = the number of calendar days in the period
Di = the day of the flow.

For example, an in-flow that occurred on the 10th day of a 30 day month
would yield:

W = 30 − 10

30
= 20

30
= 0.67 (12.4)

meaning that the money was available to the manager for 67% of the
month.

With the day-weighting factor, we can progress to the day-weighting or
modified Dietz formula:

ROR =
EMV − BMV −

n∑
i=1

Ci

BMV +
n∑
i=1

WiCi

(12.5)

6This formula presumes that the flow occurred at the end of the day. To have the flow take place
at the start of the day, simply add 1 to the numerator.
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The numerator still yields the net amount of money realized while the denom-
inator gives us the amount of money that was available to the manager for
the period.

This approach only prices the portfolio at the start and end of the period.
To enhance the return’s accuracy, we should revalue whenever a flow occurs.
The true daily rate of return formula

ROR = EMV 1

BMV 1
+ EMV 2

BMV2
+ · · · + EMVn

BMVn
(12.6)

is intended to produce an accurate rate of return, devoid of the affects of flows
or market volatility.

Each individual fraction demarcates the periods from one flow to the next,
starting with the beginning period market value and ending with the period’s
ending value. The tricky part is determining whether or not the flow occurred
at the start or end of the day. But we’ll discuss this further below.

There are other methods available, such as the modified BAI, ICAA and unit
value formulae. Space does not permit going into these in detail. However, the
ones described above are the most commonly used ones and will be discussed
further below.

12.3 CONTRASTING THE METHODS

12.3.1 The scenario we’ll use

We’ll use the following example to contrast the various approaches and to
demonstrate the importance of properly handling cash flows:

31 May: End-of-month market value = $100,000
4 June: End-of-day market value = $100,500
5 June: Cash flow of $500,000

End-of-day market value (without cash flow) = $130,500
End-of-day market value (with cash flow included) = $630,500

30 June: End-of-month market value = $640,000

The portfolio ended the month of May with a market value of $100,000.
During the month of June, a single (but very large) cash flow of $500,000
occurred; this happened on 5 June. The market value from the preceding
day was $100,500 (i.e. the portfolio had increased by $500 from the start of
month). At the end of 5 June, there was an appreciation of $30,000. If we
add this amount to the start-of-day value, we get $130,500; if we add it to
the start-of-day plus the cash flow, we get $630,500. The market value at the
end of June was $640,000.
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12.3.2 Mid-point Dietz

We’ll begin by using the ‘mid-point Dietz’ method. It assumes that all cash
flows occur at the middle of the period. As noted earlier, the formula is pretty
straightforward:

RORMPD = EMV − BMV − C

BMV + 0.5 × C
(12.7)

where:
RORMPD = the rate of return, using the mid-point Dietz method

EMV = the ending period market value
BMV = the beginning period market value

C = the sum of the cash flows for the period.

The ‘0.5’ in the denominator is what causes the cash flows to be treated as if
they occurred at the middle of the period.

If we substitute the values from above, we get:

RORMPD = 640,000 − 100,000 − 500,000

100,000 + 0.5 × 500,000
= 40,000

350,000
= 11.43%

(12.8)
The advantage of this method is its simplicity. It requires you to calculate
only two market values: the starting and ending. And you simply sum all the
cash flows and treat them as if they occurred in the middle.

While some people have used this method in the past for periods as long
as a calendar quarter or even a full year, it’s been more appropriate of late to
use it for calculating monthly returns. It is, however, also suitable for shorter
periods.

The main problem with this approach is that it treats flows as if they
occurred in the middle of the period. This is obviously not always the case.
The accuracy of this approach diminishes when (1) the actual flow date moves
farther away from the middle of the month and (2) when the size of the flow,
relative to the starting market value, is large.

Traditionally, the industry has accepted ‘large’ to mean 10% or more of the
market value.7 In our case, a cash flow of $10,000 (10% of $100,000) would
qualify as large. Therefore, a flow of $500,000 would have to be described
as very large. And, given that the actual flow date was 5 June, a whole
10 days earlier than the mid-point of 15 June, we’d expect the accuracy to be
questionable.

7This is one of those ‘unwritten’ rules that has become a de facto standard.
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12.3.3 Day-weighted (or modified) Dietz

Dietz recognized the problem with the mid-point method and suggested that
‘Recognizing that cash flows do not all occur at the mid-point of a time
interval, and in an attempt to minimize the distortion that might result from
such an assumption, some performance measurement algorithms day-weight
cash flows’.8

Dietz simply referred to this as ‘day-weighting’. AIMR uses the moniker
‘modified’ to signify day-weighting.9

To accomplish this, we need a day-weighting factor:

Wi = CD −Di

CD
(12.9)

where:
Wi = the weighting factor for the ith cash flow
CD = the number of calendar days in the period
Di = the day of the ith cash flow.

The result is the per cent the money was in (or out, in the case of outflows)
the portfolio for the period.

In our case, there is a single cash flow of $500,000 which took place on
the 5th of the month. So, we have:

Wi = 30 − 5

30
= 25

30
= 0.8333 = 83.33% (12.10)

The additional $500,000 is therefore present for 83.33% of the month, as
opposed to 50% of the month that is assumed in the mid-point method. We
would expect to see increased accuracy in the return by increasing the weight
of the cash flow in the denominator by the additional 33.33%.

The actual rate of return formula for this method is identical to the mid-
point formula, except that the weighting factor is substituted for the ‘0.5’ in
the denominator:

RORMD =
EMV − BMV −

n∑
i=1

Ci

BMV +
n∑
i=1

Wi × Ci

(12.11)

8Dietz (1983), page 623.
9AIMR (1997), page 45.
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While the presence of the capital Greek letter sigma (�) tends to make this
equation appear more onerous, it really isn’t.

What we’ve introduced is the mathematical expression known as the Rie-
mann sum. The expression

n∑
i=1

Wi × Ci (12.12)

means to sum the weights (W ) times their respective cash flows (C). (The i
represents the starting value (1) and the n signifies the last value.)

If, for example, we had three flows ($10,000 on the 5th of the month,
$20,000 on the 15th of the month, and $30,000 on the 20th of the month),
in a 30 day month, we’d have weights of 0.8333 for the first, 0.5000 for the
second and 0.1667 for the third.10

Employing the above equation, we have:

3∑
i=1

Wi × Ci = W1 × C1 +W2 × C2 +W3 × C3 = 0.8333 × 10,000

+ 0.5 × 20,000 + 0.1667 × 30,000 = 23,334 (12.13)

Now, back to calculating the rate of return. If we employ the Modified Dietz
approach to our portfolio, we get:

RORMD = 640,000 − 100,000 − 500,000

100,000 + 0.8333 × 500,000

= 40,000

516,666.67
= 0.0774 = 7.74% (12.14)

This is quite a difference from our mid-point result (11.43%), isn’t it? The
difference of 3.69% would be considered significant. And yet, the use of day-
weighting is merely a suggestion – not a requirement. Portfolio managers
who have such large flows, which occur on days far from the mid-point,
should recognize a distortion (using Dietz’s term) when the mid-point method

10For the flow that occurred on the 15th, we have:

CD −D

D
= 30 − 15

30
= 15

30
= 0.5000

This means the money was available for half the month.
For the final flow on the 20th, we have

30 − 25

30
= 5

30
= 0.1667

meaning the money was in the portfolio for only 16.67% of the month.
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is relied upon. So, we should consider the 7.74% to be a more accurate
assessment of the return.

Why such a lower return? Because this approach recognizes that the addi-
tional $500,000 wasn’t present for only 50% of the month, but for 83.33%!
Therefore, the net appreciation in value for the month of $40,000 has now
been more attributed to the flow than the mid-point method would.

12.3.4 Achieving greater accuracy – the true daily rate of return

The modified approach is still considered an approximation method because
we are not capturing the market value of the portfolio at the time of the flow.
The real purpose of time weighting is to measure the return of the manager,
for the amount he/she had under his/her control, for the various times in
the period. As noted at the start of this chapter, both the AIMR and Global
performance presentation standards call for revaluing portfolios each time a
cash flow occurs. This will result in a daily rate of return.11

At first glance, one might presume that there’s not much too deal with
other than revaluing the portfolio. But, with this method, we need once again
to think about the timing of the cash flow: did it occur at the start, end, or
middle of the day?12 In other words, did the manager have use of the funds
for the entire day, not at all, or for half the day?

The basic formula
The true time-weighted rate of return is arrived at by calculating the market
values whenever a flow occurs, and dividing the ending daily value by the

11At first glance, one might presume that we must revalue for every day in the period to achieve
a daily return, but this isn’t true. For example, let’s just calculate the return for the first five days
of a month, revaluing for each day, with no cash flows. If the daily values are $100, $101, $102,
$103, $104, we’d have:

101

100
· 102

101
· 103

102
· 104

103

From your elementary school arithmetic, you should recall that you can cancel out ‘like terms’.
That is to say when there’s a number in the denominator that’s the same as the numerator, you
cancel them. Doing this, we have the 101, 102 and 103 cancel out, ending up with

104

100

which is our ending value divided by the beginning. So, we need only to revalue when flows take
place.
12There may be some who would argue that we want to be even more precise, and use a weighting
factor, similar to the day-weighting factor, to calculate the precise amount of hours (or minutes?)
the manager had use of the money. But I’d suggest that this type of treatment has little, if any,
value, and won’t address it at this time.
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preceding starting value, and multiplying these numbers together:

n∏
i=1

EMVi

BMVi
− 1 (12.15)

Like the Riemann sum, the
∏

symbol means to take the product of the
expression which immediately follows.

1. Start-of-day
Let’s begin by assuming the manager had full use of this $500,000 for the
full day. Any appreciation in market value on that date would therefore be
attributed to the starting value (i.e. the value from the prior day’s close) and
the inclusion of the cash flow amount.

We need to calculate the return from the beginning of the month through
the 4th, for the 5th of the month, and then from the 5th through the end of
month.13

The first period goes from 31 May through 4 June. The starting value
is $100,000 and the ending is $100,500. For the 5th, we have use of the
$500,000 cash flow, so the starting value is the prior day’s closing market
value ($100,500) plus the cash flow ($500,000), or $600,500. The ending
day’s market value includes the day’s appreciation of $30,000, resulting in
a value of $630,500. This amount also serves as the beginning value for the
third part of the month, terminating with the ending month value of $640,000.
Mathematically, we have:

RORSOD = 100,500

100,000
× 630,500

600,500
× 640,000

630,500
− 1 = 0.0711 = 7.11%

(12.16)
This is close to our modified Dietz result of 7.74%. Assuming this is the proper
treatment of cash flows (that is, that the flow did occur at the start of day),
then the 63 basis point14 improvement can be important. But, there’s a cost
associated with this improvement. In addition to pricing the portfolio for every
cash flow, we must ensure that the contents of our portfolio are accurate (i.e.
that our holdings, corporate actions and trades have been properly accounted
for and agree with the ‘official books and records’ (i.e. custodian records)
of the portfolio. This ‘cost’ can be significant and must be weighed with the
increased accuracy.

13In actuality, we need only calculate the return from the beginning to the 4th, and then from the
5th through month-end, since there will be the calculation of the ending day market value from
the 5th and the starting market value for the last period of the month. But to make it very clear as
to what is occurring, we’ll add the intervening day’s return.
14A basis point is 0.01 or 1/100 of a per cent (i.e. there are 100 basis points in a percentage point).
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2. End-of-day
What if the flow took place at the end of 5 June? This would mean the
manager did not have use of the money on that day and that any appreciation
that occurred should be solely attributed to the start-of-day (i.e. prior day’s
closing value) market value of $100,500.

The first period again goes from 31 May through 4 June. The starting value
is $100,000 and the ending is $100,500. For the 5th, we have the $100,500
as the starting value, ending with the inclusion of the $30,000 appreciation
($130,500). We now add the cash flow ($500,000), to come up with the
starting value for the remaining period of the month ($630,500), terminating
with the ending month value of $640,000. Mathematically, we have:

ROREOD = 100,500

100,000
× 130,500

100,500
× 640,000

630,500
− 1 = 0.3247 = 32.47%

(12.17)
Wow, where did that come from? Can this be right? 32.47%?

By assuming that the contribution of $500,000 wasn’t available on the 5th,
we’re attributing the entire day’s appreciation ($30,000) to the starting day’s
value ($100,500). For that day alone, we have a 29.85% (130,500/100,500 −
1) return. Is it possible that the portfolio jumped this much in a single day?
Of course it is. But probably unlikely.

If this approach were to have been used and this result derived, we’d suggest
that the manager check the overall market. In the start-of-day approach, the
return for this day was 5% (630,500/600,500 − 1). If the market moved
approximately 5% that day, then one might properly conclude that the money
was there for the full day.

3. Middle-of-day
What if we’re not sure whether the money was present for the full day or
not? Then we might want to use a mid-day approach. Here, we interject the
mid-point Dietz expression into our return for the 5th of the month:

RORMOD = 100,500

100,000
×
(

630,500 − 100,500 − 500,000

100,500 + 0.5 × 500,000
− 1

)

× 640,000

630,500
= 0.1075 = 10.75% (12.18)

The return for the 5th is 8.56%. We’re attributing the appreciation that occurred
on 5 June to the beginning of day market value ($100,500) plus half of the
cash flow ($250,000).

The monthly return (10.75%) seems to be better than the mid-point Dietz
return but actually less precise than the modified Dietz result. While there
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Table 12.1

Mid-point Dietz 11.43%
Modified Dietz 7.74%
Start-of-day daily 7.11%
End-of-day daily 32.47%
Mid-point daily 10.75%

may be times when this approach is appropriate, this time doesn’t seem to be
one of them.

12.4 CONCLUSION – SUMMARIZING THE FINDINGS

We’ve now tried five different methods and obtained five different results:
There are some considerable differences here, aren’t there? With a low of

7.11% and a high of 32.47%, one must be confused as to which is right.
And to think that this large range doesn’t include either of the approximation
method returns!

So, which is correct?
Technically either of the approximation methods would be acceptable.

Again, the idea of day-weighting is an option (although it will become a
requirement for the AIMR and GIPS standards in 200515). Hopefully, the
firm has adopted the notion that large flows will cause the day-weighting of
cash flows, which will result in a more accurate result.

This example demonstrates the problem that can occur when one thinks
the daily method will yield a more accurate return, regardless of how cash
is treated. While we can see that cash treatment is important for monthly
approximation methods, it can be even more important for daily.

12.4.1 But really, can this happen?

One might think that this fabricated example was created to make a point but
wouldn’t occur in reality. Well, think again.

Here’s an example that was given to me by a client:

Beginning of month market value = $30,635,060
Withdrawal on first business day of month = $20,000,000
Depreciation in market value on first of month = $2,948,532
End of month market value = $7,071,916.

Again, we have, what everyone would agree is, a large cash flow (close to
two-thirds of the starting value is going away). And it’s occurring on the first
day of the month.

15AIMR (1999), page 7; AIMR (2001), page 15.
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Using the five methods, we get the following results:
Mid-point Dietz

RORMPD = 7,071,916 − 30,635,060 − (−20,000,000)

30,635,060 + 0.5 × (−20,000,000)

= −3,563,144

20,635,060
= −17.27% (12.19)

Modified Dietz

RORMD = 7,071,916 − 30,635,060 − (−20,000,000)

30,635,060 + 0.9667 × (−20,000,000)

= −3,563,144

11,301,060
= −0.3153 = −31.53% (12.20)

Start-of-day daily

RORSOD = 30,635,060

30,635,060
× 7,686,528

10,635,060
× 7,071,916

7,686,528
− 1

= −0.3350 = −33.50% (12.21)

End-of-day daily

ROREOD = 30,635,060

30,635,060
× 27,686,528

30,635,060
× 7,071,916

7,686,528
− 1

= −0.1685 = −16.85% (12.22)

Middle-of-day daily

RORMOD = 30,635,060

30,635,060

×
(

7,686,528 − 30,635,060 − (−20,000,000)

30,635,060 + 0.5 × (−20,000,000)
− 1

)

× 7,071,916

7,686,528
= −0.2114 = −21.14% (12.23)

Here we have a situation where a very large outflow took place. But did it
occur at the start or end of day? If at the start, we will have a return of
−33.50%. If at the end, it’s −16.85%. Either are possible, but the difference
is huge.

What we know is that there was a drop in the market value (ignoring the
cash flow) of $2,948,532 on the first of the month. Do we compare this with
the start of day with or without the flow? It would probably make sense that
sales took place to generate the funds for the withdrawal, so it’s probable that
the end-of-day treatment is appropriate.
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Again, we find that the mid-day treatment for the daily return doesn’t appear
to provide any increased accuracy, so its use seems questionable.

12.4.2 The method does matter

Hopefully, what you’ve concluded from this brief chapter is that you can
get some very different results, using perfectly accepted methods of calculat-
ing returns. Cash flow treatment has always been an issue when measuring
performance. It’s even more important when we’re trying to generate daily
results.

One key is consistency. Whatever approach you select, you should stick
with it, unless specific circumstances suggest otherwise. What you cannot do
is game it. That is, try all the methods and take the one that provides you
with the highest result. This would be unethical.

The second example was given to me to analyse because the client’s soft-
ware vendor used the start-of-day approach and calculated the −33.50%
return. Because the vendor’s software wouldn’t allow an end-of-day treat-
ment, what appears to be a significantly flawed result took place. So, another
key is that your software vendor has to be flexible, allowing both start- and
end-of-day treatment.

The industry is moving to daily returns. But for them to be accurate,
the data has to be correct (to avoid the old GIGO – garbage in/garbage
out – phenomenon) and cash flows have to be properly handled.
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Chapter 13

Measurement of pension fund
performance in the UK

IAN TONKS

ABSTRACT

We investigate the performance of the UK equity portfolios of 2,175
segregated UK pension funds over the period 1983–1997. We find that
there is a similar pattern in the returns on most of the pension funds
and the FT All Share index, leading us to conclude that most funds
in the sample are ‘closet-trackers’. Any measures of outperformance
were therefore bound to be small. Over the whole period and across all
funds average outperformance was insignificantly different from zero.
We investigated the sensitivity of the fund returns to the addition of a
size premium, which we found to be significant, and important for the
smaller funds in our sample. During three subperiods we found that
there was significant average underperformance during the strong bull
market of the mid-1980s, but significant outperformance since 1987.
In particular in the period 1987–1992 the average outperformance
across pension funds was one-half of a percentage point per year.
Decomposing this abnormal performance we found that most of it
could be explained by the ability of both large and small funds to
time the size premium. On the whole there were negative returns to
both selectivity and to market timing. There was little evidence of any
differences in the performance between mature and immature funds.

13.1 INTRODUCTION

This chapter examines the performance of a sample of UK pension funds’
equity investments over the period 1983–1997. Assessing the investment
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performance of pension funds is important since a number of recent UK
policy documents have argued that pension contributions in particular should
be investing in tracker funds, on the basis that ‘there is little evidence that
active fund management can deliver superior investment returns for the con-
sumer’.1 The objectives of this project are thus twofold: first, we examine the
performance of UK pension funds over a 14 year period relative to alternative
specifications of single factor and multifactor benchmarks. Second, we exam-
ine whether the characteristics of the pension fund affect its performance. The
characteristic that we focus on is fund size, to examine whether large funds
outperform small funds or vice versa.2

The pension funds in our sample are funded occupational pension schemes.
Occupational pension schemes are usually funded and require contributions
throughout the employee’s working life. In a funded scheme an employee pays
into a fund which accumulates over time, and then is allowed to draw on this
fund in retirement. These schemes are provided by an employer and may pay
on a defined benefit or a defined contribution basis. The fund is administered
by trustees, usually nominated by the employer. Defined benefit (or final
salary) schemes offer a pension, guaranteed by the employer, usually defined
in terms of some proportion of final year earnings, and are related to the
number of years of employment. Defined contribution (or money purchase)
schemes are always funded and convert the value of the pension fund at
retirement into an annuity.

In part the size of the pension fund will depend on the size of the employer,
but some large employers may have a number of separate schemes operating
for subgroups of employers. We will examine whether there is an optimal fund
size in terms of performance. For market liquidity reasons large funds may
be constrained in the portfolio of assets in which they invest, whereas smaller
funds may be able to take advantage of investing in a wider range of securities.

The significance of this work for trustees and plan advisers is compelling.
At the most fundamental asset allocation level, the conclusions of the analysis
of the distribution of returns will aid trustees in their decision as to whether
to invest their pension fund monies in an active or in a passive vehicle.

13.2 PREVIOUS EVIDENCE ON PERFORMANCE
OF MANAGED FUNDS

Empirical evidence suggests that the performance of the average portfolio
manager relative to external benchmarks has been disappointing. The early

1Paragraph 420, page 71, Office of Fair Trading (1997). See also Consumers’ Association (1997);
Department of Social Security (1998); Financial Services Agency (1999).
2Another characteristic of a fund is its maturity. Thomas and Tonks (2001) show that the maturity
of the fund does not affect its performance.
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literature of the performance of mutual funds in the US (Jensen, 1968) found
that simple tests of abnormal performance did not yield significant returns.3

Although on average fund managers do not outperform, in any sample there is
a distribution to the performance, and more recently research has investigated
whether the outperformers in the sample continue to outperform in the future.
Grinblatt and Titman (1992) find that differences in mutual fund performance
between funds persist over five year time horizons and this persistence is con-
sistent with the ability of fund managers to earn abnormal returns. Hendricks,
Patel and Zeckhauser (1993) analysed the short-term relative performance of
no-load, growth-oriented mutual funds, and found the strongest evidence for
persistence in a one year evaluation horizon. Malkiel (1995), however, argues
that survivorship bias is more critical than previous studies have suggested.4

When an allowance is made for survivorship bias in aggregate, funds have
underperformed benchmark portfolios both after management expenses and
even gross of expenses. Further he finds that while considerable performance
persistence existed in the 1970s, there was no consistency in fund returns
in the 1980s. Brown and Goetzmann (1995) examine the performance per-
sistence of US mutual funds and claim that the persistence is mostly due
to funds that lag the S&P. They demonstrate that a relative performance
pattern depends on the period observed and is correlated across managers,
suggesting that persistence is probably not due to individual managers – it
is a group phenomenon, due to a common strategy that is not captured by
standard stylistic categories or risk adjustment procedures. This is consistent
with herding theories of behaviour (Grinblatt, Titman and Wermers, 1994).
They suggest that the market fails to discipline underperformers, and their
presence in the sample contributes to the documented persistence. Carhart
(1997) demonstrates that common factors in stock returns and investment
expenses explain persistence in equity mutual funds’ mean and risk-adjusted
returns. Only significant persistence not explained is concentrated in strong
underperformance by the worst return mutual funds. Carhart’s results do not
support the existence of skilled or informed mutual fund portfolio managers.
Daniel et al. (1997) using normal portfolio analysis show that mutual fund
managers – in particular aggressive-growth funds – exhibit some selectivity
ability but that funds exhibit no timing ability. They introduce a measure

3The early work of Jensen (1968) and others all established that during bull markets fund managers
cannot outperform a market index. However, in bear markets, active managers are more likely to
outshine passive alternatives.
4Malkiel points out that only the more successful mutual funds survive. Higher risk funds that fail
tend to be merged into other products to hide their poor performance. Also bias from tendency to
run incubator funds – run ten different products – see which are best and market those, ignoring
the poor record of the rest.
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that identifies if a manager can time the market, size, book to market, or
momentum strategies. Gruber (1996) poses the question: why do people buy
mutual funds when their performance is so poor? He postulated that it might
be because unitized products are bought and sold at NAV so management
ability is not priced into the product. If management ability exists then per-
formance should be predictable. Some investors will be aware of this and will
invest accordingly. In the UK Blake and Timmermann (1998) examine 2,300
UK open-ended mutuals over 23 year period (1972–1995), using bid prices
and net income gross of fees. Over the period the data includes 973 dead and
1,402 surviving funds, and by studying the termination of funds, they are able
to shed light on the extent of survivorship bias. They find economically and
statistically very significant underperformance that intensifies as the termina-
tion date approaches, and they conclude that survivorship does not alter the
results significantly.

Turning to pension funds specifically Ippolito and Turner (1987) examine
returns on 1,526 US pension funds and find underperformance relative to the
S&P500 Index. Lakonishok, Shleifer and Vishny (1992) provide evidence on
the structure and performance of the money management industry in the US in
general but focus on the role of pension funds, examining 769 pension funds,
with total assets of $129 billion at the end of 1989. They find the equity per-
formance of funds underperformed the S&P500 by 1.3% per year throughout
the 1980s. Lakonishok, Shleifer and Vishny emphasize that although there is
a long literature on the underperformance of mutual funds, pension funds also
underperform relative to mutual funds on average.

Coggin, Fabozzi and Rahman (1993) investigate the investment perfor-
mance of a random sample of 71 US equity pension fund managers for the
period January 1983 through December 1990, and find average selectivity
measure is positive and average timing ability is negative; though both selec-
tivity and timing are sensitive to the choice of benchmark when management
style is taken into consideration. For example, they find that funds that target
value strategies yielded outperformance of 2.1% per annum, but funds that
adopted growth strategies underperformed by −0.96%.

In the UK Brown, Draper and McKenzie (1997) examine the consistency
of UK pension fund performance, and find limited evidence of persistency of
performance for a small number of fund managers. Their sample consists of
232 funds 1981–1990 and 409 funds 1986–1992; all funds retained a single
fund manager. Consistency holds over different time horizons, samples and
classification schemes. Blake, Lehmann and Timmermann (1999) examine
a sample of 364 UK pension funds that retained the same fund manager
over the period 1986–1994. They find that the total return is dominated by
asset allocation. Average return from stock selection is negative, and average
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return to market timing is very negative. Although UK equity managers are
comparatively good at selecting equities – only 16% of the sample beat peer
group average. Thomas and Tonks (2001) using the same dataset as the one
in this chapter find that average pension fund performance is insignificantly
different from zero using a two factor benchmark.

13.3 MEASURING FUND PERFORMANCE

Jensen’s technique is to regress the excess returns on the individual fund
above the risk-free rate Rpt − Rft against the excess return on the market
Rmt − Rft . In the case of a single factor, this is equivalent to specifying the
CAPM as the benchmark. We also specify a three factor model, where the
additional two factors are the returns on a size factor and a default risk factor,
which includes the single factor CAPM as a special case when γp = λp = 0.
We estimate

Rpt − rft = αp + βp(Rmt − rft )+ γp(Rmt − RHGt )+ λp(Rdt − rft)+ εpt

(13.1)
for each fund p over the t data periods, and save the coefficients αp, βp, γp
and λp. This three factor model is a version of the Fama and French (1993)
three factor model, where their SML factor is replaced with the difference
between the returns on the market minus the returns on the Hoare–Govett
Small Firm Index. The book-to-market HML factor is replaced with a default
risk premia defined as the quarterly return on UK long-term corporate bonds
(from DataStream) minus the risk-free rate. Fama and French (1996) suggest
that their HML factor is related to the default risk in the economy. Carhart
(1997) suggests that a fourth factor representing momentum should also be
included in tests of portfolio performance, but such a factor is not readily
available for UK data.

Under the null hypothesis of no-abnormal performance the αp coefficient
should be equal to zero. For each fund we may test the significance of αp
as a measure of that fund’s abnormal performance. We may test for overall
fund performance, by testing the significance of the mean α when there are
N funds in the sample

ᾱ = 1

N

N∑
p=1

αp (13.2)

The appropriate t-statistic is

t = 1√
N

N∑
p=1

αp

SE (αp)
(13.3)
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The original Jensen technique made no allowance for market timing abilities
of fund managers when fund managers take an aggressive position in a bull
market, but a defensive position in a bear market. When portfolio managers
expect the market portfolio to rise in value, they may switch from bonds into
equities and/or they may invest in more high beta stocks. When they expect
the market to fall they will undertake the reverse strategy: sell high beta stocks
and move into ‘defensive’ stocks.

If managers successfully engage in market timing then returns to the fund
will be high when the market is high, and also relatively high when the market
is low. More generally fund managers may time with respect to any factor. If
managers successfully market time, then a quadratic plot will produce better
fit (Treynor–Mazuy test). For the single factor model

Rpt − rf = αp + βp(Rmt − rf )+ δp(Rmt − rf )
2 + εpt (13.4)

The significance of market timing is measured by δp. An alternative test of
market timing for the single factor model suggested by Merton–Henriksson is

Rpt − rf = αp + βp(Rmt − rf )+ δp(Rmt − rf )
+ + ηpt (13.5)

where (Rmt − rf )
+ = max(0, Rmt − rf ).

Recently Ferson and Schadt (1996) advocate allowing for the benchmark
parameters to be conditioned on economic conditions – called conditional
performance evaluation – on the basis that some market timing skills may be
incorrectly credited to fund managers, when in fact they are using publicly
available information to determine future market movements. In which case
Ferson and Schadt argue that the predictable component of market move-
ments should be removed in order to assess fund managers’ private market
timing skills. Under a conditional version of the CAPM, the Jensen regression
becomes

Rit − rft = αi + βi(Zt−1)(Rmt − rft)+ εit (13.6)

where Zt−1 is a vector of instruments for the information available at time
t (and is therefore specified as t − 1) and βi(Zt) are time conditional betas,
and their functional form is specified as linear

βi(Zt) = b0 + B ′zt−1 (13.7)

where zt−1 = Zt−1 − E(Z) is a vector of deviations of the Zs from their
unconditional means. Implementing this approach involves creating interac-
tion terms between the market returns and the instruments. Instruments used
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are: lagged Treasury bill rate, dividend yield, default premium (difference
between low and high quality corporate bonds), and the slope of the term
structure (difference between long- and short-run Government bond yields).

The test for market timing now isolates the effect of public information.
The amended Treynor–Mazuy test for the single factor model is

Rpt − rf = αp + bp(Rmt − rf )+ B ′zt−1(Rmt − rf )

+ δp(Rmt − rf )
2 + εpt (13.8)

where the sensitivity of the managers’ beta to the private market timing signal
is measured by δp. The amended Merton–Henriksson test is

Rpt − rf = αp + bd(Rmt − rf )+ B ′
dzt−1(Rmt − rf )+ δc(Rmt − rf )

+

+�′zt−1(Rmt − rf )
+ + ηpt (13.9)

where:

(Rmt − rf )
+ = (Rmt − rf )

∗ max[0, Rmt − rf − E(Rmt − rf |Zt−1)]

and

δc = bup − bd � = Bup − Bd

The significance of market timing is represented by the significance of δc. In
all cases these market timing and conditional performance evaluation tech-
niques may be extended to the three factor benchmark.

13.4 DATA

The data used in this study was provided by Combined Actuarial Performance
Services Ltd (CAPS). It consists of quarterly returns on UK equity portfolios
of 2,175 UK pension funds from March 1983 to December 1997. In addition
for each fund-quarter the manager of the fund and the size of the fund is
provided. CAPS provide a performance measurement service for about half
of all segregated pension fund schemes in the UK. There is one other major
provider of pension fund performance: WM Ltd. Chart 13.1 shows the dis-
tribution of pension fund assets across asset categories in the general CAPS
database. Typically a UK pension fund invests about 57% of assets in UK
equities, and it is the returns on UK equity portfolios which is examined in
this study. The market return in this study is taken to be the quarterly return
on the FT All Share Index, and the risk-free rate is the quarterly return on
the three month Treasury bill rate.
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Chart 13.1 Average asset distributions of UK pension funds 1987–1997

Our dataset consists of a total of 59,509 observations on quarterly returns
and fund size, and the maximum number of quarters is 56. Table 13.1 illus-
trates the distribution of fund quarters over the dataset, and shows that 50%
funds have 24 or fewer observations, and the average life of a fund in the
data is just less than seven years. This high attrition rate is partly explained
by the closure of funds due to the sponsoring companies merging, or becom-
ing insolvent, and also due to the fund switching to alternative performance
measurement services.

Table 13.1 Descriptive statistics on pension fund-quarters

Fund-quarters
No. of funds 2,175 No. of quarters 59,509

Distribution of fund-quarters

min 5% 25% 50% 75% 95% max
1 4 12 24 41 56 56
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Table 13.2 provides some descriptive statistics on the returns to the UK equity
portfolios of the pension funds in our dataset. The average discrete quarterly
return over all funds over all quarters is 4.32%, compared with an average dis-
crete return of 4.38% for the FT All Share Index. The overall standard deviation
of these returns is 8.67%, and the distribution of returns also emphasizes the
variability in returns. But these pooled measures disguise an important statistic,
which is that the between funds standard deviation is much less than the within
fund distribution. This implies that for a particular quarter the distribution of
fund returns is tightly packed around the mean, but that over time the variability
of returns is much higher. In fact the correlation between the time series values
of the FT All Share Index and the average return each quarter across the pen-
sion funds is 0.995. The contrast in the within and between standard deviations
might be indicative of the herding behaviour of pension funds suggested by
Lakonishok, Shleifer and Vishny (1992).

Table 13.2 also reports on the distribution of returns weighted by the value
of the fund at the beginning of each quarter. The value weighted average
return of 3.80% implies that small funds have a higher return than large
funds and this is an issue we will return to later. In the subsequent regres-
sion analysis, we require a minimum number of observations to undertake
a meaningful statistical analysis, and we impose the requirement that time
series fund parameters are only estimated when there were 12 or more quar-
terly returns for that fund. This cut-off value of three years accords with the
typical fund mandate. Table 13.2 reports the distribution of returns of the sub-
sample of 1,724 funds with at least 12 time series observations, and this may
be checked with the distribution of returns across the whole sample, to check
that the subsample is indeed representative. Similarly Table 13.2 also reports
the distribution of returns of those 284 funds that remained in existence over
all 56 quarters in our dataset.

In panel B of Table 13.2 we report statistics of the size of the equity portion
of the pension funds in our sample. The size distribution is highly skewed
with a large number of very small funds. For example, in 1997 the median
size fund had an equity portfolio of £28 million. Whereas the largest fund
had an equity portfolio of over £9 billion.

In this study we use data on all UK pension funds irrespective of whether
they change manager, though normally we think of abnormal returns as being
due to fund manager skills, and indeed this is the motivation in the Brown,
Draper and McKenzie (1997) and Blake, Lehmann and Timmermann (1999)
studies. But survivorship bias is likely to be more of an issue in same manager
funds. In addition pension funds may be inherently different, for example due
to a different mix of contributors/pensioners. Further concentrating on the
same fund manager condition ignores movement in personnel between fund
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Table 13.2 Descriptive statistics on fund returns and fund size

Panel A: Returns across quarters and funds

Returns FT-All Share
returns

All Weighted
by smv

>= 12
Quarters

= 56
Quarters

Mean 0.0432 0.0380 0.0428 0.0444 0.0438
Std. dev. 0.0867 0.0814 0.0867 0.0858 0.0834
Overall
Between funds 0.01652 0.0092 0.0030
Within funds 0.08628 0.0864 0.0857

Distribution of returns:
5% −0.0725 −0.0689 −0.0727 −0.070
10% −0.0543 −0.0537 −0.0543 −0.0536
25% 0.0016 0.0016 0.0015 0.0021
50% 0.0463 0.0441 0.0459 0.0469
75% 0.0896 0.0747 0.0885 0.0926
90% 0.1525 0.1346 0.1527 0.1511
95% 0.1825 0.1693 0.1825 0.1823

Obs. 59,317 59,314 56,403 15,842 56

No. of funds 2170 2170 1724 278

Panel B: Fund size across funds

Size at start of quarter (£m)

March 1983 Dec. 1990 Dec. 1997

Mean 25.02 50.24 102.27
Std. dev. 85.01 194.45 387.30
Between

Distribution of fund size:
Min 0 0.018 0.17
5% 0.307 0.92 3.95
10% 0.441 1.36 6.02
25% 1.06 3.31 12.39
50% 3.20 8.35 28.12
75% 14.25 27.36 70.14
90% 51.64 102.88 221.90
95% 111.30 174.89 356.03
Max 1,113.4 3,823.63 9,108.62

Obs. 833 1131 1004

The table shows discrete returns, and computes arithmetic averages.
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management companies. Pension fund trustees may switch fund managers
after movement in personnel.

13.5 RESULTS

In the first row of Table 13.3 we report the average parameter estimates
from regressing equation (13.1) across 1,714 funds, where the single factor
benchmark return is specified as the excess return on the market. It can be
seen that the average α is slightly positive but is insignificantly different
from zero. We also report the distribution of these parameter values and the
t-statistics across funds, and the distribution of the Jensen alphas and the asso-
ciated t-statistics are plotted in Figures 13.1 and 13.2. It can be seen that both
distributions are symmetrically distributed around the mean. Just over half of
the alpha statistics are positive, and about 10% are significantly different from
zero. The explanatory power of the individual time series regressions is very
high, with the average coefficient of determination being 0.95. In addition the
fund betas are typically close to unity: 80% of the funds have betas between
0.95 and 1.08, which is consistent with our earlier finding that the distribution

Table 13.3 Performance evaluation with CAPM benchmark

No. funds α α t-stat β β t-stat R2

Panel A: All funds

Average values 1714 0.00017 0.966 1.018 1,280.0 0.953

Distribution of parameters
10% −0.0047 −1.4833 0.9525 14.4449 0.9146
25% −0.0021 −0.7167 0.9911 20.8745 0.9510
50% 0.0002 0.0570 1.0218 30.5056 0.9692
75% 0.0023 0.8101 1.0508 39.8608 0.9796
90% 0.0046 1.4554 1.0802 48.3085 0.9861
No. coeffs > 0(∗ > 1) 898 1173∗
No. of signif. coeffs 165 1714

Panel B: Small Funds (<40% smv)

Average values 731 −0.00002 −1.5600 1.018 750.26 0.950

Panel C: Large funds (>80% smv)

Average values 302 0.0001 0.2092 1.014 685.9 0.967

For each fund we regress the single factor model (CAPM) Rpt−rft = αp + βp(Rmt − rft)+ εpt . In
the first row of the table we report the average parameter estimates from these regressions, and the
relevant overall t-statistic for the average value of each parameter is computed as in equation (13.3)
in the case of the αs, and similarly for the other parameters. The cross-fund distribution of the
parameter estimates and corresponding t-statistics are displayed in the remaining rows. The final
row counts the number of cross-fund parameter estimates that are greater than zero (greater than
unity in the case of the β coefficient).
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Figure 13.1 Distribution of Jensen alphas using CAPM model

of returns in any quarter is highly correlated with the market index. It would
appear that the funds in the sample are ‘closet-trackers’ since they all invest
in similar well-diversified portfolios, which mimick the market index.

We then divided the funds into two groups on the basis of fund size. This
classification was determined as follows. Over the whole sample we computed
the distribution of fund size, over time and across funds. We identified the
fourth and eighth deciles of this distribution. Then for each fund we computed
the average fund size over the fund’s life. Those funds whose average size was
less than the pooled distribution’s fourth decile were classified as small funds;
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Figure 13.2 Distribution of Jensen alpha t-statistics using CAPM model
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Figure 13.3 Distribution of Jensen alphas for small funds using CAPM model

those funds whose average size was greater than the pooled distribution’s
eighth decile were classified as large funds. This classification resulted in
731 small funds and 302 large funds. This classification was clearly arbitrary,
but the reason for the asymmetric use of deciles reflected the skewed size
distribution in the sample as evidenced in Table 13.2, panel B.

In panels B and C in Table 13.3 we report the results by fund size. Sur-
prisingly, the average alpha coefficient for the 731 funds in the small fund
sample is negative, though insignificant. The average alpha coefficient for the
302 large funds is positive, but also insignificant. The interpretation of these
results in comparison with the descriptive statistics in Table 13.2 is that once
an adjustment is made for the fund’s risk, the outperformance of small funds
is less than for large funds. In Figures 13.3 and 13.4 we plot the cross-section
distributions of the fund alphas for large funds and small funds separately.
These results contradict a recent finding by Blake, Lehmann and Timmermann
(2000) that large pension funds underperform small funds. But their sample
consists of a smaller number of pension funds over a shorter time period, and
it is likely, given that their sample construction of funds maintaining the same
fund manager, that only relatively large funds are included in their sample.

In Table 13.4 we report the results of extending the single factor model to
include an additional size factor and a default factor. The inclusion of a size
factor allows for the fact that historically, small companies have outperformed
their larger counterparts, though in the early 1990s this outperformance by
small companies was reversed. The small firm effect has been shown to be
important in the computation of appropriate benchmarks for studies of UK
stock returns (Dimson and Marsh, 1986). The returns on the size factor that we
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Figure 13.4 Distribution of Jensen alphas for large funds using CAPM model

Table 13.4 Performance evaluation with three factor benchmark

No. funds α α t-stat γ γ t-stat λ λ t-stat R2

Panel A: All funds

Average values 1714 0.0001 4.526 0.0838 54.668 −0.0612 −6.614 0.962

Distribution of parameters
10% −0.0052 −1.3562 −0.0430 −0.6004 −0.8646 −1.3545 0.9335
25% −0.0019 −0.5536 0.0204 0.3002 −0.4228 −0.7883 0.9588
50% 0.0004 0.1277 0.0725 1.2825 −0.1049 −0.1893 0.9733
75% 0.0025 0.8426 0.1386 2.3182 0.2840 0.4783 0.9827
90% 0.0047 1.4657 0.2261 3.2436 0.7376 1.0925 0.9883
No. coeffs >0 940 1392 725 1714

Panel B: Small funds (<40% smv)

Average values 731 −0.0003 −0.0969 0.0973 34.0003 −0.0471 −3.5815 0.9608

Panel C: Large funds (>80% smv)

Average values 302 0.0004 3.5756 0.0580 21.6615 −0.1224 −5.4803 0.9718

For each fund we regress the three factor model Rpt − rft = αp + βp(Rmt − rft )+ γp(Rmt −
RHGt )+ λp(Rdt − rft )+ εpt . In the first row of the table we report the average parameter estimates
from these regressions, and the relevant overall t-statistic for the average value of each parameter,
computed as in equation (13.3) in the case of the αs, and similarly for the other parameters. The
cross-fund distribution of the parameter estimates and corresponding t-statistics are displayed in
the remaining rows. All standard errors are robust.
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use are the difference between the return on a small firm index (Hoare–Govett
Small Companies Index) and the FT All Share Index. In fact in the early
1990s this premium was negative. The first row of Table 13.4 shows that the
coefficient γp on the size premium was positive on average and significant,
meaning that funds had a positive exposure to the size premium. In Table 13.4
we can see that the value of the average Jensen alpha is similar to the single
factor case, but this time, this small outperformance measure is significantly
positive. This is an important finding, since it means that the measure of
abnormal performance is sensitive to the specification of the benchmark: a
three factor benchmark yields small but significant outperformance by the
average pension fund. The average coefficient γ on the size factor is positive
and significant, and the coefficient λ on the default factor is negative and
significant. In panels B and C we again split the sample into small and large
funds. It can be seen that the performance of the small funds is insignifi-
cantly different from zero, but the Jensen alpha for the large pension funds
is significantly positive, implying outperformance on average. Looking at the
coefficients of the other factors, it appears that the small funds are more sensi-
tive to the size factor, and both groups of pension funds are negatively related
to the default factor, with the large funds being more sensitive to this factor.

In Table 13.5 we apply the two tests for market timing, for the single
factor CAPM benchmark. The two tests are the Treynor–Mazuy test from
equation (13.4) and the Merton-Henriksson test outlined in equation (13.5).
Both tests produce similar results. The Jensen–alphas reported in Table 13.3
can be decomposed into a selectivity alpha, and a market timing delta.
The results in Table 13.5 show that the selectivity alphas for both the
Treynor–Mazuy and the Merton–Henriksson tests are significantly positive,
but that the timing coefficients are significantly negative, meaning that funds
appear to be very poor market timers: they increase the betas of their port-
folios at the wrong times. These funds appear to increase the beta of their
portfolios when the market index is going down, and reduce the portfolio beta
when the market index is increasing. These perverse market timing results are
consistent with the findings of Coggin, Fabozzi and Rahman (1993). The dis-
tribution of the selectivity alphas and the market timing delta are illustrated
in Figures 13.5 and 13.6.

In Table 13.6 we extend the timing tests to the three factor case, and we
test for timing effects with respect to the market index, the size premium and
the default premium. The logic behind these tests rests on the idea that in a
multi-factor environment, a fund manager may be able to ‘time’ any one of
the factors: that is if the size effect is positive, a skilled fund manager may
adjust the portfolio to have additional exposure to the size factor. Similarly,
a fund manager may be able to ‘time’ the default risk in the economy. The
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Table 13.5 Performance evaluation for CAPM with market timing: all observations

No. Funds α α t-stat β β t-stat δ (market
timing)

δ t-stat R2

Panel A: Treynor–Mazuy method

Mean parameter 1714 0.0008 11.055 1.012 1,310.1 −0.0013 −21.152 0.956
10% −0.0042 −1.1350 0.9431 12.5994 −0.3816 −2.2391 0.9185
25% −0.0012 −0.4001 0.9847 20.9055 −0.2395 −1.4136 0.9528
50% 0.0009 0.2918 1.0170 30.4643 −0.1068 −0.5497 0.9709
75% 0.0031 0.9912 1.0489 40.1341 0.0859 0.3593 0.9808
90% 0.0055 1.5914 1.0777 50.1130 0.5032 1.1716 0.9872
No. coeffs > 0(∗ > 1) 1054 1099∗ 93

Panel B: Merton–Henriksson

Mean parameter 1714 0.0018 19.412 1.044 1,107.6 −0.0493 −27.14 0.956

For each fund we regress the single factor model augmented by a market timing term.
The Treynor–Mazuy test in (13.4) is Rpt − rft = αp + βp(Rmt − rft )+ δp(Rmt − rf )

2 + εpt , and
the relevance of market timing is represented by the significance of the δp coefficient. The
Merton–Henriksson test in (13.5) is Rpt − rf = αp + βp(Rmt − rf )+ δp(Rmt − rf )

+ + ηpt where
(Rmt − rf )

+ = max(0, Rmt − rf ), and the relevance of market timing is again given by the
significance of the δp coefficient. Panel A reports the results of the Treynor–Mazuy test, including
the distribution of the individual fund estimates. Panel B reports only the mean parameter values
of the time series estimates. The relevant overall t-statistic for the average value of each parameter
is computed as in equation (13.3) in the case of the αs, and similarly for the other parameters. All
standard errors are robust.
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Figure 13.5 Distribution of selectivity alphas in CAPM single factor market timing regression
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Figure 13.6 Distribution of deltas (market timing coefficient) in CAPM single factor market
timing regression

δp coefficient reports the market timing effect, the κp coefficient the effect of
size timing, and the ηp coefficient the effect of default timing. For the sam-
ple overall, from the first two rows of Table 13.6, panel A, we can see that
according to both the Treynor and Merton tests, the average selectivity alpha
is significantly negative, and the average market timing parameter is also sig-
nificantly negative. These results imply that funds are both poor at selectivity
and market timing. However, in the case of the Treynor measure the positive
exposure to the size premium is accompanied by a positive average size timing
κp parameter. This implies that funds are good at timing the size premium.
The Merton test is slightly odd because of a negative coefficient on the size
factor. For both the Treynor and Merton tests the coefficient on the default
factor is negative, but the default timing coefficient is significantly positive.

The remaining panels in Table 13.6 investigate these issues further by
examining whether there is a difference in parameter estimates by size of fund,
and also over different subperiods. Panel B shows that it was also the case
that both large and small funds had a positive exposure to the size premium,
and the sensitivity of the small funds was greater: 0.072 rather than 0.038. For
both subgroups of funds, selectivity was significantly negative, market timing
was poor, but size and default timing was significantly positive. The average
size timing coefficient of 1.15 and default timing coefficient of 13.12 for the
small fund sample was greater than that for the large funds, and implies that
the small funds are more able to time both the size and default premia. This is
consistent with the idea that small funds are able to invest in small companies,
whereas large funds are unable to take advantage of movements in the size
premium, because it is more difficult for them to invest in small companies
on account of their larger size.



Table 13.6 Performance evaluation for three factor benchmark with market timing

No. funds α α t-stat γ γ t-stat λ λ t-stat δ δ t-stat κ κ t-stat η η t-stat R2

Panel A: All funds (with more than 20 observations)

Treynor–Mazuy test:
1299 −0.0011 −10.303 0.039 44.24 −0.035 −7.019 −0.052 −20.706 0.922 45.251 17.235 6.160 0.968

Merton–Henriksson test
1299 −0.0017 −10.582 −0.007 −1.442 −0.222 −11.022 −0.043 −20.591 0.160 34.429 0.358 32.694 0.9671

Panel B: By fund size

Treynor test small funds (<40% smv)
486 −0.0015 −7.072 0.072 29.772 0.006 3.158 −0.044 −10.671 1.1508 28.269 13.123 2.803 0.965

Treynor test large funds (>80% smv)
256 −0.0007 −4.022 0.038 19.160 −0.008 −4.071 −0.107 −16.111 0.995 25.056 9.840 1.512 0.976

Panel C: By time subsample

Treynor test: 1st Q 1983–3rd Q 1987
594 −0.0022 −11.818 0.142 29.666 −0.428 −12.223 0.976
594 0.0008 20.801 −0.232 −30.341 0.622 12.507 −0.230 −49.197 5.113 50.672 −94.354 −20.801 0.983

Treynor test: 4th Q 1987–2nd Q 1992
773 0.0026 20.970 0.086 32.669 −0.539 −18.926 0.972
773 0.0002 1.764 0.078 32.258 −0.530 −22.173 −0.088 −11.005 0.844 34.634 19.038 2.291 0.978

Treynor test: 3rd Q 1992–4th Q 1997
806 −0.0008 −8.917 0.084 37.475 0.426 28.348 0.957
806 −0.0030 −26.323 0.089 46.018 0.240 14.248 0.506 26.619 −0.133 −6.233 63.637 23.441 0.968

For each fund we regress the three factor model Rpt − rft = αp + βp(Rmt − rft )+ γp(Rmt − RHGt )+ λp(Rdt − rft )+ εpt , with additional quadratic terms
for market timing, size premium timing and default premium. The Treynor–Mazuy test becomes Rpt − rft = αp + βp(Rmt − rft )+ γ (RHGt − Rmt )+
λp(Rdt − rft )+ δp(Rmt − rft )

2 + κp(RHGt − Rmt )
2 + ηp(Rdt − rft )

2 + εpt . The relevance of market timing is represented by the significance of the δp
coefficient, size timing by the significance of κp and default timing by ηp . The relevant overall t-statistic for the average value of each parameter is
computed as in equation (13.3) in the case of the α’s, and similarly for the other parameters. All standard errors are robust.
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Chart 13.2 Level of FTSE100/FT All Share/Hoare–Govett Indices and Index of Equity
Portfolios of UK Segregated Pension Funds, 1984–1997 (all indexed at zero on 31

December 1983)

Chart 13.2 shows the movement in a number of market indices over the
whole period 1984–1997. We can identify three distinct periods. The mid-
1980s were characterized by a steep bull market, which ended after the stock
market crash in the fourth quarter of 1987. There followed a period of slow
and not very volatile growth in the indices up to the middle of 1992 when
the UK exited the Exchange Rate Mechanism. The third period is identified
by a continuation of the steady growth trend but with increased volatility.

Panel C in Table 13.6 reports the results of the three factor model for each
of the three subperiods with and without the inclusion of the timing variables.
In the initial bull market phase and the last subperiod there is significant
underperformance on average, though in the middle subperiods on average
funds significantly outperform relative to the three factor benchmark. The
exposure to the size factor is always positive and significant. The exposure
to the default premium is negative up to 1992 and positive thereafter. The
inclusion of the timing variables shows a clear pattern between the first two
subperiods as distinct from the final subperiod. In the first two subperiods up
to 1992 selectivity is positive. Market timing is negative and size timing is
positive. In contrast in the last subperiod, selectivity is significantly negative,
market timing is positive and size timing is negative. It appears that the
outperformance in the middle subperiod is explained by the slight positive
selectivity, and the positive size and default timing, even though the market
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timing in that period is negative. Summarizing the results in panel C it appears
that measures of portfolio performance are critically dependent on the time
period of study.

Table 13.7 expands on the results in Table 13.6, by examining portfo-
lio performance jointly split by fund size and time period. Over the first
subperiod 1984–1987 both large and small funds underperformed the three
factor benchmark. The decomposition of this underperformance shows that
large funds had positive selectivity, but small funds had negative selectivity.
For both small and large funds there is positive and significant size timing,
negative market timing and negative default timing. In both cases the addi-
tion of the quadratic size premium means that the coefficient on the linear
size premium becomes negative. In the middle time period 1987–1992, both
small and large funds display outperformance. Both small and large funds
display insignificant selectivity, negative market timing, but with strong size
timing in both groups. Hence the implication is that most of this outperfor-
mance is driven by significant size timing. In the final subperiod 1992–1997,
both small and large funds underperform the benchmark. Both types of funds
exhibit significantly negative selectivity, positive market timing and default
timing, but negative size timing over this subperiod, particularly for large
funds.

In Table 13.8 we re-examine the question of portfolio performance using
conditional performance evaluation techniques for the single factor case only.
Applying the conditional estimation to the three factor model is difficult to
implement, because of the lack of degrees of freedom: adding an extra factor
loses five degrees of freedom. Comparing the results in Table 13.8 with the
single factor case in Table 13.4, it can be seen that in the case of the Treynor
test, the conditional estimation does not greatly alter the unconditional results:
significant selectivity, but perverse market timing. Though for the Merton test,
the conditional tests result in both significant selectivity and market timing.

13.6 CONCLUSIONS

We have investigated the performance of the UK equity portfolios of 2,175
segregated UK pension funds over the period 1983–1997 using alternative
specifications of the benchmark portfolio. This is longest set of UK pension
fund data analysed to date, and with such a long dataset we have been able
to examine performance over three distinct subperiods.

We noted at the outset the similarity between pension fund returns and the
returns on the FT All Share Index, and most of the pension funds in our sample
had an equity beta close to unity, implying that their returns were very close to
the returns of the FT All Share Index. Any measures of outperformance were



Table 13.7 Performance evaluation by time and size subsamples with three factor benchmark and market timing

No. funds α α t-stat γ γ t-stat λ λ t-stat δ δ t-stat κ κ t-stat η η t-stat R2

Panel A: Treynor test: 1st Q 1983–3rd Q 1987, small funds

223 −0.0024 −7.140 0.160 19.328 −0.407 −6.421 0.972
223 0.0003 −0.464 −0.201 −14.409 0.581 5.917 −0.211 −26.580 4.966 27.792 -87.343 −10.119 0.980

Panel B: Treynor test: 1st Q 1983–3rd Q 1987, large funds

147 −0.0022 −6.942 0.110 13.495 −0.409 −6.811 0.982
147 0.0019 2.166 −0.276 −21.770 0.804 10.037 −0.289 −34.819 5.190 31.093 −115.063 −15.366 0.988

Panel C: Treynor test: 4th Q 1987–2nd Q 1992, small funds

260 0.0026 10.517 0.098 19.810 −0.414 −8.091 0.970
260 −0.0002 −0.153 0.088 19.844 −0.428 −10.083 −0.068 −5.157 0.829 18.632 32.378 2.810 0.977

Panel D: Treynor test: 4th Q 1987–2nd Q 1992, large funds

181 0.0028 12.242 0.073 15.744 −0.595 −11.666 0.979
181 0.0007 1.945 0.068 15.439 −0.554 −12.911 −0.115 −6.992 0.966 21.054 1.066 −0.912 0.984

Panel E: Treynor test: 3rd Q 1992–4th Q 1997, small funds

191 −0.0007 −3.547 0.101 18.014 0.383 11.345 0.946
191 −0.0028 −10.780 0.105 20.892 0.221 6.068 0.439 9.540 −0.062 −0.283 56.637 9.052 0.957

Panel F: Treynor test: 3rd Q 1992–4th Q 1997, large funds

190 −0.0007 −4.303 0.069 19.294 0.403 15.737 0.972
190 −0.0029 −14.411 0.074 24.783 0.184 6.390 0.594 18.332 −0.295 −7.117 71.866 15.054 0.979

For each fund we regress the three factor model Rpt − rft = αp + βp(Rmt − rft )+ γp(Rmt − RHGt )+ λp(Rdt − rft )+ εpt , with additional quadratic terms
for market timing, size premium timing and default premium. The Treynor–Mazuy test becomes Rpt − rft = αp + βp(Rmt − rft )+ γ (RHGt − Rmt )+
λp(Rdt − rft )+ δp(Rmt − rft )

2 + κp(RHGt − Rmt )
2 + ηp(Rdt − rft )

2 + εpt . The relevance of market timing is represented by the significance of the δp
coefficient, size timing by the significance of κp and default timing by ηp . The relevant overall t-statistic for the average value of each parameter is
computed as in equation (13.3) in the case of the α’s, and similarly for the other parameters. All standard errors are robust.
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Table 13.8 Performance evaluation with conditional estimation for CAPM with market timing

No.
funds

Average
α

α t-stat Average
β

β t-stat Average
δ

δ t-stat R2

Treynor all (n > 12) 1714 0.0018 19.38 1.041 811.7 −0.405 −21.39 0.967
Teynor all (n > 20) 1299 0.0020 19.85 1.025 847.0 −0.2583 −20.697 0.964
Teynor small funds

(n > 20)
486 0.0016 8.4993 1.019 430.03 −0.1507 −7.874 0.961

Treynor large funds
(n > 20)

256 0.0021 11.443 1.0176 499.9 −0.2903 −14.638 0.974

Merton–Henriksson
(n > 20)

1299 0.0016 16.466 1.003 517.3 0.1593 2.003 0.970

For each fund we regress the conditional single factor model augmented by a market
timing term, where each of the time series regressions is restricted to those funds having a
minimum of 20 quarters, since the parameters in the amended Merton–Henriksson regressions
require 11 degrees of freedom. The Treynor–Mazuy test in (13.8) is Rpt − rf = αp + bp(Rmt −
rf )+ B ′zt−1(Rmt − rf )+ δp(Rmt − rf )

2 + εpt where the sensitivity of the manager’s beta to
the private market timing signal is measured by δp . The amended Merton–Henriksson test
is Rpt − rf = αp + bd (Rmt − rf )+ B ′

dzt−1(Rmt − rf )+ δc(Rmt − rf )
+ +�′zt−1(Rmt − rf )

+ +
ηpt where (Rmt − rf )

+ = (Rmt − rf )
∗ max[0, Rmt − rf − E(Rmt − rf |Zt−1)]; and δc = bup − bd ;

� = Bup − Bd . The signifiance of market timing is represented by the significance of δc. The
reported coefficients are the mean parameter values of the time series estimates from the individual
fund regressions. The relevant overall t-statistic for the average value of each parameter is computed
as in equation (13.3) in the case of the α’s, and similarly for the other parameters.

therefore bound to be small. We also investigated the sensitivity of the fund
returns to the addition of a size premium, which we found to be significant,
and important for the smaller funds in our sample.

Over the whole period and across all funds the outperformance was insignif-
icant when measured by a single factor benchmark. However, when we
applied a three factor benchmark we were able to detect slight but signif-
icant average outperformance. However, during the subperiods there was
significant average underperformance during the strong bull market of the
mid-1980s, but significant outperformance since 1987. In particular in the
period 1987–1992 the average outperformance across pension funds was a
percentage point per year.

Decomposing this abnormal performance we found that most of it could
be explained by the ability of both large and small funds to time the size
premium. On the whole there were negative returns to both selectivity and to
market timing.
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