

Hershey • London • Melbourne • Singapore
��������	
�
	�������

����������������������

David Taniar
Monash University, Australia

Johanna Wenny Rahayu
La Trobe University, Australia

Acquisitions Editor: Mehdi Khosrow-Pour
Senior Managing Editor: Jan Travers
Managing Editor: Amanda Appicello
Development Editor: Michele Rossi
Copy Editor: Jennifer Wade
Typesetter: Jennifer Wetzel
Cover Design: Lisa Tosheff
Printed at: Yurchak Printing, Inc.

Published in the United States of America by
Idea Group Publishing (an imprint of Idea Group Inc.)
701 E. Chocolate Avenue, Suite 200
Hershey PA 17033 USA
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@idea-group.com
Web site: http://www.idea-group.com

and in the United Kingdom by
Idea Group Publishing (an imprint of Idea Group Inc.)
3 Henrietta Street
Covent Garden
London WC2E 8LU
Tel: 44 20 7240 0856
Fax: 44 20 7379 3313
Web site: http://www.eurospan.co.uk

Copyright © 2004 by Idea Group Inc. All rights reserved. No part of this book may be
reproduced in any form or by any means, electronic or mechanical, including photocopy-
ing, without written permission from the publisher.

Library of Congress Cataloging-in-Publication Data

Web information systems / David Taniar, editor ; Johanna Wenny Rahayu,
editor.
 p. cm.
 ISBN 1-59140-208-5 (hardcover) -- ISBN 1-59140-283-2 (pbk.) -- ISBN
1-59140-209-3 (ebook)
 1. Information technology. 2. World Wide Web. I. Taniar, David. II.
Rahayu, Johanna Wenny.
 T58.5.W37 2004
 004.67'8--dc22
 2003022612

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views
expressed in this book are those of the authors, but not necessarily of the publisher.

����������������������

�����������������

Preface .. vi

SECTION I: WEB INFORMATION MODELING

Chapter I.
Story Boarding for Web-Based Information Systems 1

Roland Kaschek, Massey University, New Zealand
Klaus-Dieter Schewe, Massey University, New Zealand
Catherine Wallace, Massey University, New Zealand
Claire Matthews, Massey University, New Zealand

Chapter II.
Structural Media Types in the Development of Data-Intensive Web
Information Systems .. 34

Klaus-Dieter Schewe, Massey University, New Zealand
Bernhard Thalheim, Brandenburgian Technical University, Germany

Chapter III.
Toward a Model of the Migration of Communication Between
Media Devices ... 71

Richard Hall, La Trobe University, Australia

SECTION II: WEB INFORMATION REPRESENTATION, STORAGE, AND ACCESS

Chapter IV.
Storage and Access Control Issues for XML Documents 104

George Pallis, Aristotle University of Thessaloniki, Greece
Konstantina Stoupa, Aristotle University of Thessaloniki, Greece
Athena Vakali, Aristotle University of Thessaloniki, Greece

Chapter V.
Transformation of XML Schema to Object Relational Database .. 141

Nathalia Devina Widjaya, Monash University, Australia
David Taniar, Monash University, Australia
Johanna Wenny Rahayu, La Trobe University, Australia

SECTION III: WEB INFORMATION EXTRACTION

Chapter VI.
A Practical Approach to the Derivation of a Materialized Ontology
View ... 191

Carlo Wouters, La Trobe University, Australia
Tharam Dillon, University of Technology Sydney, Australia
Johanna Wenny Rahayu, La Trobe University, Australia
Elizabeth Chang, Curtin University, Australia
Robert Meersman, Vrije Universiteit Brussel, Belgium

Chapter VII.
Web Information Extraction via Web Views 227

Wee Keong Ng, Nanyang Technological University, Singapore
Zehua Liu, Nanyang Technological University, Singapore
Zhao Li, Nanyang Technological University, Singapore
Ee Peng Lim, Nanyang Technological University, Singapore

SECTION IV: WEB INFORMATION MINING

Chapter VIII.
A Knowledge-Based Web Information System for the Fusion of
Distributed Classifiers ... 268

Grigorios Tsoumakas, Aristotle University of Thessaloniki, Greece
Nick Bassiliades, Aristotle University of Thessaloniki, Greece
Ioannis Vlahavas, Aristotle University of Thessaloniki, Greece

Chapter IX.
Indexing Techniques for Web Access Logs 305

Yannis Manolopoulos, Aristotle University of Thessaloniki, Greece
Mikolaj Morzy, Poznan University of Technology, Poland
Tadeusz Morzy, Poznan University of Technology, Poland
Alexandros Nanopoulos, Aristotle University of Thessaloniki, Greece
Marek Wojciechowski, Poznan University of Technology, Poland
Maciej Zakrzewicz, Poznan University of Technology, Poland

Chapter X.
Traversal Pattern Mining in Web Usage Data 335

Yongqiao Xiao, Georgia College & State University, USA
Jenq-Foung (J.F.) Yao, Georgia College & State University, USA

About the Authors .. 359

Index ... 368

���� �

vi

The chapters of this book provide an excellent overview of current re-
search and development activities in the area of web information systems.
They supply an in-depth description of different issues in web information
systems areas, including web-based information modeling, migration between
different media types, web information mining, and web information extrac-
tion issues. Each chapter is accompanied by examples or case studies to show
the applicability of the described techniques or methodologies.

The book is a reference for the state of the art in web information sys-
tems, including how information on the Web can be retrieved effectively and
efficiently. Furthermore, this book will help the reader to gain an understand-
ing of web-based information representation using XML, XML documents
storage and access, and web views.

Following our call for chapters in 2002, we received 29 chapter propos-
als. Each proposed chapter was carefully reviewed and, eventually, 10 chap-
ters were accepted for inclusion in this book. This book brought together
academic and industrial researchers and practitioners from many different
countries, including Singapore, Greece, Poland, Germany, New Zealand, the
US and Australia. Their research and industrial experience, which are re-
flected in their work, will certainly allow readers to gain an in-depth knowl-
edge of their areas of expertise.

INTENDED AUDIENCE
Web Information Systems is intended for individuals who want to en-

hance their knowledge of issues relating to modeling, representing, storing
and mining information on the Web. Specifically, these individuals could in-
clude:

vii

• Computer Science and Information Systems researchers: All of
the topics in this book will give an insight to researchers about new de-
velopment in web information system area. The topics on mining web
usage data and mining data across geographically distributed environ-
ment will give researchers an understanding into the state of the art of
web data mining. Information Systems researchers will also find this book
useful, as it includes some topics in the area of information extraction and
ontology, as well as techniques for modeling information on the Web.

• Computer Science and Information Systems students and teach-
ers: The chapters in this book are grouped into four categories to cover
important issues in the area. This will allow students and teachers in web
information system field to effectively use the appropriate materials as a
reference or reading resources. These categories are: (i) information mod-
eling; (ii) information representation, storage and access; (iii) information
extraction; and (iv) information mining.

The chapters also provide examples to guide students and lecturers in
using the methods or implementing the techniques.
• Web-based Application Developers: The chapters in this book can

be used by web application developers as a reference to use the correct
techniques for modeling and design, migrating from other media devices,
as well as efficiently handling huge amount of web information. For ex-
ample, the practical techniques for materialized ontology view, as well as
the techniques for deriving customized web views, can be used to man-
age large web-based application development more effectively.

• General community who is interested in current issues of web in-
formation systems: The general computer (IT) community will benefit
from this book through its technical, as well as practical, overview of the
area.

PREREQUISITES
The book as a whole is meant for anyone professionally interested in the

development of web information systems and who, in some way, wants to
gain an understanding of how the issues in modeling and implementation of a
web-based information system differ from the traditional development tech-
niques. Each chapter may be studied separately or in conjunction with other
chapters. As each chapter may cover topics different from other chapters, the
prerequisites for each may vary. However, we assume the readers have at
least a basic knowledge of:

viii

• Web representation techniques, including HTML, XML, XML Schema,
and DTD.

• Web information repository, including XML databases, Relational data-
bases, and Object-Relational databases.

OVERVIEW OF
WEB INFORMATION SYSTEMS

The era of web technology has enabled information and application sharing
through the Internet. The large amount of information on the Internet, the large
number of users, and the complexity of the application and information types
have introduced new areas whereby these issues are explored and addressed.
Many of the existing information systems techniques and methods for data
sharing, modeling, and system implementation are no longer effective and,
therefore, need major adjustment. This has stimulated the emergence of web
information systems.

First, the way we model web information system requires different tech-
niques from the existing information system modeling. The fact that a web-
based system is accessed by numerous (often unpredictable) user character-
istics, different end-user devices, and different internet connectivity, has intro-
duced high complexity in defining a suitable modeling technique that will be
capable and flexible enough to facilitate the above aspects. Another issue
related to designing a web information system is how to migrate existing infor-
mation between different media types, in particular from another media type
to a web-based system.

The second important issue in web information system is how informa-
tion can be represented in a uniform way to allow communication and inter-
change between different information sites. XML has been widely used as a
standard for representing semi-structured information on the Web. Currently,
one of the major issues in XML-based information systems includes how to
efficiently store and access the XML documents. The fact that relational da-
tabases have been widely used and tested has encouraged many practitioners
in this area to use it as XML data repository. On the other hand, native XML
database systems are currently being developed and tested for a different
alternative in storing XML documents.

The third issue relates to the way we can efficiently retrieve and use the
large amount of information on the Web. Moreover, very often users have
interest in a specific aspect of the information only, and, therefore, download-
ing or accessing the whole information repository will be inefficient. In this

book, techniques for deriving a materialized ontology view and for generating
a personalized web view are presented.

Another issue, which is also closely related to data retrieval, is data or
information mining. Data mining is discovering new information or patterns
which were previously unknown in the collection of information. With web
accesses, mining over web data becomes important. Web mining is basically a
means for discovering patterns in user accesses and behaviour on the Web.
This information will be particularly useful in building a web portal which is
tailored for each user. New techniques for mining distributed information on
the Web are needed.

All of these issues need to be addressed, particularly in order to under-
stand the benefits and features that web information systems bring, and this
book is written for this purpose.

ORGANIZATION OF THIS BOOK
The book is divided into four major sections:

I. Web information modeling
II. Web information representation, storage, and access
III. Web information extraction
IV. Web information mining

Each section, in turn, is divided into several chapters:
Section I focuses on the topic of modeling web information. This sec-

tion includes chapters on general web information system modeling and data
intensive web system modeling techniques. This section also incorporates a
chapter which describes a model to allow information migration and preser-
vation between different media types.

Section I consists of three chapters. Chapter 1, contributed by Roland
Kaschek, Klaus-Dieter Schewe, Catherine Wallace, and Claire Matthews,
proposes a holistic usage centered approach for analyzing requirements and
conceptual modeling of web information systems (WIS) using a technique
called story boarding. In this approach, WIS is conceptualized as an open
information system whereby the linguistic, communicational and methodologi-
cal aspects are described. The WIS is viewed from a business perspective,
and this perspective is used to distinguish WIS from IS in general.

Chapter 2, presented by Klaus-Dieter Schewe and Bernhard Thalheim,
discusses a conceptual modeling approach for the design of data intensive
WIS. In this chapter, the notion of media type, which is a view on an under-
lying database schema that allows transformation of database contents into a

ix

collection of media objects representing the data at the web interface, is uti-
lized. The view is extended by operations and an adaptivity mechanism, which
permits the splitting of media objects into several smaller units in order to
adapt the WIS to different user preferences, technical environments and com-
munication channels. The information entering the design of media types is
extracted from the story boarding phase described in Chapter 1.

Chapter 3, presented by Richard Hall, introduces a model for the mi-
gration of communication between media devices based on ideas from infor-
mation theory and media modeling. The huge amount of information generated
across the years has been supported by the ability to invent devices that record,
store, retrieve, and communicate this information in a variety of media, pre-
sented by a variety of devices. Since new media devices are continually emerg-
ing, and each device has different utility, it is possible that a great deal of
information will need to be migrated between media devices in order to take
advantage of their utility. This is especially true with the era of WIS, where
many existing information currently available on different media types need to
be migrated to the Web. The model offers an approach where a number of
interacting components, including the dimensions and utility of the media de-
vice, the media of and structure of communication, and conversion functions
between media devices are considered.

Section II concentrates on the topic of web information representation,
storage, and access. This section focuses on the major issues of using XML
as a representation for information on the Web. These issues include storage
and access control.

Section II consists of two chapters: Chapters 4 and 5. Chapter 4, pre-
sented by George Pallis, Konstantina Stoupa, and Athena Vakali, describes
a comprehensive classification for different methods of storing and accessing
XML documents. The differences between various approaches for storing
XML, including DBMS, file systems, and native XML databases are pre-
sented. This chapter also discusses recent access control models which guar-
antee the security of XML-based data which are located in a variety of stor-
age topologies.

Chapter 5, presented by Nathalia Devina Widjaya, David Taniar, and
Johanna Wenny Rahayu, discusses a practical methodology for storing XML
schemas into Object-Relational Databases (ORDB). The chapter describes
the modeling of XML and why the transformation is needed. A number of
transformation steps from the XML schema to the Object-Relational Logical
model and XML to ORDB are presented. The transformation focuses on the
three conceptual representations of relationships in a XML schema, namely
aggregation, association and inheritance.

x

While the first two sections deal with conceptual modeling and informa-
tion storage techniques, Section III focuses on improving the efficiency of
information extraction through the use of views. There are two different mecha-
nisms that can be used to increase the efficiency of retrieving such a large data
repository available on the Web. One method is to create optimized views
from an underlying base ontology to cater for specific web application do-
main. Another method is to create views from the web interface level, so that
only relevant parts of the interface are made available to the user. Each of
these mechanisms is discussed in Chapters 6 and 7, respectively.

Chapter 6, presented by Carlo Wouters, Tharam Dillon, Johanna
Wenny Rahayu, Elizabeth Chang, and Robert Meersman, discusses the is-
sue of materialised ontology views derivation. As web ontology grows bigger,
user application may need to concentrate on certain aspects of the base on-
tology only. Therefore, there is a need to be able to efficiently derive opti-
mized sub-ontology from an underlying base ontology. The chapter describes
the formalisms for such a derivation process and its applicability to a practical
example, emphasizing the possibility for automation. Furthermore, the issue of
optimizing the derived ontology views in order to develop a high quality de-
rived ontology is also discussed. It is shown that the benefits of a derivation
process like this are immense, as they not only enable non-experts to derive a
high quality materialized ontology view to use for their own system, but also to
do this with only minimal human intervention.

Chapter 7, presented by Wee Keong Ng, Zehua Liu, Zhao Li, and Ee
Peng Lim, discusses the issue of web information extraction that aims to au-
tomatically extract information from target web pages and convert them into
structured formats for further processing. In this chapter, the main issues that
have to be considered in the extraction process are presented. Furthermore, a
software framework, called the WICCAP system, has been implemented that
enables ordinary users to create personalized views of websites in a simple
and flexible manner, using the defined extraction process. In the WICCAP sys-
tem, one can follow some steps whereby one or more global logical views of
a target website is first constructed; and then, based on these global views,
different users create their own views; and finally, users specify how and when
their views should be visually shown to them. With these steps and the help of
the tools provided by the WICCAP system, users are able to easily and quickly
design their preferred views of websites.

Finally, Section IV presents interesting techniques for mining informa-
tion on the Web. This section consists of three chapters: Chapters 8, 9, and
10. These chapters deal with the issue of integrating classifiers from data-

xi

bases that are geographically distributed across the Web, and the issues of
mining and indexing web usage data.

Chapter 8, written by Grigorios Tsoumakas, Nick Bassiliades, and
Ioannis Vlahavas, presents the design and development of a knowledge-
based web information system for the fusion of classifiers from geographically
distributed databases. The system, called WebDisC, has an architecture based
on the web services paradigm that utilizes the open and scalable standards of
XML and SOAP. It has also been developed to take into consideration syn-
tactically heterogeneous distributed classifiers, semantic heterogeneity of dis-
tributed classifiers.

Chapter 9, presented by Yannis Manolopoulos, Mikolaj Morzy, Tadeusz
Morzy, Alexandros Nanopoulos, Marek Wojciechowski, and Maciej
Zakrzewicz, describes indexing techniques that support efficient processing
and mining of web access logs. Web access logs contain access histories of
users who have visited a particular web server. Pattern queries are normally
used to analyze web log data which includes its navigation schemes. In this
chapter, it is shown that, using the proposed indexing method, pattern queries
can be performed more efficiently.

Finally, Chapter 10, written by Yongqiao Xiao and Jenq-Foung Yao,
presents different types of web usage traversal patterns and the related tech-
niques to analyze them, including Association Rules, Sequential Patterns, Fre-
quent Episodes, Maximal Frequent Forward Sequences, and Maximal Fre-
quent Sequences. As a necessary step for pattern discovery, the preprocess-
ing of the web logs is also described. Some important issues such as privacy
and sessionization are raised, and the possible solutions are also discussed in
this chapter.

HOW TO READ THIS BOOK
Each chapter in this book has a different flavor from any other due to the

nature of an edited book, although chapters within each section have a broad
topic in common. A suggested plan for a first reading would be to choose a
particular part of interest and read the chapters in that section. For more
specific seeking of information, readers interested in conceptual modeling of
web information systems and how to migrate existing information in a different
media type to the Web may read Chapters 1, 2, and 3. Readers interested in
looking at XML and the recent development for efficiently storing and ac-
cessing XML documents may study the chapters in the second section. Read-
ers who are interested in web-based information extraction in order to sup-

xii

port more efficient query and retrieval may go directly to the third section.
Finally, those interested in mining data across geographically distributed data-
bases, mining web access logs, and creating index for pattern query of the
user access logs may go directly to Section IV.

Each chapter opens with an abstract that gives the summary of the chap-
ter, an introduction, and closes with a conclusion. Following the introduction,
the background and related work are often presented in order to give readers
adequate background and knowledge to enable them to understand the sub-
ject matter. Most chapters also include an extensive list of references. This
structure allows a reader to understand the subject matter more thoroughly by
not only studying the topic in-depth, but also by referring to other works re-
lated to each topic.

WHAT MAKES THIS BOOK DIFFERENT?
A dedicated book on important issues in web information systems is still

difficult to find. Most books are about either web technology focusing on
developing websites, HTML, and possibly XML, or covering very specific
areas only, such as information retrieval and semantic web. This book is, there-
fore, different in that it covers an extensive range of topics, including web
information conceptual modeling, XML related issues, web information ex-
traction, and web mining.

This book gives a good overview of important aspects in the develop-
ment of web information systems. The four major aspects covering web infor-
mation modeling, storage, extraction and mining, described in four sections of
this book respectively, form the fundamental flow of web information system
development cycle.

The uniqueness of this book is also due to the solid mixture of both theo-
retical aspects as well as practical aspects of web information system devel-
opment. The chapters on web conceptual modeling demonstrate techniques
for capturing the complex requirements of web information systems in gen-
eral, and then followed by more specific techniques for the development of
data intensive web information systems. These chapters are more specialized
than the topics on traditional information system modeling normally found in
information systems publications. Web information extraction is described
using the concept of views, both at the interface level using web views as well
as at the underlying ontology level using ontology views. Both concepts are
described in a practical manner, with case studies and examples throughout
the chapters. The chapters on information mining are solely focused on min-

xiii

ing web information, ranging from mining web usage data to mining distributed
web information. Hence, it is more specific than the topics available in general
data mining books.

A CLOSING REMARK
We would like to conclude this preface by saying that this book has been

compiled from extensive work done by the contributing authors, who are re-
searchers and industry practitioners in this area and who, particularly, have
expertise in the topic area addressed in their respective chapters. We hope
that readers benefit from the works presented in this book.

David Taniar, PhD
Johanna Wenny Rahayu, PhD
Melbourne, Australia
July 2003

xiv

The editors would like to acknowledge the help of all involved in the
collation and review process of the book, without whose support the project
could not have been satisfactorily completed. A further special note of thanks
goes to all the staff at Idea Group Publishing, whose contributions throughout
the whole process, from inception of the initial idea to final publication, have
been invaluable. In particular, our thanks go to Michele Rossi, who kept the
project on schedule by continuously prodding us via email, and to Mehdi
Khosrow-Pour, whose enthusiasm initially motivated us to accept his invita-
tion to take on this project.

We are also grateful to our employers, Monash University and La Trobe
University, for supporting this project. We acknowledge the support of the
School of Business Systems at Monash and the Department of Computer
Science and Computer Engineering at La Trobe in giving us archival server
space in the completely virtual online review process.

In closing, we wish to thank all of the authors for their insights and excel-
lent contributions to this book, in addition to all those who assisted us in the
review process.

David Taniar, PhD
Johanna Wenny Rahayu, PhD
Melbourne, Australia
July 2003

� !��"��#$�����

xv

SECTION I

WEB INFORMATION MODELING

Story Boarding for Web-Based Information Systems 1

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter I

Story Boarding for
Web-Based

Information Systems
Roland Kaschek, Massey University, New Zealand

Klaus-Dieter Schewe, Massey University, New Zealand

Catherine Wallace, Massey University, New Zealand

Claire Matthews, Massey University, New Zealand

ABSTRACT
The present chapter is about story boarding for web information systems
(WIS). It is a holistic usage-centered approach for analyzing requirements
and conceptual modeling of WIS. We conceptualize web information
systems as open information systems and discuss them from a business
point of view, including their linguistic, communicational and
methodological foundations. To illustrate story boarding, we discuss a
simple application example.

INTRODUCTION
Information technology impacts economy. It additionally has started

changing the modern way of life, e.g., look at work on the so-called semantic
web (Berners-Lee et al., 2001), or a web of ideas (Cherry, 2002), or on new

2 Kaschek, Schewe, Wallace, & Matthews

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

business models due to the impact of information technology (see Kaner, 2002;
Kaschek et al., 2003a). Since long information systems (IS) are an important
area of active research, lots of competing IS development approaches are
available. The problem of somehow developing a right IS is connected to the
problem of developing the IS right.

In the present chapter, we focus on the so-called high level phases of IS
development. In particular, we deal with analyzing WIS requirements and
modeling. Our approach is called story boarding. It is a holistic, usage-centered
and agile approach to WIS development. We comment on WISs from a
business perspective, and use this perspective to distinguish WISs from ISs in
general. We further discuss the linguistic, communicational and methodological
foundations of IS development. Story boarding is introduced and explained in
terms of these.

Technological achievements such as the World Wide Web (in short,
WWW or Web) allow new kinds of ISs, namely WISs, to evolve. Dealing with
WISs implies challenges, opportunities and threats. We believe that WISs soon
will be the dominant kind of IS, and that development methodology for WISs
is of prime importance. To contribute to this field, we adapt and enhance
available methodology where this is reasonable, and use new methods,
techniques and concepts elsewhere.

Chapter Outline
We continue the chapter with a discussion of how ISs and, in particular,

WISs appear from a business point of view. We use the abstraction layer model
(ALM) to relate the most important phenomena in WIS development to each
other and discuss related work. We continue discussing linguistic, communica-
tional and methodological foundations of IS development. We proceed with a
discussion of story boarding, customer types and customer profiles, and the
language SiteLang, followed by a relatively detailed example. Finally, we
summarize the chapter and outline future work.

A BUSINESS VIEW ON WIS
We here deal with WISs that conform to the type business to customer

(B2C). We consider WISs as sets of services offered to customers. They shall
be business enablers and simplifiers. We look at WISs from the angles:
conceptual definition, i.e., what functionality do they offer to customers;
usage, i.e., the way customers interact with the WIS; beneficiaries, i.e. the
individuals or organizations benefiting from them, and construction, i.e., the

Story Boarding for Web-Based Information Systems 3

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

measures and activities which make the WIS effective. Clearly, for a more
complete understanding of ISs, their maintenance, i.e., the measures and
activities required for keeping them efficient, as well as deployment, i.e.,
actually making them effective, and retirement, i.e., the measures to make them
stop being effective, would need to be discussed.

Information Systems
Hirschheim et al. (1995, p. 11) say:

“Traditionally, an information system has been defined in terms of two
perspectives: one relating to its function; the other relating to its structure.
From a structural perspective … an information system consists of a
collection of people, processes, data, models, technology and partly
formalized language, forming a cohesive structure which serves some
organizational purpose or function. From a functional perspective …, an
information system is a technologically implemented medium for the
purpose of recording, storing, and disseminating linguistic expressions as
well as for the supporting of inference making.”

The functional definition has its merits in focusing on what actual users,
from a conceptual point of view, do with the information system while using it:
They communicate with experts to solve a particular problem. The structural
definition makes clear that IS are socio-technical systems, i.e., systems
consisting of humans, behavior rules, and conceptual and technical artifacts.
Similar definitions are collected by Bernus and Schmidt (1998).

ISs nowadays are used according to a linguistic model, i.e., humans enter
linguistic expressions into the system, the IS then processes them and, if no fatal
error occurs, outputs a linguistic expression. Humans, for problem solving in a
universe of discourse (UoD), may then use an IS. Identifying solution plans and
solutions for each of these problems might be stated as not knowing the answer
to a particular question. Humans, perhaps applying a particular encoding, turn
the respective question into a machine processable form and enter it into the IS.
The reply to this inquiry is then used to determine or carry out further action.
One such action might be issuing a further inquiry. However, finally, action
might be taken that is not related to an IS.

Information Spaces
Inspired by Mayr et al. (1985), we use the metaphor that an IS creates an

information space (InS). An InS consists of locations at which information

4 Kaschek, Schewe, Wallace, & Matthews

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

objects are located and the connections between these. Customers may enter
or leave an InS. After entering it, customers can allocate a location in an InS to
them. They can navigate through an InS, locate linguistic expressions and
operations in it, and launch operations against data. Invoking an operation often
requires customers to identify and locate it, position themselves on the identified
location, and then trigger the operation. The linguistic expressions inside an InS
are called data.

To illustrate the various kinds of operations, let a data collection represent
the customers of a company. This collection will contain several items of equal
structure, and each item will describe a particular customer. A customer’s
characteristics, such as name, given name, address, gender, customer number,
open orders and similar, will be represented by components of the list item.
• A filter operation chooses data items that match a selection criterion out

of the collection. Choosing those customers that have an address in
Palmerston North is a filter operation.

• A projection operation chooses parts of composite data items. Choos-
ing the name, but not the given name, for each customer is a projection
operation.

• An ordering operation defines the sequence of appearance of data.
Arranging the data items according to the customer number is an ordering
operation.

• A shaping operation defines the structure of the data. Combining
customer name and given name into a new component is a shaping
operation.

• A processing operation invokes a business function, i.e., a function
being relevant only for particular universes of discourse (UoDs). Identi-
fying the customer with the highest number of unpaid bills and determining
his creditworthiness is a processing operation.

• A retrieval operation inserts data in, copies, or deletes data from a
collection.

• A disseminating operation imports data from or exports data to an InS.

Web Information Systems as Open Information Systems
ISs traditionally were closed systems in three respects. Exchange of data

with other than the foreseen systems was not easy to establish, if possible at all.
Only staff of the organization running the IS were given access to it. Only one
access channel was available. Systematically using ‘links’ turns an IS into WIS,
i.e., an IS implementing an open InS. Data exchange with other WISs becomes
easy; exposing an IS to the links of other ISs enables virtually everyone to

Story Boarding for Web-Based Information Systems 5

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

access it. It is relatively easy to introduce new access channels. Figure 1
illustrates the relationship between an IS and a WIS. Note that the diagram
sketching a traditional IS, i.e., non-WIS somewhat modified, is taken from
Jackson (1995). Due to their openness, the use of WISs creates more
challenges for their designers than traditional ISs create for theirs. These
challenges, in part, are a consequence of the competition between WISs,
introduced by individuals being allowed to freely traverse links and, thus, enter
and leave a WIS.

The WIS-based competition for customers makes responsible designers
wish to come up with and run a WIS. At the same time, however, organizations
need to protect their investments in hardware, software and data. They further
need to guarantee the availability of the functionality offered, e.g., prevent
‘denial of service attacks’ being successful. Thus, organizations need to run
protecting means, such as ‘log-in-mechanisms,’ ‘firewalls’ and the like. WIS
interaction roles, or user roles, are an important means to design secure
systems. They typically are defined as sets of access privileges to the WIS’s
resources. Typical interaction roles are ‘customer,’ ‘administrator,’ ‘data
typist’ and ‘maintenance staff.’

Usage
Using ISs generally fits what we call the linguistic usage model. Custom-

ers choose and ship linguistic expressions (then considered as input) to the IS
for processing. The IS processes the input in three steps: input analysis,
response generation and response presentation. At least the last two steps, if
intended to aid the customer, optimally require the incorporation of a customer

Figure 1: Traditional IS as Opposed to WIS

UoD IF
Pro-

cessor

Data

Opera-
tions

IS
IF

Opera-
tions Pro-

cessor

Data
WIS

UoD Web

The left diagram shows traditional IS as overlapping the UoD in the interface (IF). For
WIS, the right diagram shows that the interface is still the intersection of UoD and
system but now contains a part of the Web.

6 Kaschek, Schewe, Wallace, & Matthews

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

model in the IS. In case the differences between the various customers are not
discussed at all, considered as unimportant, or the customer’s assessment of
the IS is not considered as important, then the customer model might only be
implicitly present and not be customer specific.

Human-WIS interaction is a mediated customer-expert communication.
Communication takes place because customers want to benefit from experts’
knowledge, which we here assume to be a true belief that can be justified by
the believer. To obtain this knowledge might have required experts to under-
take long-lasting studies and investigations or simply keeping records of certain
events or facts. Customers do not care about this. They need some information
and expect to get it by querying the IS. We do not distinguish between
knowledge and ability since ability roughly can be understood as a ‘knowing
how,’ and knowing means having obtained knowledge. The so-called Zachmann
framework, according to (Morgan, 2002, pp. 19-21), identifies the following
kinds of knowing: Knowing what, addressing facts; knowing how, addressing
abilities; knowing why, addressing causality; knowing what for, addressing
purpose; knowing who, addressing the subject of activities; and knowing
when, addressing the temporal circumstances of action. We add knowing with
what, addressing tools or resources used for action. For a recent discussion on
what knowledge is, see, e.g., Sutton (2001).

Beneficiaries
Customers and vendors of WISs benefit from these. The customers benefit

in so far as they are freed from the limitations of experts, e.g., with respect to
availability, inabilities, knowledge of the business, or prejudices against certain
customer types. These are only benefits for certain types of customers.
Customers of other types might suffer from WISs.

The vendor might benefit in several ways from making the WIS effective.
The throughput of business cases (per unit of time) might increase due to various
customers concurrently accessing the system. The response time to customer
inquiries might be reduced, resulting in more business cases performed and the
infrastructure used more efficiently. Availability of services might be increased
and, thus, the volume of business might increase. Furthermore, the cost of
business cases on average might be reduced, since they need less staff time
allocated to them. Staff satisfaction due to work and, thus, staff productivity
might increase because they can focus more on the more interesting non-
standard cases; and, in the standard cases, monotonous and error-prone tasks
might be carried out by equipment. Finally, due to integration into the Web,

Story Boarding for Web-Based Information Systems 7

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

visibility of the vendor for customers and partners is increased. This increases
competition, which is an advantage for competition fit enterprises.

Information System Construction Concepts
We use Thalheim’s so-called Abstraction Layer Model (ALM) for

information systems, which, slightly modified, is depicted in Figure 2 as the base
of our analysis of ISs. The ALM classifies IS development-relevant phenomena
according to the five layers it introduces. These layers are referred to as layers
of abstraction. The ALM’s top layer is the strategic layer. It corresponds to
the purpose of the WIS and the expected customers. The second highest ALM
layer is the business layer, corresponding to the usage. The conceptual layer
is the middle layer. It corresponds to data and operations maintained by the
WIS. The presentation layer is the second-lowest layer. It is corresponds to
allocating access channels to system resources. Finally, the lowest, i.e., the
implementation layer, allows for the addressing of all sorts of implementation
issues. This includes setting up the logical and physical database schemata,
implementation of functionality, and dialogue control. As far as possible,
decisions on the implementation layer should not impose restrictions on
phenomena dealt with at higher layers. Classifying phenomena occurring in IS
development according to these layers relates these phenomena by a cause-
effect relationship. The ALM is represented as a pyramid, rather than as a
couple of lines signifying the layers, to address the increased and more specific
knowledge about the WIS on lower layers compared to higher ones.

On each layer except the strategic layer, ALM identifies two dimensions
for the description of the linguistic expressions affecting the IS: focus and
modus. The focus enables distinguishing between customers referring to the
UoD in its totality (global) or only to a part of it (local). The modus enables
distinguishing between customers referring to a particular UoD-state (static) or
a transition between such states (dynamic). Using these dimensions, ALM
characterizes the system resources data as global and static, operation as
global and dynamic, view as local and static, and dialogue as local and
dynamic. Following Kaschek and Zlatkin (2003), one can introduce a further
dimension kind, allowing distinguishing between customers referencing to
something because of their interest in it (self contained) or because of its relation
to something else (referential). The above-mentioned resources can easily be
characterized in the space with dimensions focus, modus and kind. This space
allows us to characterize links as global, dynamic and referential, or as local,
dynamic and referential resources, depending on whether the link leaves the
InS.

8 Kaschek, Schewe, Wallace, & Matthews

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Each ALM layer is connected to the layer immediately below it by a
specific activity. Case modeling and customer profiling connect the strategic
and business layers. Conceptual modeling, i.e., systems analysis, connects
business and conceptual layers. Presentation and business layers are con-
nected by the definition of presentation styles. Finally, implementation connects
the presentation and implementation layers. No temporal order of the respec-
tive development activities is imposed by ALM. Thalheim’s co-design method-
ology (CDM) recommends, for all but the top-most layer, consideration of all
the resources determined by the dimensions focus and modus. See Thalheim
(2000) for more detail on ALM and CDM.

RELATED WORK
Wallace (2002) reports on a pilot study on the ways organizations were

using the Internet, i.e., web pages, intranets and email. The analysis showed that
those critical success factors having the greatest impact on an organization’s
successful Internet use are more strongly related to human factors than to
technical ones. A closer examination revealed that they were more specifically
concerned with communication and customer service. The strongest factors, in
descending order of importance, were: having a plan for dealing with site-
related communication, meeting customer demand, regarding the web site as
part of the overall communication strategy, considering marketing aspects of
the site, and updating and refocusing of the web site.

The result of the pilot study implies that communication aspects of design,
development and implementation of the web presence of organizations are key
to successfully using web technology. We refer to Schulz von Thun (2000) for
dimensions of messages that we can use here, since the general literature on
business communication (e.g., see Dwyer, 1993; Francis, 1987; Guffey, 1997;
McLaren & Locker, 1995), seems not to focus as much as needed on
disturbances in technically mediated communication with customers.

Atzeni et al. (1998) emphasize content, navigation and presentation
design, respectively leading to databases, hypertext, and page layout. Other
authors (e.g., Baresi et al., 2000; Bonifati et al., 2000; Gädke & Turowski,
1999; Rossi et al., 1999) follow the same lines of thought. Garzotto et al.
(1993) and Schwabe and Rossi (1998) concentrate on the ‘add-on’ to
database design, emphasizing mainly the hypertext design targeting navigation
structures. Feyer et al. (1998) caused Schewe and Thalheim (2001) to
investigate media types. These provide a theoretically sound way to integrate

Story Boarding for Web-Based Information Systems 9

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

databases, external views, navigation structures, operations, and even support
adaptivity to different users, environments and channels. The adaptivity
feature distinguishes them from the dialogue types that are used to integrate
database systems with their user interfaces (see Schewe & Schewe, 2000).

Schewe and Thalheim (2001) emphasize that conceptual abstraction from
content, functionality and presentation of an intended site is insufficient for
conceptual modeling of web-based systems. Atzeni et al. (1998), Baresi et al.
(2000), and Bonifati et al. (2000) do not deal with story boarding, nor do
Gädke and Turowski (1999), Rossi et al. (1999), Garzotto et al. (1993) or
Schwabe and Rossi (1998). Neglecting story boarding is likely to cause
difficulties in capturing the business content of the system under development.

Kaschek et al. (2003c) and Kaschek et al. (2003b) started a more
thorough investigation of story boarding that focuses on user intentionality, i.e.,

Figure 2: Abstraction Layers Concerning IS

Data

View Dialogue

Functionality

Strategic
Layer

Business
Layer

Conceptual
Layer

Presentation
Layer

Implementation
Layer

Case Modeling

Conceptual Modeling

Style Definition

Implemen-
tation

10 Kaschek, Schewe, Wallace, & Matthews

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

context modeling. Conceptual modeling traditionally considered more onto-
logical aspects than epistemological ones. The latter now need to be taken more
seriously: Openness implies WIS adaptation to customers and, thus, conclu-
sions that need to be drawn. See Wallace and Matthews (2002) for a
respective discussion concerning the representation of the information space to
customers.

Schewe and Thalheim (2001) suggest that the story boarding concepts
comprise directed graphs, called scenarios. This extends the proposal of Feyer
et al. (1998), who instead used partially ordered sets. In addition, user profiling
is approached with the help of user dimensions, capturing various aspects of
users. This has been extended in Srinivasa (2001) to a formal description of
interactive systems.

Düsterhöft and Thalheim (2001) describe the language SiteLang to
support the specification of story boards. The work also indicates ideas on how
to exploit word fields for designing dialogue steps in story boards. Schewe et
al. (1995) and Schewe (1996) have discussed refinement primitives for
dialogues. Due to the connection between dialogues and scenarios, this
approach to refinement is also useful for story boarding. The work in Schewe
et al. (2002) applies story boarding and user profiling to the area of online loan
systems.

Thalheim and Düsterhöft (2000) suggested using metaphorical structures
in the application domain to support story boarding. Using word fields in web-
based systems was suggested by Düsterhöft et al. (2002), based on computa-
tional linguistics (see Hausser, 2001). Preliminary results on the subject of this
paper were presented in Schewe et al. (2002) and Wallace and Matthews
(2002). Matthews (1998) and Kaschek et al. (2003a) study New Zealand
bank web sites.

FOUNDATIONS
We do not cover all the foundations of information systems in the present

chapter. We focus on the linguistic, the communicational, and the methodologi-
cal foundations. For the philosophical foundations of information system
development, we refer to Hirschheim et al. (1995). More specifically, we refer
to Sowa (2000) for logical, philosophical and computational foundations of
knowledge representation, which we roughly equate with conceptual modeling.
For the cognitive basis of model-based reasoning (in science), we mention
Nersessian (2002). For the mathematical foundations, we refer to Wechler
(1992) and Barr and Wells (1990).

Story Boarding for Web-Based Information Systems 11

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Linguistic Foundations
ISs have to support organizations in recording, storing, processing and

disseminating linguistic expressions. We briefly follow (Linke et al., 2001, pp.
17-24) in our discussion of elementary linguistic concepts. A sign is something
with which one can refer to something else. There are no restrictions for this
something else besides that it must be possible to refer to it. E.g., we
respectively can refer to a unicorn, dragon, Donald Duck by means of the string
‘unicorn,’ ‘dragon,’ ‘Donald Duck,’ though in physical reality, none of them
exists. What one refers to by means of a sign is called the sign’s referent.
Nouns like ‘head,’ ‘tree,’ and ‘sun’ are signs. Road signs are signs. Following
Peirce (1998), linguistics distinguishes three kinds of signs: icon, index, and
symbol. An icon is a sign that is related to its reference by means of a mapping
relationship, i.e., a similarity. An index is a sign that is related to its reference
in a temporal or causal relationship. Finally, a symbol is a sign that is neither
an icon nor an index.

Linguistics does not restrict its sign concept to printed, drawn or written
signs, as we do here. It takes into account representations in all kinds of media
that enable perception with our senses. Smoke may be considered as an index
for fire, as is the case with lurching for being drunk. Due to the restricted
coverage of signs in the present paper, the mapping relationship between an
icon and its reference is a similarity in terms of shape, graphical structure and
color.

According to O’Grady et al. (2001, pp. 632-633), linguistics signs are
considered to be either graded or discrete:

“Graded signs convey their meaning by changes in degree. … There are
no steps or jumps from one level to the next that can be associated with
a specific change in meaning. … Discrete signs are distinguished from
each other by categorical (stepwise) differences. There is no gradual
transition from one sign to the next.”

Instances of semiosis, i.e., processes of sign usage (following Morris, see,
e.g., Morris, 1955), are often, e.g., in Falkenberg et al. (1998), understood
according to the dimensions:
• Syntax, addressing sign composition out of elementary, i.e., non-com-

posite signs.
• Semantics, addressing the reference of signs.
• Pragmatics, i.e., ‘… the origin, uses, and the effects of signs’ (see

Morris, 1955, p. 352).

12 Kaschek, Schewe, Wallace, & Matthews

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

According to our linguistic usage model, ISs are used by means of uttering,
perceiving and processing linguistic expressions, i.e., composite signs. Using
ISs, thus, is an instance of semiosis that requires a transition from the sign to its
reference and vice versa. Using ISs, thus, involves abstraction, i.e., omitting
characteristics ascribed to the sign or the reference that are not relevant for the
actual use of the IS. Sign usage and, in particular, abstraction involve under-
standing. According to the Longman Dictionary of Contemporary English
(1995), understanding mainly is an understanding of something. One can
identify two approaches to the understanding of something:
• Understanding something in terms of itself. This is often aimed at by

methods or techniques of requirements engineering, such as conducting
interviews, issuing and evaluating questionnaires, document analysis, field
studies, brainstorming, role playing and the like.

• Understanding something in terms of something else. This is what the
application of signs, metaphors and models attempts to achieve.

For more detail on the techniques for understanding something in terms of
itself, see, e.g., Henderson-Sellers (1998) and Quade (1985). Concerning
models, we mention the important work in Stachowiak (1992), Stachowiak
(1983) and Stachowiak (1973). Concerning modeling, see also Minsky
(1968), Oberquelle (1984), and, in particular, Quade (1985), as well as newer
work, such as Rothenberg (1989) and Wieringa (1990). Of the most recent
work, we mention Falkenberg et al. (1998b).

The relationship between models and metaphors was investigated in Black
(1966). Metaphorical structures have been used for WIS design by Thalheim
and Düsterhöft (2000). They define (p. 168) metaphorical structure as “…
the unusual usage of a language expression, i.e., using a language expression in
a meaning which is not expected in the application context. The language
expression is used as a language pictorial which works on the basis of a
similarity of two objects/words.” They mention that four kinds of metaphorical
structures are usually identified: Metaphor, a language expression in which
two semantic fields are claimed to be similar. Supplementary information
concerning metaphors and, in particular, theories on how they work can be
found in Gregory (1998). Allegory is ‘an extended metaphor’ representing a
complex idea. Metonymy is a language expression containing a term replacing
a related term. Synecdoche is a metonymy, the term relation of which is a
meronymy, i.e., a part whole relationship.

Story Boarding for Web-Based Information Systems 13

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Communicational Foundations
Cragan and Shields (1998, pp. 1-64) discuss the information systems

theory of communication that was originated by Shannon. Following it, we
understand communication as an exchange of messages between at least two
actors by means of signal transfer. Message exchange may be called dialogue.
The individual action in a dialogue, i.e., either uttering or perceiving a statement,
can be denoted as dialogue step. A message first is chosen and encoded, such
that it can be represented in a media or channel the intended receivers of the
message have access to. Elementary, i.e., non-composite parts of this repre-
sentation, are called a signal. This media may be a natural one, like the air. It
may also be an artificial one, such as a book, journal or some kind of wires.
Representing the encoded message might require using sophisticated technol-
ogy, such as telephone, radio, TV, or the Web. Some media may allow
encoded message representations to persist in them, while others do not. Those
that allow it are called storage media.

Once a message is selected, the respective actor might want to represent
it in a particular (natural or artificial) language, i.e., to encode it. The processes
of encoding a message, representing it in a media, in particular, recording it, are
error prone. Disturbing attacks on each of these processes might occur.
Received signal sequences, thus, after rule conform decoding, might not
translate to the message sent. Not only errors and disturbances make commu-
nication difficult. Received messages need to be interpreted for information
construction. Often the receiver is required to find out what the sender wanted
to achieve with his utterance. If the sender’s background or context differs too
much from those of the receiver, successful communication might be very hard
to achieve. Ensuring successful communication requires a dialogue, i.e., a turn
taking of the roles of sender and receiver.

We abstract from differences between human-computer interaction and
oral human communication, i.e., talking with each other. From Schulz von Thun
(2000), we borrow the dimensions of messages:
• Content, addressing what the message is about, i.e., its reference, if

considered as a sign.
• Revelation, addressing what the sender reveals about himself with the

message and the way it is uttered.
• Relationship, addressing the way sender and receiver are related as

understood by the sender.
• Appeal, addressing what the sender wants the receiver to do.

14 Kaschek, Schewe, Wallace, & Matthews

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

IS usage above was characterized as computer mediated customer-expert
communication. Neglecting some of these message dimensions in the dialogue
design (or the dialogue design at all) is likely to impose communication barriers
and, thus, reduce the effectiveness and efficiency with which customers use IS.
Quality aware IS developers aim at reasonably few and low communication
barriers. They further aim at customers being capable of efficiently doing their
job and only dealing with tool issues if necessary.

Methodological Foundations
Before discussing understanding IS, we consider understanding arbitrary

systems. We presuppose a strong meaning of understanding, including the
ability to construct a respective system.

Systems Analysis and Design
 Systems may be very complex. Humans have only a limited capacity for

dealing with complexity. Understanding systems, thus, may require a separa-
tion of concern, such that only parts of complex systems need to be considered
at once. According to Van Gigh (1991), a system is a unit of interacting system
parts, the system components. System components can be considered as
systems. System interaction takes place as an exchange of energy, matter, data
or similar. The respective input-output (or stimulus-response) relation systems
implement can classify these.

A subset of the set of components of a system S, together with their
interaction (in S), is called a subsystem of S. Two subsystems of a system S are
often distinguished: its interface and its kernel. The interface is the subset of the
components of S directly interacting with systems not contained in S. The kernel
of S is the complement of the interface of S in S. It may be reasonable to
distinguish subsystems of the interface of S according to the class of systems
they interact with.

A well-known method for analysis and synthesis, according to Polya
(1988, pp. 141-143), already obtained by Euclid, Apollonius of Perga, and
Aristaeus the elder, was reported by Pappus. Polya (p. 142) paraphrases
Pappus: “In analysis we start from what is required, we take it for granted, and
we draw consequences from it, and consequences from the consequences, till
we reach a point that we can use as a starting point in synthesis. … This
procedure we call analysis … But in synthesis, reversing the process, we start
from the point which we reached last of all in our analysis, from the thing already
known or admittedly true. We derive from it what preceded it in the analysis,

Story Boarding for Web-Based Information Systems 15

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

and go on making derivations until, retracing our steps, we finally succeed in
arriving at what is required. This procedure we call synthesis ….”

IS Analysis and Design
Applying the method for analysis and synthesis to information systems

development by Sølvberg and Kung (1993) is ascribed to Langefors. Analysis
is presupposed to be a process of nested system decomposition into interacting
system components, such that each decomposition step results in a specifica-
tion of the system input-output relation in terms of input-output specifications
of the very system’s components and their interaction. The starting point of
synthesis is reached as soon as all components can be implemented. The
process of synthesis, then, is presupposed to be a process of repeatedly
aggregating interacting systems into a higher-level system. This process stops
when a system is synthesized that meets the initial input-output specification or
when such a system appears not to be obtainable. If the required input-output
specification cannot be obtained by synthesis, then analysis can be carried out
again, followed by a further synthesis step. Proceeding that way, either the
input-output relation can be implemented or indicated as not implementable as
a system.

This generic procedure for analysis and synthesis employs separation of
concern in systems development and, thus, has the merit of complexity control.
It, however, does not explicitly address several phenomena occurring in or
relevant for IS development:
• IS are socio-technical systems, i.e., humans are part or stake holders

of these systems and, thus, legal restrictions may apply to the system’s
working style, the referent of the data stored in the system, the way the
data is stored, accessed, linked to other data, or processed.

• IS are artificial systems, i.e., they exist to serve for a certain purpose.
Operating and maintaining them must be possible while meeting certain
cost and time restrictions.

• IKIWISI, i.e., customers often cannot verbally express a specification of
an IS that would satisfy their needs. They, however, believe that they can
recognize such a system once they have access to it, compare, e.g.,
Boehm (2000).

• Low requirements quality, i.e., customers often specify their needs
incompletely, inconsistently, open to interpretation, or even falsely. Fur-
ther quality defects of requirements statements might apply as well.

16 Kaschek, Schewe, Wallace, & Matthews

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Wicked problems, i.e., attempting to specify and implement a system
meeting the customers’ needs changes these needs. Certain systems, thus,
cannot be specified prior to their development.

These phenomena are related to the requirements of an anticipated system.
We believe that they only can be better dealt with when the system requirements
can be understood better. Therefore, we believe that analysis and synthesis, to
be applicable to IS development, need to more specifically address the system
requirements. Once these are reasonably fixed, Langefors’ method can be
applied. Below, we discuss story boarding as a means to better understand the
system requirements.

Personalization
Personalization is the customer specific tailoring of the IS interface. It aims

at modeling customers, their context and behavior. The effect of attempts to
develop high quality IS will be limited if customers cannot use them well.
Personalization becomes important when awareness evolves of the different
needs of customers of different types. Using IS for problem solving requires:
identifying of the business problems, the solution of which can be reasonably
supported by the IS; identification of suitable business solution procedures for
already identified problems; and realizing the business solution procedures
based on the IS. Customers sometimes experience difficulties in solving these
problems. A flawed IS design or implementation might be the cause. One such
flaw is an insufficient domain analysis; another one is a too complex customer
interface. Customer specific interfaces may be significantly less complex than
customer independent ones.

Customers require aid concerning identifying data and operations to be
used best, locating operations and data in the information space, navigating
the information space, and in handling the IS efficiently. According to an
idealizing refinement of the linguistic usage model, customers firstly identify the
resources they want to access, i.e., respectively, the data or the operation they
want to use. Secondly, they locate the resources they need. Thirdly, they
navigate themselves onto locations from which the required resources are
accessible. Finally, customers deal with how to actually handle the accessible
resources. Presupposing this refined linguistic usage model of WIS, customers
need aid in the above mentioned cognition intensive task. Metaphorical
structures may help reusing knowledge. They seem to offer potential for aiding
customers to master the tasks mentioned above. Furthermore, ALM supports
developers in providing customer aid concerning identifying data and opera-

Story Boarding for Web-Based Information Systems 17

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

tions and locating these. Localization abstraction dealt with by Wallace and
Matthews (2002), and context modeling discussed in Kaschek et al. (2003b)
and Kaschek et al. (2003c), may help provide aid for search.

Consider, as an example, the (hypothetical) Biggest Bank of Switzerland
(BBS). Swiss banking laws relatively strictly regulate how to run the business.
BBS operates internationally and must be capable of running country specific
operations for specific tasks. E.g., in Switzerland, it is forbidden to test the new
module CheckCreditWorthiness (CCW) in the risk information system (RIS)
with real data, which might not be the case in other countries. Furthermore,
concerning balance sheets to US based parts of BBS, rules apply that are
different from the ones applying to Switzerland based parts of BBS.

Staff at ultimo dealing with CCW need to know what customer data to use
and which modules to apply to it. Not only the data must be made anonymous.
It must also be the data to which the booking preparation, as well as day-end-
processing, has already been applied. BBS branches operating in regions of the
world in which the business follows similar rules and legislation are being served
from centralized computing infrastructure. Thus, not only country specific data
might be worked with, but also country specific software might apply. RIS
should point out to the user what rules and legislation apply to identify the data
to be processed for his purpose and functionality to actually do the job. Clearly,
knowing which data to use does not imply knowing the name of the database
to be used, on which disk it is located, and on which machine it is managed.
Similar conditions apply for the operations.

The example illustrates that users who have a relatively clear understanding
of what to do to perform a business transaction can be aided by measures
targeting the task areas mentioned above. Handling aid aims at helping to
efficiently use RIS. This concerns how to actually invoke operations, i.e., the
functions implemented by CCW. Furthermore, pre- or post-processing steps
might be required, such as ordering the data in a particular way to increase
performance of some CCW-functions. Similarly, it might be required to print
results on a specific, particularly fast printer, or on one that can print on A3-
or endless paper. Clearly, information concerning these prescriptions should be
available via CCW’s customer interface.

It, however, might be the case that a business transaction has to be
performed that was unforeseen, and for which there is not optimum automatized
support. A work around might be used. Missing the respective functionality
actually might be the reason for CCW being developed. RIS should offer means
for customers to navigate its information space to allow for the work around
until CCW is deployed and has passed acceptance test.

18 Kaschek, Schewe, Wallace, & Matthews

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

STORY BOARDING
Prior to explaining what story boarding is and how to actually use it, we

discuss customer profiles and then introduce the language SiteLang.

Customer Profiles
Introducing customer types can target personalization. A list of customer

dimensions, or attributes, may be ascribed to customer types. Respective
examples are gender, education, ethnicity, computer literacy, age group,
objective, data required, experience with the business (e.g., something like
novice, average and expert might do), the accessible operations, and the like.
To a customer dimension δ a scale Sc(δ) is associated. The scale is assumed
to be a finite, totally ordered set. For a customer type ‘novice,’ the dimension
‘experience with the business’ could have associated the scale {1,… ,12}, the
elements of which could signify the number of months active in the business.
Given a set ∆ of customer dimensions, the customer profile Cp(∆) of ∆ is the set
×

 δ∆
Sc(δ). A customer type, then, is defined as a convex subset of the Cp(∆).

Given a ‘customer type’ T and, within it, a pair (x,y) of customer models, i.e.,
type instances, then all such models on the line between x and y belong to T.

A customer type T can be specified by means of a set Spec(T)={(mδ , Mδ)|
mδ , Mδ ∈ Sc(δ), δ ∈ ∆}, where for each δ ∈ ∆, the values mδ , Mδ respectively
are the minimum and maximum values v(u, δ) for customers u of type T in
dimension δ. If, once, caused by assessment of the behavior of a customer u,
it is found that, for one of the dimension δ, the value v(u, δ) no more fits in the
interval [mδ , Mδ], then this can be taken as an index to re-allocate the type to
customer u. A type re-allocation, however, should only take place with
customer permission.

Customer types, in practice, can be used to validate the design of a story
board (see below for a definition). A New Zealand bank, e.g., for each
customer type, creates a hypothetical instance as a typical representative of it.
For this hypothetical person, then, a quite complete biography is invented. Even
photographs are used to make this individual appear more real. The main cases
for each customer type are then walked through, simulating the behavior of the
representative. All its anticipated actions can then be discussed, referring to
whatever biographic detail appears to be required. Clearly, the respective
discussion is an interdisciplinary one: Marketing, IT and management should be
involved. Occasionally, redesign of a story space might be necessary due to the
findings of this role game.

Story Boarding for Web-Based Information Systems 19

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

SiteLang
Starting WIS development with an analysis of the actual process of using

the WIS by a customer focuses the analysis on the business transactions or
cases carried out by this customer. It supports in introducing helpful dialogues,
and in anticipating and designing appropriate representation functionality. A
case here is understood as a goal-striking course of action, intentionally leading
to the invocation of a major business operation. A case, thus, is a process of
successively using operations accessible in the information space and occa-
sionally positioning to a new location. A case, therefore, can be represented as
a path in the information space, such that to each of its vertices, i.e., locations
in information space, a customer-WIS interaction takes place. Paths are not
always sufficient to describe usage processes. Including branches, joins and
loops, however, allows to specify all interaction scenarios that can take place
in information space.

The diagram in Figure 3 shows a directed labeled graph on the five vertices
‘Fill travel application form,’ ‘Pass filled application form to chief,’ ‘Boss deals
with application,’ ‘Book flight & accommodation, etc.,’ and ‘’Travel.’ Such a
vertex, i.e., a location in information space in the sequel, will be called a scene.
Each arrow is called a transition. The scene pointed at by a transition is called
target scene. The scene a transition starts at is called a source scene. Transitions
may be labeled with conditions. The label ‘KO’ does not mean ‘OK.’ Such a
graph in the sequel will be called a scenario. The integration of all scenarios
relevant for a given WIS in the sequel is called the story board.

The customer-WIS interaction in the scene ‘Fill travel application form’
could consist of the customer first identifying the form applicable to both his
position in the company and the type of intended trip. S/he then locates and
retrieves the respective form. But filling it might make him/her feel the need to
look up explanations and company rules concerning traveling. Ideally, all the
respective information would be available via the WIS. The diagram does not
show the discussed interaction at scene ‘Fill travel application form.’

Figure 3: Example Scenario: Business Trip Application

Fill travel
application

form

Pass filled
form to
boss

Boss deals
with

application

Book flight
& acco-

mmodation,
etc.

Travel

[OK]

[KO]

[OK]

[KO]

filled passed

20 Kaschek, Schewe, Wallace, & Matthews

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Having filled in the form, the applicant needs to pass the form to the boss.
Specific rules might apply because the travel is expensive or needs to be started
immediately. Thus, it might be necessary to provide the form for the immediate
boss as well as the head of the group and the head of the department.
Furthermore, it might be necessary to identify the deputy of the boss, since the
boss is not available or has signaled not being able to deal with the case. This
indicates that the neglected interaction in scenes, if considered, might signifi-
cantly increase the complexity of a real scenario compared to the one shown
in the diagram.

The scene ‘Boss deals with application’ introduces branching and looping
to the scenario. The boss might have been asked to accept a new, very urgent
project and, therefore, the applicant cannot go on the trip, i.e., the application
is rejected. The applicant can decide not to accept the rejection and redo the
form, e.g., he could improve the rationale to indicate the importance of doing
the respective trip. Then the scenes already discussed could be approached
again, with the respective cycle even repeated several times. Clearly, the boss,
while working on the application, might feel the need to look for instructions
concerning it, e.g., in cases of doubt or latitude. S/he should be aided in all the
required activity by the WIS. Note that the scenario implicitly involves three
roles: applicant, boss and clerk. The clerk would book flight and accommoda-
tion. If the required bookings could not be made, it might be necessary for the
boss to deal again with the application. To keep the model simple, it was
decided not to include reimbursement issues in the diagram. Reimbursement
either could be introduced or another scenario dealing with it could be given.
Precondition to start the process described by this reimbursement scenario
would be eligibility to do so.

Starting from story boarding, the transition to system design can be carried
out easily: Customer-WIS interaction at a particular scene causes data being
retrieved from or shipped to an underlying database. The respective data, for
the convenience of the user, is held in a media object. A description of media
objects at a high level in the sense of classification is said to be its media type.
See Schewe and Thalheim (2003) in the present book for more information on
media types and their theory.

The activity that takes place in a scene is understood as a dialogue between
customer and media object. The dialogue can be modeled with an interaction
diagram or similar. This, then, gives us, at a still vague level, syntax and
semantics of the language SiteLang. Summing up, the modeling notions of
SiteLang are:

Story Boarding for Web-Based Information Systems 21

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Story space, i.e., the smallest subspace of the information space suffi-
cient for creation of the story board.

• Story board, i.e., a net of locations in information space. It is represented
as a directed graph. Its vertices, the locations, are called scenes. Its
arrows, called transitions, are labeled with both the action triggering their
traversal and the data being available at the target scene due to this action.
A scene is labeled with the type of customers being granted access to it.

• Scenario, i.e., a subgraph of the story board.
• Story, i.e., a path in the story board.
• Scene, i.e., a vertex in the story board. According to (Longman Dictio-

nary of Contemporary English, 1995) a scene is “… a single piece of
action that happens at one place.”

• Actor, i.e., user, dialogue object, or media object.
• Media object, i.e., a unit of business- and representation functionality,

mediating between customer and database of the WIS.
• Content, i.e., data, information.

Stories are particular scenarios. They do not add to the expressiveness of
SiteLang. They merely are justified by methodological consideration. They
represent a simple case. A number of alternatives is left out (branch scenes),
each of which adds to the case. Stories enable a separation of concern
introduced to further reduce the complexity to be dealt with at once. One
doesn’t get rid of the complexity in this manner. It reappears as relationships
between processes and the conditions and constraints characterizing these.
Assessment of the overall design requires the various scenarios integrated into
the story board.

In the story board, usage processes can be defined by means of the
modeling notions introduced by SiteLang. This is the starting activity of story
boarding. Each such process involves actors that exchange messages with each
other. The processes focused on throughout story boarding need to be chosen
such that customers are interested in them. This can be done based on a good
forecast of the customer’s purpose in running the very process. One can expect
that processes represent methods for solving a particular business problem.
Such a process is considered a scenario if it contains branch or fork scenes or
loops. Otherwise, it is a story. The modeled processes can be used to identify
the data and operations accessed by the customer driving the process. Story
boarding goes, then, on and, for each modeled process, obtains database
schemas describing the data accessed in a process. These schemas are then

22 Kaschek, Schewe, Wallace, & Matthews

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

integrated, and the integrated schema is used to derive, for each process, a view
specifying the data accessed throughout this process.

From a methodological point of view, story boarding, thus, is a particular
variant of analysis and synthesis. The system of customer-WIS interaction is
discussed, as well as particular subsystems of it: the scenarios or stories. The
complexity reduction resulting from the respective separation of concern is
used to derive database schemas enabling to record, store and maintain the
data required in the very subsystem. The analysis, however, goes one step
further: It generates an integrated database schema that allows handling all the
data required. This integrated schema, then, is the starting point of the synthesis.
View definitions are obtained to produce data descriptions suitable for the
individual customer-WIS interactions. These, then, have to be implemented by
means of dialogues. Customers, then, will assess these descriptions, and either
will accept or reject them. At best, prototype systems are offered to the
customers for this purpose. In case of rejection, the analysis-synthesis cycle has
to be started again to come up with an improved artifact.

EXAMPLE
The example does not cover the whole development process. We rather

focus on aspects of story boarding and do not intend to show the completed
story board. Rather than discussing how modern interfaces are operated, we
assume familiarity of readers with them. We further assume that the used
terminology, as far as the interface is concerned, is reasonably self-explaining.
We use terminology and, where possible, notation introduced above.

Enjoyment WIS
Assume that a consortium of local companies, in a collective attempt

headed by the chamber of commerce, pays for and coordinates the develop-
ment of an enjoyment WIS (EWIS). All legal organizations targeting at the high
price segment of the enjoyment market may join the consortium. The mission
statement of EWIS is for the consortium members to extend the business
volume. Using EWIS is free of charge.

Gourmets and Connoisseurs
‘Gourmet’ and ‘Connoisseur’ are natural candidates for customer types in

the businesses of dining and beverages. The stories ‘Wine Tasting’ (see Figure 4)
and ‘Fine Dining’ (see Figure 5) are respectively assumed to be descriptions

Story Boarding for Web-Based Information Systems 23

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

of typical cases of customers of type ‘Gourmet’ and ‘Connoisseur.’ The
operations available at a scene are listed within the ellipse that is connected with
a line to the very scene. Similarly, the data (including the links) available at a
scene is listed within the rectangle connected to the scene by a line. We do not
distinguish here between data and view, and do not explicitly model the
dialogues, since these consist in successively invoking operations. The arrow
labels prefixed by ‘a:’ denote the action causing the transition from the source
scene to the target scene of the arrow. The arrow label prefixed with ‘d:’
indicates the data accessible at the target scene of such a transition.

Two Customer Types
The dimensions d for ‘food quality,’ and e for ‘wine quality,’ respectively

measuring the average score of accessed food and wine places, are used. The
food and wine quality scale, respectively, is the set of Roman and Arab numbers
from one to 10. High scale values indicate high quality. ‘Connoisseur’ and
‘Gourmet’ are defined such that the former are a subset of the latter, but not vice
versa. ‘Gourmet’ is defined as [mδ , Mδ] = [VII, X] and [mε

, Mε
] = [3, 7].

‘Connoisseur’ is defined as [mδ , Mδ] = [VIII, X] and [mε
, Mε

] = [5, 7].

Figure 4: A Story for Wine Tasting

WIS entry

Alphabet filter
use

Filter list

Send email

Meta Data, Selection List (Information):
 LIST OF (Grapes, Regions, Colour, Sparkling wine,
Vintage, Vintager, ...)
Meta Data, Link list (Navigation):
 LIST OF (LINK (Exhibitions), ...)
Meta Data, Alphabet filter (Search):
 LIST OF (A, B, C, ...)

a: First letter of vintager name= 'M'
d: List of vintagers with name>='M'

Meta Data, Selection List (Information):
LIST OF (Wine, Cigars, Bars,...)
Meta Data, Link List (Navigation):
 LIST OF (LINK (Agriculture), LINK (University),
 LINK (North Island Map), ...)

 a: 'Wine' item selected
d: 'Wine' selection list

a: Specify grape = 'Riesling' & Region = 'Marlborough' & Additives = 'None'. Filter list
d: list of vintager data meeting user spec.

Data:
LIST OF (LIST OF (Name, Phone, Email,
Address, Region, Grapes, Vintage
LIST OF (Wine, Additives)
Tasting hours))

Back, Exit, Select list,
Scroll selected list, Select list
item, Access selected item

Back, Exit,
Select list, Scroll selected list,

Select list item, Access selected
item, Select alphabet letter, Filter

vintager data by selected
letter

Back, Exit,
Specify field values, Filter vintager

list by spec., scroll through list, reset
spec., select list fields, reorder list

according to
selected fields

Back, Exit, Select vintager,
Email selected vintager,
Access map of selected

vintager, scroll through list

Data:
LIST OF (LIST OF (Name, Phone, Email,
Address, Region, Grapes, Vintage
LIST OF (Wine, Additives)
Tasting hours, Link to map))

24 Kaschek, Schewe, Wallace, & Matthews

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The Stories Integrated
A part of the story space of EWIS is specified with help of the adjacency

matrix in Figure 6. It was generated from the top three scenes of each of the
stories presented. Adjacency matrixes may be easier to understand than
scenarios with lots of crossing edges. Diagonal elements of the matrix represent

Figure 5: A Story for Fine Dining

WIS entry

Restaurant
category list

access

Meta Data, Selection List (Information):
 LIST OF (Restaurant Categories, Cuisine Types
Restaurant Rankings, Nearby Dining, ...)
Meta Data, Link List (Navigation):
 LIST OF (LINK (Dining of the Week),
 LINK (Vegetarians), ...)
Meta Data, List Field Filter (Search):
 Search Mask (Name)a: 'Restaurant Category' accessed

d: sublists meeting selection

Meta Data, Selection List (Information):
 LIST OF (Recreation, Dining, ...)
Meta Data, Link List (Navigation):
 LIST OF (LINK (Industry), LINK (Agriculture),
 LINK (University), LINK (City Map))

a: 'Dining' item accessed
d: 'Dining' selection list

Back, Exit, Select a list, Scroll
selected list, Select list item

Access selected item

Back, Exit, Select a list,
Scroll selected list, Select item,
Access selecteditem, Specify

restaurant name, Filter restaurant
data according to

specification

Restaurant
category
access

Meta Data, Symbol Filter (Search):
 LIST OF (I,II, ...,IX, X)
Meta Data, Link List (Navigation):
 LIST OF (LINK (Dining of the Week),
 LINK (Vegetarians), ...)
Meta Data, List Field Filter (Search):
 Search Mask (Name)

a: Restaurant Category = 'X' specified
d: List of restaurants with quality = 'X'

Cuisine type
selection

Restaurant
Data Selection

Meta Data, Selection List (Information):
 LIST OF (LIST OF (Cuisine Types),
 LIST OF (Nearby Places), ...)
Meta Data, Link List (Navigation):
 LIST OF (Place of the Week, City Map, ...)

a: 'Italian': accessed
d: list of descriptions of Italian level X restaurants

Data:
LIST OF (Name, Phone, Keeper, Address, Ranking,
Parking, Smokers Section, Menu, Hours)

a: filter for Name:'*Pasta*'
d: list of all Italian high level restaurants with name = '*Pasta*

Data:
LIST OF (Name, Adress, Phone, Keeper, Rating,
Parking, Directions, Hours, Hot Cuisine Hours)

Back, Exit,
Select list, Scroll selected list,
Select item, Access selected

item

Back, Exit, Scroll,
Select fields, Reorder according

selection, Specify filter value, Filter list
by values

Back, Forward, Exit,
Browse through list, Select fields
Reorder according to selection,

Specify filter value, Filter by
specification

Restaurant
Selection

Back, Exit, Select data,
Print selecteded data,

Save selected data
select selection list

'a: filter by:Name='Pasta Romana':
d: descriptions of restaurants

Data:
Pasta Romana, Gastronome Av. 22, Luigi Canneloni,
 *****, Parking in front the restaurant, hours: 11 am - 2 pm,
6 pm - 4 am, hot cuisine hours: 11 am - 2 pm, 6 pm - 11 pm,
Meta Data Selection List (Navigation):
Directions

Export
Restaurant
Description

Back, Exit, Select a list,
Scroll selected list, Select item,

Specify filter, Access selected item,
Filter data according to

specification

Story Boarding for Web-Based Information Systems 25

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

scenes and are labeled with the scene’s name. Beginning with 1, they are
numbered from top left to bottom right. An entry A in the i-th row and j-th
column of the matrix means that action A leads to a transition from scene i to
j. Transitions from a scene into itself are indicated by an asterisk. Customer
type T may access scene s if T is listed right from the table in an additional
column in the row of s. Association of media types to scenes, similarly, is
specified by an additional row below the table. If roles are included in
scenarios, they can be treated as if they were scenes.

Integrated Database Schema and View Derivation
Connoisseur Database Schema

The top left corner diagram of Figure 7 is a database schema suitable to
describe the connoisseur data, as far as it occurs in the wine tasting story. This
story at the scene ‘WIS entry’ shows the offers relevant for connoisseurs. The
only one of them for which data is then specified in the examples is the offer
‘Wine.’ Selecting it leads to a transition into scene ‘Alphabet filter use.’ This
scene describes wine. Thus, it appears reasonable to have an entity type ‘Wine
description.’ It would have multi-valued attributes: ‘grape’ and ‘region,’ and
would, additionally, have the attributes ‘color’ and ‘sparkling wine.’

Further, the data offered at the scene ‘Filter list’ indicates an entity type
‘Vintager’ should exist, with attributes ‘Name,’ ‘Phone,’ ‘Email,’ ‘Address,’

Figure 6: Parts of ‘Fine Dining’ and ‘Wine Tasting’ Integrated

M1 M2 M3 M4 M5

All

Gourmet

Gourmet

Connoisseur

Connoisseur

WIS
entry

Restaurant
category list
access

Restaurant
category
access

Alphabet
filter use

Filter list

'Wine' item
selected

1st. letter of
name = 'M'

'Dining' item
selected

'Restaurant
Category'
accessed

26 Kaschek, Schewe, Wallace, & Matthews

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

‘Region’ and ‘Vintage.’ This entity type would further have a multi-valued
attribute ‘Grape,’ and a multi-valued composite attribute without name. The
components of this attribute would be ‘Wine’ and the multi-valued attribute
‘Additive.’ Finally ‘Vintager’ would have an attribute ‘Tasting hours.’ As the
scene ‘Send mail’ indicates, there should be a ‘map’ available for this entity
type. It appears, thus, reasonable to have an entity type ‘Connoisseur link’ that
stores the URLs required. The map for an entity of type ‘Vintager’ could, thus,
be associated to this entity by a relationship ‘map.’

Entity type ‘Connoisseur link’ can also store the links occurring at the
scenes ‘WIS entry,’ and ‘Alphabet filter use.’ To permit the links offered to the
user that are specified by the scenes just mentioned, it is sufficient that
‘Connoisseur link’ has attributes ‘Exhibition’ and ‘Type.’ Looking back to the
somewhat artificial entity type ‘Wine description,’ it seems better to include its
attributes in the list of attributes of ‘Vintager.’

Figure 7: Conceptual Schemata for the Scenarios Discussed

Vintager

Connoisseur
links

map

1

1

Connoisseur database schema Gourmet database schema

Restaurant

Location

Gourmet
links

1

n

directions

nearby
dining

map

1

1

m

n

Integrated database schema

map

Customer
type

Supplier Link

directions

1 1

1

n

Location
nearby
dining

m

n

m
m

n

n

Story Boarding for Web-Based Information Systems 27

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Gourmet Database Schema
Similarly, we can analyze the story ‘Fine Dining.’ We see, firstly, that there

are several offers to the gourmet at ‘WIS entry.’ However, only for ‘Dining’ are
further characteristics given. Arguing similarly as before, we can conclude that
an entity type ‘Gourmet links’ is required.

To group together the characteristics given in scene ‘Restaurant category
list access,’ we chose an entity type ‘Restaurant.’ As the analysis of the further
sequences shows, this entity type would have attributes: ‘Name,’ ‘Phone,’
‘Keeper,’ ‘Address,’ ‘Ranking,’ ‘Parking,’ ‘Smokers Section,’ ‘Menu,’
‘Hours,’ and ‘Hot Cuisine Hours.’ There also would be attributes ‘Category’
and ‘Cuisine.’ which could be multi-valued. We omit respective detail. To
allow for the presentation of the dining of the week and of the vegetarian
restaurants, attributes ‘DOW’ and ‘Veg’ are available for entity type ‘Restau-
rant.’ Maps with directions and the restaurant location would be associated to
a restaurant by means of associations ‘directions’ and ‘map.’

Figure 8: Derivation of the Connoisseur and the Gourmet View

-- The database for the integrated database schema is called IDS.
-- The solution presented here only is to show how one could work in principle.
CREATE SCHEMA Connoisseur;
CREATE VIEW Vintager AS

SELECT * FROM IDS.Supplier AS S, IDS.Supplier_to_Cusromer_type AS
S2U,

WHERE S.ID = S2U.SuppID,
AND S2U.UserType = 'Connoisseur';

-- All attributes from IDS.Supplier that apply to vintagers, might be a proper subset of all
-- attributes of IDS.Supplier.
CREATE VIEW Connoisseur_links AS

SELECT * FROM IDS.Link AS L, Supplier AS S,
WHERE S.LinkID = L.Supp.ID;

GRANT ...

CREATE SCHEMA Gourmet;
CREATE VIEW Restaurant AS

SELECT * FROM IDS.Supplier AS S, IDS.Supplier_to_User_type AS S2U,
WHERE S.ID = S2U.SuppId,
AND S2U.UserType = 'Gourmet';

-- All attributes from IDS.Supplier that apply to restaurants, might be a proper subset of all
-- attributes of IDS.Supplier.
CREATE VIEW Gourmet_links AS

SELECT * FROM IDS.Link AS L, IDS.Supplier_to_Link AS S2L,
WHERE L.ID = S2L.LinkID,
AND S2L.UserType = 'Gourmet';

CREATE VIEW nearby_dining AS
SELECT * FROM IDS.nearby_dining;

CREATE VIEW Location AS
SELECT * FROM IDS.Location;

GRANT ...

28 Kaschek, Schewe, Wallace, & Matthews

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In Figure 8, the user originating types are introduced by means of the
‘CREATE SCHEMA’ statements. These also provide the type name. A sequel
of ‘CREATE VIEW’ commands specifies, for the create schema command
that they are immediately following, the components the user originated type
consists of, i.e., the views. These have a customer-controlled extent and inherit
this property to the schema.

RESUME AND FUTURE WORK
In this chapter, we have introduced story boarding, a method for elicitation

and analysis of requirements concerning WIS. We have shown that story
boarding is a particular version of analysis and design applied to the system of
customer-WIS interaction. We have discussed the foundations of story board-
ing in linguistics, communication and methodology. Core aspects of our
discussion of story boarding have been customer profiling and the language
SiteLang. We showed that both of them introduce a separation of concern,
significantly simplifying the development activity: customer profiling enables, in
usage, modeling to have a local focus, i.e. not considering all the data and
operations but only the ones relevant for the particular customer type. We,
finally, presented an example for the application of story boarding, and showed
how it can be complemented with database design to obtain the base of an
operative WIS.

There should be developed a CASE tool set, based on the language
SiteLang, that allows to define a story space and, within it, a number of
scenarios, in particular, stories. The tool set, then, should be capable of
generating proposals for the schema of the database of each of these scenarios.
Furthermore, the tool set should integrate available tools for schema integra-
tion. Finally, also, view derivation should be supported. The tool set could then
be used to conduct empirical studies of the application of story boarding. This,
then, would provide the empirical base of comparing story boarding to other
approaches. It further would simplify learning the concepts and method. We
expect that such studies give evidence for the strengths of our approach to WIS
design discussed here.

ACKNOWLEDGMENTS
The work presented here was supported by the Massey University

Academy of Business Research Fund (Project: ‘Story boarding for web-based
services,’ 2002/03). We thank Inga Hunter and Alexei Tretiakov from the

Story Boarding for Web-Based Information Systems 29

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Department of Information Systems, Massey University, Palmerston North,
New Zealand, for their comments on earlier versions of this chapter.

REFERENCES
Atzeni, P., Gupta, A., & Sarawagi, S. (1998). Design and maintenance of data-

intensive web-sites. In Proceedings of the EDBT’98 (Vol. 1377 of
LNCS, pp. 436-450). Berlin: Springer-Verlag.

Baresi, L., Garzotto, F., & Paolini, P. (2000). From web sites to web
applications: New issues for conceptual modeling. In ER workshops
2000 (Vol. 1921 of LNCS, pp. 89-100). Berlin: Springer-Verlag.

Barr, M. & Wells, C. (1990). Category Theory for Computing Science.
New York: Prentice Hall.

Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The semantic web.
Scientific American.

Bernus, P. & Schmidt, G. (1998). Architecture of information systems. In P.
Bernus, K. Mertins & G. Schmidt (Eds.), Handbook on Architectures
and Information Systems (pp. 1-9). Berlin: Springer-Verlag.

Black, M. (1966). Models and Metaphors: Studies in Language and
Philosophy (3rd ed.). Ithaca, NY: Cornell University Press.

Boehm, B. (2000). Requirements that handle IKIWISI, COTS and rapid
change. IEEE Computer, 33(7), 99-102.

Bonifati, A., Ceri, S., Fraternali, P., & Maurino, A. (2000). Building multi-
device, content-centric applications using WebML and the W3I3 tool
suite. In ER workshops 2000 (Vol. 1921 of LNCS, pp. 64-75). Berlin:
Springer-Verlag.

Cherry, S. M. (2002). Weaving a web of ideas. IEEE Spectrum, 39(9), 65-
69.

Cragan, J. F. & Shields, D. C. (1998). Understanding Communication
Theory: The Communicative Forces of Human Action. Needham
Heights, MA: Allyn & Bacon.

Düsterhöft, A. & Thalheim, B. (2001). SiteLang: Conceptual modeling of
Internet sites. In H. S.~K. et al. (Eds.), Conceptual Modeling - ER 2001
(Vol. 2224 of LNCS, pp. 179-192). Berlin: Springer-Verlag.

Düsterhöft, A., Schewe, K.-D., Thalheim, B., & Tschiedel, B. (2002). XML-
based website development through media types and word fields.
Submitted for publication.

30 Kaschek, Schewe, Wallace, & Matthews

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Dwyer, J. (1993). The Business Communication Handbook. Australia:
Prentice Hall.

Falkenberg, E. D., et al. (1998). A framework of information system concepts.
The FRISCO Report (Web Edition). IFIP.

Feyer, T., Schewe, K.-D., & Thalheim, B. (1998). Conceptual modeling and
development of information services. In T. Ling & S. Ram (Eds.),
Conceptual Modeling - ER’98 (Vol. 1507 of LNCS, pp. 7-20). Berlin:
Springer-Verlag.

Francis, D. (1987). Unblocking Organizational Communication. Cam-
bridge, UK: Cambridge University Press.

Gädke, M. & Turowski, K. (1999). Generic web-based federation of business
application systems for e-commerce applications. In EFIS 1999 (pp. 25-
42).

Garzotto, F., Paolini, P., & Schwabe, D. (1993). HDM — A model-based
approach to hypertext application design. ACM ToIS, 11(1), 1-26.

Gigh, J. P. Van (1991). System Design, Modeling and Metamodeling. New
York: Plenum Press.

Gregory, R. L. (ed.). (1998). The Oxford Companion to the Mind. Oxford,
UK: Oxford University Press.

Guffey, M. (1997). Business Communication: Process and Product. USA:
South Western College Publishing.

Hausser, R. (2001). Foundations of Computational Linguistics. Berlin:
Springer-Verlag.

Henderson-Sellers, B., Simons, A., & Younessi, H. (1998). The OPEN
Toolbox of Techniques. New York: ACM Press, Addison-Wesley.

Hirschheim, R., Klein, H. K., & Lyytinen, K. (1995). Information Systems
Development and Data Modeling, Conceptual and Philosophical
Foundations. Cambridge, UK: Cambridge University Press.

Jackson, M. (1995). Software Requirements & Specifications. Wokingham,
UK: ACM Press, Addison-Wesley.

Kaner, C. (2002). UCITA: A disaster in progress. IEEE Spectrum, 39(8),
13-15.

Kaschek, R. & Zlatkin, S. (2003). Where ontology affects information
systems. In H. Mayr, M. Godlevsky, & S. C. Liddle (Eds.), ISTA 2003
Proceedings. Bonn, Germany: GI.

Kaschek, R., Matthews, C., & Wallace, C. (2003a). e-Mortgages: NZ state
of the art and perspectives. In Proceedings of the SCI 2003.

Kaschek, R., Schewe, K.-D., & Thalheim, B. (2003b). Modeling context in
web information systems. In short paper of CAiSE’03.

Story Boarding for Web-Based Information Systems 31

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Kaschek, R., Schewe, K.-D., Thalheim, B., & Zhang, L. (2003c). Integrating
context in conceptual modeling for web information systems. WES’03
Proceedings.

Linke, A., Nussbaumer, M., & Portmann, P. R. (2001). Studienbuch Linguistik.
Reihe Germanistische Linguistik (4th ed.). Tübingen, Germany: Max
Niemeyer Verlag GmbH.

Longman Dictionary of Contemporary English. (1995). Munich:
Langenscheidt-Longman GmbH.

Matthews, C. (1998, March). Internet banking in New Zealand — A critique.
New Zealand Banker (pp. 26-28).

Mayr, H. C., Lockemann, P. C., & Bever, M. (1985). A framework for
application systems engineering. Information Systems, 10(1), 97-111.

McLaren, M. & Locker, K. (1995). Business and Administrative Commu-
nication. Irwin, Australia.

Melton, J. & Simon, A. R. (1993). Understanding the New SQL: A
Complete Guide. San Francisco, CA: Morgan Kaufmann.

Minsky, M. (1968). Matter, mind and models. In M. Minsky (Ed.), Semantic
Information Processing (pp. 425-432). Cambridge, MA: MIT Press.

Morgan, T. (2002). Business Rules and Information Systems: Aligning IT
with Business Goals. Boston, MA.

Morris, C. W. (1955). Signs, Language and Behavior. New York: George
Braziller. (Original work published 1946 by Prentice Hall).

Nersessian, N. J. (2002). The cognitive basis of model-based reasoning in
science. In P. Carruthers, S. Stich, & M. Siegal (Eds.), The Cognitive
Basis of Science (pp. 133-153). Cambridge, UK: Cambridge University
Press.

O’Grady, W., Archibald, J., Aronoff, M., & Rees-Miller, J. (2001). Contem-
porary Linguistics (4th ed.). Boston, MA: Bedford/St. Martin’s.

Oberquelle, H. (1984). On models and modeling in human-computer co-
operation. In G. C. Van der Meer, M. J. Tauber, T. R. G. Green, & P.
Gorny (Eds.), Readings on Cognitive Ergonomics — Mind and Com-
puters: Proceedings of the 2nd European Conference (pp. 26-43).
Berlin: Springer-Verlag.

Peirce, C. S. (1998). What is a sign? In Project Peirce edition (Ed.), The
Essential Peirce: Selected Philosophical Writings (Vol. 2, pp. 4-10).
Bloomington, IN: Indiana University Press.

Polya, G. (1988). How to Solve It. Princeton, NJ: Princeton University Press.
Quade, E. S. (1985). Predicting the consequences: Models and modeling. In

H. Miser & E. S. Quade (Eds.), Handbook of Systems Analysis:

32 Kaschek, Schewe, Wallace, & Matthews

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Overview of Uses, Procedures, Applications and Practice (pp. 191-
218). New York: Elsevier Science Publishing.

Rossi, G., Schwabe, D., & Lyardet, F. (1999). Web application models are
more than conceptual models. In Advances in Conceptual Modeling
(Vol. 1727 of LNCS, pp. 239–252). Berlin: Springer-Verlag.

Rothenberg, J. (1989). The nature of modeling. In L. E. Widman, K. A.
Loparo, & N. R. Nielson (Eds.), Artificial Intelligence, Simulation,
and Modeling (pp. 75-92). New York: John Wiley & Sons.

Schewe, B. (1996). Kooperative Softwareentwicklung. Wiesbaden, Ger-
many: Deutscher Universitätsverlag.

Schewe, B., Schewe, K.-D., & Thalheim, B. (1995). Objektorientierter
Datenbankentwurf in der Entwicklung betrieblicher Informationssysteme.
Informatik — Forschung und Entwicklung, 10, 115-127.

Schewe, K.-D. & Schewe, B. (2000). Integrating database and dialogue
design. Knowledge and Information Systems, 2(1), 1-32.

Schewe, K.-D. & Thalheim, B. (2001). Modeling interaction and media
objects. In E. Métais (Ed.), Advances in Conceptual Modeling (Vol.
1959 of LNCS, pp. 313-324). Berlin: Springer-Verlag.

Schewe, K.-D. & Thalheim, B. (2003). Structural media types in the
development of data-intensive web information systems.

Schewe, K.-D., Kaschek, R., Matthews, C., & Wallace, C. (2002). Modeling
web-based banking systems: Story boarding and user profiling. In H.
Mayr & W.-J. Van den Heuvel (Eds.), Proceedings of the Workshop on
Conceptual Modeling Approaches to E-commerce. Berlin: Springer-
Verlag.

Schulz von Thun, F. (2000). Miteinander reden: Störungen und Klärungen
(Vol. 1). Hamburg, Germany: Rowohlt Taschenbuch Verlag GmbH.

Schwabe, D. & Rossi, G. (1998). An object oriented approach to web-based
application design. TAPOS, 4(4), 207-225.

Sowa, J. F. (2000). Knowledge Representation. Pacific Grove, CA: Brooks/
Cole, a division of Thomson Learning.

Sølvberg, A. & Kung, D. (1993). Information Systems Engineering. Berlin:
Springer-Verlag.

Srinivasa, S. (2001). A calculus of fixed-points for characterizing interac-
tive behavior of information systems. PhD thesis. Cottbus, Germany:
BTU Cottbus, Fachbereich Informatik.

Stachowiak, H. (1973). Allgemeine Modelltheorie. Vienna: Springer-Verlag.
Stachowiak, H. (1983). Erkenntnisstufen zum Systematischen Neopragmatismus

und zur Allgemeinen Modelltheorie. In H. Stachowiak (Ed.), Modelle-

Story Boarding for Web-Based Information Systems 33

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Konstruktionen der Wirklichkeit (pp. 87-146). Munich: Wilhelm Fink
Verlag.

Stachowiak, H. (1992). Erkenntnistheorie, neopragmatische. In H. Seiffert &
G. Radnitzky (Eds.), Handlexikon zur Wissenschaftstheorie (pp. 64-
68). Munich: Deutscher Taschenbuch Verlag GmbH.

Sutton, D. C. (2001). What is knowledge and can it be managed? European
Journal of Information Systems, 10, 80-88.

Thalheim, B. (2000). Entity-relationship Modeling. Berlin: Springer-Verlag.
Thalheim, B. & Düsterhöft, A. (2000). The use of metaphorical structures for

internet sites. Data & Knowledge Engineering, 35, 61-180.
Wallace, C. (2002). The impact of the internet on business. PhD thesis.

Palmerston North, NZ: Massey University.
Wallace, C. & Matthews, C. (2002). Communication: Key to success on the

web. In H. C. Mayr & W.-J. Van den Heuvel (Eds.), Proceedings of
eCoMo 2002. Berlin: Springer-Verlag.

Wechler, W. (1992). Universal Algebra for Computer Scientists. Berlin:
Springer-Verlag.

Wieringa, R. (1990). Algebraic foundations for dynamic conceptual mod-
els. PhD thesis. Amsterdam: Free University of Amsterdam.

34 Schewe & Thalheim

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter II

Structural Media Types in
the Development of
Data-Intensive Web
Information Systems

Klaus-Dieter Schewe, Massey University, New Zealand

Bernhard Thalheim, Brandenburgian Technical University, Germany

ABSTRACT
In this chapter, a conceptual modeling approach to the design of web
information systems (WIS) will be outlined. The notion of media type is
central to this approach. Basically, a media type is defined by a view on
an underlying database schema, which allows us to transform the data
content of a database into a collection of media objects that represent the
data content presented at the web interface. The view is extended by
operations and an adaptivity mechanism, which permits the splitting of
media objects into several smaller units in order to adapt the WIS to
different user preferences, technical environments and communication
channels. The information entering the design of media types is extracted
from a previous story boarding phase. In consecutive phases, media types
have to be extended by style patterns as the next step toward implementation.

Development of Data-Intensive Web Information Systems 35

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

INTRODUCTION
In this chapter, we address the conceptual modeling of web information

systems following the abstraction layer model that was already presented in
another chapter of this book (Kaschek et al., 2003). We concentrate only on
the structural aspects, i.e., operations will not be discussed. Thus, the central
task will be the specification of the data content that is to be made available on
the Web. The goal is to provide conceptual means for describing the content
in a way that it can be tailored to different users, different end-devices and
different communication channels without designing multiple systems.

The chapter will guide the reader through a three-layer model of describing
such data. Describing the structure of the data as it is presented on the Web will
lead to defining the structure of media types. However, these structures will be
full of redundancies and, thus, hard to maintain as such. Therefore, the data has
to be restructured in order to define a suitable database schema, which defines
the second layer. As database design follows different objectives, the content
specification should lead to views, i.e., transformations, which turn the content
of a database into the content of a media type. The third layer is made up by
data types, i.e., immutable sets of values that can be used in the description of
the other two layers.

Thus, a media type will basically be defined by a view on an underlying
database schema, which allows us to transform the data content of a database
into a collection of media objects that represents the data content presented at
the web interface. Then, we extend media types in a way that they become
adaptive to users, devices and channels. The adaptivity of a media type
permits the automatic splitting of media objects into several smaller units,
allowing a user to retrieve information, in a step-by-step fashion, with the most
important information presented first. The reader will see two different ways to
specify which data should preferably be kept together, and how this will impact
on the splitting of media objects.

The result of conceptual modeling will be a media schema, i.e., a
collection of media types, which adequately represents the data content of the
story board. In this chapter, we will formalise this idea of conceptual modeling
of web information systems by the use of media types. In the remainder of this
chapter, we will first look at related work on conceptual modeling of web
information systems. This will provide the reader with the necessary framework
of the theory of media types. In a second step, we will illustrate in detail, but
quite informally, the central ideas underlying media types. This is to convince
the reader about the naturalness of the approach. The third and fourth steps are

36 Schewe & Thalheim

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

devoted to introducing, formally, data types, database schemata, and media
types on top of such schemata. The adaptivity extension will be introduced last,
before we summarise the chapter, put again the media types into the context of
the abstraction layer model and discuss follow-on activities, and draw some
conclusions. Throughout the chapter, we will use a simple bottleshop example.

RELATED WORK
There are a few major groups working on conceptual modeling of web

information systems. One of them is the group around Paolo Atzeni (University
of Rome), who defined the ARANEUS framework (Atzeni et al., 1998). This
work emphasises that conceptual modeling of web information systems should
approach a problem triplet consisting of content, navigation and presentation.
This leads to modeling databases, hypertext structures and page layout.

However, the ARANEUS framework does not explicitly separate be-
tween the content at the database layer and the web information system layer,
i.e., the aspect of dealing with views. The navigation is not treated as an
integrated part of such views, but more as an “add-on” to the content
specification. Besides navigation, no further operations that could cover the
functionality of the system are handled. There is quite a fast drop from
conceptual modeling to the presentation, instead, of a more sophisticated work
on the presentation and implementation aspects. The conceptual modeling
approach is not integrated in an overall methodology, e.g., the aspect of story
boarding is completely neglected. Adaptivity, with respect to users, used
technology, and channels is not incorporated into the conceptual model.

Of course, the work in the group continues and addresses most of these
issues. Also, other authors refer to the ARANEUS framework. The work in
Baresi et al. (2000) addresses the integrated design of hypermedia and
operations, thus, picking up the functionality aspect but remaining on a very
informal level. Similarly, the work in Bonifati et al. (2000) presents a web
modeling language WebML and starts to discuss personalisation of web
information systems and adaptivity, but, again, is very informal.

Another group working on integrated conceptual modeling approaches is
the one around Gustavo Rossi (Argentina) and Daniel Schwabe (Brazil), who
developed the OOHDM framework (Schwabe et al., 1996), which is quite
similar to the ARANEUS approach. A major difference is that the Roman
group has its origins in the area of databases, whereas the Latin American group
originally worked in the area of hypertext (Schwabe & Rossi, 1998).

Development of Data-Intensive Web Information Systems 37

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The OOHDM framework (see also Rossi et al., 2000) emphasises an
object layer, hypermedia components, i.e., links (discussed in more detail in
Rossi et al., 1999) and an interface layer. This is, more or less, the same idea
as in the work of the Roman group, except that Rossi and Schwabe explicitly
refer to an object oriented approach.

A third group working on integrated conceptual modeling approaches to
web information systems is the group around Stefano Ceri and Piero Fraternali
(Polytecnico di Milano) (see Ceri et al., 2002 and Fraternali, 1999). The work
emphasises a multi-level architecture for the data-driven generation of web
sites, thus, taking the view aspect into account. The work addresses the
personalisation of web sites by providing user-dependent site views, thus,
being aware of the problem of adaptivity. The work emphasises structures,
derivation and composition, i.e., views, navigation and presentation, thus,
addressing the same problem triplet as the ARANEUS framework. Remaining
differences to our work on media types are the fast drop from the conceptual
level to the presentation, the treatment of navigation as an “add-on” and not an
integrated part of the views, and the missing emphasis on higher-level methods
such as story boarding. Besides that, the theory of media types is formally more
elaborate.

Our own work started with the Cottbusnet project, addressing the design
and development of a regional information service (see Thalheim, 1997) for a
detailed description of the project, its approach, and the achieved results). As
a large project arising from practice, all problems had to be addressed at the
same time. This even included the demand for adaptivity to different end-
devices. The research challenge was to formalise the concepts and to bring
them into the form of an integrated design and development methodology for
web information systems.

This resulted in a methodology oriented at abstraction layers and the co-
design of structure, operations and interfaces (see Schewe & Thalheim 2000).
Central to the methodology is the story boarding (Feyer et al., 1998; Feyer &
Thalheim, 1999). The work in Düsterhöft and Thalheim (2001) contains an
explicit language SiteLang for the purpose of story boarding. The work in
Schewe et al. (2002) applies story boarding to electronic banking. For the
conceptual level, the methodology provides the theory of media types (Feyer
et al., 1998; Feyer et al., 2000) — more elaborate work on this subject is
contained in Schewe and Thalheim (2000). The theory of media types
addresses the objectives described in the previous subsection. It will be
described in detail in the remainder of this chapter.

38 Schewe & Thalheim

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Finally, there is uncountable work on the eXtensible Markup Language
(XML). The Roman group has investigated how ARANEUS could be sup-
ported by XML (Mecca et al., 1999), and we did the same with the theory of
media types (Kirchberg et al., 2003). However, as Lobin emphasises in Lobin
(2000), XML should be considered as a “bridge” between the areas of
databases and the Web; and, as such, is neither completely part of databases
nor of web documents. Therefore, it is debatable whether XML should be
treated as a new data model or just kept for modeling views.

CONCEPTUAL MODELING OF
CONTENT AND ADAPTIVITY

The content aspect concerns the question: Which information should be
provided? This is tightly coupled with the problem of designing an adequate
database. However, the organisation of data that is presented to the user via the
pages in a web information system differs significantly from the organisation of
data in the database. We conclude that modeling the content of a web
information system has to be addressed on at least two levels: a logical level
leading to databases, and a conceptual level leading to the content of pages.
Both levels have to be linked together.

Consider an arbitrary web page. Ignore all the fancy graphics, colours,
etc., and concentrate on the data content. For instance, consider a page used
in a bottleshop site, showing the label on a wine bottle together with a
description of the wine. You can describe the content saying that it consists of
the picture of the label, the name of the wine, its year, the description of the
winery, the used grapes, information about colour, bouquet, acidity level,
residue sugar, and many other details. You can write down this description in
a formalised way, e.g.:

(name : “Chateau-Lafitte Grand Crus”, picture : “pic4711.gif”, year
: 1998, winery : (name : “Chateau Lafitte”, region : “Hérault”,
country : “France”, address : “…”), composition : { (grape : “Merlot”,
percentage : 65), …}, …)

The components of this complex value need not only be strings, tuples,
numbers, etc. They can be also complex values, such as tuples, sets, or URLs
representing links to other pages.

Development of Data-Intensive Web Information Systems 39

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The URL associated with the arbitrary web page can be considered as an
abstract identifier associated with this complex value. Thus, an adequate
abstract description would be a pair (u, v), where u is a URL and v is a complex
value, as shown above. We decide to call such a pair a media object. The term
‘object’ is used because pairs constructed out of an abstract identifier and a
complex value are called ‘objects’ in the context of object oriented databases.
Here, they refer to ‘media,’ as their collection describes the content of the
whole web information system as some kind of electronic media.

Content Types of Media Types
The example suggests that several raw media objects share the same

structure. Continuing the bottleshop example, there may be lots of different
wines but, in all cases, the structure of the complex value would almost look the
same. Classification abstraction means to describe the common structure of
these values. Formally, we can introduce data types, such as STRING for
character strings, NAT for natural numbers, DATE for dates, etc. We may even
have composed types, such as ADDRESS. In general, we may think of a data
type as providing us with a set of values. Thus, the wines in the bottleshop
examples could be described by the following expression:

(name : STRING, picture : PIC, year : NAT, winery : (name : STRING,
region : STRING, country : STRING, address : ADDRESS), composition
: { (grape : STRING, percentage : NAT) }, …)

We have taken the freedom to assume that we may use a data type PIC
for pictures. We may also assume to be given a type URL for all the possible
URLs. This data type also uses the notation (…) for tuple types, i.e., all
possible values are tuples, and { … } for set types, i.e., all possible values are
sets.

We call an expression as the one above a content type. Content types are
a relevant part of media types. In our example, we would define a media type
with the name WINE and specify that the expression above is its content type.
In general, every data type can become the content type of a media type.
Thus, if M denotes a media type, the media objects of type M are pairs (u, v),
consisting of a value u of type URL and a value v of the content type of M. We
call u the URL of the media object and v its content value.

For example, if we define the content type of a media type WINE as
above, a media object of type WINE could be:

40 Schewe & Thalheim

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

(“www.bottleshop.co.nz/wine/wine_tmp234”,(name : “Chateau-Lafitte
Grand Crus”, picture : “pic4711.gif”, year : 1998, winery : (name : “Chateau
Lafitte”, region : “Hérault”, country : “France”, address : “ … ”), composition
: { (grape : “Merlot”, percentage : 65), … }, …))

taking a “virtual” URL and the complex value that we started with.
A little subtlety comes in here, which makes the definition still a bit more

complicated. When a value of type URL appears inside the content value v, this
may be a URL somewhere outside the Web Information System that we want
to develop. However, in the case where the URL is an internal one, it will be
the URL of a media object, say of type M′. For instance, for a wine, i.e., a media
object of type WINE, the description of the winery may involve a history
component. As this history can be a long structured text on its own, we may
separate it from the wine and place it on a separate page that is reachable by
a navigation link. However, we would always get a link to (the URL of) a media
object of type WINERY_HISTORY.

Therefore, we extend content types in such a way that, instead of the type
URL, we may also use links �: M′, with a unique link name ��and a name of
a media type M′. In our WINE example, the content type would change to

(name : STRING, picture : PIC, year : NAT, winery : (name : STRING,
region : STRING, country : STRING, address : ADDRESS, history :
WINERY_HISTORY), composition : { (grape : STRING, percentage : NAT)
}, …)

We used a bit of meta-level syntax here: small capitals are used for the
names of media types, italic letters for data types, and normal letters for link
names and other labels.

In order to obtain a media object, we would have to replace the links �: M′
by the data type URL first. However, the link �: M′ would force us to use only
values of type URL that are URLs of the media type M′.

In summary, the content of a web page may be described as a complex
value. Combining a complex value with the URL for the web page forms a
media object. Several media objects may share the same structure; in other
words, the complex values share the same structure. A content type is the
generic expression capturing the structure of these complex values.

Development of Data-Intensive Web Information Systems 41

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Database Types
Media objects support an individual user and only provide a section of the

data of the system. The question arises how the data can be described globally.
In fact, we would need to combine all the content types. For instance, in the
bottleshop example we will not only have the content types of media types WINE
and WINERY_HISTORY. There may also be a PRICE_LIST or an OFFER. Some
of the data that we use in media objects of type WINE may also appear in media
objects of type OFFER, e.g., the information about the winery or the grapes.
Similarly, we could have added the price of a wine (for a bottle or a case) to
the media object of type WINE.

This indicates that it is not the best idea to directly use the content types
of the media types for global data storage because this may lead to redundancy.
Instead, we reorganise the global data content and set up a database.
Designing the schema for such a database underlies completely different quality
criteria. For instance, for databases we would like to avoid redundancies as
much as possible. We would also have to pay much attention to providing fast
and concurrent access to the data.

Therefore, we use a separate layer defined by database types. Thus, we
obtain a description of the static components on at least two layers: the global
or database layer, and the local or media type layer. More than that, we even
use a three layer approach consisting of a layer of data types, a layer of
database types, and a layer of raw media types.

The Data Type Layer
The first layer is defined by data types, which define sets of possible

values for using them in content types and database types. We have already
seen examples of such data types, which are either base types such as STRING,
NAT, URL, etc., or complex types, composed of base types and other complex
types such as tuple or set types. The example content type that we have seen
already used such tuple and set types. Tuple types (also called record types)
can be written using the notation (a

1
 : t

1
, …, a

n
 : t

n
) with arbitrarily chosen labels

a
1
 …, a

n
 and data type names, t

1
, …, t

n
. Set types can be written using the

notation {t}. In the cases of tuple and set types, we call t
1
, …, t

n
 (or t,

respectively) the component types of the complex type.
To repeat, the content type of raw media type WINE was a tuple type

(name : STRING, picture : PIC, year : NAT, winery : (name : STRING,
region : STRING, country : STRING, address : ADDRESS, history

42 Schewe & Thalheim

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

:WINERY_HISTORY), composition : { (grape : STRING, percentage
: NAT), …}, …)

with the labels a
1
 = name, a

2
= picture, a

3
 = year, a

4
 = winery, a

5
 = composition,

etc., and the component types t
1
 = STRING, t

2
 = PIC, t

3
 = NAT, t

4
 = (name:

…), t
5
 = {(…)}, etc. The component type t

4
 is, again, a tuple type; the

component type t
5
 is a set type, which has a tuple type as its component type,

etc. We see that, with composed data types, we can have any depth of nesting.
We call the collection of all possible data types a type system. There are

lots of choices for type systems. Which one is used in a particular application
depends on the needs of the application and on the systems that are available.
For our purposes here, the theory of media types, we may take the viewpoint
that any type system will work as long as one of its base types is the data type
URL.

The Database Type Layer
The second layer is defined by database types over the type system.

These database types are, more or less, defined in the same way as the content
types. For instance, we may define a database type as:

(name : STRING, year : CARD, composition : { (grape : STRING,
percentage : CARD) }, colour : STRING, bouquet : STRING,
acidity : STRING, sugar : DECIMAL)

In particular, they may already include links. However, relational database
systems would not be able to support such links. In general, the format of
database types depends on the data model that has been chosen for the
application.

The Media Type Layer
The third layer is defined by the media types which we have already

discussed above. Remaining questions are: how these media types differ from
the database types and how they are connected to the database types.

We already stated that, when we look at the content types of media types
only, there is no formal difference between such content types and database
types. The major difference concerns their purpose and usage. The database
types are used to represent the global data content of the WIS. The collection
of all the database types — this is what we call a database schema — is
organised in such a way that the desirable quality criteria for databases, such

Development of Data-Intensive Web Information Systems 43

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

as fast access, redundancy freeness, etc., can be met, whereas the content
types of media types are organised in a way that the information needs of the
users who navigate through the WIS are met. Redundancy among content types
is not only unavoidable, it is even intended.

Furthermore, links may already exist between database types, but this
need not be the case. For the media types, however, the links are an important
means to represent the navigation structure of the WIS. Thus, links between
media types are unavoidable and intended.

Finally, media types are not independent from the database types. The
information represented by the content types is already present in the database
schema. Therefore, we need transformations from the database schema to the
content types of the raw media types. Such transformations are called views.

Therefore, we have to add a description of the transformation from the
database schema to the content type. Such a transformation is called a query.
In fact, a view is given by an input database schema, an output database schema
— in our case the content type — and a query, which transforms a database
over the input schema into a database over the output schema. In general, a
query could be any such (computable) transformation. In most cases, however,
the query languages that come with the used data model determine which
queries can be used. In doing so, they limit the expressiveness of the queries.

Adaptivity
Adaptivity, in general, deals with the ability of a system to adapt itself to

external needs. We distinguish between three different lines of adaptivity.
• Adaptivity to the user deals with needs arising from different users. Users

may prefer to receive information in a dense or sparse form. In the former
case, a larger portion of information would be transmitted to the user,
whereas, in the latter case, the information would be delivered step by
step. Furthermore, it should be possible to provide different levels of
detail and let the user switch between these levels.
For instance, taking up again the example of wines, a user may prefer to
see the information about a wine together with detailed information about
the grapes or the winery. Another user may prefer to see a list of several
wines at a time, each coupled with only rough information about name,
year, grapes.

• Adaptivity to the technical environment copes with technical restrictions
of end-devices. For instance, if mobile end-devices with small screens or
TV-based end-devices are to be supported, it would, nevertheless, be
desirable to have only one conceptual description, and to tailor the media

44 Schewe & Thalheim

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

objects to the specific needs of the technical environment only when these
needs arise.

• Adaptivity to the communication channel deals with adaptation to needs
arising from various communication channels. As users do not want to wait
too long for the information to be transferred, a restricted channel capacity
should imply a step-by-step delivery of the information.

Structural media types deal with adaptivity by extending the definition of
media types by cohesion, which allows a controlled form of information loss.
On the level of content types, we determine which data should preferably be
kept together. In all cases where user preferences or technical constraints force
the information to be split, the split will be made in such a way that data that is
to be kept together will be kept together. The lost information will become
available in a follow-on step.

DATABASE TYPES AND DATA TYPES
In this section, we start describing media types in a more formal way. We

concentrate first on the data type and the database layer, that are used to define
media types. Recall that the data type layer introduces data types, i.e., sets of
possible values, whereas the database layer introduces database types, which
define the structure of the possible databases.

This section can be treated as a short introduction to conceptual data
modeling. In particular, if the central notions of this section, such as database
schema, are known, it is possible to skip this section and proceed directly with
the introduction of media types in the next section.

Our presentation in this section will introduce a data model that is quite
close to the Entity-Relationship model. It lies somewhere between the basic
Entity-Relationship model and the Higher-order Entity-Relationship model
(Thalheim, 2000). Recall from the introduction above that structural media
types could take any other data model. The choice of data model for this section
is mainly due to the fact that its structural units leave only a small gap between
the data model and the media types.

Data Types
Data types are used to classify values. In general, types are used for

classification. Thus, the name “data type” suggests that we classify data.
However, in our context, the term “data” is used for several quite different

Development of Data-Intensive Web Information Systems 45

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

purposes. We should distinguish between the data treated by data types, the
data treated by database types, and the data treated by media types. Therefore,
in the context of data types, we talk of values; in the context of databases, we will
talk of objects; and in the context of media types, we will talk about media objects.

Thus, a data type gives some notation for a set of values. To be precise,
data types should also provide the operations that can be applied to these
values. For the moment, these operations are not important for us, so we will
ignore them. A collection of data types that is defined by some syntax is called
a type system. If we use abstract syntax, we can define a type system by
writing:

t = b (a
1
 : t

1
, …, a

n
 : t

n
) {t} [t] (a

1
: t

1
) � … � (a

n
 : t

n
)

This description of syntax needs some further explanation. We use the
symbol b to represent an arbitrary collection of base types, such as the
following types:
• CARD for non-negative integers, INT for integers,
• CHAR for characters, STRING for character strings,
• DATE for date values, BOOL for truth values,
• URL for URL-addresses, MAIL for e-mail-addresses, OK for a single

value ok, etc.

Thus, the definition of the type system above states that a type t is either
a base type or has one of the following four forms:
• We can have t = (a

1
: t

1
, …, a

n
 : t

n
) with arbitrary, pairwise different labels

a
1
, …, a

n
 and types t

1
, …, t

n
. Such a type is called a tuple type. The types

t
1
, …, t

n
 used to define the tuple type are called the component types of

the tuple type. The intention of a tuple type is to provide a set of tuple
values, each of which has the form (a

1
: v

1
, …, a

n
 :v

n
), using the labels a

1
,

…, a
n
 and values v

1
 of type t

1
, v

2
 of type t

2
, etc.

• We can have t = {t′} with another type t′. Such a type is called a set type.
The intention of a set type is to provide a set of values, each of which is
itself a finite set {v

1
, …, v

n
}, with values v

1
,…, v

n
 of type t′.

• Similarly, we can have t = [t′] with another type t′. Such a type is called
a list type. The intention of a list type is to provide a set of values, each
of which is a finite, ordered list [v

1
, …, v

n
], with values v

1
, …, v

n
 of type t′.

• Finally, we can have t = (a
1
: t

1
) �…� (a

n
 : t

n
) with arbitrary, pairwise

different labels a
1
, …, a

n
 and types t

1
, …,t

n
. Such a type is called a union

46 Schewe & Thalheim

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

type. The types t
1
, …,t

n
 used to define the union type are called the

component types of the union type. The intention of a union type is to
provide a set of values, each of which has the form (a

i
 : v

i
), using one of

the labels a
1
, …, a

n
 and values v

1
 of type t

1
, v

2
 of type t

2
, etc.

We say that (…), {⋅} and [⋅] and …�… are constructors for records,
sets, lists and unions.

Example 1. Define a data type NAME by:

NAME = (first_names : [STRING], middle_initial : (y : CHAR)� (n : OK),
 titles : {STRING}, family_name : STRING) .

This is a tuple type with four components according to the following
intention:
• The first component gives a list of character strings for the first names.
• The second component is either a single character for a middle initial or

ok, which indicates that there is no middle initial.
• The third component gives a set of character strings for titles.
• The last component is a single character string for the family name.

Thus, possible values of type NAME would be:

(first_names : [“George”, “Francis”, “Leopold”], middle_initial : (n : ok),
titles : { “Professor”, “Sir”}, family_name : “Stocker”)

and

(first_names : [“Harry”], middle_initial : (y : ‘F’), titles : { },
family_name : “Rugger”).

Let us now define the semantics of data types, i.e. we will associate with
each data type t a set dom(t) of values, called values of type t. In the definition
of data types, and in Example 1, we already gave a glimpse of what the
definition of semantics will look like.

We follow the inductive definition of data types to define the set dom(t) of
values of type t as follows:

Development of Data-Intensive Web Information Systems 47

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• For a base type t, we obtain
- dom(CARD) = � = { 0, 1, 2, …} is the set of natural numbers.
- dom(INT) = � = { 0, 1, -1, 2, -2 …} is the set of integers.
- dom(CHAR) = {A, a, B, b, … } is a fixed set of characters.
- dom(BOOL) = {T, F} is the set of Boolean truth values.
- dom(OK) = {ok}.
- dom(DATE) = {dd-mm-yyyy d, m, y ∈ { 0, 1,…, 9}} is the set of all
date values.
- dom(STRING) = dom(CHAR)* = { a

1
… a

n
n ∈ �, a

i
∈ dom(CHAR)}

is the set of all character strings over {A, a, B, b, …}.
- dom(MAIL) is the set of all syntactically valid mail addresses.
- dom(URL) is the set of all syntactically valid URLs.
- If further base types are defined, we associate with them a fixed set of
values in the same way.
• dom((a

1
 : t

1
, …, a

n
 : t

n
)) = { (a

1
 : v

1
, …, a

n
 : v

n
) v

i
 ∈ dom(t

i
) for all i =

1,…, n} is the set of n-tuples with component values in dom(t
i
) for i = 1,…, n.

• dom({ t }) = { A ∈ P (dom(t)) A < ∞} is the set of all finite subsets
of (dom(t). Thus, we have dom(t) = {{v

1
,…, v

k
} k ∈ � and v

i
 ∈ dom(t)

for all i = 1,…, k}
• Similarly, dom([t]) = { [v

1
,…, v

k
] k ∈ � and v

i
∈ dom(t) for all i =

1,…, k} is the set of all finite lists with elements in dom(t).
• dom((a

1
 : t

1
) �…� (a

n
 : t

n
)) = { (a

1
 : v

1
) v

1
∈ dom(t

1
) } ��

… ��{ (a
n
 : v

n
)

v
n
∈ dom(t

n
)} is the disjoint union of the sets dom(t

i
) (i = 1,…, n), i.e.

elements in dom(t
i
) are labeled with a

i
 before the union is built.

Example 2. Let us continue Example 1 and consider again the data type:

NAME = (first_names : [STRING], middle_initial : (y : CHAR) � (n : OK),
 titles : {STRING}, family_name : STRING) .

As the outermost constructor is the tuple type constructor, each value in
dom(NAME) is a tuple of the form:

(first_names : v
1
, middle_initial : v

2
, titles : v

3
, family_name : v

4
).

Here, v
1
 must be a value of type [STRING], i.e. is a finite list of strings: v

1

= [v
11

, v
12

, …, v
1k

] with all v
1i

∈ dom(STRING). v
2
 must be a value of type (y

48 Schewe & Thalheim

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

: CHAR) � (n : OK), so it is either (y : v
2
) with a value v

2
∈ dom(CHAR) or

(n : ok). v
3
 is a value of type {STRING}, i.e., it is a finite set of strings: v

3
 = { v

31
,

v
32

, …, v
3 �

} with all v
3i
 ∈ dom(STRING). Finally, v

4
 is a character string.

Database Types
We now proceed with the second layer, which deals with database types

and database schemata. Look again at the bottleshop example that we used so
far. A basic unit of information in this example is given by the wines. So, we may
describe a wine by its name, its year, the used grapes, information about colour,
bouquet, acidity level, and residue sugar. Assume that we do not have to
provide further details. We may want to keep the description of the winery
separate, but it is not intended to provide any details about grapes. So, we
create attribute names such as name, year, composition, colour, bouquet,
acidity and sugar. These attributes are sufficient to describe wines, provided
that, for each of these attributes, we declare a data type, which will describe
the possible values for this attribute.

Thus, a first definition would be the following:

A database type of level 0 has a name E and is described by a finite set attr
(E)={ a

1
, …, a

m
 } of attributes. Each attribute a

i
 is associated with a data

type type(a
i
).

We will extend this definition below by adding key attributes.

Example 3. Taking the example of wines from above, we define a database
type with the name WINE and the attribute set

attr(WINE) = {name, year, composition, colour, bouquet, acidity, sugar}.

Associated data types could be type(name) = STRING, type(year) =
CARD, type(colour) = STRING, type(bouquet) = STRING, type(acidity) =
STRING, type(sugar) = DECIMAL, and type(composition) = {(grape :
STRING, percentage : CARD)}. Thus, we would describe an object of type
WINE by a combination of values for all these types or, equivalently, by a single
value of the following tuple type:

Development of Data-Intensive Web Information Systems 49

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

(name : STRING, year : CARD, composition : { (grape : STRING,
percentage : CARD) }, colour : STRING, bouquet : STRING, acidity :
STRING, sugar : DECIMAL)

using the attribute names of the database type as labels.
Similarly, we can define a database type WINERY with attributes name,

founded, owners, address, and maybe more. We omit the details of such a type.
Besides database types of level 0, we may also define database types on

higher levels. For instance, in the bottleshop example, we may relate wines with
wineries that produce them. In this case, the entity types WINE and WINERY
would become components of a new type PRODUCER. Such a type is a
database type of level k, with k−1 being the maximum of the levels of the
component types. Of course, we may extend the higher-level database type by
adding attributes such as start_date, end_date, and maybe others.

A database type of level k has a name E and consists of:
• a set comp(E) = { r

1
 : E

1
 ,…, r

n
 : E

n
 } of components with pairwise

different role names r
i
 and names E

i
 of database types,

• a set attr(E) = {a
1
,…, a

m
} of attributes, each associated with a data type

type(a
i
), and

• a key id(E) ⊆ comp(E) � attr(E),

such that the database types E
i
∈ S are all on levels lower than k, with at

least one database type of level exactly k−1.

Note that the role names are only needed to allow the same database type
to appear more than once as a component of another database type. Obviously,
in this case, the occurrences have to be distinguished by using different role
names.

Example 4. Let us complete the description of a relationship type PRODUCER.
We define this type by the set of components comp(PRODUCER) = {of :
WINE, by : WINERY} and the set of attributes attr(PRODUCER) =
{start_date, end_date}. The associated types can be type(start_date) =
DATE and type(end_date) = (f : DATE) � (nf : OK).

In Example 3, we have seen that we can associate a single data type with
a database type of level 0 by turning the attribute names into labels of a tuple

50 Schewe & Thalheim

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

type. The question is how this can be generalised to database types on higher
levels. The easiest solution would be to treat the attributes in the same way as
database types of level 0, and to use the role names also as labels, using the data
types associated with the lower level database types as components. For
instance, for the database type PRODUCER in Example 4, we would obtain the
data type:

(of : t
WINE

, by : t
WINERY

, start_date : DATE, end_date : (f : DATE) � (nf
: OK)),

with the component type t
WINE

 defined in Example 3, and a component type
t
WINERY

 defined elsewhere. Values of this type would be called objects of type
PRODUCER.

Though this approach is formally correct, it has certain disadvantages, as
the resulting data types will be quite big and, in each value, we would have to
repeat values that have been described on lower levels. Instead of this, we will
exploit the keys, i.e., combinations of components and attributes that uniquely
identify objects.

In the following, we often write E = ({ r
1
 : E

1
, …, r

n
 : E

n
}, { a

1
 , …, a

m
 }, id(E))

to denote a database type. The first component in this triple is the component
set comp(E). The second component is the attribute set attr(E). The third
component is the key id(E).

We use this notation to associate two data types with each database type
E. These data types are called the associated data type of E and the
associated key type of E. These types are defined as follows:
• The associated data type of E, denoted as type(E), is

(r
1
: key-type(E

1
), …, r

n
 : key-type(E

n
), a

1
: type(a

1
), …, a

m
 : type(a

m
)).

• The associated key type of E, denoted as key-type(E), is defined
analogously with the difference that only those r

i
 and a

j
 are considered that

occur in id(E).

In particular, if we have a database type E of level 0, then comp(E) is the
empty set. This implies that there will be no labels r

i
 in type(E) nor in key-

type(E).

Example 5. In Example 3, we have seen a database type of level 0. The
following definition extends this database type by a key:

WINE = ({}, {name, year, composition, colour, bouquet, acidity, sugar},
{name, year}) .

Development of Data-Intensive Web Information Systems 51

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

We keep the associated data types:
type(name) = STRING,
type(year) = CARD,
type(composition) = {(grape : STRING, percentage : CARD)},
type(colour) = STRING,
type(bouquet) = STRING,
type(acidity) = STRING,
type(sugar) = DECIMAL.

So, as we have already seen in Example 3, the associated data type
type(WINE) would be the data type:

(name : STRING, year : CARD, composition : { (grape : STRING,
percentage : CARD) }, colour : STRING, bouquet : STRING,
acidity : STRING, sugar : DECIMAL).

The associated key type key-type(WINE) would be the data type:

(name : STRING, year : CARD).

In Example 4, we discussed a database type PRODUCER of level 1. We
extend this definition by a key, which leads to:

PRODUCER = ({of : WINE, by : WINERY}, {start_date, end_date},
{of : WINE, by : WINERY, start_date}.

We keep the same associated data types:

type(start_date) = DATE,
type(end_date) = (f : DATE) � (nf : OK).

Then, the associated data type and the associated key type of the database
type PRODUCER are:

(of : (name : STRING, year : CARD), by : …, start_date : DATE,
end_date : (f : DATE) � (nf : OK)),

52 Schewe & Thalheim

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

and

(of : (name : STRING, year : CARD), by : …, start_date : DATE) ,

respectively. In both data types, the dots have to be replaced by the associated
key type key-type(WINERY). As we omitted the definition of the database type
WINERY, we have to omit the replacement of these dots by a real data type,
too.

Cluster Types
Before we introduce database schemata and databases, we still have to

discuss one further extension. This will be the introduction of so-called cluster
types. In order to get started, look again at Example 5, in which we presented
a database type PRODUCER of level 1. The component database types of
PRODUCER were the types WINE and WINERY. Now, assume that our
bottleshop also offers beers, and these beers are produced by breweries. So,
we would add two other database types of level 0: BEER and BREWERY. We
can now extend the of-component in PRODUCER in such a way that it refers to
WINE or BEER. In the same way, we could change the by-component so that
it refers to WINERY or BREWERY. In order to do so, replace the of-component
in PRODUCER by a new type BEVERAGE, and the by-component by a new type
COMPANY, while defining BEVERAGE by the “disjoint union” of WINE and BEER,
and COMPANY by the “disjoint union” of WINERY and BREWERY. Such disjoint
unions are defined by cluster types.

A cluster type of level k, written E = (id
1
 : E

1
) ⊕…⊕ (id

n
 : E

n
), has a name

E and consists of a non-empty sequence of components E
1
, …, E

n
, which can

be database types or cluster types, with pairwise different component identi-
fiers id

i
, such that the level k is the maximum of the levels of the E

i
.

Example 6. Formalising our motivating example from above we define the two
cluster types BEVERAGE = (w : WINE) ⊕ (b : BEER) and COMPANY = (w
: WINERY) ⊕ (b : BREWERY) of level 0.

Now we can extend the definition of associated data types and associated
key types to cluster types. According to the motivation above, it should not be
surprising to see that we now use union types. Therefore, let E = (id

1
 : E

1
) ⊕…⊕

Development of Data-Intensive Web Information Systems 53

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

(id
n
 : E

n
) be a cluster type. The associated data type type(E) and the associated

key type key-type(E) are defined as follows:

type(E) = key-type(E) = (id
1
 : key-type(E

1
)) � …

� (id
n
 : key-

type(E
n
)).

Database Schemata and Databases
Let us now conclude the presentation of the global database layer by

defining database schemata. A database schema is simply a collection of
database and cluster types. Of course, if E

i
 is a component of a database or

cluster type E, and E is defined in the schema, then E
i
 must also be defined in

the schema. Formally, we can define a database schema as follows:

A database schema S is a set of database types and cluster types
satisfying the following two conditions:
• If E ∈ S is a database type, then, for all components r

i
 : E

i
∈ comp(E),

we must also have E
i
 ∈ S.

• If E = E
1
⊕…⊕ E

k
 is a cluster type in S, then, for all components E

i
 (i =1,…, k),

we must also have E
i
 ∈ S.

We define the semantics of database schemata by the collection of
possible databases by the database schema. Thus, let S be a database schema.
For each database or cluster type E ∈ S, we have defined an associated data
type type(E) and an associated key type key-type(E). As these two are indeed
data types, they define fixed sets of values, which we call the set of objects of
type E and the set of keys of type E, respectively:

Obj(E) = dom(type(E)) and Key(E) = dom(key-type(E))

As the key id(E) in a database type E is a subset of comp(E) � attr(E),
each object of type E can be projected to a key of type E. Let O

[key-type(E)]
 ∈ Key(E)

denote the projection of the object O ∈Obj(E) to the value of its key. For a
cluster type E each object O of type E, we have O

[key-type(E)]
 = O. We use the

sets of objects and keys for the database and cluster types E ∈ S to define a
database over S as follows:

A database db over S assigns to each database or cluster type E ∈ S a
finite set db(E) ⊆ Obj(E) of objects of type E such that the following conditions

54 Schewe & Thalheim

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

are satisfied:
1. Key values are unique, i.e., there cannot be two different O

1
, O

2
 ∈ db(E)

with O
1[key-type(E)]

≠ O
2[key-type(E)]

.
2. Component values exist in the database, i.e., for each O ∈ db(E) and each

r:E′ ∈ comp(E), there must exist some O′ ∈ db(E′), such that r:O′
[key-type(E′)] is

part of O.
3. Clusters are disjoint unions, i.e., for a cluster E = (id

1
 : E

1
) ⊕…⊕ (id

n
 : E

n
),

we obtain db(E) = {(id
i
 : O

i[key-type (Ei)]
) O

i
 ∈ db(E

i
) and i ∈ {1,…, n } }.

Finally, let us briefly introduce a graphical representation for database
schemata, which we call a (database) schema diagram:
• We use rectangles to represent database types on level 0 — in this case,

we always have comp(E) = {} — and place the name of the type inside
the rectangle.

• We use diamonds to represent database types on higher levels — in this
case, we always have comp(E) ≠ {} — and place the name of the type
inside the diamond.

• We use arrows from a type to all its component types, and attach the role
names to these arrows.

• We use ⊕ to represent cluster types, and arrows to the components of the
cluster type.

• We attach attributes directly to the rectangles or diamonds.
• We underline the attributes in the key, and mark the arrows corresponding

to components in the key with a dot.

If schema diagrams tend to become large, we usually omit the attribute
names. Sometimes we even drop the names of the cluster types.

Example 7. Let us consider an example database schema for a bottleshop
application illustrated in Figure 1. A bottleshop is to deliver wines, beers,
juices and other soft drinks, and hard alcoholics drinks such as Cognac,
Grappa, Scotch and Irish Whiskey. The sales are to be supported by a
web information system. The Web Information System shall provide a
catalogue containing the offered products, as well as occasional special
offers. Additional information about wines, grapes, vineyards (also for
Cognac, Grappa, Calvados and Whiskey) shall be provided, as well. The
system must offer information about the shop itself, historical and actual
information about certain grapes, wine producers, etc. The system should

Development of Data-Intensive Web Information Systems 55

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

also provide special information about best sellers, new products, etc.
Comments from (hopefully pleased) clients shall be made available on the
Web.

QUERIES AND STRUCTURAL MEDIA TYPES
In this section, we address the layer of media types. The intention behind

the media types is to provide a local view on the data that are stored in the
underlying database. The emphasis of this layer is to specify data as they are
to appear on web pages, however, without any consideration of how the data
should be presented. Thus, the media types are used to structure data
according to a usage perspective rather than a storage perspective.

Formally, a structural media type is defined by a content type and a
defining query. There is no big, formal difference between content types of
structural media types and database types, except that content types should
support links, whereas the existence of links in database types depends on the
data model. The major difference is given by the fact that structural media types
need a defining query which links the media type with an underlying database
schema. If Q is the defining query of a structural media type M, it may be
executed on databases db over the underlying database schema S. The query
will result in the set of media objects of type M. Of course, if databases are
updated, the database db and consequently also the set of media objects

Figure 1: Schema Diagram of the Example Database Schema

 WINE HARD_DRINK SOFT_DRINK BEER

PRODUCER PACKAGE OFFER

BOTTLE DISTILLERY VINEYARD ORDER

REGION PUBLICATION DELIVERY CUSTOMER

NEWS COUNTRY

56 Schewe & Thalheim

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

changes.
In the following, we will first briefly discuss queries. It is beyond the scope

of this chapter to go into details of query languages, but we will emphasise the
need and difficulty of creating links (Schewe, 2001). In fact, each data model
requires its own query languages, and the theory of media types can be based
on any data model. In a second step, we will then give a formal definition of
structural media types and media objects.

Queries
Let us consider queries. In general, a query is a transformation from one

database schema into another one. In most cases, the target schema of such a
transformation is significantly simpler than the source schema.

For instance, consider the database schema from the bottleshop example
which we developed in the previous section. Suppose we are given a database
db over this schema, i.e. we have information about wines, producers,
vineyards, etc. Suppose we want to have a list of New Zealand wines from
1998 on, with at least 30% Cabernet Sauvignon, together with some informa-
tion about the vineyard and the region. In this case, we define a target database
schema with exactly one database type NZ_WINE. This database type — which
is, of course, a database type of level 0 — can be defined as follows:

NZ_WINE = ({}, {name, year, composition, vineyard, owners, since,
 history, region, climate}, {name, year}).

The data types of the attributes can be defined as follows:

type(name) = STRING
type(year) = CARD
type(composition) = {(grape : STRING, percentage : CARD)}
type(vineyard) = STRING
type(owners) = {STRING}
type(since) = DATE
type(history) = STRING
type(region) = STRING
type(climate) = STRING

Formally, a query can be defined as follows:

Development of Data-Intensive Web Information Systems 57

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

A query Q consists of a source database schema src(Q), a target database
schema trgt(Q), and a map q(Q), which takes as its input all databases over
src(Q) and produces databases over trgt(Q).

How would we process such a query? Of course, we can only sketch an
idea of query processing. Actually, techniques used in query processing differ
significantly from this simple outline here, but we are only interested in getting
an idea of the database transformation, not of its technical realisation. In our
example query looking for New Zealand wines, we could take a database db
over the source schema, i.e., the database schema from the previous section.
The set db(WINE) contains finitely many values of type type(WINE), which is a
tuple type with labels name, year, composition, colour, bouquet, acidity and
sugar. First, we use a projection, i.e., we simply “forget” the last four
components. Each tuple will be reduced to a tuple of a tuple type containing
only the labels name, year and composition.

Looking into the details of the component labeled by ‘composition,’ we
know that we must have a set of pairs, the first component of which is labeled
by grape, the second one by percentage. We only keep those tuples, where this
set contains a pair (“Cabernet Sauvignon”, x) with a value x ≥ 30. This is called
a selection. Similarly, we only keep tuples where the value y of the year
component satisfies y ≥ 1998. In doing this, we would already obtain the wines
from 1998 on with at least 30% Cabernet Sauvignon.

However, we want to have New Zealand wines only, and for these we
demand information about the vineyard and the region. Therefore, we have to
look at the cluster BEVERAGE_H and the database type PRODUCER. We only
keep those tuples where the values for name and wine appear as a pair labeled
by b in the component labeled by of in objects in db(PRODUCER). However, as
we want to get vineyards and not distilleries, we only consider those objects in
db(PRODUCER) with a by-component labeled by v. Using this component, we
obtain objects of type VINEYARD. We rename the label name in these objects
to vineyard, in order to avoid mixing up the name of wines with vineyard names,
and we forget the size and grapes components. Adding the remaining compo-
nents to the tuples gives new tuples with components name, year, composition,
vineyard, owners, since, history, and in.

The latter one can be used for another join with db(REGION). Again, in this
way we obtain the name component of the region, which we rename to region,
the climate component, the wines component, which we forget, and the

58 Schewe & Thalheim

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

specialities component, which we forget, as well. The in-component finally
leads to db(COUNTRY). We only keep tuples where the join gives a value “NZ”
for the code component.

This rough sketch of query processing shows how a database over the
source schema can be transformed into a database over the target schema. The
query may have produced a tuple such as the following:

(name : “Otago Red”, year : 2000, composition : { (grape :
“Cabernet Sauvignon”, percentage : 65), (grape : “Malbec”, per-
centage : 35) }, vineyard : “Martha’s Vineyard”, owners : { “Rudi
Müller”, “Martha Thurgau” }, since : 1967, history : “Once upon a
time …’’, region : “Otago”, climate : “The climate in Otago …”).

Now, recall that a media object is not only a complex value, but it is a pair
(u, v), with a value u of type URL and a complex value v. Queries, as we
discussed them above, would only result in a set of objects of the database
types in the target database schema. Thus, instead of obtaining the value above,
we would also like to obtain a URL, or at least a unique identifier, which could
later be replaced by an actual URL. As such URLs are not stored in the
database, they have to be created by processing the query.

This implies requiring that the query language should allow the creation of
URLs and links. We call this property create facility (see, e.g., Abiteboul et
al., 2000, Chapter 6). In terms of our sketch of query processing, this simply
means that, at any stage, we may introduce URLs by transforming a set {v

1
,

…,v
m
} or list [v

1
, …,v

m
] of values into a set {(u

1
, v

1
), …,(u

m
, v

m
)} or list [(u

1
,

v
1
), …,(u

m
, v

m
)] of pairs, with new values u

i
 of type URL, respectively, or

simply by transforming a value v of any type into a pair (u, v) with a value u of
type URL.

Note that once we process a query on a database db, we may add the
result to the database. Processing further queries may then also include the
newly created URLs into their results. In this way, navigation structures can be
set up.

Structural Media Types
We are now ready to formally round up this section and define structural

media types. We first need an exact definition of a content type. Recall that a
content type is an extended data type, in which the place of a base type may
be occupied by a pair �: M′, with some label � and a name M′ of a media type

Development of Data-Intensive Web Information Systems 59

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

— in fact, this means to choose any name.
Thus, using abstract syntax again (as we did for data types on page 45),

we can define the system of content types by writing:

ct = b (a
1
 : ct

1
 , …, a

n
 : ct

n
) { ct } [ct] (a

1
 : ct

1
) � ...(a

n
 : ct

n
) �: N

The explanation we gave on data types is still valid. However, the
extension by pairs �: M′ is of pure syntactical nature. We cannot associate a set
of values with a content type. Instead, for a content type cont(M), we define
a representing datatype t

M
, which results from cont(M) by replacing all �: M′

by the base type URL. Of course, t
M
 is a real data type, and this means that

dom(t
M
) is defined.

Let S be a database schema. A structural media type over S has a name
M and consists of:
• a content data type cont(M), in which the place of a base type may be

occupied by a pair �: M′, and
• a defining query q

M
 with source schema S and target schema {(url : URL,

value : t
M
)}, where t

M
 is the representing datatype of M.

Example 8. Let us define some structural media types over the database
schema from the previous section. We will concentrate on the content type
and the representing data type. However, we will only sketch the defining
query, as we have not yet introduced a concrete query language.

Of course, the type type(NZ_WINE) that we used in the target schema in the
previous subsection is a content type defined as follows:

(name : STRING, year : CARD, composition : { (grape : STRING,
percentage : CARD) }, vineyard : STRING, owners : { STRING },
since : CARD, history : STRING, region : STRING, climate :
STRING).

However, it does not contain any links �: M′, which implies that it is
identical with its representing data type t

NZ_WINE
. Adding a formal description

of a defining query q
NZ_WINE

 as sketched in the previous subsection turns
NZ_WINE into a structural media type.

Now assume that we want to represent information about New Zealand
wines by a slightly changed structural media type NZ_WINE* with the following
content type:

60 Schewe & Thalheim

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

(name : STRING, year : CARD, composition : { (grape : STRING,
percentage : CARD) }, vineyard : STRING, owners : { STRING },
since : CARD, history : STRING, region : REGION*).

In this case, the content type contains the link region : REGION*.
Consequently, the representing data type t

NZ_WINE*
 is the following:

(name : STRING, year : CARD, composition : { (grape : STRING,
percentage : CARD) }, vineyard : STRING, owners : { STRING },
since : CARD, history : STRING, region : URL).

Of course, we also would have to define a structural media type with the
name REGION* with a content type chosen to be (name : STRING, climate :
STRING), which, again, is identical to the representing data type t

REGION*
. The

defining query q
REGION*

 for REGION* would select all regions in New Zealand,
reduce them to their name and climate components, and create URLs for all the
resulting objects.

Then the defining query q
NZ_WINE*

 for the structural media type NZ_WINE*

would be processed in the same way as sketched in the previous subsection.
However, components region and climate would be replaced by the URL that
has been created while processing the query q

REGION*
. Furthermore, the

operation create_urls would be applied to the result. We omit formal details
on how to write the queries q

REGION*
 and q

NZ_WINE*
.

Note that, with the introduction of links between structural media types,
the defining queries are no longer independent from each other. In Example 8,
the processing of the query q

NZ_WINE*
 depends on the result of the query

q
REGION*

. As long as there are no cyclic dependencies, the query processing
can be done in a particular order. However, in the case of cycles, the process
requires calculating a fixed point. Queries that demand fixed point calculation
are one of the most advanced topics in the field of databases.

Content Schemata
Finally, let us look at the analog of a database schema on the level of

structural media types. For this, assume that we have fixed a database schema S.
As structural media types abstract from content, a collection of structural media
types over S will be called a content schema. Analogously to the definition of
database schemata, where we had to ensure that components of database

Development of Data-Intensive Web Information Systems 61

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

types are defined in the database schema, we now have to ensure that the
structural media types that occur in links are defined in the content schema.
Therefore, we define a content schema as follows:

A content schema C over a database schema Sis a finite set of structural
media types over S, such that for each M ∈ C and each link �: M′ occurring
in the content type cont(M), we also have M′ ∈ C.

Finally, assume that we are given a database schema S and a content
schema C over S. We may now define a site s over C analogously to a database
over S.

For this, let db be a database over S. We may evaluate the defining query
q

M
 for each structural media type M ∈ C. These result in sets s(M) of pairs (u,v),

such that u is a value of type URL and v is a value of the representing data type
t
M
 of M. We call s(M) the set of media objects of type M in the site s. Of course,

we must ensure that for each URL u′ that appears inside the complex value v
at a place occupied by �: M′ in the content type cont(M) of M, we have a media
object (u′, v′) ∈ s(M′).

The family of all the sets s(M) with M ∈ C defines the site s over C
determined by the database db over S.

ADAPTIVITY
In this section, we extend media types by adding adaptivity to users,

technical environment, and channels. In all three cases, the idea is to split the
information provided by a structural media object in such a way that parts that
are preferred to be kept together — we use the term cohesion for this — will
be kept together, if this is possible. This can be seen as a controlled form of
information loss.

The Idea of Adaptivity
As indicated above, cohesion intends to declare “parts” of a content type

cont(M) to belong closer together than others. We will approach this in two
different, but similar, ways. In both cases, we consider all possible content
types that result from cont(M) by losing information. If ct is such a content type
with reduced information, we write cont(M) ≤ ct. Thus, we first have to define
this relation ≤, which, in fact, is a partial order.

The idea of using the partial order is by choosing one such possible content
type ct, which is as close to the original cont(M) as possible. Instead of creating

62 Schewe & Thalheim

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

a media object of type M using the content type cont(M), we reduce the content
to the one described by the content type ct, and present this to the user. If
further information is needed, the user may request it by following a link added
to ct. There should be a complementary content type ct′ covering the lost
information. This complementary content type can then be treated again in the
same way.

For instance, take again the example of a structural media type NZ_WINE.

Its content type was defined as follows:

(name : STRING, year : CARD, composition : { (grape : STRING,
percentage : CARD) }, vineyard : STRING, owners : { STRING },
since : CARD, history : STRING, region : STRING, climate :
STRING).

Losing information would mean to drop the year, or the composition, or
the percentages of the grapes, or the history, etc. Assume that we want to keep
the information on name, year and composition together with the highest
priority, followed by the information on the vineyard, its owners and history,
and leaving the lowest priority for the information on the region and its climate.
Then we could first choose the following content type ct

1
:

(name : STRING, year : CARD, composition : { (grape : STRING,
percentage : CARD) }, further : NZ_WINE

2
).

Here, the link further : NZ_WINE
2
 provides a link to a dynamically

constructed structural media type named NZ_WINE
2
. The content type of this

new structural media type should contain the lost information. Thus, it could be
the following content type ct

2
:

(name : STRING, year : CARD, vineyard : STRING, owners : { STRING
}, since : CARD, history : STRING, further : NZ_WINE

3
).

Here, we find the information about the vineyard, its owners, and its
history. We also repeat the name and year of the wine. Furthermore, the link
further : NZ_WINE

3
 provides a link to another dynamically constructed struc-

tural media type named NZ_WINE
3
. The content type of this new structural

media type should contain further information, because the information on the
region is still lost. Thus, it could be the following content type ct

3
:

(name : STRING, year : CARD, region : STRING, climate : STRING).

Development of Data-Intensive Web Information Systems 63

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The alternative is to provide a priori such a split of the content type. In our
example, we would define the split by the three content types ct

1
, ct

2
 and ct

3
.

These three content types define an antichain with respect to the partial order

≤, i.e., each two of them are incomparable in the sense that ct
i ≤

 ct
j
 holds for

all i ≠ j.
For both ideas, we first have to define the partial order ≤ on content types.

This is done as follows:
• For any content type ct, we have ct ≤ ct.
• For any content type ct, we have ct ≤ OK.
• For content types of the form (a

1
 : ct

1
 ,…, a

m
 : ct

m
), we have:

(a
1
 : ct

1
 , …, a

m
 : ct

m
) ≤ (aσ(1)

 : ct′σ(1)
, …, aσ(1)

 : ct′σ(n)
),

with injective σ : {1, …, n } � {1, …, m} and ct σ(i)
 ≤ ct′σ(i)

.

• For content types of the form [ct], we have [ct] ≤ [ct′] iff ct ≤ ct′ holds.
• For content types of the form (a

1
 : ct

1
) �…� (a

m
 : ct

m
), we have (a

1
 : ct

1
)

�…� (a
m
 : ct

m
) ≤ (a

1
 : ct′

1
) �…� (a

m
 : ct′

m
) iff ct

i
 ≤ ct′

i
holds for all

i = 1,…, m.
• For content types of the form { ct }, we have { ct } ≤ { ct′} iff ct ≤ ct′ holds.

We use the notation sup(cont(M)) to denote the set of all content types ct
with cont(M) ≤ ct. If, in the example above, we remove the links ‘further :
NZ_WINE

2
’ and ‘further : NZ_WINE

3
’ in ct

1
 and ct

2
, respectively — these were

added only as a link to follow-on information — then we obtain cont(M) ≤ ct
i
 for all

i = 1, …, 3.

Cohesion Preorder
Let us now go into details of our first idea (Feyer et al., 2000). The partial

order ≤ also defines a partial order on sup(cont(M)). However, the order is not
total, i.e., there can be content types ct

1
, ct

2
 ∈ sup(cont(M)) with neither ct

1
 ≤ ct

2

nor ct
2
 ≤ ct

1
. Thus, in case of making a choice among the elements in

sup(cont(M)), both ct
1
 and ct

2
 have equal rights. Making a choice in favour of

one of them, say ct
1
, means to state that the information represented by ct

1
 is

more important than the one represented by ct
2
.

Therefore, the first idea can be realised by extending ≤ to a total order.
Nevertheless, we may state explicitly that we do not want to prefer ct

1
 over ct

2

nor vice versa, even in case they were comparable with respect to ≤. Therefore,
we only require to obtain an extension by a pre-order as defined now:

64 Schewe & Thalheim

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

A cohesion pre-order on a structural media type M is a total pre-order �
M
 on

sup(cont(M)) extending the order ≤, i.e., whenever ct
1
 ≤ ct

2
 holds, we also

have ct
1
�

M
ct

2
.

The major idea behind the cohesion pre-order is that, in order to adapt to
different users, channels or environments, smaller content types with respect to

� are preferred over larger content types. In all three cases, we assume that

the amount of data to be transmitted at a time and presented to the user is limited
by some bound. If the presentation of a structural media object of type M
exceeds this bound, the content type will be split according to the following
procedure:
• First, we determine the maximum amount of data that should be transmit-

ted.

• Then, we determine the least element ct
1
 with respect to �

M
 that requires

not more than the available capacity. As �
M
 is only a preorder, there may

be more than one such t
1
, in which case, one of these content types is

chosen randomly.
• Taking t

1
 instead of cont(M) means that some information is lost.

Therefore, we include a link to a possible successor. The link name and
the name of the successor structural media type will be randomly chosen.

• In order to determine such a successor, all content types ct′ ∈ sup(cont(M))
with ct

1
�

M
 ct′ are considered. We choose a least content type ct

2
 among

these ct′ with respect to �
M
 , such that ct

2
 does not require more than the

available capacity.

Continuing this way the whole communication using the structural media
type M is broken down into a sequence of suitable units ct

1
, ct

2
, … , ct

n
 that,

together, contain the information provided by the structural media type.

Example 9. Let us consider again the content type of the structural media type
NZ_WINE used earlier. However, as sup(cont(NZ_WINE)) will be large, we
reorganise the content type and outline the splitting procedure without
looking into details of the content type. Thus, assume that we have the
following content type:

(wine-info : (name : STRING, year : CARD, composition : { (grape
: STRING, percentage : CARD) }), vineyard : (name : STRING,

Development of Data-Intensive Web Information Systems 65

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

owners : { STRING }, since : CARD, history : STRING), region :
(name : STRING, climate : STRING)).

In order to shorten our presentation, we consider only

(wine-info : …, vineyard : …, region : …)

and ignore the inner structure, which is indicated by the dots. Ignoring the inner
structure, we could define a cohesion pre-order by:

(wine-info : …, vineyard : …, region : …)

� (wine-info : …, vineyard : …)
� (wine-info : …, region : …)

� (vineyard : …, region : …)

� (wine-info : …)

� (vineyard : …)

� (region : …)

Assume that only the complete content type exceeds the computed
maximum capacity. Then, the first content type to be chosen would be:

(wine-info : …, vineyard : …),

which will be extended to:

(wine-info : …, vineyard : …, next : NZ_WINE
2
).

This leaves the following content types:
(wine-info : …, vineyard : …, region : …)

� (wine-info : …, region : …)

� (vineyard : …, region : …)

� (region : …).

Thus, the second content type to be chosen will be:

(wine-info : …, region : …).

66 Schewe & Thalheim

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

This will become the content type of the dynamically generated structural
media type NZ_WINE

2
. The splitting process stops here, as further processing

would not lead to more information.

Proximity Values
Finally, let us consider the alternative approach (Feyer et al., 1998). In this

approach, the content types that will be chosen instead of cont(M) are
determined a priori. We only determine whether they will be transmitted one by
one, or whether some of them will be recombined. Thus, we choose a maximal
antichain ct

1
, …, ct

n
 in sup(cont(M)) with respect to ≤. This antichain already

represents a possible split of information. In addition, we define a symmetric (n × n)-
matrix {p

ij
}

 1 ≤ i,j ≤ n
 of proximity values with 0 ≤ p

ij
 ≤ 1. The intention is that the

higher the proximity value, the more do we wish to keep the components
together.

Splitting is processed analogously to the case a using a cohesion pre-order:
• For each X ⊆ { 1, …, n }, we determine its weight, i.e., w(X) = ∑

i,j∈X,i<j
 p

i,j.

• For each X ⊆ { 1, …, n }, we determine its greatest common subtype
gcs(X), i.e., the greatest element ct

1
 ∈ sup(cont(M)) with t

1
 ≤ ct

i
 for all

i ∈ X.
• Then, we choose the X with largest weight, such that the gcs(X) does not

require more than the available capacity.

Example 10. We take the same media type as in Example 9 and the antichain

ct
1
 = (wine-info : …) ct

2
 = (vineyard : …) ct

3
 = (region : …).

Let the proximity values be chosen as p
1,2

 = 0.8, p
1,3

 = 0.5 and p
2,3

 = 0.1.

X w(X) gcs(X)

{ 1 } 0 (wine-info : …)
{ 2 } 0 (vineyard : …)
{ 3 } 0 (region : …)
{ 1, 2 } 0.8 (wine-info : …, vineyard : …)
{ 1, 3 } 0.5 (wine-info : …, region : …)
{ 2, 3 } 0.1 (vineyard : …, region: …)
{ 1, 2, 3 } 1.4 (wine-info : …, vineyard : …, region: …)

Development of Data-Intensive Web Information Systems 67

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Then, we obtain the following weights and greatest common subtypes:
The result will be the same sequence of content types as in Example 9.
We discussed adaptivity to users, environment and channels. This was

done in the form of allowing structural media types to be extended by a
controlled form of information loss, coupled with the notion of cohesion.

A cohesion extension of structural media type M is given either by a cohesion

pre-order � on sup(cont(M)) or by a pair consisting of maximal antichain
ct

1
,…,ct

n
 in sup(cont(M)) with respect to ≤ and a symmetric (n×n)-matrix

{p
ij
}

1 ≤ i,j ≤ n
 of proximity values with 0 ≤ p

ij
 ≤ 1.

A media type is a structural media type M together with a cohesion extension.
A media schema is a content schema, in which all structural media types are
media types.

Given a media schema, then, it is basically a content schema over an
underlying database schema. Thus, any database determines sets of media
objects. The cohesion extension further determines variants of the media
objects that are dynamically constructed when the need arises. It leads to a
step-by-step delivery of a media object.

CONCLUSION
We presented a conceptual model for data-intensive web information

systems, which is centered around the central notion of media type. Roughly
speaking, a media type is defined as an extended view on an underlying
database schema, and includes operations and adaptivity features.

Conceptual modeling with structural media types is embedded in an
integrated methodology based on an abstraction layer model for web informa-
tion systems. Prior to this activity, we have an activity of story boarding, which
models the WIS from a usage perspective (Kaschek et al., 2003). The scenes
in the story board are used as the data source for the media types. Further on,
the media types do not yet specify anything on their web presentation. For this,
media types have to be associated with style options. Using these style options
and suites of XML representations leads to the implementation. The complete
methodology has been applied in more than 30 large projects. The report
(Thalheim, 1997) describes the first of these projects; for others, the work and

68 Schewe & Thalheim

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

publication rights have been transferred to professional companies.
We have seen that several other groups have also developed conceptual

modeling approaches for web information systems. The theory of media types
is one of these approaches. As work progresses, the ideas produced by the
different groups are now converging, though the theory of media types is still
the most advanced model with respect to formal foundations. Furthermore, it
is still more elaborate with respect to adaptivity, the scope of the overall
methodology, in particular, with respect to an integration with story boarding,
the work on implementation and presentation issues, and applications in
practical projects.

Taking the convergence of ideas, the currently existing advantages of the
theory of media types in comparison to other approaches will disappear. For
instance, other approaches will take up the work on adaptivity. Conversely, the
theory of media types will benefit from the work of others and become even
more elaborate. However, the convergence trend concerns the concepts, not
concrete languages. In particular, the theory of media types will be likely to
preserve its connections to theory.

The role of XML will become even more important. On one side, XML
may pick up ideas that will enable a better support for media types or similar
conceptual modeling approaches. On the other side, XML will always remain
a concrete language and may distract from the important issue of conceptual
modeling. If XML is treated as a data model, most of the hardest database
problems still have to be solved in this context. Therefore, we think it is better
not to fix the attention only on XML. Using XML for representing the views is
uncritical, but it is unlikely that it will be able to replace completely the theory
of media types. As this theory can be based on any data model, it is much more
generic than any concrete language.

REFERENCES
Abiteboul, S., Buneman, P., & Suciu, D. (2000). Data on the Web: From

Relations to Semistructured Data and XML. San Francisco, CA:
Morgan Kaufmann.

Atzeni, P., Gupta, A., & Sarawagi, S. (1998). Design and maintenance of data-
intensive web-sites. In Proceedings of the EDBT’98 (Vol. 1377 of
LNCS, pp. 436-450). Berlin: Springer-Verlag.

Baresi, L., Garzotto, F., & Paolini, P. (2000). From web sites to web
applications: New issues for conceptual modeling. In ER workshops

Development of Data-Intensive Web Information Systems 69

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

2000 (Vol. 1921 of LNCS, pp. 89-100). Berlin: Springer-Verlag.
Bonifati, A., Ceri, S., Fraternali, P., & Maurino, A. (2000). Building multi-

device, content-centric applications using WebML and the W3I3 tool
suite. In ER workshops 2000 (Vol. 1921 of LNCS, pp. 64-75). Berlin:
Springer-Verlag.

Ceri, S., Fraternali, P., & Matera, M. (2002). Conceptual modeling of data-
intensive web applications. IEEE Internet Computing, 6(4), 20-30.

Düsterhöft, A. & Thalheim, B. (2001). SiteLang: Conceptual modeling of
internet sites. In H. S. Kunii, S. Jajodia, & A. Sølvberg (Eds.), Concep-
tual modeling – ER 2001 (Vol. 2224 of LNCS, pp. 179-192). Berlin:
Springer-Verlag.

Feyer, T. & Thalheim, B. (1999). E/R based scenario modeling for rapid
prototyping of web information services. In P. P.-S. Chen (Ed.), Ad-
vances in Conceptual Modeling (Vol. 1727 of LNCS, pp. 253-263).
Berlin: Springer-Verlag.

Feyer, T., Kao, O., Schewe, K.-D., & Thalheim, B. (2000). Design of data-
intensive web-based information services. In Q. Li, Z. M. Ozsuyoglu, R.
Wagner, Y. Kambayashi, & Y. Zhang (Eds.), Proceedings of the 1st
International Conference on Web Information Systems Engineering
(WISE 2000) (pp. 462-467). IEEE Computer Society.

Feyer, T., Schewe, K.-D., & Thalheim, B. (1998). Conceptual modelling and
development of information services. In T. Ling & S. Ram (Eds.),
Conceptual Modeling – ER’98 (Vol. 1507 of LNCS, pp. 7-20). Berlin:
Springer-Verlag.

Fraternali, P. (1999). Tools and approaches for developing data-intensive web
applications: A survey. ACM Computing Surveys, 31(3), 227-263.

Kaschek, R., Schewe, K.-D., Wallace, C., & Matthews, C. (2003). Story
boarding for web-based information systems. In W. Rahayu & D. Taniar
(Eds.), Web Information Systems. Hershey, PA: Idea Group.

Kirchberg, M., Schewe, K.-D., & Tretiakov, A. (2003). Using XML to
support media types. Submitted for publication.

Lobin, H. (2000). Informationsmodellierung in XML und SGML. Berlin:
Springer-Verlag.

Mecca, G., Merialdo, P., & Atzeni, P. (1999). ARANEUS in the era of XML.
IEEE Data Engineering Bulletin.

Rossi, G., Garrido, A., & Schwabe, D. (2000). Navigating between objects:
Lessons from an object-oriented framework perspective. ACM Com-
puting Surveys, 32(1).

Rossi, G., Schwabe, D., & Lyardet, F. (1999). Web application models are

70 Schewe & Thalheim

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

more than conceptual models. In P. C. et al. (Eds.), Advances in
Conceptual Modeling (Vol. 1727 of LNCS, pp. 239-252). Berlin:
Springer-Verlag.

Schewe, K.-D. (2001). Querying web information systems. In H. S. Kunii, S.
Jajodia, & A. Sølvberg (Eds.), Conceptual Modeling – ER 2001 (Vol.
2224 of LNCS, pp. 571-584). Berlin: Springer-Verlag.

Schewe, K.-D. & Thalheim, B. (2000). Conceptual modelling of internet
sites. Tutorial notes. 19th International Conference on Conceptual Mod-
elling (ER 2000). Available at: http://infosys.massey.ac.nz/~kdschewe/
pub/slides/ER00tuti.ps with i = 0, …,6.

Schewe, K.-D., Kaschek, R., Matthews, C., & Wallace, C. (2002). Model-
ling web-based banking systems: Story boarding and user profiling. In H.
Mayr & W.-J. Van den Heuvel (Eds.), Proceedings of the Workshop on
Conceptual Modelling Approaches to E-commerce. Berlin: Springer-
Verlag.

Schwabe, D. & Rossi, G. (1998). An object oriented approach to web-based
application design. TAPOS, 4(4), 207-225.

Schwabe, D., Rossi, G., & Barbosa, S. (1996). Systematic hypermedia design
with OOHDM. In Proceedings of Hypertext ‘96 (pp. 116-128). New
York: ACM Press.

Thalheim, B. (1997). Development of Database-backed Information Ser-
vices for CottbusNet. Cottbus, Germany: BTU Cottbus. (Technical
Report No. CS-20-97).

Thalheim, B. (2000). Entity-relationship Modeling: Foundations of Data-
base Technology. Berlin: Springer-Verlag.

Toward a Model of the Migration of Communication Between Media Devices 71

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter III

Toward a Model of the
Migration of

Communication Between
Media Devices

Richard Hall, La Trobe University, Australia

ABSTRACT
The ever-increasing volume of information generated by humanity has
been supported by our ability to invent devices that record, store, retrieve
and communicate this information in a variety of media, presented by a
variety of devices. Since new media devices are continually emerging, and
each device has different utility, it is possible that a great deal of
information will need to be migrated between media devices in order to
take advantage of their utility. While computer programs that perform
migration automatically would help to process the potential volume of
information being migrated, such programs will require a model of the
migration of communication between media devices. In this chapter, we
propose such a model that is based on ideas from information theory and
media modeling. The model represents a number of interacting components
including: the dimensions and utility of the media device; the media of and

72 Hall

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

structure of communication; and conversion functions between media
devices. We evaluate it by applying it theoretically to one of the important
tasks in digital libraries: the digitisation (migration) of a set of highly
structured textbooks to hypertext. We argue that emerging web-
technologies could assist the automatic migration of communication
between media devices as long as specific components of the migration
model are present in the information. Applications of this model lie in the
preservation of digital libraries, which must be able to migrate between
media devices in order to be immune to degradation and technological
obsolescence.

INTRODUCTION
There is a lot of information in the world. In 1997, it was estimated that

there were a few thousand peta-bytes of information, based on aggregated
estimations of the information volumes stored in major vessels such as the
Library of Congress, the Internet, and various collections of cinema and
broadcasting (Lesk, 1997). For people to gain access to this information, they
require the ability to retrieve and engage with it, using some media device for
interaction and presentation.

Like information, the number and types of media devices continue to
grow. While books originally became the ubiquitous media device, the onset of
the electronic age has seen a great increase in the number of media devices.
There are enough devices now such that they are typically classified by the type
of sensory input they provide to a user (visible, audible, or haptic), and include
such devices as microfiche, personal computer monitors, headphones, and
force-feedback devices (M. Bordegoni, 1997). It is predicted that new
electronic devices will continue to emerge in the foreseeable future, thus,
flexibility in the way information is represented is critical (Nunberg, 1996).

The emphasis of migration in the computing world has largely been focused
on moving legacy information systems software from its original environment to
modern architectures, tools and databases, running on a new hardware
platform (J. Bisbal, 1999). The effort expended on this type of migration is, and
will continue to be, significant: It is estimated that legacy information systems
maintenance consumes 90% to 95% of information systems resources (M.
Brodie, 1993). Typically, such migration occurs without change in either the
media or the media devices; rather, the underlying representation of the
information is modified so that the information can be better used with new

Toward a Model of the Migration of Communication Between Media Devices 73

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

applications that work with the same media device. The simple order of
magnitude of the task of conversion in legacy information systems leaves little
room for consideration of other media devices.

In digital libraries, where communities of users engage with shared sources
of communication, the issue of media device independence is important
because information that cannot be accessed on any device becomes obsolete
(A. Paepcke, 1998; Sornil, 1999). Without automated assistance, obsoles-
cence may be inevitable simply because the volume of information may make
migration by hand infeasible. Also, where such migration needs to be per-
formed by expensive content experts for any reason, these large volumes will
quickly make the process prohibitive. Consequently, for information to be
communicated to a user using any preferred media device in a timely and cost-
effective manner, automatic migration techniques must be investigated.

There are three types of people for whom this chapter is written. Firstly,
those who are involved with the migration of information, such as the digitization
of books for digital library projects or information redesign for electronic
publishing. Secondly, those people who are interested in an exploration of the
limitations of hypertext media and electronic publishing tools from the view-
point of electronic publishers. Finally, those people who are interested in
exploring the type of problems inherent in information delivery via the Internet
that emerging technologies will inevitably address.

This chapter is divided into four sections. Firstly, the requirements of the
migration model are specified in terms of existing models of communication,
information and media. Secondly, a representation of the model is constructed
that satisfies these requirements. Thirdly, it is evaluated by comparison to its
requirements and application in the task of digitization. Finally, the applications
of emerging web technologies to realizing this model are discussed.

REQUIREMENTS OF THE
MIGRATION MODEL

Before creating a representation of any model, it is necessary to specify its
requirements. Such specification allows the scope of the representation to be
constrained and provides a benchmark against which the representation can be
compared. It is not claimed that these requirements for a model of the migration
of communication between media devices are complete, but, as such models
evolve over time, their requirements do become more complete.

74 Hall

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

We propose that such a migration model should integrate models from four
domains: communication, information, media, and expert systems. Where the
first three domains are directly related to representing the object of migration,
the latter is related toward representing the process of migration. The reasons
for choosing each of these particular domains are now discussed.

A model of the migration of communication must contain a representation
of the system by which communication occurs. Although the media device will
change when migration occurs, concepts of communication remain static. The
migration itself must not retard the ability of the information to represent
communication. Instead, it must further the ability of information to be commu-
nicated, thus be preserved. The information itself must also be modeled, since
all communication occurs using information. This distinction between commu-
nication and information is made because the focus of this chapter is on the
information that is communicated to the user of a media device, not on the
information (software) that controls the media device, because such software
is outside the scope of this discussion.

The media that represents the information must be modeled because some
media devices only present and allow interactions with specific media types,
and the media largely determines the way that a user interacts with a media
device in order to access the information (Munson, 1996). In addition, if
specific parts of communication are unable to move between different media
types, these parts will be limited to specific devices. The media model should
distinguish between structural and non-structural content, since structure is
important in retrieval and making documents smart (Chestnutt, 1997; Macleod,
1990).

Finally, expert systems must be modeled because, without automated
assistance, an expert in migration must perform the conversion functions
between two media devices manually, a potentially impossible task given the
ratio of information to experts. An expert system (that simulates this particular
expertise) would represent the knowledge of migration with one of the various
types of knowledge representations, such as rules or frames (Riley, 1998). For
example, an electronic publisher is an expert in the migration of books to
hypertext — an expert system for electronic publishing would contain all of the
conversion functions used by an electronic publisher.

Now that the components of the migration model have been identified, and
reasons for their inclusion have been discussed, it is appropriate to begin
constructing a representation of the migration model using these components.

Toward a Model of the Migration of Communication Between Media Devices 75

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

REPRESENTATION OF THE
MIGRATION MODEL

In the previous section, it was argued that models from four domains
should be incorporated: communication, information, media and expert sys-
tems. While a number of models have been proposed in these different
domains, it is necessary to make a selection of a single representative model —
the models believed to be the simplest and most general were chosen. The
following four subsections present a summary of each of these models, and
reasons why each of these models is incomplete of itself are mentioned.
Subsequently, they are integrated to produce the model of migration of
communication between media devices.

The Communication Component of the Migration Model
Shannon’s information theoretic measures are well known in both com-

puter science and engineering. Shannon is known as the father of information
theory. Consequently, we adopt his model of a communication system, shown
in Figure 1 (Shannon, 1948). His discussion of the components of the model
follows.

An information source produces a message or sequence of messages to
be communicated to the receiving terminal. The message may be of various
types:
(a) A sequence of letters, as in a telegraph of teletype system;
(b) A single function of time f (t), as in radio or telephony;
(c) A function of time and other variables, as in black and white television —

here the message may be thought of as a function f (x;y; t) of two space
coordinates and time, the light intensity at point (x;y) and time t on a pickup
tube plate;

(d) Two or more functions of time, say f (t), g(t), h(t) — this is the case in
“three dimensional” sound transmission or, if the system is intended to
service several individual channels, in multiplex;

(e) Several functions of several variables — in color television, the message
consists of three functions f (x;y;t), g(x;y;t), and h(x;y;t) defined in a three-
dimensional continuum — we may also think of these three functions as
components of a vector field defined in the region — similarly, several
black and white television sources would produce “messages” consisting
of a number of functions of three variables.

76 Hall

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Various combinations also occur, for example, in television with an
associated audio channel.
• A transmitter operates on the message in some way to produce a signal

suitable for transmission over the channel. In telephony, this operation
consists merely of changing sound pressure into a proportional electrical
current. In telegraphy, we have an encoding operation which produces a
sequence of dots, dashes and spaces on the channel corresponding to the
message. In a multiplex PCM system, the different speech functions must
be sampled, compressed, quantized and encoded, and finally, interleaved
properly to construct the signal. Vocoder systems, television, and fre-
quency modulation are other examples of complex operations applied to
the message to obtain the signal.

• The channel is merely the medium used to transmit the signal from
transmitter to receiver. It may be a pair of wires, a coaxial cable, a band
of radio frequencies, a beam of light, etc.

• The receiver ordinarily performs the inverse operation of that done by the
transmitter, reconstructing the message from the signal.

• The destination is the person (or thing) for whom the message is intended.
We wish to consider certain general problems involving communication
systems. To do this, it is first necessary to represent the various elements
involved as mathematical entities, suitably idealized from their physical
counterparts. We may roughly classify communication systems into three
main categories: discrete, continuous and mixed. By a discrete system, we
will mean one in which both the message and the signal are a sequence of
discrete symbols. A typical case is telegraphy, where the message is a

Figure 1: Schematic Diagram of a General Communication System

INFORMATION
SOURCE TRANSMITTER

MESSAGE

RECEIVER DESTINATION

MESSAGE

RECEIVED
SIGNAL

SIGNAL

NOISE
SOURCE

Toward a Model of the Migration of Communication Between Media Devices 77

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

sequence of letters, and the signal a sequence of dots, dashes and spaces.
A continuous system is one in which the message and signal are both
treated as continuous functions, e.g., radio or television. A mixed system
is one in which both discrete and continuous variables appear, e.g., PCM
transmission of speech.

Shannon’s communication system lacks a number of features required by
a model of migration of communication between media devices. While Shannon’s
system represents the physical environment of communication, it does not
distinguish between symbols which have semantic content and those with none,
nor does it represent the purpose of the communication (Horvath, 2001). Also,
while the physical environment represents the medium of communication, the
media represented by the information, and the way in which the destination
interacts with this media via a media device, is not considered. Finally, this is
an isolated system — while internal relationships are represented, the relation-
ship between this system and others is not considered.

Since the scope of this paper focuses on communication between people,
it assumes the communication has semantic content, such as all the information
stored in a digital library. Consequently, a model for information is required.

The Information Component of the Migration Model
A number of information theories have been proposed that could fill the

void of semantic content left out by Shannon’s model of a communication
system. We adopt Gitt’s information theory (Gitt, 1989) because this theory is
supposedly the most complete (Horvath, 2001). Gitt’s levels of information are
now summarized.
• Statistical level: Shannon’s information theory is well suited to an

understanding of the statistical aspect of information. This theory makes
it possible to give a quantitative description of those characteristics of
languages that are based intrinsically on frequencies.

• Syntactical level: The code system that represents the information.
• Semantic level: The decisive aspect of the transmitted information. It

shows the message that the information contains.
• Pragmatic level: To achieve the intended result, the transmitter consid-

ers how the receiver can be made to satisfy his planned objective; what
kinds of actions should be accomplished. He differentiates between
modes of actions (a) without any, (b) with a limited, and (c) with the
maximum degree of freedom.

78 Hall

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Apobetic level: The purpose of the information. The result of the
communicated information at the receiving end is based at the transmitting
end on the purpose, the objective, the plan, or the design.

While information theory provides a more complete representation of the
information and of the relationship between the author at the information source
and the audience at the destination than Shannon’s communication system, it
also lacks a number of features required by a model of migration of communi-
cation between media devices. Without a representation of the communication
system, there can be no consideration given to the relationship between the
message type and the structure of information. And, without a representation
of the media in which information is contained, the migration between different
media devices cannot be considered.

The Media Component of the Migration Model
In Shannon’s model, a distinction is made between the message — the

information communicated, and the signal - the physical representation of the
message. Since a message can be represented by a number of media types, it
is necessary to represent media itself. While a number of media models exist,
we adopt Munson’s operational model because it characterizes interaction with
media as dependent on its type, independent of media combinations or context-
dependent usage (Munson, 1996; Pfeiffer, 1997).

A medium is a four-tuple, M = (T; D; A; O):
• A type, t

i
∈T , is a set of values. Each t

i
 may be finite (e.g., Booleans) or

infinite (e.g., ASCII strings), atomic (e.g., integers) or composite (e.g.,
two-dimensional splines). The set of types, T, is formed by the union of
three subsets: T

P
 , the primitive media data types; T

O
 , the types of data

produced by the formatting operations; and T
A
 , the types of the attributes

in A.
• D is a set of dimensions in which layout is performed. The set of

dimensions for a medium, D, has k members, whose Cartesian product is
the coordinate space in which material is laid out.

d
1
 * d

2
 * … * d

k

Each dimension, d
i
, may be continuous or discrete, bounded or un-

bounded.

Toward a Model of the Migration of Communication Between Media Devices 79

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• A is a set of attributes. The elements of the set of attributes, a
i
∈A,

represent the style parameters that control the medium’s formatting
process. Each attribute has a type, t ∈T

A
, which specifies the set of values

that the attribute may hold. Examples of possible attributes include stroke
width (for 2D graphics), font size (for any medium supporting text), and
transition style (used with video and having values like “cut,” “fade” and
“dissolve”).

• O is a set of formatting operations. Each medium has k operations, where
k≥1. Each operation o

i
∈O is a tuple o

i
 = (tin

i
 ; tout

i
 ; A

i
 ; f

i
), where:

- tin
i
 is the input data type;

- tout
i
 is the output data type;

- A
i
⊂A is the set of m attributes relevant to the operation, where A

i
 = {a

i1…
a

im
};

- f
i
 is the function performed by the operation, where

f
i
 : tin

i
 * a

i1
 .. a

im
 → tout

i

Munson’s model of media represents what an audience will perceive via
a media device and the attributes of a media that an author can manipulate. In
conjunction with a model of communication and information, it will form the
basis of our model of communication. As it stands, though, none of these
models can represent conversion rules between media devices; such capability
is incorporated using expert systems.

The Expert Systems Component of the Migration Model
An expert system is an intelligent computer program that uses knowledge

and inference procedures to solve problems that are difficult enough to require
significant human expertise for their solutions (Feigenbaum, 1982). The basic
model of an expert system (shown in Figure 2) was originally proposed for the
expert system MYCIN, and is now the de-facto standard (Riley, 1998). His
brief discussion of the components of the model follows. Note that his
discussion uses rules as the knowledge representation, although there are many
types of knowledge representation.
• Working memory: Contains a global database of facts used by the rules.
• Inference engine: Makes inferences by deciding which rules are satisfied

by facts or objects, prioritizes the satisfied rules, and executes the rule with
the highest priority.

• Knowledge base: Stores all rules in the system.
• Explanation facility: A facility that can explain the reasoning of the

system to a user.

80 Hall

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• User interface: The mechanism by which the user and the expert system
communicate.

• Knowledge acquisition: An automatic way for a user to enter knowledge
in the system, as opposed to a knowledge engineer explicitly coding
knowledge.

In this chapter, the scope is limited to the left-hand side of the diagram,
since we are interested in representing a model of the migration of communi-
cation between media devices, as opposed to knowledge acquisition/explana-
tion of conversion, although we believe that there is much scope for future work
in these areas. Now that all the individual models have been introduced, they
can now be integrated in order to satisfy the requirements of this migration
model for communication between media devices. The integration occurs in
two stages: combining communication oriented models, then extending this
model of communication with an expert systems model for conversion.

Combining Model Components into a Model of
Communication

The models of communication, information and media mentioned above
immediately appear to be complementary, and appear to overlap in various
ways. In this section, we reconcile these three models into a unified model for
communication before extending this model to consider migration between
media devices.

Figure 2: Expert Systems Model

Working Memory Explanation
Facility

Knowledge
Acquisition

User InterfaceInference Engine

Knowledge Base

Toward a Model of the Migration of Communication Between Media Devices 81

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The proposed unified model is shown in Figure 3. An explanation of its
components with respect to the other three models follows.
• Author: The author(s) are the producers of the information using the

media capture/editing devices. They evaluate the potential of the informa-
tion they are constructing in terms of the desired effect it will have on the
mind of the audience A

D
 (pragmatic level of information), and they have

a purpose for having such an effect on an audience (apobetic level of
information). While this effect occurs in the mental state of the audience,
like all mental states, it can lead to action. Constructing the author in this
way is in agreement with Searle’s speech-act theory (Searle, 1969). In
relation to Shannon’s model, the author, in cooperation with the media
capture/editor, is equivalent to the information source.

• Media Capture/Editor: This is a device that records the author’s
manipulation of all aspects of one or more media types. Thus, any physical
object that is manipulated by an author for the purpose of having a desired
effect on an audience acts as media. Such devices, thus, include paper,
canvas, tape recorders, and video cameras. Note that, according to
Munson’s model of media, each might support multiple primitive data
types. For example, the text medium provided by the typesetting program
LAT

E
X supports text, mathematical symbol, rule, line, circle, rectangle,

and glue data types (Munson, 1996).

Figure 3: Unified Model of Communication

82 Hall

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

We extend Munson’s model of media in the following way. Primitive media
data types T

O
 are merged with the information level of syntax to such that they

are labeled with one of three types: reference-source, reference-target and
content-only. Reference-source means that the data refers the audience to
another piece of data in the media. Reference-target means that the data either
can be referred to by a reference source, or is necessary to support other
reference targets. For example, consider the reference-target of page numbers
in a book. Although the table of contents or index might not refer to all page
numbers, it is necessary for each page to have a number so that subsequent
pages that are referenced can be found easily. Content-only refers to all other
data that is not the previous two types. The purpose of this extension is to
represent structure, one of the requirements of this model.

Having constructed these three components, we then construct a higher-
level syntax element that we call an information unit (iunit). An iunit consists
of any media that begins with a reference-target and stands as a unit that is
complete in terms of the information contains. Complete means that the
information represented by the media has a discernible semantic whole in terms
of an identifiable beginning, middle and end. Examples of iunits include a scene
in a movie or a chapter or subsection in a book. Iunits can be nested. For
example, a book subsection is generally part of a chapter; a scene in a play may
be part of an act.

A difference between this component and Shannon’s information source
is that Shannon considers the purpose of the information source to only be the
construction of a message, as opposed to representing the message (informa-
tion) within media and recognizing that it is the media that is communicated, and
the message, potentially.
• Transmitter/Receiver: This component subsumes Shannon’s transmit-

ter, receiver and noise source components. Shannon’s model, however,
only considers communication in the frequency domain. However, it could
be argued that the situation whereby a book is sent to a publisher and
made into many copies is analogous. Thus, this stage can be extended to
all media where the audience does not perceive the object manipulated
directly by the author. The reason for the dotted lines in Figure 3 is that
the media type determines the necessity of transmission. Given that any
object can be media, it is possible that the media perceived by the
audience is the exact same physical object manipulated by the author, e.g.,
a painted canvas.

• Media Device: This component is the device perceived by the audience.
Note that in Figure 3 it shows M

DT
 only (the dimension and type aspects

Toward a Model of the Migration of Communication Between Media Devices 83

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

of media). The audience needs no awareness of the underlying attributes
and operations involved in the construction process; they are simply
exposed to the media and, consequently, extract information from it. It
must be noted that the device itself has a dimension component D

D
 that

interacts with M
D
.

• Audience: The audience is the people who perceive and control the media
device. Their use of the device is deliberate, and they attempt to minimize
the amount of effort required to find the information they desire. Structure
becomes increasingly important as information volume grows, as the task
of the audience in matching what they desire to perceive with what can
possibly be perceived becomes increasingly difficult. The information
perceived by an audience will affect their mental state A

E
. The dotted line

linking this state with the author means that there may exist a feedback path
to the author, such that the author can measure the similarity between A

D

and A
E
. An exact match means that the author will have achieved their

purpose in communicating, and no change to the media is necessary to
accomplish the desired effect. On the other hand, an inexact match may
inspire the author to re-edit the media in an attempt to increase similarity.

Now that the communication component of the migration model has been
constructed, the component allowing conversion between media devices can
be added.

Extending the Communication Model for Migration
The integrated communication component is now extended to represent

migration between media devices using concepts from expert systems. The
model shown in Figure 4 takes particular components from the model in Figure 3,
instead of adding directly to the model in Figure 3 for reasons of space. Note
that the author is now on the right hand side of the diagram, simply to show that
their perception of the media devices is important. The most important
components in migration, as opposed to communication, are shown in this view,
while all other relationships are maintained.
• Author: In addition to authors producing the information and evaluating

the potential of the information they are constructing in terms of the desired
effect it will have on the mind of the audience A

D
, authors attempt to

evaluate the effect of different media devices upon A
E
. This relationship

defines the utility of a media device; authors will desire their media to
migrate between different devices because of the different utilities of
different devices. Given the importance of structure in information selec-

84 Hall

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

tion for large information volumes, it is assumed that migration will often
move in the direction of media devices with increasingly powerful repre-
sentations of structure.

• Media Capture/Editor/Devices: All three media controls may be in-
volved in migration. Firstly, the media capture control may be used to
produce alternative representations of the information. Secondly, the
media editor control may have a representation of the information that can
be directly converted without resorting to converting from the media
device itself. Finally, the media device by which the information is
presented may need to be accessed directly in order to attempt conver-
sion. For example, in the process of digitization, books are scanned, then
converted to text using optical character recognition software.

• Working Memory: This expert system (ES) component requires a
representation of the media types, both within the media editor and media
devices that can be processed by the inference engine in order to
determine which conversion functions to apply. In an ideal case, the
working memory will contain a digital representation of the media that the
inference engine can automatically modify by translating the information
into different media file types using media editor functions.

Note that migration between M
1
 and M

N
 does not necessarily mean that

M
D1

 is the same as M
DN;

 nor does it mean that exactly the same structural
information must be maintained. For example, while page numbers are useful
reference-targets in the context of the book due to its sequential layout, page

Figure 4: A Model of Communication Migration Using an Expert System

Toward a Model of the Migration of Communication Between Media Devices 85

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

numbers on pages in a web site might be meaningless since web pages can
contain multiple reference-sources and reference-targets that are attached to
multiple media types.
• Inference Engine: This software process matches all present media

components to function parameters in the knowledge base. Where a
match occurs, the function is applied. The quality of conversion, thus,
depends to a large degree on the accuracy of the knowledge base in
representing the way that an expert in conversion would manually migrate
communication between media devices.

• Knowledge Base: This expert system component stores all of the
conversion functions that will be applied to the media represented within
working memory. Having constructed our theoretical model for the
migration of communication between media devices, the knowledge-base
content can be developed.

Toward the Migration Model Knowledge Base
In order to construct a knowledge base for migration, we consider two

types of interactions in media: dimension and structure, and the ways in which
utility can be maximized with respect to these interactions. By exploring the
characteristics of these interactions, it allows an appropriate knowledge
representation to be selected. The following two subsections consider these
two interaction types, and subsequently, interactions between dimension and
structure are considered.

Dimension Interactions
Dimension interactions are considered in terms of two elements: the

relationship between the media and the media device; and in terms of the
relationship between different media devices. The dimension relationship
between the media M

D
 and media device D

D
 is explored using the example

of the display of a web page M on a standard portable computer monitor as the
media device D. For maximum utility, the screen (currently displayed) must
contain all of the information desired by the audience. However, monitor real
estate does not necessarily coincide with the real estate used by the program
displaying the media. For example, consider the utilization of the two different
screen-shots for the same web page shown in Figure 5. Also, with maximum
utilization M

D
 ≅ D

D
, but these changes in the media device dimension affect

utilization. A pocket-sized monitor will never achieve the same utilization at a
glance as a standard monitor.

86 Hall

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The relationship between the dimensions of different media devices
M

D1
 and D

D2
 is also considered. Since M

D1
 is generally laid out specifically to

fit D
D1

 in a manner which achieves maximum utilization of available space,
where D

D2
<D

D1
 it may mean that D

D2
<MD

1,
 or D

D2
>MD

1
when D

D2
>D

D1
. For

example, consider these implications in terms of web pages shown in Figure 6.
To maximize utility, it is desirable to avoid cases where there is a great

mismatch between media dimensions and device dimensions. We define cases
where M

D
<<D

D
 as underutilization, and cases where M

D
>>D

D
 as overflow.

We assume that there are acceptable lower and upper bounds D
D

min<M
D
<D

D
max

that an author would regard as acceptable, that an automatic knowledge
acquisition component of an expert system could obtain in the process of
observing manual migration, or that an author could define.

Having considered the interaction between media dimensions and media
devices, we now consider the various types of interactions between structural
elements of the media.

Figure 5: Media/Device Utilization

Figure 6: Media Dimensions and Device Dimensions Mismatch

Toward a Model of the Migration of Communication Between Media Devices 87

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Structure Interactions
Structure interactions are considered in terms of three elements: refer-

ence-source/target completeness, reference-source/target co-existence, and
the relationship between media structures and the media device. Reference-
source/target completeness (RCO) means that every type of reference-target
has a reference-source that exists within a set of reference-sources for similar
target types. For example, every iunit could have a link within a table of
contents, since every iunit begins with a reference target, by definition.
However, there may be reasons why RCO, while possible to achieve, is not
achieved for certain media types. Book authors may choose to only include
subsections down to a particular depth in a table of contents for aesthetic
reasons or size limitations. Thus, migrating between media may mean that RCO
needs to be considered, with respect to the utility of complete representation.

 Reference-source/target co-existence (RCX) means the structure of
the media (a set of reference-sources) is presented simultaneously to the
presentation of the elements referred to by the structure (content and refer-
ence-target media types). The utility of information is increased, in theory,
because a user has access to the big picture at all times, in addition to access
to the small picture (specific content), so that users can more rapidly find the
information they desire to perceive.

There appear to be two types of situations where RCX is not completely
achievable. Firstly, there is nothing to stop an author from replicating the same
information anywhere within a body of work, such that a single reference-target
has multiple reference-sources. For example, a large table in a book appendix
might be referenced multiple times in the one book, and this same table, if
general enough, might exist in a set of books that are all to be migrated into a
digital library. Consequently, a piece of information might exist in multiple
places in the structure, and if the structure representation overflows D

D,
 then it

is possible that some of the reference-sources may not coexist. Secondly, the
set of headings in a representation of information structure might use particular
grammar that indicates their relationships, but this relationship may not neces-
sarily be maintained in the content representation of the iunit, thus, the headings
of the content differ from the headings in the structure of the content.

There are two areas in which the relationship between media structures
and the media device is considered: external references and internal cross-
media references. External references mean reference-targets that lie outside
the media, although they are of the same media type. Given the volume of
information, some of these reference-targets may be outside the control of the
author, thus, the content referred to may change, or the actual reference-target

88 Hall

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

may disappear without the author’s knowledge. Cross-media references
mean that the communication exists within two media forms, and there are
references between the two forms. It is assumed that, in the usual migration
case, cross-media references do not exist- such that all reference sources now
target the new media.

Having considered the interaction between media dimensions and struc-
tures separately, we now consider the various types of interactions between
these two interaction types.

Dimension-Structure Interactions
We now consider interactions between two dimension issues with struc-

ture: underutilization and overflow. We also consider two structure interactions
with dimension: reference-source/target completeness and reference-source/
target co-existence. The third structure interaction (the relationship between
media structures and devices) does not interact with the dimension component
as the reference-targets are external to the media, thus, they have no effect on
the internal dimension.

The situation of underutilization may be addressed in migration by
merging one iunit with another, such that the sum of the dimensions of the two
iunits together approximates D

D
. However, the relationship between the

merged contents must be considered. If one iunit is supposed to be perceived
before another, and their order is important, then it needs to be maintained
during migration. Also, if one iunit exists at a higher level of generality than a
set of iunits, it cannot be merged with an individual member of this set without
destroying the relationship between this merged iunit with other members of
the set.

The situation of overflow may be addressed by subdividing an iunit so
that each element approximates D

D
. However, during migration, the relation-

ship of generality between iunits needs to be maintained. If one iunit exists at
a higher level of generality than a set of iunits, it can be separated in two ways,
but each is problematic. If it is subdivided to create a new member of the set,
the relationship between the other set members and the new member will be
incorrect. On the other hand, if it is subdivided into a new iunit, and the set is
attached to the new iunit, the relationship between the set and the old iunit will
be incorrect.

The completeness of reference-source/target (RCO) has a dimension
impact because the more reference-sources, the more space they require for
their representation. Each collection of reference sources requires a way to
reach each collection, and each way has a dimension impact. For example,

Toward a Model of the Migration of Communication Between Media Devices 89

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

consider Figure 7, where there are three tabs for three collections of reference-
sources. With three tabs only, the tabs all fit nicely across the display pane.
However, if another tab were added, it would reduce the amount of space to
display the contents of each tab (the blank area of the tab). In addition, the more
reference-sources that are members of each individual reference-source
collection, the more overflow that occurs in the presentation of structure.

The reference-source/target co-existence aim has a dimension impact
simply because D

D
 is finite, and presenting the structure of the media at the same

time as presenting the content means that there is less space available for display
of the content. In Figure 8, a web page has been subdivided such that the
structure is presented in the left-hand frame, while the content is presented in
the right-hand frame, a common practice in web site design.

In this section, we considered a number of interactions between media and
the media devices that impact migration in terms of dimension and structure. We
now develop a knowledge representation for migration that attempts to
maximize utility with respect to these interactions.

Figure 7: Reference Source Completeness Dimensional Requirement

Figure 8: Reference-Source/Target Coexistence Dimension Requirement

90 Hall

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The Migration Knowledge Representation
There are possibly a number of different knowledge representations that

would be suitable to represent expertise in migrating from one media to another.
We chose to use rules as the knowledge representation scheme because rules
have the following four characteristics: independence, ease of understanding,
ease of modification, and our belief that migration knowledge can be specified
with certainty (Riley, 1998). The migration rules we constructed by analyzing
the interactions are represented below, with Boolean expressions capitalized.
Note that each iunit begins a reference-target that is referred to by a reference
source. This source exists either in a collection of reference sources or as an
individual reference. Also note that each iunit is considered separately, even
though a single iunit can consist of a number of sub-iunits.

Overflow rule:
IF M

D1
>>D

D
AND

M
D2

≅D
D

AND
Iunit

1
 is not a higher-level iunit for a number of lower-level iunits AND

Adding iunit
3
 reference-source to collection does not cause overflow AND

The iunit
3
 reference-target makes sense

THEN
Iunit

1
 is subdivided into iunit

2
 and iunit

3
;

Iunit
2
 replaces iunit

1
;

Iunit
3
 follows iunit

2
 at the same level in the structure hierarchy so that the

order of perception is maintained.

Note, when very large MD1 is subdivided, only the dimension of iunit
2
 is

considered with respect to D
D
 because iunit

3
 can now be considered as a

separate entity to which the overflow or underutilization rules can be applied if
necessary.

Underutilization rule:
IF M

D1
<<D

D
AND M

D2
<<D

D
AND

M
D2

+M
D1

=M
D3

≅D
D

AND
Iunit

1
 is not a higher-level iunit for a number of lower-level iunits AND

Iunit
2
 is not a higher-level iunit for a number of lower-level iunits AND

Iunit
2
 is to be perceived AFTER iunit

1
 is perceived AND

Toward a Model of the Migration of Communication Between Media Devices 91

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Adding iunit
3
 reference-source to collection does not cause overflow AND

The iunit
3
 reference-target makes sense AND

All other possible merger combinations are considered to maximize the
number of mergers

THEN
Merge iunit

2
 with and following iunit

1
 into iunit

3.

Collection construction rule:
IF The reference-target type of iunit

1
 belongs to a useful collection AND

No collection exists AND
A new collection does not cause overflow

THEN
Construct a new collection;
Add iunit

1
 to the new collection.

Collection addition rule:
IF Adding iunit

1
 to the collection does not cause overflow AND

A reference-source for iunit
1
 does not already exist in the collection AND

The grammar of the reference-source is appropriate to others in the
collection

THEN
Add iunit

1
 to the collection.

Note that grammatical modifications that are made for this second rule may
mean that the reference-sources in the collection are not identical to reference-
target, but the changes can only be cosmetic, as the meaning must be the same
in order for the audience to understand what information is described by the
content without having to perceive the content.

Collection replication rule:
IF Adding iunit

1
 to the collection does not cause overflow AND

A reference-source for iunit
1
 exists in the collection AND

THEN
Add iunit

1
 to the collection;

Represent this multiplicity within iunit
1
 so that the audience can perceive it.

This rule allows the problem of information replication to be sidestepped
by making the audience completely aware of its incidences within the content
itself, thus, assisting the aim of reference-source/target co-existence.

92 Hall

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Collection positioning rule:
IF Iunit

1
 is referred to by multiple non-collection reference-sources AND

These sources exist within iunits that are close together in a collection AND
Moving iunit

1
 does not interrupt the audience perceiving the content.

THEN
Move iunit

1
 to follow the last iunit in this group at the same level as the

last iunit.

This rule reduces the distance between information that has strong links in
terms of internal references. For example, a book appendix (positioned at the
end of the book) might be referred to by one chapter only. In migration, this
appendix can be moved so that it is closer to the chapter.

Reference-target stripping rule:
IF reference-source/target

1
 that is NOT connected with an iunit

THEN
Delete reference- source/target

1.

This rule means that references that are constructed to point to specific
parts of the media are stripped out during migration. Thus, page numbers and
references to page numbers would be stripped out of a book that was migrated
to another device.

Reference-target indirect indexing rule:
IF iunit

1
 is associated with an index by which the audience navigates the material

THEN
Look up the index to find the position of iunit

1;

Associate the reference-source in the collection with the index for iunit
1
.

This rule allows indirect indexing of an iunit. For example, if hypertext is
migrated to book form, then the migrated table of contents would need to refer
to page numbers.

Having specified all rules for the knowledge base in the migration model,
the development phase of this migration model is complete. We now begin to
evaluate this model in terms of the requirements of the model and by applying
it, theoretically, to a migration task.

Toward a Model of the Migration of Communication Between Media Devices 93

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

EVALUATION OF THE
PROPOSED MIGRATION MODEL

In the requirements of the evaluation model, it was proposed that we
integrate models from four domains: communication, information, media and
expert systems. The reasons why we needed these models were also de-
scribed. The extent to which our integration addresses these reasons must be
considered. Subsequently, a case study is explored to assess the accuracy of
the model.

Firstly, a communication model was incorporated with minor changes,
based on Shannon’s communication system. Minor changes included focusing
on information-content messages that are represented within a media form. The
noise contribution to the signal was also removed, as perfect signal transmission
of media was assumed. The basic concepts of communication remained the
same.

Secondly, an information model was incorporated which remained
completely intact, although its incorporation caused changes in other models.
Gitt’s information theory was positioned entirely within the context of a
communication system, so that only the information that is perceived by the
audience is considered. Although electronic devices are information proces-
sors, the information required to control the device was not considered. The
device is simply seen as a platform for media delivery.

Thirdly, a media model was included. Munson’s operation model of
media provided a generic way to describe the delivery of information to the
audience that was independent of a particular media type or group of media
types. This media model was extended to represent syntactical elements of
information, such that structural and non-structural content could be distin-
guished. Without the construction of these distinctions, it would have been
impossible to construct a knowledge representation for migration.

Finally, Feigenbaum’s expert system model was included in order to
represent the knowledge of migration. The interactions between the other
models were investigated in terms of utility, with respect to dimension and
structure. These interactions were then codified into an initial set of conversion
rules that attempted to maximize utility in migration of communication between
media devices.

All of the requirements of the model have been satisfactorily met. Conse-
quently, we now assess the accuracy of the model by its theoretical application.

94 Hall

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Theoretical Application of the Model
The accuracy of any model can be evaluated by comparing its compo-

nents, behavior and interactions with the real world. However, it is necessary
to select that part of the real world that is useful for comparison. In this case,
selection is important because it would be possible to compare this model of
the migration of communication between media devices with a huge number of
cases. Since the digitization task is important in digital libraries, we compare the
model to the task of migrating information from a set of technical books to
hypertext. This comparison occurs at two levels: matching components of the
model to this migration; and matching conversion rules to this migration. We do
not consider the interaction between dimensions as these are codified into the
conversion rules.

Component Comparison
• Author: Authors produce technical textbooks these days using word-

processing software, and typesetting may be performed using a typeset-
ting program. Technical textbooks are often used for teaching purposes
or as a quick reference, thus, these books are often highly structured,
containing extensive various handcrafted indexes. The utility of migration
may focus on the speed of reference. Migration will tend toward media
devices that present faster, more accurate, and more convenient ways of
quickly accessing the information and allowing authors to keep this
information up-to-date. Migrating a set of textbooks to hypertext and
delivering them over the Internet allows access from anywhere in the
world and allows the process of information updates to be centralized.
Other potential advantages in this migration could include the ability to
easily reference the huge body of growing information online, and also for
this electronic content to potentially be used in conjunction with com-
puter-assisted workflow software.

• Media Capture/Editor/Devices: The media that was originally captured
using word-processing software is migrated into electronic publishing
software (note that, while these functions may be bundled together into the
one software package, there are a number of specialized electronic
publishing software products available). Since the basic representation of
the textbook exists in digital form, we assume that the electronic represen-
tation is transformed in this migration task, as opposed to scanning in
pages and pages of a textbook in order to (re)create this electronic
representation. The practical advantage of manipulating the electronic

Toward a Model of the Migration of Communication Between Media Devices 95

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

representation of the media is that an expert system can only manipulate
electronic representations. With respect to our modification of the model
of media, the set of textbooks becomes an iunit. Also, each individual
book becomes an iunit, as does every unique section at any depth. The
reference-target required to start an iunit is the heading for every section.

• Transmitter/Receiver: A web server becomes the centralized transmit-
ter, and the internet service provider becomes the receiver. The signal
component becomes discrete data packets that are routed through the
Internet. Noise source components are not considered, as internet
communications have built in error-checking and recovery procedures
that make noise invisible to a user.

• Media device: The media device is the monitor on which an internet
browsing program displays the reconstituted data packets. Unfortunately,
both the dimensions of this device and the presentation program are
inconsistent, and it is difficult for authors to assess how their information
will work with different sized displays. Consequently, authors often
assume that the user will have a window-optimized program running on the
most popularly sized monitor. For this migration example, we assume that
D

D1
<D

D2
, that is, a web page can display the text of a number of book

pages, thus, for small sub-sub-sections (iunits), underutilization occurs
regularly with direct migration.

• Audience: The audience is the person controlling the Internet browsing
program that contains the migrated hypertext version of the textbook. In
order to find the information they seek as quickly as possible, the audience
uses the multiple structures and electronic find capabilities that are
presented along with the hypertext content. The feedback path to the
author can also be increased via hypertext delivery of information, as
convenient contact using electronic mail can be linked to the information,
or electronic surveys can actually be embedded in the content itself.

• Expert systems components: The three parts of an expert system we
included — working memory, inference engine, and knowledge base —
could all be used for such a migration. The working memory would have
direct access to both the word-processing software and electronic
publishing software, using built in control procedures to automatically
format the information. The inference engine would match the informa-
tion in the word-processing software to the conversion rules in the
knowledge representation component, and apply the consequents of
these rules in the electronic publishing package to produce the migrated

96 Hall

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

hypertext. We now assess the applicability of the conversion rules for
migrating a textbook to hypertext.

Conversion Rule Comparison
The eight conversion rules proposed are now considered with respect to

the migration of a set of textbooks to hypertext: overflow, underutilization,
collection construction, collection addition, collection replication, collection
positioning, reference-target stripping, and reference-target indirect indexing
rule.

In order to properly consider the potential application of these rules, we
need to give an example book structure that is migrated. As previously
mentioned, the structure of body-text can be discussed in terms of headings that
delineate the beginning of subdivided pieces of text (each piece being an iunit).
Any set of contiguous pieces can form larger pieces, thus, headings can exist
at different levels reflected by common level names. For example, a textbook
is often subdivided into chapters, chapters into sections, sections into subsec-
tions, and so on. The precise level of each heading can be indicated using a
numbering scheme with which most people who have seen textbooks would be
familiar. For example, consider the book structure below BS

1
 with a single

chapter having two sections, and the latter section having two subsections.

1.
1.1.
1.2.

1.2.1.
1.2.2.

This simple structure BS
1
 will be used in examples describing structure

issues, in addition to the following terms describing the relationship between
headings in BS

1:

• A sibling is a heading at the same level, e.g., 1.1 is a sibling of 1.2
• A child is the heading of a subsection, e.g., 1.1 is a child of 1
• A parent is a heading which has a child, e.g., 1 is the parent of 1.1
• An asterisk (*) means a new heading is introduced for a particular

conversion operation

With respect to the overflow rule, there might be a number of book
sections (iunits) that need to be subdivided across a number of web pages in

Toward a Model of the Migration of Communication Between Media Devices 97

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

migration to hypertext. Consider the two examples below using BS where 1 and
1.2 are subdivided respectively.

Heading 1 subdivided: Heading 1.2 subdivided
1. 1.

1.1. * 1.1.
1.2. 1.2.
1.3. 1.2.1. *

1.3.1. 1.2.2.
1.3.2. 1.2.3.

Note that neither of these cases of subdivision would be permitted by the
migration rules, and rightly so; in each case, the generality relationship between
sections is broken. In the first case, it would be inferred from the structure that
section 1.2 would be at the same level as section 1.1, but, in fact, the content
does not reflect the structure. In the second case, it would be inferred from the
structure that 1.2.2 and 1.2.3 were at the same level as 1.2.1, but this would
not be true.

With respect to the underutilization rule, there might be a great deal more
book sections (iunits) that need to be joined in a number of web pages in
migration to hypertext because of the previous assumption that D

D1
<D

D2
.

Consider the two examples below using BS where 1.1 and 1.2 are merged and
1.2.1 and 1.2.2 are merged respectively.

Headings 1.1 & 1.2 merged Headings 1.2.1 & 1.2.2 merged
1. 1.

1.1.* 1.1.
1.1.1. 1.2.
1.1.2. 1.2.1. *

Note that the merger between 1.1 and 1.2 would not be permitted as 1.2
has children, and such a merger would confuse the generality relationships
between the children and heading 1.1. On the other hand, a merger between
1.2.1 and 1.2.2 causes no issues with generality relationships and could be
completely permissible under the underutilization rules.

With respect to the collection construction rule, BS is a useful collection,
and, since we are only discussing one collection type (a table of contents), the

98 Hall

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

small number means that it probably will not cause overflow on most electronic
media devices, such that reference-source/target coexistence is possible. With
respect to the collection-addition rule, the size of BS is very small, and,
although the headings do not actually have text content (thus, no grammatical
modifications need to be considered), a representation of BS on most size
electronic media devices would be possible. It is also assumed that, with this
small size, any appendix is already close to other content, thus, it is unnecessary
to consider the collection positioning rule for this example of a small
collection.

With respect to the collection replication rule, it is practically unlikely that
a section would be replicated in such a small structure as BS, but consider the
example below where this is the case, since this might occur where a particularly
useful section could be replicated in a set of textbooks.

1.
1.1. � 1.2.2
1.2.

1.2.1.
1.2.2. ��1.1

It is useful to consider this example because some electronic publishing
software packages come with plug-ins that provide dynamic tracking of table
of contents. For example, if a user clicks on links within a web page, without
using the table of contents hyperlinks, the position of the new web page
presented is reflected by an automatic update of the presentation of the table
of contents. However, a problem occurs with content replication, in that each
web page can only point to one position in the table of contents. Consequently,
a user can navigate to a web page using a structure in one section, but, to their
surprise, the table of contents jumps to another section that is different from
where they were looking. It might take a novice user a frustrating amount of time
to find where in the structure they were originally looking, depending on the size
and overflow of the table of contents. The collection-replication rule, on the
other hand, which insists on copying the multiplicity of references within the web
page itself, would assist the user finding finding the original location.

The reference-target stripping rule would remove all page numbers from
the content if they were represented within it, assuming the author has no use
for page numbers on the web pages. With a reference text book, for example,
the book is subdivided into many discrete pieces, and it is faster for the user to
be able to directly reach a piece without physically bypassing other pieces. The

Toward a Model of the Migration of Communication Between Media Devices 99

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

reference-target indirect indexing rule would be applied in the construction
of hyperlinks, such that the physical location of the web page and target within
it is known.

Having considered all components, and conversion rules, it appears that
the proposed model does theoretically describe the migration of a set of
textbooks to hypertext reasonably well. We now consider how emerging
technologies could support the implementation of our model.

APPLICATIONS OF
EMERGING TECHNOLOGIES

While this migration model identified a number of interactions between
dimension and structure that needed to be considered in migration, and
proposed conversion rules that take these interactions into account in migra-
tion, the practical implementation of these rules has yet to occur. In this section,
we identify the technology requirements for these rules to be implemented and
suggest ways in which emerging technologies could be applied, particularly with
respect to the semantic web.

Ideally, an author would not need to consider overflow or underutilization.
The media device being perceived by the audience would inform the transmitter
about its dimensions, and the transmitter would automatically convert the media
appropriately for any specific device. Such flexibility would undoubtedly be
appreciated by web programmers, who can spend many hours attempting to
make the same site interoperable for multiple size browsers (among many other
things).

Both the overflow and underutilization rules have three technical re-
quirements:
• The ability to recognize the relationship between media and device

dimensions.
• The ability to recognize the generality relationship and between iunits and

the order in which iunits are supposed to be perceived, where important
to the author.

• The ability to recognize whether a reference-target ‘makes sense’ in a
linguistic sense.

The order of these three requirements goes from easy to more complex.
Dimensions can be represented as numbers that can easily be compared.
Generality relationships between iunits could be described and stored using

100 Hall

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

emerging meta-data approaches. In a book example, if one iunit contains two
others, and each has its own heading, then presumably each heading will make
sense in isolation. However, creating a computer program that can automati-
cally summarize a section of text (independent of its complexity) and construct
a heading that makes sense ‘on-the-fly’ is a non-trivial problem.

The collection construction rule requires knowledge about what is
deemed a ‘useful’ collection, such that it knows whether or not to construct a
collection. Given the utility definition, something that is useful assists the
audience to find what they are looking for, so a feedback path from users is
necessary to store this information. There may be some value in finding out user
profiles for a number of types of information, but it is also possible that, in some
situations, the type of collection is entirely dependent on the context of the
information, such that pooling this knowledge is less useful in some cases.

The collection addition rule requires that the grammar of the reference-
source is appropriate relative to others in the collection. Technical requirements
may be storing a large number of grammatical cases that are wrong, and
matching the reference-source to these cases then causes a hard-wired
grammatical change. This requirement assumes that grammar of any language
is almost static, such that it can be defined and does not change so fast that it
is difficult to update.

The collection replication rule requires the replication of multiplicity
within the iunit. Dynamic tracking should allow for context-sensitivity, such
that the reference-source collection does not jump to a fixed place, but the
audience should still be made aware that multiplicity exists.

The collection positioning rule adds three implementation requirements:
• The ability to identify where an iunit is being referred to by a number of

non-collection reference-sources.
• The ability to judge how close reference-sources are together in a

structure (collection).
• The ability to identify whether moving discrete iunits around would

disrupt reading order, where it is important.

The final requirement relates to external hyperlinks, an identified structure
interaction that does not contribute a conversion rule; however, it is important
in the context of digital libraries. If the content of an external web page changes
in any significant way, or its file name changes, it should inform the reference-
source, such that an author can reconsider this link. With the current state of the
internet, web pages can just suddenly disappear, such that hyperlinks lead
nowhere. It is infeasible to expect an author to manually and continually check

Toward a Model of the Migration of Communication Between Media Devices 101

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the thousands of hyperlinks that might branch out from their hypertext. It
requires that hyperlinks become more bi-directional than present; that an
author can define the type of change they consider to be significant. For
example, if only the directory name of the file changed but the web page content
and context remained identical, the author might not care, and their web site
could automatically update the link.

In this section, we found that emerging technologies could make an
implementation of a migration model of communication between media devices
possible to some degree, perhaps in the relatively near future. In particular,
meta-data and the semantic web could be used to assist the application of the
conversion rules.

CONCLUSION
In this chapter, a model of the migration of communication between media

devices was proposed, combining models of communication, information,
media and expert systems. The model was evaluated by applying it theoretically
to one of the important tasks in digital libraries: the migration of a set of highly
structured textbooks to hypertext. It was argued that emerging technologies
could assist migration by representing and using the relationships that exist
within information in a conversion process. The dawn of automatic migration
techniques may allow content experts to focus on the authoring of information
within one media device, freeing them from involvement in the migration
process. Such techniques may also allow the vast and growing volume of
information to avoid obsolescence as new media devices continue to emerge.

REFERENCES
A Paepcke, C.-C. C., Garcia-Molina, H., & Winograd, T. (1998).

Interoperability for digital libraries worldwide. Communications of the
ACM, 41(4), 33-43.

Bisbal, J., Wu, D. L., & Grimson, J. (1999). Legacy information systems:
Issues and directions. IEEE Software, 16(5), 103-111.

Bordegoni, M. et al. (1997). A standard reference model for intelligent
multimedia presentation systems. Computer Standards and Interfaces,
18, 477- 496.

Brodie, M. (1993). DARWIN: On the incremental migration of legacy
information systems. GTE Labs. (Technical Report No. TR-022-10-
92-165).

102 Hall

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chestnutt, D. (1997, July). The model editions partnership: “Smart text” and
beyond. D-Lib Magazine.

Feigenbaum, E. (1982). Knowledge Engineering in the 1980s. Stanford,
CA: Stanford University, Department of Computer Science.

Gitt, W. (1989). Information: The third fundamental quantity. Siemens Re-
view, 6, 36-41.

Horvath, G. K. et al. (2001, September). Communication model for the user
interface of a shape conceptualisation system. Paper presented at the
Proceedings of the ASME International Design Engineering Technical
Conference, Pittsburgh, Pennsylvania.

Lesk, M. (1997). How much information is there in the world? Available
at: http://www.lesk.com/mlesk/ksg97/ksg.html.

Macleod, I. (1990). Storage and retrieval of structured documents. Informa-
tion Processing and Management, 26(2), 197-208.

Munson, E. (1996, September). Towards an operational theory of media.
Paper presented at the 3rd International Workshop on Principles of
Document Processing, Palo Alto, California.

Nunberg, G. (1996). The Future of the Book. Berkeley CA: University of
California Press.

Pfeiffer, E. M. a. M. (1997). A representation of media for multimedia
authoring and browsing systems. Available at: http://citeseer.nj.nec.com/
9760.html.

Riley, J. G. G. (1998). EXPERT SYSTEMS: Principles and Programming
(3rd ed.). Boston, MA: PWS Publishing.

Searle, J. (1969). Speech Acts: An Essay in the Philosophy of Language.
Cambridge: Cambridge University Press.

Shannon, C. (1948). A mathematical theory of communication. The Bell
System Technical Journal, 27, 379-423.

Sornil, E. F. a. O. (1999). Digital Libraries. In R. B.-Y. & B. Ribeiro-Neto
(Eds.), Modern Information Retrieval (chap. 11). UK: AWI.

Toward a Model of the Migration of Communication Between Media Devices 103

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

SECTION II

WEB INFORMATION

REPRESENTATIONS,
STORAGE, AND ACCESS

104 Pallis, Stoupa, & Vakali

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter IV

Storage and Access Control
Issues for XML Documents

George Pallis, Aristotle University of Thessaloniki, Greece

Konstantina Stoupa, Aristotle University of Thessaloniki, Greece

Athena Vakali, Aristotle University of Thessaloniki, Greece

ABSTRACT
XML documents management is becoming an area of great research value
and interest since XML has become a popular standard for data
communication and knowledge exchange over the Internet. Therefore,
new issues have emerged in terms of storage and access control policies
for XML documents. Concerning the storage issues, the majority of
proposals rely on the usage of typical database management systems
(DBMSs), whereas XML documents can also be stored in other storage
environments (such as file systems and LDAP directories). It is important
to consider storage and access control together since these issues are
essential in implementations for XML documents management. Moreover,
the chapter focuses on the recent access control models which guarantee
the security of the XML-based data, which are located in a variety of

Storage and Access Control Issues for XML Documents 105

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

storage topologies. This chapter’s goal is to survey and classify existing
approaches for XML documents storage and access control, and, at the
same time, highlight the main differences between them. The most
popular XML database software tools are outlined in terms of their
storage and access control policies.

INTRODUCTION
Internet is currently the core media for data and knowledge exchange.

XML (eXtensible Markup Language)1, a subset of SGML (Standard Gener-
alized Markup Language), is introduced by the World Wide Web Consortium
(W3C) to complement and enhance HTML (Hypertext Markup Language) in
electronic data representation and exchange on the Web. XML is becoming
wide spread and is a text-based markup language (like HTML), but it supports
a richer set of features. The main advantage of using XML is that an XML
document (differently from an HTML document) can be written once and
visualized in a variety of ways. Therefore, XML is currently the most popular
standardization effort in web documents representation, and is rapidly becom-
ing a standard for data representation and exchange over the Internet. As a
result, large amounts of XML documents are being generated, and their
efficient management has become a major necessity. Researchers in both
industry and academia have focused on efficiently storing, manipulating and
retrieving XML documents.

The main XML-related research issues refer to the XML data accessing,
storing, querying and exchanging. Indeed, even if XML lends its power to its
ease-of use and extensibility, it is this structure of XML that results in a
controversial fact. From one point of view, this structure characterizes XML
as an ideal building block on high-speed applications, whereas, from another
point of view, it is this structure that makes XML unsuitable for usage under
pre-existing data management environments. Most implementations rely on the
usage of typical database management systems (DBMSs), whereas others are
based on specific systems (providing ad-hoc functionalities). Moreover, since
XML can be used over various application platforms, different management
approaches have to be devised, depending on the type of the considered XML
documents (structured vs. unstructured), the platform type (DBMS vs. file-
based systems), and their main usage. Whatever is the chosen solution, a crucial
point in efficiently managing XML documents is devising efficient storage and
accessing control techniques. Among data management issues, storage and

106 Pallis, Stoupa, & Vakali

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

securing techniques have a particular importance, since the performance of the
overall XML-based web information system relies heavily on them.

Several solutions for storing XML have been proposed, both in the
scientific literature and in commercial products, such as flat files, relational
database management systems, object-oriented database management sys-
tems, native XML database systems, and LDAP directories. In this frame-
work, the majority of storage and retrieval approaches are based on the usage
of existing DBMSs or on specialized system implementations. Furthermore,
these approaches can be classified with respect to the type of the system on
which they rely and on the used XML document representation model.

Access control is essential in guaranteeing the security of such storage
approaches. Several types of access control models have been introduced so
far, ranging from the conventional ones (appropriate for centralized systems
with low workload) to the most recent and flexible ones (such as the role-
based). The implementation of models controlling storage and access to such
documents has become a major research issue since hypertext documents are
the most common form of information exchanged through the Internet.

This chapter presents a survey for XML documents storage and access
control issues, and aims at contributing to identifying the most important policies
for storage and accessing in web-based information systems (which use the
XML as their data representation format). Therefore, the goal of this chapter
is to survey and classify such approaches and, at the same time, highlight the
main differences between them. Moreover, the aim of this chapter is to provide
a survey of the currently proposed storage and accessing approaches for XML
documents, categorized with respect to qualitative parameters, and focusing on
the applicability and the efficiency of their structures. The architecture of the
system discussed in this chapter is depicted in Figure 1, where a group of

Figure 1: Architecture of the Considered Topology

Network

Access
Control
System

Servers

XML
documents
repository

XML
documents
repository

XML
documents
repository

Storage and Access Control Issues for XML Documents 107

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

servers (supporting XML document repositories) is protected against unautho-
rized access (through an access control mechanism). More specifically, XML
is used both for XML documents storage in repositories and XML-structured
access control.

Moreover, the chapter discusses the storage and access control policies
applied in the most popular XML-based software tools, which primarily
consider assuring authorized access and protecting documents (located in
web-accessible databases). Finally, we will focus on the recent role-based
control models since most XML-based storage systems use roles to manage
the requested accesses to the protected resources.

This chapter covers the storage and access control issues concerning
XML documents. The whole discussion is based on a common case study. The
whole chapter is organized into two parts: in the first part, XML documents
storage issues are overviewed; and in the second one, a description of the main
functions of XML-based access control and authorization models is given and
emphasized by the use of various examples. Moreover, the most well-known
software tools for XML documents storage and access control are presented,
and their approach to storage and access control is highlighted and identified.
Finally, an outline of the current research trends concludes the chapter.

XML DATA REPRESENTATION
Each XML document may be based on a structural description of its

content, which is specified either by Document Type Definitions (DTDs) or
XML Schemas. More specifically, the DTD defines the document structure
with a list of legal elements (which describe the rules for associating tags with
their content). The main purpose of the DTD is to provide a definition of the
proper structure of an XML document. A DTD can be declared as an
embedded object in the XML document, or as an external reference. An
alternative to DTDs is the definition of scheme by a more sophisticated
language, the XML Schema (which is more extensible and flexible than
conventional DTDs). More specifically, the XML schema provides a means for
defining the structure, content and semantics of XML documents. On the other
hand, the DTD (or the XML schema) structure contributes in facilitating (for
one application) the use of an XML document (created by any application) and
improves the data communication over the Internet. Unfortunately, the syntax
of XML Schemas has not yet been standardized and, currently, the W3C
organization works on version 1.1 of XML Schemas.

108 Pallis, Stoupa, & Vakali

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

For reasons of uniformity, we will use a case study which will be extended
and referenced in the following sections. We refer to a library containing book
catalogs in digital form. These catalogs include books whose authors are
authorized to modify them. Subscribers to this digital library are able to read
such catalogs. An example of such an XML document, which describes a
fragment of a book catalog, is depicted in Figure 2. In addition, Figure 3 shows
the XML Schema that conforms to the previous XML document, while Figure 4
presents the DTD of the XML document. As shown in Figure 3, XML Schema
is a superset of DTDs, and it is specified by XML syntax. In particular, the
benefits that an XML Schema offers over DTDs can be summarized as follows:
• User-defined types are created.
• The text that appears in elements is constrained to specific types (such as

numeric types in specific format).
• Types are restricted in order to create specialized types (e.g., specifying

minimum and maximum values).
• Complex types are extended by using a form of inheritance.

However, the cost that is paid for these features is that XML Schema is
significantly more complicated than DTDs.

Figure 2: An Example of an XML Document for a Book Catalog

<?xml version="1.0"?> <!DOCTYPE BOOKS SYSTEM "books.dtd">
<catalog>
 <book bookID="bk101">
 <authors>
 <person perID="P101">
 <fname>Angappa</fname>
 <lname>Gunasekaran</lname>
 </person>
 <person perID="P102">
 <fname>Omar</fname>
 <lname>Khalil</lname>
 </person>
 <person perID="P103">
 <fname>Syed Mahbubur </fname>
 <lname>Rahman</lname>
 </person>
 </authors>
 <title>Knowledge and Information Technology Management</title>
 <category>Computer</category>
 <price>84.95</price>
 <publish_year>2003</publish_year>
 <publisher>Idea Group Publishing</publisher>
 </book>
 <book bookID="bk102">
 ...
 </book>
</catalog>

Storage and Access Control Issues for XML Documents 109

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The most common abstract data representation model for XML docu-
ments is a tree-like structure. Here, we will use a simplified tree form, where
the nodes represent only elements, attributes and data. The tree for the
document presented in Figure 2 is depicted in Figure 5, where the rectangles
represent the elements of the XML document, the ellipses the attributes, and
the edges the relationship(s) between an element and its sub-elements (or its
attributes).

There are three typical processing steps in manipulating XML documents.
Firstly, the XML document is parsed by using an XML parser. Secondly, the
document is processed (this step depends on the chosen XML parser). And
finally, the data are interpreted and a report is produced.

In order to process the XML documents effectively, two application
program interfaces (APIs) have been proposed: SAX (Simple API for XML)

Figure 3: The XML Schema Definition for the Document in Figure 2

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="catalog">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="book" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="authors" maxOccurs="unbounded">
 <xsd:compexType>
 <xsd:sequence>
 <xsd:element name="person">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="fname" type="xsd:string"/>
 <xsd:element name="lname" type="xsd:string"/>
 </xsd:sequence>
 <xsd:attribute name="perID" type="ID" use="required"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="title" type="xsd:string"/>
 <xsd:element name="category" type="xsd:string"/>
 <xsd:element name="price" type="xsd:string"/>
 <xsd:element name="publish_year" type="xsd:string"/>
 <xsd:element name="publisher" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="bookID" type="ID" use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

110 Pallis, Stoupa, & Vakali

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

and DOM (Document Object Model). The first is based on the textual
processing of XML documents. The second is based on the tree representation
of XML documents. These APIs are the de-facto standards for processing
XML documents.
• SAX2: An event-based API for XML. SAX is based on a parser where

the users provide event handlers for parsing various events. More
specifically, the SAX parser sends events (as it parses the whole docu-
ment), supporting a (LIFO) stack-oriented access for handling these
events. SAX processes the XML documents as a stream. Experiments
have shown that SAX is suitable in two cases: when the system’s memory
is limited, or when only parts of documents are required.

• DOM3: The DOM API (developed by W3C) follows a tree-like struc-
ture, and XML documents are parsed into a tree representation. More
specifically, the elements have parent-child relations with other elements.
The parser builds an internal structure such that an application can
navigate it (in a tree-like fashion). DOM allows an application to have
random access to the tree-structured document (at the cost of increased
memory usage). In this context, a variety of functions for traversing the
DOM tree have appeared. Compared to SAX, DOM is suitable when
processing XML documents for multiple times, whereas its disadvantage
is that loading and parsing are needed in every step.

XML DOCUMENTS STORAGE POLICIES
XML data storage policies are related with locating XML documents in an

effective manner, on persistent memory. Several approaches have been
developed for high performance storage and retrieval of XML documents.

Figure 4: The DTD for the Book Catalog Example: books.dtd

<!ELEMENT catalog(Book)>
 <!ELEMENT book (authors,title,category,price,publish_year,publisher)>
 <!ATTLIST book bookID ID default >
 <!ELEMENT authors (person+)>
 <!ELEMENT person(fname,lname)>
 <!ATTLIST person perID ID default >
 <!ELEMENT fname (#PCDATA)>
 <!ELEMENT lname(#PCDATA)>
 <!ELEMENT title (#PCDATA)>
 <!ELEMENT category (#PCDATA)>
 <!ELEMENT price (#PCDATA)>
 <!ELEMENT publish_year (#PCDATA)>
 <!ELEMENT publisher (#PCDATA)>

Storage and Access Control Issues for XML Documents 111

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 5: A Tree-Like Structure of the XML Document

112 Pallis, Stoupa, & Vakali

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Here, we categorize placement approaches with respect to the corresponding
underlying storage environments. In particular, a typical approach is to store the
XML documents in a relational DBMS (flat files are converted to relational
representation), inheriting both the benefits and drawbacks of the relational
databases. In a second approach, XML documents are stored in non-relational
databases, whereas a number of Object-Oriented, Object-Relational and
Native DBMSs have been proposed. Finally, in a third approach, XML
documents can be stored in other XML storage environments such as file
systems and LDAP directories.

XML Storage Under Relational DBMSs
A relational DBMS uses a collection of tables to represent both data and

relationships among these data. More specifically, in order to represent XML
data by using tables, it is necessary to break down the XML documents into
rows and columns. The tree-like structure of XML facilitates both their
decomposition and storing in relational tables. However, this process is
expected to cause some performance overhead mainly due to the continuous
translation of trees to tables (and vice versa). In this context, an XML document
(depicted in Figure 2) can be represented easily by relation tables (as illustrated
in Figure 6).

Due to its popularity, several models have been proposed to store XML
documents in Relational DBMSs (e.g., Shimura et al., 1999; Silberschatz et al.,
2002; Tian et al., 2000; Zhu & Lu, 2001). In this framework, mapping relation
is one of the most popular ways of storing XML documents in Relational
databases. Existing XML to relational mapping techniques can be classified
into the following two categories (Amer-Yahia & Fernandez, 2002):
• Schema-driven Techniques: These techniques require the existence of

a DTD or XML schema (Florescu & Kossmann, 1999; Khan & Rao,
2001). In particular, XML elements (whose DTD or XML Schema is
known) are mapped effectively to relations and attributes. This is done by
using either a fixed or a flexible set of rules. More specifically, fixed

Table 1: XML DTD and Relational Database Schema Relationship

XML DTD RELATIONAL DATABASE SCHEMA
Element Table
ID Attribute Primary key
#REQUIRED NULL
#IMPLIED NOT NULL

Storage and Access Control Issues for XML Documents 113

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

mappings (using basic, shared and hybrid inlining techniques) are defined
from DTDs to tables. When converting an XML DTD to relations, it is
tempting to map each element in the DTD to a relation, and to map the
attributes of the element to attributes of the relation. Table 1 summarizes
the simulating between an XML DTD and a relational database schema.
On the other hand, flexible mappings can be supported by using an XML
Schema. In this case, more information might be captured than the
previous one (in which a DTD is given). In general, XML schema have
specific features which are useful for storage. One can specify precise
data types (e.g., strings, integers) instead of just text. For example, in the
XML schema, the type information should be associated to attributes. The
mapping approach described by Bohannon et al. (2002) is based on the
principle of mapping groups in XML schema into tables in the relational
schema. However, there are some common principles which are applied
in both mappings (fixed and flexible). Therefore, sub-elements that can
occur multiple times are mapped into separate tables. Non-repeated sub-
elements may become attributes. The optionality is another principle
which is handled using nullable fields. Finally, the choice is represented by

Figure 6: Relations for XML Data Representation

114 Pallis, Stoupa, & Vakali

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

using multiple tables or a universal table with nullable fields. Experiments
have shown that the schema-driven techniques provide efficient QoS
(Quality of Service). Furthermore, XML queries can be translated into
SQL and executed efficiently. However, this approach cannot store all the
XML documents. In particular, XML documents whose DTD (or XML
Schema) is unknown cannot be mapped to relations. In such a case, these
documents can be stored as a tree representation or as strings. Another
approach proposed by Yoshikawa et al. (2001) (called XRel) is based on
such a mapping, by which a fixed database schema is used to store the
structure of all XML documents (based on path expressions).

• User-defined Techniques: These techniques have been proposed by
commercial databases (such as IBM DB2, Oracle 8i and 9i, Microsoft
SQL Server 2000). In this case, the user gives the underlying relational
schema. Therefore, the mapping is provided either by using a declarative
interface or programmatically, through special purpose queries.

Moreover, a technique for automatic mapping of XML documents to
relations under a relational DBMS is presented by Khan and Rao (2001),
whereas a study on how XML data can be stored and queried under a standard
relational database system is presented by Florescu and Kossmann (1999).
Furthermore, a data model and an execution process for efficient storage and
retrieval of XML documents under a relational DBMS are presented by
Schmidt et al. (2000). Overall, all existing storage methodologies in Relational
DBMSs are categorized in a more general perspective, and all the above
models can be categorized in:
1. XML Data as a Tree: the XML documents can be easily represented

as a tree, and node types in the tree are: element, attribute and text (Kanne
& Moerkotte, 2000). Therefore, XML data can be stored by using a pair
of relations: nodes and child. In particular, each element and attribute in
the XML data is given a unique identifier (primary key). This representa-
tion has the advantage that all XML information can be represented
directly in relational form, and many XML queries can be translated into
relational queries and executed inside the database system. The key issue
for this approach is the mapping from the tree structure of an XML
document to tuples in relational tables. In this context, several approaches
have been proposed which model the XML documents as trees and store
them by using various relations (Florescu & Kossmann, 1999; Kanne &
Moerkotte, 2000; Khan & Rao, 2001; Silberschatz et al., 2002). More
specifically, the existing relations are the following:

Storage and Access Control Issues for XML Documents 115

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Nodes and edges: XML documents, in this relation, can be stored using
the following pair: nodes(id, type, label, value) and edges(parent-id,
child-id, order). More specifically, each element/attribute is given a
unique identifier. The type is either “element” or “attribute,” and the label
specifies the tag name of the element or the name of the attribute,
respectively. The value is the text value of the element. On the other hand,
the relation “edges” indicates the parent-child relationships in the tree. The
attribute order (which is optional) records the ordering of children. The
main drawback of this relation is that each element gets broken up into
many pieces, and a large number of joins is required to reassemble
elements.

• Nodes and values: In this case, the pair of relations is the following:
nodes(tag, docId, startPos, endPos, level) and values(word, docId,
position). This relationship is based on partitions. The position indicates
the word displacement within the XML document. The interval [startPos,
endPos] determines the relationship between parent-child and ancestor-
descendant. The drawback of this approach is that special types of joins
are needed to evaluate path queries. Even simple queries require a large
number of joins.

• Nodes and paths: XML documents can also be stored by using the
following pair of relations: nodes(docId, pathId, tag, order, position, type,
value) and paths(pathId, path). In this relation, each node has a unique
path from the root of the document. For supporting this kind of relation,
it is required to have implemented index structures on path expressions.
Finally, the positions are used to find sub-trees.
Therefore, the tree structure is decomposed into relations (we can easily
access and reuse) by the unit of logical structure, and index structures can
be used (such as B+ trees, R trees, etc.). These index structures are also
provided in relational database systems in order to support the tree data
model. The decomposition of XML documents is executed when they are
parsed by using an application program interface (DOM or SAX).
However, it has the disadvantage that each element is broken up into many
pieces, and a large number of joins is required to reassemble elements.

2. XML Data as a String: A common way to store XML data in a
relational DBMS is to store each child element as a string in a separate
tuple in the database (Kanne & Moerkotte, 2000). For example, the
XML document (Figure 2) can be stored as a set of tuples in a relation
elements(data), with the attribute data of each tuple storing one XML
element (e.g., Title, Category, Price) in string form. An advantage of this

116 Pallis, Stoupa, & Vakali

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

approach is that, as long as there are several top-level elements in a
document, strings are small compared to full document, allowing faster
access to individual elements. Furthermore, XML documents can be
stored without DTD (or XML schema). A disadvantage of this approach
is that we cannot query the data directly (since the database system does
not have knowledge about the stored elements schema). A solution to this
problem is to store various types of elements in different relations, and
store the values of some critical elements as attributes of the relations to
enable indexing. It is important to indicate that indexing techniques play a
crucial role in improving the performance of storage systems. In fact,
several database systems (such as Oracle 8i, 9i) support function indices,
which can help avoid replication of attributes between the XML string and
relation attributes.

XML Storage Under Object-Relational DBMSs
As web applications manipulate an increasing amount of XML, there is a

growing interest in storing XML documents in Object-Relational (O-R)
DBMSs. In particular, several Relational DBMS vendors (such as Microsoft
(MS) SQL Server 2000, Oracle 8i and 9i, IBM DB2, Informix, etc.) include
Object-Oriented (O-O) features in their products in order to offer more
powerful modeling capabilities for storing XML documents. These products
are discussed in detail in the next sections.

In general, the XML documents in O-R databases are stored in a nested
table, in which each tag name in DTD (or XML schema) corresponds to an
attribute name in the nested table. In O-R DBMSs, the procedure for storing
XML data to relation mapping is modeled by an O-R model. More specifically,
each nested XML element is mapped into an object reference of the appropri-
ate type. Then, several mapping rules are indirectly embedded in the underlying
model. For the construction of XML document, the DBMS translates all the
object references into a hierarchical structure of XML elements. For example,
in an XML document (Figure 1), the elements authors and person are nested,
and the latter one is the child element of the former one. Therefore, two objects
are defined, namely authors-obj and person-obj, and the second one will
make an object reference to the first one.

For mapping of an XML document into an O-R DBMS, it is required to
traverse the XML document. For this reason, an XML DOM is usually used
to facilitate the construction of a tree structure in the main memory. In particular,
this tree structure will contain the document’s elements, attributes, text, etc. It

Storage and Access Control Issues for XML Documents 117

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

is important to recall that a DOM-based parser exposes the data, along with
a programming library — called the DOM Application Programming Interface
(API) — which will allow data in an XML document to be accessed and
manipulated. This API is available for many different programming languages
(Java, C++, etc.).

XML Storage Under Object-Oriented DBMS
Another option is to use O-O databases for storing the XML documents.

In particular, XML documents are stored as collections of object instances,
using relationships based on the O-O idea (Vakali & Terzi, 2000) since O-O
DBMSs have been designed to work well with object programming languages
(such as C++, C# and Java). Inheritance and object-identity are their basic
characteristics. In particular, O-O DBMSs tend to store XML in a way
approximate to the DOM, (which has already been presented). However, O-
O DBMSs cannot easily handle data with a dynamic structure since a new class
definition for a new XML document is needed and the use of O-O DBMSs for
XML document storage is not as efficient and flexible.

For such reasons, the use of O-O DBMSs has shown very limited
commercial success (especially when compared to their relational counter-
parts). The most indicative O-O are:
• Lore (McHugh et al., 1997): It is one such example that has been built to

manage XML documents. The data model used for semi-structured data
representation in Lore is the Object Exchange Model (OEM). This
model can be thought of as a labeled directed graph. The vertices in the
graph are objects, and each object has a unique object identifier. This
model is flexible enough to encompass all types of information, including
semantic information about objects.

• Extensible Information Server (XIS)4: An O-O system which stores
XML documents under eXcelon’s ObjectStore O-O database as DOM
trees, stored in a proprietary, B-tree-like structure (for performance
reasons), and which can be indexed by using both value and structural
indexes. In particular, XIS stores XML documents in a preparsed format
in order to reduce the overhead associated with parsing on demand.
Furthermore, XIS supports queries through XPath with extension func-
tions and a proprietary update language. It also supports server-side
functions (written in Java), and can directly manipulate data in the
database (through a server-side DOM implementation). Moreover, XIS
provides a distributed caching mechanism for improving concurrent
access and overall application performance.

118 Pallis, Stoupa, & Vakali

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• SHORE (Semantic Hypertext Object REpository) (Hess et al.,
2000): This system stores information extracted from XML documents,
whereas an object-based XML data representation model is used for
effective XML data placement. In particular, it stores information ex-
tracted from XML documents using a variant of R-trees and B-trees
structure.

XML Storage Under Native XML DBMSs
Most recent advances in XML technology have presented another ap-

proach — created specifically for XML — known as the “Native” XML
database. Native XML databases satisfy the need for a more robust XML
approach by offering a solution that is specifically designed to handle and
optimize XML’s unique structure. Using a relational database management
system to store XML documents can create serious performance problems for
large-scale applications since data hierarchy, context and semantics are often
lost (when XML documents are retrieved and processed with SQL). As an
alternative, storing and indexing XML documents in their native form preserves
the document structure, content and meaning, and increases the performance
of the underlying applications.

In this context, native XML DBMSs use XML as their basic data model.
More specifically, a native XML database defines a (logical) model for an XML
document, and stores and retrieves documents according to that model. In
order to store the XML documents on a native XML database, two basic steps
are involved:
1. Describe the data via its structure (DTD or XML schema); and
2. Define a native database XML schema (or a data map) to use for storage

and retrieval.

In this case, the XML document is the fundamental unit of (logical) storage,
such as a relational database has a row in a table as its fundamental unit of
(logical) storage. Therefore, it is not required to support any particular
underlying physical storage model in native XML databases. For example, it
can be built on a relational, hierarchical, or O-O database, or it can use a
proprietary storage format such as indexed, compressed file. XML schemas
are implemented in native XML databases to record rules for storing and
indexing data, and to provide data retrieval and storage information to the
underlying database engines.

Storage and Access Control Issues for XML Documents 119

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Furthermore, native XML databases can be categorized into two policies:
text-based storage and model-based storage. The first one stores the entire
document in text form (such as a binary large object-BLOB — in a relational
database). The second one stores a binary model of the document in an existing
or custom database. They are particularly suited to store, retrieve and update
XML documents. Typical examples include Natix (Kanne & Moerkotte,
2000), Tamino (Schoning, 2001), SODA, Ipedo, Xyleme, etc. In fact, native
XML DBMSs satisfy the need for a more robust XML storage approach by
offering a solution that is specifically designed to handle and optimize XML’s
unique structure.

Several commercial native XML DBMSs have also been developed, but,
until now, they have not become very popular. The main reason is that these
systems (including physical distribution of data, the index mechanism, etc.)
must be built from scratch. In general, native DBMSs differentiate based on
their purpose (research or commercial implementations), and their storage
structure is employed accordingly. More specifically, the research-oriented
implementations support trees and/or sub-trees for the structural unit, whereas
the commercial-oriented tools use collections (like directories) as their main
structural unit. The most indicative of them are given in Appendix A.

Other Environments for XML Storage
Alternatively, XML documents can also be stored in other storage

environments such as file systems and LDAP directories.
• File System Storage: Since an XML document is a file, a typical storage

approach is to store it simply as a flat file. In particular, this approach uses
a typical file-processing system supported by a conventional operating
system (as a basis for database applications). The wide availability of
XML tools for data files results in a relatively easy accessing and querying
of XML data (which are stored in files). By using a flat file for XML data,
we have a quite fast storing (or retrieving) of whole documents. However,
this storage format has many disadvantages, such as difficulty in accessing
and updating (since the only way is to overwrite the whole file) data
(Silberschatz et al., 2002). Furthermore, this approach encounters also
security, concurrent access, atomicity and integrity problems.

• LDAP Directories: Currently, researchers have showed a steadily
increasing interest in LDAP (Lightweight Directory Access Protocol)
directories in order to effectively store XML documents (e.g., Marron &

120 Pallis, Stoupa, & Vakali

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Lausen, 2001). Several commercial companies offer LDAP support in
their browsers and operating systems, making directory services a re-
markable alternative to more traditional systems for the storage and
efficient retrieval of information. According to this trend, XML documents
are stored in LDAP directories which can be considered as a specialized
database (Johner et al., 1998). Therefore, the internal storage model of
this database system is defined in terms of LDAP classes and attributes5.

The XML documents are organized in a hierarchical fashion, similar to the
way files are organized in file system. In conjunction with the DSML (Directory
Service Markup Language), which is a new standard for representing directory
information as XML, the directory services can take advantage of XML’s most
powerful features. In particular, DSML bridges the gap between directory
services and XML applications in a robust way. Today, several products
support DSML, including Sun Microsystems, Microsoft, Oracle Corp., IBM,
Hewlett-Packard, etc.

The main differences between directories and typical DBMSs are related
to size and design issues. In fact, LDAP directories are generally smaller and
less complex applications than DBMSs. More specifically, the LDAP directo-
ries are more widely distributed, more easily extended, replicated on a higher
scale, and have a higher read-to-write ratio than typical DBMSs. On the other
hand, the LDAP is a protocol for online directory services (storing and
accessing heterogeneous entities over the Internet). It provides a standard
model (the LDAP model) which has a hierarchical infrastructure. On the other
hand, XML and LDAP have many similarities since, in LDAP, data are
organized as a tree (where each node can contain data value and can act as a
namespace for other nodes). This is quite close to XML since the XML data
model is hierarchical in structure and usually implemented by considering the
XML document as a tree structure. Therefore, the transformation from the
XML data model to the LDAP data model is not a complex task. Figure 7
depicts the LDAP tree representation for our example XML document.
Moreover, LDAP directories also provide several standard APIs that can be
used for accessing the directory. Finally, in Marron and Lausen (2001), an
LDAP-based system for storing their XML documents is proposed, and the
results of their work have shown that LDAP directories reduce the workload
and provide efficient performance for storing and retrieving XML data.

Storage and Access Control Issues for XML Documents 121

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

ACCESS CONTROL ISSUES
FOR XML DOCUMENTS

Even though much research effort has focused on implementing XML-
based storage tools, the security of such implementations is still in primary
research steps. Security of databases is guaranteed through the satisfaction of
several needs: (a) authentication, (b) authorization, (c) confidentiality, (d)
integrity, and (e) non-repudiation. Cryptography and digital signatures were
the first steps toward authentication. Unfortunately, researchers have been
engaged in the research of the rest of security issues (which are highly related
to access control) only recently. Attacks against confidentiality, integrity and
non-repudiation may result from a misfunctional access control (or authoriza-
tion) mechanism which fails to protect document repositories from unautho-
rized accesses.

The need for a functional access control mechanism has become really
significant since XML-based (or hypertext) documents have contributed to the
enlargement of repositories. Such a fact has led to the distribution of protected
documents to several physical locations which should be secured against

 Figure 7: XML Data Representation in LDAP

122 Pallis, Stoupa, & Vakali

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

unauthorized access. Moreover, since XML is a language for representing
documents distributed through the Internet, they are stored in huge distributed
databases which are connected via the World Wide Web. Although, that
development has led to a worldwide exchange of knowledge, it has also
increased the need for robust access control. Nowadays, web-based data-
bases can be easily attacked by automated malicious software “traveling”
through the Internet (such software owners may hide anywhere on the globe).

It is obvious that XML documents storage systems cannot be protected by
conventional access control models such as Mandatory Access Control
(MAC) and Discretionary Access Control (DAC), since MAC protects only
confined centralized environments (when a unique administrator is responsible
for the protection of repositories from unauthorized users (Sandhu & Mason,
1993), and DAC might be a primitive solution (since the owner of each
document is responsible for its protection) since it is inflexible, especially for
huge heterogeneous repositories containing (numerous owners’) documents.

Most recent authorization systems (and their XML-based storage envi-
ronments) use mainly the idea of roles employed on user and groups. User is
the individual connecting to the system, allowed to submit requests. Group is
a set of users or other groups. Role is a named collection of privileges needed
to perform specific activities in the system. The important benefit of role-based
models is that they are policy neutral, i.e., they may enforce multiple policies
and they are not associated with a particular security policy.

Role-based access control has been extensively studied by Osborn et al.
(2000) and Sandhu et al. (1996), where a description of RBAC is given. One
or more roles is assigned to users, and one or more permissions is assigned to
roles.

A more modern idea is the concept of credentials, which are information
concerning a user (Winslett et al., 1997). This information is provided by the
client (subject) when (s)he subscribes to the system, and it is needed by the
access control mechanism. Credentials can be stored into different files or
organized into groups.

As it will be discussed later, all of the well-known storing environments
adopt role-based access control which is employed by an access control
system as shown in Figure 1. After the system grants access to the requested
resource, the request is passed to the storage subsystem for further processing.
An access control policy is governed by three issues: (a) subjects, which are
the entities requesting access to protected resources; (b) objects, which are the
protected resources; and (c) authorization, which are rules specifying which
subject can access which object. An access control policy consists of several

Storage and Access Control Issues for XML Documents 123

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

authorizations concerning a subject or an object. Next, we will comment on
role-based security by extending our case study.

Authorization Subjects and Objects
A subject is usually identified by its identity or by the location from which

it sends the request for a document (Damiani et al., 2001). Moreover, in order
to simplify authorization administration and support more compact authoriza-
tions, subjects can be organized in hierarchies, where the effects of a policy
imposed to a general subject propagates to its descendants. While many
approaches adopt subject hierarchies (based on subject identities), some other
research efforts support location-based hierarchies. Various XML-based
access control models require XML-based presentation of the users’ creden-
tials since XML provides all the characteristics for organizing the unique
features of subjects.

We have already mentioned that most XML-based databases adopt the
idea of roles for organizing subjects. With respect to our book catalog, a role
hierarchy is the one shown in Figure 8, where the root role refers to all the users
who visit that digital library site (public). These users are further classified into
subscribers and non-subscribers, while the subscribers are in turn further
classified into the authors and the simple readers. Of course, such a functionality
demands the subscription of subjects to the system (something that is not
required from all applications). XML can be used to define such hierarchies by
exploiting the idea of DTDs6 (as shown in Figure 9), which depicts a DTD
describing a category of users. This DTD describes the required data about a
subscriber. The attributes of the core element subscriber are its ID and its
category, which can take two values: author and reader. A subscriber must
have a name and a credit card number, (s)he may have an e-mail address and
work for a company, and (s)he must have at least one phone number.

Figure 8: Subject Hierarchy

 subscriber

readerauthor

public

non-subscriber

124 Pallis, Stoupa, & Vakali

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Also, we can define a non-subscriber by an empty DTD as:

<!DOCTYPE BOOKS SYSTEM "non_subscriber.dtd">
<!ELEMENT non_subscriber empty>

The most common way of identifying XML protection objects is by path
expressions which can identify elements and attributes under protection. The
exploitation of a standard language like XPath7 may prove to be highly
advantageous because the syntax and the semantics of the language are already
known by the potential users. An example of such an expression may be /book/
/person for the example of Figures 3 and 4.

The objects under protection may be: (a) all instances of a DTD, (b) whole
documents, or (c) selected portions of a document (like elements or attributes).
Referring to Figures 3 and 4, an object may be the whole document or a number
of elements, like authors and title. Of course, an object may also be the whole
DTD, such as the one in Figure 4. Authors in Akker et al. (2000) introduce the
categorization of objects into sets in order to minimize the need to use multiple
security policies for protecting them independently.

Authorizations
The basic issues in relation to the authorizations for XML documents

include:

Policies
The policy is the core security issue in access control systems. An

authorization policy consists of a list of authorizations defining which subject
can take which action (over which object). A principle that should guide every
access control system is the distinction between policy and mechanism. Policy
is the logic which rules an access control system, while the mechanism
implements (or enforces) that logic.

By XML-based access control systems, we refer to tools where policies
protecting XML-based repositories are XML-defined and organized, and to
tools where only the protected resources are organized by using XML features.
The first version is more flexible and modern since it exploits the discussed
features of XML.

Policies are most commonly divided into: (a) positive, where permissions
are defined; and (b) negative, where denials are specified. Modern access
control tools combine these two categories in favor of flexibility and expres-

Storage and Access Control Issues for XML Documents 125

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

siveness (e.g., Bertino et al., 2001a; Damiani et al., 2000; Castano & Ferrari,
2003).

Since, in XML-based systems, all of the protected resources are orga-
nized according to DTDs (and, therefore, in hierarchical format), another core
issue concerning policies is their propagated effect. Great attention should be
given to this feature since its inappropriate execution may lead to conflicts. The

Figure 9: A Subject DTD, XML Schema and an Instance

<!DOCTYPE BOOKS SYSTEM "subscriber.dtd">
<!ELEMENT subscriber (name,address,phone_number*,email?,company?,credit_card)>
<!ATTLIST subscriber credID ID #REQUIRED
 category (author|reader) #REQUIRED>
<!ELEMENT name (fname,lname)>
<!ELEMENT fname (#PCDATA)>
<!ELEMENT lname (#PCDATA)>
<!ELEMENT address (#PCDATA)>
<!ELEMENT phone_number (#PCDATA)>
<!ELEMENT email (#PCDATA)>
<!ELEMENT company (#PCDATA)>
<!ELEMENT credit_card (#PCDATA)>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="subscriber">

 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="name">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="fname" type="xsd:string"/>
 <xsd:element name="lname" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>

 </xsd:element>
 <xsd:element name="address" type="xsd:string"/>
 <xsd:element name="phone_number" type="xsd:string" minOccurs="1"/>
 <xsd:element name="email" type="xsd:string" minOccurs="0"/>
 <xsd:element name="company" type="xsd:string" minOccurs="0"/>
 <xsd:element name="credit_card" type="xsd:string" minOccurs="0"/>
 <xsd:element name="category">
 <xsd:simpleType>

 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="author"/>
 <xsd:enumeration value="reader"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="credID" type="ID" use="required"/>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

<subscriber="12345">
<subscriber category="author">
 <name>
 <fname>Omar</fname>
 <lname>Khalil</lname>
 </name>
 <phone_number>011111111</phone_number>
 <email>okhalil@csd.auth.gr</email>
 <credit_card>5555555</credit_card>
</subscriber>

126 Pallis, Stoupa, & Vakali

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

implicit propagation rule adopted by all the XML-based access control tools
is that all DTD-level policies propagate to all DTD instances. Explicit propa-
gation rules are based on the hierarchical organization of objects. Thus, most
tools allow (or deny) the propagation of the effects of a policy under some
condition. The approach, introduced by Kudo and Hada (2000), also allows
the propagation to the top, where propagation takes effect to the parent
elements. Of course, the occurrence of conflicts is inevitable and, at this point,
conflict resolution mechanisms are triggered.

Since an authorization policy can be employed for the protection of
grouped objects, it can also have an effect on grouped subjects. This feature
is allowed where subjects are organized in hierarchies (as shown in Figure 8).
Therefore, a policy referring to the root of a hierarchy propagates to all of its
children down to the leaves. For example, in Figure 8, if a policy refers to
“subscriber,” then its effects propagate to both authors and simple readers by
default, unless another policy prohibits this propagation.

According to the above discussed issues, a policy may contain authoriza-
tions of the form <subject, object, mode, type, propagation>. Mode
specifies the action the subject can exercise on the object, and can take various
values according to the implementation and the protected resources. For
example, the most commonly used values for documents are those defined by
Kudo and Hada (2000): read, write, create and delete. In our example, we
will adopt the following modes: read and write. The parameter type may take
either the value “+” (if the policy is positive) or “-” (if it is negative). Finally, the
parameter propagation defines the type of propagation to be implemented. In
order to simplify our example, we will only adopt two types: prop (propaga-
tion) and no-prop (no propagation).

The following are examples of policies specified according to the above
approach:

(1) <//subscriber.[category="author"]/name/[fname="Omar"
and lname="Khalil"], catalog.xml://person/
[fname="Omar" and lname="Khalil"], write,
+, prop>

(2) <//subscriber.[category="reader"], catalog.dtd, read,
+,prop>

(3) <*,catalog.dtd,read,-,prop>

(4) <*,catalog.dtd,write,-,prop>

Storage and Access Control Issues for XML Documents 127

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Tuple (1) specifies an authorization policy granting write access to author
“Omar Khalil” on his books. Moreover, the policy propagates to all of the
elements of the documents. The policy encoded by tuple (2) grants all readers
the right to read all books. The last two tuples deny read and write access
respectively to the public (which is depicted by an *).

Provisional Actions
Policies can be further supported with provisional actions. In Kudo and

Hada (2000), four types of provisional actions have been introduced: (a) log,
where the session should be logged for the request to be satisfied; (b) encrypt,
where the returned resource view should be encrypted; (c) verify, where the
signature of the subject should be verified; and (d) a combination of these.

As PUSH dissemination techniques (i.e., documents are distributed to
users without prior request) have been gaining ground these years, a modern
access control system should include such mechanisms so as to support this
modern dissemination technique. Author-X (Bertino et al., 2001a) is a Java-
based XML access control system satisfying such a need by using the idea of
cryptography with several keys. The authors in Castano and Ferrari (2003) try
to express policies used by Author-X.

Document View
The presentation of the requested object to the subject is another impor-

tant activity performed by every access control model. After the object
components accessible by the subject have been identified, a mechanism
prunes the document tree so as to contain only those parts (and sometimes
links) that the requesting subject is allowed to access. The resulting document
is referred to as document view. A problem in such an approach is that a view
may not be a valid document as it may not follow the DTD associated with the
document from which it is derived (Damiani et al., 2000). A solution to this
problem could be a loosened DTD, where the definition of the elements may
be defined as optional and not as required. Such an approach prevents the
subject from realizing whether some parts are missing or simply do not exist in
the original document. According to Bertino et al. (2001a, 2001b), Castano
and Ferrari (2003), and Kudo and Hada (2000), the resulting document may
be encrypted if such a security action has been requested by the user.

128 Pallis, Stoupa, & Vakali

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

IMPLEMENTATIONS
Some of the most popular database vendors (like IBM, Microsoft and

Oracle) have developed database tools for the storage of XML documents,
and several storage techniques have been adopted (in order to maximize
functionality and performance). Moreover, for reasons of integrity, these
indicative database systems are supported by access control mechanisms.
Currently, the most widely adopted technology to enforce the security guaran-
tees of the XML-based databases is the Microsoft .NET platform. Microsoft
.NET has been recently proposed and has been adjusted to support XML Web
Services. Its security mechanism is adopted by Oracle 9i, XIS and DB2, which
have been designed to cooperate with Microsoft .NET technology.

The Microsoft .NET Platform
Microsoft .NET8 is a technology for connecting people, systems and

resources. The driving force that has led the Microsoft researchers in this
direction was the need to build and use XML Web Services securely.

The increasing complication of some core tasks, (like security, data
management, data storing) has dictated their decomposition into a number of
more specialized functions. These “simple” functions are executed by XML
Web Services, which Microsoft .NET technology fights to integrate. These
XML Web Services may originate from various sources residing in distributed
places all over the globe. Microsoft provides clients and servers with its own
XML Web Services, but it is possible to combine them with others through the
.NET platform. XML Web Services are characterized by:
• XML Web Services may be differently implemented and they may be

placed in various locations, but they can cooperate through the use of a
common communication protocol (e.g., SOAP).

• XML Web Services allow the definition of an interface for the communi-
cation of the user with them. The description of the steps needed to build
interface applications is explained in an XML document called a Web
Service Description Language (WSDL) document.

• XML Web Services are registered using Universal Discovery Description
and Integration (UDDI) so that users can easily find them.

A general architecture of a .NET-based system showing its XML-based
nature is presented in Figure 10. Such a technology would be totally incomplete
if it did not offer guarantees. Therefore, Microsoft .NET contains software for
covering authentication, authorization and cryptographic needs. As authentica-

Storage and Access Control Issues for XML Documents 129

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

tion is beyond the scope of this chapter, we will focus on the second issue. Like
most modern access control systems, .NET employs the idea of roles as
subjects. After a user has logged on to the system, (s)he is assigned roles.
Authorization policies expressed in .NET framework (i.e., the multilanguage
used to build and execute XML and other web services and applications in
.NET) define which role can perform which operations over which resources.
Developers can sum up XML to express such policies, or they can simply tie
their system (e.g., client or server) with existing Windows authorization
mechanisms.

Moreover, the .NET technology employs evidence-based and code
access security, which allows local administrators to protect resources from
malicious code. In such a case, the subject is code and is identified using certain
features (like the directory it resides, the Internet location originating from, its
has value, etc.). Code access security disallows the execution of untrusted code
even if the user executing it is trusted. Furthermore, such a functionality allows
the developer to define permissions for mobile code which can be downloaded
and executed by any user unknown to the developer at the designing phase.

A code access security policy system is governed by three core issues: (a)
evidence, (b) permissions, and (c) security policy. Evidence is the informa-
tion about the identity of code (called assembly). Evidence is connected with
every assembly, and it is presented to the security system whenever an

Figure 10: The Basic Components of a .NET Architecture

XML Web
Services

Servers

Clients

130 Pallis, Stoupa, & Vakali

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

assembly is loaded into the runtime. Permissions represent authorizations to
conduct a protected action (e.g., file or network access). Permissions may be
grouped to form permission sets. Therefore, whenever an assembly requests
access to a protected resource, the security system grants a permission set to
it according to its evidence. Finally, a security policy integrates the two above
issues by defining which permissions are given to an assembly according to its
evidence. Policies are categorized into four levels:
• Enterprise policy level
• Machine policy level
• User policy level
• Application Domain policy level

The evidence, combined with the policies of each level, results in a
permission set. The finite permission set arises through the intersection of the
previous sets. Thus, in Figure 11, the function of the security system is depicted.

XML Storage Under DBMSs
Over the last years, many of the major database vendors (such as IBM,

Microsoft and Oracle) have developed database tools to support XML
documents. The goal of these tools is to provide secure data transfer from XML

Figure 11: How Permissions are Produced

Hosting
Environment

Assembly

Evidence

.NET Security System

Enterprise policy level

Machine policy level

User policy level

Application policy level

Assembly

Permissions

Storage and Access Control Issues for XML Documents 131

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

documents to databases and vice versa. More specifically, XML database
tools involve a set of processes for accessing the XML data, and such software
can either be built into the object relational DBMSs or into a new data model
(Native XML DBMSs). In this framework, the most well-known software
tools that employ XML documents storage and access control can be catego-
rized in the following types of databases:
• XML-enabled DBMSs: They provide various interfaces for extracting

structured data from XML documents to be stored in DBMSs (according
to their model). In this case, XML documents are stored in conventional
DBMSs internally in the database. XML-enabled DBMSs also support
services that do the reversible task, producing an XML document. This
is done by using a query that can be expressed by the DBMS query
language.

• Native XML DBMSs: They have been designed especially to store
XML documents. XML plays a basic role in Native XML DBMSs since
it is the only interface for storing the data. XML documents are stored in
XML internally in the database. Therefore, the documents in native XML
DBMSs are parsed and stored (as parsed).

• Microsoft’s (MS) SQL Server 20009: A relational database manage-
ment system which provides a variety of tools for managing all aspects of
databases. In particular, it provides support for XML data schemas, the
ability to execute XPath (a language for addressing parts of an XML
document) queries, and the ability to retrieve and create XML data (Rys,
2001). MS SQL Server 2000 has also added many new features which
are focusing on XML support. Its utilities offer more flexibility for storing
and structuring the XML documents. Each XML document is stored as a
relational table, and an element is created for each row. Furthermore, the
structure of data is transparent to users, who interact with the relational
DBMS using only XML-based technologies. A disadvantage of such an
approach is the increased overhead that has been associated with map-

Table 2: Storage in XML-Enabled Databases

PRODUCT DBMS MODEL STORAGE
Oracle 9i Object-Relational Data are stored as relational tables or as XML documents.
MS SQL Server
2000

Object-Relational Each XML document is stored as relational table and an

element is created for each row.

IBMs DB2 Object-Relational Data are stored as relational tables or as XML documents.

132 Pallis, Stoupa, & Vakali

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

ping and translating XML structured data into relational data. Another
disadvantage is also the hierarchical structure of XML documents.

SQL Server is the only discussed database system containing its own
access control system, as every modern tool authorization is based on roles.
After a user has logged on to the system, (s)he is assigned a role which is granted
some permissions. SQL Server supports several types of roles, which are:
• Public role: every user is assigned this role. It is a default role which

cannot be deleted. Moreover, the administrator cannot de-assign or
assign a subject with this role. Such a role is necessary in case the
administrator could not think of a role during the design phase that would
tie with an unknown user.

• Predefined roles: it is about roles with predefined permissions which
cannot be given to other roles. For example, the administrator, who has
some rights that no other subject should have.

• User-defined: roles of this type are defined by an administrator control-
ling a single database. Of course, they are local to the database in which
they are created, and they do not have global effect.

• Application-defined roles: these roles are assigned to applications,
making them able to substitute users and take over control.

The access control policies, which are determined by the local administra-
tors, define which role is granted which permissions over which protected
resources.
• Oracle9i10: Under Oracle, the XML documents can be stored either in

a relational DBMS or in a file system. Therefore, Oracle can store and
retrieve entire XML documents as columns, can access XML stored in
external files (or on the Web), and can map XML document elements to
tables and columns in the database. In particular, its architecture has a
specific XML layer that supports a set of tools for managing XML
documents. Moreover, the manufacturers of Oracle9i have also devel-
oped a high-performance, native XML storage and retrieval technology
which is called Oracle XML DB. XML DB provides a unique ability to
store and manage the XML documents under a standard XML data
model. It provides several features for managing XML storage, such as
XML schema, XML indexes, foldering (enable folders to map XML
documents into database structure), etc. Furthermore, XML DB also
supports access control policies by creating access control lists (for any
XML object), and by defining the users’ privileges in addition to the

Storage and Access Control Issues for XML Documents 133

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

system-defined ones. Details for the Oracle XML data management
system can be found in Banerjee et al. (2000).
Oracle 9i can excellently cooperate with Microsoft’s .NET system and
Windows 2000. Therefore, in order to achieve access control, one can
build .NET clients able to cooperate with Oracle 9i database.

• IBMs DB211: IBM DB2 provides a variety of features for storing data.
This implementation offers support via a DB2 XML Extender product,
which provides new operations for facilitating the storage and manipula-
tion of XML documents. The XML Extender product serves as a
repository for the management of DTDs. More specifically, it stores an
XML document as a single column, or it maps the XML document to
multiple tables and columns. In order to provide the structure of the
generated document, a DTD is mapped against the relational tables using
Data Access Definition (DAD). Also, IBM adopts .NET platform for
access control.

CONCLUSION
This chapter has presented an overview for XML documents’ storage and

access control. More specifically, the most important policies for storage and
accessing of XML data and storage are studied under several typical database
environments (e.g., Relational, Object-Relational, Object-Oriented, etc.) and
non-typical frameworks (such as LDAP). Then, we studied the main issues for
the security of XML documents, since access control is essential in guarantee-
ing the security of such storage approaches. In particular, the most-well known
access control and authorization models were presented through examples.
Also, the chapter presented the most popular commercial tools for XML
management with respect to their storage and access control techniques.

It is important to indicate that no definite guidelines have yet been
proposed for selecting an optimal solution when storing and securing XML
documents. In order to improve the management of XML documents, some
issues should require further research. In particular, the storage of XML
documents may be improved by using some data mining techniques (e.g.,
specific clustering algorithms). Furthermore, the XML management techniques
should further extend existing access control policies in order to improve the
security in XML documents accessing. Finally, the commercial DBMSs should
be extended to support more sophisticated storage and access control tech-
niques, such as integrated methods for locating and accessing of dynamic XML
documents.

134 Pallis, Stoupa, & Vakali

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

REFERENCES
Akker, T., Snell, Q. O., & Clemant, M. J. (2001). The YGuard access control

model: Set-based access control. Proceedings of the 6th ACM Sympo-
sium on Access Control Models and Technologies, Chantilly, Virginia.

Amer-Yahia, S. & Fernandez, M. (2002, February/March). Techniques for
storing XML. Proceedings of the 18th International Conference on
Data Engineering (ICDE 2002), San Jose, California.

Banerjee, S., Krishnamurthy, V., Krishnaprasad, R., & Murthy, R. (2000,
February/March). Oracle8i-The XML enabled data management system.
Proceedings of the16th International Conference on Data Engineer-
ing (ICDE), San Diego, California (pp. 561-568).

Bertino, E., Castano, S., & Ferrari, E. (2001). On specifying security policies
for web documents with an XML-based language. Proceedings of the
6th ACM symposium on access control models and technologies,
Chantilly, Virginia (pp. 57-65).

Bertino, E., Castano, S., & Ferrari, E. (2001, May/June). Securing XML
documents with Author-X. IEEE Internet Computing, 5(3), 21-31.

Bohannon, P., Freire, J., Roy, P., & Simeon, J. (2002, May/June). From XML
schema to relations: A cost-based approach to XML storage. Proceed-
ings of the 18th International Conference on Data Engineering
(ICDE 2002), San Jose, California.

Castano, S. & Ferrari, E. (2003). Protecting datasources over the web:
Policies, models, and mechanisms. In Web-powered Databases (chap.
11, pp. 299-330). Hershey, PA: Idea Group.

Castano, S., Fugini, M., Martella, G., & Samarati, P. (1994). Database
Security. Reading, MA: Addison-Wesley.

Damiani, E., De Capitani di Vimercati, S., Paraboschi, S., & Samarati, P.
(2000). Design and implementation of an access control processor for
XML documents. Proceedings of the 9th World Wide Web Conference
(WWW9), Amsterdam, Holland.

Damiani, E., Samarati, P., De Capitani di Vimercati, S., & Paraboschi, S.
(2001, November/December). Controlling access to XML documents.
IEEE Internet Computing, 5(6), 18-28.

Damiani, E., Vimercati, S. D. C., Paraboshi, S., & Samarati, P. (2000).
Securing XML documents. Proceedings of the 7th International Con-
ference on Extending Database Technology, Konstanz, Germany.

Florescu, D. & Kossmann, D. (1999, May). A performance evaluation of
alternative mapping schemes for storing XML data in a relational
database. Rocquencourt, France: INRIA. (Technical Report No. 3680).

Storage and Access Control Issues for XML Documents 135

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Hess, A., Schulz, H., & Brossler, P. (2000). SHORE - A hypertext repository
based on XML. Southfield, USA: Software Design and Management.
(Technical Report).

Howes, T. A., Smith, M. C., & Good, G. S. (1999). Understanding and
Deploying LDAP Directory Services. USA: Macmillan Technical Pub-
lishing.

Johner, H., Brown, L., Hinner, F. S., Reis, W., & Westman, J. (1998, June).
Understanding LDAP, International Technical Support Organization
(Ed.), IBM.

Kanne, C. C. & Moerkotte, G. (2000, February/March). Efficient storage of
XML data. Proceedings of the 16th International Conference on
Data Engineering (ICDE 2000), San Diego, California.

Khan, L. & Rao, Y. (2001, November). A performance evaluation of storing
XML data in relational DBMS. Proceedings of the 3rd ACM CIKM’01
Workshop on Web Information and Data Management (WIDM’01),
Atlanta, Georgia.

Kudo, M. & Hada, S. (2000). XML document security based on provisional
authorization. Proceedings of the 7th ACM Conference on Computer
and Communications Security, Athens, Greece.

Marron, P. J. & Lausen, G. (2001). On processing XML in LDAP. In
Proceedings of the 27th conference on very large data bases (VLDB
2001), Rome, Italy, September 2001 (pp. 601-610).

McHugh, J., Abiteboul, S., Goldman, R., Quass, D., & Widom, J. (1997).
Lore: A database management system for semi-structured data. ACM
SIGMOD Record, 26(3), 54-66.

Moyer, M. J. & Ahamad, M. (2001). Generalized role-based access control.
Proceedings of the 21st International Conference on Distributed
Computing Systems, Mesa, Arizona.

Osborn, S., Sandhu, R., & Munawer, Q. (2000). Configuring role-based
access control to enforce mandatory and discretionary access control
policies. ACM Transactions on Information and System Security,
3(2), 85-106.

Rys, M. (2001, April). Bringing the Internet to your database: Using SQL
Server 2000 and XML to build loosely-coupled systems. Proceedings of
the 17th International Conference on Data Engineering (ICDE),
Heidelberg, Germany.

Sandhu, R. S. & Mason, G. (1993, November). Lattice-based access control
models. IEEE Computer, 26(11), 9-19.

136 Pallis, Stoupa, & Vakali

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Sandhu, R. S., Coyne, E. J., & Feinstein, H. L. (1996, February). Role-based
access control models. IEEE Computer, 29(2), 38-47.

Schmidt, A., Kersten, M., Windhouwer, M., & Waas, F. (2000, May).
Efficient relational storage and retrieval of XML documents. Proceed-
ings of the 3rd International Workshop on the Web and Databases
(WebDB 2000), Dallas, Texas.

Schoning, H. (2001, April). Tamino - A DBMS designed for XML. Proceed-
ings of the 17th International Conference on Data Engineering,
Heidelberg, Germany.

Shimura, T., Yoshikawa, M., & Uemura, S. (1999, August/September).
Storage and retrieval of XML documents using object-relational data-
bases. Proceedings of the 10th International Conference and Work-
shop on Database and Expert Systems Applications (DEXA 1999),
Florence, Italy.

Silberschatz, A., Korth, H., & Sudarshan, S. (2002). Database System
Concepts (4th ed.). New York: McGraw Hill.

Tian, F., DeWitt, D. J., Chen, J., & Zhang, C. (2002). The design and
performance evaluation of alternative XML storage policies. ACM
SIGMOD Record, 31(1), 5-10.

Vakali, A. & Terzi, E. (2000). An object-oriented approach for effective XML
data storage. Proceedings of the ECOOP Workshop on XML Object
Technology, Cannes, France.

Winslett, M., Ching, N., Jones, V., & Slepchin, I. (1997). Using digital
credentials on the world wide web. Journal of Computer Security, 5(3),
255-266.

Woo, T. Y. C. & Lam, S. S. (1993, November). A framework for distributed
authorization. Proceedings of the 1st ACM Conference on Computer
and Communications Security, Fairfax, Virginia.

Yoshikawa, M., Amagasa, T., Shimura, T., & Uemura, S. (2001). XRel: A
path-based approach to storage and retrieval of XML documents using
relational databases. ACM Transactions on Internet Technology, 1(1),
110-141.

Zhu, Y. & Lu, K. (2001. July). An effective data placement strategy for XML
documents. Proceedings of the 18th British National Conference on
Databases (BNCOD), Chilton, UK.

Storage and Access Control Issues for XML Documents 137

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

ENDNOTES
1 http://www.w3.org/TR/1998/REC-xml-19980210/
2 http://www.saxproject.org/
3 http://www.w3.org/DOM/
4 http://www.exceloncorp.com/xis/
5 More details about the architecture of the LDAP model and protocol are

discussed by Howes et al. (1999).
6 We use DTDs instead of XML Schemas for their brevity
7 http://www.w3.org/TR/xpath
8 http://www.microsoft.com/net/
9 http://www.microsoft.com
10 http://technet.oracle.com
11 http://www-4.ibm.com
12 http://www.cse.unsw.edu.au/~soda/
13 http://www.xyleme.com/
14 http://www.ipedo.com/html/products.html
15 http://exist.sourceforge.net/
16 http://www.dbxml.org

APPENDIX A
In general, the most popular commercial native XML DBMSs can be

classified into the following two categories with respect to their underlying
storage model:

Storage Model: Tree Structure
• NATIX (Kanne & Moerkotte, 2000): It is the most well-known native

repository approach for storing, retrieving and managing tree-structured
XML documents. The basic idea of NATIX is to represent and store
XML documents based on their tree structure, and it is oriented for
research based implementations. The logical tree used for representing
each XML document is split into sub-trees, based on certain criteria.
These sub-trees are the basic storage and query units.

• SODA12: It is another semi-structured DBMS tailored to manage XML
information. In this system, the XML documents are stored in a single tree,
which preserves all XML information and allows for efficient query and
update operations, along with optimizations that are XML-oriented and
that cannot be applied when conventional database schemes (like tables)

138 Pallis, Stoupa, & Vakali

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

are used. SODA is oriented for both research and commercial based
implementations. Moreover, SODA also provides secured access control
and authorization. The component which is responsible for preserving the
security of XML documents in the SODA database system is the access
control manager.

• Xyleme13: A dynamic warehouse for XML documents of the web. More
specifically, Xyleme is designed to store, classify, index, integrate, query
and monitor the XML documents. The performance of Xyleme heavily
depends on the efficiency of its repository, which is the Natix. As we
referred above, in Natix, the XML documents are represented by using
an ordered tree structure. In order to store XML documents, Xyleme uses
a combination of the following two approaches. In the first, the XML
documents are stored in a conventional DBMS. In the second, the
documents are stored as byte streams. Therefore, data are stored as trees
until a certain depth, where byte streams are used. The security of XML
documents in Xyleme is guaranteed by using access control lists. Access
permissions are stored with each document, and users only get to view the
documents they have rights to. In addition, the top secure documents can
also be stored in an independent partition.

Storage Model: Collection Structure
• Ipedo14: It is a native XML database that allows its users to quickly and

easily build XML-based information management solutions. The Ipedo
architecture is composed of several components that make the Ipedo
XML database accessible through standard Java programming inter-
faces. It provides both document-level, as well as node-level, access to
XML, and allows the users to organize XML documents by their schema.
In particular, Ipedo supports a hierarchical storage engine which is highly
optimized for XML information. The XML documents are organized into
collections, which can be typed or un-typed. They are used to group
related XML documents together. Typed collections contain a schema
based on a DTD or XML Schema, and all documents within that collection
must conform to that schema. Un-typed collections can hold any number
of XML documents regardless of the relationships between the schemas
of those documents. Furthermore, Ipedo provides a sophisticated access
control mechanism (security manager) in order to support a high-level
security of XML documents. In particular, the security manager manages
access to system resources by providing username and password authen-

Storage and Access Control Issues for XML Documents 139

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

tication. Ipedo has also been designed to cooperate with Microsoft .NET
technology.

• eXist15: It is an Open Source native XML database which provides
pluggable storage backends. According to this product, XML documents
can be stored in the internal native XML database or an external
relationship DBMS. XML can be stored either in the internal, native XML
database or in an external relational DBMS. In eXist, the XML documents
are stored using a DOM-tree (built from SAX-events) and are organized
into hierarchical collections. Collections can be nested and are considered
part of an XPath query string, so there is always a root collection. Indexes
on collections may also be organized and, thus, the size of a collection may
have a considerable impact on performance. As a disadvantage, eXist
does not support direct manipulations of the DOM tree (like node
insertions or removals). So, the XML documents should be deleted or
updated as a whole. In order to ensure the integrity and compliance of
XML documents, eXist supports an access control policy, which pro-
vides an interface to manipulate permissions and manage users. In
particular, it organizes users into several groups, granting different permis-
sion sets for each one.

• Tamino (Schoning, 2001): It is a modern database system that has been
thoroughly designed for handling XML documents. In Tamino’s data-
base, the XML documents are stored in collections. More specifically,
each XML document stored in Tamino resides in exactly one collection.
In order to manage the XML documents effectively, Tamino supports a
set of graphical tools. In addition, Tamino supports an XML-specific
query language (Tamino-X-Query), which includes text retrieval facilities.

• Xindice16: It is an open source native XML database system which is still
evolving. In this system, XML documents are queried and updated using
XML technologies, the first of which is W3C specification known as
XPath. Using XPath, it is possible to obtain a set of XML elements
contained in a given XML document that conforms the parameters of the
XPath query. In Xindice, XML documents are also organized using
collections that can be queried as whole. A collection can be created
either consisting of documents of the same type or a single collection can
be created to store all documents together. Every XML document must
be stored in at least one collection. While collections can be used strictly
for organizational purposes, Xindice also allows for indexes to be created
on collections to increase XPath performance. Moreover, Xindice sup-
ports a sophisticated mechanism for ensuring the integrity of XML

140 Pallis, Stoupa, & Vakali

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

documents. More specifically, Xindice provides an access control (on
individual files or folders, by user based and/or group based) to XML
documents.

Transformation of XML Schema to Object Relational Database 141

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter V

Transformation of
XML Schema to

Object Relational Database
Nathalia Devina Widjaya, Monash University, Australia

David Taniar, Monash University, Australia

Johanna Wenny Rahayu, La Trobe University, Australia

ABSTRACT
XML (eXtensible Markup Language) is fast emerging as the dominant
standard for describing data and interchanging data between various
systems and databases on the Internet. It offers the XML schema definition
language as formalism for defining the syntax and structure of XML
documents, providing rich facilities for defining and constraining the
content of XML documents. Nevertheless, to enable efficient business
application development in large-scale e-commerce environments, XML
needs to have databases to keep all the data. Hence, it will inevitably be
necessary to use methods to describe the XML schema in the Object-

142 Widjaya, Taniar, & Rahayu

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Relational Database (ORDB) formats. In this chapter, we present the way
to transform the XML encoded format, which can be treated as a logical
model, to the ORDB format. The chapter first discusses the modeling of
XML and why we need the transformation. Then, a number of
transformation steps from the XML schema to the Object-Relational
Logical model and XML to ORDB are presented. Three perspectives
regarding this conceptual relationship (aggregation, association and
inheritance) and their transformations are mainly discussed.

INTRODUCTION
The eXtensible Markup Language (XML) is increasingly finding accep-

tance as a standard for storing and exchanging structured and semi-structured
information (Conrad, Scheffner & Freytag, 2000). XML has emerged, and is
gradually being accepted, as the standard for describing data and for inter-
changing data between various systems and databases on the Internet (Bray,
Paoli & Sperberg-McQueen, 1998). The XML community has developed a
number of schema languages for representing business vocabularies. The
Document Type Definition (DTD) is the original XML schema language
included in the XML 1.0 specification. However, many individuals have
recognized the limitations of this DTD standard for supporting data interchange
in global e-business applications. The new XML schema extends the capabili-
ties for validating documents and exchanging information with other non-XML
system components.

With the wide acceptance of the Object-Oriented conceptual models,
more and more systems are initially modeled and being expressed with OO
notation. This situation suggests the necessity to integrate the OO conceptual
models and XML. The goal of this work is to present a coherent way to
transform the XML schema into ORDB (Object-Relational Databases) using
Oracle 9i features models (refer to Figure 1).

The emphasis of this chapter is only on the transformation of aggregation,
association and inheritance relationships from XML schema to ORDB, in order
to help people conveniently and automatically generate Oracle database. This
transformation is important so that all tables created using XML schema can be
transformed to the object-relational databases using Oracle format and fea-
tures. This research consists of two parts. First is the transformation from XML
schema into Object-Relational Logical model. Second is the transformation

Transformation of XML Schema to Object Relational Database 143

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

from XML into ORDB. The XML and ORDB come from XML schema and
Object-Relational Logical model format.

This research is different with a transformation from a conceptual model
into ORDB because this research discusses the transformation from XML
schema format into ORDB. But, it has a similarity in the ORDB format because
the XML schema adopts its features from the object-oriented conceptual
model.

The work presented in this chapter is actually part of a larger research
project on Transformation from XML schema to Object-Relational Data-
bases. This project consists of three stages: (i) transformation association
relationship from XML schema to Object-Relational Database; (ii) transfor-
mation inheritance relationship from XML schema to Object-Relational Data-
base; and (iii) transformation aggregation relationship from XML schema to
Object-Relational Database. The research results from the first and second
stages have been reported in Widjaya, Taniar, Rahayu and Pardede (2002)
and Widjaya, Taniar & Rahayu (2003). In this chapter, we focus on all three
stages of the project.

BACKGROUND AND RELATED WORK
Object-Oriented: A Brief Overview

In 1970, there was only Relational Database Management System
(RDBMS) (Dillon & Tan, 1993). Traditional RDBMSs perform well only when
working on numeric data and characters stored in tables, what are often called

Figure 1: Transformation from XML Schema to ORDB

XML Schema Object Relational
Logical model

Transformation

Step 1

XML ORDB
Transformation

Step 2

144 Widjaya, Taniar, & Rahayu

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

“simple data types” (Stonebraker & Moore, 1996). Then, ORDBMS (Object-
Relational Database Management System) came later to improve RDBMS’s
performance. Basically, the ORDBMS is the RDBMS with the object-oriented
features. ORDBMS becomes popular because of the failure of ODBMSs,
which have limitations that can prevent them from taking on enterprise-wide
tasks. Therefore, by storing objects in the object side of the ORDBMS, but
keeping the simpler data in the relational side, users may approach the best of
both worlds. For the foreseeable future, however, most business data will
continue to be stored in object-relational database systems.

Since ORDBMS has object-oriented features, we will discuss briefly
about Object-Oriented Conceptual Model (OOCM). OOCM encapsulates
the structural/static, as well as behavioral/dynamic, aspects of objects. The
static aspects consist of the classes/objects and the relationship between them,
namely inheritance, association and aggregation. The dynamic aspect of the
OOCM consists of generic methods and user-defined methods. We only
discuss the static aspects, since this is the topic that is relevant for this chapter.
Static aspects in OOCM create objects and classes that also include decisions
regarding their attributes. Furthermore, they also concern the relationship
between objects. The basic segment of the object-oriented system is an object.
An object is a data abstraction that is defined by: an object name as a unique
identifier; valued attributes (instance variables), which give a state to the object;
and methods or routines that access the state of the object.

In XML schema, there are static aspects from object-oriented conceptual
models that we can find. The aggregation, association and inheritance relation-
ships are the three OOCM features that we will discuss in this chapter.

The aggregation relationship (refer to Figure 2) represents a “part-of”
relationship, indicating that a “whole” object consists of “part” objects (Dillon
& Tan, 1993). Figure 2 shows us the aggregation relationship between the
superclass and sub-classes. C is the “whole” object and C1, C2 and C3 are the
“part” objects. This kind of relationship exists commonly in XML documents.

Figure 2: A One-Leveled Aggregation Relationship Rooted at C

 C

C1 C2 C3

Aggregation Level 1

Transformation of XML Schema to Object Relational Database 145

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

XML assumes that data is hierarchically structured. One element may contain
sub-elements, which may sequentially contain other elements. ORDB in Oracle
9i also has a feature that can support aggregation relationship. Therefore, we
can easily map aggregation relationship in XML schema onto ORDB in Oracle
9i.

In this chapter, we discuss two types of aggregations: existence indepen-
dent and existence dependent. An existence independent aggregation rela-
tionship means that the sub-class can stand by itself, even if the superclass does
not exist. On the other hand, existence dependent means that the sub-class is
totally dependent on the superclass. Furthermore, we also look at two more
types of aggregation relationship, i.e., ordered composition and homogeneous/
heterogeneous composition. We called the aggregation an ordered composi-
tion if it is a “whole” object composed of different “part” objects in particular
order. In other words, the order of occurrence of the “part” objects in the
composition is vital to the model. Homogeneous means one whole consists of
several different types of “part” objects.

The inheritance relationship (refer to Figure 3) represents “inherited”
relationship, indicating that an object or a relation inherits the attribute (and
methods) of another object (Dillon & Tan, 1993). This kind of relationship
exists commonly in XML documents. XML assumes that data is hierarchically
structured. One element may contain sub-elements, which may sequentially
contain other elements. ORDB in Oracle 9i also has a feature that can support
inheritance relationships. Therefore, we can easily map inheritance relation-
ships in XML schema onto ORDB in Oracle 9i. In this chapter, we discuss two
types of inheritances: single inheritance and multiple inheritance. Single
inheritance means the sub-class only has one superclass. Multiple inheritance
means the sub-class has multiple superclasses.

The association relationship represents a “connection” between object
instances. Basically, it is a reference, from one object to another, which
provides access paths among objects in a system. Objects are connected

Figure 3: A One-Leveled Inheritance Relationship Rooted at C

C

C1 C2 C3

Inheritance Level 1

146 Widjaya, Taniar, & Rahayu

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

through an association link. The link can have a specified cardinality, e.g., one-
to-one, one-to-many, and many-to-many. We will discuss this relationship
further in this chapter.

Related Work
Most existing work has focused on a methodology that has been designed

to map a relational database to an XML database for database interoperability.
The schema translation procedure is provided with an EER (Extended Entity
Relationship) model mapped into XML schema (Fong, Pang & Bloor, 2001).

There are many works that explain the mapping from relational databases
to XML. Some of them still use DTD (Yang & Wang, 2001), and some of them
use XML schema (Mani, Lee & Muntz, 2001). Since XML is rapidly emerging
as the dominant standard for exchanging data on the WWW, the previous work
already discussed mapping referential integrity constraints from Relational
Database to XML, semantic data modeling using XML schemas, and enhanc-
ing structural mapping for XML and ORDB.

In addition, the study of the use of new scalar and aggregate functions in
SQL for constructing complex XML documents directly in the relational engine
has been done (Shanmugasundaram et al., 2001).

Relational and object-relational database systems are a well-understood
technique for managing and querying such large sets of structured data. In
Kletke and Meyer (2001), the writers wrote about how a relevant subset of
XML documents and their implied structure can be mapped onto database
structures. They suggest mapping DTDs onto object-relational database
schemas and, to overcome the typical problems (large schemas), they sug-
gested an algorithm for determining an optimal hybrid database schema.

The way to model XML and to transform the OO conceptual models into
XML schema have been discussed in Xiao, Dillon, Chang & Feng (2001). The
writers chose the OO conceptual model because of its expressive power for
developing a combined data model. They come out with several generic-
transforming rules from the OO conceptual model to XML schema, with the
emphasis on the transformations of generalization and aggregation relation-
ships. The XML schema code that is presented below in this chapter is adopted
from the existing work that was done previously. In addition, our chapter is
done to improve what has been done in Xiao, Dillon, Chang & Feng (2001).

Transformation of XML Schema to Object Relational Database 147

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The work reported in this chapter is distinguished from this work in the
following aspects. First, we focus on the transformation from XML schema to
ORDB. Second, our transformation target uses OO features in Oracle 9i, not
just the general OO features. The similarity is we take aggregation, association
and inheritance relationships into consideration.

TRANSFORMATION FROM XML
SCHEMA TO ORDB:

THE PROPOSED METHODOLOGY
In the following, we use XML schema and Oracle 9i to interpret the

aggregation, inheritance, and association relationships in OO conceptual
models. We discuss the transformation or mapping from XML schema to
ORDB. In this section, we also validate the following documents against the
schema. In addition to that, we also give the example of how to insert the data
into the table after creating the table in Oracle 9i. The expressions that are
commonly used for data types mapping from XML schema to ORDB in this
chapter are String to Varchar2 and Decimal to Decimal(l,d), where l = length
and d = decimal.

Aggregation Composition
As previously discussed, there are three types of aggregation composition

that will be discussed in this chapter. The first one is ordered existence
dependent composition; second is homogeneous existence dependent compo-
sition; and lastly, existence independent composition.

Existence Dependent (Ordered Composition)
The structure of XML schema for existence dependent is as below. Firstly,

it creates the superclass element and categorizes it as a type. Then, under
sequence, adds the sub-classes for that superclass element.

XML schema for existence dependent aggregation relationship:
<xsd:element name= "Invoice" type = "InvoiceType"/>
<xsd:complexType name = "InvoiceType">
<xsd:sequence>

<xsd:element name = "Heading"type = "xsd:string">
<xsd:element name = "Contact_Person" type = "ContactPersonType"/>

148 Widjaya, Taniar, & Rahayu

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

<xsd:element name = "Items_Ordered" type = "xsd:string"/>
<xsd:element name = "Total_Price" type = "xsd:decimal">

</xsd:sequence>
<xsd:attribute name = "heading_id" type = "xsd:
integer" use = "required"/>

</xsd:complexType>
<xsd:complexType name = "ContactPersonType">
 <xsd:sequence>

<xsd:element name = "Name"type = "xsd:string"/>
<xsd:element name = "Address"type = "xsd:string"/>
<xsd:element name = "PhoneNo"type = "xsd:decimal"/>

</xsd:sequence>
<xsd:attribute name = "contact_person_id" type =xsd:
 integer" use = "required"/>

</xsd:complexType>

From the XML schema above, we can look at the conceptual model
behind it. Figure 4 shows the aggregation relationship from the Invoice. The
diamond arrow shows the relationship from the superclass and the sub-class.
Invoice is a composite class that consists of classes Heading, Contact_
Persons, Item_ordered and total_price. This relationship is existence depen-
dent aggregation since the sub-elements cannot exist if we remove the compos-
ite class.

The following steps generate a transformation from XML schema to
Object-Relational Logical model in Oracle 9i for existence dependent aggre-
gation relationship.
i. For an aggregation relationship rooted at a composite class C, an element

named C with a complex Type Ctype in XML schema (<xsd:element
name = "C" type = "Ctype">) can be transformed by creating a cluster
named C_cluster in Object-Relational Logical Model. Then, write the
type of class C attributes (such as C_id) based on the attribute for that

Figure 4: An Aggregation Relationship Example

 Invoice

Heading Contact_Person Items_Ordered Total_Price

Transformation of XML Schema to Object Relational Database 149

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

complex type in XML schemas. Usually it is in the varchar2 format and
the user will enter the length for it.

XML schema:
<xsd:element name= "Invoice" type = "InvoiceType" />
 <xsd:complexType name = "InvoiceType">

ORDB:
Create ClusterCreate ClusterCreate ClusterCreate ClusterCreate Cluster Invoice_Cluster

 (invoice_Id varchar2 (10));

ii. Create a table for composite class C and the type of its attribute, which
is exactly the same as C_cluster above and has Not Null besides the
C_id, which means table invoice must have an id. Then, create a primary
key for this table, which is usually C_id. Next, create a cluster, as C table
attributes and the type will be C_cluster (C_id).

ORDB:
Create TableCreate TableCreate TableCreate TableCreate Table Invoice
 (invoice_id varchar2(10) Not NullNot NullNot NullNot NullNot Null,
 Primary Key Primary Key Primary Key Primary Key Primary Key (invoice_id))

Cluster Cluster Cluster Cluster Cluster Invoice_Cluster (invoice_id);

iii. Based on each sub-element named C1 within the complexType Ctype in
the XML schema (<xsd:element name = "C1"type= "...">), we
need to create another table for each sub-element. Its attributes will
consist of C_id, C1_id and other attributes that are relevant to C1. C_id
and C1_id will be the primary key, and the foreign key will be C_id
references C (C_id). Next, create a cluster and its type that should be the
same with the cluster that is created before, C_cluster (C_id).

XML schema:
<xsd:sequence>

 <xsd: element name = "Heading"type = "xsd:string"/>

ORDB:
Create Table Create Table Create Table Create Table Create Table Heading

(invoice_id varchar2 (10) Not Null,Not Null,Not Null,Not Null,Not Null,
heading_id varchar2 (10) Not NullNot NullNot NullNot NullNot Null,
Heading varchar2 (30),

150 Widjaya, Taniar, & Rahayu

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Primary KeyPrimary KeyPrimary KeyPrimary KeyPrimary Key (invoice_id, heading_id),
Foreign Key Foreign Key Foreign Key Foreign Key Foreign Key (invoice_id) ReferencesReferencesReferencesReferencesReferences In
voice (invoice_id))

ClusterClusterClusterClusterCluster Invoice_Cluster (invoice_id);

iv. Create index for C_cluster_index on cluster C_cluster

ORDB:
Create IndexCreate IndexCreate IndexCreate IndexCreate Index Invoice_Cluster_Index

 On Cluster On Cluster On Cluster On Cluster On Cluster Invoice_Cluster;

Below is the full example of the ORDB after XML schema transformation.

ORDB for existence dependent aggregation relationship:
Create ClusterCreate ClusterCreate ClusterCreate ClusterCreate Cluster Invoice_Cluster

(invoice_id varchar2 (10));
Create TableCreate TableCreate TableCreate TableCreate Table Invoice

(invoice_id varchar2 (10) Not NullNot NullNot NullNot NullNot Null,
Primary KeyPrimary KeyPrimary KeyPrimary KeyPrimary Key (invoice_id))
ClusterClusterClusterClusterCluster invoice_cluster (invoice_id);

Create TableCreate TableCreate TableCreate TableCreate Table Heading
(invoice_id varchar2 (10) Not NullNot NullNot NullNot NullNot Null,
heading_id varchar2 (10) Not NullNot NullNot NullNot NullNot Null,
Primary KeyPrimary KeyPrimary KeyPrimary KeyPrimary Key (invoice_id, heading_id),
Foreign KeyForeign KeyForeign KeyForeign KeyForeign Key (invoice_id) ReferencesReferencesReferencesReferencesReferences In

voice (invoice_id))
ClusterClusterClusterClusterCluster invoice_cluster (invoice_id);
Create TableCreate TableCreate TableCreate TableCreate Table Contact_Person

(contact_person_id varchar2 (10) Not NullNot NullNot NullNot NullNot Null,
invoice_id varchar2 (10) Not NullNot NullNot NullNot NullNot Null,
name varchar2 (40),
address varchar2 (40),
phone_no number
Primary KeyPrimary KeyPrimary KeyPrimary KeyPrimary Key (invoice_id, contact_person_id),
Foreigh KeyForeigh KeyForeigh KeyForeigh KeyForeigh Key (invoice_id) ReferencesReferencesReferencesReferencesReferences In

voice (invoice_id))
ClusterClusterClusterClusterCluster invoice_cluster (invoice_id);
Create TableCreate TableCreate TableCreate TableCreate Table Item_Ordered

(invoice_id varchar2 (10) Not NullNot NullNot NullNot NullNot Null,
item_ordered_Id varchar2 (10) Not NullNot NullNot NullNot NullNot Null,
Primary KeyPrimary KeyPrimary KeyPrimary KeyPrimary Key (invoice_id, item_ordered_id),
Foreign KeyForeign KeyForeign KeyForeign KeyForeign Key (invoice_id) ReferencesReferencesReferencesReferencesReferences In

Transformation of XML Schema to Object Relational Database 151

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

voice (invoice_id))
ClusterClusterClusterClusterCluster invoice_cluster (invoice_id);
Create TableCreate TableCreate TableCreate TableCreate Table Total_Price

(invoice_id varchar2 (10) Not NullNot NullNot NullNot NullNot Null,
total_price_ID varchar2 (10) Not NullNot NullNot NullNot NullNot Null,
Primary KeyPrimary KeyPrimary KeyPrimary KeyPrimary Key (invoice_id, total_price_id),
Foreign KeyForeign KeyForeign KeyForeign KeyForeign Key (invoice_id) ReferencesReferencesReferencesReferencesReferences In

voice (invoice_id)
ClusterClusterClusterClusterCluster invoice_cluster (invoice_id)
Create IndexCreate IndexCreate IndexCreate IndexCreate Index Invoice_Cluster_Index On ClusterOn ClusterOn ClusterOn ClusterOn Cluster

Invoice_Cluster

Below is the XML and INSERT query for the existence dependent
aggregation. In the XML, the tag is based on the element declaration in XML
schema. Then, the words or numbers between the tags are the data that is going
to be inserted into the table.

In the INSERT part, the element in the Insert query should exist as a table
name that is created above. The data that is inserted between elements in the
XML is written in the middle of the quotation mark in Insert query. The data in
the Insert query should be entered by following the order of the attributes that
are declared in the create table.

Common syntax ordered composition XML:
<A> a

<B1> b </B1>
<B2> c </B2>

<C>

<C1> d </C1>
<C2> e </C2>

</C>

Common syntax ordered composition Insert query:
Insert into A values (‘a’)
Insert into B values (‘b’, ‘c’)

Insert into C values (‘d’, ‘e’)

The steps to transform from XML to ORDB Insert query are discussed:
i. XML for existence dependent aggregation will be structured like above.

152 Widjaya, Taniar, & Rahayu

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

For every element that is a class (A, B, C), we insert the values to it (a, b, c). B
1 and B 2 are the attributes for B class, since B has many attributes, that
contain b and c values

ii. For every class (A, B and C), we transform it into the Insert query by
writing “Insert into A values.” Then, for every value in the class, we insert
it into the class by using (‘ ‘). If one class contains many attributes, we
separate them by using a comma. If the data contains numbers only, we
do not need to put the quotation mark.
For example: (‘a’, ‘b’, ‘c’)

XML for ordered composition (Example: Invoice case study):
<?xml version = "1.0" ?>
<Invoice Invoice_id = "1001">

<Heading> This is Invoice 1 </Heading>
<Contact_Person>

<Name> John </Name>
<Address>570 Lygon St</Address>
<PhoneNo> 95086868</PhoneNo>

</Contact_Person>
<Item_Ordered>50</Item_Ordered>
<Total_Price>40</Total_Price>

</Invoice>

INSERT for ordered composition (Example: Invoice case study):
Insert into Invoice Values (1001)
Insert into Heading Values (‘This is Invoice 1’)
Insert into Contact_Person Values(101, 1001, ‘John’, ‘570
Lygon St’,95086868)
Insert into Item_Ordered Values (‘This is Invoice 1’, 50)

Insert into Total_Price Values (1001, 40)

Existence Dependent (Homogeneous Composition)
The structure of XML schema for existence dependent homogeneous

composition is as below. First, it creates the superclass element and categorizes
it as a type. Then, under the complex type, adds the sub-classes for that
superclass element. Since this sub-class can occur for more than one time, we
need to include minOccurs = “1” and maxOccurs = “unbounded.” Last, add
any attributes for that element.

Transformation of XML Schema to Object Relational Database 153

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

XML schema for existence independent homogeneous aggregation:
<xsd:element name = "Daily_Program"type = "DailyProgramType"/>
<xsd:complexType name = "DailyProgramType">

<xsd:element name = "Program_Name"type = "xsd:string"
 minOccurs ="1"maxOccurs="unbounded"/>
<xsd:attribute name = "program_id" type = "xsd:integer" use =
 "required">
<xsd:attribute name = "daily_program_id" type = "xsd:integer"
 use = "required">

 </xsd:complexType>

The XML schema above can be modeled using a conceptual diagram.
Figure 5 shows the homogeneous existence independent aggregation relation-
ship. This relationship means that the sub-classes can stand alone without the
composite class. For example, Programs can exist without the Daily_Program.
Daily_Program consists of several Programs.

We can generate a transformation for existence independent homoge-
neous aggregation relationship from XML schema to Object-Relational Logi-
cal model in Oracle 9i as follows:

i. Each sub-element named C1 with a complex Type Ctype in XML schema
(<xsd:element name = "C1"type= ""... ." MinOccurs= "..."
maxOccurs= "...">) needs to be created as an object named C1.
Then, write the type of C1 attributes (such as C1_id) based on the
attribute for that complex type in XML schemas. Usually it is in the
varchar2 format, and the user will enter the length for it.

XML schema:
<xsd:element name = "Program" type = "xsd:string"

minOccurs="1" maxOccurs="unbounded"/>

 Daily_Program

Program

Figure 5: A Homogeneous Composition Example

154 Widjaya, Taniar, & Rahayu

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The maxOccurs explains the maximum number of Programs in
Daily_Program. This may be a positive integer value or the word “unbounded”
to specify that there is no maximum number of occurrences. The minOccurs
shows the minimum number of times an element may appear. It is always less
than or equal to the default value of maxOccurs, i.e., it is 0 or 1. Similarly, if
we only specify a value for the maxOccurs attribute, it must be greater than or
equal to the default value of minOccurs, i.e., 1 or more.

ORDB:
Create Or Replace TypeCreate Or Replace TypeCreate Or Replace TypeCreate Or Replace TypeCreate Or Replace Type Program As ObjectAs ObjectAs ObjectAs ObjectAs Object

(Program_id varchar2 (10));

ii. Create a table for composite class C1 (as a table of the object above).

ORDB:
Create Or Replace TypeCreate Or Replace TypeCreate Or Replace TypeCreate Or Replace TypeCreate Or Replace Type Program_Table As TableAs TableAs TableAs TableAs Table OfOfOfOfOf Program

iii. For an existence independent aggregation relationship rooted at a com-
posite class C, an element named C within the complexType Ctype in
the XML schema (<xsd:element name = "C" type= "Ctype">) needs
to created as an object named C. Its attributes will consist of C_id and
other attributes that are relevant to it. C_id will be the primary key. Next,
nest this table and store it as the table that is created before.

XML schema:
<xsd:element name = "Daily_Program"type ="DailyProgramType"/>

<xsd:complexType name = "DailyProgramType">

ORDB:
Create TableCreate TableCreate TableCreate TableCreate Table Daily_Program

(daily_program_id varchar2(10) Not NullNot NullNot NullNot NullNot Null,
program_name Program_Table,
Primary KeyPrimary KeyPrimary KeyPrimary KeyPrimary Key (daily_program_id))
Nested TableNested TableNested TableNested TableNested Table program_name Store AsStore AsStore AsStore AsStore As
Program_Table;

Next, is the full example of Object-Relational Logical model after it has
been transformed from XML schema.

Transformation of XML Schema to Object Relational Database 155

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

ORDB for existence dependent homogeneous aggregation:
Create Or Replace TypeCreate Or Replace TypeCreate Or Replace TypeCreate Or Replace TypeCreate Or Replace Type Program As ObjectAs ObjectAs ObjectAs ObjectAs Object

(program_id varchar2 (10));
Create Or Replace TypeCreate Or Replace TypeCreate Or Replace TypeCreate Or Replace TypeCreate Or Replace Type Program_Table As TableAs TableAs TableAs TableAs Table
OfOfOfOfOf Program
Create TableCreate TableCreate TableCreate TableCreate Table Daily_Program

(daily_program_id varchar2(10) Not NullNot NullNot NullNot NullNot Null,
program_name Program_Table,
Primary KeyPrimary KeyPrimary KeyPrimary KeyPrimary Key (daily_program_id))
Nested TableNested TableNested TableNested TableNested Table program_name Store AsStore AsStore AsStore AsStore As

Program_Table;

The following is the XML and INSERT query for the homogeneous
independent aggregation. Similar to the explanation in ordered dependent
aggregation, the tag in XML is based on the element declaration in XML
schema. And, the words or numbers between the tags are the data that is going
to be inserted into the table.

In the INSERT part, the element in the Insert query should exist as a table
name that is created above. The data that wants to be inserted into the table is
written in the middle of the quotation mark in Insert query. The data in the Insert
query should be entered by following the order of the attributes that are
declared in the create table. Since we use clustering techniques to create the
aggregation, we are not creating a table to store nested data; instead, we are
only creating a datatype and are storing an attribute of that datatype with a
different name. Hence, while inserting data into a nested table, we actually store
data in the object rather than in the table.

Common syntax for homogeneous composition for XML:
 <A>

 b
 c

Common syntax homogeneous composition Insert query:
Insert into A values (1, ‘b’, (B_Table (B (1, ‘ ‘))))

The following steps are for transforming from XML to ORBD Insert query
homogeneous composition:

156 Widjaya, Taniar, & Rahayu

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

i. In the existence dependent homogeneous aggregation, composite class
contains several homogeneous sub-classes.
In XML, A is the composite class, and B is the sub-class that contains
some values.

ii. In the Insert query, since the sub-class is inside the composite class, the
insert query will look like the structure above.

iii. Since every table in Oracle needs to have an ID, in the Insert query, we
put the ID for A and B table. That is the reason why, in the beginning of
every table, there is a number that represents the ID table before the
values.

XML for homogeneous composition (Example:Daily Program case
study):

<daily_program>
<daily_program_id> 1 </daily_program_id>
<program_id> 1 </program_id>
<program_name>This is program 1</program_name>

</daily_program>
<daily_program>

<daily_program_id> 1 </daily_program_id>
<program_id> 2 </program_id>
<program_name> This is program 2 </program_name>

</daily_program>

INSERT for homogeneous composition (Example:Daily Program case
study):

Insert into Daily_Program Values (1, ‘This is program 1’,
Program_Table(Program(1)));
Insert into Daily_Program Values (1, ‘This is program 2’,

Program_Table(Program(2)));

Existence Independent
Below is the structure of XML schema for existence independent aggre-

gation. First, it creates the superclass element and categorises it as a type. Then,
under the complex type, we use ‘choice’ to refer to the sub-classes for
superclass element. Last, put attributes for each element, according to its
needs.

XML schema for existence independent aggregation relationship:
<xs:element name="Hamper" type ="HamperType">
 <xs:complexType>

Transformation of XML Schema to Object Relational Database 157

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

<xs:choice>
<xs:element ref = "Biscuit"/>
<xs:element ref = "Confectionary"/>
<xs:element ref = "Deli"/>

</xs:choice>
 </xs:complexType>
 </xs:element>

<xs:element name = "HamperType">
<xs:complexType>

<sequence>
<xs:element name = "hamper_id" type = "xs:string"/>
<xs:element name="hamper_price" type = "xs:decimal"/>

</sequence>
</xs:complexType>
</xs:element>

<xs:element name = "Biscuit">
<xs:complexType>

<sequence>
<xs:element name = "biscuit_id" type = "xs:string"/>
<xs:element name = "biscuit_name" type ="xs:string"/>
<xs:element name = "biscuit_price" type =

"xs:decimal"/>
</sequence>

</xs:complexType>
</xs:element>
<xs:element name = "Confectionary">
<xs:complexType>

<sequence>
<xs:element name = "confectionary_id" type =

"xs:string"/>
<xs:element name = "confectionary _name" type =
"xs:string"/>
<xs:element name = "confectionary_price" type =
"xs:decimal"/>

</sequence>
</xs:complexType>
</xs:element>
<xs:element name = "Deli">
<xs:complexType>

<sequence>

<xs:element name = "deli_id" type = "xs:string"/>
<xs:element name = "deli_name" type = "xs:string"/>
<xs:element name = "deli_price" type = "xs:decimal"/>

158 Widjaya, Taniar, & Rahayu

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

</sequence>
</xs:complexType>

</xs:element>

Based on the XML schema above, we try to draw the conceptual diagram
for it. Figure 6 shows the existence independent aggregation relationship from
the Hamper case study. The diamond arrow shows the relationship from the
superclass to the sub-classes. Hamper is a composite class that consists of
classes Biscuit, Confectionary and Deli. This relationship is existence inde-
pendent aggregation since the sub-elements can exist by themselves even if we
remove the composite class.

The following steps generate a transformation from XML schema to
Object-Relational Logical model in Oracle 9i for existence independent
aggregation relationship.
i. For an aggregation relationship rooted at a composite class C, an element

named C with a complex Type Ctype in XML schema (<xsd:element name
= "C" type = "Ctype">) can be transformed by creating a table named
C in ORDB. Then, write the type of class C attributes (such as C_id),
based on the attribute for that Ctype in the XML schemas.

XML schemas:
<xs:element name="Hamper" type ="HamperType">
.......
....
<xs:element name = "HamperType">
<xs:complexType>

<sequence>
<xs:element name = "hamper_id" type = "xs:string"/>
<xs:element name = "hamper_price" type = "xs:decimal"/>
</sequence>

</xs:complexType>

</xs:element>

Figure 6: An Existence Independent Composition Example

 Hamper

Biscuit Confectionary Deli

Transformation of XML Schema to Object Relational Database 159

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

ORDB:
Create Table Create Table Create Table Create Table Create Table Hamper

(hamper_id varchar2(3) Not NullNot NullNot NullNot NullNot Null,
hamper_price Number,

Primary KeyPrimary KeyPrimary KeyPrimary KeyPrimary Key (hamper_id));

ii. Create tables for each element under choice. The element reference under
choice means that it refers to the details below, where the element name
equals the element reference.

XML schema:
<xs:complexType>
<xs:choice>

<xs:element ref = "Biscuit"/>
<xs:element ref = "Confectionary"/>
<xs:element ref = "Deli"/>

</xs:choice>
</xs:complexType>

<xs:element name = "Biscuit">
<xs:complexType>
<sequence>

<xs:element name = "biscuit_id" type = "xs:string"/>
<xs:element name = "biscuit_name" type ="xs:string"/>
<xs:element name = "biscuit_price" type =

"xs:decimal"/>
</sequence>
</xs:complexType>

</xs:element>

ORDB:
Create Table Create Table Create Table Create Table Create Table Biscuit

(biscuit_id varchar2(3)Not NullNot NullNot NullNot NullNot Null,
biscuit_name varchar2(20),
biscuit_price Number,

PrimaryPrimaryPrimaryPrimaryPrimary Key Key Key Key Key (biscuit_id));

iii. Create the last table that we call an aggregate table, which will link the
composite class with the sub-classes. Then, create the attributes for this
class, which includes the id for the composite class, part_id and part_type.
Lastly, create a primary key and a foreign key.

160 Widjaya, Taniar, & Rahayu

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

ORDB:
Create TableCreate TableCreate TableCreate TableCreate Table Aggregate

(hamper_id varchar2(3) Not NullNot NullNot NullNot NullNot Null,

part_id varchar2(3) Not NullNot NullNot NullNot NullNot Null,

part_type varchar2(20) CheckCheckCheckCheckCheck
(part_type InInInInIn (‘biscuit’, ‘confectionery’, ‘deli’)),
Primary KeyPrimary KeyPrimary KeyPrimary KeyPrimary Key (hamper_id, part_id),
Foreign KeyForeign KeyForeign KeyForeign KeyForeign Key (hamper_id) ReferencesReferencesReferencesReferencesReferences hamper

(hamper_id));

Below is the mapping of Object-Relational Logical model for existence
independent from the XML schema existence independent aggregation.

ORDB for existence independent aggregation:
Create Table Create Table Create Table Create Table Create Table Hamper

(hamper_id varchar2(3) Not NullNot NullNot NullNot NullNot Null,
hamper_price Number,
Primary KeyPrimary KeyPrimary KeyPrimary KeyPrimary Key (h_id));

Create Table Create Table Create Table Create Table Create Table Biscuit
(biscuit_id varchar2(3) Not NullNot NullNot NullNot NullNot Null,
biscuit_name varchar2(20),
biscuit_price Number,
PrimaryPrimaryPrimaryPrimaryPrimary Key Key Key Key Key (biscuit_id));

Create TableCreate TableCreate TableCreate TableCreate Table Confectionery
(confectionery_id varchar2(3)
confectionery_name varchar2(20),
confectionary_price Number,
Primary KeyPrimary KeyPrimary KeyPrimary KeyPrimary Key (confectionary_id));

Create Table Create Table Create Table Create Table Create Table Deli
(deli_id varchar2(3) Not NullNot NullNot NullNot NullNot Null,
deli_name varchar2(20),
deli_price Number,
Primary KeyPrimary KeyPrimary KeyPrimary KeyPrimary Key (deli_id));

Create TableCreate TableCreate TableCreate TableCreate Table Aggregate
(hamper_id varchar2(3) Not NullNot NullNot NullNot NullNot Null,
part_id varchar2(3) Not NullNot NullNot NullNot NullNot Null,
part_type varchar2(20) CheckCheckCheckCheckCheck
(part_type InInInInIn (‘biscuit’, ‘confectionery’, ‘deli’)),
Primary KeyPrimary KeyPrimary KeyPrimary KeyPrimary Key (hamper_id, part_id),
Foreign KeyForeign KeyForeign KeyForeign KeyForeign Key (hamper_id) ReferencesReferencesReferencesReferencesReferences hamper

(hamper_id));

Transformation of XML Schema to Object Relational Database 161

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Below is the XML and INSERT query for the existence independent
aggregation. The steps for its transformation are also discussed.

Syntax for existence independent aggregation XML:
<A>

<A1> a <A1>
<A2> b <A2>

<B1> c <B1>
<B2> d <B2>

The steps below are for transforming from XML to Insert query homoge-
neous composition:
i. In the existence independent homogeneous aggregation, composite class

is defined at the top of XML (we use A as a variable that refers to a class
and ‘a’, ‘b’ as its attributes). Therefore, for every data in XML, we
convert it to INSERT query in Oracle by using the following format:
INSERT into A values (a, b).

ii. In XML, A is the composite class and B is the sub-class that contains some
values. If there is more than one sub-class, there will be more XML code
below its composite. Then, insert into the aggregation table using the
following format: INSERT into Aggregate values (‘a’, 10000,’B’), which
is the table to link the composite table with the sub-classes and does not
exist in XML.

Syntax for existence independent aggregation INSERT table:

INSERT into A values (‘a’, ‘b’);
INSERT into B values (‘c’, ‘d’);

INSERT into Aggregate values (‘a’, 10000,’B’);

XML for existence independent aggregation:

<Hamper>
<hamper_id> 1 </hamper_id>
<hamper_price> 20 </hamper_price>

162 Widjaya, Taniar, & Rahayu

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

<Biscuit>
<biscuit_id> 10 </biscuit_id>
<biscuit_name> Arnold </biscuit_name>
<biscuit_price> 5.5 </biscuit_price>

</Biscuit>

<Confectionary>

<confectionary_id> 100 </confectionary_id>

<confectionary_name> Casey </confectionary_name>

<confectionary_price>10.5</confectionary_price>
</Confectionary>

<Deli>
<deli_id> 1000 </deli_id>
<deli_name> Demoi </deli_name>
<deli_price> 4 </deli_price>

</Deli>

</Hamper>

Insert query for existence independent aggregation:

INSERT into Hamper values (1, 10);
INSERT into Biscuit values (10, ‘Arnold’, 5.5);
INSERT into Confectionary values (100, ‘Casey’, 10.5);
INSERT into Deli values (1000, ‘Demoi’, 4.2);

INSERT into Aggregate values (1, 10000,‘biscuit’);

Association Transformation
The association transformation that will be presented in this chapter

consists of three parts, i.e., one-to-one association relationship, one-to-many
association relationship, and many-to-many association relationship.

One to One Association Relationship
The example that is used in this section is the relationship between lecture

and office. We assume that one lecture can only have one office, and one office
can only have one lecture. For one-to-one association relationship, it is
important for us to determine the participation of the objects to decide the
location of the primary keys in relational system. There are two types of
participation: total participation and partial participation. Total participa-
tion is when the existence of an object is totally dependent on the other object,

Transformation of XML Schema to Object Relational Database 163

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

and the partial participation is when the existence of an object is partially
dependent on the other object.

Below is the XML schema for one-to-one relationship. The characteristic
of one-to-one relationship in XML schema is minOccurs = “0” maxOccurs =
“1” for each element or class. The attributes for each element will be defined
after the element.

XML schema for one-to-one relationship:
<element name = "lecture">
<complexType>

<sequence>
<element ref="office" minOccurs="0" maxOccurs= "1" />
<element ref="lecture" minOccurs="0" maxOccurs= "1"/>
</sequence>

 <attribute name = "lectureid" type = "string" use ="required"/>
<attribute name = "lectureName" type = "string" use = "optional"/>

</complexType>
</element>
<element name = "office">

<attribute name = "officeid" type = "string" use ="required"/>

</element>

Figure 7 shows the conceptual diagram from the XML schema above.
From the XML schema, we would like to transform it to Object-Relational
Logical model, and the procedures about how the transformation will work are
explained next.

The steps below explain how to transform the one-to-one association
relationship from XML schema to ORDB. (Refer to the full example following
the steps.)
i. From the XML schema, the total participation will be the element that has

minOccurs ="0" maxOccurs ="1" next to it. Therefore, we need to
create an object for office before we create an object for lecture. An
element named ‘Office’ can be transformed by creating an object named
'Office_T' in ORDB. Then, write all the attributes for this element
based on the attribute’s name in that complexType.

ii. Create another object named 'Lecture_T' in ORDB and write all the
attributes for 'Lecture' element based on the attribute’s name in
'Lecture' complexType. The minOccurs = 0 and maxOccurs = 1 in
XML means that element D can contain 0 or 1 data. In ORDB, it will be

164 Widjaya, Taniar, & Rahayu

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

shown by using REF, so we create one attribute in 'Lecture_T' object
named 'Lecture_Office' that refers to 'Office_T'.

iii. Lastly, we create one table for 'Lecture' and another one for 'Of-
fice'. Each table has its id and a primary key that refers to the id. Declare
every id as a Not Null since it is required.

Below is the full example of ORDB for one-to-one relationship after the
transformation.

ORDB for one-to-one relationship:
Create Or Replace TypeCreate Or Replace TypeCreate Or Replace TypeCreate Or Replace TypeCreate Or Replace Type Office_T As ObjectAs ObjectAs ObjectAs ObjectAs Object

(office_id varchar2 (10))
Create Or Replace TypeCreate Or Replace TypeCreate Or Replace TypeCreate Or Replace TypeCreate Or Replace Type Lecture_T As ObjectAs ObjectAs ObjectAs ObjectAs Object

(lecture_id varchar2 (10),
lecture_name varchar2 (50),
lecture_office RefRefRefRefRef office_T)

Create TableCreate TableCreate TableCreate TableCreate Table Office OfOfOfOfOf Office_T
(office_id Not NullNot NullNot NullNot NullNot Null,
Primary KeyPrimary KeyPrimary KeyPrimary KeyPrimary Key (office_id));

Create TableCreate TableCreate TableCreate TableCreate Table lecture OfOfOfOfOf Lecture_T
(lecture_id Not NullNot NullNot NullNot NullNot Null,

Primary KeyPrimary KeyPrimary KeyPrimary KeyPrimary Key (lecture_id));

This part describes the XML and INSERT query for the one-to-one
association relationship. In the XML, the tag is based on the element declara-
tion in XML schema. Then, the words or numbers between the tags are the data
that will be inserted into the table.

In the INSERT part, the element in the Insert query should exist as a table
name that is created before. The data that is inserted between elements in the
XML is written in the middle of the quotation mark in Insert query. The data in
the Insert query should be entered by following the order of the attributes that
are declared in the create table. Furthermore, to link those two tables, we make
reference to the table. We use the SQL query by selecting the reference from
the other table.

Figure 7: One-to-One Association

 Lecture Office 1 has 1

Transformation of XML Schema to Object Relational Database 165

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Common syntax for XML one-to-one association relationship:
<A>

<A1> a </A1>
<A2> b </A2>

<B1> c </B1>

Common syntax for Insert query one-to-one association relationship:
Insert into B values (‘c’);
Insert into A values (‘a’, ‘b’, (Select REF (a) from B a where a.Bid

= c));

Below are the steps of transformation from XML to Insert Query:
i. When transforming one-to-one association relationship from XML to

Insert query, first we insert the values for B class.
ii. Then, we insert the values for A class and refer that class to B table with

its id = c.

XML for one-to-one association relationship:

<lecture>
<lectureid> 1090 </lectureid>
<lectureName> Josep </lectureName>

</lecture>
<office>

<officeid> 101 </officeid>

</office>

INSERT for one-to-one relationship:

Insert into office values (101);
Insert into lecture values (1090, ‘Josep’, (Select REF (a) From

office a Where a.Officeid=101));

One-to-Many Association Transformation
The example that is used in this section is the relationship between

customer and order (see Figure 8). One customer can have many orders, and
one order belongs to only one customer.

166 Widjaya, Taniar, & Rahayu

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Let us look at the structure of XML schema for one-to-many relationship.
Then, we can transform these structures to ORBD format.

XML schema for one-to-many relationship:
<xs:element name = "customer" type ="customerType"/ >
<xs:complexType name = "customerType">

<xs:sequence>
<xs:element name = "order" type= "orderType"

 minOccurs= "1" max Occurs = "unbounded" / >

<xs:sequence>
<xs:attribute name ="customerName"type="xs:string"/>
<xs:attribute name = "shippingAddress"

 type="xs:string"/>
<xs:attribute name="shippingCity" type="xs:string"/>
<xs:attribute name ="shippingState"type= "xs:string"/>
<xs:attribute name = "shippingPostalCode" type="xs:integer"/>
<xsd:attribute name = "customer_id" type = "xsd: integer" use

 = "required"/>
</xs:complexType>
<xs:complexType name = "orderType">

<xs:attribute name ="orderID" type="xs:integer"/>
<xs:attribute name ="orderDate" type="xs:date"/>

</xs:complexType>

The following steps explain how to transform the one-to-many association
relationship from XML schema to Object-Relational Logical model:
i. For one-to-many association relationship, an element named C with a

complex Type Ctype in XML schema (<xsd:element name = "C"
type= "Ctype">) can be transformed by creating an object named C_type
in ORDB. Then, write all the attributes for this element based on the
attribute’s name in that complex type.

 Customer Order 1 has *

Figure 8: One-to-Many Association

Transformation of XML Schema to Object Relational Database 167

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

XML schema:
<xs:element name = "customer" type = "customerType"/ >
<xs:complexType name = "customerType">

<xs:attribute name = "customerName" type="xs:string"/>
<xs:attribute name = "shippingAddress" type="xs:string"/>
<xs:attribute name = "shippingCity"type="xs:string"/>
<xs:attribute name = "shippingState" type="xs:string"/>
<xs:attribute name = "shippingPostalCode" type="xs:integer"/>
<xsd:attribute name = "customer_id" type = "xsd: integer" use

 = "required"/>

</xs:complexType>

ORDB:
Create Or Replace TypeCreate Or Replace TypeCreate Or Replace TypeCreate Or Replace TypeCreate Or Replace Type Customer_T As ObjectAs ObjectAs ObjectAs ObjectAs Object

(customer_id varchar2 (10),
customer_name varchar2 (50),
shipping_address varchar2 (100),
shipping_city varchar2 (20),
shipping_state varchar2 (20),

shipping_postalcode number)

ii. Since it is one-to-many relationship, there is another element (D), in the
Ctype complex type under sequence compositor, that refers to another
table. Create another object named D_type in ORDB, and write all the
attributes for D element based on the attribute’s name in D complex
type. The minOccurs = 1 and maxOccurs = unbounded in XML means
that element D should contain one or more data. In ORDB, it will be shown
by using REF, so we create one attribute in Dtype object named D_C
that refers to Ctype.

XML schema:
<xs:sequence>

<xs:element name = "order" type= "orderType" minOccurs= "1"
max Occurs = "unbounded"/ >
</xs:sequence>
<xs:complexType name = "orderType">

<xs:attribute name ="orderID" type="xs:integer"/>
<xs:attribute name = "orderDate" type= "xs:date"/>

</xs:complexType>

168 Widjaya, Taniar, & Rahayu

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

ORDB:
Create Or Replace TypeCreate Or Replace TypeCreate Or Replace TypeCreate Or Replace TypeCreate Or Replace Type Order_T As ObjectAs ObjectAs ObjectAs ObjectAs Object

(order_id varchar2(10),
order_date date,

order_customer RefRefRefRefRef customer_T)

iii. Last, we create one table for C and another one for D. Each table has its
id and a primary key that refers to the id. Declared every id as a Not
Null since it is required.

ORDB:
Create TableCreate TableCreate TableCreate TableCreate Table Customer OfOfOfOfOf Customer_T

(customer_id Not NullNot NullNot NullNot NullNot Null,
Primary KeyPrimary KeyPrimary KeyPrimary KeyPrimary Key (customer_id));

Create TableCreate TableCreate TableCreate TableCreate Table Order OfOfOfOfOf Order_T
(order_id Not NullNot NullNot NullNot NullNot Null,

Primary KeyPrimary KeyPrimary KeyPrimary KeyPrimary Key (order_id));

Below is a complete example of transformation from one-to-many asso-
ciation relationship XML schema into Object-Relational Logical model.

ORDB for one-to-many relationship:
Create Or Replace TypeCreate Or Replace TypeCreate Or Replace TypeCreate Or Replace TypeCreate Or Replace Type Customer_T As ObjectAs ObjectAs ObjectAs ObjectAs Object

(customer_id varchar2 (10),
customer_name varchar2 (50),
shipping_address varchar2 (100),
shipping_city varchar2 (20),
shipping_state varchar2 (20),
shipping_postalcode number)

Create Or Replace TypeCreate Or Replace TypeCreate Or Replace TypeCreate Or Replace TypeCreate Or Replace Type Order_T As ObjectAs ObjectAs ObjectAs ObjectAs Object
(order_id varchar2(10),
order_date date,
order_customer RefRefRefRefRef customer_T)

Create TableCreate TableCreate TableCreate TableCreate Table Customer OfOfOfOfOf Customer_T
(customer_id Not NullNot NullNot NullNot NullNot Null,
Primary KeyPrimary KeyPrimary KeyPrimary KeyPrimary Key (customer_id));

Create TableCreate TableCreate TableCreate TableCreate Table Order OfOfOfOfOf Order_T

(order_id Not NullNot NullNot NullNot NullNot Null,

Primary KeyPrimary KeyPrimary KeyPrimary KeyPrimary Key (order_id));

Transformation of XML Schema to Object Relational Database 169

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Below is the XML and INSERT query for the one-to-many association
relationship. Similar to the XML in one-to-one relationship, the tag is based on
the element declaration in XML schema. Then, the words or numbers between
the tags are the data that will be inserted into the table.

In the INSERT part, the element in the Insert query should exist as a table
name that is created before. The data that is inserted between elements in the
XML is written in the middle of the quotation mark in Insert query. If the data
is a number, we do not use the quotation mark. The data in the Insert query
should be entered by following the order of the attributes that are declared in
the create table. Furthermore, to link those two tables, we make reference to
the table. We use the SQL query by selecting the reference from the other table.

Common syntax for XML one-to-many relationship:

<A>
<A1> a </A1>
<A2> b </A2>
<A3> c </A3>

<B1> d </B1>
<B2> e </B2>

<C>
<C1> f </C1>
<C2> g </C2>

</C>

Common syntax for XML one-to-many relationship:

Insert into A values (a_id, a, b, c);
Insert into B values (bid, d, e) select REF (a) from A where a.A =

1;
Insert into C values (cid, f, g) select REF (a) from A where a.A =

1;

Transformation from XML to Insert query for one-to-many relationship:

170 Widjaya, Taniar, & Rahayu

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

i. When transforming one-to-many association relationship from XML to
Insert query, firstly, we insert the value of A. The values in the Insert query
will start with its ID, a, b, c.

ii. Then insert the values for B, C and etc., and refer to the A table, where
the id is equal to the one that is required.

XML for one-to-many association relationship:
<customer customer_id = "1">
<customerName> Agus </customerName>
<shippingAddress> 570 Lygon St </shippingAddress>
<shippingCity>Carlton </shippingCity>
<shippingState>Victoria </shippingState>
<shippingPostalCode>3053 </shippingPostalCode>

<order>
<orderID> 101 </orderID>
<orderDate> 23/09/02 </orderDate>

</order>
<order>

<orderID> 102 </orderID>
<orderDate> 24/09/02 </orderDate>

</order>

</customer>

INSERT for one-to-many association relationship:
Insert into customer values (1, 'Agus', '570 Lygon St',
'Carlton',
'Victoria', 3053);
Insert into order values (101, '23/09/02', Select Ref (a)
From customer wherea.customer = 1);
Insert into order values (102, '24/09/02', Select Ref (a)

From customer where a.customer = 1);

Many-to-Many Association Transformations
The last association type is many-to-many relationship. The example that

we use next is the relationship between student and course. Students can enroll
in many courses, and one course can be enrolled in by many students. The
characteristic of many-to-many association in XML schema is each element
can have one or more data. The syntax to show that one element consists of one
or more data is minOccurs = “1” maxOccurs = “unbounded.” Figure 9 shows
the conceptual diagram for this relationship.

Transformation of XML Schema to Object Relational Database 171

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

XML schema for many-to-many relationship:
<xs:element name = "Department">

<xs:complexType>
<xs:sequence>

<xs:element name = "students" minOccurs ="1"
maxOccurs ="unbounded">

<xs:complexType>
<xs:sequence>

<xs:element ref = "student" minOccurs = "1"
maxOccurs = "unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name = "course" minOccurs ="1" maxOccurs
= "unbounded">

<xs:complexType>
 <xs:sequence>
<xs:element ref = "course" minOccurs = "1" maxOccurs
="unbounded" />

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>

</complexType>
</xs:element>

<xs:element name = "student">
<xs:complexType>

<xs:sequence>
<xs:element name = "studentname" type ="xs:string" />
<xs:element name = "course">

<xs:complexType>
<xs:attribute name ="refCourseID" type= xs:string" />

</xs:complexType>
</xs:element>
</xs:sequence>
<xs:attribute name = "studentid" type = "xs:string"/>

</xs:complexType>
</xs:element>

Figure 9: Many-to-Many Association

Student Course * Enrolls_in *

172 Widjaya, Taniar, & Rahayu

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

<xs:element name = "course">
<xs:complexType>

<xs:sequence>

<xs:element name = "coursename" type = "xs:string"/>

<xs:element name = "student">

<xs:complexType>
<xs:attribute name ="refstudentID"type="xs:string"/>

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name = "courseid" type = "xs:string" />

</xs:complexType>

</xs:element>

There are three steps to transform many-to-many relationship from XML
schema to Object-Relational Logical model:
i. In the XML schema for many-to-many relationship, we can find the

element name that has minOccurs = "1" max Occurs = "unbounded".
Those elements need to be created as objects in ORDB. Then, write all
its attributes based on the attribute name under the element or based on
all the elements between <xs:sequence> and </xs:sequence>.

XML schema:
<xs:element name = "Department">

<xs:complexType>
<xs:sequence>
<xs:element name = "students" minOccurs ="1"

maxOccurs ="unbounded">
<xs:complexType>

<xs:sequence>
<xs:element ref="student" minOccurs = "1"

maxOccurs = 'unbounded' />
</xs:sequence>

</xs:complexType>

 </xs:element>

<xs:element name = "course" minOccurs ="1" maxOccurs =

"unbounded">

<xs:complexType>
<xs:sequence>

<xs:element ref = "course" minOccurs = "1"
maxOccurs ='unbounded' />

Transformation of XML Schema to Object Relational Database 173

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>

</complexType>

</xs:element>

ORDB:

Create Or Replace TypeCreate Or Replace TypeCreate Or Replace TypeCreate Or Replace TypeCreate Or Replace Type Student_T As ObjectAs ObjectAs ObjectAs ObjectAs Object
(student_id varchar2 (10),
 student_name varchar2 (30))

Create Or Replace TypeCreate Or Replace TypeCreate Or Replace TypeCreate Or Replace TypeCreate Or Replace Type Course_T As ObjectAs ObjectAs ObjectAs ObjectAs Object
(course_id varchar2(10),

course_name varchar2 (30))

ii. In the XML schema, each element will be linked to another element by
using the attribute name that refers to another element ID. For those two
elements in XML schema, we need to create tables for each of them in
ORDB. Then, write the type of its attributes (such as student_id) and
declare it as a Not Null. Create its id as the primary key for that table.

XML schema:
<xs:element name = "student">

<xs:complexType>
<xs:sequence>

<xs:element name="studentname"type="xs:string"/>
<xs:element name = "course">

<xs:complexType>
<xs:attribute name ="refCourseID" type=
 "xs:string"/>

 </xs:complexType>
 </xs:element>

</xs:sequence>

<xs:attribute name = "studentid" type = "xs:string"/>

</xs:complexType>

</xs:element>

<xs:element name = "course">
<xs:complexType>

174 Widjaya, Taniar, & Rahayu

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

<xs:sequence>
<xs:element name = "coursename" type ="xs:string"/>
<xs:element name = "student">

<xs:complexType>
<xs:attribute name ="refstudentID" type=
"xs:string" />

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name = "courseid" type = "xs:string" />

</xs:complexType>

</xs:element>

ORDB:
Create Table Student Of Student_T

(student_id Not Null,
Primary Key (student_id));

Create Table Course Of Course_T
(course_id Not Null,

 Primary Key (order_id));

iii. Since it is many-to-many relationship, we need to create another table (for
this example, we called it enrols_in table) to keep the relationship
between the two connected tables in ORDB. This table will have the two
table names as its attribute and reference to its object that is created
before.

ORDB:
Create TableCreate TableCreate TableCreate TableCreate Table Enrolls_in
(student RefRefRefRefRef Student_T,

course RefRefRefRefRef Course_T);

Below is the full example of ORDB for many-to-many relationship based
on the XML schema above:

ORDB for many-to-many relationship:
Create Or Replace TypeCreate Or Replace TypeCreate Or Replace TypeCreate Or Replace TypeCreate Or Replace Type Student_T As ObjectAs ObjectAs ObjectAs ObjectAs Object

(student_id varchar2 (10),

student_name varchar2 (30))

Create Or Replace TypeCreate Or Replace TypeCreate Or Replace TypeCreate Or Replace TypeCreate Or Replace Type Course_T As ObjectAs ObjectAs ObjectAs ObjectAs Object
(course_id varchar2(10),
course_name varchar2 (30))

Transformation of XML Schema to Object Relational Database 175

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Create TableCreate TableCreate TableCreate TableCreate Table Student OfOfOfOfOf Student_T
(student_id Not NullNot NullNot NullNot NullNot Null,
Primary KeyPrimary KeyPrimary KeyPrimary KeyPrimary Key (student_id));

Create TableCreate TableCreate TableCreate TableCreate Table Course OfOfOfOfOf Course_T
(course_id Not NullNot NullNot NullNot NullNot Null,
Primary KeyPrimary KeyPrimary KeyPrimary KeyPrimary Key (order_id));

Create TableCreate TableCreate TableCreate TableCreate Table Enrolls_in
(student RefRefRefRefRef Student_T,

course RefRefRefRefRef Course_T);

Below is the XML and INSERT query for the many-to-many association
relationship. In the XML, the tag is based on the element declaration in XML
schema. Then, the words or numbers between the tags are the data that is going
to be inserted into the table.

In the INSERT part, the element in the Insert query should exist as a table
name that is created before. The data that is inserted between elements in the
XML is written in the middle of the quotation mark in Insert query. The data in
the Insert query should be entered by following the order of the attributes that
are declared in the create table. Furthermore, to link those two tables, we make
another table (middle table). We use the SQL query by selecting the reference
from the other two tables that are created before.

Common syntax for many-to-many XML association:
<A>

<A1> a </A1>
<A2> b </A2>

<B1> c </B1>
<B2> d </B2>

Common syntax for many-to-many Insert Query association:
Insert into A values (a, b)
Insert into B values (c, d)
Insert into A_B values (Select Ref (a) From A where a.A

= a, Select Ref (b) From B where b.B = c)

The following are the steps to transform many-to-many association
relationships from XML to Insert query:

176 Widjaya, Taniar, & Rahayu

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

1. Start from the beginning of the XML, insert the values in the Insert query
based on the element in the XML.

2. Since it is many-to-many relationships, in the insert query, we need to have
a middle table that will link from many classes to other classes. The middle
class does not exist in XML. When inserting the values in middle table, we
need to refer to the B table and A table, where the id is the same with the
one that is required.

XML for many-to-many relationship:
<Department>

<student>
<studentid> 123456 </studentid>
<studentname> Nathalia </studentname>

<course>
<courseid> 1212 </courseid>

</course>
<course>

<courseid> 1234 </courseid>
</course>
</student>
<student>

<studentid> 123457 </studentid>
<studentname> Josep </studentname>

<course>
<courseid> 1212 </courseid>

</course>
<course>

<courseid> 1234 </courseid>
</course>
</student>

</Department>

INSERT for many-to-many association relationship:
Insert into Student values (123456, ‘Nathalia’)
Insert into Student values (123457, ‘Josep’)
Insert into Course values (1212, ‘Business System’)
Insert into Course values (1234, ‘Engineering’)
Insert into Enrolls_in values (Select Ref (a) From Student
where
a.student = 123456, Select Ref (b) From Course where b.course

= 1212)

Insert into Enrolls_in values (Select Ref (a) From Student
where a.student = 123456, Select Ref(b) From Course
where b.course = 1234)

Transformation of XML Schema to Object Relational Database 177

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Insert into Enrolls_in values (Select Ref (a) From Student
where a.student = 123457, Select Ref(b) From Course
where b.course = 1212)

Insert into Enrolls_in values (Select Ref (a) From Student
where a.student = 123457, Select Ref(b) From Course

where b.course = 1234)

Inheritance Transformation
Inheritance transformations that will be discussed in this chapter are single

and multiple inheritance relationship.

Single Inheritance Relationship Transformation
There are three types of single inheritance relationship. The first one is

union inheritance implementation. It declares that the union of a group of sub-
classes constitutes the entire membership of the superclass. In union inherit-
ance, we know that every object in the superclass is an object of at least one
of the sub-classes. The second one is the mutual exclusion inheritance imple-
mentation. This type of inheritance declares that a group of sub-classes in an
inheritance relationship is pairwise disjointed. The last type of single inheritance
is partition inheritance implementation. It declares that a group of sub-classes
partitions a superclass.

In this example, we will use the mutual exclusion single inheritance
implementation. Account class is the superclass and it has two sub-classes,
which are saving account and current account. Before we look at the transfor-
mation steps from XML schema into Object-Relational Logical model, let us
have a look at the structure of XML schema for single inheritance relationship.

 XML schema for single inheritance relationship:
<xsd:complexType name="AccountType"/>
<xsd:Sequence>

<xsd:element name = "AccountNo" type = "xsd:integer"/>
<xsd:element name = "Name" type = "xsd:string"/>
<xsd:element name = "Balance" type = "xsd:decimal"/>

</xsd:sequence>

</xsd:complexType>

<xsd:element name = "Saving Account" type =
"SavingAccountType"/>

<xsd:complexType name = "SavingAccountType/>
<xsd:complexContent>

178 Widjaya, Taniar, & Rahayu

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

<xsd:Extension base = "AccountType">
<xsd:element name = "InterestRate" type ="xsd:decimal"/>
</xsd:extension>

</xsd:complexcontent>
</xsd:complextType>
<xsd:element name = "CurrentAccount" type =
"CurrentAccountType"/>
<xsd:complexTypename= "CurrentAccountType"/>

<xsd:complexContent>
<xsd:extension base = "AccountType">
<xsd:element name = "OverDraftLimite" type =
"xsd:decimal"/>
</xsd:extension>

</xsd:complexContent>

 </xsd:complexType>

Figure 10 is the conceptual model for a mutual exclusion single inheritance
based on the XML schema above. There are three steps to transform the XML
schema into Object-Relational Logical model in Oracle 9i.
i. For the superclass C in the generalization relationship, create it as an

object based on a complexType name C in XML schema. Then, create
its attributes based on the element name in XML schema after
<xsd:sequence>. Add another attribute, called C_type, and write Not
Null beside it.

XML schema:
<xsd:complexType name="AccountType"/>

<xsd:Sequence>
<xsd:element name = "AccountNo" type ="xsd:integer"/>
<xsd:element name = "Balance" type = "xsd:decimal"/>
</xsd:sequence>

</xsd:complexType>

ORDB:
Create Or ReplaceCreate Or ReplaceCreate Or ReplaceCreate Or ReplaceCreate Or Replace TypeTypeTypeTypeType Account_T As ObjectAs ObjectAs ObjectAs ObjectAs Object

(AccountNo varchar2 (10),

Name varchar2 (20),

Balance number,

Account_Type varchar2 (10) Not FinalNot FinalNot FinalNot FinalNot Final)

ii. In the XML schema, there is an extension base <xsd:extension
base=Ctype> to show that the element name mentioned previously, is

Transformation of XML Schema to Object Relational Database 179

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

inheritance with Ctype. Create a table for superclass C and create
attributes for it (such as C_id and assign it as a Not Null). For every
element that is inheritance with the superclass and null, we need to check
whether it has C_type in it. Then, create a primary key for that table (such
as C_id).

 XML schema:
<xsd:element name = "Saving Account" type =
"SavingAccountType"/>

<xsd:complexType name = "SavingAccountType/>
<xsd:complexContent>

<xsd:Extension base = "AccountType"><xsd:Extension base = "AccountType"><xsd:Extension base = "AccountType"><xsd:Extension base = "AccountType"><xsd:Extension base = "AccountType">
<xsd:element name = "InterestRate" type =
"xsd:decimal"/>
<xsd:element name = "CurrentAccount" type
="CurrentAccountType"/>

<xsd:complexTypename="CurrentAccountType"/>
<xsd:complexContent>

<xsd:extension base = "AccountType"><xsd:extension base = "AccountType"><xsd:extension base = "AccountType"><xsd:extension base = "AccountType"><xsd:extension base = "AccountType">

 ORDB:
Create TableCreate TableCreate TableCreate TableCreate Table Account OfOfOfOfOf Account_T

(AccountNO varchar2 (10) Account_Type
Check Check Check Check Check (account_type in ('Saving_ account',
'Current_account', 'Null'Null'Null'Null'Null'))

 Primary keyPrimary keyPrimary keyPrimary keyPrimary key (AccountNo));

iii. Next, use ‘under’ to show the inheritance relationship for its sub-class and
the superclass in the Oracle. Declare its attributes type based on the
element name under the sub-class section in the XML schema.

Figure 10: A Mutual Exclusion Generalization Example

Account

Saving Account Current Account

180 Widjaya, Taniar, & Rahayu

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

ORDB:
Create or Replace TypeCreate or Replace TypeCreate or Replace TypeCreate or Replace TypeCreate or Replace Type Saving_account_T UnderUnderUnderUnderUnder Account

 (interest_rate number)

Below is the full example of single inheritance relationship mapping result
in ORDB.

 ORDB for single inheritance relationship:
 Create Or Replace TypeCreate Or Replace TypeCreate Or Replace TypeCreate Or Replace TypeCreate Or Replace Type Account As ObjectAs ObjectAs ObjectAs ObjectAs Object

(AccountNo varchar2 (10)
Name varchar2 (20)
Balance number
Account_Type varchar2 (10) Not FinalNot FinalNot FinalNot FinalNot Final)

 Create Table Create Table Create Table Create Table Create Table Account_T of account
(AccountNo varchar2 (10)
Account_Type

CHECKCHECKCHECKCHECKCHECK (account_type InInInInIn ('Saving_Account',
'Current_Account', 'Null''Null''Null''Null''Null'))

Primary keyPrimary keyPrimary keyPrimary keyPrimary key (id));
Create or Replace TypeCreate or Replace TypeCreate or Replace TypeCreate or Replace TypeCreate or Replace Type Saving_account_T UnderUnderUnderUnderUnderAccount

(Interest_rate number)
Create or Replace TypeCreate or Replace TypeCreate or Replace TypeCreate or Replace TypeCreate or Replace Type Current_account_T UnderUnderUnderUnderUnder Account

(OverDraftLimite number)

Below is the XML and INSERT query for the single inheritance relation-
ship. In the XML, the tag is based on the element declaration in XML schema.
Then, the words or numbers between the tags are the data that will be inserted
into the table.

In the INSERT part, the element in the Insert query should exist as a table
name that is created above. The data that is inserted between elements in the
XML is written in the middle of the quotation mark in the Insert query for string
type and without quotation mark for number or integer. The data in the Insert
query should be entered by following the order of the attributes that are
declared in the create table.

Common syntax for single inheritance relationship for XML:
<AD>
<A>

 b
<C> c </C>

Transformation of XML Schema to Object Relational Database 181

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

<D>

<E> e </E>
<F> f </F>

</D>

</AD>

Common syntax for single inheritance relationship for Insert query:
Insert into AD_T values (A('b', 'c'));

Insert into AD_T values (D('e', 'f'));

The steps below are for transforming from XML to Insert query for the
single inheritance relationship:
1. In the single inheritance relationship, the superclass contains several sub-

classes. In XML, AD is the superclass; and, A and D are the sub-classes
that contain some values.

2. In the Insert query, since the sub-class is inside the composite class, the
insert query will look like the syntax above. The superclass in XML will
be the one that the Insert query will insert the data into. Then, write down
the sub-class and put another bracket to insert the data for that class.

XML for single inheritance relationship:
<SavingAccount>

<AccountNo> 123999011 </AccountNo>
<Name> John Smith </Name>
<Balance> 10000 </Balance>
<InterestRate> 0.05 </InterestRate>

</SavingAccount>

<CurrentAccount>

<AccountNo> 123999011 </AccountNo>
<Name> John Smith </Name>
<Balance> 10000 </Balance>

<OverDraftLimit> 5000 </OverDraftLimit>

</CurrentAccount>

Insert for single inheritance relationship:

Insert into Account_T Values (Saving_account(123999011, ‘John
Smith’, 10000, 0.05));

182 Widjaya, Taniar, & Rahayu

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Insert into Account_T Values (Current_account(123999011, ‘John

Smith’, 10000, 5000));

Multiple Inheritance
The example that we use for this transformation is Administration class.

Administration is the superclass, and it has two sub-classes, which are project
assistant and coordinator. ISI People class can be said to be inheriting from
overlapping classes because, basically, an ISI People can be a Project
Assistant who is also a coordinator member. Although Oracle has added some
inheritance features in its Oracle 9 version, it still does not have a facility for
handling multiple inheritance. The best way to handle multiple inheritance from
overlapping classes is to use one table for each superclass and one table for the
sub-class.

Before describing the transformation steps from XML schema into Ob-
ject-Relational Logical model, we present the XML schema for multiple
inheritance relationship.

XML schema for multiple inheritance relationship:
<xsd: complexType name = "Administrator">
<xsd: sequence>
<xsd: element name = "id" type = "xsd: string"/>
<xsd: element name = "name" type = "xsd: string"/>
<xsd: element name = "address" type = "xsd:string"/>
</xsd:sequence>
</xsd:complexType>

<xsd: complexType name = "ProjAssistant">
<xsd:complexContent>
<xsd:extension base = "Admin">

<xsd: sequence>
<xsd: element name = "Project" type = "xsd:
string"/>

</xsd: sequence>
</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

<xsd: complexType name = "Coordinator">
<xsd: complexContent>

<xsd:extension base = "Admin"/>
</xsd: complexContent>

</xsd:complexType>

Transformation of XML Schema to Object Relational Database 183

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

<xsd: element name = "Coordinator" type = "Coordinator"/>
<xsd: element name = "ProjAssistant" type = "ProjAssistant"/>
<xsd: element name = "ISIPeople">

<xsd: complexType>
<xsd: choice minOccurs = "0" maxOccurs = "unbounded">

<xsd: element ref = "Coordinator"/>
<xsd: element ref = "ProjAssistant"/>

</xsd: choice>
</xsd: complexType>

</xsd:element>

By looking at the structure of multiple inheritance in XML schema, we can
draw the conceptual diagram for it. Figure 11 shows the conceptual model of
multiple inheritance relationship based on the XML schema above.

There are three steps to transforming the XML schema into Object-
Relational Logical model in Oracle 9i.
i. For the superclass C in the generalization relationship, create it as a table

based on a complexType name C in XML schema. Then, create its
attributes based on the element name in XML schema after
<xsd:sequence>. The id for each table needs to be created as a Not
Null. In the create table for the superclass, create a primary key and put
“id” as its primary key.

XML schema:
<xsd: complexType name = "Administrator">
<xsd: sequence>
<xsd: element name = "id" type = "xsd: string"/>
<xsd: element name = "name" type = "xsd: string"/>
<xsd: element name = "address" type = "xsd:string"/>
</xsd:sequence>

</xsd:complexType>

ORDB:
Create TableCreate TableCreate TableCreate TableCreate Table Administrator

(id VARCHAR2 (10) NOT NULLNOT NULLNOT NULLNOT NULLNOT NULL,

 name VARCHAR2 (20),
 address VARCHAR2 (35),

 Primary Key Primary Key Primary Key Primary Key Primary Key (id));

ii. In the XML schema, there is an extension base <xsd:extension
base=Ctype> to show the element name that is mentioned before it and

184 Widjaya, Taniar, & Rahayu

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

its inheritance with Ctype. Create a table for sub-class C1 and create its
attributes (such as C_id and assign it as a Not Null). Then, create two
keys, one is primary key and the other is foreign key, that refer to the
superclass id.

XML schema:
<xsd: complexType name = "ProjAssistant">

<xsd:complexContent>
<xsd:extension base = "Admin">

<xsd: sequence>
<xsd: element name = "Project" type = "xsd:
string"/>

</xsd: sequence>
</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

<xsd: complexType name = "Coordinator">
<xsd: complexContent>

<xsd:extension base = "Admin"/>
</xsd: complexContent>

</xsd:complexType>

ORDB:
Create Table Create Table Create Table Create Table Create Table ProjAssistant

(id VARCHAR2 (10) NOT NULLNOT NULLNOT NULLNOT NULLNOT NULL,
project VARCHAR2 (40),

Administration

Project Assistant Coordinator

ISI People

Figure 11: Multiple Inheritance

Transformation of XML Schema to Object Relational Database 185

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Primary KeyPrimary KeyPrimary KeyPrimary KeyPrimary Key (id),
Foreign KeyForeign KeyForeign KeyForeign KeyForeign Key (id) ReferencesReferencesReferencesReferencesReferences Administrator (id) OnOnOnOnOn
DeleteDeleteDeleteDeleteDelete
CascadeCascadeCascadeCascadeCascade) ;

Create Table Create Table Create Table Create Table Create Table Coordinator
(id VARCHAR2 (10) NOT NULLNOT NULLNOT NULLNOT NULLNOT NULL,
Primary KeyPrimary KeyPrimary KeyPrimary KeyPrimary Key (id),
Foreign KeyForeign KeyForeign KeyForeign KeyForeign Key (id) ReferencesReferencesReferencesReferencesReferences Administrator (id) OnOnOnOnOn
DeleteDeleteDeleteDeleteDelete

CascadeCascadeCascadeCascadeCascade);

iii. Lastly, create the table for the sub-class that has multiple parents. This
table also has two keys, primary key and foreign key, that refer to the
superclass C id.

XML schema:
<xsd: element name = "ISIPeople">

<xsd: complexType>
<xsd: choice minOccurs = "0" maxOccurs = "unbounded">

<xsd: element ref = "Coordinator"/>
<xsd: element ref = "ProjAssistant"/>

</xsd: choice>
</xsd: complexType>

</xsd:element>

ORDB:
Create Table Create Table Create Table Create Table Create Table ISIPeople

(id VARCHAR2 (10) NOT NULL,NOT NULL,NOT NULL,NOT NULL,NOT NULL,
Primary KeyPrimary KeyPrimary KeyPrimary KeyPrimary Key (id),
Foreign KeyForeign KeyForeign KeyForeign KeyForeign Key (id) ReferencesReferencesReferencesReferencesReferences Administrator (id)
On DeleteOn DeleteOn DeleteOn DeleteOn Delete

CascadeCascadeCascadeCascadeCascade);

Below is the full example of multiple inheritance relationship in ORDB after
it is transformed from XML schema.

ORDB for multiple inheritance relationship:
Create TableCreate TableCreate TableCreate TableCreate Table Administrator

(id VARCHAR2 (10) NOT NULLNOT NULLNOT NULLNOT NULLNOT NULL,
name VARCHAR2 (20),
address VARCHAR2 (35),
Primary KeyPrimary KeyPrimary KeyPrimary KeyPrimary Key (id)) ;

186 Widjaya, Taniar, & Rahayu

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Create Table Create Table Create Table Create Table Create Table ProjAssistant
(id VARCHAR2 (10) NOT NULLNOT NULLNOT NULLNOT NULLNOT NULL,
project VARCHAR2 (40),
Primary KeyPrimary KeyPrimary KeyPrimary KeyPrimary Key (id),
Foreign KeyForeign KeyForeign KeyForeign KeyForeign Key (id) ReferencesReferencesReferencesReferencesReferences Administrator (id) OnOnOnOnOn
DeleteDeleteDeleteDeleteDelete
CascadeCascadeCascadeCascadeCascade) ;

Create Table Create Table Create Table Create Table Create Table Coordinator
(id VARCHAR2 (10) NOT NULLNOT NULLNOT NULLNOT NULLNOT NULL,
subject VARCHAR2 (25),
Primary KeyPrimary KeyPrimary KeyPrimary KeyPrimary Key (id),
Foreign KeyForeign KeyForeign KeyForeign KeyForeign Key (id) ReferencesReferencesReferencesReferencesReferences Administrator (id) OnOnOnOnOn
DeleteDeleteDeleteDeleteDelete
CascadeCascadeCascadeCascadeCascade) ;

Create Table Create Table Create Table Create Table Create Table ISIPeople
(id VARCHAR2 (10) NOT NULL,NOT NULL,NOT NULL,NOT NULL,NOT NULL,
office VARCHAR2 (10),
Primary KeyPrimary KeyPrimary KeyPrimary KeyPrimary Key (id),
Foreign KeyForeign KeyForeign KeyForeign KeyForeign Key (id) ReferencesReferencesReferencesReferencesReferences Administrator (id) OnOnOnOnOn

Delete CascadeDelete CascadeDelete CascadeDelete CascadeDelete Cascade);

Common syntax for multiple inheritance relationship for XML:
<AD>
 <A>

 b
<C> c </C>

<D>
 b
<E> e </E>

</D>

<F>
 b
<G> g </G>

</F>

</AD>

Common syntax for multiple inheritance relationship for Insert query:
Insert into A values ('b', 'c');
Insert into D values ('b', 'e');

Insert into F values ('b', 'g');

Transformation of XML Schema to Object Relational Database 187

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The steps below are for transforming from XML to Insert query for the
multiple inheritance relationship:
i. In the multiple inheritance relationship, the subclass has two superclasses.

In XML, AD is the superclass; and, A and D are the sub-classes that
contain some values. F is the sub-class that has two superclasses, which
are A and D.

ii. When doing the transformation from XML to Insert query, each class in
XML will be treated as a table in the Insert query, and all the values in the
XML will be inserted in that table according to its order.

Below is the XML and INSERT query for the single inheritance relation-
ship.

XML for multiple inheritance relationship:

<Administrator>
<id> 123 </id>
<name> Josep </name>
<address> 570 Lygon St </address>

<ProjAssistant>
<id> 123 </id>
<name> Josep </name>
<address> 570 Lygon St </address>
<project> computer project </project>

</ProjAssistant>
<Coordinator>

<id> 123 </id>
<name> Josep </name>
<address> 570 Lygon St </address>
<subject> mathematics </subject>

</Coordinator>
<ISIPeople>

<id> 123 </id>

<name> Josep </name>

<address> 570 Lygon St </address>
<office> B506 </office>

<ISIPeople>

</Administrator>

Insert query for multiple inheritance relationship:

188 Widjaya, Taniar, & Rahayu

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Insert into Administrator Values (123, ‘Josep’, 570 Lygon
St’);
Insert into ProjAssistant Values (123, ‘Josep’, ‘570 Lygon
St’,‘computer project’);
Insert into Coordinator Values (123, ‘Josep’, ‘570 Lygon
St’,’mathematics’);
Insert into ISIPeople Values (123, ‘Josep’, 570 Lygon St’,

‘B506’);

CONCLUSION AND FUTURE WORK
In this chapter, we have investigated the transformation from XML schema

to the ORDB by using Oracle 9i. We emphasised the transformation of
aggregation, association and inheritance relationships to help people
easily understand the basic object conceptual mapping that we proposed. This
transformation is important because people always eliminate the object-
oriented conceptual features when they transform XML schema to the data-
base.

Our research gives better solutions in transforming XML schema into
ORDB, rather than the XML features that Oracle 9i has. Oracle 9i can only
convert all the data or query result in XML format, but it does not deal with the
type of database that is used, such as relational database or object-oriented
database, like we do. This transformation can be applied on any XML
documents that use XML schema.

Our future work is being planned to investigate more transformation from
XML schema to ORDB for other XML schema features that have not been
discussed in this chapter. In addition, further research should be done to create
a query from XML schema to get the data from the Oracle 9i databases.

REFERENCES
Bray, T., Paoli, J., & Sperberg-McQueen, C. M. (eds.). (1998). Extensible

markup language (XML) 1.0. W3C. Available at: http://www.w3c.org/
TR/REC-xml.

Conrad, R., Scheffner, D., & Freytag, J. C. (2000). XML Conceptual
Modeling Using UML. Berlin: HU Berlin, Institute of Computer Science
(Technical Report).

Dillon, T. & Tan, P. L. (1993). Object-oriented Conceptual Models. New
York: Prentice Hall.

Transformation of XML Schema to Object Relational Database 189

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Fong, J., Pang, F., & Bloor, C. (2001). Converting relational database into
XML document. In Proceedings of the 12th International Workshop
on Database and Expert Systems Applications (pp. 61-65).

Klettke, M. & Meyer, H. (2001). XML and object-relational database
system. Lecture Notes in Computer Science (Vol. 1997, pp. 151-170).
Berlin: Springer-Verlag.

Mani, M., Lee, D., & Muntz, R. (2001). Semantic data modelling using XML
schemas. Lecture Notes in Computer Science (Vol. 2224, pp. 149-
163). Berlin: Springer-Verlag.

Shanmugasundaram, J. et al. (2001). Efficiently publishing relational data as
XML documents. The VLDB Journal, 10, 133-154.

Stonebraker, M. & Moore, D. (1996). Object-relational DBMSs: The Next
Great Wave. San Francisco, CA: Morgan Kaufmann.

Widjaya, N. D., Taniar, D., & Rahayu, J. W. (2003). Inheritance relationship
transformation of XML schemas to object-relational databases. Pro-
ceedings of the 4th International Conference on Intelligent Data
Engineering and Automated Learning (IDEAL 2003), Hong Kong.

Widjaya, N. D., Taniar, D., Rahayu, J. W., & Pardede, E. (2002). Association
relationship transformation of XML schemas to object-relational data-
bases. Proceedings of the 4th International Conference on Informa-
tion Integration and Web-based Applications and Services (IIWAS
2002).

Xiao, R., Dillon, T., Chang, E., & Feng, L. (2001). Modelling and transforma-
tion of object-oriented conceptual models into XML schema. Lecture
Notes in Computer Science (Vol. 2113, pp. 795-804). Berlin: Springer-
Verlag.

Yang, X. & Wang, G. (2001). Efficiently mapping referential integrity con-
straints from relational databases to XML. Lecture Notes in Computer
Science (Vol. 2151, pp. 338-351). Berlin: Springer-Verlag.

Yang, X. & Wang, G. (2001). Mapping referential integrity constraints from
relational databases to XML. Lecture Notes in Computer Science (Vol.
2118, pp. 329-340). Berlin: Springer-Verlag.

190 Widjaya, Taniar, & Rahayu

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

SECTION III

WEB INFORMATION EXTRACTION

A Practical Approach to the Derivation of a Materialized Ontology View 191

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter VI

A Practical Approach
to the Derivation of a

Materialized Ontology View
Carlo Wouters, La Trobe University, Australia

Tharam Dillon, University of Technology Sydney, Australia

Johanna Wenny Rahayu, La Trobe University, Australia

Elizabeth Chang, Curtin University, Australia

Robert Meersman, Vrije Universiteit Brussel, Belgium

ABSTRACT
The success of the semantic web depends largely on how well ontologies
can be utilized and formulated. Interoperability between systems using
different versions of the same ontology is essential, and this implies the
need for a regulated derivation of materialized ontology views (which can
be considered a modified version of an ontology). This chapter applies the
formalisms for such a derivation process to a practical example,
emphasizing the possibility for automation, and also for optimization, to
develop a high-quality derived ontology.

192 Wouters, Dillon, Rahayu, Chang, & Meersman

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

INTRODUCTION
In recent years, the unstructured storage of data, especially on the World

Wide Web, and the difficulties experienced with retrieving relevant data with
the existing search engines, have triggered new research aimed at ameliorating
information retrieval and storage. New ways of storing information meant for
the internet were developed, such as XML (W3C, 1999a), HTMLa (Fensel,
Decker, Erdmann, & Studer, 1998), DTD and RDF (W3C, 1999b). These
languages provide a tool to store the information in a structured way, but, with
that, another problem arose; everyone was free to develop their own taxonomy
of how they want to categorize their information. Some examples can be found
in Heflin, Hender and Luke (1999) and Harmelin and Fensel (1999). It is clear
that widely accepted standards should be used as metadata to define how the
actual information is split up, no matter what language or syntax is used to
implement this. These widespread standards are formulated as ontologies. In
the initial and very broad definition (Gruber, 1993a, 1993b), an ontology is a
specification of a conceptualization of a problem domain.

The first wave of ontology applications and researchers mainly concen-
trated on getting an effective system up, and solving the apparent issues that had
been holding back knowledge acquisition from the Internet and related
resources. A number of these have turned out to be beneficial, but without any
of them clearly standing out, and no single standard has been agreed upon
(Hovy, 1998). Since then, we have seen the merging of some of the standards
— e.g., OIL incorporating elements of OKBC (Fensel et al., 2000), XOL and
RDF, Ontolingua using KIF (Genesreth, 1991; Genesreth & Fikes, 1992;
Gruber, 1992) — and diversification of others.

Now that the first generation of ontology applications has settled in, more
complicated issues and considerations have reared their heads, such as the
quality of ontologies in all their facets (see Colomb & Weber, 1998; Guarino
& Welty, 2002; Hahn & Schnattinger, 1998; Kaplan, 2001; Holsapple &
Joshi, 2002). Improvements need to be made to the systems that are already
in place, and theoretical and practical modifications are required for versioning,
maintenance and distribution of ontologies. Furthermore, a continuing integra-
tion of different existing systems is needed.

Ontologies tend to grow larger, to a point where, ideally, the entire world
is modeled in one super-ontology (Lenat, 1995), providing great compatibility
and consistency across all sub-domains. But practically, it introduces the new
problem of being too vast to be used in its entirety by any application.
Considering the Internet as a data repository, it seems clear that users with a
very slow or costly connection to this repository might opt to get a local,

A Practical Approach to the Derivation of a Materialized Ontology View 193

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

modified copy of the repository to base views upon and to query in other ways.
It seems highly unlikely that someone will be able to copy the entire contents
of the World Wide Web to a local repository, and even more unlikely that all
this data will actually be used in whatever application the user might intend it to
be used for. If a business just needs access to information on shares, it would
not benefit from all the other information that their local copy would contain.
This is just one of the many reasons why a complete ontology might not be a
valid structuring option for certain users. Another reason can be found in
varying levels of security and confidentiality — not necessarily every user of an
ontology has the same access rights, and using a smaller ontology, merely
containing the appropriate parts of the base ontology, might enable local
copies. Efficiency of querying repositories might be another reason for having
a simplified, local version of an ontology; and many more can be found. A lot
of research is carried out trying to solve the various problems that arise from
impractical or unmanageable large ontologies, such as research on the manage-
ment, modification, merging and versioning of ontologies (see Hovy, 1998;
McGuinness, Fikes, Rice, & Wilder, 2000; Klein, Fensel, Kiryakov, &
Ognyanov, 2002; Klein & Fensel, 2001; Noy & Klein, 2002; Heflin &
Hendler, 2000; Heflin, Hendler, & Luke, 1999; Wouters, Dillon, Rahayu, &
Chang, 2002).

It is imperative that when an ontology view is derived, the quality of the
resulting ontology is as high as possible. First of all, this is done by ensuring that
the intentions of the ontological engineer are satisfied, and the resulting design
is a consistent, cohesive, complete, and well-formed ontology. Secondly, a
fine-tuning process further enhances the quality of the ontology view, i.e.
ensuring that the obtained solution is one of the most efficient, flexible, simple,
versatile, etc. solutions. The derived materialized ontology view should be
usable as the base for an independent system, i.e., be an ontology in its own
right.

In this chapter, a practical approach is taken to demonstrate the entire
process of deriving a materialized ontology view. A particular case is examined
and used to explain, in plain language, the meaning and intention of the rules that
are the foundation of the theoretical research. In the next section, some of the
theoretical background behind the derivation process and the optimization
schemes in particular is given. This chapter does not aim to justify these
formalisms — these can be found in Wouters et al. (2003) — but rather
demonstrates the practical usefulness and automation possibilities of these
formalisms. Another emphasis is the optimization, as it results in a high-quality
ontology. A high-quality of the obtained materialized ontology view is ensured

194 Wouters, Dillon, Rahayu, Chang, & Meersman

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

by the optimization schemes. Finally, a brief outline of future research will be
given, eventually leading up to an integrated transformation environment for
ontologies, interfacing with existing international standards.

BACKGROUND
In this chapter the practical application of a derivation process formalism

is the main focus, but, before the practical side can be explored, first, a brief
summary of the theoretical background needs to be presented, which is done
in this section. Where possible, the mathematical background and formal rules
are left out and replaced by a plain text explanation that serves to provide a
better intuitive understanding. The downside to this is the lack of a rigorous
justification of each step taken in algorithms. However, as mentioned before,
the justification is not the aim of this chapter, and including it here would distract
from the subject at hand, i.e., how such theories and algorithms can be used in
a real example to obtain a high-quality result. For the mathematical formalisms,
we refer the reader to Wouters et al. (2003). In this section, the main focus goes
to the definition of an ontology, firstly, and to the introduction of optimization
schemes, secondly.

Ontology Definition
Throughout this chapter, an understanding of some key elements of an

ontology is necessary; and so, it becomes imperative to start with a formal
definition of an ontology as it is used in this context. It should be noted that more
elaborate definitions are possible, but the definition presented here serves the
purpose of deriving a high-quality materialized ontology view.

Intuitively, ontologies conceptually represent a perceived world through
concepts (here, set C), attributes (set A), and relationships (set B). Concepts
may represent the different higher-level components of this world, and each
component may have attributes (represented through attribute mapping attr).
These attributes may be derived from the characteristics of components of the
world. Relationships may also hold between these concepts. Both sets M are
cardinality sets, linked to either attributes (M

a
) or relationships (M

b
).

For practical reasons, only binary relationships are considered here. Note
that binary relationships are most frequent currently in modeling. Unary models
are not modeled, since these are taken care of by forming subtypes. N-ary
relationships are not considered as transformation of this type of relationship to

A Practical Approach to the Derivation of a Materialized Ontology View 195

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

binary relationships is possible. For a more comprehensive treatment of arity
of relationships, see Nijssen and Halpin (1989) and Halpin (1995).

An Ontology Graph is defined as a graph that is made up of the concepts
of an ontology, with its vertices and relationships as its edges. One restriction
that is very important here is that an Ontology Graph always has to be an
interconnected graph (containing only one proper component) (see Von Staudt
(1847) and Biggs, Lloyd and Wilson (1976). As a result, a valid ontology has
to have a graph mapping that is one interconnected component. Separate
components will be referred to as islands in an ontology. The result of this
requirement in the definition is demonstrated in , where the whole diagram is the
representation of an invalid ontology, or two valid ontologies. In other words,
the whole is not considered an ontology (because not all concepts have a
semantic connection with all other concepts). Although not a distinction in a
number of standards, this restriction, nonetheless, allows for automation that
would be a lot more complex otherwise, if possible at all.

The relationships that are considered in set B are further split up into three
categories: inheritance relationships (B

i
); aggregation relationships (B

agg
); and

association relationships (B
s
). More information will be provided on these sets

when they are used, but, semantically, they hold the same meaning as in Object-
Oriented Modeling (Rumbaugh, 1991; Rumbaugh, Jacobson, & Booch,
1999).

We define
An ontology O∈ϑ ⇔ O≡<C, A, attr, B, M

a
, M

b
 >

with
C = finite ∧ C≠∅
A = finite
attr:C�2A

B⊆C×C ∧ B= B
s
∪B

i
∪B

agg

M
a
:attr�card2

M
b
:B�card4

∀a∈A, ∃c∈C: a∈ attr(c)
∃ an Ontology Graph G

O
 for O

Figure 1: Definition of Ontology (Wouters et al., 2003)

196 Wouters, Dillon, Rahayu, Chang, & Meersman

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

tit
le

P
er

so
n

fir
st

 n
a

m
e

su
rn

am
e

Le
tte

r

1
2

D
oc

um
en

t

na
m

e
da

te
bo

dy

Ju
ry

aw
ar

ds

P
ri

ze

m
on

ey
 v

al
ue

pr
iz

e
na

m
e

oc
cu

ra
nc

y

w
in

s
A

ut
ho

r

pu
bl

is
he

r
pa

ys
E

m
pl

oy
er

A
B

N
bu

dg
et

A
rt

ic
le

ed
ito

r

ar
ea

P
ap

er

co
nt

ac
t a

dd
re

ss
to

pi
c

gr
ee

tin
g

ad
dr

es
s

si
gn

at
ur

e

M
a

g
a

zi
n

e

ed
ito

r
ad

dr
es

s
na

m
e

M
a

g
a

zi
n

e
 A

rt
ic

le
N

e
w

s
A

rt
ic

le

W
ri

te
r

ge
nr

e

ag
en

cy
_

na
m

e

ap
po

in
ts

C
om

m
itt

ee

na
m

e
sp

ec
ia

lit
y

0.
.*

0.
.*

0.
.*

1.
.*

0.
.*

0.
.*

0.
.*

0.
.*

0.
.*

1.
.*

1

1

1

Representing the Ontology
Following Spyns, Meersman and Mustafa (2002), the ‘semantics’ of an

ontology is the range of interpretation mapping of an application environment
onto an ontology. Note that the semantics of the real world problem are
replaced by an ontology. Some examples of an application environment are

Figure 2: Two Valid Ontologies (1 and 2), but Together Resulting in
Invalid Ontology

A Practical Approach to the Derivation of a Materialized Ontology View 197

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

RDBMS, software applications, documents, website, etc. While it is recog-
nized that there are important differences between an ontology and a concep-
tual model, for the purpose of deriving sub-ontologies, these are immaterial.
Frequently, a conceptual model can be considered to be an ontology expressed
in a chosen syntax. However, this syntax should not impact the definitions and
theorems presented, and, for the purpose of this chapter, this difference is
irrelevant.

Throughout this chapter, the Unified Modeling Language (UML) (see
(Rumbaugh, Jacobson, & Booch, 1999) is sometimes used to graphically
represent an ontology, but it is not the intention to show the suitability of UML
for the modeling of ontologies. UML is merely a convenient modeling notation
that, for practical reasons, was chosen to highlight aspects of ontologies. There
should be no confusion as to the difference of the ontology and the modeling
notation used to represent it, and by no means is it the intention of the authors
to promote this modeling notation to a higher status. UML is used to represent
object-oriented models, and, as our definition of an ontology has concepts
(similar to classes), attributes, and relationships, it was found convenient to use
this easy to read data model to illustrate aspects of semantics of ontologies. One
could, however, choose any alternative notation such as semantic nets (Feng,
Chang, & Dillon, 2002) to illustrate the issues.

Besides UML, a number of other possibilities exist to graphically represent
an ontology (or certain aspects of it). Some modeling languages are briefly
discussed here, and some references are given for the interested reader to learn
more about these tools.

The oldest and widely accepted standard of Entity Relationship Model
(ER Model) (see Chen, 1976) has been around since the ’70s, and has proven
its usefulness to graphically represent the design of a Relational Database. One
of the advantages ER has is that it stays very close to its intended implemen-
tation platform (Relational Databases). This contributed to the vast success of
ER, as it is easy to use, read, and understand by designers who are familiar with
Relational Databases. However, to represent ontologies, this advantage be-
comes a disadvantage because ontology designs and representations should
emphasize the semantics of the model, and should be completely abstracted
and independent from the implementation platform. Another downside to using
ER is its limited expressiveness.

Another standard that can be considered for ontology representation is the
Object Role Modeling (ORM) (see Nijssen & Halpin, 1989; Halpin, 1995).
ORM provides a fact-based approach to designing, which leads to a model that
is easier to understand and use by domain experts who are unfamiliar to

198 Wouters, Dillon, Rahayu, Chang, & Meersman

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

software engineering or data modeling. Domain experts can give facts about the
domain in plain language (e.g., “Book A is written by Author X”), and these can
be used to shape the model (in our case, this model represents the ontology that
is the conceptualization of the particular problem domain). When applied
rigorously, ORM leads to a very precise representation of the problem domain
(called the Universe of Discourse - UoD), with much more semantic signifi-
cance than an ER model could ever entail. The reasons for not using this
representation language in this chapter are bifold: (i) the resulting representation
tends to be larger in ORM than the corresponding UML diagram; and (ii)
because of the specific treatment of attributes and their connection to concepts
(called attribute mapping throughout this chapter), UML graphically repre-
sents all the necessary key-components, while there would be an overload of
information in the ORM representation that is not relevant to the research
described in this chapter.

The last standard that is discussed here is a newer standard, called
Semantic Net (Feng et al., 2002). This methodology focuses on the modeling
of XML documents, and is split up into a semantic level and a schema level part.
The semantic level closely resembles the needed setup for an ontology
modeling tool, and can be used as such. However, to be used in this chapter,
several extensions to this standard are required. The standard can not be used
in its current form. Another disadvantage is its similarity to ORM in regards to
how attributes — and attribute mappings — are modeled. As mentioned
previously, attributes and their specific connections are treated in an automated
processing way, so there is no need to explicitly depict these connections
through a connecting line, as is done in ORM and Semantic Net. In UML,
attributes reside in the container that is a class (or concept, in the terminology
used in this chapter), but no actual line between the two is visible.

The authors would like to emphasize that the reasons for using UML solely
apply to this chapter and to the research discussed herein, and that, for other
situations, the choice of modeling tool would likely be different. Even extension
of the optimizations schemes that are central to the derivation process might
make another representation language more suitable.

Optimization Schemes
The intention of the processes that are introduced here is to go from a

certain ontology — referred to as base ontology — to a derived ontology,
which is a materialized ontology view2 of the base ontology. This materialized
ontology view always has a certain semantic connection to the base ontology,

A Practical Approach to the Derivation of a Materialized Ontology View 199

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

but what this connection is can differ from one solution to another. Or, to be
precise, depending on how an ontology engineer defines the connection, a
different view will be obtained. The optimization schemes that are introduced
in this section provide the ‘language’ in which the type of semantic link between
the base and derived ontology can be expressed. They are set up in a way that
makes it easy for nonexperts to utilize them as well.

An optimization scheme always needs a solution set as an input. This
solution set is nothing more than a labeled ontology. The output of an
optimization scheme is one or multiple solution sets. The labeling of an ontology
applies mainly to concepts, attributes and relationships. For attribute map-
pings, automatic derivation from the labeling of attributes and concepts proves
sufficient. There is no labeling necessary for cardinalities, as their specific
semantic connection with other ontological elements does not make them
require a labeling.

In a less abstract way, this means that every concept, attribute and
relationship gets a certain tag. The options for these tags are “deselected,”
“selected” and “void.” An element that is tagged (or labeled) as “selected” is
an element that decidedly needs to be present in the materialized ontology view,
while “deselected” means exactly the opposite, i.e., the element should
definitely not be a part of the solution. Naturally, “void” indicates that no
decision has been made yet. In practice, most of the elements will start out with
a “void” labeling, but in the end, no “void” tags should be present anymore.
Putting all the selected elements together gives us a valid materialized ontology
view. Throughout this chapter, selected elements are circled and deselected
elements are crossed out in their UML representation.

Every optimization scheme has a different emphasis, and provides a set of
rules and/or algorithms of how to go from the base ontology to an (intermediate)
solution set for a materialized ontology view. For instance, the first optimization
scheme that should be applied to every base ontology is called a “requirement
consistency optimization scheme” (RCOS). This optimization scheme ensures
that there are no contradictions in the labeling. To demonstrate how the rules
are formulated mathematically, we set up RC Rule 1 (Figure 3).

In this case, the rule states that no relationship can be labeled “selected”
if one of the concepts it is connecting is deselected. This rule arises from the fact
that the relationship can only be in the end solution (in unmodified form) as long
as both concepts that it connects are there as well; but, one of these concepts
cannot be a part of the solution if it is labeled “deselected.” In short, this is a
contradiction in what is wanted in the end solution, and is prevented by this rule.

200 Wouters, Dillon, Rahayu, Chang, & Meersman

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The following section will introduce a practical example and then discuss
the optimization schemes it uses to get to an optimized materialized ontology
view, where the preference for optimization is obtaining a simplified version of
the base ontology.

OPTIMIZATION SCHEMES ALGORITHMS:
A WALKTHROUGH CASE STUDY

This section demonstrates the optimization schemes in action by means of
a practical walkthrough. At the start of each section, the actual optimization
scheme will be explained without going into too much mathematical detail. The
original algorithm is given, in appropriate formalism. Their meanings are
elaborated when applying them to the practical examples.

The first task that the ontology engineer has to complete is to decide what
kind of optimization is desirable. There are a couple of optimization schemes
that are always necessary in a chain of schemes, but mostly these can be freely
selected and put in a certain order. Note that using the same optimization
schemes but in a different order might result in a different materialized ontology
view. Such an ordering is referred to as a priority list of optimization schemes,
and represents the sequence in which the optimization schemes are applied.
Note that the word “priority” here refers to a sequential or chronological
priority, i.e., a higher priority means an optimization scheme is applied before
another scheme with a lower priority. In the priority list, this translates to firstly
applying the optimization scheme with priority “1,” then the one with “2,” etc.
Here, the following priority list was decided on:
1. RCOS (Requirement Consistency)
2. WFOS (Well Formedness)

(1)

Figure 3: RC Rule 1 (Wouters et al., 2003)

Given an ontology O=<C, A, attr, B, M
a
, M

b
 > with a labeling

δ applied to O
∀b∈B: δ

C
(π

1
(b))=deselected ∨ δ

C
(π

2
(b))= deselected

⇒¬(δ
B
(b)= selected)

A Practical Approach to the Derivation of a Materialized Ontology View 201

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

3. SCOS (Semantic Completeness)
4. ESOS (Extreme Simplicity)
5. WFOS (Well Formedness)

Note that it is possible to have the same optimization scheme more than
one time in a priority list. The priority list given here can be interpreted as first
applying the RCOS, and then using that output solution set as the input solution
set for the WFOS, and so forth. The first two schemes are a standard choice,
as is the last scheme, and, for normal use, they always appear in those positions.
The first one ensures that there are no inconsistencies in what a labeling of an
ontology specifies, as that would make it impossible to determine a optimized
solution. The second scheme makes sure that the following schemes can rely on
a well-formed ontology in the solution set (this occasionally is a requirement for
the input of an optimization scheme). The last scheme (again WFOS) guaran-
tees that the result is, in fact, a valid ontology. Usually, changes that are made
will not render the ontology invalid, but it is a possibility; having the WFOS as
a last step prevents the end result from being invalid. The two middle schemes
(3 and 4) are the heart of this particular derivation process. In plain words, the
ontology engineer requests the simplest solution that is semantically complete.
More information on the meaning of this is provided throughout the next
sections.

Firstly, the scenario that will be used as an example is introduced, together
with the initial requirements labeling. Together, they make up the initial solution
set that is used as the input for the first optimization scheme. Every optimization
scheme will be explained and applied in a separate section, following the order
of the priority list. As the entire process can become quite lengthy, especially
when written down, non-interesting or irrelevant steps receive a quick mention
without further scrutiny. This allows us to focus on the more important steps,
particularly those leading to modifications.

Illustrative Case Study
The first step in this practical walkthrough is the introduction of the base

ontology. As mentioned, this is the original ontology that is used as a starting
point to derive a materialized ontology view. The reasons for such a derivation
can be many, as was indicated in the introduction, and one is chosen here as an
example. Note that often these reasons will partly — or even completely —
determine the priority list of optimization schemes.

Let us consider here the case of a magazine publisher which uses an
ontology as the basis of its knowledge information system. This publishing

202 Wouters, Dillon, Rahayu, Chang, & Meersman

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

company has a number of daughter companies, some of which publish
magazines themselves. One of the daughter companies specializes in analyzing
which magazines won what prizes, when they were won, the consistency
throughout time, and so forth. They do not want, nor do they require, all the
information modeled in the basis ontology as used by the main publisher, and
because the daughter company is located in a remote office, a local copy of the
ontology (and data) is needed. In Figure 4, a UML representation of relevant
aspects of the base ontology as used by the main publisher is shown. This
ontology is part of the solution set that is used as the initial input for the first
optimization scheme. However, as specified earlier, a labeling needs to be
introduced as well. Note that, by default, we always use a “void” labeling for
every element, so even if no labeling is specified, this default labeling enables
the optimization schemes to use the base ontology as an input solution set.
However, in our example, we will slightly modify this default labeling to
demonstrate how and why this is done.

The publishing company is not prepared to give all the information it
possesses. For instance, it considers the Committee information it has as not
being appropriate for the statistical center to use. This translates into a
“deselected” labeling of this concept. After discussion with the statistical
center, the publisher decides to not put any restriction on the attributes of the
concept “Committee,” but still not allow the concept itself to be taken in the

Figure 4: UML Representation of the Base Ontology

A Practical Approach to the Derivation of a Materialized Ontology View 203

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

ontology view, as this might give an insight into its inner workings. It wants to
prevent this in case someone gets a hold of this local copy of the ontology.

Once the stats center has set out its main focus, it has some initial elements
in the ontology of which it is certain should be present in the solution as well.
These elements are labeled as “selected.” For instance, the concept “Prize,”
together with all its attributes, is considered crucial for the materialized ontology
view, and thus, these elements are selected. A resulting initial labeling is
introduced in Figure 5, where the selected elements are circled, and the
deselected elements are crossed out. The void elements are all the other
(unmarked) elements. There are 11 selected elements and one deselected
element.

As was mentioned in the labeling section, an automated attribute mapping
is applied here. This means that the connections between concepts and
attributes (not explicitly shown as such in UML, but an attribute inside a
concept, ‘belongs’ to that concept, and that is a connection) do not have to be
labeled by a person, but that their default mapping is modified automatically to
enforce the concept, attribute, and relationship labeling.

This automation of the mapping consists of the application of two rules:
• If there is an attribute mapping between a selected concept and a

selected attribute, this mapping receives a “selected” label as well.

Figure 5: UML Representation of the Ontology and Initial Labeling

204 Wouters, Dillon, Rahayu, Chang, & Meersman

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• If the concept or attribute of a certain attribute mapping is labeled
“deselected”, this mapping becomes deselected as well.

An example of this is that attributes which ‘belong’ to “Prize” all are
selected, as is the concept itself, and thus, all the mappings between them
become selected as well (note that this cannot be easily shown in UML
notation).

Requirement Consistency Optimization Scheme (RCOS)
The requirement consistency optimization scheme checks the input label-

ing of the base ontology to see that there are no contradictions. There are a total
of four rules that will ensure this consistency, and each one is briefly discussed
next. The first rule was already given as an example, but is repeated here:
• No relationship can be labeled “selected” if one of the concepts it is

connecting is deselected.

The explanation for this rule was given earlier. In our initial labeling, there
are no contradictions to this rule. There is a deselected concept (“Committee”)
with a number of relationships that connect it, but none of those relationships
(e.g., from “Committee” to “Jury”) has a “selected” label. In fact, nothing was
specified about any of these relationships, so they still have their default
labeling, i.e., “void.”

The second rule is the equivalent of the first rule in regards to attribute
mappings:
• For every attribute mapping with a deselected concept or a dese-

lected attribute, the label of the mapping itself cannot be “selected.”

Although there is a deselected concept (“Committee”) in our example, it
does not have any “selected” labels for its attribute mappings (as they were
done by the automated attribute mapping).

The third rule puts a stricter requirement on the attribute mapping, saying:
• If an attribute is selected, its attribute mapping cannot be deselected.

Again, as we applied the automated attribute mapping, this is never the
case here.

The fourth rule we use here is a bit more complicated, and uses the notion
of a path. Without going into the formal definition (Wouters, 2003), a path is
defined as the chain of relationships that connect two concepts, where the end

A Practical Approach to the Derivation of a Materialized Ontology View 205

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

concept of one relationship is the start concept of the following relationship in
the chain. Also, the same relationship can only appear once in the chain.

Usually, the emphasis of a path lies with the first and last concept it visits,
as these are the two that are connected by the path. Sometimes, restrictions are
used on all the other concepts that are part of the connection, and on the
relationships that form the chain as well. In these cases, the path will be a
specialized path and will get a different name (e.g., proper path). More
information on these paths will be given in the ESOS section.
• If an attribute is selected, but the concept it ‘belongs’ to is deselected,

there is a path to a concept that is not deselected. The path can only
contain relationships with a label other than “deselected.”

In this scenario, there is no attribute selected with a deselected concept,
so the solution set complies with this fourth rule as well.

Well Formedness Optimization Scheme (WFOS)
In this optimization scheme, the emphasis is on the well formedness of the

resulting solution set. With well formedness, we mean being a valid ontology
according to the definition of an ontology given earlier. The input solution set
is a labeled ontology, where only the “selected” and “void” labels are consid-
ered toward a well formed output. As we are certain the deselected elements
have to be left out of a final solution, the WFOS checks whether at least one
possible solution that is valid can still be reached by using all selected elements
and none, some, or all void elements.

There are five rules that need to be adhered to before the solution set is
considered well formed, but we disregard the first rule, as it has no importance
in the context of our scenario. These rules follow directly from our ontology
definition. To ensure that the resulting solution set is in accordance with all these
rules, algorithms are used per rule to go through the solution set and modify it
to get to a correct end result. To demonstrate the formal algorithms, the second
rule for the WFOS is given here in its original form, together with its algorithm
in the original form. Although not easy to read, this is a very convenient and
exact method to use once an implementation of these algorithms is needed (i.e.,
a kind of pseudo-code) (Figure 6).
• If a concept is deselected, all attributes belonging to it, together with

their attribute mappings, should be deselected.

If an input solution set does not satisfy this rule, a change in the solution set
needs to be made so that the resulting output solution set does satisfy it. In this

206 Wouters, Dillon, Rahayu, Chang, & Meersman

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

case, it means that if we have a deselected concept that has attributes and/or
attribute mappings that are not deselected, they can either be: (i) relabeled
“deselected” as well, i.e., a modification in labeling of the ontology; or (ii) the
attributes can be linked to another concept that does not have a “deselected”
label, i.e., the attribute mappings are replaced with new ones that link the
attributes to another concept. Which one of these solutions is appropriate, is
decided through the use of following algorithm Figure 7, as well as executing the
modification.

From here onward, a plain English explanation will be given as to how to
go about dealing with the modification of the solution set, i.e., either the
ontology or the labeling, without going into too much detail. For the algorithm
in Figure 7, the following interpretation and application is given: Going through
all the deselected concepts (in our example, there is only “Committee”), we
have to consider the connected attributes and the connecting attribute map-
pings. If any of these is not labeled “deselected,” at least one proper path1

starting from the concept has to be found. If there are multiple proper paths, the
most appropriate path is chosen (appropriateness or strength will be discussed
later). The most appropriate path here consists of a single relationship — the

Figure 7: The Algorithm for Well Formedness Rule 2 (Wouters et al., 2003)

Given an ontology O=<C, A, attr, B, Ma, Mb> with a
labeling δ applied to O and an attribute mapping

tδ
C
(π

1
(t))= deselected ⇒δ

A
(π

2
(t))=deselected∧ δ

attr
(t)=deselected

Figure 6: WF Rule 2

(2)

A Practical Approach to the Derivation of a Materialized Ontology View 207

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

aggregation between “Writer” and “Committee.” For every relationship in the
path, a transformation is applied, and the result serves as the input for the next
relationship in the path. As there is only one relationship in the path here, a single
transformation is adequate to obtain the new ontology result. The formal
notation of this transformation can be found in line 1.2.2.1 in Figure 7, and
means that the attribute mapping (t) is shifted along the relationship (b

i
),

resulting in a new ontology. A part of this new ontology (the modified part) is
shown in Figure 8. There were a total of two transformations here (one for each
attribute mapping). If no proper path is found, the attributes and attribute
mappings get a modified labeling that gives them all a “deselected” tag.

The third Well Formedness Rule (WF Rule 3) states:
• If an attribute is deselected, its attribute mapping should also be

deselected.

Figure 8: Distributed Attributes due to WF Rule 2

Figure 9: Modified Labeling after WFOS (Output Labeling)

208 Wouters, Dillon, Rahayu, Chang, & Meersman

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Because the automated attribute mapping was applied in our example, this
rule is always adhered to, and does not require further testing.

The fourth rule for Well Formedness (WF Rule 4) deals with deselected
concepts:
• If a concept is deselected, all the relationships that connect it to

another concept should be labeled “deselected” as well.

Only the deselected concepts have to be considered here, which means
that, in our example, we only have to look at “Committee.” This concept has
three relationships connected to it. For these relationships, a transformation of
the labeling will be applied, modifying their labels to “deselected.” Note that the
modification of the labeling can only be done if the relationships have a “void”
label, but because RCOS is run before this optimization scheme, there is never
a selected relationship connected to a deselected concept, so the additional
check for this case does not need to be performed here.

The resulting labeling can be interpreted from Figure 9.
For the last rule (WF Rule 5), Ontology Graphs become important, and

this arises directly out of the ontology definition:
• There has to be a valid Ontology Graph for the elements labeled

“selected” and “void.”

This means that for the vertices, we take the concepts that have a label
other than “deselected,” and for the edges, the relationships that have a label
other than “deselected,” and we check whether they are a valid Ontology
Graph. Remember that the important restriction that was set on a valid
Ontology Graph was that it is a completely interconnected graph, i.e., there are
no ‘islands’ in the graph. We can use Kruskal’s Algorithm for minimal spanning
trees in graphs (see Kruskal, 1956) to determine whether there is a valid
Ontology Graph solution. Because Kruskal uses weighted graphs, all relation-
ships are allocated the same weight (e.g., one). Although not occurring in our
example, it might be possible that two concepts have more than one relationship
between them. We note that Kruskal’s algorithm provides an acyclic solution,
terminating when an edge addition leads to a cycle. Where there are two
relationships between two concepts, this inevitably leads to a cycle. Kruskal’s
algorithm will pick one of them, allowing us to satisfy the well formedness
condition. What the particular solution from applying this algorithm would be
is not important at this stage; we just want to ensure there is at least one
possibility for a solution. The end result of the algorithm is checked with:

A Practical Approach to the Derivation of a Materialized Ontology View 209

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• If V=E+1 there is no island
• If V≠E+1 there are islands

Applying that algorithm here results in V=E+1, so no modifications need
to be made. Note that the inequality can be substituted with V>E+1, as the
other case (V<E+1) would mean there has to be a cycle somewhere, and
Kruskal always prevents this.

Semantic Completeness Optimization Scheme (SCOS)
As the name already indicates, the SCOS aims to produce a semantic

complete solution set. The idea of semantic completeness can be interpreted in
a variety of ways, but here it is considered as the inclusion of defining elements
of selected elements in the input solution set. A defining element is a relation-
ship, concept or attribute that is essential to the semantics of a concept; and,
in our research, the types are super-concepts (i.e., inheritance relationship),
part aggregates (i.e., aggregation relationship), and attributes with a minimum
cardinality different than zero. Note that for both inheritance and aggregation
relationships, the defining aspect only applies in one direction. This will become
clearer while applying the resulting algorithms to the solution set. Firstly, the
initial rule is explained:

Figure 10: Inheritance Relationships in the Ontology

210 Wouters, Dillon, Rahayu, Chang, & Meersman

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• If a concept is selected, all its super-concepts, and the inheritance
relationships between the concepts and its super-concepts, have to
be selected as well.

In our example model, there are seven binary relationships. To facilitate the
explanation, these relationships have been isolated and identified (from b

i1
 to

b
i7
) in Figure 10. The algorithm for compliance with the rule utilizes a temporary

set that starts out with all the inheritance relationships in it, and ends when this
set is empty. Every iteration, one element is deleted from the set (this does not
affect the actual ontology; it is only from the temporary set that these elements
are deleted). In our example, it means we will have seven iterations, as we
identified seven relationships. Instead of listing all the iterations, a couple will
be demonstrated so that the workings of the algorithm become clear.

Iteration 1 (starts with {b
i1
, b

i2
, …, b

i7
}):

Take the first element of the temporary set: b
i1

Does the sub-concept of b
i1
, i.e., “Letter,” have any sub-concepts itself?

No
Is “Letter” labeled as “selected?” No
Remove b

i1
 from the temporary set

Iteration 2 (starts with {b
i2
, b

i3
, …, b

i7
}):

Take the first element of the temporary set: b
i2

Does the sub-concept of b
i2
, i.e., “Paper,” have any sub-concepts

itself? No
Is “Paper” labeled as “selected?” No
Remove b

i2
 from the temporary set

Iteration 3 (starts with {b
i3
, b

i4
, … b

i7
})

Take the first element of the temporary set: b
i3

Does the sub-concept of b
i3
, i.e., “Article,” have any sub-concepts itself?

Yes, e.g., b
i4

Does the sub-concept of b
i4
, i.e., “Magazine Article,” have any sub-

concepts itself? No
Is “Magazine Article” labeled as “selected?” No
Remove b

i4
 from the temporary set

The iterations continue in this way until the temporary set is empty. Note
here that in our example, iteration 4 would have started with the set {b

i3
, b

i5
,

b
i6
, b

i7
}, so b

i3
 is still there, but b

i4
 is removed. The end result of this algorithm

in our example is that nothing changes in the solution set.

A Practical Approach to the Derivation of a Materialized Ontology View 211

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The second rule considers the aggregation relationship:
• If a concept is selected, all the aggregate part-of concepts of this concept,

together with the aggregation relationship, have to be selected as well.

Only three aggregation relationships can be found, and these are shown in
Figure 11, and given an identifier for easy reference. The algorithm that is used
for these relationships is very similar to the one used for the inheritance
relationship, but as there are some changes it brings to our example, it is given
here.

Iteration 1
Take the first element of the temporary set: b

agg1

Is the whole-concept, i.e., “Magazine,” a part-concept of another
concept? No
Is “Magazine” labeled as “selected?” Yes

Make b
agg1

 selected, as well as the part concept (“Paper”)
Remove b

agg1
 from temporary set

Iteration 2
Take the first element of the temporary set: b

agg2

Is the whole-concept, i.e. “Magazine,” a part-concept of another
concept? No
Is “Magazine” labeled as “selected?” Yes

Make b
agg2

 selected, as well as the part concept (“Magazine
Article”)
Remove b

agg2
 from temporary set

Iteration 3
Take the first element of the temporary set: b

agg3

Figure 11: Concepts and Binary Aggregation Relationships in Ontology

212 Wouters, Dillon, Rahayu, Chang, & Meersman

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Is the whole-concept, i.e. “Committee,” a part-concept of another
concept? No
Is “Committee” labeled as “selected?” No

Remove b
agg3

 from the temporary set

Some changes were made in the labeling of the solution set during these
three iterations, and the resulting labeling can be seen in Figure 12.

The third and final rule for the SCOS states:
• If a concept is selected, all the attributes it ‘possesses’ with a

minimum cardinality other than zero and their attribute mappings
should be selected as well.

The algorithm that ensures the compliance to this rule has to loop through
all the selected concepts, and, for each one of these, check the attributes. An
extract of the application of the algorithm to our example is given next (only two
of the four selected concepts are shown):

Concept “Magazine”
What attributes of this concept have a minimum cardinality other than

zero? “editor” and “name”

Figure 12: Modified Labeling after First Round of SC Rule 2

A Practical Approach to the Derivation of a Materialized Ontology View 213

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Are they deselected? No
Are they selected? “name” is

Do not consider “name” anymore
Change the labeling to “selected” for the “editor” and its attribute mapping
Concept “Paper”
What attributes of this concept have a minimum cardinality other than

zero? “topic”
Is it deselected? No
Is it selected? No
Change the labeling to “selected” for the attribute and its attribute mapping

For the two other selected concepts, no changes in the labeling of the
solution set needs to be introduced anymore, and Figure 13 shows the impact
of this algorithm on the attribute labeling.

Although there are only three rules with algorithms for this optimization
scheme, and all three have been applied, this is not the end of the SCOS. All
the smaller algorithms are contained in a bigger “while” loop, indicating that the
entire process (all three algorithms) needs to be reapplied if any changes
occurred in the solution set (including the labeling) during the application of the
algorithms. As this was the case in our example, we have to do a second round
with the SCOS algorithms. As all algorithms have been demonstrated, it
suffices to show an example of the impact of the second round, rather than going
through all the algorithms again.

For the inheritance relationship algorithm, we start with the same tempo-
rary set, and, thus, have seven iterations. The first iteration is the same as in the
previous round, but the second iteration is different, and is given here:

Figure 13: New Selected Labeling for “Magazine” and “Paper” Concept
after First Round of SC Rule 3

214 Wouters, Dillon, Rahayu, Chang, & Meersman

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Iteration 2 (starts with {b
i2
, b

i3
, …, b

i7
}):

Take the first element of the temporary set: b
i2

Does the sub-concept of b
i2
, i.e. “Paper,” have any sub-concepts

itself? No
Is “Paper” labeled as “selected?” Yes

Make b
i2
 and “Document” selected if they are not so

already
Remove b

i2
 from the temporary set

Going through all the algorithms in the same fashion results in a number of
additional changes, so a third round is required. In this third round, no further
changes need to be made in our example, and so there is no need for a fourth
round. The final result of all these changes is presented in Figure 14.

Extreme Simplicity Optimization Scheme (ESOS)
The ESOS is the optimization scheme to obtain a compact result. On the

Internet, ontologies tend to become extremely large, and being able to cut down
these ontologies to smaller materialized views is something a lot of implemen-
tations and distributed systems will have to do at some stage. The ESOS results
in a minimum number of concepts, attributes and relationships being kept in the

Figure 14: Resulting Labeling after SCOS

A Practical Approach to the Derivation of a Materialized Ontology View 215

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

materialized ontology view, while ensuring its validity at the same time. The
interconnectivity of the mapped Ontology Graph can be an obstacle for this
validity.

For this optimization scheme, the separate rules will not be given, as the
solution algorithms combine all these rules. A first solution utilized Kruskal’s
algorithm (see Kruskal, 1956) to get to a result, but because of the different
nature of the concepts due to their mapping, this solution was abandoned, and
a second algorithm was proposed. This algorithm will be applied on the
example here.

As mentioned before, it is the ontology graph part of the definition that
poses a problem, or rather that has a major influence on the solution; so first,
all the concepts are taken and put into vertices, and the relationships are
mapped onto edges. The labeling is included (“+” and “-“ for “selected” and
“deselected” respectively). The result is presented in Figure 15. A preprocess-
ing step changes the labeling of all the void attributes and attribute mappings to
a “deselected” labeling (as we want a simple solution, we just leave out the
attributes that are not really necessary).

In the explanation of the algorithm, we consider the connectivity of a vertex
to be the number of edges it is connected with. If no labeling is presented next
to the vertex or edge, it has a “void” labeling. Note also that changes made by
the algorithm are not solely made to the labeling, but sometimes to the actual
ontology itself (which is different from the previous optimization schemes,
where changes were made only to the labeling, not the actual ontology). The
resulting solution set might have different elements altogether, and because it is

Figure 15: Labeled Ontology Graph before ESOS

216 Wouters, Dillon, Rahayu, Chang, & Meersman

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

very decisive, no more “void” labels will be present, i.e. the algorithm decides
for every element whether it should be there or not, while other algorithms often
did not have an ‘opinion’ about certain elements.

The first step in the algorithm is removing all the deselected elements, so
this means “Committee,” and all the edges connected to it, are removed. In the
output solution set, they will still be there with their “deselected” labeling, but
for the algorithm, they are temporarily removed from the ontology graph.

Between all of the remaining steps, a check is always made. This check is
to remove an edge if there is already an edge between the same vertices with
a lower weight (the weights will be discussed further). If two equal weights are
encountered, the solution set is split up into two solution sets, one for each

Figure 16: Indication of Initial Substitute Triples (One Possibility)

Figure 17: Modified Graph with Double Edge Between Vertices

A Practical Approach to the Derivation of a Materialized Ontology View 217

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

possibility. The output of this algorithm can be a number of equivalent solution
sets (rather than always a single solution set). Note that removing means
removing from the temporary Ontology Graph and giving a “deselected” label
to the element, but the element is not removed from the ontology.

The next step is to go through to graph, and replace all the combinations
of two positive vertices connected by a positive edge by just one vertex. Two
such combinations are indicated in Figure 16. There are different combinations
that can be chosen initially, but they will all lead to the same result, so an
arbitrary selection can be made.

Figure 16 has also already removed the deselected elements. The resulting
modified graph, with already a new combination indicated, is shown in Figure
17. For reasons of clarity, we have left the names of the combined vertices in
the new vertex, but during the rest of the algorithm, these combined vertices are
considered one normal vertex.

Figure 18: Graph Result after Substitution of Selected Triples

Figure 19: Graph Result after Deletion of Connectivity = 1 and Void
Vertices

218 Wouters, Dillon, Rahayu, Chang, & Meersman

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The same step is repeated until there are no more combinations of two
positive vertices connected by a positive edge to be found. Sometimes it might
occur that there are two edges between the positive vertices. If both edges are
positive (e.g., Figure 17), both edges are left out of the graph, but no
modification is made to the actual labeling for the solution set. If one is positive,
but the other is void, they are both left out, but the void edge invokes a
modification on the labeling of the represented relationship. In other words, the
relationship that was mapped onto the edge gets a “deselected” label.

The next step is to look at all the vertices that have a “void” label and a
connectivity of one. All these vertices, together with their connected edge, are
removed as well (again, this means temporarily removed, and a “deselected”
labeling for the mapped relationships and concepts). Applying this to our
example, we go from Figure 18 to Figure 19.

In Figure 19, weights are introduced into the system as well. As they only
become important now, they are calculated in this step, rather than at the start
of the algorithm. This results in fewer calculations, so less stress on a system.
The way the weights are calculated here is simple but effective, and is done by
adding the corresponding weights for the cardinalities or type of the relation-
ships that are mapped onto the edges. Table 1 presents the scale used in our
example.

For the redistribution of attributes, the weights will be split up into
directional weights, but for now, cardinalities for both directions of a relation-
ship are considered in the total weight for the mapped edge.

Something else that needs to be considered here is the distribution of the
attributes. As mentioned before, all the attributes (and their attribute mappings)
with a “void” label have this label changed to a “deselected” label. Intuitively,
this means that, if they are not really necessary, the simplest solution is to leave
them out of the solution. There are, of course, some selected attributes as well,

Table 1: Possible Weights Distribution According to Cardinalities

Cardinality Weight

Inheritance/aggregation 0

(1,1) 1

(1, m) 2

(0, 1) 3

(0, m) 4

A Practical Approach to the Derivation of a Materialized Ontology View 219

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

and they can belong to concepts with a “void” or “selected” labeling. In the
second case, there is no change, but in the case of a “void” concept, there
potentially is a redistribution needed of those selected attributes (and, thus, a
change in the ontology, with the deletion of the attribute mappings, and the
introduction of new attribute mappings). In the following step, this will occur in
our example, and how the algorithm deals with this is shown then.

The next step is another replacement. This time, the combination of a
“void” vertex with connectivity of two, and with both connecting edges having
a “void” label as well, is replaced by a new relationship, connecting the two
target vertices of the edges that connect the “void” vertex in question. Visually,
this is a lot easier to comprehend, and Figure 20 shows such a combination.

However, the concept “Person” had a number of selected attributes, so the
redistribution of these attributes is needed. For this redistribution, the weights
are split up in weights in both directions of the edges. Then, the directional
weights are added separately into each direction until a selected vertex is
reached. For more complex weighted graphs, Dijkstra (1959) can be used to

Figure 20: Indication of Void Vertex with Connectivity = 2

Figure 21: Calculation of Lowest Cost for Distribution of Selected
Attributes of “Person”

220 Wouters, Dillon, Rahayu, Chang, & Meersman

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

resolve the lowest cost. Then, the lowest cost path is used to redistribute the
attributes. A more complex but correct method for redistribution is to wait until
the entire labeling for concepts is modified by the algorithm, and then to apply
this redistribution by lowest cost. It requires more system resources, however,
and for this example, the result is the same.

Applied to our example, we get resulting costs for redistribution as shown
in Figure 21, concluding the cost is lower to redistribute the attributes to
“Prize.”

Getting back to the step that was being demonstrated, we now replace the
combination by a single edge that corresponds to a path. This path is converted
into a single relationship in the solution set, and is given a “selected” labeling.
Figure 22 shows the resulting graph, and the new relationship can be seen in
Figure 24 (end result).

This process is repeated until there are no more void vertices with a
connectivity of two. The final result for our example has removed all the void
vertices, and the result for the process is shown in Figure 23. Note that it is
possible to have to go through void vertices with a connectivity higher than two,

Figure 22: Resulting Graph after Substitution

Figure 23: Resulting Ontology Graph after ESOS

A Practical Approach to the Derivation of a Materialized Ontology View 221

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

and, for these, the conversion to selected elements is usually the solution,
except in a couple of exceptional cases.

The elements that have been modified in the solution set due to the
processing of the ontology graph are included in a final solution. As indicated
previously, there are no more “void” labels after the ESOS, only “selected” and
“deselected.” In the solution, only the selected elements are important, as they
constitute a solution for the optimized materialized ontology view.

As we have already discussed the WFOS, that is applied to this solution
set once more, and because it does not enforce any changes anymore (in our
example), we have omitted this step from this chapter. It can be tested be
reapplying the appropriate section to the solution set we have obtained now.

Resulting Materialized Ontology View
At the end of the sequence of optimization schemes dictated by the priority

list, the final output is another solution set. This solution set — as every solution
set — consists of an ontology and a labeling. For the final solution, the selected
elements from the ontology are taken to construct a new ontology. This new

Figure 24: UML Representation of the Resulting Ontology after ESOS

222 Wouters, Dillon, Rahayu, Chang, & Meersman

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

ontology is, in fact, a valid materialized ontology view of the base ontology,
optimized according to the specific requirements the user has provided
(through the initial labeling and priority list). As discussed previously, because
the last optimization scheme was WFOS (ensuring well formedness), we know
that the resulting materialized ontology view is, in fact, a valid ontology in its own
right. For our example, the resulting materialized ontology view is shown in
Figure 24. As the base ontology (Figure 4) was fairly small, arriving at this result
could have been achieved by visually checking the relationships, and by trying
to match a result to the requirements set out initially. However, ontologies that
require materialized ontology views typically are a lot more complex, containing
more concepts, and even more relationships, making the manual derivation
tedious and sometimes near impossible to carry out (without any test to see
whether the result is optimized or not).

As can be seen from the UML representation (and from the information
provided during the derivation process), the end result is a valid materialized
ontology view, and can be used as an independent local system, while
maintaining a very simple mapping onto the original ontology. The local system
would also be able, without any problems, to import appropriate data that is
structured using the base ontology, even if new ontological elements were
introduced. In our example, such a new ontological element is the relationship
between Prize and Document.

CONCLUSION
In this chapter, we introduced a derivation process to construct optimized

materialized ontology views. There are two main emphases covered throughout
this chapter: automation of the process and high-quality of the resulting
ontology view. Clearly, the benefits of a derivation process like this are
immense, as they not only enable non-experts to derive a high-quality materi-
alized ontology view to use for their own system (e.g., here the needs for the
optimization could be interpreted from a plain sentence like, “We want a simple
solution that is semantically complete.”), but also to do this with only minimal
human intervention. All the algorithms presented here can be easily automated,
and are designed to be. Some conflicting situations might still have to be
resolved by humans, but besides these exceptions, the priority list of optimiza-
tion schemes and optional initial requirements are enough for the algorithms to
produce a high-quality result.

Because of the diversity in reasons why a materialized ontology view needs
to be extracted, it is hard to provide a single high-quality method of obtaining

A Practical Approach to the Derivation of a Materialized Ontology View 223

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

a result. The optimization schemes provide the ideal compromise. They are
easy building blocks that can be used by non-experts (they merely need to be
put in certain order), but at the same time, experts with new needs can construct
their own algorithms, resulting in new optimization schemes. These new
schemes can be readily plugged into the system already in place, and seamlessly,
these new needs are met by the system.

Currently, a framework is being developed that provides a plugin architec-
ture for optimization schemes. A simple communication between the frame-
work and various dynamic optimization scheme modules is reached by using the
solution sets as described in this chapter. Solution sets provide the input and
output of an optimization scheme, resulting in the compatibility of the output of
any solution set to be used as the input of another optimization scheme.

In future work, the library of diverse optimization schemes will be
expanded, enabling a very versatile set of tools to derive independent materi-
alized views from base ontologies, thus enabling the semantic web to distribute
ontologies with easy (or no) mappings to one another. Import/export layers
already enable this system to incorporate multiple standards, as long as they
allow for a formulation in DTD/XML. This provides compatibility with
standards such as OWL (see W3C, 2002a, 2002b) and DAML-OIL (Berners-
Lee & A1, 2001). The data available, although structured according to
different ontologies, will no longer be incompatible, and this will contribute to
the success of the semantic web.

ACKNOWLEDGMENT
The findings presented in this chapter rely on research that has partly been

funded by Victorian Partnership for Advanced Computing (VPAC) Grant
EPPNLA090.2003.

REFERENCES
Berners-Lee, T., et al. (2001). Reference description of the DAML+OIL

ontology markup language.
Biggs, N. L., Lloyd, E. K., & Wilson, R. J. (1976). Graph Theory 1736-

1936. Oxford, UK: Clarendon Press.
Chen, P. P. (1976). The entity-relationship model: Toward a unified view of

data. ACM Transaction on Database Systems, 1(1), 9-36.

224 Wouters, Dillon, Rahayu, Chang, & Meersman

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Colomb, R. M. & Weber, R. (1998). Completeness and quality of an ontology
for an information system. Proceedings of the International Confer-
ence on Formal Ontology in Information Systems, Trento, Italy.

Dijkstra, E. (1959). A note on two problems in connection with graphs.
Numerische Mathematik, 1, 269-271.

Feng, L., Chang, E., & Dillon, T. (2002). A semantic network based design
methodology for XML documents. ACM Transactions on Information
Systems, 20(3).

Fensel, D., et al. (2000). OIL in a nutshell. Proceedings of the 12th
International Conference on Knowledge Engineering and Knowl-
edge Management Methods, Juan-Les-Pins, France.

Fensel, D., Decker, S., Erdmann, M., & Studer, R. (1998). Ontobroker: Or
how to enable intelligent access to the WWW. Proceedings of the 11th
Knowledge Acquisition for Knowledge-Based Systems Workshop,
Banff, Canada.

Genesereth, M. R. (1991). Knowledge interchange format. In Proceedings of
the 2nd international conference on principles of knowledge repre-
sentation and reasoning. San Francisco, CA: Morgan Kaufmann.

Genesereth, M. R. & Fikes, R. (1992). Knowledge Interchange Format,
version 3.0, Reference Manual. Stanford, CA: Stanford University,
Computer Science Department.

Gruber, T. R. (1992). Ontolingua: A Mechanism to Support Portable
Ontologies. Stanford, CA: Stanford University, Knowledge Systems
Laboratory.

Gruber, T. R. (1993a). Toward principles for the design of ontologies used for
knowledge sharing. In N. Guarino & R. Poli (Eds.), Formal Ontology in
Conceptual Analysis and Knowledge Representation. Deventer: Kluwer
Academic.

Gruber, T. R. (1993b). A translation approach to portable ontology specifica-
tions. Knowledge Acquisition.

Guarino, N. & Welty, C. (2002). Evaluating ontological decisions with
OntoClean. Communications of the ACM, 45(2), 61-65.

Hahn, U. & Schnattinger, K. (1998). Towards text knowledge engineering.
Proceedings of the 15th National Conference on Artificial Intelli-
gence, Madison, Wisconsin.

Halpin, T. (1995). Conceptual Schema and Relational Database Design
(2nd ed.). New York: Prentice Hall.

A Practical Approach to the Derivation of a Materialized Ontology View 225

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Harmelen, F. Van & Fensel, D. (1999). Practical knowledge representation
for the web. Proceedings of the International Joint Conferences on
Artificial Intelligence.

Heflin, J. & Hendler, J. (2000). Dynamic ontologies on the web. Proceedings
of the American Association for Artificial Intelligence Conference,
Menlo Park, California.

Heflin, J., Hendler, J., & Luke, S. (1999). Coping with changing ontologies in
a distributed environment. In Proceedings of the American Association
for Artificial Intelligence Conference, Workshop on Ontology Man-
agement. Cambridge, MA: MIT Press.

Heflin, J., Hendler, J., & Luke, S. (1999). SHOE: A Knowledge Represen-
tation Language for Internet Applications. College Park, MD: Univer-
sity of Maryland, Department of Computer Science.

Holsapple, C. W. & Joshi, K. D. (2002). A collaborative approach to ontology
design. Communications of the ACM, 45(2), 42-47.

Hovy, E. H. (1998). Combining and standardizing large-scale, practical
ontologies for machine translation and other uses. Proceedings of the
First International Conference on Language Resources and Evalua-
tion, Granada, Spain.

Kaplan, A. N. (2001). Towards a consistent logical framework for ontological
analysis. Proceedings of the International Conference on Formal
Ontology in Information Systems.

Klein, M. & Fensel, D. (2001). Ontology versioning for the semantic web.
Proceedings of the International Semantic Web Working Sympo-
sium, California.

Klein, M., Fensel, D., Kiryakov, A., & Ognyanov, D. (2002). Ontology
versioning and change detection on the web. In Proceedings of the 13th
International Conference on Knowledge Engineering and Knowl-
edge Management, Siguenza, Spain. Berlin: Springer-Verlag.

Kruskal, J. B. J. (1956). On the shortest spanning subtree of a graph and the
traveling salesman problem. In Proceedings of the American Math-
ematics Society, 1956(7), 48-50.

Lenat, D. B. (1995). Cyc: A large-scale investment in knowledge infrastruc-
ture. Communications of the ACM, 38(11).

McGuinness, D. L., Fikes, R., Rice, J., & Wilder, S. (2000). An environment
for merging and testing large ontologies. In Proceedings of the Seventh
International Conference on Principles of Knowledge Representa-
tion and Reasoning. San Francisco, CA: Morgan Kaufmann.

226 Wouters, Dillon, Rahayu, Chang, & Meersman

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Nijssen, G. M. & Halpin, T. (1989). Conceptual Schema and Relational
Database Design: A Fact-Oriented Approach. New York: Prentice
Hall.

Noy, N. F. & Klein, M. (2002). Ontology evolution: Not the same as schema
evolution. Stanford Medical Informatics.

Rumbaugh, J. (1991). Object-oriented Modeling and Design. New York:
Prentice Hall.

Rumbaugh, J., Jacobson, I., & Booch, G. (1999). Unified Modeling Lan-
guage Reference Manual. New York: Addison-Wesley.

Spyns, P., Meersman, R., & Mustafa, J. (2002). Data modelling versus
ontology engineering. SIGMOD, 2002 (special issue, pp. 14-19).

Staudt , G. K. C. von. (1847). Geometrie der Lage. Nurnberg, Germany.
W3C. (1999a). Extensible markup language (XML) 1.0. W3C Recommen-

dation.
W3C. (1999b). Resource description framework (RDF) model and syntax

specification. W3C Recommendation.
W3C. (2002a). OWL web ontology language 1.0 abstract syntax. W3C

working draft.
W3C. (2002b). OWL web ontology language 1.0 reference. W3C working

draft.
Wouters, C., Dillon, T., Rahayu, W., & Chang, E. (2002). A practical

walkthrough of the ontology derivation rules. Proceedings of DEXA
2002, Aix-en-Provence.

Wouters, C., Dillon, T., Rahayu, W., Meersman, R., & Chang, E. (2003).
Transformational processes for ontology view specification. Submit-
ted for publication.

ENDNOTES
1 A proper path only contains non-deselected relationships and intermedi-

ate concepts with a “void” label.
2 A materialized ontology view of a base ontology is a (valid) ontology that

consists solely of projections, copies, compressions, and/or combinations
of elements of the base ontology, presenting a varying and/or restricting
perception of the base ontology, without introducing new semantic data.

Web Information Extraction via Web Views 227

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter VII

Web Information Extraction
via Web Views

Wee Keong Ng, Nanyang Technological University, Singapore

Zehua Liu, Nanyang Technological University, Singapore

Zhao Li, Nanyang Technological University, Singapore

Ee Peng Lim, Nanyang Technological University, Singapore

ABSTRACT
With the explosion of information on the Web, traditional ways of
browsing and keyword searching of information over web pages no longer
satisfy the demanding needs of web surfers. Web information extraction
has emerged as an important research area that aims to automatically
extract information from target web pages and convert them into a
structured format for further processing. The main issues involved in the
extraction process include: (1) the definition of a suitable extraction
language; (2) the definition of a data model representing the web
information source; (3) the generation of the data model, given a target
source; and (4) the extraction and presentation of information according
to a given data model. In this chapter, we discuss the challenges of these

228 Ng, Liu, Li, & Lim

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

issues and the approaches that current research activities have taken to
revolve these issues. We propose several classification schemes to classify
existing approaches of information extraction from different perspectives.
Among the existing works, we focus on the WICCAP system — a software
system that enables ordinary end-users to obtain information of interest
in a simple and efficient manner by constructing personalized web views
of information sources.

INTRODUCTION
The World Wide Web has become such a successful channel in delivering

and sharing information that people are getting used to searching the Web as
the first resort for information. As the amount of data accessible via the Web
grows rapidly, the weaknesses of traditional ways of browsing and searching
the Web become more and more apparent (Laender, 2002a). Browsing
requires users to follow links and to read (usually) long web pages, thus making
it tedious and difficult to find a particular piece of information. Keyword
searching usually returns massive irrelevant information, along with some useful
information hidden in the long list of search results. Even with improved search
engines, such as Google, that return accurate results, a large number of web
pages cannot be indexed by these engines. Therefore, users surfing the Web
with these traditional facilities have been facing the information overload
problem; they are overloaded with too much irrelevant information.

As HTML web pages are designed to be viewed by humans, most of the
HTML syntax is for presentation purposes and does not contain much semantic
meaning; this makes automatic access by software applications difficult.
However, there is an increasing demand to turn web data into structured and
machine-readable formats so that further processing, such as integration,
filtering and customized visualization, can take place.

To address the problems mentioned above, over the past few years, some
web information extraction (IE) systems (mainly in the form of wrappers) (see
Adelberg, 1998; Ashish, 1997; Baumgartner, 2001; Crescenzi, 2001; Ham-
mer, 1997; Kushmerick, 2000; Liu, 2000; Liu, 2002; Liu 2002a; Mecca,
1999) have been developed to automatically extract target information from the
Web and convert the extracted data into some structured format. The ap-
proaches taken by these systems differ greatly, ranging from Natural Language
Processing (NLP) to machine learning to database techniques. Despite the
differences in approaches, there are several common issues that these systems

Web Information Extraction via Web Views 229

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

need to address: (1) the definition of a suitable extraction language; (2) the
definition of a data model representing the web information source; (3) the
generation of data models, given a target source; and (4) the extraction and
presentation of the information according to a given data model.

Objectives
This chapter aims to provide an in-depth analysis of the above issues and

of how the existing approaches address them. This chapter is not intended to
be a simple survey of existing web IE systems, which has been done in Laender
(2002a), where a brief description of those systems is given and a simple
classification is proposed. The focus of this chapter is to look into the details
of each important issue mentioned above, to discuss how the issue can be
handled, and to analyze approaches taken by current systems and how effective
they are in solving the problems. In addition, several classification schemes are
proposed in order to classify these existing systems and to help understand the
issues that they try to resolve.

To further illustrate the issues, a detailed description of one of the systems
called WICCAP (see Li, 2001; Liu, 2002) is provided. The aim of the WICCAP

system is to enable ordinary users to create their own views of the target web
sites in a simple and easy manner so that information extraction from web sites
can be performed automatically.

It should also be pointed out that the focus of this chapter is on academic
research projects. For a brief survey on related commercial products, the
readers are referred to Kuhlins (2002).

Outline of Chapter
The remainder of this chapter starts with the discussion of the various

issues of web information extraction systems, including different aspects of
designing a data extraction grammar, characteristics of a data model, algo-
rithms for generating data models and extraction expressions, and various
miscellaneous issues. Several classification schemes are then proposed to
categorize existing web IE systems. Then, one particular system is presented,
which is the WICCAP system. We describe the approach taken by this system
and how it addresses the various issues mentioned above. The chapter ends
with a conclusion and future research directions for web information extraction
systems.

230 Ng, Liu, Li, & Lim

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

ISSUES
The kernel of a web IE system what is termed a wrapper. A wrapper is

capable of automatically extracting semi-structured data from the Web and
transforming the extracted data into a structured format. In addition, a web IE
system might also have modules to build the extraction rules used by wrappers,
as well as modules to verify and maintain wrappers.

Due to the size and complexity of the Web, it is impossible to develop one
IE system that extracts all kinds of data from the Web and is suitable to all kinds
of users. Although traditional relational database techniques can be used to
process structured information online, they are not suitable for processing
heterogeneous web data sources such as HTML, XML, ps files, etc. To extract
various kinds of data accurately, researchers are resorting to ideas from
different areas such as database, NLP (natural language processing), etc.

In this section, we describe the issues in IE system development and the
methods IE systems exploit to solve these issues. At the end of the section, we
classify existing IE systems into various categories based on different facets of
these systems.

Data Extraction Language
Given a set of web documents, wrapping these documents typically

requires three steps. First, wrappers should be able to download documents
from the Web. We can view the Web as a directed graph. Each web document,
or segment of it, can be treated as one data node in this graph. Nodes are
connected through hyperlinks. In addition to a simple hyperlink, sometimes we
must submit FORMs or execute scripts in web pages to get these URI. We call
all these URIs obtained from “FORMs,” scripts as inter-page links. As the first
step, a wrapper must have the ability to download web pages from a given inter-
page link.

Secondly, every web IE system needs a data extraction language that
defines the syntax of the extraction rules, which, in turn, determine how the
extraction should be performed. In some systems, this language grammar may
be implicitly defined, while other systems formally define their extraction
languages explicitly.

Finally, wrappers have to reorganize the data nodes extracted and
represent them as a structured format. Depending on the users’ interest, the
extracted data can be reorganized into traditional relational database, object-
oriented database, XML documents, etc.

Web Information Extraction via Web Views 231

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Depending on the specific wrapper implementation, the three steps above
might not be performed in the order that they are presented. A wrapper can
download a web page, extract all URI strings in this page in the second step,
and then execute step 1 to download all web pages pointed to by these URIs.
The following elaborates these three steps in detail.

Crawl Related Features
In order to accurately extract information from the web, IE systems must

have the ability to access services available on the Web, typically web pages.
Services on the Web have properties of wide area distribution, unreliability,
various security models, etc. Those characteristics must be addressed when we
do an extraction task, otherwise the wrappers will be prone to failure. The
robustness of a wrapper lies in:
• The types of services that it supports. The most frequently used

protocols include HTTP, HTTPS and FTP. Most existing web IE systems
support only HTTP. But, this might be considered as an implementation
issue in some systems.

• Network exceptions it can handle. In a web IE system, failure to
download a specified web page may mean the failure of all extraction
tasks. It is a good idea to let the user explicitly specify what the system
should do when it encounters exceptions such as server failure, service
timeout, etc. Wrappers can reload a web page, retry a request, or use a
backup data source to make themselves more robust.

Most IE systems encapsulate the web access function and process all kind
of services and exceptions implicitly. But some systems do allow users to
control what to do when problems occur. WebL (Kistler, 1998) is a program-
ming language for the Web in which developers can implement the web data
extraction function by hand coding. In this language, users can bind an
exception handler with each service access operation.

Other important features are the support for following hyperlinks, the
ability to handle HTML Form elements, and script in web pages. Without the
ability to follow hyperlinks, the wrapper will be restricted to extracting data
from a single web page. In most web sites, useful information is usually located
in different web pages. For example, newspaper web sites typically have a list
of headlines with links to the web pages containing the detail stories. Therefore,
being able to extract information across multiple web pages (i.e., following
hyperlinks among web pages) is very important in a useful wrapper.

232 Ng, Liu, Li, & Lim

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In other cases, such as user login and search form, wrappers have to first
fill in HTML Forms before they can reach the correct web page. Few systems
are capable of handling such situations. The WICCAP Data Model (Liu, 2002)
proposed in the WICCAP system, includes a group of elements dedicated to
the HTML Form elements. When encountering such elements, the extraction
agent in WICCAP simulates the form-filling action by popping up a dialog box
and submitting it to the remote server after the user fills it up. In W4F (Sahuguet,
2001), a Form Wizard was provided to facilitate the specification of rules
involving HTML Forms.

Sometimes URIs are returned by a script function when we click a
hyperlink, button or invoke an event on a DOM node bonded with an event
handler script; so it’s also important for an IE system to support the event
mechanism of web pages. Again, this might be perceived as an implementation
issue by systems focusing on the extraction or integration of data. However, as
more and more web pages are relying on JavaScript or VBScript to provide
very interactive web pages, a truly robust wrapper system has to pay more
attention to such a feature.

Data Extraction Rules
The most important function of a wrapper is to extract information.

Wrappers must be able to recognize, locate and extract data from the web
pages downloaded by the previous step. Such capabilities rely on the data
extraction rules, which is the knowledge provided by knowledge engineer or
generated using machine learning techniques.

Much research has been done in the area of how to represent this
knowledge using various methods. Some literatures discuss how to use NLP-
related techniques (Cali, 1998; Ribeiro-Neto, 1999) and how to process web
data to make it processable to an NLP system (Soderland, 1997; Soderland,
1995) and generate knowledge used by an NLP system. Chang (2001) devised
a method learn rules generated by PAT trees (Morrison, 1968). Rajaraman et
al. (2001) applied data graph algorithms to process graphic skeletons, which
is a kind of data extraction knowledge. Others tried to apply grammar induction
in rules generation (Kosala, 2002; Kosala, 2000; Chidlovskii, 2000;
Kushmerick, 2000; Muslea, 1999). Grammar induction and many other
approaches generate rules that can be formally analyzed using formal language
theory.

The traditional IE community mainly uses NLP techniques to learn extrac-
tion rules and extract relevant data from free text documents (Appelt, 1999).

Web Information Extraction via Web Views 233

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Such techniques, including word segmentation, speech tagging, word sense
tagging, syntactic analysis, and ontology analysis, have been used to build the
relations among phrases and syntactic elements. For the extraction of semi-
structured data, the contents in documents show some special structural
information; and the grammar and syntactic information are difficult to figure
out. Soderland introduced Webfoot (Soderland, 1997), which is a step in this
direction. It pre-processed semi-structured documents and made them
processable by CRYSTAL (Soderland, 1995), which is an NLP system.
RAPIER (Cali, 1998) is a relation rules-based system capable of learning the
relations among data blocks in freetext documents.

Hidden Markov models methods (Seymore, 1999) have been used in the
NLP area. They can also deal with HTML documents, especially in some
sophisticated situations such as error codes in HTML pages. They use
statistical models, which can describe the appearance probability of data fields.

Approaches originated from NLP seldom use structure information of
HTML pages. On the contrary, such structure information often makes
syntactic analysis even more difficult. To make full use of such information,
Kushmerick (2000) (2000b) (1999) introduced six classes of wrapper rules.
The simplest one is Left-Right class. It can extract contents, appearing in a
tabular format with K columns, by scanning the left delimiter and right delimiter
of each column, one by one. LR can only extract flat format data, and is too
simple to extract information from many web sites. Kushmerick extended LR
classes to Head-Open-Close-Left-Right-Tail (HOCLRT) to prune those texts
that could potentially be confusing.

The pioneering work by Kushmerick cannot handle sources with nested
structure and missing and varying-order attributes. SoftMealy (Hsu, 1998) is
able to handle these exceptional cases, but it requires seeing all possible special
cases (missing attributes or out of order attributes) in the training phase in order
to induce a correct wrapper. STALKER (Muslea, 2001) provides a more
expressive extraction language by allowing disjunction and multiple patterns for
locating information.

Data Extraction Schema
At the end of the extraction, a data model is required to capture the

organization or structure of the extracted information. This data model should
reflect the users’ understanding of the structure of the data to be extracted. It
may also imply the way that the extracted data will be stored, although the
approach to data storage can vary with different implementation.

234 Ng, Liu, Li, & Lim

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Some IE systems still remain in prototype phase. They only export the data
blocks extracted from a data source; they need other tools to map these
extracted parts to a physical storage schema.

In some cases, users want to perform a select, join, or reconstruction
operation on extracted data. It is easier and more stable to implement systems
supporting these features based on relational database. Using RDBMS, we can
leverage some other advantages such as portability and scalability. Over the
Internet, most data are still stored in relational databases, and web documents
are generated by applying templates to the relational database. From this point
of view, wrapping web data is just like finding out the templates and is a kind
of reverse engineering of semi-structured data. VDB (Gupta, 1998) is a virtual
relational database management system. It wraps web data and stores them in
a relational format. Source Description Language (SDL), defined in VDB, can
describe web sites and map them to RDBMS. WebSources (Bright, 1999)
defines a query language that can return relational data from semi-structured
data sources.

XML has become the de facto standard of data exchange, and some users
are using it for data storage, as well. More and more web sites use XML to
represent their web pages. Some IE systems [WICCAP, XWrap (Liu, 2000)
and DEByE (Laender, 2002)] directly store the extracted data as XML
documents. Minerva (Crescenzi, 1998) needs users to write code manually to
describe how to generate XML output. Lixto (Baumgartner, 2001) allows
users to specify a mapping between the final XML output and the extracted
data in a transformation step. W4F (Sahuguet, 2001) provides mapping
wizards to let users indicate how to map extracted data to output XML.

Wrapper Rules Generation
To construct a wrapper, the naive way is to have an expert user manually

write the required extraction rules and compose the data structure for organiz-
ing the extracted data. This turns out to be too time-consuming and restrictive.
Wrapper Generation (WG) appears as a field independent of the traditional IE
community, with the aim of extracting and integrating data from web-based
semi-structured data (Muslea, 1998). Wrappers work as the kernel of infor-
mation mediators between users and a large number of heterogeneous data
sources (see Florescu, 1998; Mecca, 1998; Gupta, 1998). In this field,
wrappers typically process semi-structured texts, generated from structured
databases, based on given templates or rules. One of the challenges is how to
figure out the implicit rules hidden inside web pages.

Web Information Extraction via Web Views 235

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

There are two basic approaches to building data extraction rules, namely
the Knowledge Engineering Approach and the Machine Learning Ap-
proach (Appelt, 1999). The first method requires a person called a ‘knowl-
edge engineer,’ who is familiar with the IE system, to develop the rules. On the
contrary, the Machine Learning Approach doesn’t need users to deal with how
the IE system works in detail and develop rules manually. If it is a supervised
machine learning approach, users need to have some knowledge related to the
data sources, and know how to annotate these data, instead of having detailed
knowledge of the IE system itself. Fed with annotated data, the IE system will
learn the extraction rules. For unsupervised machine learning methods, even the
annotation work is not necessary.

Webfoot (Soderland, 1997) preprocesses semi-structured documents
and makes them processable by CRYSTAL. One of the important features of
CRYSTAL (Soderland, 1995) is to automatically induce a dictionary of
“concept-node-definitions” (CN) to identify relevant information from a train-
ing set. CN is a concept in the University of Massachusetts’ BADGER sentence
analyzer, used to perform selective concept extraction. Webfoot’s idea is quite
simple: It uses page layout cues to divide a web document text into sentence-
length segments of text. The text segments are logically coherent and can be
used as input to the CRYSTAL system. In another paper, Soderland (1999)
introduced WHISK. WHISK can induce regular like expression from tagged
text. It also has a strong relation with NLP techniques, and can deal with
processed free text documents.

RAPIER (Cali, 1998) is a relation rule-based system. Its original target is
free text documents. It learns relation rules based on the assumption that the text
has three fields around the target phrase: Pre-filler Pattern, Filler Pattern and
Post-filler Pattern. The rules RAPIER learned specify a relation of items that
can match these three patterns. RAPIER uses an inductive logic programming
method to do bottom-up maximal pattern searches, followed by compressing
and generalizing. It can make use of limited syntactic and semantic information
to extract single-slot data (Muslea, 1999) from free text documents, and can
be extended to process semi-structured text if we treat tags as these relation
patterns.

SRV (Freitag, 1998) is a system that exploits multi classifiers (ROTE,
Bayes classifier, and a relational rule learner that does a top-down induction
similar to FOIL) to extract single-slot data by transforming a single-slot
extraction problem to a classification problem. It uses the quantity statistic
capability of ROTE and Bayes classifier to count the term frequency, and uses
relation learning method to find the relation among them. SRV also originates

236 Ng, Liu, Li, & Lim

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

from the NLP community, but there is some research focusing on how to
classify semi-structured text (Yang, 2002) that can be used in combination with
it. SRV and RAPIER are both designed to extract single-slot data. RAPIER
can be extended to extract multi-slot data by using more delimiter patterns
instead of three patterns. How to extend SRV to multi-slot extraction is much
more complex intuitively. The rules learned by CRYSTAL and RAPIER
support multi-slot data extraction inherently.

Minerva (Crescenzi, V., 1998) requires users to write programming
language-like codes to tell the system how to extract data. Some other
systems (Mecca, 1999; Bright, 1999; Gupta, 1998; Baumgartner, 2001; May,
1999) can only generate extraction rules by hand, i.e., using KE methods. KE
methods are tiresome, but they can deal with very complex web pages if the
knowledge engineer is an expert in a related area.

Another group of systems, including Lixto, WICCAP, DEByE, and
XWrap, provide visual support to help users build extraction rules. Various
facilities that induce simple rules from marked examples are also provided by
these systems. Many other IE systems use grammar induction methods to learn
rules. WIEN (Kushmerick, 2000) first labels input web pages in tabular
formats, then tries to induce delimiters around these labels. These delimiters can
be organized to extract information from similar web pages.

IEPAD (Chang, 2001) first encodes HTML input as a tokens sequence.
It treats the sequence as a string and builds a PAT tree of this string. And then,
finding the most frequent sub-TOKEN sequence becomes an easy task
because we can find repeated HTML hierarchical patterns in a web page. Such
patterns can be used to extract data from HTML pages where the data appears
in the form of a record list, such as the books list on the Amazon web site.

Wrapper Maintenance
The wrappers that we have discussed so far extract data based on the rules

that can identify context around the target data blocks. Much research effort is
dedicated to generate rules, while only a few literatures, e.g., (Kushmerick,
2000b; Kushmerick, 1999b; Lerman, 2003), mention how to maintain these
rules when the target web sites or web pages change. This usually leaves the
constructed wrappers vulnerable to the changes of the data sources.

Since predicting layout changes is almost impossible, web IE systems
usually have to passively regenerate the data extraction rules after some
changes occur. It would be useful to find methods to verify whether rules are
still extracting the right data. When the wrapper is known to fail in the process
of extraction, it then needs to recognize layout modification and re-induce rules.

Web Information Extraction via Web Views 237

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

 Kushmerick (2000) (1999b) devised a domain-independent heuristic
algorithm — RAPTURE — to verify wrappers. This is based on the assumption
that if a wrapper is still working correctly, it can extract identical or similar
output from different versions of the same web data source. RAPTURE uses
several features, such as word count and the mean word length, to measure
similarity of the wrapper output. It calculates the similarity of two outputs by
using a regression testing paradigm. In Lerman (2003), the authors also used
a similar statistic method to measure the similarity of features extracted from
different output.

The work done by Cohen (1999) and Lerman (2003) suggests how to re-
induct wrappers when they find wrappers incorrect. The main idea is to learn
new wrapper rules, test the similarity of outputs, and then choose the newly
generated wrapper that can extract the most similar output. In all these
literatures, the features selected are very simple, and how to compare the
extracted structures has not been considered.

Miscellaneous
We have introduced issues from wrapper generation to wrapper mainte-

nance. In the life cycle of a wrapper, there are still some other issues. IE systems
act as mediators between users and web sites. Worthy of further study is how
to provide a friendly interface to other systems, and how to use those other
systems’ features to extend IE systems application areas.

The strategies of generating extraction rules using machine learning require
users to give a training example. The efforts required for marking examples
sometimes may be very large. How to automatically prepare web pages and
annotate them is a big challenge. Golgher (1998) used an ontological dictionary
(boostrapping repository) to evaluate whether there exists interesting informa-
tion in sample web pages, and then to assemble these parts into an example set.

Some literatures (Lin, 2002; Wang, 2002; Embley, 1999) discuss pre-
process training set, clear data source. Lin et al. (2002) introduced an
algorithm, based on Shannon’s information uncertainty formula, to calculate
features entropy in web pages. It detects which tables in HTML pages from the
same web site include informative data instead of redundant content such as
advertisements. It stems words in web pages and deletes words in the stoplist.
The word frequency and weight are used as features. The features selection
method is relatively simple compared to Wang’s, which makes use of layout
features. Wang (2002) suggested using Support Vector Machine (SVM) and
decision trees to classify tables based on the features in tables and to find
interesting tables. Embley et al. (1999) introduced an algorithm that combines

238 Ng, Liu, Li, & Lim

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

several individual heuristics to discover the boundaries of records within a web
document. It uses HTML Tags appearance information and ontology knowl-
edge to determine which parts of HTML pages are informative.

There are still many other issues we have not mentioned in this section, e.g.,
integrating extracted data, presentation techniques, incrementally storing chang-
ing part in web pages, etc. IE systems development is still an open area in which
various issues are to be studied.

Summary
Due to the diverse techniques used by the existing systems and the different

purposes that these systems have been developed for, it is difficult to provide
a single classification scheme that categorizes all existing systems appropri-
ately. Summarizing all the issues we discussed above, we propose a multi-
faceted scheme in an attempt to characterize these systems.
• Data Source Type. Web information extraction tools are mostly devel-

oped for extracting data from semi-structured documents. All web IE
systems we discuss here have the ability to process HTML documents,
but there are still large quantities of free text documents, such as email,
newsgroup articles, etc. Some other semi-structured documents are not
represented using HTML format, e.g., ps files. We categorize IE systems
into three kinds, depending on the data source they support: HTML-MIX
(HTML, free text, etc.); HTML (HTML only); or special semi-structured
documents. In Table 1, we use HTMLMIX, HTML and SPEC to
represent these three categories, respectively.

• Data Extraction Rules Type. Some systems define a procedural lan-
guage and ask users to write codes in that language to tell wrappers how
to extract information. Many IE systems generate and use rules which are
formally equivalent to formal language and automata. We can call them
Automata Rules. Some IE systems are originated from NLP systems, and
they use a pattern dictionary to match data sources and extract informa-
tion. Statistical methods, e.g., Hidden Markov Model, also find their
application in IE.

• Rules Generation Method. Knowledge Engineering method is a manual
rule generation method used by some systems. Researchers have also
developed machine learning algorithms to do this hard and tedious work
of generating extraction rules. Supervised learning needs users to prepare
training sets, while unsupervised learning can generate rules full-automati-
cally. We use KE, SML and USML to represent the three kinds of
methods, respectively.

Web Information Extraction via Web Views 239

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• User Interface. Some IE systems only include a kernel to extract
information corresponding to given rules. Others provide a visual interface
to help users annotate training sets, generate rules, and monitor extracted
data. Some systems provide a programming interface to query extracted
information. We use three categories — No, Visual and API — to
represent the three kind of IE systems in Table 1.

• Output Data Model. Depending on the kind of output data model an IE
system uses, we can categorize it into a flat, relational, hierarchical or
XML class.

• Scope. Some systems can recognize structure relations in a web site
scope, while some others can only find relations among data blocks in a
text fragment, a web page, or a set of web pages.

Table 1: Classification of IE Systems

IE systems Data Source

Type

Data Extraction

Rules type

Rules

Generation

Method User Interface

Output Data

Model Scope

WICCAP HTMLMIX AUTOMATA KE+SML Visual XML Web Sites

HRHYPER HTMLMIX AUTOMATA SML No hierarchical Single Page

Lixto HTML AUTOMATA KE Visual XML Web Sites

MHLL HTMLMIX AUTOMATA KE API hierarchical Single Page

WHISK THMLMIX DICTIONARY SML No hierarchical Single Page

STALKER HTMLMIX AUTOMATA SML Visual flat Page Set

MSE HTML AUTOMATA USML No flat Page Set

IBWI HTMLMIX AUTOMATA SML No hierarchical Single Page

TSIMMIS HTMLMIX AUTOMATA KE API hierarchical Web Sites

SoftMealy HTMLMIX AUTOMATA SML No flat Single Page

BYU HTMLMIX ONTOLOGY KE No flat Single Page

NoDoSE HTML AUTOMATA KE Visual XML Single Page

W4F HTML AUTOMATA KE API+Visual XML Web Sites

RoadRunner HTML AUTOMATA USML No hierarchical Page Set

T-wrappers HTMLMIX AUTOMATA USML No hierarchical Single Page

WhizBang HTML AUTOMATA SML No hierarchical Web Sites

MINERVA HTMLMIX CODE KE API relational Web Sites

RAPIER HTMLMIX AUTOMATA SML No flat Single Page

Webfoot HTMLMIX DICTIONARY SML No flat Single Page

VDB SPEC AUTOMATA KE API+Visual relational Web Sites

XWRAP HTML AUTOMATA SML Visual XML Page Set

BWI HTMLMIX AUTOMATA SML No flat Page Set

EDITOR HTMLMIX AUTOMATA KE No hierarchical Page Set

WebSources HTML AUTOMATA KE API relational Page set

IEPAD HTML PAT tree PAT tree N/A flat Single Page

240 Ng, Liu, Li, & Lim

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

THE WICCAP SYSTEM
In this section, we present WICCAP1, a software system that empowers

users to build their own views of web sites. WICCAP provides a comprehensive
architecture covering each stage in the full life cycle of web information
extraction. Here, we choose WICCAP as an example to explain how to apply
these techniques, introduced before, in real application environments.

We propose a data model to represent web sites from the logical point of
view and to provide a set of tools to automate the construction of the data
models. An information extraction agent has been implemented to allow users
to create their views of the target web sites, based on the data models
previously defined, and to extract the information from the web site according
to the defined views. As a last step, a flexible presentation toolkit has been
designed to present the information in a manner that is programmable by the
users.

The primary goal of WICCAP is to overcome the information overload
problem. As a by-product, the extracted information can also be used for
integration, query processing, or other general purposes that deal with struc-
tured data.

Motivation
As we mentioned before, with the explosion of the Web, information

available from web sites is usually overwhelming to users surfing the sites. The
majority of the users who are suffering from this information overload problem
are ordinary home users who do not have much technical knowledge.

From the users’ point of view, a lot of information presented in a web site
is not of their interest. This may include auxiliary and additional information,
such as advertisements. But, quite often, some of the core contents that the web
site is providing do not interest the users, either. Users, when surfing a web site,
usually have in mind what they want to see, i.e., they have their own view of the
web site. Therefore, a tool that enables these users to specify their views of web
sites, and that automatically constructs the views for the users, would help to
solve the information overload problem because users will no longer be
overloaded with information they are not interested in.

It is, thus, important to enable these users to create their customized views
of web sites such that they only see what they want, in the way they prefer.
Moreover, such personalized web views should be created in as easy a manner
as possible so that ordinary web surfers are able to accomplish this task.

Web Information Extraction via Web Views 241

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Some web portals, such as My Yahoo!2, try to handle this problem by
allowing users to specify the contents and even layout of the front page that the
users see when they log in. Such self-design functionality may help to reduce the
amount of inappropriate core contents, but still leaves most of the auxiliary
information, especially advertisements, untouched. The amount of freedom
given to the users to control the personalization of content differs from site to
site, but it is usually limited. Some other web sites pro-actively provide
additional personalization services, such as product recommendation (e.g.,
Amazon.com3), to users by observing users’ past behaviors and discovering
patterns. Such services may be helpful, but often do not reflect the real needs
of the users because they come from the web sites maintainers instead of from
the users themselves.

Over the past couple of years, some information extraction (IE) systems
(wrappers and agents) (Adelberg, 1998; Baumgartner, 2001; Crescenzi,
2001; Embley, 1999; Liu, 2000; Sahuguet, 2001) have been proposed to
automatically extract target information from the Web, and to transform the
information into a structured or semi-structured format for further processing.
An important step toward the automatic extraction of information is the
generation of wrappers, which involves the issues discussed in last section.
However, to ordinary web surfers, the step of building a wrapper is very
difficult because, although these users know what information they want to
view, they usually do not know how to extract this information due to the lack
of relevant technical knowledge. As a result, ordinary users are forced to
accept data models pre-built by expert users, which may not reflect what they
really want.

Meanwhile, information presented in a web site is usually organized
according to a certain logical structure that corresponds to people’s common
perception. However, most existing IE systems do not make use of this fact to
improve the intuitiveness of their data models. On the contrary, the information
extracted by these systems is modeled in proprietary ad-hoc data structures
that do not truly reflect the original logical view of the web site. This renders the
resulting data models not intuitive to most users, and makes customization of
user views difficult.

The WICCAP Approach
In this section, we propose a novel approach to combine these two aspects

of web site personalization and information extraction. A software framework,
called the WICCAP system, has been implemented. It enables ordinary users to

242 Ng, Liu, Li, & Lim

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

create personalized views of web sites in a simple and flexible manner. The aim
of WICCAP is to provide fast and flexible ways of customizing views of web sites
while keeping this task simple and easy to perform. To achieve this: (1) one or
more global logical views of a target web site is first constructed; (2) based on
these global views, different users create their own views that only contain the
portions that they are interested in; (3) users also specify how and when their
views should be visually shown to them. With these three steps, and with the
help of the tools provided by the WICCAP system, users are able to easily and
quickly design their preferred views of web sites.

One of the key contributions of our approach is the explicit separation of
the tasks of information modeling and information extraction. This is important
because it essentially allows ordinary users to perform the task of creating
customized web views that was previously very difficult for them. More
specifically, in WICCAP, expert users specify how to extract information, and
ordinary end users decide what to extract and how and when to present the
extracted information. In this way, we allow users to extract accurately and
exactly what they want. This is in contrast with existing IE systems, where the
person who creates the data model and specifies the extraction details is the
person who wants to extract information, which might eventually lead to the
extraction of inaccurate information (due to lack of knowledge, when done by
ordinary users) or undesired information (due to misunderstanding of needs,
when done by expert users).

One important distinction from the IE systems mentioned earlier is that
WICCAP is designed to deal with information at site-level, as opposed to page-
level for most of other systems. Information presented within one page is usually
limited. The efforts required to locate the target pages within a site are often not
trivial. Therefore, the ability to model the web site as a whole is desirable since
it gives users an overall view of the web site and, at the same time, allows them
to pinch down to each individual piece of information without much difficulty.
In addition, our proposed data model represents web sites from a logical point
of view and completely separates the information from the physical location of
web pages. It not only makes the data model intuitive to users, but also reduces,
or even eliminates, the efforts that users previously had to spend following
hyperlinks to reach a web page, because users are simply not aware of the
actual physical location of the web pages when they are presented with the final
customized views.

Another contribution of the WICCAP system is the rich set of tools that has
been implemented to facilitate the various tasks required to create a user-
customized view of a web site. Providing easy-to-use tools that reduce the

Web Information Extraction via Web Views 243

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

technical requirement to a minimum is crucial for a system that targets ordinary
home users. Each of the tools is designed to accomplish a specific goal that is
in line with the individual step outlined earlier. The tools may be used by a single
user or by several users who collaboratively create the desired views. The most
important tools that have been implemented are: the Mapping Wizard, which
helps to quickly generate a global view of a given web site; the Network
Extraction Agent, that enables users to create personalized views of web
sites; and the WIPAP, which allows a flexible way of presenting the views.

WICCAP Architecture
The WWW Information Collection, Collaging and Programming (WICCAP)

system is designed to allow ordinary users to access information from the Web
in a simple and efficient manner. The basic idea of the WICCAP system is to
empower users to create their own views of web sites. In WICCAP, a person-
alized web view of a web site refers to the user’s preference on, not only what
contents they want to see from the web site, but also the way that the
information is delivered to them (i.e. in what format and layout, and at what time
and frequency).

To make it simple and manageable, the process of creating user views is
divided into three steps: modeling the complete web site with its logical view,
customizing the user views according to the defined model, and defining the
way that the view is delivered to the user. The architecture of the WICCAP

system is designed to accommodate these three steps by introducing a three-layer
structure, with each layer corresponding to one of the three steps (Figure 1).

The separation of the whole process into three steps is important to the
goal of enabling ordinary users to make full use of the system. In WICCAP, there
are two groups of target users. The information modeling task, especially the
sub-task of specifying the extraction details, which requires certain technical
knowledge, is meant to be performed by expert users; whereas the view
customization and presentation tasks can be invoked by ordinary users, whose
main interests are to obtain information without worrying about the technical
details. In this way, the system enables ordinary users to use the system easily
while still maintaining high accuracy of the extracted information and high
efficiency of the data model creation process.

Figure 1 shows the three main components of the WICCAP system:
Mapping Wizard, Network Extraction Agent (NEA), and Web Information
Programmer And Player (WIPAP). The Mapping Wizard takes in information
of a particular web site and produces global logical views of the web site (or,

244 Ng, Liu, Li, & Lim

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

what we call mapping rules). Note that there might be more than one logical
view for one web site if we look at the web site from different angles or with
different purposes. With these logical views of the web site, the Network
Extraction Agent component then allows users to customize these views based
on their preferences, extracts the desired information from the web site, and
performs post-processing on the extracted contents. Finally, the WIPAP

Presentation Toolkit allows users to define the way they want the information
to be delivered, and applies different presentation styles and templates to
present the information in personalized ways.

Intermediate information, such as the global views and personalized web
views, are stored using XML documents together with XML schemas that
define their formats. The three components together form a channel through
which information is transformed from the raw hyperlinked web pages into a
personalized web view. The final output, Personalized Web View, could be in
any format, ranging from static HTML pages to animated Flash clips, depend-
ing on the implementation of the last layer.

The tasks of the information modeling and extraction are explicitly sepa-
rated into two modules: namely, Mapping Wizard and Network Extraction
Agent. The Mapping Wizard is designed to be used by expert users who are
knowledgeable enough to quickly and accurately derive the logical data
models. NEA and WIPAP, on the other hand, are designed to be easy-to-use for
general public users who only know what information they want to extract but
not how. In this way, the system allows most users to extract the information
they want, while freeing them from the tedious and difficult process of specifying
the extraction rules. To put it simply, the WICCAP system separates the what
and the how. It allows users to say “To extract the headlines of the World
News from BBC News Online” instead of “To extract the contents between

Figure 1: Architecture of the WICCAP System

Web Information Extraction via Web Views 245

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the every <TD> and </TD> in the second TABLE in the web page http:/
/news.bbc.co.uk/.”

Dividing the whole system into three layers allows for the reusability of
intermediate results and for easy integration with other systems. The interme-
diate result of each module is stored as XML documents, along with well-
defined XML Schemas. Applications with XML knowledge will be able to
process these results easily. One example is that an information integration
system can take the global logical views of multiple web sites (the output of the
first layer) and integrate them to allow uniform access.

WICCAP Data Model
When extracting data from web sites, it would be useful to have a complete

logical model representing the target web site, and to specify the target portions
based on this model instead of on the actual web pages. The central idea of the
WICCAP system is based on this. To accommodate this idea, we propose a data
model called the WICCAP Data Model (WDM). This section provides a brief
overview of WDM. A more detailed discussion can be found in Liu (2002).

In most current web information extraction systems, when defining a data
model, users usually have to directly specify which portion of a web page within
a web site is the target information. The separate pieces of target information
are later organized in some manner to make them more readable and acces-
sible. The data model produced in this manner is usually not intuitive to other
users, especially to ordinary users who have no knowledge of the extraction
process.

The WICCAP Data Model views information to be extracted from a
different angle. It relates information from a web site in terms of a commonly
perceived logical structure, instead of physical directory locations. As
mentioned earlier, different pieces of information in a web site are usually
related to each other through a certain logical structure that is hidden from the
inter-linking of multiple web pages. This hidden logical structure is usually
apparent to most users, and when users look at a web site, they tend to perceive
the information as organized in this logical structure.

For instance, when a newspaper web site is mentioned, users generally
think of a site that has a list of sections such as World News, Local News, and
Sports News; each section may have subsections and/or a list of articles, each
of which may have a number of information, including the title, the abstraction
or summary, the article itself, and maybe other related articles. This hierarchy
of information (Figure 2) is the commonly perceived structure of a newspaper
web site, which most users are quite familiar with.

246 Ng, Liu, Li, & Lim

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The logical model is essentially a tree, where each node represents a logical
concept perceived by the user. The organization of individual tree nodes into
a tree forms the logical skeleton of the target web site. This logical structure is
what the users of the next layer in WICCAP (for information extraction) will be
operating on. In order to allow extraction to occur, each tree node has a
Mapping attribute that associates the node with the corresponding data in the
actual web site. This Mapping attribute is, in fact, the extraction rule(s) that
enable the extraction agent to perform the actual extraction of information.

An important feature of WDM is that it is able to model information not only
in a single web page, but also in a set of web pages. This set of web pages may
or may not have similar layout structures in terms of HTML syntax. It could be
a small collection of several web pages located in the same directory, the whole
web site, or pages across several web sites, so long as all pages together form
an unified logical view. Typically, WDM will be used to model a web site or a
self-contained portion of a large web site.

WDM Schema and Mapping Rule
The WICCAP Data Model consists of two main components: WDM schema

and Mapping Rule. A WDM schema defines the possible structure that a
mapping rule could have; while a mapping rule is an instance of the WDM

schema, similar to the Object-Class relationship in the object-oriented con-
cept.

Figure 2: Logical View of BBC News Online

BBC
World

ArticleList

Article

Description
Title

Americas
Asia-Pacific

UK
Business
Education

Link

Web Information Extraction via Web Views 247

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

WDM schema was first designed to describe the logical structure of a
category of web sites that exhibit similar logical views (Liu, 2002). We have
extended and generalized the definition of WDM schema to make it suitable for
representing the logical view of any web site. Thus, there is now only one global
WDM schema that defines the syntax that all mapping rules should follow. The
WDM schema is defined using XML Schema (XML SCHEMA, 2003).

A mapping rule of a web site refers to a specific WICCAP Data Model that
describes that particular web site’s logical structure using the WDM schema. It
represents the logical structure of a particular web site and the detailed
definition of the mapping between logical elements and the actual web pages for
a specific web site. A mapping rule is defined as a normal XML document, with
the corresponding XML schema as its definition. Since a mapping rule is an
XML document, it is structured, interoperable, and easy to process.

WDM Elements
The elements defined by the WICCAP Data Model can be classified into two

groups: elements for logical modeling purpose and elements for mapping
purpose. The former refers to the elements constituting the logical tree, whereas
the latter refers to the group of elements defining the mapping between the
logical element and the actual web data to be extracted.

There are four elements for logical modeling: Item, Record, Region, and
Section. These elements serve to represent some logical concepts in a WICCAP

Data Model. But the actual semantic meaning of each element in different
models depends on the web sites. This semantic meaning can be partially
reflected by setting the values of attributes, such as “Name” or “Desc.” Each
element also has a Mapping attribute that describes how to link the element to
the corresponding portion on the web site.

With all the four logical elements, the logical view of a web site can be
composed. However, this is just a representation of the users’ perception of the
web site. It does not contain any instruction that allows the extraction of data
to occur. To make it possible, we defined a set of elements dedicated for
mapping from the logical tree node to the corresponding portion within the
actual web site. These elements are the basic constructs of the extraction rules
used in the WICCAP Data Model.

The WDM elements for mapping purposes include: Locator, Link, Form,
and Mapping.

A Locator is the fundamental element of the WDM schema that locates a
portion of information within a web page. A Link represents a hyperlink in the

248 Ng, Liu, Li, & Lim

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

actual web page. It can be Static (a simple fixed URL), Dynamic (obtained by
using a Locator), or Form. Form is defined as catering to a special category
of HTML tags: FORM and other related HTML elements.

An example of a Locator is:
<Locator Type="ByPattern">
 <LocatorPattern>
 <BeginPattern Repeat="2">

<![CDATA[<TD>]]>
 </BeginPattern>

 <EndPattern><![CDATA[</TD>]]></EndPattern>
 </LocatorPattern>

</Locator>

Applying this Locator to the following HTML segment:
<TD>something to be ignored</TD>

<TD>something to be extracted</TD>

the target information located by this Locator is the text “something to be
extracted.” Note that how the begin and end patterns and the “Repeat” attribute
are combined to locate the information. “<![CDATA[" and]] ">” are special
symbols in XML syntax, and are used to enclose a text string that may contain
special characters, such as “<” and “>”.

A Link element such as the following:
<Link>
 <Locator Type=”ByPattern”>
 <LocatorPattern>
 <BeginPattern>

 <![CDATA[
 </BeginPattern>

 <EndPattern><![CDATA[“>]]></EndPattern>
 </LocatorPattern>
 </Locator>

</Link>

when applied to the following HTML segment:

will retrieve the text "some_web page.htm". Because the Locator is embed-
ded within a Link, this text string will be treated as a hyperlink.

As shown above, the Locator allows one to navigate anywhere within a
single page, while Link enables one to jump from one page to another. Mapping

Web Information Extraction via Web Views 249

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

combines these two basic elements to enable navigation throughout the entire
web resource. Mapping allows a WDM element to jump through arbitrary levels
of links and, essentially, makes it possible to separate logical elements from the
physical structure defined by the hierarchy of links.

Combining the definition of all the logical and mapping elements described,
we obtain the complete WDM schema. All the mapping rules are instances of this
WDM schema. In a mapping rule, every logical element, which is shown in the
logical tree view as a node, should have a Mapping element as its attribute to
indicate how to get to this node in the actual web site. When each logical
element that constitutes a logical structure is augmented with a Mapping
element, this logical structure is considered a complete mapping rule. This
mapping rule can be used to extract of information.

Mapping Wizard
In WICCAP, users do not create the web views directly from the web site.

Instead, they do it based on a global logical view of the web site. Therefore, the
first step is to create global logical views of the target web site. There might be
more than one such logical view that models the target web site, each from a
different angle. But any of these logical views is supposed to be complete, in
the sense that each view covers all the information that the users might want to
see from one angle. This is why they are called global logical views.

The manual process of creating any kind of data model for web information
sources, including the WICCAP Data Model, is tedious and slow. This fact holds
even for experienced users. Therefore, it is important that facilities are available
to automate the process as much as possible. The Mapping Wizard is designed
for this reason. Its goal is to facilitate and automate the process of producing
a mapping rule for a given web site. To achieve this goal, we define a formal
process of producing a mapping rule and provide tools to automate this
process.

It should be noted that the Mapping Wizard is convenient for use by expert
users with relevant knowledge about extracting information from HTML pages.
However, some of these features could still be used by ordinary users,
especially the step for constructing the basic logical structure, as will be shown
later.

Formal Process
The proposed formal process of producing a mapping rule consists of four

stages: Logical Structure Construction, Extraction Rule Definition, Mapping
Rule Generation, and Testing and Finalization.

250 Ng, Liu, Li, & Lim

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Logical Structure Construction. This is the process of building up the logical
tree, e.g., the one shown in Figure 2. The user begins by supplying a
starting address of a target web site, which is usually the home URL of a
web site such as “http://news.bbc.co.uk.” The basic logical organization,
then, can be figured out either by using knowledge about the web site or
by navigating throughout the web site. The details of how to map each
node to the actual web pages will be done only in the second step.
This step can be performed by ordinary users because it does not involve
the technical details of the extraction. Another reason is that ordinary
users might have a better understanding of the web site’s logical structure,
which might lead to a more complete and intuitive logical view.

Extraction Rule Definition. At this step, the user supplies the Mapping
Wizard with the necessary information to link the logical structure to the
physical web site. This includes specifying the Mapping attributes of
various main tree nodes.
Although, by using the assistant tools, as will be described later, the user
may not need to touch the underlying mapping rule. Knowledge about
basic HTML syntax is required in order to obtain an accurate data model.
It is suggested that this task be performed by a user with sufficient
technical knowledge, so that any fine-tuning can be done to improve the
accuracy of the resulted mapping.

Mapping Rule Generation. When all the mapping information has been
specified, the Mapping Wizard automatically generates the mapping rule
according to the tree structure and all the tree nodes’ properties. It
validates all the information and produces the mapping rule according to
the syntax defined in the WDM Schema.

Testing and Finalization. Once the mapping rule is generated, the Mapping
Wizard performs the actual extraction using the generated mapping rule
and shows the result to the user for verification. Debugging information will
also be provided, if any error occurs.
If it is confirmed that the generated mapping rule indeed represents the
logical structure of the web site, the user can finalize it. The finalized
mapping rule, i.e., the global logical view, can either be put into a
repository or can be delivered to the user of the Network Extraction
Agent, the next layer in the WICCAP architecture.

GUI and Assistant Tools
This section briefly describes the GUI and the tools that are provided to

aid the creation of mapping rules. A more detailed discussion of the tools
provided by the Mapping Wizard can be found in Liu (2002a).

Web Information Extraction via Web Views 251

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The Graphical User Interface of the Mapping Wizard is depicted in Figure 3.
Based on this GUI, a set of assistant tools is provided to help to automate the
process of generating a global logical view. These tools are the crucial
components that make the Mapping Wizard practically useful.

We believe that, in practice, it is not possible to have a single tool that fully
automates the whole logical view generation process; this process is usually
complex and requires human intervention from time to time. In the Mapping
Wizard, instead of trying to provide a single tool, a set of tools has been built
to address different aspects of the problem. We identify the main difficulties and
bottlenecks that slow down the overall process and develop tools to accelerate
those parts, one by one. In this way, the efficiency of the overall process is
improved, and the time required to generate a global logical view for a given
web site is greatly reduced.

The Pattern Searching Tool is similar to the “Search” function that
most text editors provide. It allows searching of certain text patterns, both
within the HTML source and on the web browser view. The Pattern
Induction Tools are the most useful ones among all the assistant tools
provided. They are developed to release users from manually looking at the
HTML source to figure out the patterns that enclose the target information. The

Figure 3: Mapping Wizard

252 Ng, Liu, Li, & Lim

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

user only needs to highlight the information; the Mapping Wizard will apply a
brute force algorithm to derive the starting pattern and ending pattern that
enclose this part of the HTML source. The result is stored in the Mapping
property of the corresponding tree node.

The Section Extraction Tool is developed to find out all the possible
Section nodes in the same level and derive the Mapping properties for them
with a single click. The section extraction tool is supported by several heuristics
that exploit common patterns for menus used in the HTML page. With the help
of this tool, the user just highlights the area of the sections; the Mapping Wizard
will automatically derive the section nodes and insert them into the logical tree.
The Structure Copier is used to copy the structure of the constructed tree
node Section to other tree nodes in the same level, assuming that the same sub-
tree structure will fit into those nodes with little modification.

Combining all the assistant tools to create a mapping rule, the user first uses
the Section Extraction Tool to generate all the Sections, uses the
Pattern Induction Tools to identify various tree nodes under the first
Section, then activates the Structure Copier to copy the structure of the first
Section to other Sections. After some modification on the rest of the Sections,
a mapping rule is generated.

Network Extraction Agent
Once a global logical view has been constructed using the Mapping

Wizard, other users can create personalized views of the web site based on this
global view. The Network Extraction Agent (NEA), as shown in Figure 4, is the
component that is responsible for helping users customize the views and
manage extraction jobs that retrieve data from a web site based on the
personalized web views. The view created by the NEA is “customized” in the
sense that users are allowed to choose, from within the global view, what to
remove and what to keep, as well as how often the view should be refreshed
with the actual web site. In addition, post-processing functions provided by the
NEA give users more control over how the view should be “fine-tuned” to
achieve exactly what the users want.

As mentioned earlier, this module is intended to be used by ordinary users.
It has been designed to be simple, user-friendly, and easy-to-use, such that
ordinary users who do not possess much technical knowledge of information
extraction will be able to use it. Users are expected to use NEA together with
WIPAP (discussed in next section) to produce the final personalized web view.

Unlike other similar systems, the extraction functionalities in WICCAP are
separated from the extraction rules, i.e., mapping rules, and are placed in NEA.

Web Information Extraction via Web Views 253

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The NEA contains generic codes that are capable of understanding any mapping
rule and performing extraction according to the definition in the rule. The
advantage of having a separate extraction module is that it allows the data
model to be defined in an open format for other applications to process, and
makes it easy for the extraction module to incorporate extra functionalities such
as the post-processing of extracted contents.

Information Extraction
The most important job of the NEA is to accurately extract information

specified in the personalized web views. The NEA performs information
extraction according to the definition in the mapping rule. For example, to
extract the following Item:

<Item Type="Title" Description="This is the title of the
news">

 <Mapping>
 <Locator Type="ByPattern">
 <LocatorPattern>
 <BeginPattern>

 <![CDATA[<B class="h***]]>

Figure 4: Network Extraction Agent

254 Ng, Liu, Li, & Lim

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

</BeginPattern>
<EndPattern> <![CDATA[]]> </EndPattern>

 </LocatorPattern>
 </Locator>
 </Mapping>

</Item>

from the following HTML segment:
<A href="/sport3/worldcup2002/hi/matches_wallchart/

argentina_v_england/newsid_2028000/2028137.stm">
<b class="h1">Eriksson: Best is still to come

the NEA extracts the target information by first locating the BeginPattern “<B
class="h1">” and the EndPattern “,” and then extracting the text between
these two patterns. Here, the “*” in the BeginPattern serves as a single
character wildcard. The text enclosed by these two strings is the information to
be extracted. The final extracted result is: "Eriksson: Best is still to
come".

Other parts of the mapping rule are executed in a similar manner. When the
extracted information is specified as a Link, the NEA interprets the extracted
text as a URL and fetches the web page from this URL. The retrieved web page
then becomes the current extraction target.

Web View Management
In the NEA, each personalized web view that the user created is also

termed as an extraction job, since each view is for extracting information from
the web site according to the definition of the view. The NEA provides tools for
creating and managing web views. It should be noted that the views created
here are, by definition, not the final web views because they do not contain the
information about how they should be presented to the users (defined in the next
layer). Nevertheless, without loss of ambiguity, we still refer them as person-
alized web views, since they are actually views that are “customized” based on
the global ones.

The user creates a new view by selecting a global view and by specifying
what nodes are to be extracted. For example, from the BBC News Online web
site, the user may indicate that he or she is only interested in retrieving Sports
News and World News. Besides defining the scope of extraction, the user is

Web Information Extraction via Web Views 255

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

also provided with options to specify how frequently the job should be
performed. Based on these options, the Job Scheduling Engine will then decide
when and how often to extract information.

An execution job can be started either manually, by the user, or automati-
cally, by the Job Scheduling Engine. Once started, the execution job is under
the control of the Job Execution Engine, which will extract the information
according to the mapping properties specified in the mapping rule. The Job
Execution Engine manages jobs in a multi-threaded mode, such that multiple
extraction jobs can be executed concurrently and performance can be maxi-
mized.

Usually, for each user, there is more than one personalized web view, since
the user is likely to be interested in information from multiple sources. Even for
a global view of the same web site, different web views may be created by
supplying different extraction scope or scheduling properties. In NEA, all
extraction jobs are assigned with categories by users. These categories are
further organized into a hierarchy to allow easy navigation of categories and
jobs. The category hierarchy and details of jobs are displayed in a Windows
Explorer-like User Interface (see Figure 4), so that it looks familiar to most
Microsoft Windows users.

Post-Processing
Merely extracting the information from the original web site may not satisfy

the user, since he or she may not be interested in all the information extracted.
The NEA provides post-processing functionalities to allow further constraints
to be placed on the created views. The constraints added to the views constitute
parts of the final personalized web views.

Filtering
NEA allows the views constructed from the extraction results to be filtered

based on simple text matching of certain attributes. The attributes to be
searched are identified from the WDM schema and selected by the user. The
user specifies the search conditions, such as "Keep only news articles
with the word 'World Cup' in the title or description" or
"Remove all product information from Dell which have a value

of more than $1,000 in the price attribute." Filtering conditions
are specified using the Filter Dialogs. The current implementation uses a simple
filter which keeps only information that contains the specified keywords in the
specific field.

256 Ng, Liu, Li, & Lim

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Incremental Updating
Most users are used to receiving notification of new emails. The same

expectation applies here, where users may expect to see only “new” news in a
newspaper web site or to only be informed about the newly published papers
in digital libraries. To provide such a feature, the NEA is designed with an
incremental updating ability. Information is first extracted and stored in a
temporary work space, and then compared with the previous extraction result
to determine whether the content is new. The user is notified only if the
information on the web site has been updated. The whole process appears to
the user as if the content is incrementally updated according to changes on the
web site.

Consolidation
Sometimes, information from multiple sources describes similar or the

same things. This is especially true if the user has web views for both the
Washington Post and CNN web sites, as the headline news will likely be the
same. In this situation, the user may instruct the NEA that these two views are
similar and instruct it to combine them to form an integrated one, so that when
information in the two views is detected to be similar, it is presented as one
piece instead of two. This is called Consolidation. It relies on similarity
detection algorithms to determine whether two key attributes are similar. The
current algorithm implemented uses Latent Semantic Indexing (Berry, 1995) to
determine the similarity between two items.

Supporting HTML Form Query
The WICCAP Data Model has defined a special group of elements to cater

to HTML Form and other related HTML tags. When the NEA encounters such
elements in the mapping rule, it will dynamically construct a dialog box at
runtime according to the attributes in the mapping rule. Figure 5 shows the
search form used in a BBC News Advanced Search. At the top is the actual
HTML web page that contains the form, and the bottom is the constructed form
dialog in NEA. Each HTML form element (e.g., Select, TextField) has a
corresponding counterpart in the constructed dialog. The layout of elements in
the dynamic dialog may not be exactly the same as that of the web page, but
all the visible elements will be arranged in a manner that looks similar to the
original page.

The user’s input to the dynamic dialog box is used to construct the
complete query string by combining the action URL of the original HTML Form

Web Information Extraction via Web Views 257

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

and the name and value pairs of all input elements. This URL is then posted to
the remote web server, and the returned web page is processed like other
normal static web pages. The extraction process is then continued.

This ability to directly handle Forms is important for a web IE system due
to the extensive use of Forms in web sites. Typical usages of Forms include
search functions of web sites and user login authentication. Without the direct
support of HTML Forms, it might be very difficult to retrieve information from

Figure 5: Dynamic Construction of Form

258 Ng, Liu, Li, & Lim

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

these sites. Support of Form is also one of the characteristics that distinguishes
the WICCAP system from other similar systems, as currently only few of the
related systems (see Atzeni, 1997; Sahuguet, 2001) take Forms into consid-
eration or directly incorporate them into their systems.

WIPAP Presentation Toolkit
The tool of Web Information Player and Programmer (WIPAP) deals with

the views created by the Network Extraction Agent. Using the WIPAP, the
views are further customized by incorporating information about how to
present the views (presentation templates) and when to present them (presen-
tation schedule). With this added information, the views are now considered as
the final personalized web views that can be consumed by the users.

The WIPAP presentation toolkit is the most flexible layer in the WICCAP

architecture. With the views from the previous layer, there might be many ways
of presenting them to the users. Therefore, potentially many different implemen-
tations of the third layer might be possible, each of them focusing on a different
aspect of information presentation. This may range from a single web page, to
a well-organized re-structured web site, to special purpose client-side appli-
cations. In our current implementation, the third layer has been implemented as
a Windows application, with the aim of presenting the views in an animated and
interesting manner.

The current implementation of WIPAP allows users to control what is to be
presented, when to present it, and how it is to be presented. This information
is incorporated into the personalized web view with the help of the Program
Wizard. Using the program wizard, users can design a detailed schedule of
how each of the views should be presented, and in what order and frequency.
This schedule is termed as a Presentation Program because it is rather
similar to a TV program schedule. The role of the program wizard is to guide
users to create presentation programs in a step-by-step manner. The Presen-
tation Engine then takes the defined presentation program and executes it
according to the schedule specified in the program.

Note that in this layer, a view is associated with a frequency of how often
it should be presented to the user. As discussed earlier, this frequency is
different from the one defined in the NEA. It only refers to the user’s preference
of how often he or she wants to see the view, whereas the one defined earlier
determines how often the view should be updated from the remote web site.

In the current implementation, a presentation program can contain more
than one view, but at any point in time, only one view will be presented. In future
implementations, presenting multiple views at the same time might be possible

Web Information Extraction via Web Views 259

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

if efficient ways of designing the layout of different views are provided. This will
indirectly help to achieve integration among multiple web site views to a certain
extent.

Macromedia Flash is used in WIPAP to display information. Flash is
chosen because of its ability to display content in a nice, animated and appealing
way. Several generic Flash container clips are implemented using ActionScript,
the scripting language of Flash. These clips are called Presentation Tem-
plates. Different presentation styles are associated with different templates,
and these templates are capable of taking in the information to be presented
from the XML document at runtime and displaying it according to the specified
style. Users will be able to choose a presentation template from the list. The
Template Manager allows more templates to be incorporated at runtime,
making the system more extensible.

Besides the implementation of a desktop application, alternative imple-
mentations on the web platform and PDAs are currently being designed and
developed.

Figure 6 is a snapshot of the WIPAP system at runtime. The design criteria
of WIPAP’s GUI is quite similar to that of NEA, which is to make the application
appear user-friendly and simple to use for ordinary users. The appearance of
WIPAP looks like the Windows Media Player. However, this is just one of skins
available in WIPAP. Users are allowed to change this appearance by selecting
another skin.

Figure 6: WIPAP System

260 Ng, Liu, Li, & Lim

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Summary of WICCAP
In this section, we introduce a novel system for enabling ordinary end-

users to create their preferred views of web sites. The proposed WICCAP

system lets users perform this task in three steps: creating global logical views
of web sites, customizing the global views, and specifying the way the views will
be displayed. Tools have been implemented to automate and facilitate the three
steps. We have also proposed a data model that allows the information from
the Web to be viewed from its logical structure.

The three steps are decoupled, and each step can be performed by a user
that is most suitable for the job, i.e., expert users specify the technical details,
while end-users indicate the preference on the views. With this strategy, we are
able to achieve our goal of empowering ordinary users to create their person-
alized views of web sites in a simple and efficient way.

Other future work includes maintenance of views in the face of change.
This may involve change detection at the source web site and change propa-
gation to individual personalized web views. Support for the integration of
views across multiple web sites is another important area to work on. We plan
to allow for the creation of views that integrate global views from several web
sites. We are also looking at alternate implementations of the last layer for
presenting the extracted information in different ways, and to different plat-
forms and devices.

CONCLUSION
In this chapter, we have discussed the important issues involved in

designing Information Systems that extract data from the Web. As we have
seen, most of the issues have not been fully explored by existing literatures, and
there is still room for improvement or for brand new algorithms and systems to
appear. Among them, wrapper maintenance is of particular importance. The
main challenges are how to accurately detect the failure of a wrapper, and how
to make use of the old extraction rules and extracted data to quickly re-derive
a new wrapper. Another related problem is how to derive the wrapper of a web
source, given the wrapper of a similar web source. This problem is also
important because web sites of the same category, for example, all online
newspaper web sites, usually exhibit similar logical structures and even similar
extraction clues.

We have also described the WICCAP system as a web IE system that
enables users to create personalized web views. WICCAP takes a three-layer
approach to turn the difficult problem of web information extraction into

Web Information Extraction via Web Views 261

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

something that can be performed by ordinary users. Web views are, in fact,
wrappers with personalization of the content to be extracted, the schedule of
extraction, and the modes and schedule of information presentation. The step-
by-step wizard for creating web views releases users from the technical details,
and helps users overcome the information overload problem.

We believe that the issues of web IE systems are challenging enough to
make web information extraction remain an important research area under the
topic of Web Information Systems.

REFERENCES
Adelberg, B. (1998). NoDoSE - A tool for semi-automatically extracting

semi-structured data from text documents. In Proceedings of the 1998
ACM SIGMOD International Conference on Management of Data,
Seattle, Washington, June 1998 (pp. 283-294).

Appelt, D. E. & Israel, D. (1999). Introduction to information extraction
technology. Tutorial of the 16th International Joint Conference on
Artificial Intelligence (IJCAI-99).

Ashish, N. & Knoblock, C. A. (1997). Semi-automatic wrapper generation
for Internet information sources. ACM SIGMOD Record, 26(4), 8-15.

Atzeni, P., Mecca, G., & Merialdo, P. (1997). To weave the web. In
Proceedings of the international conference on very large data bases
(VLDB 1997), Athens, Greece, August 1997 (pp. 206-215).

Baumgartner, R., Flesca, S. & Gottlob, G. (2001). Visual web information
extraction with Lixto. In Proceedings of the 27th International Confer-
ence on Very Large Data Bases (VLDB 2001), Rome, Italy, September
2001 (pp. 119-128).

Berry, M. W., Dumais, S. T., & Letsche, T. A. (1995, December). Compu-
tational methods for intelligent information access. Proceedings of
Supercomputing ’95, San Diego, California.

Bright, L., Gruser, J. R., Raschid, L., & Vidal, M. E. (1999). A wrapper
generation toolkit to specify and construct wrappers for web accessible
data sources (Web-Sources). International Journal of Computer
Systems Science and Engineering, 14(2), 83-97.

Cali, M. E. & Mooney, R. J. (1998). Relational learning of pattern-match rules
for information extraction. Working Notes of the AAAI Spring Sympo-
sium on Applying Machine Learning to Discourse Processing (pp. 6-
11). Menlo Park, CA: AAAI Press.

262 Ng, Liu, Li, & Lim

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chang, C. H. & Lui, S. C. (2001). IEPAD: Information extraction based on
pattern discovery. In Proceedings of the 10th International World
Wide Web Conference (WWW 10), Hong Kong, China, May 1-5, 2001
(pp. 681-688). New York: ACM Press.

Chidlovskii, B., Ragetli, J., & Rijke, M. D. (2000). Wrapper generation via
grammar induction. In Proceedings of the 11th European Conference
on Machine Learning, Barcelona, Spain, May 31-June 2, 2000 (Vol.
1810, pp. 96-108). Berlin: Springer-Verlag.

Cohen, W. & Jensen, L. (2001, August). A structured wrapper induction
system for extracting information from semi-structured documents. Pro-
ceedings of the International Joint Conference on Artificial Intelli-
gence (IJCAI-2001) Workshop on Adaptive Text Extraction and
Mining, Seattle, Washington.

Cohen, W. W. (1999). Recognizing structure in web pages using similarity
queries. In Proceedings of the 16th National Conference on Artificial
Intelligence and the 11th Conference on Innovative Applications of
Artificial Intelligence (AAAI/IAAI), Orlando, Florida, July 18-22,
1999 (pp. 59-66).

Crescenzi, V. & Mecca, G. (1998). Grammars have exceptions. Information
Systems, 23(8), 539-565.

Crescenzi, V., Mecca, G., & Merialdo, P. (2001). RoadRunner: Towards
automatic data extraction from large web sites. In Proceedings of the
27th International Conference on Very Large Data Bases (VLDB
2001), Rome, Italy, September 2001 (pp. 109-118).

Embley, D. et al. (1999). Conceptual-model-based data extraction from
multiple record web pages. Data and Knowledge Engineering, 31(3),
227-251.

Embley, D., Jiang, S., & Ng, Y. (1999). Record-boundary discovery in web
documents. In Proceedings of the ACM SIGMOD International Con-
ference on Management of Data (pp. 467-478).

Florescu, D., Levy, A. Y., & Mendelzon, A. O. (1998). Database techniques
for the world wide web: A survey. SIGMOD Record, 27(3), 59-74.

Freitag, D. (1998). Multistrategy learning for information extraction. In Pro-
ceedings of the 15th International Conference on Machine Learning
(pp. 161-169). San Francisco, CA: Morgan Kaufmann.

Freitag, D. & Kushmerick, N. (2000). Boosted wrapper induction. In AAAI/
IAAI, 577-583).

Golgher, P. B., Silva, A. S. D., Laender, A. H. F., & Ribeiro-Neto, B. A.
(2001). Bootstrapping for example-based data extraction. In Proceed-

Web Information Extraction via Web Views 263

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

ings of the 2001 ACM CIKM International Conference on Informa-
tion and Knowledge Management, Atlanta, Georgia, November 5-10,
2001 (pp. 371-378). New York: ACM Press.

Gupta, A., Harinarayan, V., & Rajaraman, A. (1998). Virtual database
technology. Proceedings of the 14th International Conference on
Data Engineering, Orlando, Florida, February 23-27, 1998.

Hammer, J., Molina, H. G., Cho, J., Crespo, A., & Aranha, R. (1997).
Extracting semistructured information from the web. In Proceedings of
the Workshop on Management of Semistructured Data, Tucson,
Arizona, May 1997 (pp. 18-25).

Hammer, J., Molina, H.G., Nestorov, S., Yerneni, S., Breunig, M., &
Vassalos, V. (1997). Template-based wrappers in the TSIMMIS sys-
tem. In Proceedings of the 1997 ACM SIGMOD International Confer-
ence on Management of Data, Tucson, Arizona, May 1997 (pp. 532-
535).

Hsu, C. N. & Dung, M. T. (1998). Generating finite-state transducers for
semistructured data extraction from the web. Information Systems,
23(8), 521-538.

Kistler, T. & Marais, H. (1998). WebL - a programming language for the web.
In Proceedings of WWW7 (Vol. 30, 1-7) of Computer Networks, pp.
259-270).

Kosala, R. & Blockeel, H. (2000). Instance-based wrapper induction. In
Proceedings of the 10th Belgium-Dutch Conference on Machine
Learning (pp. 61-68).

Kosala, R., Bussche, J. V. D., Bruynooghe, M., & Blockeel, H. (2002).
Information extraction in structured documents using tree automata
induction. In Proceedings of the 6th European conference (PKDD-02)
(LNCS, pp. 299-310).

Kuhlins, S. & Tredwell, R. (2002, September). Toolkits for generating
wrappers — A survey of software toolkits for automated data extraction
from websites. Proceedings of Net.ObjectsDays 2002.

Kushmerick, N. (1999). Gleaning the web. IEEE Intelligent Systems, 14(2),
20-22.

Kushmerick, N. (1999). Regression testing for wrapper maintenance. In
Proceedings of the 16th National Conference on Artificial Intelli-
gence and the 11th Conference on Innovative Applications of Artifi-
cial Intelligence (AAAI/IAAI), Orlando, Florida, July 18-22, 1999 (pp.
74-79).

264 Ng, Liu, Li, & Lim

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Kushmerick, N. (2000). Wrapper induction: Efficiency and expressiveness.
Artificial Intelligence, 118(1-2), 15-68.

Kushmerick, N. (2000). Wrapper verification. Proceedings of World Wide
Web, 3(2), 79-94.

Laender, A. H. F., Ribeiro-Neto, B. A., & Silva A. S. D. (2002). DEByE —
Data extraction by example. Data and Knowledge Engineering, 40(2),
121-154.

Laender, A. H. F., Ribeiro-Neto, B. A., Silva, A. S. D., & Teixeira, J. S.
(2002). A brief survey of web data extraction tools. ACM SIGMOD
Record, 31(2), 84-93.

Lerman, K., Knoblock, C., & Minton, S. (2003). Wrapper maintenance: A
machine learning approach. Journal of Artificial Intelligence Research,
18, 149-181.

Li, F. F., Liu, Z. H., Huang, Y. F., & Ng, W. K. (2001). An information
concierge for the web. In Proceedings of the 1st International Work-
shop on Internet Bots: Systems and Applications (INBOSA 2001) and
the 12th International Conference on Database and Expert System
Applications (DEXA 2001), Munich, Germany, September 2001 (pp.
672-676).

Lin, S. H. & Ho, J. M. (2002). Discovering informative content blocks from
web documents. Proceedings of the International Conference on
Knowledge Discovery and Data Mining (SIGKDD-02).

Liu, Z., Li, F., & Ng, W. K. (2002). Wiccap data model: Mapping physical
websites to logical views. In Proceedings of the 21st International
Conference on Conceptual Modelling (ER 2002), Tempere, Finland,
October 2002 (pp. 120-134).

Liu, Z., Li, F., Ng, W. K., & Lim, E. P. (2002). A visual tool for building logical
data models of websites. In Proceedings of the 4th ACM CIKM
International Workshop on Web Information and Data Management
(WIDM 2002), McLean, Virginia, November 2002 (pp. 92-95).

Liu, L., Pu, C., & Han, W. (2000). XWRAP: An XML-enabled wrapper
construction system for web information sources. In Proceedings of the
16th International Conference on Data Engineering (ICDE 2000),
San Diego, California, February 2000 (pp. 611-621).

May, W., Himmer¨oder, R., Lausen, G., & Lud¨ascher, B. (1999). A unified
framework for wrapping, mediating and restructuring information from the
web. In Advances in Conceptual Modeling: ER ’99 Workshops on
Evolution and Change in Data Management, Reverse Engineering in
Information Systems, and the World Wide Web and Conceptual

Web Information Extraction via Web Views 265

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Modeling, Paris, France, November 15-18 1999 (Vol. 1727 of LNCS,
pp. 307-320). Berlin: Springer-Verlag.

Mecca, G. & Atzeni, P. (1999). Cut and Paste. Journal of Computer and
System Sciences, 58(3), 453-482.

Mecca, G., Atzeni, P., Masci, A., Merialdo, P., & Sindoni, G. (1998). The
araneus web-base management system. In Proceedings of the SIGMOD
conference, (pp. 544-546).

Morrison, D. R. (1968). Patricia - practical algorithm to retrieve information
coded in alphanumeric. Journal of the ACM, 15(4), 514-534.

Muslea, I. (1998). Extraction patterns: From information extraction to
wrapper generation. Los Angeles, CA: University of Southern Califor-
nia, Information Sciences Institute. (Technical Report).

Muslea, I. (1999). Extraction patterns for information extraction tasks: A
survey. In Proceedings of the Workshop on Machine Learning for
Information Extraction, Orlando, Florida, July 1999 (pp. 1-6).

Muslea, I., Minton, S., & Knoblock, C. A. (1999). A hierarchical approach
to wrapper induction. In Proceedings of the 3rd International Confer-
ence on Autonomous Agents (Agents’99), Seattle, Washington (pp.
190-197). New York: ACM Press.

Muslea, I., Minton, S., & Knoblock, C.A. (2001). Hierarchical wrapper
induction for semi-structured information sources. Autonomous Agents
and Multi-agent Systems, 4(1/2), 93-114.

Rajaraman, A. & Ullman, J. D. (2001). Querying websites using compact
skeletons. In Proceedings of the 20th ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems (PODS), Santa Bar-
bara, California, May 21-23, 2001. New York: ACM Press.

Ribeiro-Neto, B. A., Laender, A. H. F., & Silva, A. S. D. (1999). Extracting
semi-structured data through examples. Proceedings of the 1999 ACM
International Conference on Information and Knowledge Manage-
ment (CIKM) (pp. 94-101). New York: ACM Press.

Sahuguet, A. & Azavant, F. (2001). Building intelligent web applications using
lightweight wrappers. Data and Knowledge Engineering, 36(3), 283-
316.

Seymore, K., McCallum, A., & Rosenfeld, R. (1999). Learning hidden
Markov model structure for information extraction. AAAI’99 Work-
shop on Machine Learning for Information Extraction.

Soderland, S. (1997). Learning to extract text-based information from the
world wide web. In Proceedings of Knowledge Discovery and Data
Mining (pp. 251-254).

266 Ng, Liu, Li, & Lim

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Soderland, S. (1999). Learning information extraction rules for semi-struc-
tured and free text. Machine Learning, 34(1/3), 233-272.

Soderland, S., Fisher, D., Aseltine, J., & Lehnert, W. (1995). CRYSTAL:
Inducing a conceptual dictionary. In Proceedings of the 14th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI) (pp. 1314-
1319). San Francisco, CA: Morgan Kaufmann.

Thomas, B. (1999). Anti-unification based learning of t-wrappers for informa-
tion extraction. Proceedings of the Workshop on Machine Learning
for Information Extraction.

Thomas, B. (2000). Token-templates and logic programs for intelligent web
search. Journal of Intelligent Information Systems, 14(2-3), 41-261.

Wang, Y. L., Hu, J. Y., & Ramakrishnan, I. V. (2002). A machine learning
based approach for table detection on the web. In Proceedings of the
11th International World Wide Web Conference (WWW2002), Hono-
lulu, Hawaii, May 7-11, 2002. New York: ACM Press.

XML Schema. Retrieved 2003 from: http://www.w3.org/XML/Schema/.
Yang, Y. M., Slattery, S., & Ghani, R. (2002). A study of approaches to

hypertext categorization. Journal of Intelligent Information Systems,
18(2-3), 219-241.

ENDNOTES
1 Web Information Collection, Collaging and Programming (WICCAP) is an

on-going project in CAIS, NTU. Presently, it is not publicly available.
2 http://my.yahoo.com
3 http://www.amazon.com

Web Information Extraction via Web Views 267

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

SECTION IV

WEB INFORMATION MINING

268 Tsoumakas, Bassiliades, & Vlahavas

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter VIII

A Knowledge-Based
Web Information System

for the Fusion of
Distributed Classifiers

Grigorios Tsoumakas, Aristotle University of Thessaloniki, Greece

Nick Bassiliades, Aristotle University of Thessaloniki, Greece

Ioannis Vlahavas, Aristotle University of Thessaloniki, Greece

ABSTRACT
This chapter presents the design and development of WebDisC, a
knowledge-based web information system for the fusion of classifiers
induced at geographically distributed databases. The main features of our
system are: (i) a declarative rule language for classifier selection that
allows the combination of syntactically heterogeneous distributed
classifiers; (ii) a variety of standard methods for fusing the output of
distributed classifiers; (iii) a new approach for clustering classifiers in
order to deal with the semantic heterogeneity of distributed classifiers,
detect their interesting similarities and differences, and enhance their
fusion; and (iv) an architecture based on the Web services paradigm that
utilizes the open and scalable standards of XML and SOAP.

Fusion of Distributed Classifiers 269

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

INTRODUCTION
Recently, the enormous technological progress on acquiring and storing

data in a digital format has led to the accumulation of significant amounts of
personal, business and scientific data. Advances in network technologies and
the Internet have led to the availability of much of these data online. Personal
text, image, audio and video files are today accessible through web pages,
peer-to-peer systems, and FTP archives. Businesses have transferred their
enterprise systems online, providing their customers information and support of
excellent quality in a low-cost manner. Huge scientific data from physics
experiments, astronomical instruments, and DNA research are being stored
today in server farms and data grids, while, at the same time, software
technology for their online access and integration is being developed. Today,
the grand challenge of Machine Learning, Knowledge Discovery, and Data
Mining scientists is to analyze this distributed information avalanche in order to
extract useful knowledge.

An important problem toward this challenge is that it is often unrealistic to
collect geographically distributed data for centralized processing. The neces-
sary central storage capacity might not be affordable, or the necessary
bandwidth to efficiently transmit the data to a single place might not be
available. In addition, there are privacy issues preventing sensitive data (e.g.,
medical, financial) from being transferred from their storage site.

Another important issue is the syntactic and semantic heterogeneity of data
belonging to different information systems. The schemas of distributed data-
bases might differ, making the fusion of distributed models a complex task.
Even in a case where the schemas match, semantic differences must also be
considered. Real-world, inherently distributed data have an intrinsic data
skewness property. For example, data related to a disease from hospitals
around the world might have varying distributions due to different nutrition
habits, climate and quality of life. The same is true for buying patterns identified
in supermarkets at different regions of a country.

Finally, systems that learn and combine knowledge from distributed data
must be developed using open and extensible technology standards. They must
be able to communicate with clients developed in any programming language
and platform. Inter-operability and extensibility are of primal importance for the
development of scalable software systems for distributed learning.

The main objective of this chapter is the design and development of
WebDisC, a knowledge-based Web information system for the fusion of
classifiers induced at geographically distributed databases. Its main features
are: (i) a declarative rule language for classifier selection that allows the

270 Tsoumakas, Bassiliades, & Vlahavas

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

combination of syntactically heterogeneous distributed classifiers; (ii) a variety
of standard methods for fusing the output of distributed classifiers; (iii) a new
approach for clustering classifiers in order to deal with the semantic heteroge-
neity of distributed classifiers, detect their interesting similarities and differ-
ences, and enhance their fusion; and (iv) an architecture based on the Web
services paradigm that utilizes the open and scalable standards of XML and
SOAP.

In the rest of this chapter, we initially present the technologies that
constitute the Web services framework and are at the core of the WebDisC
system. We then give background information on classification, classifier
fusion, and related work on distributed classifier systems. Subsequently, we
describe the architecture, main functionality, and user interface of the WebDisC
system, along with the X-DEVICE component of the system and the proposed
classifier clustering approach. Finally, we conclude this work and pose future
research directions.

WEB SERVICES
A Web service is a software system, identified by a URI, whose public

interfaces and bindings are defined and described using XML. Its definition can
be discovered by other software systems. These systems may then interact with
the Web service in a manner prescribed by its definition, using XML-based
messages conveyed by Internet protocols (Champion et al., 2002).

The use of the Web services paradigm is expanding rapidly to provide a
systematic and extensible framework for application-to-application (A2A)
interaction, built on top of existing Web protocols and based on open XML
standards. Web services aim to simplify the process of distributed computing
by defining a standardized mechanism to describe, locate, and communicate
with online software systems. Essentially, each application becomes an acces-
sible Web service component that is described using open standards.

 The basic architecture of Web services includes technologies capable of:
• Exchanging messages.
• Describing Web services.
• Publishing and discovering Web service descriptions.

Exchanging Messages
The standard protocol for communication among Web services is the

Simple Object Access Protocol (SOAP) (Box et al., 2000). SOAP is a simple

Fusion of Distributed Classifiers 271

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

and lightweight XML-based mechanism for creating structured data packages
that can be exchanged between network applications. SOAP consists of four
fundamental components: an envelope that defines a framework for describing
message structure; a set of encoding rules for expressing instances of applica-
tion-defined data types; a convention for representing remote procedure calls
and responses; and a set of rules for using SOAP with HTTP. SOAP can be
used with a variety of network protocols, such as HTTP, SMTP, FTP, RMI/
IIOP, or a proprietary messaging protocol.

SOAP is currently the de facto standard for XML messaging for a number
of reasons. First, SOAP is relatively simple, defining a thin layer that builds on
top of existing network technologies, such as HTTP, that are already broadly
implemented. Second, SOAP is flexible and extensible in that, rather than trying
to solve all of the various issues developers may face when constructing Web
services, it provides an extensible, composable framework that allows solu-
tions to be incrementally applied as needed. Thirdly, SOAP is based on XML.
Finally, SOAP enjoys broad industry and developer community support.

SOAP defines four XML elements:
• env:Envelope is the root of the SOAP request. At the minimum, it defines

the SOAP namespace. It may define additional namespaces.
• env:Header contains auxiliary information as SOAP blocks, such as

authentication, routing information, or transaction identifier. The header is
optional.

• env:Body contains one or more SOAP blocks. An example would be a
SOAP block for RPC call. The body is mandatory and it must appear after
the header.

• env:Fault is a special block that indicates protocol-level errors. If
present, it must appear in the body.

SOAP is used in WebDisC for the exchange of messages between the
Portal and the distributed classifiers. Examples of those messages can be found
in Figures 9, 10, and 11.

Describing Web Services
The standard language for formally describing Web services is Web

Services Description Language (WSDL). WSDL (Chinnici et al., 2002) is an
XML document format for describing Web services as a set of endpoints
operating on messages containing either document-oriented or procedure-
oriented (RPC) messages. The operations and messages are described ab-
stractly and then bound to a concrete network protocol and message format to

272 Tsoumakas, Bassiliades, & Vlahavas

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

define an endpoint. Related concrete endpoints may be combined into services.
WSDL is sufficiently extensible to allow description of endpoints and their
messages regardless of what message formats or network protocols are used
to communicate. A complete WSDL definition of a service comprises a service
interface definition and a service implementation definition, as depicted in
Figure 1.

A service interface definition is an abstract or reusable service definition
that may be instantiated and referenced by multiple service implementation
definitions. A service interface definition can be thought of as an IDL (Interface
Definition Language), Java interface, or Web service type. This allows common
industry standard service types to be defined and implemented by multiple
service implementers.

In WSDL, the service interface contains elements that comprise the
reusable portion of the service description: binding, portType, message, and
type elements. In the portType element, the operations of the Web service are
defined. The operations define what XML messages can appear in the input,
output, and fault data flows. The message element specifies which XML data
types constitute various parts of a message. The message element is used to
define the abstract content of messages that comprise an operation. The use of
complex data types within the message is described in the type element. The
binding element describes the protocol, data format, security and other
attributes for a particular service interface (portType).

The service implementation definition describes how a particular service
interface is implemented by a given service provider. It also describes its

Figure 1: WSDL Service Implementation and Interface Definitions

��������

�	
��	�������

����������

�

�

��������

���������

����������

��������

����

��������

�����
��

��������

��
��

Fusion of Distributed Classifiers 273

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

location so that a requester can interact with it. In WSDL, a Web service is
modeled as a service element. A service element contains a collection of port
elements. A port associates an endpoint (e.g., a network address location) with
a binding element from a service interface definition.

Examples of WSDL definitions for all WebDisC Web services can be
found in WebDisC (2003).

Publishing and Discovering Web Service Descriptions
While there are some established standards for Web service description

and communication, the publishing and discovery of Web services can be
implemented with a range of solutions. Any action that makes a WSDL
document available to a requestor, at any stage of the service requestor’s
lifecycle, qualifies as service publication. In the same way, any mechanism that
allows the service requestor to gain access to the service description and make
it available to the application at runtime qualifies as service discovery.

The simplest case of publishing a Web service is a direct publish. This
means that the service provider sends the service description directly to the
service requestor. This can be accomplished using an email attachment, an FTP
site, or even a CDROM distribution. Slightly more dynamic publication uses
Web Services Inspection Language (WSIL) (Brittenham, 2001). WSIL de-
fines a simple HTTP GET mechanism to retrieve Web services descriptions
from a given URL. Another means of publishing service descriptions available
to Web services is through a Universal Description, Discovery and Integration
(UDDI) registry (Bellwood et al., 2002). There are several types of UDDI
registries that may be used, depending on the scope of the domain of Web
services published to it. When publishing a Web service description to a UDDI
registry, complete business context and well thought out taxonomies are
essential if the service is to be found by its potential consumers.

The X-DEVICE system (Bassiliades et al., 2003a) is used in WebDisC for
registering and discovering Web services for distributed classification. More
details are given later in the chapter.

CLASSIFIER FUSION:
METHODS AND SYSTEMS

This section introduces the learning task of classification, the rationale for
classifier fusion, established methods, and existing systems that perform
classifier fusion.

274 Tsoumakas, Bassiliades, & Vlahavas

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Classification
Supervised classification is one of the most common machine learning and

data mining tasks (Saitta, 2000). It deals with the problem of identifying
interesting regularities between a number of independent variables and a target
or dependent categorical variable in a given data set. For example, given a set
of training instances (x

i1
, x

i2
, …, x

ik
, y

i
), i = 1..N, the task is to compute a

classifier, or model, or a concept that approximates an unknown function
y=f(x), that correctly labels any instance drawn from the same source as the
training set.

There exist many ways to represent a classification model and many more
algorithms to generate it. Typical classifier learning approaches include concept
learning, neural networks, decision trees, rule learning, Bayesian learning, and
instance-based learning. All these approaches construct models that share the
common ability to classify previously unknown instances of a domain based on
instances of the same domain that were used for their training.

The output of a classifier can be: (i) the label of a class; (ii) rankings for all
the classes; and (iii) measures of uncertainty, such as belief, confidence,
probability, possibility, plausibility, or other for each class. Consider, for
example, a domain for predicting tomorrow’s weather with three possible
classes: sunny, windy, and rainy. The corresponding output for the three types
of classifiers could be: (i) sunny; (ii) 1 - sunny, 2 - windy, 3 - rainy; and (iii) 0.8
- sunny, 0.5 - windy, 0.1 - rainy. Classifiers that output class labels are
commonly called hard classifiers, while classifiers that output measures of
uncertainty are called distribution/soft classifiers. Classifiers that output rankings
are not so common in the machine learning literature.

Another distinction among classifiers is whether they are homogeneous or
heterogeneous. There are two forms of classifier heterogeneity. According to
the first, two classifiers are considered homogeneous if they are created using
the same learning algorithm. For example, a naive Bayes classifier and a
decision list are heterogeneous classifiers, while two neural networks are
homogeneous classifiers. Another form of heterogeneity is based on the schema
of the training data of the two classifiers. For example, two decision trees both
predict tomorrow’s weather, but one is based on temperature and wind speed,
while the other is based on atmospheric pressure and humidity. Both are
considered heterogeneous classifiers. In this chapter, the term heterogeneity
will be used with the latter meaning.

Fusion of Distributed Classifiers 275

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Fusion Methods
Classifier Fusion has been a very active field of research in the recent

years. It was used for improving the classification accuracy of pattern recog-
nition systems because single classification learning algorithms were approach-
ing their limits. It was also used as a method for scaling up data mining to very
large databases through combining classifiers trained in parallel from different
parts of the database. Finally, it was used for learning from geographically
distributed databases, where bandwidth or privacy constraints forbid the
gathering of data in a single place, through the fusion of locally learned
classification models.

There are two general groups of Classifier Fusion methods. The first group
encompasses methods that combine the outputs of the classifiers, while the
second group deals with the structure of the multiple classifier system. We will
focus on the former group of methods, as WebDisC implements some of them
and provides the necessary infrastructure for implementing the rest.

Methods that fuse classifier outputs can be further categorized based on
two properties. The first is the classifier output type on which they can operate,
and the second is the need for training data for the fusion process. According
to these, Table 1 presents the main methods. WebDisC currently implements
the simple methods of Majority Voting and the Sum, Product, Min, Max, and
Median rules.

Majority Voting works for both hard and distribution classifiers. In the
latter case, the class with the maximum certainty measure receives one vote,
breaking ties arbitrarily. The Sum, Min, Max, Prod, and Median rules apply to
distribution classifiers only. An interesting study of these rules for classifier
combination can be found in Kittler et al. (1998).

Let C = {C
1
, C

2
, ..., C

N
} be a set of classifiers, and L = {L

1
, L

2
, ..., L

K
}

be a set of class labels. Hard classifiers receive an input instance x and output
an element of the set L. Distribution classifiers receive an input instance x and
output a k-dimensional vector C

i
(x) = [c

i,1
(x), c

i,2
 (x), ..., c

i,k
(x)], where c

i,j
(x)

is the certainty measure that classifier C
i
 gives to label L

j
.

For the Majority Voting combination of hard classifiers, the output is the
element of set L that got the most votes (outputs) from the N classifiers. For the
Sum, Min, Max, Prod, and Median rules, the output is a k-dimensional vector
[r

1
(x), r

2
(x), ..., r

k
(x)], where:

r
i
(x) = op(c

1,i
(x), c

2,i
(x), ..., c

N,i
(x))

276 Tsoumakas, Bassiliades, & Vlahavas

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

and op is the respective operation (average, minimum, maximum, product, and
median).

Fusion Systems
Despite the availability of many classifier fusion methods, there are few

systems that implement such methods in a distributed database scenario. A
reason is that most of these methods were used for pattern recognition tasks,
where data are usually gathered at a single place and there are no distributed
computing requirements. In the following paragraphs, we summarize some of
the most important work on system development aimed at classifier learning
and combination from distributed data.

A system that learns and combines classifiers from distributed databases
is Java Agents for Meta-Learning (JAM) (Stolfo et al., 1997). It is implemented
in Java and uses the Java technology of Remote Method Invocation (RMI) for
distributed computing. An important limitation to the extensibility of the system
is the fact that clients have to be written in Java. Therefore, JAM is bound to
be a closed system that is intended for use in a group of firmly-coupled
distributed databases. Furthermore, in contrast to WebDisC, it cannot be used
for the fusion of heterogeneous classifiers.

A CORBA infrastructure for distributed learning and meta-learning is
presented in Werges and Naylor (2002). Although CORBA is a standard-
based distributed object technology, it has been surpassed by the Web services
technology. In addition, the presented infrastructure is very complex, as the

Table 1: Classifier Fusion Methods

 Re-Training

Output Yes No

Label Knowledge-Behavior Space

(Huang & Suen, 1995)

Majority Voting (Lam & Suen, 1995)

Ranking The Highest Rank

Logistic Regression

Intersection of Neighborhoods

Union of Neighborhoods

Borda Count

Distribution Stacked Generalization (Wolpert, 1992)

Dempster-Shaffer Combination (Rogova, 1994)

Fuzzy Templates (Kuncheva et al., 1995)

Fuzzy Integrals (Tahani & Keller, 1990)

Sum, Product, Min, Max, Median rules

(Kittler et al., 1998)

Fusion of Distributed Classifiers 277

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

client developers have to implement a lot of different interfaces. The lack of
open standards, such as XML and SOAP, and the complexity of the system
hinder its extensibility. Furthermore, like JAM, it combines homogeneous
classifiers.

Another system that is built using CORBA technology is MAS (Botia et al.,
2001). This is a sophisticated system with some interesting features that add to
its extensibility. These include a common services interface for all learning
agents and an X.500-based directory service as a repository for the system
components. However, as stated above, these standards have been surpassed
by Web services technologies which are open, scalable and extensible.

THE WEBDISC SYSTEM
WebDisC is a knowledge-based Web information system for the fusion of

classifiers induced at geographically distributed databases. The architecture of
WebDisC is based on the new and promising Web services paradigm. It further
encompasses a Web-based interface that allows users to interact with the
system through guided procedures. Its main functionality includes: (i) a declara-
tive rule language for classifier selection that allows the combination of
syntactically heterogeneous distributed classifiers; (ii) a variety of standard
methods for fusing the output of distributed classifiers; and (iii) a new approach
for clustering classifiers in order to deal with the semantic heterogeneity of
distributed classifiers, detect their interesting similarities and differences, and
enhance their fusion. The rest of this section describes the architecture,
functionality, methodologies, and user interface of the system.

Architecture and Main Functionality
The architecture of WebDisC comprises three basic components as

depicted in Figure 2: (i) Clients; (ii) The Portal; and (iii) WebDisC Nodes.

The WebDisC Nodes
WebDisC Nodes are databases located at different geographical areas,

along with local classification models that were induced from those databases
using a machine learning/data mining algorithm.

WebDisC Nodes expose the following web services:
• wsClassify takes as input the attribute-value pairs of an unclassified

example and outputs the classification result.
• wsGetClassifier takes an empty input and returns the classifier of the

WebDisC Node in PMML format (Data Mining Group, 2002).

278 Tsoumakas, Bassiliades, & Vlahavas

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• wsGetData returns a vector of tuples from the WebDisC Node’s
database. It takes as input an integer indicating the number of tuples that
will be transferred.

Notice that the WSDL descriptions for all the Web services of our system
can be found in (WebDisC, 2003).

The Portal
The Portal is the coordinating component of the system. It consists of the

X-DEVICE deductive XML database system and the following Web services:
wsRegister, wsDistClassify, and wsCluster. In addition, it offers a Web-
based interface for thin client access that also implements the fusion methods.

X-DEVICE’s main purpose is the storage of meta-data regarding the
distributed classifiers that are registered with WebDisC. These meta-data
include: description, names and types of the input and output attributes, name
of learning algorithm, ability to handle missing values, and the URI of the Web
services.

Figure 3 shows the DTD for the classifier’s meta-data, which also define
the type of objects that are stored in X-DEVICE for each classifier, according
to the XML-to-object mapping scheme of X-DEVICE (see Figure 8). Notice
that the actual XML Schema data types for attType and address elements are
xs:anyType and xs:anyURI, respectively. Figure 4 shows sample meta-data
for a classifier registered in X-DEVICE, according to the DTD of Figure 3.
More on X-DEVICE will be presented in the corresponding section.

Figure 2: The Architecture of WebDisC

�

��������	
���

�

�
�����������

���������������

��������

���	��

���	��

���	��
���

��

�
�����

�

�

�����	���

������������������������

���������

Fusion of Distributed Classifiers 279

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

wsRegister is the Web service that WebDisC Nodes use in order to
register with the system. This service takes as input the classifier meta-data of
a WebDisC Node and adds them within X-DEVICE (see Figure 9).

wsDistClassify, implements a new approach for distributed classification.
It takes as input the name of the dependent attribute and the names and values
of some independent attributes of an unclassified example. It also takes as input
the name of a predefined method or a set of user-defined X-DEVICE rules that
specifies a strategy for selecting the classifiers that should be used for classifying
this example, amongst all suitable classifiers. The selection strategies offered by
the system, along with the specifications for describing user-defined strategies,

Figure 3: DTD for Classifier Metadata

 <!ELEMENT classifier (name, description, address,
 classificationMethod, acceptsMissingValues,

 classificationAttribute, inputAttribute*)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT address (#PCDATA)>
<!ELEMENT classificationMethod (#PCDATA)>
<!ELEMENT acceptsMissingValues (#PCDATA)>
<!ELEMENT classificationAttribute (attName, attName)>
<!ELEMENT inputAttribute (attName, attType)>
<!ELEMENT attName (#PCDATA)>
<!ELEMENT attType (#PCDATA)>

Figure 4: Sample Classifier Metadata

�

���������	
��

� ���	���������	
�����	��

� ��	��
�����������������������	
��������	�����	��������
		���	��
��������

� ����
	�������������
�
	������������
���������	
������
	����

� ����������������	������	��������
		�����������������	������

� ����	��������������	���
�	�����	��������������	���

� ������������������
� ��	��

� � ����!�	����������!�	��

� � �����"�	�#����
���������"�	��

� �������������������
� ��	��

� ���������
� ��	��

� � ����!�	�����	�����!�	��

� � �����"�	�#�����	�	
������"�	��

� ����������
� ��	��

� ���������
� ��	��

� � ����!�	���
������!�	��

� � �����"�	�#����
���������"�	��

� ����������
� ��	��

� ���������
� ��	��

� � ����!�	���	�����!�	��

� � �����"�	�#����
���������"�	��

� ����������
� ��	��
����������	
��

280 Tsoumakas, Bassiliades, & Vlahavas

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

are further explained later in this chapter. The service retrieves from X-DEVICE
the URIs and SOAP messages of the selected classifiers and calls the
wsClassify Web service of the distributed classifiers, passing the names and
values of the corresponding independent attributes as arguments. The output of
the service is a list of the collected results.

wsCluster implements a new approach for clustering distributed classifi-
ers. It takes as input a list of URIs that corresponds to a group of N classifiers,
that all share the same input and output attributes, and calls their wsGetData
and wsGetClassifier services. It so retrieves the actual classifiers and neces-
sary data to centrally run the clustering algorithm that is explained in the
Clustering Distributed Classifiers section. The output of the service is the
clustering result in the form of a vector of size N, with numbers indicating the
cluster of each classifier.

Finally, the Portal offers a Web-based user interface with guided proce-
dures for using the system. Users of WebDisC can select from the main page
one of the tasks of classification or clustering and are directed to the corre-
sponding pages. Data are entered via dynamically created HTML forms from
classifier meta-data stored in the X-DEVICE system. Classification and
clustering results are also presented in the Web-browser. Java servlets handle
the form input data and the preparation of results. The user interface is detailed
in the following subsection.

The Clients
Thick clients (applications) that want to exploit the functionality of WebDisC

can directly use the Portal’s wsDistClassify and wsCluster Web services. In
addition, thin clients (Web browsers) can access the functionality of WebDisC
by visiting the system’s Web pages and performing one of the tasks through
guided procedures.

User Interface
The main Web page of WebDisC allows users to select either the main task

of classification or that of clustering.

Classification
The classification data entry page contains a form where users can fill in the

details of the example to be classified and a form for selecting or entering the
classifier selection strategy. Figure 5 shows this page completed with values
for a specific domain regarding the approval of a loan application.

Fusion of Distributed Classifiers 281

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In the general case, users first select one of the available output attributes
from a combo-box. The entries of this combo-box are dynamically created
from the meta-data of the registered classifiers using a simple X-DEVICE
query. Once an output attribute has been selected, the page reloads with a table
containing the names of all the input attributes that can be used to predict this
output attribute. Again, this is performed dynamically through a simple X-
DEVICE query. Users can fill in the values for these attributes in the corre-
sponding text-boxes. If an attribute value is left unspecified, then it is ignored.

After entering the data of the example, users can select one of the default
classifier selection strategies or enter their own using the X-DEVICE query
language. The default strategies are: (i) select the classifiers that have at least
one input attribute in common with the attributes of the new example; (ii) select
the classifiers that have at least N% of their input attributes in common with the
attributes of the new example; and (iii) select the classifiers that have all their
input attributes in common with the attributes of the new example. The last
strategy selects homogeneous classifiers.

After selecting a strategy, users can press the classify example button,
which calls the wsClassify service of the Portal through a Java servlet, passing
the entered data and the selection strategy as arguments. The classification
results that the wsClassify service outputs are subsequently visualized on
another Web page by a table with a row for each classifier result. An example
of such a table, filled in with values for the loan application example, is depicted
in Figure 6.

Figure 5: Example of the Classification Data Entry Web Page of WebDisC

282 Tsoumakas, Bassiliades, & Vlahavas

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In this example, seven classifiers from three different banks registered with
WebDisC match the input data that the user entered. The loan assessment units
of the banks have homogeneous classifiers that take as input all three attributes,
while the headquarters of each bank have classifiers that use a different
combination of input attributes. Furthermore, we notice that only bank A uses
classifiers that output distributions, while the rest use classifiers that output class
labels. Another thing that can be noticed is that banks A and C output a yes
decision to the loan application, while bank B classifiers output a no decision.
Column CL of the table concerns the clustering process and will be subse-
quently explained.

At the bottom of the page, there is a fuse button which users can press for
combining the results of classifiers. The users can select one of the five
supported combination methods, as explained in the Classifier Fusion:
Methods and Systems section. By default, all classifiers are selected for
participating in the combination. To exclude one or more classifiers, users can
uncheck the check box in the last column (ON) of the table. When the fuse
button is pressed, the page reloads with the fusion result presented in the final

Figure 6: Example of the Classification Results Web Page of WebDisC

Fusion of Distributed Classifiers 283

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

row of the classifier results table, as depicted in Figure 6. In this example, the
Majority Voting decision is yes, as five out of the seven classifiers output yes.
If one of the other fusion methods were selected, then the classifiers of banks
B and C would not have taken part in the fusion because they are not
distribution classifiers, as these methods demand.

Clustering
The clustering page contains a combo-box for selecting the output at-

tribute, similarly to the classification page. Upon selecting this attribute, the
page reloads with a table that has a row for each group of homogeneous
classifiers that can predict it. The content of this table is dynamically calculated
through a simple query to X-DEVICE. Each row describes the input attributes
of the classifier group and has a radio button next to it so that only one group
can be selected.

Figure 7 shows the clustering page for the loan application example of the
previous section. There are four groups of homogeneous classifiers. The first
corresponds to classifiers from the four loan assessment units, while the rest
correspond to classifiers from each of the bank headquarters.

Pressing the cluster button at the bottom of the page will call the wsCluster
service of the Portal passing as parameters the URLs of the classifiers that
belong to the selected group. The result of the clustering process will be stored,

Figure 7: Example of the Clustering Web Page of WebDisC

284 Tsoumakas, Bassiliades, & Vlahavas

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

along with the classifier meta-data, in X-DEVICE for future use in a classifica-
tion process. Going back to Figure 6, we can see the result of clustering the four
loan assessment units of the banks. Column CL of the table has as value for each
classifier, the number of the cluster to which it belongs. We can see that there
are two groups. One contains the classifiers from the loan assessment units of
banks A and C, and the other contains the classifier from the loan assessment
unit of bank B.

Classifier clustering aims at discovering semantic differences that arise
from the geographical distribution of the databases. Using the above example,
banks A and C could belong to poorer countries than bank B, and thus,
consider the income of the example as high enough for the loan to be granted.
Bank B, however, considers the income low for granting the loan. In this case,
bank B classifiers should never be fused with bank A and C classifiers due to
semantic differences of the classification models. Having performed the clus-
tering process, the user of WebDisC has gained this knowledge and can avoid
fusing classifiers belonging to different clusters. Details of the clustering
algorithm can be found in the Clustering Distributed Classifiers section.

THE X-DEVICE COMPONENT
In this section, we initially present an overview of the X-DEVICE system,

a deductive object-oriented XML database system (Bassiliades et al., 2003a)
that is used as a Web service registry component for the WebDisC system.
Then, we describe in detail the functionality of X-DEVICE within WebDisC.

Overview of the X-DEVICE System
In X-DEVICE, XML documents are stored into the OODB by automati-

cally mapping the DTD to an object schema. Furthermore, X-DEVICE
employs a powerful rule-based query language for intelligently querying stored
web documents and data and for publishing the results. X-DEVICE is an
extension of the active object-oriented knowledge base system DEVICE
(Bassiliades et al., 2000). DEVICE integrates deductive and production rules
into an active OODB with event-driven rules (Diaz & Jaime, 1997) on top of
Prolog. This is achieved by translating the condition of each declarative rule into
a set of complex events that is used as a discrimination network to incrementally
match the condition against the database.

The advantages of using a logic-based query language for XML data come
from the well-understood mathematical properties and the declarative charac-

Fusion of Distributed Classifiers 285

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

ter of such languages, which both allow the use of advanced optimization
techniques, such as magic-sets. Furthermore, X-DEVICE, compared to the
Xquery (Boag et al., 2002) functional query language, has a more high-level,
declarative syntax. This syntax allows users to express everything that XQuery
can express, but in a more compact and comprehensible way, with the powerful
addition of general path expressions, which are due to fixpoint recursion and
second-order variables.

XML Object Model
The X-DEVICE system translates DTD definitions into an object data-

base schema that includes classes and attributes, while XML data are trans-
lated into objects. Generated classes and objects are stored within the
underlying object-oriented database ADAM (Gray et al., 1992). The mapping
of a DTD element to the object data model depends on the following:
• If an element has PCDATA content (without any attributes), it is represented

as a string attribute of the class of its parent element node. The name of
the attribute is the same as the name of the element.

• If an element has either (a) children elements or (b) attributes, then it is
represented as a class that is an instance of the xml_seq meta-class. The
attributes of the class include both the attributes of the element and the
children elements. The types of the attributes of the class are determined
as follows:
• Simple character children elements and element attributes correspond
to object attributes of string type. Attributes are distinguished from
children elements through the att_lst meta-attribute.
• Children elements that are represented as objects correspond to object
reference attributes.

The order of children elements is handled outside the standard OODB
model by providing a meta-attribute (elem_ord) for the class of the element
that specifies the correct ordering of the children elements. This meta-attribute
is used when (either whole or a part of) the original XML document is
reconstructed and returned to the user. The query language also uses it.

Alternation is also handled outside the standard OODB model by creating
a new class for each alternation of elements, which is an instance of the
xml_alt meta-class, and it is given a unique system-generated name. The
attributes of this class are determined by the elements that participate in the
alternation. The structure of an alternation class may seem similar to a normal

286 Tsoumakas, Bassiliades, & Vlahavas

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

element class; however, the behavior of alternation objects is different because
they must have a value for exactly one of the attributes specified in the class.

The mapping of the multiple occurrence operators, such as “star” (*), etc.,
are handled through multi-valued and optional/mandatory attributes of the
object data model. The order of children element occurrences is important for
XML documents. Therefore, the multi-valued attributes are implemented as
lists and not as sets.

 Figure 8 shows the X-DEVICE representation of the XML document in
Figure 4.

XML Deductive Query Language
X-DEVICE queries are transformed into the basic DEVICE rule language

and are executed using the system’s basic inference engine. The query results
are returned to the user in the form of an XML document. The deductive rule
language of X-DEVICE supports generalized path and ordering expressions,
which greatly facilitate the querying of recursive, tree-structured XML data and
the construction of XML trees as query results. These advanced expressions
are implemented using second-order logic syntax (i.e., variables can range over
class and attribute names) that have also been used to integrate heterogeneous
schemata (Bassiliades et al., 2003b). These XML-aware constructs are
translated through the use of object meta-data into a combination of (a) a set
of first-order logic deductive rules, and/or (b) a set of production rules so that
their conditions query the meta-classes of the OODB, they instantiate the

Figure 8: X-DEVICE Representation of the XML Document in Figure 4

object 1#classifier
 instance classifier
 attributes
 name 'Classifier1'
 description 'A local classifier that uses a Decision Tree'
 address 'http://startrek.csd.auth.gr/Classifier1'
 classificationMethod 'Decision Tree'
 acceptsMissingValues true
 classificationAttribute 2#classificationAttribute
 inputAttribute [3#inputAttribute,4#inputAttribute,5#inputAttribute]

object 2#classificationAttribute
 instance classificationAttribute
 attributes
 attName loan
 attType xs:string

object 3#inputAttribute
 instance inputAttribute
 attributes
 attName income
 attType xs:integer

object 4#inputAttribute
 instance inputAttribute
 attributes
 attName card
 attType xs:string

object 5#inputAttribute
 instance inputAttribute
 attributes
 attName home
 attType xs:string

Fusion of Distributed Classifiers 287

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

second-order variables, and they dynamically generate first-order deductive
rules.

In this section, we mainly focus on the use of the X-DEVICE first-order
query language to declaratively query the meta-data of the classifier Web
services that are represented as XML documents. More details about DE-
VICE and X-DEVICE can be found in Bassiliades et al. (2000) and Bassiliades
et al. (2003a). The general algorithms for the translation of the various XML-
aware constructs to first-order logic can be found in X-DEVICE (2002).

In X-DEVICE, deductive rules are composed of condition and conclu-
sion. The condition defines a pattern of objects to be matched over the
database, and the conclusion is a derived class template that defines the objects
that should be in the database when the condition is true. For example, rule R4
(see next subsection) defines that: An object with attribute classifierID
with value CL, and attribute address with value URL, exists in class
candidate_classifier if there is an object with OID I in class
init_candidate with an attribute method that its value equals string “At least
one,” an attribute address with value URL, and an attribute classifierID
with value CL, which points to an object of class classifier which, in turn,
has an attribute acceptsMissingValues with value “true.”

Actually, rule R4 selects all the initial candidate classifiers if the selection
method requires at least one input attribute common to the user’s classification
request, and if the classifier accepts missing values for some of its input
attributes. Class candidate_classifier is a derived class, i.e., a class
whose instances are derived from deductive rules. Only one derived class
template is allowed at the THEN-part (head) of a deductive rule. However,
many rules can exist with the same derived class at the head (e.g., rules R15 and
R16). The final set of derived objects is a union of the objects derived by all the
rules.

The syntax of such a rule language is first-order. Variables can appear in
front of class names (e.g., I, CL), denoting OIDs of instances of the class, and
inside the brackets, denoting attribute values, i.e., object references (CL) and
simple values (URL), such as integers, strings, etc. Variables are instantiated
through the “:” operator when the corresponding attribute is single-valued, and
through the “∋” operator when the corresponding attribute is multi-valued.
Conditions can also contain comparisons between attribute values, constants
and variables. Negation is also allowed if rules are safe, i.e., variables that
appear in the conclusion must also appear at least once inside a non-negated
condition.

288 Tsoumakas, Bassiliades, & Vlahavas

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Path expressions can be composed using dots between the “steps,” which
are attributes of the interconnected objects which represent XML document
elements. For example, rule R2 generates the set of initial candidate classifiers
by selecting all the registered classifiers that have at least one input attribute
common to the user’s classification request. The object that represents the
user’s request is C@classify and, in order to retrieve names of input
attributes, the query navigates from classify through inputVector and
inputPair to attName.

The innermost attribute should be an attribute of “departing” class, i.e.,
inputVector is an attribute of class classify. Moving to the left,
attributes belong to classes that represent their predecessor attributes. Notice
the right-to-left order of attributes, contrary to the common C-like dot notation,
that stress out the functional data model origins of the underlying ADAM
OODB (Gray et al., 1992). Under this interpretation, the chained “dotted”
attributes can be seen as function compositions.

A query is executed by submitting the set of stratified rules (or logic
program) to the system, which translates them into active rules and activates the
basic events to detect changes at base data. Data are forwarded to the rule
processor through a discrimination network (much like in a production system
fashion). Rules are executed with fixpoint semantics (semi-naive evaluation),
i.e., rule processing terminates when no more new derivations can be made.
Derived objects are materialized, and are either maintained after the query is
over or discarded on user’s demand. X-DEVICE also supports production
rules, which have at the THEN-part one or more actions expressed in the
procedural language of the underlying OODB.

The main advantage of the X-DEVICE system is its extensibility; it allows
the easy integration of new rule types, as well as transparent extensions and
improvements of the rule matching and execution phases. The current system
implementation includes deductive rules for maintaining derived and aggregate
attributes. Among the optimizations of the rule condition matching is the use of
a RETE-like discrimination network, extended with reordering of condition
elements, for reducing time complexity, and virtual-hybrid memories, for
reducing space complexity (Bassiliades & Vlahavas, 1997). Furthermore, set-
oriented rule execution can be used for minimizing the number of inference
cycles (and time) for large data sets (Bassiliades et al., 2000).

More examples of the X-DEVICE language will be presented and
explained in the sequel when needed for the description of the WebDisC
functionality.

Fusion of Distributed Classifiers 289

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

X-DEVICE Functionality in WebDisC
In this subsection, we describe in detail the functionality of the X-DEVICE

system within the WebDisC system, as it has been previously presented in the
WebDisC system architecture.

Classifier Registration
The initial task that X-DEVICE performs within WebDisC is to register the

meta-data for the classifiers of the WebDisC Nodes. The DTD of the
classifiers’ meta-data has been given in Figure 3. The WSDL description for
the wsRegister service is shown in WebDisC (2003). New WebDisC Nodes
are sent in a SOAP message that contains their meta-data. A sample SOAP
message is shown in Figure 9. The schema of the incoming SOAP message is
determined at the input message of the corresponding port type of the WSDL
description.

Figure 9: Sample SOAP Message for Registering a Classifier

 <SOAP-ENV:Envelope xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:m0="http://startrek.csd.auth.gr/wsRegister.xsd">
 <SOAP-ENV:Body>
 <m:Register xmlns:m="http://startrek.csd.auth.gr/wsRegister.wsdl">
 <classifierName>Classifier1</classifierName>
 <classifierDescription>
 A local classifier that uses a Decision Tree
 </classifierDescription>
 <address>http://startrek.csd.auth.gr/Classifier1</address>
 <classificationMethod>Decision Tree</classificationMethod>
 <acceptsMissingValues>true</acceptsMissingValues>
 <inputAttribute>
 <m0:attName>income</m0:attName>
 <m0:attType>xs:integer</m0:attType>
 </inputAttribute>
 <inputAttribute>
 <m0:attName>card</m0:attName>
 <m0:attType>xs:string</m0:attType>
 </inputAttribute>
 <inputAttribute>
 <m0:attName>home</m0:attName>
 <m0:attType>xs:string</m0:attType>
 </inputAttribute>
 <classificationAttribute>
 <m0:attName>loan</m0:attName>
 <m0:attType>xs:string</m0:attType>
 </classificationAttribute>
 </m:Register>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

290 Tsoumakas, Bassiliades, & Vlahavas

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Input SOAP messages are stored within the X-DEVICE system using the
schema for the SOAP message found in the corresponding WSDL description.
However, the top-level element node of the input SOAP message is linked to
an instance of the input_soap_message class, through the OID of the object-
element node and its attribute content.

The following X-DEVICE rule Rl iterates over all incoming SOAP
messages that register a new classifier and generates a new classifier object for
each one of them.

Actually, rule Rl transforms the XML data of SOAP messages (Figure 9)
into classifier meta-data (Figure 4), stored as a set of objects (Figure 8).

Classifier Selection
One very important task of X-DEVICE is the selection of classifiers that

are relative to the user’s request. Initially, rule R2 below pre-selects all
classifiers that have at least one input attribute Att common to the input SOAP
message for the wsDistClassify service.

Figure 10 shows an example of such a SOAP message. Notice that the
classification attribute CAtt of the registered classifier must also coincide with
the requested classification attribute. The selection strategy Method provided
by the user is kept, along with the initial set of candidate classifiers, in order to
be used for the next step of classifier selection.

Fusion of Distributed Classifiers 291

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The above classes, init_candidate and candidate_atts, constitute
the programming interface for the rules that implement the classifier selection
strategy. Some of these strategies, such as At least one, All, and At least N%,
are provided by the system. A knowledgeable user can also use the X-
DEVICE language to provide his/her own selection strategy.

Rule R4 below implements the selection of a classifier that has at least one
common input attribute with the input SOAP message. Notice that the set of the
initially selected candidate classifiers already satisfies the above requirement;
therefore, the following rule just checks whether a classifier accepts missing
input values, and then copies its OID and address to the output interface class
candidate_classifier.

Furthermore, all the input attributes of the input SOAP message that match
some of the initial set of candidate classifiers are also kept as instances of the
candidate_atts class, using rule R3.

The selection of the classifiers that have all their input attributes present at
the input SOAP message needs a more complicated treatment. Rule R5 iterates
over all initial candidate classifiers and excludes the ones that have an input
attribute not present at the input SOAP message (instances of candidate_atts
class). Then, rule R6 copies, to the candidate_classifier class, the OID
and address of the initial candidate classifiers that have not been excluded by
rule R5.

292 Tsoumakas, Bassiliades, & Vlahavas

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Finally, the selection of a classifier, when the input SOAP message has at
least N% of the input attributes of the classifier, needs aggregate functions.
These functions count the total number of input attributes of the classifier (rule
R7) and the total number of the input attributes of the classifier that are present
at the input SOAP message (rule R8). Rule R9 retrieves the two numbers,
calculates their ratio, and compares it to the user-supplied percentage. Notice
that the selected classifier needs to accept missing values. All three rules make
use of the prolog{} construct of X-DEVICE to call out arbitrary Prolog goals.

The addresses of the final set of candidate classifiers are returned to the

Figure 10: Sample SOAP Message for Classifying an Example through
the wsDistClassify Service

 <SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:m0="http://startrek.csd.auth.gr/wsDistClassify.xsd">
 <SOAP-ENV:Body>
 <m:Classify xmlns:m="http://startrek.csd.auth.gr/wsDistClassify.wsdl">
 <inputVector>
 <inputPair>
 <m0:attName>income</m0:attName>
 <m0:attValue>14000</m0:attValue>
 </inputPair>
 <inputPair>
 <m0:attName>card</m0:attName>
 <m0:attValue>good</m0:attValue>
 </inputPair>
 <inputPair>
 <m0:attName>home</m0:attName>
 <m0:attValue>yes</m0:attValue>
 </inputPair>
 </inputVector>
 <classificationAtt>loan</classificationAtt>
 <select>At least one</select>
 </m:Classify>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Fusion of Distributed Classifiers 293

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

requesting application, along with the corresponding SOAP messages that
should be sent to the wsClassify services of the WebDisC Nodes. Figure 11
shows such a message.

The result is returned as an XML document, and is calculated by the rules
R10 to R14. Rule R10 creates a classify object that points to a selected
classifier object. Notice the use of the exclamation mark (!) in front of an
attribute name to denote a system attribute, i.e., an auxiliary attribute that will
not be a part of the query result. Rule Rll constructs a classifyPair object
for each attribute-value pair of each selected classifier.

Rule R12 creates a classifyVector object for each selected classifier
and links it with the corresponding classifyPair objects. The list(CP)
construct in the rule conclusion denotes that the attribute classifyPair of the
derived class classifyVector is an attribute whose value is calculated by
the aggregate function list. This function collects all the instantiations of the
variable CP (since many input attributes can exist for each classifier) and stores
them, under a strict order, into the multi-valued attribute classifyPair.
Notice that the values of the rest of the variables at the rule conclusion define
a GROUP BY operation. More details about the implementation of aggregate
functions in X-DEVICE can be found in Bassiliades et al. (2000) and
Bassiliades et al. (2003a).

Rule R13 links the classifyVector object with the corresponding
classify object through a derived attribute rule, which defines a new attribute
classifyVector for class classify. The values for this attribute are
derived by this rule. Objects of class classify that do not satisfy the condition
of this class will have null value for this attribute. More details on derived
attribute rules can be found in Bassiliades et al. (2000).

294 Tsoumakas, Bassiliades, & Vlahavas

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Finally, rule R14 constructs the top-level XML element of the result, which
is the SOAP message built for each classifier, augmented by the address of the
classifier. The keyword xml_result is a directive that indicates to the query
processor that the encapsulated derived class (output_soap_message) is the
answer to the query. This is especially important when the query consists of
multiple rules, as in this case.

Figure 11: Sample SOAP Message for Classifying an Example through
the wsClassify Service

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:m0="http://startrek.csd.auth.gr/wsClassify1.xsd">
 <SOAP-ENV:Body>
 <m:Classify xmlns:m="http://startrek.csd.auth.gr/wsClassify1.wsdl">
 <classifyVector>
 <classifyPair>
 <m0:attName>income</m0:attName>
 <m0:attValue>14000</m0:attValue>
 </classifyPair >
 <classifyPair >
 <m0:attName>card</m0:attName>
 <m0:attValue>good</m0:attValue>
 </classifyPair>
 </classifyVector>
 </m:Classify>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Fusion of Distributed Classifiers 295

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Further selection strategies can be defined by the user, who must supply
a complete set of X-DEVICE rules that start from the initial set of candidate
classifiers, filter out some of them based on arbitrary criteria, and calculate the
final set of candidate classifiers. The user should utilize the following classes as
input to his/her query:
• init_candidate(method,classifierID,address). Holds all the

registered classifiers that share an input attribute with the incoming
request. Attribute method stores the selection strategy of the request;
classifierID points to the OID of the classifier object; and
address holds the URL address of the corresponding wsClassify Web
service. Attribute method has a value of user for user-defined selection
strategy.

• candidate_atts(classifierID,attribute,value). Holds all the
input attributes and values of the input SOAP message that are shared with
some registered classifier. Attribute classifierID points to the OID of
the classifier object; attribute holds the name of the input attribute;
and value holds the value of the input attribute.

The user-defined X-DEVICE query should return the set of selected
classifiers as instances of the candidate_classifier(classifierID,
address) derived class. Attribute classifierID points to the OID of the
classifier object, and address holds the URL address of the corre-
sponding wsClassify Web service. However, the user can avoid using the
above output class altogether if he/she makes some use of the pre-defined
selection strategies, as the following example shows.

We assume that a user wants to define a new selection strategy so that a
classifier can be selected if at least one of the following conditions is true:
• The classification methodology is “Neural Network” and the input at-

tribute “coverage” is at least 50%; or
• The classification methodology is “Decision Tree” and the input attribute

“coverage” is at least 75%.

296 Tsoumakas, Bassiliades, & Vlahavas

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The following two rules use the init_candidate input class and copy an
instance of this class to a new instance by changing the selection strategy from
user (the name of the user-defined strategy) to the appropriate At least N%
strategy, according to the classification method of the classifier. Notice that the
user need not directly involve output class candidate_classifier, but only
indirectly by re-feeding the init_candidate class.

Finding Homogeneous Classifiers
One of the tasks of X-DEVICE is to provide to the wsCluster service the

groups of homogeneous classifiers, i.e., the group of classifiers that have
exactly the same input and classification attributes, using the following rules:

Rule R17 iterates, over all classifiers and copies, the classification and
input attributes to an instance of group class. Notice that the group is only
created if it does not already exist. In order to compare the multi-valued
attribute inputAttribute, we use the same-set operator (≡), since the order

Fusion of Distributed Classifiers 297

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

of elements in each list may vary. Rule R18 iterates all the “similar” classifiers
for each created group, and keeps their OID in the classifiers attribute of group,
using the list aggregate function. Therefore, the group class has three
attributes: classificationAttribute, inputAttribute, and classi-
fiers; the two latter are multi-valued attributes.

Querying Registered Classifiers
The Web services of the portal might query X-DEVICE about the stored

meta-data of the registered classifiers. The following is an example that
generates the list of input attributes that are relevant for each classification
attribute. This query is used by the portal to adjust dynamically the classification
input page (see Figure 5).

Rule R19 creates an instance of corresponding_attributes class for
each distinct classification attribute, and stores the name of the attribute in the
attribute classificationAttribute. Rule R20 iterates over all distinct
classification attributes, i.e., all instances of class corresponding_attributes,
and then retrieves all the input attributes of all the classifiers that have the same
classification attribute. These input attributes are stored in the multi-valued
attribute inputAttribute, using the set aggregate function. This function is
similar to list, the only difference being that no duplicate values are stored
inside the set, which is implemented as a Prolog list.

Finally, rule R21 creates a single instance of the class
all_classification_attributes that holds a list (set) of all the distinct
classification attributes. This query is also used by the portal to dynamically
generate the values of the pull-down menu (Figure 5) of the classification data
entry page.

298 Tsoumakas, Bassiliades, & Vlahavas

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Classifier Distance
We here define classifier distance as a measure of how different two

classification models are, and we propose its empirical measurement based on
the classifiers’ predictions in instances with known classes of an independent
data set. By independent, we mean a data set whose instances were not part
of the classifiers’ training set. This will ensure unbiased results, as the predic-
tions of classifiers on their training data tend to be optimistic.

If all classifiers are distribution classifiers, then we propose the use of
distance measures, such as Euclidean Distance, Canberra Distance, and
Czekanowski Coefficient (Krzanowski, 1993). In this case, the distance of two
classifiers is defined as the average distance of their output vectors with respect
to all instances of the independent data set.

If all classifiers are hard classifiers, then some measures that can be used
for calculating classifier (dis)similarity are Yule’s Q statistic, the correlation
coefficient, the disagreement measure, and the double-fault measure (Shipp &
Kuncheva, 2002).

If mixed types of classifiers are used, then one could adapt the distribution
classifiers to the statistics for hard classifiers by using the class of maximum
support, breaking ties arbitrarily. Another solution is to adapt the hard
classifiers to the measures for distribution classifiers by giving a support of “1”
to the predicted class and “0” to the rest. However, this will produce artificially
increased distances between two classifiers of different type.

The proposed empirical evaluation of classifier distance exhibits the
following beneficial properties:
• Independence of the classifier type. It is able to measure the distance of

two classification models, whether they are decision trees, rules, neural

CLUSTERING DISTRIBUTED CLASSIFIERS
The proposed approach of classifier clustering is based on the notion of

classifier distance, its efficient calculation for all pairs of classifiers, and a
clustering algorithm that takes as input the distances and outputs the clusters.

Fusion of Distributed Classifiers 299

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

networks, Bayesian classifiers, or other. This is useful in applications
where different types of learning algorithms might be used at each
distributed node.

• Independence of the classifier opacity. It is able to measure the distance
of two classification models, even if they are black boxes, providing just
an output with respect to an input. This is useful in applications where the
models are coming from different organizations that might not want to
share the details of their local models.

Distance Calculation
WebDisC uses the disagreement measure for classifier distance because

(i) it is simple and fast to compute; (ii) it can be computed incrementally; (iii) it
gives a value that directly expresses the distance of two classifiers that can be
used without any transformation for the clustering process; and (iv) it can be
used for mixed types of classifiers.

The following equation defines the disagreement measure for two hard
classifiers, C

x
 and C

y
,

and a data set D with M instances:

()
,

1,

M
i
x y

i
D x yd C C

M

δ
==
∑

where ,
i
x yδ equals 1 if classifiers C

x
 and C

y
 have different output on tuple i, and

0 otherwise.
The algorithm in Figure 12 shows the actual distance calculation process.

Let D be the union of the N data samples that the wsCluster Web service of
the Portal gathers through the wsGetData Web service of the WebDisC
Nodes. Let DC be the list of the N classifiers that the wsCluster Web service
of the Portal gathers through the wsGetClassifier Web service of the WebDisC
Nodes. For every instance of D, we calculate the output of all classifiers; and
then we update the disagreements for each pair of classifiers, based on their
output. In the end, the disagreements are normalized with respect to the number
of instances that were used for calculating them. The final output of the algorithm
is a vector Dist, with the distance for each pair of classifiers based on the
disagreement measure.

300 Tsoumakas, Bassiliades, & Vlahavas

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Clustering
Having calculated the pairwise distances of all distributed classifiers, we

proceed by clustering them using hierarchical agglomerative clustering. We
chose this clustering algorithm because it does not require the user to specify
the number of clusters, which is completely unknown; and it uses the pairwise
distances of objects, which have already been computed for the distributed
classifiers, as explained in the previous section.

The clustering algorithm takes three inputs. The first input is the distance
vector calculated by the algorithm in Figure 12. The second input is the method
for evaluating inter-cluster distances. There are various methods that could be
used here, including single linkage, complete linkage, Ward’s method, and
weighted average linkage (Kaufmann & Rousseeuw, 1990). WebDisC uses
the weighted average linkage method. The third input is a cutoff value that
determines when the agglomeration of clusters will stop in order to produce the
final clustering result.

That final clustering result is stored within the X-DEVICE system, along
with the meta-data of the classifiers. This knowledge can be used to guide the
selection of the distributed classifiers that will participate in a combination as
explained in The WebDisC System section.

CONCLUSION AND FUTURE TRENDS
This chapter has presented the WebDisC system, an approach for the

fusion of distributed classifiers based on Web services. Its main advantage over
state-of-the-art systems for distributed classification is its versatility,
interoperability, and scalability, which stems from the use of open and exten-
sible standards based on XML for web-based distributed computing. The use
of the XML-based PMML language for classifier exchange further adds to the
inter-operability of WebDisC. Clients can be easily developed in any program-
ming language and operating system that is web-aware.

From the point of view of classifier fusion methodology, WebDisC
currently supports simple techniques that do not require re-training of a
complex classification model. Yet, it provides the necessary infrastructure,
through the wsGetData and wsGetClassifier Web services, for the imple-
mentation of any classifier fusion methodology that requires re-training. Adding
methodologies demands the extension of the Portal’s Java servlets, while the
WebDisC Nodes do not require any modification at all. This shows that

Fusion of Distributed Classifiers 301

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

WebDisC is a highly scalable and extensible system for classifier fusion.
In addition, WebDisC implements a novel approach toward the detection

of interesting similarities and differences among homogeneous classifiers.
Clustering the distributed classifiers provides useful knowledge for guiding the
selection of classifiers that will participate in the fusion process, thus enhancing
the quality of the final classification results.

Furthermore, the X-DEVICE deductive object-oriented database system
for XML data provides powerful mechanisms for querying the registered
classifiers. Heterogeneous and homogeneous classifiers can be easily selected

Figure 12: Classifier Distance Calculation Algorithm

 Input:
 D: an array of M instances (union of N data samples)
 C: an array of N classifiers
Output:

 Dist: an array of
()1

2

N N −
 distances

Begin

 For i � 1 to M
 begin
 // calculate the output of classifiers

 For x � 1 to N

 O[x] � C[x](D[i]);

 // update distances

 index � 1;

 For x � 1 to N-1

 For y � x+1 to N
 begin

 If O[x] � O[y] Then

 Dist[index] � Dist[index]+1

 index � index+1
 end
 end

 // normalize distances

 For index � 1 To
()1

2

N N −

 Dist[index] � Dist[index]/M;
End

302 Tsoumakas, Bassiliades, & Vlahavas

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

and fused through the use of the standard classifier selection strategies. The
users of the system can also fine-tune the selection of classifiers that will
participate in the fusion process, according to their requirements.

In the future, we intend to extend the system with more complex fusion
methodologies that require re-training. We will also investigate the implemen-
tation of such methodologies under the constraint of avoiding moving raw data
from the distributed databases (Tsoumakas & Vlahavas, 2002) in order to
avoid increased network communication overhead.

We also intend to enrich the user-interface of WebDisC with a user-
profiling system. Its purpose will be to keep the history of the user-defined
classifier selection strategies for each different user of WebDisC. This way,
strategies that have been successfully used in the past by a user can be retrieved
and re-used in the future.

Finally, we intend to address syntactic and semantic heterogeneity prob-
lems that arise from the possibly different schemas of the distributed databases
by empowering WebDisC with domain-specific ontologies. This is an impor-
tant future trend in Web information systems development that is driven by the
Semantic Web vision.

ACKNOWLEDGMENTS
Dr. Nick Bassiliades was supported by a postdoctoral scholarship from

the Greek Foundation of State Scholarships (F.S.S. - I.K.Y.)

REFERENCES
Bassiliades, N. & Vlahavas, I. (1997). Processing production rules in DE-

VICE, an active knowledge base system. Data and Knowledge Engi-
neering, 24(2), 117-155.

Bassiliades, N., Vlahavas, I., & Elmagarmid, A. K. (2000). E-DEVICE: An
extensible active knowledge base system with multiple rule type support.
IEEE Transactions on Knowledge and Data Engineering, 12(5), 824-
844.

Bassiliades, N., Vlahavas, I., & Sampson, D. (2003a). Using logic for querying
XML data. In D. Taniar & W. Rahayu (Eds.), Web-Powered Databases
(pp. 1-35). Hershey, PA: Idea Group.

Fusion of Distributed Classifiers 303

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Bassiliades, N., Vlahavas, I., Elmagarmid, A. K., & Houstis, E. N. (2003b).
InterBase-KB: Integrating a knowledge base system with a multi-data-
base system for data warehousing. IEEE Transactions on Knowledge
and Data Engineering, 15(5), pp 1188-1205.

Bellwood, T. et al. (2002). UDDI version 3.0. Retrieved May 15, 2003, from:
http://uddi.org/pubs/uddi-v3.00-published-20020719.htm.

Boag, S., Chamberlin, D., Fernandez, M. F., Florescu, D., Robie, J., &
Simeon, J. (2002). XQuery 1.0: An XML query language. Retrieved
May 15, 2003, from: http://www.w3.org/TR/xquery/.

Botia, J. A., Gomez-Skarmeta, A. F., Velasco, J. R., & Garijo, M. (2001). A
proposal for meta-learning through a MAS (multi-agent system). In T.
Wagner & O. F. Rana (Eds.), Infrastructure for Agents (Vol. 1887 of
LNAI, pp. 226-233).

Box, D. et al. (2000). Simple Object Access Protocol (SOAP) version 1.1.
Retrieved May 15, 2003, from: http://www.w3.org/TR/SOAP/.

Brittenham, P. (2001). An overview of web services inspection language.
Retrieved May 15, 2003, from: http://www.ibm.com/developerworks/
webservices/library/ws-wsilover.

Champion, M., Ferris, C., Newcomer, E., & Orchard, D. (2003). Web
services architecture. Retrieved May 15, 2003, from: http://www.w3.org/
TR/ws-arch/.

Chinnici, R., Gudgin, M., Moreau, J., & Weerawarana, S. (2002). Web
services description language (WSDL) version 1.2 working draft.
Retrieved May 15, 2003, from: http://www.w3.org/TR/wsdll2/.

Data Mining Group web site. (2002). Retrieved May 15, 2003, from: http:/
/www.dmg.org/.

Diaz, O. & Jaime, A. (1997). EXACT: An extensible approach to active
object-oriented databases. VLDB Journal, 6(4), 282-295.

Gray, P. M. D., Kulkarni, K. G., & Paton, N. W. (1992). Object-oriented
Databases: A Semantic Data Model Approach. New York: Prentice
Hall.

Huang, Y. S. & Suen, C. Y. (1995). A method for combining multiple experts
for the recognition of unconstrained handwritten numericals. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 17, 90-93.

Kaufmann, L. & Rousseeuw, P. J. (1990). Finding Groups in Data: An
Introduction to Cluster Analysis. Hoboken, NJ: Wiley InterScience.

Kittler, J., Hatef, M., Duin, R. P. W., & Matas, J. (1998). On combining
classifiers. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 20(3), 226-238.

304 Tsoumakas, Bassiliades, & Vlahavas

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Krzanowski, W. J. (1993). Principles of Multivariate Analysis: A User’s
Perspective. Oxford, UK: Oxford Science Publications.

Kuncheva, L.I., Kounchev, R. K., & Zlatev, R. Z. (1995). Aggregation of
multiple classification decisions by fuzzy templates. In Proceedings of the
3rd European Congress on Intelligent Technologies and Soft Com-
puting (EUFIT’95) (pp. 1470-1474).

Lam, L. & Suen, C. Y. (1995). Optimal combinations of pattern classifiers.
Pattern Recognition Letters, 16, 945-954.

Rogova, G. (1994). Combining the results of several neural network classifiers.
Neural Networks, 7, 777-781.

Saitta, L. (2000). Machine learning: A technological roadmap. Amsterdam:
University of Amsterdam. (Technical Report)

Shipp, C. A. & Kuncheva, L. I. (2002). Relationships between combination
methods and measures of diversity in combining classifiers. Information
Fusion, 3(2), 135-148.

Stolfo, S. J., Prodromidis, A. L., Tselepis, S., Lee, W., & Fan, D. W. (1997).
JAM: Java agents for meta-learning over distributed databases. In Pro-
ceedings of the AAAI-97 Workshop on AI Methods in Fraud and Risk
Management.

Tahani, H. & Keller, J. M. (1990). Information fusion in computer vision using
the fuzzy integral. IEEE Transaction on Systems, Man and Cybernet-
ics, 20, 733-741.

Tsoumakas, G. & Vlahavas, I. (2002). Effective stacking of distributed
classifiers. In Proceedings of the 15th European Conference on
Artificial Intelligence, (pp. 340-344).

WebDisC web site. (2003). Retrieved May 15, 2003, from: http://
lpis.csd.auth.gr/systems/webdisc.html.

Werges, S. C. & Naylor, D. L. (2002). Corba infrastructure for distributed
learning and meta-learning. Knowledge-Based Systems, 15, 139-144.

Wolpert, D. (1992). Stacked generalization. Neural Networks, 5, 241-259.
X-DEVICE web site. (2002). Retrieved May 15, 2003, from: http://

lpis.csd.auth.gr/systems/x-device.html.

Indexing Techniques for Web Access Logs 305

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter IX

Indexing Techniques for
Web Access Logs

Yannis Manolopoulos, Aristotle University of Thessaloniki, Greece

Mikolaj Morzy, Poznan University of Technology, Poland

Tadeusz Morzy, Poznan University of Technology, Poland

Alexandros Nanopoulos, Aristotle University of Thessaloniki, Greece

Marek Wojciechowski, Poznan University of Technology, Poland

Maciej Zakrzewicz, Poznan University of Technology, Poland

ABSTRACT
Access histories of users visiting a web server are automatically recorded
in web access logs. Conceptually, the web-log data can be regarded as a
collection of clients’ access-sequences, where each sequence is a list of
pages accessed by a single user in a single session. This chapter presents
novel indexing techniques that support efficient processing of so-called
pattern queries, which consist of finding all access sequences that contain
a given subsequence. Pattern queries are a key element of advanced
analyses of web-log data, especially those concerning typical navigation
schemes. In this chapter, we discuss the particularities of efficiently
processing user access-sequences with pattern queries, compared to the

306 Manolopoulos, Morzy, Morzy, Nanopoulos, Wojciechowski, & Zakrzewicz

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

case of searching unordered sets. Extensive experimental results are
given, which examine a variety of factors and illustrate the superiority of
the proposed methods over indexing techniques for unordered data
adapted to access sequences.

INTRODUCTION
Web servers have recently become the main source of information on the

Internet. Web access logs record the access history of users who visit a web
server. Each web-log entry represents a single user’s access to a web resource
(HTML document, image, CGI program, etc.) and contains the client’s IP
address, the timestamp, the URL address of the requested resource, and some
additional information. Conceptually, the web-log data can be regarded as a
collection of clients’ access-sequences, where each sequence is a list of pages
accessed by a single user in a single session. Extraction of user access-
sequences is a required pre-processing step in advanced analyses of web logs
(called web-log mining), and it involves data cleaning and techniques of forming
user sessions (see Cooley, Mobasher, & Srivastava, 1999; Lou, Liu, Lu, &
Yang, 2002).

One of the most popular data mining problems in the context of web-log
analysis is discovery of access patterns (Chen, Park, & Yu, 1998; Pei, Han,
Mortazavi-Asl, & Zhu, 2000). Each access pattern is a sequence of web pages
which occurs frequently in user access-sequences. Sequential access-patterns
provide information about typical browsing strategies of users visiting a given
website, e.g., “10% of users visited the page about a palmtop X, and later a
page about a docking cradle for the palmtop X.” After some frequently
occurring sequences have been discovered, the analyst should be able to
search for user access-sequences that support (i.e., contain) the patterns. The
latter operation finds several applications, e.g., searching for typical/atypical
user access-sequences.

Moreover, web-log mining algorithms, such as WUM (Spiliopoulou &
Faulstich, 1998), use templates to constrain the search space and to perform
more focused mining, according to the user’s requirements. For instance, the user
may specify the mining of sequences containing the subsequence <A * B * C>.
Thus, a selection of the user access-sequences can be performed to collect
those satisfying the given template. In the following, we refer to these types of
queries over the database of user access-sequences as pattern queries.

Since web logs tend to be large, a natural solution to support efficient
processing of pattern queries would be indexing web access-sequences.

Indexing Techniques for Web Access Logs 307

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Unfortunately, no indexes specific for this purpose have been proposed before,
and existing indexing techniques for single-valued and set-valued attributes are
not applicable or are inefficient, as they do not take ordering into consideration.
These techniques can be applied merely to locate sequences built from the same
set of elements as the query sequence, likely introducing many false drops if the
actual task is a subsequence search.

In this chapter, we describe indexing methods for large collections of
access sequences extracted from web access logs. The target of the chapter is
twofold. First, it intends to clarify the particularities of efficiently processing
user access-sequences with pattern queries, compared to the case of searching
unordered sets. It will demonstrate how these particularities make the existing
(traditional) solutions inadequate, and will show how they call for different
index structures and searching algorithms. The second objective of this chapter
is to organize recent research that has been conducted in the area of pattern
queries (to a significant extent by authors of this chapter) and to present it in an
integrated and comparative way. The key concept is the development of a
family of methods, based on signatures capturing the presence of certain
elements in a sequence as well as the ordering between the sequence elements
(a factor that has not been examined by existing signature schemes). Emphasis
is placed on scalability to web-logs’ sizes. Extensive experimental results are
given, which examine a variety of factors and illustrate the superiority of the
proposed methods over indexing techniques for unordered data adapted to
access sequences.

The rest of this chapter is organized as follows. We start with the
introduction to web-log analysis, the reasons for indexes for web logs, and the
critique of existing indexing techniques. This is followed by the description of
the family of novel sequence-indexing methods for pattern queries. Next, the
experimental results on the comparison of the described methods are pre-
sented. Finally, the discussion of possible future trends and some conclusions
are given.

ANALYSIS OF WEB ACCESS LOGS
Each access to a web resource made by a browser is recorded in the web

server’s log. An example of the log’s contents is depicted in Figure 1. Each
entry represents a single request for a resource and contains the IP address of
the requesting client, the timestamp of the request, the name of the method used
and the URL of the resource, the return code issued by the server, and the size

308 Manolopoulos, Morzy, Morzy, Nanopoulos, Wojciechowski, & Zakrzewicz

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

of the requested object (for brevity, we omit additional details recorded in the
log, such as the protocol or the detailed identification of the browser).

Information stored in the web log can be directly used for simple statistical
analyses in order to derive such measures as frequency of accesses to particular
resources, numbers of accesses from individual network addresses, number of
requests processed in a time unit, etc. However, for advanced and reliable
analyses of the way users navigate through the website, information from the log
needs processing and cleansing before it can be used. Several requests can
have identical timestamps because they represent accesses to different ele-
ments of a single web page (in our example, the second entry represents an
access to a web page index.html, whereas the third entry represents a
retrieval of the image acrobat.gif, which is probably displayed on that
page). Secondly, different records in a web log can have identical IP address
and still refer to different users. For example, some users may access the web
page from behind a proxy server. Some access paths might not be recorded in
the log because browsers cache recently visited pages locally. In order to use
the web log for advanced analysis, it must be transformed into a set of clients’
access-sequences, where each sequence describes a navigation path of a single
user during a single session. Interesting descriptions of web-log transformation
and cleansing techniques can be found in Cooley et al. (1999).

Figure 2 presents an example client sequence derived from the web log
from Figure 1. This sequence represents the session of a student who started
from the teacher’s main page (index.html) and navigated to a research page
(research.html). The next request was made for the page containing
information for students (students.html), and from there, the student went
to the database course page (db_course.html). The analysis of the website’s
structure revealed that there was no link between research.html and
students.html, so probably the student used the browser’s back button.

Figure 1: An Example of a Web Log

150.254.31.173 -- [21/Jan/2003:15:48:52 +0100] "GET /mmorzy " 301 328
150.254.31.173 -- [21/Jan/2003:15:48:52 +0100] "GET /mmorzy/index.html " 200 9023
150.254.31.173 -- [21/Jan/2003:15:48:52 +0100] "GET /mmorzy/acrobat.gif " 304
144.122.228.120 -- [21/Jan/2003:15:48:56 +0100] "GET /imgs/pp1.gif " 200 2433
150.254.31.173 -- [21/Jan/2003:15:48:58 +0100] "GET /mmorzy/research.html " 200 8635
60.54.23.11 -- [21/Jan/2003:15:48:59 +0100] "GET /mmorzy/db/slide0003.htm " 200
24808
150.254.31.173 -- [21/Jan/2003:15:49:03 +0100] "GET /mmorzy/students.html " 200 7517
150.254.31.173 -- [21/Jan/2003:15:49:08 +0100] "GET /mmorzy/db_course.html " 200 10849
144.122.228.120 -- [21/Jan/2003:15:49:16 +0100] "GET /reports/repE.html " 200 76685
150.254.31.173 -- [21/Jan/2003:15:49:22 +0100] "GET /mmorzy/html.gif " 200 1038
150.254.31.173 -- [21/Jan/2003:15:49:22 +0100] "GET /mmorzy/zip.gif " 200 1031
144.122.228.120 -- [21/Jan/2003:15:50:03 +0100] "GET /imgs/polish.gif " 200 109

Indexing Techniques for Web Access Logs 309

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

A client’s sequences extracted from the web log can be stored in a
database and further analyzed to discover common access patterns. Such
frequent patterns, which are subsequences occurring in a large fraction of the
client’s sequences, are called sequential patterns (Agrawal & Srikant, 1995).
Sequential patterns can be used in several ways, e.g., to improve website
navigation, to personalize advertisements, to dynamically reorganize link
structure and adapt website contents to individual client requirements, or to
provide clients with automatic recommendations that best suit customer
profiles. Interpretation of discovered access patterns involves extracting
access sequences that contain a given pattern (subsequence). If no indexes are
available for the web log, such an operation requires a costly sequential scan
of the whole web-log data. Another example of an operation that would benefit
from web-log indexes is focused pattern mining that is to be confined to access
sequences which contain a given subsequence (Spiliopoulou & Faulstich,
1998).

REVIEW OF EXISTING
INDEXING TECHNIQUES

Traditional database systems provide several indexing techniques that
support single tuple access based on single attribute value. The most popular
indexes include B-trees (Comer, 1979), bitmap indexes (Chan & Ioannidis,
1998), and R-trees (Guttman, 1984). Contemporary database systems allow
for storage of set-valued attributes, either in the form of abstract data types
(ADTs) or nested tables. However, traditional indexes do not provide mecha-
nisms to efficiently query such attributes, despite of the fact that the need for
subset search operators has been recognized (Graefe & Cole, 1995). Indexing
of set-valued attributes was seldom researched and resulted in few proposals.

The first access methods for set-valued attributes were developed in the
area of text retrieval systems. Signature files (Faloutsos & Christodoulakis,
1984) and signature trees (S-trees) (Deppisch, 1986) utilize the idea of
superimposed coding of bit vectors. Each element is represented by a fixed-
width signature, with m bits set to ‘1.’ Signatures are superimposed by a bitwise

Figure 2: An Example of a Client’s Access Sequence

/mmorzy/index.html → /mmorzy/research.html → /mmorzy/students.html →
/mmorzy/db_course.html

310 Manolopoulos, Morzy, Morzy, Nanopoulos, Wojciechowski, & Zakrzewicz

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

OR operation to create a set representation. Signatures can be stored in a
sequential signature file or a signature tree, or they can be stored using
extendible signature hashing. Implementation details and performance evalua-
tion of different signature indexes can be found in Helmer (1997) and Helmer
and Moerkotte (1999). Improved methods for signature tree construction were
proposed in Tousidou, Nanopoulos and Manolopoulos (2000).

Another set-indexing technique, proposed initially for text collection
indexing, is inverted file (Araujo, Navarro, & Ziviani, 1997). Inverted file
consists of two parts: the vocabulary and the occurrences. The vocabulary
contains all elements that appear in indexed sets. A list of all sets containing a
given element is maintained along with each element. All lists combined together
form the occurrences. Inverted files are very efficient for indexing small and
medium-sized collections of elements. An exhaustive overview of text indexing
methods and pattern matching algorithms can be found in Baeza-Yates and
Ribeiro-Neto (1999).

Indexing of set-valued attributes attracted the attention of researchers
from the object-oriented database systems domain. These studies resulted in
the evaluation of signature files in an object-oriented database environment
(see Ishikawa, Kitagawa, & Ohbo, 1993; Nørvåg, 1999) and in the construc-
tion of the nested index (Bertino & Kim, 1989).

An interesting proposal stemmed from a modification of a well-known R-tree
index, namely a Russian Doll tree (RD-tree) (Hellerstein & Pfeffer, 1994). The
structure of the tree reflects a transitive containment relation. All indexed sets
are stored in tree leafs, while inner nodes hold descriptions of sets contained
in the child nodes. Descriptions can be complete representations of bounded
sets, signatures or Bloom filter (Bloom, 1970) representations, range set
representations, or hybrid solutions.

The first proposals of specialized indexes for set-valued attributes in the
domain of data mining were formulated by Morzy and Zakrzewicz (1998). Two
indexes were presented: a group bitmap index and a hash group bitmap index.
The first index uses a complete and exact representation of indexed sets, but
results in very long index keys. Every set is encoded as a bitmap of length n,
where n denotes the number of all possible items appearing in the indexed sets.
For each set, the i-th bit is set to ‘1’ if this set contains item i. A subset search
using a group bitmap index consists in bitwise comparison of index bitmaps,
with the bitmap representing the searched subset. A hash group bitmap index
uses a technique similar to Bloom filter. It represents indexed sets approxi-
mately, by hashing set elements to a bitmap of fixed length. The length of this
bitmap is usually much smaller than the number of all possible elements. This

Indexing Techniques for Web Access Logs 311

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

technique allows some degree of ambiguity, which results in false drops and
implies the verification of answers obtained from the index.

All indexing techniques for set-valued attributes do not consider the
ordering of elements within the set. Therefore, those indexes are not suitable for
sequence queries. However, set-indexing techniques can be applied to locate
sequences built from the same elements as a given query sequence. Using those
indexes for a subsequence search requires an additional post-processing step,
in which all answers returned from the index are checked for a real containment
of the searched sequence, and all sequences containing the searched elements
in a wrong sequence, so-called false drops, are pruned. The number of false
drops can be huge when compared to the number of correct answers, so this
verification step adds significant overhead to query processing and will likely
lead to unacceptable response times for sequential queries (for sequential
patterns, many sequences contain searched elements but not necessarily in the
correct order). Nevertheless, such an adaptation of set-oriented indexes can
be considered a natural reference point for evaluating the performance of novel
sequence-indexing techniques.

SEQUENTIAL DATA INDEXING METHODS
FOR PATTERN QUERIES

In this section, we provide a formal definition of a pattern query over a
database of web-log sequences, and describe sequential data indexing meth-
ods to optimize pattern queries. The indexing methods are built upon the
concepts of equivalent sets, their partitioning, and their approximations.

Basic Definitions
Definition 1 (Pattern query). Let I be a set of items. A data sequence X

is defined as an ordered list of items. Thus, X = <x
1
 x

2
 ... x

n
>, where each x

i
 ∈ I

(x
i
 is called an element of X). We say that a data sequence X = <x

1
 x

2
 ... x

n
>

is contained in another data sequence Y = <y
1
 y

2
 ... y

n
> if there exist integers

i
1
 < i

2
 < ... < i

n
 such that x

1
= y

i1
, x

2
= y

i2
, ..., x

n
 = y

in
.

Given a database D of data sequences and a data sequence Q, a pattern
query consists of finding in D all data sequences that contain Q. In other words,
a pattern query formulates a problem of finding all data sequences containing
a set of user-defined elements in a specified order.

Definition 2 (Equivalent set). In order to represent data sequences in
a compact way, we introduce the concept of an equivalent set.

312 Manolopoulos, Morzy, Morzy, Nanopoulos, Wojciechowski, & Zakrzewicz

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

An item mapping function f
i
(x), where x ∈ I, is a function which

transforms a literal into an integer value (we assume that I may contain any type
of literals). Henceforth, we assume that literals are mapped to consecutive
positive integers starting from 1, although any other mapping can be followed.

An order mapping function f
o
(x,y), where x, y ∈ I and f

o
(x,y) ≠ f

o
(y,x),

is a function which transforms an item sequence <x y> into an integer value. It
has to be noticed that the intuition for the use of f

o
(x, y) is that it takes into

account the ordering, i.e., f
o
(x, y) ≠ f

o
(y, x). Henceforth, we assume order

mapping functions of the form f
o
(x, y) = a * f

i
(x) + f

i
(y), where a is greater than

the largest f
i
(x) value (i.e. f

o
(x, y) ≠ f

o
(y, x) and f

o
 values are always larger than

f
i
 values).

Given a sequence X = <x
1
 x

2
 ... x

n
>, the equivalent set E of X is defined

as:

∪

=

<∈∈
��

jiXxx
jio

Xx
ii

jii

xxfxfE
,,

)},({)}({

where: f
i
 is an item mapping function and f

o
 is an order mapping function.

Example 1: For instance, for I = {A, B, C, D, E}, we have f
i
(A) = 1, f

i
(B) =

2, f
i
(C) = 3, f

i
(D) = 4, f

i
(E) = 5, and f

o
(x, y) = 6 * f

i
(x) + f

i
(y) (e.g., f

o
(A,B)

= 8). Given a sequence X = <A, C, D>, using the mapping functions that
were described above, we get: E = ({f

i
(A)} ∪ {f

i
(C)} ∪ {f

i
(D)}) ∪

({f
o
(A, C)} ∪ {f

o
(A, D)} ∪ {f

o
(C, D)}) = {1, 3, 4, 9, 10, 22}.

According to Definition 2, an equivalent set is the union of two sets: the one
resulting by considering each element separately, and the other from consider-
ing pairs of elements. S(E) denotes the former set, consisting of values of f

i
, and

P(E) the latter set, consisting of values of f
o
. Based on Definition 2, it is easy

to show the following.

Corollary 1. Let two sequences Q, P and the corresponding equivalent
sets E

Q
 and E

P
. If Q is contained by P, then E

Q
 ⊆ E

P
.

Therefore, equivalent sets allow us to express a pattern query problem as
the problem of finding all sets of items that contain a given subset (note that
Corollary 1 is not reversible in general). Also, it is easy to see that if E

Q
⊆ E

P
,

then S(E
Q
)

⊆ E

P
 and P(E

Q
)

⊆ E

P
.

Indexing Techniques for Web Access Logs 313

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Equivalent Set Signatures
Equivalent sets can be efficiently represented with superimposed signa-

tures.
A signature is a bitstring of L bits (L is called signature length) and is used

to indicate the presence of elements in a set. Using a hash function, each element
of a set can be encoded into a signature that has exactly m out of L bits equal
to ‘1’ and all other bits equal to ‘0’. The value of m is called the weight of the
element. The signature of the whole set is defined as the result of the
superimposition of all element signatures (i.e., each bit in the signature of the set
is the logical OR operation of the corresponding bits of all its elements). Given
two equivalent sets E

1
, E

2
 and their signatures sig(E

1
), sig(E

2
), it holds that E

1

⊆ E
2
 ⇒ sig(E

1
) AND sig(E

2
) = sig(E

1
).

Signatures provide a quick filter for testing the subset relationship between
sets. Therefore, if there exist any bits of sig(E

1
) that are equal to ‘1,’ and the

corresponding bits of sig(E
2
) are not also equal to ‘1,’ then E

1
 is not a subset

of E
2
. The inverse of the latter statement, however, does not hold in general,

and, evidently, false drops may result from collisions due to the superimposi-
tion. To verify a drop (i.e., to determine if it is an actual drop or a false drop),
we have to examine the corresponding sequences with the containment
criterion. In order to minimize the number of false drops, it has been proved
(Faloutsos & Christodoulakis, 1984) that, for sets of size T, the length of the
signatures has to be equal to: L = m * T / ln 2.

Henceforth, we assume that m is equal to 1 [based on the approach from
Helmer and Moerkotte (1997)], and the signature of the element x is the binary
representation of the number 2x mod L (with the least significant bit on the left).
Given a collection of sequences, in the following section we examine effective
methods for organizing the representations of the patterns, which consist of
signatures of equivalent sets.

Family of Sequence Indexing Methods
We describe three methods of sequential data indexing to optimize pattern

queries: SEQ(C) — which uses complete signatures of equivalent sets; SEQ(P)
— which uses signatures of partitioned equivalent sets; and SEQ(A) — which
uses signatures of approximated equivalent sets. Next, we discuss the possi-
bility of extending the methods with advanced tree structures to store the
signatures.

314 Manolopoulos, Morzy, Morzy, Nanopoulos, Wojciechowski, & Zakrzewicz

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

A Simple Sequential Index (SEQ(C) – “Complete”)
Let D be the database of sequences to be indexed. A simple data structure

for indexing elements of D is based on the paradigm of signature file (Faloutsos
& Christodoulakis, 1984), and is called SEQ(C) (“SEQ” denotes that the
structure is sequential, and “C” that it uses a complete signature representation
for the equivalent set). It corresponds to the direct (i.e., naive) use of signatures
of equivalent sets. The construction algorithm for SEQ(C) is given in Figure 3a
(sig(E) is the signature of equivalent set E).

Example 2: Let us consider the following example of SEQ(C) index entry
construction. Assume the data sequence to be indexed is X = <A, C, D, E>.
Assume the set I of items and item mapping functions and order mapping
functions from Example 1, and L=10.
The equivalent set for the data sequence X is the following: E = {f

i
(A),

f
i
(C), f

i
(D), f

i
(E), f

o
(A,C), f

o
(A,D), f

o
(A,E), f

o
(C,D), f

o
(C,E), f

o
(D,E)}

= {1, 3, 4, 5, 9, 10, 11, 22, 23, 29}
Therefore, the SEQ(C) index entry will consist of the following signature
(starting with the least significant bit): sig(E) = 1111110001.

 The algorithm for querying the structure for a given sequence Q is given
in Figure 3b. Initially (step 1), the equivalent set, E

Q
, of Q is calculated. Then,

each signature in the structure is examined against the signature sig(E
Q
) (step

4, where “AND” denotes the bitwise AND of the signatures). The verification
of each drop is applied at steps 5-7. The result, consisting of the sequences
from D that satisfy query Q, is returned in set R.

 The cost of the searching algorithm can be decomposed as follows:
(1) Index Scan cost (I/O): to read the signatures from the sequential

structure.
(2) Signature Test cost (CPU): to perform the signature filter test.
(3) Data Scan cost (I/O): to read patterns in case of drops.
(4) Verification cost (CPU): to perform the verification of drops.

 The signature test is performed very fast; thus, the corresponding cost can
be neglected. Since the drop verification involves a main memory operation, it
is much smaller compared to the Index and Data Scan costs that involve I/O.
Therefore, the latter two costs determine the cost of the searching algorithm.
Moreover, it is a common method to evaluate indexing algorithms by comparing
the number of disk accesses (see, e.g., Faloutsos & Christodoulakis, 1984;
Helmer & Moerkotte, 1997; Tousidou, Nanopoulos, & Manolopoulos, 2000).

Indexing Techniques for Web Access Logs 315

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

For SEQ(C), the calculation of L (signature length) is done using the

expected size of equivalent sets | E | (in place of T). Since | E | grows rapidly,
L can take large values, which increases the possibility of collisions during the
generation of signatures (i.e., elements that are hashed into the same position
within signatures). Collisions result in false drops due to the ambiguity that is
introduced (i.e., we cannot determine which of the elements that may collide in
the same positions of the signature are actually present). Thus, a large Data
Scan cost for the verification step incurs. Moreover, large sizes of equivalent
sets increase the Index Scan cost (because they result in larger L values and,
consequently, in an increase in the size of the index).

Due to the drawbacks described above, in the following, we consider the
SEQ(C) method as a base to develop more effective methods. Their main
characteristic is that they do not handle at the same time the complete equivalent
set (i.e., all its elements) for the generation of signatures so as to avoid the
described deficiencies of SEQ(C).

Partitioning of Equivalent Sets (SEQ(P) – “Partitioned”)
In Zakrzewicz (2001) and Morzy, Wojciechowski and Zakrzewicz (2001),

a partitioning technique is proposed that divides equivalent sets into a collection
of smaller subsets. With this method, large equivalent sets are partitioned into
smaller ones. Thus, in the resulting signatures, we have a reduced collision
probability, fewer false drops, and a reduced Data Scan cost.

Figure 3: SEQ(C) Method: (a) Construction Algorithm (b) Search
Algorithm

1. F = Ø

2. forall P ∈ D

3. E = Equivalent_Set(P)

4. F = F ∪ {<sig(E), pointer(P)>}

5. endfor

1. EQ = Equivalent_Set(Q)

2. R = Ø

3. forall <s, pointer(P)> ∈ F

4. if (s AND sig(EQ)) = sig(EQ)

5. Retrieve P from D

6. if Q is contained in P

7. R = R ∪ {P}

8. endif

9. endif

10. endfor

(a) (b)

316 Manolopoulos, Morzy, Morzy, Nanopoulos, Wojciechowski, & Zakrzewicz

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Definition 3 (Partitioning of equivalent sets). Given a user-defined
value β, the equivalent set E of a data sequence P is partitioned into a collection
of E

1
, ..., E

p
 subsets: (1) by dividing P into P

1
, ..., P

p
 subsequences such that

�
p

i iP
1= = P, P

i
 ∩ P

j
 = ∅ for i≠ j; and (2) by having E

i
 be the equivalent set

of P
i
, where |E

i
| < β, 1≤ i ≤ p.

According to Definition 3, we start from the first element of P being the first
element of P

1
. Then, we include the following elements from P in P

1
, while the

equivalent set of P
1
 has size smaller than β. When this condition does not hold,

we start a new subsequence, P
2
. We continue the same process until all the

elements of P have been examined.
We denote the above method as SEQ(P) (P stands for partitioning). The

construction algorithm for SEQ(P) is analogous to the one of SEQ(C), depicted
in Figure 3a. After step 3, we have to insert:

3a. Patrition E into E
1
, ..., E

p

and step 4 is modified accordingly:

4. F = F ∪ {<sig(E
1
), ..., sig(E

p
), pointer(P)>}

Example 3: Let us consider the following example of SEQ(P) index entry
construction. Assume the data sequence to be indexed is X = <A, C, D,
E>. Assume the set I of items and item mapping functions and order
mapping functions from Example 1, β=4 and L=4.

The data sequence X will be split into the following two data sequences:
X

1
 = <A, C> and X

2
 = <D, E>.

Next, we give the equivalent sets for the two data sequences. Notice the
sizes of both sequences do not exceed β.

E
1
 = {f

i
(A), f

i
(C), f

o
(A,C)} = {1, 3, 9}

E
2
 = {f

i
(D), f

i
(E), f

o
(D,E)} = {4, 5, 29}

Therefore, the SEQ(P) index entry will consist of the following signatures:
sig(E

1
) = 0101

sig(E
2
) = 1100

The search algorithm for SEQ(P) is based on the following observation
(Morzy et al., 2001): For each partition of an equivalent set E, a query pattern

Indexing Techniques for Web Access Logs 317

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Q can be decomposed into a number of subsequences. Each subsequence is
separately examined against the partitions of E. The algorithm is depicted in
Figure 4.

We assume that an equivalent set is stored as a list that contains the
signatures of its partitions, along with a pointer to the actual sequence (step 1).
At steps 4-16, the query pattern is examined against each partition, and the
maximum query part that can be matched by the current partition is identified.
The part of query sequence Q from startPos to endPos is denoted as
Q[startPos, endPos]. At the end of this loop (step 17), if all query parts have
been matched against the partitions of the current equivalent set (this is
examined at step 17 by testing the value of startPos variable), then the
verification step is performed at steps 18-20.

Figure 4: SEQ(P) Method: Search Algorithm

1. R = ∅

2. forall Equivalent Sets E = E1 … Ep stored as <sig(E1), …, sig(Ep), pointer(P)>

3. startPos = 0

4. for (i=1; i ≤ p and startPos ≤ |Q|; i++)

5. endPos = startPos

6. contained = true

7. while (contained == true and endPos ≤ |Q|)

8. EQ = Equivalent_Set(Q[startPos, endPos])

9. if sig(EQ) AND sig(Ei) = sig(EQ)

10. endPos++

11. else

12. contained = false

13. endif

14. endwhile

15. startPos = endPos

16. endfor

17. if startPos > |Q|

18. Retrieve P from D

19. if Q is contained in P

20. R = R ∪ {P}

21. endif

22. endif

23. endfor

318 Manolopoulos, Morzy, Morzy, Nanopoulos, Wojciechowski, & Zakrzewicz

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

SEQ(P) partitions large equivalent sets in order to reduce their sizes and,
consequently, the Data Scan cost (because it reduces the possibility of
collisions within the signatures, thus, it results in fewer false drops). However,
since a separate signature is required for each partition of an equivalent set, the
total size of the stored signatures increases [the length of each signature, in this
case, is determined keeping in mind that the size of each partition of the
equivalent set is equal to β (Definition 3)]. Thus, the Index Scan cost may be
increased (using very small values of β and, thus, very small signature lengths
for each partition, so as not to increase Index Scan cost, has the drawback of
significantly increasing the false drops and the Data Scan cost).

Using Approximations of Equivalent Sets (SEQ(A) – “Approximate”)
In Nanopoulos, Zakrzewicz, Morzy and Manolopoulos (2003), a differ-

ent method for organizing equivalent sets is proposed. It is based on the
observation that the distribution of elements within sequential patterns is
skewed, since the items that correspond to frequent subsequences [called
large, according to the terminology of Agrawal and Srikant (1995)] have larger
appearance frequency. Therefore, the pairs of elements that are considered
during the determination of an equivalent set are not equiprobable.

Due to the above, some pairs have much higher co-occurrence probability
than others. The sizes of equivalent sets can be reduced by taking into account
only the pairs with high co-occurrence probability. This leads to approxima-
tions of equivalent sets, and the resulting method is denoted as SEQ(A) (“A”
stands for approximation). The objective of SEQ(A) is the reduction in the sizes
of equivalent sets (so as to reduce Data Scan costs), with a reduction in the
lengths of the corresponding signatures (so as to reduce the Index Scan costs).

Recall that P(E) denotes the part of the equivalent set E, which consists of
the pairwise elements. Also, supp

D
(x, y) denotes the support of an ordered pair

(x, y) in D (i.e., the normalized frequency of sequence <x y> (Agrawal &
Srikant, 1995)), where x, y ∈ I and the pair (x, y) ∈ P(E). The construction
algorithm for SEQ(A) is depicted in Figure 5.

SEQ(A) reduces the sizes of equivalent sets by considering for each
element i ∈ I, only k most frequent ordered pairs, with i as the first element. In
step 2 of the algorithm, those frequent pairs are discovered and represented in
the form of NN sets containing k most frequent successors for each element. In
steps 8-10, the NN sets are used to filter out infrequent pairs.

Example 4: Let us consider the following example of SEQ(A) index entry
construction. Assume the data sequence to be indexed is X = <A, C, D,

Indexing Techniques for Web Access Logs 319

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

E>. Assume the set I of items and item mapping functions and order
mapping functions from Example 1, k=1 and L=10. Given are the
following support values for the element pairs: supp

D
(D,E) = 0.280,

supp
D
(E,B) = 0.220, supp

D
(A,C) = 0.120, supp

D
(C,E) = 0.101,

supp
D
(A,D) = 0.075, supp

D
(C,D) = 0.053, supp

D
(A,E) = 0.040,

supp
D
(B,A) = 0.037, and, for the other pairs, i.e, (A,B), (B,C), (B,D),

(B,E), (C,A), (C,B), (D,A), (D,B), (D,C), (E,A), (E,C), (E,D) the
support values less than 0.037.
Based on the support values of the element pairs, we construct the NN sets
for each item. Each NN set contains only one item (k=1) which forms the
strongest pair:

NN(A) = {C}, NN(B) = {A}, NN(C) = {E}, NN(D) = {E}, NN(E) = {B}

The equivalent set will not represent the pairs which are not represented
in the NN sets:

E = {f
i
(A), f

i
(C), f

i
(D), f

i
(E), f

o
(A,C), f

o
(C,E), f

o
(D,E)} = {1, 3, 4, 5, 9, 23, 29}

Therefore, the SEQ(A) index entry will consist of the following signature:

sig(E) = 0101110001.

Figure 5: SEQ(A) Method: Construction Algorithm

1. forall i ∈ I

2. find NN(i) = {ij | ij ∈ I, 1 ≤ j ≤ k, ij ≠ i, ∀ l ∉ NN(i) suppD(i, ij) ≥ suppD(i, l)}

3. endfor

4. F = Ø

5. forall P ∈ D

6. E = Equivalent_Set(P)

7. forall (x, y) ∈ P(E)

8. if y ∉ NN(x)

9. remove pair (x, y) from E

10. endif

11. endfor

12. F = F ∪ {<sig(E), pointer(P)>}

13. endfor

320 Manolopoulos, Morzy, Morzy, Nanopoulos, Wojciechowski, & Zakrzewicz

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The search algorithm of SEQ(A) is analogous to that of SEQ(C). How-
ever, step 1 of the algorithm depicted in Figure 3b has to be modified
accordingly (identical approximation has to be followed for the equivalent set
of a query pattern):

1. E
Q
 = Equivalent_Set(Q)

1a. forall (x, y) ∈ P(E
Q
)

1b. if y ∉ NN(x)
1c. remove pair (x, y) from E

Q

1d. endif
1e. endfor

During the generation of the approximation of the query’s equivalent set,
the NN sets are used, which implies that they have to be kept in memory.
However, this presents a negligible space overhead.

Lemma 1. The SEQ(A) algorithm correctly finds all sequences that satisfy
a given pattern query.

Proof. Let Q denote a pattern query and E
Q
 denote its equivalent set.

Also, let S denote a sequence for which Q is contained in S, and let E
S
 denote its

equivalent set. As described (see Corollary 1), it holds that E
Q
⊆ E

S
, S(E

Q
) ⊆ S(E

S
)

and P(E
Q
) ⊆ P(E

S
).

In SEQ(A), let us denote E’
Q
 and E’

S
 the equivalent sets of Q and S

respectively, under the approximation imposed by this algorithm. From the
construction method of SEQ(A), we have that S(E’

Q
) = S(E

Q
) and S(E’

S
) = S(E

S
).

Therefore, S(E’
Q
) ⊆ S(E’

S
).

Focusing on the pairwise elements, let an element ξ ∈ P(E
S
) - P(E’

S
) (i.e.,

ξ is excluded from P(E’
S
) due to step 9 of SEQ(A)). We can have two cases:

(1) If ξ ∈ P(E
Q
), then ξ ∈ P(E

Q
) - P(E’

Q
) (i.e., ξ is also excluded from P(E’

Q
),

due to the construction algorithm of SEQ(A) - see Figure 5). Therefore, SEQ(A)
removes the same elements from P(E’

Q
) and P(E’

S
). Since P(E

Q
) ⊆ P(E

S
), by

the removal of such x elements, we will have P(E’
Q
) ⊆ P(E’

S
).

(2) If ξ ∉ P(E
Q
), then the condition P(E’

Q
) ⊆ P(E’

S
) is not affected, since such

elements excluded from P(E’
S
) are not present in P(E

Q
), and, thus, in

P(E’
Q
).

From both the above cases, we have P(E’
Q
) ⊆ P(E’

S
).

Conclusively, S(E’
Q
) ∪ P(E’

Q
) ⊆ S(E’

S
) ∪ P(E’

S
), which gives E’

Q
 ⊆ E’

S
.

Hence, we have proved that (Q is contained in S) ⇒ (E’
Q
 ⊆ E’

S
), which

Indexing Techniques for Web Access Logs 321

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

guarantees that SEQ(A) will not miss any sequence S that satisfies the given
pattern query (this can be easily seen in a way analogous to Corollary 1).

From the above it follows that, although the SEQ(A) method is based on
the concept of approximation, no loss in precision is triggered (evidently, there
is no reason to measure the precision/recall, since the method is always
accurate). On the other hand, SEQ(A) and all other SEQ algorithms are based
on signatures. Therefore, they may incur false drops, i.e., the fetching of
sequences for which their signatures satisfy the query condition but the actual
sequences do not. The number of false drops directly affects the Data Scan
cost, since the fetching of a large number of sequences requires more I/O
operations.

The Data Scan cost of SEQ(A) is reduced, compared to SEQ(C), due to
the fewer false drops introduced by the drastic reduction in the sizes of
equivalent sets. This is examined, experimentally, in the next section. It should
be noted that the selection of the user-defined parameter k for the calculation
of the NN set in algorithm of Figure 5 has to be done carefully. A small k value
will remove almost all pairs from an equivalent set and, in this case, the Data
Scan cost increases (intuitively, if the equivalent set has very few elements, then
the corresponding signature will be full of 0s, thus, the filtering test becomes less
effective). In contrast, a large k value will present a similar behavior as the
SEQ(C) algorithm, since almost all pairs are considered. The tuning of the k
value is examined in the next section.

Moreover, differently from SEQ(P), the Index Scan cost for SEQ(A) is
reduced because smaller signatures can be used for the equivalent sets (due to
their reduced sizes) and no partitioning is required. Thus, SEQ(A) combines the
advantages of both SEQ(P) and SEQ(C).

Using Tree Structures to Store Signatures
SEQ(C), SEQ(P), and SEQ(A) assume that the elements of F (computed

signatures together with pointers to data sequences) are to be stored in a
sequential signature file. Nevertheless, SEQ(A) (and SEQ(C)) lead to one
signature for each equivalent set. As a consequence, improved signature
indexing methods are applicable in these cases, for instance, the S-tree
(Deppisch, 1986).1 By using a tree structure, we can avoid checking each
signature during the search of those that satisfy the subset criterion (so as to
answer the corresponding pattern query).

The S-tree is a height-balanced tree, having all leaves at the same level.
Each node contains a number of pairs, where each pair consists of a signature

322 Manolopoulos, Morzy, Morzy, Nanopoulos, Wojciechowski, & Zakrzewicz

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

and a pointer to the child node. In an S-tree, the root can accommodate at least
two and at most M pairs, whereas all other nodes can accommodate at least m
and at most M pairs, where 1 ≤ m ≤ M/2.

Example 5: Let us consider the following example of S-tree construction.
Assume that the index type is SEQ(C) and the data sequences to be
indexed are the following:

X
1
=<A,B,D> X

2
=<C,D> X

3
=<A,E> X

4
=<A,C,D>

X
5
=<A,D> X

6
=<B,D> X

7
=<B,C,E> X

8
=<A,D,E>.

Assume also that the item mapping functions and order mapping functions
are the same as in Example 1, and that L=10. The equivalent sets for data
sequences are the following:

E
1
={1,2,4,8,10,16} E

2
={3,4,22} E

3
={1,5,11} E

4
={1,3,4,9,10,22}

E
5
={1,4,10} E

6
={2,4,16} E

7
={2,3,5,15,17,23} E

8
={1,4,5,10,11,29}

The signatures corresponding to the equivalent sets are presented below:

sig(E
1
)=1110101010 sig(E

2
)=0011100000 sig(E

3
)=0100010000

sig(E
4
)=1111100001

sig(E
5
)=1100100000 sig(E

6
)=0010101000 sig(E

7
)=0011010100

sig(E
8
)=1100110001

In Figure 6, an example of an S-tree with three levels is depicted. The
nodes at the data level, which are depicted with a dashed line, represent the
indexed equivalent sets. The leaves contain the signatures of equivalent sets.
The signatures are assigned to the S-tree leaves in a random order. The
signatures in internal nodes are formed by superimposing the signatures of their
children nodes. For instance, the two signatures of node n

3
 are superimposed

to form the signature 0111110000 that is stored in the parent node n
1
. It has

to be noticed that, due to the hashing technique used to extract the object
signatures, and due to the superimposition of child signatures, the S-tree may
contain duplicate signatures corresponding to different objects.

Successful searches in an S-tree (for equivalent sets that are supersets of
the query equivalent set) proceed as follows. First, we compute the signature
of the query equivalent set. Next, we start from the root of the S-tree,
comparing the query signature with the signatures in the root. For all signatures

Indexing Techniques for Web Access Logs 323

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

of the root that contain 1s, at least at the same positions as the query signature,
we follow the pointers to the corresponding children nodes. Evidently, more
than one signature may satisfy this requirement. The process is repeated
recursively for all these children, down to the leaf level, following multiple paths.
Thus, at the leaf level, all signatures satisfying the subset query are found,
leading to the data nodes, whose equivalent sets are checked so as to discard
the false drops.2 In case of an unsuccessful search, searching in the S-tree may
stop early at some level above the leaf level (this happens when the query
signature has 1s at positions, where the stored signatures have 0s).

The S-tree is a dynamic structure that allows for insertions/deletions of
signatures. In Nanopoulos, Zakrzewicz, Morzy and Manolopoulos (2002), the
organization of signatures is done with the use of enhanced signature-tree
indexing methods, based on Tousidou et al. (2000) and Nanopoulos and
Manolopoulos (2002). The advantages of the latter approaches over the
original S-tree (Deppisch, 1986) are with respect to the split policy that is used.
Due to space restrictions, more details can be found in Tousidou et al. (2000)
and Nanopoulos and Manolopoulos (2002).

Finally, we have to notice that both the approximation method and the
method that uses the complete representation of equivalent sets can use an S-tree
structure. Nevertheless, in the following, we mainly focus on the use of S-trees
for the approximation method because the method that uses the complete
representation tends to produce saturated signatures (full of 1s), which does
not yield S-trees with good selectivity.

Figure 6: Example of a Signature Tree

� 0111111100

1111111011

0111110000

0011111100

1111101011

1100110001

0010101000

0011010100

0011100000

0100010000

1110101010

1111100001

1100100000

1100110001

�
�
���������	

	

�
�
��
���

�	

�
�
������
��	

	

�

��������
��
����	

�

��
�������
��
��	

�
�
��
�������
�����	

�
�
��
���
��	

	

�
�
��
�����
��

����	

��

��
�

��
��
��
��

324 Manolopoulos, Morzy, Morzy, Nanopoulos, Wojciechowski, & Zakrzewicz

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

PERFORMANCE RESULTS
 In this section, we present the experimental results concerning the

performance of the examined sequence indexing methods, namely SEQ(C),
SEQ(P), and SEQ(A). As we mentioned earlier, to the best of our knowledge,
no other sequence-indexing methods applicable to web-log data have been
proposed so far. Therefore, as a reference point, from existing indexing
methods we choose one of the set-indexing methods — hash group bitmap
index (Morzy & Zakrzewicz, 1998). This method can be applied to subse-
quence searches in the following manner. The index is built on sets of elements
forming web-log sequences. Then, it can be used to locate sequences built from
the same elements as the query sequence. The hash group bitmap index,
similarly to our sequence indexing methods, can return false drops, so the
results obtained by using it have to be verified (in the original proposal by using
the subset test). Since we apply this index for subsequence search, in the
verification step, the subsequence test with the query sequence is performed.
We can consider this approach as a sequence indexing method based on
generating signatures directly from sets of elements forming access sequences,
ignoring the ordering of elements. In our performance study, the latter method
is denoted as SEQ(U) (“U” stands for unordered). It should be noted that by
comparing to an adaptation of a set-indexing method that is based on the same
idea as the three proposed sequence-indexing methods, we can evaluate the
advantages of taking element ordering into account. Finally, we examine the
method that combines the approximation technique and the indexing with
signature trees (this method is denoted as TREE(A)).

 All methods were implemented in Visual C++, and the experiments
were run on a PC with 933 MHz Intel Pentium III Processor, 128 MB RAM,
under the MS Windows 2000 operating system. For the experiments, we used
both synthetic and real data sets. The former are detailed in the sequel (i.e., we
describe the synthetic data generator). Regarding the latter, we have tested
several real web access logs. For brevity, we present results on the ClarkNet
web log3, which, after cleansing, contained 7200 distinct URLs organized into
75,000 sequences.

 Table 1 summarizes the parameters that are used henceforth.

Synthetic Data Generation
In order to evaluate the performance of the algorithms over a large range

of data characteristics, we generated synthetic sets of user sequences. Our data
generator considers a model analogous to the one described in Agrawal and

Indexing Techniques for Web Access Logs 325

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Srikant (1995). Following the approach of Zakrzewicz (2001) and Morzy et
al. (2001) (so as to examine the worst case for equivalent sets), we consider
sequences with elements being single items (singletons). Our implementation is
based on a modified version of the generator developed in Nanopoulos,
Katsaros and Manolopoulos (2003), which was used to produce synthetic
web-user traversals that consist of single items (see also Morzy et al., 2001).

The generator builds a pool of sequences, each being a sequence of pair-
wise distinct items from a domain I. The length of each such sequence is a
random variable that follows Poisson distribution with a given mean value. A
new pool sequence keeps a number of items from the previous one, determined
by the correlation factor. Since we are interested in the effects of item ordering
within sequences, we modified the generator of Nanopoulos et al. (2002) so as
to perform a random permutation of the common items before inserting them
in the new pool sequence. This results in sequences that contain items with
different ordering, thus, examining the impact of this factor. The rest of each
sequence is formed by selecting items from I with uniform distribution. Each
sequence in the pool is associated with a weight. This weight corresponds to
its selection probability and is a random variable that follows exponential
distribution with unit mean (weights are normalized in the sequel so that the sum
of the weights for all paths equals 1). A user sequence is created by picking a
sequence from the pool and tossing an M-sided weighted coin (M is the pool
size), where the weight for a side is the probability of picking the corresponding
pool sequence. In each user sequence, a number of random items from I (i.e.,
following uniform distribution) are inserted to simulate the fact that pool
sequences are used as seeds and should not be identical to the resulting user
sequences. The length of the sequence determines this number, which is a
random variable following Poisson distribution with a given mean value denoted
as S. The total number of generated sequences is denoted as N. Each result

Table 1: Summary of the Parameters Used

Symbol Definition

I Domain of items (distinct pages).

M Number of possible frequent sequences.

N Number of sequences in the data set.

S Average length of sequences.

k
Number of most frequent successors considered for each item

(for the approximation method).

326 Manolopoulos, Morzy, Morzy, Nanopoulos, Wojciechowski, & Zakrzewicz

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

presented in the following is the average of five generated data sets, and, for
each data set, we used 100 queries for each case (e.g., query size, number of
sequences, etc.).

Results with Synthetic Data
In this section, we are interested in comparing all methods against several

data characteristics. For this reason, we used synthetic data sets. In order to
present the results more clearly, we focus on the SEQ algorithms, whereas
results on the combination of the approximation technique with tree structures
(i.e., TREE(A)) are given separately in the following section. This is because
our objective is to examine the effectiveness of the approximation technique
and, since SEQ(A) and TREE(A) use the same approximation technique, they
lead to the same gains with respect to the data-scan cost.4

First, we focus on the tuning of k for SEQ(A). We used data sets with S
set to 10, |I| set to 1,000 and N equal to 50,000. We measured the total number
of disk accesses (cost to scan both the index and the data) with respect to the
length of the query sequences. The results for SEQ(A) with respect to k are
depicted in Figure 7, where k is given as a percentage of |I|. As shown, for small
values of k (less than 5%), SEQ(A) requires a large number of accesses
because very small equivalent sets are produced that give signatures with
almost all bits equal to ‘0.’ Thus, as has been explained, the filtering of SEQ(A)
becomes low and the cost to scan the data increases. On the other hand, for
large k values (more than 20%), very large equivalent sets are produced, and
SEQ(A) presents the drawbacks of SEQ(C). The best performance results
occurred when setting k to 10% of |I|, which is the value used henceforth.

Our next experiments consider the comparison of SEQ methods. We used
data sets that were similar to the ones used in the previous experiment. We used
the following signature sizes: for SEQ(C), equal to 96 bits; for SEQ(P) and
SEQ(A), equal to 64; and for SEQ(U), equal to 32. For SEQ(A), k was set
to 10 percent of |I|, and for SEQ(P), β was set to 44 (among several examined
values, the selected one presented the best performance). We measured the
number of activated user sequences in the database. This number is equal to the
total number of drops, i.e., the sum of actual and false drops. Evidently, for the
same query, the number of actual drops (i.e., user sequences that actually
satisfy the query) is the same for all methods. Therefore, the difference in the
number of activated user sequences directly results from the difference in the
number of false drops. The results are illustrated in Figure 8a (the vertical axis
is in logarithmic scale). In all cases, SEQ(A) outperforms all other methods,

Indexing Techniques for Web Access Logs 327

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

indicating that its approximation technique is effective in reducing the cost to
scan the data through the reduction of false drops.

Since the query performance depends both on the cost to scan the data and
the index contents, for the case of the previous experiment, we measured the
total number of disk accesses. The results are depicted in Figure 8b, with
respect to the query size (i.e., the number of elements in the query sequence).

Focusing on SEQ(P), we see that, for all query sizes, it performs better
than or almost the same as SEQ(C). Especially for medium size queries, the
performance difference between the two methods is larger. This is due to the
reduced, for these cases, cost to scan the data (fewer false drops, as also given
in Figure 8a), and resulted from the partitioning technique. Moving on to
SEQ(U), we observe that, for medium query sizes, it is outperformed by
SEQ(P); but, for very small and large ones, it performs better. These two cases
present two different situations (see also the following experiment): (1) For very
small queries (e.g., of size two), many signatures are activated and a large part
of the database is scanned during verification. Hence, a large cost to scan the
data is introduced for all methods. This can be called a “pattern explosion”
problem. (2) For large queries (with size comparable to S), there are not many
different user sequences in the database with the same items but with different
ordering. Therefore, ignoring the ordering does not produce many false drops.
In this case, a small number of signatures are activated, and all methods have
a very small and comparable cost to scan the data. Since, at these two extreme
cases, both SEQ(P) and SEQ(U) have comparable Data Scan cost, SEQ(P)
loses out due to the increased Index Scan cost incurred through the use of larger
signatures (SEQ(U) does not use equivalent sets, thus, it uses 32-bit signatures;
in contrast SEQ(P) uses for a 64-bit signature for each partition, thus, the total

Figure 7: Tuning of k

328 Manolopoulos, Morzy, Morzy, Nanopoulos, Wojciechowski, & Zakrzewicz

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

size is a multiple of 64-bits).
Turning our attention to SEQ(A), we observe that it significantly outper-

forms SEQ(C) and SEQ(P) for all query sizes. Regarding the two extreme
cases, for the “pattern explosion” problem, SEQ(A) does not present the
drawback of SEQ(C) and SEQ(P). In this case, it performs similarly to
SEQ(U), which uses much smaller signatures. The same applies for the very
large queries. For all the other cases, SEQ(A) clearly requires a much smaller
number of disk accesses than SEQ(U).

Our next series of experiments examines the sensitivity of the methods. We
first focus on the effect of S. We generated data sets, with the other parameters
being the same as the previous experiments, and we varied the length S of
sequences (the signature lengths were tuned against S). The resulting numbers
of disk accesses are depicted in Figure 9a, for query size equal to S/2 in each
case. Clearly, the disk accesses for all methods increase with increasing S.
SEQ(A) performs better than all other methods, and it is not affected by
increasing S as much as the other methods. SEQ(P) presents the second best
performance. It has to be noticed that, for large values of S, the performance
of SEQ(C) degenerates rapidly.

We also examined the effect of the cardinality of I (domain of items). For
this experiment, S was set to 10, and the average query size was equal to five.
The other parameters in the generated data sets were the same as those in
previous experiments, and we varied I. The results are shown in Figure 9b. As
shown, for all methods, very small values of |I| (e.g., 100) require a much larger
number of disk accesses. This is due to the larger impact of ordering, since more

Figure 8: Comparison of Methods: (a) Number of Activated User Sequences
in the Database w.r.t. Query Size (b) Disk Accesses w.r.t. Query Size

(a) (b)

Indexing Techniques for Web Access Logs 329

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

permutations of the same sets of items appear within sequences. SEQ(A)
presents significantly improved performance compared to all other methods,
whereas SEQ(P) comes second best.

Finally, we examined the scalability of the algorithms with respect to the
number N of sequences. The rest parameters for the generated data sets were
analogous to the ones in the experiments depicted in Figure 8, with varying N.
The results are depicted in Figure 10a. As shown, for all methods, the disk
accesses increase in terms of increasing N. SEQ(A) compares favorably with
the remaining algorithms, whereas SEQ(P) comes second best. As in all
previous results, SEQ(C) presents the worst performance.

Results with Real Data
We now move on to examine the ClarkNet real web-log. Based on the

previous results on synthetic data, we focus on the two most promising
methods, namely (1) the partitioning, and (2) the approximation of equivalent
sets. Moreover, we also considered the use of tree indexes for the signatures.
Nevertheless, as described, the partitioning method (1) results in multiple
signatures for each equivalent set, which can only be stored one after the other
in a sequential file (i.e., SEQ(P) algorithm). In contrast, the approximation
method (2) leads to only one signature for each equivalent set. Therefore, the
latter signatures can be easily indexed with a tree structure for signatures, e.g.,
the S-tree (Deppisch, 1986). We used the approximation method and the
improved S-tree variation proposed in Tousidou et al. (2000), and the resulting
method is denoted as TREE(A) (i.e., approximation + a tree structure).

 The results for the comparison between SEQ(P) and TREE(A), with

Figure 9: Effect of: (a) S (b) |I|

(a) (b)

330 Manolopoulos, Morzy, Morzy, Nanopoulos, Wojciechowski, & Zakrzewicz

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

respect to query size (i.e., number of items in the query sequence), are given
in Figure 10b. Evidently, TREE(A) significantly outperforms SEQ(P) in all
cases. Only for very small queries (i.e., with two elements), do the methods
present comparable performance, since a large number of the stored signatures
and sequences are invoked by such queries (i.e., they have very low selectiv-
ity).

In summary, the approximation method has the advantage of allowing for
a tree structure to index the signatures, which further reduces the cost to read
the signatures. In combination with the reduced cost of scanning the data
sequences due to lower number of false drops, the approximation method
offers the best performance for large, real web logs.

FUTURE TRENDS
Analysis of the behavior of clients visiting a particular website is crucial for

any companies or organizations providing services over the Internet. Under-
standing of clients’ behavior is a key step in the process of improving the
website. Nowadays, the information on how users navigate through a given
web service is typically available in the form of web access logs. Knowing the
limitations of web server logs, in the future, we may observe a tendency to log
more accurate and complete information at the application server level.
Nevertheless, after some preprocessing, the data to be analyzed by advanced
tools (e.g., data mining tools) will have the form of a large collection of
sequences stored in a company’s database or data warehouse. A typical
operation in the context of such data sets is searching for sequences containing

(a) (b)

Figure 10: (a) Scalability w.r.t. Number of Sequences N. (b) I/O vs. Query
Size for ClarkNet Web Log

Indexing Techniques for Web Access Logs 331

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

a given subsequence. We believe that exploiting advanced indexing schemes,
like those presented in this chapter, will be necessary to guarantee acceptable
processing times.

Having this in mind, in the future, we plan to continue our research on
sequence indexing, extending the most promising technique proposed so far,
i.e., the method based on approximations of equivalent sets. We plan to
examine alternative approximation schemes, such as: (1) global frequency
threshold for ordered pairs of elements within a sequence (using most frequent
pairs instead of most frequent successors for each item); and (2) information-
content measures (considering only pairs that carry more information than
others).

CONCLUSION
We considered the problem of efficient indexing of large web access logs

for pattern queries. We discussed novel signature-encoding schemes, which
are based on equivalent sets, to consider the ordering among the elements of
access sequences, which is very important in the case of access logs. We have
presented a family of indexing methods built upon the concept of equivalent
sets. The performance of the proposed methods has been examined and
compared, experimentally, with real and synthetic data. We tested the impact
of query size, the tuning of the encoding schemes, and the scalability. These
results illustrate the superiority of the proposed methods over existing indexing
schemes for unordered data adapted to access sequences.

REFERENCES
Agrawal, R. & Srikant, R. (1995). Mining sequential patterns. In P. S. Yu &

A. L. P. Chen (Eds.), Proceedings of the 11th International Confer-
ence on Data Engineering (pp. 3-14). Taipei, Taiwan: IEEE Computer
Society.

Araujo, M. D., Navarro, G., & Ziviani, N. (1997). Large text searching
allowing errors. In R. Baeza-Yates (Ed.), Proceedings of the 4th South
American Workshop on String Processing, Valparaiso, Chile (pp. 2-
20). Quebec, Canada: Carleton University Press.

Baeza-Yates, R. & Ribeiro-Neto, B. (1999). Modern Information Re-
trieval. New York: Addison-Wesley.

Bertino, E. & Kim, W. (1989). Indexing techniques for queries on nested

332 Manolopoulos, Morzy, Morzy, Nanopoulos, Wojciechowski, & Zakrzewicz

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

objects. IEEE Transactions on Knowledge and Data Engineering,
1(2), 196-214.

Bloom, B. H. (1970). Space/time trade-offs in hash coding with allowable
errors. Communications of the ACM, 13(7), 422-426.

Chan, C. Y. & Ioannidis, Y. E. (1998). Bitmap index design and evaluation.
In L. M. Haas & A. Tiwary (Eds.), Proceedings of the 1998 ACM
SIGMOD International Conference on Management of Data, Seattle,
Washington (pp. 355-366). New York: ACM Press.

Chen, M. S., Park, J. S., & Yu, P. S. (1998). Efficient data mining for path
traversal patterns. IEEE Transactions on Knowledge and Data Engi-
neering, 10(2), 209-221.

Comer, D. (1979). The ubiquitous B-tree. ACM Computing Surveys, 11(2),
121-137.

Cooley, R., Mobasher, B., & Srivastava, J. (1999). Data preparation for
mining world wide web browsing patterns. Knowledge and Information
Systems, 1(1), 5-32.

Deppisch, U. (1986). S-tree: A dynamic balanced signature index for office
retrieval. In Proceedings of the 9th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval,
Pisa, Italy (pp.77-87). New York: ACM Press.

Faloutsos, C. & Christodoulakis, S. (1984). Signature files: An access method
for documents and its analytical performance evaluation. ACM Transac-
tions on Office Information Systems, 2(4), 267-288.

Graefe, G. & Cole, R. L. (1995). Fast algorithms for universal quantification
in large databases. ACM Transactions on Database Systems, 20(2),
187-236.

Guttman, A. (1984). R-trees: A dynamic index structure for spatial searching.
In B. Yormark (Ed.), SIGMOD’84, Proceedings of Annual Meeting,
Boston, Massachusetts (pp. 47-57). New York: ACM Press.

Hellerstein, J. M. & Pfeffer, A. (1994). The RD-tree: An index structure for
sets. Madison, WI: University of Wisconsin at Madison. (Technical
Report 1252)

Helmer, S. (1997). Index structures for databases containing data items
with set-valued attributes. Mannheim, Germany: Universität Mannheim.
(Technical Report 2/97)

Helmer, S. & Moerkotte, G. (1997). Evaluation of main memory join algo-
rithms for joins with set comparison join predicates. In M. Jarke, M. J.
Carey, K. R. Dittrich, Fr. H. Lochovsky, P. Loucopoulos, & M. A.
Jeusfeld (Eds.), Proceedings of the 23rd International Conference on

Indexing Techniques for Web Access Logs 333

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Very Large Data Bases (VLDB’97), Athens, Greece (pp. 386-395).
San Francisco, CA: Morgan Kaufmann.

Helmer, S. & Moerkotte, G. (1999). A study of four index structures for set-
valued attributes of low cardinality. Mannheim, Germany: Universität
Mannheim. (Technical Report 2/99)

Ishikawa, Y., Kitagawa, H., & Ohbo, N. (1993). Evaluation of signature files
as set access facilities in OOdbs. In P. Buneman & S. Jajodia (Eds.),
Proceedings of the 1993 ACM SIGMOD International Conference
on Management of Data, Washington,DC (pp. 247-256). New York:
ACM Press.

Lou, W., Liu, G., Lu, H., & Yang, Q. (2002). Cut-and-pick transactions for
proxy log mining. In C. S. Jensen et al. (Eds.), Advances in Database
Technology (EDBT 2002), 8th International Conference on Extend-
ing Database Technology, Prague, Czech Republic, March 25-27,
2002(pp. 88-105). Berlin: Springer-Verlag.

Morzy, T. & Zakrzewicz, M. (1998). Group bitmap index: A structure for
association rules retrieval. In R. Agrawal, P. E. Stolorz, & G. Piatetsky-
Shapiro (Eds.), Proceedings of the 4th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (pp. 284-
288). New York: ACM Press.

Morzy, T., Wojciechowski, M., & Zakrzewicz, M. (2001). Optimizing pattern
queries for web access logs. In A. Caplinskas & J. Eder (Eds.), Advances
in Databases and Information Systems,5th East European Confer-
ence (ADBIS 2001), Vilnius, Lithuania, September 25-28,2001 (pp.
141-154). Berlin: Springer-Verlag.

Nanopoulos, A. & Manolopoulos, Y. (2002). Efficient similarity search for
market basket data. The VLDB Journal, 11(2), 138-152.

Nanopoulos, A., Katsaros, D., & Manolopoulos, Y. (2003). A data mining
algorithm for generalized web prefetching. IEEE Transactions on Knowl-
edge and Data Engineering, (forthcoming).

Nanopoulos, A., Zakrzewicz, M., Morzy, T., & Manolopoulos, Y. (2002).
Indexing web access-logs for pattern queries. In 4th ACM CIKM
International Workshop on Web Information and Data Management,
McLean, Virginia (pp. 63-68). New York: ACM Press.

Nanopoulos, A., Zakrzewicz, M., Morzy, T., & Manolopoulos, Y. (2003).
Efficient storage and querying of sequential patterns in database systems.
Information and Software Technology, 45(1), 23-34.

Nørvåg, K. (1999). Efficient use of signatures in object-oriented database

334 Manolopoulos, Morzy, Morzy, Nanopoulos, Wojciechowski, & Zakrzewicz

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

systems. In J. Eder, I. Rozman, & T. Welzer (Eds.), Advances in
Databases and Information Systems, Proceedings of the 3rd East
European Conference (ADBIS’99), Maribor, Slovenia, September 13-
16, 1999 (pp. 367-381). Berlin: Springer-Verlag.

Pei, J., Han, J., Mortazavi-Asl, B., & Zhu, H. (2000). Mining access patterns
efficiently from web logs. In T. Terano, H. Liu, & A. L. P. Chen (Eds.),
Knowledge Discovery and Data Mining, Current Issues and New
Applications, Proceedings of the 4th Pacific-Asia Conference (PAKDD
2000), Kyoto, Japan, April 18-20, 2000 (pp. 396-407). Berlin: Springer-
Verlag.

Spiliopoulou, M., & Faulstich, L. (1998). WUM - A tool for WWW ulitization
analysis. In P. Atzeni, A. O. Mendelzon, & G. Mecca (Eds.), The World
Wide Web and Databases, International Workshop (WebDB’98),
Valencia, Spain, March 27-28, 1998, selected papers (pp. 184-203).
Berlin: Springer-Verlag.

Tousidou, E., Nanopoulos, A., & Manolopoulos, Y. (2000). Improved
methods for signature tree construction. The Computer Journal, 43(4),
301-314.

Zakrzewicz, M. (2001). Sequential index structure for content-based retrieval.
In D. W.-L. Cheung, G. J. Williams, & Q. Li (Eds.), Knowledge
Discovery and Data Mining - PAKDD 2001, Proceedings of the 5th
Pacific-Asia Conference, Hong Kong, China, April 16-18, 2001 (pp.
306-311). Berlin: Springer-Verlag.

ENDNOTES
1 This does not apply to SEQ(P) because it represents each equivalent set

with several signatures.
2 Clearly, after checking the equivalent sets, we have to examine the original

sequences, so as to discard the false drops that are due to the use of
equivalent sets. However, this step does not relate to the use of the S-tree,
and is similar to the corresponding step in the SEQ methods.

3 Available at the Internet Traffic Archive: http://ita.ee.lbl.gov/html/traces.html.
4 We have measured the performance of TREE(A) for these synthetic data

and, as expected, we found that it outperforms SEQ(A) because of its
reduced index-scan cost, which, however, is due to the tree index and
independent from the approximation technique.

Traversal Pattern Mining in Web Usage Data 335

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter X

Traversal Pattern Mining
in Web Usage Data

Yongqiao Xiao, Georgia College & State University, USA

Jenq-Foung (J.F.) Yao, Georgia College & State University, USA

ABSTRACT
Web usage mining is to discover useful patterns in the web usage data, and
the patterns provide useful information about the user’s browsing behavior.
This chapter examines different types of web usage traversal patterns and
the related techniques used to uncover them, including Association Rules,
Sequential Patterns, Frequent Episodes, Maximal Frequent Forward
Sequences, and Maximal Frequent Sequences. As a necessary step for
pattern discovery, the preprocessing of the web logs is described. Some
important issues, such as privacy, sessionization, are raised, and the
possible solutions are also discussed.

INTRODUCTION
Web usage mining is to discover useful patterns in the web usage data, i.e.,

web logs. The web logs record the user’s browsing of a web site, and the
patterns provide useful information about the user’s browsing behavior. Such
patterns can be used for web design, improving web server performance,
personalization, etc.

336 Xiao & Yao

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Several different types of traversal patterns have been proposed in the
literature, namely, Association Rules, Sequential Patterns, Frequent Episodes,
Maximal Frequent Forward Sequences, and Maximal Frequent Sequences.
These patterns differ in how the patterns are defined, and they can be used for
different purposes. This chapter examines these patterns and the related
techniques used to uncover them.

One important issue about mining traversal patterns, or about web usage
mining in general, is the preprocessing of the web logs. Since the web logs are
usually not in a format for web usage mining, preprocessing is needed. Such
preprocessing becomes complicated or problematic by the current use of the
Web. The details about the problems and possible solutions are discussed in
this chapter.

The rest of the chapter is organized as follows: The second section, Web
Usage Data, gives the background to web usage mining. The third section,
Preprocessing, describes the web log preprocessing. The different types of
traversal patterns are described in the fourth section, Pattern Discovery. The
fifth section, Pattern Analysis and Applications, describes the analyses and
applications of these patterns. The sixth section, Conclusion, concludes the
chapter.

Web Usage Data
To characterize the web usage data, the terms defined by the W3C Web

Characterization Activity (WCA) (http://www.w3c.org/WCA) are adopted.
A user is defined as an individual who is accessing the Web through a browser.
A user session is a delimited set of user clicks across one or more web servers.
A click corresponds to a page on the web server, which is uniquely identified
by a URI (Universal Resource Identifier). A server session is a collection of
user clicks to a single web server during a user session.

The web usage data can be collected from different sources, e.g., the
server side, the client side (Catledge & Pitkow, 1995) and the proxy side
(Cohen et al., 1998). The server usage data correspond to the logs that are
collected at a web server. They provide an aggregate view of the usage of a web
site by all users. Such web server log data may not be entirely reliable due to
the presence of various levels of caching (e.g., client caching by the browser,
proxy caching by the proxy server) within the Web environment. The client
usage data can be collected by using a remote agent, e.g., Java Applets, or by
asking the user to use a specialized browser. The client side data can potentially
capture every click of the user, but it requires the user’s cooperation to collect.

Traversal Pattern Mining in Web Usage Data 337

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The proxy usage data are collected at a proxy server, which acts as an
intermediate level of caching between the client browsers and web servers.
Such data may capture the browsing behavior of a group of anonymous users
sharing a common proxy server.

The focus of this chapter is on the usage data at a web server, since all the
traversal patterns target such web server logs. The information that a typical log
on a web server contains is shown in Table 1.

The IP address is the address of the client machine from which the request
is made. The user ID is relevant only when the user logs in to the web server.
The time field shows when the page is accessed. The method/URI/protocol
records which page (identified by a URI) is accessed, and the method and
protocol used for the access. The status field and the size field show the access
status (e.g., 200 for success) and the size of the page. The referrer field is from
the referrer log, which indicates the page the user was on when he or she clicked
to come to the accessed page. If the referrer is not empty (i.e., it is not ‘-’ in
the log), it usually means there is a hyperlink from the referrer page to the
accessed page. This is useful for preprocessing, as indicated below. The user
agent field shows whatever software the user used to access the web server,
which is typically a web browser.

PREPROCESSING
The tasks of preprocessing for web usage mining include extraction,

cleansing, transformation, sessionization, etc. Extraction is for selecting the
related fields from the web logs. Traversal patterns typically require three fields:
IP address, access time, and the page accessed. Other fields, such as referrer
and user agent, can be used in cleansing and sessionization. Transformation
converts the fields to the format required by specific pattern discovery

Table 1: Sample Logs

IP User Time Method/URI/Protocol Status Size Referrer User Agent
2.2.2.2 - [29/Feb/2000:02:05:00] ``GET A.htm HTTP/1.1'' 200 3043 - Mozilla/4.05
2.2.2.2 - [29/Feb/2000:02:05:00] “GET X.jpg HTTP/1.1” 200 1540 - Mozilla/4.05
2.2.2.2 - [29/Feb/2000:02:05:01] ``GET B.htm HTTP/1.1'' 200 2012 A.htm Mozilla/4.05
2.2.2.2 - [29/Feb/2000:02:05:01] ``GET A.htm HTTP/1.1'' 200 3043 - Mozilla/3.04
3.3.3.3 - [29/Feb/2000:02:05:01] ``GET A.htm HTTP/1.1'' 200 3043 - SearchEngine

338 Xiao & Yao

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

algorithm. The other two important tasks, cleansing and sessionization, are
described.

Cleansing
Cleansing filters the irrelevant entries in the web log, such as graphics files.

The HTTP protocol is stateless, which requires a separate connection for each
file requested from the web server. Therefore, several log entries may result
from a request to view a single page, since the files for the graphics embedded
in the page are automatically downloaded from the web server. Such filtering
can be done by checking the suffixes of the URI name, such as jpg, gif, etc. For
the sample logs in Table 1, the second row is such an entry and is, thus, filtered.

Another important issue about cleansing is how to filter the sessions of web
robots (Kohavi, 2001). A web robot is a software program that automatically
traverses the hyperlink structure of the Web. For example, Internet search
engines retrieve the web documents for their index databases. It was shown in
Tan and Kumar (2002) that web robot sessions could account for as much as
85% of the total number of HTML pages requested, and take up about 5% of
the total sessions on a web server. This could dramatically distort the web usage
mining, which is supposed to analyze human users’ browsing behavior.

One way to detect web robots is by checking the IP address and the user
agent in the log. If they match the well-known robots, such as some popular
search engines, such entries are removed from the log. For the sample logs in
Table 1, the fifth row is such an entry, which records some search engine’s
access of the web server, given that the IP address and the user agent of the
search engine are well known. The drawback of this approach is that it may fail
to detect the new robots (IP unknown yet) and the unconventional ones
(identities could be disguised). An alternative solution of building classification
models was proposed in Tan and Kumar (2002). It is assumed that the traversal
patterns of web robots are inherently different from those of human users. Such
patterns can be characterized in terms of the types of pages being requested,
the length of the session, the interval between successive HTML requests, and
the coverage of the web site. It was shown in Tan and Kumar (2002) that the
classification models have high accuracy in detecting web robots. Notice that
such a solution itself is a web usage mining problem, which requires the
following sessionization for preprocessing. So, the simple method of checking
the IP address and the user agent may be used instead.

Sessionization
Identifying the sessions (server sessions) from the web logs, called

sessionization, is not a trivial task. It has two subtasks: user identification and

Traversal Pattern Mining in Web Usage Data 339

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

session identification. A common way is to use the IP address to identify the
user, i.e., all entries with the same IP address belong to the same user.
However, this is problematic because: (1) several users may have the same IP
address if they use the same proxy server to access the web server, which is
not uncommon for the Internet Service Providers (ISPs) for performance and
other purposes; and (2) a single user may have multiple IP addresses, since
some ISPs or privacy tools randomly assign each request from a user to one of
the IP addresses in the pool.

An improved method is to check the user agent and the referrer fields, in
addition to the IP address (Cooley & Mobasher et al., 1999). The following
heuristics are used: (1) If two entries in the log have the same IP address, but
have different user agents, they should belong to two different users. For the
sample logs in Table 1, after cleansing, there are three entries left: rows 1, 3 and
4. All three entries have the same IP address, but row 4 has a different user
agent than rows 1 and 3. Using this heuristic, there are two sessions instead of
one, i.e., row 4 belongs to an independent session. (2) If two entries have the
same IP address and the same user agent, and if the referrer field is empty but
there is no direct hyperlink connecting the two pages, they should belong to two
different users. One more heuristic was suggested in Tan and Kumar (2002):
(3) If two entries have different IP addresses, but have the same user agent and
share a common domain name (can be obtained from the IP address by a
reverse DNS lookup) or the same IP prefix (the same IP address group), they
should belong to the same user. No example entries are shown for the last two
heuristics in the sample logs in Table 1, since they require extra effort, such as
analyzing the hyperlink structure of the web server, and reverse DNS lookup
for the second and the third heuristics respectively.

It is important to note that these are just heuristics for user identification,
e.g., two users with the same IP address (typical on a multi-user workstation)
who use the same browser to browse the same set of pages can be easily
confused as a single user, and two requests from different machines but with the
same domain name could be assigned to the same user even though they belong
to different users.

Besides the heuristics, we can also use other session tracking mechanisms,
such as cookies and embedded session tracking. A cookie is a piece of
information that is stored at the client machine but sent to the server with each
request to track the user connection. Cookies have raised growing privacy
concerns, since they rely on implicit user cooperation. Embedded session
tracking dynamically modifies the URL of each request to include a unique
session identifier, which is done by the web server and does not require storing
any information on the client machine.

340 Xiao & Yao

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

After the users are identified for the entries in the log, the next step is to
identify the sessions. A standard way is to use a timeout. The heuristic is that
if the time between two requests from a user exceeds a certain limit, a new
session is assumed to have started. Many commercial products use 30 minutes
as the default timeout. The session identification can also get complicated due
to client caching and proxy caching. Most browsers cache the pages that have
been requested to improve performance. As a result, when the user hits the
“back” button, the cached page is displayed and the web server is not aware
of such backtracking, i.e., no entry for such backtracking is recorded in the log.
Proxy servers provide an intermediate level of caching for better performance.
Due to proxy caching, multiple users throughout an extended period of time
could actually view a single request from the proxy.

Such missing page references due to caching may be inferred by using
some heuristic (Cooley & Mobasher et al., 1999): If a page request X is made
that is not directly linked from the last page the user requested (let it be Y, and
there is no direct hyperlink from Y to X), and if the referrer field is not empty
(let it be Z), and if the referrer page occurs in the same session (it is like …, Z,
…, Y, X, …), then it is assumed that the user backtracked with the “back”
button from page Y to page Z and clicked the hyperlink to go to page X.
Therefore, the intermediate pages (i.e., the pages from Z to Y in the above
session) are added to the log. Again, this is just a heuristic. It could be a mistake
to do this if the user changed the URL directly to page X.

A Web Log Data Set
After all sessions are identified, a session file can be created for pattern

discovery. The fields for the session file are transformed to the format that is
required by the specific algorithm. Unless otherwise specified explicitly, the
following example will be used for the pattern discovery, with the assumption
that preprocessing is done appropriately.

Example 1. Table 2 shows an artificial data set for the web server log. The
user is identified for each page (in total, three unique users), and the
sessions are identified for each user with a timeout 30 time units (in total,
five sessions shown in Table 3). For convenience of discussion, the access
time is shown as relative time units. All other information is not relevant for
the following pattern discovery discussion, and, thus, is not shown.

Traversal Pattern Mining in Web Usage Data 341

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

PATTERN DISCOVERY
Pattern discovery applies methods and algorithms from different fields,

such as statistics, data mining, machine learning, etc., to the prepared data. By
applying the statistical techniques to the web usage data, some useful statistics
about the users’ browsing behavior can be obtained, e.g., the average view time
of a page, the most frequently accessed pages, etc. By applying clustering
(a.k.a. unsupervised learning) to the usage data, the groups of users that exhibit
similar browsing behavior can be found. Such knowledge is useful for market
segmentation and personalization.

The focus of this chapter is on discovering traversal patterns from the web
usage data. A traversal pattern is a list of pages visited by a user in one session.
Several different traversal patterns, and the corresponding methods of discov-
ering them, have been proposed in the literature, namely, Association Rules,
Sequential Patterns, Frequent Episodes, Maximal Frequent Forward Se-
quences, and Maximal Frequent Sequences. The details about each type of
traversal pattern are described in each of the following subsections respec-
tively.

Association Rules
Association rules were originally proposed for market basket data (see

Agrawal et al., 1993; Agrawal & Srikant, 1994). Association rules describe

Table 2: Web Server Log Example Table 3: Web Server Log Sorted and
Sessionized

User Time Page

 1 u1 0 A
2 u1 2 B
3 u1 3 A
4 u2 5 A
5 u1 6 C
6 u2 7 B
7 u2 8 A
8 u3 10 A
9 u2 11 C
10 u2 12 D
11 u1 40 A
12 u2 42 A
13 u1 43 E
14 u2 44 E
15 u2 45 F

Session User Time Page

 u1 0 A
1 u1 2 B
 u1 3 A
 u1 6 C

2 u1 40 A
 u1 43 E

3 u2 5 A
 u2 7 B
 u2 8 A
 u2 11 C
 u2 12 D

4 u2 42 A
 u2 44 E
 u2 45 F

5 u3 10 A

1

2

3

4

5

342 Xiao & Yao

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the associations among items bought by customers in the same transaction, e.g.,
80% of customers who bought diapers also bought beer in some store.

Association rules have been applied to web logs (Lan et al., 1999; Cooley
et al., 1999; Cooley & Mobasher et al., 1999). A page is regarded as an item,
and a session is regarded as a transaction1. Since a transaction consists of
unique items, the duplicate pages in a session need to be removed, and the order
of the pages is ignored. For Example 1, there are five sessions and, thus, five
transactions: {A, B, C}, {A, E}, {A, B, C, D}, {A, E, F} and {A} (for short,
ABC, AE, ABCD, AEF and A), which are shown in Table 4.

To mine association rules from the transactions, there are two steps: finding
the frequent item sets, and then generating association rules from the frequent
item sets. Since the second step is straightforward compared to the first one,
the research focus is on the first step. An item set (or itemset, for short) is
frequent if the support for the itemset is not less than some predefined threshold.
The support for an itemset in a database of transactions is defined as the
percentage of the transactions that contain the itemset. The support for an
association rule X →Y is the support for the itemset X ∪ Y. The confidence
for an association rule X →Y is the ratio of the support for to the support for
itemset X ∪ Y. For Example 1, suppose the confidence threshold is 90%, and
the support threshold is 40%, i.e., an itemset needs to appear in at least two of
five transactions to be frequent. All frequent itemsets and association rules are

Table 4: Association Rule Example

 Sessions

 u1: <A, B, A, C>
 u1: <A, E>
 u2: <A, B, A, C, D>
 u2: <A, E, F>
 u3: <A>

 Transactions

 ABC
 ABCD
 AE
 AEF
A

 Frequent Itemsets
 A(100%), B(40%), C(40%), E(40%)
 AB(40%), AC(40%), BC(40%), AE(40%)
 ABC(40%)

Association Rules

 E → A (40%, 100%)
 B → A (40%, 100%), B → C (40%, 100%)
 C → A (40%, 100%), C → B (40%, 100%)
 AB → C (40%, 100%), C → AB (40%, 100%)
 AC → B (40%, 100%), B → AC (40%, 100%)
 BC → A (40%, 100%)

Traversal Pattern Mining in Web Usage Data 343

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

shown in Table 4. The numbers in the parentheses are the support and the
confidence for an association rule respectively. For the frequent item A with
100% support, A can be said to be the homepage of a certain site, and then it
can be interpreted as every visitor visits the homepage A (100%). For
association rule AB→C, with support 40% and confidence 100%, AB can be
said to be two pages linked from A to B, and the rule can be interpreted as 40%
of users visited pages A, B and C, and 100% of those who visited pages A and
B also visited page C.

Mining association rules have attracted a lot of research attention. Im-
provements and extensions have been made from various perspectives: reduc-
ing database passes (Savasere et al., 1995; Toivonenn, 1996); parallelization
and distribution (Agrawal & Shafer, 1996); generalization (Srikant & Agrawal,
1995); item constraints (Srikant et al., 1997); integration with database
systems (Sunita et al., 1998); long patterns (Han et al., 2000), just to name a
few.

For the data given in Table 4, the process for finding the frequent itemsets
is shown in Table 5.

The most well known algorithm for mining association rules is Apriori
(Agrawal & Srikant, 1994), which is shown in Algorithm 1. It makes multiple
passes of the database. In the first pass, it counts the support of all the individual

Algorithm 1

Input:
 D : database of sessions.
 Smin : minimum support threshold.
 Cmin : minimum confidence threshold.

 Output:
 all association rules with support and confidence ≥ Smin and confidence ≥ Cmin.

 Method:

(1) L1 = {frequent items};
(2) C2 = candidate_gen_apriori(L1); //candidate itemsets for thesecond pass
(3) for (k = 2; Ck ≠ φ; k++) do
(4) foreach session in D do
(5) count Ck;
(6) endforeach
(7) Lk = {the frequent itemsets in Ck};
(8) Ck+1 = candidate_gen_apriori(Lk); //candidate itemsets for thenext pass
(9) endfor
(10) generate association rules using Cmin from the frequent itemsets L =L1 ∪ L2 ∪ … ∪ Lk ;

344 Xiao & Yao

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

items and determines the frequent items. In each subsequent pass, it starts with
a seed set of itemsets found to be frequent in the previous pass. This seed set
is used to generate a set of candidate itemsets (the potentially frequent
itemsets), the actual support of which is counted during the pass over the data.
At the end of the pass, the set of frequent itemsets among the candidate itemsets
is determined, and it becomes the seed for the next pass. This process continues
until no candidate itemsets are generated. In generating the set of candidate
itemsets, Apriori uses the property of the frequent itemsets. This property says
that all subsets of a frequent itemset must be frequent. By using the property,
the set of candidate itemsets for the next pass can be generated from the set of
frequent itemsets found in the current pass, i.e., those itemsets that have one
infrequent subset need not be considered in the next pass.

Sequential Patterns
Sequential patterns (Srikant & Agrawal, 1995) were also originally

proposed for market basket data. For example, customers buy a digital
camera, then a photo printer, and then photo paper. Such sequential patterns
capture the purchasing behavior of customers over time.

Sequential patterns have also been applied to Web logs (see Buchner et
al., 1999; Spiliopoulou, 2000; Pei et al., 2000). The sessions are ordered by
the user ID and the access time. As for association rules, the duplicate pages
are discarded. Then, for each user, there is a user sequence, which consists of
all sessions of the user. Notice that a sequence is an ordered list of itemsets
(page sets) and is shown by the notation of <>, while the items (pages) in the
itemsets are not ordered and are shown by the notation of (). The user
sequences are shown in Table 6. A sequential pattern is a maximal sequence of
itemsets whose support is not less than some predefined threshold. A sequence
is maximal if it is not contained in any other sequence. The support of a
sequence is the percentage of user sequences that contain the sequence. A
sequence X = <(s

1
)(s

2
) … (s

n
)> contains another sequence Y = <(t

1
)(t

2
) …

(t
m
)>, where s

i
(1 ≤ i ≤ n) and t

j
(1 ≤ j ≤ m) are itemsets, and m ≤ n, if there exists

integers i
1
 < i

2
 < … < i

m,
 such that t

j
 ⊆ s

ij
(1 ≤ j ≤ m).

Table 5: Apriori Example

Database Pass Candidate Itemsets Frequent Itemsets
1 A, B, C, D, E, F A, B, C, E
2 AB, AC, AE, BC, BE, CE AB, AC, AE, BC
3 ABC ABC

Traversal Pattern Mining in Web Usage Data 345

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

For Example 1, let the support threshold be 66%, i.e., a sequential pattern
has to appear in at least two user sequences. Table 6 shows two sequential
patterns that are maximal. Notice that we assume that no duplicate items are
allowed in a sequential pattern.

Algorithm AprioriAll was proposed in Srikant and Agrawal (1995) for
finding all sequential patterns given some support threshold. First, the set of
frequent itemsets is found from the user sequences using the Apriori algorithm.
Notice that the support for an itemset is the ratio of the frequency to the number
of users. These frequent itemsets are regarded as sequences of length 1 (1-
sequences), and are given in Table 6. Such 1-sequences are then used as the
seed set to generate candidate 2-sequences (potentially frequent sequences of
length 2) using the downward closure property, which also holds for sequential
patterns. In each subsequent pass over the database, the set of candidate
sequences is counted, and the frequent sequences are determined and then
used as the seed set to generate the candidate sequences for the next pass. This
process continues until there are no candidate sequences generated. At last, the
frequent sequences that are not maximal are removed. Shown in Table 6 are the
frequent itemsets (1-sequences) and the resulting sequential patterns.

AprioriAll was then improved by Generalized Sequential Patterns (GSP)
(Srikant & Agrawal, 1996), which is shown in Algorithm 2. Traversal patterns
were generalized to allow time constraints, sliding time windows, and user-
defined taxonomy. GSP also makes several passes over the database. A k-
sequence is defined as a sequence with k items, e.g., sequences <(AB)(C)>
and <(A)(B)(C)> are both 3-sequences. Note that a k-sequence here is
different from that in AprioriAll. In the first pass over the database, it determines
the frequent 1-sequences. Each subsequent pass starts with a seed set, which
consists of the frequent sequences found in the previous pass. The seed set is
used to generate new candidate sequences, each of which has one more item
than the seed sequence. The support for the candidate sequences is then found

Table 6: Sequential Pattern Example

User Sequences
u1: <(ABC)(AE)>
u2: <(ABCD)(AEF)>
u3: <(A)>

 Frequent Itemsets
A(100%), B(66%), C(66%), E(66%)
AB(66%), AC(66%), BC(66%), AE(66%)
ABC(66%)

Sequential Patterns <(ABC)(E)> (66%)
<(BC)(AE)> (66%)

346 Xiao & Yao

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

during the pass over the database. At the end of the pass, it determines the set
of frequent sequences, which become the seed for the next pass.

GSP differs from AprioriAll in how the candidate sequences are gener-
ated. The candidate sequences for a pass are generated by self-joining the set
of frequent sequences from the previous pass. A sequence s

1
 joins with s

2
 if the

subsequence obtained by dropping the first item of s
1
 is the same as the

subsequence obtained by dropping the last item of s
2
. The candidate sequence

which results from joining s
1
 and s

2
 is the sequence extended with the last item

in s
2
. The added item becomes an individual element if it was an individual

element in s
2
, and a member of the last element of s

1
 otherwise. Some of the

candidate sequences are then pruned by using the property of downward
closure. Shown in Table 7 are the candidate sequences and the frequent
sequences for each pass. The resulting traversal patterns are the same as those
generated by AprioriAll.

Frequent Episodes
Frequent episodes were originally proposed for telecommunication alarm

analysis (see Mannila et al., 1995; Mannila et al., 1997). Episodes are
collections of events which occur together within some time window. In
general, they are partially ordered sets of events. There are two special types
of episodes: parallel episodes and serial episodes. They differ in whether the

Algorithm 2

Input:
D : database D of user sequences.
Smin : minimum support threshold.

 Output:

all sequential patterns with support ≥ Smin.
 Method:
(1) L1 = {the frequent 1-sequences};
(2) C2 = candidate_gen_gsp(L1); //candidate 2-sequences for the second pass
(3) for (k = 2; Ck ≠ φ; k++) do
(4) foreach user sequence in D do
(5) count Ck;
(6) endforeach
(7) Lk = {the frequent k-sequences in Ck};
(8) Ck+1 = candidate_gen_gsp(Lk); //candidate (k+1)-sequences for the next pass
(9) endfor
(10) return the maximal sequences in L = L1 ∪ L2 ∪ … ∪ Lk;

Traversal Pattern Mining in Web Usage Data 347

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

events in the episodes are ordered. In parallel episodes, the events are not
ordered, while in serial episodes, the events are ordered sequentially. An
episode is frequent if it occurs in the event sequence not less than some
predefined threshold.

Frequent episodes were also applied to web logs (Mannila et al., 1997).
The clicks (pages) correspond to events. They are ordered by the access time,
and usually the users need not be identified, i.e., there are no sessions. For
Example 1, the entire page sequence is shown in Table 8.

The events (pages) in an episode must occur close enough in time. The user
defines how close is close enough by giving the width of the time window within
which the episode must occur. These time windows are overlapping. For
Example 1, given time window width five, there are 50 time windows. In
general, the number of time windows for a time period [s, t]2, given window
width w, is t-s+w. Notice that the first and last windows extend outside the
sequence so that the first window contains only the first event, and the last
window contains only the last event. With this definition, each event is observed

Table 7: GSP Example

Pass Candidate Sequences Frequent Sequences

1
<(A)>, <(B)>, <(C)>, <(D)>, <(E)>,
<(F)>

<(A)>, <(B)>, <(C)>, <(E)>

2

<(AB)>, <(AC)>, <(AE)>, <(BC)>
<(BE)>, <(CE)>,<(A)(B)>, <(A)(C)>
<(A)(E)>, <(B)(C)>, <(B)(E)>, <(C)(E)>
<(B)(A)>, <(C)(A)><(C)(B)>,<(E)(A)>
<(E)(B)>, <(E)(C)>

<(AB)>, <(AC)>, <(A)(B)>
<(AE)>, <(BC)>, <(A)(E)>
<(B)(E)>, <(C)(E)>
<(B)(A)>
<(C)(A)>

3
<(ABC)>, <(AB)(E)>
<(AC)(E)>, <(BC)(E)>
<(B)(AE)>, <(C)(AE)>, <(BC)(A)>

<(ABC)>, <(AB)(E)>
<(AC)(E)>, <(BC)(E)>
<(B)(AE)>, <(C)(AE)>, <(BC)(A)>

4
<(ABC)(E)>
<(BC)(AE)>

<(ABC)(E)>
<(BC)(AE)>

Table 8: Frequent Episode Example

Page sequence
<A BA ACBA ACD A AEEF>
 0 5 10 15 20 25 35 40 45

Serial
Episodes

<A, B> (12%)
<A, C> (14%)

Parallel
Episodes

<A, B> (20%)
<A, C> (16%)
<B, C> (12%)
<A, B, C> (12%)

348 Xiao & Yao

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

in an equal number of windows. In addition to the width of the window, the user
also specifies some threshold to define the frequent episodes. Given a threshold
10% in Example 1, a frequent episode has to occur in at least five time
windows. An episode occurs in a time window if all events appear in the time
window, with the partial order of the episode being respected (for parallel
episodes, the order is ignored).

The frequent serial episodes and parallel episodes for Example 1 are
shown in Table 8. Only episodes with two or more events are listed. The
support for each frequent episode is shown in the parentheses. It can be seen
that the set of frequent parallel episodes is a superset of that of frequent serial
episodes, since the parallel episodes ignore the order of the events. Notice that,
from the frequent episodes, episode rules can also be generated, and the
support and the confidence for an episode rule are defined similarly to
association rules.

The algorithms (see Mannila et al., 1995; Mannila et al., 1997) are also
level-wise (similar to breadth-first search), which is shown in Algorithm 3.
They perform multiple passes over the database of sequences. In the first pass,
the set of frequent events is identified. In each subsequent pass, a set of
candidate episodes is generated by using the frequent episodes found in the
previous pass and the downward closure property. The set of candidate
episodes is counted during the pass over the database, and the frequent
episodes are then determined. The candidate episode generation is similar to
that for association rules. The counting of the candidate episodes is done
incrementally by taking advantage of overlapping time windows. The details
can be seen in Mannila et al. (1997).

Maximal Frequent Forward Sequences
Maximal Frequent Forward Sequences (MFFS, for short) were proposed

in Chen et al. (1998). Notice that MFFS was referred to as large reference
sequence in Chen et al. (1998). An MFFS describes the path traversal behavior
of the user in a distributed information-providing environment such as the
World Wide Web. There are two steps involved in mining MFFSs from the
sessions. First, each session is transformed into maximal forward sequences
(i.e., the backward traversals are removed). The MFFSs are then mined using
level-wise algorithms (Park et al., 1995) from the maximal forward sequences.

In the raw sessions, there are often backward traversals made by the user.
A backward traversal means revisiting a previously visited page in the same
user session. It is assumed that such backward traversals happen only because
of the structure of the web pages, and not because the user wants to do this.

Traversal Pattern Mining in Web Usage Data 349

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

When a backward traversal occurs, a forward traversal path terminates. This
resulting forward traversal path is called maximal forward sequence. It then
backtracks to the starting point of the next forward traversal and resumes
another forward traversal path. For example, for the session
<A,B,C,B,D,B,A,E>, the resulting maximal forward sequences are <A,B,C>,
<A,B,D> and <A,E>. The resulting maximal forward sequences for the
sessions in Example 1 are shown in Table 9.

An MFFS is a traversal sequence (consecutive subsequence of a maximal
forward sequence) that appears not less than some predefined threshold in the
set of maximal forward sequences. The pages in an MFFS are required to be
consecutive in the maximal forward sequences; and an MFFS is also maximal,
which means that it is not a subsequence of any other frequent traversal
sequence. Given a threshold 20% for Example 1, an MFFS has to appear in at
least two maximal forward sequences. The resulting MFFSs are shown in
Table 9.

Two level-wise algorithms, Full Scan (FS) and Selective Scan (SS), were
proposed in Chen et al. (1998). FS utilizes the ideas in DHP (Park et al., 1997)
for mining association rules. Similar to Apriori, FS performs multiple passes
over the data. In the first pass, FS counts the support for each page (sequence
of length 1). At the same time, it also maintains a hash table for the support of
the sequences of length 2. A bucket in the hash table may contain the support

Algorithm 3

Input:
D : sequence D of user clicks.
Smin : minimum support threshold.
t : time window.

 Output:
all frequent episodes with support ≥ Smin.

 Method:
(1) L1 = {the frequent 1-episode with one event};
(2) C2 = candidate_gen_episode(L1); // candidate 2-episodes(with two events)

 // for the second pass
(3) for (k = 2; Ck ≠ φ; k++) do
(4) foreach time window of width t in D do
(5) count Ck;
(6) endforeach
(7) Lk = {the frequent k-episodes (with events) in Ck};
(8) Ck+1 = candidate_gen_episode(Lk); // candidate (k+1)-episodes (with k+1 events)

 // for the next pass
(9) endfor
(10) return the frequent episodes in L = L1 ∪ L2 ∪ … ∪ Lk;

350 Xiao & Yao

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

of multiple sequences. At the end of the first pass, using the same downward
closure property generates the set of candidates for the next pass. Unlike
Apriori for association rules, however, the set of candidates can be further
pruned by using the hash table. If the bucket for a candidate in the hash table
has less than the predefined support threshold, the candidate need not be
considered in the next pass, since it will not be frequent anyway. In the
subsequent passes, in addition to the candidate pruning idea using a hash table,
keeping only the frequent pages in the sequences, since the infrequent pages in
the sequences have no effect on the support for the MFFSs, also reduces the
database of maximal forward sequences. It was shown that the hash table can
effectively prunes candidates of length 2. FS is shown below in Algorithm 4.

Algorithm SS further reduces the number of passes required by FS. It tries
to generate the candidates aggressively by using the candidates of the previous
pass instead of the frequent sequences, so that it counts candidates of different
sizes in one pass. However, when the minimum support is relatively small, or
when the frequent sequences are long, this aggressive method could generate
too many candidates to fit in main memory.

Maximal Frequent Sequences
Maximal Frequent Sequences (MFS) were proposed in Xiao and Dunham

(2001). In contrast to maximal frequent forward sequences, MFSs do not
remove backward traversals from the sessions. It was argued in Xiao and

Table 9: Maximal Frequent Forward Sequence Example

Sessions

u1: <A, B, A, C>
u1: <A, E>
u2: <A, B, A, C, D>
u2: <A, E, F>
u3: <A>

Maximal Forward Sequences

<A, B>
<A, C>
<A, B>
<A, C, D>
<A>
<A, E>
<A, E, F>

Maximal Frequent Forward Sequences
<A, B> (29%)
<A, C> (29%)
<A, E> (29%)

Traversal Pattern Mining in Web Usage Data 351

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Dunham (2001) that such backward traversals are useful for discovering the
structures of the web pages. For example, if a pattern <A,B,A,C> is found to
be frequent, it may suggest that a direct link from page B to page C is needed,
while the resulting maximal forward sequences, <A,B> and <A,C>, lose such
information.

An MFS is a traversal sequence (consecutive subsequence of a session)
that appears not less than some predefined threshold. Since the backward
traversals are kept in the sessions, a traversal sequence may occur in a session
more than once. In order to measure the actual number of occurrences of a
traversal sequence, the support of an MFS is defined as the ratio of the actual
number of occurrences to the total length of all sessions. The length of a session
is the number of clicks in the session. The pages in an MFS are required to be
consecutive in the sessions. An MFS is also maximal, which means that it is not
a subsequence of any other frequent traversal sequence. For Example 1, which
has 15 clicks in five sessions, given a support threshold 10 percent, an MFS has
to appear twice in the sessions, but not necessarily in different sessions, based
on the definition. The resulting two MFSs are shown in Table 10.

Algorithm 4

Input:
D : database D of sessions.
Smin : minimum support threshold.

 Output:
 all maximal frequent forward sequences with support ≥ Smin.
 Method:
(1) D1 = {maximal forward sequences in D};
(2) L1 = {frequent 1 - sequences (of length 1)};
(3) H2 = the hash table for 2-sequences (of length 2)};
(4) C2 = candidate_gen_fs(L1, H2); // candidate 2 - sequences (of length 2) for
 // the second pass
(5) D2 = {sequences in D1 with only frequent pages left};
(6) for (k = 2; Ck ≠ φ; k++) do
(7) foreach sequence in Dk do
(8) count Ck;
(9) update hash table Hk+1 for (k+1) - sequences;
(10) endforeach
(11) Lk= {the frequent k - sequences in Ck};
(12) Ck+1 = candidate_gen_fs(Lk, Hk+1); //candidate (k+1) - sequences

 // for the next pass
(13) Dk+1 = {sequences in Dk with only frequent k - sequences left};
(14) endfor
(15) return the maximal sequences in L = L1 ∪ L2 ∪ … ∪ Lk;

352 Xiao & Yao

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Algorithm Online Adaptive Traversal (OAT) was proposed in Xiao and
Dunham (2001). By using the algorithm, the patterns can be mined directly from
the sessions. Being online, it incrementally updates the current MFSs once a
new session is added. Such an online feature is achieved by using the online
suffix tree construction and online pattern extraction. To scale to large data, two

Table 10: Maximal Frequent Sequence Example

Algorithm 5

Sessions

u1: <A, B, A, C>
u1: <A, E>
u2: <A, B, A, C, D>
u2: <A, E, F>
u3: <A>

Maximal Frequent Sequences
<A, B, A, C> (13%)
<A, E> (13%)

Input:
 S1, S2, …, Sn: sessions.
 Smin : minimum support threshold.
 M : main memory size.
 Output:
 all maximal frequent sequences with support ≥ Smin
 Method:
(1) ST = an empty suffix tree;
 //first scan
(2) for i from 1 to n do
 // if insufficient main memory with inclusion of , compress
 // the suffix tree using frequent sequences.
(3) if (mem(ST ∪ Si) > M) then
(4) ST = OAT_compress(ST);
(5) endif
 //update the suffix tree with inclusion of Si
(6) ST = update(ST, Si);
(7) if (interrupted by the user) then
 //do a depth-first traversal of ST and output theMFSs.
(8) MFS_output_depth_first(ST.root);
(9) endif
(10) endfor
 //second scan
(11) if (there are sequences not completely counted) then
(12) count them in an additional scan.
(13) endif
(14) output the MFSs in the suffix tree.

Traversal Pattern Mining in Web Usage Data 353

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

pruning techniques (local pruning and cumulative pruning) and suffix tree
compression were introduced. The idea is to reduce the main memory
requirement for the suffix tree. The algorithm is shown in Algorithm 5.

Summary
Table 11 compares the different types of traversal patterns by the follow-

ing features:
• Ordering. The pages in a traversal pattern can be ordered or not.
• Duplicates, which indicate whether backward traversals are allowed in

the traversal pattern.
• Contiguity. The page references in a traversal pattern may be contiguous

or not.
• Maximality. A frequent pattern is maximal if it is not contained in any other

frequent pattern. A pattern could be maximal or not.

Notice that for frequent episodes, parallel episodes are not ordered, while
serial episodes are ordered and the general episodes are partially ordered. Due
to the different features of the traversal patterns, the support for each type of
pattern is defined quite differently, which is also shown in Table 11.

These features, when used by different patterns, can be used for different
purposes. Backward traversals capture the structure information of the Web
and, therefore, can be used to improve the design of web pages by adding new
links to shorten future traversals. The maximality feature can reduce the number
of meaningful patterns discovered. The contiguity and ordering features could
be used to predict future references and, thus, for prefetching and caching
purposes.

These traversal patterns uncover the associations or sequences among the
web pages browsed by the user. They can be used together with other data
mining techniques, such as classification and clustering, to further facilitate web
usage mining, as shown in Tan and Kumar (2002). In that paper, the authors

Table 11: A Comparison of Traversal Patterns

 Ordering Duplicates Contiguity Maximality Support

Association Rules N N N N freq(X) / # sessions

Sequential Patterns Y N N Y freq(X) / # users

Frequent Episodes Y N N N freq(X) / # time windows

MFFS Y N Y Y
freq(X) / # maximal forward

sequences

MFS Y Y Y Y freq(X) / # clicks

354 Xiao & Yao

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

used traversal patterns and classification to distinguish human sessions from
robot sessions. However, due to the length and the focus (on traversal pattern
mining) of this chapter, for the details about using other data mining techniques
for web usage mining, interested readers should consult references such as Tan
and Kumar (2002), Zaiane et al. (1998), Perkowitz and Etzioni (1999), etc.

PATTERN ANALYSIS AND APPLICATIONS
Pattern analysis is to analyze the patterns to the needs of the application.

It includes filtering uninteresting patterns, visualization, etc. The Web Utilization
Miner (WUM) system (Spiliopoulou & Faulstich, 1998) provides a mining
language, which allows an analyst to specify characteristics of the patterns that
are interesting.

Web usage mining has been applied to many applications (Srivastava et al.,
2000), e.g., personalization, system improvement, web design, business intel-
ligence, etc. Specifically, the traversal patterns have been used for site
evaluation (Spiliopoulou, 2000), prefetching (Lan et al., 1999; Pandey et al.,
2001), network intrusion detection (Lee & Stolfo, 1998; Dokas et al., 2002),
fraud detection (Colet, 2002), etc. Interesting results might be obtained
through a comparison study of these different patterns.

While web usage mining can discover useful patterns about a user’s
browsing behavior, it has raised growing privacy concerns (Spiekermann et al.,
2002). For example, using cookies to track sessions relies on the user’s implicit
acceptance of the cookies. Most users want to maintain anonymity on the Web,
and do not like their activities on the Web to be monitored or analyzed without
their explicit permission. An initiative called Platform for Privacy Preferences
(P3P) has been proposed by World Wide Web Consortium (W3C) (http://
www.w3c.org/P3P). P3P provides a protocol for allowing the administrator of
a web site to publish the privacy policies it follows. When the user visits the site
for the first time, the browser reads the privacy policies followed by the site and
then compares it to the security setting configured by the user. If the privacy
policies are satisfactory, the browser continues requesting pages from the site.
Otherwise, a negotiation protocol is used to arrive at a setting which is
acceptable to the user.

An interesting technique that incorporates privacy concerns was proposed
in Evfimievski et al. (2002). By randomizing the pages in a session (transaction)
using a uniform distribution, the web log does not record the exact pages the
user visited, and yet useful patterns (e.g., association rules) can still be found

Traversal Pattern Mining in Web Usage Data 355

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

from the randomized sessions. Another idea was proposed in Vaidya and
Clifton (2002), which vertically partitions the pages for a session across two
sources, i.e., for a session, some pages are in one source and the rest in the
other source. By partitioning the pages, a web log file does not have a complete
view of all pages for a session, and web usage mining is done with the two
separate sources.

CONCLUSION
This chapter describes five different types of traversal patterns that can be

mined in the web usage data, namely: Association Rules, Sequential Patterns,
Frequent Episodes, Maximal Frequent Forward Sequences, and Maximal
Frequent Sequences. These patterns are compared and contrasted in four
aspects, i.e., ordering, duplicates, contiguity and maximal. They can be used for
different purposes. As a necessary step for pattern discovery, the preprocess-
ing of the web logs is also described. Some important issues, such as privacy
and sessionization, are raised, and the possible solutions are also discussed.

REFERENCES
Agrawal, R. & Shafer, J. C. (1996). Parallel mining of association rules. IEEE

Transactions on Knowledge and Data Engineering, 8(6), 962-969.
Agrawal, R. & Srikant, R. (1994). Fast algorithms for mining association rules

in large databases. In Proceedings of the 20th International Confer-
ence on Very Large Databases, Santiago, Chile (pp. 487-499).

Agrawal, R., Imielinski, T.,& Swami, A. N. (1993, May). Mining association
rules between sets of items in large databases. In Proceedings of the
1993 ACM SIGMOD international conference on management of
data, Washington, DC (pp. 207-216).

Buchner, A. G., Baumgarten, M., Anand, S. S., Mulvenna, M. D., & Hughes,
J. G. (1999, August). Navigation pattern discovery from Internet data. In
Workshop on Web Usage Analysis and User Profiling (WEBKDD-
99).

Catledge, L. D. & Pitkow, J. E. (1995). Characterizing browsing strategies in
the world wide web. Computer Networks and ISDN Systems, 27(6),
1065-1073.

 Chen, M.-S., Park, J. S., & Yu, P. S. Efficient data mining for path traversal
patterns. (1998). IEEE Transactions on Knowledge and Data Engi-
neering, 10(2), 209-221.

356 Xiao & Yao

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Cohen, E., Krishnamurthy, B., & Rexford, J. (1998). Improving end-to-end
performance of the web using server volumes and proxy filters. In
SIGCOMM (pp. 241-253).

Colet, E. (2002). Using data mining to detect fraud in auctions. DSStar.
Cooley, R., Mobasher, B., & Srivastava, J. (1999). Data preparation for

mining world wide web browsing patterns. Knowledge and Information
Systems, 1(1), 5-32.

Cooley, R., Tan, P.-N., & Srivastava, J. (1999, Aug.). WebSIFT: The web
site information filter system. In Workshop on Web Usage Analysis and
User Profiling (WEBKDD-99).

Dokas, P., Ertoz, L., Kumar, V., Lazarevic, A., & Srivastava, J. (2002,
November). Data mining for network intrusion detection. In Proceedings
of the National Science Foundation Next Generation Data Mining
Workshop, Baltimore, Maryland.

Evfimievski, A., Srikant, R., Agrawal, R., & Gehrke, J. (2002, July). Privacy
preserving mining of association rules. In Proceedings of the 8th ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining, Edmonton, Canada.

Han, J., Pei, J., & Yin, Y. (2000). Mining frequent patterns without candidate
generation. In Proceedings of the ACM SIGMOD Conference.

Hjelm, J. (2001, June). Web characterization activity. Retrieved May 20,
2003, from: http://www.w3c.org/WCA.

Kohavi, R. (2001). Mining e-commerce data: The good, the bad, the ugly. In
Proceedings of the 2001 ACM SIGMOD International Conference on
Management of Data, San Francisco, California.

Lan, B., Bressan, S., & Ooi, B. C. (1999, Aug.). Making web servers pushier.
In Workshop on Web Usage Analysis and User Profiling (WEBKDD-
99).

Lee, W. & Stolfo, S. (1998). Data mining approaches for intrusion detection.
In Proceedings of the 7th USENIX Security Symposium.

Mannila, H., Toivonen, H., & Verkamo, A. I. (1995). Discovering frequent
episodes in sequences. In Proceedings of the 1st International Confer-
ence on Knowledge Discovery and Data Mining (KDD-95) (pp. 210-
215).

Mannila, H., Toivonen, H., & Verkamo, A. I. (1997). Discovering frequent
episodes in event sequences. Helsinki, Finland: University of Helsinki,
Department of Computer Science. (Technical Report C-1997-15).

Traversal Pattern Mining in Web Usage Data 357

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Pandey, A., Srivastava, J. & Shekhar, S. (2001). A web intelligent prefetcher
for dynamic pages using association rules - a summary of results. In
Proceedings of the SIAM Workshop on Web Mining.

Park, J. S., Chen, M.-S., & Yu, P. S. (1995, May). An effective hash-based
algorithm for mining association rules. In M. J. Carey & D. A. Schneider
(Eds.), Proceedings of the 1995 ACM SIGMOD International Con-
ference on Management of Data, San Jose, California (pp. 175-186).

Park, J. S., Chen, M.-S., & Yu, P. S. (1997). Using a hash-based method with
transaction trimming for mining association rules. IEEE Transactions on
Knowledge and Data Engineering, 9(5), 813-825.

Pei, J., Han, J., Mortazavi-Asl, B., & Zhu, H. (2000, April). Mining access
patterns efficiently from web logs. In Proceedings of the 2000 Pacific-
Asia Conference on Knowledge Discovery and Data Mining (PAKDD-
00), Kyoto, Japan (p. 592).

Perkowitz, M. & Etzioni, O. (1999). Adaptive web sites: Conceptual cluster
mining. In Proceedings of the 16th International Joint Conference on
Artificial Intelligence.

Platform for Privacy Project (n.d.). Retrieved May 20, 2003, from: http://
www.w3c.org/P3P.

Savasere, A., Omiecinski, E., & Navathe, S. B. (1995). An efficient algorithm
for mining association rules in large databases. In Proceedings of the
21st International Conference on Very Large Databases, Zurich,
Switzerland (pp. 432-444).

Spiekermann, S., Grossklags, J., & Berendt, B. (2002). E-privacy in second
generation e-commerce: Privacy preferences versus actual behavior. In
Proceedings of the ACM Conference on Electronic Commerce,
Tampa, Florida.

Spiliopoulou, M. (2000). Web usage mining for web site evaluation. Commu-
nications of the ACM, 43(8), 127-134.

Spiliopoulou, M. & Faulstich, L. (1998). WUM: A web utilization miner. In
Proceedings of the EDBT Workshop WebDB98. Valencia, Spain:
Springer-Verlag.

Srikant, R. & Agrawal, R. (1995). Mining generalized association rules. In
Proceedings of the 21st International Conference on Very Large
Databases, Zurich, Switzerland (pp. 407-419).

Srikant, R. & Agrawal, R. (1996, March). Mining sequential patterns: Gener-
alizations and performance improvements. In Proceedings of the 5th
International Conference on Extending Database Technology,
Avignon, France.

358 Xiao & Yao

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Srikant, R., Vu, Q., & Agrawal, R. (1997). Mining association rules with item
constraints. In Proceedings of the American Association for Artificial
Intelligence.

Srivastava, J., Cooley, R., Deshpande, M., & Tan, P.-N. (2000). Web usage
mining: Discovery and applications of usage patterns from web data.
SIGKDD Explorations, 1(2), 12-23.

Sunita, S., Shiby, T., & Agrawal, R. (1998). Integrating mining with relational
database systems: Alternatives and implications. In Proceedings of the
ACM SIGMOD International Conference on Management of Data
(SIGMOD-98), Seattle, Washington, June 1998.

Tan, P. & Kumar, V. (2002). Discovery of web robot sessions based on their
navigational patterns. Data Mining and Knowledge Discovery, 6(1), 9-
35.

Toivonen, H. (1996). Sampling large databases for association rules. In
Proceedings of the 22nd International Conference on Very Large
Databases, Mumbai, India (pp. 134-145).

Vaidya, J. & Clifton, C. W. (2002). Privacy preserving association rule mining
in vertically partitioned data. In Proceedings of the 8th ACM SIGKDD
International Conference on Knowledge Discovery and Data Min-
ing, Edmonton, Canada, July 2002.

Xiao, Y. & Dunham, M. H. (2001). Efficient mining of traversal patterns. Data
and Knowledge Engineering, 39, 191-214.

Zaiane, O. R., Xin, M., & Han, J. (1998). Discovering web access patterns and
trends by applying OLAP and data mining techniques. Advances in
Digital Libraries (pp. 19-29).

ENDNOTES
1 Sessions are further divided into smaller transactions in Cooley &

Mobasher et al. (1999).
2 s stands for start time, and t stands for terminal time.

About the Authors 359

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

About the Authors

David Taniar received his PhD in Computer Science from Victoria University,
Melbourne, Australia, in 1997. He is currently a senior lecturer at the School
of Business Systems, Monash University, Melbourne, Australia. His research
interest is in the area of databases, with particular attention to high performance
databases and Internet databases. He is a fellow of the Institute for Manage-
ment of Information Systems (FIMIS).

Johanna Wenny Rahayu received a PhD in Computer Science from La
Trobe University, Melbourne, Australia in 2000. Her thesis was in the area of
object-relational database design and transformation methodology. This thesis
has been awarded the 2001 Computer Science Association Australia Best PhD
Thesis Award. Dr. Rahayu is currently a senior lecturer at La Trobe University.

* * *

Nick Bassiliades received a BSc in Physics (1991) from the Aristotle
University of Thessaloniki (AUTH), Greece; an MSc in Artificial Intelligence
(AI) (1992) from the University of Aberdeen, Scotland; and a PhD in Parallel
Knowledge Base Systems (1998) from AUTH, where he is currently a part-
time lecturer in the Department of Informatics. He has published more than 25
papers for journals and conferences, contributed volumes in the area of
knowledge base systems, co-authored a book on parallel, object-oriented,
and active knowledge base systems, and a book on AI. He is a member of the
Greek Computer and AI Societies, and a member of the IEEE and the ACM.

360 About the Authors

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Elizabeth Chang is a professor in IT, has a unique combination of industry/
commercial and academic knowledge, and has a strong research record and
supervision skills. These are evidenced by her completion of one authored
book and more than 70 scientific papers in the areas of software engineering,
project management, usability evaluation, e-commerce, etc. As chief investiga-
tor, she has received several large federal government grants and industry cash
for more than $1.5 million for the years 1997-2003.

Tharam Dillon is dean of Information Technology, University of Technology,
Sydney, a position he assumed in July 2003, prior to which he was chair
professor of the Department of Computer Science and Computer Engineering
and also head of the School of Engineering at La Trobe University, Melbourne
— a position he assumed at the beginning of 1986. In December 1998, he took
up the position of professor of computing at Hong Kong Polytechnic University
and acting head of the Department of Computing until July 2000. He is a fellow
of the Institution of Electrical and Electronic Engineers (USA), fellow of the
Institution of Engineers (Australia), fellow of the Safety and Reliability Society
(UK), and a fellow of the Australian Computer Society. Professor Dillon
completed his Bachelor of Engineering (Honors) at Monash in 1967 and was
awarded his PhD at Monash in 1974. He held the position of senior lecturer/
lecturer at Monash University in the Department of Electrical and Computer
Systems Engineering from 1971 until 1985. He has published more than 400
papers in international and national journals and refereed conference proceed-
ings, has written five books and edited five books, and has published 17
chapters in edited books.

Richard Hall is a lecturer in the Department of Computer Science and
Computer Engineering at La Trobe University (Australia), taking classes in
software engineering, expert systems, microprocessors and information sys-
tems. He has a broad range of research interests including artificial intelligence,
story modeling, computational linguistics, data mining, medical decision sup-
port, medical image processing, computer graphics, advanced visualization,
computer networking, and parallel processing. His prior industry experience as
lead software designer in the development of computer-aided electronic
publishing software for medical guidelines contributed substantially to the
development of ideas in this chapter.

Roland Kaschek studied mathematics at the University of Oldenburg, Ger-
many. He received an MSc (1986) from the University of Oldenburg and a PhD

About the Authors 361

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

in 1990. He then worked at the University of Klagenfurt, Austria, until 1999;
was guest lecturer at the Technical University of Kharkov, Ukraine; and a guest
professor at the Federal University at Campina Grande in Brazil. From 1999
to 2001, he worked at UBS AG in Zurich (Switzerland) as a software architect
and business analyst. Since 2001, he has been the associate professor in
Massey University’s Department of Information Systems at Palmerston North,
New Zealand. His main research interests concern mathematical and philo-
sophical foundations of applied informatics; in particular, conceptual modeling
for information systems development.

Zhao Li received his MS in computer technique application from Southeast
University, Nanjing, China (2001). In 2002, he was admitted into Nanyang
Technological University, Singapore, where he is a PhD student in the School
of Computer Engineering. In 2001 and 2002, he was working at Huawei
Technologies, Beijing, as a research engineer. His research interests include
web data mining, web data extraction, and machine learning.

Zehua Liu is a PhD candidate with the School of Computer Engineering at the
Nanyang Technological University, Singapore, where he obtained his BSc in
2001. His research interests include information extraction, digital libraries, and
databases. He has published in international conferences including ER, JCDL,
etc.

Yannis Manolopoulos received a BEng (1981) in Electrical Engineering and
a PhD (1986) in Computer Engineering, both from the Aristotle University of
Thessaloniki, Greece. Currently, he is professor at the Department of Informatics
of the latter university. He has published more than 130 papers in refereed
scientific journals and conference proceedings. He is co-author of a book on
Advanced Database Indexing and Advanced Signature Indexing for
Multimedia and Web Applications by Kluwer. He served/serves as PC co-
chair of the Eighth Pan-Hellenic Conference in Informatics (2001), the Sixth
ADBIS Conference (2002), the Fifth WDAS Workshop (2003), the Eighth
SSTD Symposium (2003), and the First Balkan Conference in Informatics
(2003). Currently, he is vice-chairman of the Greek Computer Society. His
research interests include access methods and query processing for databases,
data mining, and performance evaluation of storage subsystems.

Claire Matthews is a senior lecturer in the Department of Finance, Banking
and Property, and the acting director of the Centre for Banking Studies, at

362 About the Authors

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Massey University’s Turitea campus in Palmerston North (New Zealand). She
teaches the theory, principles and practice of banking at both the undergraduate
and post-graduate levels. Her research interests include the interaction
between banks and customers, bank distribution channels, and internet bank-
ing.

Robert Meersman was awarded a PhD in Mathematics at the Free University
of Brussels (VUB) (Belgium) in 1976. He was appointed full professor at VUB
in 1995. Earlier positions include the University of Antwerp (UIA, 1975-1978)
and Control Data Corp. (Data Management Lab, Brussels, Belgium, 1978-
1983). There, he worked on the definition of the NIAM (now ORM) method,
as well as on languages (RIDL) and the first tools for this methodology. He has
held chairs and founded the InfoLabs at University of Limburg (Belgium, 1983-
1986) and at the University of Tilburg (The Netherlands, 1986-1995). Profes-
sor Meersman was a member and past chairman (1983-1992) of the IFIP
WG2.6 on Database, past chairman of the IFIP TC 12 (Artificial Intelligence,
1987-1992), co-founder and current president of the International Foundation
for Cooperative Information Systems (IFCIS, since 1994) and of the Distrib-
uted Objects Applications Institute (DOA, since 2000). He founded the
Systems Technology and Applications Research Laboratory (STAR Lab) at
VUB in 1995, and has been the director of STARLab since. His current
scientific interests include ontologies, database semantics, domain and data-
base modeling, interoperability and use of databases in applications such as
enterprise knowledge management and the semantic web.

Mikolaj Morzy is a research assistant at the Institute of Computing Science
at Poznan University of Technology, Poland. He received his MSc in Comput-
ing Science in 1998. Currently, he is working on a PhD concerning the
integration of data mining techniques with database systems. His research
interests include database systems, data warehouses and data mining.

Tadeusz Morzy received his MSc, PhD, and Polish Habilitation from Poznan
University of Technology, Poland. He is professor of Computer Science at the
Institute of Computing Science, Poznan University of Technology. He has held
visiting positions at Loyola University, New Orleans, USA; Klagenfurt Univer-
sity, Austria; University La Sapienza, Italy; and the Polish-Japanese Institute of
Information Technology, Warsaw, Poland. He has authored and co-authored
more than 70 papers on databases, data mining, and data warehousing. He is
co-author of a book on Concurrency Control in Distributed Database

About the Authors 363

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Systems (North-Holland), and editor and co-author of the Handbook on Data
Management (Springer). He served as general chair of the Second ADBIS
Conference (1998), and has served/serves on numerous program committees
of international conferences and workshops. His research interests include data
mining, data warehousing, transaction processing in database and data ware-
house systems, access methods and query processing for databases, database
optimization, and performance evaluation.

Alexandros Nanopoulos graduated from the Department of Informatics,
Aristotle University of Thessaloniki, Greece (November 1996), and obtained
a PhD from the same institute in February 2003. He is co-author of 20 articles
in international journals and conferences, and co-author of the monograph
“Advanced Signature Techniques for Multimedia and Web Applications.” His
research interests include spatial and web mining, integration of data mining
with DBMSs, and spatial database indexing.

Wee Keong Ng is an associate professor at the School of Computer
Engineering at the Nanyang Technological University, Singapore. He obtained
his MSc and PhD from the University of Michigan, Ann Arbor (1994; 1996
respectively). He works and publishes widely in the areas of web warehousing,
information extraction, electronic commerce, and data mining. He has orga-
nized and chaired international workshops, including tutorials, and has actively
served on the program committees of numerous international conferences. He
is a member of the ACM and the IEEE Computer Society. In his spare time,
he also arranges music and practices meditation.

George Pallis graduated from the Department of Informatics of Aristotle
University of Thessaloniki, Greece (2001). Since November 2001, he is with
the Department of Informatics at the University of Thessaloniki, studying
toward his PhD. His current research interests include web data caching and
storage topologies, and data mining and its applications, mainly to web data.

Ee Lim Peng is an associate professor with the School of Computer Engineer-
ing, Nanyang Technological University, Singapore. He obtained his PhD from
the University of Minnesota, Minneapolis (1994). Upon graduation, he started
his academic career at the Nanyang Technological University. In 1997, he
established the Centre for Advanced Information Systems and was appointed
the Centre director. His research interests include web warehousing, digital
libraries, and database integration. He is currently an associate editor of the

364 About the Authors

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

ACM Transactions on Information Systems (TOIS). He is also a member
of the editorial review board of the Journal of Database Management
(JDM), program co-chair of the Fifth ACM Workshop on Web Information
and Data Management (WIDM 2003), program co-chair of the Sixth Interna-
tional Conference on Asian Digital Libraries (ICADL 2003), and workshop
co-chair of the International Workshop on Data Mining for Actionable Knowl-
edge (DMAK2003).

Klaus-Dieter Schewe studied mathematics and computer science at the
University of Bonn, from which he received an MSc (1982) and a PhD (1985).
After five years in the industry, he returned to the University of Hamburg, then
worked at the Technical University of Cottbus, from which he received a DSc
(1995). He then worked at the Technical University of Clausthal, and joined
Massey University (New Zealand) in 2000 as the chair for Information
Systems. His major research interests are database theory and systems; design
and development of large-scale information systems, including data-intensive
web information systems; and foundations of information and knowledge
systems. Since 2002, he has been the director of the Information Science
Research Centre at Massey University.

Konstantina Stoupa graduated from the Department of Informatics of
Aristotle University of Thessaloniki, Greece (2000), and after that, obtained
her MBA from the University of Macedonia (Greece) in November 2002.
Since February 2001, she has been with the Department of Informatics of
Aristotle University of Thessaloniki, studying toward her PhD, which is funded
by the State Scholarship’s Foundation of Greece. Her current research
interests include network security, access control models, and employment of
clustering algorithms and XML in access control.

Bernhard Thalheim, born 1952 in Germany. Master’s in Mathematics,
Dresden University of Technology (1975); PhD in Mathematics, Lomonossov
University in Moscow (1979); Advanced PhD (habilitation) in Computer
Science, Dresden University of Technology (1985). Since 1986, he has been
a professor of Computer Science in Dresden, Kuwait, Rostock, and Cottbus.
Currently, he is chair of Database and Information Systems at Brandenburg
University of Technology at Cottbus, Germany. His main interests include
database and information systems modeling, database theory, DBMS technology,
logics, and, recently, web information systems. He has been involved in projects in the

About the Authors 365

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

area of information systems, e.g., heading more than 30 development projects aiming
in the development of information-intensive large or huge websites (e-business, e-
learning, information and community sites).

Grigorios Tsoumakas received his BSc in Informatics from the Department
of Informatics of the Aristotle University of Thessaloniki, Greece (1999). He
received his MSc in Artificial Intelligence from the Division of Informatics of the
University of Edinburgh (2000). He is currently a PhD student in the Depart-
ment of Informatics at the Aristotle University of Thessaloniki. His research
interests include machine learning, data mining, and distributed computing. He
is a member of the Hellenic Artificial Intelligence Society and the Special
Interest Group on Knowledge Discovery and Data Mining of the Association
for Computing Machinery.

Athena Vakali received a BSc in Mathematics from the Aristotle University
of Thessaloniki, Greece; an MSc in Computer Science from Purdue University,
USA (with a Fulbright scholarship); and a PhD in Computer Science from the
Department of Informatics at the Aristotle University of Thessaloniki. Since
1997, she has been a faculty member of the Department of Informatics,
Aristotle University of Thessaloniki (currently, she is an assistant professor).
Her research interests include design, performance and analysis of storage
subsystems, and data placement schemes for multimedia and web-based
information. She is working on web data management, and she has focused on
XML data storage issues. She has published several papers in international
journals and conferences. Her research interests include storage subsystem’s
performance, XML and multimedia data, management and data placement
schemes.

Ioannis Vlahavas is a full professor in the Department of Informatics at the
Aristotle University of Thessaloniki, Greece. He received his PhD in Logic
Programming Systems from the same university in 1988. During the first half of
1997, he was a visiting scholar in the Department of CS at Purdue University.
He specializes in logic programming, knowledge-based and AI systems, and he
has published more than 100 papers, five book chapters, and co-authored
three books in these areas. He teaches logic programming, AI, expert systems,
and DSS. He has been involved in more than 15 research projects, leading most
of them. He was the chairman of the Second Hellenic Conference on AI. He
is leading the Logic Programming and Intelligent Systems Group (LPIS Group,
lpis.csd.auth.gr).

366 About the Authors

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Catherine Wallace is a senior lecturer in the Department of Communication
and Journalism on Massey University’s Turitea campus in Palmerston North
(New Zealand). She teaches the Management of Communication Technology,
Professional and E-business Writing, and E-business Strategy and Models at
the undergraduate level. She is also a teaching fellow on the MBA and DBA
program with the Graduate School of Business. Her research interests center
around e-business, technology management, uptake and adoption and commu-
nication barriers.

Nathalia Devina Widjaya was born in Jakarta, Indonesia. She went to the
University of Melbourne, Australia, where she studied Information Systems
and obtained her degrees with honors in 2001. Her thesis was about website
accessibility. The aim of that research was how to make good accessible
websites and why it is important. She works as a sessional tutor and IT support
at Melbourne University. Currently, she is doing a Master by Research degree
at Monash University in Australia. Her research is about the transformation of
XML schemas to object-relational database. She is also a member of the
Australian Computer Society.

Marek Wojciechowski is an assistant professor at the Institute of Computing
Science, Poznan University of Technology, Poland. He received his PhD in
Computer Science from Poznan University of Technology in 2001. His
research interests include data mining, web mining, and Internet technologies.

Carlo Wouters is a PhD candidate in the Department of Computer Science
and Computer Engineering at La Trobe University, Melbourne (Australia).
Research interests include ontologies (extraction of materialized ontology
views in particular). He has obtained a BSc in Audio-Visual Sciences (RITS,
Belgium), GradDipSc in Computer Science (La Trobe, Australia) and an MSc
in Information Technology (La Trobe, Australia).

Yongqiao Xiao received his PhD in Computer Science from Southern Meth-
odist University; an MS in Computer Science from Zhongshan University; and
a BS in Accounting and Information Systems from Renmin University of China
in 2000, 1995, and 1992, respectively. He is an assistant professor of
Computer Science in the Department of Math and Computer Science at
Georgia College and State University in Milledgeville, Georgia (USA). Before
joining the department, he had worked for two years on predictive modeling in

About the Authors 367

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

industry. He has been a reviewer for many journals and conferences of ACM
and IEEE. His interested research areas are data mining, database, and
machine learning.

Jenq-Foung (J.F.) Yao received a PhD in Computer Science from Southern
Methodist University; an MS in Computer Science from the University of
Wyoming; and a BS in Marine Biology from the National Taiwan Ocean
University. He is an associate professor of Computer Science in the Depart-
ment of Math and Computer Science at Georgia College and State University
in Milledgeville, Georgia (USA). Before joining the department, he had
worked for several years as a computer consultant, and spent three years as a
system programmer at the University of Wyoming. He has authored and
reviewed various journals and conferences of ACM, IEEE, and CCSC. His
research interests are mobile DBMS, data mining, web application, and data
caching.

Maciej Zakrzewicz is an assistant professor at the Institute of Computing
Science, Poznan University of Technology. His research interests include data
mining, database/data warehouse systems, and Internet technologies. He is
currently delivering courses on information systems design and implementation
for companies and universities in Poland, Germany, the UK, and the US. He
is an author and reviewer of numerous tutorials and publications on frequent
itemset discovery, data mining query processing, adaptive websites, database
indexing techniques, database tuning, and Java standards for databases and for
multitier applications. He received his PhD in Computer Science from Poznan
University of Technology (Poland) (1998). Since 1999, he has been the
president of the Polish Oracle User Group.

368 Index

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Index

A

Abstraction Layer Model (ALM) 2, 35
adaptivity 43
adaptivity feature 9
aggregation 144
aggregation composition 147
aggregation relationship 144
allegory 12
application program interfaces (APIs)

109
ARANEUS framework 36
artificial systems 15
association rules 335, 341
association transformation 162
attribute mapping 198
automatic migration techniques 73

B

beneficiaries 2
binary relationships 194
binding element 273
business layer 7
business to customer (B2C) 2

C

case modeling 8
channel 76
CheckCreditWorthiness (CCW) 17
child 114
classification abstraction 39
classifier fusion 273
client sequence 308
closed systems 4
cluster types 52
clustering 283, 341
co-design methodology (CDM) 8
cohesion preorder 63
conceptual layer 7, 38
conceptual modeling 8, 35
connoisseur 22
connoisseur database schema 25
content 8
content schemata 60
content type 39
content value 39
cookies 339
Cottbusnet project 37
critical success factors 8

Index 369

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

customer dimensions 18
customer profiles 18
customer types 23
customer-expert communication 6

D

data extraction language 230
data extraction rules 232
data extraction schema 233
data mining 306
data model 42
data scan cost 314
data type layer 41
data types 39, 41
database 34
database design 35
database layer 36
database management systems

(DBMSs) 104, 105
database schema 42
database schemata 53
database type layer 42
database types 41
derivation process formalism 194
dialogue step 13
dialogue types 9
digital libraries 72, 73
discrete signs 11
disseminating operation 4
distributed classifiers 268
Document Object Model (DOM) 110
document type definition (DTD) 107,

142

E

e-business 142
e-commerce 141
electronic age 72
electronic publishing tools 73
Entity Relationship Model (ER Model)

197
equivalent set 311
equivalent set signatures 313
ESOS (extreme simplicity) 201
exchanging messages 270
existence dependent 145

existence dependent aggregation 145
existence independent 156
existence independent aggregation 145
expert systems 74
explanation facility 79
extensible information server (XIS) 117
eXtensible Markup Language (XML)

38, 105, 141
extraction rule definition 250

F

file system storage 119
file-based systems 105
filter operation 4
frequent episodes 335, 346

G

Google 228
gourmet 22
gourmet database schema 27

H

head-open-close-left-right-tail (HOCLRT)
233

hidden Markov models 233
homogeneous composition 156
HTML (Hypertext Markup Language)

105, 192
human-WIS interaction 6
hypertext 36
hypertext media 73

I

IKIWISI 15
implementation layer 7
index scan cost 314
indexing methods 307
inference engine 79
information retrieval 192
information source 75
information spaces 3
information systems 1, 3
inheritance 144
input-output 14
interaction roles 5

370 Index

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Internet 8, 72, 105
inverted file 310
item mapping function 312

K

knowledge base 79
knowledge discovery 269
knowledge-based Web information

system 268

L

LDAP directories 106, 119
legacy information systems 72
Library of Congress 72
linguistic expressions 5, 12
linguistic foundations 11
Linguistic Model 3
linguistics 11
logical structure construction 250
low requirements quality 15

M

machine learning 269
many-to-many association transforma-

tions 170
mapping rule generation 250
Mapping Wizard 249
maximal frequent forward sequences

335, 348
maximal frequent sequences 335, 350
media devices 71
media modeling 71
media object 21, 39, 40
media schema 35
media type layer 42
media types 8, 42
medium of communication 77
meta-level syntax 40
metaphor 12
metaphorical structure 12
methodological foundations 14
metonymy 12
Migration Model 73
Migration Model media component 78
Migration Model communication

component 75
Migration Model expert systems

component 79
Migration Model information component

77
multiple inheritance 145

N

native XML database systems 106
natural language processing (NLP) 228
navigation 8, 36
nodes 114

O

object oriented databases 39
object role modeling (ORM) 197
object-oriented conceptual model

(OOCM) 144
object-oriented database management

systems 106
object-oriented modeling 195
object-relational database (ORDB) 141
Object-Relational Logical Model 154
one to one association relationship 162
one-to-many association transformation

165
online loan systems 10
ontology 191
ontology graph 195
ontology semantics 196
ontology view 191
OOHDM framework 36
open information system 1
optimization schemes 198
optimization schemes algorithms 200
ORDB (object-relational databases)

142
order mapping function 312
ordering operation 4

P

pattern analysis 336
pattern discovery 336
pattern mining 335
pattern queries 305

Index 371

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

personalization 16
peta-bytes 72
port elements 273
portal 278
pragmatics 11
preprocessing 336
presentation design 8
presentation layer 7
privacy 335
processing operation 4
projection operation 4
proximity values 66

Q

query 43

R

relational database management
systems 106

relational databases 197
requirement consistency optimization

scheme (RCOS) 199
retrieval operation 4
risk information system (RIS) 17
Russian doll tree (RD-tree) 310

S

SAX 110
schema-driven techniques 112
SCOS (semantic completeness) 201
semantic web 1, 191
semantics 11
sequential Patterns 309, 335, 344
server session 336
server sessions 338
service element 273
sessionization 335
SGML (standard generalized markup

language) 105
shaping operation 4
SHORE (semantic hypertext object

repository) 118
signature files 309
signature test cost 314
signature trees (S-trees) 309

single inheritance 145
SiteLang 2, 10, 19, 37
socio-technical systems 15
stimulus-response 14
story boarding 1
story boarding phase 34
story space 21
strategic layer 7
structural media types 55
superimposed signatures 313
synecdoche 12
syntax 11

T

testing and finalization 250
transmitter 76
tuples 38

U

unified modeling language (UML) 197
universe of discourse (UoD) 3
URI (universal resource identifier) 336
URL 39
usage model 5
user access-sequences 305
user interface 280
user profiling 10
user roles 5
user-defined techniques 114

V

verification cost 314

W

web access 231
web access logs 305
web characterization activity (WCA)

336
web information extraction 227
web information source 227
web information system 39
web information system personalisation

36
web information systems (WIS) 1, 34
web log data set 340

372 Index

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

web logs 335
web modeling language 36
web pages 227
web services 270
web usage mining 335
web-log analysis 307
web-log mining algorithms 306
WebDisC 268
WebDisC nodes 277
WFOS (well formedness) 200, 201
Wiccap approach 241
Wiccap architecture 243
Wiccap Data Model 245
Wiccap system 228
wicked problems 16
working memory 79
World Wide Web 2, 228
World Wide Web consortium (W3C)

105
wrapper maintenance 236
wrapper rules generation 234

X

X-device 284
XML 192
XML database 105
XML deductive query language 286
XML document repositories 107
XML document representation model

106
XML documents storage policies 110
XML Object Model 285
XML parser 109
XML schema 107, 141

Z

Zachmann framework 6

NEW from Idea Group Publishing

Excellent additions to your institution’s library! Recommend these titles to your Librarian!

To receive a copy of the Idea Group Publishing catalog, please contact 1/717-533-8845,
fax 1/717-533-8661,or visit the IGP Online Bookstore at:

[http://www.idea-group.com]!
Note: All IGP books are also available as ebooks on netlibrary.com as well as other ebook sources.

Contact Ms. Carrie Skovrinskie at [cskovrinskie@idea-group.com] to receive a complete list of sources
where you can obtain ebook information or IGP titles.

• The Enterprise Resource Planning Decade: Lessons Learned and Issues for the Future, Frederic Adam and
David Sammon/ ISBN:1-59140-188-7; eISBN 1-59140-189-5, © 2004

• Electronic Commerce in Small to Medium-Sized Enterprises, Nabeel A. Y. Al-Qirim/ ISBN: 1-59140-146-1;
eISBN 1-59140-147-X, © 2004

• e-Business, e-Government & Small and Medium-Size Enterprises: Opportunities & Challenges, Brian J. Corbitt
& Nabeel A. Y. Al-Qirim/ ISBN: 1-59140-202-6; eISBN 1-59140-203-4, © 2004

• Multimedia Systems and Content-Based Image Retrieval, Sagarmay Deb
 ISBN: 1-59140-156-9; eISBN 1-59140-157-7, © 2004
• Computer Graphics and Multimedia: Applications, Problems and Solutions, John DiMarco/ ISBN: 1-59140-

196-86; eISBN 1-59140-197-6, © 2004
• Social and Economic Transformation in the Digital Era, Georgios Doukidis, Nikolaos Mylonopoulos &

Nancy Pouloudi/ ISBN: 1-59140-158-5; eISBN 1-59140-159-3, © 2004
• Information Security Policies and Actions in Modern Integrated Systems, Mariagrazia Fugini & Carlo

Bellettini/ ISBN: 1-59140-186-0; eISBN 1-59140-187-9, © 2004
• Digital Government: Principles and Best Practices, Alexei Pavlichev & G. David Garson/ISBN: 1-59140-122-

4; eISBN 1-59140-123-2, © 2004
• Virtual and Collaborative Teams: Process, Technologies and Practice, Susan H. Godar & Sharmila Pixy Ferris/

ISBN: 1-59140-204-2; eISBN 1-59140-205-0, © 2004
• Intelligent Enterprises of the 21st Century, Jatinder Gupta & Sushil Sharma/ ISBN: 1-59140-160-7; eISBN 1-

59140-161-5, © 2004
• Creating Knowledge Based Organizations, Jatinder Gupta & Sushil Sharma/ ISBN: 1-59140-162-3; eISBN 1-

59140-163-1, © 2004
• Knowledge Networks: Innovation through Communities of Practice, Paul Hildreth & Chris Kimble/ISBN: 1-

59140-200-X; eISBN 1-59140-201-8, © 2004
• Going Virtual: Distributed Communities of Practice, Paul Hildreth/ISBN: 1-59140-164-X; eISBN 1-59140-

165-8, © 2004
• Trust in Knowledge Management and Systems in Organizations, Maija-Leena Huotari & Mirja Iivonen/ ISBN:

1-59140-126-7; eISBN 1-59140-127-5, © 2004
• Strategies for Managing IS/IT Personnel, Magid Igbaria & Conrad Shayo/ISBN: 1-59140-128-3; eISBN 1-

59140-129-1, © 2004
• Beyond Knowledge Management, Brian Lehaney, Steve Clarke, Elayne Coakes & Gillian Jack/ ISBN: 1-59140-

180-1; eISBN 1-59140-181-X, © 2004
• eTransformation in Governance: New Directions in Government and Politics, Matti Mälkiä, Ari Veikko

Anttiroiko & Reijo Savolainen/ISBN: 1-59140-130-5; eISBN 1-59140-131-3, © 2004
• Intelligent Agents for Data Mining and Information Retrieval, Masoud Mohammadian/ISBN: 1-59140-194-1;

eISBN 1-59140-195-X, © 2004
• Using Community Informatics to Transform Regions, Stewart Marshall, Wal Taylor & Xinghuo Yu/ISBN: 1-

59140-132-1; eISBN 1-59140-133-X, © 2004
• Wireless Communications and Mobile Commerce, Nan Si Shi/ ISBN: 1-59140-184-4; eISBN 1-59140-185-2,

© 2004
• Organizational Data Mining: Leveraging Enterprise Data Resources for Optimal Performance, Hamid R.

Nemati & Christopher D. Barko/ ISBN: 1-59140-134-8; eISBN 1-59140-135-6, © 2004
• Virtual Teams: Projects, Protocols and Processes, David J. Pauleen/ISBN: 1-59140-166-6; eISBN 1-59140-167-

4, © 2004
• Business Intelligence in the Digital Economy: Opportunities, Limitations and Risks, Mahesh Raisinghani/

ISBN: 1-59140-206-9; eISBN 1-59140-207-7, © 2004
• E-Business Innovation and Change Management, Mohini Singh & Di Waddell/ISBN: 1-59140-138-0; eISBN

1-59140-139-9, © 2004
• Responsible Management of Information Systems, Bernd Stahl/ISBN: 1-59140-172-0; eISBN 1-59140-173-9,

© 2004
• Web Information Systems, David Taniar/ISBN: 1-59140-208-5; eISBN 1-59140-209-3, © 2004
• Strategies for Information Technology Governance, Wim van Grembergen/ISBN: 1-59140-140-2; eISBN 1-

59140-141-0, © 2004
• Information and Communication Technology for Competitive Intelligence, Dirk Vriens/ISBN: 1-59140-142-

9; eISBN 1-59140-143-7, © 2004
• The Handbook of Information Systems Research, Michael E. Whitman & Amy B. Woszczynski/ISBN: 1-59140-

144-5; eISBN 1-59140-145-3, © 2004
• Neural Networks in Business Forecasting, G. Peter Zhang/ISBN: 1-59140-176-3; eISBN 1-59140-177-1, ©

2004

InfoSci-Online
Database

www.infosci-online.com
Provide instant access to the latest offerings of Idea Group Inc. publications in the

fields of INFORMATION SCIENCE, TECHNOLOGY and MANAGEMENT

A product of:

INFORMATION SCIENCE PUBLISHING*
Enhancing Knowledge Through Information Science

http://www.info-sci-pub.com

*an imprint of Idea Group Inc.

During the past decade, with the advent of
telecommunications and the availability of
distance learning opportunities, more college and
university libraries can now provide access to
comprehensive collections of research literature
through access to online databases.

The InfoSci-Online database is the most
comprehensive collection of full-text literature
regarding research, trends, technologies, and
challenges in the fields of information science,
technology and management. This online
database consists of over 3000 book chapters,
200+ journal articles, 200+ case studies and over
1,000+ conference proceedings papers from
IGI’s three imprints (Idea Group Publishing, Information Science Publishing and IRM Press) that
can be accessed by users of this database through identifying areas of research interest and keywords.

Contents & Latest Additions:
Unlike the delay that readers face when waiting for the release of print publications, users will find
this online database updated as soon as the material becomes available for distribution, providing
instant access to the latest literature and research findings published by Idea Group Inc. in the field
of information science and technology, in which emerging technologies and innovations are
constantly taking place, and where time is of the essence.

The content within this database will be updated by IGI with 1300 new book chapters, 250+ journal
articles and case studies and 250+ conference proceedings papers per year, all related to aspects of
information, science, technology and management, published by Idea Group Inc. The updates will
occur as soon as the material becomes available, even before the publications are sent to print.

InfoSci-Online pricing flexibility allows this database to be an excellent addition to your library,
regardless of the size of your institution.

Contact: Ms. Carrie Skovrinskie, InfoSci-Online Project Coordinator, 717-533-8845
(Ext. 14), cskovrinskie@idea-group.com for a 30-day trial subscription to InfoSci-Online.

30-DAY

FREE TRIAL!

	Web Information Systems
	Cover

	Table of Contents
	Preface
	SECTION I: WEB INFORMATION MODELING
	Chapter I. Story Boarding for Web-Based Information Systems
	Chapter II. Structural Media Types in the Development of Data-Intensive Web Information Systems
	Chapter III. Toward a Model of the Migration of Communication Between Media Devices

	SECTION II: WEB INFORMATION REPRESENTATION, STORAGE, AND ACCESS
	Chapter IV. Storage and Access Control Issues for XML Documents
	Chapter V. Transformation of XML Schema to Object Relational Database

	SECTION III: WEB INFORMATION EXTRACTION
	Chapter VI. A Practical Approach to the Derivation of a Materialized Ontology View
	Chapter VII. Web Information Extraction via Web Views

	SECTION IV: WEB INFORMATION MINING
	Chapter VIII. A Knowledge-Based Web Information System for the Fusion of Distributed Classifiers
	Chapter IX. Indexing Techniques for Web Access Logs
	Chapter X. Traversal Pattern Mining in Web Usage Data

	About the Authors
	Index
	Team DDU

