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ciation for the partial support by the National Science Foundation 
under Grant GP-3223 and the Air Force Office of Scientific Research, 
Office of Aerospace Research, United States Air Force under Grant 
AF-AFOSR 932-65 in the revision of the original edition and further 
research. Finally, I am grateful to Dover Publications, Inc. for their 
interest and preparation of this edition. 

The George Washington University 
November 196 7 



Preface to the First Edition 

Information in a technically defined sense was first introduced in 
statistics by R. A. Fisher in 1925 in his work on the theory of estima- 
tion. Fisher's definition of information is well known to statisticians. 
Its properties are a fundamental part of the statistical theory of esti- 
mation. 

Shannon and Wiener, independently, published in 1948 works de- 
scribing logarithmic measures of information for use in communication 
theory. These stimulated a trerriendous amount of study in engi- 
neering circles on the subject of information theory. In fact, some 
erroneously consider information theory as synonymous with com- 
munication theory. 

Information theory is a branch of the mathematical theory of 
probability and mathematical statistics. As such, i t  can be and is 
applied in a wide variety of fields. Information theory is relevant to 
statistical inference and should be of basic interest to statisticians. 
Information theory provides a unification of known results, and leads 
to natural generalizations and the derivation of new results. 

The subject of this book is the study of logarithmic measures of 
information and their application to the testing of statistical hypothe- 
ses. There is currently a heterogeneous development of statistical 
procedures scattered through the literature. In this book a unification 
is attained by a consistent application of the concepts and properties 
of information theory. Some new results are also included. 

The reader is assumed to have some familiarity with mathematical 
probability and mathematical statistics. Since background material 
is available in a number of published books, it  has been possible here 
to deal almost exclusively with the main subject. That  this also covers 
classical results and procedures is not surprising. The fundamentals 
of information theory have been known and available for some tim-e and 
have crystallized in the last decade. That  these fundamentals should 
furnish new approaches to known results is both useful and necessary. 
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viii PREFACE TO THE FIRST EDITION 

The applications in this book are limited to the analysis of samples 
of fixed size. Applications to more general stochastic processes, includ- 
ing sequential analysis, will make a natural sequel, but are outside the 
scope of this book. 

In some measure this book is a product of questions asked by stu- 
dents and the need for a presentation avoiding special approaches for 
problems that are essentially related. It is my hope that the experi- 
enced statistician will see in this book familiar things in a unified, if un- 
familiar, way, and that the student will find this approach instructive. 

In chapter 1, the measures of information are,introduced and de- 
fined. In chapter 2, I develop the properties of the information 
measures and examine their relationship with Fisher's information 
measure and sufficiency. In chapter 3, certain fundamental inequali- 
ties of information theory are derived, and the relation with the now 
classic inequality associated with the names of FrCchet, Darmois, 
CramCr, and Rao is examined. In chapter 4, some limiting properties 
are derived following the weak law of large numbers. In chapter 5 ,  
the asymptotic distribution theory of estimates of the information 
measures is examined. 

The developments in these first five chapters use measure theory. 
The reader unfamiliar with measure theory should nevertheless be able 
to appreciate the theorems and follow the argument in terms of the 
integration theory familiar to him by considering the integrals as 
though in the common calculus notation. 

The rest of the book consists of applications. In chapters 6, 7, and 
8, the analysis of multlnomial samples and samples from Poisson popu- 
lations is studied. The analysis of contingency tables in chapter 8 
depends on the basic results developed in chapter 6. Chapter 9 is es- 
sentially an introduction to various ideas associated with multivariate 
normal populations. In chapter 10, the analysis of samples from 
univariate normal populations under the linear hypothesis is studied 
and provides the transition to the generalizations in chapter 11 to the 
multivariate linear hypothesis. In chapter 12, the analysis of samples 
from multivariate normal populations for hypotheses other than the 
linear hypothesis is developed. The familiar results of the single- 
variate normal theory are contained in the multivariate analyses as 
special cases. In chapter 13, some general questions on linear dis- 
criminant functions are examined and raised for further investigation. 

The book contains numerous worked examples. I hope that these 
will help clarify the discussion and provide simple illustrations. Prob- 
lems at the end of each chapter and in the text provide a means for the 
reader to expand and apply the theory and to anticipate and develop 
some of the needed background. 



PREFACE TO THE FIRST EDITION k 

The relevance of information theory to statistical inference is the 
unifying influence in the book. This is made clear by the generaliza- 
tions that information theory very naturally provides. Chapters 8, 11, 
and 12 demonstrate this. In section 4 of chapter 11, it is concluded 
that the test statistic for the multivariate generalization of the analysis 
of variance is a form of Hotelling's generalized Student ratio (Hotel- 
ling's T2). The basic facts on which this conclusion rests have been 
known for some time. Information theory brings them together in the 
proper light. 

Sections are numbered serially within each chapter, with a decimal 
notation for subsections and sub-subsections; thus, section 4.5.1 means 
section 4, subsection 5, sub-subsection 1. Equations, tables, figures, 
examples, theorems, and lemmas are numbered serially within each 
section with a decimal notation. The digits to the left of the decimal 
point represent the section and the digits to the right of the decimal 
point the serial number within the section; for example, (9.7) is the 
seventh equation in section 9. When reference is made to a section, 
equation, table, figure, example, theorem, or lemma within the same 
chapter, only the section number or equation, etc., number is given. 
When the reference is to a section, equation, etc., in a diferent chapter, 
then in addition to the section or equation, etc., number, the chapter 
number is also given. 

References to the bibliography are by the author's name followed by 
the year of publication in parentheses. 

Matrices are in boldface type. Upper case letters are used for square 
or rectangular matrices and lower case letters for one-column matrices 
(vectors). The transpose of a matrix is denoted by a prime; thus one- 
row matrices are denoted by primes. A subscript to a matrix implies 
that the subscript also precedes the subscripts used to identify the ele- 
ments within a matrix, for example, A = (aij), A2 = X' = (XI, 
x2, , xk). There are some exceptions to these general rules, but the 
context will be clear. 

An abbreviated notation is generally used, in the sense that multiple 
integrals are expressed with only a single integral sign, and single 
letters stand for multidimensional variables or parameters. When i t  
is considered particularly important to stress this fact, explicit men- 
tion is made in the text. 

A glossary is included and is intended to supplement the reader's 
background and, with the index, to provide easy access to definitions, 
symbols, etc. 

SOLOMON KULLBACK 
The George Washington University 
February 1958 
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C H A P T E R  1 

Definition of Information 

1. INTRODUCTION 

Information theory, as we shall be concerned with it, is a branch of the 
mathematical theory of probability and statistics. As such, its abstract 
formulations are applicable to any probabilistic or statistical system of 
observations. Consequently, we find information theory applied in a 
variety of fields, as are probability and statistics. It plays an important 
role in modern communication theory, which formulates a communication 
system as a stochastic or random process. Tuller (1950) remarks that the 
statistical theory of communications is often called information theory. 
Rothstein (1951) has defined information theory as "abstract mathematics 
dealing with measurable sets, with choices from alternatives of an un- 
specified nature." Pierce (1956, p. 243) considers communication theory 
and information theory as synonyms. Gilbert (1958, p. 14) says, "In- 
formation will be a measure of time or cost of a sort which is of particular 
use to the engineer in his role of designer of an experiment." The essential 
mathematical and statistical nature of information theory has been re- 
emphasized by three men largely responsible for its development and 
stimulation, Fisher (1956), Shannon (1956), Wiener (1956). 

In spirit and concepts, information theory has its mathematical roots 
in the concept of disorder or entropy in thermodynamics and statistical 
mechanics. [See Fisher (1935, p. 47) and footnote 1 on p. 95 of Shannon 
and Weaver (1949).] An extensive literature exists devoted to studies of 
the relation between the notions and mathematical form of entropy and 
information. Stumpers (1953) devotes pp. 8-1 1 of his bibliography to 
such references, and some others are added here: Bartlett (1955, pp. 
208-220), Brillouin (1 956), Cherry (1 957, pp. 49-5 1 ; 21 2-2161, Fisher 
(1935, p. 47), Grell (1957, pp. 117-134), Joshi (1957), ~hinchin (1953, 
1956, 1957), Kolmogorov (1956), McMillan (1953), ~andelbrot  (1953, 
1956), Powers (1 956), Quastler (1 953, pp. 14-40). 

R. A. Fisher's (1925b) measure of the amount of information supplied 
by data about an unknown parameter is well known to statisticians. 
This measure is the first use of "information" in mathematical statistics, 
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INFORMATION THEORY AND STATISTICS 

and was introduced especially for the theory of statistical estimation. 
Hartley (1928) defined a measure of information, the logarithm of the 
number of possible symbol sequences, for use in communication engineer- 
ing. Interest in, and various applications of, information theory by 
communication engineers, psychologists, biologists, physicists, and 
others, were stimulated by the work of Shannon (1948) and Wiener (1948), 
particularly by Wiener's (1948, p. 76) statement that his definition of 
information could be used to replace Fisher's definition in the technique 
of statistics. However, note that Savage (1954, p. 50) remarks: "The 
ideas of Shannon and Wiener, though concerned with probability, seem 
rather far from statistics. It is, therefore, something of an accident that 
the term 'information' coined by them should be not altogether inappro- 
priate in statistics." Powers (1956, pp. 36-42) reviews the fundamental 
contributions of Wiener, Shannon, and Woodward as an introduction to 
his development of a unified theory of the information associated with a 
stochastic process. Indeed, Stumpers (1953) lists 979 items in his biblio- 
graphy and only 104 of these were published prior to 1948. Although 
Wald (1945a, 1945b, 1947) did not explicitly mention information in his 
treatment of sequential analysis, it shodd be noted that his work must be 
considered a major contribution to the statistical applications of infor- 
mation theory. [See Good (1950, pp. 64-66), Schiitzenberger (1954, 
pp. 57-61).] 

For extensive historical reviews see Cherry (1950, 1951, 1952, 1957). 
A most informative survey of information theory in the U.S.S.R. is given 
by Green (1956, 1957), who takes information theory to mean "the 
application of statistical notions to problems of transmitting information." 
The current literature on information theory is voluminous. Some 
references are listed that will give the reader who scans through them an 
idea of the wide variety of interest and application: Ashby (1956), Bell 
(1953), Bradt and Karlin (1956), Brillouin (1956), de Broglie (1951), 
Castaiis Camargo (1955), Cherry (1955, 1957), Davis (1954), Elias (1956), 
Fano (1954), Feinstein (1958), Gilbert (1958), Goldman (1953), Good 
(1952, 1956), Jackson (1 950, 1952), Jaynes (1957), Kelly (1956), Lindley 
(1956, 1957), McCarthy (1956), McMillan et al., (1953), Mandelbrot 
(1 953), Quastler (1 953, 1955), Schiitzenberger (1 954), Shannon and Weaver 
(1949), Wiener (1948, 1950), Woodward (1953). 

We shall use information in the technical sense to be defined, and it 
should not be confused with our semantic concept, though it is true that 
the properties of the measure of information following from the technical 
definition are such as to be reasonable according to our intuitive notion 
of information. For a discussion of "semantic information" see Bar- 
Hillel (1 959, Bar-Hillel and Carnap (1 953). 
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Speaking broadly, whenever we make statistical observations, or design 
conduct statistical experiments, we seek information. How much 

can we infer from a particular set of statistical observations or experiments 
about the sampled populations? [Cf. Cherry (1 957, p. 61).] We propose 
to consider possible answers to this question in terms of a technical 
definition of a measure of information and its properties. We shall 
define and derive the properties of the measure of information at a 
rnathernatical level of generality that includes both the continuous and 
discrete statistical populations and thereby avoid the necessity for parallel 
~onsiderations of these two common practical situations [Fraser (1957, 
pp. 1-16), Powers (1956)l. 

2. DEFINITION 

Consider the probability spaces (X, 9 ,  pi), i = 1, 2, that is, a basic set 
of elements x EX and a collection 9 of all possible events (sets) made up 
of elements of the sample space X for which a probability measure pi, 
i = 1,2, has been defined. 9 is a a-algebra of subsets of X, a Borel field, 
or an additive class of measurable subsets of X. The pair (X, 9 ) ,  that 
is, the combination of the sample space X and the a-algebra 9 of subsets 
of X, is called a measurable space [Fraser (1957, p. 2)]. The elements of 
T may be univariate or multivariate, discrete or continuous, qualitative or 
quantitative [Fraser (1957, pp. 1-2)]. For an engineer, the elements of 
X may be the occurrence or nonoccurrence of a signal pulse, 9 may be a 
collection of possible sequences of a certain length of pulse and no pulse, 
and pl and p2 may define the probabilities for the occurrence of these 
different sequences under two different hypotheses. For a statistician, the 
elements of X may be the possible samples from a univariate normal 
population, 9 may be the class of Borel sets of Rn, n-dimensional Eucli- 
dean space (if we are concerned with samples of n independent observa- 
tions), and p, and p2 may define the probabilities of the different samples 
for different values of the parameters of the populations. 

We assume that the probability measures p, and p, are absolutely 
continuous with respect to one another, or in symbols, p, = p,; that is, 
there exists no set (event) E E 9 for which pl(E) = 0 and p2(E) # 0, or 
pl(E) # 0 and p,(E) = 0. b, is absolutely continuous with respect to 
p2, p1 < p,, if pl(E) = 0 for all E E 9 for which p2(E) = 0; p, is 
absolutely continuous with respect to p,, p2 < p,, if p2(E) = 0 for all 
E E 9 for which p,(E) = 0.1 Since there is no essential problem in the 
rejection of statistical hypotheses that may have been prior to the 
observations but are impossible after the observations, our mathematical 
assumption is such as to exclude this contingency. According to Savage 
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(1954, p. 127), ". definitive observations do not play an important 
part in statistical theory, precisely because statistics is mainly concerned 
with uncertainty, and there is no uncertainty once an observation definitive 
for the context at hand has been made." For further study of absolute 
continuity see Fraser (1957, p. 12), Halmos (1 950, pp. 124-128), Halmos 
and Savage (1949), Lobe  (1955, pp. 129-132). Let A be a probability 
measure such that A = pl, A = p2; for example, A may be p1, or p2, or 
(p, + p2)/2. By the Radon-Nikodym theorem [Fraser (1957, p. 13), 
Halmos (1950, pp. 128-132), Lohe (1955, pp. 132-134)], there exist 
functions f,(x), i = 1, 2, called generalized probability densities, unique up 
to sets of measure (probability) zero in A, measurable A, 0 <f, (x)  < co 
[A], i = 1, 2, such that 

n 

for all E E 9. The symbol [A], pronounced "modulo A," following an 
assertion concerning the elements of X ,  means that the assertion is true 
except for a set E such that E E 9 and A(E) = 0 [Halmos and Savage 
(1949)J. The functionfi(x) is also called the Radon-Nikodym derivative, 
and we write dpi(x) = fi(x) dA(x) and alsofi(x) = dp,/dA. In example 7.1 
of chapter 2 is an illustration of a probability measure p1 absolutely 
continuous with respect to a probability measure p2, but not conversely. 
If the probability measure p is absolutely continuous with respect to the 
probability measure A, and the probability measure v is absolutely con- 
tinuous with respect to the probability measure p, then the probability 
measure v is also absolutely continuous with respect to the probability 

dv dv dp 
measure A, and the Radon-Nikodym derivatives satisfy - = - - 

dA dp dA [A1 

[Halmos (1950, p. 133), Halmos and Savage (1949)l. 
If Hi, i = 1,2, is the hypothesis that X (we use X for the generic variable 

and x for a specific value of X) is from the statistical population with 
probability measure pi, then it follows from Bayes' theorem, or the 
theorems on conditional probability [Feller (1950), Fraser (1957, pp. 
13-1 6), Good (1950), Kolmogorov ( 1  950), Lohe (1955)], that 

(2.2) 
p(HiK,(x) 

P(Hi'x) = P(Hl)f,(x) + P(H2)f,(x) 
[A], i = l , 2 ,  

from which we obtain 
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where P(H,), i = 1, 2, is the prior probability of Hi and P(Hilx) is the 
posterior probability of Hi, or the conditional probability of Hi given 
x = x. See Good (1956, p. 62), Savage (1954, pp. 46-50). The base of 
the logarithms in (2.3) is immaterial, providing essentially a unit of 
measure; unless otherwise indicated we shall use natural or Naperian 
logarithms (base e). (See the end of example 4.2.) 

The right-hand side of (2.3) is a measure of the difference between the 
logarithm of the odds in favor of H, after the observation of 'X = x and 
before the observation. This difference, which can be positive or negative, 
may be considered as the information resulting from the observation 
X = x, and we define the logarithm of the likelihood ratio, log V;(x)&(x)], 
as the information in X = x for discrimination in favor of H, against H2. 
[Cf. Good (1950, p. 63), who describes it also as the weight of evidence 
for H, given x.] The mean information for discrimination in favor of 
H, against H2 given x E E E 9, for p,, is 

= 0, p,(E) = 0, 
with 

dp1(x) = L(x) dA(x). 

When E is the entire sample space X,  we denote by 1(1:2), rather than 
by 1(1:2; X), the mean information for discrimination in favor of H, 
against H2 per observation from p,, that is, omitting the region of inte- 
gration when it is the entire sample space, 

(2.5) 
L(x) 41 :2) =/log - dpl(x) =/h(x) log @ dA(x) 
fi<x) fi<x) 

Note that the last member in (2.5) is the difference between the mean value, 
with respect to p,, of the logarithm of the posterior odds of the hypotheses 
and the logarithm of the prior odds of the hypotheses. Following 
Savage (1954, p. 50) we could also call 1(1:2) the information of p, with 
respect to A. Note that the integrals in (2.4) or (2.5) always exist, even 
though they may be +a, since the minimum value of the integrand for 
its negative values is -%. A necessary condition (but not sufficient) 
that 1 ( 1 :  2) be finite is p, = p,. AS an example in which the mean 
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information I(1:2) is infinite, take X = (0, l), p1 = Lebesgue measure, 
r l  

L(x)U;(x) = ke-lJX, k-I = Jie-lJt dt. It may be verified that I( I : 2) is 

infinite [Hardy, littlewood,-and P6lya (1934, p. 137)l. See problem 5.7. 

3. DIVERGENCE 

Following section 2, we may define 

as the mean information per observation from p2 for discrimination in 
favor of H, against HI, or 

as the mean information per observation from p2 for discrimination in 
favor of H1 against H,. Our previous assumption about the mutual 
absolute continuity of p1 and p2 ensures the existence of the integral in 
the definition of 42: I), even though it may be +a. 

We now define the divergence J(1,2) by 

The middle version of the above expressions for J(1,2) was introduced 
by Jeffreys (1946, 1948, p. 158), but he was mainly concerned with its use, 
because of invariance under transformation of parameters, as providing 
a prior probability density for parameters. J(1, 2) is a measure of the 
divergence between the hypotheses H1 and H,, or between p1 and p,, and 
is a measure of the difficulty of discriminating between them. [Cf. 
Chernoff (1952), Huzurbazar (1955), Jeffreys (1948, p. 158), Kullback 
(1953), Sakaguchi (1955), Suzuki (1957).] Note that J(1, 2) is symmetric 
with respect to p1 and p,, and the prior probabilities P(Hi), i = 1,. 2, do 
not appear. The divergence J(1,2) (as will be seen) has all the properties 
of a distance (or metric) as defined in topology except the triangle 
inequality property and is therefore not termed a distance. The informa- 
tion measures I(1:2) and I(2: l) may in this respect be considered as 



DEFINITION OF INFORMATION 7 

directed divergences. (See problem 5.9.) For other measures of distances 
between probability distributions see Adhikari and Joshi (1956), Bhatta- 
charyya (1943, 1946a), Bulmer (1957), Fraser (1957, p. 127), Rao (1945, 
1952, pp. 351-352). 

4. EXAMPLES 

Before we consider properties resulting from the definition of information 
and divergence, and supporting the use. of "information" as a name, it 
may be useful to examine some instances of (2.3), (2.5), and (3.2) for 
illustration and background. 

Example 4.1. As an extreme case, suppose that Hz represents a set of 
hypotheses, one of which must be true, and that H, is a member of the set of 
hypotheses Hz; then P(Hz) = 1, P(H~~X) = 1, and the right-hand side of (2.3) 
yields as the information in x in favor of H, the value log P(H,(x) - log P(H,) = 
log [P(H,Ix)/P(H,)]. When is this value zero? If the observation x proves 
that H, is true, that is, P(H,lx) = 1, then the information in x about H, is 
- log P(Hl) [Good (1956)l. Note that when H, is initially of small probability 
the information resulting from its verification is large, whereas if its probability 
initially is large the information is small. Is this intuitively reasonable? 

Example 4.2. To carry this notion somewhat further, suppose a set of 
mutually exclusive and exhaustive hypotheses H,, H2, *, H,, exists and that 
from an observation we can infer which of the hypotheses is true. For example, 
we may have a communication system in which the hypotheses are possible 
messages, there is no garbling of the transmitted message, and there is no 
uncertainty about the inference after receiving the message. Or we may be 
dealing with an experiment for which the outcome may be one of n categories, 
there are no errors of observation, and there is no uncertainty about the inference 
of the category after making the observation. Here, the mean information in 
an observation about the hypotheses is the mean value of -log P(Hi), 
i = 1, 2, *, n, that is, 

I 

(4.1) - P(Hl) log P(Hl) - P(Hz) log P(H2) - . . . - P(Hn) log P(Hn). 

The expression in (4.1) is also called the entropy of the Hi's. See Bell (1 953), 
Brillouin (1956), Goldman (1 953), Good (1 950, 1956), Grell (1 957), Joshi 
(1957), Khinchin (1953, 1956, 1957), McMillan (1953), Quastler (1956), Shannon 
(1948), Woodward (1953). When logarithms to base 2 are used, the unit of the 
(selective) information in (4.1) is called a "bit" (binary digit), and it turns out 
that one bit of information is the capability. of resolving the uncertainty in a 
situation with two equally probable hypotheses or alternatives. Thus, in a 
"yes" or "no" selection with a probability of 4 for each alternative, 
-4 log2 4 - 4 log2 4 = lo& 2 = 1 "bit." When the n hypotheses are equally 

n 

, probable, so that P(Hi) = l/n, i = 1, a, n, we find that - 2 P(Hi) log P(Hi) 
i = l  

= log n, Hartley's information measure. 
It has been suggested that when logarithms to base 10 are. used, the unit of 

information in (4.1) be called a "Hartley" [Tuller (1950)], and when natural 
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logarithms to base e are used, the unit of information be called a "nit" 
[MacDonald (1 952)l. 

Example 4.3. As another area of illustration, suppose that the sample space 
5F is the Euclidean space R2 of two dimensions with elements X = (x, y), and 
that under Hl the variables x and y are dependent with probability density 
f(x, y), but that under H2, x and y are independent, with respective probability 
densitiesg(x) and h(y). Now (2.5) may be written as 

f(x' dx dy, 
g(x)h(y) 

which has also been defined as the mean information in x about y, or in y 
about x. See Gel'fand, Kolmogorov, and Iaglom (1956), Good (1956), 
Kolmogorov (1956), Lindley (1956), Shannon (1948), Woodward (1953, pp. 
53-54). Since, as will be shown in theorem 3.1 of chapter 2, 1(1:2) in (4.2) is 
nonnegative, and is zero if and only if f(x, y) = g(x)h(y) [A], the mean informa- 
tion in (4.2) may also serve as a measure of the relation between x and y. [Cf. 
Castaiis Camargo and Medina e Isabel (1956), Feron (1952a, p. 1343), Linfoot 
(1957).] In particular, if Hl implies the bivariate normal density 

and H2 the product of the marginal normal densities 

we find that 

(4.3) 
f(x, Y) dxdy = -4 log (I - p2), 

g(x)h(y) 

so that 1(1:2) is a function of the correlation coefficient p only, and ranges from 
0 to cc as JpJ ranges from 0 to 1. Corresponding multivariate values are given 
in (6.12) and (7.4) of chapter 9. 

Example 4.4. As a specific illustration of J(1,2) let f, and f, be the normal 
densities used in (4.3). We find that 

so that J(1,2) is a function of the correlation coefficient p only, and ranges from 
0 to co as l p l  ranges from 0 to 1. 

Note that Pearson (1904) showed that if a bivariate normal distribution is 
classified in a two-way table, the contingency and the correlation are related by 
the expression C$2 = x2/N = p2/(1 - p2), when it is assumed that the number of 
observations N is large and the class intervals are very narrow [Lancaster (l957)l. 
The corresponding k-variate value is given in (6.13) of chapter 9, but differs 
from the value of C$2 as given by Pearson (1904). See also (7.5) of chapter 9. 

Example 4.5. To illustrate a result in commul~ication theory, suppose that 
in (4.2) x is a transmitted signal voltage and y the received signal voltage which 
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is taken to be the transmitted signal with noise added, that is, y x + n, 
where n is the noise voltage. The noise and transmitted signal may be taken 
as independent, so that 

1(1: 2) in (4.2), a measure of the relation between the received and transmitted 
signals, is then a characteristic property of the transmission channel. If we 
assume normal distributions, since the bivariate normal density f(x, y) in 
example 4.3 may be written as 

we see from a comparison of (4.6) and (4.5) that h(y1x) = h(y - x) if 

where S = E ( 9 )  is the mean transmitted signal power and N = E(n2) the noise 
power [Lawson and Uhlenbeck (1950, p. 5 9 ,  Woodward and Davies C1952)I. 
With the value of p2 from (4.7) substituted in (4.3) and (4.4), we find that the 
mean information in the received signal about the transmitted signal and the 
divergence between dependence and independence of the signals are respectively 

We shall show in chapter 2 that 1(1:2) and J(1,2) are additive for independent 
observations. The sampling theorem [Shannon (1949), Whittaker (1915)] 
states that 2 WT independent sample values are required to specify a function 
of doration T and bandwidth W. We thus have 

where N = WN,, with No the mean noise power per unit bandwidth, and E the 
total transmitted signal energy. The interpretation of (4.10) as channel capacity 
is well known in communication theory [Bell (1953), Goldman (1953), Shannon 
(1948), Woodward (1953)l. The signal-to-noise ratio has long been used by 
engineers to specify the performance of communication channels. 

Example 4.6. To illustrate a less general form of Lindley's (1956) definition 
of the information provided by an experiment, take y in (4.2) as a parameter 
8 ranging over a space @, so that f(x, 6)  is the joint probability density of x 
and 8, h(8) is the prior probability density of 8, gfi18) is the conditional 
probability density of x given 8, and the marginal probability density of x is 
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g(x) = gl(x18)h(8) dB. An experiment d is defined as the ordered quadruple 1. 
8 = (a, 9, @, gl(xlB)), and the information provided by the experiment 8, 
with prior knowledge h(8), is 

l(1: 2) -11 f(x, 8, log , f ( ~ ,  el & do, 
g(x)h(@ 

These illustrations will suffice for the present. In chapter 2 we consider 
the properties of Z(1: 2) and J(l, 2). 

5. PROBLEMS 

5.1. How many "bits" of information (in the mean) are there in a dichoto- 
mous choice (a) with probabilities p = 0.99, q = 1 - p = 0.01 ; (b) p = 1, 
9 - 1 - p = O ?  

5.2. Compute the value of I(1: 2) and J(1, 2) for: 
(a) Prob(x = OIHz) =qi, Prob(x = 1IHJ =pi,pi + q i =  1, i = 1, 2. 
(6) The binomial distributions B(pi, qf, n), pi + qf = 1, i = 1, 2. 
(c) The Poisson distributions with parameters mf, i = 1, 2. 
(d) The normal distributions N(,uf, a2), i = 1,2, that is, the normal distri- 

butions with mean pi and variance 8. 
(e) The normal distributions N(,u, ai2), i = 1,2. 
(f) The normal distributions N(,ui, b:), i = 1,2. 

5.3. Derive the result given in (4.3). 

5.4. Derive the result given in (4.4). 

5.5. Let 1 + x be the number of independent trials needed to get a success, 
when the probability of a success is constant for each trial. If 

then 

that is, the mean information for discrimination is the product of the expected 
number of trials and the mean information per trial. 

5.6. Let fI<x) = exp (u(Bi)u(x) + a(x) + b(&)), i = 1,2, where u and b are 
functions of of, i = 1,2, and v and a are functions of x, with S&<x) dx = 1. 
Show that J(1,2) = (~(8,) - u(B&)(El(o(x)) - &(u(x))), where Ef(v(x)) is the 
expected value of u(x) in the distribution withf;.(x), i = 1, 2. [See Huzurbazar 
(1955) for the multivariate, multiparameter, distributions admitting sufficient 
statistics.] 

5.7. Let k, = 2 1 
< m ,  k 2 =  2 1 

< m, pl(x = n) = 
n=2 dlog nI2 ,2 n2(log n)? 

1 
t* PAX = n) = 

1 r n = 2 , 3 , .  .. 
k,n(log n) kflYlog nI2 
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Show that I( 1 : 2) = 2 pl(x = n) log pl(x = = m ,  and that I(2: 1 )  = 
n=2 P ~ ( X  = n) 

2 p,(x = n) log 
pdx = n) < m.  [See Joshi (1957), who credits this to 

n-2  A@ I n) 
Schiitzenberger.] 

5.8. Compute the value of I(1:2) and J(1, 2) for the discrete bivariate distri- 
butions defined by Prob ( x  = 0, y = 01 Hl) = Prob ( x  = 1 ,  y = 1 I HI)  = q/2, 
Prob(x = 0,  y = l lHl)  = ~ r o b ( x  = 1 ,  y = OJH,) =p/2,  p + q = 1 ,  Prob 
( x -  0,  y = OIH$ - Prob ( x  = 0,  y = 1 1 ~ ~ )  =  rob ( x =  1 ,  y = OIH$ = 
Prob(x = 1 , y =  l I H & = f .  

5.9. Show that 11 h ( ~ ) h ( y )  log h(x)fi(y) f m d x d y  may be written as 

f (4 - f,(x)) 1 o g . L  dx, where f, and f, are probability densities, and x, y 
f,(x) 

are random variables over the same range. [Cf. Bamard (1949), Girshick 
(1946, pp. 123-127).] 

n ! 5.10. Let N = n = nl + n, + + nk. Use Stirling's 
nl!n2! 'nk!' 

approximation to show that when ni, i = 1 ,  2, . ., k ,  is large, approximately, 

where = ni/n. [Cf. Brillouin (1956, pp. 7-8).] 

5.11. Consider sequences of k different symbols. Show that the observation 
that a sequence of n symbols contains respectively nl, n,, ., nk, of the k 

k 
symbols is approximately an information value of n zpf logpi + n log k ,  

i -1  
where P f  is defined in problem 5.10. 

5.12. Let P(nl, n2, -, nd = n! , ~ ~ ~ y ~ ~ ¶ . . . p ~ ~ k , n * q + n ~ +  
nl!n2! nk. 

. . + n k , p l + p 2 + * .  . + p k =  1 , p f > 0 , i = = 1 , 2 , .  .,k. 
1 

(a) Show that, as in problem 5.10, approximately log 
1 - 

P(nz, n2, *, nk) - 
k 

n X p f  log& 
i-1 Pi 

(b) Show that log P(n 
1 

for p, = p2 = . == pk = l / k ,  is the 
1, 2, - 9  nd 

information value in problem 5.11. 
[Cf. Chernoff (1952, p. 497), Sanov (1957, p. 13).] 

5.13. Compute the value of I(1:2) for the discrete bivariate distributions 
defined by Prob ( x  = xi, y = yilHl) = p i  =. 0,  i = 1,2, a, n, Prob ( x  = xi, 
Y = Y ~ ~ H ~ )  = 0,  i # j, Prob ( x  = xi, y = yi[H$ = Prob ( x  = xilH$ Prob 
(Y = yjIH$ = pipi, i, j = 1,2, a, n (0 log 0 is defined as 0). 



C H A P T E R  2 

Properties of Information 

1. INTRODUCTION 

We shall now study the properties of the measure of information that 
we have defined and examine the implications of these properties [cf. 
Kullback and Leibler (195 I)]. We use the notation Z(1: 2; E), Z(2: 1 ; Z), 
J(l,  2; X, Y), etc., when it is deemed necessary to indicate explicitly sets, 
spaces, variables, etc., that are concerned. Where necessary for clarity, 
we shall use X, Y, etc., for generic variables and x, y, etc., for observed 
values of the generic variables. We shall also generally use only one 
integral sign even when there is more than one variable. 

2. ADDITIVITY 

THEOREM 2.1. Z(1:2) is additive for independent random events; that is, 
for X and Y independent under Hi, i = 1,2 

1(1:2; X, Y) = 1(1:2; X) + 1(1:2; Y). 
Proof. 

= 1(1:2; X) + 1(1:2; Y), 

where, because of the independence, f,(x, y) = gi(x)ht(v>, i = 1,2, 
dA(x, 9) = dp(x) dv@), Jgi(x) dp(x) = 1, Jhi@) dv@) = 1, i = 1,2. 

s 

Additivity of information for independent events is intuitively a 
fundamental requirement, and is indeed postulated as a requisite property 
in most axiomatic developments of information theory [Barnard (1951), 

12 
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Fisher (1935, p. 47), Good (1950, p. 73,  Lindley (1956), MacKay (1950), 
Reich (1951), Schutzenberger (1954), Shannon (1948), Wiener (1950, pp. 
18-22)]. Additivity is the basis for the logarithmic form of information. 
A sample of n independent observations from the same population 
provides n times the mean information in a single observation. Fisher's 
measure of the amount of information for the estimation of a parameter 
also has this additive property [Fisher (1925b, 1956, pp. 148-150), Savage 
(1954, pp. 235-237)l. In section 6 we shall study the relation between 
Fisher's measure and the discrimination information measure in (2.5) of 
chapter 1. 

If X and Yare not independent, an additive property still exists, but in 
terms of a conditional information defined below. To simplify the 
argument and avoid the measure theoretic problems of conditional 
probabilities [see, for example, Fraser (1957, p. 16)], we shall deal with 
probability density functions and Lebesgue measure. We leave it to the 
reader to carry out the corresponding development for discrete variables. 
With this understanding, we then have, 

S X(x9 9) dx dy I(1: 2 ; x, Y) = fl(x, y) log - 
9) 

where gdx) = Sf,@, y) dy, h,(ylx) = jxx, srllgt(x), i = 1,2. 
We now set 

and 

where I(1:2; Y I X = x) may be defined as the conditional information 
in Y for discrimination in favor of HI against H, when X = X, under HI, 
and I(1:2; YIX) is the mean value of the conditional discrimination 
information I(1:2; Y I x = x) under HI. [Cf. Barnard (195 l), Feinstein 
(1958, p. 12), Feron (1952a), Feron and Fourgeaud (1951), Good (1950), 
Lindley (1956), Powers (1956, pp. 54-62), Shannon (1948).] 

We may obtain similar results by an interchange of the procedure with 
respect to X and Y, so that we state: 

THEOREM 2.2. 
1(1:2; X, Y) = I(1:2; X) + 1(1:2; YIX). 

= I(1:2; Y) + I(1:2; XI Y). 
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Example 2.1. Consider the bivariate normal densities 

so that 

and 

where pi = piav/ax. Note that the variances are the same for i = 1 ,  2 .  
With these densities we find [or by substitution in (1.2) of chapter 91, 

NoJe that 1(1:2; X, Y )  = 1(1:2; X ) +  1(1:2; Y ( x ) .  If p1 = p2 = 0, so that 
X and Y are independent under HI and H2, I(1: 2 ;  Y I X )  = (p2 ,  - hv)2/2a,2 

= 1(1:2; Y )  and I(1:2; X, Y )  = (P2x - Pld2 + ( P Z Y  - Ply)t = : 2 ;  X) + 
2ax2 2av2 

3. CONVEXITY 

THEOREM 3.1. 1(1:2) is almost positiue dejnite; that is, 1(1:2) 2 0, with 
equality r a n d  only i f f , (x)  = f,(x) [A]. 
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Proof. Let g(x) = fi(x)lf,(x). Then 

with dp2(x) =&(XI dA(x). 
Setting +(t) = t log t, since 0 < g(x) < co [A], we may write [cf. Hardy, 

Littlewood, and Polya (1934, p. 151)], 

(3.2) +(g(x)) = + [g(x) - 1 #'(I) + 4 [g(x) - 1I2+"(h(x)) [A], 

where h(x) lies between g(x) and 1, so that 0 < h(x) < co [A]. Since 
+(I) = 0, +'(I) = 1, and 

(3.3) J g(x) dp2(x) = J A(X) d ~ )  = 1, 

we find 

where + " ( I )  = llt > 0 for t > 0. We see from (3.4) that 

with equality if and only if g(x) = fi(x)lf,(x) = 1 [A]. 
Theorem 3.1 tells us that, in the mean, discrimination information 

obtained from statistical observations is positive [cf. Fisher (1925b)l. 
There is no discrimination information if the distributions of the observa- 
tions are the same [A] under both hypotheses. Theorem 3.1 may be 
verified with the values of 1(1:2) computed in example 2.1. 

A k (E)  for A(E) > 0, with equality if and only if- = - [A] for x E E. 
k ( E )  

Proof. If the left-hand member of the inequality in the corollary is a, 
the result is trivial. Otherwise truncate the distributions to the set E 

0 
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and write gl(x) = h(x)/pl(E), g2(~)  = fi(x)/&(E). - From theorem 3.1 
we now have 

jgl(x) log g* dA(x) 2 0, 
E g2(x) 

with equality if and only if gl(x) = g2(x) [A], and the corollary follows. 
Defining t log t = 0 for t = 0, the equality in corollary 3.1 is trivially 

satisfied for A(E) = 0. 

COROLLARY 3.2. IfE,~y,i= 1,2; -, E i n  Ej = O , i # j ,  and%= 
uiEi, that is, for the partitioning of % into pairwise disjoint El, E2, ., 

Pl(Ei) I(1: 2) 2 I,ul(Ei) log - 
i ~ 2 ( ~ i ) '  

h(x) PI(E~) with equality vand  only f - = - [A], for x E Ei, i = 1, 2, a. 

~2(Ei) 
Proof. Use corollary 3.1 and (see problem 8.37) 

h(x)  1(1: 2) = b ( x )  log - dl@) = 2 h(x) log ffl dA(x). 
Mx) i Ei A(x> 

The properties in theorem 3.1 and corollaries 3.1 and 3.2 [cf. Lindley 
(1956), Savage (1954, p. 235)] are convexity properties related to the fact 
that t log t is a convex function and are in essence Jensen's inequality 
[Jensen (1906)l. [See problem 8.31. For details on convex functions the 
reader may see Blackwell and Girshick (1954, pp. 30-42), Fraser (1957, 
pp. 52-55), Hardy, Littlewood, and P6lya (1934)l. We also see from 
corollary 3.1 that the grouping of observations generally causes a loss of 
information [cf. Fisher (1925b), Wiener (1948, p. 79)]; the left-hand side 
of the inequality of corollary 3.1 is the discrimination information in the 
elements of the set E, whereas the right-hand member of the inequality is 
the discrimination information in the set E. The necessary and sufficient 
condition of corollary 3.1 that the information not be diminished by the 

h(x) fi(x) grouping may also be written as - = - [A] for x E E, which states 
Pl(E) P2(E) 

that the conditional density of x given E, is the same under both hypotheses. 
We may treat all x E E for which the condition for equality in corollary 3.1 
is satisfied as equivalent for the discrimination. 

As illustrations of theorem 3.1 and corollaries 3.1 and 3.2, we have the 
following: 

Example 3.1. (See example 4.2 in chapter 1 and theorem 3.1 .) 
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where p i >  0, i =  1,2; ,n,  p1 + p a + .  - + p n  = 1. It follows that 
log n 2 -xpi logpi, with equality if and only if pi = ]In, i = 1,2, . r nr 
corresponding to the fact that the greatest uncertainty in a situation with n 
alternatives occurs when all the alternatives are equally probable [Shannon 
(1 948)l. 

Example 3.2. (See corollary 3.1 .) 

(3.7) pll log a + p12 log + + pin log fk! 
P2l P a  P2n 

for pij > 0, i = 1, 2, j = 1,2, a, n, with equality if and only if 

Example 3.3. (See corollary 3.2.) For Poisson populations with parameters 
and A2 we have, 

11 2 ewA1(& - Al) + e-AlAl(4 - Al) + e-Adl log - 
4 

1 - e-4 - A1e-4 + (1 - e-4 - Ale-") log 1 - e-4 - Q-4' 

with equality if and only if 

A numerical illustration, grouping values x 2 4, is in table 2.1 of example 2.2 
of chapter 4. 

E x q l e  3.4. (See corollary 3.1 .) 
P 

- x y  gfi where gdx), i =  1,2, are the with equality if and only if - - 
fdx, Y) gdx) 
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marginal densities of z. The necessary and sufficient condition for equality 
may also be written as f,(z, y)/g1(z) =.f,(z, y)/g2(z) or hl(ylz) = h2(ylz), with 
hi(ylz), i = 1,2, a condiiional density of y given z. 

As a matter of fact, (3.8) is also an illustration of: 

COROLLARY 3.3. (a) I(1: 2 ; X, Y) 8 I(1: 2; X) with equality if and only 
if I(1:2; YIX) = 0; (b) I(1:2; X, Y) 8 I(1:2; Y) with equality if and 
only if I(l:2; XI Y) = 0; (c) I(1:2; X, Y) 8 I(1:2; YIx) with equality 
ifandonlyifI(1:2; X) = 0; (d) I(1:2; X, Y) 2 I(1:2; X I  Y) withequality 
if and only if I(1: 2; Y) = 0 [cf. Lindley (1956)l. 

ProoJ: Use theorem 3.1 in conjunction with theorem 2.2. 

4. INVARIANCE 

If the partitioning of the space % in corollary 3.2 is such that the 
necessary and sufficient condition for equality is satisfied, that is, if the 
conditional density of x given Ei is the same under both hypotheses for 
all E, of the partitioning, we may designate the partitioning 3Y = uiEi as 
a suflcient partitioning for the discrimination. Note that the coarser 
grouping of a sufficient partitioning is as informative for discrimination 
as the finer grouping of the space %. In terms of the concept that a 
statistic is a partitioning of % into sets of equivalent x's [Lehmann (1950b, 
pp. 6--7)], we may say that the statistic defined by the partitioning% = uiEi 
is sufficient for the discrimination if the necessary and sufficient condition 
for the equality to hold in corollary 3.2 is satisfied. This is consistent 
with the original criterion of sufficiency introduced by R. A. Fisher 
(1922b, p. 316): "the statistic chosen should summarise the whole of the 
relevant information supplied by the sample," and further developments, 
for example, by Fisher (1925a, b), Neyman (1935), DuguC (1936a, b), 
Koopman (1936), Pitman (1936), Darmois (1945), Halmos and Savage 
(1949), Lehmann and Scheffi (1950), Savage (1954), Blackwell and 
Girshick (1954, pp. 208-223), Bahadur (1954). [Cf. Fraser (1957, pp. 
16-22).] 

To continue the study of the relation between "information" and 
b'sufficiency," let Y = T(x) be a statistic, that is, T(x) is a function with 
domain % and range g ,  and let Y be an additive class of subsets of g. 
We assume that T(x) is measurable, that is, for every set G E Y ,  the 
inverse image set T-l(G) = {x: T(x) E G) [T1(G) is the set of elements x 
such that T(x) E GI is a member of the class 9' of measurable subsets of 
% (see section 2 of chapter 1). The class of all such sets of the form 
T1(G) is denoted by T-l(9). We thus have a measurable transformation 
T of the probability spaces (%, 9, pi) onto the prob~bility spaces 
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( 3 ,  Y ,  vi)y where by definition vi(G) = ,ui(T-l(G)), i = I, 2 [Fraser (1957, 
pp. 1-16), Halmos and Savage (1949), Kolmogorov (1950, pp. 21-22), 
Loive (1955, p. 166)l. If we define y(G) = I(T-'(G)), then v1 = v2 = y 
(the measures are absolutely continuous with respect to one another), and 
as in section 2 of chapter I, the Radon-Nikodym theorem permits us to 
assert the existence of the generalized probability density gi(y), i = 1,2, 
where 

P 

for all G EY. The function value gi(y) is the conditional expectation of 
f,(x) given that T(x) = y and is denoted by EA(/,ly) [Fraser (1957, p. IS), 
Halmos and Savage (1949), Kolmogorov (1950, pp. 47-50), Loive (1955, 
pp. 337-344)]. 

In terms of the probability spaces ( 3 ,  Y ,  vi), i = 1,2, the discrimination 
information is [cf. (2.4) of chapter I] 

and [cf. (2.5) of chapter 11 

We shall need the following lemma for the proof of theorem 4.1. 
Following the notation of Halmos and Savage (1949), if g is a point 

function on g ,  then g T  is the point function on % defined by gT(x) = 
g(T(x))* 

LEMMA 4.1. Ifg is a real-valued function on g ,  then 

for every G E Y ,  in the sense that if either integral exists, then so does 
the other and the two are equal. 

Proof. See Halmos (1950, p. 163), lemma 3 of Halmos and Savage 
(1949), Ldve  (1955, p. 342). 

THEOREM 4.1. I(1: 2; AT) 2 I(1: 2; 9Y), with equality if and only if 
G(x)h(x) = g1(T(x))Ig2(T(x)) [A]. 

Proof. If I(1: 2; AT) = coy the result is trivial. Using lemma 4.1 above, 

~ l ( u )  g1T(x) 
I( 1 : 2; W = /dvl(y) log - = jdPdx) log zj 

g2(Y) 
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and therefore 

Setting g(x) = X(x)g2 T(x) 
fi(x)g1~(x)' 

where p12(E) =J fi(x)~lT(x> dA(x), for all E E 9'. Since 
E g27'(x) 

the method of theorem 3.1 leads to the conclusion that 1(1:2;%) - 
I(1:2; 9Y) 2 0, with equality if and only if 

The necessary and ,sufficient condition for the equality to hold in 
theorem 4.1 may also be written as [see (4. I)] 

-- -- or f;(x) - - 
~ l ( u )  g2b) 

[A], 
E ~ C f , l ~ )  EA(fil~> 

that is, the conditional density of x, given T(x) = y, is the same under 
both hypotheses. A statistic satisfying the condition for equality in 
theorem 4.1 is called a sufficient statistic for the discrimination. [Cf. 
Mourier (195 I).] 

Suppose now that the two probability measures p, and p2  are members 
of a set m of measures, for example, a set with all members of the same 
functional form, but differing values of one or more parameters. We 
assume that the set m of measures is homogeneous, that is, any two mem- 
bers of the set are absolutely continuous with respect to each other. By 
means of the Radon-Nikodym theorem, we may represent each member 
of the homogeneous set by a generalized probability density with respect 
to a common measure [Fraser (1957, p. 211, Halmos and Savage (1949)l. 
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THEOREM 4.2. Ifpl and p2 are any two members of a homogeneous set 
m of measures, then I( I : 2 ; %) 2 I(1: 2 ; g), with equality if and only if the 
statistic Y = T(x) is suflcient for the homogeneous set m. 

Proof: The necessary and sufficient condition given by (4.5) is now 
equivalent to the condition that the generalized conditional density of x, 
given T(x) = y, is the same [A] for all measures of the homogeneous set 
m or the defining condition for T(x) to be a sufficient statistic [Fisher 
(1 922b), Neyman (1935), Darmois (1 936), Doob (1 936), Halmos and 
Savage (1949), Lehmann and Scheffe (1950), Rao (1952), Savage (1954), 
Blackwell and Girshick (1954), Bahadur (1954), Lokve. (1955, pi 3461, 
Fraser (1957, p. 17)]. 

LEMMA 4.2. Iff is a real-valued function on %, then a necessary and 
suficient condition that there exist a measurable function g on 'Y such that 
f = gT is that f be measurable T 1 ( F ) ;  if such a function g exists, then it 
is unique. 

Proof: See lemma 2 of Halmos and Savage (1949). 

COROLLARY 4.1. I(1: 2; %) = I(1: 2; 'Y) if Y = T(x) is a nonsingular 
transformation. 

Proof: If T is nonsingular, T-l(Y) is Y and therefore f,(x), i = 1,2, 
is measurable T1(Y),  and the conclusion follows from lemma 4.2 and 
theorem 4.2. Note that an alternative proof follows from the successive 
application of theorem 4.1 for the transformation from % to 'Y and the 
inverse transformation from 'Y to %. 

COROLLARY 4.2. I(1: 2 ; T-l(G)) = I(1: 2 ; G) for all G E i f  and only 
if I(1:2;%) = 1(1:2;'Y); that is, ifand only if Y = T(x) is a suficient 
statistic. 

Proof. Let x,(x) be the characteristic function of the set E, that is, 
xE(x) = 1 if x E E, and x,(x) = 0 if x 4 E. We have 

441(x) g1 T(x) log -9 

= T 1  1 p l ( - l ( ) )  g2T(x) 

I(1: 2 ; T-l(G)) = 

An application of the method of theorem 4.1 to I(1: 2; T-l(G)) - 
1(1:2; G) and use of theorem 4.2 completes the proof. 
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We may "randomize" corollary 4.2 by introducing the function y(y) 
such that 0 i y(y) i I ,  for example, y(y) may represent the probability 
for a certain action if y is observed. From the definition of conditional 
expectation [Fraser (1957, p. 15), Halmos (1950, p. 209), Halmos and 
Savage (1949), Kolmogorov (1950, p. 53), Lohe  (1955, p. 340)] we have 

where 4(x) = yT(x) = y(T(x)), y(y) = EA(4(x)lT(x) = y), that is, y(g) is 
the conditional expectation (using the measure A) of 4(x) given T(x) = y. 
(See lemmas 3.1 and 3.2 in chapter 3.) 

with equality if and only if Y = T(x) is a suflcient statistic. 
Proof. An application of the method of proof of theorems 4.1 and 4.2 

yields the result. 

The preceding theorems and corollaries show that the grouping, 
condensation, or transformation of observations by a statistic will in 
general result in a loss of information. If the statistic is sufficient, there is 
no 'loss of information [cf. Fisher (1925b, 1935, 1956, pp. 150-152)) 
There can be no gain of information by statistical processing of data. 
A numerical illustration of this loss of information is in section 2 of 
chapter 4. [Cf. Feinstein (1958, pp. 70-71).] 

Corollaries 4.2 and 4.3 show that the sufficiency of a statistic for a set 
of distributions is i o t  affected by truncation or by selection according to 
the function 4(x) = y(T(x)) [cf. Bartlett (1936), Pitman (1936), Tukey 
(1949)l. Averaging, on the other hand, is a statistical procedure or 
transformation that will generally result in a loss of information. A trans- 
formation that considers only a marginal distribution in a multivariate 
situation (ignores some of the variates) also is one that will generally result 
in a loss of information. (See corollary 3.3; also section 8 of chapter 9.) 

5. DIVERGENCE 

In view of our assumption in section 2 of chapter 1 that the probability 
measures ,ul and ,u2 are absolutely continuous with respect to one another, 
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I(2 : l), defined in (3.1) of chapter 1, satisfies theorems and corollaries 
similar to those thus far developed for I(1:2). Since J(1,2) = I(1:2) + 
42: I), we also have a similar set of results for J(1,2) that we shall state, 
using the notation and symbols of sections 2, 3, and 4, leaving the proofs 
to the reader. 

THEOREM 5.1. J(1,2) is additive for independent random events; that is, 
for X and Y independent J(1,2; X, Y) = J(1,2; X) + J(1,2; Y). 

THEOREM 5.2. 
J(1,2; X, Y) = J(1,2; X) + J(I,2; YIX) 

= J(l ,2;  Y) + J(l,2; XI Y). 

THEOREM 5.3. J(1,2) is almost positive dejnite; that is, J(l, 2) 1 0, 
with equality ifand only iSf,(x) = f2(x) [A]. 

for A(E) > 0, with equality if and only ifsh(x)U2(x) = pl(E)/p2(E) [A] for 
x E E. 

COROLLARY 5.2. IJ  E , E Y ,  i =  1,2; . ,E inE,=O,  i # j ,  and 

with equality if and only if ~(x)&(x) = p1(Ei)/p2(Ei) [A] for x E Ei, 
i =  1,2, -. 

COROLLARY 5.3. (a) J(l, 2; X, Y) 2 J(1,2; X), with equality if and 
only if J(l, 2; YIX) = 0; (b) J(1,2; X, Y) 2 J(l, 2; Y), with equality if 
and only if J(l ,2;  xIY) = 0; (c )  J(1,2; X, Y) 2 J(1,2; YIx), with 
equality i fand only ifJ(1,2; X) = 0; ( d )  J(1,2; X, Y) 2 J(l, 2; XI Y), 
with equality if and only if J(l, 2; Y) = 0. 

THEOREM 5.4. J(l, 2; 1 J(I $2 ;  g), with equality if and only if 

h(x)l/(x) = g,(T(x))/g2(T(x)) [A]. 
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THEOREM 5.5. I f  pl and p2 are any two members of a Itomogci11 >us set 
m of measures, then J(1,Z; 3) 2 J(l, 2; g ) ,  with equality if and only ij 
the statistic Y = T(x) is suflcient for the homogeneous set m. 

COROLLARY 5.4. J(I,2; ft) = J(1,2; tY) Y Y = T@) is a nonsinguIar 
transformation- 

COROLLARY 5.5. J(1,2; T-YG)) = J(1,2; G) for all G E 9- if and only 
( 1  2 ( I ,  2; ) ;  that is, Yand only i/  Y = T(x) ir a sufficient 
statistic. 

with equality if and only if Y = T(x) is a suflcient statistic. 

At this point it may be appropriate to describe the problem of dis- 
crimination between two hypotheses H, and H, in terms of the language of 
communication theory, and to derive a result that may throw further light 
on the meaning of J(1,2). We shall consider a model consisting of a 
source that generates symbols, a channel that transmits the symbols 
imperfectly (a noisy channel), and a receiver which will ultimately act on 
the basis of the message it has received (or thinks it has received). For 
general models of the communication problem and the basis for the terms 
used see Shannon (1948), Shannon and Weaver (1949), McMillan (1953), 
Khinchin (1957), Joshi (1957), Feinstein (1958). 

Suppose the source, or input space, is a state of nature characterized by 
the hypotheses Hl and H,, with P(Hl) = p and P(H,) = q = 1 - p. 
The input space then consists of only two symbols H,, 8 = I ,  2. These 
symbols are transmitted by some discrete random process with proba- 
bilities p and q, successive symbols being independently selected. The 
receiver, or output space,-is the sample space % of elements x in section 2 
of chapter I. The noisy channel is the observation procedure described 
by the generalized probability densities f,(x), 8 = 1, 2, of section 2 of 
chapter 1, such that ,u,(E) is the conditional probability that the trans- 
mitted symbol H, is received as x E E E 9. This communication system 
may be denoted by (p;f,,f,), and the channel by (A,&). The rate 
R(p;f,, f,) of transmission of information by the communication system 
(p;f,, f,) is defined by Shannon (1948) as the difference between the 
entropy (see section 4 of chapter I) of the source, or input entropy (the 
prior uncertainty), and the mean conditional entropy of the input symbols 
at the output (the posterior uncertainty), that is, 
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whereX(6), the prior uncertainty, andX('(81 X), the posterior uncertainty, 
are given by 

= -p log p - q 1% 9, 

(5.2) #("(ox) =E(-P(H~IX) log P(HlIx)-P(H21x) log P(H21x)) 

= - J;P(H, 1x1 log 4Hl  1x1 + P(H2x) log P(H,i))f(x) dA(x), 

with Ax) = pfr(x) + q&(x). [Cf. Lindley (1956, pp. 986-990).] The 
rate of transmission of information by the communication system is also 
a measure of the relation between the input and output symbols. Using 
the values forZ(6)  andZ(81 X) in (5.1) and (5.2) above gives 

= (pf,(x) log - + q m )  log ''0) dl(x) 
Ax) 

where P(H8, x) dA(x) = P(H,Ix)fix) dA(x) is the joint probability of He 
P(H x 

and x. Note that P ( H 8 ,  x) log " ) dA(x) may be defined (cf. 
8-1 

(4.2) of chapter I] as the mean information in X about He. 
The capacity CV;, f,) of the channel (f,,f,) is defined by Shannon (1948) 

as max R(p; f,,-f,), that is, the maximum rate of transmission for all 
0 s p  sl 

choices of the source. Denoting the maximum of C(j;,f,)/J(l, 2) over all 
f, andfi that are generalized densities with respect to a common measure by 

max C(fi'f,), we can state id. Sakaguchi (1955, 1957a)l: 
(f1,fz) J(L 2) 

max c(fi.fe) < !. 
(f1,fd J(L 2) - 4 

Proof: Note that as a function of p, 0 4 p $ I ,  R@;fi, fa in 
(5.3) is concave (the second derivative is never positive); R(O;f,,fJ 
= R(1; fl,/,) = 0; and R' denoting the derivative with respect to p, 
R'(O;fi, f,) = I(I:2) defined in (2.5) of chapter 1, R'(1 ;f,,f,) = - 1(2: 1) 
defined in (3.1) of chapter 1 ; R(p;f,,fi) is a maximum for p such that 

. f,(x> 
If,(x) log dl(x) = e J'f,(x) log @? dA(x). 

fc.1 



26 INFORMATION THEORY AND STATISTICS 

Next, by writingL(x) = pf;,(x) + qL(x), i = 1, 2, and using the convexity 
property as in example 3.2, we have 

dA(x) 5 pI(2: I), so that R(p;fi,fi) S pq(I(1: 2) 

+ 1(2:1)), or C(f,,f,) = max R(p;h,f,) 5 BJ(l,2), from which we 
O l p l l  

finally get the inequality in the theorem. 

6. FISHER'S INFORMATION 

The information measures that we have been studying are related to 
Fisher's information measure. Consider the parametric case where the 
members of the set m of theorem 4.2 are of the same functional 
form but differ according to the values of the k-dimensional parameter 
8 = (O,, 02, - . ., 8,). Suppose that 8 and 8 + A0 are neighboring points 
in the k-dimensional parameter space which is assumed to be an open 
convex set in a k-dimensional Euclidean space, and f,(x) = f(x, B), 
f (x)l= f(x, 8 + A8). We shall show in this section that I(B:B + A0) 5-- - 
and J(B,8 + A8) can be expressed as quadratic forms with coefficients 
defined by Fisher's information matrix. [Cf. Savage (1954, pp. 235-237).] 
We may write 

and 

r(e: e + Ae) = - fix, e)A I O ~ A X ,  0) ~A(x), S . . .  

where Afi, 8) =fix, 0 + A8) - f(x, 8) and A log@, 0) =>log fix, 0 + AB) 
.. - logfix, 8). 

Suppose that the generalized density f(z, 0) satisfies the following 
regularity conditions [cf. Cramer (1946a, pp. 500-501), Gurland (1954)l: 

a I O ~ S  a2 I O ~  j- a3 logf 
I. For all x[A], the partial derivatives - ae, - ' ae, ae, ' ae, ao, ae, 
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I rexist, for all a, /?, y = 1, 2, . . -, k, for every 0' = (el', O,', ., 8,') 
i :belonging to the nondegenerate interval A = (0, < 0,' < 8, + AO,), 
I 

;a = 1,2, . ,k, 

2. For every 8' E A, < WX), 

for all a, /?, y = 1, 2, . ., k, where F(x) and G(x) are integrable [A] over 
the whole space and Sfix, B)H(x) dA(x) < M < a, where M is independent 
of 8 = (81, 82, ., 8,). 

3. J ~A(x)  = 0 , j  - = 0, for all a, /? = I, 2, .,k. ae, ae, 
We may now use the Taylor expansion about 8 and obtain 

(6.1) logfix, 8 + A8) - log fix, 8) 

1 " k  

+ 3!  - a=l I ,-I I I Ae, Aey ( aea """ ae, ae, e + 

where in the last term 0 is replaced by 8 + t A8 = (81 + tl AOl, 
82 + t2 AO,, . 0 ,  8, + tk Aek), 0 < ta < 1, a = 1, 2,. -, k. We also 
have 

alogf I af a210gf I ay 
(6.2) .- 1 af af 

4 -=------.-.-. 
ae, f aea9 ae, ae, f aea ae, f 2  ae, ae, 

We may therefore write 

(6.3) I(e:e + ~ e )  = k , e ) l o g  f(x. 0) ..-b dA(x) 
,-.. f(,T%.e--+---A@) 

k 
= - J ( I sea/. y) ~ I ~ ( x )  

a = 1 

k k  

2! ,=I ,=I 
a2*ogf) dA(x) - J ( X  I A e a A e ~ f .  aeaao, 

k k  a= log f 
ae, ae, ae, 

k 
= - I aeaJ$ ~A(x)  

a =c 1 a 

1 "  af 
dA(x) - - - -  

ae, ae, f aeaae, 
a= log f 

- 3!a=.1 f p-1 i ,=I sea A ~ P  ~ e y J f -  (80, 80, as,). +tho ~A(x). 
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Accordingly, because of the regularity conditions, to within second- 
order terms, we have 

(6.4) I(e:e + Ae) = - 1 1 ga,‘)AOaA8,'), 
2 a = l  ,')=I 

with 

and G = (gab) the positive definite Fisher information matrix [Bartlett 
(1955, p. 222), Doob (1934), Fisher (1956, p. 153), Huzurbazar (1949), 
Jeffreys (1948, p. 158), Mandelbrot (1953, pp. 34-35), Rao (1952, p. 144), 
Savage (1954, pp. 235-238), Schiitzen berger (1 954, p. 54)]. 

We shall sketch the proof of the related result for J(8, 8 + AO): 

AAx, 8) 
A logf(., 0) = log ( I  + AAx/(2. 8)) f(x, o) , 

f(x, 0) 

7. INFORMATION AND SUFFICIENCY 

In  the definition of 1(1:2) in section 2 of chapter 1 we assumed that the 
probability measures p1 and p2 were absolutely continuous with respect 
to each other. The essential reason for this was the desire that the 
integrals in 1(1:2) and '42: 1 )  be well defined, so that J(1,2) could exist. 
If we do not concern ourselves with J(l, 2), but limit our attention only to 
1(1:2), we may modify somewhat the initial assumptions, as well as the 
assumption about the homogeneous set of measures in theorem 4.2. If 
we re-examine the integrals in (2.4) and (2.5) of chapter 1, we see that 
they are still well defined iff,(x) = 0, x E E, butf,(x) # 0, x E E, A(E) # 0, 
since 0 log 0 is defined as zero. Thus, limiting ourselves only to 1(1:2), 
we need assume simply that the probability measure p1 is absolutely 
continuous with respect to the probability measure p2;  that is, pl(E) = 0 
for every measurable set E for which p2(E) = 0. According to the 
Radon-Nikodym theorem (see section 2 of chapter 1, and references 
there) : 
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A necessary and sufficient condition that the probability measure p1 be 
absolutely continuous with respect to the probability measure p, is that there 
exist a nonnegative function f(x) on .T such that 

for every E in 9'. The function f(x), the Radon-Nikodym derivative, is 
unique in the sense that if 

r 

for every E in 9, then fix) = g(x) b2].  We write dpl(x) = ftx) dp,(x) 
and also f(x) = dpl/dp2. 

The properties in sections 2 and 3 are valid if the probability measure 
p1 is absolutely continuous with respect to the probability measure p,, 
since with f(x) defined as in (7.1) we have [compare with (3.1), noting that 

r. 

fi(x) = f(x), fi(x) = 1, since p2(E) = JEdp2(x)1 

Note that according to corollary 3.1 a set E provides no information for 
discrimination in favor of Hl if pl(E) = 0 but p,(E) # 0. Theorem 4.2 
also holds if the requirement that the probability measures p1 and p, are 
members of a homogeneous set of probability measures is modified so 
that they are members of a dominated set of probability measures; a set 
M of measures on 9' is called dominated if there exists a measure 1 on 9, 
1 not necessarily a member of M, such that every member of the set M 
is absolutely continuous with respect to 1. [See Fraser (1957, p. 19), 
Halmos and Savage (1949).] The Radon-Nikodym theorem can then be 
applied in the form where for every pi of the set of dominated measures, 
we have 

p i  ( x )  1 )  for all E e 9'. 

Example 7.1. Suppose that the populations under HI and H2 are respectively 
rectangular populations with 0 i x i el, 0 i x i 02, 8, < 02, and 

= 0, elsewhere, = 0, elsewhere, 
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Note that p , ( ~ )  = dx = 0, but that p2(E) = dx = (02 - O1)/O2 

+ 0, when E = (x: el I; x I; e2). We see that p2 is not absolutely continuous 
with respect to pl, but that p1 is absolutely continuous with respect to p2, since 
p1 = 0 whenever p2 = 0. Both pl and p2 are absolutely continuous with 
respect to Lebesgue measure. 

Now 

1/01 
1(1:2) =f; log-dx + 

0 

1/02 
0 log - dx, i 1/02 

or in the notation of (7.3), 
dx 

I(l:2) =Cf(x)  log f(x) s. 
2 

with f(x) = 02/01 for 0 I; x I; el, and f(x) = 0 for 8, < x I; 02, so that 

02 (1:2) = ($ log $1 2 = logr 
1 

and therefore for a random sample On of n independent observations 
I(1:2; On) = n log (0,/0,). If % is the space of n independent observations, 
and Y = T(x) = max (x,, x,, *, x,), it is known that gi(y) = nyn-l/Oin, 
0 I; y I; 8,, and zero elsewhere, i = 1,2 [Wilks (1943, p. 9111. 

We thus have 

Since n log (O2/Ol) = I(1: 2; .%?') = I(1: 2; B), we conclude from theorem 4.2 
that the largest value in a sample from a rectangular population, with lower 
value of the range at zero, is a sufficient statistic. [Cf. Lehmann (1950a, p. 3-3).] 

Example 7.2. Consider the exponential populations defined by h-x) = 
e-(z-Oi), Oi I; x < co, h(x) = 0, - co < x < 8,, i = 1,2, 8, > 8,. We find 
that 

and for a random sample On of n independent observations 1(1:2; On) = 
nI(l:2; 01) = n(O1 - 8,). If % is the space of n independent observations 
and Y = T(x) = min (x,, x,, . a, xn), then it is known thatgi(y) = ne-n(v-of), 
8, I; y < co, and zero elsewhere, i = 1,2 [Wilks (1943, p. 9111. 

We thus have 

(7.8) I(1:2; B )  = J/:ne-n(v-") (no1 - n0d dy = n(B1 - 0).  

.. 
Since n(8, - 8,) = 1(1: 2; %) = 1(1: 2; B), we conclude from theorem 4.2 
that the smallest value in a sample from populations of the type e - ( ~ - ~ ) ,  0 I; 
x < co, zero elsewhere, is a sufficient statistic. 
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Example 7.3. Consider the Poisson populations with parameters A,, 1,. We 
find that 

and for a random sample On of n independent observations I(1:2; 0,) = 
nI(l:2; 01) = nAl log (&/id + n(& - 1,). If is the space of n independent 

m 

observations, and Y = T(x)  = 2 xi, then it is known that 
i - 1  

gi(y) = e-n*i(nAi)v/y!, y = 0, 1,2, a ;  i = 1,2 

[CramCr (1946a, p. 205)]. We thus have 

(7.10) I(1:2; g) = 5 e -nl.~(nll)v e -nAl(nll)v 
v=o y! log e - n 4 ( n ~ v  = rill log 5 + n(1, - 13. 

& 
A 

Since 1(1: 2 ;  .%?') = I(1: 2 ;  g), we conclude from theorem 4.2 that 2 xi is a 
i - 1  

sufficient statistic for Poisson populations. [Cf. Lehmann (1950a, p. 3-3).] 
Example 7.4. Consider the Poisson populations in example 7.3 so that 

I(1:2) is given by (7.9). Suppose % is the space of nonnegative integers and 
Y = T(x) is 0,  1 ,  2, according as x is 0, 1 ,  or 22 .  In example 3.3 we saw that 
I(1:2; .%?') > I(1:2; Y) and therefore Y is not a sufficient statistic for the 
Poisson populations. [Cf. Lehmann (1950a, p. 3-4).] 

8. PROBLEMS 

8.1. Compute I(1:2; X) ,  I(1:2; Yl X = x), I(1:2; YI x), I(1:2; X, Y )  in 
example 2.1 :' (a) when p12 = pZ2 = p2; (b) when plx = p,; (c)  when pl, = p,,, 
Plv = p2v. 

8.2. Verify corollary 3.3, using appropriate cases of example 2.1. 

8.3. Show that the equality holds in example 3.4 if x is a sufficient statistic. 

8.4. If f,(x), b ( x ) ,  f (x)  are generalized densities of a homogeneous set of 
measures, then 

When does the equality hold? 

8.5. Prove the theorems and corollaries in section 5. 

8.6. What is the maximum value of R(p; f i ,  fi) in (5.3) for variations of p? 

8.7. In the notation of section 6, what is the value of 1(8 + he:@ as a quad- 
ratic form? 

8.8. Show that for the populations and statistics in examples 7.1 and 7.2, 
the conditions for equality in theorem 4.1 are satisfied. 

8.9. In (7.5) take 8, = 8 + A8, 8, = 8. Compare with the results according 
to section 6. 
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8.10. In (7.7) take 6, = 6 + A8,e2 = 8. Compare with the results according 
to section 6. 

8-11. Derive the values for gi(y) given in examples 7.1, 7.2, and 7.3. 

8.12. Show that the number of "successes" observed in a sample of n in&- 
pendent observations is a sufficient statistic for binomial populations, 

8.13. Show that the sample average is a suffcient stahtic for normal 
populations with a common variance. 

8.14. Let f(x) be a probability density with mean p and finite variance aZ, 
and such that f(x) logflx) is summable (t log t is defined to be zero if t = 0). 
Show that 

I-: f (x)  log f(x) dx 2 log ( 1  lo.\/%) 

with equality if and only if f(x) is equal almost everywhere to the n o d  
1 

( x  - ' I 2  [Cf. Shannon (1948, pp. 629- probability density -- exp (- 202 ) 
ad27r 

630), Woodward (1953, p. 25), Am. Math. Monthly, Vol. 64 (1957, pp. 51 1-512J.l 

8.15. Generalize the result in problem 8.14 to multivariate probability 
densities. 

8.16. Compute J(l ,  2; X),  J(1,2; Y I X = x), J(1,2 ; YI X),  and J(l ,  2; X, Y )  
for the populations in example 2.1. 

8.17. Compute the value of I(1:2; X, Y )  in example 2.1 for pl = p2 = p, 
= ,I+, p2= = pn, ox2 = L T ~ .  Compare the value you get with 2I(1:2; X), 

as p varies from - 1 to + 1 .  

8.18. Compute J(1, 2), J(1, 2; On), J(1,2; g) for the populations in example 
7.3. What are the corresponding values for the populations in examples 7.1 
and 7 2 ?  

8.19. In (53)  take fe(x) = ,uo(Ei), x E Ei, i = 1,2, 8 = 1,2, where X = 
4 u 4, 4 n E, = 0, pl(E1) = p2(&), and p = q = Show that with these 
values R(p;fi,,fk) = pl(E1) log 2,ul(El) + pl(&) log 2p1(Q, which is the same 
as the value of 1(1: 2) for the binomial distributions with N = 1 ,  p1 = pl(E1), 
ql = 1 -PI  = fi = q2 = 1. [See your answer to problems 5.2(a) and 
5.8 in chapter 1 .] What is the value of R(p ; f,, f,) if pl(E1) = ,u2(&) = 1 ? 

8.20. Compute the values of I(1:2 ; X), 1(1: 2 ; Y lx = O),  1(1: 2 ; Y I  X )  for the 
distributions in problem 5.8 of chapter 1 .  Do your values confirm corollary 
3.3(c) ? 

8.21. Suppose that in I(1:2) = d ( x ) ,  f,(x) = xA(x) /A(~) ,  

fi(x) = xAng(x)lA(~ n B), where A E 9, B E 9, A(A) z 0, A(A n B) z 0, 
and zA(x) is the characteristic function of the set A. Show that, for any set 
E E ~ ,  

(a) pl(E) = A(E n A n B)/A(A n B), pl(B) = 1 .  
(b) pdE) = A(E n A)lA(A), p2(B) = n A)/A(A). 
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(c) I f  A(E) = 0, then pl(E) = y2(E) = 0. 
(d) If p&E) = 0, then pl(E) = 0. 
(4 Iff,(z) = 0, thenf,(x) = 0. 

Note that (f) yields Wiener's definition of the information resulting from the 
additional knowledge that x E B when it is known that x E A [Powers (1956, 
pp- 44-45)]. 

8.22. With the data in problem 5.8 of chapter 1 ,  show that the partitioning 
T = E , U E ; ,  where E l = ( x = O , y = O ) U ( x =  I , y =  I )  and E,=(x=O, 
Y = 1 )  U ( x  = I ,  y = 0)  is a sufficient partitioning, or the statistic T(x, y) = 0 
for x = y, T(x, y) = 1 for x # y, is a sufficient statistic. 

8.23. With the data in problem 5.8 of chapter I ,  show that the statistic 
T(x, y) = x is not a sufficient statistic. 

8.24. Let f;(x), i = 1,2, - - -, n, be generalized densities of a homogeneous 
set of probability measures, and pi 2 0, i = 1,2, - . -, n, such that p, + p2 + 
- - + p n =  1.  If f(x) = plfi(z) + pzf2(4 + - - - + pmfn(x), show that the 

a x )  for variations of maximum value of R(p,; h) = log f~ 

the pi occurs when the pi are such that 

and that max RIP,; f i )  is then this common value. Show that R(pi; h) ;55 
0 S ~ i S l  

p i j J (  j )  Describe the related communication model as in .the last part 
ic j 

of section 5. 

8.25. Let J(x), pi, i = 1,2, - . -, n, and f(x) be defined as in problem 8.24, 
and suppose that g(x) is also a generalized density of the same homogeneous 
set of probability measures. Show that 

with equality if and only if h ( x )  = fkx) = - =fn(x) [A]. mote that this 
implies that for discrimination against g(x) the "mixture" of f,(x), . -, fn(x) 
given by f(x) provides less information than the mean of the information of the 
components of the mixture. See example 2.1 of chapter 3.1 

8.26. Let f(x) be the probability density of a random variable limited to a 
certain volume V in its space and such that f(x) log f(x) is summable ( r  log t is 

C 

defined to be zero if t = 0). Show that ( f(x) log.f(x) dx 2 log ( l /V) ,  with 
Jv 

equality if and only if f(x) is equal almost everywhere to the constant 1/V in 
the volume. [Cf. ~hannon (1948, p. 629).] 

8.27. Let f(x) be the probability density of a nonnegative random variable 
with mean ,h, and such that f(x) log f(x) is summable ( r  log r is deSned to be 
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a0 

zero if t = 0). show thatb f(x) log f(x) dx Z -log pe, with equality if and 

only if f(x) is equal almost everywhere to ( l / , ~ ) e - ~ s ,  x 2 0. [Cf. Shannon 
(1948, pp. 630-631).] 

8.28. Consider the discrete random variable x that takes the values x,,x2, 
n . . ., xn, and has the mean value p, that is, pj = Prob ( x  = xj), 1 zipj = p. 

j=l 
n e& 

Show that 3 p, logp, 2 Bp - log M(B), with equality if and only ifpr = -, 
1 = 

n n x jeBx~ M O  
where M(B) -7 @x,, p = j I x , p j  = 2 - = - log M(B). (See problem 

= 1 = 1 j - 1  M(B) dB 
8.36.) [Cf. Brillouin (1956, pp. 41-43), Jaynes (1957, pp. 621-623).] 

8.29. Show that 1(1:2; YI X) = 0, if and only if hl(ylx) = h,(ylx) for almost 
all x (see theorem 2.2 and corollary 3.3). 

8.30. Consider the discrete random variables x, y, wherepij = Prob ( x  = xi, 
n m 

Y yj), i = 1,2,. ., m, j = 1,2,. . *, n, P i  = 1 p i j ,  p.3 = Epij,pij > 0, 
j = 1 i = 1 

m n n n 1 1 pij = -1 pi. = 1 p., = 1 ,  and the entropies defined by x ( x ,  y) = 
i=l j=l r = l  j=l 

- 1 log&, x ( y l x )  = l p i . x ~ l x , )  = - 1 Zpij  log e. show that 
j pi. pi. t 3 pi- 
(a) x (~ ,  y) = x (~ )  + -my  1x1. 
(b) x ( x ,  y) 2 x ( x )  + x@). 
(4 x(Y1 2 x(y1x) .  

[Cf. Shannon (1948, pp. 392-396).] 

831. A real-valued function f(x) defined for all values of x in an interval 
a 2 x 2 b is said to be convex if for every pair a 2 (xl,x2) I b and all 
11 + & = 1 ,  At 2 0, j = 1,2, Alf(x1) + &f(x2) 2 f(Alx1 + 4 ~ 2 ) .  

The function is said to be concave if 1, f(xl)  + & f(xd 2 f(Alxl + Q2). 

The function is strictly convex or strictly concave if the equalities hold only 
when x1 = 3 2 .  Show that 

d2f(z) (a) If - 
d 9  

exists at every point in a S x 2 b, a necessary and sufficient 

dlf(x) 2 0. condition for f (x)  to be convex is that - 
dx2 

(b) If f(x) is a convex function and a 2 (xl, x2, . ., xn) 2 b, then 
Alf(x1) +.  . . + Anf(xn) 2 f(Alx1 +. . . + A g n ) , A t +  &+.  . . + An= I ,  
Ai 2 0, i = 1,2,. . .,n. 

(c) If .f(x) is a convex function, p(x) 2 0, dx = 1 ,  then 



PROPERTIES OF INFORMATION 3 5 

832. S U P P O S ~ P ~ ~ + P ~ ~ + .  . . + p i c =  l,pit > O , i =  1 , 2 ; j =  1,2,* . .,c, 
and qi j=afipi l+aj2pa+'  "+ajcpic, i =  1,2; j =  1,2; . .,c, with 
a j l + a j 2 + *  " + a j , =  1 , j =  1,2; .,c, a n d a l k + a w . + .  . + a c k = = l ,  
k = 1,2, . -, c, ajk 2 0. 

(1 Plj " Show that I(1:2; p) = 2 plj log - 2 2 qlj log = I(1:2; q), with equality 
j=1 Pu j=1 qu 

8.33. Suppose that x,, x2, -, x, is a random sample of a discrete random 
variable, Y = Y(xl, xz, ., x,) is a statistic, and Prob (xl, x2, 2,' -, x,IHi) 
# 0 i = 1 ,  Show that 

Prob (xl, x2, xn 'H1)  lHl, Prob ( Y = ylHl) 
y) 2 logprob ( y  ylHd' Prob (x,, x2, . . ., X,IH& 

When does the equality hold ? [Cf. Savage (1 954, p. 235).] 

8.34. Consider the Poisson populations with parameters m1 = 1, m2 = 2, 
m, = 3. Show that [see problem 5.2(c) of chapter 1 and the last paragraph of 
section 3 of chapter 11 

P1 q1 835. Show that F(pl,prJ = p l l ~ g - - + q l l ~ g - ,  O S p i S 1 ,  p i + q i =  1, 
Pz q2 

i = 1,2 is a convex function of pl(pz) for fixed PAP,). 

8.36. Suppose that in problem 8.28 the xj's are positive integers, and B1 > 0 
II II 

such that? c - ~ l l i  = 1. Show that ,u 2 %(p)lBl, where%() = - zpj logpj- - 1 j=l 
In particular, if x, = j, n = co, find and the values of pj and ,u for equality. 
[Note that this is related to the noiseless coding theorem. See, for example, 
Feinstein (1958, pp. 17-20), Shannon (1948, pp. 401403).] 

j'+(ailx)/Xz) )rU((x), that is, +(aijx) is the probability for "action" ai given x, 
and pi(ai) is the probability for "action" a t  under Hj, j = 1, 2. Show that 

and give the necessary and sufficient condition for equality. Derive corollary 
3.2 as a particular'casc of this problem. 
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Inequalities of Information Theory 

1. INTRODUCTION 

The Cramtr-Rao inequality, which provides, under certain regularity 
conditions, a lower bound for the variance of an estimator, is well known 
to statisticians from the theory of estimation. Savage (1954, p. 238) has 
recommended the name "information inequality" since results on the 
inequality were given by Frtkhet (1943) and Darmois (1945), as well as 
by Rao (1945) and CramCr (1946a, 1946b). Various extensions have been 
made by Barankin (1949, 195 l), Bhattacharyya (1 946b, 1947, 1948), 
Chapman and Robbins (1951), Chernoff (1956, with an acknowledgment 
to Charles Stein and Herman Rubin), Fraser and Guttman (1952), 
Kiefer (1952), Seth (1 949), Wolfowitz (1 947). 

We shall derive in theorem 2.1 an inequality for the discrimination 
information that may be considered a generalization of the Cramtr-Rao 
or information inequality (using the name recommended by Savage). 
[Cf. Kullback (1954).] Theorem 2.1 will play an important part in 
subsequent applications to testing statistical hypotheses. We relate 
theorem 2.1 (and its consequences) and the classical information inequality 
of the theory of estimation in sections 5 and 6. 

2. MINIMUM DISCRIMINATION INFORMATION 

Suppose thatf,(x) and f,(x) are generalized densities of a dominated set 
of probability measures on the measurable space ( X ,  9'), so that (see 
sections 2, 4, and 7 of chapter 2) 

a ( ~ )  = LL(x) c/i(x), E E 9, i = I ,  2. 

For a givenf,(x) we seek the member of the dominated set of probability 
measures that is "nearest" to or most closely resembles the probability 
measure p, in the sense of smallest directed divergence (see the last part 
of section 3 of chapter 1) 
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Since 1(1:2) 2 0, with equality if and only if f,(x) =fi(x) [?.I (see 
theorem 3.1 of chapter 2), it is clear that we must impose some additional 
restriction on f,(x) if the desired "nearest" probability measure is to be 
some other than the probability measure p, itself. We shall require 
f,(x) to be such that l(1: 2) is a minimum subject to f T(x>~,(x) dA(x) = 8, 
where 8 is a constant and Y = T(x) a measurable statistic (see section 4 
of chapter 2). In most cases, 8 is a multidimensional parameter of the 
populations. It may also represent some other desired characteristic of 
the populations. In chapter 5 we examine in detail the relation of 8 to 
observed sample values and the implications for the testing of statistical 
hypotheses. The underlying principle is that f,(x) will be associated with 
the set of populations of the null hypothesis andf,(x) will range over the 
set of populations of the alternative hypothesis. The sample values will 
be used to determine the "resemblance" between the sample, as a possible 
member of the set of populations of the alternative hypothesis, and the 
closest population of the set of populations of the null hypothesis by an 
estimate of the smallest directed divergence or minimum discrimination 
information. The null hypothesis will be rejected if the estimated mini- 
mum discrimination information is significantly large. We remark that 
the approach here is very similar to Shannon's rate for a source relative 
to a fidelity evaluation [Kolmogorov (1956, p. 104), Shannon (1948, pp. 
649-650)j. [Compare with the concept of "least favorable" distribution 
(Fraser (1957, p. 79)), and "maximum-entropy" estimates (Jaynes (1957)).] 

The requirement is then equivalent to minimizing 

with k and 1 arbitrary constant multipliers. Following a procedure 
similar to that in section 3 of chapter 2, set g(x) = fi(x)lf,(x) so that (2.1) 
may be written as 

If we write $(t) = t log t + kTt + It, to = e-'T-'-" , then $0) = $(to) 
+ (t - to)+'(to) + +(t - to)2+"(tl), where t, lies between t and to. But, as 
may be verified, $(to) = - to, $'(to) = 0, $"(tl) = 1/tl > 0, so that 
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where h(x) lies between g(x) and e-kT(z)-'-l. We see then from (2.3) that 

with equality if and only if 

The minimum value of (2.1) thus occurs for 

in which case (2.1) and (2.4) yield 

If we replace -k by r ,  for notational convenience, and set M2(r) 
= Sf2(x)e+7T(d dm), M2(r) < GO, we see from (2.6) that 1 = e- ' - '~~(r ) ,  
and from (2.7) that the minimum discrimination information is 

(2.8) I(* :2) = O r  - log M2(r), 

where 

for all r in the interior of the interval in which M2(r) is finite. Hereafter 
we-shall denote T by r(O) when it is important to indicate r as a function 
of 8. 

We can now state [cf. Kullback (1954), Sanov (1957, pp. 23-24)]: 

THEOREM 2.1. f 1/fi(x) and a given A(%) are generalized densities of a 
dominated set of probability measures, Y = T(x) is a measurable statistic 
such that O = j'T(xE(x) dA(x) exists, and M2(r) = Sf,(x)eTT(") dA(x) exists 
for r in some interval; then 

d 
(2.10) I(1: 2) 2 O r  - log M2(r) = I(* : 2), O = - log M2(r), 

dr 

with equality in (2.1 0) if and only if 

(2.1 1) fi(2) = .f *(XI = e'T(z%(x)/~2(~) [A]. 

We remark that P ( x )  = f Z ( ~ ) e ' ~ ( ' ) / ~ ~ ( r )  is said to generate an 
exponential family of distributions, the family of exponential type 
determined by&(%), as r ranges over its values. The exponential family 
f see Appendix page 389 
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is a slight extension of that introduced by Koopman (1936) and Pitman 
(1936) in the investigation of sufficient statistics. Many of the common 
distributions of statistical interest such as the normal, ~ 2 ,  Poisson, binomial, 
multinomial, negative binomial, etc., are of exponential type. [Cf. 
Aitken and Silverstone (1941), Blackwell and Girshick (1954), Brunk 
(1 958), Girshick and Savage (1951).] 

For f *(x) defined in (2.1 l), it is readily calculated that 

where E2(T(x)) = f T(x)f2(x) dA(x). 
In subsequent applications of theorem 2.1, we shall have occasion to 

limit the populations in the dominated set over which f*(x) may range. 
We shall call such /'(x), and the corresponding values of T, admissible. 
If there is no admissible value of T satisfying the equation 8 = (dldr) 
log M2(7), the minimum discrimination information value is zero. 

Before we look at some examples illustrating theorem 2.1, we want to 
examine the following results that are also related to theorem 2.1. [Cf. 
Chernoff (1 952, 1956, pp. 17-1 8), Kullback (1 954).] Suppose f,(x), 
f2(x), fi) are generalized densities of a homogeneous set of probability 
measures. Using theorem 3.1 of chapter 2, we have (see problem 8.4 in 
chapter 2) 

Ax) = SAX) log P 0, 

Ax) S f(x) log - dA(x) P 
&(XI 

with equality if and only i f f i )  =A(%) [A]. If in theorem 2.1 we take 
fc.) 

T(x) = log E(x)&(x)], the minimum value of I(fi fJ =I&) log =)dA&), 

subject to 0 = /T(xNx) I ( % )  = / j@) log 

(2.16) M,(T) = exp (T log m) dA(x) = /U(~)P(/,(~))~-' dA(X), 
h(x) 
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d 
d*) J ( x c x ) n x u r - ~  log, 

(2.17) 8 = - log M2(r) = 9 

dr 

We remark that iff,(%) and f2(x) are members of a family of exponential 
type determined by the same generalized density, then f(x) is a member of 
the same family. 

We note the following values, from (2.15)-(2.18) : 

8 
d 

r M2(7) . f(x) - M2(7) 87 - log M2(7) 
dr 

Anticipating the discussion in section 4 [cf. Chernoff (1952), Sanov 
(1957, p. 18)], we now state that: 

(a) as 8 varies from -1(2: 1 )  to 1(1:2), T varies continuously and strictly 
monotonically from 0 to 1 ; 

(b) M2(7), log M2(7) are strictly convex functions of T;  
(c) for 8 and T satisfying (2.17), 87 - log M2(7) varies continuously and 

strictly monotonically from 0 to 1(1:2) as T varies from 0 to 1 ; 
(d) 0 S M2(7) 5: 1,forO ST  2 1. 

When 8 = 0 there is therefore a value T,, 0 < T, < 1, such that 

(2.20) I ( f , : ~ ) = - l ~ g M ~ ( ~ ~ ) = - l o g m ~ ,  m 2 =  inf M,(T), 
O<s<l 

@ dA(x) = I&(%) log &@ dA(x) + /fo(x) log - dA(x), 
.fax) f2(4 fO(4 
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Bhattacharyya (1 943, 1946a) considered M2(7) in (2.16) for r = + as a 
measure of divergence between the populations. Chernoff (1952, 1956) 
proposes -log ( inf E(e77) as a measure of the information in an 

O < r < l  

experiment. Chernoff points out that this information measure is such 
that the information derived from n independent observations on a chance 
variable is n times the information from one observation, whereas the 
information derived from observations on several independent chance 
variables is less than or equal to the sum of the corresponding information 
measures. It is interesting to note that Schiitzenberger (1954, p. 65) 
defines the logarithm of the moment generating function (the cumulant 
generating function) as a pseudo information because it does not have all 
the properties of an information measure. 

Example 2.1. We illustrate theorem 2.1 with a simple numerical example. 

Let f,(x) = (:) p;qN-%, the binomial distribution for N = 2, p = 0.4, and 
2 

T(x) = x. Since M2(r) = 2 enf,(x) = (per + q)2, f *(x) = enfi(x)/M2(r) = 
z=o 

( f ) ( ~ * ) ~ ( q * ) ~ - ~ ,  where p* = peT/(pe7 + q), q* = ql(per + q). Note that 

f *(x) is also a binomial distribution. If we want E,(x) = 8 = 1, then 
1 = 2peT/(per + 9) = 2p* and p* = $- As possible distributions with E;(x) = 
1, we shall take the hypergeometric distribution j&z) = ( ) (N "9) /(I;), 
n = 4, p = 4 = q, N = 2; the discrete uniform distribution f3(x) = 4, 
x = 0, 1,2; the discrete uniform distribution fp(x) = 4, x = 0,2, f4(x) = 0, 
x = 1 ; the distribution f5(x) = 1, x = 1, f5(x) = 0, x = 0,2. The appropriate 
numerical values are given in table 2.1. 

TABLE 2.1 

Note that I(*:2) is the smallest value in table 2.1, and that r = log (q/ ) = 
log 1.5, log MAT) = 2 log + q) = 2 log ~q = 2 log 1.2, e = 1, 8:- 
log MAT) = log 1.5 - 2 log 1.2 = 0.405465 - 0.364643 = 0.04082 = I(* :2). 

This example a h  illustrates problem 8.25 of chapter 2 with /.(x) = *fa@) 
+ *fa@) and&) ---- fAx). 
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Example 2.2. Using the statistic Y = min (xl, x2, . ., xn) and the popula- 
tions and results in example 7.2 of chapter 2, we find that 

1 1 
with 8, + - = 02 + n(l - err= 

n 
n(e1-02) <n ,and1(* :2 ;0 )=  

(0, - 02) + lln 
n(8, - 83 - log (1 + n(Ol - 8a). Since 8, > 8, and x 2 log (1 + x) for 
x > -1, with equality if and only if x = 0 [Hardy, Littlewood, and P6lya 
(1934, theorem 142, p. 103)], we see that 
1(1:2; 3') = n(Ol - 0) 2 1(*:2; g )  = n(8, - 0) - log (1 + n(8, - 0)) 2 0, 

with equality for finite n if and only if 8, = 02, 
Example 2.3. We take [cf. Fraser (1957, p. 145)] T(x) = xE(x), where 

xE(x) -5 1 for x E E and xE(x) = 0 for x E 3 - E = E; that is, xE(x) is the 
characteristic function or indicator of the set E E 9, and 

We now have 

~ 2 ( r )  = /eTxE(~%(x) d~(x)  = Lex(x) d~(x)  + h ft(x) *) 

I(* :2) = pl(E)7 - log (e7p2(E) + p2(E)) 

We thus have 
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with equality if and only if 

Note that the foregoing is a special case of corollary 3.2 of chapter 2, with 
E, = E, E2 3 E: (See problem 7.19,) We remark here that the techniques of 
sequential analysis [Wald (1947)l in effect determine such a partitioning of the 
space 3, with p,(E) =. 1 - 8, p2(E) = a, and with no loss of information, 
since the partitioning is sufficient. 

3. SUFFICIENT STATISTICS 

We shall show that T(x) is a sufficient statistic for the family of 
exponential type determined byfk(x). We follow the notation and concepts 
of section 4 of chapter 2 and shall need the following lemmas. 

LEMMA 3.1. I f 2  is a measure on 9, i f g  is a nonnegative function on Y, 
integrable with respect to AT-' = y, and i f  p is the measure on 9 dejned 
by dp = gT d2, then d p F 1  = dv = g d2T-' = g dy, or equivalently, 
EA(gTl~) = g(Y) [Y] .  

r 
Proof. From p(E) gT(x) dA(x) and lemma 4.1 of chapter 2, it 

follows that v(G) = pT-l(G) = p(F1(G)) g(y) dy(y). [See Halmos 

(1950, p. 209), Halmos and Savage (1949), Kolmogorov (1950, p. 53), 
Lokve (1955, p. 340).] 

LEMMA 3.2. I f  A is a measure on 9, i f  f and h are nonnegative functions 
on F and tY respectively, and iff, hT, and f hT are aN integrable with 
respect to A, then EA( f hTly) = EA( f Iy) h Q  [y]. 

P 

Proof. I f  dp = f dA, then v(G) = EA( f ly) dyQ. From ~ ~ m m a  3.1 
Ja 

above and lemma 4.1 in chapter 2, we have 

and the conclusion (uniqueness) follows from the Radon-Nikodym 
theorem. [See Halmos and Sa-vage (1949), Kolmogorov (1950, p. 56). 
Lohve (1955, p. 350).] 



LEMMA 3.3. The distribution of the statbtic Y = T(x) for values of xfrom 
L m 

the respective populations p*(E) - f *(x) drZ(~), p2(E) = j f2(x) drZ(x), - JE K - - 
for E E 9, f *(x) = d ~ ( ~ ) / p ( z ) / ~ ~ ( ~ )  given respectiuely by 

- 

e ~ T ( z )  e ~ T ( z )  
Proof. Since dp* = f * dr~ = f 2 ( x ) d ~ ,  v * ( ~  = L E ~  ( f2(x) y)dy(y) 

M2(7) M2(7) 

dy(y), by lemma 3.2 above, and 

the conclusion (uniqueness) follows from the Radon-Nikodym theorem. 
Note that the generalized density g*(y) of the distribution of the statistic 

Y = T(x) generates an exponential family, the family of exponential type 
determined by g2(y). Hereafter, T(x) will be understood to be a measur- 
able function without further comment. 

THEOREM 3.1. The statistic Y = T(x) is a suficient statbtic for the 
famiZy of exponential type generated by f2(x). 

ProoJ Let r1 and 7, be any values in the range of T for which M2(7) 
is finite and letS,*(x) and g,*(y) be the generalized densities corresponding 
to ri, i = 1 ,  2. From lemma 3.3 we see that 

the necessary and sufficient condition (4.5) of chapter 2 that Y = T(x) 
be a sufficient statistic. 

Fixing p2 in the homogeneous set of measures in theorem 4.2 of chapter 
2, and letting p1 range over the homogeneous set, the necessary and suffi- 
cient condition (4.5) of chapter 2 that Y = T(x) be a sufficient statistic 
may be written as [cf. Fraser (1957, p. 20), Rao (1952, p. 135)] 

with h12(T(x)) = gl(T(x))/g2(T(x)) a function of T(x). We see that f 7%) 
has the form for j,(x) in (3.4). Hence we have an alternative proof of 
theorem 3.1. 
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Note that (3.4) by itselfis not sufficient for T(x) to be a sufficient statistic. 
The condition that p1 and p2 are measures of a homogeneous set, or, more 
strictly, that p1 is absolutely continuous with respect to p2, is essential for 
this criterion for a sufficient statistic, known as the Neyman criterion. 
Since h12 =f , l f , ,  unlessf, = 0 wheneverf, = 0, h12 is not defined, and if, 

P 

always for some set E, f, = 0 whenever f, = 0, then pl(E) - j; d2 = 0, - JE 

whenever p2(E) - f2 d2 = 0, or p1 is absolutely continuous with respect - JE 

to p2. An illustration with rectangular distributions may be helpful. 
(See example 7.1 of chapter 2.) 

Example 3. I. Let h(x) = 1 lo,, o A x A el, &(x) = 1/02,O A 5 A 02, 
= 0, x < 0, x > el, = 0, 5 < 0, 5 > e2. 

Suppose that 8, < 02, and set T(x) = 1, 0 A x A el, T(x) = 0, x < 0, x > 0,. 
Now .f,(x) 3 0 whenever fdx) = 0 so that p, is absolutely continuous with 
respect to p2. It is clear that,f,(x) = h12(T(x)~dx), where h,,(T(x)) = (O2/Ol) 1, 
0 A x A el, h,dT(x)) = (O2/e,) . 0, x < 0, x > 8,. Hence T(x) is a sufficient 
statistic (cf. example 2.3). However, when 8, > e2, f,(x) is not zero whenever 
fxx) = 0, pl is not absolutely continuous with respect to p2, and we cannot 
write h(x) = h12(T(x))f&x) for O2 < x A 8,. 

h*(x) COROLLARY 3.1 . q l ( r l  : r2;  3 )  = Ifl*(%) log d2(x), and l(rl : r2 ; 9) 

g 1 * 0  dy(y), then l(rl : r2 ; 3 )  = l(rl : 72;  g). 
g2*(Y) 

Proof. A consequence of theorem 3.1 above and theorem 4.2 of 
chapter 2. 

COROLLARY 3.2. lfB(r3 - T(xz*(x) d2(x) = ~(T(x) l r~) ,  i = 1, 2, then -I 
Proof. Verified by straightforward computation. (Cf. problem 5.6 

of chapter 1 .) 

4. EXPONENTIAL FAMILY I 

We now want to investigate the behavior of 1(*:2) = Or - log M2(r) 
as r and 0 vary. [See Blackwell and Girshick (1954), Blanc-Lapierre and 
Tortrat (1 956). Brunk (i 958). Chernoff (1 952). Girshick and Savage (1 95 I), 
Khinchin (1949, pp. 76-81), Kullback (1954). Le Cam (1956).] Proofs of 
the following lemmas are left to the reader. 
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LEMMA 4.1. For all T in the interval of$nite exirtence of M,(T), M 2 ( ~ )  
ir nonnegative, analytic, and 

with equality if and only if p2(x : T(x) = 0 )  = 1. 

d 
LEMM* 4-2- e(r) = / ~ ( x ) f * ( X )  dl(%) =/yg*(y) dy(y) = log M,(T) 

- - M2'(7) - where f*(x) and g*(y) are de$ned in lemma 3.3. 
M2(7) 

d We shall also indicate by r(8) the value of T for which 8 = - log M2(7) 
d7 

LEMMA 4.3, E((T(x) - 8)21~) = E((y - 8)21~) = var (917) = 

LEMMA 4.4. ( x )  - ) ( ) d l ( )  I f*(x) ( f * ' , , q~~) )2d l ( x )= l .  -- 

LEMMA 4.5. I f  ~ ( x  : T(x) = 8) # 1 ,  then O(T)  ir a strict@ increasing 
fwrction of T and log M2(r) is strictly convex. For a fxed value of 8, 
87 - log M2(7) is a concave function of T ,  with maximum value 0r(8) 
- log M2(7(8)), which is a convex function of 8, 

LEMMA 4.6. If O(0) = ~T(x)fe(x) dl(%) = Jyg2Q dy(y), then O(0) = 
M,'(O), M2(0) = 1 ,  Of(0) = E((y - 8(0))21~ = 0 )  = var ( y l ~  = 0). 

LEMMA 4.7, I f  8 = M2'(7(8)) and ~ ( x  : q x )  = 8) # 1 ,  then 
M2(7(8)) 

and 7(8) ir a strictly increasing function of 0. 
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LEMMA 4.8. 1(* : 2) = Or(@ - log M2(7(8)) 2 0, with equality i f  and 
only i/ ~ ( 8 )  = 0, that Q 8 = 8(0) = Jyg2(y) d y O .  

LEMMA 4.9. 1(* :2) = Or(8) - log M2(7(8)) is monotonicalZy increasing 
for 8 2 O(0) and monotonicafIy decreasing for 8 5 O(0). 

THEOREM 4.1. I(* : 2) = (B(r) - 8(0))2/2 var (yl<f)), 8 between B(r) m d  

e(0). 
d 

Proof. Let 1(* : 2) = m(8) = Or(8) - log M2(7(8)) ; then mf(8) = - m(8) 
de 

d2 
= ~ ( e ) ,  m"(8) = - m(8) = Tf(8), m(O(0)) = 0,  mf(8(0)) = 0,  and m(8) 

de2 
= m(e(0)) + (e(7) - e(o))mf(e(o)) + a(&) - 8(o))2m"(8), from which the 
desired conclusion follows. 

In view of theorem 2.1, and theorem 4.1 of chapter 2, we may now 
state: 

COROLLARY 4.1. 1(1: 2 ; %) 2 I(1: 2 ; Y) v,L (El@ - E2(y))'/2 var (ylr(n), 
where var (ylr(8) ir the variance of y in the dirrribution defied by 
f16)g2(y)/M2(7(0), and 8 lies between El@ and 40, with equaZity 
between thejrst pair i f  and only i f  Y = T(x) is suficient, and with equality 
between the secondpair i f  and only ifgl(y) = eWg2(y)/M2(r) [I]. 

In particular, if y = alyl + q2 + . . + a&&, where the y,, i = 1 ,  
2, ., k ,  are linearly inde~endent, I-measurable functions of x E 3, and 
S ,  = E1(y3 - E2(yi), i = 1 ,  2, . . *, k ,  and cov (y,, y,l7(0) is the covari- 
ance of 9, and y,, i, j = 1 ,  2, . ., k ,  in the distribution defined by 
T = ~ ( t ) ,  then in terms of the matrices (and usual matrix notation) 
z(<O) = (COV (Yi, yjMO)), a f  = (air $3 . ., a&), sf = (81,82, . St ) ,  
(E,(y) - E&J))~ = af56'a, var ( y l ~ ( 0 )  = afX(r(n)a. It can be shown 
(see section 5 of chapter 9) that max (a'U'a/a'X(r(8))a) for possible values 
of the ai, i = 1 ,  2, . ., k ,  is S'X-l(7(0)6. We can therefore state: 

We remark that the right-hand member in corollary 4.2 is the dis- 
crimination information measure for two multivariate normal populations 
with respective means El@,), E2(yi), i = 1 ,  2 , .  . ., k ,  and common 
covariance matrix X(7(8)) (see section 1 of chapter 9). 

COROLLARY 4.3. J(*, 2) = (B(T)  - 8(0))2/~ar (yl~(6)))). 
ProoJ Apply the procedure in the proof of theorem 4.1 to J(*, 2) 

= (e(7) - e(o))7(e). 
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COROLLARY 4.4. I(r1 :rp) = (E(ylr1) - E(yl~~))~/2  var @I<[)), where 
[ lies between 6(>) and B(r2). 

ProoJ- ' Apply the procedure in the proof of theorem 4.1 to corollary 3.2. 

COROLLARY 4.5. J(rl, r2) = (E(ylr1) - ~(y l r~ ) )~ /va r  (ylr(E)), where E 
lies between B(Q) and 0(r2). 

Proof. Apply the procedure in the proof of theorem 4.1 to corollary 3.2. 

It should be remarked that the preceding results are not only multi- 
dimensional'in the variate~ but also in the parameters, that is, 8 = (81, 
62, *, &), 7 = (71, 72, . ., ~k),  Y = (Yi, Y2, - 9  Yk) = (T'(x), T2(x), 

-, Tk(x)) = qx),  and 07, rT(x), and TY are to be understood as B1~l 
+ e27, + + Bk~k, 7,Tl(x) + r2T2(x) + . + rkTk(x), and Yl + 
7, Y2 + + .rk Yk respectively. It will be useful to rewrite some of the 
preceding in an appropriate matrix notation. Let us write 

and define the nonsingular matrices 

where w represents any appropriate set of parameters and i, j range over 
the number of components of v, for example, i, j = 1, 2, *, k, when 
v is 7 or 0. 

Since 

af -- *(x) af'(x) a 4  a/*@) a02 + --- +-- af *(x) ae, . . + -- 9 j = 1 , 2 , . - - , k ,  
hj ae, hj ae, hj aek hj 

setting aii = aB,/a7,, the nonsingular matrix A = (a,), i, j = 1, 2, a, k, 

1 af* 1 af* 1 af* 
(irz) = (FG;;f7K- *,-- f* a/.)' h k  

similarly, the matrix (i - z ) ' ,  - we have 

and taking expected values G*(T) = AfG*(B)A. In a similar fashion we 
also have H*(T) = AfH*(B)A. Lemma 4.3 may now be written as 
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and lemma 4.4 as 

LEMMA 4.1 1. C(7(8)) G*(8) = I = G*(r)G*(8). 

Since 

setting the matrix (do)' = (dol, do2, . ., dok), similarly, the matrix 
(d~)', we have (do) = A(~T) or ( d ~ )  = A-'(do). Since 

we may write a'' = &,laOj, i, j = 1, 2, *, k, and (aii) = A-l. Thus 
lemma 4.7 may now be written as 

As was noted in section 6 of chapter 2, the matrices G*(v), H*(v) are 
Fisher information matrices. [Cf. Fisher (1956, p. 155).] 

We illustrate the foregoing with a number of examples. 

Example 4.1. 3 is the space of n independent observations On on the two- 
valued variate success or failure, Y = T(x) is the number of successes in the n 
observations, and pi, qi = 1 -pi, i = 1,2, are the respective probabilities of 
success corresponding to Hi, i = 1,2. It is found that [cf. problem 5.2(6) of 
chapter 1 and problem 8.12 of chapter 21 

- n log g" + q1 log 4'). 
P2 42 

(4.5) g*@) = eWg2(y) - n ! - 
M2(7) y !(n - y)! 

@*)'(9*)n-", M~(T) = (pze+ + qdn, 

f2eT p* =" - 92 Pl92 
q* = pgT + q2 3 dp$ = 0, dpr) = log -* 

PgT + 92 9lPz 

where p = p?eT q2 , for some value of r between s(p3 = 0 
pg7 + 92' = preT + 92 
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and 7(p1) = log P*; that is, p lies between p1 and p2. Note that in this 
qlP2 

example 1(1:2; = 1(1:2; %) = I(*:2). 
Example 4.2. 9' is the space of n independent observations On from the 

normal populations N(&, q2), i = 1,2, Y = T(x) = f ,  the average of the n 
observations. It is found that [cf. problem 5.2(f) of chapter 1 and problem 
8.13 of chapter 21 

exp 1- bT [Z - " - - 
(4.9) edg2(23 - g*( f )  = .*, . - I I- 

.') J 9 

where 8* = ( d l d ~ )  log M2(7) is the mean of the distribution with density g*(f) ,  
the values of T for O* = O2 and O* = O1 are respectively 

Note that in this example 1(1: 2; 9) > 1(1: 2; 9) > I(*: 2). (See problem 7.21 .) 

Example 4.3. 9' is the same as in example 4.2, Y = T(x) = ( f ,  s2), where f 
1 " 

is the average and 3 = - x ( x i  - 2)' is the unbiased sample variance of 
n - 1 i = 1  

the n observations. It is found that 

(4.1 1 )  I(1:2; 3) is the same as in (4.7), 

(4.12) I(1: 2;  f )  is the same as in (4.8), 

(4.14) I(1:2; 9) = I(1:2; f )  + I(1:2; 3) (cf. theorem 2.1 in chapter 2), 

- 

- - exp [-n(f - 8*)2/b,21 (n - 1) 

a2dK/di 

, x exp (- , (n - l)'), 
k * 2  
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a 
8* = - log M2(rl, 72) = 82 + ~ ~ a : / n ,  

371 

the values of r1 and 7 2  for 8* = 82, 8* = 81, a*2 = a22, and a*2 = a12 are 
respectively 

where a2 lies between a12 and a:, and 

Note that in this example 1(1: 2; %') = 1(1: 2; %) > I(* : 2), and that the 
statistic Y = T(x) = (2, s2) is sufficient. 

Example 4.4. 3 is the space of n independent observations 0, from the 
normal populations N(0, a:), i = 1,2, Y = T(x) = 9, where (n  - l ) 9  = 

x i  - ) It is found that 
i = l  

(4.17) 
n a: 

1(1:2; 0.) = nI(1:2; = - (log - - 
2 a? 1 + 3). a2 

(4.18) 1(1: 2;  s2) is the same as in (4.13), 

(4.19) g*@) = e78>2(s2)/M2(7) 
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I(*: 2) = q%a12) + 9 log ( 1  - n - 1  

where a2 lies between a12 and a 2 .  Note that in this example I(1:2;  %') > 
I(1:2; %) = I(*:2), and that 9 is not a sufficient statistic. . . .  

1 fianple 4.5. d is the same as in example 4.4, Y = T(x) = - 2 x t .  It is 
n i==l 

found that 

(4.21) I(1: 2;  is the same as in (4.17), 

where a2 lies between a12 and aZ2. Note that in this example I(1:2; .%') = 
1 

I(1:2; 9) = I(* :2),  and that - Z] xi2 is a sufficient statistic. 
?l i = 1  

Example 4.6. d is the space of n independent observations On from 
bivariate normal populations. We shall consider bivariate normal populations 
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with zero means, unit variances, and correlation coefficients pi and p2 respec- 
tively. It is found that (see example 2.1 in chapter 2) 

The nonsingular transformation 

transforms the bivariate normal density 

into a product of independent normal densities with zero means and variances 
2(1 - p) and 2(1 + p), 

It is found [the derivation of (4.17) and the fact that I(1:2; u, u) = I(1:2;  u) + 
I(1:2;  u) are applicable] that 

(4.29) 1(1: 2 ; u, u) 

illustrating the additivity for independent random variables (see section 2 of 
chapter 2) and the invariance under nonsingular transformations (see corollary 
4.1 of chapter 2). We now take Y = T(x) = (y,, y,), where 

and find that (cf. example 4.5) 

(4.3 1 )  ?(I: 2 ;  g) = nI(1: 2 ;  u, u) = ?(1:2; m, 

?& 

- n - el 

- P*) r (:I (ql - p*)) exp (- 4.0 " - p*) ) 
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2(1 - p*) = 2(1 - p2) 
2(1 + p*) = 2(1 + p2) 

1 - 4(1 - p$Tl/n' 1 - 4(1 + p$T2/n' 

(4.33) I(*:2) = 2(1 - pl)rl@,) + f log n 

+ 2(1 + pl)Tdpl) + f log n 

where p lies between p, and p2. Note that in this example I(1:2; 3) = 
I(1:2; %) = I(*:2), and that Y = T(x) = (y,, y2) is sufficient. 

fiampfe 4.7. We shall use results derived in example 7.2 of chapter 2 and 
example 2.2. In order to use an unbiased estimate, let us consider the statistic 
Y = ( x )  = m i  (x ,  x ,  , x )  - 1 We find that 

g20)=nexp(-n@+1/n-02)), 0 2 - l l n l y < 0 3 ,  

( 1 :  %) = "(0 - 0 ,  8, 2 8, (as in example 7.2 of chapter 2), 

a - log M2(7) = 6* 3: O2 - l/n + l/(n - T), 7(6$ = 0, a7 

and "('I - 02) < n, as required, 
"l) = (0, - 0 3  + l/n 

1(*:2) = 017(01) - 027(01) + 7(O1)/n + log (1 - 7(0,)/n) 

= "(8, - 02) - log (1 + n(8, - 8,)) (as in example 2.2), a 
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where 8 lies between 8, and B,, 8, 2 8 2 8,. Note that in this example 
I ( 1 : 2 ;  9) = I ( l : 2 ;  tY) > I (* :2 ) .  

5. NEIGHBORING PARAMETERS 

In section 6 of chapter 2 we examined the relation between Fisher's 
information measure and those we have been studying. We now con- 
tinue that examination to study the relation between the inequality of 
theorem 2.1 and its consequences and the classical information inequality 
of the theory of estimation. Let us suppose that y,, i = 1, 2, ., k, in 
corollary 4.2 are unbiased estimators of the parameters. We saw in 
section 6 of chapter 2 that under suitable regularity conditions, to within 
terms of higher order, 

where (be)' = (he,, he,, -, he,), and G(8) is the positive definite 
matrix (g,(@), 

i, j =  1,2; *, k. 
Similarly, we also have 

where (he)' is defined above, and H(8) is the positive definite matrix 
(hi*(@), 

We can now state [cf. Barankin (1951), Cramir (1946b), Darmois 
(1 945)] : 

THEOREM 5.1. Under suitable regularity conditions 

where (LO), G(B), H(B) are defined in (5.1)-(5.4) and Z is the covariance 
matrix of the unbiased estimators. The first two members are equal ifand 
only if the unbiased estimators are suflcient and the last two members are 
equal fond only if&) in (5.4) is of the form e4e)'yh(y)lM(r(e)), where h(y) 

does not contain 0 and M(r(8)) = edoyh(y) dy(y). S 
Proof. Use coroIlaries 4.1, 4.2, 4.4. 
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Certain useful results about quadratic forms will be needed and are 
given in the following lemmas. [Cf. Barankin and Gurland (,1951, pp. 
109-1 lo), Fraser (1 957, pp. 55-56), Kullback (1954, p. 749), Roy and Bose 
(1953, p. 531).] 

LEMMA 5.1. I f  both x'Ax and x'Cx are positive definite quadratic forms 
(matrix notation) such that X'AX $ X'CX, then 

(a) the roots of lA - AcI = 0 are real and $ 1 ; 
(b) IAl 2 lcl; 
(c) any principal minor of A is not less than the corresponding principal 

minor of C (determinant or quadratic form); 
-1 2 'A-1 ( 4  Y'C y - y y;  

(e) any principal minor of C-l is not less than the corresponding principal 
minor of A-l (determinant or quadratic form). 

Proof. Statements (a), (b), and (c) are immediate corollaries of known 
theorems on positive definite quadratic forms, for example, theorems 44 
and 48 in Ferrar (1941). Since A-l = C-lCA-l and 'e-l = C-lAA-l, 
there exists a nonsingular matrix B such that [Bdcher (1924, p. 30111 
C-l = B'AB and A-l = B'CB. Thus, applying the transformation 
x = By gives x'Ax = y'B'ABy = y'C-ly, x'Cx = y'B'CBy = y'A-ly, and 
(d)  and (e) then follow. 

We remark that A $ C may be defined as meaning that x'Ax 2 x'Cx 
for all real vectors (matrices) x # 0. 

LEMMA 5.2. I f  A = (aij), i, j = 1 ,  2, ., k,  is a positive definite 
11.2 2 2 1 - 2 3  2 . . . 5 2 1 - 2 9  (k-1) 2 1 Ial1, where matrix, then aU 2 a - - 

dlen . ' j  b the element in the first row and first column of the interse 
of the matrix obtained by deleting rows and columns 2, 3, 0 ,  j, in A. 

Proof. Consider two multivariate nonnal populations with common 
covariance matrix A and difference of means a' = (a,, %, . . *, a,). As 
already noted in connection with corollary 4.2, and shown in chapter 9, 
the discrimination information measure for the two multivariate popu- 
lations is 1(1:2 ; 2") = WA-lcx. The variates yl = q, y, = x,, y, = x4, 
. . .  , y,-I = x,  are also multivariate n o d  with covariance matrix B, 

where B is the matrix A with the second row and second column deleted 
WiIlcs (1943, p. 68)J. For the distributions of the y's we then have 
1(1:2; g) = #'B-?, where B' = (Bl, B,, *, Bk-11, Bl = al, Be = ~ s ,  

- a, pk-l = a,. But according to section 4 of chapter 2, 1(1:2;%) 
2 1(1:2; q, or a'A-'a 5 B'B* for all %, a,, -, a, and therefore in 
particular for a, = 0, (3'CP 5 P'B-v, where C is the matrix A-l with the 
second row and second column deleted. From lemma 5.1 we can then 
conclude that dl 2 all". Successive application of the procedure then 
leads to the desired conclusion. 
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LEMMA 5.3. If A is a k x k positive dejnite matrix, and U an r x k 
matrix, r 5 k ,  of rank r, then a'A-la 2 a'U'(UAU')-lUa, where a' 
= (a1, %, -, ak). 

Proof. Consider the two multivariate normal populations in lemma 
5.2 for which I(1: 2; 3 )  = 4a'A-la. The variates y,, y,, a, y,, defined 
by y = Ux,  with y' = (yl, y,, *, y,), x' = (xl, x,, -, xk), and U the 
r x k matrix of the lemma, are also multivariate normal with a common 
covariance matrix UAU' and difference of means U a  [Wilks (1943, p. 71)]. 
For the distributions of the y's we then have I(1: 2 ; %) = &a'U'(UAU')-lUa. 
But according to section 4 of chapter 2, I(1: 2 ; 3) 2 I(1: 2 ; 9) and the 
desired conclusion follows. 

LEMMA 5.4. I f  B iv a k x k positive dejnite matrix, U an r x k matrix, 
r I k ,  of rank r, and C a k x m  matrix of rank m 5 k ,  then P'C'BCP 2 
B'C'U'(UB-'U')-' UCP, where P' = (PI, /I2, . . ., pm). 

Proof. In lemma 5.3 set B = A-I and a = Cp. 

COROLLARY 5.1. For arbitrary a' = (al, q, . -, a&), ai, i = 1 ,  
2, -, k ,  red, a'G(8)a 2 a'H(8)a 2 a'C-la, a'& 2 a'H-'(8)a 2 
a'G-l(8)a, where G(8), H(8), C ,  and the conditions for equality are given in 
theorem 5.1. 

Proof. G(8), H(8), C are positive definite since they are covariance 
matrices of linearly independent variables. The first set of inequalities is 
simply a repetition of theorem 5.1 and the second set of inequalities 
follows by applying lemma 5.1. 

COROLLARY 5.2. I f  yi is an unbiased estimator of 8 ,  then a#: 2 
hi'(@ 2 g"(8), i = 1 ,  2, . , k ,  where h"(8) and gii(8) are respective@ 
the elements in the ith row and ith column of H-l(8) and G-l(8). 

Proof. Use corollary 5.1 and lemma 5.1. 

COROLLARY 5.3. 1/ yl is an unbiased estimator of el, then aVl2 L 

- 1 h"(0) 2 gU(8) 2 g".z(8) 2 g".v 2 - . . . 2 g"" ' . "f -1) > - - 
nl(@' 

where g1IgJ ' ' ' j is the element in the first row and first column of the 
inverse of the matrix obtained by deleting rows and columns 2, 3, ., j, 
in G(8). A similar result holdi for unbiased estimators of the other 
parameters. 

Proof. Use corollary 5.1 and lemma 5.2. Note that g"(8) = l/gii(8) 
when G(6) is a diagonal matrix. 

Example 5.1. In example 4.1 set p1 = p + Ap, p2 = p, The lower bound 
for the variance of an unbiased estimator o f p ,  pqln, is attamed for the estimator 
f i  = y/n. 
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Example 5.2. In example 4.2 set 8, = 8 + A8, 8, = 8, a,2 = a2 + Aa2, 

q.2 = a2. We find that G = (! ", .= (! ' ), and the lower 

52 52 
bound for the variance of an unbiased estimator of 8, $In, is attained for the 
estimator & = 3. 

Example 5.3. In example 4.3 set O1 = 8 + A8, 8, = 8, a,2 = a2 + Aa2, 
n n 

a: = a2. We find that G = 

n - 
The lower bound for the variance of an unbiased estimator of $, W/n, that 
is, g22, is not attained by the estimator s2 with a variance 2d/(n - 1). From 
examples 4.4 and 4.5 we see that when the population mean is known (we 
used the mean zero) the lower bound for the variance of an unbiased estimator 

1 
of a? is attained for the estimator - 2 x:. 

nd=1 

Example 5.4. In example 4.6 set p1 = p + Ap, p2 = p. We find that 
"(l + = H@) and the lower bound for the variance of an = ((I - p2)2) 

unbiased btimator'of p is (1 - ~ ~ ) ~ / n ( l  + d). [Cf. Kendall(1946, pp. 33-34).] 

We shall now change the assumption that the yi, i = 1, 2, *, k, are 
unbiased estimators of the parameters. Instead suppose that E(yi) = 
8i(+1, +,, a ,  +,), i = 1, 2, a ,  k, k => r, that is, the parameters are 

+,,. a ,  +,, and the y's are no longer unbiased estimates of these 
parameters, which may be fewer in number than the y's. We now define 

where the matrix U is assumed to be of rank r. The differences of the 
expected values of the yi for neighboring values of the parameters are 

now given by ABi = Oi(+ + A+) - ei(+) = pil A+1 + ' + pir + 
o(A+), or in matrix notation, neglecting terms of higher order, 

(5.7) (do) = U(d4). 

We also have 

j = 1, 2; . . ,r, 
or in matrix notation 

($1. f(x,) = ut (& log f(x)). 
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Similarly, we have 

We thus have 

and taking expected values [cf. Fisher (1956, p. 155), also section 41 

where G(8) is the matrix defined in (5.2) and G(+) = (gij(+)) is the matrix 
with 

i , j  = 1 ,  2 , .  *, r. 
Similarly, we have 

where H(8) is the matrix defined in (5.4) and H(+) = (hi,(+)) is the matrix 
with 

(59 1 5) h i j ~ )  = I g b )  (& log g b ) )  (a a+j  log gb)) d m ,  

i,j= 1 ,  2 , .  . - , re  
We now state: 

THEOREM 5.2. Under suitable regularity conditions 

where U ,  (A+), G(+), H(+) are dejined in (5.6), (5.7), (5.12), (5.14) and 
C = (oij), i, j = 1 ,  2, -, k ,  is the covariance matrix with oij = 
i - 9 9 9 j - j 9 + Thejrst two members 
are equal if and only if the statistics y,, y2, . ., y, are suflcient . The last 
two members are equal if (5.25) below is satisjed. 

Proof. Use (5.6), (5.7), (5.12), (5.14) in (5.5) to obtain (5.16) and the 
condition for equality of the first two members. 

We now consider conditions for equality of the last two members in 
(5.16). 

Suppose there exist functions zi(x), i = 1 ,  2, . . ., r, such that 

(5.17) z = Cy, 
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where 

and C is of rank r. The expected value of zz' = Cyy'C' yields 

(5.19) C, = CCC', 

where C, is the covariance matrix of the z's, which are unbiased estimators 
of the 4's. Letting R = (U'C-lU)-l, lemmas 5.4 and 5.1 yield 

If CU = I, then from (5.20) and corollary 5.4, 

Note that when the matrix C in (5.17) consists of constants independent 
of the parameters, 

(5.24) (A+) = C(A0) = CU(A+), 

using (5.7), or CU = I. 
When the generalized density of the y's is g(y) = e7(4)uh&)/~2(r(,$)), 

k 

with <4)y = 2 yiri(Ol(41, 42, * 9  ' 9  'k(419 42, ' 9  h(y) 
i=l 

independent of the parameters (cf. theorem 5.1), and the matrix B = (bij), 
b i j = a ~ l a + i ,  i =  1, 2,. . , r , j =  1, 2,.  * , k ,  ofrankr ,  that is, if 

where y is defined in (5.1 8), then 

(5.26) H(4) = BCB'. 

S ina  (6 log ($ log 
' = Byy'B', (5.26) foilovs by taking 

expected values. Since aij = aOi/arj, i, j = 1, 2, ., k, and A = (aij), 
we have AB' = U and, by lemma 4.10, this is the same as 
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From (5.26) and (5.27) we then have 

With H-l(+)B as the matrix C in (5.23), we have 

(5.29) a'H-l(+)BZB'H-l(+)a 2 a'Ra 2 a'H-,(+)a. 

Using (5.26) in (5.29) yields 

(5.30) a'H-,(+)a 2 a'Ra 2 a'H-,(+)a, 

or H(+) = U'C-lU, and we have equality in the last two members of (5.16). 

COROLLARY 5.4. For arbitrary a' = (a,, %, . . *, a,), a,, i = 1,2, . . ., r,  
real, a'G(+)a 2 a'H(+)a 2 a'U'C-lUa, a'(U'C-lU)-la 2 a'H-,(+)a 2 
a'G-,(+)a, where the matrices U ,  G(+), H(+), C and the conditions for 
equality are given in theorem 5.2. 
Proof. Proceed as in corollary 5.1. 

Example 5.5. This example is a continuation of example 5.4. Take the 
generalized density g*(y) in (4.32) to be g(y)  
E(yl) = 2(1 - p), E(y& = 2(1 + p), we have 
& = p ,  k = 2 ,  r = 1 ,  Ut=(-2 ,2 ) .  
412, 1 + p2 = 02/2, 1 - pl = (8, + A8,)/2, 1 + pl = (02 + A02)P, we see 
from the first version in (4.29) that 

and to within terms of higher order 

We thus have, since y is a sufficient statistic, 
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the value derived in example 5.4. Since var (y,) = 28?/n, var (yJ = 2822/n, 
and cov (y,, y2) = 0, we find here that G(4) = H(4) = U'C-'U. Correspond- 
ing to (5.17) we have 2, - p = -&, - 8,) + &(& - 8,), that is, 

c = (-a, + u 
and 

Note that CU = 1. We see that the variance of the unbiased estimator of p, 

bound for an unbiased &timator of p [cf. Stuart (1955b, p. 52811. The estimate 
3, the product moment form with the population means and variances, may 
take values that ex& 1 in absolute value. From (4.32) we see that the 
matrix B of (5.25) is 

since r1 = -n/ql - p), r2 = -n/ql + p), and therefore that 

verifying (5.27). We find that 

and with H-l(+)B as the matrix C in (5.17) we have 

Since E(y,) = 2(1 - p) and E(y& = 2(1 + p), so that E(yl + yJ = 4, let us 
consider the estimator r(yl, y2) = (y2 - yl)/(y2 + y,). Since (r(y,, yJ(  S 1 ,  
and r(y,, y2) is continuous and has continuous derivatives of the first and 
second order with respect to yl and y2 in a neighborhood of the point 
(E(y,), E(y2)), we may apply the result on p. 354 of Cramir (1946a), that is, 
E(r(yl, y2)) = r(E(y,), E(y,)) + O(l in), var (r(y1, ~ 2 ) )  = var + 2ab cov 

il (a, y& + b2 var (y,) + O(1 Inw2), where a and b are respectively - r(y,,.y2), 
a a& 

,-r(yl, y2), evaluated at the point (E(y,), E(yJ). Since a = -(1 + $14, 
4 2  
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b = ( 1  - p)/4, we find that E(r(yl, y2)) = p + O(l/n) and var (r(y,, ya) = 
( 1  - p2),/n + O ( l / t ~ ~ / ~ ) .  The estimate r(yl, ya is consistent wilks (1943, 
Theorem (A), p. 134)] and its variance, which is less than var ((y, - y1)/4), does 
not attain the lower bound. Taking the bivariate normal population with the 
five parameters (el, 8,, a:, a,?, p), we find [cf. Kendall (1946, p. 38) who con- 
siders the parameters as (el, e,, a,, a,, p)] 

We find that ga = ( 1  - p2),/n = ga.l = ga.12, ga.129 = (2 - P2)(1 - pz)2/2n, 
g55.'234 = 1k55 = ( 1  - ~ ~ ) , / n ( l  + p2), verifying corollary 5.3. Note that 
var (r(y,, ya) approaches the lower b ~ u n d g ~ ~  (the greatest lower bound for the 
variance of an unbiased estimator of p) as n -+ co. We also see thatg'l = a,2/n 
andgll.2 = gll.s = g11.234 = g l l . ~  = 1 /gll = a12(1 - p2)/n, verifying corollary 

* - A  - 4- -g33.1 =g33.12, g33.124 = 5.3. We also see that ga - - - 
n ki4(1 - p4)ln, 

g3a1245 = llg33 = k14(l  - p2)/n(l - p2/2), verifying corollary 5.3. 

6. EFFICIENCY 

We define the discrimination eflciency of the statistic Y = n x )  by the 
ratio 1 2 ) / ( 1 : 2 ; .  From the properties discussed in chapter 2, 
this ratio is nonnegative and 5 1 with equality if and only if Y = n x )  is 
a sufficient statistic. When the generalized densities of the populations 
are of the same functional form but differ according to the values of the 
kdimensional parameter 8 = (el, 8,, *, O,), we define the discrimination 
efficiency of the statistic Y = T(x)  at the point 8 in the kdimensional 
parameter space by lim (I(8 + A8 : 8 ; ?Y)/1(8 + A8 : 8 ; 9')). 

A M  
The discrimination eflciency of the unbiased estimators y,, i = 1,2, -, 

k, of theorem 5.1, at a point 8 = (el, 8,, *, 8,) in the kdimensional 
parameter space may therefore be defined by 

We take (de)'G(B)(dO) as the basis of the metric of the parameter space 
[cf. Rao (194511. The gij(8) in (5.2) are the components of a covariant 
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tensor of the second order, the fundamental tensor of the metric [Eisenhart 
(1926, p. 391. Since (de)'H(B)(de) 5 (de)'G(O)(de), and both quadratic 
forms are positive definite, the roots of IH(B) - AG(8)I = 0 are real, 
positive, and all 5 1. (See lemma 5.1.) Accordingly, there exists a real 
transforination of the 8's such that at a point 8 in the parameter space the 
quadratic forms in (6.1) may be written as 

and A,, A2, -, Ak are the roots of (H(8) - AG(8)I = 0 [Eisenhart (1926, 
p. 108)l. Writing 

(6.2) may be written as 

The directions at the point 8 determined by cos a, = 1, cos a, = 1, . *, 

are known as the principal directions determined by the tensor hij(8) 
[Eisenhart (1926, p. 1 lo)]. Furthermore, at the point 8, the finite maxima 
and minima of A defined by (6.1) are given for the principal directions at 
the point and are indeed the roots of (H(8) - AG(8)( = 0. Since 
(de)'G(O)(de) is positive definite, A is finite for all directions [Eisenhart 
(1926, par. 33)]. 

The estimation eficiency [cf. Fisher (1956, pp. 145-152)] of the unbiased 
estimators y,, y2, ., yk is defined as the product of the discrimination 
efficiencies for the principal directions at the point 8, that is (see lemma 5.1), 

Eff, = A1A2. . I ,  = IH(B)I/IG(B)I 5 1. 

This is invariant for all nonsingular transformations of the parameters, 
with equality holding if and only if the estimators are sufficient. 

Suppose we have n independent observations from an I-variate popu- 
lation with k parameters. The asymptotic discrimination eficiency of the 
unbiased estimators gi, i = 1, 2, ., k, of theorem 5.1 at a point 8 in 
the parameter space is defined by 

(6-6) A = (de)'C--1(de)/n(de)'G(8)(de), n large, 

where the elements of G(8) are computed for a single observation from 
the I-variate population. Since (d0)'Z-l(dB) 5 n(dB)'G(O)(de), and both 
forms are positive definite, the roots of 

are real, positive, and 5 1 .  (See lemma 5.1.) The roots of (6.7) are the 
finite maxima and minima of (6.6) and are given for the principal directions 
determined by the tensor aij at the point 8, where C-1 = (aij). 
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The asymptotic estimation eficiency of the unbiased estimators 
yl, ye, *, yk [cf. CramCr (1946a, pp. 489,494)] is defined as the product 
of the asymptotic discrimination efficiencies for the principal directions 
at the point 8, that is, 

(6.8) Asymp. eff. = I,& I ,  = lZ-l(/lnG(B)1 1, n large, 

the equality holding for all n if the conditions for equality in theorem 5.1 
are satisfied. If (Z((G(B)( +n-,, the asymptotic estimation efficiency 
approaches unity and the roots of (6.7) approach 1. 

The discrimination eficiency of the biased estimators y,, i = 1, 2, . 
k, of theorem 5.2, at a point $ = ($,, $2, *, 9,) in the r-dimensionai 
parameter space may be defined by 

where the matrices G($), H($) are defined in (5.12) and (5.14) respectively. 
A discussion similar to that covering (6.1)-(6.4) permits us to state that 
I defined by (6.9) is finite for all directions, the finite maxima and minima 
of I are the roots of IH($) - IG($)1 = IU'H(8)U - IU'G(8)UI = 0, and 
are given for the principal directions at the point $ determined by the 
tensor hi,($), with (d+)'G($)(d+) as the basis of the metric of the parameter 
space. Note from theorem 5.2 that if the statistic Y = T(x) = (y,, 
y,, *, y,) is sufficient, the discrimination efficiency is 1. 

The estimation eficiency of the biased estimators yi, i = 1, 2, *, k, 
of theorem 5.2, at a point $ = ($,, $2, *, $?) in the rdimensional 
parameter space, may be defined as the product of the discrimination 
efficiencies for the principal directions at the point, that is, 

with equality if and only if the statistics are sufficient. 
The asymptotic discrimination eflciency at a point $ = (A, $2, . . *, $?) 

in the r-dimensional parameter space is defined by (see theorem 5.2) 

(6.1 1) 2 = (d+)'U'Z-IU(d+)/n(d+)'G($)(d+), n large, 

where the elements of G($) are computed for a single observation from 
the population. The value of I in (6.1 1) is finite for all directions and the 
finite maxima and minima of I are given by the roots of 

that is, for the principal directions determined by the tensor with com- 
ponents those of the matfix U'Z-lU. 
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The mymptotic e p i e n c y  of the biased estimators y,, y2, -, 
yk of theorem 5.2 is defined as the product of the asymptotic discrimination 
efficiencies for the principal directions at the point + = c$~, -, +r), 

that is, 

(6.13) Asymp. eff. = A, . AT = (U'X-'u(/lnG(#)l 

= Iu'C-~U~/~~U'G(O)UI 5 1, n large. 

For unbiased estimators of (+,, +2, . a, +r) with covariance matrix CCC' 
such that CU = I, we see from (5.22) that I(CCC')-'1 5 IU'C-lUI and 
therefore such unbiased estimators are not more efficient asymptotically 
than the biased estimators we have been considering. Furthermore, if 
(5.25) is satisfied, and Y = T(x) = (y,, y2, *, yk) is a sufficient statistic, 
the asymptotic efficiency in (6.13) is I for all n. 

Example 6.1. From example 5.3 we see that the discrimination efficiency of 
(Z, 9) is unity, as is also the estimation efficiency. However, since the roots of 

asymptotic discrimination efficiency for a2 fixed, that is, in the direction of the 
mean, is unity, whereas the asymptotic discrimination efficiency for 8 fixed, that 
is, in the direction of the variance, is (n - l)/n, and the asymptotic estimation 
efficiency is (n - l)/n. 

Example 6.2. From example 5.5 we see that the discrimination efficiency of 
(y,, yJ is unity, as is also the estimation efficiency, with similar values for the 
asymptotic discrimination efficiency and the asymptotic estimation efficiency. 
The asymptotic discrimination efficiency and the asymptotic estimation efficiency 
of the unbiased estimator z, = (y2 - yl)/4 are both (n/(l + p2))/(n(l + p2)/ 
(1 - p2)2) = (1 - ~ ~ ) ~ / ( 1  + p2)2, which is less than 1 unless p2 = 0. The 
consistent estimator r(y,, y.& has an asymptotic discrimination efficiency, as 
well as an asymptotic estimation efficiency, (n/(l - ~ ~ ) ~ ) / ( n ( l  + p2)/(l - = 
1/(1 + p2), which is less than 1 unless p2 = 0. r(y,, yJ is more efficient than 
(y2 - y1)/4. The results in the last part of example 5.5 and corollary 5.3 
indicate that there cannot exist an unbiased estimator of p with asymptotic 
estimation efficiency greater than that of r(y,,y&. Note, however, that 
for = (y2 - yl)/4 - p(yl + y2 - 4)/2(1 + $1, E(2) = p, var (2) = (1 - p2I2/ 
n(1 + p2). 

7. PROBLEMS 

7.1. Prove the statement (attributed to Chernoff) about the behavior of 
-log ( inf E(em)) (as an inf&mation measure) in the remarks following (221). 

0<7<1 

7.2. Prove corollary 3.2. 

7.3. Prove the lemmas in section 4. 
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7.4. Show that I(1: 2; X )  = I(1: 2; g) = I(* : 2), for Poisson distributions, 
when Y = T(x) = xl + x2 + . + x,. 

7.5. Prove corollary 4.3. 

7.6. Prove theorem 5. I .  

7.7. Prove corollary 5.4. 

7.8. In the related examples 4.6, 5.4, and 5.5 we discuss a sufficient statistic. 
Is there a sufficient estimate for the parameter p? 

7.9. Prove the invariance of the efficiency defined in (6.5). 

7.10. Express (6.6) as the limit of a ratio involving I(* : 2) and 1(1:2; 8. 
7.11. Can we determine the discrimination efficiency and the estimation 

efficiency for the statistic and populations of example 4.7? 

7.12* Compare the results in example 4.7 with those obtained using the 
sample average as the statistic. 

7.13* Compute J(*, 2) for example 2.3. 

7.14. Compute J(1,2; On), J(*, 2): (a) for example 4.1 ; (b)  for example 4.2; 
(c) for example 4.3; (d) for example 4.4; (e) for example 4.7. 

f ( X I  7.15. Consider the minimum value of I ( / : fJ  =Sf0 log &(XI,  
- 

subject to 0 =JTo/  f(x)  d ( x )  =S/o log d ( x ) .  Show that for 0 = 0, 
fi(x) 

min I(/:&) satkfies (2.21). [Cf. &ample 3.1 of chapter 5;  Chemoff (1952, 
p. 5041.3 

7-16. Show that [ (/,(z)y(A(x))l-T d ( x )  i (p1(E)y(p2(E'))1-T, for E E 9' 
JE 

and 0 < T < 1. [Cf. Adhikari and Joshi ( 1  956), Joshi (1 957).] 

7.17. Show that 2(pl - pa2 + &pl - pa4 i pl log + ql log 
9: * (PI - ~ 8 ,  

Pz 92 2 ~ 9  
with pq the smaller of pigi, qi = 1 -p i ,  i = 1,2. [Cf. Schiitzenberger (1954, 
pp. 58-59).] 

7.18. Show that J( f, fa = roI(2: I ) ,  with To andfo(z) defined in (2.19). 

7.19. Extend the procedure of example 2.3 to derive corollary 3.2 of chapter 2. 

7.20. Consider the discrete random variable x that takes the values xl, x2, 
+, xn, with Prob ( x  = xjlHl) =pi, Prob ( x  = xjlHz) = lln. With T(x) = z, 

show how problem 8.28 of chapter 2 follows from theorem 2.1. 

7.21. Reexamine example 4.2 when aI2 = <. 
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7.22. I f  p*(E) = f *(x) d ( x ) ,  p2(E) = &(x) d;l(x), E E 9 with f *(x) 

defined in (2.1 I ) ,  show that 
p*(E) max T(x) - log M2(T) r log - r T min T(x) - log M2(7), T > 0, 

zcE p2(E) zcE 

[Cf. Chernoff (1952, 1956), Kolmogorov (1950, p. 42).] 

7.23. In problem 7.22 let &(x) = (:) (:)",x = 0, 1.2, , n, and T(x) = x, 

then : 

(a) M2(7) = (* + Wn- 

t (;) (p*)x(q*,n-x 
z-0 , 

(c) n log 2q* 2 log 2 r log 2p* 

2 (;) (:In + (n - r )  log **,p* < a. z=o 

2 j:) (p*~(q*)"-~ 
( d )  r log 2p* + (n - r )  log ~ q *  r log z-O 2 n log 2q*, 

t (;) (k)" p* > a* z =.o 

1 7.24. In problem 7.22 let f2(x) = -= e-*/2, - GO < z < a, and qz) = Z, 
d27T 

then: 

(a) M2(7) = e+/2. 

* 

7.25. Show that IG(0)I . jC'( 2 1, w b  C and G(8) are .defined in thcormn 
5.1. When does the equality hold? 
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7.26. Show that IG(~)I . Iu'Z-'UI" 2 1, where 2, G(+), and U a n  defined 

in theorem 5.2. When does the equality hold? 

7.27. Find the value of f *(x) = e r T ( ~ )  f2 (x ) /M2(~) ,  and I(* : 2 )  when T(x)  = 
1 + X,  , f , ( ~ )  = ~ 2 4 2 ~ ,  X = 0 , 1 , 2 ,  . . q 2  = 1 - p2, E1(T(x)) = 0 = l /p l .  (Cf- 
problem 5.5 in chapter 1.) 

7.28. Show that for M 2 ( ~ )  defined in (2.16), m, defined in (2.20), 

7.29. Show that I(1: 2) L - 2  log ( f l (x)  f2(x))%dA(x). When does the 
equality hold ? 

730. Show that ( f , ( x )~ (x ) )%dA(z )  S 1. When does the equality hold? 

7*31* Show that - 2  1% I (fit%) f 2 ( ~ ) ) % d A ( ~ )  2 - 2(1 - 1 Y;(x)  f2(x)) ? " d ~ ( ~ ) )  
= I ((A(-.))% - ( f 2 ( ~ ) ) % ) ~  dA(x). When does the equality hold? 

732. Show that 4<J I f i ( ~ )  - f f x ) I d A ( ~ ) ) ~  S I ((f(x))% - (f2(x))%)2 dA(x) .  
When does the equality hold ? 
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Lirni ting Proper ties 

1. INTRODUCTION 

The fundamental properties (other than additivity) of the information 
measures discussed in the preceding chapters are described by inequalities. 
The law of large numbers and the central limit theorem make it possible 
to derive good approximations for large-sample results. The asymptotic 
behavior is often illuminating for smaller size samples also. I n  this 
chapter we shall consider some limiting properties and in the next chapter 
we shall study asymptotic distribution properties of estimates of the 
information measures. These ideas will also be applied by the reader in 
solving a number 'of problems set for him at the end of several of the 
succeeding chapters. 

2. LIMITING PROPERTIES 

The following theorem 2.1 is essentially a continuation of theorem 4.1 
of chapter 2. Consider the measurable transformations TN(x) of the 
probability spaces (%, 9, pi) on to the probability spaces ( g ,  F, viN)), 
where TY-l(G) = (x : Tbv(x) E GI, viN)(G) = I~i(T'-l(G)), for G E F, 
i = 1, 2; that is, %(x) is a statistic and N may be the sample size. 

THEOREM 2.1 .? if the T&) are such that 

(2.1) lim y'iN) (G) = vi(G), i = 1, 2, G € 9 ,  
N-. oo 

where vi(G) is a probability measure, then 

I(1:2; X )  2 lim inf 1(1(~) :2(~) ;  g )  2 - I(1:2; @. 
h'-.oo 

The expression I(I(") : z ( ~ ) ;  %') is the discrimination information measure 
corresponding to v!~)(G), G E 9, i = 1 , 2. 

t see Appendix page 389 
70 
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Proof. We first derive a result that is similar to a lemma used by 
Doob (1936). From corollary 3.2 of chapter 2, we have 

where the sum is taken over any set of pairwise disjoint G, such that 
4Y = U,G,. Accordingly, 

- vI(G,), lim inf 1 (1(~) :2(~) ;  Oy) 2 2 vl(G,) log - 
~ - . o o  j ~2(Gj) 

and therefore 
(2.4) lim inf 1 (1(~) :2(~) ;  Oy) 2 I(1:2; g), 

N-.oo 

since the right-hand member of (2.4) is the 1.u.b. (sup) of the right-hand 
member of (2.3) over all such partitions of Oy. Combining theorem 4.1 of 
chapter 2 and (2.4) completes the proof [cf. Gel'fand, Kolmogorov, and 
Iaglom (1956), Kullback (1954)]. 

As a particular case of the foregoing, take the probability measure 
spaces (%,9, ,uiN), ,ul, p2), and assume that lim ,utv)(~) = ,ul(E) for all 

N-.oo 

E E ~ .  We have: 

COROLLARY 2.1. lim inf 1(1(~) : 2) 2 1(1: 2). 
N-coo 

Proof. The proof is similar to that of theorem 2.1. We list some of 
the steps primarily to clarify the symbols. For any partition of X into 
pairwise disjoint E,, 

( l N : 2 )  2 2 ,uiN)(~,) log p';V1(Ej) 
i ME,) ' 

~l (Ej ) ,  Jim inf 1(1(~):2) _2 C (E ) log - 
~ - c  oo ' ~ 2 ( ~ j )  

lim inf 1(1(~) : 2) 2 I(1: 2). 
N-.oo 

Consider again the probability measure spaces of corollary 2.1 with the 
generalized densities 

We have: 

LEMMA 2.1. Iim 1(1(~): I )  = 0, f Iim (fiN)(x)lf,(x)) = 1 [A], mwtiformfy. 
Ndoo N-. oo 
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Proof. Letting g(M(x) = /;'N)(~)l/,(x), then, as in theorem 3.1 of 
chapter 2, 

fiN)(x) ,A(%) 1(1(.: 1) =]fi")(x) log - 
h ( x )  

where h(N)(x) lies between g(N)(x) and 1. For sufficiently large N, for all 
1 1 

x M, If")(x) - 11 < C, - < - , e > 0, so that 0 5 1 ( 1 ( ~ ) :  1 )  < 
h(h')(x) 1 - € 

1 8  -- and therefore lim 1 ( 1 ( ~ ) :  1 )  =O. 
2 1 - €  N-.w 

LEMMA 2.2. I/ lirn I ( l (m: l )  = 0, then fiN)(x)+f,(x) in the mem 
N-r w 

with respect to the measure 1, or ,u iN) (~)  4 ,ul(E) uniformly in E E 9, or 
fiN)(x) +A(%) in probability. I' 

XN)(x)  THEOREM 2.2. I f  lim - - - 1 [A] ,  unqormly, then lim 1 ( 1 ( ~ ) :  2) = 
N-w fi(x) 3- w 

l ( 1 :  2) if 1(1: 2) is finite. 
Proof. 

1(1'" : 2) = / f iN)(x)  log f i N ) ( ~ )  drl(z) 
fi@) 

= / f iN)(x)  log 'a) dqx) + /fi"(x) log dxz) ,  
h ( x )  &(x) 

1(1"):2) - I(1:2) = / p ) ( x )  log 

For sufficiently large N, 

and therefore lim 1 ( 1 ( ~ ) :  2) = 1(1: 2). (See problem 4.1 7.) 
N+oo 

Ekarnpk 2.1. As an illustration of theorem 2.1, consider N independent 
observations from binomial distributions with parameters pi, qi = 1 -pi, 
i = 1.2. As N -t co, pi -t 0, Npi -t mi < oo, the binomial distributions 

t see Appendix page 390 
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approach as limits the Poisson distributions with parameters mi = Npi, i = 1,2. 
We find that 

ml = (m2 - ml) + ml log - 
"'2 

From the inequality xl log (xl/x$ 2 xl - x2 (the right-hand member of (2.7) is 
nonnegative) and mi = Npi, i = 1,2, it follows that 

1 - mllN 
(2.8) Npl log + Nql l o g e  = ml log ml + N ( 1  - $) log 

P2 42 m, - m,lN 

m1 = ml log - + (m2 - mi), 
m2 

or lim inf Z(l(N):2(N)) 2 1(1:2). As a matter of fact, as may be seen from the 
N-.a 

first two members of (2.8), it is true here that lim I(l(N):2(N)) = 1(1:2). 
N-. a 

Example 2.2. As an illustration of corollary 2.1, take for ,ul and ,u2 the 
Poisson distributions with respective parameters ml = 1 and m, = 1.5 and 
for #I, the negative binomial distribution ( r ( N  + x)/~!r(N))p"q-~-*, 
q = l + p , p > O , N > O , x = O , 1 , 2 , . . * .  A s N ~ m , p - + O , N p - + m < m ,  
the negative binomial distribution approaches as a limit the Poisson distribution 
with parameter m [cf. Willcs (1943, pp. 54-55)]. In table 2.1 are listed the 
values of the negative binomial for N = 2, p = 0.5, q = 1.5, tho* for the 
Poisson distributions, and the computations for I(l(N):2) and 1(1:2). The 
numerical values for the negative binomial are taken from Cochran (1954, 
Table 1,  p. 419). 

TABLE 2.1 

pInr)(x) PI(:) p2(x) pinr) 1% (#)/pa p1 log (pl@ 
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All the values x 2 4 were grouped in computing table 2.1. Note that 
1(1(N):2) = 0.1 3273 > 0.09412 = I(1:2), and that 0.09412 is smaller than the 
value obtained from 

(m2 - ml) + ml log (ml/m2) = 1.5 - 1 + 1 log (1 / 1  -5) = 0.09453, 

illustrating the statement in sections 3 and 4 of chapter 2 that grouping loses 
information. (See problem 4.3.) 

3. TYPE I AND TYPE I1 ERRORS 

Suppose that the space X is partitioned into the disjoint sets El and E,, 
that is, El n E, = 0, X = El U E,, with X the sample space of n independ- 
ent observations. Assume a test procedure such that if the sample 
point x E El we accept the hypothesis H, (reject H,), and if the sample 
point x E E2 we accept the hypothesis H, (reject H,). We treat H, as the 
null hypothesis. El is called the critical region. The probability of 
incorrectly accepting H,, the type I error, is a = Prob (x E Ell H,) = ,u,(E,), 
and the probability of incorrectly accepting H,, the type I1 error, is 
B = Prob (x E E,~H,) = ,u,(E&. [Cf. Hoe1 (1954, pp. 30-33.3 

We now state: 

B 1 - B  (a) 1(1: 2; 0,) = nl(1: 2 ; 0,) 1 B log - + (1 - B) log -, 
1 - a  a 

a 1 - a  
(b) 1(2: 1 ; 0,) = n1(2: 1 ; 0,) 2_ a log - + (1 - a) log -, 

B 1 - B  

where 0, indicates a sample of n independent observations and 0, a single 
observation. 

Proof. A consequence of the additivity property (theorem 2.1 of 
chapter 2), corollary 3.2 of chapter 2, and 1 - a = ,u2(E2), 1 - B = ,ul(El). 
(Cf. example 2.3 of chapter 3.) 

Note that the right-hand sides of the inequalities in theorem 3.1 are the 
values of 1(1:2) and 1(2 : 1) for binomial distributions with p, = B, 
q l = l - B , p 2 = 1 - a , q 2 =  a [see (2.6), for example, with N = 11. 
These values also appear in Wald's theorem on the efficiency of sequential 
tests [Wald (1947, pp. 196-199)l. We remark that (see problem 8.35 in 
chapter 2) F(p,, p2) = pl log @,/p,) + ql log (ql/q2) is a convex function 
of p2 for fixed p,, qp, ,  p,) = 0 for p2 = p,, and F(pl, p,) is monotonically 
decreasing for 0 5 p, 5 p, and monotonically increasing forp, 5 p, 5 1. 
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Table 3.1 lists illustrative values of F(p,, p,) for p, = 0.05. (For a more 
extensive table see Table I1 on pages 378-379.) 

TABLE 3.1. F(pl, pz), pl = 0.05 

P2 P2 P2 P2. 

For a fixed value of a, say oc,, 0 < oc, < 1, a lower bound to the minimum 
possible B, say Bn*, is obtained from 

by using theorem 3.l(b). Similarly, for a fixed value of @, say Po, 
0 < Po < 1, a lower bound to the minimum possible a, say an*, is obtained 
from 

Thus, for example, if nl(l:2; 0,) = 4.1 7690 and Po = 0.05, we see from 
table 3.1 that an* $ 0.01. 

To examine the behavior of (3.1) and (3.2) for n -t a we shall make 
use of the weak law of large numbers or Khintchine's theorem [see, for 
example, Cramir (1946a, p. 253), Feller (1950, p. 191)l. If 1(1: 2; O1) is 
finite, and we have a sample of n independent observations from the 
population under HI, then 

converges in probability to I(1:2; 0 3 ,  that is, for any E > 0, 6 > 0, and 
B > 0, for sufficiently large n 
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We may therefore classify the samples under Hl into two disjoint groups, 
El and E,, such that the samples of El satisfy the inequality 

(3.5) fi(xl). . .fi(xn) 8 en(~( l :2 ;  011-4 fi<xl> *fi(~n),  

and the samples of E, occur with a probability (under HI) less than f i  for 
sufficiently large n. Integrating (3.5) over El, we get 

(3 -6) 1 5 Prob (Ell HI) Z eNz(1'2; Ol)-"Prob (E1(H2), 

or, for any value of /?, say B,, 0 < < 1, 

1 1 
lirn - log 7 $I(1: 2; 0,). 
%--a n a n  

Combining (3.7) with the value that may be derived from (3.2), we have 

1 1 1 - P o  
(3.8) lim - log --; $ I(1:2; 0,) 2 lim (1 - Po) log - 

n-a  n an ~ n *  

We now state: 

THEOREM 3.2. For any value of P, say Po, 0 < Po < 1, 

* l l n  = e-Z(1:2;01) 1 
Iim (an ) , or lim (! log ?) = 1(1:2; o~) .  
n-- oo n-- oo 

Proof: Let E3 denote the samples satisfying 

We see from (3.3) that Prob (E,IHI) 1 1 - @ - 6. Integrating the right- 
hand inequality in (3.9) over E3* we find that 

(3.10) Prob (E,I HI) $ Ol)+" Prob (E,I H,). 

Since E3 c El, where El is defined by (3.9, Prob (E,I H,) 5 Prob (41 H,), 
and (3.10) yields 

(3-1 1) 1 - - 6 F ( Z ( ' : ~ ~ O I ) + . ) ~ ~ * .  

Combining (3.6) and (3.1 l), we now have [cf. Joshi (1957)], 

(3.12) (1 - /j - 6)e-n(z(l:2;O~)+') < - - an * < = e-n(z(l:2:o~)-c) 
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The desired result follows from (3.8) and (3.12). 
Similarly, we may derive : 

THEOREM 3.3. For any value of a, say a,,, 0 < a,, < 1, 

Chernoff (1956) derived theorems 3.2 and 3.3 by using an extension of 
the central limit theorem given by Cramir (1938). Chernoff attributes 
the results to unpublished work of C. Stein. [Cf. Sanov (1957, p. 40).] 

Note that from theorems 3.2 and 3.3, at least for large samples, the 
ratios 

I(1:2;X)I(1:2;Y) and I(2:1;X)/I(2:1;Y) 

may be used as measures of the relative efficiencies of competitive variables 
X and Y in the sense that 

where nu, n,, and Nu, N, are respectively the sample sizes needed to attain 
for given B, the same an*, and for given a, the same Pn* [cf. Chernoff 
(1956)l. 

Discussions that express the type I and type I1 errors asymptotically 
in terms of J(1,2), were given by Mourier (1946, 1951), and Sakaguchi 
(1955). Mourier and Sakaguchi show that if the region El* is defined by 

f l ( 4  where 012 = ( ) a',ul(x) - (I(1 :2 ; 01))2, 
log m 

h(x) ,. = (log rn) (3,u2(x) - : 1 ; O1H29 

SO that an* = Prob (On E El*I H,), 1 - Pn* = Prob (0, E E~*IH,), then 

min max (a,, P,) 
lim = 1, 

ti--O0 max (an*, Pn*) 

lim max (an*, Pn*) = 1, 
$ ( ~ J ( I ,  2 ; oJOl + oh) 



78 INFORMATION THEORY AND STATISTICS 

and 

lim 
min max (a,, B,) = 1, 

,--- fi*(l, 2; 031(01 + 02)) 

edz12 dt 
with fix) = h - and a,, /In the errors for any other region El. 

d2n 

4. PROBLEMS 

4.1. Consider the probability measure spaces (fE; 9, p,, pa and 
assume that lirn h N ) ( ~ )  = p2(E) for all E E 9. Prove that lirn inf I( 1 : 2(N)) 2 

N-cco N+ co 
1(1:2). 

4.2. Show that for the negative binomial distributions ( r (N + x)/x!~(N)) 
p;q;N-z , q i =  1 +pi,pi>O, N>O, x = 0 ,  1,2; -, i =  1,2, 1(1:2)1= 

Np1 log (plk2) - Nq1 log (q1lqJ. 

43. As N -t a, pi -to, Npi -t mi < a, the negative binomial distributions 
in problem 4.2 approach the Poisson distributions with parameters mi, i = 1,2, 
as a limit. Show 

(a) That theorem 2.1 is satisfied. 
(6) That lirn 1(1(N): 2(N)) = 1(1:2). 

N-cco 
(c) That corollary 2.1 is satisfied. 

4.4. Show that the distributions in example 2.1 satisfy lemma 2.1. 

45. Show that the distributions in problem 4.3 satisfy lemma 2.1. 

4.6. Show that the distributions in example 2.1 satisfy theorem 2.2. 

4.7. Show that the distributions in problem 4.3 satisfy theorem 2.2. 

4.8. Compute the results for table 2.1 grouping 

(a) All values x 2 3. 
(6) All values x 2 2. 
(c) All values x 2 1. 

4.9. (a) Show that for a sample of n independent 0 b ~ e ~ a t i o n s  from the 
normal populations N(,ui, a2), i = 1,2, J(1,2; O,J = n(u1 - pJ2/a2. 

(6) Consider the quantizing transformation (or grouping) of the normal 
variables in (a) above, y = 1 for x < g and y = 0 for x kg, so that y is a 

F B e-(z-~i)z12$ 
binomial variable withpi, qi = 1 - pi, pi = &, i =  l,2. Show 

adG - -- 

that J(1,2; g) = ~((PI  - ~ 2 )  log (PI/'& + (91 - qa) log (qllq2)). 
(c) Show that J(1,2; Y) is a maximum when g = (,ul + p2)/2, and that 
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(d) Show that max J(l,  2 ; Y)/J(~,  2; 0,) -+ 217~ as (p2 - pl)/. -+ 0. 
(e) Show that max J(l,  2; Y) / J (~ ,  2; On) 4 4 as (p, - p,)/u -P co. [See 

Questions and Answers, Am. Statistician, Vol. 7 (1953, pp. 14-15).] 

4.10. If in theorem 2.1 T(x) is a sufficient statistic, with vi(C) = pi(T-l(G)), 
for G E T, i = 1,2, and Tel(G) = (x: T(x) E G), then lirn inf I(l(N):2(N); Y )  = 

-v-- ai 

I(1: 2; Y). 

4.11. In the notation of theorem 3.1, show that 

J(1,2; 0,J = nJ(1,2; 0,) L (1 - a - B) log (1 - a)(1 - p) 
aB 

4.12. If I(2: 1 ; 0,) is finite, show that for any value of a, say a,,, 0 < a,, < I ,  

1 1 
lim - log - L I(2: 1 ; 0,) L lim (1 - a,,) log 

n-rai n pn* n-ai n ISn 1 - Bn* 
- a,,+ %log " )- 

4.13. Prove theorem 3.3. 

4.14. Showthatn(I(l:2;03 - E) II (1:2;On,  Ej) In(I(1:2;0,) + €),with 
the region E, defined in (3.9) and I(1:2; On, E,) defined in accordance with 
(2.4) of chapter 1. [Cf. Joshi (1957).] 

4.15. In the notation of theorem 3.2, show that Prob (E~I~%L) I e-n(1(1:2;01)-c), 
and thus that lirn Prob (E~~HJ = 0 if 1(1:2; 0,) > E. [Cf. Joshi (1957), 

n- ai 

Savage (1954, pp. 46-50).] 

1 2n P 9 r 1 
4.16. Show that lim - log = p l o g - + g l o g  p < - c T g =  1-p. 

n+ai n 
r 9 %' n 
n"P 2-0  

(Cf. problem 7.23 in chapter 3.) 

dN)(x) 4.17. If lim - - - 1 [A] uniformly, then lim I(1: 2(N)) = I(1:2) if I(1: 2) 
N+ai f i ( 4  N+oo - 

is finite. 

4.18. Let $i? = El U E2 = El* U E2*, with % the sample space in section 3, 
El n E2 = 0 = El* n E2*, a = p2(El) = p2(E,*), B = p,(EJ, and B* = p,(E2*). 
Show that for /I* c c 1 - a: 

I - a  I - a  
(a) (1 - a) log - 

B* 
> (1 - a) log -* B 

a a 
(b) a log - c a log -. 

1 - p* 1 - B  

a 1 - a  a 1 - a  
(c) a log - + (1 - a) log - > alog- + (1 - a) log -- 

B* 1 - p  1 - B  B 
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I 
I 

4.19. In the notation of problem 4.18, show that for 1 - a < B* < B: 
I - a  1 - a  

(a) (I - a) log - 
B* 

> (1 - a) log -. 
B 

a a 
a log < a log -- 

1 - B  
a I - a  a 1 - a  

(c) a log - + (1 - a) log - < a log- 
B* 

+ (1 - a) log -. 
1 - p* 1 - B  B 

I 4.20. In the notation of problem 4.18, show that if 

a I - a  a I - a  
a log - + (1 - a) log - > a log - + (1 - a) log -3 

B* B 1 - p  1 - B  

I ~ njk 2 0, i, k = 1,2, -, E ;  j = 1,2, . -, show that lirn f piav log = 0. 
1: N+OO i - 1  1 IC 

(Cf. problem 8.32 in chapter 2.) 
I 

4.22. If the sample space in problem 7.28 of chapter 3 is that of n independent 
observations, and we write a = p2(El), and = ,ul(&), where the regions E, 
and E, are defined in problem 7.28 of chapter 3, then lim (pa + qB) = 0. 

n-co 
[Cf. Joshi (1 957).] 
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Information Statistics 

1. ESTIMATE OF I(* : 2) 

We have thus far studied the information measures as parameters or 
functionals of the populations. We shall now examine estimators of these 
measures, information statistics, and investigate the general asymptotic 
distribution theory of these estimators (statistics). We shall obtain exact 
distributions, or better approximations than given by the general theory, 
in particular applications in the chapters following. 

In chapter 3 we introduced the minimum discrimination information 
I(* : 2) as the minimum value of 

I( 1 : 2) = Jh(x) log 

for a given f2(x), and allf,(x) such that 

The minimum value I(* : 2) = 07(0) - log M2(7(8)) [see the remark 
following (2.9) in chapter 31 occurs for the conjugate distribution [to use 
a term introduced by Khinchin (1949, p. 79)] with generalized density 
given by [cf. Cramir (1938)l 

When f2(x) is the generalized density of n independent observations, we 
shall estimate 1(*:2) by using the observed value of T(x) in a sample 0, 
as an estimate of 0, d(x), and a related estimate of 7, $(x) = r(d(x)), such 
that 

(1.1) 
T=YZ) = T ( ~ ( Z ) )  
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Note that (1.1) is T(x) = [E(T(x))],,+. [Cf. Barton (1956), Kupperman 
(1958, p. 573).] If there are several different functions of x that are 
unbiased estimators of 8, we shall use as 6(x) the one yielding the largest 
value of I(* : 2). The estimate of I(* : 2) is then 

f(*:2; OJ in (1.2) is the minimum discrimination information between 
a population with generalized density of the form f *(x) above, with the 
value of the parameter 8 the same as the value 6 of the sample, and the 
population with generalized density f2(x). Since I(* :2; On) 8 0, with 
equality if and only if 9 = 0, that is, when 6 is equal to the value of the 
parameter in the population with generalized density f2(x), f(*:2; 0,) is 
a measure of the directed divergence (cf. section 3 of chapter 1) between 
the sample and f2(x). The larger the value of I(* : 2; On), the worse is the 
"resemblance" between the sample and the population with. generalized 
density f2(x). Samples yielding the same value of f(*:2; On) are therefore 
equivalent insofar as directed divergence is concerned. Note that 
equivalent samples do not necessarily imply the same value of 6. [Cf. 
Bulmer (1957).] Before continuing the argument we shall illustrate the 
foregoing by another look at some of the examples in chapter 3. 

Example I. I. In example 4.1 of chapter 3 ,8  = npl, so that 

We see from the values of F(pl,p2) in Table 11, pages 378-379, that only when 
p2 = 0.5 do equivalent samples have values b1 such that Jp2 - fill = constant. 

Example 1.2. In example 4.2 of chapter 3, 8 = 81, T(x) = Z = 6, 9(x) = 
r(6) = n(Z - B.J/o;, and f(*:2; On) = n(Z - 82/2o;. Note that equivalent 
values off  are situated symmetrically about 82. 

Example 1.3. In example 4.3 of chapter 3, 8 = (81, a:), so that 

n(Z - 82)' n - 1 
f(*:2; o,,) = + - (log$ - I + $1. 

k Z 2  2 a 2  

Note that here equivalent samples are those for which the values of Z and s2 
lie on the curve in the (2, s2)-plane for which f(*:2; O,,) = constant. 
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n 
Example 1.4. In examples 4.4 and 4.5 of chapter 3 we saw that y = (I In) 2%: 

i - 1  
provided an unbiased estimator of 8 = a,2 with a larger value of 1(*:2) than 

n 
the unbiased estimator 9, where (n - l)s2 = 2 (xi - q2, when the hypotheses 

i - 1  
specified the normal distributions N(0, a:). From example 4.5 we see that 

n aZ2 
and 1(*:2;0,J==-(logy- 2 

Note that equivalent values of y are not situated symmetrically about 
Example 1.5. In example 4.6 of chapter 3, for the transformed variates u 

and v defined in (4.26) of that example, 8 = (2(1 - fi), 2(1 + p,)), so that 

+ log 2(1 + pJ  
9 2  - + 2(1 " + p2) 1. 

Note that equivalent samples are those for which y, and y2 lie on the curve 
in the (y,, yJ-plane for which 1(*:2; 0,J = constant. 

Example 1.6. In example 4.7 of chapter 3, 8 == 8, t 8, and 8, = L - Iln, 
where L = min (x,, x2, -, x,,), .dl) = n(L - I /n - 8J/(L - 02), and 

1(*:2;on) = n(L - I/n - 83  - log (I + n(L - I/n - 83) 
= n(L - 8J - 1 - logn(L - 8J. 

Note that f(*:2; O,J is not defined for L < 82. For any value n(L - e2) > 1 
there is an equivalent value L' such that n(L' - 8 3  < 1 ; also I(*:2; O,J == 0 
if and only if n(L - 8J = 1. 

2. CLASSIFICATION 

We shall introduce the problem of classifying or assigning a sample to 
one of several possible populations with a result essentially due to Kupper- 
man (1957, 1958), relating a priori and a posteriori probabilities of 
hypotheses with information statistics. Suppose that a sample 0, can . 

occur only if one of the set of r exhaustive and mutually exclusive events 
HI, H,, ., H, occurs. The a priori probabilities of these latter events 
(which we may call hypotheses) are denoted by P(Hl), P(H2), *, P(H,) 

resptively, where P(Hm) > 0 and 2 P(H,) = 1. The conditional 
m a 1  

probabilities for 0% to occur are denoted by ~ (0 .1  H,), m = 1, 2, *, r- 
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The a posteriori probability of H,, given that 0, has occurred, is denoted 
by p(HmIOn). From Bayes' theorem (cf. section 2 of chapter l), we have 
that 

7 

(2.1 ) P(Hm 1 On) = p(Hrn)P(On 1Hrn)I 2 P(Hj)P(On IHj), 
j=1 

m = 1, 2,. *, r. 

Suppose now that the conditional probabilities for 0, to occur are the 
probability measures of an exponential family (see section 4 of chapter 3) 
with respective generalized densities for a given Hi 

For any pair of the generalized densities (2.2), say f,(x) and f2(x), we 
have by corollary 3.2 of chapter 3, 

(2.3) 4 1  : 2 ; On) = l(rl : ; On) = O1rl - 01r2 - log M(rl) + log M(r2), 

where 8, = El(7(x)) = JT(X%(X) dA(x). The estimate defined in (1.2) 

therefore is 

(2.4) I(* :2; On) = $T(x) - log M($) - r2T(z) + log M(r2), 

where T(x) = (dldr) log M(r)l,_,. Similarly, the directed divergence 
between the sample and the population defined by f,(x), m = 1,2, -, r, . . 
1s 

(2.5) I(* :m; On) = QT(x) - log M(Q) - ~,T(x) + log M(T,), 

where T(x) = (d/dr) log M(r)j,_,. The difference between any pair of 
the estimates in (2.5) accordingly is, using (2.2), 

(2.6) I(* : i; On) - I(* :j; 03 = rjT(x) - r,T(x) - log M(rJ + log M(ri) 

= 1% (h(x)h(x)), 
i # j ,  i , j =  1,2; *,m. 

But from (2.1) [cf. (2.3) in chapter 11, 

or, using (2.6), 
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If we assign the sample to the population which it best resembles, that 
is, for which I(* :j; On) is smallest, then we see from (2.8) that 

(2.10) log p(Hj 1 On) 2 log 
P(H, l On) 

9 i # i ,  i =  l,2; *,r.  
P(Hj) P(Hi) 

The procedure thus selects the exponential population for which the 
ratio of the a posteriori probability of H, to the a priori probability of H, 
is greatest. (See problem 7.1 1.) We remark that the conclusion is true 
for multivariate exponential populations with parameters in an h- 
dimensional Euclidean parameter space. This is the same as a maximum- 
likelihood procedure. [Cf. Good (1950, pp. 62-64, 68-73, 82-83), 
Savage (1954, pp. 46-50, 134-135, 234-235).] (See section 4.) 

Note that the left-hand side of (2.10) is the information in On in favor 
of H, (see example 4.1 in chapter 1). 

In many problems of interest to the statistician, the generalized density 
h(x) implicit in the definition of I(* :2; On) in (1.2), ranges over a family of 
populations we denote by the symbol H. Let I(* : H)  represent the minimum 
of 1(*:2; On) as f2(x) ranges over the populations of H, that is, I(*: H)  = 
min 1(*:2; 0,). The value of I(*: H)  is thus a measure of the directed 
f ,a 
divergence between the sample and that member of the family of popu- 
lations H that the sample most closely resembles. If the value of 8 in 
the sample is the same-as the value of the parameter 0 for one of the 
members of the family of populations H, then of course f(*:H) = 0, 
that is, the sample yields no information for discrimination against H. 

When there are two or more groups of populations, for convenience 
denoted by HI, H,, H,, . *, we shall assign the sample to the group with 
the smallest value among I(* :HI), I(* : HJ, I(* : H,), -. This means 
that we shall assign the sample to that group of populations among which 
there is one that the sample best resembles, or against which the sample 
provides least information for discrimination. (See the remarks at the 
end of section 3 of chapter 1 .) 

3. TESTING HYPOTHESES 

We shall call I(* : H)  the minimum discrimination injbrmation statistic, 
and test a null hypothesis H, against an alternative hypothesis HI by 
rejecting H2 if Prob (I(*: H,) - I(*: HI) 2 cI H,] d a. By appropriate 
choice of the constant c by which we require I(* : H,) to exceed I(*: HI) 
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before we reject the hypothesis H,, we can control the magnitude of the 
type I error (the probability of rejecting the null hypothesis H, when the 
sample is from a population of H,). We shall see that this procedure also 
provides a test with desirable properties so far as the magnitude of the 
type I1 error is concerned (the probability of accepting the null hypothesis 
when the sample is from a population of HI). [For the theory of hypoth- 
esis testing see, for example, Fraser (1957, pp. 69-108), Hoe1 (1954, pp. 
30-38, 182-196).] 

Before we examine the properties of the minimum discrimination 
information statistic it may be helpful to illustrate the procedure. In the 
following examples we shall ignore the probabilities involved and consider 
only the expression I(*: H,) - I(*: HI) 2 c, that is, the critical region or 
the sample values on the basis of which we reject the null hypothesis. 

Example 3.1. Suppose we have an 0b~e~at ion x, which may indeed be a 
sample of n independent observations, and we want to test a simple null 
hypothesis H,, the observation is from a population with generalized density 
A(%), against the simple alternative hypothesis HI, the observation is 
from a population with generalized density fl(x). With the statistic 
T(x) = log (fi(x)[fi(x)), we have in accordance with the estimation procedure 
mentioned in section l ,d  = log (f,(x)/fAx)). From (2.1 6) and (2.17) of chapter 
3 and (1.1) and (1.2) of this chapter, defining N2(+J and N1(+,) below by context, 
we have 

h(x) h* : HJ = i2 log - - log M2(+J, M2(r) = bl(x))T(&(x))l-T d(x), 
h(x) 

plix),rh(x))l-+. log 4%) 
fl(4 log - = 

fi(4 N2(+J = -. 
pl(x))+<h(x))l-+. d4x) M2(+2) 

Similarly, we have 

f (4 
b1(~))1++l(h(x))41 log fi(x) dl(%) ~ 1 ~ 1 )  

A(%) log - = =-. 
Ml(+l) 

Since NA+,)/M,(+J = Nl(+l)/Ml(+l) = log (f,(x)/f,(x)), we have, as shown 
by Chernoff (1952, p. 504), G2 = +, + 1, M,(+,) = Accordingly, 
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and the critical region is therefore of the form log - 2 c. This is the most 
h(x) - ". . 

powerful critical region, as yielded by the fundamental lemma of Neyman and 
Pearson (1933). [Cf. Fraser (1957, p. 73).] 

Example 3.2. We shall need some of the results in example 1.1 of this 
chapter and example 4.1 of chapter 3. Suppose the hypothesis H1 specifies the 
binomial distribution with p = pl, 9, = 1 - p,, and the hypothesis Hz specifies 
the binomial distribution with p = p,, 9, = 1 - p,. We estimate 8 = np* by 
np, where @ = y, q = 1 - p, and y = T(x) is the number of obsemed successes 
in a sample of n independent observations 0,. From the results in example 
1.1 we see that 

We therefore reject Hz if (merging constants as they occur so that c is not 
necessarily the same constant throughout) 

P192 p log - * c. 
P29l 

When pl > pz, log (p192ip,91) > 0 and we reject Hz if /3 2 c. On the other 
hand, when p1 c pz, log(plqz/p& c 0 and we reject Hz if I c. (This 
example is a special case of example 3.1 .) See figure 3.1. 

Figure 3.1 Figure 32 
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Example 3.3. We continue example 3.2, but now the hypothesis H2 specifies 
the binomial distribution with p = p2, q2 = 1 - p2, and the hypothesis Hl 
specifies the binomial distribution with p > p2, q = 1 - p. As before, we 
estimate 8 = np* by np = y, and f(* : H2) = n(p log (p/p2) + 4 log (q/q2)). In 
section 3 of chapter 4 we noted that F(p, p) = p log (p/p) + 4 log (q/q) is a 
convex function of p for given P, F(p, p) = 0 for p = p, and F(p, p) is monotoni- 
cally decreasing for 0 S p  S p and monotonically increasing for 5 p 5 1 ; 
therefore I(* :HI) = 0, if p > p2, and fi* :HI) = log (P/p2) + 4 log (q/q2)), 
if p < p2. We therefore reject H2 if > p2 and p log (p/p& + log (4/q2) 2 c, 
that is, ifp 2 c > p,. See figure 3.2. Here we have a uniformly most powerful 
critical region. [Cf. Neyman (1950, p. 325, pp. 326-327).] 

Example 3.4. Continuing examples 3.2 and 3.3, H2 now specifies the family 
of binomial distributions with p 2 p2, q = 1 - p, and Hl specifies the family 
of binomial distributions with p Spl < p2. As before, we estimate 8 = np* 
by np = y. From the behavior of F(p, p) described in example 3.3, f(* :HI) 
and I(* : H2) are as follows : 

We therefore assign the sample to the family of populations H2 if p > p, 
P P 9 where p (q = 1 - p) satisfies p log - q log = p log - + q log -, that is, 
P1 q1 P2 92 

p = (log E) /log [Cf. Chernoff (1952, p. 502).] 
P291 

I fp  = p ,  I ~ : H ~ )  = f(*:~,) .  See figure 3.3. 
Example 3.5. Suppose we have a random sample 0, of n independent 

observations and we take the set E in example 2.3 of chapter 3 as the interval 
0 S x < cx, and its complement E as the interval -cx, < x < 0. Consider 
the null hypothesis H2 that f,(x) is the generalized density of an absolutely 
continuous distribution such' that ,u2(E) = ,u2(E) = 4. We shall use p = y/n 

I II 

as an estimate of ,ul(E) (here &(El is 8), where y = 5 T(xi) = 2 xE(xi), that 
i - 1  i = l  

is, y is the number of nonnegative observations in the sample, and q = 1 - p. 
If the alternative hypothesis Hl is that f,(x) is the generalized density of any 
absolutelycontinuous distribution such that ,u (E) = p # 4, p2(E) = q = 1 - p, 1 then f(* : H2) = n(p log 2p + 4 log 2 4  and (* :HI) = 0. We therefore reject 
H2 ifplog2p +qlog29 2 c , o r p l o g p + 4 1 o g 4 2  c, that is, if IP - 41 2 c. 
See figure 3.4. [Cf. Fraser (1 957, pp. 167-1 69).] 
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Figure 3.3 Figure 3.4 

Example 3.6. We shall need some of the results in example 1.4 above and 
examples 4.4 and 4.5 of chapter 3. Suppose the hypothesis Hi specifies the 
normal distribution N(0, ai2), i = 1 ,  2. We shall estimate 19 = a*2 by the 
statistic y = T(x) = (l /n)Cxi2 of example 4.5 (rather than by the statistic 9 of 
example 4.4). From example 1.4, we see that 

We therefore reject H2 if 

See figure 3.5. 
This is a special case of example 3.1. 
Example 3.7. We continue example 3.6, but now H2 specifies the family of 

normal distributions N(0, a2), a2 2 aZ2, and Hl specifies the family of normal 
distributions N(0, a2), a2 5 q2 < aZ2. Note that F(y, a2) = log (a2/y)  - 1 + y/a2 
is a convex function of l / a 2  for given y, F(y, a2) = 0 for a2 = y, F(y, a2) is 
monotonically decreasing for 0 < a2 < y, and monotonically increasing for 
y 5 a2 < a. I(*: HI) and i (*:H2) are therefore as follows: 
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We therefore assign the sample to the family of populations H2 if y > a2, 
0 2 ~  a2 a2 where a2 satisfies log - - 1 + 7 = log - 1 + 7, that is, 
a2 (72 a2 0 1  

a2 = (log (a,2/a12))/(1 /a12 - 1 1 0 ~ ~ ) .  

[Cf. Chernoff ( 1  952, p. 502).] 
If y = a2, I(*:H& = j (*:Hl) .  See figure 3.6. 

Figure 3.5 Figure 3.6 

Example 3.8. We continue examples 3.6 and 3.7, but now the null hypothesis 
H2 specifies the normal distributions N(0, a2), a2 2 02, and the alternative 
hypothesis Hl specifies the normal distributions N(0, a2), a2 < cr,2. I(* :HI)  
and I(*: H2) are therefore as follows: 

2 "' I + $ )  : (log 7 - 
(72 
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We therefore reject H2 if y < a; and log (a,2/y) - 1 + y/a,2 2 c, that is, 
if y 5 c < a:. Here we have a uniformly most powerful critical region. 
[Cf. Fraser (1957, p. 84).] Symmetrically, if we treat Hl as the null hypothesis 
and H2 as the alternative hypothesis, we reject Hl if y 2 aZ2 and log ( ~ ~ ~ / y )  - 
1 + y/a,l 2 c, that is, if y 2 c > 0:. If a22 is not specified, this suggests a 
confidence interval for the parameter a2 determined by log (a2/y) - 1 + y/a2 S c, 
with confidence coefficient Prob [log (a2/y) - 1 + y/a2 I; c/o2] = 1 - a. We 
may also say that the sample provides less than a desired amount of information 
for discriminating against a hypothetical value of a2 falling within the confidence 
interval. See figure 3.7. 

Example 3.9. We continue examples 3.6 through 3.8, but now we must 
assign the sample either to: HI, the family of normal distributions N(O,a2), 
a2 < a12; H2, the family of normal distributions N(O,a2), a12 5 a2 5 a;; or 
H3, the family of normal distributions N(O,a2), a2 > a,l. I(* :HI), I(* :Ha, 
and f (* : H,) are as follows : 

We therefore assign the sample to the family Hi, i = 1, 2,3, for which 
I(*:H~) = 0. See figure 3.8. 
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Example 3.10. Let us reconsider example 3.9 but with a null hypothesis H2 
specifying the family H2, and an alternative hypothesis H, specifying the family 
Hl or H3, that is, H4 = Hl U H3. We see that f(*:H& = 0 for y > a,2 or 
y < a,', and f(* :Ha = min (h* :HI), f(* :Ha)) for a12 i y i a: (see example 
3.9). 

We therefore reject H2 if y > .and log (021~) - 1 + ~ / a , ~  2 c, that is, if 
y 2 c > aZ2; or if y < a12 and log (a12/y) - 1 + y/a12 2 c, that is, if 
y i c < a12. The constants are to be determined by the significance level 
desired. See figure 3.9. 

Y 

Figure 3.9 

Example 3.11. We shall need the results of example 1.2. Suppose the 
alternative hypothesis Hl specifies the normal distribution N(p, I ) ,  ,u = p1 > p2, 
and the null hypothesis H2 specifies the normal distribution N(p,  I ) ,  ,u 5 p2. 
We estimate 19 by d = Z and fi* :p )  = n(5 - , ~ ) ~ / 2 .  fi* :HI)  and I(* : H2) are 
as follows : 

We therefore reject H2 if y2 < 5 < ,ul and n(Z - , ~ , ) ~ / 2  - n(f - ,u1)2/2 2 c, 
or if ,ul i f and n(f - , ~ , ) ~ / 2  2 C ,  that is, if Z 2 c > p2. See figure 3.10. 
Lehmann (1949, p. 2-17) shows that this critical region is uniformly most 
powerful. 



INFORMATION STATISTICS 

Figure 3.10 

Example 3.12. We continue example 3.11 but now the alternative hypothesis 
HI specifies the normal distribution N(p, I), p = 0, and the null hypothesis H2 
specifies the normal distribution N(p, I), p 5 -p2, p 2 ,u2. i(*:H,) and 
f (* : H2) are as follows : 

We therefore reject H2 if -p2 < f < p, and n(f - , ~ , ) ~ / 2  - nf2/2 2 c, 
that is, if I f 1  5 c. See figure 3.1 1. Lehmann (1 949, p. 2-1 8) shows this to be 
a most powerful critical region, or test procedure. 

Figure 3.11 
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The reader may have noted that +(x) is the maximum-likelihood 
estimate of T as a parameter of the generalized density f*(x) [cf. Barton 
(1956)l. In fact, since 

d d 
;i; 1% f *(XI = T(z) - ;j; log M2(r), 

with (dldr) log M2(7) a strictly increasing function of T (see lemmas 4.2 
and 4.5 of chapter 3), the value of T for which (dl&) log f*(x) = 0 is 
unique and given in (1 .I). [Cf. Khinchin (1949, pp. 79-81).] 

Furthermore, as might be expected from the general argument, the 
minimum discrimination information statistic is related to the likelihood- 
ratio test of Neyman and Pearson (1928). As a matter of fact, we may 
write [cf. Barnard (1949), Fisher (1956, pp. 71-73)] 

max f *(XI 
(4.1) I(* :2; OJ = &(dl - log ~ ~ ( < d ) )  = log 

fi(4 ' 
where we recall thatf,(x) = f *(x) for T = 0, and 

f ( * : ~ )  = minlog 
f*eH fi(x) 

If the populations of H are members of the exponential family over which 
f *(x) ranges, and we denote the range of values of T by Q, and the range 
of values of T corresponding to H by o, then max f,(x) = max f *(x) and 

f& zEcr, 

maxf *(XI 
4': H) = log 4 =. - log 1, 

maxf *(XI 

where 1 is the Neyman-Pearson likelihood ratio [see, for example, Hoe1 
(1954, pp. 189-192), Wilks (1943, p. 150)], 

- maxf*(x) 
1 = P*(=o) 

P* (max R) - maxf*(x)' 

If H2 implies that T E o2 and H, that T E o,, then 

-1 

max f *(x) 
I(* : H& = log en 

maxf*(zj 
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and 
maxf *(x) 

max f *(x) max f *(x) 
= log 7E"' - log *w" 

h(x)  L(x) 

We remark that here f(* : H2) - f(* : HI) = - log A*, where likelihood 
ratios of t h  form 

A* = max f *(x)/maxf *(x) 
s w a  +EW~ 

have been studied by Chernoff (195'4) for certain hypotheses. 
If H2 implies that T E o and Hl that T E ICZ - O, then f(* : HI) = 0 if 

I(*: Ha > 0, since f(* :2; On) is convex and nonnegative. The test of 
the null hypothesis H2 now depends only on the value of f(* : H&, because 
when f(*:H2) = 0 we accept the null hypothesis H2 with no further test. 

Some simple examples follow. We sha1.l apply these notions to a 
wider variety of important statistical problems in subsequent chapters. 

Example 4.1. Suppose we want to test a null hypothesis of homogeneity 
that n independent observations in a sample 0, are from the same normal 
population, with specified variance a2, against an alternative hypothesis that the 
observations are from normal populations with different means but the same 
specified variance a2. We denote the null hypothesis by H2(pla2) or He(. (02) 
according as the common mean is, or is not, specified, and the alternative 
hypothesis by H,(,u~~$) or &(-I$) according as the different means are, or 
are not, specified. 

n 

With T(x) = (x1, 52, . . ., xn) and f,@) = r]C exp [-(xi  - p)2/2021, we have 
i-1 adz 

where Gi satisfies xi = p + a2+i. We thus have 

If ,u is not specified, I(*: H~(. ( 9 )  = min I(*: ~ ~ ( ~ 1 0 2 ) )  is 
P 

On the other hand, with T(x) = (xl, x2, ., xn) but 

exp [-(xi - pJ2/2a2] 
f,(x) = r]C 9 

i=l  ad% 
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we have 

where $, satisfies xi = pi + a2$i. We thus have 

If the pi are not specified, f (* : HI(. 1 a2)) = min I(* : Hl(pil a2)) is 
I'i 

(4.1 3) I(* : HI(. 1 a2)) = 0. 

If we require that the conjugate distribution in (4.8), that is, 

f2(x) exp (71x1 + ' . . + ~ n ~ n )  " exp [-(xi - - 0~7~)~/202]  
f *(XI = =rr 9 

M2(r1, 72, . . ., 7,) i= 1 a d s  
range over normal populations with a common mean, then pi* = y2* = . 
= pn* implies that p + a2rl = ,u + a27, = . . . = p + a2rn, or  only values 
71 = 7 2 = '  ' = 7, = 7 are admissible. With this restriction, (4.8) yields 

where $ satisfies f = p + a2$, and (4.14) becomes 

(4.1 5) I(H~(. 1 a2) : 2 ; On) = n(f - , ~ ) ~ / 2 a ~ .  

Note that if 0.4 = Q'is the n-dimensional space of 71, 7,, . . . , T,, then (4.9) is 
log (max f *(x)/f,(x)), and that if m2 is the subspace of Q with 7, = 7, = . . 

S W r  

= T,, then (4.15) is log (max f *(x)r2(x)). From (4. lo), (4.13), and the fore- 
TEW* 

going we see that (4.7) becomes 
n 

(4.16) 5 (xi - ~ ) ~ / 2 a ~  = 2 (xi - , u ) ~ 2 a ~  - n(f - p)2/202. 
i = l  i= 1 

The hypothesis H2(p(a2) is the intersection of two hypotheses, (i) that the sample 
is homogeneous, and (ii) that the mean of the homogeneous sample is p. 
Rewriting (4.16) as 

reflects the fact that the first term on the right is the minimum discrimination 
information statistic to test the homogeneity and the second term on the right 
is the minimum discrimination information statistic to test the value of the mean 
for a homogeneous sample. 

Example 4.2. Suppose we have a homogeneous random sample On, namely, 
one from the same normal population, and we want to test a hypothesis about 
the mean with no specification of the variance. Let the hypothesis H2(p, at) 
imply that the sample is from a specified normal population N(p, a2), and the 
hypothesis H2(p) imply that the sample is from a normal population with 
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specified mean ,u and unspecified variance. Suppose the alternative hypothesis 
H, implies that the sample is from an unspecified normal population. 

With T(2) = (2, s2), where s2 is the unbiased sample variance, and 

we see from example 1.3 in this chapter and example 4.3 in chapter 3 that 

We note from examples 4.2 and 4.3 in chapter 3 that if the normal populations 
have the same variances under Hl and H2, that is, a12 = = then 7 2  = 0 
is the only admissible value. We reach the same conclusion by requiring that 
in the generalized density g*(y) in (4.15) of chapter 3 the variance parameters 
in the distribution of f and s2 be the same. Accordingly, for f(*:H2(,u)) we 
have the same expression as above for I(* : H2(,u, a2)) except that f = ,u + ?,(a2/n) 
and +, = 0, o r  s2 = a2, SO that 

(4.19) I(*: H2(,u)) = n(f - ~ ) ~ / 2 s ~ .  

We see that I(*: HI) = 0, and the test of the hypothesis H2(,u) depends only on 
the value of I(*: H2(,u)). This is the familiar Student t-test. (See problem 7.8.) 

Example 4.3. Suppose we want to test a null hypothesis about the variance 
of a normal population from which a random sample 0, has been drawn. Let 
tht  hypothesis H2(a2) imply that the sample is from a normal population with 
specified variance a2. We see from (4.18) that 

I(* :Hz($)) = min f(* : H2(p, a2)), 
P 

The hypothesis H2(,u, a2) in example 4.2 is the intersection of two hypotheses, 
(i) that the mean of the homogeneous sample is ,u, given a2, and (ii) H2(a2). 
Rewriting (4.18) as 

(4.21) I(* :Hz@, 02)) = I(H~(. 1 a2) : 2; On) + I(* : H2<a2>) 

reflects this because of (4.17). 

5. ASYMPTOTIC PROPERTIES 

The asymptotic distribution of the likelihood ratio il is known for  
certain cases. Wilks (1938a) 'showed that, under suitable regularity 
conditions, -2 log il is asymptotically distributed as x2 with (k - r )  
degrees of freedom, under the null hypothesis that  a (vector) parameter 
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lies on an r-dimensional hyperplane of k-dimensional space. Wald (1943) 
generalized Wilks' theorem to more general subsets of the parameter space 
than linear subspaces and showed that the likelihood-ratio test has 
asymptotically best average power and asymptotically best constant power 
over certain families of surfaces in the parameter space and that it is an 
asymptotically most stringent test. [For the concept of stringency see, 
for example, Fraser (1957, pp. 103-107).] Wald (1943) also showed that 
under the alternative hypothesis the distribution of -2 log Aasymptotically 
approaches that of noncentral x2. Chernoff (1954) derived, under suitable 
regularity conditions, the asymptotic distribution of -2 log A* [see the 
remark following (4.7)]. In many cases -2 log A* behaves like a random 
variable that is sometimes zero and sometimes x2. [See, for example, 
Bartlett (1955, pp. 225-226), Fraser (1957, pp. 196-200), Hoe1 (1954, pp. 
189-196), Wilks (1943, pp. 150-152), for the likelihood-ratio test and its 
asymptotic x2 properties.] 

Kupperman (1957) showed that for a random sample of n observations, 
under regularity conditions given below, 

2nf = 2n [/j(x, 8) log dA(x)] m, 82) 8-8 

is asymptotically distributed as x2 with k degrees of freedom [k is the 
number of components of the (vector) parameter] under the null 
hypothesis, where fix, 8) is the generalized density of a multivariate, 
multiparameter population, the random vector 6 is any consistent, 
asymptotically multivariate normal, efficient estimator of 8, and the 
vector 8, is specified by the null hypothesis. The regularity conditions 
are (cf. section 6 of chapter 2): 

1. 8 = (el, 02, - ., 8,) is a point of the parameter space @, which is 
assumed to be an open convex set in a k-dimensional Euclidean space. 

2. The family of populations defined byfix, 8), 6 E @, is homogeneous. 
3. flx, 8) has continuous first- and second-order partial derivatives with 

respect to the 8's in 0, for x E 3 [A]. 
4. For all 8 E @, 

5. The integrals 

a log fix, 8) a log fix, 8) 
cij(e)=/ asi a j , ) d A ( x ) ,  i , j = 1 , 2 , * . * , k ,  

are finite for all 8 E O. 
6. For all 8 E 0, the matrix C(8) = (cij(8)) is positive-definite. 
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If instead of a single sample, as above, we have r independent samples of 
size n,, i = 1,  2, . . ., r, and each with a consistent, asymptotically multi- 
variate normal, efficient estimator 6, = (d,,, Biz, - - -, 8 3 ,  i = 1,2, - - -, r, 
then under the regularity conditions above, Kupperman (1957) showed 
that 

is asymptotically distributed as x2 with rk degrees of freedom under the 
null hypothesis that the r samples are all from the same population 
specified by Jx, 8). Kupperrnan (1957) showed that under the null 
hypothesis that the r samples are from the same population whose 
functional form is known, but with unspecified parameters, 

is asymptotically distributed as x2 with (r - 1)k degrees of freedom, 
where ni is the number of independent observations in the ith sample, 6,. 
is a consistent, asymptotically multivariate normal, efficient estimator of 
the k parameters for the ith sample, and n6 = n,& + n26, + . + n,8,, 
n = n, + n, + . + n,. When the null hypothesis is not true, Kupper- 

7 r 
man (1957) showed that 2 2 ni1,(8), and 2 2 nili converge in proba- 

i=l i=l 
bility to an indefinitely large number and that. the large-sample distribution 
may be approximated by a distribution related to the noncentral x2- 
distribution with a large noncentrality parameter and the same number 
of degrees of freedom as the x2-distribution under the null hypothesis. 
Kupperman (1957) also showed that, under the same regularity conditions 
as above, similar results hold for the estimates of the divergence. Thus, 
with the same notation as above, 

is asymptotically distributed as x2 with k degrees of freedom when the 
sample is from the population specified byfix, 8,); 

i=l  "' ") ~A(x)] 
i niJi(8) = i ni [/m, 8,) -fix, 8)) log Ax, 

i = 1 e, = ei 
is asymptotically distributed as x2 with rk degrees of freedom if the r 
samples are from the population specified by@, 8); 



loo INFORMATION THEORY AND STATISTICS 

is asymptotically distributed as x2 with (r - 1)k degrees of freedom if the 
r samples are from the same population. 

For two samples, Kupperman (1957) showed that 

is asymptotically distributed as x2 with k degrees of freedom when the two 
independent samples are from the same population with unspecified 
vector parameter 8. 

The behavior of the estimates of the divergence when the null hypothesis 
is not true is similar to that of the estimates of the discrimination 
information. 

These tests are consistent, the power tends to 1 for large samples. [See, 
for example, Fraser (1957, p. 108).] 

n 
Example 5.1. We may infer that 21(* : H2(pla2)) = 2 (xi - , ~ )~ / a? ,  in (4.9), 

i - 1  

asymptotically has a x 2  distribution with n degrees of-freedom. (It can of 
course be shown that this is true for all n.) We may reach this conclusion by 
Wilks' theorem, since there are n parameters r1,r2, *, Tn, and the null 
hypothesis specifies the point TI = 7, = - - 7, = 0. 

n 
Example 5.2. We may infer that 21(*: H2(1a2)) = 2 (xi - q2/o2, in (4.10), 

i - I  

asymptotically has a x2 distribution with (n - 1) degrees of freedom. (It can 
of course be shown that this is true for all n.) We may reach this conclusion 
by Kupperman's result in (5.2), since 241 :2) = (p, - ,u,)~/* for normal 
distributions with different means and the same variance, and each observation 
is a sample of size 1, so that ,iii = xi, p2 = 5, k = 1, andr = n. 

Example 5.3. We may infer that 

in (4.18), asymptotically has a x2 distribution with 2 degrees of freedom. We 
may reach this conclusion by using Wilks' theorem, since there are two 
parameters rl, 7 2  and the null hypothesis implies r1 = 7 2  = 0. 

Example 5.4. Suppose we have a sample of n independent observations 
from a normal population with zero mean and unknown variance. From 
example 3.8, and the asymptotic properties, we may determine a confidence 
interval for the parameter a2 with asymptotic confidence coefficient (1 - a) 
from 

(5.3) n(log (a21y) - 1 + yl$) I x2, 
n 

where y = (lln) Ex: and 312 is the tabulated value of x2 for 1 degree of 
i Z 1  

freedom at the lOOa % significance level. Since the left-hand side of (5.4) is 
a convex function of l/a2 for given y, the equality in (5.3) is satisfied for two 
values of a2. (See examples 3.8 and 5.6.) 
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We shall supplement the preceding statements by a more detailed 
examination of the asymptotic behavior of 2 4 * :  H). First, let us examine 
more explicitly the relation between T(x) = 8 and the estimate of T, 

( x )  = ( 6 )  in ( 1  1 )  Since 

where ~ ( 6 )  lies between r(6) and T(@, with 0 = [(dld~) log M,(T)],=,,,, 
we get from lemma 4.3 of chapter 3, (1.1), and (5.4) the relation 

(5-5) 6 - e = ( ~ ( 6 )  - ~ ( 0 ) )  var (6l~(B)). 

We recall to the reader's attention the inherent multidimensionality of 
the variables and the parameters, as already mentioned for lemmas 4.10 
through 4.12 of chapter 3. In terms of- the matrices (vectors) 8' = 
( ,  O,, ' . ', ek), 6' = (61, d2, ' . , 6 )  i = (71, T2, . . , ) = 
?,, . . -, +,), we may write instead of (5.5): 

(5.6) il - 8 = Z(r(O))(+ - T), 

where Z(r(8)) is the covariance matrix of the 6's in the conjugate distri- 
bution with parameter ~ ( 8 ) .  We may also derive (5.7) directly from 
~ ( 6 )  = ~ ( 0 )  + (6 - B)[d~(O)/d0]~_~ and lemmas 4.7 and 4.12 of chapter 3. 

If we write j(*:2; 0.) = m(6) = &(6) - log M,(T(~)) and follow the 
procedure in the proof of theorem 4.1 of chapter 3, we see that 

(5.8) f(*:2; On) = I(*:2; On) + (6 - O)T(~) + (6 - 8),/2 var (6ls(B)), 

where 8 lies between 6 and 8. In terms of the matrices defined above for 
(5.6), we have 

If 6 is of the form (lln) times the sum of n independent, identically 
distributed random vectors with finite covariance matrix Z1(7(O)), then by 
the central limit theorem [Cramer (1937, pp. 112-1 13; 1955, pp. 114- 

116)], the distribution of di(6 - 8) tends to the multivariate normal 
distribution with zero means and covariance matrix Z,(T(~)) = nZ(~(8)), 
and in particular 6 converges to 8 in probability. [See, for example, 
Fraser (1 957, pp. 208-2 1 3 . 1  

We see from lemma 4.7 in chapter 3 that ~ ( 0 )  is a continuous function 



102 INFORMATION THEORY AND STATISTICS 

of 0 for all T in the interval of finite existence of M2(7). We may therefore 
apply a theorem of Mann and Wald (1943) on stochastic limits, to conclude 
that the convergence in probability of to 8 implies the convergence in 
probability of r(B) to ~ ( 0 ) .  [Cf. CramCr (1946a, pp. 252-255).] Since 
r(B) lies between r(B) and r(0) [that is, each component ofr(B) lies between 
the corresponding component of r(6) and r(0)], r(B) converges in proba- 
bility to r(0), and from lemmas 4.3 and 4.10 in chapter 3 and the Mann 
and Wald (1943) theorem, Z(r(8)) converges in probability to q ~ ( 0 ) ) .  
From (5.7) we see that the distribution of 3 - 7 tends to the multivariate 
normal distribution with zero means and covariance matrix G*(O) = 
G*-f(~) = Z-~(T(O)), where the matrices are defined in lemmas 4.10 and 
4.1 1 of chapter 3. This is a well-known classical property of maximum- 
likelihood estimates. 

At this point it is appropriate to remind the reader that the results in 
(5.6), (5.7), (5.9), and the previous paragraph are in terms of the para- 
meters of the distribution of 6, and not explicitly in terms of the parameters 
for a single observation. We must therefore remember that 

If the sample On is from the population with generalized density f2(x), 
then 6 = 8(O), r = 0, I(* : 2 ; On) = 0, and 21(* : 2 ; On), as may be seen 
from (5.9), is asymptotically the quadratic form of the exponent of a 
multivariate normal distribution and therefore is distributed as x2 with 
k degrees of freedom [cf. Rao (1952, p. 55), problem 10.21 in chapter 
91. Note the similarity between (5.9) with 7 = 0 and (6.4) of chapter 2 
with 6 - 8 as (do). 

We may now determine a confidence region with asymptotic confidence 
coefficient 1 - a for the parameters of f2(x) from the inequality 

(5.1 1) 2f(* :2; On) S x2(a, k), 

where x2(a, k) is the value for which the x2-distribution with k degrees of 
freedom yields Prob (x2 $ x2(a, k)) = a. Since 2f(* : 2 ; On) is a convex 
function, the inequality (5.11) yields two limiting values for a single 
parameter, values within a closed curve for two parameters, values 
within a closed surface for three parameters, etc. We shall give some 
examples before we take up the distribution under the alternative hypothesis. 

Example 5.5. We saw in example 1.1 that for the binomial distribution, 
21(*:2; On) = 2n(p log (p/p2) + log (q/q2)), where y = np is the observed 
number of successes. We thus have a 95% confidence interval forp2 determined 
by the inequality 

(5.12) B 2n (,5 log - + l o g i )  13.84. 
P2 (32 
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In table 5.1 are some 95% confidence intervals for the binomial computed 
by Howard R. Roberts. [See Roberts (1957) for a chart of confidence belts.] 

TABLE 5.1 

Example 5.6. We saw in example 1.4 that for a sample from a normal 
distribution with zero mean, 21(*': 2 ;  On) = n(1og (a,2/y) - 1 + y l ~ r ~ ~ ) ,  where - n 
y = ( 1  In) .z x:. We thus have a 95% confidence interval for 02 determined 

2-1 

by the inequality (cf. example 3.8) 

For n = 10 we get ~12.15 I; 022 Iy10.359, and for n = 100 we get 911.303 I; 
I; y10.748. 

Example 5.7. We get from example 1.5 that for samples from a bivariate 
normal distribution with zero means and unit variances 

1 1 
where y, = - 2 (xli - x2i)2, y2 = , 2 (xli + x2i)2. We thus have a 95% 

11 i = 1  i = l  
confidence i n t e k l  for p2 determined by the inequality 
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We remark here that according to section 3.4 of chapter 12, for a sample On 
from a bivariate normal distribution with no specification of the means and 
variances, a 95% confidence interval for p is determined by the inequality 

1 -p2 
(n - 1) log -2 - 2 + ( 1 - r  

2(1 - 'P)) I; 3.84, 
1 -p2  

where r is the usual sample product-moment correlation coefficient. 
Example 5.8. We saw in example 5.3 that 2f(*: H2(p, 03) = n(2 - p)l/02 + 

(n - l)(log ($1~2) - 1 + s2/a2), with 3 the unbiased sample variance, is 
asymptotically distributed as x2 with 2 degrees of freedom if the normal popula- 
tion parameters are p and a2. Accordingly, for a sample On from a normal 
distribution, a 95% confidence region for (p, $) is determined by the inequality 

n(Z - ')'+ (n - 1) log- - 1 + 
02 ( " ;  

Example 5.9. We saw in example 1.6 that 

2f(*:2; On) = 2(n(L - 02) - 1 - log n(L - 02)), 

with L = min (xl, x2, -, x,), for a sample from the population defined by 
&(x) = exp [-(x - O,)], 8, I; x < a. Accordingly, for a sample On from the 
population defined by the density fi(x), a 95% ,confidence interval for O2 is 
determined by the inequality 

(5.1 7) n(L - 83 - 1 - log n(L - 02) I; 1.92. 

We find that 0.057 I; n(L - 83 I; 4.40, that is, L - 4.401n I; 8, I; L - 0.057ln. 

On the other hand, if the sample On is not from the population with 
generalized densityf,(x), then, as may be seen from (5.9), asymptotically, 

and 

is distributed as x2 with k degrees of freedom. 
We shall now show that (5.19) is twice the logarithm of a likelihood 

ratio. Since 

1(*:2; On) + (8 - O)r(O) = Or(8) - log M2(r(8)) + (8 - 8)r(8) 

= &(e) - log M2(s(Q) = log ( f  *(x)lf,(x)), 
we may write [see (5.9)] 

max f * (x) f *(x) max f *(x) 
= 210g .r -210g-=2log .r 

f 2 W  fi(4 f *(x> 
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The test that rejects the null hypothesis [the sample is from the 
population with generalized density f,(x)] if the value of 2!(*:2; On) 
is large is consistent (has a power that tends to 1 as the sample size 
increases indefinitely). We see this by noting that if the sample is from 
the population with generalized density fi(x), then for large samples 
Prob [2!(* :2; On) 2 z2(a  k)] = a, where z2(a, k) depends only on a and 
the degrees of freedom k. On the other hand, if the sample is not from 
the population with generalized density f,(x), then from the weak law of 
large numbers, or Khintchine's theorem [cf. section 3 of chapter 4; 
Cramtr (1946a, p. 253), Feller (1950, p. 191)], for any c > 0, > 0, for 
sufficiently large n [see (5.1 8)] : Prob [2f(* : 2; On) 2 21(* : 2; On) + k - c] 
2 1 - p. Note that for large enough n, 21(* : 2; 0,) + k - c 2 z2(a, k), 
even for alternatives very close to the null hypothesis, close in the sense of 
small 1(* : 2 ; O,), since 1(* : 2 ; 0,) = nl(* : 2 ; 0,). 

In order to derive a more useful statement about the asymptotic 
distribution under the alternative hypothesis than that about the expression 
in (5.19), we proceed as follows. Since 

we have from (5,6), (5.9), and (5.21): 

We saw by the central limit theorem that the distribution of dn(6  - 6) 
tends to a multivariate normal distribution with zero means and covariance 
matrix Z1(r(8)) = nZ(r(8)). Consequently, asymptotically (cf. section 3 
in chapter 12), 

where 6 = B(0) + Z(0)9 [cf. (5.6) withr = 01, so that 

(5.24) 2!(* :2; 03 = (6 - B(o))'z-~(ox~ - B(0)) 

= n(6 - B(O))'Z,-'(0)(6 - B(O)) = 9'Z(O)9, 
and similarly, 

We conclude from (5.22), (5.24), and (5.25) that Z(r(8)) = Z(0) and 
therefore that 21(*:2; 0,) asymptotically is distributed as noncentral z2 
with k degrees of freedom and noncentrality parameter 21(* :2; 0,). 
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Note that this is consistent with (5.18) since the expected value of non- 
central x2 is the sum of the noncentrality parameter and the degrees of 
freedom. (See problem 10.22 in chapter 9 and section 6.1 in chapter 12.) 

Accordingly, whenever f2(x) is itself a member of an exponential 
family, as will be the case in most of the applications in the subsequent 
chapters, we see that 

max f'*(x) 
(5.26) 2f(* : HI) = 2 log T€n = min (? - T)'Z(O)(? - T), 

max f *(x) T€W* 

where R is the k-dimensional space of the 7's and w, is the subspace of 
for which f*(x) ranges over the populations of H,. If co, is an r- 

dimensional subspace of R, we may then infer from Wilks (1938a) and 
Wald (1943) that 21(*: H,) is distributed asymptotically as x2 with k - r 
degrees of freedom if the sample is from a population belonging to those 
specified by H,, and that 21(*: H,) is asymptotically distributed as non- 
central ~2 with k - r degrees of freedom and noncentrality parameter 
21(*: H,) in the contrary case. [Cf. Bartlett (1955, pp. 225-226), Bateman 
(1949), CramCr (1946a, pp. 424-434, 506), Fisher (1 922a, 1924), Neyman 
(1949), Rao (1952, pp. 55-62), Weibull (1953).] We compare the exact 
probabilities that may be computed with the approximations from the 
asymptotic theory for particular illustrations in section 4 of chapter 6 and 
section 4 of chapter 7. 

We remark that for many of the subsequent applications exact distri- 
butions are available, or better approximations may be found than those 
provided by the general theory. In each instance the asymptotic behavior 
agrees with the conclusions from the general theory. 

6. ESTIMATE OF J(*, 2) 

For the conjugate distribution f *(x) = e7T(2%(x) /~2(~)  defined in 
section 1, we find that 

Note that this is corollary 3.2 of chapter 3 with 7, = 7, 7, = 0. We 
estimate J(*, 2) by 

d 
where T(x) = 4 = [z log M,(?)] . (See section 1 .) 

7=7(0)  
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The implicit multidimensionality may be exhibited by writing 

where the matrices are defined in (5.6). 
By proceeding as in section 5, we see that if the sample is from the 

population f2(x) specified by the null hypothesis, asymptotically 

is distributed as x2 with k degrees of freedom. 
On the other hand, from (5.23) 

that is, asymptotically I(*, 2) is equal to 2f(* : 2) and therefore the con- 
clusions about the asymptotic behavior of ](*, 2) are the same as for 
21(*:2). Note the similarity with the relation between J(O, O + AO) and 
21(O : 8 + AO) in section 6 of chapter 2. 

We shall denote the minimum value of I(*, 2) as f, ranges over the 
populations of H2 by J(*, HZ). The asymptotic behavior of j(*, H2) is 
the same as that of 2f(*:H2). 

7. PROBLEMS 

7.1. Consider the normal distributions N ( p i ,  a2), i = 1,2, p, < p2. $how 

that for all regions A for which f,(x) dx = 1 - a, the maximum of 
f1W Lfl(x) log - dx occurs for the region A = {x: - m < x < 8). 
h(x) 

7.2. Show that the critical region in example 3.3 is uniformly most powerful. 

7.3. If in example 3.4 p, = 0.20, p2 = 0.80, what is the critical value p?  
If n = 25, what are the errors of classification? 

7.4. Show that the critical region in example 3.8 is uniformly most powerful. 

7.5. Show that the critical region in example 3.1 1 is uniformly most powerful. 

7.6. Show that the critical region in example 3.12 is most powerful. 

7.7. Sketch the confidence region of (5.16) for n = 100, p = 0, a2 = 1. 

7.8. Show that the unrestriited minimum of (4.18) with respect to a2 is 
n - n(3 - ,u)~ n(Z - p)2 ---A log (1 + which for large PZ is approximately 

2 (n - l)s2 2s2 ' 

7.9. Prove the statement at the end of example 1.1. 
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7.10. Suppose the hypothesis Hi specifies the normal distribution N(pi, ufi, 
i = 1,2. Develop the test for the null hypothesis H, paralleling the procedures 
in the examples in section 3. [Cf. Kupperman (1957, pp. 94-96).] 

7.11. Show that the classification procedure described in the first half of 
section 2, when r = 2, is such that the probability of misclassification tends to 
zero as the sample size tends to infinity. (Cf. problem 7.28 in chapter 3 and 
problem 422  in chapter 4.) 
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1. INTRODUCTION 

We shall now undertake the application of the principles and results 
developed and derived in the preceding chapters to the analysis of samples 
for tests of statistical hypotheses. 

In this chapter we take up the analysis of one or more samples from 
multinomial populations and in the next chapter the analysis for Poisson 
populations. The analyses in this chapter provide the basic structure for 
the analyses of contingency tables in chapter 8. We shall see that the 
analyses in chapters 6, 7, and 8 are in many respects similar to those of the 
analysis of variance. Indeed, we shall see in chapters 10 and 11 that the 
same basic technique applied to the analysis of samples from normal 
populations for the general linear hypothesis leads to the analysis of variance 
and its multivariate generalization. 

We shall use the minimum discrimination information statistic obtained 
by replacing population parameters in the expression for the minimum 
discrimination information by best unbiased estimates under the various 
hypotheses. 

For the special type of multinomial distribution that arises when 
sampling words or species of animals, an approximately unbiased estimate 
of entropy is given by Good (1953, p. 247). Miller and Madow (1954) 
give the maximum-likelihood estimate, and its asymptotic distribution, 
of the Shannon-Wiener measure of information for a multinomial. 

All the formulas in chapters 6, 7, and 8 may be expressed in terms of 
the form n log n or m log n (all logarithms herein are to the Naperian 
base e). Table I on pages 367-377 gives values of log n and n log n for 
n = I through 1000. I am indebted to Sheldon G. Levin for the com- 
putation of the table of n log n. Tables of n log n to base 2 and base 
10 for n = 1 through 1000 may be found in a technical report .by Miller 
and Ross (1954). Fisher (1956, pp. 137-1 38) lists n log n to base 10 for 
n = 1 through 150. Bartlett (1952) lists values, all to the Naperian base 
e, of -logp, -p logp, forp = 0.00,0.01, ., 0.99, 1-00, and -(p logp 

109 
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+ q log q), p + q = 1, p = 0.00,0.01, a, 0.50. Klemmer, in an article 
on pages 71-77 of Quastler (1955), gives, all to the base 2, a table of log n, 
n = 1 through 999, and a table of -p logp for p = 0.001 through 0.999. 
He also refers to AFCRC-TR 54-50 which contains, all to the base 2, a 
table of log n to 5 decimal places, n = 1 through 1000, a table of n log n 
to 5 decimal places, n = 1 through 500, and a table of -p logp, 
p 5 0.2500 to 4 decimal places and p 2 0.251 to 3 decimal places. 
Dolansky and Dolansky (1952) have tabulated, all to the base 2, -logp, 
-plogp, and -(plogp +qlogq) ,p  + q  = 1. 

2. BACKGROUND 

Suppose two simple statistical hypotheses, say Hl and H2, specify the 
probabilities of two hypothetical c-valued populations (c categories or 
classes), 

(2;1) Hi:pil, Pi29 ' ' '3 Pic, Pil +Pi2 9 +pic = I, i =  1, 2. 

The mean information per observation from the population hypothesized 
-by HI, for discriminating for Hl against H2, is (see section 2 of chapter 1 
for the general populations, of which this is a special case) 

P11 Plc 
(2.2) 1(1:2) = p,, log - + p,, log fi + + PIC log -. 

P2l P 2 2  P2c 

The mean information per observation from the population hypothesized 
by H2, for discriminating for H2 against HI, is (see section 3 of chapter 1) 

P2l P22 
(2.3) 42: 1) = p2, log - + p, log - + . + p2, log k- 

P11 Pl2 Plc 

The divergence between Hl and Hz, a measure of the difficulty of 
discriminating between them, is (see section 3 of chapter 1) 

P11 
(2.4) J(1, 2) = I(1: 2) + 1(2 : 1) = (pll - pzl) log - 

P2l 

According to the general conclusions in chapter 2, 

(2.5) ( : 2 ) 0 ,  ( 2 : ) 0 ,  J ( 1 , 2 ) 2 0 ,  

where the equality in (2.5) is satisfied in each case, if and only ifpli = P,~, 
i  = 1, 2,.  . ., c, that is, the hypotheses imply the same population. 
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The mean discrimination information and divergence for a random 
sample of N independent observations, ON, are, 

c 

(2.6) I(1: 2; Ox) = NI(1: 2) = N 2 pli log (pli/pPi), 
i = l  

3. CONJUGATE DISTRIBUTIONS 

Consider the N-total multinomial distribution on a c-valued population 
(c categories or classes), 

where p i>O,  i =  1, 2 , -  .,c, p l + p 2 + .  * + p c =  1, x 1 + x 2 +  
9 xc = N. Suppose that p*(x) is any distribution on the c-valued 

population such that every possible observation from p*(x) is also a 
possible observation from p(x). This is to avoid the contingency that 
p*(x) # 0 and p(x) = 0. (See section 7 of chapter 2.) 

Theorem 2.1 of chapter 3 permits us to assert: 

LEMMA 3.1. The least informative distribution on the c-valuedpopulation, 
with given expected values, for discriminat ion against the mult inomial 
distribution p(x) in (3. I), namely the distribution p*(x) such that E *(xi) = 8, - - 

p*(4 and p*(x) log - is a minimum, is the distribution 
x1+- . . +xc=N P(X) 

- where pi* = pie'i/(ple71 + - - - + pee%), i = 1, 2, - -, c, the 7's are real 
parameters, and ei = (a/&,) log (pie% + . + pCe7c)*. 

Note that the least informative distribution p*(x) here is a multinomial 
distribution. A simple numerical illustration of lemma 3.1 is in example 
2.1 of chapter 3. 

The multinomial distribution p*(x) in (3.2) is the conjugate distribution 
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(see section 1 of chapter 5) of the multinomial distribution Hz). The 
following are derived by the procedures exemplified in chapter 3 : 

(3.3) Oi = Npi* = N~~e' i / (~~e ' l  9 9 pg7c), z - = 1, 2, -, c, 

(3.4) 8,/8, = pieq/p,e7j, i, j = 1, 2, . . . , c, 

(3.5) T~ = log (Oi/Npi) 9 log k, i = 1, 2, . *, c, 

k = ple71 9 9pgrc > 0, 

P*@) 
(3.7) J(*, 2; 0,) = 2 (p*(x) - p(x)) log 

zl+ . -+zc=N 

Since the value of k in (3.5) is arbitrary, we shall take k = 1 for 
convenience so that in a homogeneous notation 

(3.8) ri = log (OilNpi), i = 1, 2, . *, c. 

On the other hand, since x, = N - x1 - x2 - . - x,-~, we may 
also set T, = 0, or log k = -log (8,/NpC), in which case 

eipc ri = log -3 i =  l,2; * , c -  1, 
P iec  

For applications to problems of tests of hypotheses about multinomial 
populations, the basic distribution in (3.1) will be that of the null hypothesis 
H2, whereas the conjugate distribution will range over the populations of 
the alternative hypothesis HI. 

4. SINGLE SAMPLE 

4.1. Basic Problem 
Suppose we have a random sample of N independent observations, 

x 9 . 9 x, = N, with a multinomial distribution Xl, x2, ' ' ', x,, 21 9 2 
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on a c-valued population (c categories or classes), and we want to test 
the null hypothesis H2 that the sample is from the population specified by 

against the alternative hypothesis Hl that the sample is from any possible 
c-valued multinomial population. 

We take for the conjugate distribution (3.2) the one with parameters 
the same as the observed best unbiased sample estimates, that is, 
8, = N@~* = xi, i = 1,2; , c. From (3.8) 

*i ii = log NP,, i = 1,  2, ., c, 

and the minimum discrimination information statistic is 

and the corresponding estimate of the divergence is 

Note that (4.3) is (2.6) with the substitution of xi/N for pli and pi for pZi, 
and that (4.4) is (2.8) with the same substitutions. (See problem 7.15.) 

Under the null hypothesis H2 of ('4.1), it follows from sections 5 and 6 
of chapter 5 that 2f(* : 2; ON) and f(*, 2; 0,) are asymptotically distributed 
as x2 with (c - 1) degrees of freedom. Under an alternative, 21(*:2; ON) 
and j(*, 2; ON) are asymptotically distributed as nonantral x2 with 
(c - 1) degrees of freedom and noncentrality parameters 21(*:2; 0,) 
and J(*, 2; ON) respectively, where 1(*:2; OAv) and J(*, 2; OAV) are (4.3) 
and (4.4) with xilN, i = 1,2, *, c, replaced by the alternative probability. 
[See the last member of (3.6).] 

Note that we may also write (4.3) as 

c c 

f(*:2; oaV) = E x i  log xi - E x i  log pi - N log N, 
i = l  i = l  

for computational convenience with the table of n log n. 
Since log x $ x - 1, x > 0, and the equality holds if and only if 

x = 1 [see Hardy, Littlewood, and Wlya (1934, p. 106, th. 150), or the 
statement following (2.7) in chapter 41, it follows that (a - b)la I- 
log (alb) S (a - b)/b, alb > 0, and the equalities hold if and only if 
a = b. We may therefore use as a first approximation to log (alb) the 
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mean of its upper and lower bounds, that is, log (alb) w *[(a - b)/a + 
(a - b)/bJ = (a2 - b2)/2ab, the approximation being better the closer a/b 
is to 1. This approximation in (4.3) and (4.4) yields 

where the first sum in (4.6) is K. Pearson's x2, and the second sum in (4.6) 
is Neyman's xf2 [Haldane (1955), Jeffreys (1948, pp. 170-173), Neyman 
(1 929)l. 

We remark that 2f(*:2; ON) is -2 log 1, with 1 the likelihood-ratio 
test [see, for example, Fisher (1922b, pp. 357-358), Good (1957, p. 863), 
Wilks (1935a, p. 191)l. It is interesting to recall that Wilks (1935a) 
remarked that there was no theoretical reason why x2 should be preferred 
to -2 log 1 and that -2 log 1 can be computed with fewer operations 
than x2. Good (1957, p. 863) remarks that (I use the notation of this 
section) (i) 2f(*:2; ON) more closely puts the possible samples in order of 
their likelihoods under the null hypothesis, as compared with x2, for 
given N, c, p,, p2, .,pc, (ii) the calculation of 2f(*:2; ON) can be done 
by additions, subtractions, and table-lookups only, when tables of 2n log n 
(to base e) are available, but the calculation is less "well-conditioned" 
than for x2, in the sense that more significant figures must be held, (iii) x2 
is a simpler mathematical function of the observations and it should be 
easier to approximate closely to its distribution, given the null hypothesis. 

4.2. Analysis of i(* : 2; 0,) 

Significant values of f(*:2; OAV) may imply groupings of the categories 
as suggested by the nature of the data. 1(*:2; ON) in (4.3) can be 
additive4 analyzed to check such hypothetical groupings. 

We consider first an analysis into (c - 1) dichotomous comparisons of 
each category with the pool of all its successor categories. [Cf. Cochran 
(1954), Lancaster (1949).] Let us define 

The analysis in table 4.1 is derived in a straightforward fashion from 
these definitions and the properties of the logarithm. The convexity 

P'Ope*Y 
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where ai > 0, bi > 0, i = 1, . . ., n, and the equality holds if and only if 
ai/bi = constant, i = 1, 2, . . a ,  n [see Hardy et al. (1934, p. 97, th. 117); 
also example 3.2 of chapter 21, ensures that the dichotomous comparisons 
are made with the minimum discrimination information statistic, that is, 
each "between component" is the minimum value of the "within com- 
ponent" below it in table 4.1 for the given grouping. 

TABLE 4.1 

Component due to Information D.F. 

Within categories 
XC -14~-a 

c - 1. to clx,, 2 
Nc-ape-1 

' ', XC-a 
Nc-apc 

Between category 
c - 2 and ate- XC-aqc-3 (Nc-3 - x~-&~--s + (Nc-, - 2,-3 log 
gories ( c  - 1) + Nc-SC-a Nc-34,-a 

Within categories x44a + + xc log -) % 4 a  c - I 
3 to cIxl, X% Nape 

Between category (Ni - ~2)41 
2 and categories 2 + (Nl - 1% 
3 + . + clxl N1qa 

Within categories 
2 to c1x1 

Between category 
1 and categories 2 + ( N  - 2,) 1% N(l - 
2 + . . - + c  

xc Total, 2j (*:2;  a) 2 + - - + xc log -) 
NPc 

We remark that the analysis in table 4.1 is a reflection of two facts: 

1- A multinomial distribution may be expressed as the product of a 
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marginal binomial distribution and a conditional multinomial distribution 
of the other categories (cf. section 2 of chapter 2), for example, 

where Nl = N - xl, N2 = N - xl - x2, 3 91 = 1 -,PI, q 2 = 1  - 
Pl - P2 = q1 - P2, ' ' 9  ~2191 4- 9 ~c lq l  = 1, p3lq2 + 9 pcIq2 
= 1, *. 

2. The hypothesis H2 is equivalent to the intersection of c - 1 hypoth- 
eses Ha, -, H2(,-,), H2 = H2, n H, n n H,(,-,), where H2, is the 
hypothesis that the probability of occurrence of the first category is p,, 
H, is the hypothesis that the probability of occurrence of the second 
category is p2 given that the probability of the first category isp,, H, is the 
hypothesis that the probability of occurrence of the third category is p3 
given that those of the first two categories are p1 and p2 respectively, etc. 

The degrees of freedom in table 4.1 are those of the asymptotic x2- 
distributions under the null hypothesis H2 of (4.1). We leave to the reader 
the estimation of the corresponding divergences. Note that the divergence 
in (4.4) does not permit a corresponding additive analysis. 

We next consider a grouping or partitioning of the categories into two 
sets, say categories 1 to i, and i 9 1 to c. Let us define 

Yl  = Xl 9 X2 9 • 9 xi, Y2 = Xi+l 9 Xt+2 9 . . 9 z,, 

Pll = P1 9 P2 9 9 pi, p, = pi+l 9 pi+2 9 9 PC. 

The analysis in table 4.2 is derived in a straightforward fashion from 
these definitions and the properties of the logarithm. The degrees of 
freedom in table 4.2 are those of the asymptotic x2-distributions under the 
null hypothesis H2 of (4.1). We leave to the reader the estimation of the 
corresponding divergences. Note that the convexity property ensures 
that the "between component" is the minimum value of 2f(*:2; OLv) for 
the given partitioning. 
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Without repeating all the details as for table 4.1, we note, for example, 
that in "within categories 1 to i," y1 is the total (corresponding to N of 
the multinomial), and the conditional probabilities are pl/pll, . ., pt/pll. 

TABLE 4.2 

Component due to Information D.F. 

Between categories 1 + 
. . + i and categories 2 

A) ( i + l ) + .  . - + c  N~~ 

Within categories (i + 1) xi+lPa +. . . +xclog- xi+, I O ~  - XCPB) - i - I 
to c Y2Pi+l Y2Pc 

XlPll Within categories 1 to i 2 + .  +xilog--- XiPll ) i - 1  
YlPi 

Total, 2j(* : 2; ON) 

4.3. Parametric Case 

Let us now consider an analysis of I(* : 2 ; OAv) assuming that pl, *, pc 
are known functions of independent parameters +,, +,, . -, +k, k < c, 
and "fitting" the multinomial distribution by estimating the fs.  Suppose 
we have estimates Jj(x1, x,, -, x,), j = 1,2, *, k (by some procedure 
to be determined), and we write Pi = J2, -, Jk), i = 1, 2, *, c, 

+ P a +  + P C =  1. Wemaywrite(4.3)as 

For the decomposition of I(* :2; OLV) in (4.7) to be additive information- 
wise, that is, all terms to be of the form (2.2), the last term in (4.7) should 
be zero. We therefore require that the $s be such that identically in 
the f s  

Note that the left-hand side of (4.8) is the observed value., 1 og (p(x)/p(x)), 
and the right-hand side of (4.8) is the expected value of the information 
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in a sample of N obse~ati0nS from a population ( a  for discriminating 
for (a against (p). [Cf. (1.1) in chapter 5.1 From (4.8), which is an 
identity in the fs,  we get 

and in particular when (+) = (61, 

since i (%) = 0, or the $s are the solutions of 
i-1 a+j 6j-8j 

The equations (4.11) are the maximum-likelihood equations for esti- 
mating the f s, and are also those which solve the problem of finding the 
4's for which I(*: 2: Oh-) in (4.3) is a minimum. (See section 4 of chapter 
5.) The properties of the estimates may be found, for example, in 
CramCr (1 946a, pp. 42'6-434). (See problem 7.14.) 

With estimates of the f s  satisfying (4.11), we have the analysis of 
21(*:2; 0,) into additive components summarized in table 4.3. The 
degrees of freedom are those of the asymptotic x2-distributions under the 
null hypothesis H2 in (4.1) with pi = pi(+;, +2, -, +J, i = 1, 2, -, c. 
[Cf. (4.17) in chapter 5.1 

The divergences do not provide a similar additive analysis (with these 
estimates), but the estimate of the divergence corresponding to the 
error component is 

TABLE 4.3 

Component due to Information D.F. 

C 

p s  or (9 against (p), t t ( ~ : p )  2N 2 E~ log& 
k  

i-1 Pi 

C xi Error, (x/N) against (p3, 21(*:p') 2 2 xi log - c - k - 1  
i-1 Nji 

Total, 21(* :p) 
C 

Xi 
2 -2 xi log - c- 1 

t-1 Npi 
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Under the null hypothesis H2 of (4. I), 21(* :p3 and I(*, j) are asymptoti- 
cally distributed as x2 with c - k - 1 degrees of freedom. [For notational 
convenience we write 21(* :p) = 21(* :2; On).] 

An example of this procedure is given by Fisher (1950), who considers 
a series of observations in which the number i occurs xi times with a null 
hypothesis that the probabilities are given by the Poisson values p, = 
e-"m6/i!. (Here m plays the role of the parameter 4.) The equation 
corresponding to (4.1 1) is z x k - 1  + i/m) = 0, or 6 = 2 iz,/2x, = i. 

i i i 
The particular values [Fisher (1950, p. 18)] are: 

Fisher compares this test, the usual x2 procedure, and the test for dis- 
crepancy of the variance, with the exact probabilities calculated from the 
conditional distribution for samples of the same size and average as the 
one in question. He concludes that [Fisher (1950, p. 24)] (in the notation 
of this section) 21(*:j) "which is essentially the logarithmic difference in 
likelihood between the most likely Poisson series and the most likely 
theoretical series" is a measure that "seems well fitted to take the place 
of the conventional x2, when class expectations are small." [Cf. CramCr 
(1 946a, pp. 434-437).] 

4.4. "One-Sided" Binomial Hypothesis 
We shall now examine a problem which is in some respects a special 

case of section 4.1, and is in some important respects different. Specifi- 
cally, we want to test a "one-sided" hypothesis about a sample from a 
binomial population. Suppose we have a random sample of x "successes" 
and N - x "failures" from a binomial population. We are interested in 
testing the two hypotheses: 

(4.13) 
Hl: the binomial population probability of success is p, > p, 
H2: the binomial population probability of success is equal to p. 

See example 3.3 of chapter 5. 
The results in section 3 apply to the binomial if we set c = 2, pl = p, 

P z = q = 1 - p ,  ?I = x, x, = N - x, 3 = T, T, = 0. The conjugate 
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distribution [cf. (3.2)] ranges over the binomial distributions of Hl in 
(4.13), if p* = (pe7/(pe7 + q)) > p. Only values of T > 0 are therefore 
admissible [see the paragraph following (2.12) in chapter 31. With the 
value of the observed best unbiased sample estimate as the parameter of 
the conjugate distribution, that is, 6 = N@* = a, we have 

(4.14) f(p* :P) = 4% - N log ( ~ e ~  + q), 

(4.1 5) i = log (xq/p(N - x)). 

If x > Np, i = log (xq/p(N - x)) > 0 is admissible. If x < Np, 
8 < 0 is not admissible. We thus have the minimum discrimination 
information statistic (see example 3.3 of chapter 5, also the discussion 
following theorem 2.1 in chapter 3), 

x N - x  
(4.16) I(H,:H,; 4,) =%log- + (N- x)log-9 

NP Ns 
= 0, x I Np. 

Asymptotically, 2/(H1 : H,; Os) has a x2 distribution with 1 degree of 
freedom under the null hypothesis H, of (4.13), but the a significance 
level must be taken from the usual x2 tables at the 2a level, since we do 
not consider values of x < Np for which I(H,: H,; 0,) is the same as for 
some value of x > Np. 

Instead of the simple null hypothesis H, of (4.13), let us consider the 
composite null hypothesis H,': 

Hl : the binomial population probability of success is p1 > p,, 
(4.1 7) 

H,': the binomial population probability of success is p 5 p,. 

It may be verified from the behavior of F(P,p) in section 3 of chapter 4 
and example 3.3 of chapter 5 that (see problem 7.17) 

The minimum discrimination information statistic for the least informative 
distribution against the distributions of the composite null hypothesis is 
therefore 

x N - x  
(4.19) I(H,: H,'; 05) = x log - ( N - 1 0 -  x>Np0,  

NPO Nil0 
=o,  x I N p , .  
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Under the null hypothesis H,' of (4.17), asymptotically, 

Prob {2!(~,: H,'; 4,) 8 xL] a, 

where xk2 is the usual x2 value at the 2a level for 1 degree of freedom. 
Similarly, for the hypotheses 

H3: the binomial population probability of success is pl < p,, (4.20) 
H,": the binomial population probability of success is p 2 p,, 

we have 

x N - z  
(4.21) I(H,: H,"; 0,) = x log - -t (N - 2) log - 9 x < N ~ 0 9  

NPO Nso 

Under the null hypothesis H," of (4.20), asymptotically, 

Prob { ~ J ( H ~ :  H,"; 0,) 8 xk2} 5 a, 

where ~ , , 2  is as above. 
The two-sided hypothesis 

H4: the binomial population probability of success is p, #.po, 
(4.22) 

H,: the binomial population probability of success is p = p,, 

is a special case of section 4.1, and 

is asymptotically distributed as x2 with 1 degree of freedom under the null 
hypothesis H, of (4.22). 

Note that H,, H,', and H,", respectively of (4.22), (4.17), and (4.20), 
satisfy H, + H,' n H,", that is, (p = p,) if and only if (p s p , )  and 
(p 2 p,); also H,, HI, and H ,  respectively of (4.22), (4.171, and (4.20), 
satisfy H4 + H, U H3, that is, (p # p,) if and only if (p, > p,) or (p, < p,). 
The region of acceptance common to the hypotheses H,' and H,", 

is also the region of acceptance of H,. 

4.5. "One-Sided" Multinomial Hypotheses 
We now examine "one-sided" hypotheses for some problems on a 

c-valued population (c mutually exclusive categories). 



122 INFORMATION THEORY AND STATISTICS 

The first problem tests a hypothesis H, that the first category occurs 
with a probability greater than llc, against the null hypothesis H2 of 
uniformity, that is, 

Suppose we have a random sample of N independent observations as in 
section 4.1. From section 3, we see that the conjugate distribution ranges 
over the populations of H, in (4.25) if pl* = e71/(e71 + e% + + e5) 
> llc. Only values of the ri, i = 1, 2, -, c, such that (c - 1)e71 > e3 
+ . . + e7c are therefore admissible. With the values of the observed 
best unbiased sample estimates as the parameters of the conjugate distri- 
bution, that is, Oi = Npi* = xi, we have 

(4.26) I(p* :p)  = i1xl + i$2 4- . . 4- iCxc 
- N log ((efl + ef2 + . + efc)/c), 

Nefi 
(4.27) xi = i =  1, 2,-  -, C. e f ~  + efz + . . . + 

Since efi = xi/N, i = 1, 2, -, c [we take ck = 1 in (3.5)], the ii are in 
the admissible region if 

that is, if x, > N/c. If x, 5 N/c, we must find the value of if(p*:p) 
along the boundary of the admissible region, (c - l)efl = e% + + e'c, 
the only other possible region for which &I* :p )  may differ from zero, in 
which case [cf. Brunk (1958, p. 438)] 

e+z + . . . + e'c 
(4.29) f(p* :p) = xl log + x2G2 + . + xcGc - N log efl 

c - 1  

The last expression is that for an (N - xl)-total multinomial distribution 
over a (c - 1)-vajued population [by analogy with (4.26)]. We have, 
therefore, 

c (C - 1)xi N 
(4.31) J(H, : H2; Ox)  = 2 xi log , X, 5 -9 

i = 2  N - X, c 

that is, when x, 5 N/c, the rejection of the null hypothesis depends on 
the conditional values of x,, -, xc. 
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Tf we set pi = Ilc, i = 1, 2, . ., c, in table 4.1, the last three rows 
yield table 4.4, where the degrees of freedom are those of the asymptotic 
X2-distributions under the null hypothesis H2 of (4.25). 

TABLE 4.4 

Component due to Information D.F. 

Within categories 2 + . . . + xclog to cIxl N - x1 

Between category 
1 and categories 2 
( 2 + .  . . + c )  

N(c - 1) 

cx1 ~ota l ,  21(* :2; o - ~ )  2 xl log - + . + x, log - i N  N 

Note that twice (4.30) is the total in table 4.4, and twice (4.31) is the 
component due to within categories 2 to c, given x,, in table 4.4. The a 
significance level must be taken from the usual x2 tables at the 2a level. 

The second problem restricts the hypothesis H, of (4.25) to equal 
probabilities of occurrence for all categories but the first, that is, 

The conjugate distribution ranges over the populations of H,' in (4.32) 
if 

e71 1 erz > - PZ* = e71 + . . . + PI* = eQ + . . . + ere c 

or T, = 7, = . . = T, = T, T~ T, are the only admissible values, and 
(4.26) is now 
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Xl N - x1 
Since efl = - (efl + (c - l)ef), ef = (efl + (c - l)ef), the $3 

. N N(c - 1) 

are in the admissible region if xl > N/c and we find that 

If xl 5 N/c we must find the value of lip* :p) along the boundary 4, = F 
of the admissible region, in which case l(p*:p) = Fxl + (N - xl)i - 
N log ef = 0. Note that twice the value in (4.35) is the component due 
to between category 1 and categories (2 + . + c) in table 4.4. 

The test of the hypotheses (4.32) by the minimum discrimination 
information statistic (4.35) is a special case of the test of the hypotheses 
(4.13) by the statistic (4.16). This is not surprising since the hypotheses 
in (4.32) differ only in the specification of p,, both Hlf and H2 in (4.32) 
specifying equality for the other probabilities. 

The third problem tests a null hypothesis H2' that all categories but 
the first have equal probabilities of occurrence, against an alternative 
hypothesis Hln of any c-valued population, that is, 

Hln:Pl ,P2,-**,PC, p , + p 2 + . - * + p c = l ,  
(4.36) 

H,': p1 =p, p 2 = *  . - 1 -P  - PC = .  
c -  1 

This is a special case of the hypotheses in (4.1) and we get the analysis 
in table 4.5 from that in table 4.1. 

The null hypothesis H2' in (4.36) does not usually specify the value of 
p, and we test with the component due to within categories 2 to c given xl, 
which asymptotically is distributed as x2 with (C - 2) degrees of freedom 
under the null hypothesis H,' of (4.36). Note that the within component 
in table 4.5 is the minimum value of the total for variations of p, that is, 
over the populations of H,'. 

Component due to Information D.F. 

Within categories 2  . - + 2, log to clzl N  - x, 

Between category 1 
and categories 2  + ( N  - x,) log 
( 2 + - - - + c )  

Total, X ~ C -  1) +. . 
21(*: Hs'; ON) N(1 - p )  
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4.5.1. Summary. The hypotheses in (4.25), (4.32), and (4.36) satisfy 
Hlf c Hl c HI", and H2 c H,' (H2 c H,' means that H2 is contained 
in Hzf). It therefore seems appropriate to summarize the preceding 
results in table 4.6 to facilitate comparison. 

The information statistics in table 4.6 are asymptotically distributed as 
x2 with degrees of freedom as indicated under the corresponding null 
hypothesis, but for all but the last two the a significance level must be 
taken from the usual 2 tables at the 2a level, because of the limitation on 
the values of 2,. 

TABLE 4.6 

Hypotheses Information D.F. 

xl log 3 + ( N  - x,) log N 
1 

N N(c - 1) c 

C (c-  l)xi 
2 2 xi log N 

6, Hz 9 X I S -  
i = 2  N - XI C 

C 

(4.25) mi 2 2 xi log -, N x1 > - 
i=l N C 

C ( c  - l)xi 
HI", H,' 2 2 xi log XI 

i = 2  N - x1 ' P'~ 

4.5.2. Illustrative Values. We computed exact probabilities for the 
information statistics for the hypotheses Hlf, H2 of (4.32) for c = 5, 10, 
and some convenient values of N and p using Tables of the Binomial 
Probability Distribution (1949). We can compare type I and type 11 
errors, as well as exact and asymptotic probabilities given by the ~2 and 
noncentral f-distributions. (See section 5 of chapter 5.) The proba- 
bilities are given in tables 4.7,4.8, and 4.11. In table 4.8, xlf was selected 
to get a probability near 0.01 under H2. The information parameter in 
table 4.9 is the noncentrality parameter A of the noncentral~2-distribution. 
The (corrected) x02 in table 4.10 is obtained by taking consecutive values of 
21(~,':H,; 0,) as the mid-points of adjaant class intervals and using 
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the lower class limit as the corrected value. [See Cochran (1952).] The 
central probabilities in table 4.11 were obtained from the upper tail only of 
x,, as a normal variate N(0, 1). The noncentral probabilities in table 4.1 1 

TABLE 4.7 

Prob (x, 5 N/c) = Prob ( 2 f ( ~ ~ ' :  H2) = 0 )  

TABLE 4.8 

Prob (xl 2 xlf )  
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were obtained from the noncentral x2-distribution with 1 degree of freedom 
[see (6.9) in chapter 121 : 

1 
Prob ( ~ 2  2 x02) = - e-*(t - '1)' dl + -i( t  + 4i)l dt] 

dG 
Note that Prob (x, 2 xlf) is supposed to be the same as Prob (x2 2 xO2). 
Indeed, xo2 was selected, with a correction for continuity, to correspond 

TABLE 4.9 

p log cp + q log = 21(Hlf :Hz; ON) 
c - 1  

TABLE 4.10 

- - --- -- 

c N xl 21 21(corrected) = xo2 c N x1 2 l  21 (corrected) = xo2 
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to xlf. Table 4.7 gives the probability of incorrectly accepting H2 when 
x1 =( N/c under various members of HIf. Even for the small values of N 
the approximation is good. 

TABLE 4.1 1 

H2 H,' 
Central Binomial Noncentral Binomial 

c N x xo2 Prob Prob p f .  Prob Prob 
(x2 2 ~ 0 2 )  (xl 2 2,') (x2 2 xa2) (xl 2 x,') 

5. TWO SAMPLES 

5.1. Basic Problem 
Suppose we have two independent random samples of Nl and N2 

independent observations with multinomial distributions on a c-valued 
population. We denote the samples by 

c 

and 
c 

We want to test a null hypothesis of homogeneity H2, the samples are 
from the same population, against the hypothesis HI, the samples are 
from different populations, that is, 

HI: the samples are from different populations (p,) = (pll, p,, 

(5.1) 
. . - 9  pic), ( ~ 2 )  = (~2147229 . ' '.pzc), 

H2: the samples are from the same population (p) = (ply p2, . . *, 
PC), Pli = p2i = i = 1, 2, *, c. 
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Since the samples are independent, we have in the notation of (3.1) 
(we omit indication of sample size, etc., except where confusion might 
otherwise result): 

c c 

= Nl 2 fi t  log + N, 2 p2, log & 
i-1 Pi i=l  Pi 

The conjugate distributions are (see section 3 and section 1 in chapter 5), 

We find 

(5.6) I(p* :p) = Cp1*(x)p2*(y) log 
P~*(x)P~*@) 

P(x)P@) 

= 2 (~liEl*(xi) + ~ ~ i E ~ * ( y ~ ) )  - Nl log (pleTll + 
i=l  + pceTlc) - N2 log (pleTtl + . + pcet'-c), 

where Ei*( ) denotes expected values from thepopulation pi*( ). 

Set &*(xi) = Nlpli*, E2*(yi) = N2p2i*, where pji* = pjieTj~/(pjle~l + 
+ pjceTjc), j = 1, 2; i = 1, 2, . *, c, and (5.6) is 

c pli* c p ~ i *  
(5.7) I(p*:p) = Nl 2 pli* log - + N2 2 p2,* log -. 

i=l  Pi is1 Pi 
We take the conjugate distributions as those with parameters the same 

as the respective observed sample best unbiased estimates, that is, 
pli* = xi/Nl, and p2,* = yi/N2, i = 1, 2, *, c, and 

c x 
I@* :p) = 2 (Xi log - + yi log 

i=1 Nl pi 

The null hypothesis H2 of (5.1) usually does not specify the pi, i = 1, 
2, ., c. We can analyze I(p* :p) in (5.8) into two additive components, 
one due to the deviations between thepi and their best unbiased estimates 
from the pooled samples, and the other due t o  what may be termed error 
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within the samples. The analysis is summarized in table 5.1. The degrees 
of freedom are those of the asymptotic x2-distributions under the null 
hypothesis H2 of (5.1). Note that the within component in table 5.1 is 

c 

the minimum value of the total for variations of the pi, 2 pi = 1, that is, 
over the populations H2. i=l  

We remark that the analysis in table 5.1 is a reflection of the fact that 
the hypothesis H2 in (5.1) is the intersection of the hypotheses H2(*), the 
samples are homogeneous, and Hz(-l(p)), the homogeneous samples are 
from the population (p) = (ply p2, . ., p3, that is, H2 = H2(*) n H2(- l(p)). 
The between component in table 5.1, 2 1 ( ~ : ~ ) ,  is a test for the hypothesis 
H2(-l(p)), and the within component in table 5.1, 21(~* :p) or 21(~ , :  HJ, 
is a conditional test for the hypothesis Hk) ,  subject to the observed 
values of pi = (xi + yi)/(NI + N,), i = 1, 2, . *, c. 

TABLE 5.1 

Component due to Information D.F. 

Pi = (xi + yi)/(Nl+ "2) 2 $ ( (xi + yi.) 
Xi + yi) log c -  1 

(Between), 2P(p :p) i-1 ("I+ Ndpi 

Error, 2i(p* :p) ("I+ &)xi 
(Within) i=l &(xi + Y*) . 

Total, 2f(p* :p) 

The error component in table 5.1 may also be expressed as 

for computational convenience with the table of n log n. 
The divergences do not provide a similar additive analysis (with these 

estimates), but the estimate of the divergence corresponding to the error 

- - log -* 

Nl + N2 
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Note that [(H, : H2) = :p )  in table 5.1 is (5.2) with the substitution 
of xi/Nl for pli, y,/N2 for p2,, and (xi + yi)/(Nl + N2) for pi, and that 
(5.10) is (5.3) with the same substitutions. 

21(H1: H2) and YH,, H2) are asymptotically distributed as x2 with (c - I) 
degrees of freedom under the hypothesis H, of (5.1) (the samples are from 
the same population). 

With the approximations used in (4.5) and (4.6), we find [cf. Pearson 
(191 01 

5.2. "One-sided" Hypothesis for the Binomial 

We now consider a "one-sided" hypothesis about two binomial distri- 
butions. Suppose we have two independent random binomial samples 
of Nl and N2 independent observations, of which, respectively, x and y 
are "successes." We want to test the two hypotheses: 

HIf: the samples are from different binomial populations with 
respective probabilities of success ply p2, p1 > p2, 

(5.12) 
H2: the samples are from the same binomial population, 

P1 = P2 = P. 

From the analogues of (5.4), (5.5), and (5.6) for binomial distributions 
(cf. section 4.4), we see that the conjugate distributions range over the 
binomial populations of Hlf in (5.12) if 

Only values T1 > T2 are therefore admissible. We take the conjugate 
distributions as those with parameters the same as the respective observed 
sample best unbiased estimates, that is, PI* = x/Nl, P2* = y/N2, and 
[cf. (5.6)] 

(5.13) :p) =9,x - N, log (pe'l+ (1 - p)) ++a - N210g(pe'z + (I - p)), 
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(I - P)~: A 
T2 = (1 -P)Y. (5.15) 91 = 1% p(Nl - x)' log p(N2 - Y) 

If x/Nl > y/N2, then i1 > +,, and the i's are admissible. However, if 
x/Nl S y/N2, then 9, 5 i2, the 7 s  are not admissible, and we must find 
the value of f(p*:p) along the boundary 6 = i2 of the admissible area. 
With i = .F, = i1 in (5.13) we have 

We thus have 

Table 5.2 gives the analysis of table 5.1 for binomial distributions, for 
the two-sided hypotheses : 

HI: the samples are from binomial populations with respective 
probabilities of success ply p2, pl # p2, 

(5.19) 
H2: the samples are from the same binomial population, p1 = 

P2 = P. 

We see therefore that 2f(p*:p) in (5.17) is the total of table 5.2 when 
x/Nl > y/N2, and 2f(p* :p) in (5.18) is the between component of table 
5.2 when x/Nl 5 y/N2. 

The hypothesis H2 of (5.12) usuajly does not specify the value of p, and 
the minimum values of the total and between component respectively 
(with respect to variations ofp, that is, over the populations H2) are then 

(5.20) 2f (~ , ' :  H2) = error component of table 5.2, x/Nl > y/N2, 
= 0, x/Nl 5 y/N2. 

Asymptotically, 2 f (~ , ' :  H2) in (5.20) is distributed as x2 with 1 degree 
of freedom under the null hypothesis H2 of (5.12), but the a significance 
level must be taken from the usual x2 tables at the 2a level. 
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Similarly, for testing the two hypotheses 

HI": the samples are from different binomial populations with 
respective probabilities of success p ,  p,, p, < p,, 

(5.21) 
H2: the samples are from the same binomial population, 

P1 = P2 = P, 

we have I@*:p) in (5.17) when x/Nl < y/N2 and i(p*:p) in (5.18) when 
x/Nl P y/NP. The hypothesis H, of (5.21) usually does not specify the 
value of p, and then 

(5.22) 2 i (~ , " :  H2) = error component of table 5.2, x/Nl < y/N2, 

=O,  x/NlLy/N2. 

Asymptotically, 2 i (~ , " :  H2) in (5.22) is distributed as ~2 with 1 degree 
of freedom under the null hypothesis H, of (5.21), but the a significance 
level must be taken from the usual x2 tables at the 2a level. 

Note that HI, H,', and HI" of (5.19), (5.12), and (5.21) respectively 
satisfy Hl + HI' U HI", that is, (p, #p2) if and only if (pl > p2) or 
(p1 < ~ 2 ) .  

We remark that in table 5.2 when x/N, = y/N, the total becomes equal 
to the between component and the within component vanishes. In any 

TABLE 5.2 

Component 
due t o  Information D.F. 

x + Y x + Y 
= Nl + N2 y, log (Nl + N2)p 1 

21(,6 :p) ,  + (Nl  + N2 - X - Y )  1% 
(Between) (Nl  + N2)(1 - P )  

N1 + N2 - 
- y ,  

( N l +  NJx (Nl  + NJ(N1 - 4 
Error, (% log N ~ ( ~  + y )  + (4 -  X) log Nl(Nl + N~ - - y )  

21(p* :,6) 1 
(Within) ( N I +  N2)Y 

+'log N2(z+  y )  + ( N 2 - y ) 1 0 g ~ 2 ( ~ l  + N , - Z - Y )  
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case, the alternative hypotheses HIf, HI", or Hl will be accepted if the 
minimum discrimination information statistic exceeds some constant. 

We summarize the preceding in table 5.3, the entries describing for the 
different hypotheses when the test statistic is the total, within, or between 
component in table 5.2. For example, in the test of Hlf:(pl > pz) 
against H,: (pl = p2 = p), when p = p, is specified, use the total 2t(p* :p) 
when x/Nl > y/N,, the between 2 t ( ~ : ~ )  when x/Nl 5 y/N,. However, 
when p is not specified, use the within 2t(p* :p) when x/Nl > y/N,, accept 
the null hypothesis H, when x/Nl 55 y/N,. 

TABLE 5.3 

Between, x y X Y 
- 5 - 9  p = p o  - 2 - 9  

2 i ( ~ : ~ )  Nl - N2 NI - N2 P = Po P = Po 

Within, X + Y  X + Y  X + Y  

2f(p* :p) P = p = ~ l +  N, P = p = ~ l + ~ 2  P = p = ~ l + ~ 2  

Total, x y X Y 
2i(p*:p) P=Po -< -?  Nl N2 P=Po P = Po 

6. r SAMPLES 

6.1. Basic Problem 

Suppose we have r independent random samples with multinomial 
distributions on a c-valued population, and we are interested in a test of 
the null hypothesis that the samples are homogeneous. We denote the 
samples by 

and consider the two hypotheses, 

HI: the samples are from different populations (pil, pi2, . . .,pic), 
i = 1, 2; . . , I - ,  

(6.1 ) H,: the samples are from the same population (ply p,, . . -,pc), 
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Without repeating the detailed argument, which is similar to that 
already used, we find here that, 

For the conjugate distributions with parameters the same as the 
respective observed sample best unbiased estimates, we have 

7 c xij 
P(Jl* :p) = 2 2 xij log -. 

i = 1  j = 1  N i ~ j  

The hypothesis H2 of (6.1) usually does not specify the pi, j = 1,2, *, 

c. We can analyze f(p*:p) in (6.4) into two additive components, one 
due to the deviations between the pj and their best unbiased estimates 
from the pooled samples, and the other due to what may be termed error 

7 

within the samples. Letting xj = 2 xu, N = N, + N2 + + Nr, 
i= l  

the analysis is summarized in table 6.1. The degrees of freedom are those 
of the asymptotic x2-distributions under the null hypothesis H2 of (6.1). 
Note that I@* :p) in table 6.1 is the minimum value of (6.4) for variations 

c 

of the pj, p j  = 1, that is, over the populations of H2, and by the con- 
j = l  r c 

vexity property (see section 4.2, and section 3 of chapter 2), 2 2 
c i= l  j==1 

Xij  We shall write f ( ~ ,  : HJ = f(p* :p). xij log - r 2 xj log -. 
Nipj - j = 1  Npi 

We remark that the analysis in table 6.1 is a reflection of the fact that 
the hypothesis H2 in (6.1) is the intersection of the hypotheses Hz(.), the 

TABLE 6.1 

Component due to Information D.F. 

pj = xj/N, 2I(p:p) c xi 2 2 xj log - c -  1 
(Between) j = l  NPi 

Error, 2i(p* :p)  r c Nxij 
2 2 2 xijlog - (r - l)(c - 1) 

(Within) i = l  j = l  Nixj 

c 

Total, 2f(p* : p) Xi j  
2 . i  2 Xij log- r(c - I )  

a = l  j - 1  Nipi 
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samples are homogeneous, and H2(l(p)), the homogeneous samples are 
from the population (p) = (pl,p2, .,pc), that is, H2 = Hz(.) (.)n H2(.l(p)). 
The between component in table 6.1, 21(p:p), tests the hypothesis 
H2(.l(p)), and the within component in table 6.1, 21(p*:p) or 21(H1: Hz), 
conditionally tests the hypothesis H2(*), subject to the observed values of 
pi = x,/N, j = 1, 2,. a, c. 

The error component in table 6.1 may also be expressed as 

for computational convenience with the table of n log n. 
The divergences do not provide a similar additive analysis (with these 

estimates) but the estimate of the divergence corresponding to the error 
component is 

Note that f(p* :p) of table 6.1 is (6.2) with the substitution of x,/Ni for 
p, and xj/N for p, and that (6.6) is (6.3) with the same substitutions. 

~I(H,:H~) and J(H,, H2) are asymptotically distributed as x2 with 
(r - l)(c - 1) degrees of freedom under the null hypothesis H2 of (6.1) 
(the samples are from the same population). 

With the approximations used in (4.5) and (4.6), we find that [cf. Hsu 
(1949, pp. 397-398)] (see problem 7.18) 

6.2. Partition 
The error comporrent in table 6.1 can be analyzed into (r - 1) com- 

parisons, each of (c - 1) degrees of freedom, between each sample and 
the pooled sample of all its predecessors. This permits an assessment 
of each sample as it is added, to test for an abrupt change. [Cf. Cochran 
(1954, pp. 422-423), Lancaster (1949).] For partitioning within the 
categories see section 4.2. 

To indicate the successive pooling of the samples, we define, 

Y i l + Y i 2 + '  ' '+Yic=N1+N2+. . .+Ni=Mi. 
The analysis in table 6.2 is derived in a straightforward fashion from 

the definitions in (6.7) and the properties of the logarithm. Note that the 
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convexity property (see section 4.2, and section 3 of chapter 2) ensures 
that each between component is the minimum value of the within com- 
ponent below it in table 6.2 for the given pooling. 

TABLE 6.2 

Component due to Information D.F. 

Within samples 1 2 c 
M ~ f i  2 2 2 x,  log - 

and 2 i = l  j = 1  NiYa 

Between sample 3 
and samples 1 2 $ (% 1% c - 1  
and 2 j=l  

Within samples 1 r-2 c 

2 2 Z. xii log 
M r - ~ i j  

t o r - - 2  i = l  j - 1  Ni~r-2.i 

Between sample Mr-1%-I., 

(r - 1) and j - 1  Nr-lYr-l,j 

samples 1 to Mr-IY~-2.i + ~r-2 . i  1% ) C - I  r - 2 Mr-dr-I 

Within samples 1 r-1 c 

2 2 2 xii log 
Mr-1% 

t o r -  1 i = l  j=1 Ni~r-1.j 

Between samplt r 
Nxri NYr-1.i and samples 1 to 2 ( X r j  1% G- + yr-l.' log - ) c - 1  

3 = 1 r - 1  Mr-1% 

2i(H, : H& 
(Within) 

r c NXij 
2 2 2 xi, log - 

i = l  j=l  Nixj 

We remark that (see the remark about the analysis in table 4.1) the 
analysis in table 6.2 is a reflection of two facts: 

1 .  The hypothesis of homogeneity H2 in (6.1) is equivalent to 
the intersection of (r - 1) hypotheses H2(1, 2), H2(1 + 2, 3), . -, 
H2(1 + 2 + + + r - 1 ,  r) ,  H2 = H2(1, 2) n H2(1 + 2, 3) n n 
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H,(1 + 2 + . - + r - 1, r), where H2(1, 2) is the hypothesis that 
samples 1 and 2 are homogeneous, H2(1 + 2,3) is the hypothesis that 
sample 3 is homogeneous with the pooled homogeneous samples 1 and 2, 
H,(1 + 2 + 3,4) is the hypothesis that sample 4 is homogeneous with 
the pooled homogeneous samples 1, 2, and 3, etc. 

2. The distribution of two independent samples may be expressed as 
' 

the product of a marginal distribution of the pooled samples and a 
conditional distribution of the individual samples given the pooled sample, 
that is, in the notation of (6.7), 

with similar results for 3, 4, samples. [Cf. Bartlett (1937).] 
The degrees of freedom in table 6.2 are those of the asymptotic x2- 

distributions under the null hypothesis H2 of (6.1). 
We leave to the reader the estimate of the divergences, as well as the 

expression in terms of the form n log n for computational convenience. 
There may be some basis for considering a partitioning of the r samples 

into two or more sets. We shall indicate the analysis for a partitioning 
into two sets to illustrate the procedure which is easily extended to more 
than two sets. 

For convenience we take samples 1 to r1 as set 1, samples rl + 1 to 
r as set 2, and define 

The analysis in table 6.3 is derived in a straightforward fashion from 
the definitions in (6.8) and the properties of the logarithm. Note that 
the convexity property (see section 4.2) ensures that the between com- 
ponent in table 6.3 is the minimum value of ~P(H,:H& for the given 
partitioning. (Cf. table 4.2.) We leave to the reader the details of 
remarks about the analysis of the null hypothesis and the distributions 
that are simiIar to those for table 6.2. 

The degrees of freedom in table 6.3 are those of the asymptotic x2- 
distributions under the null hypothesis H2 of (6.1). 



MULTINOMIAL POPULATIONS 139 

We leave to the reader the estimate of the divergences as well as the 
expression in terms of the form n log n for computational convenience. 

TABLE 6.3 

Component due to Information D.F. 

Between set 1 and 2 i  (%log- Nz1j + 
set 2 c -  1 

j = 1  Tlxj 

r c 
Within set 2 2 2 2 xij log - T#ij (r  - rl - l ) (c  - 1) 

i=r,+l j = 1  NiZa 

r1 c 
Within set 1 Tlxi j 

2 2 2 xij log - (rl - l)(c - 1 )  
i = l  j-1 Nizli 

2 f ( ~ ,  : H a  r c Nxij 
Within r 2 2 2 xij log - 
samples i = l  j = l  NPi 

6.3. Parametric Case 

We now assume that pl, p,, *, pc of table 6.1 are known functions of 
independent parameters 4,, 4,, *, $,, k < c. Suppose we "fit" the 
multinomial distribution using estimates (by some procedure to be 
determined) dl ,  I = 1,2, *, k, of the 4's. We writePj = pj($l, *, 

$ & , j =  1,2; o ,c ,@l+f12+-  * + P C =  1. 
If the Pj, or the $,, are such that identically in the 4's 

we get the further analysis of table 6.1 summarized in table 6.4. The 
condition (6.9) is to ensure that the analysis in table 6.4 is additive 
informationwise, and is analogous to (4.8). Table 6.4 includes a further 
analysis of table 5.1 when r = 2. We see [cf. (4.8)-(4.1 l)] that (6.9) 
implies that the 4,'s are the solutions of 

The equations (6.10) are the maximum-likelihood equations for estimating 
the #s, and are also those which solve the problem of finding the 4's that 
minimize the between component or the total in table 6.1. We leave to 
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the reader the estimate of the divergences, as .well as the expression in 
terms of the form n log n for computational convenience. The degrees 
of freedom in table 6.4 are those of the asymptotic x2-distributions under 
the null hypothesis HI of (6. I), the p's being taken as functions of the $'s. 
(See problem 7.16.) 

TABLE 6.4 

Component due to Information D.F. 

Between gj = xj/N and c 

i i  =  PA^,, . ., XI 2 2 xj1og - 
2l(g :p3 j -1  NPj 

Error, 2l(p* :g) 
(Within) 

2f(pe:$) or between 
xij/Ni and p" 

Total, 21(p* :p) 

7. PROBLEMS 

7.1. Estimate the divergences corresponding to the irlformation components 
in table 4.1. 

7.2. Estimate the divergences corresponding to the information components 
in table 4.2. 

7.3. Estimate the divergences corresponding to the within components in 
table 6.2. 

7.4. Express the information components in table 6.2 in terms of the form 
n log n. 

75. Complete the details of the discussion of the analysis of the null 
hypothesis and the distributions for table 6.3. 

7.6. Estimate the divergences corresponding to the information components 
in table 6.3. 

7.7. Express the information components in table 6.3 in terms of the fm 
n log n. 

7.8. Estimate the divergences corresponding to the information components 
in table 6.4. 
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7.9. Express the within component in table 6.4 in terms of the form n log n. 

7.10. Fisher (1956, p. 144) defines a consistent statistic as: "a function of the 
observed frequencies which takes the exact parametric value when for these 
frequencies their expectations are substituted." Which of the information 
statistics in chapter 6 are Fisher consistent, that is, consistent in the sense of the 
foregoing definition? [Cf. Fisher (1922b, p. 316).] 

7.11. Are the following six independent multinomial samples homogeneous? 

7.12. Are the following four independent muitinomial samples homogeneous? 

7.13. Are the following test results for five manufacturers homogeneous? 

Manufacturer 

A B C D E  

Failed 26 72 61 29 135 
Passed 172 169 142 36 542 

Total 198 241 203 65 677 

7.14. From the analysis in table 4.3 and the properties of the discrimination 
information, show that for N-+ a, if xi/N-+pi with probability 1, then 
xi/N -+ Bi with probability 1 and ji -*. pi with probability 1, i = 1,2, . . ., c. 
[Cf. Rao (1957).] (See lemma 2.1 of chapter 4.) 

7.15. What is the relation, if any, between (4.3) and problem 5.12 in chapter 1 ? 

7.16. From the analysis in table 6.4 and the properties of the discrimination 
information, show that for Ni -+ a, if xij/Ni -+pj with probability 1, then 
xij/Ni -+ with probability 1, Pj -+ pi with probability 1, and xj/N -+ jj with 
probability 1, i =  1,2; . . , r ;  j =  1,2; . -,c. (See problem 7.14.) 

x x 
7.17. Show that inf + (N - x) log - = x log - + 

P SP, NPO 
N - x  

(N - X) log- , X  > Npo. [See(4.18).] 
NYO 

7.18. Find the approximate value of &H,, HJ in (6.6) using the procedure for 
(4.5) and (4.6). 
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Poisson Populations 

1. BACKGROUND 

Suppose two simple statistical hypotheses, say Hl and Hz, specify 
respectively the Poisson populations 

The mean information per observation fromthe population hypothesized 
by HI, for discriminating for Hl against H,, is (see section 2 of chapter 1) 

a3 

I(1: 2) = 2 p(x, ml) log p(x9 m1) 
z-0 p(x9 m2) 

ml = ml log - + m2 - mi. 
"72 

The divergence between Hl and H,, a measure of the difficulty of 
discriminating between them, is (see section 3 of chapter 1) 

"71 = (m1 - m,) log -. 
In2 

The mean discrimination information and divergence for a random 
sample of n independent observations 0, are 

"71 J(1,2; 0,)) = n(ml - m,) log - = nJ(1,2). 
"72 

These may be calculated.directly or derived from the additivity property 
(see section 2 in chapter 2). 

142 
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2. CONJUGATE DISTRIBUTIONS 

Suppose that every possible observation from p*(x), any distribution 
on the nonnegative integers, is also a possible observation from the 
Poisson distribution p(x, m)  = e-mmx/x!, x = 0, 1 ,  2,. . . This is to 
avoid the contingency that p*(x) # 0 and p(x, m)  = 0. (See section 7 
of chapter 2.) 

Theorem 2.1 of chapter 3 permits us to assert: 

LEMMA 2.1. The least in formative distribution on the nonnegative 
integers, with given expected value, for discrimination against the Poisson 
distribution p(x, m)  = emm"/x!,  namely, the distribution p*(x) such that 

a3 

E*(x) = 0 and 2 p*(x) log (p*(x)/p(x, m)) is a minimum, is the distribution 
2 -0 

u 
where 2 emp(x, m)  = e-m , m* = me7 = 0 = - log e-m+mT, and7 is 

Z=O d7 
a real parameter. 

Note that the least informative distribution p*(x) here is a Poisson 
distribution. [Cf. Sanov (1957, p. 25).] 

We illustrate lemma 2.1 with a numerical example (cf. example 2.1 of 
chapter 3). Table 2.1 gives the negative binomial distribution p,*(x) = 
( r ( n  + ~ ) / x ! r ( n ) ) p " q - ~ ~ ,  n = 2, p = 0.5, q = 1.5, mean = 1 ; the 
Poisson distribution p,*(x) = emm"/x!,  m = 1 ;  and the Poisson dis- 
tribution p(x) = e-"m"/x!, m = 1.5, which is taken as the distribution 
p(x) of the lemma. The other two are distributions with E*(x) = 1. 
[The numerical values of the negative binomial are taken from Cochran 
(1954, p. 419). See example 2.2 in chapter 4.1 

TABLE 2.1 
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Note that the Poisson distribution does provide the smaller value of 
Xp*(x) log (p*(x)/p(x)), and [see (1.2)] that 1 log (1 11.5) + 1.5 - 1 = 
0.09453. The difference between 0.09412 in table 2.1 and 0.09453 
computed from the formula for 1(1:2) is due to the grouping for x 2 4, 
illustrating the statement that grouping loses informati,on (see sections 3 
and 4 of chapter 2, example 2.2 of chapter 4, and problem 6.6). 

The Poisson distribution p*(x) in (2.1) is the conjugate distribution (see 
section 1 of chapter 5) of the Poisson distributionp(x, m). We thus have 

a3 

(2.2) I(p* :p) = 2 p*(x) log 
p*(x) 

z=o p(x, m) 

For applications to testing hypotheses about Poisson distributions, the 
basic Poisson distribution p(x, m) will be that of the null hypothesis H,, 
whereas the conjugate distribution will range over the populations of the 
alternative hypothesis H,. 

3. r SAMPLES 

3.1. Basic Problem 
Suppose we have r independent samples of n,, n2, . a,  n, independent 

observations from Poisson populations. We want to test the hypotheses: 

H,: the Poisson population parameters are m,, m,, . -, m,, 
(3.1) Hz: the Poisson population parameters arem, = m, = - - m,= m, 

that is, a null hypothesis of homogeneity H,, the samples are from the 
same Poisson population. 

From the additivity property (see section 2 in chapter 2), or by direct 
evaluation for the r samples, we have 

T mi 
J(H,, H,) = ni(mi - m) log -. 

i= l  m 
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With the observed sample best unbiased estimates, the respective sample 
averages, as the.0; of the conjugate distributions we have 

where [see (2. l)] $i = log (fi/m), i = 1, 2, . ., r, and [see (2.2)] 

The hypothesis H, of (3.1) usually does not specify m. We can analyze 
I(m*:m) into two additive components, one due to the deviation between 
m and its best unbiased estimate from the pooled samples, the other due 
to what may be termed error within the samples. Letting nf = nlfl + 

+ n$,, n = n1 + n, + . . + n,, we have the analysis summarized 
in table 3.1. The degrees of freedom are those of the asymptotic x2- 
distributions under the null hypothesis H, of (3.1). Note that f(m*:A) 
(I(H,:H,)) in table 3.1 is the minimum value of Y(m*:m) in (3.5) for 
variations of m > 0, that is, over the populations H,, and that by the 
convexity property (see section 3 of chapter 2) 

Xi f f (nifi log _ + n,(m - Zi) 8 nf log - + n(m - 2). 
i=l  m 

We remark that the analysis in table 3.1 is a reflection of the fact that 
the hypothesis H, in (3.1) is the intersection of the hypotheses H,(.), the 
samples are homogeneous, and ~ , ( - lm) ,  the parameter of the homo- 
geneous samples is m, that is, H, = H2(.) (.)n ~,(.lm). The between 
component in table 3.1, 2l(&:m), is a test for the hypothesis ~,(.lm), and 
the within component in table 3.1,2l(m*:&) or  ~I(H,: H,), is a conditional 
test for the hypothesis H,(.), subject to  the observed nf = nlfl + . + 
n@r. 

The error component in table 3.1 may be expressed as 

(3.6) !(HI : HJ = nifi log $ - nf log f = 2 nifi log nifi 
i= l  i-1 

r 

- 2 fini log ni - nf  log nf  + f n  log n, 
i-1 

for computational convenience with the table of n log n, since nifi, i = 1, 
2, *, r, and nZ are integral. 

The divergences do not provide a similar additive analysis (with these 



146 INFORMATION THEORY AND STATISTICS 

estimates), but the estimate of the divergence corresponding to the error 
component is 

T Zi 
Y(m*, m) = Y(H,, H,) = 2 ni(Zi - Z) log 5. 

i-1 5 

Note that !(HI : H& = !(m* : m) in table 3.1 is (3.2) with the substitution 
of Zi for mi and Z for m, and that (3.7) is (3.3) with the same substitutions. 

TABLE 3.1 

Component due to Information D.F. 

Z 
Between rFt = Z and m, 2f(&: m) 2 

Error, 2f(m* : &) 
(Within) 

T Z f 2 z: niZi log - 
i-1 Z 

Total, 2f(m* : m) 
T 

f f  1 2 .z (nizi log - + s ( m  - ii)) r 1 r -1  M 

Under the null hypothesis , of (3.1) (the samples are from the same 
population), z!(H,: H,) and y( ,, H,) are asymptotically distributed as ~2 

with (r - 1) degrees of freed m. Under the alternative hypothesis Hl 
of (3.1), z!(H,: H,) and Y(H,, ,) are asymptotically distributed as non- 
central x2 with (r - 1) degree of freedom and respective noncentrality 

T 

parameters 2 2 nimi log (mi/m) and 2 ni(mi - m) log (mi/m), nm = zn,mi, 
i=l i-1 i=l 

and (4.6) of chapter 6, we find 
Chakravarti (1956)l 

3.2. Partition 1 
I 

The error component in tab 3.1 can be analyzed into (r - 1) compari- 
sons, each of 1 degree of between each sample and the pooled 
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sample of all its predecessors. (Compare the analysis of the error 
component in section 6.2 of chapter 6. We leave the comparable details 
to the reader.) This permits an assessment of each sample as it is added, 
for changes that may have occurred. [See C~ch ran  (1954), Lancaster 
(1 949).] 

To indicate the successive pooling of the samples, we define 

Niyi = nlZl + nG2 . . + ni'i, i = 2 ;  * , r  - 1, 
and 

Ni = n1 + n2 + + n,. 

The analysis in table 3.2 is derived in a straightforward fashion from 
these definitions and the properties of the logarithm. Note that the 

TABLE. 3.2 

Component due to Information D.F. 

2 si Within samples 1 and 2 2 . 2  niZi log - 
t  = 1  Y 2 

Between sample 3 and 
pooled samples 1 and 2 2 (nA log 3 + N& log%) 

Y3 Y3 

Within samples 1 to r -2 Zi 2 2 nisi log - 
(r - 2) t-1 Yr-2 

Between sample (r - 1) 
Zr-1 and pooled samples 1 2 (nr-lsr-l log - + Nr-ar-2 log Y'') 1 

to (r - 2) Yr-1 Yr-1 

Within samples 1 to r -1 Zi 2 -2 nisi log - 
r -  1 t = l  Yr-1 

Between sample r and 
Yr-1 pooled samples 1 to 2 + Nr-1yr-l log T) 1 

r -  1 

Error, 2 f ( ~ ,  : H& 
(Within r samples) 
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convexity property (see section 3 of chapter 2) ensures that each between 
component is the minimum value of the within component below it in 
table 3.2 for the given pooling. The degrees of freedom are those of the 
asymptotic x2-distributions under the null hypothesis H, of (3.1). We 
leave to the reader the estimation of the divergences, as well as the expres- 
sion in terms of the form n log n for computational convenience. 

4. "ONE-SIDED" HYPOTHESIS, SINGLE SAMPLE 

(Cf. section 4.4 of chapter 6.) 
It is also of interest to examine a "one-sided" hypothesis. Suppose we 

have a random sample of n independent observations from a Poisson 
population, and we want to test the hypotheses: 

H,: the Poisson population parameter is m, > m, 
(4.1) 

H,: the Poisson population parameter is equal to m. 

The conjugate distribution (2.1) ranges over the Poisson populations 
H, in (4.1) if m* = meT > m. Only values of 7 > 0 are therefore admis- 
sible. With the value of the observed sample best unbiased estimate (the 
sample average Z) as 6 of the conjugate distribution, we have [cf. (3.4)], 

If Z > m, then i > 0 is admissible. If Z _I m, then i _I 0 is not admissible. 
On the boundary i = 0 of the admissible region, f(m* :m) = 0. We thus 
have : 

Asymptotically, 2 f ( ~ ,  : H& has a x2-distribution with 1 degree of freedom 
under the null hypothesis H, of (4.1), but the a significance level must be 
taken from the usual x2 tables at the 2a level, since we do not consider 
values of Z < m for which f ( ~ , :  H,) is the same as for some value of 
Z > m. 

Instead of the simple null hypothesis H, of (4.1), let us consider the 
composite null hypothesis H,' : 

H,: the Poisson population parameter is m, > m,, 
(4.4) H,': the Poisson population parameter is m 5 ?no. 
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It may be shown that [cf. (4.1 8) of chapter 61 (see problem 6.7) 

Z Z + n(m - Z)) = nZ log - + n(m, - Z), Z > m,, 
m sm, mo 

and therefore 

(4.6) 
x 

&HI: H,') = nZ log - + n(mo - Z), Z > m,, 
mo 

Under the null hypothesis H i  of (4.4), asymptotically, Prob [21(~,:  H,') 2 
xzbC2] S a, where xzbC2 is the entry in the usual x2 tables at the 2a level for 
1 degree of freedom. 

Similarly, for the hypotheses 

H,: the Poisson population parameter is m, < m,, 
(4.7) H,": the Poisson population parameter is m 2 m,, 

we have 

(4.8) 
Z 

f(H3: H,") = nf log - + n(m, - Z), Z < m,, 
mo 

Under the null hypothesis H," of (4.7), asymptotically, Prob [~I(H,: H,") 
2 xZdCT 5 a where x22 is as above. 

The two-sided hypothesis 

H,: the Poisson population parameter is m, # m,, 
(4.9) H,: the Poisson population parameter is m = m,, 

is a special case of section 3.1, and 

is asymptotically distributed as x2 with 1 degree of freedom under the 
null hypothesis H, of (4.9). 

A 100(1 - a) % asymptotic confidence interval for m, is given by 

X 
(4.1 1) 2nZ log - + 2n(mo - Z) S x2(a, I), 

mo 

where x2(a, 1) is the value for which the x2-distribution with 1 degree of 
freedom yields Prob [ ~ 2  2 x2(a, I)] = a. (Cf. section 5 of chapter 5.) 
(See problem 6.4.) 
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Note that H,, H,', and H,", respectively of (4.9), (4.4), and (4.7), satisfy 
H, + H,' n H,", that is, (m = m,) if and only if (m S m,) and (m 2 m,); 
also H4, Hl, and H ,  respectively of (4.9), (4.4), and (4.7), satisfy H4 + Hl 
u H3, that is (m, # m,) if and only if (m, > m,) or (ml < m0). The 
region of acceptance common to the hypotheses H,' and H,", nZ log (Zlm,) 
+ n(m, - Z) $ constant, is also the region of acceptance of H,. 

For illustration we take nm, = 50 and compute for (4.6) some proba- 
bilities under H,' and Hl from Molina's tables (1942) for the exact Poisson 
values (see tables 4.1 and 4.2), and the x2- and noncentral x2-distributions 
for approximating values (see table 4.3). (Cf. section 4.5 of chapter 6.) 

TABLE 4.1 

Prob (nZ 5 50), Poisson 

TABLE 4.2 

Prob (nZ 2 63), Poisson 

2(62 log 98 + 50 - 62) = 2.67381 

2(63 log 98 + 50 - 63) = 3.12007 

2 f ( ~ , :  H,') (corrected) = 2.90 (cf. section 4.5.2 of chapter 6). 

J" e - 9 . h  The central value in table 4.3 was computed from - 
1/% 1.70 

1 
and the noncentral values from -- 

( L o  
e  -(z  -P)'/L dx + 

1/2v 
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where p2 = 2 nmi log 3 + 50 - nm,) [Cf. section 4.5.2 of chapter ( 50 
6 and (6.9) in chapter 12.1 

TABLE 4.3 

Prob (x* 2 2.90), Upper Tail Only 

Central Noncentral 

We summarize comparable values in table 4.4, that is, the exact and 
approximate probabilities of rejecting H,' when it is true, and when one 
of the indicated alternatives is true. 

TABLE 4.4 

Poisson 0.0424 0.1559 0.3662 0.978 1 
x2 0.0443 0.1652 0.3710 0.9860 

5. "ONESIDED" HYPOTHESIS, TWO SAMPLES 

(Cf. section 5.2 of chapter 6.) 
We ,now test a "one-sided" hypothesis for two samples. Suppose we 

have two independent samples of n, and n, independent observations each, 
from Poisson populations. We want to test the hypotheses: 

H,': the Poisson population parameters are m, > m,, 
(5.1) 

H,: the Poisson population parameters are m, = m, = m. 

The conjugate distributions [cf. (2. I)] range over the Poisson populations 
of H,' in (5.1) if 

m,* = me'' > m,* = me's. 



152 INFORMATION THEORY AND STATISTICS 

Only values 7, > 7, are therefore admissible. For r = 2, we get from 
(3.4) 

Zl 9, = log -9 2 2  +, = log ;. 
m 

If 2, > Z,, then +, > +, are admissible. However, if Z, 5 Z,, then 
6 5 +, are not admissible, and we must find the value of i(m*:m) along 
the boundary 9, = .$, = + of the admissible area. For +, = = 9 in 
(5.2), we have 

Z 
(5.5) nZ = nme4, or .$ = log -9 nZ = nlZl + n@,, n = n, + n,, m 
and consequently, 

- x 
(5.7) f(m*:m) = nZ log - + n(m - Z), Zl S 2,. 

m 

If we examine the analysis in table 3.1 for r = 2, corresponding to the 
two-sided hypothesis 

H,: the Poisson population parameters are m, # m,, 
(5.8) H,: the Poisson population parameters are m, = m, = m, 

we see that 21(m*:m) in (5.6) is the total of table 3.1 when Z, > Z,, and 
2f(m* :m) in (5.7) is the between component of table 3.1 when 2, 5 Z,. 

The hypothesis H, of (5.1) usually does not specify the value of m, and 
we then have 

(5.9) 2f(~, ' :  H,) = error component of table 3.1, r = 2, Zl > Z,, 

= 0, Z, 5 2,. 

Asymptotically, 2 f ( ~ , '  : H,) in (5.9) has a x2-distribution with 1 degree 
of freedom under the null hypothesis H, of (5.1), but the a significance 
level must be taken from the usual x2 tables at the 2a level. 

Similarly, for testing the hypotheses 

H,": the Poisson population parameters are m, < m,, 
(5.10) 

H,: the Poisson population parameters are m, = m, = m, 
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we have I(m* :m) in (5.6) when il < i2 and f(m* :m) in (5.7) when i, 2 2,. 
The hypothesis H2 of (5.10) usually does not specify the value of m, and 
we then have 

(5.1 1) 21(~," : H& = error component of table 3.1, r = 2, il < i2, 

Asymptotically, 2 4 ~ ~ " :  H2) in (5.1 1) is distributed as X2 with 1 degree 
of freedom under the null hypothesis H2 of (5.10), but the a significance 
level must be taken from the usual x2 tables at the 2a level. 

Note that H,, HIf, and H," of (5.8), (5.1), and (5.10) respectively, 
satisfy Hl + Hlf u H,", that is, (m, # m,) if and only if (m, > m,) or 
(4 < m2). 

We summarize the preceding in table 5.1. (See table 5.3 of chapter 6.) 

TABLE 5.1 

Between 
il 5 i2, il 2- i2, m = mo i 
m = mo m = mo 

Within 

Total 
2 il > i2, il < i2, m = nlo 

ii 
2 2 ni (ii log - + (mo - 5,)) m = mo m = nl0 

i - 1  '''0 

6. PROBLEMS 

6.1. Complete the details of the analysis in table 3.2. 

6.2. Estimate the divergences corresponding to the information components 
in table 3.2. 

6.3. Express the within components in table 3.2 in terms of the form n log n. 

6.4. Compute the confidence interval for mo from (4.11) for i = 10, 
n = 10, 100. 

6.5. The following represent the totals of successive samples of the same size 
from Poissm populations: 427, 440, 494, 422, 409, 310, 302 [from Lancaster 
(1949, p. 127)J. 
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Are the successive samples homogeneous ? If not, where does the change in 
homogeneity occur? (Lancaster gives the data derived from successive plates 
of bacterial culture mixed with disinfectant.) 

p3*(x) 6.6. Compute xp3*(x) log - 
P(x) 

with p(x) given in table 2.1 and p3*(x) = 

n ! p2qn-=, n = 10, p = 0.1, q = 1 - p, and compare with table 2.1. 
x!(n - x)! 

Z 
6.7. Show that inf + n(m - Z)) = nZ log - + n(mo - @, 

m I m ,  mo 
Z > m,,. [See (4.5).] 

6.8. Show that with the approximation used in (4.5) and (4.6) of chapter 6 
the between component and the total in table 3.1 yield: 

(a) 2f(rit:m) w n(Z - m)2/m, 
r 

(b) 2f(m* : m) w 2 ni(Zi - m)2/m. 
2-1 
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C H A P T E R  8 

Contingency Tables 

1. INTRODUCTION 

A contingency table is essentially a sample from a multivalued popula- 
tion with the various probabilities and partitions of the categories subject to 
restrictions in addition to those of the multinomial distribution. The 
analyses of contingency tables in this chapter are therefore closely related 
to those, of multinomial samples in chapter 6. Studies and applications 
of contingency tables have a long history in statistical theory. See, for 
example, Pearson (1 904), Fisher (1 925a, all editions), Yule and Kendall 
(1937), Kendall (1943), Wilks (1943), CramCr (1946a), Rao (1952), Mitra 
(1955), Roy and Kastenbaum (1955,, 1956), Roy and Mitra (1956), Roy 
(1957). 

McGill (1954) has applied the communication theory measure of 
transmitted information to the analysis of contingency tables. McGill's 
approach, though somewhat different from ours, employs closely related 
concepts, and we derive similar results for contingency tables. Garner 
and McGill (1954, 1956) have pointed out some of the parallels that 
exist among the analysis of variance, correlation analysis, and an 
information measure they call uncertainty, as methods of analyzing 
component variation [cf. the article by McGill on pp. 56-62 in Quastler 
(1 9591. 

We shall study two-way and three-way tables in detail. The extension 
of the procedures to higher order tables poses no new conceptual problems, 
only algebraic complexities of detail, and we leave this to the reader. 

2. TWO-WAY TABLES 

We first study a two-factor or two-way table. Suppose we have N 
independent observations, each characterized by a value of two classifi- 
cations, row and column, distributed among r row-categories and c 
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column-categories. Let xij be the frequency of occurrence in the ith row 
and jth column, and 

c r 

Xi. = IX i j ,  X.j = 2x i j ,  
j = l  i = l  

We denote the probabilities by p's with corresponding subscripts. 
We are first concerned with testing a null hypothesis H,, the row and 

column classifications are independent, that is, 

Hl:pu#pi.p.j, i = 1 , 2 , - . , r ,  j = 1 , 2 , . * * , c ,  forat 

least one (i, j), ipij = I ,  p, > 0, 
(2.1) i = l  j = 1  

Without repeating the detailed argument (similar to that for a sample of 
N independent observations from a multinomial population with rc 
categories), we have [cf. (2.6) and (2.8) of chapter 61 

r C Pij I(Hl:H,) = N z  I p i j  log-, 
i = l  j = 1  Pi.P.j 

Note that I(Hl: H,)/N in (2.2) is a' measure of the relation between the 
row- and column-categories and has also been defined as the mean infor- 
mation in the row-categories about the column-categories or vice versa0 
(see examples 4.3 and 4.4 of chapter 1). 

For the conjugate distribution (see section 3 of chapter 6) with param- 
eters the same as the observed sample best unbiased estimates, we have 

The null hypothesis of independence H, in (2.1) usually does not specify 
pi., i =  1, 2,. . . r ,  and p . ,  j 1 2,. . .,c. We can analyze 
f((p)* :(p)) of (2.4) into three additive components: a marginal component 
due to the deviations between the pi. and their best unbiased estimates 
from the row totals, a marginal component due to the deviations between 
the p., and their best unbiased estimates from the column totals, and a 
conditional component due to the independence hypothesis. These 
components correspond respectively to a hypothesis H,(R) specifying the 
values of the pi., a hypothesis H,(C) specifying the values of the p . ,  and 
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a hypothesis H,(R x C) of independence, that is, H, in (2.1) is the 
intersection H,(R) n H,(C) n H,(R x C). The analysis summarized in 
table 2.1 is an analogue of that in table 4.3 of chapter 6. Here there are 
(r - 1 )  independent parameters p,., p,., . .,p( ,-,)., and (c - 1) inde- 
pendent parameters p.,, p.,, . . , p.ic-l). The equations (4.1 1) of chapter 
6 are here 

0 ,  j =  l , 2 , .  . . , c - l .  
Pic 

Since pij = p,.p.,, these equations reduce to 

Xi. Xr. X.j XeC - = -, i =  l,2; . , r -  1, -= -, i =  l,2; . , c -  1, 
Pi. Pr. P.i P.c 

yielding 

[Cf. Cramdr (1946a, pp. 442-443).] Note that the independence com- 
ponent in table 2.1 is the minimum value of the total for variations of the 
pi. and P .~ ,  

that is, over the populations of H, with the given marginal values, and 
that by the convexity property (see section 3 of chapter 2) 

Xi j i i X i j  log - 
r xi. 1 2 xi. log -3 

in1 j=1 Npi.p.j i=1 N ~ i .  

X i j  
C x.j 2 Z X . ~  log -. 

NP*, 

The degrees of freedom in table 2.1 are those of the asymptotic x2-distri- 
butions under the null hypothesis H2 of (2.1). [Cf. Wilks (1935a).] 

The independence component in table 2.1 may also be expressed as 
r C r 

(2.5) I(H, : H,) = 2 2 xij log xij - 2 xi. log xi. 
i=l j=1 i-1 

C 

- I x . ,  logx., + N log N, 
j=l 

for computational convenience with the table of n log n. 
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The divergences do not provide a similar additive analysis (with these 
estimates), but the estimate of the divergence corresponding to the 
independence component in (2.5) is [cf. (4.12) of chapter 61 

TABLE 2.1 

Component due to Information D.F. 

Rows, H2(R) r Xi. 
2 1 xi. log - r - 1  pi. = xi./N i.-1 Npi. 

Columns, H2(C) C 
5.j 2 x., log - c - 1  p. j = x.j/N 3-1 NP.~ 

Independence, H2(R x C) 2 i  fxijlog- Nxij (r - l)(c - 1) 
2 f ( ~ ,  : Hz) = 2f((p)* : (p))  z.-1 j.-1 Xi.%. j 

Note that the independence component &HI: H,) in table 2.1 is (2.2) 
with the substitution of xij/N for pi,, xi./N for pi., and x. ,/N for p.,, and 
that (2.6) is (2.3) with the same substitutions. 

If the row and column.classifications are independent, 2f(Hl: H,) and 
Q(H,, H,) are asymptotically distributed as x2 with (r - 1)(c - 1) degrees 
of freedom. Under the alternative hypothesis Hl of (2.1), ~~(H, :HJ  
and Q(H,, H,) are asymptotically distributed as noncentral x2 with 
(r - l)(c - 1) degrees of freedom and respective noncentrality param- 
eters 21(H1: H,) and J(Hl, H,) as given by (2.2) and (2.3) with 

Pi- = Z Pij, p.j = Zpij- 
j=l  i l l  

(See problem 13.1 1 .) 
With the approximations in (4.5) and (4.6) of chapter 6, we find thgt 

[cf. CramCr (1946a, pp. 441-445), Hsu (1949, pp. 367-369), Roy (1957, 
p. 12811 
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The reader now should express (2.2) in terms of the entropies defined in 
problem 8.30 of chapter 2. 

The test of homogeneity for r samples in section 6.1 of chapter 6 may 
also be viewed as that for a two-way contingency table with the hypotheses 
in (6.1) in chapter 6 subject to fixed row totals, that is, for given Ni, 
i = 1, a, r. We leave it to the reader to relate the components in 
table 2.1 and table 6.1 of chapter 6. [Cf. Good (1950, pp. 97-101).] 

3. THREEWAY TABLES 

The possible combinations of hypotheses of interest become more 
numerous for three-way and higher order contingency tables. We shall 
examine several cases for a three-way table to illustrate the general 
procedure. [Cf. McGill (1954), Mitra (1955), Roy and Mitra (1956), 
Roy (1957, pp. 1 16-120).] 

Suppose we have N independent observations, each characterized by a 
value of three classifications, row, column, and depth, distributed among 
r row-categories, c column-categories, and d depth-categories. Let xiik 
be the frequency of occurrence in the ith row, jth column, kth depth, and 

We denote the probabilities by p's with corresponding subscripts. 
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3.1. Independence of the Three Classifications 
Consider a three-way table and the hypotheses: 

H1:pijk #P(..P.~.P..~, for at least one (i, j, k), CCCp,,, = 1, 
P i j k  > O, 

- (3.1) H2:pijk-pi..p.j.p..k, i = 1 , 2 , * o o , r ,  j = 1 , 2 , . * -  3 C, 
k =  l,2; . d ,  PI.. +p2.. + . +pr.. =p.,. 
+ P.2- + . . + P.e- = p.el + P. .~ + . . $ P . . ~  = 1, 
pi.. > 0, psi. > 0, P . .~  > 0. 

Without repeating the detailed argument (similar to that for a sample of 
N independent observations from a multinominal population with rcd 
categories), we have [cf. (2.6) and (2.8) of chapter 61 

(3.2) I(Hl: H2) = NCCCpijk log P i i k  
9 

pi. .p.i.p..k 

Note that I(H,: H2)/N in (3.2) is a measure of the joint relation among 
the row-, column-, and depth-categories [see the remarks following (2.3)]. 

For the conjugate distribution (see section 3 of chapter 6) with param- 
eters the same as the observed sample best unbiased estimates, we have 

r c d  

(3.4) I((p*) :@)) = 2 2 2 %ijk log 
Xijk 

i = 1  j = 1  k = l  Npi..p. i.p..& 

The null hypothesis of independence H2 in (3.1) usually does not 
spe~i fyp, . . ,p .~ . ,p . . , , i=  1,2; . , r , j =  1,2; - ,c ,  k =  1,2; . .,d. 
We can analyze I(@)* :@)) of (3.4) into several additive components. 
These components correspond to a hypothesis H2(R) specifying the values 
of the pi.., a hypothesis H2(C) specifying the values of the p. ,., a hypothesis 
H2(D) specifying the values of the p..,, and a hypothesis H2(R x C x D) 
of independence, that is, H2 in (3.1) is the intersection H2(R) n H2(C) n 
H2(D) n H2(R x C x D). The analysis summarized in table 3.1 is an 
analogue of that in table 4.3 of chapter 6. Here there are (r - 1) inde- 
pendent parameters pi.., i = 1,2, ., r - 1, (c - 1) independent param- 
eters p.,., j = 1, 2, 0 ,  c - 1, and (d - 1) independent parameters 
I)..&, k = 1, 2, . *, d - 1. The equations (4.1 1) of chapter 6 are here 
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r d 

P i c k  

Since pijk = pi..p.,.p..,, these equations reduce to 

Xi.. Xr.. X.j. XeC. -=- - -9  9 i =  1, 2,. . , r -  I ,  -- 
Pi-. Pr.. Psi- P-c. 

yielding 

(We write B here rather than jj because we shall need jj for different 
estimates in the analysis in section 10.) Note that the independence 
component in table 3.1 is the minimum value of the total for variations 
of the pi.., paj., p..,, 

r C d 

that is, over the populations of H2 with the given marginal values, and that 
by the convexity property (see section 3 of chapter 2) the total is not less 
than the row, column, or depth component. The degrees of freedom in 
table 3.1 are those of the asymptotic x2-distributions under the null 
hypothesis H2 of (3.1). 

The independence component in table 3.1 may also be expressed as 

(3.5) H& = CXCxijk log xijk - &i.. log xi.. - 2x.j. log X-j- 

-- Cx.., log x.., + 2N log N, 

for computational convenience with the table of n log n. 
The divergences do not provide a similar additive analysis (with these 

estimates), but the estimate of the divergence corresponding to the 
independence component in table 3.1 is [cf. (4.12) of chapter 6] 

xijk xi.- 2.i. x..&) log 
(3.6) J ( H ~ , H ~ ) = N x C C  ----- 

N N N N  xi. .x. i .~ . .k  

Note that the independence component I(H~: H2) in table 3.1 is (3.2) 
with the substitution of xijk/N for pijk, xi../N for pi.., x.,./N for P.~., and 
x..,/N for p.., and that (3.6) is (3.3) with the same substitutions. 
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TABLE, 3.1 

Component due to Information D.F. 

Rows, H,('R) 
pi.* = Xi../N 

r Xi.. 
2 1 xi.. log - 
i= 1 Npj. 

Columns, H2(C) c 5. j. 

pej. = xnj./N 2 1 z. j. log - 
j-1 NP. ,. 

Independence, r e d  
N2xijk 

1 1 1 log xi..x.j.x.., r c d - r - c - d + 2  
2f(HI : H2) i=1 j=1 k = l  

r c d  
%iik Total, 2f((p*): ( P I )  2 1 1 1 Xij* log Npi.p.,.p..k i-1 j=1 k = l  

rcd - 1 

If the row, column, and depth classifications are independent, 2 1 ( ~ , :  H,) 
and J(H,, H,) are asymptotically distributed as x2 with (red - r - c - 
d + 2) degrees of freedom. Under the alternative hypothesis Hl of (3. I ) ,  
~I (H ,  : H,) and J(H,, H,) are asymptotically distributed as noncentral x2 
with (rcd - r - c - d + 2) degrees of freedom and respective non- 
centrality parameters 21(H1: H,) and J(Hl, H,) as given by (3.2) and (3.3) 
with 

(See problem 13.8.) 

3.2. Row Classification Independent of the Other ClasSifications 
Consider a three-way table and the hypotheses 

Hi:pijk + pi..p.,k, for at least one (i, jk), C C C ~ ~ , ~  = 1, 
P i j k  > 0, 
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Note that H2 in (3.7) implies 

and 
C C 

P i a k  = 2 p i j k  = Pi.. 2 p.jk = Pi..P..k, 
j-1 j=l 

that is, the row and column classifications are independent and the row 
and depth classifications are independent. [Is the converse true? See 
Feller (1 950, pp. 87-88), Kolmogorov (1 950, p. 1 I).] 

Without repeating the detailed argument (similar to that already used), 
we have [cf. (2.6) and (2.8) of chapter 61, 

(3.8) Pijk I(Hl: H& = NCCCpijk log -3 

pi..p.jk 
Pijk J(Hl, Hz) = NCCC(pijk - pi..p-jk) log -' 

Pi..P.ik 
Note that I(Hl: Hz)/N in (3.8) is a measure of the relation between the 

row- and (column, depth)-categories and may be defined as the informa- 
tion in the row-categories about the (column, depth)-categories or vice 
versa [see the remarks following (2.3)]. 

For the conjugate distribution (see section 3 of chapter 6) with param- 
eters the same as the observed sample best unbiased estimates, we have 

The null hypothesis H2 of (3.7) usually does not specify pi.., p.,&, i = I, 
2,. * , r , j =  1, 2 , -  .,c, k =  1, 2; *,d. Wecananalyzef(@)*:(p)) 
of (3.10) into several additive components. These components correspond 
to a hypothesis H2(R) specifying the values of the pi.., a hypothesis H2(CD) 
specifying the values of the p.,, and a hypothesis H2(R x CD) of 
independence, that is, H2 in (3.7) is the intersection H2(R) n H2(CD) n 
H2(R x CD). The analysis summarized in table 3.2 is an analogue of 
that in table 4.3 of chapter 6. Here there are (r - 1) independent 
parameters pi.., i = 1, 2, *, r - 1, and (cd - 1) independent param- 
eters p.,, j = 1, 2, *, C, k  = 1, 2, -, d, omitting the combination 
j = c and k  = d. The equations (4.1 1) of chapter 6 are here 

Picd omitting j = c and k  = d. 
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Since p,, = pi..p.,, these equations reduce to 

k = 1, 2, *, d, omitting j = c and k = d, 

yielding 

Note that the independence component in table 3.2 is the minimum value 
of the total for variations of the pi.. and 

that is, over the populations of H2 with the given row and (column, depth) 
marginal values, and that by the convexity property (see section 3 of 
chapter 2) the total is not less than the row or (column, depth) component. 
The degrees of freedom in table 3.2 are those of the asymptotic x2-dis- 
tributions under the null hypothesis H2 of (3.7). 

TABLE 3.2 

Component due to Information D.F. 

Rows, H2(R) 
pi.. = xi../N 

r  xi.. 
2 Xi.. log - 

i = 1  Npi.. 

Column, depth, H2(CD) c  d %. jk 
2 2 2 x. jk log - pvjk = x.jk/N j = l  k - 1  Np-jk 

Rows x (column, depth) r c d  Nxijk Independence, H2(R X CD) 2 2 2 2 Xijk log - (r - l)(cd - 1) 
2 f ( ~ ,  : H2) i - 1  j = 1  k = l  Xi. -5. jk 

Total , 21((p*) : (p)) 2 t xi,, log xijk rcd - 1 
i = 1  j = 1  k = 1  Npi..p. jk 

The independence component in table 3.2 may also be expressed as 

(3.1 1) f(H, : H2) = BZBxijklogxijk - Zx,.. logxi.. - SZx.,logx., + Nlog N 
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for computational convenience with the table of n log n. The divergences 
do not provide a similar additive analysis (with these estimates), but the 
estimate of the divergence corresponding to the independence component 
in  table 3.2 is [cf. (4.12) of chapter 61 

(3.12) J ( 4 ,  H2) = NZZZ (Z"L - xi.- - ~ j k )  - log -. Nxijk 
N N N Xi. .X. jk 

Note that P(H,:H,) in table 3.2 is (3.8) with the substitution of xijk/N 
for pijk, xi../N for pi.., and x.,/N for p., and that (3.12) is (3.9) with the 
same substitutions. 

If the row classification is independent of the other two classifications, 
21(H1 : H2) of (3.1 1) and S(H,, H2) of (3.12) are asymptotically distributed 
as x2 with (r - l)(cd - 1) degrees of freedom. Under the alternative 
hypothesis H1 of (3.7), 2 1 ( ~ , : H ~ )  and ..f(~,, H2) are asymptotically 
distributed as noncentral x2 with (r - l)(cd - 1) degrees of freedom and 
respective noncentrality parameters 21(H1: H2) and  J(Hl, H2) given by 
(3.8) and (3.9) with pi.. = zzPijk, p.jk = zpijk. (See problem 13.9.) 

j k i 
Similar analyses are of course possible if the independence hypothesis is 

that either the column or depth classification is independent of the other 
two classifications. We leave the details to the reader. 

3.3. Independence Hypotheses 

The independence component in table 3.1 is analyzed into additive 
components in table 3.3. This is a reflection of the fact that H2(R x 
C x D) f H2(R x CD) n H2(C x D), that is, the three classifications 
are independent if and only if,the row classification is independent of the 
(column, depth) classifications and the column and depth classifications 

TABLE 3.3 

Component due to Information D.F. 

Column x depth e t l  Nx. jL 
2 2 1 X.j,log- (C - I)(d - 1) 

H2(c x D) j ~ l  , k = l  x.j.x..1: .. . 

Row x (column, depth) c (I Nxijk 
2 $ 2 2 x;j, log - ( I -  - I ) ( c ~  - I )  

H2(R x CD) i s1  j-1 k = 1  Xi+ .X. jl: 

Independence, 
H2(R x C x D) 

2 f f zjjr log N2xijk r c d - r - c - d + 2  
i = l  jr.l k - 1  Xi. .X.j.X. .1: 
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are independent, since pijk = pi..p.jk and p.,, = ~ . ~ . p . . ,  imply that pijk = 
T 

p~..p.j.p..k; and pijk = pi..p.,.p.., implies 2 p,, = p.,& = p.,.p..& or 
i -1 

Prjk =p1..P.jk. It is of course also true that H2(R x C x D) + H2 (C x RD) 
n H2(R x D) and H2(R x C x D) + H2(RC x D) n H2(R x c), but 
we leave the details to the reader., Note that the convexity property (see 
section 3 of chapter 2) ensures that the H2(C x D) component is the 
minimum value of the H2(R x C x D) component for the given grouping. 
(See example 12.3 and problem 8.30 in chapter 12.) 

3.4. Conditional Independence 
Suppose for some category, say the kth, of the depth classification we 

want to test a null hypothesis that the row and column classifications are 
independent. 

The argument here parallels that for the two-way contingency table. We 
shall follow it with the notation introduced for the three-way contingency 
table, our basic problem. We want to test the hypotheses: 

Note that we are dealing with conditional probabilities pijk/p..k, P~.&/P..&, 
and p.,,/p..,. The analysis in table 3.4 is derived from that in table 2.1. 
We shall denote a conditional hypothesis about the rows for the kth 
category of the depth classification by H2(R(Rlk) and the corresponding 
hypothesis for any category of the depth classification by H2(R(RI D); 
similarly for the columns. 

If H2 in (3.13) is true for all k, that is, the row and column classifications 
are conditionally independent given the depth classification, the appro- 
priate analysis corresponds to that in table 3.4 with each information 
component now summed over k = 1, 2, *, d, and each degree of 
freedom multiplied by d. In particular, the information component for 
a null hypothesis of conditional independence H~((RI D) x (CI D)) is 

with d(r - l)(c - 1) degrees of freedom for the asymptotic x2-distribution 
under the null hypothesis of conditional independence. 
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TABLE 3.4 

Component due to Information D.F. 

ROWS, H2(Rl k) r %i.k 

j i . k / j . . &  = x i . k / x . . k  i=l log x . . ~ ( ~ ~ . ~ / ~ . . ~  

c 
5 - l k  

j . j k / j . . k  = X . ~ & / X . . &  j=l ~ . . k ( ~ . f k / ~ . . k )  

Conditional r c 

independence, 2 2 2 Xijk  log %ijk (r - l)(c - 1) 
~ 2 ( ( R l k )  x (Clk)) i=l j = 1  ~ i . @ . j k / " . . k  

3.5. Further Analysis 

The H2(R x CD) component in table 3.3 [the test for the hypothesis 
that the row and (column, depth) classifications are independent] is 
analyzed into additive components in table 3.5. This is a reflection of the 
fact that H2(R x CD) + H2((RID) x (CID)) f~ H2(R x D), that is, the 
row classification is independent of the (column, depth) classifications if 
and only if the row and column classifications are conditionally inde- 
pendent given the depth classification and the row and depth classifications 
are independent, since pijk = P ~ . & P . ~ & / P . . &  and p i . &  = p i . . p . . &  imply pijk = 

" 

P i . - P . j k ;  and P i j k  = pi. .pmjk implies 2 pijk = P i . &  = Pi..P..k Or Pijk = 
j  = 1  

i j /  Note that the convexity property (see section 3 of chapter 2) 

TABLE 3.5 

Component due to Information D.F. 

Row x depth 
H2(R x D) 

c d (ROW, depth) x 2 i 2 2 Xijk  log - %ijk d(r - l)(c - 1) 
(column, depth) i=1 j = 1  k = l .  Xi-$. - jk 

H2((RID) x (CID)) X..k 

Row x (column, depth) c d N x i  jk 

2 i 2 2 % i j k I 0 g -  (r - I ) ( c ~  - I )  
H2(R x CD) i s 1  j-1 k = l  Xi. .x. jk 
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ensures that the H,(R x D) component is the minimum value of the 
H2(R x CD) component for the given grouping. (See example 12.3 and 
problem 8.31 in chapter 12.) 

Similar analyses follow if the conditional independence hypothesis is 
applied to other combinations of the classifications. We leave the 
details to the reader. 

4. HOMOGENEITY OF TWO-WAY TABLES 

We may treat r independent samples of a c x d table as an r x c x d 
three-way table with suitable hypotheses and restrictions. Thus, suppose 
we want to test a null hypothesis that r samples of a c x d table are 
homogeneous, subject to a fixed total for each c x d table. With the 
three-way table notation, the hypotheses are [cf. (6.1) of chapter 61 : 

The analysis in table 4.1 is derived from that in table 6.1 of chapter 6 for 
the basic problem of the homogeneity of r samples from multinomial 
populations with cd categories. 

TABLE 4.1 

Component due to Information D.F. 

f i - j k  = x.ik/N 
(Between) 

Error, 2 f ( ~ ~  : Ha 
(Within, Nxijk 2 $ f x,, log- (r - l)(cd - 1) 

homogeneity) i = 1  j = 1  k = l  xi..x. jk 

The degrees of freedom in table 4.1 are those of the asymptotic x2- 
distributions under the null hypothesis H2 of (4.1). Note that the error 
or within or homogeneity component in table 4.1 is the minimum value 
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c d 

of the total for variations of the p.,,, 2 2 /).ja = 1, given the c x d table 
j - 1  k-1 

totals, that is, over the populations of H,. and that by the convexity 
property (see section 3 of chapter 2) the total is not less than the between 
component. As might be expected, the analysis in table 4.1 is related to 
that in table 3.2 for the hypothesis of independence of the row classifi- 
cation and the other two classifications. In fact, the total of table 4.1 is 
the total minus the row component of table 3.2, the between component 
of table 4.1 is the (column, depth) component of table 3.2, and the within 
or homogeneity component in table 4.1 is the independence component of 
table 3.2. (See problem 13.10.) 

5. CONDITIONAL HOMOGENEITY 

Suppose we have the r samples of section 4, and for some category, say 
the jth, of the column classification we want to test a null hypothesis that 
the r samples of the depth classification are homogeneous. The argument 
here parallels that in section 6.1 of chapter 6 for the basic problem of the 
homogeneity of r samples. We shall follow it with the notation for the 
three-way contingency table. We want to test the hypotheses: 

The analysis in table 5.1 is derived from that in table 6.1 of chapter 6. 

TABLE 5.1 

Component due to Information D.F. 
- -  - 

d 
jk/P. j. = 2. j k / ~ .  i. x. jk 2 2 X.jk log d - 1  (Between) k = l  X. j.(p. jk1p.j.) 

Error, 2 f ( ~ ,  : Ha, d 
2 $ 2 X,jk log X i j t  (r - l)(d - 1) 

(Within) i=l k = l  (xij.x. jd/~. 

d 

Tot a1 , 2f((p*) : (p)) 2 2 xijk log %ijk 

i-1 k=l xjj.(p. jJp. 
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If H2 in (5.1) is true for all j, that is, the depth classification is condition- 
ally homogeneous given the column classification, the appropriate analysis 
corresponds to that in table 5.1 with each information component now 
summed over j = 1, 2, *, c, and each degree of freedom multiplied by 
c. In particular, the information component for a null hypothesis of 
conditional homogeneity pijk/pij. = p.jk/p.j., i = 1, 2, , r, j = 1, 2, . . .  , c, k = 1, 2, . *, d, is 

r  c  d  

(5.2) 2f(Hl : H2) = 2 2 2 2 X, log xijk 

i=l j=l k = l  (xij.x.jk)/x.j.' 

with c(r - l)(d - 1) degrees of freedom for the asymptotic x2-distribution 
under the null hypothesis of conditional homogeneity. 

Note that 2f(H1:H2) in (5.2) is similar to the component for the test 
of a null hypothesis of conditional independence H2((RIC) x (DIC)) 
(cf. table 3.5). 

6. HOMOGENEITY 

The homogeneity component in table 4.1 is analyzed into additive 
components in table 6.1 (cf. table 3.5). 

TABLE 6.1 

Component due to Information D.F. 

Conditional homo- r  c  (1 
c(r - l)(d - 1) 

genei ty-(Dl C) i=1 jcl k=1  

r c d  Nxijk 
(C, D)-homogeneity 2 2 2 2 Xij t  log - 

i=1 j-1 k-1 Xi..X.jk 

The analysis in table 6.1 is a reflection of the fact that (C, D)-homo- 
geneity + conditional homogeneity-(Dl C) n (C)-homogeneity, that is, the 
two-way (column, depth) tables are homogeneous if and only if the 
depth classifications are conditionally homogeneous given the column 
classification, and the column classifications are homogeneous, since 
P ~ ~ ~ / ~ ~ ~ . = P . ~ ~ / P . ~ . ,  i =  I ,  2, *, r, j= 1, 2, . ., c, k =  1, 2, . ., d, 
andpij .=p., .  i m p l y ~ ~ ~ ~ = p ~ ~ ,  i = I, 2, . ., r, j = 1 ,  2, . ., c, 
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k = l ,  2 , .  * , d ;  a n d p i j k = p . j k , i = l , 2 , . - . , r , j = 1 , 2 , . . - , ~ ,  
k =  1, 2 , .  ., d, impliespii. =p. , . ,  i =  1, 2 , .  . , r , j =  1, 2 , .  -, c, 
and pijk/pij. = ~ . , ~ / p . ~ . .  Note that the convexity property (see section 3 of 
chapter 2) ensures that the (C)-homogeneity component is the minimum 
value of the (C, D)-homogeneity component for the given grouping (see 
examples 12.2 and 12.4). 

7. INTERACTION 

Since the information component for conditional homogeneity in table 
6.1 is a convex function (see section 3 of chapter 2), 

with equality in (7.1) if and only if (cf. example 3.2 of chapter 2) 

We may therefore analyze the conditional homogeneity component 
in table 6.1 into two additive components as shown in table 7.1, 

C d 
with y .  = x ~ ~ . x . ~ ~ / x , ~ . .  Note that y,.. = 2 yi., = xi.. and that 

j=l k= 1 
P 

y . .  = 2 y .  = x.. . (See example 12.4.) The analysis in table 7.1 is 
i-1 

TABLE 7.1 

Component due to Information D.F. 

d 
(RD, c)-interaction 2 $ 2 xijk log xiik (r - l)(c - l)(d - 1) 

i-1 j-1 k-1 xi.kXfj.x. jk 

Conditional homo- r c d  
xijk 

geneity-(Dl C) 2 2 2 2 xijt log - 
i=1 j=1 k-1 xij.x.jk 
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c  Pij-P. jk a reflection of the fact that pi.k = 2 - and pis = Pi.kPij.P. jk 

j-1 P-j- ( ~ i j . ~ - j k )  

\j=1 P.j .  
P-r. 

imply the null hypotheis of conditional homogeneity pijk/pij. = p. ; 

The degrees of freedom in table 7.1 are those of the asymptot& &distri- 
butions under the null hypothesis of conditional homogeneity. (Cf. Roy 
and Kastenbaum ( I  956).] 

8. NEGATIVE INTERACTION 

It is true that the conditional homogeneity component of table 7.1 may 
also be analyzed algebraically as shown in table 8.1. However, the 
(D)-homogeneity component is not necessarily smaller than the conditional 
homogeneity component. The interaction component in table 8.1 may 
therefore have to be negative. This is illustrated in example 12.4. The 
contrary is illustrated in example 12.2. 

Note that if x,. = x,..x.,./N, that is, the (C, D)-homogeneity component 
is the same as the conditional homogeneity-(Dl C) component, then 

xij.x.jk - xi. .x..,/N and the (RD)-interaction component in YiSk = 2 - - 
j-1 X . j .  

table 7.1 becomes the (D)-homogeneity component of table 8.1, and the 
(RD, C)-interaction component in table 7.1 becomes the RCD-interaction 
component in table 8.1. [Cf. McGill (1954, p. 108), Sakaguchi (1957b, 
p* 26).1 

TABLE 8.1 

Component due to Information 

Conditional homogeneity- r c d  
x i j k  

(DlC) 
2 2 2 2 xijk log - 

i s 1  j = l  k = l  Xi j .X .  jk - 
X .  j .  
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9. PARTITIONS 

The independence component in table 2.1 can be analyzed into com- 
ponents depending on partitions of the r x c contingency table [cf. 
Cochran (1954), Irwin (1 949), Kimball (1954), Lancaster (1 949)l. The 
partitionings correspond to possible dependence between subsets of the 
row and column classifications. See section 3.6 of chapter 12 for the 
analogous problem for a multivariate normal population. Suppose, for 
example, we partition a two-way contingency table into four parts by 
grouping the rows into two sets of r,, r, rows respectively, r, + r, = r, 
and the columns into two sets of c,, c, columns respectively, c, + c, = c. 

We supplement the notation by defining 

a = 2 = /? for i = r, + 1, *,r, + r,, 

The components of the analysis are those for the four subcontingency 
tables, the pair of <ow subtotals, the pair of column subtotals, and the 
2 x 2 table of the partitioned total. 

The analysis in table 9.1 follows in a straightforward fashion from the 
definitions of the notation and the properties of the logarithm. The 
degrees of freedom are those of the asymptotic x2-distributions under the 
null hypothesis H, of (2.1). 

The same procedure will apply for any partitioning of the original 
contingency table into subtables either ab initio or by further partitioning 
of the subtables. This procedure is applicable when there is reason to test 
for possible dependence between subsets of the row classifications and 
subsets of the column classifications, .after finding a significantly large 
independence component in table 2.1. 

Similarly, partitioning of three-way and higher order. contingency 
tables leads to analysis of the independence components. Thus the 
independence component in table 3.1 can be further analyzed in addition 
to the analysis in table 3.3. Suppose, for example, we partition a three- 
way contingency table into eight parts by grouping the rows into two sets 
r,, r, respectively, r, + r, = r, the columns into two sets c,, c, respectively, 
c, + c, = c, and the depth into two sets dl, d, respectively, dl + d, = d. 
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due to 
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TABLE 9.1 

Information D.F. 

2 2 
Partition totals 2 2 2 Nafi log (NN,/Na.N.fi) 1 

a-1 fi-1 

Partition column 
totals 

Partition column c, - 1 totals j=l 

Partition row N~.$? 
totals 

2 (3: log - I )  r 2 - 1  
t-rl+l ~ ~ ~ 3 :  N&. 

Partition row r, - 1 totals 

Subcontingency N&il 2 Xij log - 
table $+ (r2 - l)(c2 - 1 ) 

i=rl+l j==cl+l 

Subcontingency r1+r2 el N21xij 
table . z=r1+l 2 j=l 2xij10gm (r2 - 1)(cl - 1) 

Subcont ingency 
table 0.1 - - 1) 

2=l j=cl+l 

Subcontingency N11xij 
table 2 f log (r1 - l)(c, - 1) 

i-13-1 

Independence, r c Nxi j 
H2(R x C) 2 2 2 xij log- 

2f(lfl : ~a i-13-1 
Xi.X. j 

We supplement the notation by defining 

Nab = "'~ijk, a = / ? =  y =  l f o r i =  1 ,2 ,*  9 rl, 
j = l , 2 , .  * , c 1 , k = l , 2 , *  *,dl, 

a = @ =  y = 2 f o r i = r l +  l , . . * , r l  + r 2 ,  
j = cl + 1, *, cl + c2, k = dl + 1, *, dl + 4 ,  
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The components of the analysis are those for the eight three-way sub- 
tables, two sets each of row, column, and depth subtotals with four 
elements per set, and the 2 x 2 x 2 table of the partitioned total. 

The analysis in table 9.2 follows in a straightforward fashion from the 
definitions of the notation and the properties of the logarithm. 

TABLE 9.2 

Component due to Information D.F. 

Partition totals 

Two partition depth totals 
for y  = 1,2  and k = 1, 
2, - -  -, dl for y = 1 ,  2 z z z & l o g  

N..& 3(dl -  1 )  

k = dl + 1, . *,dl  + d2 a B k  NarS,x::X 3(d2 - 1 )  

for y  = 2  

Two partition column to- 
tals- for /? = 1, 2  and 

N.~ .X;!~  
j = l , 2 , * . . , c l f o r @ = 1 ,  3(c1 - 1 )  

j = cl + 1, -.a, cl + c2 a y  3 3(c2 - 1 )  

for /? = 2  

Two partition row totals 
fora= 1 ,2andi=  1,2, 
. ., rl for a = 1, i = 
r1 + 1, -, r1 + r2 for 
a = 2  

Eight three-way subcontin- 
gency tables for a, /?, y  
= 1,2withi= 1 , 2 , . - - ,  
rlfora = 1 , i =  r l +  1, 

-, rl + r2 for a = 2, 
etc. 

2  ZZZ 
i j k  

Independence, 
H2(R X C X D) i=l j=l k = l  

xijk log 
N 2 ~ i ,  K r c d - r - c - d + 2  

xi..x.j.x..k 
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The p.dtiOning procedure can also be applied to any of the subtables, 
but we leave the details to the reader. The degrees of freedom are those 
of the uymptotic ~2-distributions under the null hypothesis H2 of 
independcncc in (3.1). For tables 9.1 and 9.2 we leave to the reader the 
estimation of the corresponding divergences, as well as the expression in 
terms of the form n log n for computational convenience. (See problem 
8.26 in chapter 12 for the analogous problem for a multivariate normal 
sample.) 

10. PARAMETRIC CASE 

Suppose that in table 3.1, the pi.., i = 1,2, *, r, are known functions 
of independent parameters a,, %, . -, a,, m < r, thep.,., j = 1,2, -, c, 
are known functions of independent parameters PI, P2, *, Pn, n < c, 
the p..,, k P 1,2, *, d, are known functions of independent parameters 

y,, -, y,, s < d. We "fit" the contingency table with estimates - 
some procedure to be determined) E,, ., a m ,  8;, . *, 8;1, 

*, y,, of the a's, Ps, y's, lettingpi.. = pi..(Zl, *, Em), i = 1,2, . *, 

j.j.-p.j.@l,. .,Bn), j =  1, 2 ,  * ,  B..k=~..k(yl,* .,p&, 
k =  1,2; . *,d; PI.. +p2..+* .+pr.. =jX1. +p.2. + *  +jXc. = 
p..l +p.., + . +pSsd = 1. 

If the ,.., p.,., I..,, or the I's, bs,  7s. are such that identically in the 
a's, Fs, y's, 

we have a further analysis of table 3.1 in table 10.1. We see (cf. (4.8)- 
(4.11) of chapter 6) that (10.1) implies the I's, ps ,  7's are the solutions of 

These are the maximum-likelihood equations for estimating the a's, B's, 
y's, or minimizing the total in table 3.1. We leave to the reader the 
estimation of the divergences, as well as the expression in terms of the 
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form n log n for computational convenience. The degrees of freedom are 
those of the asymptotic x2distributions under the null hypothesis of 
independence H2 in (3.1), the pi..'s, p.,.'s, p..,'s understood as functions 
respectively of the a's, Ps, y's. (See problem 13.12.) 

TABLE 10.1 

Component due to Information 

Between pi.. = r 
xi.. 

2  2 xi. .  log - 
xi../N and p",.. i = 1  Np",. . 

Between p. j .  = X .  j. 
2  x.j. log- 

x.j./N and 3. j .  j = 1  Np".? 

Between p..k = d x..k 
2  2 x. .k  log - 

x..k/N and P..k k = 1  Np"..k 

c - n -  1 

Independence, a 
H2(R X C x D) 2  2 Xijk log 

N2xjik 
r c d - r - c - d + 2  

2f(t11 : tIa i = 1  j = 1  k n 1  xi. .x. j.X..k 

2 i  $ xjjkl0g Xija r c d - m - n - . v -  1 
; = I  j = 1  k ; = l  Npi..p. j.p. .k 

d 
Total, ~ 1 ( ( ~ * ) :  (p) )  2  f 2 x i jk  log Xtjk 

i = l  j = 1  k n 1  Npi-.p.j.p..k 

11. SYMMETRY 

rcd - 1 

For two-way contingency tables with the same number of rows and 
columns arising from related classifications, it is often of interest to test a 
null hypothesis of symmetry H, the events in cells symmetrically situated 
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about the main diagonal have the same probability of occurrence, that is, 
the hypotheses [see Bowker (1948)1, 

H,:p,+pje i = 1 , 2 , *  *,c, j= 1,2,* *,c, i # j , f o r a t  
(1 1.1) least one (i, j), 

Hg!pij = Pji. 
For the conjugate distribution (see section 3 of chapter 6) with param- 

eters the same as the observed sample best unbiased estimates, we have 

The null hypothesis H2 of (1 1.1) usually does not specify the pi,, i = 1, 
2, *, c, j = 1, 2, *, c. We analyze l(p*:p) of (11.2) into several 
additive components in table 11 .l. The degrees of freedom are those of 
the asymptotic x2-distributions under the null hypothesis of symmetry H2 
in (1 1.1). Note that the convexity property (see section 3 of chapter 2) 
ensures that the component due to pi,. is the minimum value of the total 
for the symmetric grouping, and the symmetry component is the sum of all 
but the diagonal terms of the total with pi, replaced by pij. 

TABLE 1 1.1 

Component due to Information D.F. 

e 
Diagonal terms X i  i N - X xii 

2 . 2  X i i  log - + 2(N - ZxiJ log N ( l  - Xpi i )  
C 

1-1 Npii 

x . .  + x,,. 2 2 2 (xij + xji) log (xij + xji)(l - Xpi i )  C(C - 1) pu = - -- 2N i< j 2 
1 

2pij(N - X xii) 

a i j  Symmetry, 2t(H,: H,) 2 2 2 xij log - c(c - 1) 
i # j  XU + xji 2 

Total, 2 f ( p * : p )  

The symmetry component in table 1 1.1 may also be expressed as 

(1 1.3) I(Hl : H2) = 2 2 ,  log xij 
i # j  

for computational convenience with the table of n log n. 
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The divergences do not provide a similar additive analysis (with these 
estimates), but the estimate of the divergence corresponding to the 
symmetry component in (1 1.3) is 

Under the null hypothesis H2 of (1 1.1) (the events in the cells sym- 
metrically situated about the main diagonal have the same probability of 
occurrence), 21(H1 : H a  and j(H1, H2) are asymptotically distributed as x2 
with c(c - 1)/2 degrees of freedom. 

With the approximations used in (4.5) and (4.6) of chapter 6, we find 
[cf. Bowker (1948, p. 57311 : 

If pi, = pji, i = 1, 2, *, c, j = 1, 2, *, c, i # j, the marginal dis- 
tributions for the row and column classifications are the same, that is, 
P ~ . = P ~ ~ + P ~ ~ + " ' + P ~ ~ = P . ~ = P ~ ~ + P ~ ~ + " ' + P ~ ~ ,  i=1 ,2 , ' ** , . c*  
The weaker hypothesis of equality of marginal distributions is also of 
interest, especially in the absence of symmetry. For the test of the weaker 
hypothesis see Stuart (1955a) and section 7 of chapter 12. 

12. EXAMPLES 

Example 12.1. As an example of the test for symmetry consider the data in 
table 12.1 for 3242 men aged 30-39 with unaided distance vision [taken from 
Stuart (1953, p. log)]. From (1 1.3) and the table of n log n we find 

22 xij = 1013, 1013 log 2 = 702.158, and 22(H1: HJ = 4.770, 
t # j  

which as a x2 with 6 degrees of freedom is not significant. We therefore accept 
the null hypothesis of symmetry of vision in the left eye and right eye of the 
population' from which the sample was drawn. 
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TABLE 12.1. 3242 Men Aged 30-39; Unaided Distance Vision 

Example 12.2. The data in table 12.2 represent the number of items passing, 
P, or failing, F, two tests, TI, T2, on certain manufactured products from manu- 
facturers A, B, C, D. With tests as the row classification, manufacturers as the 
column classification, and result as the depth classification, we find 

2 4 
1 xi.. logxi.. = 4158.008, 1 x.,. log x.~. = 3701.858, 

i= 1 j=1 

Total 

1053 

782 

893 

514 

3242 

Left Eye \ Right Eye 

Highest Grade 

Second Grade 

Third Grade 

Lowest Grade 

Total 

TABLE 12.2 

Highest Second Third Lowest 
Grade Grade Grade Grade 

82 1 112 85 35 

116 494 145 27 

72 151 583 87 

43 34 106 33 1 

1052 79 1 919 480 

P F Total P F Total 
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These values and the analysis in table 6.1 yield table 12.3 to test the homogeneity 
of the results and manufacturers over the tests. 

TABLE 12.3 

Component due to Information D.F. 

Manufacturer homogeneity 3 SO8 3 

Conditional homogeneity, results given 7.594 4 
manufacturer 

Manufacturer, result homogeneity 11.102 7 

Since the 5% values of x2 for 3, 4, 7 degrees of freedom are, respectively, 
7.81, 9.49, 14.07, we accept the null hypothesis that the results for the different 
manufacturers over the tests are homogeneous. We also illustrate table 8.1 in 
table 12.4. In view of the values in table 12.4, we may accept the null hypothesis 
that the failure rate is the same for the two tests. 

TABLE 12.4 

Component due to Information D.F. 

Result homogeneity 0.024 1 

Test, manufacturer, result, interaction 7.570 3 

Conditional homogeneity, results given 7.594 4 
manufacturer 

Example 12.3. In table 12.5 the 124 failures of table 12.2 are also classified 
by the defects, Dl, D,. For the 4 x 2 x 2 table 12.5(a), we test the hypotheses 
of (3.1) with i = A, B, C, D, j = TI, T,, k = Dl, D,, that is, the null hypothesis 
of independence among manufacturers, tests, and defects. From the data we 
find 

2 
1 x.., log x.., = 512.023, N log N = 597.715. 

k = l  

These values and the analysis in table 3.3 yield table 12.6. 
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TABLE 12.5 

TABLE 12.6 

Component due to Information D.F. 

H, (Test x defect) 

H, (Manufacturer x (test, defect)) 16.918 9 

H, (Manufacturer x test x defect) 23.018 10 

Since the 5% values of x2 for 1, 9, 10 degrees of freedom are, respectively, 
3.84, 16.92, 18.31, and the 1% values are 6.63, 21.67, 23.21, we reject the 
hypothesis of independence between test and defect and also of course the 
three-way independence and examine further the hypothesis of independence 
between manufacturer and the pair, test, defect. 

The analysis for conditional independence in table 3.5 applied to the Hz 
(Manufacturer x (test, defect)) component in table 12.6 yields tables 12.7 and 
12.8. 

Since the 5% values of x2 for 3, 6 degrees of freedom are, respectively, 7.81, 
12.59, and the 1% values are 1 1.34, 16.8 1, we infer from tables 12.6, 12.7,J2.8 
that manufacturer and test are independent but not defect and test, and defect 
and manufacturer, with the manufacturers and defects conditionally independent 
given the test. 
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TABLE 12.7 

Component due to Information D.F. 

H2 (Manufacturer x test) 4.544 3 

Conditional independence, manu- 
facturer and defect given test 12.374 6 

H2 (Manufacturer x (test, defect)) 16.918 9 

TABLE 12.8 

Component due to Information D.F. 
- - 

H2 (Manufacturer x defect) 

Conditional independence, manu- 
facturer and test given defect 7.798 6 
- - -- -- - - 

H2 (Manufacturer x (test, defect)) 16.918 9 

Example 12.4. Table 12.9, taken from Campbell, Snedecor, and Simanton 
(1939, p. 64), gives the distribution of 1397 houseflies by sex and mortality 
among 12 successive tests with a standard insecticide [also discussed by Norton 
(1945)l. The problem here is to test the homogeneity of the sex, mortality 
results over the 12 successive tests. With level as the row classification, sex as 
the column classification, and mortality as the depth classification, we find 

2 x.., logx.., = 9215.809, Nlog N = 10117.189. 
k=l 

These values and the analysis in table 6.1 yield table 12.10. 
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TABLE 12.9. Mortality of Male and Female Houseflies in 12 Successive 
Tests of a Standard Insecticide 

Males Females 

Level Total Total 
Level Alive Dead Total Alive Dead Total Total Alive Dead 

TABLE 12.10 

Component due to Informa tion D.F. 

Homogeneity, sexes 36.874 11 
Conditional homogeneity, mortality 20.170 22 

given sex 
Male 8.906 11 
Female 11.264 11 

Homogeneity, sex, mortality 57.044 33 

Homogeneity, mortality 29.458 11 
Conditiqnal homogeneity, sex given 27.586 22 

mortality 
Alive 21.340 11 
Dead 6.246 11 

Campbell, Snedecor, and Simanton (1939), with the classical f ,  found 8.6 
and 10.5, respectively, for the conditional homogeneity for the males and for 
the females; 36.5 for the homogeneity of sexes; and 28.7 for the homogeneity 
of mortality. We accept a null hypothesis of conditional homogeneity for 
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mortality given the sex. Since the 1% values of x2 for 11, 22, 33 d e p  of 
freedom are, respectively, 24.72, 40.29, approximately 55, we infer that the 
mortality results are not homogeneous, the results for the sex- are not homo- 
geneous, and the sex, mortality results are not homogeneous, although there is 
conditional homogeneity for mortality given the sex and for the sex given the 
mortality. 

Note that the homogeneity component for mortality is greater than the 
conditional homogeneity for mortality given sex, also the homogeneity com- 
ponent for the sexes is greater than the conditional homogeneity for sex given 
mortality, so that here the analysis in table 8.1 would lead to a negative 
interaction component. To apply the analysis in table 7.1 we compute 

and 

getting table 12.1 1. We also find 

12 2 12 2 

1 2 xi.k log yi., = 5762.541, 2 1 xi,. log yii. = 5707.284. 
i s 1  B - 1  i==l j=l 

TABLE 12.1 1 

The analysis of the conditional homogeneity terms in table 7.1 yields tables 
12.12 and 12.13. We infer that table 12.9 is homogeneous, those factors that 
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differed from level to level affected the two sexes similarly as to mortality. 
[Cf. Norton (1945), who makes the same inference by a different approach and 
interaction .] 

TABLE 12.12 

Component due to Information D.F. 

(Level, mortality)-interaction 7.562 11 
((Level, mortality), sex)-interaction 12.608 11 

Conditional homogeneity, mortality 20.170 22 
given sex 

TABLE 12.13 

Component due to Information D.F. 

(Level, sex)-interaction 12.094 11 
((Level, sex), mortality)-interaction 15.492 11 

Conditional homogeneity, sex given 27.586 22 
mortality 

13. PROBLEMS 

13.1. Relate the components in table 2.1 and table 6.1 of chapter 6. 

133. Derive the equivalent of table 3.5 for the null hypothesis that the 
column and (row, depth) classifications are independent. 

133. Estimate the divergences corresponding to the information components 
in tables 9.1 and 9.2. 

13.4. Express the information components in tables 9.1 and 9.2 in terms of 
the form n log n. 

13.5. Are the two sets of data given in table 13.1 homogeneous? 

TABLE 13.1 

Process Process 

Failed 68 38 
Passed 450 413 

pp - -  -. 

Failed 76 17 
Passed 365 82 
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13.6. Table 13.2, from Cochran (1954, Table 8, p. 442), gives the distribution 
of mothers of children in the Baltimore schools who had been referred by their 
teachers as presenting behavior problems, and mothers of a comparable group 
of control children who had not been so referred. For each mother it was 
recorded whether she had suffered any infant losses (for example, stillbirths) 
previous to the birth of the child in the study. The data are further classified 
into three birth-order classes. The comparison is part of a study of possible 
associations between behavior problems in children and complications of 
pregnancy of the mother. Analyze the data. 

TABLE 13.2 

Problems Controls 

Birth Order . Losses None Total Losses None Total 

13.7. Table 13.3 [from Bartlett (1935, p. 249), who refers to data from 
Hoblyn and Palmer] is the result of an experiment designed to investigate the 
propagation of plum root stocks from root cuttings. There were 240 cuttings 
for each of the four treatments. Analyze the data. 

TABLE 13.3 

Alive Dead 

Time of Planting Time of Planting 
Length of Cutting Total Total 

At Once In Spring At Once In Spring 
- - 

13.8. From the analysis in table 3.1, and the properties of the discrimination 
information, show that for N + a, if ~ , , / N + p ~ . . p . ~ . p . . ~  with probability 1 ,  

xijk xi.. 5 . 5 .  x..k then - + - - N ~ ~ i . . + p i . . , P . j . + p . j . . P . . k + p . . r w i t h p r ~ b a b i l i t y l .  

Long 156 84 
Short 107 3 1 

Total 263 115 

240 84 156 
'138 133 209 

378 217 365 

240 
342 

582 
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i =  l,2; . .,r, j =  l,2; .,c, k = 1,2; . .,d. (See problems 7.14 and 
7.16 in chapter 6.) 

13.9. From the analysis in table 3.2, and the properties of the discrimination 
information, show that for N -- coy if xijk/N+Pj..P.jk with probability 1, then 
2 i j k  x{..%.jp - -- - -3 pi.. --pi.., j5.jk -- P.jk with probability 1; i = 1, 2, a, r, 
N N N  
j = l,2, a, c, k = 1,2, . ., d. (See problem 13.8 above and problems 
7.14 and 7.16 in chapter 6.) 

13.10. Brownlee, in Quastler (1955, p. 63), gives the data shown in table 13.4 
on the numbers of defective fertilizer drums of two different types in two 
different locations. Show that quality x type is not homogeneous over the 
location (see section 4) and should therefore not be pooled over location. 
(Brownlee raises the question of pooling over location because "it is usually 
assumed that pooling is permissible when second-order interaction is absent" 
[he refers to Snedecor (1946)J. Absence of second-order interaction is defined 
as equality of the ratios of the products of the diagonal terms. Here there is 

no second-order interaction in this sense because 
7 2 x  180 - 18 x 720 
48 x 420 - 42 x 480' 

TABLE 13.4 

Location A Location B 

Type of Drum Type of Drum 
Quality Total Total 

I I1 I 11 

13.11. From the analysis in table 2.1, and the properties of the discrimination 
information, show that for N + coy if xij/N -t pij, xi./N +-pi., x.~/N -- p. 
with probability 1, then ~I(H,  : H2)/N -- ZI(Hl : H2)/N, with probability 1, 
i  = 1,2, a, r, j = 1,2, . ., c, where I(Hl: H2) is given in (2.2). (See 
problems 13.8 and 13.9 above.) 

Defective 72 48 
Acceptable 420 1 80 

Total 492 228 

13.12. From the analysis in table 10.1, and the properties of the discrimination 
information, show that for N +  a, if X~~~ /N+P~ . .P .~ .P . .~  with probability 1, - 
then Pi.. +Pi.., P.j. -tP.j.. F..& -tP..k, N ~ i j k / ~ i . . ~ . j . ~ . . k  -t 1, Xi../Npi.. -t 1, 
x.j.lNF.j.. - 1, ~ . . ~ l N p . . ~  -- 1, with probability 1. On the other hand, what 
do YOU infer if xijk/N+Pjjb xi../N-tpi.., x.j./N-tp.j., ~ . . ~ / N - t p . . ~ ?  (See 
problems 13.8, 13.9, and 13.1 1 above.) 

120 18 42 
600 480 720 

720 498 762 

60 
1200 

1260 
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Multivariate Normal Populations 

1. INTRODUCTION 

We continue in the spirit of the preceding chapters, especially 6, 7, and 
8, and now take up the analysis of one or more samples from multivariate 
normal populations for tests of statistical hypotheses. Before we con- 
sider questions of estimation, distribution, and testing, it will 6e helpful 
to derive in this chapter certain values as parameters of the populations. 
Matrix notation and theory are used. Matrices are denoted by upper 
case boldface type, for example, A = (aij), X1 = (xlij), etc., i = 1, 2, a, 

m; j = 1, 2, a, n. One-row or one-column matrices (vectors) are 
denoted by lower case boldface type, for example, x' = (x,, x2, a ¶  xk), 
1111' = cull, P129 , plD), etc. (x' is the transpose of the one-column 
matrix x, etc.) 

Suppose we have two k-variate .normal populations ( p i  C), with 
p i  = bil, pi2, . . *, pi&), i = 1, 2, the one-row matrices (vectors) of mean 
values, and Ci = (airs), i = 1, 2; r, s = 1, 2, a, k, the covariance 
matrices. Denoting the respective population densities by [cf. Anderson 
(1958, p. 17), Roy (1957, p. 1 5)] 

we find (see problem 10.1) 

(1.1) log h ( ~ 1 ,  X 2 ~  . ' 3  x&) lz21 

h(x1, x2, . ' 9  xk) = t logp-J -  
4 tr 21-l(x - 1111)(x - 1111)' 
+ 4 tr C2-l(x - &(x - k)', 

from which we get 
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Assuming equal population covariance matrices, C1 = E2 = X, (1.2) 
and (1.3) become, respectively, 

where 6 = h - k. Mahalanobis' generalized distance is k6'C-'li 
[Mahalanobis (1936)l. [See section 3 of chapter 1 and Anderson (1958, 
p. 135).] 

Assuming equal population means, h = k, 6 = h - (12 = 0 (or 
variables centered at their respective means), (1.2) and (1.3) become, 
respectiu~ly, 

(1.6) 
l&l  1(1:2; 2 )  = 3 log - + 3 tr &(&-I - &-l) 
IZlI 

The corresponding values for 

are easily derived from the fact that 1(1:2) + I(2: 1) = J(1, 2). Note 
that the general values for the mean discrimination information and 
divergence in (1.2) and (1.3) are expressible as the sum of two components, 
one due to the difference in means, the other due to the differenfe in 
variances and covariances; these may also be characterized respectively 
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as differences in size and shape. For single-variate normal populations, 
k = 1, corresponding to (1.4)-(1.7) respectively, we have 

1 1 1 a12 
1(1:2; a") = - + --, 

21°gop-1 202 

1 a12 1 a; 
J(1,2; a") = -- + -- - 1. 

2 2 a12 

2. COMPONENTS OF INFORMATION 

Since 1(1:2) and J(1, 2) are additive for independent random variables, 
we have for a random sample of n observations, On, I(1: 2; 0,) = nI(1: 2) 
and J(1, 2; 0,) = nJ(1, 2) where 1(1:2) and J(1, 2) are respectively (1.2) 
and (1.3). (See sections 2 and 5 of chapter 2.) 

The averages and the variances and covariances in a sample On from a 
multivariate normal population, N(y, C), are independently distributed. 
The averages are normally distributed, N(y, (l/n)C), and the variances and 
covariances are distributed according to the Wishart distribution. [See 
Anderson (1958, pp. 53, 154), Kendall (1946, pp. 330-335), Rao (1952, 
pp. 66-74), Wilks (1943, pp. 120, 226-233).] Since the averages are 
normally distributed (1.2) and (1.3) yield 

lcZl n (2.1) I(1: 2; Z) = 4 log - + 4 tr Zl(C2-l - 2,-l) + 1 tr C2-l&', 
1&1 

Note that the sample size appears in (2.1) and (2.2) as a factor only in the 
components due to the difference in means. 

Designating the density of the Wishart distribution by 
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we find (see problem 10.5) 

N (2.3) log W'(sll, . . '3 skJ = log 14 - _N tr Z,-IS + - tr &-IS, 
w2(sll~*.*9skk) , 2  ICl1 2 2 

where S is the sample covariance matrix of unbiased estimates and 
N = n - 1 degrees of freedom. 

We thus see from the preceding, and theorems 2.1 and 5.1 of chapter 2, 
that 

(2.6) 1(1:2;0,)=nI(l:2)=1(1:2;~)+1(1:2;S)=1(1:2;Z,S), 

(2.7) J(1, 2; 0,) = nJ(1,2) = J(1, 2; j3) + J(1, 2;s)  = J(1, 2; j3, S). 

Assuming that the population covariance matrices differ only in the 
values of the correlation coefficients, that is, C, = DuPID, C2 = D,,PaU, 
where P, and P2 are matrices of correlation coefficients and 

D = [ . . : ) is a diagonal matrix of standard deviations, (2.4) 

and (2.5) become respectively, 

We now deal with several samples. Suppose we have r independent 
samples, respectively, of n,, %, . -, n, independent observations each, 
with n = n, + n2 + . . + n,. We may treat the r samples as one 
large sample from populations with means and covariance matrices given 
by (the ni indicate the number of occurrences of the corresponding term) : 
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With the preceding (or from the additivity property), we find for the r 
samples, 

nj (2.14) J(1,2; On) = 2 - (tr (Clj - %)(&-I - &,-I) + 
j=12 

where I(1: 2; Z,), I(1: 2; S,), J(1, 2; Z,), J(1, 2; S,) are (2. l), (2.4), '(2.2), 
(2.5), respectively, for the jth sample. 

When the r samples are from populations with common covariance 
matrices, Cij = C, i = 1, 2, j = 1, 2, *, r, we find 

where C* = n16,6,' + + nr6,6,.'. [Cf. Hotelling (1951).] 
When the r samples are from populations with common means (or the 
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variables are centered at their respective means), sj = 0, j = 1, 2, . ., r, 
we find 

where N, is the number of degrees of freedom in the jth sample for the 
estimates S,. 

3. CANONICAL FORM 

I(1: 2) and J(1,2) are functions of the population parameters under Hl 
and H,. According to corollary 4.1 in chapter 2, I(1: 2) and J(1,2) are 
invariant for nonsingular transformations of the random variables, and 
therefore in particular ' for nonsingular linear transformations. An 
important connection exists between the invariant properties and linear 
discriminant functions, and we now examine this in some detail. (This 
will also reflect itself in invariant properties of the subsequent tests.) 

If the random matrix x is subjected to the nonsingular linear transfor- 
mation y = Ax, the means and covariance matrix of the y's are respectively 
p, = Apz, C, = ACA'. If the x's are normally distributed, the y's are 
normally distributed and (see Anderson (1958, pp. 19-27), problems 10.5, 
10.10) 

(3.1) I(1:2; y) = Qlog + 4 tr A~lA'(A'-l~2-lA-l - ~ ' - l ~ , - l ~ - l )  
I S lA ' I  

1221 = Q log - + Q tr &(C2-l - &-I) + Q tr &-lGS' 
ICll 

= 1(1:2; x), 

= J(1,2; x). 

Since C1 and C, are positive definite, there exists a real nonsingular 
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matrix A such that [see Anderson (1958, pp. 337-341), Ferrar (1941, pp. 
151-1 53), Rao (1952, pp. 25-27)] 

where A is the diagonal matrix with real and positive elements 
I,, I,, a, I,, and I is the identity matrix; in fact, the A's are the roots 
of the determinantal equation 

The matrix A in (3.3) defines a linear transformation of the x's such that 
the y's are independent with variances I,, I,, . a, I, in the population 
under H, and unit variances in the population under H,. Letting 
A' = (%, %, . ., a,), that is, the one-row matrix (vector) a,' is the ith 
row of the matrix A, (3.3) and (3.4) yield 

(3.5) aiqai = I,, a,'&at = 1, i = 1, 2, *, k, 
ai'C1a, = 0, aitC2aj = 0, i # j, 

&ai = I,C2ai, i = 1, 2, *, k, 

2 -  = I I I I I  = 1 I,, 
tr C1C2-l = I, + I, + . + Ik, 

In terms of the characteristic roots, the A's, and the characteristic vectors, 
the a,, we have: 

(See sections 5 and 6 of chapter 3.) 
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4. LINEAR DISCRIMINANT FUNCTIONS 

The right-hand side of (1.1) is an optimum, or sufficient discriminant 
function for assigning an observation to one of two multivariate normal 
populations. This in general is quadratic. [Cf. Neyman and Pearson 
(1933), Welch (1939).] However, we may prefer to work with one or more 
linear functions for the convenience they offer. How do we find the best 
linear function? Which properties of the linear function do we optimize? 
For the present we shall examine the consequences of maximizing the 
discrimination information or divergence for the linear function. A more 
detailed discussion and, application will take place later. 

Consider the linear discriminant function 

where the x's are k-variate normal N(p,, C,), i = 1,2. The linear function 
y is consequently normally distributed, with parameters 

(4.2) a'p,, E2(y) = a'k, var, (y) = a'C,a, var, (y) = atC2a. 

We consider how to determine a under certain assumptions about the 
populations. 

5. EQUAL COVARIANCE MATRICES 

When C, = C, = C, (1.4) and (1.5) yield 

For the linear discriminant function y = a'x, 

The value of a for which A = a'55'a/a'Ca is a maximum satisfies (by the 
usual calculus procedures, see problems 10.2, 10.4) 55'a = ACa, where 
A is the largest root of 165' - ACl = 0. Here, since 55' is of rank 1, 
there is only one nonzero root, A = 5'C-l5 = tr C-'55'. The linear 
discriminant function with C a  = 5, or a = C-l5, is sufficient, since, 
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For r samples from populations with common covariance matrices, but 
different means, (2.17) is 

If we propose to use the same linear discriminant function, y = a'x, for 
all the samples, (5.4) yields for the linear discriminant function: 

n1(a'6,6,'a) + + nXa'6,6,'a) (5.5) 21(1:2; O,,y) = J(1,2; on, y) = 
a'Ca 

- a'C*a - -. 
a'Ca 

The value of a for which A = a'C*a/a'Ea is a maximum satisfies (by the 
usual calculus procedures) C*a = ACa, where A is the largest root of 
IE* - ACl = 0. From its definition, the rank of Z* is not greater than r. 
The determinantal equation hasp 5 min (k, r) nonzero roots, designated 
in descending order as A,, A,, *, A,. Each root Ai is associated with a 
one-column matrix (vector) a,, C*a, = A,Cai, and a linear discriminant 
function y, = ai'x. Since tr C*C-I = A, + A, + . + A,, (5.4) and (5.5) 
yield 

The discrimination efficiency of the linear discriminant function y, can be 
measured by the ratio A,/(Al + + A,) or J(1,2; On, y,)/J(l, 2; 0,); 
the discrimination efficiency of the pair of linear discriminant functions 
y1 and y, can be measured by the ratio (A, + A,)/@, + A, + . . + A,) 
or [J(1,2; On, y,) + J(1,2; On, y,)]/J(l, 2; 0,)); etc. (See section 6 of 
chapter 3.) 

The vectors a, associated with different roots I., have the property that 
ai'C*aj = 0 = ai'Caj, i # j, and the corresponding linear discriminant 
functions yi are independent, with a diagonal covariance matrix of 
elements a,'Ca,. There will be one, two, etc., distinct A, and correspond- 
ing distinct linear discriminant functions according as the population 
means are collinear, coplanar, etc. [Cf. Williams (1952, 1955).] 

6. PRINCIPAL COMPONENTS 

Assuming that the k-variate normal populations are centered at their 
means, or that 6 = 0, the linear discriminant function y = a'x is normally 
distributed, and 



198 INFORMATION THEORY AND STATISTICS 

(6.1) E,Q - &(y) = 0, var, (y) = afZla, var, (y) = afC2a, 

The value of a for which 1(1:2; y) is a maximum satisfies (by the usual 
calculus procedures) 

(6.4) Cla = IC,a, 

where 3, is a root of the determinantal equation 

all roots of which are real and positive. Designate these roots in ascending 
order as I,, I,, . ., %. Seeking a for which J(I ,2;  y) is a maximum, we 
find the same conditions, (6.4) and (6.5), as for maximizing 1(1:2; y). 
Each root Ii is associated with a vector ai and the linear discriminant 
function yi = aifx. We thus have for the linear discriminant function y,, 

and from (3.6) and (3.7), with 6 = 0, 

We determine the value of Ii for which (6.6) is a maximum (the most 
informative linear discriminant function) as follows. Since the function 
g(A) = -& log I - & + (Il2) is convex [see problem 8.31(a) in chapter 21, 
nonnegative, and equal to zero for I = 1, the maximum of (6.6) occurs 
for I, or 3, according as g(I,) > g(Ik), or g(Il) < g(Ik), that is, 

*k *k log - > Ik - 4 or log - < 1, - I,. 
11 I1 

We determine the value of Ii for which (6.7) is a maximum (the most 
divergent linear discriminant function) as follows. Since the function 
f(I) = (I12) + (1121) - 1, I > 0, is convex [see problem 8.31(a) in 
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chapter 21, nonnegative, equal to zero for 1 = 1, and f(1) = f(l/1), the 
maximum of (6.7) occurs for 1, or Ak according as 

Note that the linear discriminant functions of this section define the 
transformation with matrix A in section 3. The "best" linear discriminant 
function is not necessarily associated with the largest 1. 

Assuming that Cl = D,,PD, E2 = D,,D,, where P is a matrix of 
correlation coefficients and D, a diagonal matrix of standard deviations, 
AC1Af = A = AD,PD,Af = BPB', and AC2Af = I = AD9,Af = BB'. 
B = AD, is an orthogonal matrix, (6.5) becomes IP - 111 = 0, and (6.4) 
becomes PD,a = 1D,a, or P@ = AP, with @ = D,a, that is, B' = (@,, 
P2, *, Pk) = DaAf = (Daq, D,%, -, D,ak). The linear discriminant 
functions y,, y2, -, yk such that y = Bx are called principal com- 
ponents by Hotelling (1933) [cf. Anderson (1958, pp. 272-279), Girshick 
(1936)l. Since tr P = 1, + . + 1, = k, here (see problem 10.7) 

(6.12) I(1:2) = -I log I P I  
2 2 = -4 log(1 - p:.23.. d ( 1  -p2.3...k)* (1 - pk-,,J 

= -4 log 1, - g log 1, - - 3 log Ak, 

where pi.12. . . ( i - l ) ( i+ l ) .  . i = 1,2, a, k, . .k, j = 1,2, *, k - 1, 
are multiple correlation coefficients in the population under H,, and the 
1's are the roots of IP - 111 = 0. 

Note that 1(1:2) in (6.12) is a measure of the joint relation among the 
k variates (see the remarks following (3.3) in chapter 8). 

For bivariate populations in particular, we have 
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(6.20) 4 1  :2 ;  ~ 1 )  = -4 10g(l - p) - @/2), 

I(1:2; Yd = -4 log ( 1  + p) + (p/2), 

Note that for p > 0, the most informative and most divergent linear 
discriminant function is yl = (xl - xd/.\% since log [(l + p)/(l - p)] 
> 2p and A,& = 1 - p2 < 1 [or see (6.20) and (6.21)]. 

7. CANONICAL CORRELATION 

[Cf. Anderson (1958, pp. 288-298).] We now want to examine a 
partitioning of the k variates into two sets, x' = (x l f ,  x i ) ,  xlf = (a;, 
x2, • • • xkl)9 xi = ( ~ k ~ + l ,  xk1+2, . . . , xkl+k~. FOC a partitioning into 
more than two sets see problem 10.13 and section 3.6 of chapter 12. 
Assume that the populations are centered at their means, or 6 = 0, and 
that 

where q1 = (cr,,), i, j = 1 ,  2, . , kl,  

C, = (qJ, r , s  = k1 + 1 , .  .,kl + k 2 =  k ,  

"12 =  is), = "121, 

that is, the two sets ard independent in the population under Hz. 
Since, as may be verified (1,; is the identity matrix of order kl, etc.), 

where C,., = C2, - C21Xfi1C12, we have 
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Note that the matrix O )  in (7.2) is that of a nonsingular 
- 2  Ik* 

linear transformation, and (7.2) implies that in the population under H,, 
xl and x2 - E2,Efi1x1 are independent with covariance matrix the right- 
hand side of (7.2) (see section 3). We thus have (see problems 10.6 and 
10.1 1) 

1 Ell 0 l 
1 1 0  z22l (7.4) 4 1  :2) = - 
2 log I Ell El2 I 

a measure of the relation between the sets x,' and x,', or the mean infor- 
mation in xl' about x,', or in x,' about x,' (see example 4.3 of chapter I) ,  

where (.) indicates matrices whose values are not needed. 
To highlight the partition of the variates, we write the linear discriminant 

'function y = a'x as 

(7*6) Y ' + . - + Pklxkl + ulxkl+l + - + Yhxkl+k= 

= pfxl + y'x2, 

where P and y are respectively the one-column matrices of PI, a, $. 
and Yl, - ., yk*, a' = (P', y'), X' = (xi ,  x,'). Now, (6.4) and (6.5) are 
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Since (7.7) is equivalent to 

(7.8) is equivalent to 

where p2 = (1 - A)2. The roots of (7.8) [see (6.5)] are real and positive. 
If k2 < k,, since k = k ,  + k,, and the determinant of (7.1 1) is of order k2, 

where pl 2 p2 2 2 pks. Note that - 1 < pi < 1 since the A's 
cannot be negative. Hotelling (1936) called the pi canonical correlations. 
For the associated linear discriminant functions [see (6.6) and (6.7)], we 
now have 
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from which we see that 

(7.15) 1 ( l : 2 ; y i ) + 1 ( l : 2 ; y l i )  = - o ( l  - )  i =  l,2; -,k,, 
J(1, ZY,) + J(1, 2;yk+,-i) = pi21(1 - p?), 

and 

I&lll&2I (7.16) 1(1:2) = - 
2 log I 211 2 1 2  I = -& log (1 - h')(l - (1 - Pi), 

since log [(I +pJ/(l -&)I >2p1 and AIAk=(l -&)(I +pl)= 1 -p: < 1, 
the most informative and most divergent linear discriminant function 
(7.6) is associated with the root A, or the largest canonical correlation. 

Note that for bivariate populations, k = 2, k, = k2 = 1, (7.1 1) 
becomes (ono;,/o;, - p2022) = 0, or the canonical correlation is the simple 
correlation between the variates, and [see (6.191 

For k-variate populations with k, = k - 1, k2 = 1, (7.1 1) yields the 
canonical correlation p2 = &1C111Z;2/~ But now E2, = (okl, ~ k 2 ,  *, 

ok k--l) or p2 = 1 - [see (7.1)], and thus the canonical correlation 
okkl&ll 

is the multiple correlation between xk and the other variates [cf. Cramir 
(1946a), pp. 109, 308)], and 

Instead of a single linear discriminant function, suppose we examine the 
pair of linear discriminant functions 

We have 

var, (u) = pfXllp, a (v) = y ,  i = 1, 2, 

C0Vl (u, 0) = pfC12y, c0v2 (u, v) = 0, 
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(P'C,,Y)~ 2 

J(l, 2; u, v) = - - Puv 
2 (PfCllP)(Y'C22Y) - ( P ' ~ 1 2 ~ ) ~  1 - Puv 

The values of P and y which maximize 1(1:2; u, v) [or J(l, 2; u, v)] in 
(7.20) satisfy (by the usual calculus procedures) (7.9), where (1 - A), = pEv. 
The canonical correlations are thus the correlations of the pair of linear 
discriminant functions (7.19). From (7.15) we have 

The discrimination information and divergence for the pairs of linear 
discriminant functions thus define an ordering according to the values of 
the canonical correlations. 

8. COVARIANCE VARIATES 

Two k-variate normal populations with the same covariance matrices 
may differ only in the means of the last k, variates. The first k - k, = k, 
variates are then called the covariance variates, and we shall now find the 
discrimination information provided by using the covariance variates also, 
compared with that provided by using only the last k, variates [cf. Cochran 
and Bliss (1948)l. 

We have the partition x' = (x,', xi) ,  p,' - k' = 6' = (b,', S;), with 

6, = 0, and C, = C, = C = ( 2  :is 
From (5.1) and (7.3) we now have 

On the other hand, with the last k, variates only: 

(8.2) 21(1:2; xi) = J(1,2; xi) = tr Z,1626; = 66C~~6, .  
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Since 1(1:2; x') > 1(1:2; xi) (see sections 3 and 4 of chapter 2), the 
contribution of the covariance variates is 

(8.3) 6;&i!3j2 - 6;&162, 
and the gain ratio is 

where A lies between the smallest and largest root of the determinanta1 
equation 

where p2 = (A - l)/A. The roots of (8.6) are the canonical correlations 
[see (7.1 l)] ; hence the largest value of A in (8.4) cannot exceed 1/(1 - p12), 
where p1 is the largest canonical correlation. 

We now study the linear discriminant functions with and without the 
covariance variates. Since the covariance matrices in the populations 
are equal, a unique sufficient linear discriminant function exists (see 
section 5). For all the k variates with the partitioning of the coefficients 
of the linear discriminant function as in (7.6),q = C-l6 becomes [see (7.3)J 

If the covariance variates are ignored, the coefficients of the linear 
discriminant function are 

(8.8) = 0, y = C,-d.6,. 

For bivariate populations, k = 2, k1 = k, = 1, the canonical correla- 
tion is the simple correlation between the variates, = $(1 - p2), 
and (8.4) becomes A = 1/(1 - p2). For k-variate populations with 
k, = 1, k1 = k - 1, there is only one canonical correlation (the multiple 
correlation of xk with xl, x ,  . -, x,,), C,., = &I - p:.12. . and 
(8.4) becomes ;2 = 1/(1 - p:.l,. . .(,-,,). (See problem 10.9.) 

9. GENERAL CASE 

[Cf. Greenhouse (1954).] With no restrictive assumptions about the 
means and covariance matrices of the k-variate normal populations under 
Hl and H,, the parameters of the normal distributions of the linear 
discriminant function y = a'x are: 

(9.1) = a'pl, E2(y) = a'p,, var, (y) = afZ1a, var, (y) = afC2a, 
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and 

For ag iveny  it is true that J ( 1 , 2 ; ~ ) = 1 ( 1 : 2 ; ~ ) + 1 ( 2 : 1 ; ~ ) .  It is 
not true, however, that the same y will yield the maximum value for 
r(i :2; y), r(2: 1; y), J(1,2; y). 

The value of a for which 1(1:2; y) in (9.2) is a maximum satisfies (by 
the usual calculus procedures) 

where 

Since y is a proportionality factor, we may set y = 1, and a satisfies 

where I ,  given in (9.9, must not be a root of ICl - AZ21 = 0. 
The value of a for which 1(2: 1 ; y) in (9.3) is a maximum satisfies (by 

the usual calculus procedures) an equation of the same form as (9.5) but 
with 

Again setting the proportionality factor y = 1, a must satisfy an 
equation of the form (9.6) where I ,  given in (9.7), must not be a root of 
1q- &I = 0. 

The value of a for which J(l,  2; y) in (9.4) is a maximum satisfies (by 
the usual calculus procedures) an equation of the same form as (9.5) but 
with 
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Again setting the proportionality factor y = 1, a must satisfy an equation 
of the form (9.6) where A, given in (9.8), must not be a root of 
lCl - AC21 = 0. 

Note that here we find three types of linear discriminant functions. 
Since A depends on a, an iterative procedure must be employed to solve 
for a. This is studied in chapter 13. 

10. PROBLEMS 

10.1. Show that x'x-lx = tr x-lxx'. 

d 
10.2. If - d a  = /4) , show that -a'& d = 2&, where Z is a symmetric 

da  

- 
a a k  

k x k matrix and a' = (a,, R, . . ., ak). [Cf. Anderson (1958, p. 347).] 

10.3. If dA denotes the matrix each element of which is the differential of 
the corresponding element of the matrix A, show that 

(a) d tr C = tr dC. 
(b) dC-l = - C-l dCC-l. 
(c) d log ICI = tr C-l dC. 

[Cf. Dwyer and MacPhai1(1948).] 

10.4. Show that (see section 5) 

k k  
10.5. Show that tr AB'= tr Bk  = 2 2 aijbi, A = (aij), B = (bir), i, j = 

1,2 , .  a, k. i= l  j-1 

10.6. Show that (see section 7) 

10.7. (a) Show that P12.23. . .k = 1 - 1/pl1, where P is the matrix of correla- 
tion coefficients, P-I = (pi'), and . .k is the multiple correlation coefficient 
of x1 with x2, x3, . + -, xk. 

2 (b) Show that / P I  = (1 - d.,. . .k)(l - pS3. . .r) . . . (1 - pi-l,k), where 
Pj.j+l. . .k is the multiple correlation coeffic~ent of xj with x,+~, ' . , ~ k ,  

j =  l,2; - , k -  1. 

10.8. Show that a necessary and sufficient condition for the independence of 
the k variates of a multivariate normal population is that the k multiple 
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correlation coefficients of each x with the other x's are all zero, or that 
pll = p22 = = pkk = 1 ,  

10.9. Suppose that in section 8 [cf. Cochran and Bliss (1948, p. 157)] 

6' = (0, 6;) = (0, - 1197.2, - 844.3). 
Verify that: 

(a) Pf.23 = 0.33. 
(b) tr F 6 6 '  = 729.556. 
(c) tr Cii626; = 503.845. 
(d )  The canonical correlation is pf = 0.33. 
(e) The gain ratio does not exceed 1 / ( 1  - pf ) .  

10.10. Let xl, x2, a,  x, be distributed with the multivariate normal density 
1 
1 

12.rrC1112 exp (-ix'C-lx), where x' = (xl, x2, a, x,). If y = Ax, y' = (y,, y2, 

*,ym), A=(aij) ,  i =  1,2; *,m, j =  1,2; . .,n, m < n ,  A of rank m, 
show that the y's are normally distributed N(0, =A'), that is, with zero means 
and covariance matrix =A' of rank m < n. 

10.11. Let p = Ax, z = Bx, where x, y, A are defined in problem 10.10 and 
2' = (zl, z2, . . ,z,-,),B=(bij), i =  1,2,- - , n - m , j =  1,2; - , n , B o f  
rank n - m. Show that the set of y's is independent of the set of z's if 
m = o = B C A ' .  

10.12. Show that a necessary and sufficient condition for the independence - of the k variates of a multivariate normal population is that pf.,. . .k - 
2 2 

~ 2 . 3 .  . .k = = ~ k - ~ . k  = 0, where pj.j+l. . .k is the multiple correlation 
coefficient of xj with -, xk. 

10.13. Partition k variates into m S k sets, x' = (xi, x;, ., x a ,  x'. 1 - - 
(xk,,ka+. . .+k,-l+l, a, xkl+ka+. . .+,J. Assume that the multivariate normal 
populations under Hl and H2 (see section 7) are centered at their means, or 
6 = 0, and 

whereCii=(~@),a,@=k1 + k 2 + .  .+ki-1+ 1 , .  * , k1+k2+.  + ki, 
and 2;= Gj= (oTS),r = kl + k2 + . + ki-1 + 1 , .  -,kl +k2 + . + k ,  
s = k l + k 2 + -  - + k j - l + l , .  . , k l + k 2 + - .  . + k j , k l + k 2 + -  a +  

km = k. Show that 
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10.14. Show that (see problem 10.6) 

where 

2 i j . l  = x i ,  - 2ii&-i&j, 2 i j . 1 2  2 i j - 1  - 2 t 2 - 1 & ? 1 2 ~ . 1 ,  

2 i j . l a  2 i j . 1 2  - 2 i 3 . l a C 2 - l A 9 . 1 2 ,  2mm.12. . am-1 Cmm.12. . .m-2 

- &m-1.12. . .m-2%:1 m-1.12. . .m-&m-1 m-12. . .m-2. 

10.15. Suppose the k variates of a multivariate normal population have been 
partitioned into the m S k sets of problem 10.13. Show that a necessa and 
sufficient condition for the sets to be mutual1 independent is that 12~1 = 
l&.ll, 1&1 ~ l & . 1 2 l .  1x41 = 1 ~ 4 . 1 ~ 1 .  '9  r &ml = l2mm.12.  .m-11. where 
the matrices are defined in problems 10.13 and 10.14 above. 

10.16. Show that [cf. (7.4) and problem 10.17], 

where the matrices are defined in problems 10.13 and 10.14 above. 

10.17. Partition k variates into the m S k sets of problem 10.13. Assume 
that the multivariate normal populations under HI and H2 (see section 7 )  are 
centered at their means, or 6 = 0, and 

where the matrices are defined in problem 10.13 above. Show that 

1 
I(1: 2) = - log ILI 

2 l&m-12- em-11' 

and that for km = 1,1(1: 2) is given in (7.1 8). 

10.18. Suppose the k variates of a multivariate normal population have been 
partitioned into the m S k sets of problem 10.13. Show that a necessary and 
suffcient condition that the mth set be independent of the preceding m - 1 
sets is that l & I  = 12mm.12. . . , - , I ,  where the matrices are defined in problems 
10.13 and 10.14 above. 
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10.19. Show that the I(1:2)'s in (7.4), problem 10.13, and problem 10.17 are 
unchanged when the covariance matrices are replaced by the corresponding 
correlation matrices. Show that the equalities in problems 10.14, 10.15, 10.16, 
and 10.18 are also unchanged when the covariance matrices are replaced by the 
corresponding correlation matrices. 

1030. Partition k variates into the m S k sets of problem 10.13. Assume 
that the multivariate normal populations under HI and H2 are centered at their 
means, or S = 0, and 

where the matrices are defined in problem 10.14 above. Show that 

1 I&m-12. Sm-21 = log IPmm-I* em-21 1(1: 2) = - log 
2 l '&m.~. . .m-11 2 IPmm.12. . .m-11 

2 and that for km = km, = 1, I(1: 2) = -4 log (1 - pmm-l.U. . .m-2), where 
pmm-1.12. . .m-2 is a partial correlation coefficient. 

1031. Show that the characteristic function of the distribution of y = x'C-lx, 
where x is k-variate normal N(0, C), is E(exp itx'z-'x) = (1 - 2it)-&I2, the 
characteristic function of the x2-distribution with k degrees of freedom. 

10.22. Show that when x in problem 10.21 is k-variate normal N(p, C), 
E(exp itx'z-lx) = exp [itp'z-lp/(l - 2it)](l - 2it)-&I2, the characteristic func- 
tion of the noncentral x2-distribution with k degrees of freedom and non- 
centrality parameter p'C-lp. (See section 6.1 in chapter 12.) 



C H A P T E R  10 

The Linear Hypo thesis 

1. INTRODUCTION 

In this chapter we pick up again the general line of reasoning in chapters 
6, 7, and 8 to examine the analysis of samples from normal populations 
in order to test the general linear hypothesis [Kolodziejczyk (1935)l. 
The analyses of this chapter may be derived as special cases of those on 
the multivariate linear hypothesis in chapter 11. Nevertheless, the 
development and study of the linear hypothesis first is thought to be 
worth while for its own sake as well as an aid in the exposition. The 
treatment is not intended to be exhaustive, and has wider applicability 
than to the specific cases considered. 

2. BACKGROUND* 

Suppose two simple statistical hypotheses, say HI and H2, specify 
respectively the n-variate normal populations N(pi, C), i = I, 2, where 
pi = (pil, ,ui2, . ., pin), i = 1, 2, are the one-row matrices (vectors) of 
means, a n i  C = (arb, r, s = 1, 2, a, n, is the common matrix of 
variances and covariances, so that [see (1.4) and (1.5) in chapter 91 : 

If the variates are independent, a,, = 0, r # s, C-l = (afS), with afS = 0, 
r # S, apf = l/aw, r = 1, 2, *, n, and (2.1) becomes, writing a, = $r, 

- - Olll - ~21)' + (~12 - ~ 2 2 ) ~  + * . * +  ( ~ l n  - ~ n ) ~ .  
4 4 a", 

If the variates are also identically distributed, as well as independent, that 

* Sections 2-8 are mainly taken from an article by Kullback and Rosenblatt, which 
appeared in Biometrika, Vol. 44 (1957), pp. 67-83, and are reprinted with the permission 
of the editor. 

21 1 
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is, pij=pi,  i =  l ,2,  j = 1 , 2 , .  *,n, and 4 = a 2 ,  r = 1 , 2 , -  .,n, 
then (cf. example 4.2 of chapter 3) 

3. THE LINEAR HYPOTHESIS 

We now consider 

where z' = (zl, z2, *, %), Y' = (%, Y2, '9 ~ n ) ,  p' = 6, t92 . ' 9  pu). 
X = (xi,,), i =  1, 2,- -,n, r =  1, 2,- .,p; p <n ,  such that: 

(a) the z's are independent, normally distributed random variables with 
zero means and common variance a2, 

(b) the zip's are assumed to be known, 
(c) X is of rank p, 
(d) p = p1 and p = P2 are one-column parameter matrices (vectors) 

specified respectively by the hypotheses Hl and H2, and 
(e) El@) = Xpl and E2@) = XP2. 

We find that (2.1) yields here 

where S = X'X is a p x p matrix of rank p and I is the n x n identity 
matrix. 

We remark that J(1,2) [21(1: 2)] in (3.2) is equivalent to the divergence 
between two multivariate normal populations with respective means P1, 
P2 and common covariance matrix a2S-l. 

Suitable specification of the matrices X and P provides the appropriate 
model for many statistical problems of interest. [Cf. Kolodziejczyk 
(1935), Rao (1952, p. 119), Tocher (1952), Wilks (1938b; 1943, pp. 
1761 99), Zelen (1 957, p. $3 12).] 

4. THE MINIMUM DISCRIMINATION INFORMATION 

STATISTIC 

We first state some facts about estimates of the parameters p and a2 of 
section 3. The classical least squares procedure of minimizing z'z = 
(y - XP)'(y - XP) leads to the normal equations 

(4.1 ) sC = X'y. 
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It is shown in section 9 that the pi's [solutions of (4.1)J are minimum 
variance, unbiased, sufficient estimates of the Pi's. [Cf. Durbin and Ken- 
dall (195 1 ), Kempthorne (1 952), Kolodziejczyk (1935), Plackett (1949), 
Rao (1952).] 

It is a known result in regression theory that the components of B 
(linear functions of the 2's) are normally distributed with covariance 
matrix a2S-l. An unbiased estimate of a2 with (n - p) degrees of freedom 
is obtained from (n - p)G2 = 2i = (y - XB)'(~ - xB) = y'y - B'sB. 
[Cf. Kempthorne (1952, pp. 54-59), Rao (1952, pp. 58-62).] (See 
problems 4.1-4.6 at the end of this section.) 

In accordance with chapter 5, and as illustrated in the analyses in 
chapters 6, 7, and 8, the minimum discrimination information statistic 
is obtained by replacing the population parameters in I(1:2) by the best 
unbiased estimates under the hypotheses. (See examples 4.1 and 4.2 in 
chapter 5 for the analysis of the conjugate distribution for single-variate 
normal populations. The multivariate normal generalizations of these 
examples are in sections 2 and 3.1 of chapter 12.) 

The remark at the end of section 3 and the behavior of the least squares 
estimates imply that the analyses are essentially dependent on the 
implications of the hypotheses for the distributions of the estimates of P. 

Suppose the hypothesis H, imposes no restriction on P and the null 
hypothesis 4 specifies P = P2. Writing B1 to indicate the solution of 
(4.1) under HI, we have (cf. example 4.2 of chapter 5, section 3.1 of 
chapter 12) 

(4.2) 24H1 : Hp) = .f(Hl, H2) = (6' - p2)'S(B1 - P2)/b. 
In particular, for the common null hypothesis H2: P2 = 0, (4.2) becomes 

(hereafter we shall just use J) 

Note that under the null hypothesis H2:P2 = 0, .@Il, H2) in (4.3) is 
the quadratic form in the exponent of the multivariate normal distribution 
of the /?is with the covariance matrix replaced by an unbiased estimate 
with (n - p) degrees of freedom. ](HI, H2) is therefore Hotelling's 
generalized Student ratio (Hotelling's P) and 

(4.4) I(&, H.3 = pF, 
where F has the analysis of variance distribution (the F-distribution) with 
n1 = p and n2 = n - p degrees of freedom. [Cf. Anderson (1958, pp. 
101-107), Hotelling (1951, p. 25), Hsu (1938), Kendall(1946, pp. 335-337), 
Rao (1952, p. 73), Simaika (1941), Wijsman (1957), Wilks (1943, p. 238).) 

This approach, in contrast to the now classic method of derivation as 
a ratio of independent x2's divided by their degrees of freedom, is especially 
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important for the generalizations in chapter 11. [See section 4 of chapter' 
11, particularly (4.5).] We need not appeal here to the general asymptotic 
distribution theory which is consistent with the conclusions above. We 
summarize in the usual analysis of variance table 4.1, where = 
B''x'~ = y'XS-lX'y [cf. Kempthorne (1952, p. 42), Rao (1952, p. 105)]. 

TABLE 4.1 

Variation due to Sum of Squares D.F. 

Linear regression B1'sP = y'XS-lX'y = 623(~1, H2) P 

Difference y'y - B1'sB1 = y'(I - XS-lX')y = (n - p)G2 n - P  

Total Y'Y n 

For the null hypothesis 4: P = P2 # 0, (4.4) still holds, with &H,, 4) 
given by (4.2). 

Problem 4.1. Show that B = S-lX'z + P and therefore &(B) = P1, I;@) = P2. 
Problem 4.2. Show that &(B1 - P1)(B1 - P1)' = &-I. 

Problem 4.3. Show that (I - XS-lX')(XS-'X') = 0. What does this imply 
about the quadratic forms y'XS-lX'y and y'(I - XS-lX')y? 

Problem 4.4. Show that J ( l ,2 ;  P) = J(1,2) given by (3.2). Why does this 
imply that B is sufficient? 

Problem 4.5. Use lemma 5.3 of chapter .3 to show that y'y 2 y'XS-lx'y. 
IY'Y Y'XI 

Problem 4.6. Show that (n - p)6" lxiY X X ~  

I x'x l 

5. SUBHYPOTHESES 

5.1. Two-Partition Subhypothesis 

[See Grundy (1951), Kempthorne (1952).] Suppose we partition the 
parameters into two sets, and instead of (3.1) we now consider 

(5.1) 

where 
. ' ', Xlp 

x = (XI, &) 

' ',Xn,, 
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with Xl and X, respectively of ranks q and p - q, and = (PI, 8, . ., 
Pq), PB; = (/3q+l, . a, ,8J. The 2's are still assumed to be independent, 
normally distributed random variables with zero means and common 
variance cr2, and under H, and 4, 
(5.2) 469 = 48: + 48: 

EAY) = 48: + GPt. 
We also write 

where 

S11 = Xi&, S12 = X;X, = S$, Sn = Xi&. 
Now (3.2) becomes 

(5.4) Al ,  2)- = (8: - #, p: - P3' ( S11 s12 P: - P: 
s21 s, 1 P:, - Pt 11 

The normal equations (4.1) under H, become 

(5.6) 

and 

(n - pP2 = y'y - (6:. Pf) ( " S'2) (I!). 
S2l s, 

Letting 
sa.1 = s, - s21s,1s12, Xi., = x; - s2,s,lx;, 
S,,., = - s,~&~S,, ,  xi.2 = x; - S12S,1xB;, 

(5.6) yields .. . . .  

It is useful to note [see, for example, Frazer, Duncan, and Collar (1938, 
para. 4.9); also section 7 of chapter 91 that 

where the q x (p - q) matrix 

so that in the applications the elements of the matrix s;: or Ss; are 
available once the matrix S-l is obtained. 
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Suppose now that in particular we want to test the null hypothesis 

l12:p = p2 = ( 1 ,  that is, pi = 0, with no restrictions on p:, against 

the alternative hypothesis Hl:p = p1 = ($) with no restrictions on the 

parameters. Again we estimate J(l, 2) by replacing the parameters by the 
best unbiased estimates under the hypotheses. Under H, we have (5.8), 
(5.7), (5.6) for Bi, E, and 6. Under H2 the normal equations (4.1) now 
yield 

From (5.41, (5.8), and (5.9) we have 

It may be verified that 

(5.1 1) XS-lX' = x2.,s,.1,x;., + xlsfilx;, 
that is 

(5.12) B1'sB1 = CTs,.,B: + #gBt 
or 

l ' ~ '  B1'x'y = B2 2 . 9  + RX;Y, 
and 

The foregoing is summarized in the analysis of variance table 5.1. 
J(H,, H2) = ((i:~~,p:)/iY = ( p  - q)F, where F has the analysis of 

TABLE 5.1 

Variation due to Sum of Squares D.F. 

Hz: p2' = (g, 0') p:'~~~p: = y'x1s,'xa 4 

Difference B:h.,& = y ' & . l ~ ~ . l l ~ . l ~  = 2J(H1Y H2) P - 4 

HI: pl' = (pf, p:) ',l'sc = y'XS-lX'y P 

Difference y'y - B1'sB1 = y'(I - XS-lX')y = (n - p)i? n - p 

Total Y'Y n 
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variance distribution with n1 = p - q and n2 = n - p degrees of freedom, 
under the null hypothesis 4: 8; = 0. 

We may center the y's about constants (their means) by letting 

It  may be verified that 

=Xz i =  I, 2 , -  - ,n,  
j = 2 ;  - 9  p, 

z2 X,, 
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The analysis of variance table 5.1 now becomes table 5.2. 

TABLE 5.2 

Variation due to Sum of Squares D.F. 

H,:P2' = (P?, 0') W- 1 

Difference (linear r e p i o n )  Y'&.~sG!~~.~Y 3fW1, Ha P - 1  

H1:P1' = (Py, Pr) y 'XS-lX'y P 

Difference y'y - Y'XS-~X'Y = (n - p)$ " -P  

Total Y'Y n 

Problem 5.1. Show that Xk.l&.l = S,.l. 
Problem 5.2. Show that 8: = S&Xk.lz + Pi. 
Problem 5.3. Show that &(k - ():)(B: - Pi)' = G~S&?~. 
Problem 5.4. Show that Xk.lXl = 0. 
Problem 5.5. Show that = &+l. 
Problem 5.6. Show that &(pi - P:)(B: - Pi)' = G'SG?~. 
Problem 5.7. Show that 8: = Sii1x;z + 0:. 
Problem 5.8. Show that &(Bf - Pi)(@ - Pa' = o2S~l. 
Problem 5.9. Show that SG?~ = Siil + S~l;lSl,S&?l~,qll. 
Problem 5.10. Show that X2.1S&?l~;.1(I - XS-lX') = 0. 

5.2. Three-Partition Subhypothesis 

If the subhypothesis requires partitioning the matrices P and X into 
three submatrices 

P' = (Pi, Pi, Pi) and X = (XI, X,, X,), 

we obtain from SB = X'y the solutions 

8 2  = ~iifiOri.1~ - s a - i h ) ,  

81 = sfi1~tv - ~ 1 2 8 2  - su83), 
where 

S =  S, S,, S,, S,,=X/X,, t , u = l , 2 , 3 ,  i:: I: S:) 
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and 
s33.13 = Sm.1 - s301s8,\ S23.1, 

s33.1 = S33 - s3lSfi1s13, S3~ . i  = S3Z - s31s~1s12 = Sbel, 
SZZ.1 = S Z Z  - SZ~SL~~S~Z,  x;.,y = (x; - s,ls,lx;)y, 

x4.19 = (X4.1 - s32.1s;;:x;.l)y, X4.1~ = (Xi - S~~S,,S,'X;)~; 

also [cf. (5.12)] 

(5.21) B'sB = Y'X~S,'X;Y + Y'X~.~S;;\XX;.~Y + B&3.12B3. 

Using (5.20) and collecting terms, we obtain other useful forms of (5.21), 
for example, 

(5.22) B'sB = Y ' X ~ S , ~ X ~  + & ~ ; . ~ y  + & ~ ; . ~ y .  
This is convenient when the data are raw observations and xtl = 1 for 
all i, so that the first partition includes the xi, and /Iil and obtains 
deviationsabout averages for basically a two-partition problem, and 

for a t hree-partition problem where the variables are already centered 
about their averages. 

The above can be extended by induction to any number of partitions as 
required. 

6. ANALYSIS OF REGRESSION: ONE-WAY 
CLASSIFICATION, k CATEGORIES 

For p =: 1, also identified as the analysis of covariance, see Federer 
(1955, p. 485), Kempthorne (1952, p. 48), Kendall (1946, p. 237), Smith 
(1957), Welch (1935). For p general, see also Kullback and Rosenblatt 
(1957), Rosenblatt (1953). 

Suppose we have k categories each with n, observations on (y, xl, . ., 
x,) for which the general linear regression for each category is 

where j = 1, 2, *, k categories, 

i = 1, 2, . ., n, observations for category j, 

r = 1, 2, . . *, p independent variables (p  < n,), 

the zji are independent, normally distributed random variables with zero 
means and common variance aZ, and the x,, are known. 

The linear regressions for each category can be written as 
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where f o r j  = 1, 2; *, k, 

'5 = ('51, '52, *, xi,), 'b = (~ j l r ,  X12r, . *, xlnir), 
and 

= (pi19 &2, ' ' '9 pip). 
We may write the k sets of regression equations (6.2) for k categories 

combined as 

by defining 

X = P' = (Pi, p;, . *, Pi), 
. . 

By the preceding definitions we treat p in (6.3) as a parameter matrix of 
all kp regression coefficients /Ijr whether or not any of them are equal, or 
have a particular value including zero, under any hypothesis. 

Suppose we specify a null hypothesis with regard to certain groups or 
sets of the kp parameters /Ijr among the k categories, and wish to estimate 
the parameters and test the null hypothesis against some alternative. To 
distinguish between matrices or parameter vectors under various hypotheses 
Ha, K = 1, 2, . *, we shall use, where desirable for clarity or emphasis, 
the notation Xa, p", and Sa = xa'Xa. Where this notation is not used, 
the applicable hypothesis and definition of the matrices should be clear 
from the context. For any hypothesis Ha, we shall represent the linear 
regressions for the k categories combined, under Hz, as 

where z and y are defined in (6.3). However, we now define pa as the 
matrix of distinct regression coefficients specified by the hypothesis Ha, 
and Xa as the matrix of xi, with distinct regression effects, specified 
according to the regression model defined by the hypothesis H, for the 
k categories combined. 

With the representation (6.4) of the k-category regression under Ha, 
the normal equations (4.1) become 
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where the elements of Sa = xa'xa will, of course, depend on the particular 
specification of the matrix Xa. 

Also, equivalent to (4.2) and (5.13) we have, for a null hypothesis H2, 
and an alternative hypothesis Hl [cf. (4.7) in chapter 51, 

(6.6) J(H,, H2) = (8' - B2)'s(B1 - B2)/C = ( B l ' ~ l @ ~  - Br~282)/b2, 

where 

and S = X'X = S1 for X defined in (6.3). 
Thus, for any particular hypothesis on the sets of regression coefficients 

in k-category regression, the estimates of the coefficients and the test of 
the hypothesis are readily obtained solely by proper specification of the 
matrices Xa and p" in (6.4). 

Consider the two hypotheses 

that is, the /Ijr are different for all categories and for each r = 1, 2, *, p, 
and the null hypothesis of homogeneity 

or equivalently, = P.' = (/I.,, /I.,, ., /I.,), j = 1, 2, *, k, that is, 
the regression coefficients are the same for the different categories for each 
r = 1, 2, *,p. 

Under Hl in (6.8) the best unbiased estimate of P is derived from (6.5), 
where p" and Xa in (6.4), defining the k-category regression model, are the 
same as p and X in (6.3), or 

This yields k sets of normal equations 

from which 
pj = s;'X;yj. 
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Under H2 in (6.9), however, the matrices X2 and P2 of (6.4), defining 
the k-category regression model, are 

X' = (xi, a, xi.), p!' = (8.19 8 - 2 9  0 9  8.9). 
Thus, 

k k 
s = xfx2 = 2 x;x5 = 2 s5, 

j-1 j=1 

and the best unbiased estimate of P under H2 is derived from (6.5) as 

(6.12) 2-1 2' B! = s x y. 

We also have, under HI, corresponding to (6.7), 
k 

(6.1 3) (n - p k ) b  = y'y - B'slB1 = 2 (yiy5 - B;s5Bj). 
j=1 

Corresponding to (6.6), we therefore have 

a direct generalization of S2 in para. 24.30 of Kendall (1946). 

TABLE 6.1 

Variation due to Sum of Squares D.F. 

Difference B1'slB1 - = ~ S ( H ~ ,  HI) p(k - 1) 

Difference y'y - B1'slB1 = (n - pk)b n -pk 

Total Y'Y n = En5 

We summarize in the analysis of variance table 6.1. J(H,, HJ = 
p(k - 1)F, where F has the analysis of variance distribution withp(k - 1) 
and (n - pk) degrees of freedom under the null hypothesis H2 of (6.9). 
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In particular, for testing a null hypothesis of homogeneity If,, the means 
of k samples are the same, p = 1, xjil = 1, and for the alternative 
hypothesis HI, the population means are different, 

and (6.1 1) yields as the estimates of the population means under HI, 

For the null hypothesis of homogeneity H,, 

and (6.12) yields as the estimate of the population mean under H, 
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From (6.13) and (6.14) we find that 

The analysis of variance table 6.1 becomes now the analysis of variance 
table 6.2. 

TABLE 6.2 

Variation due to Sum of Squares 

Hz: Homogeneity d2 1 

k 
Difference 2 njWj - g)' = S 2 5 ( ~ , ,  H2) k - 1  

j = 1  

k 
HI: Heterogeneity 2 njg; 

j = l  

k nj 

Difference 2 2 (yij - &)2 = (n - k ) b  n - k  
j = l  i = 1  

Total 

The analysis in table 6.2 is more commonly found as in table 6.3. 
J(H,, H,) = ( k  - 1)F, where F has the analysis of variance distribution 
with ( k  - 1) and (n - k )  degrees of freedom under the null hypothesis of 
homogeneity. 

TABLE 6.3 

Variation due to Sum of Squares D.F. 

k 
Between samples 2 njQJj - #)2 = G 2 . J ( ~ 1 ,  H a  k -  1 

j = l  

k n, 
Within samples (Yij - gj)2 = (n - k)S2 n - k  

j = l  i = l  

Total Z f: (Yu - #)' 
j = l  i=1 
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7. TWO-PARTITION SUBHYPOTHESIS 

7.1. One- Way Classification, k Categories 

Partition the parameters of the matrix p,, for each category j = 1, 2, 
*, k, into two sets [see (6.2)] 

of q and p - q parameters respectively, q < p, so that P; = Pi&. 
Consider a null subhypothesis H,, for j = 1, 2, ., k, the B,, are 

different for r = 1, 2, . *, q, but for r = q + 1, q + 2, *,p, there is a 
common value p., for the pi,, that is, 

or equivalently 
H~:p;1 = = (Bjl, *, Pjq) 

p;, = p:, = @.*I, *, P.,). 

Let HI remain as in (6.8), that is, the are different for all j and r. 
Under HI we have the same matrix definitions and results as in section 6. 
However, for H, in (7.1), the matrices XZ and PZ for the k-category 
regression model are 

B" = (Pi, pa. xr = (X,, w, 
where 

Thus under H,, 
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where 

s11 = x;x,, Sl, = x;x,, S,, = s;, = x;xl, S,, = x;x,, 

From the normal equations (6.5) we now obtain 

(7.2) S1181+ ~ 1 2 8 2  = x;Y 
S2181+ sn8r = X;Y, 

so'that [see (5.7)] 

where 

xis1 = x; - S,~S,~X;, x;,., = x;, - s,,s,;x;,. 
From the definition of the matrices under H, we have [see (5.8)] 

(7.4) 

. . .s-1 
k l l  

Thus under H, of (7.1), we have the following estimates of the regression 
coefficients : 
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where 
Pi = (P;;, P!;) = PY* 

If under Hl of (6.8) we also define Pi = (Pi1, Pi2) but rearrange and 
partition the submatrices of P and X so that 

P' = (Pi9 Pa, x = (XI, x3, 
where 

, I  = , I  2 x q  X52 = (xjel, xjQ+,, . a, 43, j = 1,2, . -, k, 
then 

We then obtain the same estimate of p,, j = 1,  2, . . ., k, as in section 6, 
by the procedure of section 5; that is, from (6.5) we have (see problem 
11 .lo), 
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From (7.7) we obtain under Hl for each category j = 1 ,  2, *, k ,  

and 
B; = (&, 8;& = BY. 

With these estimates of the parameters under HI of (6.8) and H2 of 
(7.1) and noting after some reduction that [cf. (5.11), (5.12)] 

(7.1 1 )  PsaBa = ~ ' x ~ s ; ~ x ~  + K ~ i ~ . ~ e f ,  a = 1 ,  2, 

we obtain [cf. (5.1 3)] 

where for computational convenience we may write 

We summarize in the analysis of variance table 7.1. Y(H,, H& = 
( p  - q)(k - 1)F, where F has the analysis of variance distribution with 
@ - q)(k - 1 )  and n - pk degrees of freedom under the null hypothesis 
H2 of (7.1). 
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TABLE 7.1 

Sum of Squares D.F. 

H2 : Pb, (3?2 P2's2P2 
Difference P1'slP1 - Ps2P2 

: P ~ I ,  P j 2  P1'sl@ 
Difference y'y - P1'slp' = (n - p k ) ~ 2  

Total Y'Y n = n 1 + n 2 + .  . + n k  

7.2. Carter's Regression Case 

Carter (1949) considers the case of a correlation effect among the ith 
observations i = 1 ,  2 ,  -, n in each of k samples. His regression model 
can be written as 

4 
(7.1 5 )  Zji = Yj i  - z P j ~ j i r  - a i ,  

r = l  

where the correlation effect among samples is due to a,, an element 
common to the ith observation in each sample, j = 1, 2, a ,  k. 
Stochastic dependence among categories is included in the multivariate 
linear hypothesis in chapter 1 1 .  

It can be seen that this model is a particular case of the subhypothesis 
analysis where the matrices P and X are 

P' = ( P i ,  P;), x = ( X I ,  X,), 
and the submatrices are 

Pi  = ( P I 1 9  P;i,  . '9 PLi), P I 1  ( h i ,  8 j 2 ,  . '9 PjJ, 

g; = (011, 012, ' ' ' 9  a,), 
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where X2 is a k x 1 matrix of submatrices I, the identity matrix of order 
n x n. With these definitions of P and X, the normal equations for 
estimating the ,8's given by Carter [1949, eq. (3.3)] follow directly from 
the normal equations (7.2) by obtaining 

where 
S11.2 = S11 - S12Sii1S21- 

Here we obtain 

and 

As before, 

Sll = x;xl, S12 = x;x2 = s;,, sz2 = x;x2. 
The estimates of the correlation effects ai are not given specifically by 

Carter (1949). The solution 

where 

follows directly from 
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! 8. EXAMPLE 

[See Kullback and Rosenblatt (1957).] As an example of sections 5, 
6, and 7, we examine the performance data of a manufactured product 
tested under three environmental conditions (categories) each involving 
three independent variables. In the equation 

(8.1) zji = Yji - Pjlxji1 - P j f l j i 2  - Pjgji3 - Pj4~ji4, 

the data yji and xjir, r = 2, 3, 4, are raw observations so that xjil = 1 for 
all j =  1, 2, 3, and i =  1, 2, , n .  In this example k = 3, p = 4, 
n, = 16, n2 = 15, and n, = 16. The matrices Sj and Xly,, j  = 1, 2, 3, of 
the computed sums of squares and products about the origin are 

where 

Note that above the element s,,, = n,, s,,, = n,, and s,,, = n,. The 
multiple regression equation for all three categories combined is given by 
(6.4) where, it will be remembered, specification of the matrices Xa and 
Pa depends on the model prescribed by hypothesis. The data in the above 
matrices can be suitably arranged for analysis according to hypothesis. 

To illustrate the statistical method seven hypotheses are considered and 
tested. The hypothesis H, imposes no restriction on the ,8's, so that 
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TABLE 8.1. Analysis of Variance Table for Tests of Various Null Hypotheses Ha, a = 2, 3 , 4 ,  5 ,  6 , 7 ,  Against an 
Alternative Hypothesis H1 

Variation due to Sum of Squares D.F. f w l ,  H,) F 
- 

Hz:B~I  = Pi1 
Pjr = 0 ,  r = 2, 3 , 4  
P2 

Diff. : HI, H2 

P 3  
Diff.: HI, H3 

p k - k  = 9 

P4 
Diff.: HI, H, 

-- - 

P6 
Diff.: HI, H5 



TABLE 8.1 (continued) 

:Pn = Pn 
Pjr = Pir, r = 2 

= 0 ,  r = 3 , 4  

P" 
Diff. : HI, H, 

P' 
Diff.: H I ,  H, 

H I : ~ I  = Pfl Y ' X ~ S ~ ~ X ; Y  1,556,805,752 k 
P j r  = P$,, = 2 , 3 , 4  Bfi6.1~ 24,993,036 pk - k 
P1 (31'~1g' .1,581,798,788 

1,004,912 
pk 

Difference y'y - P's1fi1 = (n - pk)* n -pk 

Total Y'Y 1,582,803,700 n = n1 + n, + n, 
* Significance at 0.01 probability level. 
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All other hypotheses, suggested by the nature of the data, are compared 
as null hypotheses against HI: 

H = j Bjr = 0, 7 1 2, 3, 4, 

H3 : Bjl = B.1, pjr = B.r, r .=  2, 3, 4, 

H : Bjl = 1 ,  Pjr = B.r, r = 2, 3, 4, 

H Bjl = 1 ,  j = j r = 2, Pjr = B.r, r = 394, 

H6'Pjl = Bjl, j r = 2 ,  Bjr=O, . r = 3, 4, 

H j 1  = 1 ,  Bjr = B-r, r = 2, pjr = , r = 3, 4. 

The statements above of the various hypotheses all apply for j = 1, 2, 3. 
In stating these hypotheses we have specified Bj1 separately, for con- 
venience, since in this example it represents the constant term which 
depends on the mean values. Table 8.1 presents the complete summary 
of the analysis of variance data and the tests of significance of the various 
hypotheses. Table 8.2 presents the estimated regression coefficients under 
the various hypotheses. (The computations were carried out by H. M. 
Rosenblatt, Fred Okano, and the computing staff at the Naval Proving 
Ground, Dahlgren, Va.) The specification of the matrices Xa and 
for Hl and H5 is also given, following table 8.2; those for the other 
hypotheses follow on the same lines. (These are left to the reader.) 

Using the 0.01 probability level for significance, and the 0.05 proba- 
bility level for caution, it is concluded, from table 8.1, that: 

1. The regression is real; reject H2. 
2. One set of regression coefficients, including equality of means, 

cannot adequately represent all three categories; reject H,. 
3. One set of regression coefficients is not adequate even after allowing 

for differences in the mean value for each category; reject H,. 
4. One set of regression coefficients for variables x3 and x, for all three 

categories cannot be used; reject H5. 
5. The regression coefficients for x3 and x, cannot be ignored; reject H6. 

However, 

6. the use of one regression coefficient for the variable x, and different 
ones for x3 and x4 and for the constant term is adequate; accept H,. 

For the hypotheses Hl and H5 considered in the example, the matrix 
of parameters p and the matrix of observations X are given below. 
Note that, since we are dealing with raw observations in the example, the 
regression coefficients pJ1 of g and the matrix (vector) x ,  of X, j = 1, 2, 3, 
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TABLE 8.2. Estimates of Regression Coefficients Under Various 
Hypotheses 

Hypothesis B j l  A 2  113 B j 4  

have been partitioned for every hypothesis. This provides for the usual 
practice of obtaining sums of squares and products of deviations about 
average values to simplify further calculations by reducing by one the 
rank of the matrix S (of sums of squares and products) whose inverse 
must be obtained. 
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1 = 1 ,  1, , 1 ,  xj2 = (xj2, x,, x,,), 
order 1 x n, x;r = (xnr, Xj2r9 *, xjn,r)- 

xjl and xjr, r = 2, 3, 4, are defined as under HI. 

In the foregoing example each hypothesis on the parameters applies 
to all categories, j = 1, 2, 3. It should be clear, however, that this need 
not be the case, for the theory and method are equally applicable for any 
assertion of the hypotheses about the parameters. For example, we might 
have an analysis where part of the hypothesis concerned equality of the 
parameters for certain of the categories but not for all, for example, 

and analysis by the three-partition subhypothesis procedure of section 5 
would apply. 

9. REPARAMETRIZATION 

9.1. Hypotheses Not of Full Rank 
[Cf. Kempthorne (1 952, section 6.2).] Suppose that the components 

of p in (3.1) are not linearly independent, but satisfy (p - r) linear 
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relations. This implies that the matrix X in (3.1') is of rank r < p (and 
conversely), and that 

whereyf=(y1,y2,.  .,y,), G=(gij) ,  i =  1 , -  .,p, j =  1, 2 , -  . . ,r ,  
and G is of rank r < p. The matrix S = X'X is now a positive (not 
positive definite) matrix of rank r, is therefore singular and has no inverse, 
so that we must re-examine the solution of (4.1) for p. We may, however, 
write (3.1) as 

where A = XG is an n x r matrix of rank r. The least squares estimate of 
y is derived from the normal equations 

(9.3) A'Aq = A'y or G'SGq = G'X'y . 
The estimate of is obtained from p = Gq, or 

(9.4) p = G(GfSG)-l G'X'y. 

As in section 4, 9 is a minimum variance, unbiased, sufficient estimate 
of y and the components of 9 are normally distributed with covariance 
matrix $(AfA)-I = $(GfSG)-l. Also, p = Gq is an unbiased estimate 
of p and the components of p are normally distributed with covariance 
matrix u2G(G'SG)-lGf. Corresponding to (4.2) we have 

where 

Note that G ' S ~  = G'X'y [see (9.3)] represents r linear functions of the 
y's that are also linear functions of the B's. These are unbiased estimates 
of the same linear functions of the P's. Since G S ~  = G'Xfy = G'SG?, 
we may make similar statements about the y's and their estimates. 
Consider now any other set of r linear functions of the y's, say Ly, where 
L is an r x n matrix of rank r. Since 

(9.6) E(Ly) = E(L(XP + z)) = LXP = LXGy, 

Ly is an unbiased estimate of y if LXG = I, the r x r identity matrix. 
The covariance matrix of the components of Ly is seen to be $LLf. 
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From lemma 5.4 of chapter 3 with k = n, B = a,, where I, is the n x 
identity matrix, L = C', U' = XG, C'U' = LXG = I, 

where (9.7) means that any quadratic form with matrix 02LL' is greater 
than or equal to the quadratic form with matrix 02(G'SG)-l. Since the 
covariance matrix of the components of f is $(GfSG)-l, we confirm by 
(9.7) and lemma 5.l(c) of chapter 3 the statement that the variances of the 
components of f are the smallest among all linear functions of the y's 
that are unbiased estimates of y. Similarly, GLy is an unbiased estimate 
of p if LXG = I,. From lemma 5.4 of chapter 3 we may conclude that 

from which we infer that the variances of the components of B are the 
smallest among all linear functions of the y's that are unbiased estimates 
of p. 

The value of J(1, 2) and its estimate is the same for any reparametri- 
zation as is indicated in (9.5). Since there are only r linearly independent 
linear functions of the P's, any one set of r linearly independent functions 
of the B)s may be derived from any other such set by a nonsingular linear 
transformation. The information functions are invariant under non- 
singular transformations (see section 4 of chapter 2, also section 3 of 
chapter 9), hence our conclusion. [Cf. Kempthorne (1 952).] 

Examples of the application of this procedure to the two-way classi- 
fication with no replication and with no interaction; the two-way classi- 
fication with missing observations; the two-way classification with 
replication and interaction; the two-way classification with replication 
(unequal cell frequencies), interaction, and missing observations; the 
latin square; and the latin square with missing observations may be found 
in McCall (1957). See also Anderson and Bancroft (1952), Kempthorne 
(1952). 

9.2. Partition 
When the hypotheses call for a partitioning of the parameters into two 

sets, for example as in (5.1), it is possible that linear relations may exist 
among the parameters in one of the partitioned sets only. Here it is 
necessary to apply the procedures of section 9.1 only to the partitioned 
set not of full rank. Thus, suppose that in (5.1) the n x q matrix X1 is 
of rank m < q. This implies [cf. (9.1)] that 
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where Y; = ( ~ 1 ,  Y ~ Y  * Y  ym), G1 = (gij), i = 1,2; * - , q , j = l , 2 , * 0 * ,  
m, and G1 is of rank m < q. The results of section 5.1 are applicable if 
h and P1 are replaced in the various formulas by yl and respectively, 
X1 by XIGl, and (n - q) degrees of freedom by (n - m) degrees of 
freedom. The estimate (3, is obtained from & = GI%. Thus, for 
example, Sll in (5.3) is to be replaced by G;SllGl, where Sll = X;Xl, and 
S12 by G;S12, where S12 = XiX,. 

Similar remarks also apply for a partitioning into three sets as in section 
5.2, when one of the sets may not be of full rank. 

10. ANALYSIS OF REGRESSION, TWO-WAY 
CLASSIFICATION 

To illustrate section 9, and for its own interest, suppose we have a two- 
way classification with r row-categories and c column-categories, with one 
observation per cell and no interaction. Suppose furthermore that there 
are p independent variables xl, x,, , x .  We want to test a '  null 
hypothesis that there are no column effects (the column classification is not 
significant), against an alternative hypothesis that the column classification 
is significant. For p = 1, also identified as the analysis of covariance, 
see Federer (1955, p. 487), Kempthorne (1952, p. 98). For p = 2, also 
designated as multiple covariance, see Snedecor (1946, section 13.7). 
For p general, see Anderson and Bancroft (1 952, section 21.4). 

The general linear regression model for each cell is 

where i = 1,2, - -, r row-categories, 

j = 1, 2, ., c column-categories, 

pi is the ith row effect, 

rj is the jth column effect, 

,u is the over-all mean, 

the zij are independent, normally distributed random variables with zero 
means and common variance C1.2, and the xi,,, i = 1, 2, . *, r, j = 1, 
2,. - , c ,  k =  1,2; -,p,areknown. 

Enumerating the cells from left to right and top to bottom, the linear 
regressions may be written as 
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where 

that is, Xl is rc x 1, X, is rc x (r + c), X3 is rc x p, xi, is 1 x p, is 
1 x 1 , p ; i s l  x ( r + c ) , p f i s l  x r , . r f i s l  x c , P ; i s l  xp .  

We want to test the hypothesis 

that is, no restrictions on the parameters, and the null hypothesis 

(10.4) H2:Pf = P2' = (By, P:, P:), P: = (p2', 0), or 7 2 '  = 0, 

that is there are no column effects. 
Note that the rc x (r + c) matrix X, is of rank r + c - 2, since the 

row and column effects are essentially restricted to satisfy [cf. Anderson 
and Bancroft (1 952), Kempthorne (1 952)] 

The new parameters for the second set of the partition, taking (10.5) 
into account, are given by 
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where Y; = (~11, *, ~l,,)), y; = (yay - 9  y,(C-l)), and Gl and G2 
are respectively the r x (r - 1) and c x (c - 1) matrices 

For the second set of the partition, we find 

where X2G has rc rows and r - 1 + c - 1 columns, 

(10.9) X;X,G = S12G = (0, 0, -, 0), 1 x (r - 1 + c - l), 

where xi. = x, + x, + + xi,, x, = xlj + &j 4- . i- %-,, and 
S,G is a p  x (r - 1 + c - 1) matrix. 
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We also find that 

(10.1 1) X;Xl = Sll = rc, X;X3 = S13 = XI., 

where x.: = x& + xi2 + + x; + + &, and xl  is a 1 x p 
matrix, 

t c 

(10.12) x;x3 = s, = p 2 xijxx;, 
S = l  j=l 

where S8Q is a p x p matrix, 

(10.13) X h  = y.., 

where y.. = yll + y12 + . Yij  + . + YTC, 

where Xjy is a p x 1 matrix. 
Since under Hl the estimates of the parameters are given in (5.20), we 

proceed to find the other matrices needed : 

2c c - * *  

whew C is the (r - 1) x (r - 1)matrix (: 1: !) and R is the 

-2c  

2r r e - *  

(c - 1) x (c - 1) matrix (: :), - - 2 r  
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1 
where Z = - x.., 

rc 

where dij = xij - 2, di. =xi .  - q., d.j = x . ~  - x . ~ ,  
Xkw = (dl: Xk1 = (d.1. . .d.,d, 
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where r y  = y.., 

It may be shown that (see problem 11.4) 
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where C-l and R-1 are respectively (r - 1) x (r - 1) and (c - 1) x 
(c - 1) matrices. 

Thus, under HI, we get from (5.20) the estimates 

(10.24) P 3  = S ~ ? i ~ x ~ . i g ~  

where s.,, is given in (10.19) and Xj.,g is given in (10.22), 

that is 

= c-1 [(yl-;yT.\ - [; )@], 
Yr-1. - Yt. dL-1 
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We now have [see (5.2111 

(10.27) @l'slB1 = ~ ' X ~ S G ' X ~  + y'X2.1S&!,X;.~ 4- B3s.12 &, 
where y'~~s,'X;y = ( ~ . . ) ~ / r c ,  

-1 X' yfX2.1S22.1 2.1Y = @I. - Yr. ' -Yr-1. - yr.)C-l 

= Y : ~ ~ C - ~ Y ~ ~  + Y ~ ~ I R - ~ Y ~ ~ I ~  
and (?: is given by (10.24) and by (10.19). [See (10.46).] 

The original row and column effect parameters are estimated by 

(10.28) i1 = G1ql, e1 = G2q2, 
where G1 and G2 are defined in (10.6) and ql and 0, in (10.25). 

Under H2, instead of the matrix G in (10.6) we have only the matrix 
GI, and the matrix X2 is now given by the rc x r matrix 

/1 0 -  *o \  
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Instead of (10.7), under H, we have 

where x:G1 has rc rows and (r - 1) columns; instead of (10.8), under H2 
we have 

r - 1  
instead of (10.9), under H, we have 

instead of (10.10), under H2 we have 

where S ! 2 ~ 1  is a p x (r - I) matrix; instead of (10.14), under H2 we have 

instead of (10.16), under H2 we have 

instead of (10.18), under H, we have 
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instead of (10.19), under H, we have 

instead of (10.20), under H2 we have 

Yl- - Yr. 

(1 0.38) 

Yr-1- - Yr- 

instead of (10.22), under H2 we have 

Thus, under H2, we get as the estimates of the parameters, instead of 
(1 0.24), 

(1 0.40) Pi = ~ & f ~ ~ : : ~ z y ,  

where S&.,, is given in (10.37) and X::,9 in (10.39); instead of (10.25), 

where 9; = el = c-lCYm\,. -xm*p:) ; 

instead of (10.26), 

(1 0.42) 
1 pi = - (y.. - x:.p:); 

rc 
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instead of (10.27), 
' 2' (10.43) fl"s2f12 = y'x$K x1 y + Y'X:.~S&.;X::~)' + Ks&.i2fl:, 

where y ' ~ ~ : ~ ~ x ~ y  = (y. .)2/rc, 

and fli is given by (10.40) and %.,, by (10.37). 
The original row and column effect parameters, under H2, are estimated 

by 
(10.44) i2 = GI?:, T~ = 0. 

With the foregoing values, we now have 

(10.45) 62Y(~1, Ha = firs1@' - flzs2b2 
where (rc - 1 - r + 1 1 1 1  - c + 1  - p ) 2 = y ' y - p ' s p  

= ((r - l)(c - 1) - p)Z2. 

We summarize the foregoing in the analysis of variance table 10.1. 
Y(H,, Ha = (c - 1)F, where F has the analysis of variance distribution 
with n1 = c - 1 and n2 = (r - l)(c - 1) - p degrees of freedom under 
the null hypothesis H2 in (10.4). 

TABLE 10.1 

Variation 
due to Sum of Squares D.F. 

Difference ~,~R-'ycol+ p F ~ 5 ~ . ~ ~ p :  - @3&.12p: C -  1 
= Z~.?(H,, ~d 

Difference y'y - p"slp' = ((r - l)(c - I) - p)62 (r - l)(c - I) - p  

Total Y'Y rc 
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In particular, for the usual two-way table with no regression, that is, 
(3: = # = 0, table 10.1 yields the analysis summarized in the analysis of 
variance table 10.2. 

TABLE 10.2 

Variation 
due to Sum of Squares D.F. 

Mean (y..)=/rc = 3 9 ( ~ , ,  H i  

Rows Y ~ ~ C - ~ Y ~ ~  = 3 9 ( ~ ~ ,  H,) 

COIU- Y ~ J z - ~ Y ~ ~  = ~ Y ( H ~ ,  H& 

@..I2 Difference Y'Y - - - y;owC-l~row - Y&@-~Yco~ (r - l)(c - 1) 
rc 

= (r - l)(c - I)$ 

Total Y'Y rc 

It may be shown that [see (10.23) and problem 11.51 

Note that here the alternative hypothesis Hl may be expressed as the 
intersection of three independent hypotheses, Hl = H, n HR n Hc, 
where H, is the hypothesis that p # 0, HR is the hypothesis that p # 0, 
and Hc is the hypothesis that T # 0. Against a null hypothesis H,, 
p = 0, p = 0, T = 0, we see that 

4 4 ,  Hz) = =(H,, Hz) + ~ ( H R ,  Hz) + ~ ( H c ,  Hz), 

where J(H,, H,) = F(nl = 1, n, = (r - 1)(c - I)), 
3(HR, He) = (r - 1)qnl = r - 1, n2 = (r - l)(c - I)), 
3(HC, H,) = (c - l)F(nl = c - 1, n, = (r - l)(c - I)), 
3(H1, H,) = (r + c - l)F(nl = r + c - 1, n, = (r - l)(c - I)), 

where F(n,, ne) has the analysis of variance distribution with n1 and n, 
degrees of freedom under the null hypothesis. 
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For p = 1,  we get from (10.23), (10.19), (10.24), (10.37), and (10.40) 
the following values for use in table 10.1 in addition to those in (10.46) 
(see problem 1 1.6) : 

2;. x?. 
(10.47) X&wC-IXrow = 2 - - -9  

i -1  C rC 

4 x., 2 2.. 
XLolR-lXcol = 2 - - -9  

j-1 r rc 

9 
7 C x:. x?, x?. 
2 zx;,-2--z-+- 

i= l  j:=1 i-1 c j=l r rc 

11. PROBLEMS 

11.1. What is the distribution of . f ( ~ ~ ,  Ha in (4.3) if the null hypothesis is 
not satisfied? [Cf. Anderson (1958, p. 107).] 

11.2. Show that Si'i1SlZS;il = S G ~ : ~ & ~ ~ : ,  where the matrices are defined in 
(5.6), (5.7), (5.8). 

113. Give the specification of the matrices Xu, for the hypotheses H,, 
a = 2, 3, 4, 6, 7, in section 8. 

11.4. Confirm the results given in (10.23). 

11.5. Confirm the results given in (10.46). 

11.6. Confirm the results given in (10.47). 
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11.7. Verify that the asymptotic behavior of the minimum discrimination 
information statistics in chapter 10 is in accordance with the results of 
chapter 5. 

11.8. Show that 
2 (a) .!(H,, Ha in table 5.2 is equal to (n - p)r;.,. . ../(l - rU+ . .J, where 

r,.,. . .. is the multiple correlation of y with x2, . ., x,. 
(b) S(H~, Hd is an estimate of J(l, 2) in (7.18) of chapter 9 for a sample 

of n observations. 

11.9. Suppose that table 5.1 applies to a sample of n 4- 1 observations, that 
is, the y's and x's are centered about their respective sample averages, and that 

2 q = p  - 1. Show that here .!(H?, H2) = (n -~)r:~.,.. ../(I - rul.,. ...), 
where r,.,. . .. is the partial correlation of y with xl. 

11.10. Show that Pl in (7.7) may also be expressed as a = ~ i - ~ x i . ~ ,  where 
s,., = sll - S1+3g1S, and Xi.2 = Xi - S12S&1Xi. 



Mu1 tivaria te Analysis ; 

The Multivariate Linear Hypothesis 

1. INTRODUCTION 

In this chapter we examine tests of linear hypotheses for samples from 
multivariate normal populations, thus extending the analyses of the 
previous chapter. In the next chapter we apply the general ideas to the 
analysis of samples from multivariate normal populations under hypotheses 
on the covariance matrices and on the means other than those included in 
the linear hypothesis. The treatment in this chapter is not intended to be 
exhaustive, and has wider applicability than to the specific casesconsidered. 

2. BACKGROUND 

Suppose two simple statistical hypotheses, say H, and H,,. specify 
respectively the means of n k-variate normal populations with common 
covariance matrix C = (a,), i, j = 1, 2, . ., k. For n independent 
observations (1 x k matrices or vectors), one from each of the populations, 
(2.17) in chapter 9 becomes (n, = n, = . = n, = 1, r = n) 

where 8, = p: - pf, with p;, a = 1, 2, the one-column matrices (vectors) 
of means of the ith population under Ha, and p: = (pi,, pi,, *, pi*), 
i = 1, 2, ., n. (This was still further specialized in section 2 of 
chapter 10.) 

3. THE MULTIVARIATE LINEAR HYPOTHESIS 

3.1. Specification 
For the ith observation, we have the regression model 

(3.1) zi = yi - Bx,, i = 1, 2,. .,n, 
253 
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wheE Z; = ( ~ i l ,  zi23 '9 ~ik,),- Y; = ., Y' rk ,) 9 = (xil, Z f B I  
• . *,x ik) ,B=(Prs) ,r= 1,2; . ,k2 ,s= 1,2; , kl, kl < n, k2 < n, 
B of rank min (k,, kd. We may also express the n regressions in (3.1) as 
the one over-all regression model 

(3.2) Z = Y -- XB', 

where Z' = (zl, q, . . ., zn), Y' = (~1, y2 ,  . ., yn), X' = (xl,  q, . . ., x,), 
with Z' and Y' k2 x n matrices and X' a k,  x n matrix. 

We assume that: 

(a) the z, are independent normal random k2 x 1 matrices (vectors) 
with zero means and common covariance matrix C,  

(b) the xi,, i = 1 ,  2, .  . ., n, j = 1 ,  2, . . ., k,, are known, 
(c) X is of rank k,, 
(d) B = B1 and B = B2 are parameter matrices specified respectively 

by the hypotheses H, and H2, 
(e) the yi are stochastic k2 x 1 matrices, and &(Y) = XB1', E2(Y) = 

XB2'. 

Under the foregoing assumptions (2.1) becomes 

As in chapter 10, we shall see that suitable specification of the matrices 
X and B provides the appropriate model for many statistical problems of 
interest. [Cf. Anderson ( 1  958, pp. 21 1-21 2 ; 21 5-21 6),  Roy ( 1  957, p. 82), 
Wilks ( 1  943, pp. 245-252).] 

3.2. Linear ~ikriminant Function 
We generalize here the presentation in section 5 of chapter 9. Suppose 

we take wi = a'y, = alyil + wi2 + . . + adik2,  i = 1 ,  2, ., n, the 
same linear compound of the y's for each observation. Since the w's are 
normay distributed with 4, = a'Za, (3.3) yields for the w's [cf. (5.2) in 
chapter 91 

- - a ' ( ~ l x ,  - B2XJ(B1x1 - B2Xl)'a + . . + a'(B1xn- B2Xn)(B1xn- BBXnJa 
a'Ca 

- - a'(B1 - B2)X'X(B1 - B2)'a 
a'Ca 
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For the linear compound maximizing J(1,2; w), we find (by the usual 
calculus procedures) that a satisfies (B1 - B2)X'X(B1 - B2)'a = ACa, 
where A is the largest root of the determinantal equation 

The rank of (B1 - B2)X'X(B1 - B2)' is not greater than min (k,, k2) ; 
thus the determinantal equation has p 5 min (kl, kJ nonzero roots 
designated in descending order as A,, A,, . . -, A,. We thus have 

(3.5) J(1, 2; 0,) = tr C-l(B1 - B2)X'X(B1 - B2)' = A1 + A2 + - . + Ap 

= J(1,2; n j  + + J(1,2; A,), 

where Ai = J(1,2; Ai) is the value of (3.4) for a associated with A = Ai. 

4. THE MINIMUM DISCRIMINATION INFORMATION 
STATISTIC 

We first state some facts about estimates of the parameters B and C of 
section 3.1. [Cf. Anderson (1951, pp. 103-104; 1958, pp. 179-183), 
Lawley (1938, pp. 185-186), Wilks (1943, pp. 245-250).] The classical 
least squares procedure of minimizing tr Z'Z = tr (Y' - BX')(Y - XB') 
with respect to the prs leads to the normal equations: 

(4.1) X'Xfj' = X'Y, or BX'X = Y'X, B = GrS) = Y'X(X'X)-1. 

The bra, r = 1, 2, - -, k2, s = 1, 2, *, kl, (k1k2 linear functions of the 
y's), are normal, minimum variance, unbiased, sufficient estimates of the 
pa. These properties are derived in section 10, as is also the fact that the 
covariance matrix of the klk2yalues of Bra ordered as Ill, B12, ., Ak1, 

. . ., b-, . - ,  Pk2l9 *, is the k&, x k& matrix, 

i oll(X'x)-l ol2(X'X)-l o,(X'X)-I 

(4.2) (C) x - (X'X)-1 = on(X'X)-l oB(X'X)-l - ~%~(x'X)-l . . . . . . . . . . . . . .  

where (C) x -(X'X)-l means the Kronecker or direct product of the 
matrices [MacDuffee (1946, pp. 81-88), see also Anderson (1958, pp. 
347-348), Cornish (195711. An unbiased estimate of C with (n - kl) 
degrees of freedom is obtained from 

(n - kl)$ = 2'2 = (Y - X@)'(Y - XB') = Y'Y - Bx'XB' 
= Y'Y - (Y'X)(X'X)-l(X'Y). 

(See problems 12.15 and 12.16.) 
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The minimum discrimination information statistic is obtained by 
replacing the population parameters in 1(1: 2) by best unbiased estimates 
under the hypothms. (Dctails on the conjugate distribution of a 
multivariate normal distribution are in sections 2 and 3.1 of chapter 12.) 

Suppose the hypothesis HI imposes no restriction on B and the null 
hypothesis H, specifies B = B2. Writing to indicate the solution of 
(4.1) under 3, we have 

where 

= Y'Y - (Y'X)(X'X)-l(X'Y). 

Statistics of the form in (4.3) were introduced by Lawley (1938), Hotelling 
(1 947). 

In section 10, we also show that 

Since the inverse of the covariance matrix in (4.2) is the direct product of 
the inverses of thd matrices, that is, ((Z) x (XtX)-I)-' = (C-l) x . (X'X), 
[MacDuffee (1946, p. 82)], we see from. (4.4) that 

(a) The divergence [21(1: 2; On)] in (3.3) is equivalent to that between 
two k,k,-variate normal populations with respective means @,, -, 
$%, ., &,,, . -, PV., a = 1, 2, and common covariance matrix 
(C) x .(X'X)-l (see the remark at the end of section 3 of chapter 10). 

(b) The right-hand side of (4.4) is the quadratic form in the exponent 
of the klk2-variate normal distribution of the a ,  r = 1,2, ., k ,  s = 1, 
2, -, k,, with the covariance matrix replaced by an unbiased estimate 
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with (n - k,) degrees of freedom. J(H,, H,; On) in (4.3) is therefore a 
form of Hotelling's generalized Student ratio (Hotelling's 7'2). 

Lawley (1938) has essentially she-wn that for k, # I,  k2 # I ,  and n 
large, approximately, 

where F has the analysis of variance distribution under the null hypothesis 
H2 with degrees of freedom n, = [(I + c)k,kJ and n, = [(I + c)(n - k, 
- k, + I)], where c = (k, - l)(k, - l)/(n - k,), and [ ] means to the 
nearest integer. When k, = 1, or k, = 1, (4.5) is exact. [In (4.4) of 
chapter 10, k, = 1, k, = p.] Pillai (1955) has shown that, approximately, 

where F has the analysis of variance distribution under the null hypothesis 
H2 with n, = k1k2 and n, = k2(n - kl - k, - 1) + 2 degrees of freedom. 
In accordance with the asymptotic theory, J(H,, H,; On) is asymptotically 
distributed as x2 with k1k2 degrees of freedom. [Cf. Anderson (1958, 
p. 224).] 

On the other hand, under one of the alternatives, (4.5) still holds but F 
now has the noncentral analysis of variance distribution, with the same 
degrees of freedom as under the null hypothesis, and noncentrality 
parameter J(H,, H a  = tr C-l(B1 - B2)X'X(B1 - B2)'. In accordance 
with the asymptotic theory, J(H,, H,; 0,) is asymptotically distributed as 
noncentral ~2 with k1k2 degrees of freedom and noncentrality parameter 
J(Hl, H a  when the null hypothesis is not true. [For the noncentral 
distributions see, for example, Anderson (1958, pp. 112-115), Fisher 
(1928), Fix (1949), Hsu (1938), Kempthorne (1952, pp. 219-222), Patnaik 
(1949), Pearson and Hartley (1951), Rao (1952, p. 50), Simaika (1941), 
Tang (1 938), Weibull(1953), Wijsman (1957), and section 6.1 of chapter 12.1 

5.1. Two-Partition Subhypothesis 
Suppose we partition the parameters into two sets, and instead of (3.1) 

we now consider 
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where = (xi,, x;r = Xi29 *, xiQJ, xLi = (xtq1+l, . . .  
9 xia1+a3, 

q1 + q2 = k,, B = &, BJ, with B, and B, respectively k2 x ql and 
k ,  x % matrices. We may also express the n regressions in (5.1) as the 
one over-all regression model 

where Y ,  Z are defined as in (3.2), and 

with X i  = (xu, xu, ., x,,), X ;  = (x,, G, *, %,), and X, and X, 
respectively of ranks q, and q2 = k, - q,. 

With the same assumptions about the z, as in section 3.1, we now 
consider the hypotheses: 

H, : El(Y) = x,*' + X+$r 
(5.3) H2 : E2(Y) = xlBf + X$f. 
Now (3.3) yields 

where 

The normal equations (4.1) under H, become 

(5.6) w,, + BS, = Y'X, 
B$,2 + BS, = Yf&. 

From (5.6) we find [cf. (5.7) and (5.8) of chapter 101 

(5.7) 4 = yf&.,s;;;!,, & = Y'x,s;' - B ~ S ~ ~ S G ' ,  

where &., = X 2  - XIS,;'&,, S,., = S ,  - S,S,'S12. 

For the estimate of C we have from (4.3) 

Suppose, now, that in particular we want to test the null hypothesis 
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that is, = 0, with no restrictions on Bi, against the alternative hypothesis 

with no restrictions on the parameters. 
Under Hl we have (5.7) and (5.8). Under H, the normal equations 

(4. I) now yield 

We estimate J(l, 2; 03 in (5.4) by replacing the parameters by best 
unbiased estimates under the hypotheses, so that 

From (5.7) and (5.1 1), we find [cf. (5.10H5.13) in chapter 101 

(5.15) .?(H, H3) = tr al~lsB1' - tr z-l~~~~fi:. 
It may be verified that 

(5-  1 6) -1 f XISU x ~ ~ ~ . ~ s ~ : ~ x ; . ~  = 0, 
and since Xi.,&., = S,.,, 

(5.17) (I, - x1G1x; - x ~ . ~ s ~ ~ x ~ . ~ x ~ . ~ S ~ ~ ~ X ; . ~  = 0, 

where I, is the n x n identity matrix, that is, the two factors in .?(H,, Ha 
are independent. 

The foregoing is summarized in tables 5.1 and 5.2. 

TABLE 5.1 

Variation due to Generalized Sum of Squares D.F. 

H3: B3 = @, 0) &g = YX~SY,~X~Y 

Difference = Y'&.~S&:~~&.~Y 

H :  = ( B )  %~x'X%~' = Y'x~&~x;Y 4- Y % . ~ s ~ ~ ~ x ; . ~ Y  kl 

Difference Y'Y - %lx'~Bl' = (n - k,)e n - k1 

Total Y'Y n 
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TABLE 5.2 

Test Distribution on the Null Hypothesis 

nl = [klkz(l + clll 
n2 = [(n - k, - k2 + 1)(1 + clll 
cl = (k, - l)(k2 - I)/(n - k 3  

5.2. Tbree-Partition Subhypothesis 
(Cf. section 5.2 of chapter 10.) When the subhypothesis requires 

partitioning the matrices X and B into three submatrices, X = (XI, &, X&, 
B = &, &, m, we obtain from (4.1) the solutions 

(5.18) $ = yfX3 .12S&!u 

&2 = (yfX2.1 - -32.l)s&?l 
$ = grfX1- v, - U3l)Sfi1, 

where 

St, = Xf&,, t ,  u = 1, 2, 3, 

and 

We also have [cf. (5.21) in chapter 101 

where the last version is convenient when the data are raw observations 
and x, = 1 for all i. (See problems 12.1 1, 12.12, 12.13.) 
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6. SPECIAL CASES 

To illustrate sections 3, 4, and 5 we examine several interesting special 
cases. 

6.1. Hotelling's Generalized Student Ratio (Hotelling's T2) 

Suppose we have a random sample of n independent observations from 
a multivariate normal population, and we want to test a null hypothesis 
H,, specifying the population means, against an alternative hypothesis HI, 
that the population means are not as specified. (See section 3.1 of 
chapter 12.) 

The matrices in the regression models (3.1) and (3.2) are specified by 

with X' a 1 x n matrix. We find that X'X = n, 

The normal equations (4.1) thus yield 

j)1 = (6.2) = 9, 

and [see (4.3)] 
n 

(6.3) (n -1)Z=YfY-nyy  --' = ( 2 &ij - gj)@il- g l ) )  
i=l 

where S, is the k, x k, unbiased covariance matrix of the 3's. 
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Since B2 is specified, (4.3) yields 

Note that .?(HI, H2) is Hotelling's generalized Student ratio (Hotelling's 
P) (see section 4 in this chapter and section 4 in chapter lo), or from 
(4.5) with kl = 1, 

where F has the analysis of variance distribution with n1 = k2 and 
n2 = n - k2 degrees of freedom under the null hypothesis H2 in (6.1). 
[Cf. Anderson (1958, p. 107), Rao (1952, p. 243).] 

6.2. Centering 

[Cf. (5.14)-(5.19) in chapter 10.1 We may explicitly introduce the 
mean value of y, in (3.1) by taking x, = 1, i = 1, 2, a ,  n, so that the 
matrix X' of (5.2) is partitioned as 

As in (5.14)-(5.17) in chapter 10, we have then that 

(S, is the (k, - 1) x (k, - 1) unbiased covariance matrix of the x's) 
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We also find, as in (6.1), and from (5.1 l), that [cf. (5.18) and (5.19) in 
chapter 101 

(S, is the k2 x (k, - I) unbiased covariance matrix of the y's with the 
x's, with Si, = S,). 

For the partitioning given by (6.6) the analysis summarized in table 5.1 
becomes table 6.1 . 

TABLE 6.1 

Variation due to Generalized Sum of Squares D.F. 

Means 
H2:B2 = @, 0) 

Difference ~sm1B: = Y'~ .~S~ : ,& .~Y 

Hl :B1 = #, B:) B1xfB1' = fly' + Y'&.,~:,X;.~Y k1 

Difference Y'Y - B1xXB1' = (n - k,)E n - kl 

Total Y'Y n 

If we center the y's and x's about their respective sample averages, the 
analysis in table 6.1 may be condensed into table 6.2. J(H,, HJ = 

N tr P1~,~;l~x, = (kl - 'Ik2@ - F, where F has the analysis of 
n - k , - k 2 + 1  
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variance distribution with [(k, - l)k,(l + c)] and [(n - k, - k, + 1)(1+ c)] 
degrees of freedom, c = (k, - 2)(k2 - l)l(n - k,), under the .null 
hypothesis B = Be = 0. [J(H,, H,) is asymptotically distributed as XJ 
with (k, - I)k, degrees of freedom.] 

TABLE 6.2 

Variation due to Generalized Sum of Squares D.F. 
- -- 

Multivariate regression N S V S ~ S W  k, - 1 

Difference (n - kl)Z n  - kl 

Total NSVV n - 1  

More generally, if we center the y's and x's about their respective sample 
averages, the analysis in table 5.1, for what is essentially a three-partition 
subhypothesis, would be similar except that n would be replaced by n - 1 
and k, by kl - 1 and of course ql + 9, = k, - 1. 

6.3. Homogeneity of r Samples 

Suppose we have r independent samples respectively of n ,  i = 1, 
2, *, r, independent observations, from multivariate normal populations 
with a common covariance matrix. We want to test a null hypothesis 
H,, the r population mean matrices (vectors) are equal, against an alter- 
native hypothesis H,, the population mean matrices are not all equal. 
[Cf. (6.1 5)-(6.24) in chapter 1 0.1 

For the ith sample the regression model is [cf. (3.2)] 

where 

Y: = yn, ' '3 yin), Y; = (~i51, Yitzr ' ' ' 9  ~ i 5 k ) r  

~ : = ( 1 , 1 , .  . , I ) ,  1 x n , ,  B: = (Pi19 Pi23 . . '9  Pix), 

i = 1, 2, . a, r samples, j = 1, 2, -, n, observations. 

The alternative hypothesis is 
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and the null hypothesis of homogeneity is 

We may write the regression model for the r samples combined, under 
Hl, as 

where 

Z' = (z;, z;, . *, Zi), Y' = (Yi, Y;, *, Yi), 

XI' = 
9 B1 = (4, B2, *, B,). 

Under H2, the regression model for the r samples combined is 

where Z and Y are defined as in (6.12) and x2' = (Xi, Xi, *, F), 
B2 = B.. 

We thus have under Hl 

The normal equations (4.1) are 
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that is, 8, = 1,. From (4.3) the estimate of I: is 

1 1  1 1 '  (6.17) (n - r ) g  = Y'Y - 8 x 'X B 
= Y;Yl + + Y:Y, 

= YiYl  - n$& + + Y;Y, - n,jirji; 

= NIS, + + N$, = N S ,  

where N , = n , -  1, n = n l + n 2 + .  * + n v  N = = N l + N , + .  * +  
N, = n - r, and S, is the unbiased covariance matrix of the y's within the 
ith sample. 

Under H, we have 

The normal equations (4.1) now yield 

We therefore have [cf. (2.17) in chapter 93 

where d,  = Y i  - 7 ,  S is defined in (6.17), and S* = n1dld; + + +n,.d& 
is (r - 1) times the unbiased covariance matrix of the 1's between samples. 
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Note that 

We may write [cf. (6.6) in chapter 101 

The foregoing is summarized in table 6.3 (cf. table 6.2 in chapter 10). 

TABLE 6.3 
Variation 

due to Generalized Sum of Squares D.F. 

Difference, d f  + . + nrd,.d: = S* 
between 

HI : Bi n1J1Ji + . + n,J,Ji r 

Difference, 
within Y'Y - n,y,Ji - . . . - nrJ,Ji = NISI + . . . + N,Sr = N S  n - r 

Total Y'Y n 

Writing table 6.3 in the usual analysis of variance form, we have table - 
(r - I)k2(n - 

6.4. J(H,, HJ = tr S-IS* = - F, where F has the analysis 
n - r - k , + l  

of variance distribution with [(r - I)k,(l j c)]  and [(n - r - k ,  + l)(I + c)]  
degrees of freedom, c = (r - 2)(k2 - I)/(n - r) ,  under the null hypothesis 
H, of (6.1 1 ) .  Asymptotically, J(H,, H,) is distributed as x2 with k,(r - I )  
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degrees of freedom. [Cf. the direct derivation in Kullback (1956, section 
5).] For r = 2 see problem 12.14 and Anderson (1958, pp. 108-log), 
Rao (1 952, pp. 73-74). 

TABLE 6.4 

Variation due to Generalized Sum of Squares D.F. 
- - 

Between n,dld; + . . + n,d,.d; = S* r - 1  

Within NIS1 + • . + N,S, = NS n - r  

Total Y'Y - nfi' n o  1 

Statistics of the form tr S-IS* were first introduced by Lawley (1938) 
and Hotelling (1947, 1951). The asymptotic behavior of the distribution 
of this statistic was investigated by Ito (1956), who gives the percentage 
points of the distribution as an asymptotic expression in terms of the 
corresponding percentage points of the x2-distribution with (r - 1)k2 
degrees of freedom. 

6.4. r Samples with Covariance 

Suppose we have r independent samples, respectively, of ni, i = 1, 2, . . . , r, independent observations, from multivariate normal populations 
with a common covariance matrix. We shall examine some hypotheses 
more general than those of section 6.3. 

6.4.1. Test of Regression. Suppose we want to test a null hypothesis H2, 
there is no linear regression, against an alternative hypothesis HI, there 
is a common linear regression in the r samples. 

For the ith sample the regression model is [cf. (3.2), (6.9)], 

where Z,, Y, are defined in (6.9), 

Xil=(1, 1,.  . 1 )  1 X ni, Bil = (Pill, Pi219 ' . - 9  Pik*l), 

xlj = (xij29 . . xi2 = (xi,, xi2, . ., xin), ' 9  ~ijk>, 
i = 1, 2, -, r samples, j = 1, 2,.  . *, ni observations, 

B.2 = (Pm), P = 1, 2,.  . . , k 2 9  q = 2, 3, -, k;. 

The alternative hypothesis of a common linear regression is 
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and the null hypothesis of no regression is 

(6.26) H,:B: = (pi1, p:21, . . ., phi), B?, = 0. 

We may write the regression model for the r samples combined, under 
Hl, as 

(6.27) 1 1' Z = Y - x~B:' - X2B2, 

where Z and Y are defined in (6.12), 

Under H,, the regression model for the r samples combined is 

where Z and Y are defined in (6.27), ~ , 2 '  = X?, and = (&, B&,* . *,B:&. 
We thus have [cf. (6.14)] 

where yi is defined in (6.15), 
r nr 
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(6.33) 

- - i1-r ;:::: 
x* "'X, 2; 

that is, x:., is an n x (k, - 1) matrix of the x's centered about 
respective sample averages. From (6.33) and (6.31) we have 

their 
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where N, = n, - 1, N = Nl + N2 + . . + N,, Si, is the k2 x (kl - 1) 
unbiased covariance matrix of the y's and x's within the ith sample, and 
s:, = s,,, 

where Sin = Xi2Xi2, i = 1, 2, -, r, 

= - n1Z1Z3 + . . + (S, - n,jijZi), 
= N~S, + . + N .  = NS,, 

where Si, is the unbiased covariance matrix of the x's within the irh 
sample. 

From (5.7) and (5.1 1) we have 

(6.37) B: = Y'X' 2.1 sl-' 1 - 1 9  Bi = (yl, J 2 9  . . ., yr) - BXzl, z29 . . *, zr), 
B; = (yl, h, . . '9 yr). 

From (5.8) and (5.13) we have 

(6.38) (n - kl + 1 - r)E = Y'Y - nJJ; - . - nrgryi - Bs&.,B; 
= NS,, - Bs&.lBg, 

where NS,, = N&,, + . . + Nary,, and S,,, is the unbiased covariance 
matrix of the y's within the ith sample [cf. (6.17)]. 

TABLE 6.5 

Variation due to Generalized Sum of Squares D.F. 

H2 : (6.26) nlYIY; + . + n,.j+g: 

Difference w.lg = NS&~&%= 

Difference NSyy - f#S&.,K = (n - kl + 1 -r)2 n -k l+  1 - r  

Total Y'Y n 
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We summarize the preceding analysis in table 6.5 (cf. table 5.1). 
(kl - 1)k2(n - kl + 1 - 

P(H,, H,) = tr %lB;sh.,&' = F, where F 
n - k l + l  - r - k 2 + 1  

has the analysis of variance distribution with [(k, - l)k,(l + c)] and 
[(n - k, - k, - r + 2)(1 + c)] degrees of freedom, c = (k, - 2)(k2 - 1)/ 
(n - k, + 1 - r), under the null hypothesis H, of (6.26). Asymptotically, 
J(H,, H,) is distributed as 2 with k2(kl - 1) degrees of freedom. 

6.4.2. Test of Homogeneity of Means and Regression. If instead of the 
null hypothesis H,, there is no regression [see (6.2611, we want to test a 
,null hypothesis that there is no regression and the means are homogeneous, 
against the alternative hypothesis H, in (6.25), then we must examine the 
null hypothesis H3 

The results under H, are those derived in section 6.4.1. The results 
under H3 are similar to those in section 6.3 under H,, that is, 

We summarize the analysis covering H,, H,, H3 in table 6.6, where Szv 
is the matrix S* in table 6.3 (to show its relation to the y's). S(H,, H3) = 

TABLE 6.6 

Variation due to Generalized Sum of Squares D.F. 

H, : (6.39) nm' 

Difference nldld; + . + n$& = S L  

H, : (6.26) nlf l f ;  + . + n,f,fi  

Difference = N S ~ ~ & % ~  

Hl : (6.25) n l f l f ;  + + nrfrjii + &s:,.~K k l -  1 + r  

Difference NSm - &%L.,8: = ( N  - kl + 1)2 N - k l + I  

Total Y'Y n 
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the analysis of variance distribution with [(k, + r - 2)k2(l + c)] and 
[(N - k, - k, + 2)(1 + c)] degrees of freedom, c = (k, + r - 3)(k2 - 1)/ 
(N - k, + I), under the null' hypothesis H, of (6.39). Asymptotically, 
J(H,, H3) is distributed as x2 with (k, + r - 2)k2 degrees of freedom, 
tr E-ls:,, with (r - l)k2 degrees of freedom, is a test of the homogeneity, 
and tr %l&S&.,&', with (k, - l)k, degrees of freedom, is a test of the 
regression. 

6.4.3. Test of Homogeneity, Assuming Regression. Suppose we assume 
that there is a common linear regression in the r samples. We want to 
test a null hypothesis of homogeneity of the sample means. The alterna- 
tive hypothesis is H, in (6.25), and the null hypothesis is 

The results under H, are those derived in section 6.4.1. 
Under H4 we see that [cf. (6.27) and (6.40)] 

so that [cf. (6.40)] 

and [cf. (6.32), (6.35)] 
r ni 

(6.44) SL = S, + + . + s,, =(z z g i j F i j w ) *  
i= l  j-1 

We also find that [cf. (6.30)] 

We thus have [cf. (6.33)] 
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that is, Xi., is an n x (k, - 1) matrix of the x's centered about their 
respective combined sample averages, and [cf. (6.34)] 

(6.47) Y'X:., = Y;X12 - Y;Xllf' + . + Y:X, - Y&f' 

= Y;X12 - n1ylf' + . + YiX, - n7'y,f' 

= Y;X12 + . . . + YiX,  - nyf' 

= Y;X12 - nl7,f; + . + Y:X, - n7'y7'Z: 
+ nl7,jZ; + + n7'y,Z: - nyf'  

= NSy, + S,*,, 
7' 

where S, is defined in (6.34), S:, = 2 ni(yi - y)(fi - f) '  with S:; = S$#, 
i= l  

S:% is a k2 x (k, - 1) matrix proportional to the between unbiased 
covariance matrix of the 9's with the x's, and [cf. (6.36)] 

4 4-1 4 - - I  - (6.48) %., = Si2 - S2,S11 S12 = Si2 - nxx - S,, + + S, - n f f '  

+ n,jZ,f: - n f f '  
= 'NS,, + S& = Si2., + szx, 

r 

where S,, is defined in (6.36) and S& = 2 ni(fi - f)(fi - 2)'. 
u'= 1 

From (5.7) we then have 

where Y'X~., and S&., are given respectively in (6.47) and (6.48). 

TABLE 6.7 

Variation due to Generalized Sum of Squares D.F. 

H4: (6.41) nyy' + B$i2.,B;' k1 

Difference Sz,, + B ~ s ~ ~ . , B ~ '  - B4s4 2 2'2.1 B4' 2 r - 1  

Hl : (6.25) n l ~ l ~ j  + + nT5rTy: + B ~ S ~ ~ . ~ B : '  k l - I + r  

Difference NSVV - B's' 2 22.1 B1' 2 = (N - kl + 1)2 N - k l + l  

Total Y'Y n 

We summarize the analysis covering H, and H4 in table 6.7. . f ( ~ , ,  H4) 
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has the analysis of variance distribution with [(r - I)k,(l + c)] and 
[(N - k, - k, + 2)(1 + c)] degrees of freedom, c = (r - 2)(k2 - 1)/ 
(N - k, + l), under the null hypothesis H4 of (6.41). Asymptotically, 
J(H,, H4) is distributed as x2 with k2(r - 1) degrees of freedom. 

Note that in the usual analysis of variance relation for sums of squares, 
total = within + between, we may write 

(6.50) y'y - nyy' = S,*,* = NS,, + S:,, 
sz*,* = NSz, + Szx, 
S,.,* = NS,, + S,*,, 

(N - k, + 1)E = NS,, - NS,$;~S,,, is computed in terms of within 
values, and 

is computed in terms of between values and the difference between an 
expression in total values and within values. 

7. CANONICAL CORRELATION 

We shall now examine tests of hypotheses associated with the canonical 
correlations defined in section 7 of chapter 9. We shall need the analysis 
summarized in table 6.2. 

For the y's and x's centered about their respective sample averages, we 
have, according to the analysis in table 6.2, 

Suppose that, as in section 7 of chapter 9, we take the y's as the second 
set of k, variates and the x's as the first set of (k, - 1) variates into which 
a population of (k, - 1) + k, variates has been partitioned. If we write, 
in accordance with the notation in section 7 of chapter 9, S,, = S,, 
S, = Sa, S, = & ,  S,, - S,$3&1S,Y = S2, - S21Sfi1S12 = SB.,, then 
(7.1) becomes 

an estimate for the parametric value in (7.5) of chapter 9. 
We may also express .?(H,, H,) as (n - kJ times the sum of the k, 

roots (almost everywhere positive) of the determinantal equation 

where we have assumed that k, d k1 - 1 so that the rank of the k, x k, 
matrix S2,Sfi1S12 is k,. 
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Replacing S,,., in (7.3) by S, - S2,Sfi1S12, we find 

where I = r2/(1 - r2), r2 = 1/(1 + I). The r's thus defined are the 
observed values of H.otelling's canonical correlation coefficients [Hotelling 
(1936); cf. (7.1 1) in chapter 91. 

Accordingly, we may also write (7.2) as [cf. (7.16) in chapter 91 

Under the null hypothesis H2: B2 = 0, the results are equivalent to 
those under the null hypothesis that in a ( (k ,  - 1) + k2)-variate normal 
population the set of the first (k, - 1) variates is independent of the set of 
the last k2 variates, the hypothesis considered in section 7 of chapter 9. 
[Cf. Anderson (1958, p. 242), Hsu (1949, pp. 391-392).] (See section 
3.6 in chapter 12.) 

Note that the terms in (7.5) depend only on the sample correlation 
coefficients, for if the elements of the matrices S,,, S,,, S2, are expressed in 
terms of the standard deviations and correlation coefficients, it may be 
shown (this is left to the reader) that the standard deviations divide out and 

in terms of the related correlation matrices. 

8. LINEAR DISCRIMINANT FUNCTIONS 

8.1. Homogeneity of r Samples 

The samples and hypotheses are those specified in section 6.3. We 
want to examine the analysis of the linear discriminant function described 
in section 5 of chapter 9 with population parameters. We seek the linear 
discriminant function 

i = 1, 2, -, r, j = 1, 2, . -, ni, where yi, is defined in (6.9), that is, 
the same linear compound of the 9's for each sample. 

[Cf. Binet and Watson (1956), Roy (1957, pp. 95-104).] 
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We thus get for the W'S, as the estimate of the parameter in (5.5) of 
chapter 9, and corresponding to (6.21), 

The value of a for which J(H,, Hz; w) is a maximum satisfies (by the 
usual calculus procedures) 
(8.3) S*a = ISa, 

where I is the largest root of the determinantal equation 

which has (almost everywhere) p positive and (k, - p) zero roots, with 
< m i  ( k ,  r - 1 )  Denoting the positive roots in descending order as P - 

I,, I,, . 9 P' 

(8.5) J(H,, H,) = tr S-IS* = I, + I, +. + I, 
=  HI, Hz; 13 + + J(H,, H,; I,,), 

where J(H,, H,; I,) = I, is (8.2) for a satisfying (8.3) with I = I,. 
The discrimination efficiency of the linear compound associated with 1, 

may be defined as (see section 6 of chapter 3 and section 5 of chapter 9) 

Eff. (Ii) = 4 H2 ; 4) - - Ii 
J(Hl,H& / , + I , + . . - + I , , '  

Asymptotically, under the null hypothesis of homogeneity H, in (6.1 I), 
we have the x2 decomposition [cf. Rao (1952, p. 373)] /' 

This is to be taken in the sense that I,,, + + I,, is distributed 
asymptotically as x2 with (k, - m)(r - 1 - m) degrees of freedom, not 
that I,,,, a, I,, have asymptotic independent x2-distributions. (See 
section 6.4 of chapter 12.) 

8.2. Canonical Correlation 
[Cf. Marriott (1952).] The sample and hypotheses are those specified 

in section 7. We want to examine the analysis of the linear discriminant 
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function described in section 3.2 with population parameters. We seek 
the linear discriminant function 

that is, the same linear compound of the y's for each observation. 
We thus get for the w's, as the estimate of the parameter in (3.4), 

corresponding to the hypotheses and notation of (7.2), 

The value of a for which f ( ~ , ,  H,; w )  in (8.9) is a maximum satisfies 
(by the usual calculus procedures) [cf. (7.10) in chapter 91 

where I is the largest root of the determinantal equation 

Note that (8.11) is the same as (7.4), and (8.10) is the same as 
S,~S;'S,,~ = r2S2,a. Denoting the k, (almost everywhere) positive 
roots in descending order as I,, I,, a,  I,¶, we may also write the 
decomposition in (7.5) as 

(8.12) f(H1, H2) = f(ff1, Hz; 11) + + f ( ~ , ,  H,; I,), 

where f ( ~ , ,  H,; 4) = (n - kl)li = (n - kl)r:/(l - r:) is (8.9) for a satis- 
fying (8.10) with 1 = 1,. 

The discrimination efficiency of the linear compound associated with li 
may be defined as in (8.6). 

Asymptotically, under the null hypothesis H,: B = B2 = 0, we have 
the x2 decomposition 

(8.13) 1 ,  2 ; , = (n - kl)lk, = (n - k1)ri2/(l - ri:) kl - k,  d.f. 
&&, H,; lk2-l) = (n - kl)lk2-l = (n - k l ) r~ , - l / ( l  - r i r l )  kl - k ,  + 2 d.f. . . . . . . . . . . . . . . . . . . . . . . .  
. f ( ~ ~ ,  H,; 11) = (n  - kl)ll = (n - kl)r:/(l - r:) kl + k,  - 2 d.f. 

As in (8.7), this is to be taken in the sense that (n - k1)(lm+, + + I , )  
is asymptotically distributed as x2 with (kl - 1 - m)(k, - m) degrees' of 
freedom, not that (n - kl)lm+l, a ,  (n - k1)lkt have asymptotic independ- 
ent x2-distributions. (See section 6.4 of chapter 12.) 
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8.3. Hotelling's Generalized Student Ratio (Hotelling's T ~ )  
The sample and hypotheses are those specified in section 6.1. We 

want to examine the analysis of the linear discriminant function described 
in (5.2) of chapter 9 with population parameters. We may treat this as 
a special case of that in section 8.2 by specifying H2 in (6.1) with B2 = 0 
and denoting the values in (6.1), (6.2), (6.3) as 

X'X = nSll = n, Y'X = nS2, = ng, Y'Y = nS2,, 

so that the coefficients of the linear discriminant function (8.8) must 
satisfy, as in (8.10) and (8.1 I), 

where I is the largest root of 

Here there is just a single root [cf. Anderson (1958, p. lo$)] 

the canonical correlation squared is 

and the coefficients of the linear discriminant function are a = Ss17. 
[Cf. the discussion following (5.2) in chapter 9.1 The linear discriminant 
function is thus w = a'y = ~ ' ~ z y ,  and the coefficient vector of the 
linear function of the x's, whose correlation with w = a'y yields the 
canonical correlation r above, is proportional to a% = Y's;,'~. [Cf. 
Fisher (1 938).] 

9. EXAMPLES 

We shall illustrate some of the particulars in the preceding sections with 
numerical examples. The aim is the illustration of the computational 
procedure, not the complete analysis per se of the problem from which 
the data may have arisen. 
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9.1. Homogeneity of Sample Means 
Pearson and Wilks (1933) give some data from Shewhart (193 1) for five 

samples of 12 observations each on tensile strength, y,, and hardness, y, 
in aluminum diecastings. It is desired to test whether the sample averages 
are homogeneous. (A test for the homogeneity of the covariance matrices, 
to be discussed in chapter 12, leads us to accept a null hypothesis that the 
covariance matrices are the same.) This corresponds to the analysis in 
table 6.3 with k, = 2, r = 5, n, = n, = - - -n ,= 12,n=60.  

The five sample averages are [Pearson and Wilks (1933, p. 35611 : 

Strength Hardness 

The elements of the matrices corresponding to the generalized sums of 
squares are : 

D.F. Y? Y: YrY, 

Between r - 1 = 4 306.089 662.77 214.86 

Within n - r = 55 636.165 7653.42 1697.52 

Total n - 1 = 59 942.254 8316.19 1912.38 

that is, 

4 ~ 2 x 5 5  
Y(H,, H,) = tr S-IS* = 56.3 = F or F = 6.91, exceeding the 

5 5 - 2 + 1  
0.001 point of the F-distribution for n, = 8 and n, = 57 degrees of 
freedom. For 4 x 2 = 8 degrees of freedom, we find from tables of the 
Xg-distribution that Prob (2 2 56.3) < 0.00001. We therefore reject the 
null hypothesis of homogeneity. (Pearson and Wilks use a different 
statistic, denoted by L,, with observed value 0.6896 and for which Prob 
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(L, < 0.6896) = 0.0000019.) To find the linear discriminant functions 
for this example, the determinantal equation (8.4) is 

and the quadratic equation yields the roots 1, = 51.702, 1, = 4.614. 
The decomposition corresponding to (8.7) is therefore 

The root I, is not significant and we proceed to find the coefficients of the 
linear discriminant function associated with I,. With I = 51.7 = I,, the 
equations (8.3) become 

-291.906 -1380.809 
-1380.809 -6531.445 

that is, 
29 1 .906a1 + 1380.809% = 0 
1380.809al + 6531.445% = 0 

yielding %/a1 = -0.2 1'1. Thus, the only significant linear discriminant 
function, that associated with the root I, = 51.7, is w = yl - 0.211~~. 

9.2. Canonical Correlation 

Hotelling (1936) considered the following data, given by Kelley (1928, 
p. 100) for a sample of 140 seventh-grade school children, in which x, and 
x2 refer to reading speed and reading power respectively, and y, and y2 
to arithmetic speed and arithmetic power respectively. The data have 
been normalized and the correlation matrix of the 140 observations is* 

We find that 

* Reprinted from Crossroads in the Mind of Man by Truman L. Kelley with the 
permission of the publishers, Stanford University Press. Copyright 1928 by the Board 
of Trustees of Leland Stanford Junior University. 
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and the determinantal equation corresponding to (7.4), 

yields the roots rl = 0.1556, r: = 0.0047. 
The decomposition corresponding to (8.13) is therefore 

.?(H,, H2) and Y(H,, H2; r:) are significant at the 0.005 level. There is thus 
only one significant canonical correlation and the coefficients of the 
associated.linear discriminant function must satisfy (8. lo), or the equivalent 

that is, 
-0.0253a1 - 0.0618% = 0 

or a,/% = -2.44. The linear discriminant function is w = - 2 . 4 4 ~ ~  + y2. 
[This corresponds to the second of the pair of linear discriminant functions 
in (7.19) of chapter 9.1 We reject the null hypothesis that the y's (arith- 
metic speed and arithmetic power) are independent of the x's (reading 
speed and reading power). We now test the subhypothesis that reading 
power is not relevant, that is, the coefficient of x2 in the regressions of y, 
and y2 on x, and x2 is zero. We therefore compute the values needed for 
the analysis of table 5.1, keeping in mind the remark at the end of section 
6.2. 

In the notation of section 5.1 we have 

Y'Y = (0.4248 1.0000 0.4248) 1.0000 ' (Sll S )  - - (1.0000 0.6328) 
3 2 1  S z 2  0.6328 1.0000 ' 
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Table 9.1 corresponds to table 5.1 and provides the appropriate 
analysis. We find that 

TABLE 9.1 

Variation due to Generalized Sum of Squares D.F. 

(0.0582 0.01 4 1) 
H2 : B2 = (q, 0) BisllB: = 0.0141 0.0034 1 

Difference Bis22.1BF = 1 

&, 6) YX'XB~' (0.m3 0.0048 2 

137t = (0.8697 0.4205) 
Difference 0.4205 0.9952 137 
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which is of course the value already found in terms of the canonical 
correlations, and 

exceeding the 0.001 point of the F-distribution for n, = 2 and n, = 136 
degrees of freedom. We therefore reject the null subhypothesis that x2 
is not relevant. A similar test can be made of a subhypothesis with 
respect to x,, but we leave this to the reader. 

The coefficient vector of the linear function of the x's whose correlation 
with the linear function of the y'S, M, = - 2 . 4 4 ~ ~  + y,, yields the canonical 
correlation r,, is proportional to a'B, that is [cf. (7.10) in chapter 91, 

9.3. Subhypothesis 
Consider the following correlation matrix used by Thomson (1947, 

p. 30) to illustrate the computation of canonical correlations and by 
Bartlett (1948) to illustrate the relevant significance tests, assuming n = 20: 

We associate the first three rows with x,, x,, x3, and the last two rows 
with y,, y,. Because of the relatively large values of the correlation of x3 
with x, (0.6) and with x, (0.4), we want to test a null subhypothesis that x3 
does not contribute significantly, in addition to s, and x,, in the regression 
of the y's on the x's. 

The determinantal equation corresponding to (7.4) is 
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and yields the roots r: = 0.6850, r i  = 0.4530. The decomposition 
corresponding to (8.13) is 

Here all values are significant at the 0.005 level, both canonical correlations 
are significant, and there are two significant linear discriminant functions. 

In  the notation of section 5.1 we have 

Table 9.2 corresponds to table 5.1 and provides the appropriate analysis. 
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exceeding the 0.001 point of the F-distribution for n1 = 7 and n2 = 17 
degrees of freedom. J(H,, H2) = 48.00 is also the value obtained by the 
use of the canonical correlations. 

not exceeding 3.683, the 0.05 point of the F-distribution for n, = 2 and 
n2 = 15 degrees of freedom. We therefore accept the null subhypothesis 
that the x, variate contributes no significant information. 

TABLE 9.2 

Variation due to Generalized Sum of Squares D.F. 

H2: B2 = (g, 0) BfsllBf = (0.5434 0.32 12 0.6545 0.32 12) 2 

Difference 1 

Total 

To carry out the test of a similar subhypothesis on the pair of variables 
x2, x,, we have : 
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Table 9.3 corresponds to table 5.1 and provides the appropriate analysis. 

TABLE 9.3 

Variation due to Generalized Sum of Squares D. F. 

Difference 

Hl:B1 = (@, B:) BIX'*l' = (0.5434 0.32 10 0.6693 0.32 10) 3 

Difference 6~ - - (0.4566 0.0790 0.0790) 0.3307 16 

Total 

between 4.772 and 7.944, the 0.01 and 0.001 points of the #-distribution 
for n1 = 4 and n, = 16 degrees of freedom. We therefore reject the null 
subhypothesis that both x, and x3 are not relevant. 

Finally, if we consider a three-partition subhypothesis on the x's, then 
in the notation of section 5.2 we have: 
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Because of (5.19) we summarize these results and tables 9.2 and 9.3 in 
table 9.4. 

TABLE 9.4 

Variation due to Generalized Sum of Squares D.F. 

B1 yX(x'X)-lX'Y = 

Difference 162 = (0.4566 0.0790 0.0790) 0.3307 

Total 
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10. REPARAMETRIZATION 

10.1. Hypotheses Not of Full Rank 

(Cf. section 9 of chapter 10.) Suppose that the components of the rows 
of B in (3.1) are not linearly independent, but, for each row are linear 
functions of the samep < k, parameters, that is, 

(10.1) B = I'G', 

where I'=(yij), G'=(gjk), i =  l , 2 , - - - , k D  j =  l,2; - * , p ,  k =  1, 
2, - -, k,, G' is of rank p < k,, and I' of rank min (p, k3. This implies 
that the matrix X in (3.2) is of rank p < k,, and conversely, so that X'X 
is now a positive (not positive definite) matrix of rank p < k,, is therefoie 
singular and has no inverse, so that we must re-examine the solution for 
B in (4.1). We may write (3.2) as 

where A = XG is an n x p matrix of rank p. The least squares estimate 
of I' is derived from the nomal equations [cf. (4.1)] 

(10.3) ~ A ' A  = Y'A or ~G 'X 'XG = Y'XG. 

The estimate of B is obtained from B = f ~ ' ,  or 

From (10.2) and (10.3), we see that 

f = Y'A(A'A)-I = (Z' + I'A')A(A'A)-l, 

so that ~ ( f )  = I' and E@) = E(~)G' = I'G' = B, that is, f' and B are 
unbiased estimates of I' and B respectively. 

Corresponding to (4.3), we have 

(10.5) .?(H,, H,; 0,) = tr 2-l(fl - F)A'A@' - P) '  

= tr E-l(f1- P)G'x'xG(~~ - P) '  

= tr 2-l(Bl - B~)x'x(B~ - B,)' 

where (n - p)2 = Y'Y - f l~ 'd1 '  = Y'Y - fl'X'B1'. 
Note from (10.3) that BX'XG = Y'XG represents k,y linear functions 

of the y's that are normally distributed and that are also linear functions 
of the 8's. These are unbiased estimates of the same linear functions of 
the P's. Since Bx'xG = Y'XG = ~G'X'XG, we may make similar 
statements about the y's and their estimates. Consider now any other 
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set of k2p linear functions of the y's, say Y'L, where L is an n x p matrix 
of rank p. Since 

(10.6) E(Y'L) = E(Z' + BX')L = BX'L = rG'X'L, 

Y'L is an unbiased estimate of I' if G'X'L = I,, thep x p identity matrix. 
To obtain the covariance matrix of the linear functions of the y's we 
proceed as follows. Instead of the partitioning of the matrix Y' given 
for (3.2), consider the partitioning 

(10.7) 

so that 

(1  0.8) Y'L = 

CL2L i l  
with q;L a 1 x p matrix representing p linear functions of the n observed 
values of the jth y variable. Considering the pk, x 1 matrix 

the covariance matrix of the pk, linear functions in (10.8) is 

i L' cov (q,q;)L L' cov (qlq;)L . L' cov (qlq;JL 

(10.10) L' cov (q,q;)L L' cov (q2q;)L L' COV (t;lq;)L . . . . . . . . . . . . . . . . . .  \ 
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ollL'L o12L'L . olkSL'L 

= i o*,L'L o ~ L ' L  0,;L'L . . . . . . . . . .  
okS1L'L okS&'L - - ok&¶L'L 

= (C) x . (L'L), 

with I, the n x n identity matrix and C the covariance matrix of the y's. 
The notation (C) x .(L'L) means the Kronecker or direct product of 
matrices [defined by the last two members of the equality, MacDuffee 
(1946, pp. 81-88), see also Anderson (1958, p. 347), Cornish (1957)], and 
(C) X . (L'L) is a pk, x pk, matrix. Similarly, writing 

and considering the pk, elements off '  in their order in the 1 x pk, matrix 
(9;' 9;, *, 9;). we have for the estimates in f' the covariance matrix 

~,(A'A)-' G=(A'A)-' . ~,;(A'A)-' 
= I . . . . . . . . . . . . . .  I = (C) x . (A'A)-I 

\ ( A )  oka2(A'A)-' o ~ ~ J A ' A ) - ~ /  

= (C) x (G'X'XG)-l, 

a pk, x pk, matrix. Similarly, writing 

we get for the klk2 elements of B the covariance matrix 

(10.14) (C) x . (G(G'X'XG)-'G'). 
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From lemma 5.4 of chapter 3 with k = n, r = p, B = a$,, i = 1, 
2, . ., k,, I, the n x n identity matrix, C = L, U = G'X', UC = G'X'L 
= ID, 

(10.15) oiiL'L 2 oli(G'X'XG)-l, 

where (10.15) means that any quadratic form with matrix oiiL'L is greater 
than or equal to the quadratic form with matrix oii(G'X'XG)-l. From 
(10.15), (10.12), (10.10), and lemma 5.1 of chapter 3 we conclude that the 
variances of the components of f are the smallest among all linear 
functions of the y's that are unbiased estimates of r. Similarly, Y'LG' 
is an unbiased estimate of B if G'X'L = I,, and as above, we may conclude 
that 

from which we infer that the variances of the components of are the 
smallest among all linear functions of the y's that are unbiased estimates 
of B. 

The value of J(1, 2; 0,) and its estimate is the same for any repara- 
metrization, as is indicated in (10.5). Since there are only p linearly 
independent linear functions of the elements of a row of B, any one such 
set of p linearly independent functions may be derived from any other 
such set by a nonsingular linear transformation. The information 
functions are invariant under nonsingular transformations (see section 4 
of chapter 2, and also section 3 of chapter 9), hence our conclusion. 

We show that the elements of f are sufficient estimates as follows. 
For the model in (10.2), take P = 0 for convenience; then 

We have seen that (T;, ?;, a, T;,) are normally distributed with mean 
(y;, yi, *, y;) and covariance matrix (C) x (A'A)-l. Since the 
inverse of a direct product of matrices is the direct product of the .inverses 
of the matrices [MacDuffee (1946, p. 82)], we have 
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But 

y;A'Ay, yiA'Ay, . . . 
. . . . . . . . . 

YL,A'AY, YL~A'AY, . . . y;*A'Ay, 
so that 

and since oij = oji, we have from (10.19) and (10.18), 

From theorem 4.2 of chapter 2 we conclude that f' is a sufficient estimate. 

Example 10.1. Using the data in section 9.2, that is, 

1.4450 -0.6106) = ( 1.0000 0.6328 '-' = 37 ( -0.61 06 1.2628 ' 0.6328 1.0000. ) ' 
we have 

We find that 

verifying (1 0.19). 
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10.2. Partition 
When the hypotheses call for a partitioning of the parameters into two 

sets, for example as in (5.2), it is possible that linear relations exist among 
the rows of the parameter matrix in one of the partitioned sets only. 
Here it is necessary to apply the procedures of section 10.1 only to the 
partitioned set not of full rank. Thus, suppose that in (5.2) the n x ql 
matrix X, is of rank m < q,. This implies [cf. (10. l)] that 

,where I?, = (yij), G; = (gjk), i =  1. 2,. .,k2, j =  1, 2 , -  *,m, k = 1, 
2, ., q,, G; is of rank m < q,, and I?, of rank min (m, k,). The results 
of section 5.1 are applicable if B, and 8, are replaced in the various 
formulas by I; and f', respectively, X, by XIGl, and (n - q,) degrees of 
freedom by (n - m) degrees of freedom. The estimate 8, is obtained 
from fi, = CG;. Thus, for example, S,, in (5.6) is to be replaced by 
G;S,,G,, where S,, = X;X,, and S,, by G;S,,, where S,, = X;X,. 

Similar remarks also apply for a partitioning into three sets as in section 
5.2, when one of the sets may not be of full rank. 

11. REMARK 

The reader doubtlessly has noted the similarities between the argument 
and results in chapters 10 and 11. As a matter of fact, we shall now 
indicate how the multivariate analogue of an analysis of variance table 
may be derived from that corresponding to appropriate specification of the 
linear regression model in (3.1) of chapter 10. 

Consider the multivariate regression model (3.2), Z = Y - XB'. 
With a' = (a,, %, . ., a,*) any real 1 x k, matrix such that at least one 
of the a's is not zero, 

(11.1) Z a  = Ya - XB'a, 

derived from (3.2), is equivalent to the regression model in (3.1) of chapter 
10, by setting 

(1 1.2) z = Za, y = Ya, f3 = B'a. 

Replace y by Ya, and any specification of by the corresponding @a, 
in any of the sum of squares columns in the analyses tabulated in chapter 
10, or derived by the methods of chapter 10. The results are quadratic 
forms in the a's. Since the relations among these quadratic forms are 
identically true in the a's, we have the corresponding generalized sums of 
squares columns for the multivariate analogue with the matrices of the 
quadratic forms of the a's. This is evident if we compare table 5.1 in 
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chapter 10 and table 5.1 in chapter 11, recalling that k1 in chapter I1 is 
p in chapter 10 and ql in chapter 11 is q in chapter 10. 

Similar remarks apply to the reparametrization, since from (10.2) we 
have 

which is equivalent to (9.2) of chapter 10 by setting, 

(1 1.4) z = Z a ,  y = Y a ,  y =  r'a, A = X G .  

12. PROBLEMS 

12.1. Derive the normal equations (4.1). 

12.2. Verify (5.16) and (5.17). 

12.3. Verify (5.18) and (5.19). 

12.4. Verify (7.6). 

12.5. In section 9.2 test the null subhypothesis that the coefficient of x, in 
the regressions of y, and y2 on xl and x2 is zero. 

12.6. Consider the following data from a problem discussed by Bartlett 
(1947,~. 177); herer = 8, k, = 2,n = n, + .  . . + n, = 57, 

(a) Are the eight samples homogeneous? 
(b) Compute the value(s) for the significant linear discriminant function(s), 

if any. 

12.7. Consider the following correlation matrix, assuming n = 20: 

Carry out an analysis similar to that of section 9.3. 

12.8. Foster and Rees (1957, p. 241) give the following sample unbiased 
covariance matrix based on 82 degrees of freedom: 

If the first three rows are associated with x,, x2, x3 and the last two rows with 
y,, y2, are the regressions of y, and y2 on xl, x2, x3 significant? 
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12.9. Verify (4.4) with the data in section 9.3 assuming B = 0. 

12.10. Cornish (1957, p. 25) gives the following matrices [I have redesignated 
them according to the notation in (4.4); this does not imply the same interpre- 
tation for Cornish's problem] : 

0.072948 - 0.000524 
B = 0, % = (  0.022898 0.000619 

-0.089651 -0.001473 

Cornish (1957) computed the value of the right-hand side of (4.4) as 950.06. 
Verify by computing the value of the left-hand side of (4.4). 

12.11. In the notation of section 5, show that: 

(a) X;X2.1 = 0. 
(b) XiX2.1 = Sn.1 = Xi.lX2.1. 
(c) %: = Y'&.~S~;~ = z'X~.~SL:~ + B:. 
(d) The covariance matrix of the k2q2 elements of fii is (C) x .(ST&). 
(e> Xi.1&3.12 = h . 1 2 .  

( f )  $ = Y'X?.12Sss?12 = Z'X,.l2Sss?l2 + 4. 
(g) The covanance matrix of the k2q3 elements of fi3 is @) x -(s&~). 
(h) Is1 = Is111 * ls22.11 l h . 1 2 1 .  

(0 Xi.1X3.12 = 0. 

12.12. Summarize section 5.2 in a table'similar to table 5.1, with Hl:B1 = 
(B:, .B;, B:), H2 : B2 = (Bi, Bi, O), H3: B3 = (B:, 0, 0). 

12.13. Develop the results corresponding to section 5.2 for a four-partition 
subhypothesis. 

12.14. In section 6.3, for two samples r = 2, show that: 

(nl + n2 - k2 - l)nln2 (Y1 - 72)'S-1(71 - Y2) = F, where F has the 
(') k2(nl + n2 - 2Xnl + n2) 

analysis of variance distribution with k2 and nl + n2 - k2 - 1 degrees of 
freedom. [Cf. Anderson (1958, pp. 108-109), Rao (1952, pp. 73-74, 246- 
248).] 

12.15. Use lemma 5.4 of chapter 3 to show that Y'Y 2 (YfX)(X'X)-l(XfY), 
where X, Y are defined in section 3. (Note the remark following lemma 5.1 of 
chapter 3.) 

IY'Y Y'XI 
IX'Y XfX/ 

12.16. Show that (see section 4) I(n - kl)zl = 
lXfXI  

(Cf. problem 

4.6 in chapter 10.) 
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Mu1 tivaria te Analysis: 

0 ther Hypo theses 

1. INTRODUCTION 

In the preceding chapter, we studied tests of linear hypotheses for 
samples from multivariate normal populations, with the underlying 
assumption that all populations had a common covariance matrix. We 
shall now drop the assumption about common covariance matrices, and 
also consider certain hypotheses on the covariance matrices themselves. 

2. BACKGROUND 

In sections 1 and 2 of chapter 9 we saw that for two k-variate normal 
populations N(pi, C,), i = 1,2, 

(2.1) Z(1:2; On) = d(1:2) = Z(1:2; 2) + Z(1:2; S), 

where Z(1: 2), Z(1: 2; Z), and Z(1: 2; S) are given respectively in (1.2), (2.1), 
and (2.4) in chapter 9. 

Consider a sample 0, of n independent observations from a k-variate 
normal population N(p, C), with mean p' = h, p, - - -, tc,) and 
covariance matrix C = (aij), i, j = 1, 2, - -, k. The moment generating 
function of the sample averages Z' = (Zl, Z2, . . ., Zk) and the elements of 
the sample unbiased covariance matrix S = (sij), i, j = 1, 2, . *, k, with 
N degrees of freedom, is known to be [Anderson (1958, pp. 36, 53, 160), 
Wilks (1943, p. 12111 

where 7' = (T~,  T ~ ,  ., T~) ,  T = (T~~) ,  i, j = 1, 2, . *, k. 
For the conjugate distribution of N(h, &), with mean p* (see section 4 

of chapter 3), 
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where (cf. example 4.2 in chapter 3), 

[For the matrix differentiation needed for (2.4) and (2.7) see problems 
10.2 and 10.3 in chapter 9, Deemer and Olkin (1951, p. 364).] From (2.4), 
T = nC2-l(p* - &, and (2.3) yields 

n 
(2.5) I(* : 2 ; 8) = - (p* - &)'Ccl(p* - pJ. 

2 

Note that I(1: 2; 8) > I(* :2 ; 8) for p* = p1 and C, # C,, and that 
the conjugate distribution is a k-variate normal distribution N(p*, &). 

For the conjugate distribution of N(p,, C,), with covariance matrix C*, 

where (cf. example 4.4 in chapter 3, see problem 10.3 in chapter 9) 

N 
From (2.7), T = - (C2-I - C*-I), and (2.6) yields 

2 

Note that I(1:2; S) = I(* :2; S) for C* = C,. 
Because of the independence of 8 and S in a sample from a multivariate 

normal population, we have (cf. example 4.3 in chapter 3) 
, , 

where T and T are given in (2.4) and (2.7) respectively, or 

(2.10) I(*:2;S,S)=I(*:2;S)+ 1(*:2;S) 
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3. SINGLE SAMPLE 

Suppose we have a random sample of n independent observations from 
k-variate normal populations. Let 8' = (2,, 2,, ., 2,) and S = (s,,), 
i, j = 1, 2, *, k, respectively, be the sample averages and sample 
unbiased variances and covariances with N degrees of freedom. We now 
examine tests of certain hypotheses on the normal populations from which 
the sample was drawn. 

3.1. Homogeneity of the Sample 
Suppose we want to test a null hypothesis of homogeneity, the 

observations in the sample are from the same k-variate normal population 
with specified covariance matrix C, against an alternative hypothesis, the 
observations are from k-variate normal populations with different means 
but the same specified covariance matrix C (cf. example 4.1 in chapter 5). 
We denote the null hypothesis by 

according as the common mean is, or is not, specified, and the alternative 
hypothesis by 

according as the different means are, or are not, specified. With the 
sample values as the statistic T(x) and 

we have [cf. (4.8) in chapter 5 and (2.3) and (2.4) in this chapter] 

where +, satisfies xi = p + C+,. We thus have 

If p is not specified, I(*: Hz(-19) = min I(*: ~,(p(pIx)) is 
Ir 

where 8' = (Z,, Z,, *, ZJ. 
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On the other hand, with the same statistic T(x) but with 

we have [cf. (4.1 1) in chapter 5 and (2.3) and (2.4) in this chapter] 

where ei satisfies xi = pi + C.3,. We thus have 

If the pi are not specified, I(*: HI(. IE)) = min I(*: Hl(pilC)) is 
Pi 

(3.8) I(* : HI(- IC)) = 0. 

If the conjugate distribution in (3.3) is to range over k-variate normal 
populations with a common mean, then CL,* = = pn* implies that 
p + = = p + CT,, or only values T, = = T, = T are 
admissible. With this restriction, (3.3) yields 

(3.9) 
n 

I(H2(- 1 X) : 2 ; On) = nett  - ne'p - - e'C.3, 
2 

where .3 satisfies t = p + C.3, and (3.9) becomes 

n 
I(H2(- 1 X) : 2 ; On) = - ( t  - p)'C-l(t - p). 

2 

Note that [cf. (4.17) in chapter 51 
n 

(3.11) ~(x i -p ) 'Z - l (x i -p )=~ (x i - t ) 'Z - l (x i - t )  
i = l  i = 1 + n(t - p)'C-l(E - p) 

that is, 

The hypothesis H2(plX) is the intersection of two hypotheses: (i) the 
sample is homogeneous; and (ii) the mean for the homogeneous sample is 

n 

p. 21(* :Hz(. IZ)) = 2 (xi - t)'l-'(xi - t), which is distributed as x2 
i-1 

with (n - 1)k degrees of freedom under the null hypothesis, tests the 
homogeneity. 2/(H2(- lC):2; 0.) = n(t - p)'Z-l(t - p), which is dis- 
tributed as x2 with k degrees of freedom under the null hypothesis, tests 
the specified mean given a homogeneous sample. 
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Suppose we assume now that the sample is homogeneous, namely, all 
the observations are from the same k-variate normal population, and we 
want to test a hypothesis about the mean, with no specification of the 
covariance matrix (cf. example 4.2 in chapter 5). Let the hypothesis 
H,(p, C) imply that the sample is from a specified k-variate normal 
population N(p, C), and the hypothesis H,(p) imply that the sample is 
from a k-variate normal population with specified mean p but unspecified 
covariance matrix. Suppose the alternative hypothesis HI implies that 
the sample is from an unspecified k-variate normal population. With 
T(x) = (a, S), where i3 and S are defined in section 2, and 

exp (-W, - p)'C-'(xi - p)) 

we have [cf. (2.9)] 

1 
with i3 = p + - Ct ,  S = (I, - 2 

n N 

In accordance with the general asymptotic theory, under the null 
hypothesis H2(p, L), 2I(*: H , ( k  9) is asymptotically distributed as x2 
with k + k(k + 1)/2 degrees of freedom [cf. Anderson (1958, p. 268), 
Hoyt (1 953)l. 

If the k-variate normal populations have the same covariance matrix 
under Hl and H,, we see from (2.7) that C* = C, implies that T = 0 is 
the only admissible value. This is equivalent to requiring that for samples 
from the conjugate distribution the covariance matrix parameters in the 
distribution of f and S are the same. Accordingly, for I(*: H2(p)), 

1 
f = p + - C+ and f = 0 or S = C, and we have instead of I(*: H2(p, C)): 

n 

Note that this is (2.10) for p, = p and C, = C* = S. We see that 
I(*: H I )  = 0, and the test of the hypothesis II2(p) depends only on the 
value of 21(* : H,(p)), Hotelling's generalization of Student's r-test. 
(See section 6.1 of chapter 1 1 .) 
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3.2. The Hypothesis that a k-Variate Normal Population Has a Specified 
Covariance Matrix 

We now examine the test for a null hypothesis H2 that specifies the 
population covariance matrix, with no specification of the mean, against 
an alternative hypothesis Hl that does not specify the covariance matrix 
or the mean, that is, 

We take the conjugate distribution with parameters the same as the 
observed best unbiased sample estimates, that is, p* = 2, C* = S, and 
(2.10) becomes 

Since the null hypothesis does not specify the mean, writing I(H,: HJ = 
min f(* :2), we find that the minimum discrimination information statistic 

Ir 
is 

(See problems 8.32 and 8.33.) 
In accordance with the general asymptotic theory, under the null 

hypothesis H2 in (3.13), 2 1 ( ~ ,  : H2) in (3.15) is asymptotically distributed 
as x2 with k(k + 1)/2 degrees of freedom. Using the characteristic 
function of the distribution of 2 f ( ~ , :  Hz), it may be shown (see section 
6.2) that a better approximation to the distribution is R. A. Fisher's B- 
distribution [Fisher (1928, p. 665)], the noncentral x2-distribution, where 
for Fisher's distribution 82 r (2k3 + 3k2 - k)/12N, B2 = 2f(H1: Hz), 
with k(k + 1)/2 degrees of freedom [cf. Hoyt (1953)l. The table com- 
puted by Fisher in terms of and B has been recalculated for convenience, 
in terms of 82 and B2 and is Table 111, on page 380. For degrees of freedom 
greater than 7, the largest tabulated, instead of the noncentral x2- 
distribution, 2 f ( ~ , :  H2)(1 - (2k3 + 3k2 - k)/6Nk(k + I)) may be treated 
as a x2 with k(k + 1)/2 degrees of freedom. (See section 6.2.) 

For tests of significance in factor analysis, Bartlett (1950, 1954), using 
a "homogeneous" likelihood function, and Rippe (19513, using the 
likelihood-ratio procedure for the test of significance of components in 
matrix factorization, arrived at the statistic 2 f ( ~ , :  H2) and the same 
conclusion as to its asymptotic x2-distribution. [Cf. Anderson (1958, 
pp. 264-267).] 
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3.3. The Hypothesis of Independence 

When the null hypothesis H2 implies that the variates are independent, 
that is, 

so that P = (pi i )  = I,, where P is the matrix of population correlation 
coefficients, we may write (3.15) as 

with R the matrix of sample correlation coefficients. The hypothesis H2 
in (3.16) is the intersection of two hypotheses, H2 = H2' n H,", with H,' 
the hypothesis of independence that P = I,, and H," the hypothesis 
specifying the variances. We may thus write (3.17) as 

(3.18) 2!(H1 : HJ = 21(H1 : H,') + 24H1 : H,"), 

with 2i(H1: Hzf) = - N log IRI the minimum discrimination information 
statistic for the test of independence [see (6.12) in chapter 91, and 

k 
Oii 1) the minimum discrimination ~I(H,: H,") = N ;r. (2 + log - - 

i= l  Gii  Sii 

information statistic for the test of specified variances. [Note that 
2f(Hl: H,") is the sum of k single-variate statistics.] i t  is known that, 
under (3.16), the sii and rij are independent [Wilks (1932)), so that 
2/(H1: H,') and 2i(Hl: H,") are independent. In accordance with the 
general asymptotic theory, under the null hypothesis H2 of (3.16), 
~I(H,: H,') is asymptotically distributed as x2 with k(k - 1)/2 degrees of 
freedom and ~I(H,:  H,") is asymptotically distributed as x2 with k degrees 
of freedom. It may be shown (see section 6.3) that a better approximation 
to the distribution of 2f(Hl: H,') is Fisher's B-distribution [Fisher (1928, 
p. 665)] with p2 = k(k- 1)(2k + 5)/12N, B2=2ftH1:H,'), with 
k(k - 1)/2 degrees of freedom [cf. Bartlett (1950, 1951 b, 1954), Lawley 
(1940)j and a better approximation to the distribution of ~I(H,:  H2") is 
Fisher's B-distribution with p2 = k/3N, B2 = 2f(Hl: H,"), with k degrees 
of freedom. Note that the degrees of freedom and the values of /P for 
the distributions of the three terms in (3.18) are additive, that is, 
k(k + 1)/2 = k(k - 1)/2 + k and (2k3 + 3k2 - k)/12N = k(k - 1)(2k + 5) 
/12N + k/3N, a property of the noncentral x2 [cf. Bateman (1949), Laha 
(1954)l. (See problems 8.21 and 8.22.) 

Example 3.1. In section 9.2 of chapter 1 1, we had the correlation matrix 
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from a sample of 140 observations. To test a null hypothesis that the four 
variates are independent we compute 2 f ( ~ , :  H,') = - N log I R I  = - 139 log 
0.4129 = 139(0.88431) = 122.92, k(k - 1)(2k + 5)/12N=4(3)(13)/12(139) = 
0.0935. For 6 degrees of freedom the 5% points for B2 corresponding to 

= 0.04 and 0.16 are respectively 12.6750 and 12.9247, and the observed value 
of 2f(Hl: H,') is clearly significant. We reject the null hypothesis of independ- 
ence, as we should, in view of the conclusions in section 9.2 of chapter 11. 

t 

3.4. Hypothesis on the Correlation Matrix 

When the null hypothesis H,":C, = (cr,) = D,P2D, specifies the matrix 
of correlation coefficients P2, but not the diagonal matrix of standard 
deviations 

we have from (3.15) 

2/(H1 : H,") = N log - - k + t r Itp2-l) ( i:,' 
2 / ( ~ ,  : H;) in (3.19), asymptotically, is distributed as x2 with k(k - 1)/2 
degrees of freedom under the null hypothesis H,". Note that (3.19) is 
(2.8) of chapter 9, with Pl = R, and yields ~I(H,:  Hzf) when P2 = I,. 

For bivariate populations, k = 2, (3.19) yields 

which is asymptotically distributed as X2 with 1 degree of freedom. Note 
that (3.20) is (4.33) in example 4.6 of chapter 3, with N for n, and r for p,. 
See the remark in example 5.7 of chapter 5 about a confidence interval 
for p. 

3.5. Linear Discriminant F d o n  

The estimates of the linear discriminant functions in section 6 of 
chapter 9 may be derived by the same procedure as for the information 
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statistics. There is some tutorial value, however, in paralleling the 
discussion with the appropriate sample values. 

We first examine the null hypothesis that specifies &. [See (3.15).] 
We want the linear discriminant function 

(3.21) y = alxl + ag2 + + a$, = a'x, 

the same linear compound for each observation. We seek the a's SO as 
to maximize 

the equivalent of (3.15) for y. We are thereby led to conclusions similar 
to (6.4) and (6.5) in chapter 9, namely, that a must satisfy 

where F is a root of the determinantal equation 

(3.24) IS - FC21 = O  = INS -/&I, F =  /IN, 

with roots almost everywhere real and positive. (See section 6.4 for the 
distribution of these roots.) Designating these roots as Fl, F2, . -, F, 
in descending order, the discussion in section 6 of chapter 9 is applicable 
(taking suitable account of the ordering). In particular, we have the 
decomposition of (3.15) 

where y, is the linear discriminant function associated with F,. From 
(3.22) we see that 

(3.26) 2A(H1:H2;yi) = N(-log Fi - 1 + F') 
= Nlog N - N -  NlogIi + I,. 

When the values of 24% : H,; y,) are arrapged in descending order 
of magnitude, under the null hypothesis that the sample is from a 
normal population with covariance matrix &, the sum of the last 
(k - m) of the 2f(&:H,;yi) asymptotically is' distributed as ;IZ with 
(k - m)(k -- m + 1112 degrees of freedom. (See section 6.4.) A 
better approximation to the distribution is R. A. Fisher's &distribution 
[Fisher (1 928, p. 66511, the noncentral f-distribution, where for Fisher's 
distribution 82 = ( (23  + 3k2 - k) - (2m3 + 3m2 - m))/12N, B2 is the 
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sum of the last (k - m) of the ~I(H,: H2; y,), with (k - m)(k - m + 1)/2 
degrees of freedom. 

3.6. Independence of Sets of Variates '! 
[Cf. Anderson (1958, pp. 230-245), Hsu (1949, pp. 373-376), Wald and 

Brookner (1941), Wilks (1935b, 1943, pp. 242-245).] Suppose we 
partition the variates of a k-variate normal population into m sets of 
k,, k,, a ,  k, variates, k, + k, + + k, = k. We now want to 
test a null hypothesis H,, the sets of variates are mutually independent, 
against an alternative hypothesis HI, the sets are not independent, with 
no specification of the means, that is, 

The discussion in section 7 of chapter 9 is for two sets, m = 2. (See 
problems 10.13-10.19 in chapter 9.) 

Denoting the hypothesis of (3.28) by H,(Cii) when C,,, . ., C,, are 
specified, we get from (3.15), 

with Sii the best unbiased sample covariance matrix of the variates in the 
ith set. Denoting the hypothesis of (3.28) with no specification of the 
matrices Cii, i = 1, 2, . . -, m, by Hz(.), we find that (3.29) is a minimuna 
for Eii = S i ,  and 

(3.30) 2 1 ( ~ ,  : Hz(-)) = N log ISllI . . I s m m I  = N log IR11I . . IRntnll 

Is1 IRI 

with Rii and R respectively the sample correlation matrices of the variates 
in the ith set and the entire set. The last member in (3.30) is obtained by 
factoring out the standard deviations in the numerator and denominator 
terms. In accordance with the general asymptotic theory, under the 
null hypothesis, 2 1 ( ~ , :  Hz(-)) is asymptotically distributed as x2 with 
t see Appendix page 390 
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m 

k(k + 1)/2 - 2 ki(ki + 1)/2 = 2 kikj degrees of freedom. It may be 
i = l  i.<j 

shown (see section 6.3) that a better approximation to the distribu- 
tion of 2f(Hl: Hz(.)) is R. A. Fisher's B-distribution [Fisher (1928, 
p. 665)j, the noncentral x2-distribution, where for Fisher's distribution 

with 2 kik, degrees of freedom. We summarize the analysis of the 
i < j  

minimum discrimination information statistic of (3.29) in table 3.1. Note 
that the degrees of freedom and the values of the noncentra1i.i.. ~arameter 
p2 in table 3.1 are additive, properties of the ~~-distr ibut~k;i ,  central 
and noncentral. % 

We remark that when kl = = k, = 1, 21(H1 :,Hz(.)) ;= 21(H1: H,') 
of section 3.3, the "between" component in table 3.1 is 24  HI: H2") of 
section 3.3, and the degrees of freedom and the values of p2 are those 
given in kction 3.3. (See problems 8.19, 8.25-8.29, 8.34.) 

Example 3.2. Consider the correlation matrix in example 3.1, with the par- 
titioning of the four variates into two sets as in section 9.2 of chapter 1 1. To test 
a null hypothesis that the sets are independent, we compute, lRlll = 0.5996, 
lRz21 = 0.8195, 2 1 ( ~ ,  : Hz(.)) = 139 log ((0.5996)(0.8 195)/0.4129) = 24.16, 
2 kiki = 4, p2 = (172 - 26 - 26)/12(139) = 0.0719. For 4 degrees of free- 
i <; 
d&, the 5 % points for B2 corresponding to p2 = 0.04 and p2 = 0.16 are 
respectively 9.5821 and 9.8627. The observed value of 2 1 ( ~ ~ :  Hz(-)) = 24.16 
is clearly significant, and we reject the null hypothesis, as we should, in view of 
the conclusions in section 9.2 of chapter 11. [Cf. Kullback (1952, pp. 98-99).] 

3.7. Independence and Equality of Variances 

[Cf. Anderson (1958, pp. 259-261), Hsu (1949, pp. 376-378).] We 
want to test the null hypothesis in (3.16), with the specification that 
all = aZ2 = - - a,, = a2. Denote by H2"(a2) the hypothesis H2" in 
(3.18) with the common variance a2 specified, and denote by Hz"(.) the 
hypothesis of equality of the variances. From (3.17) and (3.18) (with the 
more common notation sii = s,2 for the variance) we see that 

Since the minimum of (3.31) is given for G2 = (s12 + . . . + sk2)/k = 9, 
we have that l(H1 : H,"(-)) = min 1(H1 : H,"(a2)) is 

a2 



TABLE 3.1 

Component 
due to 

Information D.F. 

Between n '  

N 2 (log - ki + tr s,e,,-l 
Sii against xi, i = 1  lsiil 

Within N log ISlil. . . ISmmI = Nlog IRlll. . lRmml  
2 1 ( ~ ,  : H,(. )) ISI I R I  C kiki 

i<j 

m 
Total 

N (log 
' ' ' - k + 2 tr siieii-l k(k + 1)  

21(~1: H2(Zit)) IS1 i=l 2 



MULTIVARIATE ANALYSIS : OTHER HYPOTHESES 309 

A summary of the analysis of 2f(H,:H,"(d)), with the appropriate 
degrees of freedom and noncentrality parameters, is given in table 3.2. 

TABLE 3.2 

Component due to Information D.F. p 

s2 a2 
Between, s2 against d Nk(-+log--1) a2 s2 I 

s2 Within, 21(H1 : H:(.)) N $ log - 
i =  1 si2 

a2 Total, 2 1 ( ~ ,  : H2"(a2)) N $ ( g + l o g - -  i =1  a2 si2 I )  k 

Under the null hypothesis, 24H1 : He"(.)) is asymptotically distributed 
as x2 with k - 1 degrees of freedom. A better approximation to the 
distribution is R. A. Fisher's B-distribution [Fisher (1928, p. 665)], the 
noncentral x2-distribution, with 82 = (k2 - 1)/3Nk, B2 = 21(H1: Hz"(.)), 
and k - 1 degrees of freedom. We remark that 21(H1: H2"(.)) above is a 
special case of the more general result to be derived in section 5.3, and is 
(5.16) with r = k ,  N l = .  . . = N , = N .  [Note that in (5.16) N =  
Nl + N2 + . . + N, is Nk here.] 

(See problem 8.35.) 

4. HOMOGENEITY OF MEANS 

We now want to consider the problem of testing a hypothesis about 
the equality of r means for each of k variates for r k-variate normal 
samples, but with no assumption that the population covariance matrices 
are equal. We first deal with two samples, r = 2, for its intrinsic interest 
and expository value. 

4.1. Two Samples 

Suppose we have two independent samples of n1 and n2 independent 
observations from k-variate normal populations with covariance matrices 
X1 and X2. We want to test the null hypothesis H2, the population mean 
vectors (matrices) are equal, with no specification about Xl and X2, 
against the alternative hypothesis HI, the means are not equal, that is, 
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For the conjugate distribution with O* = (PI, P2, S1, S,), and with the 
notation in siction 2, we have 

Following the procedure in section 2, we find that [cf. (2.4) and (2.7)] 

(4.3) el = nlCl-l(gl - p), e2 = "&2-l(P2 - p), 

and (4.2) becomes 

The null hypothesis H2 specifies equality of the means with no specifi- 
cation on the covariance matrices. For variations of C1 and C,, 9(*:2! 
is a minimum for 2, = Sl, = S2, and for @ satisfying 

For convenience let d = f1 - P2, A = nlSl-l, B = n2S2-l, and 
substituting in (4.4) we get 

(4.7) 2 9 ( ~ ,  : H2) = tr [@(A + B)-lA(A + 3)-'B 
+ A(A + B)-lB(A + B)-.lA)dd']. 

But 
B(A + B)-lA = (A-'(A + B)B-l)-' = (B-' + 

and 
A(A + B)-lB = (B-'(A + B)A-l)-l = (B-I + A-')-', 
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so that finally 

We find that here J(Hl, HI) = 2f(Hl : H,). 
[For single-variate populations cf. Fisher (1939a), Gronow (1951), 

Welch (1938). For the multivariate Behrens-Fisher problem, cf. Ander- 
son (1958, pp. 1 18-122), James (1954, pp. 37-38).] 

The distribution of 2f(Hl: H,) is given for r samples in section 4.3. 

4.2. Linear Discriminant Function 
Consider y = a'x = alxl + ag2 + . . - + a g k ,  the same linear com- 

pound for each sample. Since y is normally distributed, we seek a 
maximizing 

a'dd'a 
2f(Hl : Hz; y) = 

1 1 
a'(- s1 + - s,) a 

"1 n2 

As may be determined (cf. section 5 of chapter 9), the maximum occurs 
' 1 1 -l 

for a = (- S1 + - S,) d and 2f(Hl: H,; y) = 2 f ( ~ ,  : H,). 
n1 n2 

4.3. r Samples 

Suppose we have r independent samples of ni, i = 1, 2, .  ., r, 
independent observations from k-variate normal populations with 
covariance matrices Xi, i = 1, 2, . . . , r. We want to test the null 
hypothesis Hz, the population mean vectors (matrices) are equal, with no 
specification about the Xi, against the alternative hypothesis HI, the 
means are not equal, that is, 

Without repeating the details, we find here that 

21(*: Hz) = 2 ni($ - p)'Si-l(jZi - p). 
C-1 

As in other tests of homogeneity for several samples, here too the 
null hypothesis can be expressed as the intersection of two hypotheses, 
one specifying the homogeneity and the other specifying the common 
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parameters of the populations. Let H2(-) be the null hypothesis specifying 
homogeneity , and H2(p) the null hypothesis specifying the population 
means of the homogeneous samples, in each case with no specification of 
the covariance matrices, so that H2 = H2(-) n H2(p). 

Since the minimum of 21(* : H2) in (4.11) is given for 

we have that I(H,: H2c)) = min I(*: H ~ )  is 
P 

C 

(4.12) ~ I ( H , :  H2(-)) = 2 ndZ, - It)'S;'(jZi - I t )  
i - 1  

From (4.1 1 )  and (4.12), we have 

r 
= 2 n - P)S1( jZi  - P )  + (P - p)' 

i = l  

with 21(H1:H2(.)) a test for the homogeneity and 2 1 ( ~ , ( - ) :  H2(p)) a test 
for the means of the homogeneous samples. This analysis is summarized 
in table 4.1. 

TABLE 4.1 

Component due to In forma tion D.F. 

Between, f against p k 
.i=l 

Within, d ( ~ ,  :Hz(-))  n& - f)'S,-l(Zi - f )  
i=l  

I r 
Total, 21(* : H a  I:nxni - p)'s;l(ri - p) 

i = l  

The degrees of freedom in table 4.1 are those of the asymptotic f -  
distributions under the null hypothesis. [Cf. Hsu (1949, pp. 394-396), 
James (1954, pp. 39-40).] 
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James (1954) has shown that a better approximation to the distribution 
is obtained by comparing 2 4 ~ ~ :  H2(.)). for a 100a% significance level: 
with x:(A + B G ) ,  rather than with X,2, where 

1 
(4.14) A = 1 + i [tr (rk - ( ~ ; ~ ~ ~ - l ) - ~ n ~ ~ ~ - l ) ]  *, 

2k(r - 1) i = l  (ni - 1) 

Example 4.1. Kossack (1945) discussed the problem of classifying an 
A.S.T.P. (Army Specialized Training Program) pre-engineering trainee as to 
whether he would do unsatisfactory or satisfactory work in his first-term mathe- 
matics course. The three variables are x,, a mathematics placement test score; 
x2, a high-school mathematics score; x3, the Army General Classification Test 
score. There were 96 trainees who did unsatisfactory work and 209 who 
performed satisfactory work. We shall find the linear discriminant function as 
in section 4.2. Here k = 3, n, = 96, n2 = 209. Kossack (1945, p. 96) gives 
the following data : 

We now calculate (the computations were carried out by J. H. Kullback) 



314 INFORMATION THEORY AND STATISTICS 

The linear discriminant function may be expressed as y = x1 + 3 . 3 2 ~ ~  + 1 .29x3 
with the ratios of the a's to a, as coefficients. 

Kossack (1945) obtained the coefficients of a linear discriminant function 
from a = S-Id, where NS  = NISl + N2S2, N = Nl + N2. [Cf. Fisher (1936).] 
This is theprocedure, for r = 2, discussed in section 8.1 of chapter 11,  when the 
population covariance matrices are assumed to be equal. The linear discrimi- 
nant function obtained by Kossack (1945) may be written as y = x1 + 3 . 6 9 ~ ~  + 
0.93%. Using Kossack's pooling procedure and his result that d'S-'d = 1.9890, 
we compute 

a smaller value than that computed above when the covariance matrices were 
not pooled. (We shall see in example 5.2 that the null hypothesis that the 
population covariance matrices are equal should be rejected.) 

Example 4.2. To illustrate the test for the null hypothesis of homogeneity 
of means, we use the following data and computations from James (1954, pp. 
42-43). (I have expressed the results in the notation of section 4.3.) There 
are three bivariate samples, with nl = 16, n2 = 1 1, n3 = 1 1 : 

Asymptotically, 21 (~ , :H~( - ) )  = 18.75 is a x2 with (r - 1)k = 4 degrees of 
freedom. For a better approximation to the significance levels, we find 
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0'7382 0.0637)] = 2.7327, [tr (0.6033 0.2391 )] = 1.9974, 
[tr (0,0209 0.91 49 0.0761 0.8100 

The appropriate comparison value for the 5%, I%, 0.1% significance level 
is then obtained from: 

Significance Level x2, 4 d.f. A + Bx2 x~(A + BX2) 

that is, the corrected comparison value for the 5% level is 12.17, for the 1% 
level is 18.18, and for the 0.1% level is 27.48. The null hypothesis of homo- 
geneity would be rejected at the 1% level. 

5. HOMOGENEITY OF COVARIANCE MATRICES 

We shall now examine the test for the null hypothesis of equality of the 
covariance matrices of r k-variate normal populations. For its own 
interest, and as an introduction, we consider two samples first and then 
r samples. 

5.1. Two Samples 

Suppose we have two independent samples with n1 and n2 independent 
observations from k-variate normal populations with no specification 
about the means. For the population covariance matrices we have the 
two hypotheses Hl :C, f Z2 and H2:Z1 = Z2 = Z. 

For the conjugate distribution with O* = ($, Z2, S,, S,), and with the 
notation in section 2, we have [cf. (4.2)] 
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Using the same procedure as for (4.2), we find that [cf. (4.3)] 

(5.2) el = n1E-l(Zl - pl), e2 = n2Z-l(Z2 - p,), 

and (5.1) becomes [cf. (4.4)] 

For variations of ir,, h, and E, !(* :2)  will be a minimum for A, jl,, and 
8 satisfying [see problems 10.2, 10.3 in chapter 9, Deemer and Olkin 
(1951), for the matrix differentiation] 

(5.4) nl2-l(z1 - jll) = 0, n22-l(Z2 - &,) = 0, 

We find that 

(5.5) El = 21, @, = 1,, (Nl + ~ , ) 2  = NISl + N2S2 = N S ,  

where N = Nl + N,, and consequently [cf. Wilks (1932, p. 489)] 

It is found that the estimate J ( H ~ ,  H,) is [cf. Kullback (1952, p. 9l ) ,  and 
equation (1.7) in chapter 91 

(5.7) J(H,. H,) = N1N2 (tr SlS2-I + tr S2Sl-I - 2k). 
2(N, + N2) 

In accordance with the general asymptotic theory, under the null 
hypothesis H,, 2 ! ( ~ ,  : H,) in (5.6) asymptotically is distributed as x2 with 
k(k + 1)/2 degrees of freedom. Using the characteristic function of the 
distribution of 2f(Hl:  H,), it may be shown (see section 6.1) that a better 
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approximation to the distribution is R. A. Fisher's Bdistribution [Fisher 
(1928, p. 665)], the noncentral  distribution, where for Fisher's 

(2k3 + 3k2 - 1 
distribution = P = 2f(Hl : H2), 

12 
with k(k + 1)/2 degrees of freedom. 

5.2. Linear Discriminant Function 

(Cf. section 3.5.) We seek a linear compound, the same for both 
samples, y = a'x = alxl + ag2 + . + ap,, that maximizes [see (5.7)] 

We find (by the usual calculus procedures) that a satisfies Sla = FS2a, 
where F is a root of the determinantal equation IS, - FS,I = 
I NISl - IN~S,~ = 0, and F = N21/Nl (cf. section 6 of chapter 9). The 
same linear function results from maximizing [see (5.6)] 

Nl a'Sa N2 a'Sa 
P(H,: H,; y) = - + - log -- 

2 l o g ~ a  2 a ~ , a  

If the roots of the determinantal equation, which are almost everywhere 
positive, are Fl, F2, ., Fk arranged in ascending order, then, as was 
shown in section 6 of chapter 9, the maximum of J(H,, H2; y) occurs for 
the linear compound associated with Fl or Fk according as FIFk < I or 
FIF, 3> 1. 

It may also be shown that 

(5.10) &HI: Hz) = i(H1: H2; 1,) + I(H,: H,; I,) + . + !(HI:H2; I,), 

J(H,, H2) = J(H1, H,; Fl) + j(H1, Hz; F2) + . + 4 ~ 1 ,  Hz; Fk), 

where 

N, f N2 Nl + - log (1 + li) - -- 2 log 4, 
2 
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~ ~ ~ m p t o t i c a l l y ,  when the population parameters have the null hy- 
pothesis values, 21(H1 : H2; ITn+,) + . . + 2 1 ( ~ ,  : H2; l,) (the summands 
arranged in descending order of magnitude) is distributed as ~2 with 
(k - m)(k - m + 1)/2 degrees of freedom. A better approximation is 
R. A. Fisher's B-distribution [Fisher (1928, p. 665)], the noncentral ~ 2 -  

distribution, where for Fisher's distribution 

k 
N = N, + N2, B2 = ~I(H,:H,;W, with (k - m)(k - m + 1)/2 

i = m + l  
degrees of freedom. (See section 6.4.) [Cf. Anderson (1958, p. 259).] 

5.3. r Samples 

Suppose we have r independent samples of n,, n,, . , n, independent 
observations from k-variate normal populations with no specification 
about the means. For the population covariance matrices we have the 
two hypotheses H, : Z,, &, . ., Z, and H2: Z, = Z2 = . . = Z, = Z. 

Without repeating the details, as in section 5.1, we find that for the 
conjugate distribution with 8* = (f,, . ., f,, S,, . . ., S,) 

When the null hypothesis H2(Z) specifies Z, the minimum of f(*:2) in 
(5.12) for variations of the pi, i = 1, 2, . ., r, is 

This is (2.18) in chapter 9 with Z for Z, and Sj for Z,,, j = 1, 2, . . ., r. 
When the null hypothesis Hz(-) does not specify Z but only the homo- 
geneity, the minimum of I(*: H2(Z)) in (5.13) for variations of Z is given 
for NE = NISI + . . + N,S, = NS, N = N, + N2 + . . . + N ,  and 
I(H, : Hz(-)) = min I(* : H2(Z)) is 

x 

[Cf. Anderson (1958, p. 24% BOX (1949), Wilks (1932, p. 489).] 
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Note that the estimate of J(Hl, Hz(.)) may be obtained from (2.19) of 
chapter 9 by replacing Zlj by Sj and Z, by S, j = 1, 2, . *, r, yielding 

Ni Nj =2-  (tr SiSj-l + tr SjSivl - 2k). 
i < j  2 N  

In accordance with the general asymptotic theory, under the null 
hypothesis H2, 21(H1: H2(-)) in (5.14) asymptotically is distributed as x2 
with (r - I)k(k + 1)/2 degrees of freedom. Using the characteristic 
function of the distribution of 21(H1: Hz(-)), it may be shown (see section 
6.4) that a better approximation to the distribution is R. A. Fisher's B- 
distribution [Fisher (1928, p. 665)1, the noncentral x2-distribution, where 

2k3 + 3k2 - k 
for Fisher's distribution /I2 = 

12 
( N - 1 )  p = 
i=l 

2f(Hl: H2(-)), with (r - l)k(k + 1)/2 degrees of freedom. For degrees of 
freedom greater than 7 (the largest tabulated by Fisher), 

may be treated as a x2 with (r - l)k(k .+ 1)/2 degrees of freedom. 
For the single-variate case, k = 1, we have 

- - 

282 1 - - 1 !(3 - - ;), and 
3 i=l N; ( r -  1 1 3(r- 1) 
are the results for Bartlett's test for the homogeneity of variances [Bartlett 
(1 937, 1954), Box (1 949)' Kempthorne (1 952, p. 21), Lawley (195611. See 
the remark at  the end of section 3.7. 

We summarize the analysis of the discrimination information statistic in 
(5.13) in table 5.1. 

Note that the between component in table I 1  is the dixrimination 
information statistic for the test of the null hypothesis H2(-lZ), the 
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covariance matrix of homogeneous samples is Z. The analysis in table 
5.1 is a reflection of the fact that Hz@) = Hz(-) n Hz(. IZ), and may be 
written as 2/(* : H2(Z)) = 2 / ( ~ ,  : Hz(-)) + 2 / ( ~ ~ ( . )  0: Hz(- IZ)). 

The degrees of freedom are those of the asymptotic x2-distribution or 
those of the better approximation given by Fisher's B-distribution, the 
noncentral x2-distribution with noncentrality parameter #I2. 

TABLE 5.1 
Component 

due to  Information D.F. 

Between 1x1 k(k + 1 )  2kS + 3ka - k 
S against X N Q O ~  - * + lr ST') 2 12N 

Within r IS1 C N i  log - 2 H : H  i= l  ISil 

Total r @ + 3 k 2 - k  r 1 
C - 

12 i Z 1 N l  

5.4. Correlation Matrices 
By using the minimum discrimination information statistic in (3.19) and 

the convexity property we may derive a test for the null hypothesis that 
the correlation matrices of rn populations are equal. Suppose there are rn 
independent samples of n, = N, + 1, n, = N, + 1, . , n,, = N, + 1 
independent observations each from k-variate normal populations. De- 
note the sample correlation matrices by R,, R,, - - ., R, and the corres- 
ponding population correlation matrices by Ply P,, . . ., P,. Let H, 
denote the alternative hypothesis that the population correlation matrices 
are not all equal, that is, 

let &(P) denote the null hypothesis that the population correlation 
matrices are equal to P, that is, 

and let Hz(*) denote the null hypothesis of homogeneity that the popula- 
tion covariance matrices are equal but unspecified. Since H2(P) is 
equivalent to the intersection of two hypotheses, (i) the observed correla- 
tion matrices are homogeneous and (ii) the common value of the popula- 
tion correlation matrix is P, we may set up the analysis in table 5.2. 
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TABLE 5.2 

Component due to Information D.F. 

log - - k + t r4~-1)  HZ, i-1 p i (  2, 

In table 5.2, 

(5.19) N = N l + N 2 +  . - .  +Nm,NR=NlRl+N2R2+.-.+Nmk, 
and the degrees of freedom are those of the asymptotic ~2-distributions 
under the null hypothesis. The convexity property insures that 

" N; 
i - I  N I P I  ,+ t rRp-1)  

(5.20) NI: - (log ig-J - 

For bivariate populations, k = 2, we have 

m 
where Nr,, = 2 NirCl2 and ri12 is the correlation coefficient in the i-th 

i- 1 

sample. The degrees of freedom for u(H1 :Hz(*)) in (5.21) are m - 1. 

Example 5.1. We illustrate the test of a null hypothais of homogeneity of 
covariance matrices with data given by Smith (1947, Table 2, p. 277) to calculate 
a linear discriminant function for a group of ZS nonnal persons and 25 psy- 
chotics. Here k = 2, r = 2, N, = N, = 24, N  = 48, 
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2 1 ( ~ ,  : H2(.)) = 24 log (3570.103 1/255.1859) 
+ 24 log (3570.1031/10387.2936) = 37.7C19 = B2, 

(2 - 1)2 x 3 
2 

= 3 degrees of freedom. 

In Fisher's B2 table, Table 111 on page 380, the 5% values for n = 3 and 
$ = 0.04 and 0.16 are respectively 7.9186 and 8.2254. We therefore reject the 
null hypothesis of equality of the population covariance matrices. Smith (1947) 
does remark that the correlations are not significant, but that the variances of 
the psychotics are significantly greater than those of the normals. 

Example 5.2. We now justify the comment at the end of example 4.1. In 
addition to S, and S2 in example 4.1, we also have 

34053 
2 1 ( ~ ,  : H2(.)) = 95 log - 34053 

133 13 
+ 208 log - = 36-96 = B2, 

43779 

(2 - 1)3 X 4 
2 

= 6 degrees of freedom. 

In Fisher's B2 table, Table 111 on page 380, the 5% values for n = 6 and 
$ = 0.04 and 0.16 are respectively 12.6750 and 12.9247. We therefore reject 
the null hypothesis of equality of the population covariance matrices. 

Example 5.3. We use data given by Pearson and Wilks (1933) for five 
samples of 12 observations each on the strength and hardness in aluminum 
die-castings. (See section 9.1 of chapter 11.) Based on their data (note that 
they did not use the unbiased estimates), details not being repeated here, 
k = 2 , r = 5 , N 1 = .  . = N 5 =  l l , N = 5 5 ,  

log  IS,^ = 5.82588, log Is21 = 6.63942, log IS,I = 5.31904, 

log ls4l = 6.66973, log Is,I = 5.35937, log IS( = 6.13953, 



MULTIVARIATE ANALYSIS : OTHER HYPOTHESES 323 

(5 - 1)2 x 3 
n = 

2 
= 12 degrees of freedom. 

In Fisher's B2 table, Table 111 on page 380, the 5% values for n = 7 (the largest 
there tabulated) and p2 = 0.64 and 1.0 are respectively 15.3225 and 16.0040. 
Since the tabulated values increase with increasing n for a fixed 82, here we do 
not reject the null hypothesis of equality of po~ulation covarianie matrices. 

We could also test 9.726 ( 1 - 0'9:7) = 8.96 as a x2 with 12 degrees of 

freedom, with the same con~lusion, accept the null hypothesis of equality of the 
population covariance matrices. This agrees with Pearson and Wilks (1933). 
[Cf. Anderson (1958, p. 256).] 

Example 5.4. To illustrate section 5.4, we shall compute 2f(~,: Hz(*)) in 
(5.21) for the five samples of example 5.3, so that k = 2, r = 5, N1 = = 
N, = 11, N = 55. From the data given by Pearson and Wilks (1933, p. 370) we 
make the computations shown in table 5.3. 

TABLE 5.3 

1 - r& = 0.424735, n = 4 degrees of freedom, 

The 5% value for chi-square for 4 degrees of freedom is 9.4877 so that, con- 
sistent wit11 example 5.3, we accept the null hypothesis of h o m o ~ e i t y  of the 
correlation coefIicients. 

Example 5.5. As another illustration of section 5.4, let us consider the data 
given by Pearson and Wilks (1933, pp. 372-375) consisting of standard measurn- 
ments of length and breadth of skull in millimeters obtained fat 20 adult mala 
from each of 30 different races or groups, so that k = 2, r = 30, N, = . . = 
Nm = 19, N = 570. From the data given by Pearson and Wilks (1933, p. 373) 
we make the computations shown in table 5.4. 
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TABLE 5.4 

i ri12 1 -r?i2 i ri12 1 - r1212 i ri12 1 - rg2 

1 - r;z = 0.937999, n = 29 degrees of freedom, 

0.937999 + . 0.937999  HI : H2(*)) = 19 log 0.990591 
+ log' 0.935484 = 98. 

Since 98 as a chi-square with 29 degrees of freedom is significant, we reject the 
null hypothesis of homogeneity of the correlation coefficients, a conclusion 
consistent with that reached by Pearson and Wilks using an ad hoc 
approach not generalizable to the k-variate case. For this data Pearson 
and Wilks (1933, p. 374), using Fisher's z-test [Fisher ,(1921)], loomputed 

30 
x 2  = 2 (ni - 3)(Zi - i ) 2 ,  where Z i  = 3[l0g,(l + ri12) - log, (1 - r i d ]  and 

i = l  
30 - 

i = 1 zi/30, obtaining x2 = 96.01 with 29 degrees of freedom. 
i = l  

6. ASYMPTOTIC DE3TRIBU;rIOUS 

In this section we shall justify the statements made about the asppwr ic  
behavior of the statistics in the previous sections of this chapter. 

6.1. Homogeneity of Covariance Matrices 
Under the hypothesis H2 of section 5.3, we kt 

which define transformations linear in the elements of the matrices S,: S 
respectively by V , ,  V .  The Jacobians of these transformations are (cL 
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Anderson (1958, p. 162), Deemer and Olkin (1951)l 

k+l 
and 1 -  

The Wishart distributions of the elements of Si, S are thereby transformed 
into the respective probability densities of the elements of Vj, V 

and 

Applying the transformations in (6.1) to  I(H,: HZ(-)) in (5.14), we get 

Since the r samples are independent, the characteristic function of the 
distribution of 

t 

I v l  - Nlog lVl - NBlog ~v,I N, log - - 
B = l  lVbl B = 1  

is [cf. Box (1949, p. 321)] 

where the middle result follows from the reproductive property of the 
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Wishart distribution [Anderson (1958, p. 162), Wilks (1943, p. 232)l. We 
use Stirling's approximation, 

1 1 
log r ( p )  = 4 log 2n + (p - 4) log P - P + -- - - 12p 360p3 + 0( l / p5 ) ,  

to get an approximate value for large Np in (6.4). We have 

r (Np( l  - 2it) + 1 - a)/2 
(6.5) log 

r ( N ,  + 1 - co/2 

and after some algebraic manipulation the right-hand member of (6.5) 
may be written as 

We therefore have 
X: N N(l - 2it) - a 

(6.6) log+(t) = 2 ( i t ~ l o ~ -  - 
2 2 

log ( 1  - 2it) - Nit 
a = l  

r N,9 ( r - l ) k ( k + l )  
= -it 2 kNB log - - 4 

log ( 1  - 2it) 
p = 1  N 



I 
I 
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1 Neglecting the last term in (6.6), we have 
r 

Ns (6.7) +(t) = (1 - 2it)-(r-1)Hw +')I4 exp kNB log - + 
N 1 - 2it 

r 
where c = (2k3 + 3k2 - k) ( 2 1 /Np - lIN)/12. 

B = 1  

Becalrse of (6.3) and (6.4), writing 5 = ~P(H,: He(-)), the probability 
density of 5 is 

If we neglect the term with c, it follows that D(5) is the probability 
density of the x2-distribution with (r - l)k(k + 1)/2 degrees of freedom; 
otherwise, by integrating (6.8) [see Laha (1954), McLachlan (1939, p. 8611 
we get, since 5 is real and positive and (r - l)k(k + 1)/4 > 0, 

where n = (r - l)k(k + 1)/4 and In-,(615) is the Bessel function of 
purely imaginary argument [Watson (194411 

The probability density (6.9) is that of the noncentral x2-distribution with 
2n degrees of freedom and noncentrality parameter c, and is Fisher's B- 
distribution [Fisher (1928, p. 665)] with c = /P, 5 = B2, 2n = n,. 

The approximation to the logarithm of the characteristic function of 5, 
cit 

that is, -n log (1 - 2it) + 9 corresponds to that of Box (1949, 
1 - 2it 

formula 29, p. 323), retaining only the first term in his sum; that is, his 
cit 

(there is a misprint in the formula) is here, as 
1 - 2it 

may be verified by using the appropriate formulas with /3 = 0 given by 
BOX (1949, pp. 324-325). 

For large n we may approximate ~,-,(d& in (6.9) by writing 
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thereby getting 

, CXP 
(6.10) oco 

Setting 5 1 - - - 2, (6.10) yields ( 3 

or 5 1 - - asymptotically is distributed as x2 with 2n = (r - l)k(k + 1)/2 ( L) 
C 

d e g ~ e s  of freedom. It may be verified that 1 - - - 
2n 
- p, the scale factor in 

the x2 approximation by Box (1949, p. 329). [Cf. Anderson (1958, p. 255).] 
For other approximations to the noncentral x2-distri but ion see Abdel- 

Aty (1954), Tukey (1957). 

For a single sample, we derived the value 21 (~ , :  H2) in (3.15). With the 
same transformation as in (6.1), that is, NS = Z,'I*vC,'l2, with Jacobian 

I f l"""' , the probability density of the Wishart distribution of the 

hemeits of S is transformed into that in the right-hand member of the 
pair in (6.2) and 

(6.12) 21(H1: H ~ )  = N (log - k + tr SZ2-l) 

The characteristic function of the distribution of 2 / ( ~ , :  H2) is therefore 

- (itNk log N - itNk) r(N(1 - 2it) + 1 - a)/2 
- (1 - 2it)~k(1 -2it)Iz a = 1 r (N  + 1 - a)/2 
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Using (6.5)' we derive 

(6.14) log +( t )  = - k(k + 1 )  
4 log ( 1  - 2it) 

from which the conclusions stated in the preceding sections follow as in 
section 6.1. 

6.3. The Hypothesis of Independence 
It is known that the logarithm of the characteristic function of the 

distribution of 2 1 ( ~ , :  H i )  = - N  log lR1 [see (3.18)j is [see Bartlett 
(1950)' Wilks (1932, p. 492)] : 

Employing Stirling's approximation as in (6.5)' and retaining comparable 
terms as in (6.7), we have 

(6.16) 
k(k - 1 )  cit 

log +(t)  = - 
4 

log ( 1  - 2it) + 
1 - 2it' 

where c = k(k - 1)(2k + 5)/12N. 
The statement at the end of section 3.3 then follows from (6.16)' (6.8)' 

and (6.9). From (6.11) we may also deduce that 

asymptotically is distributed as x2 with k(k - 1)/2 degrees of freedom. 
The last result is given by Bartlett (1950). 

The logarithm of the characteristic function of the distribution of 

2 4 4  : I&(-)) = N log IRnl . . . IS, (3.30)] is paid and Brookner 
IRI 

(1941), Wilks (1932, p. 493, 1943, p. 24411 1: 
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Employing StidinCoB .pproximtion as in (6.5), and retaining comparable 
terms as in (6.7). we b ~ !  

&(k + 1) -- 5 kp(k, + 1) 
P - 1  

cit 
(6.18) log+(;) - log (1 - 2it) + 3 

4 1 - 2it 

( 
m 

where c = (21' + YS - 1) - 2(2X,a+ 3 k t  - k,))/12~, fromwhich 
P - 1  

the results in tablc 3.1 follow. 
Note that for k, - I ,  b r 1,. *, m, so that m = k, (6.17) becomes 

(6.151, and (6.18) bnomc~ (6.16). 

6.4. Roots of Determh.tal Eqmtioos 
From results derived by Fisher (1939b), Girshick (1939), Hsu (1939, 

1941a, 1941 b, 1941-42). Roy (1939, 1957) [see Anderson (1951, 1958, pp. 
307-3291, Mood (1951), Wilks (1943, pp. 260-270)], it is known that the 
probability density of the distribution of the roots of IS* - IS1 = 0 
[see (8.4) in chapter I I], for ( r r  - r) large, is 

and that of the roots of IS2, Sfi1SIS - ISa.,( = 0 [see (7.4) in chapter 1 11, 
for (n - k,) large, is 

i>j 

where ui = (n - kl)I,. 
The characteristic functions of the asymptotic distributions of .?(HI, H2) 

in (8.5) of chapter 11 and (7.5) of chapter 11 may be derived from (6.19) 
and (6.20) as, respectively, (I - 2ir)-(r-1)pp and (I - 2it)-(k1-1)k*12, hen= 
the conclusion as to their x2 distributions. The x2 decompositions in 
sections 8.1 and 8.2 in chapter 1 1 follow from the fact that, asymptotically, 
the distributions of 1,+1, . 3 I P of (6.19) and a, vh of (6.20), 
assuming the corresponding population parameters have the null hypoth- 
esis values, are independent of the distribution of the remaining roots 
and with probability densities given ~speftively by 
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When S, and S2 are independent, unbiased estimates of the same 
covariance matrix with N1 and N2 degrees of freedom respectively, the 
probability density of the distribution of the roots of I N,S, - IN,$, I = 0 
is 

. . 

((I + I )  - - (1 + /k))(~l+~z'~2'  

When S is an unbiased estimate of C with N degrees of freedom, the 
probability density of the distribution of the roots of INS - IC( = 0 is 

The distribution of I,,,, - -, I, in (6.24), assuming the corresponding 
population parameters have the null hypothesis values, is independent 
of the distribution of the remaining roots, with probability density 

In section 3.5 we were concerned with the distribution of 
k 

N 2 (-log F, - 1 + F,) = (k - m)Nlog N - (k - m)N 
i = m + l  

k + 2 (-Nloglf + If), 
i = m + l  
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where the I's are roots of I N S  - &I 0. we find that the characteristic 
function of the desired distribution is [using (6.2511 

(6.26) +(t) = 
(~)N("'mM~xp (it(k - m)N log N - (k - nl)Nit) 

(1  - 2it)(k-mx~(l -%if)-m)12 
X 

Note that when m = 0 the sum in question is 2 / ( ~ , :  Ha in (6.12), and the 
characteristic function derived in (6.13) is (6.26) for m = 0. 

By using Stirling's approximation as in (6.5) and retaining comparable 
terms as in (6.7), we find that the logarithm of the characteristic function 
in(6.26) is 

(k - mXk - m + cit 
(6.27) log+(t) = - - 2it) + -. 

2 1 - 2it 

where c = (2ks + 3k2 - k - (2ms + 3m2 - m))/12N, from which the 
statement about the distribution made in section 3.5 follows. 

The distribution of I,+,, *, I, in (6.23)' assuming the corresponding 
population parameters have the null hypothesis values, is independent of 
the distribution of the remaining roots, with probability density 

where N = Nl + N2. In section 5.2 we were tonarned with the distri- 
bution of 

where the I, are the roots of IN1s1 - IN$,I = 0. We find that the 
characteristic function of the desired distribution is [using (6.28)] 

2 I.-m 

(6.29) #t) = exp (it(* - m) 2 N, log %) 
j = 1 a = l  
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Similarly, as in (6.5), (6.6), and (6.7), we find 

(6.30) log +(t) = - (k - m)(k - m + 1) cit 
(1 - 2it) + 

2 1 - zit9 

(2k3 + 3k2 - k) - (2m3 + 3m2 - m) 
where c = 

1 
12 

, from 

which,the statement about the distribution made in section 5.2 follows. 

7. STUART'S TEST FOR HOMOGENEITY OF THE 
MARGINAL DISTRIBUTIONS IN A TWO-WAY 

CLASSIFICATION 

We return to the test of the null hypothesis of equality of marginal 
distributions mentioned at the end of section 11 of chapter 8 and indicate 
Stuart's (1955a) procedure. 

7.1. A Multivariate Normal Hypothesis 
Consider the following alternative hypothesis Hl and null hypothesis H2 

for the means and covariance matrices of multivariate normal populations: 

(7.1) HI: p1 = nA, C1 = nC - nAA', 
H2:p2 = 0, C2 = nC. 

From (1.2) of chapter 9 we then have 

= tnA'C-lA - 4 log (1 - A'&-:-'A) - tA'C-lA, 

using the fact that [cf. Wilks (1943, pp. 237-238), problems 10.4 and 10.6 
in chapter 91 

Accordingly, for large n, we may use 

(7.4) 21(1:2) = nA'C-lA = (nAt)(nC)-l(nA), 

equivalent to that under hypotheses specifying a common covariance 
matrix nC and differences of means nA. 
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7.2. The Contingency T.& p r w  
With the notation for a two-w table in  section 2 of 

chapter 8, s ina  k,. + + rr. I r., + + 5.r = "3 this is a 
(C - 1)-variate problem. and stuafi (19JSa) defines the statistics of 
interest as 

It is known that the multjnomjal distribution tends to the multivariate 
normal distribution [Cram& ( 1946, pp. 3 18, 41 8), Kendall (1943, 
pp. 290-291)], and Stuart (I9JSu. pp. 413-414) shows that 

(7.6) E(dO = n(pi. - p.,),  vur (dl) - n[(pi .  + p.i - 2pii) 

- (pi. - ~ . i ) ~ l ,  

so that with pi. - p., = A,, thc matrix C in (7.1) is 2 = (oij), oii = 
Pi. + P.i - 2/'i(v oij -(/"It + /'#,I* 1' j 1, 2, ' '3 c - 1. 

The test statistic, thc cstimatc of 2/(1:2), is 

where d' = (dl, d2, a, d,,,), the d's dcfincd in ( 7 3 ,  and S = (sij), 
sii =x i .  +xe i  - 2qi,s,, = -(2,, +zJ() , ic  j== 1, 2; - , c -  1. Under 
the null hypothesis H2. 2 1 ( ~ ,  : ti2) is asymptotically distributed as x2 with 
(c - I )  degrees of freedom. As in rcparamctrization, the conclusion is 
independent of which c - I of the c d's arc used. 

8. PROBLEMS 

8.1. Considering (3.18), what can bc said about the range of values of I R ( ?  
8.2. What is the formal relation bctwecn (3.26) and the value in (3.5) of 

chapter 7 for r = 1 ? 

8.3. Develop section 4.1 when the null hypotheis (insofar as the means are 
concerned) is changed to H 2 : ~ l  = F + 6. I4 F, with 6 specified, that is, 
the null hypothesis specifies that the difference of the means is 6. 

8.4. What is the asymptotic distribution of 2 k ~ l :  H2( -1) in table 4.1 if the 
null hypothesis is not satisfied? 

85. Show that 2 1 ( ~ ,  :Hz(.)) in (4.12) yields ~I(H, : H2) in (4.8) for r = 2. 

8.6. Test the first and third samples in example 4.2 for homogeneity of the 
population means. 
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8.7. If you were to compute a linear discriminant function for the second and 
third samples in example 4.2 by the procedure of section 4.2 and by the procedure 
of section 8.1 of chapter 11, would you get different results? 

8.8. What is the asymptotic distribution of ~I(H,: H2(-)) in (5.14) if the null 
hypothesis is not satisfied ? 

8.9. Test the three covariance matrices in example 4.2 for homogeneity. 

8.10. Develop the analysis of the data in example 5.1 according to table 5.2 
and confirm Smith's (1947) remark that the correlations are not significant. 

8.11. Complete the analysis of the data in examples 4.1 and 5.2 in accordance 
with table 5.2. 

8.12. Discuss the similarities and differences of the test for the independence 
of two sets of variates in section 3.6 and the test in section 7 of chapter 11. 

8.13. Write the probability densities in (6.2) for k = 1. 

8.14. Verify the "algebraic manipulation" for (6.5). 

8.15. Write the probability density in (6.19) for p = 1, that in (6.20) for 
k, = 1, and that in (6.23) for k = 1. 

8.16. Wilks (1935b, p. 325) considered the following correlation matrix, 
given by Kelley (1928, p. 114), for a sample of 109 seventh-grade school 
children, in which the five variables are respectively arithmetic speed, arithmetic 
power, intellectual interest, social interest, activity interest:* 

Would you accept a null hypothesis that the set of the first two variables is 
independent of the set of the last three variables? 

8.17. Bartlett and Rajalakshman (1953, p. 119) concluded that the observed 
correlation matrix R, with.N = 29, is significantly different from the hypothetical 
correlation matrix P,, where 

1 0.2676 0.593 1 0.1269 
0.2676 1 0.3753 0.5941 
0.5931 0.3753 1 0.6796 
0.1269 0.5941 0.6796 1 

Verify this conclusion. 

* Reprinted from C r o s s r d  in the M i d  of Man by T r u w  L. Kelley with the 
permission of the publishers, Stanford University Press. Coppght 1928 by the Board 
of Trustees of Leland Stanford Junior University. 
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8.18. Box (1950, p. 387) gives the following covariance matrices for three 
treatment groups on growth data for rats: 

Box concludes that there is no reason to doubt the homogeneity of the covariance 
matrices. Verify this conclusion. 

8.19. Suppose that in the analysis in table 3.1 there are only two sets, with 
kl = 1 ,  k ,  = k - 1 .  ' Show that 21(H1: HA.)) = -N log ( 1  - tf.,. . .d, with 
k - 1 degrees of freedom and 82 = (kZ - l)l2N, where r,.,. . .k is the observed 
multiple comlation of z, with x2, %, . *, xk. [See (7.18) in chapter 9.1 

8.20. Show that problem 10.12 in chapter 9 is equivalent to 

H; + H;@.,. . .k = 0 )  n H;@.~. . ., = 0 )  n . . n H;@&-~., = o), 
where H i  is the hypothesis of independence in (3.18) and H;@;.j+l, . . .,, = 0)  
is the hypothesis that the multiple comlation of x j  with ., xk is zero, 
j =  l ,2;  .,k - 1.  

8.21. Show that -N log I R I  = -N log ( 1  - r:.,. . .3 - N log (1 - rt,. . .d 
- -N log ( 1  - $-:_,.3, that is, 21(H : H 3  = 2 f ( ~ ~ : H & $ . ~ .  . .k = 0)) + 

+ 2 f ( ~ , : H ; g - ~ . k  = 0)), whem ~ H ~ : H ; )  is given in (3.18) and 
2 f ( ~ ~ : ~ # . ~ + ~ ,  . . .,k = 0)) = -Nlog( l  - <.j+l, . . .,3- 

8.22. Show that table 8.1 is an analysis of 2f(Hl:H;) in (3.18). 

8.23. Show that -N log ( 1  - eSt.. .J = -N log ( 1  - 
Nlog(1 - - NIog(1 - 4.3- Nlog(1 - Pd, where 
r,..,. . .i_l, j = 2,. a, k, is a partial correlation coedkitnt. 

826 Show that table 8.2 is an analysis of d(H1:H#.,. . ., = 0)). 

8.25. Show that problem 10.15 in chapter 9 is equivalent to H Q d  + 
H A ~ & I  = II$.ll) n HAIGI = I&.al) n - n H A I L  = IL.,. . .,I), 
where H a d  is the h thesis in (3.28) ami HAIGjI = 1qj.B. . .j-lI) is the 
hypo- tbst =vjj.u.. .,I, j = z *. 0. 

8.26. Show that table 8.3 is an analysis of d(H1:HA-))  of table 3.1. 



Component 
due to 
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TABLE 8.1 

Information D.F. 

2 2 0 -N log ( I  - r r . j+ l , .  .,a k - j  (k -JI2 + 2(k - j )  . P j - j ~ 1 . -  . ..n ' 2N 

2 PI.!& . .k = 0 -N log (1 - rl+ . .k) k - 1  2 

-N log I R I  

Component 
due to 

TABLE 8.2 

Information D.F. p 

p L . 2  ""D 0 - N log (1 - rL.3 1 

k2 - 1 
2 

fi.8. . .I: 1 0 - N log (1 - <.%. . .d 2A' 
k - 1  - 
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827. Show that the analysis in table 8.3 (problem 8.26) for kl = k2 = . . 
= k, = 1 is similar to that in table 8.1 (problem 8.22). 

828. Show that an analysis of the information component due to 12ij-12. . .f-ll 
in table 8.3 (problem 8.26) is given by table 8.4, with 1 = kl + k2 + . + k,. 

8.29. Show that for kj = kj, = 1 the partial independence component in 
table 8.4 (problem 8.28) reduces to that for the hypothesis p&-1.12. . .j-2 = 0, 
as would be given by a result similar to that in table 8.2 (problem 8.24). (Cf. 
problem 10.20 of chapter 9.) 

8.30. Relate the analysis in table 8.1 (problem 8.22) for k = 3 with that in 
table 3.3 of chapter 8. 

831. Relate the analysis in table 8.2 (problem 8.24) for k = 3 with that in 
table 3.5 of chapter 8. 

832. Let the random vector x be subjected to the nonsingular linear trans- 
formation y = Ax. Show that (see section 3 in chapter 9): 

(a) p, = Ap,. 
(6) 2, = AX&. 
(c) 9 = AZ. 
(d)  S, = AS&. 
(e) I(* :2) in (3.14) is equal to 

8.33. In problem 8.32 let 

Show that (see section 7 in chapter 9): 

(a) A-I = 

S v l l  su12 su = jSel ) Sni = ~ 1 1 ,  s.2 = ~ 1 2  - ~ i i 2 i ~ 2 1 2  = S A ~ ,  

SUE = SE - &12i1%2 - S21&-?212 + &12iI!Sii2i~212. 

(d)  Srn.1 = Sm - selS~1S,12 = S,.1 = S, - S21Si:S12. 

(e) 2 f ( ~ ,  : H,J in (3.15) is equal to 

1Li - k1 + tr + log - - k2 
Ism l 

+ tr S*&& + log I s u l  



Component 
due to 

Information 

TABLE 8.3 

< 
Is221 lRnl ' klkZ(k1 + k 2  + 1) > 

lZ22-~1 Nlog- = Nlog- k 1 k r  
21 

Iszz.11 IR2* 11 2N $ 

x (kl + . - - + k,,+l)krn(kl + . - . + k ,  + 1 )  2 l s m m l  = Nlog IRmml (kl + • + + km-l)km 
I L m . 1 p  .m-11 N'og ISmm.10. . .m-11 IRtnrn.12. .m-11 2N 4 

Is,ll- .. l smml  = N log lR11l . - IRnlml 
2 1 ( ~ ,  : H,(.)) N log Is1 IRI 

2 kikj 
i<j 



TABLE 8.4 $ 8 
Component due to Information D.F. p" * Z 

2 u 
IRjjI (1 - kj - kj-i)kf(l - kj-I + 1) Z 

N log (1 - k, - kj-Jk, 
ISjj.1~. . 4-21 1Rff.12. . 4-21 2N 2 

E 

ISfj.18. . .,-el = N log l h f i 1 2 -  -j-81 
Partial independence N log 

1Sjj.u. . 4-11 IRji-12. . .*-I] 

N log ISjjl = N log lRr3.l 
(1 - kj)kj 

ISjj.12. , .f-11 IRi,-12. . 4-11 
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8.34. Show that table 8.5 is an analysis of 21(H1: H a  in (3.15) (see problems 
8.32 and 8.33, and table 3.1, k = k1 + k d .  

TABLE 8.5 

Component 
due to 

Information D.F. 

&lK1 N log - Is9221 
ls22.11 

8.35. In (3.13) let C2 = u2Z3 and denote the null hypothesis with u2 and & 
specified by H3(u2), and the null hypothesis with & specified, but u2 not 
specified, by Ha(.). Show that [cf. Anderson (1958, p. 262), Mauchly (1940)l: 

(a) 2f(H1: ~ ~ ( 8 ) )  = N + k log - k + 
1 

(6) min 21(H1: H3(u2)) is given for 3 = - tr SZ;'. 
d k 

(c) 21(H1 : H3(.))  = min 21(H1: ~ ~ ( 8 ) )  = N log E9 w h e ~  S = 3%. 
cra Is31 
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Linear Discriminant Functions 

1. INTRODUCTION 

In this chapter we shall continue the discussion initiated in section 9 
of chapter 9. We have already studied linear discriminant functions, with 
assumptions of equality about the means or covariance matrices, in section 
8 of chapter 11, section 3.5 of chapter 12, section 4.2 of chapter 12, and 
section 5.2 of chapter 12. For these linear discriminant functions, we 
obtained the same coefficient matrix (vector) a of y = a'x whether we 
determined a to maximize 1(1 :2; y) or J(I ,2;  y). However, in section 9 
of chapter 9 we saw that different linear discriminant functions arise 
according as we maximize 1(1: 2 ; y), 1(2 : 1 ; y), or J(l ,  2 ; y). 

2. ITERATION 

In section 9 of chapter 9 we formulated the equations to be solved for 
the coefficients of the linear discriminant function as (9.5) of chapter 9, 
that is, 

where 7. and y are defined in section 9 of chapter 9 according as it is 
1(1:2; y), 42:  1 ; y), or J(1,2; y) which is to be maximized. We remark 
that in the derivation of (9.5) in chapter 9, dividing by an appropriate 
factor, we might also have formulated the equations as 

where for maximizing 1(1: 2 ; y), 
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for maximizing 1(2: 1 ;  y), 

and for maximizing J(1,2; y), 

For convenience, setting the proportionality factors y and y' equal to 1, 
(2.1) and (2.2) are 

where A = 111' for each case. When A, A' are not solutions of 12, - AZ21 
= 0, 12, - A'Z,I = 0 respectively, (2.6) yields the following implicit 
solution for a: 

If A is a known number, (2.7) yields directly the value of a. However 
A, A' in all instances are functions of a. Initial or entering values of a 
are therefore required to begin an iterative procedure. 

The entering value for a is taken to be, respectively, as 

It should be clear that the same initial value of a will serve each of the 
iterations necessary to maximize either 1(1 :2; y), 1(2: 1 ; y), or J(I,2; y). 

With a, determined, values for 4 6 ,  a,'Z,a,, %'&a, are found and 
then A. or Ad. Cycle I is begun by entering with 4 or 4' to find a new 
set of a's from 

and then determining a,%, al'Zlal, al'Z2al, and then A, or A,', thus 
completing the first cycle. This procedure is continued until the difference 
in successive a's, or more appropriately in successive ads,, is as small as 
desired. 

We shall replace population parameters by the best unbiased sample 
estimates. 
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3. EXAMPLE 

We shall illustrate the procedures described with data from Smith (1947) 
(see example 5.1 of chapter 12). The computations were performed by 
S. W. Greenhouse. The pertinent values are: 

We shall find the linear discriminant function y = alxl + a$,, a, = 1, 
a, = 4 a l ,  maximizing 1(1:2; y) ; similar steps occur for the procedure 
leading to the linear discriminant function maximizing 42: 1 ; y) and 
4 1 , 2 ;  Y). 

We obtain the initial value from (2.8), that is, 

so that a,, = 1.000000, a, = -0.377594. From these we get, 
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and from (2.3), 

Cycle 1 

IS, + 0.8417S11 = 13633.4112, 

% = (S, + 0.8417Sl)-ld = 0.023643 17 -0.00069566) ( 8.00) 
(-0.00069566 0.003 1228 1 -24.08 

a,, = I ,  a,, = -0.352248, 

8.00 a;d = (I, -0.392248)( ) = 17.445332, - 24.08 

a1'S$, = (1, -0.392248) (36.75 13.92 287.92 13.92)( -0.392248 1 ) = 70.12861 1, 

and from (2.3), 

Cycle 2 

~z = (S, + 0.8483Sl)-ld = 
0.02361 640 -0.00069175) ( 8.00) 

(-0.00069175 0.00312001 -24.08 

as = I ,  a,, = -0.392356, 
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and from (2.3), 

A third cycle was computed, although two cycles would seem to be 
sufficient in view of the negligible change in A'. The value of 

was also computed for the initial value and cycle 3. The various values 
are summarized in table 3.1. 

TABLE 3.1 

When the basis for the iteration is a = (XI - 7;;C2)-lS, the corresponding 
values are summarized in table 3.2. 

. 

A i 
ai2 

aiSlai 
aiSfii 
aid 
[(I :2; y) 

TABLE 3.2 

O 1 2 3 

-0.8417 -0.848333 -0.848388 -0.8483901 
-0.377594 -0.392248 -0.392356 -0.392357 
16.7298 14 17.345548 17.350162 17.3502 13 
67.288553 70.12861 1 70.150078 70.150338 
1 7.092464 1 7.445332 17.447932 17.447957 
2.49 1 1 2.492030 2.49203 1 2.49203 1 

For this example, note that both procedures yield the same n,, and 
exactly reciprocal 2's after only 3 cycles. This number of cycles need 
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not be 3 in general. We remark that the values across the rows of each 
table are monotonic. 

The values for the linear discriminant function maximizing i(2: 1 ;  y) 
are summarized in table 3.3. 

TABLE 3.3 

The values for the linear discriminant function maximizing 41 .2 ;  y) 
are summarized in table 3.4. 

TABLE 3.4 

We thus have the three linear discriminant functions: 

(3.2) m a x l ( 1 : ~ ; ~ ) :  y = x ,  -0.3924x2, 
max l(2: 1 ; y): y = x, -0.8491x2, 

max j(l, 2; y): y = x, -0.629k2. 

4. REMARK 

Although it is clear that the procedure, including that for obtaining the 
initial values, did converge, we have no general proof that this procedure 
converges, or that a solution yielded by this procedure is the only one 
satisfying (2.6). For any two-variate problem however, 1(1:2;y), 
l(2: I ;  y), and I ([ ,  2; y) are essentially functions of one unknown, the 
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ratio %la,. The maximizing condition is a polynomial in this ratio and 
the propertie of the roots can be studied. For I(1:2; y) and I(2: 1 ; y) 
the polynomial is quartic, and for ](I, 2; y) it is of the sixth degree. In 
each instance in section 3, there were only two real roots, a negative root 
yielding maximum [(I : 2 ; y), I(2 : 1 ; y), and j(1,2 ; y) and a positive root 
yielding the minimum value in each case. The equations were solved by 
Newtods method and the negative roots maximizing I(1: 2 ; y), f(2 : 1 ; y), 
and J(l, 2 ; y) respectively were -0.392357, -0.849083, and -0.629468. 
Reference to tables 3.2, 3.3, and 3.4 clearly indicates that the iteration is 
converging to these values and that the values obtained at the end of 2 
cycles are correct to 4 decimals. 

5. OTHER LINEAR DISCRIMINANT FUNCTIONS 

Smith (1947) computed a linear discriminant function for these data by 
assuming the covariance matrix to be the same in both populations. The 
solution for a is then 

where NS = NISI + N2S2, N = N, + N,. (See the last part of example 
4.1 in chapter 12 and section 8.1 of chapter 11.) Smith's values, reduced 
to a basis comparable to (3.2), that is, so that a, = 1, yield the discriminant 
function 

Since the two samples are of equal size, the linear discriminant function 
computed in accordance with section 4.2 of chapter 12, that is, the value 
of a satisfying 

yields the linear discriminant function in (5.2). 
Note that the linear discriminant function in (5.2) is almost the same 

here as the one in (3.2) resulting from maximizing f(1 :2; y). 
The discriminant function is often used to classify an individual on the 

basis of the observational vector (x,, x,, . . ., x,) and a given linear 
compound y = ylxl + . + yg, into one of two populations. [We 
use the matrix y' = (y,, y,, . ., y,) to avoid confusion with the error 
probability a below.] The classification usually proceeds according to 
some rule such as: if y falls into the region A*, classify into population 
n,, say, and if y does not fall into A*, classify into population n,. It is 
clear that associated with this or any other classification scheme are two 
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kinds of errors, namely, assigning y to population n1 when it is in fact 
from population 7r2, and assigning y to population n2 when it is in fact 
from population .rr,. Denote the probability of the first error by a and 
that of the second error by #I. We can then form a minimum error 
criterion for finding a linear discriminant function, namely, for a given /?, 
what linear function of the x's will minimize a?  Since a and /? are 
monotone functions of the normal deviates ta and tp respectively, it is 
simpler to work with the latter. 

It may be shown that, for a given /?, a will be minimized by maximizing 

The usual calculus procedures lead to the equation 

which is nonlinear in the y's. (The same equation is obtained if a is 
given and /? minimized.) The solution here is best, carried out, as in 
sections 2 and 3, by an iterative procedure on an equation of the form 

where 1 = ta(yfZly)"~/tp(y'Z2y)11~. The iteration follows the identical 
steps given in section 2. The initial values of y are obtained from y = 
Cl-l6, which in turn determine y'Cly, yfC2y, and for a fixed tp, t,, these 
determine I so that (5.5) becomes an explicit equation in y. The cycles 
can be continued until changes in t, become as small as desired. 

In this manner, two functions were found; one for /? = 0.05 (tB = 1.645) 
and the other for #I = 0.16 (tB = 1.000), 

(5.6) max ta(tp = 1.645) : y = xl -0.41 73x2, 

(5.7) max ta(tp = 1.000) : y = xl --0.39%k2. 

Although the linear discriminant function derived from the minimum 
error criterion is of interest in its own right, our interest in it at this point 
is to provide a base line for errors of classification with which the coke- 
sponding errors of the other linear discriminant functions may be compared. 
Note that the minimum error criterion does not provide a unique function, 
but yields a different discriminant for each tp. Furthermore, the criterion 
used here gives only an approximation (although a very good one) to the 
actual linear function minimizing a for a fixed @. This is because the 
procedure assumes that the region for assigning to n,. say y > yo (or 
y < yo), is optimal when L1 # Z2 as it is when = &. It is known 
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that this is not so [see, for example, Penrose (1947) and section 2 of 
chapter 51. 

6. COMPARISON OF THE VARIOUS LINEAR DISCRIMINANT 
FUNCTIONS 

Before conlparing the different linear discriminant functions obtained 
in sections 3 and 5, we present in table 6.1 the discrimination information 
values for the original x variables for x, and x2 separately and jointly. 
Note that the values for x2 are larger than the values for x, in all three 
measures; that is, an observation on the x2 characteristic from either 
population has greater discrimination information in distinguishing 
between the two populations than does an observation on the x, 
characteristic. Reference to the lower portion of table 6.1, which presents 
the error made in classifying an observation from 7r2(a) for a given error in 
classifying an observation from 7rl(B), indicates that x2 also does better 
under an error criterion than does x,. 

TABLE 6.1 

Information Measures X1 X2 2, and x2 Jointly 

f(1: 2) 1.2997 1.5539 3.1993 

f(2 : 1) 5.9448 9.1351 13.2934 

& , 2 )  7.2445 10.6890 16.4927 

Errors 

a for B = 0.01 0.3782 0.2937 
a for B = 0.05 0.2723 0.2123 
a for /? = 0.16 0.1879 0.1486 
min (a + f i  0.3 154 0.2580 

B 0.0738 0.0553 
0: 0.2416 0.2027 

The last column in table 6.1 gives /(1:2), /(2: l), and J(1,2) for x, and 
x2 assumed to have a bivariate normal distribution in each of the two 
populations. To compute the efficiencies of the linear discriminant 
functions of x1 and x2, we note that the maximum 1(1:2; y), 1(2: 1 ; y), and 
J(1, 2; y) each can attain is 3.1993, 13.2934, and 16.4927 respectively. 
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One last point of interest in table 6.1 is that in this example x, and x, 
jointly yield a value of !(I :2) which exceeds the sum of the value of [(I :2) 
for x, and for x,. This is not true for I(2: 1) and & I ,  2). 

In table 6.2 are the data on six linear functions of x, and x,, three 
obtained by maximizing the information measures, two obtained under 
an error principle, and one found by pooling variances and covariances 
between the two samples and proceeding as if the covariance matrices 
were the same. The upper portion of table 6.2 relates to the information 
measures in the linear compounds and the lower portion presents various 
error combinations in classifying observations, including the minimum 
total error that could be made with each function. 

TABLE 6.2 
Linear Discriminant Punction Obtained by 

min a for min a for max f(1: 2; y) max f(2: 1 ; 21) rnax .%I. 2: 11) Covariance 8 -0.05 p = 0.16 
Matrices 

Errors 

a for 19 3 0.01 0.1771 0.1948 0.1823 0.1770 0.1764 0.1769 
a for 19 = 0.05 0.1029 0.1212 0.1096 0.1029 0.1027 0.1028 
a for 19 3 0.16 0.0564 0.0719 0.0626 0.0564 0.0564 0.0564 
min (a + 8) 0.1 525 0.1708 0.1591 0.1525 0.1522 0.1523 

B 0.0438 0.0446 0.0434 0.0438 0.0435 0.0437 
a 0,1087 0.1262 0.1157 0.1087 0.1087 0.1086 

It is clear that the four linear discriminant functions obtained by (a) 
maximizing f(1:2; y), (b) pooling variances and covariances, (c) mini- 
mizing a for = 0.05, and (d) minimizing a for B = 0.16, are very much 
alike with regard to discrimination information, divergence, and errors of 
classification. Maximizing f(2 : 1; y) and &1,2 ; y) yields linear discrimi- 
nant functions which have greater efficiencies than the other four with 
regard to 1(2: 1, y) and ](I, 2; y), but have smaller efficiencies with regard 
to 1(1:2; y), and have larger errors of classification than the other four. 

From the point of view of information theory, the most interesting 
feature when the covariance matrices are not equal is the fact that 
f(1:2; y) # f(2: 1 ; y) and therefore maximizing these two measures, and 
the divergence measure Q(I, 2; y), yields three different linear functions. 
The example does suggest that at least one of the discriminant functions 
so obtained, in addition to having optimum properties associated with the 
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information measure leading to it, will also possess optimum properties 
associated with an error criterion for finding a linear discriminant function. 

An interesting problem that arises is the investigation of the properties 
of max [(I :2; y), max 1(2: 1; y), and max 3(1,2; y) to determine the 
conditions that will make one of them the best from the error point of 
view in numerical applications. It is conjectured that if rr, is always 
taken as the population with the smaller covariance matrix (see the remark 
following lemma 5.1 in chapter 3), the linear discriminant function resulting 
from maximizing f(l:2; y) will always give smaller errors than the other 
two. 

Note also that although max f(2: 1; y) and max 1(1,2; y) do not do as 
well as the other functions on an error basis, they differ most from the 
linear discriminants derived from a basis other than the information 
measures. Further study of these two linear discriminants may elicit 
important properties within the information theory approach. 

Of general interest is the fact that the linear discriminant function 
obtained by pooling the covariance matrices does so well. Whether this 
would continue to be true in other examples, or is peculiar to this one, 
remains to be investigated. 

7. PROBLEMS 

7.1. Derive (2.2), (2.3), (2.4), (2.5). 

7.2. Derive the values in table 3.2. 

7.3. Derive the values in table 3.3. 

7.4. Derive the values in table 3.4. 

75. Derive the two quartic and the sixth-degree polynomials mentioned in 
section 4. 

7.6. Derive (5.4) and (5.5). 

7.7. Derive the values in (5.7). 

7.8. Derive (5.4) by minimizing B for a given a. 
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TABLE I .  Log, n and n log, n for Values of n from I through 1000 
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TABLE I (continued) 
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TABLE I (continued) 
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TABLE I (continued) 



TABLES 

TABLE I (continued) 

n log, n n log, n n log, n 



INFORMATION THEORY AND STATISTICS 

TABLE I (continued) 
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TABLE I (continued) 
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TABLE I (continued) 
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TABLE II .*  

PI 41 * For values of  pl log - + ql log - for p, > 0.50, enter the table using (q,, q,) as though they were (p,. p,). 
P2 4. 
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TABLE 111. Noncentral x2 
Table of 5% points of the distribution of Fisher's B2 

Values of Value of n, Degrees of Freedom 

Entries in this table are the squares of the values of B and the values of 
are the squares of /l, in the table on p. 665 of R. A. Fisher (1928). 



Glossary 

Implies 
-. Approaches 
2 - If and only if 
U Union 
f l  Intersection 
c Is contained in 

Contains - IS asymptotically equal, to 
Is approximately equal to 
Such that 

{x: C} Set of x's satisfying the condition C 
E Belongs to 
[4 Modulo I ,  or except for sets of I-measure 0 
cov Covariance 
E,( ) Expectation with respect to the probability measure p i  
O(n) Is at most of order n 
o(n) Is of smaller order than n 
g.1.b. Greatest lower bound, infimum, inf 
1.u.b. Least upper bound, supremum, sup - 
lim Limit superior, lim sup 
lim Limit inferior, lim inf 

lim Limit 
tr Trace 
var Variance 

Absolute Continuity: A measure p is said to be absolutely continuous with respect 
to a second measure v if for every set E for which v(E) = 0 it is true that p(E) = 0. 
For p absolutely continuous with respect to v, we write ,u < v. and v are defined on 
the same measurable space (3, Y).] 

Additive Class of sets-a Field: Sometimes called "simply" additive to distinguish 
it from a "completely"~additive class which is a Borel field. In other words, additive or 
simply additive refer to properties essentially dealing with a finite number of terms 
whereas completely additive refers to a denumerable number (finite or infinite). 

Admissible: That which is regarded as a priori possible. Generally the property of 
belonging to a particular subset. For example, a parameter point is called an admis- 
sible point if it belongs to a set of the parameter space corresponding to a given 
hypothesis. 

38 1 
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Asymptotic Confidence interval: A confidence interval whose limits are statistics 
based on arbitrarily large samples. 

Asytytotic Distribrttion Fitnetion: If the distribution function F(c; n) of a random 
variable .e depends upon a parameter n, then the distribution function (if any) to which 
F(c; n) tends as n -. a3 is called the asymptotic distribution function of the random 
variable. 

Axiotnatic Development: That development of a science which begins with the 
creation of a clearly defined set of axioms from which all theorems are deduced. The 
theorems are then applied to explain and predict the results of experiments-the 
"facts." Inductive development, by contrast, proceeds from a body of observed 
"facts" frorn which the theorems are obtained by a process of generalization. If then 
a set of axioms can be found which enables the theorems to be "proved," the two 
approaches produce equivalent results. 

Basis: A set of linearly independent vectors such that every other vector of the space 
is a linear combination of the vectors of the set. 

Best Estimate: That estimate of a parameter having minimum attainable variance. 
Bias: The difference between the expected value of an estimate and the estimated 

parameter. 
Biased Estimate: An estimate whose expected value is not the estimated parameter. 
Binary Dlqit: A digit of a binary system of numbers. 
Bit: Abbreviation for binary digit. 
Borel Field: A field Y such that the union of any denumerable number of sets of 

Y is a set of Y. 
Borel Set: A set of a Borel field. In an n-dimensional Euclidean space Rn a Borel 

set is one that is obtained by taking a finite or a denumerable number of unions, 
differences, and intersections of half-open intervals (ai < xi Sbt) ,  i = 1,2, . . ., n. 

Characteristic Eqrtation (of a square matrix A): The determinantal equation in 1, 
[A - 1.11 = 0, where I is the identity matrix (same order as A). 

Characteristic Function of a Set: The point function which is equal to 1 for any 
point of the set and which is 0 elsewhere. 

~haracteristic Vector (corresponding to a characteristic root of a characteristic 
equation for a square matrix A): The vector x which satisfies the matrix equation 
Ax = dx for the particular characteristic root I. of the characteristic equation. 

C l m :  Set of sets. 
Commrinication Theory: Mathematics applied to communication processes. 
Complement of One Set with Respect to Another: Set of all points of the second set 

which are not in the first. The complement of a set E with respect to the space 37 in 
which it is contained is the set of all points of 37 not in E. 

Confidence Coeficient: The probability associated with a confidence interval. 
Confidence ~nterval: An interval limited by two statistics such that the probability 

of a parameter value being covered by the interval is known. 
Confi/ence Limits: The upper and lower limits of a confidence interval. 
Consistent Estimate: One that converges in probability to the estimated parameter. 
Converge Stochastically or Converge in Probability: Let f(x), f,(x), f,(x), . . be 

random variables on an x-space. The sequence,f,(x) is said to converge stochastically, 
or in probability, to ,f(x) if lim Prob{l fn(x) -f(x)l 2 6 )  = 0. 

n- co 
Converge with Probability I :  Let .f(x), ,f,(x), fZ(x), . be random variables on an 

x-space. If lim ,fn(x) =f(x) for almost all x, we say that ,f,(x) converges tof(x) with 
n- co 

probability 1. 
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Convex Set: A set such that the entire line segment connecting any two points of the 
set is contained in the set. 

CramPr-Roo Ineqitalitv: See Information Inequality. 
Denrtmerable: The of being able to be placed in one-to-one correspondence 

with the set of positive integers. 
Diayonal Element (of a square matrix): An element in the same row as column. 
Disjoint Sets: Two sets having no common elements. 
Distance (hction): A real-valued function d of points a ,  y, r such that d(x, y) 2 0, 

c/(G, y) = 0, if and only if c =I/, d(x, y) = d(y,s), and d(x, y) I d(x, z) + d(z, y). 
The last relation is called the triangular inequality. 

Dominated Set ?/' Measures: A set M of measures pi  defined on the measurable 
space (3, 9 )  for which there exists a finite measure v such that pi  is absolutely con- 
tinuous with respect to y(,~, < v) for every p,  belonging to M. v need not be a member 
of M.. 

EfJicient Estimate: An estimate of minimum possible variance. 
Equivalent Measures: Two measures p and v such that p is absolutely continuous 

with respect to v (written p < v) and such that v is absolutely continuous with respect 
to p (v Q p). To indicate that two measures are equivalent we write p v. 

Equivalent Set of Measures: A set of measures pf  defined on the measurable space 
(.T, 9") for which there exists a measure v such that each measure pt is equivalent to v 
(written pi v). This means that each pi is absolutely continuous with respect to v 
and vice versa. 

Estimator: A statistic selected to approximate (or to estimate) a given parameter 
(or function of such parameter). 

Euclidean Space Rn of n Dimensions: A metric space made up of points (vectors) 
z = (xl, x2, . ., xn), where the xi for i = 1,2, . . -, n are real numbers and where for 
two points x = (xlrx2,. . -,xn) and y = (y,, yo,. . ., y,), the "distance" between x 

and y is defined as 2 (xf - yJ2 ( )'" 
Event: A set of the probability space (97, Y,  p) belonging to Y. 
Field: A class Y of sets of a space S such that the union of any two sets in Y is in 

Y,  the intersection of any two sets in Y is in Y, and the complement of any set in Y 
with respect to 97 is in Y. 

Finite Measrtre: A measure p such that p(%) < a for a measurable space (97, 9 ) .  
Fisher's Information Matrix: The k x k matrix whose element in the ith row and 

jth column x / i ( r ,  8) [& log f(x, 8)] [L aej log( fx, 8)] d(x),  where i(x) is a pmb- 

ability measure and f(x, 8), the generalized density, is a function ofx and a k-dimensional 
parameter 8. 

Generalized Probability Densir': Let p be a probability measure which is absolutely 
continuous with respect to 1 on a probability space (97, Y, I.). Then the generalized 
probability density function corresponding to p is that function f(x), a unique, positive, 

and finite except for sets of A-measure zero, such that p(E) = f(z) &(x) for all E 
belonging to 9'. 

Greatesr Lower Bound (Abbreviated g.l.b., or called "the" lower bound): The largest 
of the lower bounds of a set (of real numbers). 

Homogeneous Samples: Samples from populations with the same parameter values. 
If only some of the parameters are alike, the samples are said to be homogeneous with 
respect to these parameters only. 
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Homogeneous Set of Measures: A set of measures such that any two members of the 
set are absolutely continuous with respect to each other. 

Hyperplane (of n dimensions): The set of all points in Rn which satisfy a single 
linear function I(xl, x,, . . ., x,J = 0. (See Linear Set.) 

Hypothesis: A statement that a point of the parameter space belongs to a specified 
set of the parameter space. 

Identity Matrix (n x n): The matrix with all n diagonal elements equal to 1 and all 
other elements equal to 0. 

Indicator of a Set: Same as characteristic function of a set. 
Infimum (inf) : Greatest lower bound. 
Information Inequality: Consider f(x, 8) a density function corresponding to an 

absolutely continuous distribution function with parameter 8 for a random variable X. 
Let T(X) be any unbiased estimate of fie), a function of 8. Then the inequality 

(d41de)2 variance of T 2 - 
I 

I df where I is the variance of --, is called the information inequality. 
f 

Note: The range of X must be independent of 8 and ,f'must be differentiable with 
respect to 8 under the integral sign. As defined by R. A. Fisher, I is the information 
on 8 supplied by a sample of n observations. 

Intersection of TWO Sets: The set of points belonging to both sets. The intersection 
of sets A and B is written A fl B. 

Inverse Image of a Set: If a set G belongs to a space @ corresponding to a space S 
under a transformation T(x), then the set of all points x of 2T whose transforms under 
T(x) are in G is called the inverse image of G. It is denoted by T-l(G) = {x: T(x) E G}. 

Inverse of a Matrix: An n x n square nonsingular matrix A is said to have an 
inverse A-I if AA-I  = A-'A = I, where I is the n x n identity matrix. 

Jacobian of a Transformation: If yi =J;:(x,, . . ., xk) for i = 1,2, . ., k is a trans- 
formation, then the determinant whose element in the ith row and jth column is 
i3h/axj is called the Jacobian of the transformation. 

Khintchine's Theorem: Let XI, X2, . be identically distributed independent 
I n 

random variables with finite mean m. Then X = %xi converges in probability to m. 
n;=l 

Least Upper Bound (Abbreviated I.u.~., or called "the" upper bound): The sn~allest 
of the upper bounds of a set (of real numbers). 

Likelihood Ratio (at X = x) : The ratio of f,(x) to f2(x), where J(x) for i = 1, 2 is 
the generalized probability density for the observation X = x under the hypothesis 
that the random variable Xis  from the population having the generalized probability 
density f;{X). 

~ i m i t  Inferior (lim inf): The smallest limit point of a sequence (of real numbers 
bounded below). (lim x = a if x > a - r but never ultimately > a + r.) (lim z, = - - 

n+ co 

lim m,, where m, is the lower bound of xl,x2, x,, . , m2 is the lower bound of 
n- co 
x,, x,, - ., m, is the lower bound of x,, x,, . . ., etc.) (lim - x, = sup inf x,.) 

Limit Point (of a sequence of real numbers): A point every neighborhood of which 
contains infinitely many points of the sequence. 

Limit S~cperior (lim sup): The greatest limit point of a sequence (of real numbers 
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bounded above). ( G x  = A ifx < A + r but never ultimately < A - 3 (ZZ,, 
n- CD 

lim M,, where M, is the upper bound of x,, x,, . . ., M, is the upper bound of 
n- co - 
xz, x,, . . ., M, is the upper bound of x,, x,, . . ., etc.) (lim x, = inf sup z,,,.) 

* C D  k m L k  
Linear Ser of n - p Dimensions: A set of points in a space R" each of whose 

coordinates can be expressed as a linear function of n - p arbitrary parameters. For 
p = 1 this set is a hyperplane and for p = n - 1, a straight line. Also: the set of 
points in R" common top  linearly independent hyperplanes is a set of n -p dimensions. 

Linear Tramformarion: y = Ax with y' = (y,, yi, . . ., ?I,,,), X' = (x,, sf, *, xJ, 
A = ( a i j ) , i = 1 , 2 , . .  - , m , j = 1 , 2 , . .  .,n. 

Linearlv Independent Functions (on P): A set of functions fkx) defined on Rn such 
that no one of them can be expressed as a linear combination of the others with real 
numbers not all zero for coefficients. 

Linearly Independent Vectors: A set of vectors is said to be linearly independent if 
none of them can be expressed as a linear combination of the rest. 

Lower Bound (of a set E of real numbers): A teal point c such that for every point 
x o f E , x  k c .  

Matrix (m x n) : A set of numbers arranged rectangularly in m rows and n columns. 
Measurable Function: A real-valued function f(x) of the points x of the measurable 

space (37, 3') such that for every real number c, the set {x: f(x) < c} belongs to 9. 
Such a function is called an 9-measurable function. 

Measurable Set: Any subset of a measurable space (37, 3') belonging to the Borel 
field 9 defined on the space 37. I, 

Measurable Space: A space 37 on which is defined a Borel field 9 of subsets of 37. 
We denote this type of space by (37, 3'). 

Measurable Tram-formation: A transformation T(x) of the elements of a measurable 
space (37, fl into those of another measurable space (g, fl) such that for every set 
G belonging to the Borel field fl, the inverse image of G, T-'(G), belongs to the Borel 
field 9, where T-'(G) = {x: T(x) E Gj'. 

Measure: A nonnegative, completely additive set function defined 0n.a Borel field 
9' of a measurable space (37, 3'). 

Minor (of a matrix A): The determinant of any square submatrix of A. 
Momenr Generating Function (of a rindom variable X )  : A function of a real variable 

t equal to the expected value of &X with respect to the distribution function of X. 
Most Powerful Test: That test among all tests of a given site giving the largest 

possible value to the probability of rejecting the null hypothesis when an alternative 
hypothesis is true. 

Ne&hborhood of a Point: The neighborhood of a point a is the set of points x which 
satisfy an inequality of the form Ix - a1 < r, where r > 0 and Ix - means the 
distance between x and a. (See Euclidean Space.) 

Nonsingular Linear Transformation: A linear transformation with a nonsingular 
matrix. 

Nonsirgular Matrix: A square matrix A such that its determinant 1 ~ 1  # 0. If 
IAl = 0 the matrix is said to be singular. 

Nonsiqqufar Tramformation: A one-to-one transformation which has an imerse. 
One-sided Hypothesis: A hypot h i s  which places the value o f a  F m e t e r  as almys 

greater than, or as always less than, some fixed constant. 
One-t~One Trmufoomntion T: A transformation such that T(z3 a T ( 4  when and 

only when x, =.. xf. 
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Open Set of R": A set all of whose points are interior points, that is, points such 
that a neighborhood of the point belongs entirely to the set. 

Orthogonal Matrix: A matrix C such that CC' = 1, where C' is the transpose of C 
and 1 is the identity matrix. 

Parameter Space: The space of all admissible parameter points. 
Point: Any element of a space 37. Generally a vector (x,, q, . ., x,) for a vector 

space of k dimensions. 
Point Function: A function defined (having a value) for every point of a space. 

Contrast is usually with set function. 
Positive Dejinite Matrix: The matrix of a positive definite quadratic form. 
Positive Dejinite Quadratic Form: A quadratic form which is never negative for real 

values of the variables and is zero only for all values of the variables equal to zero. 
Positive Matrix: The matrix of a positive quadratic form. 
Positive Quadratic Form: A quadratic form which is nonnegative and which may be 

zero for real values of the variables not all zero. 
Power (of a test): The power of a test (of a given size) is the probability of rejecting 

the null hypothesis when an alternative hypothesis is true. 
Principal Minor (of a square matrix): A minor whose diagonal elements are diagonal 

elements of the matrix. 
Probability Measure: A measure p such that p(%) = 1 for the space 37 [which is a 

measurable space (37, q]. 
Probability Measure Space: Same as probability space. 
Probability Space: A measurable space (S, 9 )  on which a probability measure p 

is defined. Designated as (S, 9 ,  p). 
n n 

Quadratic Form: An expression of the form x'Ax = 2 atpixi, with x' = 
i -1 j=l 

(x,, x2, -, x,) and the matrix A = (aij) of the quadratic form symmetric. 
R": Symbol for the Euclidean space of n dimensions. 
Radon-Nikodym Theorem: If p and v are two a-finite measures on the measurable 

space (S, 9') such that v is absolutely continuous with respect to p, then there exists 
an 9-measurable function .f(x) such that 0 <.f(x) < +oo, and for every set 

E F 9 v ( n  = L f ( ~ )  dp(x). The function f (x) is unique in the sense that if there 

exists another functiong(x) with the same properties as.f(x), then p(x: f(x) # g(x)) = 0. 
Random Variable: Any 9-measurable function.f(x) defined on a measurable space 

(S, 9 ) .  
Rank of a Matrix: A matrix is of rank r if r is the largest integer such that at least 

one minor of the matrix of order r is not zero. 
Region of Acceptance (Rejection): A set of the sample space such that if a sample 

point (or function thereof) falls inside (outside) the set we accept (reject) a given 
hypothesis. 

Set: Any subset of a given set (space) S. (The words set, subset, and space are 
among the "undefined elements" of the science, theory, or geometry of measure.) 

Set Function: A function whose domain of definition is a class of sets. 
a-Algebra: Same as Borel field. A nonempty class of sets closed under (that is, 

contains the result of) the formation of complements and denumerable unions. 
a-finite Measure: A measure p for which a finite or denumerable sequence of 

measurable sets Ei can be found such that the union U Ei = S (the whole space) and 
p(Ei) < oo for every i. 
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Size (of a test): The probability of rejecting the null hypothesis when it is true. 
Space: Any collection or set of elements .tS of any nature. Denoted by d .  (An 

"undefined" element of our science.) 
Statistic: Any function of a sample not depending on any parameter. Itself a 

random variable. 
Supremum (sup): Least upper bound. 
Theory: A set of axioms and all logical deductions (theorems) therefrom. Synonyms: 

'Science, geometry. 
Trace (of a square matrix): The sum of the diagonal elements. 
Transformation: A function T(.r) = y of the elements .r of a space 2' which establishes 

a correspondence between those elements and the elements of a space ,a. 
Transformation Matrix: The matrix A = (aij) of a linear transformation. 
~ r a n i ~ o s e  (of a matrix A): The matrix A' with the rows and columns of A inter- 

changed. 
Trrtncation: A process by which all observations outside a given interval are dis- 

carded. The remaining cases then yield a truncated distribution with the distribution 
function 

0 for .r 2 a 

1 for z > b, 

where F(zla < ;' 5 b) is the conditional distribution function of the random variable 
t on the assumption that ;' lies on the interval (a, b] (half open) and where F(x) is the 
original distribution function of ;' on the whole x-space o f t .  

Type I Error: The error made in rejecting the null hypothesis when it is true. 
Type I1 Error: The error made in accepting the null hypothesis when it is false. 
Unbiased Estimate: An estimate whose expected value is the estimated parameter. 
Uniformly Most Powerful Test: The test among all tests of a given size that is most 

powe;ful for oll admissible alternative hypotheses. 
Union of Two or More Sets: The set of all those points of a space 3 which belong 

n 
to at least one of the sets. If Ei denotes the sets, for i = 1,2, . a, n, then U Ei 

i=1 

denotes the union. 
Upper Bound (of a set E of real numbers): A real point d such that for every point 

n. of E, r 5; d. 
Vector: A matrix consisting of a single row or of a single column. 





Appendix 

Note to page 38 

Anticipating lemma 4.9 in section 4 we also state: 

THEOREM 2.2. Zffi(x) andfi(x) are generalized densities of a dominated 
set of probability measures, Y = T(x)  is a measurable statistic such that 
$ T(x)  fl(x)dA(x) exists, and M2(z) = $&(x)cT(z) dl(%) exists for z in some 
interval; then 

d 
Z(1:2) >= 0 t  - log M2(z) = Z(*:2), 0 = - d z  log M2(z), 

for&(%) ranging over thegeneralized densities for which $ T(x)fi(x)dA(x) 2 0 
and $ T(x)fi(x) dA(x) c 0, with equality i f  and only i f  

f i ( ~ )  =f *(XI = ezT(z>fi(x)/M2(z) [A].  

Note to page 70 
THEOREM 2.1 a. Suppose that the probability measures in theorem 2.1 

are such that 

uniformly, then lirn Z(l (N) : 2") ; @) = I(1: 2 ; @), if Z(l: 2 ; @) is finite. 
N+ - 

-giN)logQ dy + giN)lOg Ei - g i N )  log - 
g2 I i l  g2 
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For sufficiently large N, 

log g' - lo& glN' I g2 
( 1  < €2, g, < 1 + €1 

g2 

so that 

and since el and E, are arbitrarily small the assertion is proven. (See 
S. Ikeda (1960), "A remark on the convergence of Kullback-Leibler's 
mean information", Annals of the Institute of Statistical Mathematics, 
Vol. 12, No. 1, pp. 81-88.) 

Note that if I(l(N):2(N); g)  in theorem 2.1, page 70, is a monotonically 
increasing function of N and I(1(N):2(N); 9Y) 1 I(1:2; q, then lim 

N-03 
1 : 2 ; = 1 : 2 ; . Since lim inf I(l(N) : 2(N) ; ?!Y) 2 1(1: 2 ; q, if 

N-03 
I(1:2; 9Y) = a, then lirn I(l(M:2(N); ?P) = a. 

N-03 

Note to page 72 
The following is the proof of lemma 2.2, page 72. In problems 7.29, 

7.31, 7.32 on page 69 it is shown that 

(see S. Kullback ( 1  966), " An information-theoretic derivation of certain 
limit relations for a stationary Markov Chain," SIAM Journal on Control, 
Vol. 4, No. 3.) 

Accordingly t (l 1 f iN)(x) - fl(x) ldA(x))2 5 I(1(" : 1 )  < r for sufficient- 
ly large N, that is ,f I f iN)(x) - f,(x)ldA(x) -+ 0 as N -+ a. The last asser- 
tions follow from Lokve (1955, p. 140, problem 16 and page 158). 

Note to page 306 
In problem 8.34, page 341, table 8.5, the component due to X 2 ,  Xi,' re- 

duces to the independence test for X 2 ,  = 0. The component in table 8.5 
is then also a test for specified X2 ,  Xi :  other than 0. The analysis for 
independence may also be set up as in table 8.6. 
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TABLE 8.6 

Component due to Information D.F. 

Independence within set 1 - N log 1 Rll  1 kl(k1 - 1 )  k , (k ,  - 1)(%l + 5)  
2 12N 

Independence within set 2 - N log JRZ2I kz(k2 - 1 )  kp(k2 - + 5)  
2 12N 

Independence within set rn - N log JR,,J 
k,(k", - 1) k d k ,  - I)(% + 5)  

2 12N 

-Nlog IRI (X9+ 3 k a -  k - z(Zkg+ 3 k f -  k ~ )  
Independence between sets 2 kikj * 

lR~ l l" ' l&l  i<j 12N 

Total independence -Nlog IRI k (k  - 1) k(k - I)(% + 5)  
2 

- 
12N 

Note that when R,, contains all but the last variable 

-Nlog IRI = -N log IRllI - N log I R I m 
and IRI - log (1 - rke12 . . . ,,,-,). log IR,,I - 
(See table 8.1, page 337.) 
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Estimation efficiency, 64, 65, 66 
Estimator, 81, 383 

unbiased, 57, 387 
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Event, 3, 383 
Evidence, weight of, 5 
Expectation, conditional, 19 
Experiment, 10 
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Experiment, designer of, 1 
Exponential family, 38, 84 
Exponential type, 39, 44 
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Field, 383 
Finite measure, 5, 383 
Fisher, R.A., 1 ,2,  13, 18, 119, 141 
Fisher consistent, 141 
Fisher information matrix, 28, 49, 383 
Fisher's B-distribution, 327 
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Garner, W. R., 155 
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~ i l & r t ,  E. N., 1 
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means and regressions, 272, 273 
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sample averages, 280 
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ficients, 276 
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t-test, 301 
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Hyperplane, 98, 384 
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testing, 85, 109 
Hypothesis, 384 

conditional, 166 
multivariate normal, 333 
one-sided, 119, 121, 131, 148, 151, 385 

?(*:H), 85 
1(*:2), 38 
1(1:2), 5 
Identity matrix, 384 
Independence, conditional, 166 

multivariate, 303 
sets of variates, 276, 282, 306 
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177 
two-way contingency table, 156 

~nde~endence components, analysis of, 
173 

Independence hypotheses, 165, 182 
Indicator of a set, 42, 384 
Inequality, CramCr-Rao, 36 

information, 36, 55, 384 
Jensen's, 16 

Infimum (inf), ,384 
Information, additivity of, 12 

bit of, 7 
Chernoff 's, 41 
conditional, 13 
definition of, 3, 5 
discrimination, 5, 19, 70, 85, 196 
experiment, 10 
Fisher's, 13, 26, 55 
Hartley's, 7 
in a set, 16 
in a variable about another variable, 8 
in a vector about another vector, 201 
in row-categories about column- 

categories, 156 
in row-categories about (column, 

depth)-categories, 163 
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.loss of, 16, 22, 74, 144 
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pseudo, 41 
Savage's, 5 
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Wiener's, 2, 33 
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Information theory, 1, 2 
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Linear compound, 254, 276, 278, 317, 
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son of, 351 
minimum error criterion, 349 
most divergent, 198, 200, 203, 347 
most informative, 198, 200, 203, 347 
pair of, 204 
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unbiased, 238, 255, 292 
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Linear regression, common, 268 
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Linearly independent vectors, 385 
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Mann, H. B., 102 
Marginal distributions, homogeneity of, 
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Matrix, 385 
diagonal, 192, 195 
nonsingular, 385 
orthogonal, 199, 386 
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positive definite, 386 
rank of, 386 

Matrix differentiation, 298 
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Matrix factorization, 302 
Matrix inequality, 56, 292 
Maximum likelihood, 85, 94 

equations, 118, 139, 176 
estimate, 94, 102 

Means, homogeneity of, 223, 264, 272, 
273, 276, 309, 311 

Measurable function, 4, 385 
Measurable set, 1, 3, 385 
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Measurable transformation, 18, 70, 385 
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Most powerful test, 385 
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n log n, tables of, 109, 110, 367 
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Neyman's 114 
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table of, 380 
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Nonsingular linear transformation, 385 
Nonsingular matrix, 385 
Nonsingular transformation, 2 1, 385 
Normal density, 8, 14, 189 
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221, 226, 230, 237, 255, 258, 289 

Notation, matrix, 189 
under various hypotheses, 220 

Observations, definitive, 4 
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missing, 238 
probabilistic, 1 
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Quadratic form, 56, 386 
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