

Performance
Evaluation
and
Benchmarking

A CRC title, part of the Taylor & Francis imprint, a member of the
Taylor & Francis Group, the academic division of T&F Informa plc.

Boca Raton London New York

Performance
Evaluation
and
Benchmarking
Edited by
Lizy Kurian John
Lieven Eeckhout

Published in 2006 by
CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2006 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group

No claim to original U.S. Government works
Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number-10: 0-8493-3622-8 (Hardcover)
International Standard Book Number-13: 978-0-8493-3622-5 (Hardcover)
Library of Congress Card Number 2005047021

This book contains information obtained from authentic and highly regarded sources. Reprinted material is
quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts
have been made to publish reliable data and information, but the author and the publisher cannot assume
responsibility for the validity of all materials or for the consequences of their use.

No part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic,
mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and
recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com
(http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC) 222 Rosewood Drive,
Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration
for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate
system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only
for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

John, Lizy Kurian.
Performance evaluation and benchmarking / Lizy Kurian John and Lieven Eeckhout.

p. cm.
Includes bibliographical references and index.
ISBN 0-8493-3622-8 (alk. paper)
1. Electronic digital computers--Evaluation. I. Eeckhout, Lieven. II. Title.

QA76.9.E94J64 2005
004.2'4--dc22 2005047021

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Taylor & Francis Group
is the Academic Division of T&F Informa plc.

3622_Discl.fm Page 1 Friday, August 5, 2005 8:59 AM

Preface

It is a real pleasure and honor for us to present you this book titled

Perfor-
mance Evaluation and Benchmarking

. Performance evaluation and benchmark-
ing is at the heart of computer architecture research and development. With-
out a deep understanding of benchmarks’ behavior on a microprocessor and
without efficient and accurate performance evaluation techniques, it is
impossible to design next-generation microprocessors. Because this research
field is growing and has gained interest and importance over the last few
years, we thought it would be appropriate to collect a number of these
important recent advances in the field into a research book. This book deals
with a large variety of state-of-the-art performance evaluation and bench-
marking techniques. The subjects in this book range from simulation models
to real hardware performance evaluation, from analytical modeling to fast
simulation techniques and detailed simulation models, from single-number
performance measurements to the use of statistics for dealing with large data
sets, from existing benchmark suites to the conception of representative
benchmark suites, from program analysis and workload characterization to
its impact on performance evaluation, and other interesting topics. We expect
it to be useful to graduate students in computer architecture and to computer
architects and designers in the industry.

This book was not entirely written by us. We invited several leading
experts in the field to write a chapter on their recent research efforts in the
field of performance evaluation and benchmarking. We would like to thank
Prof. David J. Lilja from the University of Minnesota, Prof. Tom Conte from
North Carolina State University, Prof. Brad Calder from the University of
California San Diego, Prof. Chita Das from Penn State, Prof. Brinkley Sprunt
from Bucknell University, Alex Mericas from IBM, and Dr. Kishore Menezes
from Intel Corporation for accepting our invitation. We thank them and their
co-authors for contributing. Special thanks to Dr. Joshua J. Yi from Freescale
Semiconductor Inc., Paul D. Bryan from North Carolina State University,
Erez Perelman from the University of California San Diego, Prof. Timothy
Sherwood from the University of California at Santa Barbara, Prof. Greg
Hamerly from Baylor University, Prof. Eun Jung Kim from Texas A&M
University, Prof. Ki HwanYum from the University of Texas at San Antonio,
Dr. Rumi Zahir from Intel Corporation, and Dr. Susith Fernando from Intel

Corporation for contributing. Many authors went beyond their call to adjust
their chapters according to the other chapters. Without their hard work, it
would have been impossible to create this book.

We hope you will enjoy reading this book.

Prof. L. K. John

The University of Texas at Austin, USA

Dr. L. Eeckhout

Ghent University, Belgium

Editors

Lizy Kurian John

 is an associate professor and Engineering Foundation
Centennial Teaching Fellow in the electrical and computer engineering
department at the University of Texas at Austin. She received her Ph.D. in
computer engineering from Pennsylvania State University in 1993. She
joined the faculty at the University of Texas at Austin in fall 1996. She was
on the faculty at University of South Florida, from 1993 to 1996. Her current
research interests are computer architecture, high-performance microproces-
sors and computer systems, high-performance memory systems, workload
characterization, performance evaluation, compiler optimization techniques,
reconfigurable computer architectures, and similar topics. She has received
several awards including the 2004 Texas Exes teaching award, the 2001 UT
Austin Engineering Foundation Faculty award, the 1999 Halliburton Young
Faculty award, and the NSF CAREER award. She is a member of IEEE, IEEE
Computer Society, ACM, and ACM SIGARCH. She is also a member of Eta
Kappa Nu, Tau Beta Pi, and Phi Kappa Phi Honor Societies.

Lieven Eeckhout

 obtained his master’s and Ph.D degrees in computer sci-
ence and engineering from Ghent University in Belgium in 1998 and 2002,
respectively. He is currently working as a postdoctoral researcher at the same
university through a grant from the Fund for Scientific Research—Flanders
(FWO Vlaanderen). His research interests include computer architecture,
performance evaluation, and workload characterization.

Contributors

Paul D. Bryan

 is a research assistant in the TINKER group, Center for
Embedded Systems Research, North Carolina State University. He received
his B.S. and M.S. degrees in computer engineering from North Carolina State
University in 2002 and 2003, respectively. In addition to his academic work,
he also worked as an engineer in the IBM PowerPC Embedded Processor
Solutions group from 1999 to 2003.

Brad Calder

 is a professor of computer science and engineering at the Uni-
versity of California at San Diego. He co-founded the International Sympo-
sium on Code Generation and Optimization (CGO) and the ACM Transac-
tions on Architecture and Code Optimization (TACO). Brad Calder received
his Ph.D. in computer science from the University of Colorado at Boulder
in 1995. He obtained a B.S. in computer science and a B.S. in mathematics
from the University of Washington in 1991. He is a recipient of an NSF
CAREER Award.

Thomas M. Conte

 is professor of electrical and computer engineering and
director for the Center for Embedded Systems Research at North Carolina
State University. He received his M.S. and Ph.D. degrees in electrical engi-
neering from the University of Illinois at Urbana-Champaign in 1988 and
1992, respectively. In addition to academia, he’s consulted for numerous
companies, including AT&T, IBM, SGI, and Qualcomm, and spent some time
in industry as the chief microarchitect of DSP vendor BOPS, Inc. Conte is
chair of the IEEE Computer Society Technical Committee on Microprogram-
ming and Microarchitecture (TC-uARCH) as well as a fellow of the IEEE.

Chita R. Das

 received the M.Sc. degree in electrical engineering from the
Regional Engineering College, Rourkela, India, in 1981, and the Ph.D. degree
in computer science from the Center for Advanced Computer Studies at the
University of Louisiana at Lafayette in 1986. Since 1986, he has been working
at Pennsylvania State University, where he is currently a professor in the
Department of Computer Science and Engineering. His main areas of interest
are parallel and distributed computer architectures, cluster systems, com-
munication networks, resource management in parallel systems, mobile
computing, performance evaluation, and fault-tolerant computing. He has

published extensively in these areas in all major international journals and
conference proceedings. He was an editor of the

IEEE Transactions on Parallel
and Distributed Systems

 and is currently serving as an editor of the IEEE
Transactions on Computers. Dr. Das is a Fellow of the IEEE and is a member
of the ACM and the IEEE Computer Society.

Susith Fernando

 received his bachelor of science degree from the University
of Moratuwa in Sri Lanka in 1983. He received the master of science and
Ph.D. degrees in computer engineering from Texas A&M University in 1987
and 1994, respectively. Susith joined Intel Corporation in 1996 and has since
worked on the Pentium and Itanium projects. His interests include perfor-
mance monitoring, design for test, and computer architecture.

Greg Hamerly

 is an assistant professor in the Department of Computer
Science at Baylor University. His research area is machine learning and its
applications. He earned his M.S. (2001) and Ph.D. (2003) in computer science
from the University of California, San Diego, and his B.S. (1999) in computer
science from California Polytechnic State University, San Luis Obispo.

Eun Jung Kim

 received a B.S. degree in computer science from Korea
Advanced Institute of Science and Technology in Korea in 1989, an M.S.
degree in computer science from Pohang University of Science and Technology
in Korea in 1994, and a Ph.D. degree in computer science and engineering
from Pennsylvania State University in 2003. From 1994 to 1997, she worked
as a member of Technical Staff in Korea Telecom Research and Development
Group. Dr. Kim is currently an assistant professor in the Department of
Computer Science at Texas A&M University. Her research interests include
computer architecture, parallel/distributed systems, computer networks,
cluster computing, QoS support in cluster networks and Internet, perfor-
mance evaluation, and fault-tolerant computing. She is a member of the IEEE
Computer Society and of the ACM.

David J. Lilja

 received Ph.D. and M.S. degrees, both in electrical engineering,
from the University of Illinois at Urbana-Champaign, and a B.S. in computer
engineering from Iowa State University at Ames. He is currently a professor
of electrical and computer engineering at the University of Minnesota in
Minneapolis. He has been a visiting senior engineer in the hardware perfor-
mance analysis group at IBM in Rochester, Minnesota, and a visiting profes-
sor at the University of Western Australia in Perth. Previously, he worked
as a development engineer at Tandem Computer Incorporated (now a divi-
sion of Hewlett-Packard) in Cupertino, California. His primary research
interests are high-performance computer architecture, parallel computing,
hardware-software interactions, nano-computing, and performance analysis.

Kishore Menezes

 received his bachelor of engineering degree in electronics
from the University of Bombay in 1992. He received his master of science

degree in computer engineering from the University of South Carolina and
a Ph.D. in computer engineering from North Carolina State University.
Kishore has worked for Intel Corporation since 1997. While at Intel, Kishore
has worked on performance analysis and compiler optimizations. More
recently Kishore has been working on implementing architectural enhance-
ments in Itanium firmware. His interests include computer architecture,
compilers, and performance analysis.

Alex Mericas

 obtained his M.S. degree in computer engineering from the
National Technological University. He was a member of the POWER4,
POWER5, and PPC970 design team responsible for the Hardware Perfor-
mance Instrumentation. He also led the early performance measurement and
verification effort on the POWER4 microprocessor. He currently is a senior
technical staff member at IBM in the systems performance area.

Erez Perelman

 is a senior Ph.D. student at the University of California at
San Diego. His research areas include processor architecture and phase anal-
ysis. He earned his B.S. (in 2001) in computer science from the University
of California at San Diego.

Tim Sherwood

 is an assistant professor in computer science at the University
of California at Santa Barbara. Before joining UCSB in 2003, he received his B.S
in computer engineering from UC Davis. His M.S. and Ph.D. are from the
University of California at San Diego, where he worked with Professor Brad
Calder. His research interests include network and security processors, program
phase analysis, embedded systems, and hardware support for software design.

Brinkley Sprunt

 is an assistant professor of electrical engineering at Bucknell
University. Prior to joining Bucknell in 1999, he was a computer architect at
Intel for 9 years doing performance projection, analysis, and validation for
the 80960CF, Pentium Pro, and Pentium 4 microprocessor design projects.
While at Intel, he also developed the hardware performance monitoring
architecture for the Pentium 4 processor. His current research interests
include computer performance modeling, measurement, and optimization.
He developed and maintains the brink and abyss tools that provide a
high-level interface to the performance-monitoring capabilities of the Pen-
tium 4 on Linux systems. Sprunt received his M.S. and Ph.D. in electrical
and computer engineering from Carnegie Mellon University and his B.S. in
electrical engineering from Rice University.

Joshua J. Yi

 is a recent Ph.D. graduate from the Department of Electrical and
Computer Engineering at the University of Minnesota. His Ph.D. thesis
research focused on nonspeculative processor optimizations and improving
simulation methodology. His research interests include high-performance
computer architecture, simulation, and performance analysis. He is currently
a performance analyst at Freescale Semiconductor.

Ki Hwan Yum

 received a B.S. degree in mathematics from Seoul National
University in Korea in 1989, an M.S. degree in computer science and engineer-
ing from Pohang University of Science and Technology in Korea in 1994, and
a Ph.D. degree in computer science and engineering from Pennsylvania State
University in 2002. From 1994 to 1997 he was a member of Technical Staff in
Korea Telecom Research and Development Group. Dr. Yum is currently an
assistant professor in the Department of Computer Science in the University
of Texas at San Antonio. His research interests include computer architecture,
parallel/distributed systems, cluster computing, and performance evaluation.
He is a member of the IEEE Computer Society and of the ACM.

Rumi Zahir

 is currently a principal engineer at Intel Corporation, where he
works on microprocessor and network I/O architectures. Rumi joined Intel in
1992 and was one of the architects responsible for defining the Itanium priv-
ileged instruction set, multiprocessing memory model, and performance-mon-
itoring architecture. He applied his expertise in computer architecture and
system software to the first-time operating system bring-up efforts on the
Merced processor and was one of the main authors of the Itanium program-
mer’s reference manual. Rumi Zahir holds master of science degrees in elec-
trical engineering and computer science and earned his Ph.D. in electrical
engineering from the Swiss Federal Institute of Technology in 1991.

Contents

Chapter 1 Introduction and Overview ...1

Lizy Kurian John and Lieven Eeckhout

Chapter 2 Performance Modeling and Measurement
Techniques ..5

Lizy Kurian John

Chapter 3 Benchmarks...25

Lizy Kurian John

Chapter 4 Aggregating Performance Metrics Over
a Benchmark Suite ..47

Lizy Kurian John

Chapter 5 Statistical Techniques for Computer
Performance Analysis...59

David J. Lilja and Joshua J. Yi

Chapter 6 Statistical Sampling for Processor
and Cache Simulation ..87

Thomas M. Conte Paul D. Bryan

Chapter 7 SimPoint: Picking Representative Samples
to Guide Simulation... 117

Brad Calder, Timothy Sherwood, Greg Hamerly
and Erez Perelman

Chapter 8 Statistical Simulation..139

Lieven Eeckhout

Chapter 9 Benchmark Selection...165

Lieven Eeckhout

Chapter 10 Introduction to Analytical Models...193

Eun Jung Kim, Ki Hwan Yum and Chita R. Das

Chapter 11 Performance Monitoring Hardware
and the Pentium 4 Processor ...219

Brinkley Sprunt

Chapter 12 Performance Monitoring
on the POWER5™ Microprocessor ..247

Alex Mericas

Chapter 13 Performance Monitoring on the
Itanium® Processor Family ...267

Rumi Zahir, Kishore Menezes, and Susith Fernando

Index ...285

1

Chapter One

Introduction and Overview

Lizy Kurian John and Lieven Eeckhout

State-of-the-art, high-performance microprocessors contain hundreds of mil-
lions of transistors and operate at frequencies close to 4 gigahertz (GHz). These
processors are deeply pipelined, execute instructions in out-of-order, issue
multiple instructions per cycle, employ significant amounts of speculation,
and embrace large on-chip caches. In short, contemporary microprocessors are
true marvels of engineering. Designing and evaluating these microprocessors
are major challenges especially considering the fact that 1 second of program
execution on these processors involves several billions of instructions, and
analyzing 1 second of execution may involve dealing with hundreds of billions
of pieces of information. The large number of potential designs and the con-
stantly evolving nature of workloads have resulted in performance evaluation
becoming an overwhelming task.

Performance evaluation has become particularly overwhelming in early
design tradeoff analysis. Several design decisions are made based on perfor-
mance models before any prototyping is done. Usually, early design analysis
is accomplished by simulation models, because building hardware prototypes
of state-of-the-art microprocessors is expensive and time consuming. How-
ever, simulators are orders of magnitude slower than real hardware. Also,
simulation results are artificially

sanitized

 in that several unrealistic assump-
tions might have gone into the simulator. Performance measurements with a
prototype will be more accurate; however, a prototype needs to be available.
Performance measurement is also valuable after the actual product is available
in order to understand the performance of the actual system under various
real-world workloads and to identify modifications that could be incorporated
in future designs.

This book presents various topics in microprocessor and computer perfor-
mance evaluation. An overview of modern performance evaluation techniques
is presented in Chapter 2. This chapter presents a brief look at prominent

2 Performance Evaluation and Benchmarking

methods of performance estimation and measurement. Various simulation
methods and hardware performance-monitoring techniques are described as
well as their applicability, depending on the goals one wants to achieve.

Benchmarks to be used for performance evaluation have always been
controversial. It is extremely difficult to define and identify representative
benchmarks. There has been a lot of change in benchmark creation since
1988. In the early days, performance was estimated by the execution latency
of a single instruction. Because different instruction types had different exe-
cution latencies, the instruction mix was sufficient for accurate performance
analysis. Later on, performance evaluation was done largely with small
benchmarks such as kernels extracted from applications (e.g., Lawrence
Livermore Loops), Dhrystone and Whetstone benchmarks, Linpack, Sort,
Sieve of Eratosthenes, 8-Queens problem, Tower of Hanoi, and so forth. The
Standard Performance Evaluation Cooperative (SPEC) consortium and the
Transactions Processing Council (TPC) formed in 1988 have made available
several benchmark suites and benchmarking guidelines. Most of the recent
benchmarks have been based on real-world applications. Several
state-of-the-art benchmark suites are described in Chapter 3. These bench-
mark suites reflect different types of workload behavior: general-purpose
workloads, Java workloads, database workloads, server workloads, multi-
media workloads, embedded workload, and so on.

Another major issue in performance evaluation is the issue of reporting
performance with a single number. A single number is easy to understand
and easy to be used by the trade press as well as during research and
development for comparing design alternatives. The use of multiple bench-
marks for performance analysis also makes it necessary to find some kind
of an average. The arithmetic mean, geometric mean, and harmonic mean
are three ways of finding the central tendency of a group of numbers; how-
ever, it should be noted that each of these means should be used under
appropriate circumstances. For example, the arithmetic mean can be used
to find average execution time from a set of execution times; the harmonic
mean can be used to find the central tendency of measures that are in the
form of a rate, for example, throughput. However, prior research is not
definitive on what means are appropriate for different performance metrics
that computer architects use. As a consequence, researchers often use inap-
propriate mean values when presenting their results. Chapter 4 presents
appropriate means to use for various common metrics used while designing
and evaluating microprocessors.

Irrespective of whether real system measurement or simulation-based
modeling is done, computer architects should use statistical methods to
make correct conclusions. For real-system measurements, statistics are useful
to deal with noisy data. The noisy data comes from noise in the system being
measured or is due to the measurement tools themselves. For simula-
tion-based modeling the major challenge is to deal with huge amounts of
data and to observe trends in the data. For example, at processor design
time, a large number of microarchitectural design parameters need to be

Chapter One: Introduction and Overview 3

fine-tuned. In addition, complex interactions between these microarchitec-
tural parameters complicate the design space exploration process even fur-
ther. The end result is that in order to fully understand the complex inter-
action of a computer program’s execution with the underlying microprocessor,
a huge number of simulations are required. Statistics can be really helpful
for simulation-based design studies to cut down the number of simulations
that need to be done without compromising the end result. Chapter 5
describes several statistical techniques to rigorously guide performance
analysis.

To date, the de facto standard for early stage performance analysis is
detailed processor simulation using real-life benchmarks. An important dis-
advantage of this approach is that it is prohibitively time consuming. The
main reason is the large number of instructions that need to be simulated per
benchmark. Nowadays, it is not exceptional that a benchmark has a dynamic
instruction count of several hundreds of billions of instructions. Simulating
such huge instruction counts can take weeks for completion even on today’s
fastest machines. Therefore researchers have proposed several techniques for
speeding up these time-consuming simulations. These approaches are dis-
cussed in Chapters 6, 7 and 8.

Random sampling or the random selection of instruction intervals
throughout the entire benchmark execution is one approach for reducing the
total simulation time. Instead of simulating the entire benchmark only the
samples are to be simulated. By doing so, significant simulation speedups
can be obtained while attaining highly accurate performance estimates.
There is, however, one issue that needs to be dealt with— the unknown
hardware state at the beginning of each sample during sampled simulation.
To address that problem, researchers have proposed functional warming
prior to each sample. Random sampling and warm-up techniques are dis-
cussed in Chapter 6.

Chapter 7 presents SimPoint, which is an intelligent sampling approach
that selects samples called simulation points (in SimPoint terminology), based
on a program’s phase behavior. Instead of randomly selecting samples, Sim-
Point first determines the large-scale phase behavior of a program execution
and subsequently picks one simulation point from each phase of execution.

A radically different approach to sampling is statistical simulation. The
idea of statistical simulation is to collect a number of important program
execution characteristics and generate a synthetic trace from it. Because of
the statistical nature of this technique, simulation of the synthetic trace
quickly converges to a steady-state value. As such, a very short synthetic
trace suffices to attain a performance estimates. Chapter 8 describes statistical
simulation as a viable tool for efficient early design stage explorations.

In contemporary research and development, multiple benchmarks with
multiple input data sets are simulated from multiple benchmark suites.
However, there exists significant redundancy across inputs and across pro-
grams. Chapter 9 describes methods to identify such redundancy in bench-
marks so that only relevant and distinct benchmarks need to be simulated.

4 Performance Evaluation and Benchmarking

Although quantitative evaluation has been popular in the computer
architecture field, there are several cases for which analytical modeling can
be used. Chapter 10 introduces the fundamentals of analytical modeling.

Chapters 11, 12, and 13 describe performance-monitoring facilities on
three state-of-the-art microprocessors. Such measurement infrastructure is
available on all modern day high-performance processors to make it easy to
obtain information of actual performance on real hardware. These chapters
discuss the performance monitoring abilities of Intel Pentium, IBM POWER,
and Intel Itanium processors.

5

Chapter Two

Performance Modeling and
Measurement Techniques

Lizy Kurian John

Contents

2.1 Performance modeling..7
2.1.1 Simulation...8

2.1.1.1 Trace-driven simulation...8
2.1.1.2 Execution-driven simulation ..10
2.1.1.3 Complete system simulation .. 11
2.1.1.4 Event-driven simulation..12
2.1.1.5 Statistical simulation ..13

2.1.2 Program profilers ..13
2.1.3 Analytical modeling ...15

2.2 Performance measurement...16
2.2.1 On-chip performance monitoring counters17
2.2.2 Off-chip hardware monitoring..18
2.2.3 Software monitoring ...18
2.2.4 Microcoded instrumentation ...19

2.3 Energy and power simulators ...19
2.4 Validation ..20
2.5 Conclusion...20
References...21

Performance evaluation can be classified into performance modeling and
performance measurement. Performance modeling is typically used in early
stages of the design process, when actual systems are not available for
measurement or if the actual systems do not have test points to measure
every detail of interest. Performance modeling may further be divided into

6 Performance Evaluation and Benchmarking

simulation-based modeling and analytical modeling. Simulation models
may further be classified into numerous categories depending on the mode
or level of detail. Analytical models use mathematical principles to create
probabilistic models, queuing models, Markov models, or Petri nets. Perfor-
mance modeling is inevitable during the early design phases in order to
understand design tradeoffs and arrive at a good design. Measuring actual
performance is certainly likely to be more accurate; however, performance
measurement is possible only if the system of interest is available for mea-
surement and only if one has access to the parameters of interest. Perfor-
mance measurement on the actual product helps to validate the models used
in the design process and provides additional feedback for future designs.
One of the drawbacks of performance measurement is that performance of
only the existing configuration can be measured. The configuration of the
system under measurement often cannot be altered, or, in the best cases, it
might allow limited reconfiguration. Performance measurement may further
be classified into on-chip hardware monitoring, off-chip hardware monitor-
ing, software monitoring, and microcoded instrumentation. Table 2.1 illus-
trates a classification of performance evaluation techniques.

There are several desirable features that performance modeling/mea-
surement techniques and tools should possess:

• They must be accurate. Because performance results influence im-
portant design and purchase decisions, accuracy is important. It is
easy to build models/techniques that are heavily sanitized; however,
such models will not be accurate.

• They must not be expensive. Building the performance evaluation or
measurement facility should not cost a significant amount of time or
money.

Table 2.1

A Classification of Performance Evaluation Techniques

Performance
Modeling

Simulation

Trace-Driven Simulation
Execution-Driven Simulation
Complete System Simulation
Event-Driven Simulation
Statistical Simulation
Probabilistic Models

Analytical Modeling Queuing Models
Markov Models
Petri Net Models

Performance
Measurement

On-Chip Hardware Monitoring
(e.g., Performance-monitoring
counters)

Off-Chip Hardware Monitoring
Software Monitoring
Microcoded Instrumentation

Chapter Two: Performance Modeling and Measurement Techniques 7

• They must be easy to change or extend. Microprocessors and com-
puter systems constantly undergo changes, and it must be easy to
extend the modeling/measurement facility to the upgraded system.

• They must not need the source code of applications. If tools and
techniques necessitate source code, it will not be possible to evaluate
commercial applications where source is not often available.

• They should measure all activity, including operating system and
user activity. It is often easy to build tools that measure only user
activity. This was acceptable in traditional scientific and engineering
workloads; however, database, Web server, and Java workloads have
significant operating system activity, and it is important to build tools
that measure operating system activity as well.

• They should be capable of measuring a wide variety of applications,
including those that use signals, exceptions, and DLLs (Dynamically
Linked Libraries).

• They should be user-friendly. Hard-to-use tools are often underuti-
lized and may also result in more user error.

• They must be noninvasive. The measurement process must not alter
the system or degrade the system’s performance.

• They should be fast. If a performance model is very slow, long-running
workloads that take hours to run may take days or weeks to run on
the model. If evaluation takes weeks and months, the extent of design
space exploration that can be performed will be very limited. If an
instrumentation tool is slow, it can also be invasive.

• Models should provide control over aspects that are measured. It
should be possible to selectively measure what is required.

• Models and tools should handle multiprocessor systems and multi-
threaded applications. Dual- and quad-processor systems are very
common nowadays. Applications are becoming increasingly multi-
threaded, especially with the advent of Java, and it is important that
the tool handles these.

• It will be desirable for a performance evaluation technique to be able
to evaluate the performance of systems that are not yet built.

Many of these requirements are often conflicting. For instance, it is
difficult for a mechanism to be fast and accurate. Consider mathematical
models. They are fast; however, several simplifying assumptions go into
their creation and often they are not accurate. Similarly, many users like
graphical user interfaces (GUIs), which increase the user-friendly nature, but
most instrumentation and simulation tools with GUIs are slow and invasive.

2.1 Performance modeling

Performance measurement can be done only if the actual system or a pro-
totype exists. It is expensive to build prototypes for early design-stage eval-
uation. Hence one would need to resort to some kind of modeling in order

8 Performance Evaluation and Benchmarking

to study systems yet to be built. Performance modeling can be done using
simulation models or analytical models.

2.1.1 Simulation

Simulation has become the de facto performance-modeling method in the
evaluation of microprocessor and computer architectures. There are several
reasons for this. The accuracy of analytical models in the past has been insuf-
ficient for the type of design decisions that computer architects wish to make
(for instance, what kind of caches or branch predictors are needed, or what
kind of instruction windows are required). Hence, cycle accurate simulation
has been used extensively by computer architects. Simulators model existing
or future machines or microprocessors. They are essentially a model of the
system being simulated, written in a high-level computer language such as C
or Java, and running on some existing machine. The machine on which the
simulator runs is called the host machine, and the machine being modeled is
called the target machine. Such simulators can be constructed in many ways.

Simulators can be functional simulators or timing simulators. They can
be trace-driven or execution-driven simulators. They can be simulators of
components of the system or that of the complete system. Functional simu-
lators simulate the functionality of the target processor and, in essence,
provide a component similar to the one being modeled. The register values
of the simulated machine are available in the equivalent registers of the
simulator. Pure functional simulators only implement the functionality and
merely help to validate the correctness of an architecture; however, they can
be augmented to include performance information. For instance, in addition
to the values, the simulators can provide performance information in terms
of cycles of execution, cache hit ratios, branch prediction rates, and so on.
Such a simulator is a virtual component representing the microprocessor or
subsystem being modeled plus a variety of performance information.

If performance evaluation is the only objective, functionality does not need
to be modeled. For instance, a cache performance simulator does not need to
actually store values in the cache; it only needs to store information related to
the address of the value being cached. That information is sufficient to deter-
mine a future hit or miss. Operand values are not necessary in many perfor-
mance evaluations. However, if a technique such as value prediction is being
evaluated, it would be important to have the values. Although it is nice to
have the values as well, a simulator that models functionality in addition to
performance is bound to be slower than a pure performance simulator.

2.1.1.1 Trace-driven simulation

Trace-driven simulation consists of a simulator model whose input is modeled
as a trace or sequence of information representing the instruction sequence that
would have actually executed on the target machine. A simple trace-driven
cache simulator needs a trace consisting of address values. Depending
on whether the simulator is modeling an instruction, data, or a unified

Chapter Two: Performance Modeling and Measurement Techniques 9

cache, the address trace should contain addresses of instruction and data
references.

Cachesim5 [1] and Dinero IV [2] are examples of cache simulators for
memory reference traces. Cachesim5 comes from Sun Microsystems along
with their SHADE package [1]. Dinero IV [2] is available from the University
of Wisconsin at Madison. These simulators are not timing simulators. There
is no notion of simulated time or cycles; information is only about memory
references. They are not functional simulators. Data and instructions do not
move in and out of the caches. The primary result of simulation is hit and
miss information. The basic idea is to simulate a memory hierarchy consisting
of various caches. The different parameters of each cache can be set separately
(architecture, mapping policies, replacement policies, write policy, measured
statistics). During initialization, the configuration to be simulated is built up,
one cache at a time, starting with each memory as a special case. After initial-
ization, each reference is fed to the appropriate top-level cache by a single,
simple function call. Lower levels of the hierarchy are handled automatically.
Trace-driven simulation does not necessarily mean that a trace is stored. One
can have a tracer/profiler to feed the trace to the simulator on-the-fly so that
the trace storage requirements can be eliminated. This can be done using a
Unix pipe or by creating explicit data structures to buffer blocks of trace. If
traces are stored and transferred to simulation environments, typically trace
compression techniques are used to reduce storage requirements [3–4].

Trace-driven simulation can be used not only for caches, but also for
entire processor pipelines. A trace for a processor simulator should contain
information on instruction opcodes, registers, branch offsets, and so on.

Trace-driven simulators are simple and easy to understand. They are
easy to debug. Traces can be shared to other researchers/designers and
repeatable experiments can be conducted. However, trace-driven simulation
has two major problems:

1. Traces can be prohibitively long if entire executions of some real-world
applications are considered. Trace size is proportional to the dynamic
instruction count of the benchmark.

2. The traces are not very representative inputs for modern out-of-order
processors. Most trace generators generate traces of only completed
or retired instructions in speculative processors. Hence they do not
contain instructions from the mispredicted path.

The first problem is typically solved using trace sampling and trace
reduction techniques. Trace sampling is a method to achieve reduced traces.
However, the sampling should be performed in such a way that the result-
ing trace is representative of the original trace. It may not be sufficient to
periodically sample a program execution. Locality properties of the result-
ing sequence may be widely different from that of the original sequence.
Another technique is to skip tracing for a certain interval, collect for a fixed
interval, and then skip again. It may also be needed to leave a warm-up
period after the skip interval, to let the caches and other such structures

10 Performance Evaluation and Benchmarking

warm up [5]. Several trace sampling techniques are discussed by Crowley
and Baer [6–8]. The QPT trace collection system [9] solves the trace size
issue by splitting the tracing process into a trace record generation step
and a trace regeneration process. The trace record has a size similar to the
static code size, and the trace regeneration expands it to the actual, full
trace upon demand.

The second problem can be solved by reconstructing the mispredicted
path [10]. An image of the instruction memory space of the application is
created by one pass through the trace, and thereafter fetching from this image
as opposed to the trace. Although 100% of the mispredicted branch targets
may not be in the recreated image, studies show that more than 95% of the
targets can be located. Also, it has been shown that performance inaccuracy
due to the absence of mispredicted paths is not very high [11–12].

2.1.1.2 Execution-driven simulation

There are two contexts in which terminology for execution-driven simulation
is used by researchers and practitioners. Some refer to simulators that take
program executables as input as execution-driven simulators. These simulators
utilize the actual input executable and not a trace. Hence the size of the input
is proportional to the static instruction count and not the dynamic instruction
count. Mispredicted paths can be accurately simulated as well. Thus these
simulators solve the two major problems faced by trace-driven simulators,
namely the storage requirements for large traces and the inability to simulate
instructions along mispredicted paths. The widely used SimpleScalar simulator
[13] is an example of such an execution-driven simulator. With this tool set, the
user can simulate real programs on a range of modern processors and systems,
using fast executable-driven simulation. There is a fast functional simulator
and a detailed, out-of-order issue processor that supports nonblocking caches,
speculative execution, and state-of-the-art branch prediction.

Some others consider execution-driven simulators to be simulators that
rely on actual execution of parts of code on the host machine (hardware
acceleration by the host instead of simulation) [14]. These execution-driven
simulators do not simulate every individual instruction in the application;
only the instructions that are of interest are simulated. The remaining instruc-
tions are directly executed by the host computer. This can be done when the
instruction set of the host is the same as that of the machine being simulated.
Such simulation involves two stages. In the first stage, or preprocessing, the
application program is modified by inserting calls to the simulator routines
at events of interest. For instance, for a memory system simulator, only
memory access instructions need to be instrumented. For other instructions,
the only important thing is to make sure that they get performed and that
their execution time is properly accounted for. The advantage of this type
of execution-driven simulation is speed. By directly executing most instruc-
tions at the machine’s execution rate, the simulator can operate orders of
magnitude faster than cycle-by-cycle simulators that emulate each individual
instruction. Tango, Proteus, and FAST are examples of such simulators [14].

Chapter Two: Performance Modeling and Measurement Techniques 11

Execution-driven simulation is highly accurate but is very time consum-
ing and requires long periods of time for developing the simulator.

Creating and maintaining detailed cycle-accurate simulators are difficult
software tasks. Processor microarchitectures change very frequently, and it
would be desirable to have simulator infrastructures that are reusable, exten-
sible, and easily modifiable. Principles of software engineering can be applied
here to create modular simulators. Asim [15], Liberty [16], and MicroLib [17]
are examples of execution driven-simulators built with the philosophy of
modular components. Such simulators ease the challenge of incorporating
modifications.

Detailed execution-driven simulation of modern benchmarks on
state-of-the-art architectures take prohibitively long simulation times. As in
trace-driven simulation, sampling provides a solution here. Several
approaches to perform sampled simulation have been developed. Some of
those approaches are described in Chapters 6 and 7 of this book.

Most of the simulators that have been discussed so far are for superscalar
microprocessors. Intel IA-64 and several media processors use the VLIW
(very long instruction word) architecture. The TRIMARAN infrastructure
[18] includes a variety of tools to compile to and estimate performance of
VLIW or EPIC-style architectures.

Multiprocessor and multithreaded architectures are becoming very com-
mon. Although SimpleScalar can only simulate uniprocessors, derivatives
such as MP_simplesim [19] and SimpleMP [20] can simulate multiprocessor
caches and multithreaded architectures, respectively. Multiprocessors can
also be simulated by using simulators such as Tango, Proteus and FAST [14].

2.1.1.3 Complete system simulation

Many execution- and trace-driven simulators only simulate the processor
and memory subsystem. Neither input/output (I/O) activity nor operating
system (OS) activity is handled in simulators like SimpleScalar. But in many
workloads, it is extremely important to consider I/O and OS activity. Com-
plete system simulators are complete simulation environments that model
hardware components with enough detail to boot and run a full-blown
commercial OS. The functionality of the processors, memory subsystem,
disks, buses, SCSI/IDE/FC controllers, network controllers, graphics con-
trollers, CD-ROM, serial devices, timers, and so on are modeled accurately
in order to achieve this. Although functionality stays the same, different
microarchitectures in the processing component can lead to different perfor-
mance. Most of the complete system simulators use microarchitectural mod-
els that can be plugged in. For instance, SimOS [21], a popular complete
system simulator allows three different processor models, one extremely
simple processor, one pipelined, and one aggressive superscalar model.
SimOS [21] and SIMICS [22] can simulate uniprocessor and multiprocessor
systems. SimOS natively models the MIPS instruction set architecture (ISA),
whereas SIMICS models the SPARC ISA. Mambo [23] is another emerging
complete system simulator that models the PowerPC ISA. Many of these

12 Performance Evaluation and Benchmarking

simulators can cross-compile and cross-simulate other ISAs and architec-
tures.

The advantage of full-system simulation is that the activity of the entire
system, including operating system, can be analyzed. Ignoring operating
system activity may not have significant performance impact in SPEC-CPU
type of benchmarks; however, database and commercial workloads spend
close to half of their execution in operating system code, and no reasonable
evaluation of their performance can be performed without considering OS
activity. Full-system simulators are very accurate but are extremely slow.
They are also difficult to develop.

2.1.1.4 Event-driven simulation

The simulators described in the previous three subsections simulate perfor-
mance on a cycle-by-cycle basis. In cycle-by-cycle simulation, each cycle of
the processor is simulated. A cycle-by-cycle simulator mimics the operation
of a processor by simulating each action in every cycle, such as fetching,
decoding, and executing. Each part of the simulator performs its job for that
cycle. In many cycles, many units may have no task to perform, but it realizes
that only after it “wakes up” to perform its task. The operation of the
simulator matches our intuition of the working of a processor or computer
system but often produces very slow models.

An alternative is to create a simulator where events are scheduled for
specific times and simulation looks at all the scheduled events and performs
simulation corresponding to the events (as opposed to simulating the pro-
cessor cycle-by-cycle). In an event-driven simulation, tasks are posted to an
event queue at the end of each simulation cycle. During each simulation cycle,
a scheduler scans the events in the queue and services them in the time-order
in which they are scheduled for. If the current simulation time is 400 cycles
and the earliest event in the queue is to occur at 500 cycles, the simulation
time advances to 500 cycles. Event-driven simulation is used in many fields
other than computer architecture performance evaluation. A very common
example is VHDL simulation. Event-driven and cycle-by-cycle simulation
styles can be combined to create models where parts of a model are simulated
in detail regardless of what is happening in the processor, and other parts
are invoked only when there is an event. Reilly and Edmondson created such
a model for the Alpha microprocessor modeling some units on a
cycle-by-cycle basis while modeling other units on an event-driven basis [24].

When event-driven simulation is applied to computer performance eval-
uation, the inputs to the simulator can be derived stochastically rather than
as a trace/executable from an actual execution. For instance, one can con-
struct a memory system simulator in which the inputs are assumed to arrive
according to be a Gaussian distribution. Such models can be written in
general-purpose languages such as C, or using special simulation languages
such as SIMSCRIPT. Languages such as SIMSCRIPT have several built-in
primitives to allow quick simulation of most kinds of common systems.
There are built-in input profiles, resource templates, process templates,

Chapter Two: Performance Modeling and Measurement Techniques 13

queue structures, and so on to facilitate easy simulation of common systems.
An example of the use of event-driven simulators using SIMSCRIPT may be
seen in the performance evaluation of multiple-bus multiprocessor systems
in John et al. [25]. The statistical simulation described in the next subsection
statistically creates a different input trace corresponding to each benchmark
that one wants to simulate, whereas in the stochastic event-driven simulator,
input models are derived more generally. It may also be noticed that a
statistically generated input trace can be fed to a trace-driven simulator that
is not event-driven.

2.1.1.5 Statistical simulation

Statistical simulation [26–28] is a simulation technique that uses a statistically
generated trace along with a simulation model where many components are
modeled only statistically. First, benchmark programs are analyzed in detail
to find major program characteristics such as instruction mix, cache and
branch misprediction rates, and so on. Then, an artificial input sequence with
approximately the same program characteristics is statistically generated
using random number generators. This input sequence (a synthetic trace) is
fed to a simulator that estimates the number of cycles taken for executing
each of the instructions in the input sequence. The processor is modeled at
a reduced level of detail; for instance, cache accesses may be deemed as hits
or misses based on a statistical profile as opposed to actual simulation of a
cache. Experiments with such statistical simulations [26] show that IPC of
SPECint-95 programs can be estimated very quickly with reasonable accuracy.
The statistically generated instructions matched the characteristics of
unstructured control flow in SPECint programs easily; however, additional
characteristics needed to be modeled in order to make the technique work
with programs that have regular control flow. Recent experiments with sta-
tistical simulation [27–28] demonstrate that performance estimates on
SPEC2000 integer and floating-point programs can be obtained with orders
of magnitude more speed than execution-driven simulation. More details on
statistical simulation can be found in Chapter 8.

2.1.2 Program profilers

There is a class of tools called software profiling tools, which are similar to
simulators and performance measurement tools. These tools are used to
profile programs, that is, to obtain instruction mixes, register usage statistics,
branch distance distribution statistics, or to generate traces. These tools can
also be thought of as software monitoring on a simulator. They often accept
program executables as input and decode and analyze each instruction in
the executable. These program profilers can also be used as the front end of
simulators.

Profiling tools typically add instrumentation code into the original pro-
gram, inserting code to perform run-time data collection. Some perform the
instrumentation during source compilation, whereas most do it either during

14 Performance Evaluation and Benchmarking

linking or after the executable is generated. Executable-level instrumentation
is harder than source-level instrumentation, but leads to tools that can profile
applications whose sources are not accessible (e.g., proprietary software
packages).

Several program profiling tools have been built for various ISAs, espe-
cially soon after the advent of RISC ISAs. Pixie [29], built for the MIPS ISA
was an early instrumentation tool that was very widely used. Pixie per-
formed the instrumentation at executable level and generated an instru-
mented executable often called the

pixified

 program. Other similar tools are
nixie for MIPS [30]; SPIX [30] and SHADE for SPARC [1,30]; IDtrace for IA-32
[30]; Goblin for IBM RS 6000 [30]; and ATOM for Alpha [31]. All of these
perform executable-level instrumentation. Examples for tools built to per-
form compile-time instrumentation are AE [32] and Spike [30], which are
integrated with C compilers. There is also a new tool called PIN for the IA-32
[33], which performs the instrumentation at run-time as opposed to com-
pile-time or link-time. It should be remembered that profilers are not com-
pletely noninvasive; they cause execution-time dilation and use processor
registers for the profiling process. Although it is easy to build a simple
profiling tool that simply interprets each instruction, many of these tools
have incorporated carefully thought-out techniques to improve the speed of
the profiling process and to minimize the invasiveness. Many of these pro-
filing tools also incorporate a variety of utilities or hooks to develop custom
analysis programs. This chapter will just describe SHADE as an example of
executable instrumentation before run-time and PIN as an example of
run-time instrumentation.

SHADE:

SHADE is a fast instruction-set simulator for execution profiling
[1]. It is a simulation and tracing tool that provides features of simulators and
tracers in one tool. SHADE analyzes the original program instructions and
cross-compiles them to sequences of instructions that simulate or trace the
original code. Static cross-compilation can produce fast code, but purely static
translators cannot simulate and trace all details of dynamically linked code.
If the libraries are already instrumented, it is possible to get profiles from the
dynamically linked code as well. One can develop a variety of analyzers to
process the information generated by SHADE and create the performance
metrics of interest. For instance, one can use SHADE to generate address traces
to feed into a cache analyzer to compute hit rates and miss rates of cache
configurations. The SHADE analyzer Cachesim5

does exactly this.

PIN [33]:

 PIN is a relatively new program instrumentation tool that
performs the instrumentation at run-time as opposed to compile-time or
link-time. PIN supports Linux executables for IA-32 and Itanium processors.
PIN does not create an instrumented version of the executable but rather
adds the instrumentation code while the executable is running. This makes
it possible to attach PIN to an already running process. PIN automatically
saves and restores the registers that are overwritten by the injected code.
PIN is a versatile tool that includes several utilities such as basic block
profilers, cache simulators, and trace generators.

Chapter Two: Performance Modeling and Measurement Techniques 15

With the advent of Java, virtual machines, and binary translation, pro-
filers can be required to profile at multiple levels. Although Java programs
can be traced using SHADE or another instruction set profiler to obtain
profiles of native execution, one might need profiles at the bytecode level.
Jaba [34] is a Java bytecode analyzer developed at the University of Texas
for tracing Java programs. It used JVM (Java Virtual Machine) specification
1.1. It allows the user to gather information about the dynamic execution of
a Java application at the Java bytecode level. It provides information on byte-
codes executed, load operations, branches executed, branch outcomes, and so
on. Information about the use of this tool can be found in Radhakrishnan,
Rubio, and John [35].

2.1.3 Analytical modeling

Analytical performance models, although not popular for microprocessors,
are suitable for the evaluation of large computer systems. In large systems
where details cannot be modeled accurately through cycle accurate simula-
tion, analytical modeling is an appropriate way to obtain approximate per-
formance metrics. Computer systems can generally be considered as a set
of hardware and software resources and a set of tasks or jobs competing for
using the resources. Multicomputer systems and multiprogrammed systems
are examples.

Analytical models rely on probabilistic methods, queuing theory,
Markov models, or Petri nets to create a model of the computer system. A
large body of literature on analytical models of computers exists from the
1970s and early 1980s. Heidelberger and Lavenberg [36] published an article
summarizing research on computer performance evaluation models. This arti-
cle contains 205 references, which cover most of the work on performance
evaluation until 1984.

Analytical models are cost-effective because they are based on efficient
solutions to mathematical equations. However, in order to be able to have
tractable solutions, simplifying assumptions are often made regarding the
structure of the model. As a result, analytical models do not capture all the
details typically built into simulation models. It is generally thought that care-
fully constructed analytical models can provide estimates of average job
throughputs and device utilizations to within 10% accuracy and average
response times within 30% accuracy. This level of accuracy, although insuffi-
cient for microarchitectural enhancement studies, is sufficient for capacity plan-
ning in multicomputer systems, I/O subsystem performance evaluation in
large server farms, and in early design evaluations of multiprocessor systems.

There has not been much work on analytical modeling of microprocessors.
The level of accuracy needed in trade-off analysis for microprocessor structures
is more than what typical analytical models can provide. However, some effort
into this arena came from Noonburg and Shen [37] and Sorin et al [38] and
Karkhanis and Smith [39]. Those interested in modeling superscalar processors
using analytical models should read these references. Noonburg and Shen

16 Performance Evaluation and Benchmarking

used a Markov model to model a pipelined processor. Sorin et al. used prob-
abilistic techniques to model a multiprocessor composed of superscalar pro-
cessors. Karkhanis and Smith proposed a first-order superscalar processor
model that models steady-state performance under ideal conditions and tran-
sient performance penalties due to branch mispredictions, instruction cache
misses, and data cache misses. Queuing theory is also applicable to superscalar
processor modeling, because modern superscalar processors contain instruc-
tion queues in which instructions wait to be issued to one among a group of
functional units. These analytical models can be very useful in the earliest
stages of the microprocessor design process. In addition, these models can
reveal interesting insight into the internals of a superscalar processor. Analyt-
ical modeling is further explored in Chapter 10 of this book.

The statistical simulation technique described earlier can be considered
as a hybrid of simulation and analytical modeling techniques. It, in fact,
models the simulator input using a probabilistic model. Some operations of
the processor are also modeled probabilistically. Statistical simulation thus
has advantages of both simulation and analytical modeling.

2.2 Performance measurement

Performance measurement is used for understanding systems that are
already built or prototyped. There are several major purposes performance
measurement can serve:

• Tune systems that have been built.
• Tune applications if source code and algorithms can still be changed.
• Validate performance models that were built.
• Influence the design of future systems to be built.

Essentially, the process involves

1. Understanding the bottlenecks in systems that have been built.
2. Understanding the applications that are running on the system and

the match between the features of the system and the characteristics
of the workload, and,

3. Innovating design features that will exploit the workload features.

Performance measurement can be done via the following means:

• On-chip hardware monitoring
• Off-chip hardware monitoring
• Software monitoring
• Microcoded instrumentation

Many systems are built with configurable features. For instance, some
microprocessors have control registers (switches) that can be programmed

Chapter Two: Performance Modeling and Measurement Techniques 17

to turn on or off features like branch prediction, prefetching, and so on [40].
Measurement on such processors can reveal very critical information on
effectiveness of microarchitectural structures, under real-world workloads.
Often, microprocessor companies will incorporate such (undisclosed)
switches. It is one way to safeguard against features that could not be con-
clusively evaluated by performance models.

2.2.1 On-chip performance monitoring counters

All state-of-the-art, high-performance microprocessors, including Intel’s
Pentium 3 and Pentium 4, IBM’s POWER4 and POWER5 processors, AMD’s
Athlon, Compaq’s Alpha, and Sun’s UltraSPARC processors, incorporate
on-chip performance-monitoring counters that can be used to understand
performance of these microprocessors while they run complex, real-world
workloads. This ability has overcome a serious limitation of simulators, that
they often could not execute complex workloads. Now, complex run-time
systems involving multiple software applications can be evaluated and mon-
itored very closely. All microprocessor vendors nowadays release informa-
tion on their performance-monitoring counters, although they are not part
of the architecture.

The performance counters can be used to monitor hundreds of different
performance metrics, including cycle count, instruction counts at fetch/
decode/retire, cache misses (at the various levels), and branch mispredictions.
The counters are typically configured and accessed with special instructions
that access special control registers. The counters can be made to measure
user and kernel activity in combination or in isolation. Although hundreds
of distinct events can be measured, often only 2 to 10 events can be measured
simultaneously. At times, certain events are restricted to be accessible only
through a particular counter. These steps are necessary to reduce the hard-
ware overhead associated with on-chip performance monitoring. Perfor-
mance counters do consume on-chip real estate. Unless carefully imple-
mented, they can also impact the processor cycle time. Out-of-order
execution also complicates the hardware support required to conduct
on-chip performance measurements [41].

Several studies in the past illustrate how performance-monitoring
counters can be used to analyze performance of real-world workloads. Bhan-
darkar and Ding [42] analyzed Pentium 3 performance counter results to
understand the out-of-order execution of Pentium 3 (in comparison) to
in-order superscalar execution of Pentium 2. Luo et al [43] investigated
the major differences between SPEC CPU workloads and commercial work-
loads by studying Web server and e-commerce workloads in addition to
SPECint2000 programs. Vtune [44], PMON [45] and Brink-Abyss [46] are
examples of tools that facilitate performance measurements on modern
microprocessors.

Chapters 11, 12, and 13 of this book describe performance-monitoring
facilities on three state-of-the-art microprocessors. Similar resources exist

18 Performance Evaluation and Benchmarking

on most modern microprocessors. Chapter 11 is written by the author of
the Brink-Abyss tool. This kind of measurement provides an opportunity
to validate simulation experiments with actual measurements of realistic
workloads on real systems. One can measure user and operating system
activity separately, using these performance monitors. Because everything
on a processor is counted, effort should be made to have minimal or no
other undesired processes running during experimentation. This type of
performance measurement can be done on executables (i.e., no source code
is needed).

2.2.2 Off-chip hardware monitoring

Instrumentation using hardware means can also be done by attaching
off-chip hardware. Two examples from AMD are used to describe this type
of tool.

SpeedTracer from AMD:

AMD developed this hardware-tracing plat-
form to aid in the design of their x86 microprocessors. When an application
is being traced, the tracer interrupts the processor on each instruction bound-
ary. The state of the CPU is captured on each interrupt and then transferred
to a separate control machine where the trace is stored. The trace contains
virtually all valuable pieces of information for each instruction that executes
on the processor. Operating system activity can also be traced. However,
tracing in this manner can be invasive and may slow down the processor.
Although the processor is running slower, external events such as disk and
memory accesses still happen in real time, thus looking very fast to the
slowed-down processor. Usually this issue is addressed by adjusting the
timer interrupt frequency. Use of this performance-monitoring facility can
be seen in Merten et al. [47] and Bhargava et al. [48].

Logic Analyzers:

Poursepanj and Christie [49] use a Tektronix TLA 700
logic analyzer to analyze 3-D graphics workloads on AMD-K6-2–based sys-
tems. Detailed logic analyzer traces are limited by restrictions on sizes and
are typically used for the most important sections of the program under
analysis. Preliminary coarse-level analysis can be done by performance-mon-
itoring counters and software instrumentation. Poursepanj and Christie used
logic analyzer traces for a few tens of frames that included a second or two
of smooth motion [49].

2.2.3 Software monitoring

Software monitoring is often performed by utilizing architectural features
such as a trap instruction or a breakpoint instruction on an actual system,
or on a prototype. The VAX processor from Digital (now Compaq) had a
T-bit that caused an exception after every instruction. Software monitoring
used to be an important mode of performance evaluation before the advent
of on-chip performance-monitoring counters. The primary advantage of soft-
ware monitoring is that it is easy to do. However, disadvantages include

Chapter Two: Performance Modeling and Measurement Techniques 19

that the instrumentation can slow down the application. The overhead of
servicing the exception, switching to a data collection process, and perform-
ing the necessary tracing can slow down a program by more than 1000 times.
Another disadvantage is that software-monitoring systems typically handle
only the user activity. It is extremely difficult to create a software-monitoring
system that can monitor operating system activity.

2.2.4 Microcoded instrumentation

Digital (now Compaq) used microcoded instrumentation to obtain traces of
VAX and Alpha architectures. The ATUM tool [50] used extensively by
Digital in the late 1980s and early 1990s used microcoded instrumentation.
This was a technique lying between trapping information on each instruction
using hardware interrupts (traps) and software traps. The tracing system
essentially modified the VAX microcode to record all instruction and data
references in a reserved portion of memory. Unlike software monitoring,
ATUM could trace all processes, including the operating system. However,
this kind of tracing is invasive and can slow down the system by a factor of
10 without including the time to write the trace to the disk.

One difference between modern on-chip hardware monitoring and
microcoded instrumentation is that, typically, this type of instrumentation
recorded the instruction stream but not the performance.

2.3 Energy and power simulators

Power dissipation and energy consumption have become important design
constraints in addition to performance. Hence it has become important for
computer architects to evaluate their architectures from the perspective of
power dissipation and energy consumption. Power consumption of chips
comes from activity-based dynamic power or activity-independent static
power. The first step in estimating dynamic power consumption is to build
power models for individual components inside the processor microarchitec-
ture. For instance, models should be built to reflect the power associated with
processor functional units, register read and write accesses, cache accesses,
reorder buffer accesses, buses, and so on. Once these models are built,
dynamic power can be estimated based on the activity in each unit. Detailed
cycle-accurate performance simulators contain the information on activity of
the various components and, hence, energy consumption estimation can be
integrated to performance estimation. Wattch [51] is such a simulator that
incorporates power models into the popular SimpleScalar performance sim-
ulator. The SoftWatt [52] simulator incorporates power models to the SimOS
complete system simulator. POWER-IMPACT [53] incorporates power mod-
els to the IMPACT VLIW performance simulator environment. If cache power
needs to be modeled in detail, the CACTI tool [54] can be used, which models
power, area, and timing. CACTI has models for various cache mapping
schemes, cache array layouts, and port configurations.

20 Performance Evaluation and Benchmarking

Power consumption of chips used to be dominated by activity-based
dynamic power consumption; however, with shrinking feature sizes, leakage
power is becoming a major component of the chip power consumption.
HotLeakage [55] includes software models to estimate leakage power con-
sidering supply voltage, gate leakage, temperature, and other factors. Param-
eters derived from circuit-level simulation are used to build models for
building blocks, which are integrated to make models for components inside
modern microprocessors. The tool can model leakage in a variety of struc-
tures, including caches. The tool can be integrated with simulators such as
Wattch.

2.4 Validation

It is extremely important to validate performance models and measurements.
Many performance models are often heavily sanitized. Operating system
and other real-world effects can make measured performance very different
from simulated performance. Models can be validated by measurements on
actual systems. Measurements are not error-free either. Any measurements
dealing with several variables are prone to human error during usage. Sim-
ulations and measurements must be validated with small input sequences
where outcome can be predicted without complex models. Approximate
estimates calculated using simple heuristic models or analytical models
should be used to validate simulation models. It should always be remem-
bered that higher precision (or increased number of decimal places) does
not substitute accuracy. Confidence in simulators and measurement facilities
should be built with systematic performance validations. Examples of this
process can be seen in [56][57][58].

2.5 Conclusion

There are a variety of ways in which performance can be estimated and
measured. They vary in the level of detail modeled, complexity, accuracy,
and development time. Different models are appropriate under different
situations. Appropriate models should be used depending on the specific
purpose of the evaluation. Detailed cycle-accurate simulation is not called
for in many design decisions. One should always check the sanity of the
assumptions that have gone into creation of detailed models and evaluate
whether they are applicable for the specific situation being evaluated at the
moment. Rather than trusting numbers spit out by detailed simulators as
golden values, simple sanity checks and validation exercises should be fre-
quently done.

This chapter does not do a comprehensive treatment of any of the sim-
ulation methodologies but has given to the reader some pointers for further
study, research, and development. The resources listed at the end of the
chapter provide more detailed explanations. The computer architecture

Chapter Two: Performance Modeling and Measurement Techniques 21

home page [59] also provides information on tools for architecture research
and performance evaluation.

References

1. Cmelik, B. and Keppel, D., SHADE: A fast instruction-set simulator for exe-
cution profiling, in

Fast Simulation of Computer Architectures,

Conte, T.M. and
Gimarc, C.E., Eds., Kluwer Academic Publishers, 1995, chap. 2.

2. Dinero IV cache simulator, online at: http://www.cs.wisc.edu/~markhill/
DineroIV.

3. Johnson, E. et al., Lossless trace compression

, IEEE Transactions on Computers

,
50(2), 158, 2001.

4. Luo, Y. and John, L.K., Locality based on-line trace compression,

IEEE Trans-
actions on Computers

, 53, June 2004.
5. Bose, P. and Conte, T.M, Performance analysis and its impact on design,

 IEEE
Computer,

 May, 41, 1998.
6. Crowley, P. and Baer, J.-L., On the use of trace sampling for architectural

studies of desktop applications, in

Proc. 1st Workshop on Workload Character-
ization

. Also in

Workload Characterization: Methodology and Case Studies

, ISBN
0-7695-0450-7, John and Maynard, Eds., IEEE CS Press, 1999, chap. 15.

7. Conte, T.M., Hirsch, M.A., and Menezes, K.N., Reducing state loss for effective
trace sampling of superscalar processors, in

Proc. Int. Conf. on Computer Design
(ICCD),

 1996, 468.
8. Skadron, K. et al., Branch prediction, instruction-window size, and cache size:

performance tradeoffs and simulation techniques,

IEEE Transactions on Com-
puters

, 48(11), 1260, 1999.
9. Larus, J.R., Efficient program tracing,

IEEE Computer

, May, 52, 1993.
10. Bhargava, R., John, L. K. and Matus, F., Accurately modeling speculative

instruction fetching in trace-driven simulation, in

Proc. IEEE Performance,
Computers, and Communications Conf. (IPCCC),

 1999, 65.
11. Moudgill, M., Wellman, J.-D., Moreno, J.H., An approach for quantifying the

impact of not simulating mispredicted paths, in

Digest of the Workshop on
Performance Analysis and Its Impact on Design (PAID)

, conducted in conjunction
with

ISCA 98

.
12. Bechem, C. et al., An integrated functional performance simulator,

IEEE Micro

,
19(3), May 1999.

13. The SimpleScalar Simulator Suite, online at http://www.cs.wisc.edu/~msca-
lar/simplescalar.html.

14. Boothe, B., Execution driven simulation of shared Memory multiprocessors,
in

Fast Simulation of Computer Architectures

, Conte, T.M. and Gimarc, C.E.,
Eds., Kluwer Academic Publishers, 1995, chap. 6.

15. Emer, J. et al. ASIM: A performance model framework,

IEEE Computer

, 35(2),
68, 2002.

16. Vachharajani, M. et al., Microarchitectural exploration with Liberty, in

Proc.
35th Annual ACM/IEEE Int. Symp. Microarchitecture

, Istanbul, Turkey, Novem-
ber 18–22, 271, 2002.

17. Perez, D., et al., MicroLib: A case for quantitative comparison of microarchi-
tecture mechanisms, in

Proc. MICRO 2004

, Dec 2004.
18. The TRIMARAN home page, online at: http://www.trimaran.org.

22 Performance Evaluation and Benchmarking

19. Manjikian, N., Multiprocessor enhancements of the SimpleScalar tool set,

SIGARCH Computer Architecture News

, 29(1), 8, 2001.
20. Rajwar, R. and Goodman, J., Speculative lock elision: Enabling highly con-

current multithreaded execution, in Proc

. Annual Int. symp. on Microarchtecture

2001, pp. 294.
21. The SimOS complete system simulator, online at: http://simos.stanford.edu/.
22. The SIMICS simulator, VIRTUTECH. online at: http://www.virtutech.com.

Also at: http://www.simics.com/.
23. Shafi, H. et al., Design and validation of a performance and power simulator

for PowerPC systems,

IBM Journal of Research and Development

, 47, 5/6, 2003.
24. Reilly, M. and Edmondson, J. Performance simulation of an Alpha micropro-

cessor,

IEEE Computer,

May, 59, 1998.
25. John, L.K. and Liu, Y.-C., A performance model for prioritized multiple-bus

multiprocessor systems,

IEEE Transactions on Computers

, 45(5), 580, 1996.
26. Oskin, M., Chong, F.T., and Farrens, M., HLS: Combining statistical and

symbolic simulation to guide microprocessor design, in Proc. Int. Symp. Com-
puter Architecture (ISCA) 27, 2000, 71.

27. Eeckhout, L. et al., Control flow modeling in statistical simulation for accurate
and efficient processor design studies, in Proc. Int. Symp. Computer Architecture
(ISCA), 2004.

28. Bell Jr., R.H., et al., Deconstructing and improving statistical simulation in
HLS, in Proc. 3rd Annual Workshop Duplicating, Deconstructing, and Debunking
(WDDD), 2004.

29. Smith, M., Tracing with Pixie, Report CSL-TR-91-497, Center for Integrated
Systems, Stanford University, Nov 1991.

30. Conte, T.M. and Gimarc, C.E., Fast Simulation of Computer Architectures, Klu-
wer Academic Publishers, 1995, chap.3.

31. Srivastava, A. and Eustace, A., ATOM: A system for building customized
program analysis tools, in Proc. SIGPLAN 1994 Conf. on Programming Language
Design and Implementation, Orlando, FL, June 1994, 196.

32. Larus, J., Abstract execution: A technique for efficiently tracing programs,
Software Practice and Experience, 20(12), 1241, 1990.

33. The PIN program instrumentation tool, online at: http://www.intel.com/cd/
ids/developer/asmo-na/eng/183095.htm.

34. The Jaba profiling tool, online at: http://www.ece.utexas.edu/projects/ece/
lca/jaba.html.

35. Radhakrishnan, R., Rubio, J., and John, L.K., Characterization of java appli-
cations at Bytecode and Ultra-SPARC machine code levels, in Proc. IEEE Int.
Conf. Computer Design, 281.

36. Heidelberger, P. and Lavenberg, S.S., Computer performance evaluation
methodology, in Proc. IEEE Transactions on Computers, 1195, 1984.

37. Noonburg, D.B. and Shen, J.P., A framework for statistical modeling of su-
perscalar processor performance, in Proc. 3rd Int. Symp. High Performance
Computer Architecture (HPCA), 1997, 298.

38. Sorin, D.J. et al., Analytic evaluation of shared memory systems with ILP
processors, in Proc. Int. Symp. Computer Architecture, 1998, 380.

39. Karkhanis and Smith, A., first order superscalar processor model, in Proc. 31st
Int. Symp. Computer Architecture, June 2004, 338.

40. Clark, M. and John, L.K., Performance evaluation of configurable hardware
features on the AMD-K5, in Proc. IEEE Int. Conf. Computer Design, 1999, 102.

Chapter Two: Performance Modeling and Measurement Techniques 23

41. Dean, J. et al., Profile me: Hardware support for instruction level profiling on
out of order processors, in Proc. MICRO-30, 1997, 292.

42. Bhandarkar, D. and Ding, J., Performance characterization of the PentiumPro
processor, in Proc. 3rd High Performance Computer Architecture Symp., 288. 1997,

43. Luo, Y. et al. Benchmarking internet servers on superscalar machines. IEEE
Computer, February, 34, 2003.

44. Vtune, online at: http://www.intel.com/software/products/vtune/.
45. PMON, online at: http://www.ece.utexas.edu/projects/ece/lca/pmon.
46. The Brink Abyss tool for Pentium 4, online at: http://www.eg.bucknell.edu/

~bsprunt/emon/brink_abyss/brink_abyss.shtm.
47. Merten, M.C. et al., A hardware-driven profiling scheme for identifying hot

spots to support runtime optimization, in Proc. 26th Int. Symp. Computer
Architecture, 1999, 136.

48. Bhargava, R. et al., Understanding the impact of x86/NT computing on
microarchitecture, Paper ISBN 0-7923-7315-4, in Characterization of Contempo-
rary Workloads, Kluwer Academic Publishers, 2001, 203.

49. Poursepanj, A. and Christie, D., Generation of 3D graphics workload for
system performance analysis, in Proc. 1st Workshop Workload Characterization.
Also in Workload Characterization: Methodology and Case Studies, John and May-
nard, Eds., IEEE CS Press, 1999.

50. Agarwal, A., Sites, R.L. and Horowitz, M., ATUM: A new technique for
capturing address traces using microcode, in Proc. 13th Int. Symp. Computer
Architecture, 1986, 119.

51. Brooks, D. et al., Wattch: A framework for architectural-level power analysis
and optimizations, in Proc. 27th Int. Symp. Computer Architecture (ISCA), Van-
couver, British Columbia, June 2000.

52. Gurumurthi, S. et al., Using complete machine simulation for software power
estimation: The SoftWatt approach, in Proc. 2002 Int. Symp. High Performance
Computer Architecture, 2002, 141.

53. The POWER-IMPACT simulator, online at: http://eda.ee.ucla.edu/PowerIm-
pact/main.html.

54. Shivakumar, P. and Jouppi, N.P., CACTI 3.0: An integrated cache timing,
power, and area model, Report WRL-2001-2, Digital Western Research Lab
(Compaq), Dec 2001.

55. The HotLeakage leakage power simulation tool, online at: http://lava.cs.vir-
ginia.edu/HotLeakage/.

56. Black, B. and Shen, J.P., Calibration of microprocessor performance models,
IEEE Computer, May, 59, 1998.

57. Gibson, J. et al., FLASH vs. (Simulated) FLASH: Closing the simulation loop,
in Proc. 9th Int. Conf. Architectural Support for Programming Languages and
Operating Systems, Cambridge, Massachusetts, United States, Nov 2000, 49.

58. Desikan, R. et al., Measuring Experimental Error in Microprocessor Simula-
tion, in Proc. 28th Annual Int. Symp. Computer Architecture, Sweden, June 2001,
266.

59. The WorldWide Computer Architecture home page, Tools Link, online at:
http://www.cs.wisc.edu/~arch/www/tools.html.

25

Chapter Three

Benchmarks

Lizy Kurian John

Contents

3.1 CPU benchmarks ...27
3.1.1 SPEC CPU Benchmarks ...30
3.1.2 PERFECT CLUB benchmarks ...30
3.1.3 Java grande forum benchmark suite ...30
3.1.4 SciMark ...31
3.1.5 ASCI...32
3.1.6 SPLASH ..33
3.1.7 NAS parallel benchmarks..33

3.2 Embedded and media benchmarks ..33
3.2.1 EEMBC benchmarks ...33
3.2.2 BDTI benchmarks..35
3.2.3 MediaBench..35
3.2.4 MiBench ..35

3.3 Java benchmarks ..35
3.3.1 SPECjvm98 ...35
3.3.2 SPECjbb2000...36
3.3.4 CaffeineMark..36
3.3.5 MorphMark ..36
3.3.6 VolanoMark ..36
3.3.7 SciMark ...37
3.3.8 Java grande forum benchmarks ...37

3.4 Transaction processing benchmarks ...37
3.4.1 TPC-C ..38
3.4.2 TPC-H..38
3.4.3 TPC-R ..39
3.4.4 TPC-W...39

3.5 Web server benchmarks..39
3.5.1 SPECweb99...39

26 Performance Evaluation and Benchmarking

3.5.2 VolanoMark ..40
3.5.3 TPC-W...40

3.6 E-commerce benchmarks..40
3.7 Mail server benchmarks ...40

3.7.1 SPECmail2001 ..40
3.8 File server benchmarks ...40

3.8.1 System file server version 3.0..40
3.9 PC benchmarks...41
3.10 The HINT benchmark ...41
3.11 Return of synthetic benchmarks..41
3.12 Conclusion...43
References...43

Benchmarks used for performance evaluation of computers should be rep-
resentative of applications that run on actual systems. Contemporary com-
puter workloads include a variety of applications, and it is not easy to define
or create representative benchmarks. Performance evaluation using bench-
marks has always been a controversial issue for this reason.

It is easy to understand that different benchmarks are appropriate for
systems targeted for different purposes. However, it is also a fact that single
and simple numbers are easy to understand. One might notice that, even
today, many buy their computers based on their clock frequency or memory
capacity as opposed to any results based on any benchmark applications.

Three or four decades ago, speed of an ADD instruction or a MULTIPLY
instruction was used as an indicator of a computer’s performance. Then, there
were microbenchmarks and synthetic programs. In the 1980s, computer per-
formance was typically evaluated with small benchmarks, such as kernels,
extracted from applications (e.g., Lawrence Livermore Loops, Linpack, Sort-
ing, Sieve of Eratosthenes, 8-queens problem, Tower of Hanoi) or synthetic
programs such as Whetstone or Dhrystone[1]. Whetstone was a synthetic
floating-point benchmark crafted after studying several floating-point pro-
grams. Dhrystone was created with the same philosophy to measure integer
performance. Both of these programs were very popular for many years. They
both were simple programs and were efforts to create a typical or average
program based on the characteristics of many programs. The programs actu-
ally did not compute anything useful, and many results computed during the
program’s run were not ever printed or used. Hence it was easy for optimizing
compilers to remove a large part of the code during dead-code elimination.
Weicker’s 1990 paper [1] provides a good characterization of these and other
simple benchmarks. Misuse/abuse has happened in the use of these programs
and in interpretation of results from these programs. Synthetic benchmarks
have been in disrepute since then. The Standard Performance Evaluation
Cooperative (SPEC) consortium [2] and the Transactions Processing Council
(TPC) [3] formed in 1988 have made available several benchmark suites and
benchmarking guidelines to improve the quality of benchmarking.

Chapter Three: Benchmarks 27

Benchmarks can be of different types. Many popular benchmarks are
programs that perform a fixed amount of computation. The computer that
performs the task in the minimum amount of time is considered the winner.
There are also throughput benchmarks, in which there is no concept of finish-
ing the fixed amount of work. Throughput benchmarks are used to measure
the rate at which work gets done, that is, a task accomplished in a fixed time is
used to compare processors or systems. The SPEC CPU benchmarks are exam-
ples of fixed-computation benchmarks, whereas the TPC benchmarks are
examples of throughput benchmarks. One may also design benchmarks where
neither computation nor time is kept fixed. The HINT benchmark [4,5]
explained in Section 3.10 is an example of such a benchmark.

This chapter discusses benchmarks from various domains of computers
and microprocessors. Table 3.1 lists several popular benchmarks for different
classes of workloads. Scientific and technical workloads are computation
and memory intensive. They are also called CPU benchmarks. Embedded
system applications may have requirements on reducing memory consump-
tion. Java programs are used from embedded systems to servers, and they
are shown in a category by themselves. Personal computer applications also
form their own category, with their emphasis on word processor, spread-
sheet, and other applications for the masses.

3.1 CPU benchmarks
3.1.1 SPEC CPU Benchmarks

SPEC CPU2000 is the current industry standard for CPU-intensive benchmarks.
A new suite is expected in 2005. The SPEC [2] was founded in 1988 by a small
number of workstation vendors who realized that the marketplace was in
desperate need of realistic, standardized performance tests. The basic SPEC
methodology is to provide the benchmarker with a standardized suite of source
code that comes from existing applications and has already been ported to a
wide variety of platforms by its membership. The benchmarker then takes this
source code and compiles it for the system in evaluation. The use of already
accepted and ported source code greatly reduces the problem of making
apples-to-oranges comparisons. SPEC designed CPU2000 to provide a compar-
ative measure of compute-intensive performance across the widest practical
range of hardware. The SPEC philosophy has resulted in source code bench-
marks developed from real user applications. These benchmarks measure the
performance of the processor, memory, and compiler on the tested system.

The SPEC CPU2000 suite contains 14 floating-point programs (4 written in
C and 8 in Fortran) and 12 integer programs (11 written in C and 1 in C++).
Table 3.2 provides a list of the benchmarks in this suite. The SPEC CPU2000
benchmarks replace the SPEC89, SPEC92, and SPEC95 benchmarks. The SPEC
suite contains several input data sets for each program. The reference input set
is a large input set, whereas smaller inputs called test and train are available to
test the running environment or to perform profile-based training. Researchers

28 Performance Evaluation and Benchmarking

at University of Minnesota also created a set called MinneSPEC [6] with
miniature inputs that are smaller than the reference input sets. Tables 3.3, 3.4,
and 3.5 list the programs in the various retired SPEC CPU suites, along with
the source languages, and illustrate the evolution of the benchmarks. The
SPEC89 suite contained 4 integer programs written in C and 6 floating-point
programs written in Fortran. The SPEC92 suite had more programs and
included some floating-point programs written in C. The SPEC95 suite

Table 3.1 Popular Benchmarks for Different Categories of Workloads

Workload Category Example Benchmark Suite

CPU Benchmarks
Uniprocessor

SPEC CPU 2000 [2]
PERFECT CLUB [7]
Java Grande Forum
Benchmarks [9]

SciMark [10]
ASCI [11]

Parallel processor SPLASH [12,13]
NPB (NAS Parallel
Benchmarks) [14]

ASCI [11]
Multimedia
Embedded Systems
Digital Signal
Processing

EEMBC benchmarks [15]
BDTI benchmarks [16]
MediaBench [17]
MiBench [18]

Java Client side SPECjvm98 [2]
CaffeineMark [21]
Morphmark [22]

Server side SPECjBB2000 [2]
VolanoMark [23]

Scientific Java Grande Forum
Benchmarks [9]

SciMark [10]

Transaction
Processing

OLTP (Online transaction
processing)

TPC-C [3]
TPC-W [3]

DSS (Decision support
system)

TPC-H [3]
TPC-R [3]

Web Server SPEC web99 [2]
TPC-W [3]
VolanoMark [23]

Electronic
Commerce

With commercial
database

TPC-W [3]

Without database SPECjBB2000 [2]
Mail Server SPECmail2001, IMAP2003 [2]
Network File System SPEC SFS3.0/LADDIS [2]

Personal Computer SYSMARK [25]
Ziff Davis WinBench [24]
MacBench [27]

Chapter Three: Benchmarks 29
Ta

bl
e

3.
2

Pr
og

ra
m

s
in

 t
he

 S
PE

C
 C

PU
 2

00
0

Su
it

e

Pr
og

ra
m

A
pp

lic
at

io
n

IN
T

/
FP

L
an

gu
ag

e
In

pu
t

D
yn

am
ic

In
st

rn
 C

ou
nt

G
zi

p
C

om
pr

es
si

on
IN

T
C

in
pu

t.g
ra

ph
ic

10
3.

7
bi

lli
on

vp
r

FP
G

A
 p

la
ce

m
en

t
an

d
 r

ou
ti

ng
IN

T
C

ro
ut

e
84

.0
6

bi
lli

on
gc

c
C

 c
om

pi
le

r
IN

T
C

16
6.

i
46

.9
 b

ill
io

n
m

cf
C

om
bi

na
to

ri
al

 o
pt

im
iz

at
io

n
IN

T
C

in
p.

in
61

.8
 b

ill
io

n
cr

af
ty

G
am

e
pl

ay
in

g:
 c

he
ss

IN
T

C
cr

af
ty

.in
19

1.
8

bi
lli

on
pa

rs
er

W
or

d
 p

ro
ce

ss
in

g
IN

T
C

54
6.

7
bi

lli
on

eo
n

C
om

pu
te

r
vi

su
al

iz
at

io
n

IN
T

C
++

co
ok

80
.6

 b
ill

io
n

pe
rl

bm
k

Pe
rl

 p
ro

gr
am

m
in

g
la

ng
ua

ge
IN

T
C

*
*

vo
rt

ex
O

bj
ec

t-
or

ie
nt

ed
 d

at
ab

as
e

IN
T

C
le

nd
ia

n1
.r

aw
11

8.
9

bi
lli

on
ga

p
G

ro
up

 t
he

or
y,

 in
te

rp
re

te
r

IN
T

C
re

f.i
n

26
9.

0
bi

lli
on

bz
ip

2
C

om
pr

es
si

on
IN

T
C

in
pu

t.g
ra

ph
ic

12
8.

7
bi

lli
on

tw
ol

f
Pl

ac
e

an
d

 r
ou

te
 s

im
ul

at
or

IN
T

C
re

f
34

6.
4

bi
lli

on
sw

im
Sh

al
lo

w
 w

at
er

 m
od

el
in

g
FP

Fo
rt

ra
n

sw
im

.in
22

5.
8

bi
lli

on
w

up
w

is
e

Ph
ys

ic
s/

qu
an

tu
m

 c
hr

om
od

yn
am

ic
s

FP
Fo

rt
ra

n
w

up
w

is
e.

in
34

9.
6

bi
lli

on
m

gr
id

M
ul

ti
gr

id
 s

ol
ve

r:
 3

-D
 p

ot
en

ti
al

 fi
el

d
FP

Fo
rt

ra
n

m
gr

id
.in

41
9.

1
bi

lli
on

m
es

a
3-

D
 g

ra
ph

ic
s

lib
ra

ry
FP

C
m

es
a.

in
14

1.
86

 b
ill

io
n

ga
lg

el
C

om
pu

ta
ti

on
al

 fl
ui

d
 d

yn
am

ic
s

FP
Fo

rt
ra

n
ga

lg
el

.in
40

9.
3

bi
lli

on
ar

t
Im

ag
e

re
co

gn
it

io
n/

ne
ur

al
 n

et
w

or
ks

FP
C

C
75

6h
el

.in
45

.0
 b

ill
io

n
eq

ua
ke

Se
is

m
ic

 w
av

e
pr

op
ag

at
io

n
si

m
ul

at
io

n
FP

C
in

p.
in

13
1.

5
bi

lli
on

am
m

p
C

om
pu

ta
ti

on
al

 c
he

m
is

tr
y

FP
C

am
m

p.
in

32
6.

5
bi

lli
on

lu
ca

s
N

um
be

r
th

eo
ry

/
pr

im
al

it
y

te
st

in
g

FP
Fo

rt
ra

n
lu

ca
s2

.in
14

2.
4

bi
lli

on
fm

a3
d

Fi
ni

te
-e

le
m

en
t

cr
as

h
si

m
ul

at
io

n
FP

Fo
rt

ra
n

fm
a3

d
.in

26
8.

3
bi

lli
on

ap
si

M
et

er
ol

og
y:

 p
ol

lu
ta

nt
 d

is
tr

ib
ut

io
n

FP
Fo

rt
ra

n
ap

si
.in

34
7.

9
bi

lli
on

ap
pl

u
Pa

ra
bo

lic
/

el
lip

ti
c

pa
rt

ia
l d

iff
er

en
ti

al
 e

qu
at

io
ns

FP
Fo

rt
ra

n
ap

pl
u.

in
22

3.
8

bi
lli

on
fa

ce
re

c
Im

ag
e

pr
oc

es
si

ng
: f

ac
e

re
co

gn
it

io
n

FP
Fo

rt
ra

n
*

*
si

xt
ra

ck
H

ig
h-

en
er

gy
 n

uc
le

ar
 p

hy
si

cs
 a

cc
el

er
at

or
 d

es
ig

n
FP

Fo
rt

ra
n

*
*

30 Performance Evaluation and Benchmarking

contained 8 integer programs written in C and 10 floating-point programs
written in Fortran. The SPEC2000 suite contains 26 programs, including a C++
program. The length of the SPEC CPU benchmarks have increased tremen-
dously, as demonstrated by the instruction counts in Tables 3.2 through 3.5.
These instruction counts are based on Alpha binaries for the SimpleScalar
simulator. The specific input set used for the experiment is indicated.

3.1.2 PERFECT CLUB benchmarks
Researchers from University of Illinois created a suite with 13 complete Fortran
applications [7] from traditional scientific/engineering domains such as fluid
dynamics, signal processing, and modeling. The programs have been used for
studying high-performance computing systems and to study compiler trans-
formations that can be applied to regular structured programs. Many compu-
tation applications in these domains have moved into languages other than
Fortran, and this suite is not very commonly used nowadays.

3.1.3 Java grande forum benchmark suite
The Java Grande Forum Benchmark suite consists of three groups of bench-
marks; microbenchmarks that test individual low-level operations (e.g., arith-
metic, cast, create); Kernel benchmarks, which are the heart of the algorithms
of commonly used applications (e.g., heapsort, encryption/decryption, FFT,
Sparse matrix multiplication); and applications (e.g., Raytracer, Monte-Carlo
simulation, Euler equation solution, Molecular dynamics, etc) [8,9]. These are
computation-intensive benchmarks available in Java.

Table 3.3 Program in the SPEC CPU 89 Suite

Program Application INT/FP Language Input
Dynamic

Instrn Count

espresso Logic minimization INT C bca.in 0.5 billion
li Lisp interpreter INT C li-input.lsp 7 billion
eqntott Boolean equation

to truth table
converter

INT C * *

gcc G compiler INT C * *
spice2g6 Analog circuit

simulator
FP Fortran * *

doduc Nuclear reactor
model

FP Fortran doducin 1.03 billion

fpppp Quantum
chemistry/electron
integrals

FP Fortran natoms 1.17 billion

matrix300 Saxpy on matrices FP Fortran — 1.9 billion
nasa7 Seven kernels

from NASA
FP Fortran — 6.2 billion

tomcatv Vectorized mesh
generation

FP Fortran — 1 billion

Chapter Three: Benchmarks 31

3.1.4 SciMark

SciMark is a composite Java benchmark measuring the performance of
numerical codes occurring in scientific and engineering applications [10]. It
consists of five computational kernels: FFT, Gauss-Seidel relaxation, sparse
matrix-multiply, Monte-Carlo integration, and dense LU factorization. These
kernels are selected to provide an indication of how well the underlying Java
Virtual Machines (JVMs) perform on applications that utilize these types of
algorithms. The problem sizes are purposely made small in order to isolate
the effects of memory hierarchy and focus on internal JVM/JIT and CPU
issues. A larger version of the benchmark (SciMark 2.0 LARGE) addresses
performance of the memory subsystem with out-of-cache problem sizes.

Table 3.4 Programs in the SPEC CPU 92 Suite

Program Application INT/FP Language Input
Dynamic

Instrn Count

espresso Logic minimization INT C bca.in 0.5 billion
li Lisp interpreter INT C li-input.lsp 6.8 billion
eqntott Boolean equation to

truth table converter
INT C * *

compress Lempel Ziv compression INT C in 0.1 billion
sc Budgets and

spreadsheets
INT C * *

gcc C compiler INT C * *
spice2g6 Analog circuit simulator FP Fortran * *
doduc Nuclear reactor model FP Fortran doducin 1.03 billion
mdljdp2 Atom motion

equation solver
(double precision)

FP Fortran input.file 2.55 billion

mdljsp2 Atom motion
equation solver
(single precision)

FP Fortran input.file 3.05 billion

wave5 Maxwell equations FP Fortran — 3.53 billion
hydro2d Navier Stokes equations

for hydrodynamics
FP Fortran hydro2d.in 44 billion

Swm256 Shallow water equations FP Fortran swm256.in 10.2 billion
alvinn Neural network FP C In_pats.txt 4.69 billion
ora Ray tracing FP Fortran params 4.72 billion
ear Sound to cochleogram

by FFTs and math
library

FP C * *

su2cor Particle simulation FP Fortran su2cor.in 4.65 billion
fpppp Quantum chemistry/

electron integrals
FP Fortran natoms 116 billion

nasa7 Seven kernels
from NASA

FP Fortran — 6.23 billion

tomcatv Vectorized mesh
generation

FP Fortran — 0.9 billion

32 Performance Evaluation and Benchmarking

3.1.5 ASCI

The Accelerated Strategic Computing Initiative (ASCI) from Lawrence Liver-
more Laboratories released several numeric codes suitable for evaluation of
compute intensive systems. The programs are available from the ASCI bench-
marks Web site [11]. Many of these programs are written to exploit explicit
threads for testing multiprocessor systems and message-passing mechanisms.
The programs include SPPM (Simplified Piecewise Parabolic Method, which
solves a 3-D gas dynamics problem), SWEEP3D (a 3-D Discrete Ordinates
Neutron Transport problem), and COMOPS (an inter-SMP communications
benchmark that tests nearest-neighbor point-to-point send/receive, also known
as ping-pong, as well as 2-D ghost cell update, 3-D ghost cell update, broadcast,
reduce, gather, and scatter operations). Parallel versions of the benchmarks can
be created for parallel processor benchmarking. The 24 Lawrence Livermore
kernels are also available from ASCI [11]. Although they have been in disrepute
in recent years, they contain examples of computations in various popular
scientific applications. Some of these loops are very parallel, whereas some
illustrate the typical type of intra-loop and inter-loop dependencies.

Table 3.5 Programs in the SPEC CPU 95 Suite

Program Application INT/FP Language Input
Dynamic

Instrn Count

go Go-playing INT C null.in 18.2 billlion
li Xlisp interpreter INT C *.lsp 75.6 billion
m88ksim Chip simulator INT C ctl.in 520.4 billion
compress Unix compress INT C bigtest.in 69.3 billion
ijpeg Image compression/

decompression
INT C penguin.ppm 41.4 billion

gcc GNU C compiler INT C expr.i 1.1 billion
perl Interpreter for Perl INT C perl.in 16.8 billion
vortex Object-oriented

database
INT C * *

wave5 FP Fortran wave5.in 30 billion
hydro2d Navier Stokes

equations
FP Fortran hydro2d.in 44 billion

swim Shallow water
equations

FP Fortran swim.in 30.1 billion

applu Partial differential
equations

FP Fortran applu.in 43.7 billion

mgrid 3-D potential field FP Fortran mgrid.in 56.4 billion
Turb3d Turbulence modeling FP Fortran turb3d.in 91.9
Su2cor Monte-Carlo method FP Fortran su2cor.in 33 billion
fpppp Quantum chemistry FP Fortran natmos.in 116 billion
apsi Weather prediction FP Fortran apsi.in 28.9 billion
tomcatv Vectorized mesh

generator
FP Fortran tomcatv.in 26.3 billion

Chapter Three: Benchmarks 33

3.1.6 SPLASH

Stanford researchers [12,13] created the SPLASH suite for parallel-processor
benchmarking. The first SPLASH suite consisted of six scientific and engineer-
ing applications, and the SPLASH2 suite contains eight complete applications
and four kernels. These programs represent a variety of computations in sci-
entific, engineering, and graphics computing. The application programs in the
SPLASH2 suite are Barnes (galaxy/particle simulation), FMM (particle simu-
lation similar to Barnes in functionality but contains more unstructured com-
munication patterns), Ocean (ocean current simulation), Radiosity (iterative
hierarchical diffuse radiosity method), Raytrace (3-D scene ray tracing), Volrend
(volume rendering using ray casting), Water-Nsquared (forces in water), and
Water spatial (forces in water problem using 3-D grid of cells algorithm).
SPLASH2 also contain four kernels: Radix (radix sort kernel), Cholesky
(blocked sparse Cholesky factorization kernel), FFT (six-step FFT kernel opti-
mized to minimize communication), and LU (matrix factorization kernel).

3.1.7 NAS parallel benchmarks

The NAS Parallel Benchmarks (NPB) [14] are a set of programs designed to
help evaluate the performance of parallel supercomputers. The early version
of the benchmarks consisted of kernels/pseudo applications derived from
computational fluid dynamics (CFD) applications. NPB includes programs
with different types of parallelism and dependency characteristics. Recent
releases include NPB3, which contains parallel implementations of the pro-
grams using OpenMP, High Performance Fortran (HPF), and Java, respec-
tively. They were derived from the previous NPB-serial implementations
after some additional optimization. Another recent release is GridNPB 3,
which is a new suite of benchmarks designed specifically to rate the perfor-
mance of computational grids. Each of the four benchmarks consists of a
collection of communicating tasks derived from the NPB. They symbolize
distributed applications typically run on grids. The distribution contains
serial and concurrent reference implementations in Fortran and Java.

3.2 Embedded and media benchmarks
3.2.1 EEMBC benchmarks

The EDN Embedded Microprocessor Benchmark Consortium (EEMBC, pro-
nounced “embassy”) was formed in April 1997 to develop meaningful
performance benchmarks for processors in embedded applications. The
EEMBC benchmarks [15] comprise a suite of benchmarks designed to reflect
real-world applications as well as some synthetic benchmarks. These bench-
marks target the automotive/industrial, consumer, networking, office auto-
mation, and telecommunications markets. More specifically, these bench-
marks target specific applications that include engine control, digital
cameras, printers, cellular phones, modems, and similar devices with

34 Performance Evaluation and Benchmarking

embedded microprocessors. The EEMBC consortium dissected applications
from these domains and derived 37 individual algorithms that constitute
the EEMBC’s Version 1.0 suite of benchmarks. The programs in the suite
are listed in Table 3.6. EEMBC establishes benchmark standards and pro-
vides certified benchmarking results through the EEMBC Certification Labs
(ECL) in Texas and California. EEMBC is backed by the majority of the

Table 3.6 Programs in the EEMBC Suite

Category Program

1. Automotive/Industrial Angle-to-Time Conversion
Basic integer and floating point
Bit manipulation
Cache buster
CAN remote data request
Fast Fourier transform (FFT)
Finite impulse response (FIR) filter
Inverse discrete cosine transform (IDCT)
Inverse fast Fourier transform (iFFT)
Infinite impulse response (IIR) filter
Matrix arithmetic
Pointer chasing
Pulse width modulation (PWM)
Road speed calculation
Table lookup and interpolation
Tooth to spark

2. Consumer High-pass gray-scale filter
JPEG
RGB to CMYK conversion
RGB to YIQ conversion

3. GrinderBench for the Java 2 Micro
Edition Platform

Chess
Cryptography
kXML
ParallelBench
PNG decoding
Regular expression

4. Networking Packet flow
OSPF
Router lookup

5. Office Automation Dithering
Image rotation
Text processing

6. Telecom Autocorrelation
Bit allocation
Convolutional encoder
Fast Fourier transform (FFT)
Viterbi decoder

Chapter Three: Benchmarks 35

processor industry and has therefore established itself as the industry-
standard embedded processor benchmarking forum.

3.2.2 BDTI benchmarks
Berkeley Design Technology, Inc. (BDTI) is a technical services company that
has focused exclusively on digital signal processing since 1991. BDTI pro-
vides the industry standard BDTI Benchmarks™, a proprietary suite of DSP
benchmarks [16]. BDTI also develops custom benchmarks to determine per-
formance on specific applications. The benchmarks contain DSP routines
such as FIR filter, IIR filter, FFT, dot product, and Viterbi decoder.

3.2.3 MediaBench
The MediaBench benchmark suite consists of several applications belonging
to the image processing, communications, and DSP applications. Examples
of applications that are included are JPEG, MPEG, GSM, G.721 Voice com-
pression, Ghostscript, and ADPCM. JPEG is the compression program for
images, MPEG involves encoding/decoding for video transmission, Ghost-
script is an interpreter for the Postscript language, and ADPCM is adaptive
differential pulse code modulation. The MediaBench is an academic effort
to assemble several media processing related benchmarks. An example of
the use of these benchmarks may be found in the proceedings of the thirtieth
International Symposium on Microarchitecture [17].

3.2.4 MiBench
MiBench is a free embedded benchmark suite [18,19], with similar programs
as the EEMBC suite. The EEMBC suite is not readily accessible to academic
researchers. To solve this problem, researchers at Michigan compiled a set of
35 embedded programs to form the MiBench suite. Modeled around the
EEMBC suite, programs are grouped into six categories: automotive, con-
sumer, network, office, security, and telecommunications. All the programs
are available as C source code. Embedded benchmarks were written in assem-
bly a few years ago; however, the current trend in the embedded domain has
been to use compilers and C source code. MiBench can be ported to any
embedded platform because its source code is available.

3.3 Java benchmarks
3.3.1 SPECjvm98
The SPECjvm98 suite consists of a set of programs intended to evaluate
performance for the combined hardware (CPU, cache, memory, and other
platform-specific performance) and software aspects (efficiency of JVM, the
JIT compiler, and OS implementations) of the JVM client platform [2]. The
SPECjvm98 uses common computing features, such as integer and float-
ing-point operations, library calls, and I/O, but does not include AWT

36 Performance Evaluation and Benchmarking

(window), networking, and graphics. Each benchmark can be executed with
three different input sizes referred to as S1, S10, and S100. The seven pro-
grams are compression/decompression (compress), expert system (jess),
database (db), Java compiler (javac), mpeg3 decoder (mpegaudio), raytracer
(mtrt), and a parser (jack).

3.3.2 SPECjbb2000

Java Business Benchmark (JBB) is SPEC’s first benchmark for evaluating the
performance of server-side Java. The benchmark emulates an electronic com-
merce workload in a three-tier system. It is written is Java, adapting a portable
business-oriented benchmark called pBOB, written by IBM. Although it is a
benchmark that emulates business transactions, it is very different from the
TPC benchmarks. There are no actual clients; they are replaced by driver
threads. Similarly, there is no actual database access. Data is stored as binary
trees of objects. The benchmark contains business logic and object manipulation,
primarily representing the activities of the middle tier in an actual business
server. The SPECjbb allows configuration of the number of warehouses to
create scalable benchmarks. The number of warehouses was fixed at 10 and
25 in a study on IBM and Intel processors [20].

3.3.4 CaffeineMark

The CaffeineMark was a series of benchmarks to help gauge performance
of Java on the Internet. The benchmark suite analyzes Java system perfor-
mance in 11 different areas, 9 of which can be executed directly over the
Internet. It is almost the industry-standard Java benchmark. The Caffeine-
Mark was widely used for comparing different JVMs on a single system;
that is, it compared applet viewers, interpreters and JIT compilers from
different vendors. The CaffeineMark benchmark was used as a measure of
Java applet/application performance across platforms. CaffeineMark 2.5 and
CaffeineMark 3.0 [21] have been used in Java system benchmarking.

3.3.5 MorphMark

Games are becoming an increasingly important workload on mobile phones.
MorphMark [22] performs a series of tests to determine which Java-enabled
mobile handsets are best suited to run games. The MorphMark suite tests
the performance of the JVM, the graphics on the handset, Java I/O perfor-
mance, and similar performance aspects.

3.3.6 VolanoMark

VolanoMark is a pure Java server benchmark with long-lasting network con-
nections and high thread counts [23]. It can be divided into two parts — server
and client — although they are provided in one package. It is based on a
commercial chat server application, the VolanoChat, which is used in several

Chapter Three: Benchmarks 37

countries worldwide. The server accepts connections from the chat client. The
chat client simulates many chat rooms and many users in each chat room. The
client continuously sends messages to the server and waits for the server to
broadcast the messages to the users in the same chat room. VolanoMark creates
two threads for each client connection. VolanoMark can be used to test both
speed and scalability of a system. In the speed test, it is executed in an iterative
fashion on a single machine. In scalability test, the server and client are exe-
cuted on separate machines with high-speed network connection.

3.3.7 SciMark

See Section 3.1.3 earlier in this chapter.

3.3.8 Java grande forum benchmarks

See Section 3.1.2 earlier in this chapter.

3.4 Transaction processing benchmarks
The Transaction Processing Council (TPC) [3] is a nonprofit corporation
that was founded in 1988 to define transaction processing and database
benchmarks and to disseminate objective, verifiable transaction-processing
performance data to the industry. The term transaction is often applied to
a wide variety of business and computer functions. When viewed as a
computer function, a transaction could refer to a set of operations including
disk accesses, operating system calls, or some form of data transfer from
one subsystem to another. TPC regards a transaction as it is commonly
understood in the business world: a commercial exchange of goods, ser-
vices, or money. A typical transaction, as defined by the TPC, would
include the updating to a database system for such things as inventory
control (goods), airline reservations (services), or banking (money). In these
environments, a number of customers or service representatives input and
manage their transactions via a terminal or desktop computer connected
to a database. Typically, the TPC produces benchmarks that measure trans-
action processing (TP) and database (DB) performance in terms of how
many transactions a given system and database can perform per unit of
time, for example, transactions per second or transactions per minute. The
TPC benchmarks can be classified into two categories: Online Transaction
Processing (OLTP) and Decision Support Systems (DSSs). OLTP systems
are used in day-to-day business operations (airline reservations, banks)
and are characterized by large numbers of clients who continually access
and update small portions of the database through short-running transac-
tions. DSSs are primarily used for business analysis purposes, to under-
stand business trends, and for guiding future business directions. Infor-
mation from the OLTP side of the business is periodically fed into the DSS
database and analyzed. DSS workloads are characterized by long-running

38 Performance Evaluation and Benchmarking

queries that are primarily read-only and may span a large fraction of the
database. There are four benchmarks that are active: TPC-C, TPC-W,
TPC-R, and TPC-H. These benchmarks can be run with different data sizes,
or scale factors. In the smallest case (or scale factor = 1), the data size is
approximately 1 gigabyte (GB). The early TPC benchmarks, namely TPC-A,
TPC-B, and TPC-D, have become obsolete.

3.4.1 TPC-C

TPC-C is an OLTP benchmark. It simulates a complete computing environ-
ment where a population of users executes transactions against a database.
The benchmark is centered around the principal activities (transactions) of a
business similar to that of a worldwide wholesale supplier. The transactions
include entering and delivering orders, recording payments, checking the
status of orders, and monitoring the level of stock at the warehouses. Although
the benchmark portrays the activity of a wholesale supplier, TPC-C is not
limited to the activity of any particular business segment but rather represents
any industry that must manage, sell, or distribute a product or service. TPC-C
involves a mix of five concurrent transactions of different types and complexity
either executed online or queued for deferred execution. There are multiple
online terminal sessions. The benchmark can be configured to use any com-
mercial database system, such as Oracle, DB2 (IBM), or Informix. Significant
disk input and output are involved. The databases consist of many tables with
a wide variety of sizes, attributes, and relationships. The queries result in
contention on data accesses and updates. TPC-C performance is measured in
new-order transactions per minute (tpmC). The primary metrics are the trans-
action rate (tpmC) and price per performance metric ($/tpmC).

3.4.2 TPC-H

The TPC Benchmark™H (TPC-H) is a DSS benchmark. As discussed earlier,
DSSs are used primarily for analyzing business trends. For instance, a DSS
database may consist of records of transactions from the previous several
months of a company’s operation, which can be analyzed to shape the future
strategy of the company. DSS workloads typically involve long-running
queries spanning large databases. The TPC-H benchmark consists of a suite
of business-oriented ad hoc queries and concurrent data modifications. The
queries and the data populating the database have been chosen to have broad
industry-wide relevance. This benchmark is modeled after DSSs that exam-
ine large volumes of data, execute queries with a high degree of complexity,
and give answers to critical business questions. There are 22 queries in the
benchmark. These involve database operations such as scan, indexed scan,
select, join, and merge operations. Each of the 22 queries may include mul-
tiple database operations. The benchmark involves database tables ranging
in size from a few kilobytes to several gigabytes. The benchmark dataset can
be scaled to various sizes, and the smallest acceptable size for an auditable

Chapter Three: Benchmarks 39

TPC-H system is 1 GB. The performance metric reported by TPC-H is called
the TPC-H composite query-per-hour performance metric (QphH@Size), and
the TPC-H price-per-performance metric is $/QphH@Size. The queries in
TPC-H are the same as the queries in the TPC-R. One may not perform
optimizations based on a priori knowledge of queries in TPC-H, whereas
TPC-R permits such optimizations.

3.4.3 TPC-R

The TPC Benchmark™R (TPC-R) is a DSS benchmark similar to TPC-H, but
it allows additional optimizations based on advance knowledge of the que-
ries. It consists of a suite of business-oriented queries and concurrent data
modifications. As in TPC-H, there are 22 queries. The queries and the data
tables are the same as those in TPC-H. The performance metric reported by
TPC-R is called the TPC-R composite query-per-hour performance metric
(QphR@Size), and the TPC-R price-per-performance metric is $/QphR@Size.

3.4.4 TPC-W

TPC Benchmark™ W (TPC-W) is a transactional Web benchmark. The work-
load simulates the activities of a business-oriented transactional Web server
in an electronic commerce environment. It supports many of the features of
the TPC-C benchmark and has several additional features related to dynamic
page generation with database access and updates. Multiple online browser
sessions and online transaction processes are supported. Contention on data
accesses and updates are modeled. The performance metric reported by TPC-W
is the number of Web interactions processed per second (WIPS). Multiple
Web interactions are used to simulate the activity of a retail store, and each
interaction is subject to a response time constraint. Different profiles can
be simulated by varying the ratio of browsing and buying, that is, it
simulates customers who are primarily browsing and those who are primarily
shopping.

3.5 Web server benchmarks
3.5.1 SPECweb99

SPECweb99 is the SPEC benchmark for evaluating the performance of World
Wide Web Servers [2]. It measures a system’s ability to act as a Web server.
The initial effort from SPEC in this direction was SPECweb96, but it con-
tained only static workloads, meaning that the requests were for simply
downloading Web pages that did not involve any computation. However, if
one examines the use of the Web, it is clear that many downloads involve
computation to generate the information the client is requesting. Such Web
pages are referred to as dynamic Web pages. SPECweb99 includes dynamic
Web pages. The file accesses are made to closely match today’s real-world

40 Performance Evaluation and Benchmarking

Web server access patterns. The pages also contain dynamic ad rotation using
cookies and table lookups.

3.5.2 VolanoMark

See Section 3.3.6 earlier in this chapter.

3.5.3 TPC-W

See Section 3.4.4 earlier in this chapter.

3.6 E-Commerce benchmarks
Electronic commerce (e-commerce) has become very popular in the recent
years. A significant amount of merchandise is sold over electronic outlets
such as amazon.com. The TPC-W benchmark described in Section 3.4.4
models such an environment. This is one side of e-commerce as it affects the
buyers. Managing the business and deciding business strategies is another
part of e-business (electronic business). The TPC-H and TPC-R benchmarks
model typical activity as performed by corporations in order to successfully
conduct their business. The TPC benchmarks require a commercial database
program and are difficult to handle in many simulation environments. The
SPECjbb2000 benchmark described in Section 3.3.2 is an e-commerce bench-
mark in which the database has been simplified to data structures in the
program as opposed to an actual database.

3.7 Mail server benchmarks
3.7.1 SPECmail2001

SPECmail2001 is a standardized SPEC mail server benchmark designed to
measure a system’s ability to act as a mail server servicing e-mail requests.
The benchmark characterizes throughput and response time of a mail server
system under test with realistic network connections, disk storage, and client
workloads. The benchmark focuses on the Internet service provider (ISP) as
opposed to Enterprise class of mail servers, with an overall user count in
the range of approximately 10,000 to 1,000,000 users. The goal is to enable
objective comparisons of mail server products.

3.8 File server benchmarks
3.8.1 System file server version 3.0

System File Server Version 3.0 (SFS 3.0) is SPEC’s benchmark for measuring
NFS (Network File System) file server performance across different vendor
platforms. It contains a workload that was developed based on a survey of
more than 1,000 file servers in different application environments.

Chapter Three: Benchmarks 41

3.9 PC benchmarks
Applications on the personal computer (PC) are very different from appli-
cations on servers. PC users typically perform such activities as word
processing, audio and video applications, graphics, and desktop account-
ing. A variety of benchmarks are available, primarily from Ziff Davis and
BAPCO, to benchmark the Windows-based PC. Ziff Davis [24] Winstone
and Bapco SYSMARK [25] are benchmarks that measure overall perfor-
mance, whereas the other benchmarks are intended to measure perfor-
mance of one subsystem such as video or audio or one aspect such as
power. MacBench [27] is a subsystem-level benchmark that measures the
performance of a Macintosh operating system’s graphics, disk, processor,
FPU, video, and CD-ROM subsystems. Table 3.7 lists the most common
PC benchmarks

3.10 The HINT benchmark
The HINT benchmark has a very different philosophy than all the bench-
marks described so far. It is a variable-computation, variable-time bench-
mark. It solves a mathematical integration problem, whose result continually
improves as more computations are performed. The system under test con-
tinues to work on the problem, and the quality of the solution obtained
speaks of the capability of the system.

The benchmark tries to find the upper and lower bounds for

(1 − x)/(1 + x)dx

A technique called interval subdivision is used to find the answer. The
range is divided into a number of intervals, and the answer is computed by
counting the number of squares that are contributing to the lower and upper
bounds. A better answer can be obtained by splitting the intervals into
smaller subintervals. A computer is rated by analyzing the goodness of the
answer. Essentially, a computer with more computing and memory capabil-
ity will be able to generate a better answer to the problem. A metric, QUIPS,
based on the quality of the answer has been defined to compare different
systems. Whereas fixed-work benchmarks get outdated when computing
capability or cache/memory capacity increases, the HINT benchmark auto-
matically scales for larger systems. A more detailed description of the bench-
mark can be obtained from some of the sources listed at the end of this
chapter [4,5,28].

3.11 Return of synthetic benchmarks
Many of the modern benchmarks are very long. It takes prohibitively long
periods of time to perform simulations on them. Recent research shows that
short synthetic streams of instructions can be created to approximately

42 Performance Evaluation and Benchmarking

Table 3.7 Popular Personal Computer Benchmarks

Benchmark Description

Business Winstone [24] A system-level, application-based benchmark that
measures a PC’s overall performance when running
today’s top-selling Windows-based 32-bit applications.
It runs real business applications through a series of
scripted activities and uses the time a PC takes to
complete those activities to produce its performance
scores. The suite includes five Microsoft Office 2000
applications (Access, Excel, FrontPage, PowerPoint, and
Word), Microsoft Project, Lotus Notes R5, NicoMak
WinZip, Norton AntiVirus, and Netscape
Communicator.

WinBench [24] A subsystem-level benchmark that measures the
performance of a PC’s graphics, disk, and video
subsystems in a Windows environment.

3DwinBench [24] Tests the bus used to carry information between the
graphics adapter and the processor subsystem.
Hardware graphics adapters, drivers, and enhancing
technologies such as MMX/SSE are tested.

CD WinBench [24] Measures the performance of a PC’s CD-ROM subsystem,
which includes the CD drive, controller, and driver, and
the system processor.

Audio WinBench [24] Measures the performance of a PC’s audio subsystem,
which includes the sound card and its driver, the
processor, the DirectSound and DirectSound 3D
software, and the speakers.

Battery Mark [24] Measures battery life on notebook computers.
I-bench [24] A comprehensive, cross-platform benchmark that tests

the performance and capability of Web clients. The
benchmark provides a series of tests that measure both
how well the client handles features and the degree to
which network access speed affects performance.

Web Bench [24] Measures Web server software performance by running
different Web server packages on the same server
hardware or by running a given Web server package on
different hardware platforms.

NetBench [24] A portable benchmark program that measures how well
a file server handles file I/O requests from clients.
NetBench reports throughput and client response time
measurements.

3Dmark [26] From Futuremark Corporation. A nice 3-D Benchmark,
which measures 3-D gaming performance. Results are
dependent on CPU, memory architecture, and the 3-D
Accelerator employed.

Chapter Three: Benchmarks 43

match the behavior of the instruction stream from the full execution [29,30].
Synthetic streams as small as 0.1% of the size of the full benchmark are able
to capture the essential behavior of the actual execution. Although early
synthetic benchmarks such as Whetstone and Dhrystone have been in dis-
repute, difficulties with long benchmarks may make these synthetic instruc-
tion streams useful.

3.12 Conclusion
Benchmark suites are updated very frequently. Those interested in experi-
mental performance evaluation should continuously monitor emerging
benchmarks. The Web resources listed at the end of this chapter can provide
new information on benchmarks as they become available. Microprocessor
vendors are inclined to show off their products in the best light, to project
results for benchmarks that run well on their system, and to develop special
optimizations within their compilers to obtain improved benchmark scores,
while staying within the legal limits of the benchmark guidelines. It is
extremely important to understand benchmarks, their features, and the met-
rics used for performance evaluation in order to correctly interpret the per-
formance results.

References
1. Weicker, Reinhold P., An overview of common benchmarks IEEE Computer

December 1990, 65–75.
2. SPEC Benchmarks, online at: http://www.spec.org.

Table 3.7 Popular Personal Computer Benchmarks (Continued)

Benchmark Description

SYSMARK [25] Measures a system’s real-world performance when
running typical business applications. This benchmark
suite comprises the retail versions of eight application
programs and measures the speed with which the
system under test executes predetermined scripts of user
tasks typically performed when using these applications.
The performance times of the individual applications are
weighted and combined into both category-based
performance scores as well as a single overall score. The
application programs employed by SYSmark 32 are
Microsoft Word and Lotus WordPro (for word
processing), Microsoft Excel (for spreadsheet), Borland
Paradox (for database), CorelDraw (for desktop
graphics), Lotus Freelance Graphics and Microsoft
PowerPoint (for desktop presentation), and Adobe
Pagemaker (for desktop publishing).

44 Performance Evaluation and Benchmarking

3. Transactions Processing Council, online at: http://www.tpc.org.
4. Gustafson, J.L. and Snell, Q.O., HINT: A new way to measure computer

performance, Hawaii International Conference on System Sciences, 1995, pp.
II: 392–401.

5. HINT, online at: http://www.scl.ameslab.gov/scl/HINT/HINT.html.
6. KleinOsowski, A.J and Lilja, D.J., MinneSPEC: A new SPEC benchmark work-

load for simulation-based computer architecture research, Computer Architecture
Letters, Vol. 1, June 2002.

7. The PERFECT CLUB benchmarks, online at: http://www.csrd.uiuc.edu/
benchmark/benchmark.html.

8. Mathew, J.A., Coddington, P.D., and Hawick, K.A., Analysis and development
of the Java Grande Benchmarks, Proceedings of the ACM 1999 Java Grande
Conference, June 1999.

9. Java Grande Benchmarks, online at: http://www.epcc.ed.ac.uk/javagrande/.
10. SciMark, online at: http://math.nist.gov/scimark2.
11. ASCI Benchmarks, online at: http://www.llnl.gov/asci_benchmarks/asci/

asci_code_list.html.
12. Singh, J.P., Weber, W.-D., and Gupta, A., SPLASH: Stanford parallel applica-

tions for shared memory, Computer Architecture News, 20(1), 5–44, 1992.
13. Woo, S.C., Ohara, M., Torrie, E., Singh, J.P, and Gupta, A., The SPLASH-2

programs: Characterization and methodological considerations, Proceedings
of the 22nd International Symposium on Computer Architecture, pp. 24–36,
June 1995.

14. NAS Parallel Benchmarks, online at: http://www.nas.nasa.gov/Software/
NPB/.

15. EEMBC, online at: http://www.eembc.org.
16. BDTI, online at: http://www.bdti.com/.
17. Lee, C., Potkonjak, M., and Smith, W.H.M., MediaBench: A tool for evalu-

ating and synthesizing multimedia and communication systems, Proceed-
ings of the 30th International Symposium on Microarchitecture, pp.
330–335.

18. Guthaus, Matthew R., Ringenberg, Jeffrey S., Ernst, Dan, Austin, Todd M.,
Mudge, Trevor, and Brown, Richard B., MiBench: A free, commercially rep-
resentative embedded benchmark suite, IEEE 4th Annual Workshop on Work-
load Characterization, Austin, TX, December 2001.

19. MiBench benchmarks, online at: http://www.eecs.umich.edu/mibench/.
20. Luo, Y., Rubio, J., John, L., Seshadri, P., and Mericas A., Benchmarking

Internet Servers on SuperScalar Machines, IEEE Computer, February 2003,
34–40.

21. The Caffeine Benchmarks, online at: http://www.benchmarkhq.ru/cm30/.
22. Morphmark Midlet, online at: http://www.morpheme.co.uk/.
23. VolanoMark, online at: http://www.volano.com/benchmarks.html.
24. Ziff Davis Benchmarks, online at: http://www.zdnet.com/etestinglabs/fil-

ters/benchmarks.
25. SYSMARK, online at: http://www.bapco.com/.
26. 3D Mark Benchmarks, online at: www.futuremark.com.
27. Macbench, online at: http://www.macspeedzone.com.
28. Lilja, D.J., Measuring computer performance: A practitioner’s guide, Cam-

bridge University Press, 2001.

Chapter Three: Benchmarks 45

29. Eeckhout, L., Bell, R.H., Jr., Stougie, B., De Bosschere, K., and John, L.K.,
Control flow modeling in statistical simulation for accurate and efficient
processor design studies, Proceedings of the International Symposium on
Computer Architecture (ISCA), June 2004.

30. Bell, R.H., Jr. and John, L.K., Experiments in automatic benchmark synthesis
technical report TR-040817-01, Laboratory for Computer Architecture, Uni-
versity of Texas at Austin, August 2004.

47

Chapter Four

Aggregating Performance
Metrics Over a Benchmark
Suite

Lizy Kurian John

Contents

4.1 MIPS as an example ..48
4.2 Speedup ...52
4.3 Use of geometric mean ...55
4.4 Summary ...57
Acknowledgment..57
References...58

The topic of finding a single number to summarize overall performance of
a computer system over a benchmark suite is continuing to be a difficult
issue less than 2 decades after Smith’s 1988 paper [1]. Although significant
insight into the problem has been provided by Smith [1], Hennessey and
Patterson [2], and Cragon [3], the research community still seems to be
unclear on the correct mean to use for different performance metrics. How
should metrics obtained from individual benchmarks be aggregated to
present a summary of the performance over the entire suite? What central
tendency measures are valid over the whole benchmark suite for speedup,
CPI, IPC, MIPS, MFLOPS, cache miss rates, cache hit rates, branch mispre-
diction rates, and other measurements?

Arithmetic mean has been touted to be appropriate for time-based met-
rics, whereas harmonic mean is touted to be appropriate for rate-based
metrics. Is cache miss rate a rate-based metric and, hence, is harmonic mean

48 Performance Evaluation and Benchmarking

appropriate? Geometric mean is a valid measure of central tendency for
ratios or dimensionless quantities [3]; however, it is also advised that geo-
metric mean should not be used for summarizing any performance measure
[1,4]. Speedup, which is a popular metric in most architecture papers to
indicate performance enhancement by the proposed architecture is dimen-
sionless and is a ratio-based measure. What will be an appropriate measure
to summarize speedups from individual benchmarks?

It is known that weighted means should be used if the benchmarks are
not of equal weight. What does equally weighted mean? Does equal weight
mean that each benchmark is run once, that each benchmark is equally likely
to be in a workload of the user, that all benchmarks have an equal number
of instructions, or that all benchmarks run for equal numbers of cycles?
Whenever two machines are compared, there is always the question of
whether the benchmarks are equally weighted in the baseline machine or
the enhanced machine. And note that both cannot be true unless each bench-
mark is enhanced equally.

This chapter provides some answers to such questions, in the context of
aggregating metrics from individual benchmarks in a benchmark suite. It
shows that weighted arithmetic or harmonic mean can be used interchange-
ably and correctly, if the appropriate weights are applied. Mathematical
proofs are provided in the chapter to establish this.

4.1 MIPS as an example
Let’s start with MIPS as an example metric. Let’s assume that the benchmark
suite is composed of n benchmarks, and their individual MIPS are known.

We know that the overall MIPS of the entire suite is the total instruction
count in millions divided by the total time taken for execution of the whole
benchmark suite. Hence,

Overall MIPS = (4.1)

where Ii is the instruction count of each component benchmark (in millions)
and ti is the execution time of each benchmark.

Assume MIPSi is the MIPS rating of each individual benchmark. The
overall MIPS is essentially the MIPS when the n benchmarks are considered
as parts of a big application. We find that the overall MIPS of the suite can
be obtained by computing a weighted harmonic mean (WHM) of the MIPS of
the individual benchmarks weighted according to the instruction counts or
by computing a weighted arithmetic mean (WAM) of the individual MIPS with
weights corresponding to the execution times spent in each benchmark in
the suite. Let us establish this mathematically.

I

t

ii

n

ii

n
=

=

∑
∑

1

1

Chapter Four: Aggregating Performance Metrics Over a Benchmark Suite 49

The weights ωi of the individual benchmarks according to instruction
counts are

, , and so on

All summations in this chapter are for the n benchmarks as in Equation 4.1,
and, hence, for compactness we are going to just use the summation sign
from now on. The weights of the individual benchmarks according to exe-
cution times (ti) are

, , and so on.

Now,

WHM with weights corresponding to instruction count = ,

where is the weight of benchmark i according to instruction count

=

=

= (4.2)

=

= ,

which we know is overall MIPS according to Equation 4.1.

I

I i

1

∑
I

I i

2

∑

t

ti

1

∑
t

ti

2

∑

1
ω i

iMIPS∑

ω i

1
1 11

1

2

2

I

I MIPS
I

I MIPSi i∑ ∑
⋅ + ⋅ +�.

1
1

I

I
MIPS

i

i

i∑ ∑

I

I
MIPS

i

i

i

∑
∑

I

I t
I

i

i i

i

∑
∑

I

t

i

i

∑
∑

50 Performance Evaluation and Benchmarking

Now, it can be seen that the same result can be obtained by taking a
weighted arithmetic mean of the individual MIPS with weights correspond-
ing to the execution times spent in each benchmark in the suite.

WAM weighted with time = , where (ti) is the weights

according to execution time

=

=

=

=

= Overall MIPS

Thus, if the individual MIPS and the relative weights of instruction
counts or execution times are known, the overall MIPS can be computed.
Table 4.1 illustrates an example benchmark suite with five benchmarks, their
individual instruction counts, individual execution times, and the individual
MIPS. Let us calculate the overall MIPS of the suite directly from the overall
instruction count and the overall execution time. Because the overall instruc-
tion count equals 2000 million, and the overall execution time equals 10
seconds, overall MIPS equals 2000/10, that is 200.

We can also calculate the overall MIPS from the individual MIPS and
the weights of the individual benchmarks.

Table 4.1 An Example Benchmark Suite with Five Benchmarks,
Their Individual Instruction Counts, Individual Execution Times,

and Individual MIPS

Benchmarks
Instruction Count

(in million) Time (sec) Individual MIPS

1 500 2 250
2 50 1 50
3 200 1 200
4 1000 5 200
5 250 1 250

ωt MIPSi i∑ ⋅

t

t
MIPS

t

t
MIPS

i i

1
1

2
2∑ ∑

⋅ + ⋅ +�

1
1

1

1
2

2

2t
t

I
t

t
I
ti∑

⋅ + ⋅ +
⎡

⎣
⎢

⎤

⎦
⎥�

1

t
I

i
i∑ ∑⎡⎣⎢
⎤
⎦⎥

I

t

i

i

∑
∑

Chapter Four: Aggregating Performance Metrics Over a Benchmark Suite 51

Weights of the benchmarks with respect to instructions counts are

500/2000, 50/2000, 200/2000, 1000/2000, 250/2000
that is, 0.25, 0.025, 0.1, 0.5, 0.125

Weights of the benchmarks with respect to time are

0.2, 0.1, 0.1, 0.5, 0.1

WHM of individual MIPS (weighted with I-counts)

= 1/(0.25/250 + 0.025/50 + 0.1/200 + 0.5/200 + 0.125/250)
= 200

WAM of individual MIPS (weighted with time)

= 250∗0.2 + 50∗0.1 + 200∗0.1 + 200∗0.5 + 250∗0.1
= 200

Thus, either WAM or WHM can be used to find overall means, if the
appropriate weights can be properly applied. It can also be seen that the
simple (unweighted) arithmetic mean or simple (unweighted) harmonic
mean are not correct, if the target workload is the sum of the five component
benchmarks.

Unweighted arithmetic mean of individual MIPS = 190
Unweighted harmonic mean of individual MIPS = 131.58

Neither of these numbers is indicative of the overall MIPS. Of course,
the benchmarks are not equally weighted in the suite (either by instruction
count or execution time), and hence the unweighted means are not correct.

In general, if a metric is obtained by dividing A by B, and if A is weighed
equally among the benchmarks in a suite, harmonic mean is correct. If B is
weighed equally among the component benchmarks in a suite, arithmetic
mean is correct while calculating the central tendency of the metric obtained
by (A/B). In other words, either harmonic mean with weights corresponding
to the measure in the numerator or arithmetic mean with weights corre-
sponding to the measure in the denominator is valid when trying to find
the aggregate measure from the values of the measures in the individual
benchmarks. We use this principle to find the correct means for a variety of
performance metrics. This is shown in Table 4.2.

Somehow there seems to be an impression that arithmetic mean is naïve
and useless. Arithmetic mean is meaningless for MIPS or MFLOPS when
each benchmark contains equal number of instructions or equal number of
floating-point operations; however, it is meaningful in many other situations.
Consider the following situation: A computer runs digital logic simulation
for half a day, and it runs chemistry codes for the other half of the day. A
benchmark suite is created consisting of two benchmarks, one of each kind.
It achieves MIPS1 on the digital logic simulation benchmark and achieves

52 Performance Evaluation and Benchmarking

MIPS2 on the chemistry benchmark. The overall MIPS of the target system
is the arithmetic mean of the MIPS from the two individual benchmarks and
not the harmonic mean.

4.2 Speedup
Speedup is a very commonly used metric in the architecture community;
perhaps it is the single most frequently used metric. Let us consider the
example in Table 4.3.

Total time on baseline system = 2000 sec
Total time on enhanced system = 1800 sec

If the entire benchmark suite is run on the baseline system and enhanced
system, we know that the

Overall speedup = 2000/1800 = 1.111

Now, given the individual speedups, which mean should be used to find
the overall speedup? We contend that the overall speedup can be found

Table 4.2 The Mean to Use for Finding an Aggregate Measure over a Benchmark
Suite from Measures Corresponding to Individual Benchmarks in the Suite

Measure Valid Central Tendency for Summarized Measure over the Suite

IPC WAM weighted with cycles WHM weighted with I-count
CPI WAM weighted with I-count WHM weighted with cycles
Speedup WAM weighted with

execution time ratios
in improved system

WHM weighted with execution
time ratios in the baseline
system

MIPS WAM weighted with time WHM weighted with I-count
MFLOPS WAM weighted with time WHM weighted with FLOP

count
Cache hit rate WAM weighted with number

of references to cache
WHM weighted with number
of hits

Cache misses
per instruction

WAM weighted with I-count WHM weighted with number
of misses

Branch
misprediction
rate per branch

WAM weighted with
branch counts

WHM weighted with number
of mispredictions

Normalized
execution time

WAM weighted with execution
times in system considered as
base

WHM weighted with execution
times in the system being
evaluated

Transactions
per minute

WAM weighted with
exec times

WHM weighted with
proportion
of transactions for each
benchmark

A/B WAM weighted with Bs WHM weighted with As

Chapter Four: Aggregating Performance Metrics Over a Benchmark Suite 53

either by arithmetic or harmonic mean with appropriate weights. One needs
to know the relative weights (with respect to execution time) of the different
benchmarks on the baseline and/or enhanced system.
Weights of the benchmarks on the baseline system

= 500/2000, 50/2000, 200/2000, 1000/2000, 250/2000

Weights of the benchmarks on the enhanced system

= 250/1800, 50/1800, 50/1800, 1250/1800, 200/1800

WHM of individual speedups (weighted with time on the baseline machine)

= 1/(500/(2000∗2) + 50/(2000∗1) + 200/(2000∗4)

+ 1000/(2000∗0.8) + 250/(2000∗1.25))

= 1/(250/2000 + 50/2000 + 50/2000 + 1250/2000 + 200/2000)

= 1/(1800/2000)

= 2000/1800

= 1.111

WAM of individual speedups (weighted with time on the enhanced
machine)

= 2∗250/1800 + 1∗50/1800 + 4∗50/1800 + 0.8∗1250/1800

+ 1.25∗200/1800

= (500/1800 + 50/1800 + 200/1800 + 1000/1800 + 250/1800)

= 2000/1800

= 1.111

Thus, if speedup of a system with respect to a baseline system is available
for several programs of a benchmark suite, the WHM of the speedups for
the individual benchmarks with weights corresponding to the execution
times in the baseline system or the WAM of the speedups for the individual

Table 4.3 An Example Benchmark Suite with Five Benchmarks,
Their Individual Execution Times on Two Systems under

Comparison, and the Individual Speedups of the Benchmarks

Benchmarks
Time on

Baseline System
Time on

Enhanced System
Individual
Speedup

1 500 250 2
2 50 50 1
3 200 50 4
4 1000 1250 0.8
5 250 200 1.25

54 Performance Evaluation and Benchmarking

benchmarks with weights corresponding to the execution times in the
improved system can yield the overall speedup over the entire suite.

Now, consider a situation as in Table 4.4. Based on execution times, we
know that the overall speedup is 905/500, which is equal to the unweighted
arithmetic mean of the individual speedups. As you can see, each program
had equal execution time on the enhanced machine. This is indicative of a
condition in which the workload is not fixed but rather all types of workloads
are equally probable on the target system. Please note that the same correct
answer can be obtained if the harmonic mean of individual speedups with
weights corresponding to execution times on the baseline system is used.

Next, let us consider a situation as in Table 4.5. The overall speedup is
500/380, based on the total execution times in the two systems. It can also be
derived as the unweighted harmonic mean of the individual speedups. In this
case, the unweighted harmonic mean is correct because the programs are
equally weighted on the baseline system. It may be noted that the same correct
answer can be obtained if arithmetic mean of the individual speedups, with
weights corresponding to execution times on the enhanced system, is used.

One might notice that the average speedup is heavily swayed by the
relative durations of the benchmarks. It is clear that the relative execution
times of the benchmarks in a suite are important. However, how much
thought has gone into deciding the relative durations of execution of the
different benchmarks? In the CPU2000 integer benchmark suite, the baseline
running times are 1400, 1400, 1100, 1800, 1000, 1800, 1300, 1800, 1100, 1900,

Table 4.4 An Example in Which the Unweighted Arithmetic Mean
of the Individual Speedups or the WHM Is the Correct

Aggregate Speedup

Benchmarks
Time on

Baseline System
Time on

Enhanced System
Individual
Speedup

1 200 100 2
2 100 100 1
3 400 100 4
4 80 100 0.8
5 125 100 1.25

Table 4.5 An Example in Which the Unweighted Harmonic Mean
of the Individual Speedups or the WAM Is the Correct

Aggregate Speedup

Benchmarks
Time on

Baseline System
Time on

Enhanced System
Individual
Speedup

1 100 50 2
2 100 100 1
3 100 25 4
4 100 125 0.8
5 100 80 1.25

Chapter Four: Aggregating Performance Metrics Over a Benchmark Suite 55

1500, and 3000 time units for gzip, vpr, gcc, mcf, crafty, parser, eon, perlbmk,
gap, vortex, bzips2, and twolf, respectively [5]. Apparently these running
times were derived based on the time these programs took on a reference
machine. But when metrics are aggregated assuming equal weights for each
program, are we implying that twolf is thrice as important as crafty?

What mean should be used for speedups from SPEC (Standard Perfor-
mance Evaluation Cooperative) benchmarks? If the aggregate number of
interest is the speedup, and if the exact same SPEC benchmark suite is run
in its entirety on the new system, then WHM with weights of execution times
of each of the benchmarks on the baseline system should be used. This
represents the condition where the target workload is exactly the same as
the SPEC benchmark suite. If one argues that the relative durations of the
SPEC benchmarks in the SPEC suite (as dictated by SPEC) mean nothing,
the unweighted harmonic mean of speedups can be used. If one is interested
in knowing the speedup of an imaginary workload in which each type of
SPEC program is run for equal parts of the day on the target system, the
arithmetic mean of the individual speedups should be used.

So if someone summarizes individual MIPS using unweighted harmonic
mean, what does that indicate? It is a valid indicator of the overall MIPS of the
suite, if every benchmark had equal number of instructions. Because either
arithmetic or harmonic mean with corresponding weights is appropriate for
most metrics, we can summarize the conditions under which unweighted arith-
metic and harmonic means are valid for each metric. Table 4.6 presents this.

Smith uses the meaning equal work or equal number of floating-point
operations for equal weights [1]. Under that condition, Table 4.6 does illus-
trate that harmonic mean is the right mean for MFLOPS. WHM with weights
corresponding to number of floating-point operations or WAM with weights
corresponding to the execution times of the benchmarks correctly yields the
overall MFLOPS.

Ideally, the running times of benchmarks should be just enough for
performance metrics to stabilize. Then, while aggregating the metrics, each
program should be weighed for whatever fraction of time it will run in the
user’s target workload. For instance, if program 1 is a compiler, program 2
is a digital simulation, and program 3 is compression, for a user whose actual
workload is digital simulation for 90% of the day, and 5% compilation and
5% compression, WAM with weights 0.05, 0.9, and 0.05 will yield a valid
overall MIPS on the target workload. When one does not know the end
user’s actual application-mix, if the assumption is that each type of bench-
mark runs for an equal period of time, finding a simple (unweighted) arith-
metic mean of MIPS is not an invalid approach.

4.3 Use of geometric mean
Based on the discussion in the previous sections, everything computer
architects deal with can be covered by arithmetic or harmonic mean. So
what is geometric mean useful for? Cragon [3] provides an example for

56 Performance Evaluation and Benchmarking

which geometric mean can be used to find the mean gain per stage of a
multistage amplifier, when the gains of the individual stages are given. He
also illustrates that, if improvements in CPI and clock periods are given, the
mean improvement for these two design changes can be found by the geo-
metric mean. Because execution time is dependent on the product of the two
metrics considered here, the mean improvement per change can be evaluated
by the geometric mean. But geometric mean of performance metrics derived
from component benchmarks cannot be used to summarize performance
over an entire suite. A general rule is that arithmetic or harmonic means
make sense when the component quantities are summed up to represent the
aggregate situation. The geometric mean is meaningful when the component
quantities are multiplied to represent the aggregate situation. Because exe-
cution times of component benchmarks are added to find the overall execu-
tion time, arithmetic or harmonic means should be used.

Mashey [7] presents another view for use of geometric mean. He argues
that geometric mean is appropriate when metrics are distributed in a log-normal
distribution as opposed to a normal distribution. A log-normal distribution

Table 4.6 Conditions under Which Unweighted Arithmetic and Harmonic Means
Are Valid Indicators of Overall Performance

To Summarize Measure over the Suite
Measure When Is Arithmetic Mean Valid? When Is Harmonic Mean Valid?

IPC If equal cycles in each
benchmark

If equal work (I-count) in each
benchmark

CPI If equal I-count in each
benchmark

If equal cycles in each
benchmark

Speedup If equal execution times in
each benchmark in the
improved system

If equal execution times in each
benchmark in the baseline
system

MIPS If equal times in each
benchmark

If equal I-count in each
benchmark

MFLOPS If equal times in each
benchmark

If equal FLOPS in each
benchmark

Cache hit rate If equal number of references
to cache for each benchmark

If equal number of cache hits in
each benchmark

Cache misses
per instruction

If equal I-count in each
benchmark

If equal number of misses in each
benchmark

Branch
misprediction
rate per branch

If equal number of branches in
each benchmark

If equal number of
mispredictions in each
benchmark

Normalized
execution time

If equal execution times in each
benchmark in the system
considered as base

If equal execution times in each
benchmark in the system is
evaluated

Transactions
per minute

If equal times in each
benchmark

If equal number of transactions
in each benchmark

A/B If Bs are equal If As are equal

Chapter Four: Aggregating Performance Metrics Over a Benchmark Suite 57

is one in which the elements in the population are not distributed in a normal
distribution, but their logarithms (or any base) are. He argues that speedups
from programs are distributed in a log-normal fashion and, hence, that geo-
metric mean is appropriate for speedups. However, remember that the discus-
sions in the previous sections of this chapter are intended to find the average
metric during execution of the benchmark suite. The previous sections of this
chapter do not assume any distribution on how actual programs in the real
world may be distributed. They do not predict the potential metric that might
be obtained when some program is run on the platform of interest. The dis-
cussions were simply about computing the average while the benchmark suite
was run, without assuming any particular distributions of the metrics for work-
loads that have not been run. A prediction of performance for another workload
based on a mean of the sampled population is possible only if the programs
in our benchmark suite are chosen randomly from the workload space. The
advantage of a random pick is that programs will be representative of the
workload space, provided a sufficiently large number of samples are taken.
Often, many benchmark suites have unique and interesting programs from
different parts of the workload space as opposed to randomly picked
programs. Hence, it is arguable whether means from benchmark suites can
be used to predict performance on actual workloads.

4.4 Summary
Performance can be summarized over a benchmark suite by using arithmetic
or harmonic means with appropriate weights. If the metric of interest is
obtained by dividing A by B, if A is weighed equally between the bench-
marks, harmonic mean is correct; and if B is weighed equally among the
component benchmarks in a suite, arithmetic mean is correct while summa-
rizing the metric over the entire suite. If speedup of a system with respect
to a baseline system is available for several programs of a benchmark suite,
the WHM of the speedups for the individual benchmarks that have weights
corresponding to the execution times in the baseline system can yield the
overall speedup over the entire suite. The same is true for the WAM of the
speedups for the individual benchmarks that have weights corresponding
to the execution times in the improved system. The average performance
calculated using the principles in this chapter simply represents averages
over the entire suite. A prediction of performance for another workload
based on a mean of the sampled population is possible only if the programs
in our benchmark suite are chosen randomly from the workload space.

Acknowledgment
The feedback from Jim Smith, David Lilja, Doug Burger, John Mashey, and
my students in the Laboratory of Computer Architecture helped to improve
this manuscript.

58 Performance Evaluation and Benchmarking

References
1. Smith, J.E., Characterizing computer performance with a single number, Com-

munications of ACM, 31(10), 1202, 1988.
2. Patterson and Hennessy, Computer Architecture: The Hardware/Software Ap-

proach, Morgan Kaufman Publishers, San Francisco, CA.
3. Cragon, H., Computer Architecture and Implementation, Cambridge University

Press, Cambridge, U.K.
4. Lilja, D., Measuring Computer Performance: A Practitioner's Guide, Cambridge

University Press, 2000, Cambridge, U.K.
5. The CPU2000 Results published by SPEC, online at: http://www.spec.org/

cpu2000/results/cpu2000.html#SPECint.
6. John, L.K., More on finding a single number to indicate overall performance

of a benchmark suite, Computer Architecture News, 32 (1), 3, 2004.
7. Mashey, J. R, War of the benchmark means: Time for a truce, Computer Archi-

tecture News, 32 (1), 4, 2004.

59

Chapter Five

Statistical Techniques for
Computer Performance
Analysis

David J. Lilja and Joshua J. Yi

Contents

5.1 Why statistics? ..59
5.2 Extracting information from noisy measurements60

5.2.1 Experimental errors ..61
5.2.2 Accuracy, precision, and resolution ...61
5.2.3 Confidence interval for the mean...63
5.2.4 Confidence intervals for proportions...66
5.2.5 Comparing noisy measurements..67
5.2.6 Before-and-after comparisons ...69
5.2.7 Comparing proportions ...70

5.3 Design of experiments ..71
5.4 Design space exploration..72

5.4.1 Mechanics of the Plackett and Burman design..........................73
5.4.2 Using the Plackett and Burman design

to explore the design space ...77
5.4.3 Other applications of the Plackett and Burman design84

5.5 Summary ...85
References...85

5.1 Why statistics?
Computer performance measurement experiments typically come in one of
two different forms, either measurements of real systems or simulation-based
studies. Each of these different types of experiments presents their own unique

60 Performance Evaluation and Benchmarking

challenges to interpreting the resulting data. Measurement experiments, for
instance, are subject to errors in the resulting data due both to noise in the
system being measured and to noise in the measurement tools themselves. As
a result, it is likely that the experimenter will obtain different values for a
measurement each time the experiment is performed. The issues then become
how to interpret these varying values and how to compare systems when there
is noise in the results.

Simulation-based studies, on the other hand, typically are not affected by
these types of measurement errors. If the simulator is deterministic, the output
of a given simulation with the same set of inputs should be exactly the same
each time the simulation is performed. One of the main difficulties with a large
simulation study, though, is that it is very easy to produce a huge amount of
data by varying the simulation inputs over a wide range of possible values.
The problem then becomes trying to sort through this data to understand what
it all means. Additionally, the optimal situation would be to minimize the
number of simulations that need to be run in the first place without compro-
mising the final conclusions that we can draw from the experiments.

This chapter will examine how statistics can help in addressing both
of these issues. It will address how statistics can be used to deal with
noisy measurements and how a statistical design of experiments approach
can be used to sort through a large number of simulation results to aggre-
gate the data into meaningful conclusions. In particular, it provides a
tutorial explanation of how confidence intervals can be used to extract
quantitative information from noisy data [1]. The chapter will also
describe how to use a Plackett and Burman experimental design to help an
experimenter efficiently explore a large design space in a large-scale sim-
ulation-based study [2].

5.2 Extracting information from noisy measurements
Experimental errors lead to noise in any form of measurement experiment.
From the experimenter’s perspective, this noise leads to imprecision in the
measured values, making it difficult to interpret the results. It also makes it
difficult to compare measurements across different systems or to determine
whether or not a change to a system has produced a meaningful change in
performance. It could be that what appears to be a change in performance
is actually nothing more than random fluctuations in the values being mea-
sured. This section first discusses the sources of experimental errors and
the concepts of accuracy, precision, and resolution of measurement tools.
Confidence intervals then are introduced as a technique to quantify the
precision of a set of measurements. A later section will show how to use
confidence intervals to compare different sets of measurements to deter-
mine whether the changes observed in a system, or when comparing
systems, are due to real effects or whether they are simply the result of
measurement noise.

Chapter Five: Statistical Techniques for Computer Performance Analysis 61

5.2.1 Experimental errors

There are two fundamentally different types of experimental errors: systematic
errors and random errors. Systematic errors are the result of some sort of mistake
in the experiment. For example, the experimenter may forget to reset the system
to precisely the same state each time an experiment is performed, or there may
be some external environmental change that affects the values that are mea-
sured. A change in the ambient temperature may cause the system’s clock to
change frequency slightly, for example, which would affect the values read from
an interval timer that uses this clock as its time base. These systematic errors
typically produce a constant or slowly changing bias in the values measured.
The skill of the experimenter is the key to controlling these types of errors.

In contrast to systematic errors, the effects of random errors are nonde-
terministic and completely unpredictable. Changes in measured values that
are caused by random errors are unbiased, meaning that these errors have
an equal probability of either increasing or decreasing the final measured
value. Random errors are inherent in the system being measured and cannot
be controlled by the experimenter. They occur because of inaccuracies and
limitations in the tools used to measure the desired value and because of
random events that occur within the system. For instance, background oper-
ating system processes can start and stop at random times, page and cache
mappings can change each time a program is executed, and so on. All of
these random effects can affect the execution time of a benchmark program
in unpredictable ways.

Although these events that produce random measurement errors typi-
cally cannot be controlled, they can be characterized and quantified by using
appropriate statistical techniques. Before presenting these statistical tech-
niques, it is helpful to understand how the limitations of the measuring tools
themselves affect the errors observed in the measured values.

5.2.2 Accuracy, precision, and resolution

The basic metric used to quantify the performance of a computer system is
usually time [3]. For instance, the time required to execute a benchmark
could be measured using an interval timer built in to the computer system
being tested. This time then is used as the measure of the performance of
the system when executing that benchmark program. Every tool used to
measure performance, however, has certain characteristics that limit the
quality of the value actually measured. In fact, each time an experiment is
repeated, the experimenter is likely to measure a different value.

Figure 5.1 shows an example of a histogram of a set of time measure-
ments obtained from an interval timer on a computer system executing a
given benchmark program. The horizontal axis represents the specific values
that are measured in each repetition of the experiment. The vertical axis
represents a count of the number of experiments in which each specific value
was measured. We see that the distribution of measurements shows the

62 Performance Evaluation and Benchmarking

characteristic bell curve. The peak in the middle is the mean (or arithmetic
average) of all of the values actually measured. We see that there also are
some measured values that are larger than the mean, and an equal number
of values that are smaller than the mean.

This histogram showing the distribution of the measured values dem-
onstrates some interesting characteristics of the interval timer used to pro-
duce these measurements. The minimum distance between adjacent mea-
sured values corresponds to the resolution of the measuring device. This
resolution is the smallest change in the phenomenon being measured that
the measuring device can distinguish. In the case of the interval timer, this
is the period of the timer, that is, the interval between clock ticks.

The precision of a measuring device is an indication of the repeatability
of its measurements. Thus, the width of the distribution of measured values
is a function of the precision of the measuring device. The more precise a
measuring tool is, the more repeatable its results will be. Finally, the accuracy
of the measuring tool shows how far away the mean of the values measured
is from the actual or true value. Note that a measuring tool can be very
precise without being very accurate, as suggested by Figure 5.1.

Systematic errors tend to affect the accuracy of a set of measurements. The
accuracy of a specific measuring tool is hard to quantify, though, because
accuracy is relative to some predefined standard. The accuracy of an interval
timer, for instance, is a function of the accuracy of the oscillator used to generate
the clock pulses that increment the counter that is at the core of the timer. The
accuracy of this oscillator, in turn, must be compared to the standard second
as defined by some appropriate standards body, such as the U.S. National
Institute of Standards and Technology (NIST). The resolution of the measuring

Figure 5.1 A histogram of measured values showing the accuracy, precision, and
resolution of the measurement tool.

Mean of measured values

True valueResolution

Accuracy

Precision

Chapter Five: Statistical Techniques for Computer Performance Analysis 63

tool, on the other hand, is a characteristic of the tool itself. The resolution
of the interval timer is determined by the period of the clock used to
increment the timer and is, therefore, determined by the person who
designed it.

Because the precision of a measuring tool is an indication of the repeat-
ability of the values measured during an experiment, precision is most affected
by random errors in the experiment. For example, the limited resolution of an
interval timer introduces a random quantization error in the measured values.
Additionally, other random events in the system will also alter the value
measured each time the experiment is run, further affecting the precision of
the resulting set of measurements. Although we may not be able to control
the precision of the measurements, we can quantify the amount of imprecision
using the confidence interval technique described in the next section.

5.2.3 Confidence interval for the mean

When we attempt to measure some value from a system being tested, such
as the execution time of a benchmark program, we can never know for sure
whether or not we have measured the true value. As discussed earlier,
experimental errors lead to noise in our measurements. To try and compensate
for this noise, we make multiple measurements of the same parameter. As we
saw in Figure 5.1, these measurements will cover a range of values. We can
use the sample mean value of the set of measurements as our best guess of
the actual value we are trying to measure. The sample standard deviation of the
measurements, which is denoted s, can be used to quantify the spread of the
measurements around the mean. The term sample is applied in this situation
to emphasize the fact that the mean and the standard deviation are computed
from a sample of measured values and are not calculated by knowing the
underlying probability distribution that produced the values measured.

The sample variance, which is the square of the standard deviation, is
computed as follows:

where the xi terms are the individual measurements and n is the total number
of measurements.

Although we can compare the size of the standard deviation to the mean
to obtain a sense of the relative magnitude of the spread of the values
measured, a confidence interval allows us to say something more precise
about our measured values than using only the standard deviation. In par-
ticular, a confidence interval is two values—c1 and c2—that are centered
around the mean value such that there is a 1-α probability that the real mean
value is between c1 and c2.

s
x x

n

n x x
i

i

n
i i

i

n

i

n

2

2

1

2

1

2

1

1
=

−

−
=

−
⎛
⎝⎜

⎞
⎠⎟= ==∑ ∑∑()

nn n()− 1

64 Performance Evaluation and Benchmarking

As suggested in Figure 5.2, we want to find c1 and c2 so that

After we find these two values, we can say with (1-α) × 100% confidence
that the real mean value lies between c1 and c2. The value 1-α is called the
confidence level, and α is called the significance level.

To develop an equation for finding c1 and c2, we first normalize the
measured values using the following transformation:

This transformation shifts the distribution of measured values shown in
Figure 5.2 so that they are centered around 0 with a standard deviation of 1.
After this normalization, the zi values follow what is known as a Student’s t
distribution with n − 1 degrees of freedom. This distribution is very similar to
a Gaussian (or normal) distribution, except that it tends to be a bit more
squashed and spread out than the Gaussian distribution. In fact, as the
number of degrees of freedom becomes large, the peak of the t distribution
becomes sharper until it becomes a Gaussian distribution with mean of 0
and a standard deviation of 1. This normalization is useful for finding con-
fidence intervals because the specific values of the t distribution for different
degrees of freedom are easily obtained from precomputed tables [4,5,6].

Looking again at Figure 5.2, we see that c1 and c2 form a symmetric
interval around the mean value. Thus, finding c1 and c2 so that the probability
of the mean being between these two values is 1-α is equivalent to finding
either c1 or c2 such that

Figure 5.2 A confidence interval for the mean of a set of measured values.

c1 c2

1 − α

α/2α/2

Pr[]c x c1 2 1≤ ≤ = −
�

α

z
x x
s n

i
i=

−

/

Pr[] Pr[]x c x c< = > =1 2 2
α

Chapter Five: Statistical Techniques for Computer Performance Analysis 65

Combining this expression with the normalization for zi, we obtain the
following expression for computing the confidence interval for the mean of
the measured values:

,

where t1− α/2;n − 1 is the value from the t distribution that has an area of to
the left of this value with n − 1 degrees of freedom, s is the sample standard
deviation of the measured values, and n is the total number of measurements.

Example 5.1

Consider an experiment in which you measure the execution time of a
benchmark program n = 7 times on a given computer system. The values
you measure are xi = {196, 204, 202, 199, 209, 215, 213}, from which you
compute the mean and standard deviation to be = 205.4 and s = 7.14. For
a 90% confidence interval, α = 0.10 so that = 0.95. The corresponding t
value obtained from a precomputed table is t0.95;6 = 1.943. We then compute
the 90% confidence interval to be (c1, c2) = (200, 211). For 95% confidence,
we find t0.975;6 = 2.447, which leads to a 95% confidence interval of (c1, c2)
= (199, 212).

So how do we interpret these intervals? First, the 90% confidence interval
tells us that there is a 90% chance that the real mean value of the execution
time of the program we measured is between 200 and 211 seconds. Note that
this result further implies that there is a 10% chance that the real value is
either larger than 211 or smaller than 200 due to random fluctuations in the
measurements (i.e., due to the effects of experimental errors). Second, if we
want to decrease the chance that the real value is outside the interval to 5%,
for instance, we can use the 95% confidence interval previously computed,
(199, 212). This interval must be wider than the 90% confidence interval
because the only way to increase the probability that the mean is within the
interval is to make the interval larger, as shown in Figure 5.3. Indeed, the only
way to be 100% sure that the mean is within the interval is to push the ends
of the interval out to ±∞.

Confidence intervals are useful for quantifying the spread around the
mean of a set of measurements that occurs because of random errors. It is
important to keep in mind, however, that the development of the preceding
confidence interval formula assumes that these random errors are Gauss-
ian-distributed. That is, the effect of the random errors on the measurements
must be such that the resulting distribution of measurements follows the
bell-curve shape shown in Figure 5.1. If this assumption is not true for your
measurements, then the probability of the actual mean being within the
computed confidence interval may not be what you expect. One approach
to make confidence intervals work for any set of measured data is to normalize
the data by averaging together several values to produce subsample means.

c x t
s

n
n1 2 1 2 1, / ;= − −∓ α

1 2− α

x
1 2− α

66 Performance Evaluation and Benchmarking

We then can compute confidence intervals using these subsample means
because the central limit theorem guarantees that the error in these subsam-
ple means will be Gaussian-distributed [7].

5.2.4 Confidence intervals for proportions

The confidence intervals described in the preceding subsection assume that
the measured values are samples taken from an underlying process that pro-
duces continuous values. It is also possible to compute confidence intervals
for proportions that are ratios of discrete values. For instance, assume that we
take n samples of a system and find that, out of these n samples, m of them
are unique in some way. For example, the value m may represent the number
of packets sent over a communication network that are found to be corrupted
at the receiving end, out of n total packets that are sent. The ratio p = m/n
then is the proportion of all packets sent that are received in error.

We can compute a confidence interval for p by recognizing that this process
follows a binomial distribution with mean p and variance s2 = p(1 − p)/n.
Following a derivation similar to that in Section 5.2.3, the confidence interval
for this proportion then is

Figure 5.3 To increase the confidence that the mean value is within the computed
interval, the ends of the interval must be pushed out to thereby increase the area
under the curve from 90% to 95%.

200 211

199 212

95%

90%

c p z
p p

n1 2 1 2
1

, /
()

=
−

−∓ α

Chapter Five: Statistical Techniques for Computer Performance Analysis 67

In this case, the value from the t table is taken from the row with an
infinite number of degrees of freedom because we can approximate a bino-
mial distribution with a Gaussian distribution when np is sufficiently large.
This tabulated value is the same as the Gaussian distribution with a mean
of zero and a standard deviation of 1, which we denote

Example 5.2

Say that we measure n = 4591 packets on a network and find that m = 324
of them are received in error. The proportion of corrupted packets then is
p = 324/4591 = 0.0706, or approximately 7.1%. The corresponding standard
deviation is s = [0.0706(1 − 0.0706)/4591]2 = 0.0038. The resulting 90% con-
fidence interval for p is (c1, c2) = 0.0706 ± 1.645(0.0038) = (0.0644, 0.0768).
Thus, we can say with 90% confidence that the actual proportion of packets
received in error on this communication network is between approximately
6.4% and 7.7%.

5.2.5 Comparing noisy measurements

The real power of confidence intervals becomes apparent when we try to
compare sets of noisy measurements. In the example in Section 5.2.3, we
found the mean execution time of a benchmark program to be 205.4 seconds
with a 90% confidence interval of (200, 211) seconds. We now want to com-
pare the performance of this system to another computer system when
executing the same benchmark program. We run the benchmark n2 = 11 times
on this second system and find a mean execution time of 186 seconds with
a standard deviation of 32.3 seconds. Based only on the mean values, it
appears that the second system is faster than the first. However, can we be
sure that this difference is statistically significant, or might it be due to random
fluctuations in the measurements we made of each system?

Although we can never answer this question with 100% confidence, we
can use the confidence interval approach to quantify the probability that the
difference we see is statistically significant. In particular, we can compute a
confidence interval for the difference of the two mean values. The procedure
is as follows:

1. Measure n1 values for system 1 and n2 values for system 2, where n1

does not necessarily have to be the same as n2.
2. Compute the two mean values, and .
3. Compute the difference of the mean values: .
4. Compute the standard deviation for this difference of mean values,

sx (see below for details on computing sx).
5. Compute the number of degrees of freedom that correspond to this

difference of mean values, ndf (see below for details on computing
ndf).

z
1

2
−α .

x1 x2

x x x= −1 2

68 Performance Evaluation and Benchmarking

6. Using the standard deviation and number of degrees of freedom,
compute a confidence interval for as: .

7. If this interval includes 0, then we must conclude that there is no
statistically significant difference between the two systems.

The combined standard deviation of this difference is the weighted sum
of the individual standard deviations, where the weight is determined by
the number of measurements made on each system. Thus, the standard
deviation for the difference of the mean values is

The formula for computing the corresponding number of degrees of
freedom is

The derivation of this formula is not at all intuitive. Furthermore, it is only
an approximation that typically will not produce a whole number. Instead,
the value obtained should be rounded to the nearest whole number value.

Example 5.3

We now can apply the above procedure to determine whether there is a
statistically significant difference between the two systems that we measured
in the previous example. Recall that for system 1, we found = 205.4 seconds
and s1 = 7.14 for our n1 = 7 measurements, and = 186 seconds, s2 = 32.3,
and n2 = 11 for system 2. From these values, we find = 19.5, sx = 10.1, and
ndf = 11.48, which we round to 11. For 90% confidence, we look up the
tabulated value t0.95;11 = 1.796 to compute the confidence interval (c1, c2) = (1.4,
37.7). From this confidence interval, we can conclude that there is a 90%
chance that the difference in the mean values of the two systems does not
include 0. That is, we are 90% certain that there is a statistically significant
difference between the two systems. Of course, there still is a 10% chance
that random fluctuations in our measurements caused the difference that we
observe here. In this case, the difference between the two systems actually
could be zero, which would mean that there is no difference between the
execution times of this benchmark program on these two systems.

x c x t sn xdf1 2 1 2, / ;= −∓ α

s
s
n

s
nx = +1

2

1

2
2

2

n

s

n

s

n

s n

n

s
df

=

+

()
−

+

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1
2

1

2
2

2

1
2

1

2

1

2

2

1

22
2

2

2
1

n

n

()
−

.

x1

x2

x

Chapter Five: Statistical Techniques for Computer Performance Analysis 69

Example 5.4

If we want to increase our confidence that the mean is within our computed
interval, we can compute a 95% confidence interval, which we find to be
(c1, c2) = (−2.7, 41.8). In this case, this larger interval includes 0. Thus, we are
forced to conclude that there really is no statistically significant difference
between the two sets of measured execution times at the 95% confidence level.
The difference that we see could be due to measurement noise alone.

We seem to obtain two different answers from these examples, one that
says that there is a statistically significant difference between the two systems,
and another that says there really is no difference. So what can we conclude
from these experiments? In a technical sense, we can conclude that, with 90%
confidence, there appears to be a statistically significant difference. However,
this difference disappears when we increase our confidence to 95%. In a prac-
tical sense, a safe conclusion would be that, yes, system 2 does appear to be
faster than system 1. However, this difference is relatively small and may not
be statistically significant. We also can conclude that there is a fair amount of
noise in our measurements, which makes it difficult to tease out the actual
differences between the two systems. To make a better comparison, we would
need to run more experiments, or to obtain a better measuring tool.

5.2.6 Before-and-after comparisons

The technique for comparing noisy measurements described in the previous
subsection is quite general and can be applied in any situation in which we
want to compute a confidence interval for the difference between two mean
values. If we know that there is a direct correspondence between pairs of
measured values, though, we can apply a slight refinement to the technique
given earlier. This refinement often produces tighter confidence intervals than
when using the more general approach. In particular, in many types of exper-
iments we want to see whether some change to a system produces a statisti-
cally significant change in performance. For instance, we might want to see
whether adding more memory to a system actually improves the performance.

In this type of situation, which we call a before-and-after comparison, we
can find a confidence interval for the mean of the differences of each pair of
measured values. Let bi be the set of n measurements made on the original
(before) system and ai be the set of n measurements made on the modified
(after) system. Then the di = bi − ai values are the n differences of the perfor-
mance before and after the change was made. We can compute a confidence
interval for the mean of these n differences, , using the same procedure
described in Section 5.2.5. The resulting formula for computing the desired
confidence interval is

d

(,) / ;c c d t
s

n
n

d
1 2 1 2 1= − −∓ α

70 Performance Evaluation and Benchmarking

where sd is the standard deviation of the n differences, di. As before, if this
interval includes 0, we must conclude that there is no significant difference
in the before and after configurations.

Example 5.5

This type of before-and-after comparison can be used to determine whether
there is a difference between two systems when executing several different
benchmark programs. In this situation, each before-and-after pair has some-
thing in common that is different from the other pairs, namely, the different
benchmark programs. You measure the execution times of each of five bench-
mark programs first on system 1 and then on system 2. You find the five
execution times on system 1 to be bi = {96, 89, 102, 98, 93} seconds. You then
execute the same five programs on system 2 and find the execution times
to be ai = {88, 84, 103, 90, 89} seconds. The differences of each pair of
before and after times are easily computed to be di = {8, 5, 1, 8, 4} seconds.
The mean of these differences is 4.8 seconds with a standard deviation
of 3.70. For a 95% confidence interval, the necessary value from the t-table is
t0.975;4 = 2.777. The resulting confidence interval then is computed to be (0.20,
9.4) seconds. Because this interval does not include 0, we conclude with 95%
confidence that there is a statistically significant difference in the execution
times of these two systems when executing these five benchmark programs.
We also note, however, that the interval is relatively large, due to the wide
variation in the measured execution times. This variation suggests that there
likely are other factors affecting the execution times of the systems in addi-
tion to inherent differences between them, such as random noise in the
measurements.

5.2.7 Comparing proportions

The confidence interval technique also can be used to compare two propor-
tions, p1 and p2. In this case, the difference in proportions is p = (p1 − p2) with
a combined standard deviation of

The corresponding confidence interval then is

As before, is taken from the row in the t table with an infinite
number of degrees of freedom, which is the same as the Gaussian distribu-
tion with a mean of zero and a standard deviation of 1.

s
p p

n
p p

np =
−

+
−1 1

1

2 2

2

1 1() ()

(,) /c c p z sp1 2 1 2= −∓ α

z1 2− α/

Chapter Five: Statistical Techniques for Computer Performance Analysis 71

Example 5.6

In the example in Section 5.2.4, we found that 324 out of 4591 packets sent
on a network had errors when they were received. We now make a change
to the network and find that 433 out of 7541 packets now have errors. Did
this change to the network make a statistically significant difference in the
error rate? To determine a confidence interval for the difference in these two
proportions, we first compute p1 = 324/4591 = 0.0706 and p2 = 433/7541 =
0.0574. The difference of these two proportions then is p = 0.0706 – 0.0574 =
0.0132. The combined standard deviation for p is

For a 90% confidence interval, = 1.645. The interval then is computed
to be

Because this interval does not include 0, we conclude, with 90% confi-
dence, that this change to the system did make a statistically significant
improvement in the error rate on this network.

5.3 Design of experiments
The confidence interval technique is very useful for comparing two sets of
measured data. However, it is difficult to generalize it to compare more than
two sets of data. Furthermore, it is not particularly useful if we want to
determine the impact that each of several different input parameters has on
the final measured value. A more general approach for making these types
of determinations is based on the statistical design of experiments. The primary
goal behind the design of experiments technique is to provide the most
information about a system with the smallest number of experiments. A
good experimental design can isolate the effects of each input variable, show
the effects that interactions between input variables have on the system’s
output, and determine how much of the change in the system’s output is
due to the experimental error.

The simplest type of experimental design varies the specific values on one
input while holding the others constant. Although simple, this one-fac-
tor-at-a-time design limits the quality of the information that can be obtained
and ignores the effects of possible interactions between inputs. The most
general design, and the one that produces the most detailed information, is
called a full factorial design with replication. A full factorial design measures the
response of the system when its inputs are set to all possible combinations.
For experiments on real systems that are subject to the types of experimental

sp =
−

+
−0 0706 1 0 0706

4591
0 0574 1 0 0574

754
. (.) . (.)

11
0 0046= .

z
1 2−α

(,) . . (.) (. , .c c1 2 0 0132 1 645 0 0046 0 0056 0 0208= =∓))

72 Performance Evaluation and Benchmarking

errors previously described, this measurement process is repeated several
times, or replicated, to allow the impact of experimental error on the output to
be quantified. A mathematical technique called the analysis of variance
(ANOVA) then can be used to extract the necessary information from the
experimental data.

The basic idea behind ANOVA is to compute sum-of-squares terms on
the measured output responses to separate the effects on the output of each
input factor, the interaction between factors, and the measurement error.
The effects of each input factor and the effects of their interactions can be
statistically compared to the magnitude of the experimental error to deter-
mine whether the effects of each variable are statistically significant, or
whether the observed response is simply due to random fluctuations in
the measurements. (Further details regarding the design of experiments
and the ANOVA technique applied to computer performance measure-
ments can be found in [8,9].)

This type of analysis can be thought of as the gold-standard experimental
design because it provides the experimenter with complete information
about the effects of all inputs and all interactions. The problem, however, is
that this full factorial ANOVA experimental design can require an unrealis-
tically large number of experiments. For example, consider a system that has
10 inputs, each of which can take on 4 different values. Furthermore, in order
to account for the experimental error, we plan to replicate each experiment
3 times. Then the total number of experiments that we would need to per-
form is 3 × 410. Thus, this experimental design would require more than 3
million separate experiments. Performing such a large number of experi-
ments usually is prohibitively expensive, either in terms of money or in terms
of the time and effort required to conduct all of the experiments. In the next
section, we describe a technique that can be used to determine which param-
eters produce the most important bottlenecks in the performance of a system
without having to measure its performance with all possible input combi-
nations. This bottleneck analysis then can be used to simplify the problem
of trying to explore a very large design space.

5.4 Design space exploration
One of the most common activities in simulation-based computer architecture
research and design is design space exploration. For example, processor design-
ers often need to search the potential design space to find an optimal config-
uration for their processor. Similarly, computer architecture researchers may
want to characterize the performance of a proposed processor enhancement
throughout the potential design space by using sensitivity analyses.

To explore the design space, computer architects typically use either
the one-at-a-time approach or a full multifactorial design such as ANOVA.
In the former approach, all N parameters are first set to their baseline
values. Then, one parameter is varied from its baseline value while the
values of the other parameters are fixed to their baseline values. This

Chapter Five: Statistical Techniques for Computer Performance Analysis 73

approach requires N + 1 simulations: one simulation for the baseline case
and one simulation for each parameter when it is varied. One of the key
weaknesses of this approach is that it does not account for potential inter-
actions between parameters because two parameters are never both at their
nonbaseline values. As a result, although this approach has a simulation
cost that is approximately equal to the number of variable parameters, the
inherently low quality of its results reduces its appeal.

As described in the previous section, when using a full multifactorial
design such as ANOVA, the architect simulates all possible combinations of
the N parameters. As a result, this approach requires bN simulations, where
b is the number of possible values for each parameter and N is the number
of parameters. Although this approach quantifies the effects of each param-
eter and the effects of all interactions, the simulation cost can be extremely
high, especially when using heavily parameterized simulators that may have
several parameters for each of its many subsystems (e.g., caches, functional
units, branch predictor), resulting in hundreds of variable parameters. As a
result, this approach is appropriate only when the number of parameters is
relatively small.

To bridge the gap between low-simulation-cost/low-detail approaches,
such as the one-at-a-time approach, and high-simulation-cost/high-detail
approaches, such as ANOVA, Plackett and Burman [10] introduced their sta-
tistics-based fractional multifactorial design in 1946, which we refer to as a Plackett
and Burman design. The attraction of this fractional multifactorial design is that
it requires a very small number of simulations while still quantifying the effects
that each parameter and selected interactions have on the final outcome. In
other words, the Plackett and Burman design provides information at approx-
imately the level of ANOVA but with the simulation cost of approximately the
one-at-a-time design level. More specifically, by using a Plackett and Burman
design, a computer architect can quantify the effects of all single parameters in
approximately N simulations or the effects of all single parameters and all
two-factor interactions in approximately 2 × N simulations. The latter design
is called a Plackett and Burman design with foldover [11] and is explained in more
depth in the next subsection. Figure 5.4 summarizes the differences in the
simulation cost and the associated level of information of the one-at-a-time,
ANOVA, and Plackett and Burman designs.

5.4.1 Mechanics of the Plackett and Burman design

In a Plackett and Burman design, the value of each parameter in a configu-
ration is specified by the Plackett and Burman design matrix. Because Plackett
and Burman designs exist only in sizes that are multiples of 4, assume that
X is the next multiple of 4 that is greater than N, which is the number of
parameters. The value of X must always be greater than N, such that when
N is itself a multiple of 4, X must be the next multiple of 4. In the base
Plackett and Burman design, that is, without foldover, there are X rows and
X – 1 columns. With foldover, twice as many rows are needed giving a total

74 Performance Evaluation and Benchmarking

of 2 × X rows and X – 1 columns. The advantage of foldover over the base
Plackett and Burman design is that the effects of two-factor interactions are
be filtered out from the single parameter effects.

Each row of the design matrix corresponds to a different processor
configuration, and each column corresponds to the specific values for each
parameter in each configuration. When there are more columns than param-
eters (i.e., N < X − 1), then the extra columns are dummy parameters. These
dummy parameters have no effect on the simulation results and do not need
to be set to any value. They exist simply to make the mathematics work
properly. For most values of X, the first row of the design matrix is given in
Plackett and Burman [10]. Then the next X − 2 rows are formed by performing
a circular right shift on the preceding row. Finally, the last line of the design
matrix is a row of −1s. The top half of Table 5.1 shows the Plackett and
Burman design matrix when X = 8, which is a design matrix that can quantify
the effects of up to 7 parameters. When using foldover, X additional rows
(Rows 10–17 in Table 5.1) are added to the matrix. The signs in each entry
of the additional rows are set to be the opposite of the corresponding entries
in the original matrix. Table 5.1 shows the complete Plackett and Burman
design matrix with foldover for X = 8.

After constructing the design matrix, but before starting the simulations,
+1 and −1 values need to be chosen for each parameter. In a Plackett and
Burman design, as in an ANOVA design, the +1 and −1 values represent the
high and low—or on and off—values that a parameter can have. For exam-
ple, the high and low values for a level-1 data cache could be 128 kilobytes
(KB) and 16 KB, respectively, whereas the high and low values for speculative
updates of the branch predictor could be yes and no, respectively. It is

Figure 5.4 The trade-off between the simulation cost and the level of information for
the one-at-a-time, ANOVA, and Plackett and Burman designs.

One-at-a-time

Plackett and Burman

Increasing simulation cost

In
cr

ea
si

n
g

 l
ev

el
 o

f
in

fo
rm

at
io

n

ANOVA

Chapter Five: Statistical Techniques for Computer Performance Analysis 75

important to note that selecting high and low values that span a range of
values that is too small compared to what can be reasonably expected in real
systems may yield results that underestimate the effect of that parameter.
On the other hand, choosing high and low values that span too large a range
may overestimate the effect of that parameter on the output. Nevertheless,
it is better to opt for a range that is slightly too large rather than a range
that is too small to ensure that the full potential impact of each parameter
is taken into account in the simulations. Ideally, though, the high and low
values should be just outside of the normal (or expected) range of values.

Because the high and low values that are chosen for each parameter
could be outside of the normal range of values for that parameter, the
specific processor configuration found in each row of the design matrix
may represent a processor configuration that is either technically infeasible
or unrealistic. For instance, assume that parameter A in Table 5.1 corre-
sponds to a processor’s issue width, with a high value of 8-way and a low
value of 2-way, and that parameter B corresponds to the number of entries
in the reorder buffer, with a high value of 256 entries and a low value of
16 entries. For the configuration shown in row 5 of Table 5.1, the value of
parameter A is 8-way while the value of parameter B is set to 16 entries.
Obviously, because the reorder buffer is much too small to support an
8-way issue processor, this configuration would never be designed. How-
ever, although some of the configurations in the design matrix may not be
realistic, the Plackett and Burman design still needs the results of all of
these configurations because they represent the logical subset of the entire

Table 5.1 The Plackett and Burman Design Matrix,
with Foldover, for X = 8

A B C D E F G Exec. Time

+1 +1 +1 −1 +1 −1 −1 79
−1 +1 +1 +1 −1 +1 −1 91
−1 −1 +1 +1 +1 −1 +1 23
+1 −1 −1 +1 +1 +1 −1 24
−1 +1 −1 −1 +1 +1 +1 14
+1 −1 +1 −1 −1 +1 +1 69
+1 +1 −1 +1 −1 −1 +1 100
−1 −1 −1 −1 −1 −1 −1 39
−1 −1 −1 +1 −1 +1 +1 18
+1 −1 −1 −1 +1 −1 +1 20
+1 +1 −1 −1 −1 +1 −1 85
−1 +1 +1 −1 −1 −1 +1 38
+1 −1 +1 +1 −1 −1 −1 1
−1 +1 −1 +1 +1 −1 −1 77
−1 −1 +1 −1 +1 +1 −1 29
+1 +1 +1 +1 +1 +1 +1 1

49 264 46 39 173 45 142

76 Performance Evaluation and Benchmarking

design space. Consequently, the Plackett and Burman design is architec-
ture-independent, because its results are not dependent on the specific
processor configuration.

After choosing the high and low values for each parameter, each of the
configurations in the design matrix must be simulated and the corresponding
output values collected. The next step is to calculate the effect that each
parameter has on the variation observed in the measured output values.
Note that the output value can be any metric. For example, a computer
architect could calculate the effect that each of the parameters has on the
execution time, branch prediction accuracy, cache miss rate, or power con-
sumption. To calculate the effect that each parameter has on the measured
output, the output value associated with each configuration is multiplied by
the value (+1 or −1) of the parameter for that configuration. These products
then are added across all configurations. For example, from Table 5.1, the
effect of parameter G is calculated as follows:

EffectG = (−1 × 79) + (−1 × 91) + (1 × 23) + (−1 × 24)

+ … + (−1 × 1) + (−1 × 77) + (−1 × 29) + (1 × 1) = 142

After the effect of each parameter is computed, the effects can be ordered
to determine their relative impacts on the variation observed in the output.
It is important to note that only the magnitude of the effect is important; the
sign of the effect is meaningless.

In the example in Table 5.1, it is easily seen that the parameters that have
the most effect on the variation in the execution time are, in descending order:
B, E, and G. From a computer architecture point of view, a parameter that has
a very large effect on the variability of the execution time is a performance
bottleneck because, if it is too small or not turned on, the performance will be
constrained by that parameter. That is, a poor choice for a bottleneck parameter
will cause the execution time to significantly increase.

Because this example uses foldover, the effect of two-factor interactions
on the variation in the execution time also can be calculated. To calculate
the effect of a two-factor interaction, the output value for that configuration
is multiplied by the values (+1 or −1) for both of the parameters. Then, as
before, the resulting products are added together. To illustrate this process,
assume that the interaction of interest is AC, which is the interaction between
parameters A and C. This interaction effect is calculated as follows:

EffectAC = ((1 × 1) × 79) + ((−1 × 1) × 91) + ((−1 × 1) × 23)

+ … + ((−1 × −1) × 77) + ((−1 × 1) × 29) + ((1 × 1) × 1) = −113

Because the resulting value of this effect is larger than the effects of all of
the single parameters, except B, E, and G, the AC interaction is more of a
performance bottleneck than all of the single parameters except B, E, and G.
This particular result illustrates the superiority of the Plackett and Burman

Chapter Five: Statistical Techniques for Computer Performance Analysis 77

design with foldover when it is compared to the one-at-a-time technique. Not
only does the latter technique do a poor job of quantifying the effects of the
main (single) parameters, it also does not quantify the effects of any interac-
tions between input parameters. Furthermore, the Plackett and Burman design
provides this additional information while requiring only about the same
number of simulations as does the one-at-a-time technique, namely, O(N).

In summary, computer architects can use a Plackett and Burman design
to determine the most significant performance bottlenecks in a processor
and the relative ranking of all bottlenecks with respect to each other. This
information can be used to pare the design space down to the most significant
parameters, to thereby allow for a more efficient exploration of the design
space than simulating all possible combinations of inputs.

5.4.2 Using the Plackett and Burman design
to explore the design space

When trying to explore a large design space, the key problem that computer
architects face is that the space of processor configurations and compiler
options is enormous. Because computing resources are finite, the architect
must either search a small fraction of the total configurations for many param-
eters, or search a large fraction of the space with a reduced number of param-
eters. In both cases, it is difficult for the architect to have confidence in the
simulation results and its subsequent conclusions since the design space was
not reduced and explored in a systematic and quantitatively based manner.
However, an architect can use the Plackett and Burman design to reduce the
design space with a high degree of confidence that only the most insignificant
parameters were excluded.

The process for using the Plackett and Burman design to reduce the
design space is very straightforward. The first step is to follow the procedure
in the previous section to choose high and low values for each parameter,
build the design matrix, simulate all configurations, and then calculate the
effect of each parameter. Second, based on the computing resources available,
and the effects of all of the parameters, select the parameters that have the
largest effect on the output variable for more detailed study. Third, explore
the design space of the most significant parameters using a full multifactorial
design such as ANOVA. This approach, in other words, uses the Plackett
and Burman design to separate the most significant parameters, which are
worthy of further exploration, from the less significant ones. These less
significant parameters can be set to some appropriate middle-range value
as the design space for the other parameters is studied in detail. As a result,
instead of simulating 2N test cases to explore the entire design space, the
computer architect can efficiently explore the design space by using the
Plackett and Burman technique to first reduce the number of candidate
parameters from N to N′, at the cost of 2 × N simulations. The reduced
parameter list then can be fully explored using a full factorial ANOVA
design, which has a simulation cost of 2N′ simulations.

78 Performance Evaluation and Benchmarking

To illustrate how this process works, the following example shows how
the number of test cases can be reduced from 2.2 trillion (241) to 88 Plackett
and Burman test cases (X = 44, 2 × 44) plus 1024 ANOVA test cases (210), for
a total of 1112 test cases. Therefore, in this example, using the Plackett and
Burman design to first pare the design space reduces the number of test
cases by over nine orders of magnitude.

For this example, assume that the computer architect needs to fine-tune
the processor’s configuration to maximize its performance without unduly
increasing its chip area. Therefore, the architect needs to accurately deter-
mine not only the most significant performance bottlenecks, but also the
relative order between less significant, but still important, performance bot-
tlenecks.

In this example, there are 41 variable parameters, which are shown in
Tables 5.2, 5.3, and 5.4. Although these tables list more than 41 parameters,
the variable parameters are the ones shown with high and low values. The
parameters without both high and low values are static parameters; that is,
they are fixed to a constant value throughout the experiments. As described
in the previous section, the high and low values represent values that are
just outside the normal range of values for that parameter. The normal range
of values used in this example was determined by compiling a list of param-
eter values for several commercial processors, including the Alpha 21164 [12]
and 21264 [13]; the UltraSparc I [14], II [15], and III [16]; the HP PA-RISC
8000 [17]; the PowerPC 603 [18]; and the MIPS R10000 [19].

Because there are a total of 41 variable parameters, the value of X is 44.
Furthermore, in this situation, foldover is an appropriate choice because it
will remove the effects of what are likely to be the most important
interactions—two-factor interactions—from the effects of the single param-
eters. Therefore, for this example, the Plackett and Burman design matrix
will have 43 columns (X – 1) and 88 rows (2 × X). As described earlier, the

Table 5.2 Processor Core Parameters and Their Plackett
and Burman Values (Reprinted with Permission

from [2], © 2003 IEEE)

Parameter Low Value High Value

Fetch Queue Entries 4 32
Branch Predictor 2-Level Perfect
Branch MPred Penalty 10 Cycles 2 Cycles
RAS Entries 4 64
BTB Entries 16 512
BTB Assoc 2-Way Fully Assoc
Spec Branch Update In Commit In Decode
Decode/Issue Width 4-Way
ROB Entries 8 64
LSQ Entries 0.25 * ROB 1.0 * ROB
Memory Ports 1 4

Chapter Five: Statistical Techniques for Computer Performance Analysis 79

two extra columns are filled with dummy parameters. Consequently, the
architect will need to simulate 88 different processor configurations to deter-
mine the effects of all 41 single parameters.

In Tables 5.2 and 5.4, two parameters—the number of load-store queue
(LSQ) entries and the memory latency of the following blocks—are shaded
in gray. For these two parameters, the high and low values cannot be chosen
completely independently of the other parameters because of the mechanics
of the Plackett and Burman design. The problem occurs when one of those
parameters is set to one of its extreme values while the parameter it is related
to is set to its opposite extreme. The resulting combination of values leads
to a situation that either is infeasible or would not actually occur in a real
processor. For example, if the number of LSQ entries was chosen indepen-
dently of the number of reorder buffer (ROB) entries, then some of the
configurations could have a 64-entry LSQ and an 8-entry ROB. Because the
total number of in-flight instructions cannot exceed the number of ROB
entries, however, the maximum number of filled LSQ entries will never
exceed 8. Therefore, the effect of the number of LSQ entries will be artificially
limited by the number of ROB entries. To avoid those types of situations,
the values for all gray-shaded parameters are based on their related param-
eter. Although the values of these gray-shaded parameters are based on
another value, they are still input parameters; basing their values on another
parameter’s values merely ensures that the effect of these input parameters
will not be artificially limited.

Table 5.3 Functional Unit Parameters and Their Plackett
and Burman Values (Reprinted with Permission

from [2], © 2003 IEEE)

Parameter Low Value High Value

Int ALUs 1 4
Int ALU Latency 2 Cycles 1 Cycle
Int ALU Throughput 1
FP ALUs 1 4
FP ALU Latency 5 Cycles 1 Cycle
FP ALU Throughputs 1
Int Mult/Div Units 1 4
Int Mult Latency 15 Cycles 2 Cycles
Int Div Latency 80 Cycles 10 Cycles
Int Mult Throughput 1
Int Div Throughput Equal to Int Div Latency
FP Mult/Div Units 1 4
FP Mult Latency 5 Cycles 2 Cycles
FP Div Latency 35 Cycles 10 Cycles
FP Sqrt Latency 35 Cycles 15 Cycles
FP Mult Throughput Equal to FP Mult Latency
FP Div Throughput Equal to FP Div Latency
FP Sqrt Throughput Equal to FP Sqrt Latency

80 Performance Evaluation and Benchmarking

After choosing the high and low values for each parameter and then
creating the corresponding processor configuration files, the next step is to
run the simulations. In this example, the superscalar simulator sim-outorder
from the SimpleScalar tool suite [20] and 12 selected benchmarks from the
SPEC CPU 2000 benchmark suite [21] were used.

After calculating the effect that each parameter has on the variability in
the execution time, the parameters were ranked in descending order of effect.
This ranking provides a basis for comparison across benchmarks and ensures
that a single parameter’s effect does not completely dominate the results. More
specifically, the parameter with the largest effect is given a rank of 1 while the
parameter with the second largest effect is given a rank of 2 and so on. After
ranking the parameters in descending order of effect, each parameter’s rank
was averaged across all of the benchmarks. Table 5.5 shows, for each param-
eter, both the ranks for all benchmarks and the average rank across all bench-
marks. The parameters are arranged in ascending order of their average ranks,
which corresponds to the descending order of average effects.

Table 5.4 Processor Core Parameters and Their Plackett
and Burman Values (Reprinted with Permission

from [2], © 2003 IEEE)

Parameter Low Value High Value

L1 I-Cache Size 4 KB 128 KB
L1 I-Cache Assoc 1-Way 8-Way
L1 I-Cache Block Size 16 Bytes 64 Bytes
L1 I-Cache Repl Policy Least Recently Used
L1 I-Cache Latency 4 Cycles 1 Cycle
L1 D-Cache Size 4 KB 128 KB
L1 D-Cache Assoc 1-Way 8-Way
L1 D-Cache Block Size 16 Bytes 64 Bytes
L1 D-Cache Repl Policy Least Recently Used
L1 D-Cache Latency 4 Cycles 1 Cycle
L2 Cache Size 256 KB 8192 KB
L2 Cache Assoc 1-Way 8-Way
L2 Cache Block Size 64 Bytes 256 Bytes
L2 Cache Repl Policy Least Recently Used
L2 Cache Latency 20 Cycles 5 Cycles
Mem Latency, First 200 Cycles 50 Cycles
Mem Latency, Next 0.02 ∞ Mem Latency, First
Mem Bandwidth 4 Bytes 32 Bytes
I-TLB Size 32 Entries 256 Entries
I-TLB Page Size 4 KB 4096 KB
I-TLB Assoc 2-Way Fully Assoc
I-TLB Latency 80 Cycles 30 Cycles
D-TLB Size 32 Entries 256 Entries
D-TLB Page Size Same as I-TLB Page Size
D-TLB Assoc 2-Way Fully Assoc
D-TLB Latency Same as I-TLB Latency

Chapter Five: Statistical Techniques for Computer Performance Analysis 81
Ta

bl
e

5.
5

Pl
ac

ke
tt

 a
nd

 B
ur

m
an

 D
es

ig
n

R
es

ul
ts

 fo
r

A
ll

Pr
oc

es
so

r
Pa

ra
m

et
er

s;
 R

an
ke

d
 b

y
Si

gn
ifi

ca
nc

e
an

d
 S

or
te

d
 b

y
th

e
Su

m
 o

f R
an

ks

(R
ep

ri
nt

ed
 w

it
h

Pe
rm

is
si

on
 f

ro
m

 [
2]

, ©
 2

00
3

IE
E

E
)

Pa
ra

m
et

er
gz

ip
vp

r-
Pl

ac
e

vp
r-

R
ou

te
gc

c
m

es
a

ar
t

m
cf

eq
ua

ke
am

m
p

pa
rs

er
vo

rt
ex

bz
ip

2
tw

ol
f

A
ve

R
O

B
 E

nt
ri

es
1

4
1

4
3

2
2

3
6

1
4

1
4

2.
8

L
2

C
ac

he

L
at

en
cy

4
2

4
2

2
4

4
2

13
3

2
8

2
4.

0

B
ra

nc
h

Pr
ed

ic
to

r
2

5
3

5
5

27
11

6
4

4
16

7
5

7.
7

In
t A

L
U

s
3

7
5

8
4

29
8

9
19

6
9

2
9

9.
1

L
1

D
-C

ac
he

L

at
en

cy
7

6
7

7
12

8
14

5
40

7
5

6
6

10
.0

L
1

I-
C

ac
he

 S
iz

e
6

1
12

1
1

12
37

1
36

8
1

16
1

10
.2

L
2

C
ac

he
 S

iz
e

9
35

2
6

21
1

1
7

2
2

6
3

43
10

.6
L

1
I-

C
ac

he
 B

lo
ck

Si

ze
16

3
20

3
16

10
32

4
10

11
3

22
3

11
.8

M
em

 L
at

en
cy

,
Fi

rs
t

36
25

6
9

23
3

3
8

1
5

8
5

28
12

.3

L
SQ

 E
nt

ri
es

12
14

9
10

13
39

10
10

17
9

7
4

10
12

.6
Sp

ec
ul

at
iv

e
B

ra
nc

h
U

pd
at

e
8

17
23

28
7

16
39

12
8

20
22

20
17

18
.2

D
-T

L
B

 S
iz

e
20

28
11

23
29

13
12

11
25

14
25

11
24

18
.9

L
1

D
-C

ac
he

 S
iz

e
18

8
10

12
39

18
9

36
32

21
12

31
7

19
.5

L
1

I-
C

ac
he

A

ss
oc

5
40

15
29

8
34

23
28

16
17

15
9

21
20

.0

FP
 M

ul
t L

at
en

cy
31

12
22

11
19

24
15

23
24

29
14

23
19

20
.5

M
em

or
y

B
an

d
w

id
th

37
36

13
14

43
6

6
29

3
12

19
12

38
20

.6

(c
on

ti
nu

ed
)

82 Performance Evaluation and Benchmarking
Ta

bl
e

5.
5

Pl
ac

ke
tt

 a
nd

 B
ur

m
an

 D
es

ig
n

R
es

ul
ts

 fo
r

A
ll

Pr
oc

es
so

r
Pa

ra
m

et
er

s;
 R

an
ke

d
 b

y
Si

gn
ifi

ca
nc

e
an

d
 S

or
te

d
 b

y
th

e
Su

m
 o

f R
an

ks

(R
ep

ri
nt

ed
 w

it
h

Pe
rm

is
si

on
 f

ro
m

 [
2]

, ©
 2

00
3

IE
E

E
)

(C
on

ti
nu

ed
)

Pa
ra

m
et

er
gz

ip
vp

r-
Pl

ac
e

vp
r-

R
ou

te
gc

c
m

es
a

ar
t

m
cf

eq
ua

ke
am

m
p

pa
rs

er
vo

rt
ex

bz
ip

2
tw

ol
f

A
ve

In
t A

L
U

 L
at

en
cy

15
15

18
13

41
22

33
14

30
16

41
10

16
21

.8
B

T
B

 E
nt

ri
es

10
24

19
20

9
42

31
20

22
19

20
17

34
22

.1
L

1
D

-C
ac

he

B
lo

ck
 S

iz
e

17
29

34
22

15
9

24
19

28
13

32
28

26
22

.8

In
t

D
iv

 L
at

en
cy

29
10

26
16

24
32

41
32

20
10

10
43

8
23

.2
In

t
M

ul
t/

D
iv

U

ni
ts

14
20

29
31

10
23

27
24

33
36

18
26

15
23

.5

L
2

C
ac

he
 A

ss
oc

23
19

14
19

32
28

5
39

37
18

42
21

12
23

.8
I-

T
L

B
 L

at
en

cy
33

18
24

18
37

30
30

16
21

32
11

29
18

24
.4

Fe
tc

h
Q

ue
ue

E

nt
ri

es
43

13
27

30
26

20
18

37
9

25
23

34
14

24
.5

B
ra

nc
h

M
Pr

ed

Pe
na

lt
y

11
23

42
21

6
43

20
34

11
22

39
37

23
25

.5

FP
 A

L
U

s
34

11
31

15
34

17
40

22
26

37
13

42
13

25
.8

FP
 D

iv
 L

at
en

cy
22

9
35

17
30

21
38

15
43

38
17

39
11

25
.8

I-
T

L
B

 P
ag

e
Si

ze
42

39
8

37
36

40
7

17
12

26
28

14
39

26
.5

L
1

D
-C

ac
he

A

ss
oc

13
38

17
34

18
41

34
33

14
15

35
15

42
26

.8

I-
T

L
B

 A
ss

oc
24

27
37

25
17

31
42

13
29

30
21

33
22

27
.0

L
2

C
ac

he
 B

lo
ck

Si

ze
25

43
16

38
31

7
35

27
7

35
38

13
40

27
.3

B
T

B
 A

ss
oc

21
21

36
32

11
33

17
31

34
43

27
35

25
28

.2
D

-T
L

B
 A

ss
oc

40
32

25
26

22
35

26
26

18
33

26
30

35
28

.8
FP

 A
L

U
 L

at
en

cy
32

16
38

41
38

11
22

30
23

27
30

40
29

29
.0

M
em

or
y

Po
rt

s
39

31
41

24
27

15
16

41
5

42
29

41
27

29
.1

Chapter Five: Statistical Techniques for Computer Performance Analysis 83
D

um
m

y
Pa

ra
m

et
er

 #
2

27
42

21
39

35
14

13
35

41
28

43
18

30
29

.7

FP
 M

ul
t/

D
iv

U

ni
ts

41
22

43
40

40
19

28
38

27
31

31
19

20
30

.7

In
t M

ul
t L

at
en

cy
30

41
39

36
14

26
29

21
15

41
37

32
41

30
.9

FP
 S

qr
t

L
at

en
cy

38
30

40
33

33
5

25
42

42
24

24
38

37
31

.6
L

1
I-

C
ac

he

L
at

en
cy

26
26

32
42

28
38

21
40

38
40

36
25

33
32

.7

R
A

S
E

nt
ri

es
28

33
33

27
42

25
36

25
39

39
33

36
32

32
.9

D
um

m
y

Pa
ra

m
et

er
 #

1
19

37
30

43
25

36
43

43
35

23
40

24
36

33
.4

84 Performance Evaluation and Benchmarking

From the viewpoint of design space exploration, the key result from
Table 5.5 is that, of the 41 parameters that are being evaluated (plus two
dummy parameters), 10 of them are, on average, more significant than the
remaining 31 parameters. This result can be clearly shown by examining the
relatively large difference in the average ranks of the tenth and eleventh
parameters, which are the number of LSQ entries and speculative branch
update, respectively. Additionally, for each benchmark, the rank of these top
10 parameters is generally fairly low. In other words, these top 10 parameters
have the most significant effect on the execution time for all benchmarks.

From these results, the computer architect can be confident that the
bottom 31 parameters are insignificant compared to the top 10 parameters
and can, consequently, be eliminated from the list of parameters to be studied
in detail with ANOVA. Therefore, instead of performing a full ANOVA test
on 41 parameters, which requires over 2.2 trillion test cases, the Plackett and
Burman technique can be applied to eliminate the most insignificant param-
eters first. The elimination of the most insignificant parameters from further
study reduces the number of test cases to a much more tractable 1024 at an
additional cost of only 88 test cases.

For more information about the mechanics of ANOVA and using it to
perform a detailed experimental study, read the study by David Lilja, com-
pleted in 2000 [1].

5.4.3 Other applications of the Plackett and Burman design

In addition to efficiently and accurately reducing the design space, computer
architects can use the Plackett and Burman design of experiments to classify
and select benchmarks and to analyze the performance of an enhancement.

To control the time required to simulate a new computer system, computer
architects often select a subset of benchmarks from a benchmark suite. The
potential problem with this practice is that the computer architect may not
select the benchmarks in a rigorous manner, which may lead to the architect
simulating a set of benchmarks that is not representative of the entire suite.

To address the problem, a computer architect can use the Plackett and
Burman design to first characterize each benchmark based on the perfor-
mance bottlenecks that it induces in the processor. Then, because the set of
performance bottlenecks forms a unique fingerprint for that benchmark, the
computer architect can cluster the benchmarks together based on the simi-
larity of their performance bottlenecks. If two benchmarks have similar sets
of performance bottlenecks, then they will be clustered together. After clus-
tering the benchmarks into M groups, where M is the maximum number of
benchmarks the architect can run, the architect needs only to choose one
benchmark from each group to select a subset of benchmarks that is repre-
sentative of the whole. (Chapter 9 discusses another technique for quantify-
ing benchmark similarity.)

A Plackett and Burman design can also be used to analyze the effect that
some proposed enhancement has on relieving the performance bottlenecks in

Chapter Five: Statistical Techniques for Computer Performance Analysis 85

a processor. By comparing the average rank of each parameter before and after
the enhancement is added the processor, the computer architect can easily see
which performance bottlenecks were relieved by the enhancement and which
bottlenecks were exacerbated. For instance, if the average rank for a parameter
increases after the enhancement is added to the processor, the enhancement
mitigates the effect of that performance bottleneck. On the other hand, if the
average rank decreases, then, although that enhancement may improve the
processor’s performance, it also exacerbates that particular performance bot-
tleneck, which could become a limiting factor on further performance gains.

The advantage of using this approach to analyze processor enhance-
ments is that it is not based on a single metric, such as speedup or cache
miss rate, but rather on the enhancement’s impact on the entire processor.

For more information about these two applications of the Plackett and
Burman design, see the study done by Joshua Yi, David Lilja, and Douglas
Hawkins in 2003 [2].

5.5 Summary
This chapter has demonstrated how some important statistical techniques can
be used in both measurement-based and simulation-based experiments to
improve the information that can be obtained from the experiments. Measure-
ment-based experiments are subject to two types of errors: systematic errors,
which are the result of some experimental mistake, and random errors, which
are inherent in the system being measured and in the measurement tools
themselves. Both kinds of errors produce noise in the final measurements,
which causes a different value to be observed each time a measurement exper-
iment is repeated. We showed how confidence intervals can be used to quan-
tify the errors in the measurements and to compare sets of noisy measure-
ments. We also showed how the design of experiment techniques can be used
to efficiently search a large design space for simulation-based studies. In par-
ticular, the Plackett and Burman design is a powerful technique for finding
the most important bottlenecks in a processor. Knowing these bottlenecks then
allows the experimenter to substantially reduce the design space that needs
to be searched by ignoring those parameters that have little impact on the final
output. Taken together, the set of techniques presented in this chapter can be
used to provide quantitatively defensible conclusions from computer systems
performance evaluation studies.

References
1. Lilja, David J., Measuring Computer Performance: A Practitioner’s Guide, Cam-

bridge University Press, 2000.
2. Yi, Joshua J., Lilja, David J., and Hawkins, Douglas M., A statistically rigorous

approach for improving simulation methodology, International Symposium on
High-Performance Computer Architecture (HPCA), February 2003, 281–291.

86 Performance Evaluation and Benchmarking

3. Lilja, David J., Measuring Computer Performance: A Practitioner’s Guide, Cam-
bridge University Press, 2000, 17.

4. Dear, Keith, and Brennan, Robert, SurfStat Statistical Tables, University of
Newcastle, June 1999, online at: http://math.uc.edu/~brycw/classes/148/
tables.htm.

5. Lilja, David J., Measuring Computer Performance: A Practitioner’s Guide, Cam-
bridge University Press, 2000, 249–250.

6. StatSoft, Inc., Electronic Statistics Textbook, Tulsa, OK, 2004, online at: http://
www.statsoft.com/textbook/stathome.html.

7. Lilja, David J., Measuring Computer Performance: A Practitioner’s Guide, Cam-
bridge University Press, 2000, 55–56.

8. Lilja, David J., Measuring Computer Performance: A Practitioner’s Guide, Cam-
bridge University Press, 2000, 71–77.

9. Lilja, David J., Measuring Computer Performance: A Practitioner’s Guide, Cam-
bridge University Press, 2000, 159–172.

10. Plackett, R., and Burman, J., The design of optimum multifactorial experi-
ments, Biometrika, 33, 4, 1946, 305–325.

11. Montgomery, Douglas C., Design and Analysis of Experiments, 5th edition,
Wiley, 2000.

12. Bannon, Peter, and Siato, Yuichi, The Alpha 21164PC microprocessor, Interna-
tional Computer Conference (COMPCON), February 1997, 20–27.

13. Kessler, Richard, The Alpha 21264 microprocessor, IEEE Micro, 19, 2, 1999,
24–36.

14. Tremblay, Marc, and O’Connor, J. Michael, UltraSparc I: A four-issue proces-
sor supporting multimedia, IEEE Micro, 16, 2, 1996, 42–50.

15. Normoyle, Kevin, Csoppenszky, Michael, Tzeng, Allan, Johnson, Timothy,
Furman, Christopher, and Mostoufi, Jamshid, UltraSPARC-IIi: Expanding the
boundaries of a system on a chip, IEEE Micro, 18, 2, 1998, 14–24.

16. Horel, Tim, and Lauterbach, Gary, UltraSPARC-III: Designing third-genera-
tion 64-bit performance, IEEE Micro, 19, 3, 1999, 73–85.

17. Kumar, Ashok, The HP PA-8000 RISC CPU, IEEE Micro, 17, 2, 1997, 27–32.
18. Song, S., Denman, Martin, and Chang, Joe, The PowerPC 604 RISC micropro-

cessor, IEEE Micro, 14, 5, 1994, 8–17.
19. Yeager, Kenneth, The MIPS R10000 superscalar microprocessor, IEEE Micro,

16, 2, 1996, 28–40.
20. Burger, D. and Austin, T., The SimpleScalar Tool Set, Version 2.0, University

of Wisconsin-Madison Computer Sciences Department Technical Report
#1342, 1997.

21. Henning, J., SPEC CPU2000: Measuring CPU performance in the new mil-
lennium, IEEE Computer, 33, 7, 2000, 28–35.

87

Chapter Six

Statistical Sampling for
Processor and Cache
Simulation

Thomas M. Conte and Paul D. Bryan

Contents

6.1 Introduction ..87
6.2 Statistical sampling..88

6.2.1 Sample design..90
6.2.2 Sampling for caches..91

6.2.2.1 Time sampling...91
6.2.2.2 Set sampling ..94

6.2.3 Trace sampling for processors...98
6.3 An example ...100

6.3.1 The processor model...100
6.3.2 Reduction of non-sampling bias...102
6.3.3 Reduction in sampling bias and variability107

6.4 Concluding remarks .. 113
References... 114

6.1 Introduction
There are a myriad of technological alternatives that can be incorporated
into a cache or processor design. Applicable to memory subsystems are cache
size, associativity, and block size. For processors, these include branch han-
dling strategies, functional unit duplication, instruction fetch, issue, comple-
tion, and retirement policies. Deciding upon which technologies to utilize
among alternatives is a function of the performance each adds versus the cost

88 Performance Evaluation and Benchmarking

each incurs. The profitability of a given design is measured through the
execution of application programs and other workloads. Due to the large
size of modern workloads and the greater number of available design
choices, performance evaluation is a daunting task. Trace-driven simulation is
often used to simplify this process.

Workloads or benchmarks may be instrumented to generate traces that
contain information to measure the performance of the processor subsystem.
The SPEC2000 (Standard Performance Evaluation Cooperative 2000) suite is
one such benchmark suite that has been widely used to measure perfor-
mance. Because these benchmarks execute for billions of instructions, an
exhaustive search of the design space is time-consuming. Given the stringent
time to market for processor designs, a more efficient method is required.
Furthermore, storage becomes a problem because of the large amount of
information contained in a trace. Statistical sampling [1,3,5,9] has been used
successfully to alleviate these problems in cache simulations. In recent years
it has also been extended to the simulation of processors [5,6,7].

Statistical sampling techniques involve the drawing of inferences from a
sample rather than the whole, based on statistical rules. The primary goal is to
make the results obtained from the sample representative of the entire workload.
Thus, a critical aspect to statistical sampling is the method used to collect the
samples. Sampling for caches has been thoroughly explored in the past. This
chapter briefly discusses some of these methods. An accurate method for sta-
tistical trace sampling for processor simulation is then developed. The
method can be used to design a sampling regimen without the need for
full-trace simulations. Instead, statistical metrics are used to derive the sam-
pling regimen and predict the accuracy of the results. When the method is
tested on members of the SPEC2000 benchmarks, the maximum relative error
in the predicted parallelism is less than 4%, with an average error of ±1.7%
overall.

In the past, studies that have employed sampling to speed up simulation
have not established error bounds around the results obtained or have used
full–trace simulations to do so. Confidence intervals are necessary because
they are used to establish the error that might be expected in the results.
Error bounds can be obtained from the sampled simulations alone without
the need for full–trace simulations. An example of validation of sampling
methods for processors and the establishment of confidence intervals is
included in this chapter.

6.2 Statistical sampling
Sampling has been defined as the process of drawing inferences about the
whole population by examining only a part of that population [8]. Statisticians
frequently use sampling in estimating characteristics of large populations to
economize on time and resources. Sampling may be broadly classified into
two types, probability sampling and non-probability sampling.

Chapter Six: Statistical Sampling for Processor and Cache Simulation 89

Unlike non-probability samples, probability samples are chosen by a ran-
domized mechanism that ensures that samples are independent of subjective
judgments. Simple random sampling is known to be one of the most accurate
methods for sampling large populations. It involves a random selection of
single elements from the population. However, choosing a large number of
individual elements incurs a large overhead, making its application infeasible
in some cases. Another less accurate, but cost-effective technique is cluster
sampling. This technique collects contiguous groups of elements at random
intervals from the population.

An element on which information is required is known as a sampling
unit. Whereas the sampling unit for cache simulation is a memory reference,
the sampling unit for a processor is a single execution cycle of the processor
pipeline. The total number of sampling units from which the performance
metric is drawn is called a sample*. The larger the size of the sample, the
more accurate the results. Because larger samples also mean a greater cost
in time and resources, the choice of an efficient sample size is critical. A
parameter in sampling theory is a numerical property of the population
under test. The primary parameter for cache simulations is the miss ratio,
whereas that for processors is the mean instructions per cycle (IPC).

Consider a processor running a benchmark that executes in n time
cycles, i, i + 1, i + 2,…,n, where i is a single execution cycle. For a processor,
these execution cycles constitute a complete list of the sampling units or
what may be termed as the total population. The corresponding population
in cache simulations is the total set of memory references in the address
trace. Simple random sampling involves random selection of sampling
units from this list for inclusion in the sample. The gap between two
sampling units is randomized and calculated so that the majority of the
benchmark is traversed. The sampling unit immediately following each
gap is included in the sample. To be able to extract single execution cycles
with such precision requires simulation of the full trace, which yields no
savings in simulation cost. Alternatively, subsets of the trace at random gaps
may be extracted and executed. The execution cycles that result are then
included in the sample. The random gap is calculated in the same manner
as mentioned earlier. This method of sampling is essentially cluster sam-
pling. Cluster sampling when implemented in caches has been referred to
as time sampling [1,3,5,9].

Another technique called stratified sampling [15] uses prior knowledge
about the elements of the population to order them into groups. Elements are
then chosen from each of the groups for inclusion in the sample. This method
is known as set sampling when applied to caches [4,9,11]. There is no known
equivalent for processor sampling.

* Several cache trace-sampling studies refer to a cluster as a sample, in contrast to common
statistical terminology. We will retain the statistical conventions and reserve the term sample for
the entire set of sampling units.

90 Performance Evaluation and Benchmarking

6.2.1 Sample design

Sample design involves the choice of a robust (1) sample size, (2) cluster size
and, (3) number of clusters. The accuracy of estimates for a particular sample
design is primarily affected by two kinds of bias [10]: non-sampling bias and
sampling bias.

Non-sampling bias arises when the population being sampled (the
study population) is different from the actual target population. For example,
in a full-trace cache simulation the address references at the beginning of
the trace reference an empty cache. This leads to excessive misses at the
start of the simulation, known as the cold-start effect, and can adversely affect
the performance estimates. When sampling is employed, clusters are
extracted from different locations in the full trace. The cache state seen by
each of these clusters is not the same as in a full-trace simulation. Therefore,
the cold-start effect appears at the start of every cluster. This leads to bias
in the estimation of the parameter being measured. Recovering an approx-
imately correct state to reduce the effect of this bias is largely an empirical
sample design consideration.

The cold-start effect also affects processors. In processor sampling, the
actual target population is execution cycles and the study population is trace
entries. Processors maintain state in the reservation stations, functional unit
pipelines, and so on. Contemporary processors have branch handling hard-
ware, which also maintains considerable state.

Sampling bias is measured as the difference between the mean of the
sampling distribution and the sample mean. It is a result of the sampling
technique employed and the sample design. Because clusters from different
locations may be selected from sample to sample, the estimates may vary
across repeated samples (i.e., across repeated sampled simulations).
Repeated samples yield values of means that form a distribution, known as
the sampling distribution. Statistical theory states that, for a well-designed
sample, the mean of the sampling distribution is representative of the true
mean. Sampling techniques and the estimates derived from them may be
prone to excessive error if the sample is not properly designed. Increasing
sample size typically reduces sampling bias. In case of cluster sampling,
sample size is the product of the number of clusters and cluster size. Of these
two, the number of clusters should be increased to reduce sampling bias,
because it constitutes the randomness in the sample design.

Sampling variability is an additional consequence due to the selection of
clusters at random. The standard deviation of the sampling distribution is a
measure of the variation in estimates that might be expected across samples.
Making clusters internally heterogeneous (i.e., large standard deviation of the
parameter within the cluster), making the cluster means homogeneous, and
increasing the number of clusters are all means of reducing sampling bias
and variability [8,10]. This is demonstrated for processors in Section 6.3.3.

The reduction of bias requires that the design of the sample be robust
and all factors that could increase error be taken into consideration. Some

Chapter Six: Statistical Sampling for Processor and Cache Simulation 91

of the methods that have been used to overcome or reduce the total bias are
discussed in the following subsections.

6.2.2 Sampling for caches

Trace sampling has been used frequently for cache simulation studies. Two
different types of sampling are possible for caches: time sampling [1,3,5,9]
and set sampling [4,9,11] . Time sampling involves the extraction of time-con-
tiguous memory references from different locations in a very long address
trace. In contrast, a single set in a cache forms a member of a sample in set
sampling. Therefore, the references pertaining to a set under this scheme are
not necessarily time-contiguous.

6.2.2.1 Time sampling

Laha et al. Laha, Patel, and Iyer [1] used time sampling in their experiments
to show that reliable results could be obtained using trace sampling with a
small number of samples. Through their work, it was shown that as little as
35 clusters of contiguous references could be used to classify the distribution
of the underlying trace in all cases. Cluster sizes of 5000, 10,000, and 20,000
were used to show that a small number of clusters could correctly classify
the sample traces, regardless of their length.

In this method, the misses per instruction (MPI) were used as a metric to
determine the accuracy of trace sampling on small and large cache designs.
Normally, small caches would be purged whenever a context switch is
encountered. If clusters are composed of references immediately following
a context switch, the behavior would be the same as in a continuous trace
simulation. A continuous trace refers to the original trace that is being sam-
pled. With this assumption, non-sampling bias is reduced by eliminating the
cold-start effect.

The methodology used by Laha, et al. [1], incorporates the following
steps. First, a sample size is chosen corresponding to the task interval. The
average sampling interval is then calculated based upon the size of the
continuous trace and the number of desired samples. Clusters of a few
thousand references are collected after each sampling interval. These clusters
are selected immediately following a context switch. Because of cold start
after the context switch, small caches incurred very high miss rates at the
beginning of the interval and generally decreased as the contents of the cache
are filled. Therefore, the average value of the miss ratio was considered at
the end of each sample.

For large caches, the assumption that the cache is flushed on a context
switches is not valid. In cache designs that are larger than 16 kilobytes (KB),
some information is almost always retained across a context switch. In this
case, the non-sampling bias due to cold start cannot be eliminated as in the
case of smaller caches. A new mechanism is proposed to consider only
references in the trace after the point in the cluster where the cache state has

92 Performance Evaluation and Benchmarking

been reconstructed. At the beginning of each interval, the references to the
cache that cannot be determined as a hit or a miss are disregarded. Once a
reference accesses a set that has been filled by previous references, it is
referred to as a primed set. References to primed sets within the cluster are
marked as significant and used for MPI calculation. References to unprimed
sets are recorded as fill references or unknown references because their behavior
in a full trace simulation is not known [2]. Laha, et al. [1] found that depend-
able estimates of miss rates were possible if significant references, or refer-
ences to the primed sets, were used.

Wood et al. Wood, Hill and Kessler [3] discussed methods to estimate
the miss ratio for the unknown (fill) references used to warm up the cache.
Whereas the fill method assumes that these references had a miss ratio equal
to the overall miss ratio, Wood, Hill, and Kessler showed that the miss ratio
of such references is in fact higher than the overall miss ratio.

This study models each block frame in the cache in terms of generations.
A block frame is a part of the cache set capable of holding a single block. Each
generation is composed of a live time and a dead time. A block frame is said
to be live if the next reference to that frame is a hit, and dead if the next
reference to it is a miss. A generation therefore starts after a miss occurs and
ends when the next miss occurs. The miss that ends the generation is included
in the generation, whereas the miss that starts it is not. The miss ratio at any
instant in time during a simulation is the fraction of block frames that are dead
at that instant.

The probability that a block frame is dead at any instant in time is
the fraction of the generation time during which the block is dead. Assum-
ing that the live and dead times for the block frames are identically
distributed for all the block frames in the cache, the miss ratio μlong is
given by:

, (6.1)

where E[Dj] = Expected dead time in generation j, and E[Gj] = Expected
generation time for generation j.

Because the distributions of the live and dead times are not known, the
two times can be calculated as means of the respective times computed
throughout the trace. When sampling is employed, these are computed using
only the sampled references. The live and dead times for each block frame
are counted in terms of the number of references to that block frame. Equa-
tion (6.1), is valid only when every block in the cache is referenced at least
once. Thus, only when large clusters are used can this technique for estima-
tion be employed. This miss ratio (μlong) computed in this method is the miss
ratio for the unknown fill references.

μlong =
E D

E G
j

j

[]

[]

Chapter Six: Statistical Sampling for Processor and Cache Simulation 93

For short traces it may not be possible for every block frame to be
referenced at least once, making the preceding method inaccurate. Wood
et al. suggest a difference procedure for estimating the miss ratio of unknown
references for short traces. This miss ratio is based on the assumption that
block frames not referenced are dead. For a cache with S sets and associativity
of A, the total number of block frames is SA. If U is the number of unknown
references then, (SA − U) is the number of block frames that are never
referenced by the cluster. Therefore,

(6.2)

It is possible that not all live block frames are referenced by a small
cluster. Therefore, the number of dead blocks may out-number live ones, so
there is a max function with 0 in Equation (6.2). Another metric, μsplit is the
arithmetic mean of μlong and μlast. μtepid simply assumes that exactly half of
the block frames are dead; that is, 50% of the unknown references are misses.
Therefore, μtepid is defined as 0.5. Empirical results show μsplit and μtepid to be
the best estimators. The μtepid metric may be preferred over μsplit because it
requires no computation.

Fu and Patel. Work by Fu and Patel [9] suggest that the miss ratio
alone is not adequate. Other models estimate only the fraction of fill refer-
ences that are misses and therefore only calculate the cache miss ratio.
Although sufficient for some studies, this is insufficient when more detailed
simulation of cache events is required. In the case of simulation of cache
miss events when other system components are included, such as a multi-
processor, each fill reference must be identified as a hit or a miss. Because
of the cold-start effect larger caches result in a large number of fill references
at the beginning of a cluster.

Fu and Patel propose a new metric for identifying fill references based
upon the miss distance, which is the number of references between misses
including the first miss. This metric is similar to the generation time used
by Wood et al. [3] The results were validated by comparing the distributions
of miss distance for the sampled and continuous traces. Using the miss
distance, the state of fill references were predicted based on the miss history
of the reference stream. A set of approximately 40 samples are selected as
before, where each sample is split into a priming and evaluation interval.
During the priming period, references are used to warm up the cache by
generating sets of filled cache locations. By warming up the cache, the num-
ber of fill references is reduced during the evaluation interval. In the evalu-
ation interval, each fill reference is predicted as a hit or a miss using the
miss-distance history and the cache contents.

μlast

j

j

SA
E D

E G
SA U

U
=

× − −max(,
[]

[]
())0

94 Performance Evaluation and Benchmarking

The following steps in the algorithm are applied to each sample. First
simulate the priming interval of the sample and apply the history table. This
history table is a small list of the most recent miss distances. During the
priming interval, if a miss occurs, then the miss distance is calculated and
stored in the history table. If a fill references is encountered in the priming
interval, it is ignored. Fills found in the evaluation period are predicted
according to the following criteria: If the history table is empty, then no
misses have been recorded, then predict a hit. Otherwise, if the history table
is not empty, and the distance is within the range of distances recorded in
the history table, then predict a miss. If a prediction cannot be made based
on the history table, then the contents of the cache are searched. If adjacent
sets to the set being filled contain the block being loaded, then predict a hit.
For all other cases predict a miss.

For this experiment, the history table was very small and only contained
three distances. However, increasing the size of the table did not yield any
performance gain. This method predicted accurate mean and standard devi-
ation to the miss distance behaviors of the continuous trace. By searching
the contents of the cache, this study assumes that the cache blocks are not
replaced due to a large cache. When simulating with a smaller cache, this
assumption does not hold.

Conte, et al. This study [17] extended for sampling single pass meth-
ods that can collect an entire cache design space in one run. In so doing, [17]
removes all non-sampling bias by keeping the caches warm between clusters
using an LRU (last recently used) stack.

6.2.2.2 Set sampling
A cache that can hold C blocks, and has associativity A can be divided into
C/A sets (i.e., each set contains A block frames). The set sampling method
varies from the time-based techniques mentioned earlier, because in this
approach the sets in the cache are sampled rather than the workload. The
sets for inclusion in the sample may either be selected at random or by using
information about the parameters of the caches. The method employed in
Liu and Peir’s “Cache Sampling by Sets” [16] consists of two phases. The
first phase uses a partial run of the workload on the whole cache to obtain
information about the behavior of each set in the cache. Based on this infor-
mation, certain sets are selected for inclusion in the sample. The actual
simulation is done in the second phase using only the sets in the sample.
Another interesting method is that suggested by Kessler et al. [4]. Referred
to as the constant-bits method, it can be used to simulate a hierarchy of
multimegabyte caches. It can also be used to simulate multiple caches in a
single simulation. Both of these methods are explained in the subsections
that follow.

Liu and Peir. Liu and Peir characterize each set by a metric called
weighted miss, as illustrated in Figure 6.1 [16]. The sampling procedure is

Chapter Six: Statistical Sampling for Processor and Cache Simulation 95

initiated with a preliminary run using a subset of the workload. Liu and Peir
used 15 million address references for this purpose. Let μprel be the miss ratio
of the cache under study for this phase of the sampling procedure. Let μi be
the miss ratio of the ith set in the cache due to the references ri to the set.
The weighted miss, Wi, for set i is given by

(6.3)

In words, the weighted miss of a set is the number of misses that may
be attributed to the references to that set. After the preliminary run, the
weighted miss metric is computed for every set in the cache. The sets are
arranged in ascending order of Wi. The list of sets is then divided into equal
sized groups. One set from each group is chosen for inclusion in the sample
according to some heuristic. One heuristic is to choose the pth set from each
group. Other heuristics that were seen to perform well were the median and
best-fit methods. Under the median heuristic, the set with the median
weighted miss value in the group is selected. With the best-fit method, the
set whose weighted miss value is closest to the average weighted miss of
the group is chosen. The second phase of the procedure simulates the sets
chosen during the first phase. The complete workload is simulated on these
sets. The miss ratio is then computed as the ratio of misses to the references
to the sets in the sample.

Figure 6.1 Weighted miss set selection.

Cache structure

List of sets arranged

in ascending order of weighted miss

Sample selected by
choosing the third set
from groups of four

Set: 1 Ws − 1

Wi

Ws

W16

Wi + 19

Ws − 2

W2

Wi + 7

Preliminary

run

Sample

Selection

Set: 2

Set: 3

Set: i

Set: i + 1

Set: i + 2

Set: s − 2

Set: s − 1

Set: s

Set: s

Set: 2

W ri i i= − ×()μ μpred

96 Performance Evaluation and Benchmarking

This method of sampling does not suffer from non-sampling bias as
much as the time-based techniques. However, the non-sampling bias due to
the empty cache at the start of simulation still exists. Liu and Peir overcome
this problem by warming up the sets in the sample with approximately 500K
instructions. The sampling bias, due to the design of the sample, can be
reduced by using better heuristics such as the best-fit method, mentioned
earlier, for the selection of the sample. The sets to be included in the sample
may be selected on criteria other than the weighted miss. Other possibilities
include the number of references, the number of misses, and the miss ratios
of each set. However, the weighted miss metric was found to be the best for
set selection of the sample.

Kessler et al. Kessler, Hill, and Wood [4] completed a very compre-
hensive and statistically sound study of cache trace sampling, that compared
set sampling and time sampling for caches. The authors propose a method
for set sampling that allows a single trace to be used to simulate multiple
cache designs or cache hierarchies. This method, known as constant-bits, is
effective because it systematically selects cache sets for simulation. Often
primary and secondary caches have different sets, which can make multi-
ple-level cache simulation difficult when sets are chosen at random. MPI is
used to gauge cache performance in this study. According to Kessler et al.
the method of MPI calculation is very important when utilizing set sampling.
Two possible ways of calculating MPI are with the sampled-instructions and
fraction-instructions methods. Every instruction includes the instruction fetch
as well as the data references for that instruction.

Consider a sample S with n sets from a cache containing a total of s sets.
The misses mi and instructions fetches instri for each set i in the sample are
determined.

Under the sampled-instructions method, the MPI of the sample is cal-
culated by normalizing the number of misses by the instruction fetches:

(6.4)

In the fraction-instructions method, the MPI of the sample is calculated
by normalizing the number of misses by the fraction of sampled sets times
all instruction fetches.

(6.5)

These two techniques for MPI calculation were then used in conjunction
with the constant-bits method. The constant-bits method applies a filter to

MPI
m

instr
Sample

ii

n

ii

n= =

=

∑
∑

1

1

MPI
m

n
s

instr
Sample

ii

n

ii

s= =

=

∑
∑

1

1

Chapter Six: Statistical Sampling for Processor and Cache Simulation 97

only pass through address references that access the same set. Those refer-
ences that pass the filter are applied to the cache design, and the sets refer-
enced within the cache are the sample. The method is illustrated in Figure 6.2.
If p bits in the set selection portion of the address are used to filter the
address references, (1/2p)th of the cache sets in each cache are included in
the sample. In the experiments conducted by Kessler et al. the frac-
tion-instructions method proved to be more accurate in the calculation of
the sample MPI.

This method supports the simulation of multiple cache designs and
cache hierarchies. The trace of address references to a secondary cache con-
sists of the references that miss in the primary cache. When sets are selected
at random it is difficult to simulate a hierarchy of caches. The misses gener-
ated from a randomly sampled primary cache when applied to a randomly
sampled secondary cache do not provide reliable estimates. The constant-bits
method does not encounter this problem and may be conveniently used to
simulate a hierarchy of caches. However, the method implies that the sam-
ples are systematically chosen via address selection. This is a disadvantage
to other methods where the sets are chosen randomly. In the case of a

Figure 6.2 Constant-bits set selection.

16 KB, 4-way set associative

32 byte blocks

Set: 0000000

Set: 0000001

Set: 0000010

Set: 0010000

Set: 0010001

Set: 0010010

Set: 0100000

Set: 0100001

Set: 0100010

8 KB, direct mapped

32 byte blocks

16 KB, 4-way set associative

32 byte blocks

16 KB, 2-way set associative

16 byte blocks

0 0 1 0

0 0 1 0

0 0 1 0

Set number (9 bits)

Set number (7 bits)

Set number (8 bits)

98 Performance Evaluation and Benchmarking

workload that exhibits a regular pattern, the systematic sampling could
produce flawed results.

To summarize, there are two widely accepted sampling methods in
caches. Set sampling chooses sets from the cache and considers these to be
representative of the entire cache. The choice of sets may be random or based
on some information about the sets in the cache (e.g., sampling by weighted
misses). The choice of sets may also be a consequence of information avail-
able in the trace as in the constant-bits method. Set sampling has been found
to provide accurate estimates at low simulation cost [4]. However, it fails to
capture time-dependent behavior (such as the effects of prefetching).
Although set sampling reduces the time required for simulation, it does not
solve the trace storage problem. If many different caches are to be simulated
the full trace needs to be stored. Time sampling, on the other hand, requires the
storage of only the sampled portion of the trace. It can also capture
time-dependent behavior. The drawback of time sampling is the non-sam-
pling bias due to the cold-start effect. Many different techniques have been
employed to overcome this bias. Most of these methods require additional
references in each cluster thus lengthening simulation. The decision as to
which method to use depends on the resources available and the desired
nature of the simulation.

6.2.3 Trace sampling for processors

The sampled unit of information for processor simulations is not the instruc-
tions in the trace, but rather the execution cycles during a processor simu-
lation. A metric that may be measured for each execution cycle is the IPC.
Because IPC varies between benchmarks, the relative error, RE(IPC), may be
used to validate results. The relative error is given by,

(6.6)

where is the true population mean IPC, and is the sample mean
IPC. RE(IPC) relies on from a full-trace simulations of each test bench-
mark. Reduction in sampling bias, sampling variability, and determination
of error bounds do not require .

Conte. The earliest study of trace-sampled processor simulation used
a systematic sampling method [5]. For state repair, a strategy similar to that
used for caches by Laha et al. was used. The method used 40 contiguous
clusters of sizes either 10,000 or 20,000 instructions each at regular intervals.
Results for a highly parallel microarchitecture with unlimited functional
units showed a maximum relative error of 13% between the sampled paral-
lelism and the actual value.

RE IPC IPC
true

IPC
sample

IPC
true() =
−μ μ

μ

μ IPC
true μ IPC

sample

μ IPC
true

μ IPC
true

Chapter Six: Statistical Sampling for Processor and Cache Simulation 99

Poursepanj. In a similar study [6], performance modeling of the PowerPC
603 microprocessor employed a method using 1 million instructions in 200
clusters of 5000 instructions each. The geometric mean of the parallelism for
the SPECint92 benchmarks was within 2% of the actual value. However, the
error for individual benchmarks varied as much as 13%. As with [5], the error
was described using a comparison between the sampled and the full-trace
simulations.

Lauterbach. Lauterbach’s study discussed an iterative sampling-veri-
fication-resampling method [7]. The sampling method used consists of
extracting 100 clusters of 100,000 instructions each, at random intervals.
Quick checks involving instruction frequencies, basic-block densities, and
cache statistics are done to investigate the validity of the sample. The checks
are done against the full trace for the benchmark. In some cases the sampled
trace is not representative of the full trace. When this occurs, additional
clusters are collected until the required criterion is reached. Final validation
of the sampled trace compares the execution performance of the sampled
trace with that of the full trace. This study simulates both the cache and the
processor. The state of the cache at a new cluster is stored along with the
instructions of the cluster. This state is loaded in before the beginning of
the cluster during the sampled trace simulation. This reduces the influence
of the cold-start effect in the cache subsystem on the processor simulation.
The need to collect cache statistics makes a full-trace simulation necessary.
The process of collecting the trace can therefore be time consuming. The
full-trace simulation is also required to validate the sampled trace and deter-
mine error bounds.

Conte et al. Menezes presents a thorough simulation regimen for pro-
cessor simulation that allows for the calculation of confidence intervals [19].
(This chapter parallels Menezes’s approach and presents updated techniques
for simulations employing caches.)

Haskins and Skadron. The study by Haskins and Skadron discusses
techniques to reduce execution times in sampled simulations by devising
methods that approximate the full warm-up method [18]. In full warm-up,
every instruction that is skipped is applied to the state of the system in
functional mode. After instructions have been skipped, then normal cycle
timing accurate simulation resumes. Functional warming was originally
described for cache simulation in Conte et al. [17], and later used by Wenish
et al. [14] in processor simulation. Although accurate, the full warm-up
method is very heavy-handed. This paper proposes methods to determine
the number of instructions prior to a cluster for warm-up rather than all
instructions between clusters. The two methods used to determine the num-
ber of precluster instructions for warm-up are Minimal Subset Evaluation and
Memory Reference Reuse Latency. For more information, please refer to Haskins
and Skadron [18].

100 Performance Evaluation and Benchmarking

6.3 An example
A solid body of work exists for the application of trace sampling for cache
simulations. This is, however, not true for processor simulations. The remain-
der of this chapter demonstrates how sampling techniques can be applied
to processors. The problems unique to trace sampling in processor simu-
lations are discussed. An accurate method to alleviate non-sampling and
sampling bias using empirical results is presented. Also shown is a method
to calculate error bounds for results obtained using sampling techniques.
These bounds can be obtained without full simulations using the sampling
results alone.

Where previous studies have tried to reduce all bias as a whole and
make a prescription for all trace-sampled processor simulation, this study
separates bias into its non-sampling and sampling components. It develops
techniques for reducing non-sampling bias. Reduction in sampling bias is
achieved using well-known techniques of sampling design [8,10].

As the first step in the sampling process, clusters of instructions are
obtained at random intervals and potentially written to a disk file. The choice
of clusters at random satisfies the conditions of probability sampling. The
clusters of instructions are then simulated to obtain clusters of execution
cycles. The fixed number of instructions in a cluster yields a variable number
of execution cycles. Statistics are ultimately calculated from these execution
cycles. The number of execution cycles that would be obtained on the exe-
cution of a sampled instruction trace, , is given by,

(6.7)

where, is the number of instructions in a cluster, Ncluster is the number
of clusters, and μIPC is the mean IPC. The term cluster is used interchangeably
for the group of instructions that yield a set of contiguous execution cycles,
and for the set of execution cycles themselves.

6.3.1 The processor model

A highly parallel processor model is used in this study to develop a robust
non-sampling bias reduction technique and to test the method for sample
design. The model is an execution-driven simulator based on SimpleScalar
[20], which models the MIPS R10000 processor. Unlike trace-driven simula-
tions, the processor model fetches instructions from a compiled binary. The
front end of the processor includes a four-way 64 KB instruction cache with
a 64-byte line size. The superscalar core can fetch and dispatch eight instruc-
tions per cycle, and can issue and retire four instructions per cycle. The model
also includes eight universal function units that are fully pipelined. The

NE
sample

N
N N

E
sample I

cluster
cluster

IPC

=
×

μ

NI
cluster

Chapter Six: Statistical Sampling for Processor and Cache Simulation 101

maximum number of in flight instructions is 64. The issue queue size is 32,
and there is a load store queue of 64 elements. The pipeline depth is seven
stages. The minimum branch miss-prediction penalty is five cycles. The
processor frequency is assumed to be 4 gigahertz (GHz).

The model also includes both a functional and a timing simulator. The
functional simulator is useful in a variety of different ways. First, the func-
tional simulator is used to validate the results of the timing simulator. If the
timing simulator attempts to commit a wrong value, the functional simulator
will assert an error. However, in the context of trace sampling, the functional
simulator has additional uses. As instructions in the dynamic instruction
stream are skipped, the functional simulator still contains the valid state of
the architectural register file. When a cluster is entered, the values of the
registers contained in the functional simulator are copied to the timing
simulator. In this manner, instructions that consume values from instructions
that were skipped in between clusters will still yield correct results.

The simulator also incorporates a sophisticated memory hierarchy.
The first-level data cache is a four-way 32 KB cache with 64-byte line size.
The second-level unified cache is an eight-way 1 MB cache with a 64-byte
line size. There are also two buses that are used to emulate the bus con-
tention and transfer delay between the levels of memory. The first-level
bus is shared between the first-level data cache and the instruction cache,
and connects the first-level caches and the unified second level. The
first-level bus has a width of 32 bytes and operates at 2 GHz. The sec-
ond-level bus connects the second-level cache and the memory. This bus
is 16 bytes and operates at 1 GHz. Table 6.1 shows some of the processor
model design parameters.

Highly accurate branch prediction and speculative execution are gener-
ally accepted as essential for high superscalar performance. In the spirit of
the other high-performance design parameters, a hardware predictor with
high prediction accuracy is incorporated. The branch predictor used is a 64K
entry Gshare predictor [12] with a 1024 entry return address stack. In addi-
tion, the processor is able to use the results of the predictor to speculatively
execute beyond eight branches (for comparison, the PowerPC 604 can spec-
ulate beyond two branches [13]).

The standard performance metric for superscalar processors is the IPC,
measured as the number of instructions retired per execution cycle. IPC is

Table 6.1 Simulator parameters

Issue rate: 4 instructions/cycle
Scheduling: out-of-order, reorder buffer based
Branch handling: G-share predictor
Branch speculation degree: 8 branches ahead

102 Performance Evaluation and Benchmarking

ultimately limited by the issue rate of the processor, because flow out of the
processor cannot exceed the flow in.

6.3.2 Reduction of non-sampling bias

Experiments were conducted using the SPEC2000 benchmarks. Integer
benchmarks used include gcc, mcf, parser, perl, vortex, vpr, and twolf. Float-
ing-point benchmarks used include ammp and art. Table 6.2 shows the trueIPC

of each benchmark simulated during experimentation. The first 6 billion
instructions from each benchmark were simulated at the cycle level to serve
as a baseline for comparison to the various sampling techniques.

Using these values, a study of the non-sampling bias for the processor
model was conducted. The sampling parameters were chosen by performing
a search of the design space. Simulations were performed by varying either
the number of clusters or the cluster size. Figures 6.3 and 6.4 show the results
of the design space search using two different warm-up methods. These meth-
ods are discussed later. From this data, cluster sizes of 1000 to 10,000 instruc-
tions were selected with a 1000-instruction step size. The cluster count was
made large enough so that it did not contribute considerably to the error, but
small enough to minimize the instructions to be executed. For these experi-
ments, 2000 clusters were chosen. The first cluster was selected as the first
NI

cluster instructions from the trace. After the first cluster, a number was ran-
domly chosen to determine the number of skipped instructions between sam-
pling units. A maximum interval was calculated for each cluster size such that
all clusters would be selected in a uniform distribution of the first 6 billion
instructions in the dynamic stream. In order to keep the sampling bias within
the clusters constant, a single random seed was used for all simulations.

Using this framework a number of different techniques were used to ana-
lyze and effectively remove the amount of non-sampling bias from the sample.
As discussed earlier, non-sampling bias is caused by the loss of state informa-
tion during skipped periods. After a cluster is executed and instructions are
skipped, the potential for state loss is high and will likely affect the performance

Table 6.2 Studied benchmark
population

benchmark True IPC
gcc 0.87314
mcf 0.20854
parser 1.07389
perl 1.28956
vpr 1.18062
vortex 0.92672
twolf 0.97398
art 0.77980
ammp 0.24811

Chapter Six: Statistical Sampling for Processor and Cache Simulation 103

of the next cluster. State in a processor is kept in a number of areas including:
the scheduling queues, the reorder buffer, the functional unit pipelines, the
branch handling target buffer (the BTB), instruction caches, data caches, load/
store queues, and control transfer instruction queues.

The following methods were simulated to analyze the affect of cold start
and to remove the bias that negatively impacts sampling performance. In
the no warm-up method, no state repair techniques were used when executing
clusters. After the execution of a cluster, the caches and BTB were left cold,
or stale. That is, when skipping instructions in between clusters, the BTB
and the contents of the caches were at the final state of the previous cluster
when execution of the next cluster began. In the fixed warm-up method, the
state repair technique consisted of a fixed number of instructions upon
entering a cluster. Using this method, no statistics were collected until the
warm-up period in the cluster had finished. A certain number of instructions
were used to help restore the state of the system before counting the instruc-
tions as significant for IPC statistics. For each of the cluster sizes, fixed
warm-up percentages were chosen between 10% and 90%.

Functional warming techniques were also applied during experimentation.
Functional warming refers to the warming of state in between clusters while

Figure 6.3 Cold BTB/cold cache.

R
E

 (
IP

C
)

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
4 5 6 7 8 9 10 11 12 13

Number clusters 2x

Cold BTB/Cold cache
gcc
mcf
parser
perl
vpr
vortex
twolf
art
ammp

104 Performance Evaluation and Benchmarking

instructions are being skipped, and was applied to the BTB and caches. In the
stale BTB–warm cache method, the state of the L1, L2, and instruction caches
were warmed in between clusters, but the BTB was left stale. In the warm
BTB–stale cache method, the state of the BTB was warmed in between clusters,
but the state of the caches were left stale. Finally, in the warm BTB–warm cache
method both the caches and the BTB were warmed in between clusters.

A study of the non-sampling bias for the processor model is shown in
Figures 6.5 though 6.11. This data shows the absolute value of the relative
error between a complete run of the benchmark and the sampled run.

The results of no warm-up are shown in Figure 6.5. In this method,
the state of the BTB and caches at the end of the cluster was left unchanged
at the execution of the next cluster. This method assumes that no substantial
changes in BTB or the caches occurred while skipping instructions, which
is obviously untrue for most applications. In this method no attempt is
made to mitigate the affects of cold start before using instructions within
a cluster for the calculation of IPC. However, even with no state repair
some interesting trends are noticed. In Figure 6.5, the relative error gener-
ally decreases as the cluster size increases. This correlates to sampling
theory, which states that error should decrease as the number of samples,

Figure 6.4 Warm BTB/warm cache.

gcc
mcf
parser
perl
vpr
vortex
twolf
art
ammp

R
E

 (
IP

C
)

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
4 5 6 7 8 9 10 11 12 13

Number clusters 2x

Warm BTB/Warm cache

Chapter Six: Statistical Sampling for Processor and Cache Simulation 105

or the size of those samples, increase. In Figure 6.5, all of the integer
benchmarks exhibited this behavior. For these benchmarks, the average
decrease in error was 14.3% as the cluster size increased. The twolf bench-
mark showed the highest accuracy gain from 48.6% to 11.3%. The smallest
gain was mcf, which went from 14.9% error to 13.6%. The most striking
observation from this method was the behavior exhibited by the float-
ing-point benchmarks, which showed an increase in relative error as the
cluster size increased. The art benchmark lost accuracy by 22.6% whereas
ammp decreased by 0.7% at the highest cluster size. The average relative
error for no warm-up for a 10,000 cluster size is 16.8%.

In Figures 6.6, 6.7, and 6.8 the results of the fixed warm-up method are
presented for fixed warm-up percentages of 10%, 50%, and 90%, respectively.
In the fixed warm-up method, cold start was addressed by using instructions
within the cluster itself to warm the state of the processor before recording
statistics for IPC calculation. In this method, all information during the
warming period is discarded. The state of the caches and BTB are left stale
just as in the no warm-up method. Figure 6.6 shows the affects of using 10%
of the cluster size as a warming period. This figure looks very similar to the
results presented in no warm-up. As in no warm-up the relative error

Figure 6.5 Cold BTB/cold cache.

R
E

 (
IP

C
)

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

 Cluster size

Cold BTB/Cold cache
gcc
mcf
parser
perl
vpr
vortex
twolf
art
ammp

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

106 Performance Evaluation and Benchmarking

decreases as the cluster size increases for gcc, mcf, parser, perl, cpr, vortex,
twolf, and ammp. In addition, the accuracy of the relative error increased
for a given cluster size, as the fixed percentage of instructions for warm-up
also increased, as shown in Figures 6.7 and 6.8. Although it is hard to see
from the graphs, the relative error decreases marginally. When compared to
no warm-up, inaccuracy gain was achieved through all of the integer bench-
marks. The perl benchmark saw the highest gain at 6.7%. The lowest gain
from no warm-up among the various integer benchmarks was parser at 0.9%.
As in no warm-up, the art benchmark experienced a performance loss under
fixed warm-up as the cluster sizes increased. The average relative error for
fixed warm-up with a 90% warm-up period is 13.9%.

In Figures 6.9 through 6.11 the results of functional warming when
applied to the BTB and cache structures, are presented. In these methods,
the skipped instructions in between clusters were used to reduce the
cold-start effect. All branches in between clusters were applied to the branch
predictor in the case of BTB. For the caches, the data from loads and stores
were used to keep the state of the caches consistent as they would be under
the full timing simulation. In the stale BTB–warm cache method, the average
relative error fell from 13.9% in fixed warm-up to 2.8%. In this mode, all
benchmarks, excluding ammp, saw a remarkable drop in relative error

Figure 6.6 Ten percent period warm-up.

R
E

 (
IP

C
)

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

 Cluster size

10% Period warmup

gcc
mcf
parser
perl
vpr
vortex
twolf
art
ammp

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Chapter Six: Statistical Sampling for Processor and Cache Simulation 107

compared to the previous methods. The parser benchmark error was reduced
from 44.3% in no warm-up to 4.7%. The twolf benchmark relative error was
reduced from 37.3% to 1.2%, and mcf was reduced from 13.6% to 3.4%. The
importance of the BTB relative to the caches is shown in Figures 6.9 and
6-10. Even when the BTB is functionally warmed in between clusters, the
penalties of all incurring cache misses at the beginning of the next cluster
completely dominates the performance. As evident in the average relative
errors for these two methods, the affect of warming the BTB is much less
significant when compared to warming the caches. The warm BTB–stale
cache method had an average relative error of 16.1%, very similar to stale
BTB–stale cache. The most accurate of all methods was the warm BTB–warm
cache method which had an average relative error of 1.5%.

6.3.3 Reduction in sampling bias and variability

It is accepted in sampling theory that bias exists in every sample because of
the random nature of the sample. It is possible to predict the extent of the
error caused by this bias. The standard error of the statistic under consider-
ation is used to measure the precision of the sample results (i.e., the error
bounds) [8]. Standard error is a measure of the expected variation between

Figure 6.7 Fifty percent period warm-up.

R
E

 (
IP

C
)

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

 Cluster size

50% Period warmup
gcc
mcf
parser
perl
vpr
vortex
twolf
art
ammp

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

108 Performance Evaluation and Benchmarking

repeated sampled simulations using a particular regimen. These repeated
simulations yield mean results that form a distribution. The standard error
is defined as the standard deviation of this distribution. Its use is based on
the principle that the mean results of all simulations for a particular regimen
are normally distributed, regardless of whether or not the parameter is
normally distributed within the population. Based on this principle, the
properties of the normal distribution can be used to derive the error bounds
for the estimate obtained from a simulation.

It is not cost-effective to perform repeated sampled simulations to mea-
sure the standard error. Sampling theory allows the estimation of the stan-
dard error from a single simulation. This is termed as the estimated standard
error and is denoted by SIPC. This method of measurement and the results
obtained from it are used in the rest of this section. The standard deviation
for a cluster sampling design is given by,

, (6.8)

Figure 6.8 Ninety percent period warm-up.

R
E

 (
IP

C
)

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

 Cluster size

90% Period warmup

gcc
mcf
parser
perl
vpr
vortex
twolf
art
ammp

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

S
NIPC

IPC
i

IPC
sample

i

N

cluste

cluster

=
−()

=∑ μ μ
2

1

rr − 1

Chapter Six: Statistical Sampling for Processor and Cache Simulation 109

where is the mean IPC for the ith cluster in the sample. The estimated
standard error can then be calculated from the standard deviation for the
sample as

, (6.9)

The estimated standard error can be used to calculate the error bounds
and confidence interval. Using the properties of the normal distribution, the
95% confidence interval is given by 1.96 , where the error bound
is . A confidence interval of 95% implies that 95 out of 100 sample
estimates may be expected to fit into this interval. Moreover, for a
well-designed sample, where non-sampling bias is negligible, the true mean
of the population may also be expected to fall within this range. Low stan-
dard errors imply little variation in repeated estimates and consequently
result in higher precision.

Table 6.3 shows the confidence interval measurements from estimates
obtained from single samples (= 2000) with cluster sizes of 3000
instructions. The 95% error bounds are also shown. The ammp benchmark

Figure 6.9 Cold BTB/warm cache.

R
E

 (
IP

C
)

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

 Cluster size

Cold BTB/Warm cache

gcc
mcf
parser
perl
vpr
vortex
twolf
art
ammp

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

μ IPC
i

S
S
NIPC

IPC

cluster

=

μ IPC
sample ± SIPC

±1 96. SIPC

Ncluster

110 Performance Evaluation and Benchmarking

has the maximum standard error and therefore largest error bounds. Its
confidence interval indicates that the mean IPC for repeated samples should
be between 0.19019 and 0.29761 (). Whether or not the precision
provided by this range is acceptable depends on the tolerable error decided
upon. The values of the true mean () are included in Table 6.3 to show
that the confidence interval also contains . This is true for all the bench-
marks.

Figure 6.12 shows the variability of cluster means across all clusters in
the sample. The x-axis represents the cluster number and the y-axis is the
mean IPC for each cluster in the sample. This figure provides insights into
why some benchmarks are more difficult to sample than others. It shows
the distribution of the mean IPCs of the clusters using a 1000-cluster sample.
Note that benchmarks with small variations among cluster means, such as
vpr, vortex, and twolf, are conducive to accurate sampling. Benchmarks such
as gcc, parser, perl, and mcf exhibit high variation in the cluster means and
are therefore difficult to sample. It is clear that the precision of a sampling
regimen depends upon the homogeneity of the cluster means. For these
benchmarks, the number of clusters needs to be large enough to offset the
effects of the highly heterogeneous cluster means. However, if variation

Figure 6.10 Warm BTB/cold cache.

R
E

 (
IP

C
)

 Cluster size

Warm BTB/Cold cache
gcc
mcf
parser
perl
vpr
vortex
twolf
art
ammp

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

μ IPC
sample CI±

μ IPC
true

μ IPC
true

Chapter Six: Statistical Sampling for Processor and Cache Simulation 111

Figure 6.11 Warm BTB/warm cache.

Table 6.3 Sampled estimate accuracy

True mean
Estimated

mean
Standard

error
95% Error

bound
Absolute

error

benchmark CI
gcc 0.87314 0.89178 0.02263 ±0.04436 0.01864
mcf 0.20854 0.22202 0.01999 ±0.03918 0.01348
parser 1.07389 1.05273 0.01343 ±0.02632 0.02116
perl 1.28956 1.28458 0.00761 ±0.01493 0.00498
vpr 1.18062 1.17164 0.00601 ±0.01178 0.00898
vortex 0.92672 0.92415 0.00487 ±0.00955 0.00257
twolf 0.97398 0.97523 0.00599 ±0.01175 0.00125
art 0.77980 0.78220 0.01816 ±0.03560 0.00240
ammp 0.24811 0.24390 0.02740 ±0.05371 0.00421

R
E

 (
IP

C
)

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

 Cluster size

Warm BTB/Warm cache

gcc
mcf
parser
perl
vpr
vortex
twolf
art
ammp

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

μ
IPC
true μ

IPC
sample S

IPC
μ μ

IPC
true

IPC
sample−

112 Performance Evaluation and Benchmarking

among the cluster means is too low, then the error bounds will become very
small and the may no longer be enveloped by the confidence interval.

The variability of cluster means can also be used to explain some of the
strange behavior of the art benchmark. Figure 6.13 shows the variability of
the cluster means for the art benchmark for cluster sizes of 1000, 3000, 5000,
and 10,000 instructions. As shown in this figure, the smallest cluster size of
1000 exhibits a large degree of variability, including a large number of tran-
sient spikes up to an IPC of approximately 3.5. As the cluster sizes increase,
the behavior of the cluster means changes. At a 3000-instruction cluster size
the number of transient spikes begins to diminish, and at 5000 the spikes
only reach an approximate IPC of 2.5. At a 10,000-instruction cluster size the
large spikes are all but removed. This suggests a low-pass filtering effect due
to larger cluster sizes. For this benchmark, the performance of cluster sam-
pling is more accurate when smaller cluster sizes are used. As the cluster
sizes increase, significant transient spikes are removed because the behavior
is averaged among a greater number of instructions. Although this suggests
that larger cluster sizes can be bad, the positive side is that it helps to hide

Figure 6.12 Cluster means variabillity.

0 200 400 600 800 1000
0

1

2

3

4

0 200 400 600 800 1000
0

1

2

3

4

0 200 400 600 800 1000
0

1

2

3

4

gcc

parser

vpr

twolf

ammp
0 200 400 600 800 1000

0
1

2

3

4 twolf

0 200 400 600 800 1000
0

1

2

3

4

0 200 400 600 800 1000
0

1

2

3

4

0 200 400 600 800 1000
0

1

2

3

4

0 200 400 600 800 1000
0

1

2

3

4

0 200 400 600 800 1000
0

1

2

3

4

mcf

perl

vortex

art

μ IPC
true

Chapter Six: Statistical Sampling for Processor and Cache Simulation 113

the non-sampling bias. The art benchmark performed contrary to expectation
by actually increasing in relative error as the cluster sizes increased, but the
non-sampling bias was successfully removed in other warm-up policies such
as warm BTB–warm cache and stale BTB–warm cache methods.

Because the full-trace simulations are available in this study, it is possible
to test whether sample design using standard error achieves accurate results.
The estimates of when compared to show relative errors of less
than 2% for most benchmarks (Table 6.3). The conclusion is that a robust
sampling regimen can be designed without the need for full-trace simula-
tions. When non-sampling bias is negligible, the sampling regimen can be
designed from the data obtained solely from a single sampled run.

6.4 Concluding remarks
This chapter has described techniques that have been used in sampling for
caches. Although the survey of techniques may not be exhaustive, an attempt
has been made to describe some of the more efficient methods in use today.
Because techniques for processor simulation have not developed as rapidly,

Figure 6.13 Cluster means behavior for different cluster lengths.

4

3

2

1

0
0 200 400 600 800 1000

Art-1000 cluster size
4

3

2

1

0
0 200 400 600 800 1000

Art-3000 cluster size

4

3

2

1

0
0 200 400 600 800 1000

Art-10000 cluster size
4

3

2

1

0
0 200 400 600 800 1000

Art-5000 cluster size

μ IPC
sample μ IPC

true

114 Performance Evaluation and Benchmarking

techniques have been developed for accurate processor simulation via sys-
tematic reduction in bias. A highly parallel processor model with consider-
able state information is used for the purpose. The techniques were verified
with empirical results using members of the SPEC2000 benchmarks.

The use of the non-sampling bias reduction techniques were demonstrated
by sample design for the test benchmarks. To reduce sampling bias, statistical
sampling design techniques were employed. The results demonstrate that
a regimen for sampling a processor simulation can be developed without
the need for full-trace simulations. It is unlikely that all non-sampling bias
was eliminated using the techniques. However, because the error bounds
calculated using estimated standard error bracketed the true mean IPC, it
can be concluded that the non-sampling bias reduction technique is highly
effective.

The recommended steps for processor sampling design are

1. Reduce non-sampling bias: This requires a state repair mechanism.
Empirical evidence from a highly parallel processor with a robust
branch predictor suggests selection of 2000 clusters with a cluster
size of 3000 or more instructions, with a full warm-up method of the
branch predictor and caches while skipping instructions between
clusters.

2. Determine the sample design:
a. Select a number of clusters: Simulate using a particular number

of clusters.
b. Determine error bounds: Estimate standard error (Equations (6.8)

and (6.9)) to determine error bounds/precision of the results. If
the error is acceptable, the experiments are completed. Otherwise,
increase the sample size by increasing the number of clusters, and
resimulate until the desired precision is achieved.

The results of this study demonstrate the power of statistical theory
adapted for discrete-event simulation.

References
1. Laha, S., Patel, J.A., and Iyer, R.K., Accurate low-cost methods for perfor-

mance evaluation of cache memory systems, IEEE Trans. Comput., C-37,
1325–1336, Feb. 1988.

2. Stone, H.S., High-Performance Computer Architecture, New York, NY: Addi-
son-Wesley, 1990.

3. Wood, D.A., Hill, M.D., and Kessler, R. E., A model for estimating trace-sam-
ple miss ratios, in Proc. ACM SIGMETRICS ’91 Conf. on Measurement and
Modeling of Comput. Sys., 79–89, May 1991.

4. Kessler, R.E., Hill, M.D., and Wood, D.A., A comparison of trace-sampling
techniques for multi-megabyte caches, IEEE Trans. Comput., C-43, 664–675,
June 1994.

Chapter Six: Statistical Sampling for Processor and Cache Simulation 115

5. Conte, T.M., Systematic computer architecture prototyping, Ph.D. thesis, De-
partment of Electrical and Computer Engineering, University of Illinois, Ur-
bana, Illinois, 1992.

6. Poursepanj, The PowerPC performance modeling methodology, Communica-
tions ACM, vol. 37, pp. 47–55, June 1994.

7. Lauterbach, G., Accelerating architectural simulation by parallel execution,
in Proc. 27th Hawaii Int’l. Conf. on System Sciences, (Maui, HI), Jan. 1994.

8. McCall, J.C.H., Sampling and Statistics Handbook for Research, Ames, Iowa: Iowa
State University Press, 1982.

9. Fu, J.W.C. and Patel, J.H., Trace driven simulation using sampled traces, in
Proc. 27th Hawaii Int’l. Conf. on System Sciences (Maui, HI), Jan. 1994.

10. Henry, G.T., Practical Sampling, Newbury Park, CA: Sage Publications, 1990.
11. Liu, L. and Peir, J., Cache sampling by sets, IEEE Trans. VLSI Systems, 1,

98–105, June 1993.
12. McFarling, S., Combining branch predictors, technical report TN-36, Digital

Western Research Laboratory, June 1993.
13. Song, S.P. and Denman, M., The PowerPC 604 RISC microprocessor, technical

report, Somerset Design Center, Austin, TX, Apr. 1994.
14. Wenish, T.F., Wunderlich, R.E., Falsafi, B., and Hoe, J.C., SMARTS: Acceler-

ating microarchitecture simulation via rigorous statistical sampling, Proc. 30th
ISCA, 2003.

15. Mangione-Smith, W.H., Abraham, S.G., and Davidson, E.S., Architectural vs
Delivered Performance of the IBM RS/6000 and the Astronautics ZS-1, in
Proc. 24th Hawaii International Conference on System Sciences, January 1991.

16. Lui, L. and Peir, J., Cache sampling by sets, IEEE Trans. VLSI Systems, 1,
98–105, June 1993.

17. Conte, T.M., Hirsch, M.A., and Hwu, W.W., Combining trace sampling with
single pass methods for efficient cache simulation, IEEE Transactions on Com-
puters, C-47, Jun. 1998.

18. Haskins, J.W., and Skadron, K.. Memory reference reuse latency: Accelerated
sampled microarchitecture simulation, in Proc of the 2003 IEEE International
Symposium on Performance Analysis of Systems and Software, 195–203, Mar. 2003.

19. Conte, T.M., Hirsch, M.A., and Menezes, K.N., Reducing state loss for effective
trace sampling of superscalar processors, in Proc of the 1996 International
Conference on Computer Design (Austin, TX), Oct. 1996.

20. Burger, D.C., and Austin, T.M., The simplescalar toolset, version 2.0, Computer
Architecture News, 25, 3, 13–25, 1997.

117

Chapter Seven

SimPoint: Picking
Representative Samples
to Guide Simulation

Brad Calder, Timothy Sherwood, Greg Hamerly
and Erez Perelman

Contents

7.1 Introduction .. 118
7.2 Defining phase behavior... 119
7.3 The strong correlation between code

and performance ..121
7.3.1 Using an architecture-independent metric

for phase classification ...121
7.3.2 Basic block vector..122
7.3.3 Basic block vector difference ...123
7.3.4 Showing the correlation between code

signatures and performance..124
7.4 Automatically finding phase behavior...124

7.4.1 Using clustering for phase classification...................................125
7.4.2 Clusters and phase behavior...126

7.5 Choosing simulation points
from the phase classification..127

7.6 Using the simulation points...128
7.6.1 Simulation point representation ...128
7.6.2 Getting to the starting sample image ..129

7.6.2.1 Fast-forwarding...129
7.6.2.2 Checkpointing starting sample image129
7.6.2.3 Reduced checkpoints ...129

118 Performance Evaluation and Benchmarking

7.6.3 Warm-up ...129
7.6.3.1 No warm-up..129
7.6.3.2 Assume hit (remove cold structure misses)...............130
7.6.3.3 Stale state ...130
7.6.3.4 Calculated warm-up ..130
7.6.3.5 Continuously warm ...130
7.6.3.6 Architecture structure checkpoint130

7.6.4 Combining the simulation point results130
7.6.5 Pitfalls to watch for when using simulation points................131

7.6.5.1 Calculating weighted IPC ...131
7.6.5.2 Calculating weighted miss rates131
7.6.5.3 Accurate instruction counts (no-ops)131
7.6.5.4 System call effects...131

7.6.6 Accuracy of SimPoint ...132
7.6.7 Relative error during design space exploration.......................133

7.7 Discussion about running SimPoint ...134
7.7.1 Size of interval ...134
7.7.2 Number of intervals..134
7.7.3 Number of clusters (K)...135
7.7.4 Random seeds..135
7.7.5 Number of iterations ..135
7.7.6 Number of dimensions ..135
7.7.7 BIC percentage...136

7.8 Summary ...136
Acknowledgments ..137
References...137

7.1 Introduction
Understanding the cycle-level behavior of a processor during the execution
of an application is crucial to modern computer architecture research. To
gain this understanding, researchers typically employ detailed simulators
that model each and every cycle. Unfortunately, this level of detail comes at
the cost of speed, and simulating the full execution of an industry standard
benchmark can take weeks or months to complete, even on the fastest of
simulators. Exacerbating this problem further is the need of architecture
researchers to simulate each benchmark over a variety of different architec-
tural configurations and design options, to find the set of features that
provides the appropriate tradeoff between performance, complexity, area,
and power. The same program binary, with the exact same input, may be
run hundreds or thousands of times to examine how, for example, the effec-
tiveness of a given architecture changes with its cache size. Researchers need
techniques that can reduce the number of machine-months required to esti-
mate the impact of an architectural modification without introducing an
unacceptable amount of error or excessive simulator complexity.

Chapter Seven: SimPoint: picking representative samples 119

Executing programs have behaviors that change over time in ways that
are not random but rather are often structured as sequences of a small
number of reoccurring behaviors that are called phases. This structured
behavior is a great benefit to simulation. It allows very fast and accurate
sampling by identifying each of the repetitive behaviors and then taking
only a single sample of each repeating behavior to represent that behavior.
All of these representative samples together represent the complete execu-
tion of the program. This is the underlying philosophy of the tool called
SimPoint [16,17,14,1,9,8]. SimPoint intelligently chooses a very small set of
samples called simulation points that, when simulated and weighed appro-
priately, provide an accurate picture of the complete execution of the program.
Simulating only these carefully chosen simulation points can save hours of
simulation time over statistically random sampling, while still providing the
accuracy needed to make reliable decisions based on the outcome of the cycle
level simulation. This chapter shows that repetitive phase behavior can be
found in programs and describes how SimPoint automatically finds these
phases and picks simulation points.

7.2 Defining phase behavior
Because phases are a way of describing the reoccurring behavior of a pro-
gram executing over time, let us begin the analysis of phases with a dem-
onstration of the time-varying behavior [15] of two different programs from
SPEC (Standard Performance Evaluation Cooperative) 2000, gcc and gzip.
To characterize the behavior of these programs we have simulated their
complete execution from start to finish. Each program executes many billions
of instructions, and gathering these results took several machine-months of
simulation time. The behavior of each program is shown in Figures 7.1 and 7.4.
Each figure shows how the CPI changes for these two programs over time.
Each point on the graph represents the average value for CPI taken over a
window of 10 million executed instructions (which we call an interval). These
graphs show that the average behavior does not sufficiently characterize the
behavior of the programs.

Note that not only do the behaviors of the programs change over time,
they change on the largest of time scales, and even here we can find repeating
behaviors. The programs may have stable behavior for billions of instruc-
tions and then change suddenly. In addition to performance, we have found
for the SPEC95 and SPEC2000 programs that the behavior of all of the
architecture metrics (branch prediction, cache misses, etc.) tend to change in
unison, although not necessarily in the same direction [15,17]. This change
in unison is due to an underlying change in the program’s execution, which
can have drastic changes across a variety of architectural metrics. The under-
lying methodology used in this chapter is the ability to automatically iden-
tify these underlying program changes without relying on architectural
metrics to group the program’s execution into phases. To ground our dis-
cussions in a common vocabulary, the following is a list of definitions that

120 Performance Evaluation and Benchmarking

are used in this chapter to describe program phase behavior and it’s auto-
mated classification.

• Interval—A section of continuous execution (a slice in time) of a
program. For the results in this chapter all intervals are chosen to be
the same size, as measured in the number of instructions committed
within an interval (e.g., 1, 10, or 100 million instructions [14]). All
intervals are assumed to be nonoverlapping, so to perform our anal-
ysis we break a program’s execution up into contiguous nonoverlap-
ping fixed-length intervals.

Figure 7.1 Time-varying graphs for CPI from each interval of execution for gz-
ip–graphic at 10 million interval size. The x-axis represents the execution of the
program over time. The results are nonaccumulative.

Figure 7.2 Time-varying graph showing the distance to the target vector from each
interval of execution in gzip–graphic for an interval size of 10 million instructions.
To produce the target vector, we create a basic block vector treating the whole
program as one interval. The target vector is a signature of the program’s overall
behavior.

Figure 7.3 Shows which intervals during the program’s execution are partitioned
into the different phases as determined by the SimPoint phase classification algo-
rithm. The full run of execution is partitioned into a set of four phases.

Chapter Seven: SimPoint: picking representative samples 121

• Similarity—Similarity defines how close the behavior of two inter-
vals are to one another as measured across some set of metrics.
Well-formed phases should have intervals with similar behavior
across various architecture metrics (e.g., IPC, cache misses, branch
misprediction).

• Phase—A set of intervals within a program’s execution that have all
behavior similar to one another, regardless of temporal adjacency. In
this way a phase can consist of intervals that re-occur multiple times
(repeat) through the execution of the program (as can be seen in gzip
and gcc).

• Phase Classification—Phase classification breaks up a program/input’s
set of intervals into phases with similar behavior. This phase behavior
is for a specific program binary running a specific input (a binary/
input pair).

7.3 The strong correlation between code
and performance

As mentioned in the prior section, for an automated phase analysis technique
to be applicable to architecture design space exploration, we must be able
to directly identify the underlying changes taking place in the executing
program. This section is a description of techniques that have been shown
effective at accomplishing this.

7.3.1 Using an architecture-independent metric
for phase classification

To find phase information, any effective technique requires a notion of how
similar two parts of the execution in a program are to one another. In creating
this similarity metric it is advantageous not to rely on statistics such as cache
miss rates or performance, because this would tie the phases to those statis-
tics. If that was done, then the phases would need to be reanalyzed every
time there is a change to some architecture parameter (either statically if the
size of the cache changed, or dynamically if some policy is changed adap-
tively). This is not acceptable, because our goal is to find a set of samples
that can be used across an architecture design space exploration. To address
this, we need a metric that is independent of any particular hardware based
statistic, yet it must still relate to the fundamental changes in behavior shown
in Figures 7.1 and 7.4.

An effective way to design such a metric is to base it on the behavior of a
program in terms of the code that is executed over time. There is a very strong
correlation between the set of paths in a program that are executed and the
time-varying architectural behavior observed. The intuition behind this is
that the code being executed determines the behavior of the program. With
this idea it is possible to find the phases in programs using only a metric

122 Performance Evaluation and Benchmarking

related to how the code is being exercised (i.e., both what code is touched
and how often). It is important to understand that this approach can find
the same phase behavior shown in Figures 7.1 and 7.4 by examining only
the frequency with which the code parts (e.g., basic blocks) are executed
over time.

7.3.2 Basic block vector

The Basic Block Vector (or BBV) [16] is a structure designed to concisely
capture information about how a program is changing behavior over time.
A basic block is a section of code that is executed from start to finish with
one entry and one exit. The metric for comparing two time intervals in a
program is based on the differences in the frequency that each basic block
is executed during those two intervals. The intuition behind this is that the
behavior of the program at a given time is directly related to the code it is
executing during that interval, and basic block distributions provide us with
this information.

A program, when run for any interval of time, will execute each basic
block a certain number of times. Knowing this information provides a code
signature for that interval of execution and shows where the application is
spending its time in the code. The general idea is that knowing the basic
block distribution for two different intervals gives two separate signatures,
which we can then compare to find out how similar the intervals are to one
another. If the signatures are similar, then the two intervals spend about the
same amount of time in the same code, and the performance of those two
intervals should be similar.

More formally, a BBV is a one-dimensional array, with one element in
the array for each static basic block in the program. Each interval in an
executed program gets one BBV, and at the beginning of each interval we
start with a BBV containing all zeros. During each interval, we count the
number of times each basic block in the program has been entered (just
during that interval), and record that number into the vector (weighed by
the number of instructions in the basic block). Therefore, each element in
the array is the count of how many times the corresponding basic block has
been entered during an interval of execution, multiplied by the number of
instructions in that basic block. For example, if the 50th basic block has one
instruction and is executed 15 times in an interval, then bbv[50] = 15 for that
interval. The BBV is then normalized to 1 by dividing each element by the
sum of all the elements in the vector.

We recently examined frequency vector structures other than BBVs for
the purpose of phase classification. We have looked at frequency vectors for
data, loops, procedures, register usage, instruction mix, and memory behav-
ior [9]. We found that using register usage vectors, which simply counts for
a given interval the number of times each register is defined and used,
provides similar accuracy to using BBVs. In addition, tracking only loop and
procedure branch execution frequencies performed almost as well as using

Chapter Seven: SimPoint: picking representative samples 123

the full basic block information. We also found, for SPEC2000 programs, that
creating data vectors or combined code and data vectors did not improve
classification over just using code [9].

7.3.3 Basic block vector difference

In order to find patterns in the program we must first have some way of
comparing the similarity of two BBVs. The operation needed takes as
input two BBVs and outputs a single number corresponding to how similar
they are.

We use BBVs to compare the intervals of the application’s execution.
The intuition behind this is that the behavior of the program at a given
time is directly related to the code executed during that interval [16]. We
use the BBVs as signatures for each interval of execution: each vector tells
us what portions of code are executed, and how frequently those portions
of code are executed. By comparing the BBVs of two intervals, we can evaluate
the similarity of the two intervals. If two intervals have similar BBVs, then
the two intervals spend about the same amount of time in roughly the
same code, and therefore we expect the performance of those two intervals
to be similar.

There are several ways of comparing two vectors to one another, such
as taking the dot product or finding the Euclidean or Manhattan distance.

The Euclidean distance, which has been shown to be effective for offline
phase analysis [17,14], can be found by treating each vector as a single point
in a D-dimensional space, and finding the straight-line distance between the
two points. More formally, the Euclidean distance of two vectors a and b in
D-dimensional space is given by

The Manhattan distance, on the other hand, is the distance between two
points if the only paths followed are parallel to the axes, and is more efficient
for on-the-fly phase analysis [18,10]. In two dimensions, this is analogous to
the distance traveled by a car in a city through a grid of city streets. This
has the advantage that it always gives equal weight to each dimension. The
Manhattan distance is computed by summing the absolute value of the
element-wise subtraction of two vectors. For vectors a and b in D-dimensional
space, the distance is

EuclideanDist a b a b
i

D

i i() (), = −
=
∑

1

2

ManhattanDist a b a b
i

D

i i(), = | − |
=
∑

1

124 Performance Evaluation and Benchmarking

7.3.4 Showing the correlation between code
signatures and performance

A detailed study showing that there is a strong correlation between code
and performance can be found in Lau et al. [8]. The graphs in Figures
7.4 and 7.5 give one representation of this by showing the time- varying
CPI and BBV distance graphs for gcc-166 right next to each other. The
time-varying CPI graph plots the CPI for each interval executed (at 10M
interval size) showing how the program’s CPI varies over time. Similarly,
the BBV distance graph plots for each interval the Manhattan distance of
the BBV (code signature) for that interval from the whole program target
vector. The whole program target vector is the BBV if the whole program
is viewed as a single interval. The same information is also provided for
gzip in Figures 7.1 and 7.2. The time-varying graphs show that changes
in CPI have corresponding changes in code signatures, which is one
indication of strong phase behavior for these applications. These results
show that the BBV can accurately track the changes in CPI for both gcc
and gzip. It is easy to see that over time the CPI changes accurately mirror
changes visible in the BBV distance graph.

These plots show that code signatures have a strong correlation to the
changes in CPI even for complex programs such as gcc. The results for
gzip show that the phase behavior can be found even if the intervals’ CPIs
have small variance. This brings up an important point about picking
samples for simulation based on code vectors versus CPI or some other
hardware metric. Assume we have two intervals with different code signa-
tures but they have very similar CPIs because both of their working sets
fit completely in the cache. During a design space exploration search, as
the cache size changes, the two interval CPIs may differ drastically because
one of them no longer fits into the cache. This is why it is important to
perform the phase analysis by comparing the code signatures independent
of the underlying architecture, and not based upon CPI thresholds. We
have found that the BBV code signatures correctly identify this difference,
which cannot be seen by looking at just the CPI. If the purpose of a study
is to perform design space exploration, it is important to be able to pick
samples that will be representative of the program’s execution no matter
the underlying architecture configuration. See Lau, Sampson, et al. [8], for
a complete discussion and analysis on the strong correlation between code
and performance.

7.4 Automatically finding phase behavior
Frequency vectors (BBVs, vectors based on the execution of loops and
procedures, or some other behavior discussed in Lau, Schoenmackers, and
Calder [9]) provide a compact and representative summary of a program’s
behavior for each interval of execution. By examining the similarity
between them, it is clear that there are high-level patterns in each program’s

Chapter Seven: SimPoint: picking representative samples 125

execution. In this section we describe the algorithms used to automatically
detect these patterns.

7.4.1 Using clustering for phase classification

It is extremely useful to have an automated way of extracting phase informa-
tion from programs. Clustering algorithms from the field of machine learning
have been shown to be very effective [17] at breaking the complete execution
of a program into phases that have similar frequency vectors. Because the
frequency vectors correlate to the overall performance of the program, group-
ing intervals based on their frequency vectors produces phases that are similar
not only in the distribution of program structures used, but also in every other
architecture metric measured, including overall performance.

The goal of clustering is to divide a set of points into groups, or clusters,
such that points within each cluster are similar to one another (by some
metric, usually distance), and points in different clusters are different from
one another. The k-means algorithm [11] is an efficient and well-known
clustering algorithm, which we use to quickly and accurately split program
behavior into phases. We use random linear projection [5] to reduce the
dimension of the input vectors while preserving the underlying similarity
information, which speeds up the execution of k-means. One drawback of
the k-means algorithm is that it requires the number of clusters k as an input
to the algorithm, but we do not know beforehand what value is appropriate.
To address this, we run the algorithm for several values of k, and then use
a goodness score to guide our final choice for k.

Taking this to the extreme, if every interval of execution is given its very
own cluster, then every cluster will have perfect homogeneous behavior. Our
goal is to choose a clustering with a minimum number of clusters where each
cluster has a certain level of homogeneous behavior.

The following steps summarize the phase clustering algorithm at a high
level. We refer the interested reader to Sherwood et al. [17] for a more detailed
description of each step.

1. Profile the program by dividing the program’s execution into con-
tiguous intervals of size N (e.g., 1 million, 10 million, or 100 million
instructions). For each interval, collect a frequency vector tracking
the program’s use of some program structure (basic blocks, loops,
register usage, etc.). This generates a frequency vector for every in-
terval. Each frequency vector is normalized so that the sum of all the
elements equals 1.

2. Reduce the dimensionality of the frequency vector data to D dimen-
sions using random linear projection. The advantage of performing
clustering on projected data is that it speeds up the k-means algorithm
significantly and reduces the memory requirements by several orders
of magnitude over using the original vectors, while preserving the
essential similarity information.

126 Performance Evaluation and Benchmarking

3. Run the k-means clustering algorithm on the reduced dimensional
data with values of k from 1 to K, where K is the maximum number
of phases that can be detected. Each run of k-means produces a clus-
tering, which is a partition of the data into k different phases/clusters.
Each run of k-means begins with a random initialization step, which
requires a random seed.

4. To compare and evaluate the different clusters formed for different k,
we use the Bayesian Information Criterion (BIC) [13] as a measure of
the goodness of fit of a clustering to a dataset. More formally, the BIC
is an approximation to the probability of the clustering given the data
that has been clustered. Thus, the higher the BIC score, the higher the
probability that the clustering is a good fit to the data. For each
clustering (k = 1 … K), the fitness of the clustering is scored using the
BIC formulation given in Pelleg and Moore [13].

5. The final step is to choose the clustering with the smallest k, such
that its BIC score is at least B% as good as the best score. The clus-
tering k chosen is the final grouping of intervals into phases.

The preceding algorithm groups intervals into phases. We use the
Euclidean distance between vectors as our similarity metric. This algo-
rithm has several important parameters (N, D, K, B, and more), which
must be tuned to create accurate and representative simulation points
using SimPoint. We discuss these parameters in more detail later in this
chapter.

7.4.2 Clusters and phase behavior

Figures 7.3 and 7.6 show the result of running the clustering algorithm on
gzip and gcc using an interval size of 100 million and setting the maximum
number of phases (K) to 10. The x-axis corresponds to the execution of the
program in billions of instructions, and each interval is tagged to be in one
of the clusters (labeled on the y-axis).

For gzip, the full run of the execution is partitioned into a set of four
clusters. Looking at Figure 7.2 for comparison, the cluster behavior captured
by the offline algorithm lines up quite closely with the behavior of the
program. Clusters 2 and 4 represent the large sections of execution that are
similar to one another. Cluster 3 captures the smaller phase that lies in
between these larger phases. Cluster 1 represents the phase transitions
between the three dominant phases. The cluster 1 intervals are grouped into
the same phase because they execute a similar combination of code, which
happens to be part of code behavior in either cluster 2 or 4 and part of code
executed in cluster 3. These transition points in cluster 1 also correspond to
the same intervals that have large cache miss rate spikes seen in the
time-varying graphs of Figure 7.1.

Figure 7.6 shows how gcc is partitioned into eight different clusters. In
comparing Figure 7.6 to Figures 7.4 and 7.5, we see that even the more
complicated behavior of gcc is captured correctly by SimPoint. The dominant

Chapter Seven: SimPoint: picking representative samples 127

behaviors in the time-varying CPI and vector distance graphs can be seen
grouped together in the dominant phases 1, 4, and 7.

7.5 Choosing simulation points
from the phase classification

After the phase classification algorithm described in the previous section has
done its job, intervals with similar code usage will be grouped together into
the same phase, or cluster. Then from each phase, we choose one represen-
tative interval that will be simulated in detail to represent the behavior of
the whole phase. Therefore, by simulating only one representative interval
per phase, we can extrapolate and capture the behavior of the entire program.

To choose a representative, SimPoint picks the interval that is closest to
the center of each cluster. The center is the average of all the intervals in the
cluster, and is called the centroid. This is analogous to the balance point of
all the points that are in that cluster, if all points had the same mass. It can

Figure 7.4 Time-varying graphs for CPI from each interval of execution for gcc-166
at 10 million interval size. The x-axis represents the execution of the program over
time. The results are nonaccumulative.

Figure 7.5 Time-varying graph showing the distance to the target vector from each
interval of execution in gcc-166 for an interval size of 10 million instructions. To
produce the target vector, we create a basic block vector treating the whole program
as one interval. The target vector is a signature of the program’s overall behavior.

Figure 7.6 Shows which intervals during the program’s execution are partitioned
into the different phases as determined by the SimPoint phase classification algo-
rithm. The full run of execution is partitioned into a set of eight phases.

128 Performance Evaluation and Benchmarking

also be viewed as the interval that behaves most like the average behavior
of the entire phase. Most likely there is no interval that exactly matches the
centroid, so the interval closest to the center is chosen. The selected interval
is called a simulation point for that phase [14,17]. Detailed simulation is then
performed on the set of simulation points.

SimPoint also gives a weight for each simulation point. Each weight is
a fraction; it is the total number of instructions counting all of the intervals
in the cluster, from which the simulation point was taken, divided by the
number of instructions in the program. With the weights and the detailed
simulation results of each simulation point, we compute a weighted average
for the architecture metric of interest (CPI, miss rate, etc). This weighted average
of the simulation points gives an accurate representation of the complete
execution of the program/input pair.

7.6 Using the simulation points
After the SimPoint algorithm has chosen a set of simulation points and their
respective weights, they can be used to accurately estimate the full execution
of a program. The next step is to simulate in detail the interval for each
simulation point, to collect the desired performance statistics.

7.6.1 Simulation point representation

SimPoint provides the simulation points in two forms:

• Simulation Point Interval Number—The interval number for each
simulation point is given. The interval numbers are relative to the
start of execution, not to the previous simulation point. To get the
start of a simulation point, subtract 1 from the interval number,
and multiply by the interval size. For example, interval number 15
with an interval size of 10 million instruction means that the sim-
ulation point starts at instruction 140 million (i.e., (15 − 1)∗10M)
from the start of execution. Detailed simulation of this simulation
point would occur from instruction 140 million until just before
150 million.

• Start PC with Execution Count—SimPoint also provides for each
simulation point the program counter for the first instruction execut-
ed for the interval and the number of times that instruction needs to
be executed before starting simulation. For example, if the PC is
0 × 12000340 with an execution count of 1000, then detailed simula-
tion starts the 1000th time that PC is seen during execution, and
simulation occurs for the length of the profile interval.

It is highly recommended that you use the simulation point PCs for
performing your simulations. There are two reasons for this. The first reason
deals with making sure you calculate the instructions during fast-forwarding

Chapter Seven: SimPoint: picking representative samples 129

exactly the same as when the simulation points were gathered. The second
reason is that there can be slight variations in execution count between
different runs of the same binary/input due to environment variables or
operating system variations when running on a cluster of machines. Both of
these are discussed in more detail later in this chapter.

7.6.2 Getting to the starting sample image

After choosing the form of simulation points to use, each simulation point
is then simulated. Two standard approaches for doing this are to use either
fast-forwarding or checkpointing.

7.6.2.1 Fast-forwarding
Sort the simulation points in chronological order. Fast-forward to the start of
the first simulation point. Simulate at the desired detail for the size of the
interval. Repeat these steps, fast-forwarding from one point to the next com-
bined with detailed simulation, until all simulation intervals have been collected.

7.6.2.2 Checkpointing starting sample image
One advantage of SimPoint is that the state of a program can be checkpointed
(e.g., using SimpleScalar’s checkpoint facility) right before the start of each
simulation point. This checkpointing allows parallel simulation of all of the
simulation points at once.

7.6.2.3 Reduced checkpoints
Checkpointing is used to obtain the startup image size of the sample to be
simulated. A technique proposed by Van Biesbrouck et al. [1] examines only
storing the memory words accessed in the simulation point to create a
reduced checkpoint. This results in two orders of magnitude less storage
then full checkpointing, and significantly faster simulation.

7.6.3 Warm-up

Using small interval sizes for your simulation points requires having an
approach for warming up the architecture state (e.g., the caches, TLBs, and
branch predictor). The following are some standard approaches for dealing
with warm-up.

7.6.3.1 No warm-up
If a large enough interval size is used (e.g., larger than 100 million instruc-
tions), no warm-up may be necessary for many programs. This is the
approach used by Intel’s PinPoint for simulation [12]. They simulate intervals
of size 250 million instructions so they do not have to worry about any
warm-up issues. They chose to go the SimPoint route with large interval
sizes because of the complexity of integrating statistical simulation and
warm-up into their detailed cycle accurate simulator.

130 Performance Evaluation and Benchmarking

7.6.3.2 Assume hit (remove cold structure misses)
All of the large architecture structures (e.g., cache, branch predictors) make
use of a warm-up bit that indicates when the first time an entry (e.g., cache
block) in that structure is used. If it is the first time, the access is assumed to
be a hit or a correct prediction, because most programs have low miss rates.
One can also use a miss rate percentage (e.g., 10%) for these cold structure
misses, randomly assuming some percentage of the cold start accesses are
misses. This a very simple method that provides fairly accurate warm-up state,
because the miss rates for these structures are usually fairly low [19,7].

7.6.3.3 Stale state
This is a method of not resetting the architecture structures between simu-
lation points, and instead they are used in the state they were in at the end
of the prior simulation point we just fast-forwarded from [4].

7.6.3.4 Calculated warm-up
One can calculate the working set of the most recently accessed data, code, and
branch addresses before a simulation point. Then start the simulation of archi-
tectural components W instructions before the simulation point, where W is large
enough to capture the working set size held by the architecture structures. After
these W instructions are simulated, all statistics are reset and detailed simulation
starts at that point. The goal of this approach is to bring the working set back
into the architecture structures before starting the detailed simulation [3,6].

7.6.3.5 Continuously warm
This approach continuously keeps the state of certain architecture compo-
nents warm (e.g., caches) even during fast-forwarding [20]. This is feasible
if an infrastructure provides fast functional and structure simulation during
fast-forwarding. Keeping the cache structures warm will increase the time
it takes to perform fast-forwarding, but it is very accurate.

7.6.3.6 Architecture structure checkpoint
An architecture checkpoint is the checkpoint of the potential contents of the
major architecture components (caches, branch predictors, etc) at the start
of the simulation point [1]. This can be used to significantly reduce warm-up
time, because warm-up consists of just reading the architecture structure
checkpoint from the file and using it to initialize the architecture structures.

If you decide to use small interval sizes, calculated warm-up and architecture
checkpointing provide the most accurate and efficient warm-up, although we
have found that for many programs assume hit and stale state are fairly accurate.

7.6.4 Combining the simulation point results

The final step in using SimPoint is to combine the weighted simulation points
to arrive at an overall performance estimate for the program’s execution.

Chapter Seven: SimPoint: picking representative samples 131

One cannot just use the standard mean for computing the overall miss rate,
because we need to apply a weight to each sample.

Each weight represents the proportion of the total execution that belongs
to its phase. The overall performance estimate is the weighted average of
the set of simulation point estimates. For example, if we have three simula-
tion points and their weights are [22, 33, 45] and their CPIs are (CPI1, CPI2,
CPI3), then the weighted average of these points is

CPI = 0.22∗CPI1 + 0.33∗CPI2 + 0.45∗CPI3

The weighted average CPI is the estimate of the CPI for the full execution.

7.6.5 Pitfalls to watch for when using simulation points

There are a few important potential pitfalls worth addressing to ensure
accurate use of SimPoint’s simulation points.

7.6.5.1 Calculating weighted IPC
For IPC (instructions/cycle) we cannot just apply the weights as in the
preceding example. We first would need to convert all the simulated samples
to CPI before computing the weighted average as given earlier, and then
convert the result back to IPC.

7.6.5.2 Calculating weighted miss rates
To compute an overall miss rate, first we must calculate both the weighted
average of the number of cache accesses, and the weighted average of the
number of cache misses. Dividing the second number by the first gives the
cache miss rate. In general, care must be taken when dealing with any ratio
because both the numerator and the denominator must be averaged sepa-
rately and then divided.

7.6.5.3 Accurate instruction counts (no-ops)
It is important to count instructions exactly the same for the BBV profiles as
for the detailed simulation, otherwise they will diverge. Note that the simula-
tion points on the SimPoint Web site include only correct path instructions and
the instruction counts include no-ops. Therefore, to reach a simulation point in
a simulator, every committed instruction (including no-ops) must be counted.

7.6.5.4 System call effects
Some users have reported system call effects when running the same simu-
lation points under slightly different OS configurations on a cluster of
machines. This can result is slightly more or less instructions being executed
to get to the same point in the program’s execution, and if the number of
instructions executed is used to find the simulation point this may lead to
variations in the results. To avoid this, we suggest using the Start PC and
Execution Count for each simulation point as described above. Another way
to avoid variations in startup is to use checkpointing as described above.

132 Performance Evaluation and Benchmarking

7.6.6 Accuracy of SimPoint

We now show the accuracy of using SimPoint for the complete SPEC2000
benchmark suite and their reference inputs. Figure 7.7 shows the simulation
accuracy results using SimPoint for the SPEC2000 programs when compared
to the complete execution of the programs. For these results we use an
interval size of 100 million and limit the maximum number of simulation
points (clusters) to no more than 10 for the offline algorithm. With the given
parameters SimPoint finds four phases for gzip, and eight for gcc. As
described earlier, one simulation point is chosen for each cluster, so this
means that a total of 400 million instructions were simulated for gzip. The
results show that this results in only a 4% error in performance estimation
for gzip. Note, if you desire lower error rates, you should use smaller interval
sizes and more clusters as shown in Perelman, Hamerly, and Calder [14].

For the non-SimPoint results, we ran a simulation for the same number
of instructions as the SimPoint data to provide a fair comparison. The results
in Figure 7.7 show that starting simulation at the start of the program results
in a median error of 58% when compared to the full simulation of the pro-
gram, whereas blindly fast forwarding for 1 billion instructions results in a
median 23% IPC error. When using the clustering algorithm to create multiple
simulation points, we saw a median IPC error of 2%, and an average IPC
error of 3%. In comparison to random sampling approaches, we have found
that SimPoint is able to achieve similar error rates requiring significantly (five
times) less simulation (fast-forwarding) time [14]. In addition, statistical sam-
pling can be combined with SimPoint to create a phase clustering that has a

Figure 7.7 Simulation accuracy for the SPEC2000 benchmark suite when performing
detailed simulation for several hundred million instructions compared to simulating
the entire execution of the program. Results are shown for simulating from the start
of the program’s execution, for fast-forwarding 1 billion instructions before simulat-
ing, and for using SimPoint to choose less than 10 100-million intervals to simulate.
The median results are for the complete SPEC2000 benchmarks.

Er
ro

r i
n

 P
er

fo
rm

an
ce

Es
ti

m
at

io
n

 (I
PC

)

Chapter Seven: SimPoint: picking representative samples 133

low per-phase variance [14]. Recently, using phase information has even been
applied to create accurate and efficient simulation for multi-program work-
loads for simultaneous multithreading [2].

7.6.7 Relative error during design space exploration

The absolute error of a program/input run on one hardware configuration
is not as important as tracking the change in metrics across different
architecture configurations. There is a lot of discussion and research into getting
lower error rates. But what often is not discussed is that a low error rate for a
single configuration is not as important as achieving the same relative error rates
across the design space search and having them all biased in the same direction.

We now examine how SimPoint tracks the relative change in hardware
metrics across several different architecture configurations. To examine the
independence of the simulation points from the underlying architecture, we
used the simulation points for the SimPoint algorithm with a 1 million interval
size and max K set to 300. For the program/input runs we examine, we
performed full program simulations while varying the memory hierarchy, and
for every run we used the same set of simulation points when calculating the
SimPoint estimates. We varied the configurations and the latencies of the L1
and L2 caches as described in Perelman, Hamerly, and Calder [14].

Figure 7.8 shows the results across the 19 different architecture configu-
rations for gcc-166. The left y-axis represents the performance in instructions

Figure 7.8 This plot shows the true and estimated IPC and cache miss rates for 19
different architecture configurations for the program gcc. The left y-axis is for the
IPC and the right y-axis is for the cache miss rates for the L1 data cache and unified
L2 cache. Results are shown for the complete execution of the configuration and
when using SimPoint.

134 Performance Evaluation and Benchmarking

per cycle and the x-axis represents different memory configurations from the
baseline architecture. The right y-axis shows the miss rates for the data cache
and unified L2 cache, and the L2 miss rate is a local miss rate. For each metric,
two lines are shown, one for the true metric from the complete detailed sim-
ulation for every configuration, and the second for the estimated metric using
our simulation points. For each graph, the configurations on the x-axis are
sorted by the IPC of the full run.

Figure 7.8 shows that the simulation points, which are chosen by only
looking at code usage, can be used across different architecture configura-
tions to make accurate architecture design trade-off decisions and compari-
sons. These results show that simulation points track the relative changes in
performance metrics between configurations. One interesting observation is
that although the simulation results from SimPoint have a bias in the metrics,
this bias is consistent and always in the same direction across the different
configurations for a given program/input run. This is true for both IPC and
cache miss rates. One reason for this bias is that SimPoint chooses the most
representative interval from each phase, and intervals that represent phase
change boundaries may (if they occur enough) or may not (if they do not
occur enough) be represented by a simulation point.

7.7 Discussion about running SimPoint
The SimPoint toolkit implements the algorithms described in this chapter.
There are a variety of parameters that can be tuned when running the tool to
create simulation points for new benchmarks, architectures, or inputs. In this
section, we describe these parameters and discuss how they may be adjusted
to meet your simulation needs.

7.7.1 Size of interval
The number of instructions per interval is the granularity of the algorithm.
The interval size directly relates to the number of intervals, because the
dynamic program length is the number of intervals times the interval size.
Larger intervals allow more aggregate profile (basic block vector) represen-
tations of the program, whereas smaller intervals allow for more fine-grained
representations. The interval size affects the number of simulation points;
with smaller intervals more simulation points are needed than when using
larger intervals to represent the same proportion of the program. Perelman
et al. [14] showed that using smaller interval sizes (1 million or 10 million)
results in more accuracy when using SimPoint and less simulation time. The
disadvantage is that with smaller interval sizes warm-up becomes more of an
issue, whereas with larger interval sizes warm-up is not as much of an issue
and may be preferred for some simulation environments [12].

7.7.2 Number of intervals
There should be a fair number of intervals for the clustering algorithm to
choose from. A good rule of thumb is to make sure to use at least 1000

Chapter Seven: SimPoint: picking representative samples 135

intervals in order for the clustering algorithm to be able to find a good
partition of the intervals. If there are too few intervals, then decrease the
interval size to obtain more intervals for clustering.

7.7.3 Number of clusters (K)

The maximum number of clusters (K), along with the interval size, represents
the maximum amount of simulation time that will be needed when looking
to choose simulation points. If SimPoint chooses a number of clusters that
is close to the maximum allowed, then it is possible that K is too small. If
this is the case and more simulation time is acceptable, it is better to double
the K and rerun the SimPoint analysis.

Creating simulation points with SimPoint comes down to recognizing
the tradeoff of accuracy for simulation time. If a user wants to place a low
limit on the number of clusters to limit simulation time, SimPoint can still
provide accurate results, but some intervals with differing behaviors may
be clustered together as a result.

7.7.4 Random seeds

The k-means clustering algorithm starts from a randomized initialization,
which requires a random seed. It is well-known that k-means can produce
very different results depending on its initialization, so it is good to use
many different random seeds for initializing different k-means clusterings,
and then allow SimPoint to choose the best clustering. We have found that
in practice, using five to seven random seeds works well.

7.7.5 Number of iterations

The k-means algorithm iterates either until it hits a maximum number of
iterations or until it reaches a point where no further improvement is possible
(whichever is less). In most cases 100 iterations is sufficient for the maximum
number, but more may be required, especially if the number of intervals is
very large compared to the number of clusters. A very rough rule of thumb
is the number of iterations should be set to , where N is the number
of intervals and k is the number of clusters.

7.7.6 Number of dimensions

SimPoint uses random linear projection to reduce the dimension of the
clustered data, which dramatically reduces computational requirements
while retaining the essential similarity information. SimPoint allows the
user to define the number of dimensions to project down to. In our exper-
iments we project down to 15 dimensions, as we have found that using
it produces the same phases as using the full dimension. We believe this
to be adequate for SPEC2000 applications, but it is possible to test other

N k/

136 Performance Evaluation and Benchmarking

values by looking at the consistency of the clusters produced when using
different dimensions [17].

7.7.7 BIC percentage

The BIC gives a measure of the goodness of the clustering of a set of data,
and BIC scores can be compared for different clusterings of the same data.
However, the BIC score is an approximation of a probability, and often
increases as the number of clusters increase. This can lead to often selecting
the clustering with the most clusters. Therefore, we look at the range of BIC
scores and select the score that attains some high percentage of this range
(e.g., we use 90%). When the BIC rises and then levels off, this method
chooses a clustering with the fewest clusters that is near the maximum value.
Choosing a lower BIC percentage would prefer fewer clusters, but at the risk
of less accurate simulation.

7.8 Summary
Understanding the cycle level behavior of a processor running an application
is crucial to modern computer architecture research, and gaining this under-
standing can be done efficiently by judiciously applying detailed cycle level
simulation to only a few simulation points. The level of detail provided by
cycle-level simulation comes at the cost of simulation speed, but by targeting
only one or a few carefully chosen samples for each of the small number of
behaviors found in real programs, this cost can be reduced to a reasonable level.

The main idea behind SimPoint is the realization that programs typically
only exhibit a few unique behaviors that are interleaved with one another
through time. By finding these behaviors and then determining the relative
importance of each one, we can maintain a high-level picture of the pro-
gram’s execution and at the same time quantify the cycle-level interaction
between the application and the architecture. The key to being able to find
these phases in an efficient and robust manner is the development of a metric
that can capture the underlying shifts in a program’s execution that result
in the changes in observed behavior. In this chapter we have discussed one
such method of quantifying executed code similarity and use it to find
program phases through the application of statistical and machine learning
methods.

The methods described in this chapter are distributed as part of SimPoint
[14,17]. SimPoint automates the process of picking simulation points using
an offline phase classification algorithm, which significantly reduces the
amount of simulation time required. These goals are met by simulating only
a handful of intelligently picked sections of the full program. When these
simulation points are carefully chosen, they provide an accurate picture of
the complete execution of a program, which gives a highly accurate estima-
tion of performance. The SimPoint software can be downloaded at http://
www.cse.ucsd.edu/users/calder/simpoint/.

Chapter Seven: SimPoint: picking representative samples 137

Acknowledgments
This work was funded in part by NSF grant No. CCR-0311710, NSF grant
No. ACR-0342522, a UC MICRO grant, and a grant from Intel and Microsoft.

References
1. Van Biesbrouck, M., Eeckhout, L., and Calder, B., Efficient sampling startup

for uniprocessor and simultaneous multithreading simulation. Technical Re-
port UCSD-CS2004-0803, University of California at San Diego, November
2004.

2. Van Biesbrouck, M., Sherwood, T., and Calder, B., A co-phase matrix to guide
simultaneous multithreading simulation, in IEEE International Symposium on
Performance Analysis of Systems and Software, March 2004.

3. Conte, T.M., Hirsch, M.A., and Hwu, W.W., Combining trace sampling with
single pass methods for efficient cache simulation, IEEE Transactions on Com-
puters 47, 6, 714–720, 1998.

4. Conte, T.M., Hirsch, M.A., and Menezes, K.N., Reducing state loss for effective
trace sampling of superscalar processors, in Proceedings of the 1996 International
Conference on Computer Design (ICCD), October 1996.

5. Dasgupta, S., Experiments with random projection. In Uncertainty in Artifi-
cial Intelligence: Proceedings of the Sixteenth Conference (UAI-2000), 143–151,
2000.

6. Haskins, J. and Skadron, K., Memory reference reuse latency: Accelerated
sampled microarchitecture simulation, in Proceedings of the 2003 IEEE Interna-
tional Symposium on Performance Analysis of Systems and Software, March 2003.

7. Kessler, R.E., Hill, M.D., and Wood, D.A., A comparison of trace-sampling
techniques for multi-megabyte caches, IEEE Transactions on Computers 43, 6,
664–675, 1994.

8. Lau, J., Sampson, J., Perelman, E., Hamerly, G., and Calder, B., The strong
correlation between code signatures and performance, in IEEE International
Symposium on Performance Analysis of Systems and Software, March 2005.

9. Lau, J., Schoenmackers, S., and Calder, B., Structures for phase classification,
in IEEE International Symposium on Performance Analysis of Systems and Software,
March 2004.

10. Lau, J., Schoenmackers, S., and Calder, B., Transition phase classification and
prediction, in The International Symposium on High Performance Computer
Architecture, February 2005.

11. MacQueen, J., Some methods for classification and analysis of multivariate
observations, in L.M. LeCam and J.Neyman, editors, Proceedings of the Fifth
Berkeley Symposium on Mathematical Statistics and Probability, volume 1,
281–297, University of California Press: Berkeley, 1967.

12. Patil, H., Cohn, R., Charney, M., Kapoor, R., Sun, A., and Karunanidhi, A.,
Pinpointing representative portions of large Intel Itanium programs with
dynamic instrumentation, in International Symposium on Microarchitecture,
December 2004.

13. Pelleg, D. and Moore, A., X-means: Extending K-means with efficient estima-
tion of the number of clusters, in Proceedings of the 17th International Conf. on
Machine Learning, 727–734, 2000.

138 Performance Evaluation and Benchmarking

14. Perelman, E., Hamerly, G., and Calder, B., Picking statistically valid and early
simulation points, in International Conference on Parallel Architectures and Com-
pilation Techniques, September 2003.

15. Sherwood, T. and Calder, B., Time varying behavior of programs, Technical
Report UCSD-CS99-630, University of California at San Diego, August 1999.

16. Sherwood, T., Perelman, E., and Calder, B., Basic block distribution analysis
to find periodic behavior and simulation points in applications, in Interna-
tional Conference on Parallel Architectures and Compilation Techniques, September
2001.

17. Sherwood, T., Perelman, E., Hamerly, G., and Calder, B., Automatically char-
acterizing large scale program behavior, in The International Conference on
Architectural Support for Programming, October 2002.

18. Sherwood, T., Sair, S., and Calder, B., Phase tracking and prediction, in The
Annual International Symposium on Computer Architecture, June 2003.

19. Wood, D.A., Hill, M.D., and Kessler, R.E., A model for estimating trace-sample
miss ratios, in ACM SIGMETRICS International Conference on Measurement and
Modeling of Computer Systems, May 1991.

20. Wunderlich, R., Wenisch, T., Falsafi, B., and Hoe, J., Smarts: Accelerating
microarchitecture simulation via rigorous statistical sampling, in The Annual
International Symposium on Computer Architecture, June 2003.

139

Chapter Eight

Statistical Simulation

Lieven Eeckhout

Contents

8.1 Introduction ..139
8.2 Statistical simulation ...141

8.2.1 Statistical profiling ..141
8.2.1.1 Microarchitecture-independent characteristics..........141
8.2.1.2 Microarchitecture-dependent characteristics143
8.2.1.3 An example statistical profile145

8.2.2 Synthetic trace generation ...146
8.2.3 Synthetic trace simulation ...148
8.2.4 Simulation speed...149
8.2.5 Performance/power prediction accuracy149

8.3 Applications..152
8.3.1 Design space exploration...152
8.3.2 Hybrid analytical-statistical modeling153
8.3.3 Workload space characterization and exploration157
8.3.4 Program characterization...158
8.3.5 System evaluation ...159

8.4 Previous work ..159
8.5 Summary ...161
References...161

8.1 Introduction
Computer system design is an extremely time-consuming, complex process,
and simulation has become an essential part of the overall design activity.
Simulation is performed at many levels, from circuits to systems, and at
different degrees of detail as the design evolves. Consequently, the designer’s

140 Performance Evaluation and Benchmarking

toolbox holds a number of evaluation tools, often used in combination, that
have different complexity, accuracy, and execution time properties.

For simulation at the microarchitecture level, detailed models of register
transfer activity are typically employed. These simulators track instructions
and data on a clock-cycle basis and typically provide detailed models for
features such as instruction issue mechanisms, caches, load/store queues,
and branch predictors, as well as their interactions. For input, microarchi-
tecture simulators take sets of benchmark programs including both standard
and company proprietary suites. These benchmarks may each contain bil-
lions of dynamically executed instructions, and typical simulators run many
orders of magnitude slower than real processors. The result is a relatively
long runtime for even a single simulation.

However, processor simulation at such a high level of detail is not always
appropriate, nor is it called for. For example, early in the design process,
when the design space is being explored and a high-level microarchitecture
is being determined, too much detail is unnecessary. When a processor
microarchitecture is initially being defined, a number of basic design deci-
sions need to be made. These decisions involve basic cycle time and instruc-
tion per cycle (IPC) tradeoffs, cache and predictor sizing tradeoffs, and
performance/power tradeoffs. At this stage of the design process, detailed
microarchitecture simulations of specific benchmarks aren’t feasible for a
number of reasons. For one, the detailed simulator itself takes considerable
time and effort to develop. Second, benchmarks restrict the studied applica-
tion space being evaluated to those specific programs. To study a fairly broad
design space, the number of simulation runs can be quite large. Finally,
highly accurate performance estimates are illusory, anyway, given the level
of design detail that is actually known.

Similarly, for making system-level design decisions, where a processor (or
several processors) may be combined with many other components, a very
detailed simulation model is often unjustified and/or impractical. Even
though the detailed processor microarchitecture may be known, the simulation
complexity is multiplied many fold by the number of processors and by larger
benchmark programs typically required for studying system-level behavior.

This chapter describes statistical simulation that can be used to overcome
many of the shortcomings of detailed simulation for those situations where
detailed modeling is impractical, or at least overly time consuming. Statistical
simulation measures a well-chosen set of characteristics during program exe-
cution, generates a synthetic trace with those characteristics, and simulates the
synthetic trace. If the set of characteristics reflects the key properties of the
program’s behavior, accurate performance/power predictions can be made.
The statistically generated synthetic trace is several orders of magnitude
smaller than the original program execution, hence simulation finishes very
quickly. The goal of statistical simulation is not to replace detailed simulation
but to be a useful complement. Statistical simulation can be used to identify
a region of interest in a large design space that can, in turn, be further analyzed
through slower but more detailed architectural simulations. In addition,

Chapter Eight: Statistical Simulation 141

statistical simulation requires relatively little new tool development effort.
Finally, it provides a simple way of modeling superscalar processors as com-
ponents in large-scale systems where very high detail is not required or practical.

This chapter is organized as follows. It first describes statistical simula-
tion and provides an evaluation of its speed and accuracy in Section 8.2.
Section 8.3 discusses a number of applications for statistical simulation.
Previous work done on statistical simulation is discussed in Section 8.4. This
chapter is summarized in Section 8.5.

8.2 Statistical simulation
Statistical simulation [2,6,8,9,10,17,18,19,20] consists of three steps, as is
shown in Figure 8.1. In the first step, a collection of program execution
characteristics is measured—this is done through specialized cache and pre-
dictor simulation, which we call statistical profiling. Subsequently, the
obtained statistical profile is used to generate a synthetic trace. In the final step,
this synthetic trace is simulated on a trace-driven simulator. The following
subsections outline all three steps.

8.2.1 Statistical profiling

In a statistical profile, there is a distinction between microarchitecture-
independent characteristics and microarchitecture-dependent characteristics.

8.2.1.1 Microarchitecture-independent characteristics
During statistical profiling we build a statistical flow graph (SFG). To clarify how
this is done, see Figure 8.2 in which a first-order SFG is shown for an example
basic block sequence AABAABCABC. Each node in the graph represents the
current basic block. This is shown through the labels A, B, and C in the
first-order SFG. The value in each node shows the occurrence or the number of
times the node appears in the basic block stream. For example, basic block A
appears five times in the example basic block sequence; consequently, the
occurrence for node A equals 5. The percentages next to the edges represent the

Figure 8.1 Statistical simulation: framework. Reprinted with permission from [8] ©
2004 IEEE.

142 Performance Evaluation and Benchmarking

transition probabilities Pr[Bn|Bn − 1] between the nodes. For example, there are
40% and 60% probabilities to execute basic block A and B, respectively, after
executing basic block A. Eeckhout et al. [8] studied higher-order SFGs and
found that a first-order SFG is enough to accurately capture program behavior
and consequently to make accurate performance predictions. For the remainder
of this chapter we will thus consider first-order SFGs.

All other program execution characteristics that are included in the
statistical profile will be attached to this SFG. For example, consider three
instances of basic block A in a statistical profile depending on the previously
executed basic block A, B, or C. As such, the program characteristics for A
may be different depending on the previously executed basic block. This is
to model a context in which a basic block is executed.

For each basic block corresponding to a node in the SFG, we record the
instruction type of each instruction. We classify the instruction types into 12
classes according to their semantics: load, store, integer conditional branch,
floating-point conditional branch, indirect branch, integer alu, integer multi-
ply, integer divide, floating-point alu, floating-point multiply, floating-point
divide, and floating-point square root. For each instruction, we record the
number of source operands. Note that some instruction types, although clas-
sified within the same instruction class, may have a different number of source
operands. For each operand we also record the dependency distance, which
is the number of dynamically executed instructions between the production
of a register value (register write) and the consumption of it (register read).
We only consider read-after-write (RAW) dependencies because our focus is
on out-of-order architectures in which write-after-write (WAW) and
write-after-read (WAR) dependencies are dynamically removed through reg-
ister renaming as long as enough physical registers are available. Although
not done so far, this approach could be extended to also include WAW and
WAR dependencies to account for a limited number of physical registers.
Note that recording the dependency distance requires storing a distribution,
because multiple dynamic versions of the same static instruction could result
in multiple dependency distances. In theory, this distribution could be very
large because of large dependency distances; in practice, we can limit this

Figure 8.2 Example first-order statistical flow graph (SFG) for basic block sequence
AABAABCABC.

Chapter Eight: Statistical Simulation 143

distribution. This however limits the number of in-flight instructions that can
be modeled during synthetic trace simulation. Limiting the dependency dis-
tribution to 512 probabilities allows the modeling of a wide range of current
and near-future microprocessors. More formally, the distribution of the
dependency distance of the pth operand of the ith instruction in basic block
Bn given its context Bn−1 can be expressed as follows: Pr[Dn,i,p|Bn,Bn−1].

Note that the characteristics discussed so far are independent of any
microarchitecture-specific organization. In other words, these characteristics
do not rely on assumptions related to processor issue width, window size,
and so on. They are therefore called microarchitecture-independent characteristics.

8.2.1.2 Microarchitecture-dependent characteristics
In addition to the preceding characteristics, we also measure a number of
characteristics that are related to locality events, such as cache hit/miss and
branch predictability behavior. These characteristics are hard to model in a
microarchitecture-independent way. Therefore a pragmatic approach is
taken, and characteristics for specific branch predictors and specific cache
configurations are computed using specialized cache and branch predictor
simulators, for example SimpleScalar’s sim-bpred and sim-cache [1]. Note
that although this approach requires the simulation of the complete program
execution for specific branch predictors and specific cache structures, this
does not limit its applicability. Indeed, a number of tools exist that measure
a wide range of these structures in parallel, for example, the cheetah simu-
lator [22], which is a single-pass, multiple-configuration cache simulator.

The cache characteristics consist of the following six probabilities: (1) the
L1 instruction cache miss rate, (2) the L2 cache miss rate due to instructions*,
(3) the L1 data cache miss rate, (4) the L2 cache miss rate due to data accesses
only, (5) the instruction translation lookaside buffer (I-TLB) miss rate, and
(6) the data translation lookaside buffer (D-TLB) miss rate.

The branch characteristics consist of three probabilities:

1. The probability of a taken branch, which will be used to limit the
number of taken branches that are fetched per clock cycle during
synthetic trace simulation;

2. The probability of a fetch redirection, which corresponds to a target
misprediction—branch target buffer (BTB) miss—in conjunction with
a correct taken/not-taken prediction for conditional branches; and

3. The probability of a branch misprediction, which accounts for BTB
misses for indirect branches and taken/not-taken mispredictions for
conditional branches.

Recall that these microarchitecture-dependent characteristics are mea-
sured using specialized cache and predictor simulation, which operates on

* We assume a unified L2 cache. However, we make a distinction between L2 cache misses
due to instructions and due to data.

144 Performance Evaluation and Benchmarking

an instruction-per-instruction basis. More specifically for the branch charac-
teristics, this means that the outcome of the previous branch is updated before
the branch predictor is accessed for the current branch (immediate update). In
pipelined architectures, however, this situation rarely occurs. Instead, multiple
lookups to the branch predictor often occur between the lookup and the update
of one particular branch. This is well-known in the literature as delayed update.
In a conservative microarchitecture, the update occurs at commit time (at the
end of the pipeline), whereas the lookup occurs at the beginning of the
pipeline by the fetch engine. Delayed update can have a significant impact
on overall performance. Therefore, computer architects have proposed spec-
ulative update of branch predictors with the predicted branch outcome
instead of the resolved outcome. Speculative update can yield significant
performance improvements because the branch predictor is updated earlier
in the pipeline, for example, at writeback time or at dispatch time. Note that
speculative update requires a repair mechanism to recover from corrupted
state due to mispredictions. In the results presented in this chapter, we assume
speculative update at dispatch time, that is, when instructions are inserted
from the instruction fetch queue into the instruction window. It is interesting
to note that speculative update mechanisms have been implemented in com-
mercial microprocessors, for example, in the Alpha 21264 microprocessor.

Delayed update, even when using a speculative update mechanism, can
have a significant impact on overall performance when modeling micropro-
cessor performance. Therefore branch profiling should take delayed update
into account [8]. This can be done using a FIFO (first in first out) buffer in
which lookups and updates occur at the head and at the tail of the FIFO,
respectively. The branch prediction lookups that are made when instructions
enter the FIFO are based on stale state that lacks updated information from
branch instructions still residing in the FIFO. At each step of the algorithm,
an instruction is inserted into the FIFO and removed from the FIFO. A branch
predictor lookup occurs when a branch instruction enters the FIFO; an update
occurs when a branch instruction leaves the FIFO. If a branch is
mispredicted—this is detected upon removal—the instructions residing in
the FIFO are squashed and new instructions are inserted until the FIFO is
completely filled. In case speculative update is done at dispatch time, a
natural choice for the size of the FIFO is the size of the instruction fetch queue.
If other update mechanisms are used, such as speculative update at
write-back time or nonspeculative update at commit time, appropriate sizes
should be chosen for the FIFO buffer.

To show the benefits of the delayed update branch profiling approach,
we refer to Figure 8.3, which shows the number of branch mispredictions
per 1000 instructions under the following scenarios:

• Execution-driven simulation using SimpleScalar’s sim-outorder sim-
ulator while assuming delayed update at dispatch time,

• Branch profiling with immediate update after lookup, and
• Branch profiling under delayed branch predictor update.

Chapter Eight: Statistical Simulation 145

This graph shows that the obtained number of branch mispredictions
under immediate branch predictor update can be significantly lower than
under execution-driven simulation. Modeling delayed update, however,
yields a number of branch mispredictions that is close to what is observed
under execution-driven simulation.

8.2.1.3 An example statistical profile
Before moving on with how a synthetic trace is generated from a statistical
profile and how this synthetic trace is subsequently simulated, we first give
an example of what a statistical profile looks like. Later we consider an
excerpt of a statistical profile for basic block A under three different contexts,
that is, given the previously executed basic block is A, B, and C. (Note this
example is a simplification of a statistical profile that is to be measured from
a real program. This example does not show instruction cache misses, nor
does it show L2 and TLB misses.)

Figure 8.3 The importance of modeling delayed branch predictor update. Reprinted
with permission from [8] © 2004 IEEE.

A|A **A|B** **A|C**

load load load

dep op1: 2 (0.8), 4 (0.2) dep op1: 2 (0.8), 3 (0.2) dep op1:3 (0.7), 5 (0.3)

ld miss? yes (1.0) ld miss? no (1.0) ld miss? yes (0.6)

146 Performance Evaluation and Benchmarking

Obviously, all three instances of basic block A have the same sequence
of instructions—namely, load, add, sub, and branch—also, the number of
inputs to each instruction is equal over all three instances. A dependency
that makes two instructions within the same basic block depend on each
other (for example, the add depends on the load) are also the same over all
three instances. Dependencies that cross the basic block—an instruction that
is dependent on an instruction before the current basic block—can be differ-
ent for a different context. For example, if the previously executed basic block
is A, the add instruction has a probability of 60% and 40% to be dependent
through its second operand on the fourth and sixth instruction before the
add; if on the other hand, the previously executed basic block is B, there is
a probability of 50% to have a dependency distance of 6 or 8. Similarly for
the cache and branch predictor behavior, the characteristic depends on the
previously executed basic block. For example, depending on whether the
basic block before A is A, B, or C, the probability for a branch misprediction
may be different, 5%, 2% and 10% for the preceding example, respectively.

8.2.2 Synthetic trace generation

Once a statistical profile is computed, we generate a synthetic trace that is
a factor R smaller than the original program execution. R is defined as the

add add add

dep op1: 1 (1.0) dep op1: 1 (1.0) dep op1: 1 (1.0)

dep op2: 4 (0.6), 6 (0.4) dep op2: 8 (0.5), 6 (0.5) dep op2: 6 (0.7), 9 (0.3)

sub sub sub

dep op1: 1 (1.0) dep op1: 1 (1.0) dep op1: 1 (1.0)

dep op2: 2 (1.0) dep op2: 2 (1.0) dep op2: 2 (1.0)

br br br

dep op1: 3 (1.0) dep op1: 3 (1.0) dep op1: 3 (1.0)

taken? no (1.0) taken? yes (1.0) taken? yes (0.33)

fetch redirect? (0.01) fetch redirect? (0.02) fetch redirect? (0.0)

mispredict? (0.05) mispredict? (0.02) mispredict? (0.10)

Chapter Eight: Statistical Simulation 147

synthetic trace reduction factor; typical values range from 1000 to 100,000.
Before applying our synthetic trace generation algorithm, we first generate
a reduced statistical flow graph. This reduced SFG differs from the original SFG
in that the occurrences of each node are divided by the synthetic trace
reduction factor R. In other words, the occurrences in the reduced SFG Ni

are a fraction R of the original occurrences Mi for all nodes i:

Subsequently, we remove all nodes for which Ni equals zero. Along with this
removal, we also remove all incoming and outgoing edges. By doing so, we
obtain a reduced statistical flow graph that is no longer fully interconnected.
However, the interconnection is still strong enough to allow for accurate
performance predictions. Once the reduced statistical flow graph is com-
puted, the synthetic trace is generated using the following algorithm.

1. If the occurrences of all nodes in the reduced SFG are zero, terminate
the algorithm. Otherwise, generate a random number in the interval
[0,1] to point to a particular node in the reduced SFG. Pointing to a
node is done using a cumulative distribution function built up by
the occurrences of all nodes. In other words, a node with a higher
occurrence will be more likely to be selected than a node with a
smaller occurrence.

2. Decrement the occurrence of the selected node reflecting the fact that
this node has been accessed. Determine the current basic block cor-
responding to the node.

3. Assign the instruction types and the number of source operands for
each of the instructions in the basic block.

4. For each source operand, determine its dependency distance. This is
done using random number generation on the cumulative depen-
dency distance distribution. An instruction x is then made dependent
on a preceding instruction x − d, with d the dependency distance.
Note that we do not generate dependencies that are produced by
branches or stores because those types of instructions do not have a
destination operand. This is achieved by trying a number of times
until a dependency is generated that is not supposedly generated by
a branch or a store. If after a maximum number of times (in our case
1000 times) still no valid dependency is created, the dependency is
simply squashed.

5. For each load in the synthetic trace, determine whether this load will
cause a D-TLB hit/miss, an L1 D-cache hit/miss, and, in case of an
L1 D-cache miss, whether this load will cause an L2 cache hit/miss.

6. For the branch terminating the basic block, determine whether this
is a taken branch and whether this branch is correctly predicted,
results a fetch redirection, or is a branch misprediction.

N
M
Ri

i=
⎢

⎣⎢
⎥

⎦⎥
.

148 Performance Evaluation and Benchmarking

7. For each instruction, determine whether this instruction will cause
an I-TLB hit/miss, an L1 I-cache hit/miss, and, in case of an L1 cache
miss, whether this instruction will result in an L2 cache miss.

8. Output the synthetically generated instructions along with their char-
acteristics.

9. If the current node in the reduced SFG does not have outgoing edges,
go to step 1, otherwise proceed. Generate a random number in the
interval [0,1] and use it to point a particular outgoing edge. This is
done using a cumulative distribution built up by the transition prob-
abilities of the outgoing edges. Use this outgoing edge to point to a
particular node. Go to step 2.

8.2.3 Synthetic trace simulation

The trace-driven simulation of the synthetic trace is very similar to the
trace-driven simulation of real program traces, but the synthetic trace sim-
ulator needs to model neither branch predictors nor caches—this is part of
the tradeoff that dramatically reduces development and simulation time.
However, special actions are needed during synthetic trace simulation for
the following cases:

• When a branch is mispredicted in an execution-driven simulator,
instructions from an incorrect path are fetched and executed. When
the branch gets executed, it is determined whether the branch was
mispredicted. In case of a misprediction, the instructions down the
pipeline need to be squashed. A similar scenario is implemented in
the synthetic trace simulator: When a mispredicted branch is fetched,
the pipeline is filled with instructions from the synthetic trace as if they
were from the incorrect path; this is to model resource contention.
When the branch gets executed, the synthetic instructions down the
pipeline are squashed and synthetic instructions are fetched as if they
were from the correct path.

• For a load, the latency will be determined by whether this load is an
L1 D-cache hit, an L1 D-cache miss, an L2 cache miss, or a D-TLB
miss. For example, in case of an L2 miss, the access latency to main
memory is assigned.

• In case of an I-cache miss, the fetch engine stops fetching for a number
of cycles. The number of cycles is determined by whether the instruc-
tion causes an L1 I-cache miss, an L2 cache miss, or a D-TLB miss.

The most important difference between the synthetic trace simulator and
the reference execution-driven simulator, other than the fact that the former
models the caches and the branch predictor statistically, is that the synthetic
trace simulator does not take into account instructions along misspeculated
paths when accessing the caches. This can potentially have an impact on the
performance prediction accuracy [3].

Chapter Eight: Statistical Simulation 149

8.2.4 Simulation speed

Due to its statistical nature, performance metrics obtained through statistical
simulation quickly converge to steady-state values. In Eeckhout et al. [8], an
experiment was done to quantify the simulation speed of statistical simula-
tion. To this end, the coefficient of variation (CoV) of the instructions per cycle
(IPC) was computed as a function of the number of synthetic instructions.
The CoV is defined as the standard deviation divided by the mean of the IPC
over a number of synthetic traces. The variation that is observed is due to
the different random seeds that were used during random number generation
for the various synthetic traces—these synthetic traces are different from each
other although they exhibit the same execution characteristics. Small CoVs
are obtained for small synthetic traces, for example, 4% for 100K, 2% for 200K,
1.5% for 500K and 1% for 1M synthetic instructions. As such, we conclude
that synthetic traces containing several hundreds of thousands of syntheti-
cally generated instructions are sufficient for obtaining a performance pre-
diction. Note that a synthetic trace of 100K or even 1M synthetically generated
instructions is several of orders of magnitude smaller than the (hundreds of)
billions of instructions typically observed for real program execution traces.
Consequently, statistical simulation allows for simulation speedups by sev-
eral orders of magnitude compared to full benchmark simulation.

8.2.5 Performance/power prediction accuracy

It is now appropriate to discuss the prediction accuracy of statistical simu-
lation. To this end we first define the absolute prediction error for a given metric
M in a given design point as follows:

,

where Mstatistical_simulation and Mexecution-driven simulation is the given metric M in a
given design point for statistical and detailed execution-driven simulation,
respectively. The metric M could be any metric of interest, for example the
IPC, energy consumed per cycle (EPC), the number of used entries in the
instruction window, and so on.

Figures 8.4 and 8.5 evaluate the absolute accuracy of statistical simulation
for performance prediction and power consumption prediction, respectively.
These IPC and EPC numbers are obtained for an eight-wide, out-of-order
processor using a framework based on SimpleScalar/Alpha augmented with
the Wattch architectural power model using 100M instruction simulation
points for a number of Standard Performance Evaluation Cooperative (SPEC)
CPU2000 benchmarks—we refer to Eeckhout et al. [8] for a detailed description
of the methodology used for obtaining these results. As can be seen from both
graphs, the statistical simulation methodology achieves accurate predictions.

AE
M M

M =
− −statistical simulation execution driv_ een simulation

execution driven simulation

_

_M −

150 Performance Evaluation and Benchmarking

For predicting performance or IPC, the average absolute prediction error is
6.9%; for predicting power consumption, the average prediction error is 4.1%.
The maximum prediction error that is observed for predicting performance is
16.6%; for predicting power consumption, the maximum prediction error is
12.9%. As such, we conclude that statistical simulation attains fairly accurate
performance/power predictions.

In the context of design space explorations, the relative accuracy of a
performance model is even more important than the absolute accuracy. A
measure of relative accuracy would indicate the ability of a performance
estimation technique to predict performance trends, for example, the degree
to which performance changes when a microarchitectural parameter is var-
ied. If statistical simulation can provide good relative accuracy, then it can
be useful for making design decisions. For example, a designer may want

Figure 8.4 Evaluating the absolute performance prediction accuracy of statistical
simulation.

Figure 8.5 Evaluating the absolute power prediction accuracy of statistical simulation.

0

5

10

15

20

25

b
zi

p
2

cr
af

ty

e
o

n

g
cc

g
zi

p

p
a

r

p
e

rl
b

m
k

tw
o

lf

vo
rt

ex vp
r

a
p

p
lu

a
p

si

a
rt

lu
ca

s

m
es

a

m
g

ri
d

si
x

tr
ac

k

sw
im

E
P

C
(W

at
t/

cy
cl

e
)

detailedsimulation

statistical stimulation

Chapter Eight: Statistical Simulation 151

to know whether the performance gain due to increasing a particular hard-
ware resource justifies the increased hardware cost. Indeed, the sensitivity
of power and performance to a particular architectural parameter can help
the designer identify the (near) optimal design point, for example, on the
“knee” of the performance curve, or where performance begins to saturate
as a function of a given architectural parameter.

The relative prediction error for a metric M when going from design point
A to design point B is defined as:

In other words, the relative accuracy quantifies how well statistical sim-
ulation is able to predict a relative performance increase or decrease.

Figure 8.6 evaluates the relative accuracy of statistical simulation.
Figure 8.6(a) shows performance (IPC) and power consumption as a function
of window size, or the number of in-flight instructions; Figure 8.6(b) is a similar

Figure 8.6 Evaluating the relative accuracy of statistical simulation: (a) as a function
of window size, and (b) as a function of processor width.

RE
M M M

M
B A B=

−, _ , _statistical sim statistical sim ,, _ , _execution driven sim execution driven− −−MA ssim

execution driven simulation executM MB A, _ ,− iion driven simulation− _

152 Performance Evaluation and Benchmarking

graph showing IPC and power as a function of processor width, or the width
of the decode stage, issue stage, and commit stage. Figure 8.6 clearly shows
that statistical simulation tracks the performance and power curves very
well. The relative error is less than 1.7% in these graphs. A detailed analysis
in Eeckhout et al. [8] considering several other microarchitectural parameters
and metrics revealed that the relative error for statistical simulation is gen-
erally less than 3%.

8.3 Applications
We now discuss a number of interesting applications for statistical simula-
tion: design space exploration, hybrid analytical-statistical modeling, work-
load space characterization and exploration, program characterization, and
system evaluation.

8.3.1 Design space exploration

An important application for statistical simulation is processor design space
exploration. Recall that statistical simulation does not aim to replace detailed
cycle-accurate simulations. Rather, it aims to provide an efficient look at the
design space and to provide guidance for decision making early in the design
process. Fast decision making is important to reduce the time-to-market
when designing a new microprocessor.

To demonstrate the applicability of statistical simulation for design space
explorations, we consider a design space for a superscalar, out-of-order
processor in which we vary six microarchitectural parameters: instruction
window size, processor width, branch predictor size, L1 instruction cache
size, L1 data cache size, and L2 cache size. The total design space consists
of 3072 potential design points. In order to evaluate the usefulness of statis-
tical simulation for uniprocessor design space exploration, we need a refer-
ence to compare statistical simulation against. We did simulate all 3072
design points through detailed simulation. In order to reduce the total sim-
ulation time for doing this (using complete benchmark simulation is impos-
sible to do—note this is exactly the problem statistical simulation addresses),
we consider single 100M simulation points as our reference. (See Chapter 7
for a detailed description of simulation points.) We used statistical simulation
to explore the same design space. Using the obtained performance and
power consumption numbers, we subsequently determine the microarchi-
tectural configuration that achieves the minimum energy-delay product
(EDP). EDP is an energy-efficiency metric that is often used in the context
of general-purpose processors. It is defined as follows [4]: EDP = EPI × CPI =
EPC × CPI2 in which EPI is the energy consumed per instruction, EPC is the
energy consumed per cycle and CPI is the number of cycles per instruction.
Comparing the optimal architectural configuration as obtained from detailed
simulation versus the optimal configuration obtained from statistical simu-
lation, we can determine the error of statistical simulation for design space

Chapter Eight: Statistical Simulation 153

exploration. Figure 8.7 shows the error for statistical simulation versus
detailed simulation for a number of SPEC CPU2000 benchmarks. The error
is 1.3% on average and is no larger than 2.4%, which shows that statistical
simulation is indeed capable of identifying a region of optimal design points
in a large design space. This region of interesting design points can then be
further explored using detailed and thus slower cycle-accurate simulations.

In the preceding experiment we did not consider complete benchmark
simulation as our reference but rather used single simulation points. As
pointed out in Chapter 7, simulation points reduce the total simulation time
significantly compared to complete benchmark simulation. By considering
statistical simulation on top of simulation points as done in the above exper-
iment, a 35X simulation speedup is achieved compared to simulation points.
Based on the dynamic instruction count of the synthetic trace (1M instruc-
tions) versus a simulation point (100M instructions), one might expect a 100X
simulation speedup. However, because statistical simulation needs to recom-
pute the statistical profile whenever the cache hierarchy or branch predictor
changes during design space exploration, the speedup is limited to 35X, which
is still an important simulation speedup. The price paid for this simulation
speedup is simulation accuracy, that is, statistical simulation introduces inac-
curacies compared to the detailed simulation of simulation points.

8.3.2 Hybrid analytical-statistical modeling

A statistical profile that is used in statistical simulation consists of a number
of program characteristics. These characteristics could be varied, and the
influence of these parameters on overall performance could be measured.

Figure 8.7 Statistical simulation for design space exploration: the error on the mini-
mal-EDP microarchitectural configuration of statistical simulation versus detailed
simulation.

154 Performance Evaluation and Benchmarking

Note, however, that varying the distributions in a statistical profile is some-
how impractical due to the numerous probabilities that need to be specified.
It would be interesting to have a limited set of parameters that specify
program behavior. This can be achieved within the statistical simulation
framework by approximating measured distributions with theoretical dis-
tributions. This will result in a hybrid analytical-statistical model.

To this end, we first consider a simplified statistical simulation frame-
work. For now, we omit the statistical flow graph from the statistical
profile—this reduces the accuracy of the statistical simulation framework
somewhat, however reasonably accurate performance predictions in the
range of 10% to 15% can still be obtained, see Eeckhout and De Bosschere
[9]. The statistical profile then consists of the instruction mix, the number
of operands per instruction type, the dependency distance distribution, the
cache miss rates, and the branch misprediction rates averaged over all
instructions; that is, no distinction is made per basic block. Looking in
more detail on the statistical profile reveals that the instruction mix, the
number of operands per instruction type, and the cache and branch pre-
dictor characteristics basically are a limited number of probabilities. The
dependency distance information, on the other hand, is a distribution
consisting of a large number of probabilities, for example, 512. Clearly,
approximating the dependency distance distribution by a theoretical dis-
tribution (with a limited number of parameters), would result in a compact
representation of a program execution. This compact representation then
consists of a limited number of program parameters, in the range of 15 to
20 single-value characteristics.

We now study how the dependency distance distribution can be approx-
imated by a theoretical distribution. The probability density function (PDF)
of the dependency distance Pr[X = x] can be written as Pr[X = x] = Pr[X = x
|X ≥ x] ⋅ Pr[X ≥ x], x ≥ 1 where Pr[X = x|X ≥ x] could be defined as the
conditional dependence probability 1 − px (px corresponds to the conditional
independence probability defined by Dubey, Adams, and Flynn [7]); that is, px

is the probability that an operation is independent on an operation that
comes x operations ahead in the instruction trace given that the operation
is independent of the x − 1 operations ahead of that operation. This equation
can be rewritten as follows:

Using induction it can be easily verified that Pr[x = x] can be written as
follows:

Pr[] () Pr[] .X x p X ix

i

x

= = − ⋅ − =
⎛

⎝
⎜

⎞

⎠
⎟

=

−

∑1 1
1

1

Pr[] () , .X x p p xx i
i

x

= = − ⋅ ≥
=

−

∏1 1
1

1

Chapter Eight: Statistical Simulation 155

Reverse, calculating px from the measured Pr[X = x] can be done as
follows:

Note that any approximation of the conditional independence probability
px leads to a normalized dependency distance distribution. For example,
assuming a conditional independence probability that is independent of x, say
p, results in the geometric distribution Pr[X = x] = (1 − p) ⋅ px−1. This approxi-
mation was taken by Dubey, Adams, and Flynn [7]. In a follow-up study,
Kamin, Adams, and Dubey [14] approximated the conditional independence
probability px by an exponential function px ≈ 1 − αe−βx, where α and β are
constants that are determined through regression techniques applied to the
measured px. More recently, Eeckhout and De Bosschere [9] approximate px by
a power law: px ≈ 1 − αx−β.

Figure 8.8 shows the distribution fitting of the dependency distance
distribution for gcc: the conditional dependence probability, the PDF, and
the cumulative density function (CDF). The distribution fitting was done by
minimizing the sum of squared errors between the theoretical distributions
and the measured data of the conditional dependence probability. More
specifically, we do the fitting on the raw probability numbers, not on the
log-log numbers in these graphs—this gives a higher weight to smaller
dependency distances. This is motivated by the fact that this approximation
is to be used in an abstract workload model for hybrid analytical-statistical
performance modeling, which requires accurate approximations for small
dependency distances. Fitting to the conditional dependence probability
generally yields more accurate approximations than fitting the probability
density function. The graphs in Figure 8.8 show that the power law approx-
imation is more accurate than the exponential approximation for gcc. Similar
results are presented in Eeckhout and De Bosschere [9] for other benchmarks.
The benchmarks that do not show a nice fit along the power law distribution
were programs that spend most of their time in tight loops. For those bench-
marks, the dependency distance distribution drops off more quickly than a
power law distribution for larger values of x in a log-log diagram.

We can now make use of the power-law properties of the dependency
distance distribution to build a hybrid analytical-statistical model. Instead
of specifying a distribution consisting of a large number of probabilities, we
are now left with only two parameters to characterize the dependency dis-
tance characteristic. These two parameters are α and β; α is the probability
that an instruction is dependent on its preceding instruction; β is the slope
of the conditional dependence probability in a log-log diagram. As a result,
the abstract workload model consists of a number of probabilities to char-
acterize the instruction mix, α and β to characterize the interoperation depen-
dencies, and a number of probabilities to characterize the cache hit/miss

p
X x

X i
x

i

x= −
=

− =
=

−

∑
1

1
1

1

Pr[]

Pr[]
.

156 Performance Evaluation and Benchmarking

and branch prediction behavior. This abstract workload model can then be
used to drive statistical simulation, yielding a hybrid analytical-statistical
modeling approach. Experiments in Eeckhout and De Bosschere [9] show
that this hybrid analytical-statistical simulation approach is only slightly less
accurate as “classical” statistical simulation using distributions.

Figure 8.8 Distribution fitting of the dependency distance distribution: the condition-
al dependence probability, the PDF and the CDF for gcc. Reprinted with permission
from [9] © 2001 IEEE.

Chapter Eight: Statistical Simulation 157

8.3.3 Workload space characterization and exploration

As discussed in the previous section, statistical simulation can be used to
characterize a program execution by means of an abstract workload model,
or a small set of single-value characteristics. This allows for characterizing
and exploring the workload space. All the benchmarks can be viewed as
points in a multidimensional space in which the various dimensions are the
various single-value characteristics.

Figure 8.9 gives an example of a (two-dimensional) workload space
characterization for the interoperation dependency characteristics. A number
of benchmarks (SPECint95 and IBS, see also Eeckhout and De Bosschere [9])
are shown as a function of α and β from the power law interoperation
dependency distance distribution. We can take two interesting conclusions
from this graph. First, the interoperation dependencies seem to be quite
different for the SPECint95 benchmarks than for the IBS traces. Indeed, all
but one of the IBS traces are concentrated in the middle of the graph, whereas
the SPECint95 benchmarks are situated more toward the left of the graph.
Second, this information can be used to identify weak spots in a workload.
For example, this graph reveals there are no benchmarks included for which
lies within the interval: 0.28, 0.33. There are two ways to address this lack
of benchmark coverage: either search for real benchmarks or generate syn-
thetic traces with the desired program properties. Note that the latter option
can be done easily because the program characteristics can be varied freely
in a statistical profile. In addition, these program properties can be varied
independently from each other.

The important property that the program characteristics can be varied
freely and independently from each other within the statistical simulation

Figure 8.9 Workload space characterization as a function of the dependency distance
characteristics α and β. Reprinted with permission from [10] © 2003 IEEE.

0. 55

0. 60

0. 65

0. 70

0. 75

0. 80

0. 85

0. 90

0. 95

1. 00

0. 19 0. 22 0. 25 0. 28 0. 31 0. 34

alpha

b
et

a

SPEC int95

IBS

158 Performance Evaluation and Benchmarking

methodology enables workload space exploration. Workload space explora-
tions are useful because they enable the investigation of the impact of pro-
gram characteristics and their interactions on overall performance. Such
studies are difficult to do using real programs, if not impossible, because
most program characteristics and their interaction are hard to vary in real
programs. Figure 8.10 gives an example in which IPC is displayed on the
z-axis as a function of the L1 and L2 data cache miss rate along the x-axis,
and the α and β for the dependency characteristics along the y-axis. This
graph clearly shows that the performance of a program with high instruc-
tion-level parallelism (ILP) is less affected by the data cache miss rate than
a program with low ILP. Indeed, the IPC curve as a function of the data
cache miss rate is flatter for (α = 0.15; β = 1.0), denoting high, ILP than for
(α = 0.4; β = 0.5), denoting low ILP. In other words, the latency due to cache
misses are hidden by the longer dependency distances.

8.3.4 Program characterization

Another interesting application for statistical simulation is program character-
ization. When validating the statistical simulation methodology, in general,
and the characteristics included in the statistical profile more, in particular, it
becomes clear which program characteristics must be included in the profile
for attaining good accuracy. That is, this validation process distinguishes
program characteristics that influence performance from those that do not.
Several research efforts in the recent past have focused on improving the

Figure 8.10 Workload space exploration: IPC as a function of data cache miss rates and
dependency distance characteristics. Reprinted with permission from [9] © 2001 IEEE.

Chapter Eight: Statistical Simulation 159

accuracy of statistical simulation. Improving the accuracy can be achieved by
modeling correlation between various program characteristics. For example,
Nussbaum and Smith [17] have shown that correlating the instruction mix,
the interoperation dependencies, cache miss rates, and branch misprediction
rates to the basic block size leads to a significantly higher accuracy in perfor-
mance prediction. Eeckhout et al. [8] showed the importance of the SFG. Bell
et al. [2] showed how the accuracy of statistical simulation improves as the
statistical profile evolves from a simple average statistical profile to the SFG
as described in this chapter.

8.3.5 System evaluation

Until now, we only discussed uniprocessor performance modeling and the
applicability of statistical simulation for addressing the time-consuming sim-
ulations. However, for larger systems containing several processors, such as
multiprocessors, clusters of computers, and so on, simulation time is even
a bigger problem because all the individual components in the system need
to be simulated simultaneously. Typically, benchmark problems for such
systems are also much larger, and there might be additional design choices.
An interesting example is given by Nussbaum and Smith [18] that extends
the statistical simulation methodology for evaluating symmetric multipro-
cessor system performance.

8.4 Previous work
Noonburg and Shen [15] present a framework that models the execution
of a program on a particular architecture as a Markov chain, in which the
state space is determined by the microarchitecture and in which the tran-
sition probabilities are determined by the program execution. This
approach was evaluated for in-order architectures. Extending it for
wide-resource, out-of-order architectures would result in a far too complex
Markov chain.

Hsieh and Pedram [11] present a technique to estimate performance and
power consumption of a microarchitecture by measuring a characteristic
profile of a program execution, synthesizing a fully functional program from
it, and simulating this synthetic program on an execution-driven simulator.
The main disadvantage of their approach is the fact that no distinction is
made between microarchitecture-dependent and microarchitecture-indepen-
dent characteristics. All characteristics are microarchitecture-dependent,
which makes this technique unusable for design space explorations.

Iyengar et al. [12] present SMART to generate representative synthetic
traces based on the concept of a fully qualified basic block. A fully qualified
basic block is a basic block together with its context. The context of a basic
block is determined by its n preceding qualified basic blocks—a qualified basic
block is a basic block together with the branching history (of length k) of its
preceding branch. This work was later extended in Iyengar et al. [13] to account

160 Performance Evaluation and Benchmarking

for cache behavior. In this extended work the focus was shifted from fully
qualified basic blocks to fully qualified instructions. The context of a fully
qualified instruction is then determined by n singly qualified instructions. A
singly qualified instruction is an instruction annotated with its instruction
type, its I-cache behavior and, if applicable, its D-cache behavior and its branch
behavior. Therefore a distinction is made between two fully qualified instruc-
tions having the same preceding instructions, except that, in one case, a pre-
ceding instruction missed in the cache, whereas in the other case it did not.
Obviously, collecting all these fully qualified instructions results in a huge
amount of data to be stored in memory. For some benchmarks, the authors
report that the amount of memory needed can exceed the available memory
in a machine, so that some information needs to be discarded from the graph.
The SFG shares the concept of using a context by qualifying a basic block
with its preceding basic block. However, the SFG is both simpler and smaller
than the fully qualified graph structure used in SMART. In addition, Eeck-
hout et al. [8] have found that qualifying with one single basic block is
sufficient. Another interesting difference between SMART and the frame-
work presented here is the fact that SMART generates memory addresses
during synthetic trace generation. Statistical simulation simply assigns hits
and misses.

In recent years, a number of papers [2,6,8,9,10,18,19,20] have been pub-
lished that are built around (slightly different forms of) the general statistical
simulation framework presented in Figure 8.1. The major difference
between these approaches is the degree of correlation in the statistical
profile. The simplest way to build a statistical profile is to assume that all
characteristics are independent from each other [6,9,10], which results in
the smallest statistical profile and the fastest convergence time but poten-
tially the largest prediction errors. In HLS, Oskin et al. [18] generate 100
basic blocks of a size determined by a normal distribution over the average
size found in the original workload. The basic block branch predictabilities
are statistically generated from the overall branch predictability obtained
from the original workload. Instructions are assigned to the basic blocks
randomly based on the overall instruction mix distribution, in contrast to
the basic block modeling granularity of the SFG. As in the framework discussed
in this chapter, the HLS synthetic trace generator then walks through the
graph of instructions. Nussbaum and Smith [18] propose to correlate vari-
ous characteristics, such as the instruction types, the dependencies, the
cache behavior, and the branch behavior to the size of the basic block. Using
the size of the basic block to correlate statistics raises the possibility of basic
block size aliasing, in which statistical distributions from basic blocks with
very different characteristics (but of the same size) are combined and reduce
simulation accuracy. In a SFG, all characteristics are correlated to the basic
block itself, not just its size. Moreover, the SFG correlates basic blocks to its
context of previously executed basic blocks; that is, in a first-order SFG,
basic blocks with a different previously executed basic block are character-
ized separately.

Chapter Eight: Statistical Simulation 161

8.5 Summary
This chapter discussed statistical simulation of superscalar out-of-order pro-
cessors. The idea is to measure a well-chosen set of characteristics from a
program execution called a statistical profile, generate a synthetic trace with
those characteristics, and simulate the synthetic trace. If the set of character-
istics reflects the key properties of the program’s execution behavior, accurate
performance/power predictions can be made. The statistically generated
synthetic trace is several orders of magnitude smaller than the original
program execution, hence simulation finishes very quickly.

The key properties that need to be included in a statistical profile are the
statistical flow graph (SFG), the instruction types, the interoperation depen-
dencies, the cache hit/miss behavior, and the branch misprediction behavior.
Measuring the branch behavior should consider delayed branch predictor
update in order to model delayed update as observed in contemporary micro-
processors. The performance and power predictions through statistical simu-
lation are highly accurate: The average absolute error for predicting perfor-
mance and power is 6.9% and 4.1%, respectively. The relative accuracy is
typically less than 3%. Synthetic traces of several hundreds of thousands of
instructions are enough to obtain these predictions.

This chapter also discussed five important applications for statistical sim-
ulation. For one, design space explorations can be done both efficiently and
accurately. Early decision making is important for shortening the time-to-mar-
ket of newly designed microprocessors. Second, by approximating the distri-
butions contained in a statistical profile using theoretical distributions, the gap
between analytical and statistical modeling can be bridged by building a
hybrid analytical-statistical model. We focused on the power law properties
of the dependency distance characteristics to come to an abstract workload
model containing a limited number of single-value workload characteristics.
Third, based on such an abstract workload model, workload space character-
ization and exploration becomes possible. Workload space studies are inter-
esting to compare workloads, uncover weak spots in the workload space, and
estimate the impact of program characteristics and their interaction. Fourth,
statistical simulation is a useful tool for program characterization, that is, the
discrimination of program characteristics that affect performance from those
that do not. Fifth, the evaluation of large systems consisting of several micro-
processors can also significantly benefit from statistical simulation.

References
1. Austin, T., Larson, E., and Ernst, D., SimpleScalar: An infrastructure for com-

puter system modeling, IEEE Computer 35, 2, 59–67, 2002.
2. Bell, R.H. Jr., Eeckhout, L. John, L.K., and De Bosschere, K., Deconstructing

and improving statistical simulation in HLS, Proceedings of the 2004 Work-
shop on Duplicating, Deconstructing and Debunking, held in conjunction with
ISCA-31, 2–12, June 2004.

162 Performance Evaluation and Benchmarking

3. Bechem, C., Combs, J., Utamaphetai, N., Black, B., Blanton, R.D.S., and Shen,
J.-P., An integrated functional performance simulator, IEEE Micro 19, 3, 26–35,
1999.

4. Brooks, D., Bose, P., Schuster, S.E., Jacobson, H., Kudva, P.N., Buyuktosuno-
glu, A., Wellman, J.-D., Zyuban, V., Gupta, M., and Cook, P.W., Power-aware
microarchitecture: Design and modeling challenges for next-generation mi-
croprocessors, IEEE Micro 20, 6, 26–44, 2000.

5. Brooks, D., Tiwari, V., and Martonosi, M., Wattch: A framework for architec-
tural-level power analysis and optimizations, Proceedings of the 27th Annual
International Symposium on Computer Architecture (ISCA-27), ACM Press, 83–94,
June 2000.

6. Carl, R. and Smith, J.E., Modeling superscalar processors via statistical sim-
ulation, Proceedings of the 1998 Workshop on Performance Analysis and Its Impact
on Design, held in conjunction with ISCA-25, June 1998.

7. Dubey, P.K., Adams, G.B., III, and Flynn, M.J., Instruction window trade-offs
and characterization of program parallelism, IEEE Transactions on Computers,
43, 4, 431–442, 1994.

8. Eeckhout, L., Bell, R.H., Jr., Stougie, B., De Bosschere, K., and John, L.K.,
Control Flow Modeling in Statistical Simulation for Accurate and Efficient
Processor Design Studies, Proceedings of the 31st Annual International Sympo-
sium on Computer Architecture (ISCA-31), 350-361, June 2004.

9. Eeckhout, L. and De Bosschere, K., Hybrid analytical-statistical modeling for
efficiently exploring architecture and workload design spaces, Proceedings of
the 2001 International Conference on Parallel Architectures and Compilation Tech-
niques (PACT-2001), 25–34, Sept. 2001.

10. Eeckhout, L., Nussbaum, S., Smith, J.E., and De Bosschere, K., Statistical
simulation: Adding efficiency to the computer designer’s toolbox, IEEE Micro
23, 5, 26–38, 2003.

11. Hsieh, C. and Pedram, M., Microprocessor power estimation using pro-
file-driven program synthesis, IEEE Transactions on Computer-Aided Design 17,
11, 1080–1089, 1998.

12. Iyengar, V.S. and Trevillyan, L.H., Evaluation and generation of reduced traces
for benchmarks, Technical Report RC-20610, IBM Research Division, T.J. Wat-
son Research Center, Oct. 1996.

13. Iyengar V.S., Trevillyan, L.H., and Bose, P., Representative traces for processor
models with infinite cache, Proceedings of the Second International Symposium
on High-Performance Computer Architecture (HPCA-2), 62–73, Feb. 1996.

14. Kamin, R.A., III, Adams, G.B., III, and Dubey, P.K., Dynamic trace analysis
for analytic modelling of superscalar performance, Performance Evaluation 19,
2–3, 259–276, 1994.

15. Noonburg, D.B. and Shen, J.P., A framework for statistical modeling of
superscalar processor performance, Proceedings of the Third International Sym-
posium on High Performance Computer Architecture (HPCA-3), 298-309, Feb.
1997.

16. Nussbaum, S. and Smith, J.E., Modeling superscalar processors via statistical
simulation. Proceedings of the 2001 International Conference on Parallel Architec-
tures and Compilation Techniques (PACT-2001), 15–24, Sept. 2001.

17. Nussbaum, S. and Smith, J.E., Statistical simulation of symmetric multipro-
cessor systems. Proceedings of the 35th Annual Simulation Symposium 2002,
89–97, Apr. 2002.

Chapter Eight: Statistical Simulation 163

18. Oskin, M., Chong, F.T., and Farrens, M., HLS: Combining statistical and
symbolic simulation to guide microprocessor design, Proceedings of the 27th
Annual International Symposium on Computer Architecture (ISCA-27), 71–82,
June 2000.

19. Sugumar, R.A. and Abraham, S.G., Efficient simulation of caches under op-
timal replacement with applications to miss characterization, Proceedings of
the 1993 ACM Conference on Measurement and Modeling of Computer Systems
(SIGMETRICS’93), 24–35, May 1993.

165

Chapter Nine

Benchmark Selection

Lieven Eeckhout

Contents

9.1 Introduction ..165
9.2 Measuring benchmark similarity ..167
9.3 Workload analysis..168

9.3.1 Principal components analysis ...168
9.3.2 Cluster analysis ...170
9.3.3 Putting it together ...171

9.4 Applications..173
9.4.1 Program Behavior Analysis...173

9.4.1.1 Impact of input data sets ..173
9.4.1.2 Java workloads..180

9.4.2 Workload composition ...184
9.4.3 Reduced input sets..186

9.5 Related work...188
9.6 Summary ...190
References...191

9.1 Introduction
The first step when designing a new microprocessor is to compose a workload
that is representative of the set of applications that will be run on the micro-
processor when it is used in a commercial product. A workload typically
consists of a number of benchmarks with respective input data sets taken from
various benchmarks suites, such as SPEC CPU, TPC, MediaBench, and so on
(see Chapter 3). This workload will then be used during the various simulation
runs to perform design space explorations. It is obvious that workload design,
or composing a representative workload, is extremely important in order to
obtain a microprocessor design that is optimal for the target environment of

166 Performance Evaluation and Benchmarking

operation. The question when composing a representative workload is thus
twofold: (1) which benchmarks to use and (2) which input data sets to select.
In addition, we have to take into account that high-level architectural simula-
tions are extremely time consuming. As such, the total simulation time should
be limited as much as possible to limit the time-to-market. This implies that
the total number of benchmarks and input data sets should be limited without
compromising the final design. Ideally, we would like to have a limited set of
benchmark-input pairs spanning the complete workload space, which con-
tains a variety of the most important types of program behavior.

Conceptually, the complete workload design space can be viewed as a
p-dimensional space, where p is the number of important program charac-
teristics. Obviously, p will be too large to display the workload design space
understandably. In addition, correlation exists between these variables. This
reduces the ability to understand what program characteristics are funda-
mental to make the diversity in the workload space. This chapter presents
a methodology to reduce the p-dimensional workload space to a q-dimen-
sional space with q << p (q = 2 to q = 4 typically) making the visualization
of the workload space possible without losing important information. This
is achieved by using statistical data reduction techniques such as principal
components analysis and cluster analysis.

Each benchmark-input pair is a point in this (reduced) q-dimensional
space obtained after PCA. We can expect that different benchmarks will be
far away from each other, whereas different input data sets for a single
benchmark will be clustered together. This representation gives us an excel-
lent opportunity to measure benchmark similarity. Weak clustering indicates
dissimilar behavior, whereas strong clustering indicates similar behavior.

Measuring benchmark similarity has multiple interesting applications
that will be extensively discussed in this chapter. First, we show how this
workload analysis methodology can be used to gain insight into program
behavior. We discuss two examples. The first example is studying the impact
of input data sets on program behavior. For a single benchmark, weak
clustering for different inputs indicates a large impact of the input on overall
behavior; strong clustering indicates a small impact. The second example is
studying the interaction between a Java application and the virtual machine.
Strong clustering for a single virtual machine and different benchmarks
indicates overall behavior is largely determined by the virtual machine and
not the application—this is observed for short-running Java applications.
For longer-running applications we typically observe a weakly clustered
behavior for different virtual machines, meaning that the overall behavior
is then primarily determined by the application and not the virtual machine.

The second application for the workload analysis methodology dis-
cussed in this chapter is workload design, or the selection of a small set of
benchmarks that covers the workload space reasonably well. In other words,
the reduced workload should be representative of a larger set of benchmarks.
This chapter discusses how such a reduced workload can be composed. The
basic idea is that if strong clustering is observed in the workload space, it is

Chapter Nine: Benchmark Selection 167

unnecessary to include all benchmarks from that cluster in the workload; a
representative per cluster will suffice. This reduces the total simulation time
for two reasons: (1) the total number of benchmark-input pairs is reduced;
and (2) we can select the benchmark-input pair with the smallest dynamic
instruction count among all the pairs in a cluster.

Our third application is the validation of reduced input sets. KleinOsowski
and Lilja [10] proposed so-called reduced input sets for the SPEC CPU bench-
marks. The goal of reduced input sets is to yield a smaller dynamic instruction
count than the reference inputs provided by SPEC while providing a program
behavior that is similar to executing the reference input. The workload
analysis methodology presented in this chapter can be used to validate
reduced inputs.

This chapter is organized as follows. We first discuss general issues
related to measuring benchmark similarity. We subsequently detail a work-
load analysis methodology in section 9.3 that can be used to measure bench-
mark similarity in a reliable way. This workload analysis methodology is
based on two multivariate data analysis techniques, principal components anal-
ysis and cluster analysis. Section 9.4 then discusses three important applica-
tions: program behavior analysis, workload design, and validation of reduced
input sets. Section 9.5 discusses related work, after which we summarize
in section 9.6.

9.2 Measuring benchmark similarity
As mentioned in the introduction, the workload space could be viewed as
a p-dimensional space in which the dimensions are determined by a set of
workload characteristics. The individual benchmarks can then be displayed
by a p-dimensional vector within this space. Measuring benchmark similar-
ities within such a multidimensional space poses two important issues that
need to be solved.

The first issue is to determine what the dimensions are in this workload
space. Intuitively, program characteristics should be used that affect perfor-
mance. Selecting program characteristics that do not affect performance might
discriminate benchmarks on such a characteristic. However, this will not yield
information about the behavior of the benchmark when executed on a micro-
processor. On the other hand, it is important to incorporate as many program
characteristics as possible so that the analysis done on it will be predictive;
that is, we want strongly clustered benchmarks to behave similarly. The pro-
gram characteristics can be obtained from an abstract workload model, from
a collection of both microarchitecture-dependent and/or -independent char-
acteristics, from a set of hardware performance monitor values, and from
similar sources. Basically, any set of program characteristics can serve as input
to this methodology. However, it is up to the user to determine whether the
set of program characteristics he or she intends to use is a good choice or not.
In this chapter we will consider two data sets: (1) a set of microarchitec-
ture-dependent and -independent program characteristics obtained from

168 Performance Evaluation and Benchmarking

running an instrumented binary and (2) a set of hardware performance mon-
itor values obtained from running benchmarks on native hardware. Ideally,
we would like to have a concise set of microarchitecture-independent work-
load characteristics that, when used in conjunction with a performance model,
achieves perfect performance predictions over a wide range of microarchitec-
tures. This would allow for a microarchitecture-independent characterization
of the workload space. Unfortunately, to date such an analytical model does
not exist. By consequence we consider the data sets as mentioned earlier.

The second issue related to measuring benchmark similarity in a multi-
dimensional workload space concerns a metric for quantifying benchmark
similarity. A naïve approach would consider the Euclidean distance as a
measure for the degree of similarity in the workload space; that is, a small
Euclidean distance between two benchmarks suggests similarly behaving
benchmarks, whereas a larger Euclidean distance suggests dissimilar pro-
gram behavior. This naïve approach poses two potential pitfalls. First, in
most cases the program characteristics are nonnormalized, meaning that one
variable may vary in the range 10 ± 1, whereas another variable may vary
in the range 1 ± 0.1. Because of this difference, the first variable has a higher
weight in the Euclidean distance than the second variable. For example, a
10% difference along the first variable (which is 1 unit in absolute terms)
clearly has a higher weight in the Euclidean distance than a 10% difference
in the second variable (which is 0.1 units in absolute terms). This problem
can be overcome by normalizing the data set prior to workload analysis.
Normalization will transform the data set in such a way that a variable has
a zero mean and a unit variance. The second problem related to using the
Euclidean distance as a similarity metric in the original workload space is
correlation. In case dimensions or variables in a multidimensional space are
correlated (or measure a similar underlying program characteristic), a dif-
ference between two benchmarks along these correlated dimensions will
receive a higher weight than a noncorrelated variable when calculating the
Euclidean distance. In the data sets we used in our experiments we observed
significant correlation between program characteristics. Removing correla-
tion from a data set can be done using multivariate statistical data analysis
techniques as will be discussed in the following section.

9.3 Workload analysis
We first discuss the two data analysis techniques that we use in our workload
analysis methodology, namely principal components analysis and cluster
analysis. Subsequently, we will detail how these two data analysis techniques
can be used in conjunction for workload analysis.

9.3.1 Principal components analysis

Principal components analysis (PCA) [9] is a statistical data analysis tech-
nique that presents a different view on a multidimensional data set. It builds

Chapter Nine: Benchmark Selection 169

on the assumption that many variables (in our case, program characteristics)
are correlated and hence measure the same or similar properties of the
various cases (in our case, benchmarks). PCA computes new variables called
principal components that are linear combinations of the original variables,
such that all principal components are uncorrelated. PCA transforms the p
variables X1, X2,…, Xp into p principal components Z1, Z2,…, Zp with

This transformation has the properties: (1) Var[Z1] ≥ Var[Z2] ≥ … ≥ Var[Zp],
which means that Z1 contains the most information and Zp the least; and
(2) , which means that there is no information overlap
between the principal components. Note that the total variance in the data
remains the same before and after the transformation, namely

.

Mathematically, PCA actually solves the eigenvalue problem over the cor-
relation matrix.

As stated in the first property in the previous paragraph, some of the
principal components have a high variance whereas others have a small
variance. By removing the components with the lowest variance from the
analysis, we can reduce the number of program characteristics while con-
trolling the amount of information that is thrown away. We retain q principal
components, which is a significant information reduction because q << p in
most cases, typically q = 2 to q = 4. To measure the fraction of information
retained in this q-dimensional space, we use the amount of variance
accounted for by these q principal components:

Typically 85% to 90% of the total variance should be explained by the
retained principal components.

Recall that the p original variables are the program characteristics that
build up the original workload space. By examining the most important q
principal components, which are linear combinations of the original program
characteristics, that is,

Z a Xi ij j

j

p

= ⋅
=
∑

1

.

Cov Z Z i ji j[,] ,= ∀ ≠0

X Zi i

i

p

i

p

=
==
∑∑

11

Var Z Var Xi

i

q

i

i

p

[] [].
= =
∑ ∑

1 1

Z a X i qi ij j

j

p

= ⋅ =
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=
∑ , , , ,1

1

…

170 Performance Evaluation and Benchmarking

meaningful interpretations can be given to these principal components in
terms of the original program characteristics. A coefficient aij that is close to
+1 or −1 implies a strong impact of the original characteristic Xj on the
principal component Zi. A coefficient aij that is close to 0, on the other hand,
implies no impact.

The next step in the analysis is to display the various cases or bench-
marks as points in the q-dimensional space built up by the q principal
components. This can be done by computing the values of the q retained
principal components for each benchmark. As such, a view can be given on
the workload space, and benchmark similarity can be studied. The projection
in the q-dimensional space is much easier to understand than a view of the
original p-dimensional space for two reasons: (1) q is much smaller than p:
q << p, and (2) the q-dimensional space is uncorrelated.

During PCA, one can work either with normalized or nonnormalized
data (the data is normalized when the mean of each variable is zero and its
variance is one). In the case of nonnormalized data, a higher weight is given
in the analysis to variables with a higher variance. As mentioned before, we
have used normalized data because of our heterogeneous data sets; for
example, the variance of variable x can be orders of magnitude larger than
the variance of another variable y.

9.3.2 Cluster analysis

Cluster analysis (CA) [9] is another data analysis technique that is aimed at
clustering n cases, in our case benchmarks, based on the measurements of
p variables, in our case program characteristics. The final goal is to obtain a
number of groups, containing various benchmarks that exhibit similar
behavior. There exist two commonly used types of clustering techniques,
namely linkage clustering and K-means clustering.

Linkage clustering starts with a matrix of distances between the n cases
or benchmarks. As a starting point for the algorithm, each case is considered
a group. In each iteration of the algorithm, the two groups that are closest
to each other (with the smallest distance in the p-dimensional space, also
called the linkage distance) will be combined to form a new group. As such,
close groups are gradually merged until finally all cases are in a single group.
This can be represented in a so-called dendrogram, which graphically repre-
sents the linkage distance for each group merge in each iteration of the
algorithm. Having obtained a dendrogram, it is up to the user to decide how
many clusters to take. This decision can be made based on the linkage
distance. Indeed, small linkage distances imply strong clustering whereas
large linkage distances imply weak clustering. There exist several methods
for calculating the distance between groups or clusters of cases all potentially
leading to different clustering results. In this chapter, we consider two pos-
sibilities: the furthest neighbor strategy (also known as complete linkage) and
the weighted pair-group average strategy. In complete linkage, the distance
between two clusters is computed as the largest distance between any two

Chapter Nine: Benchmark Selection 171

cases from the clusters (or thus the furthest neighbor). In the weighted
pair-group average method, the distance between two clusters is computed
as the weighted average distance between all pairs of cases in two different
clusters. The weighting of the average is done by considering the cluster
size, that is, by taking into account the number of cases per cluster.

K-means clustering produces exactly K clusters with the greatest possible
distinction—Chapter 7 on SimPoint also considers K-means clustering for
computing simulation points. The K-means clustering algorithm works as
follows. In each iteration, the distance is calculated for each case to the center
of each cluster. A case then gets assigned to the closest cluster. As such, new
clusters are formed and new cluster centers can be computed. This algorithm
is iterated until no more changes are observed. It is well-known that the
result of K-means clustering can be dependent on the choice of the initial
cluster centers. SimPoint (see Chapter 7) solves this issue by considering
different randomly chosen initial cluster centers and picking the one that
results in the best clustering result. In this chapter we use a different
approach by maximizing the distance between the various initial cluster
centers as an initial estimate.

9.3.3 Putting it together

The workload analysis methodology presented in this chapter combines PCA
and CA and consists of the following steps:

1. The p program characteristics of interest are measured for a set of n
benchmarks. As mentioned earlier, any data set of interest can be
used as input for this workload analysis methodology. However, it
is up to the user to determine whether the chosen program charac-
teristics is appropriate or not.

2. In a second step, these p program characteristics are normalized
over all n benchmarks so that for each program characteristic, the
average equals zero and the variance equals one. Note that depend-
ing on the goal of the workload analysis and the given data set, it
might be undesirable to normalize. In our experiments however,
normalizing the data prior to analysis was necessary.

3. On these normalized data points, PCA is performed. This can be
done using an existing statistical software package; in all our exper-
iments we used STATISTICA [16], a commercial software package for
statistical computations. This is done by presenting a two-dimensional
matrix as input to the statistical software in which the columns are
the variables (program characteristics) and the rows the cases (bench-
marks). PCA is then performed by the software, which yields p prin-
cipal components.

4. Now, it is up to the user to determine how many principal compo-
nents need to be retained. We will denote the number of retained
principal components as q. This decision can be made based on the

172 Performance Evaluation and Benchmarking

amount of variance accounted for by the retained principal compo-
nents. For example, one could consider all principal components that
have a variance that is larger than the lowest variance prior to
PCA—in case normalized variables are used, all principal compo-
nents are retained that have a variance larger than one. One could
also retain as many principal components to explain a given percent-
age of the total variance, for example 85%, 90%, or 95%.

5. The q retained principal components can be analyzed, and a mean-
ingful interpretation can be given to them. This is done based on the
coefficients aij, also called the factor loadings, as they occur in the
following equation:

, with , the retained principal components

and , the original program characteristics
A positive coefficient aij means a positive impact of program charac-
teristic Xj on principal component Zi; a negative coefficient aij implies
a negative impact. If a coefficient aij is close to zero, this means Xj

has (nearly) no impact on Zi.
6. The benchmarks can be displayed in the workload space built up by

these q principal components. This is done by computing a q-dimen-
sional vector per benchmark built up by the retained principal com-
ponents:

Each benchmark is then plotted in this q-dimensional space.
7. Rescale the q principal components to unit variance.
8. Within this rescaled q-dimensional space the Euclidean distance can

be computed between the various benchmarks as a reliable measure
for the way benchmarks differ from each other. There are two reasons
supporting this statement. First, the values along the axes in this
space are uncorrelated because they are determined by the principal
components, which are uncorrelated by construction. Second, by re-
scaling the principal components (previous step), the principal com-
ponents are placed on a common scale. Without rescaling, the variance
of a principal component—which is a manifestation of the correla-
tion in the original data—would give a higher weight in the calcu-
lation of the Euclidean distance to correlated characteristics in the
original data.

Z a Xi ij j

j

p

= ⋅
=
∑

1

Z i qi , 1 ≤ ≤

X j pj , 1 ≤ ≤

Z a X i qi ij j

j

p

= ⋅ ≤ ≤
=
∑

1

1,

Chapter Nine: Benchmark Selection 173

9. Finally, CA can be done within this rescaled q-dimensional space.
The Euclidean distance gives a reliable measure for benchmark sim-
ilarity. The dendrogram obtained from cluster analysis gives a clear
view on the (dis)similarity between the various benchmarks.

An alternative to applying PCA prior to cluster analysis is to use the
Mahalanobis distance* in the original workload space as the similarity metric
for driving the cluster analysis. However, we see two advantages of using
PCA. First, PCA gives us the opportunity to visualize the workload space
in an understandable way because the number of dimensions in the trans-
formed workload space is limited. This facilitates reasoning and analyzing
the workload space. Second, PCA helps us in explaining why benchmarks
differ from each other in terms of the original program characteristics. Note,
however, that the Mahalanobis distance is equivalent to the distance measure
that is used in this paper if all the principal components would have been
used in our calculation of the Euclidean distance. Because we keep only the
leading principal components, which account for all but a small fraction of
the total variance, our distance measure becomes a very close approximation
of the real Mahalanobis distance.

9.4 Applications
We now discuss three important applications for this workload analysis
methodology: program behavior analysis, workload design, and the valida-
tion of reduced input sets.

9.4.1 Program Behavior Analysis

Our first application is program behavior analysis. This is done using two
examples. The first example shows studying the impact of input data sets
on overall program behavior [3,4]. The second example is investigating the
interaction between Java applications and virtual machines [2].

9.4.1.1 Impact of input data sets
Table 9.1 shows the program characteristics that are used to study the impact
of input data sets on program behavior. There are 18 (p = 18) program char-
acteristics in total covering both microarchitecture-dependent and –indepen-
dent characteristics. These characteristics cover the instruction mix, branch
predictability, control flow, data cache behavior, instruction cache behavior,
and inherent instruction-level parallelism (ILP). These program characteristics
were obtained for a number of benchmarks through instrumentation. The
instrumentation was done using ATOM [15], a binary instrumentation tool for

* The Mahalanobis distance incorporates correlation between the various dimensions in its
metric. For calculating the Mahalanobis distance, the overall covariance matrix of the original
characteristics Xi could be used.

174 Performance Evaluation and Benchmarking

the Alpha architecture. ATOM instruments a binary that when run on native
hardware collects program execution characteristics. ATOM is capable of
instrumenting functions, basic blocks, and individual instructions.

In this study, we consider the SPECint95 benchmarks* in conjunction with
a database workload consisting of TPC-D queries**. The reason why we chose
SPECint95 instead of the more recent SPECint2000 is to limit the simulation
time. SPEC opted to dramatically increase the runtimes of the SPEC2000 bench-
marks compared to the SPEC95 benchmarks, which is beneficial for perfor-
mance evaluation on real hardware but impractical for simulation purposes.
In addition, SPECint95 has more reference inputs per benchmark than

Table 9.1 A Set of Microarchitecture-Dependent and Independent Program
Characteristics to Drive the PCA Analysis

No. Category Program Characteristic

1
2
3
4
5

Instruction mix Percentage integer arithmetic operations
Percentage logical operations
Percentage shift and byte manipulation operations
Percentage load/store operations
Percentage control operations

6 Branch predictability Branch prediction accuracy for a hybrid branch
predictor selecting among an 8K-entry bimodal
predictor and an 8K-entry gshare predictor
(history of 12 branches); meta predictor contains
8K entries

7 Control flow Number of instructions between two sequential
flow breaks, or the number of instructions between
two taken branches

8
9

10
11
12

Data stream behavior Miss rate for a 8KB direct-mapped D-cache
Miss rate for a 16KB direct-mapped D-cache
Miss rate for a 32KB 2-way set-associative D-cache
Miss rate for a 64KB 2-way set-associative D-cache
Miss rate for a 128KB 4-way set-associative D-cache

13
14
15
16
17

Instruction stream
behavior

Miss rate for a 8KB direct-mapped I-cache
Miss rate for a 16KB direct-mapped I-cache
Miss rate for a 32KB 2-way set-associative I-cache
Miss rate for a 64KB 2-way set-associative I-cache
Miss rate for a 128KB 4-way set-associative I-cache

18 Instruction-level
parallelism (ILP)

ILP on an infinite-resource processors, i.e. assuming
an infinite number of functional units, infinite
decode/issue/reorder width, infinite window
size, perfect caches, perfect branch prediction, unit
execution latency. In other words, only
read-after-write dependencies are considered
through registers as well as through memory.

* http://www.spec.org
** http://www.tpc.org

Chapter Nine: Benchmark Selection 175

SPECint2000. For gcc (GNU C compiler) and li (lisp interpreter), we used all
the reference input files: 26 inputs for gcc and 12 inputs for li. For ijpeg
(image processing, we used the three reference inputs along with 8 other input
images taken from the Web; the images were chosen in such a way to cover a
broad range of resolutions ranging from 512 × 480 pixels up to 2362 × 1570
pixels. For compress (text compression), we have adapted the reference input
‘‘14,000,000 e 2231’’ to obtain different input sets: ‘‘100,000 e 2231’’,
‘‘500,000 e 2231’’, ‘‘1,000,000 e 2231’’, ‘‘5,000,000 e 2231’’ and
‘‘10,000,000 e 2231’’. For m88ksim (microprocessor simulation) and vortex
(object-oriented database), we have used the train and the reference inputs as
provided in the SPEC CPU distribution. The same was done for perl (perl
interpreter): jumble was taken from the train input, and primes and scrabbl
were taken from the reference input as well as for go (game)—‘‘50 9
2stone9.in’‘ from the train input, and ‘‘50 21 9stone21.in’‘ and ‘‘50
21 5 stone21.in’‘ from the reference input.

In addition to SPECint95, we used postgres v6.3 running the decision
support TPC-D queries over a 100-megabyte Btree-indexed database. For
postgres, we ran all TPC-D queries except for query 1 because of memory
constraints on our machine.

The benchmarks were compiled with optimization level -O4 and linked
statically with the -non_shared flag for the Alpha architecture. In total we
thus have 79 program-input pairs.

Figure 9.1, which is a result of applying PCA on this 79 (number of
program-input pairs) × 18 (program characteristics) matrix, shows that 4

Figure 9.1 Amount of variance explained as a function of the number of principal
components.

176 Performance Evaluation and Benchmarking

(q = 4) principal components are sufficient to account for 89.5% of the total
variance. Intuitively speaking, these four principal components account for
89.5% of the information contained in the original data set. The first compo-
nent accounts for 29.7% of the total variance and is positively dominated,
see Figure 9.2, by the number of instructions between two taken branches;
and negatively dominated by the percentage control operations and the
I-cache miss rates. This means that program-input pairs with a high value
along the first principal component typically have a relatively large number
of instructions between two taken branches and a relatively low number of
control transfer instructions and relatively low I-cache miss rates. The second
principal component accounts for 28% of the total variance and is positively
dominated by the amount of ILP and negatively dominated by the branch
prediction accuracy and the percentage of logical operations. The third com-
ponent accounts for 18.5% of the total variance and is positively dominated
by the percentage arithmetic operations and negatively dominated by the
D-cache miss rates for large cache sizes. The fourth component accounts for
13.3% of the total variance and is positively dominated by the percentage
shift operations and negatively dominated by the percentage load/store
operations.

Based on these results, we can now compute the Principal Components
(PC) values for each of the 79 program-input pairs. Plotting these 79 pro-
gram-input pairs in the (rescaled) PCA space gives a workload space view
as given in Figure 9.3. The various program-input pairs are plotted in a

Figure 9.2 Factor loadings.

Chapter Nine: Benchmark Selection 177

four-dimensional space by plotting PC1 as a function of PC2 and PC3 as a
function of PC4. As mentioned earlier, CA can be applied on this rescaled
PCA space. The dendrogram obtained from cluster analysis is shown in
Figure 9.4. Based on the workload space view given in Figure 9.3 and the

Figure 9.3 Workload space after PCA: PC1 versus PC2 in the top graph and PC3 versus
PC4 in the bottom graph.

178 Performance Evaluation and Benchmarking

dendrogram given in Figure 9.4, several interesting conclusions can be
taken, as they are discussed next.

Isolated Benchmark Behavior. Apparently, go,ijpeg, and compress
are isolated in this four-dimensional space. Indeed, in the dendrogram
shown in Figure 9.4, these three benchmarks are connected to the other
benchmarks through long linkage distances. For example, go is connected
to the other benchmarks with a linkage distance of 4.6, which is much larger
than the linkage distance for more strongly clustered benchmark-input pairs.
An explanation for this phenomenon can be found in Figure 9.3. For go the
discrimination is made along the second and third component. This is due
to its low branch prediction accuracy, its low percentage logical operations,
its high amount of ILP, its high percentage of arithmetic operations, and its
low D-cache miss rates for larger cache sizes. Compress discriminates itself
along the third component, which is mainly due to its high D-cache miss
rates for large caches. For ijpeg, the different behavior is due, along the
first and fourth component, to the high percentage of arithmetic, shift and
control operations, the high number of instructions between two taken
branches, the low percentage of load/store and control operations, and the
low I-cache miss rates.

Strong Clustering. There are also several strong clusters containing
several input sets for the same benchmark. This suggests that the input set
has a minor impact on overall performance for those benchmarks. An impor-
tant consequence of this observation is that, as will be discussed later on in
this chapter, only a small number (or in some cases, only one) of the input

Figure 9.4 Dendrogram obtained from complete linkage cluster analysis.

Chapter Nine: Benchmark Selection 179

sets should be selected to represent the whole cluster. This will ultimately
reduce the total simulation time because only a few (or only one) pro-
gram-input pairs need to be simulated instead of all the pairs within that
cluster. We can identify several strong clusters:

• The data points corresponding to gcc are strongly clustered, except
for inputs emit-rtl, insn-emit, and explow. These three in-
puts exhibit a different behavior from the rest of gcc’s inputs. Nev-
ertheless, emit-rtl and insn-emit are quite similar to each other.

• The data points corresponding to the lisp interpreter li, except for
browse, boyer, takr, triang, and puzzle0 are strongly clus-
tered as well.

• All input sets for ijpeg result in similar program behavior because
all inputs are clustered in one group. An important conclusion from
this analysis is that the behavior of ijpeg is unaffected by the image
dimensions.

• The inputs for compress are strongly clustered as well except for the
smallest input “100,000 e 2231”.

Weak clustering. The data points corresponding to postgres running
the TPC-D queries are weakly clustered. For example, the spread along the
first principal component is very large. As such, a wide range of different
I-cache behavior can be observed when running different TPC-D queries,
that is, a different query seems to result in a different instruction footprint.
Also for perl we observe a large impact of the input of overall program
behavior; all three inputs result in significantly different program behavior.

Reference versus train inputs. Along with the CPU benchmark suite,
SPEC releases both reference and train inputs. The purpose for the train
inputs is to provide input sets that should be used for profile-based compiler
optimizations. The reference input is then used for reporting results. Within
the context of this chapter, the availability of reference and train input sets
is important for two reasons. First, when reference and train inputs result
in similar program behavior we can expect that profile-driven optimizations
will be effective. Second, train inputs have smaller dynamic instruction
counts, which make them candidates for more efficient simulation runs. In
other words, when a train input exhibits a similar behavior as a reference
input, the train input can be used instead of the reference input for exploring
the design space, which will lead to a more efficient design flow.

In this respect, we draw the following conclusions:

• The train and reference input for vortex exhibit similar program
behavior with a linkage distance that is smaller than 0.4.

• For m88ksim on the other hand, this is less the case—the linkage
distance is larger than 1.

• For go, the train input “50 9 2stone9.in” leads to a behavior
that is slightly different from the behavior of the reference inputs

180 Performance Evaluation and Benchmarking

“50 21 9stone21.in” and “50 21 5stone21.in”. The two
reference inputs on the other hand, lead to similar behavior.

From these observations, we can state that for some benchmarks the
train input behaves similarly to the reference input. For other benchmarks
this might not be true. As such, using train inputs when reporting perfor-
mance results in architectural research might be reliable in some cases and
unreliable in other cases.

Weak Spot Detection. Another interesting insight that can be obtained
from applying PCA is whether the workload covers the workload space well.
Figure 9.5 again shows the workload space along the first two principal
components; the weak spots are highlighted through gray shapes. The iden-
tification of weak spots is valuable information for performance analysts and
computer architects as they try to compose a benchmark suite that covers
the complete workload space. A weak spot can then be addressed by search-
ing for additional benchmarks or by using synthetic workloads with prop-
erties matching the weak spot characteristics. An example of how synthetic
workloads can be generated are discussed in the previous chapter.

9.4.1.2 Java workloads
In our second example of how the workload analysis methodology presented
in this chapter can be used for gaining insight in program behavior, we consider
Java workloads that are executed within a managed run-time environment or

Figure 9.5 Weak spot detection.

Chapter Nine: Benchmark Selection 181

a virtual machine (VM). The purpose of this study [1] was to better under-
stand the interaction between the VM and the Java application being exe-
cuted. Moreover, we wanted to gain insight on how overall Java application
behavior is affected by the VM, the Java application itself, and the input to
the Java application.

This research was motivated by the observation that previous work on
Java workload characterization typically considered only one or two VMs in
their methodology as well as only one benchmark suite, mostly SPECjvm98.
In addition, some studies use a small input set, for example, s1 for
SPECjvm98, to limit the simulation time in their study. As such, we can raise
several relevant questions in relation to this methodology. Is such a meth-
odology reliable for Java workloads? What if the behavior of a Java workload
is highly dependent on the chosen VM? Can we translate conclusions made
for one VM to another? Is using a small input, for example, SPECjvm98’s
s1, yielding a short-running Java workload representative for a large input,
such as s100?

For this study, we considered seven VMs: SUN JRE 1.4.1, Blackdown
JRE 1.4.1, IBM JRE 1.4.1, JikesRVM baseline, JikesRVM adaptive, BEA
Weblogic’s JRockit, and Kaffe. We considered the SPECjvm98 benchmarks.
(In Chow et al. [1], we considered additional benchmarks; however, the
results for those will not be discussed in this chapter. We refer the interested
reader to Chow et al. [1] for more details.) In this section, we consider
microarchitecture-dependent program characteristics as measured through
hardware performance monitors. Hardware performance monitors are
microprocessor-specific registers that can measure a wide variety of perfor-
mance events during the native hardware execution of a computer program.
We refer to Chapters 11, 12, and 13 for an extensive discussion on hardware
performance monitors. In the study discussed here, the performance moni-
tors were measured on an AMD K7 Duron microprocessor. We measure 33
events through hardware performance monitors.

Figures 9.6 and 9.7 show the rescaled PCA space for SPECjvm98’s s1
and s100 input sets, respectively. These figures only show the first two
dimensions of these workload spaces. For the SPECjvm98 s1 data set, the
PCA analysis revealed four PCs are needed to account for 86.5% of the total
variance; for the SPECjvm87 s100 data set, six PCs are needed to account for
87.3% of the total variance. Figures 9.6 and 9.7 only show the first two
dimensions; the other dimensions did not show any additional information.

Figure 9.6 shows that for the s1 data set the data points are more or less
clustered per VM. From these results we can thus conclude that, for the s1
input set, the VM has a larger impact on the overall behavior than the Java
application itself. In other words, a VM running a Java application with a
small input will exhibit similar behavior irrespective of the Java application
it is running. This can be understood intuitively because the s1 input set
results in very short-running benchmarks (in the order of seconds) for which
the startup time of the VM (initializing and loading parts of the JDK library)
is the highest factor contributing to the overall behavior. From these data

182 Performance Evaluation and Benchmarking

we can also conclude that using the s1 input set of SPECjvm98 in a perfor-
mance analysis might not be a good method unless one is primarily inter-
ested in measuring startup times, not just long-running performance.

It is also interesting to note that the data points corresponding to the
compress benchmark are not part of the clusters discussed earlier. In other
words, for this Java benchmark, the interaction between the application and
the VM has a large impact on its overall behavior at the microarchitectural
level because the various VMs running compress are spread over the Java
workload space. A close inspection of compress reveals that it has a small
code size, while processing a fairly large amount of data, even in case of the
s1 input set. Profiling shows that for this benchmark, the top 10 methods
account for 98% of all method calls. Compress thus has a small number of
hot methods, much smaller than the other SPECjvm98 benchmarks. This
leads to a small working set and allows fairly aggressive optimizations by
the VM’s native code generator. Because each VM implements its run-time
optimizer in a different way, this can result in a behavior that is quite different
for each VM.

Referring now to Figure 9.7, which shows the rescaled PCA space for
the SPECjvm98 s100 data set, it is obvious that the clusters are no longer
formed around VMs, as is the case for the s1 input set. For the s100 input
set, we observe benchmark clusters—the same benchmark being run on dif-
ferent VMs, or small impact of VM on overall behavior—as well as virtual

Figure 9.6 PCA space for seven virtual machines and the SPECjvm98 benchmarks
with the s1 input data set.

Chapter Nine: Benchmark Selection 183

machine clusters—the same VM running different Java applications, or large
impact of VM on overall behavior. In Figure 9.7, we observe three tight
benchmark clusters: (1) a cluster corresponding to compress, (2) a cluster
corresponding to mpegaudio, and (3) a cluster corresponding to db. The first
two clusters contain all the VMs except for the baseline version of Jikes. The
last cluster around db contains five VMs, all but Kaffe and the baseline
version of Jikes. Interestingly, Shuf et al. [14] labeled these SPECjvm98 bench-
marks as “simple” benchmarks. The fact that the VMs running these “sim-
ple” benchmarks result in clustered data points is probably (and surpris-
ingly) due to the fact that all the VMs have optimized these simple
benchmarks to nearly the same native code during the long-running time of
these benchmarks. Note that in contrast to the widespread behavior of com-
press for the s1 input, the s100 input results in a tight cluster.

In addition to these three benchmark clusters, we observe two tight VM
clusters: (4) the baseline version of the Jikes VM, and (5) the JRockit VM.
The cluster around the baseline Jikes VM contains all the SPECjvm98 bench-
marks. The fact that the various Java programs that are run on baseline Jikes
exhibit similar behavior can be explained as follows. The baseline configu-
ration of Jikes compiles each method just in time, but the number of
(dynamic) optimizations performed is limited. As such, we can expect that
more or less the same code sequences will be generated for different Java

Figure 9.7 PCA space for seven virtual machines and the SPECjvm98 benchmarks
with s100 input data set.

184 Performance Evaluation and Benchmarking

programs yielding similar behavior. The cluster around JRockit contains all
the SPECjvm98 benchmarks except for the “simple” benchmarks, compress,
db, and mpegaudio.

9.4.2 Workload composition

We now go back to the data set of section 9.4.1.1, that is, the collection of
microarchitecture-dependent and –independent characteristics for 79
SPECint95 and TPC-D benchmark-input pairs. Assume for now that all these
79 program-input pairs are representative for the target domain of operation;
that is, ideally we would like to consider all these benchmark-input pairs
throughout the microprocessor design process. Obviously, simulating these
79 benchmark-input pairs on an architectural simulator is infeasible. Indeed,
the total dynamic instruction count of all these program-input pairs together
exceeds 593 billions of instructions, or 23 days of simulation when using
SimpleScalar’s out-of-order simulator at a typical simulation speed of
300,000 instructions per second. As such, it would take 3 weeks of simulation
for obtaining performance metrics for one single microarchitectural design
point. If we take into account that a large number of design points need to
be evaluated, we can conclude that this approach is impractical. One possible
solution to this problem would be to run simulations in parallel on a cluster
of machines. Because machines are quite cheap nowadays, the equipment
cost can be modest. However, the simulations might still be too time-con-
suming because the total simulation time on a cluster of machines is as
long as the slowest simulation. For example, simulating one single microar-
chitectural configuration for vortex-ref with a dynamic instruction count
of more than 92 billion instructions, still takes 3.5 days. Thus, the total simu-
lation time for a complete benchmark suite cannot be faster than 3.5 days.

To address this issue, we could pick a limited number of benchmark-input
pairs from the workload space. These benchmark-suite pairs should be chosen
in such a way that they are both representative and have a small dynamic
instruction count. In this section we show how the workload analysis method-
ology from this chapter can be used to reduce a workload with a large number
of program-input pairs to a set with a more limited set. In section 3.3, we have
discussed three possible clustering strategies: (1) linkage clustering using the
complete linkage rule, (2) linkage clustering using the weighted pair-group
average linkage rule, and (3) K-means clustering. All three clustering mecha-
nisms can be used for selecting a representative workload. Using K-means
clustering for this purpose is straightforward. If the number of benchmark-input
pairs should be limited to 16 benchmarks, the variable K needs to set to 16.
K-means clustering then determines 16 clusters that best fit the data set; for each
cluster a representative then needs to be chosen. Linkage clustering techniques
can also be used for the purpose of representative benchmark selection. We will
now discuss how this can be done. Figure 9.8 shows the dendrogram obtained
from linkage clustering using the complete linkage rule—Figure 9.8 is basically
the same as Figure 9.4. The vertical bold dashed line shows the linkage

Chapter Nine: Benchmark Selection 185

distance at which 16 clusters are defined. For each cluster, we can now
determine a representative. The representative for each cluster was chosen
by taking the program-input pair with the minimal dynamic instruction
count that is as close as possible to the center of the cluster it belongs to. The
results are shown in Table 9.2: The clusters are shown along with their

Figure 9.8 Workload design through complete linkage cluster analysis.

Table 9.2 Workload Design Using Complete Linkage Cluster Analysis

Representative Benchmarks

postgres.Q4 postgres.Q2, Q4, Q7, Q9, and Q10
postgres.Q13 postgres.Q6, Q12 to Q16
postgres.Q3 postgres.Q3, Q11 and Q17
vortex.train postgres.Q5, m88ksim (ref and train) and vortex (ref and

train)
postgres.Q8 postgres.Q8 and perl.jumble
gcc.protoize all inputs for gcc except for insn-emit, emit-rtl and explow
gcc.emit-rtl gcc.emit-rtl and gcc.insn-emit
gcc.explow gcc.explow
li.ctak all inputs for li except for takr, browse, boyer, triang and

puzzle0
li.browse li.takr, li.browse and li.boyer
li.puzzle0 li.triang, li.puzzle0 and perl.primes
compress.1,000,000 all inputs for compress except for compress.100,00
compress.100,000 compress.100,000
ijpeg.kitty all inputs for ijpeg
perl.scrabbl perl.scrabbl
go.5stone21 all inputs for go

186 Performance Evaluation and Benchmarking

representative. Using this reduced workload instead of the original workload
results in a simulation speedup of a factor 7.8—the total dynamic instruction
count for the reduced workload is 76 billion instructions compared to the 593
billion instructions for the original workload. The largest dynamic instruction
count that is observed in this reduced workload is 35 billion instructions. This
is nearly a factor 2.6 shorter than the largest dynamic instruction count in the
original workload. In Eeckhout et al. [4], we also studied workload composition
using linkage clustering with the weighted pair-group average linkage rule, as
well as K-means clustering, and concluded that although small differences might
occur in the reduced workloads, the results are quite consistent with each other.

In the approach discussed earlier for selecting a representative from a
cluster, we considered the benchmark-input pair that is closest to the cluster
center. Another approach would be to pick a limited number of extreme
program-input pairs from each cluster—an extreme point in a cluster is a
point that is situated at the boundary of the cluster. The rationale behind
this approach would be that the behavior of program-input pairs in the
middle of a cluster can be extracted from the behavior of the extremes, for
example, through interpolation. A potential problem with this approach is
that processor performance of a program-input pair in the middle of a cluster
cannot be accurately estimated by interpolating between extremes because
determining the interpolation curve is extremely difficult. The reason is that
the influence of a program characteristic in one processor configuration can
be completely different from the influence in case of another processor con-
figuration. For this reason, we suggest selecting a representative that is close
enough to the center of its cluster.

9.4.3 Reduced input sets

KleinOsowski and Lilja [10] propose to reduce the simulation time of the SPEC
CPU2000 benchmark suite by using reduced input data sets, called Min-
neSPEC.* These reduced input sets are derived from the reference inputs by
a number of techniques: modifying inputs (for example, reducing the number
of iterations), truncating inputs, and so on. The benefit of these reduced inputs
is that the dynamic instruction count when simulating these inputs is signif-
icantly smaller than the reference inputs. They propose three reduced inputs:
smred for short simulations (100 million instructions), mdred for medium
length simulations (500 million instructions), and lgred for full-length, report-
able simulations (1 billion instructions). For determining whether two input
sets result in more or less the same behavior, KleinOsowski and Lilja used
the chi-squared statistic based on the function-level execution profiles for each
input set. A function-level profile is nothing more than a distribution that
measures what fraction of the time is spent in each function during the
execution of the program. Measuring these function-level execution profiles
can for example be done using the UNIX utility gprof. A resemblance of

* http://www-mount.ee.umn.edu/~lilja/spec2000

Chapter Nine: Benchmark Selection 187

function-level execution profiles does not necessarily imply a resemblance of
other workload characteristics that are probably more closely related to per-
formance, such as instruction mix, cache behavior, branch predictability, and
similar characteristics. For example, consider the case when we would scale
down the total time spent in each function by a factor S. Obviously, this will
result in the same function-level execution profile because the function-level
execution profile quantifies the time spent in each function relative to the total
execution time. However, a similar function-level execution profile does not
guarantee a similar data stream behavior. For example, reducing the input
set might reduce the data memory footprint potentially leading to a signifi-
cantly different data cache behavior. KleinOsowski and Lilja also recognized
that this is a potential problem.

The workload analysis methodology presented in this chapter can also
be used for validating the representativeness of reduced inputs, see also
Eeckhout et al. [5] for more details. Indeed, if a reduced input is situated
close to the reference input in the rescaled PCA space, we conclude that the
reduced input results in similar behavior. The dendrogram obtained from
the workload analysis of MinneSPEC is shown in Figure 9.9. For example,

Figure 9.9 Cluster analysis for validating reduced inputs.

188 Performance Evaluation and Benchmarking

although the smred input for gzip.log has a dynamic instruction count that
is more than a factor 50 smaller than the reference input and a data memory
footprint that is also a factor 50 smaller, smred results in a similar program
behavior as the ref input. As such, using the smred input instead of the
reference input will result a simulation speedup of a factor 50 without loosing
accuracy. The smred input for gzip.graphic on the other hand, yields a pro-
gram behavior that is dissimilar to the reference input and should therefore
not be considered as a viable alternative for the reference input.

From this MinneSPEC validation study, we can make some general
conclusions. The lgred input is generally the best input among the inputs
proposed in MinneSPEC. In other words, lgred generally yields (more or less)
similar behavior. Unfortunately, there are a few exceptions, namely mcf, gcc
and vortex. The smallest inputs, smred and mdred, generally lead to dissimilar
behavior except for gzip.source, gzip.random and gzip.log.

9.5 Related work
The methodology presented in this chapter is built on the idea of measuring
benchmark (dis)similarity. Indeed, program-input pairs that are close to each
other in the workload space are similar. Program-input pairs that are far
away from each other exhibit dissimilar behavior. In the literature, there exist
only a few approaches to measuring benchmark similarity. Saveedra and
Smith [12] present a metric that is based on dynamic program characteristics
for the Fortran language. In their metric, Saveedra and Smith include the
instruction mix, the number of function calls, the number of address com-
putations, other such characteristics. For measuring the difference between
benchmarks they used the squared Euclidean distance. The methodology
presented in this chapter differs from the one presented by Saveedra and
Smith for at least two reasons. First, the program characteristics used in our
methodology are more suited for performance prediction of contemporary
architectures because we include branch prediction accuracy, cache miss
rates, ILP, and so forth—these characteristics are more closely related to
performance; we thus expect that the methodology presented here yields a
better benchmark similarity metric. Second, we prefer to work with uncor-
related program characteristics (obtained after PCA) for quantifying differ-
ences between program-input pairs. As is extensively argued in this chapter,
removing correlation yields a better similarity metric.

Hsu et al. [6] studied the impact of input data sets on program behavior
using high-level metrics, such as procedure-level profiles and IPC, as well
as low-level metrics, such as the execution paths leading to data cache misses.
They conclude that the test input set as provided in SPEC CPU is not suitable
for simulation purposes because the execution profile is quite different from
the profile obtained from the reference input. The train input was found to
be better than the test input. However, they observed that the execution
paths leading to data cache misses are very different between the train input
and the reference input.

Chapter Nine: Benchmark Selection 189

Yi and Lilja [17] propose a technique for classifying benchmarks with
similar behavior, that is, by grouping benchmarks that stress the same proces-
sor components to similar degrees. Their method is based on a Plackett-Burman
design. A Plackett-Burman design is a technique that allows researchers to
measure the impact of variables by making a limited number of measurements.
For example, consider the case where we want to measure the impact of n
variables where each variable can have b unique values. The total number of
experiments (or in our case simulations) that need to be done is bn. This is also
called a full multifactorial design. A Plackett-Burman design on the other hand
is a fractional multifactorial design. It is a well-established technique for mea-
suring the impact of n variables and their interactions by doing a limited
number of experiments, namely 2(n + 1). This is done by varying all parameters
simultaneously in a well-chosen foldover design. For a more elaborate discus-
sion of this type of analysis, see Chapter 5.

The issues discussed in this chapter are also related to sampling and
simulation points (see also Chapters 6 and 7). Both sampling and simulation
points need to find a number of samples or simulation points so that they
are representative of the complete benchmark execution using the reference
input. Several proposals have been made to quantify the representativeness
of sampled execution and simulation points. Iyengar et al. [8] propose an
R-metric for measuring the representativeness of a sampled trace. Lafage
and Seznec [11] choose representative samples using cluster analysis. They
applied their method to data cache simulations. Characterizing the individ-
ual samples is done using two microarchitecture-independent metrics, one
that captures the temporal locality of the memory reference stream and one
that captures the spatial locality of the memory reference stream. Sherwood
et al. [13] characterize the large-scale behavior (as seen over billions of
instructions) of computer programs using one microarchitecture-indepen-
dent metric, namely the basic block vector (BBV). In essence, the BBV quantifies
the basic block execution profile. By measuring a BBV for each program slice
(containing, for example, 100 million instructions), the various program
slices can be characterized. Subsequently, the program slices with similar
BBVs and thus similar behavior are grouped together through clustering.
For each cluster, a representative sample can be chosen. The latter approach
is discussed in more detail in Chapter 7.

Another possible application of data reduction techniques such as prin-
cipal components analysis is to compare different workloads. Chow et al.
[1] used PCA to compare the branch behavior of Java and non-Java work-
loads. The interesting aspect of using PCA in this context is that PCA is able
to identify why two workloads differ. This can be done by analyzing the
principal components. Chow et al. conclude, for example, that Java work-
loads tend to have more indirect calls whereas non-Java workloads tend to
have more direct and indirect jumps.

Huang and Shen [7] quantify the impact of input data sets on the band-
width spectrum of computer programs. The bandwidth spectrum measures
the average bandwidth requirements of a program’s instruction and data

190 Performance Evaluation and Benchmarking

stream as a function of the available local memory. They conclude that the basic
shape of the bandwidth spectrum does not change much with varying inputs.

9.6 Summary
This chapter presented a workload analysis methodology to measure bench-
mark similarity. It is based on two multivariate data analysis techniques,
principal components analysis (PCA), and cluster analysis (CA). In the first
step, a number of workload characteristics need to be measured, after which
principal components analysis is performed to remove correlation from the
data set. By retaining the most significant principal components, we achieve
an important data reduction. Typically, the workload space is transformed
from a 30-dimensional space into a 2- to 6-dimensional space. This workload
space view gives us an opportunity to study benchmark similarity. Bench-
marks that are close to each other suggest similar behavior; benchmarks that
are more far away from each other suggest dissimilar behavior. The next
step in this methodology is to perform cluster analysis on the transformed
workload space. CA yields a dendrogram that clearly shows the similarities
between the various benchmark clusters in the workload space.

We have discussed three important applications for this workload anal-
ysis methodology. The first application is gaining insight in program behav-
ior. We discussed two examples, (1) studying the impact of input data sets
on program behavior and (2) studying the interaction between Java appli-
cations and virtual machines (VMs). For the first example, strong clustering
suggests a small impact of the input on overall behavior, whereas weak
clustering suggests a large impact on overall behavior. For the second exam-
ple, strong clustering for a single VM and multiple benchmarks suggests
that overall behavior is primarily determined by the VM. This is typically
observed for short-running Java applications. For long-running Java appli-
cations, weak clustering is observed, which suggests that the overall behav-
ior then is primarily determined by the application.

Our second application is workload design or the composition of a set
of representative benchmarks that covers the complete workload space. The
basic idea is to select a representative benchmark per cluster as determined
through CA. As such, only one benchmark is picked per cluster of similarly
behaving benchmarks. We have shown an example in which we reduced the
workload from 79 benchmark-input pairs to 16 benchmark-input pairs
resulting in a simulation speedup of a factor 7.8.

Our third application is the validation of reduced input data sets.
Previous work proposed to modify the input to a benchmark in order to
reduce the dynamic instruction count of the benchmark. This is done by
reducing the number of iterations of the algorithm, reducing the data set,
truncating the input, etc. The workload analysis methodology discussed in
this chapter can be used to measure the similarity between the reduced input
set and the reference input set.

Chapter Nine: Benchmark Selection 191

References
1. Chow, K., Wright, A., and Lai, K., Characterization of Java workloads by

principal components analysis and indirect branches, Proceedings of the Work-
shop on Workload Characterization (WWC) held in conjunction with the 21st Annual
ACM/IEEE International Symposium on Microarchitecture (MICRO-31), 11–19,
Nov. 1998.

2. Eeckhout, L., Georges, A., and De Bosschere, K., How Java programs interact
with virtual machines at the microarchitectural level, Proceedings of the 18th
International Conference on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA), 169–186, Oct. 2003.

3. Eeckhout, L., Vandierendonck, H., and De Bosschere, K., Workload design:
Selecting representative program-input pairs, Proceedings of the 2002 Interna-
tional Conference on Parallel Architectures and Compilation Techniques (PACT
2002), 83–94, Sept. 2002.

4. Eeckhout, L., Vandierendonck, H., and De Bosschere, K., Quantifying the
impact of input data sets on program behavior and its applications, Journal
of instruction-level parallelism, http://www.jilp.org/vol5, 5(Feb.), 2003.

5. Eeckhout, L., Vandierendonck, H., and De Bosschere, K., Designing computer
architecture research workloads, IEEE Computer, 36, 2, 65–71, 2003.

6. Hsu, W.C., Chen, H., Yew, P.Y., and Chen, D.-Y., On the predictability of
program behavior using different input data sets, Proceedings of 6th Workshop
on Interaction between Compilers and Computer Architectures (INTERACT 2002),
held in conjunction with the 8th International Symposium on High-Performance
Computer Architecture (HPCA-8), 45–53, Feb. 2002.

7. Huang, A.S. and Shen, J.P., The intrinsic bandwidth requirements of ordinary
programs, Proceedings of the Seventh International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-VII),
105–114, Oct. 1996.

8. Iyengar, V.S., Trevillyan, L.H., and Bose, P., Representative traces for processor
models with infinite cache, Proceedings of the Second International Symposium
on High-Performance Computer Architecture (HPCA-2), 62–73, Feb. 1996.

9. Johnson, R.A. and Wichern, D.H., Applied Multivariate Statistical Analysis,
Prentice Hall, Englewood Cliffs, NJ, 5th edition, 2002.

10. KleinOsowski, A.J. and Lilja, D.J., MinneSPEC: A new SPEC benchmark work-
load for simulation-based computer architecture research, Computer Architec-
ture Letters, 10–13, June 2002.

11. Lafage, T. and Seznec, A., Choosing representative slices of program execution
for microarchitecture simulations: A preliminary application to the data
stream, IEEE 3rd Annual Workshop on Workload Characterization (WWC), held
in conjunction with the International Conference on Computer Design (ICCD),
Sept. 2000.

12. Saavedra, R.H. and Smith, A.J., Analysis of benchmark characteristics and
benchmark performance prediction, ACM Transactions on Computer Sys-
tems, 14, 4, 344–384, 1996.

13. Sherwood, T., Perelman, E., Hamerly, G., and Calder, B., Automatically char-
acterizing large scale program behavior, Proceedings of the 10th International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS-X), 45–57, Oct. 2002.

192 Performance Evaluation and Benchmarking

14. Shuf, Y., Serrano, M.J., Gupta, M., and Singh, J.P., Characterizing the memory
behavior of Java workloads: A structured view and opportunities for optimi-
zations, Proceedings of the 2001 ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems, 194–205, June 2001.

15. Srivastava, A. and Eustace, A., ATOM: A system for building customized
program analysis tools, Technical Report 94/2, Western Research Lab, Compaq,
March 1994.

16. StatSoft, Inc. STATISTICA for windows: Computer program manual, http://
www.statsoft.com, 1999.

17. Yi, J., Lilja, D.L., and Hawkins, D.M., A statistically rigorous approach for
improving simulation methodology, Proceedings of the Ninth International
Symposium on High Performance Computer Architecture (HPCA-8), 281–291,
Feb. 2003.

193

Chapter Ten

Introduction to Analytical
Models

Eun Jung Kim, Ki Hwan Yum, and Chita R. Das

Contents

10.1 Introduction...194
10.2 Queueing theory...195

10.2.1 Stochastic processes...195
10.2.2 A generic queueing system ..196
10.2.3 Fundamental laws ...198

10.2.3.1 Forced flow law ...198
10.2.3.2 Little’s law ..199
10.2.3.3 General response time law199
10.2.3.4 Interactive response time law..................................200

10.2.4 The M/M/1 queue ..200
10.2.5 The M/M/m queue ..202
10.2.6 M/M/m/B Queue with finite buffer204
10.2.7 The M/G/1 queue ..206
10.2.8 Networks of queues ..207

10.2.8.1 Solution of open queueing networks.....................207
10.2.8.2 Closed queueing networks208

10.3 Petri nets ..210
10.3.1 Modeling with Petri nets..212
10.3.2 Stochastic Petri nets...214

10.4 Conclusions ...216
References...217

194 Performance Evaluation and Benchmarking

10.1 Introduction
Performance analysis of a computer system is required to provide intelligent
answers to a variety of questions that arise during various stages of its life
cycle. The three techniques used for performance analysis are measurement,
simulation, and analytical modeling. Measurement is the most credible
approach to accurately evaluate the performance of a system, but it is very
costly and many times not feasible simply because the target system may
not be available or not yet built. Thus, simulation is an effective technique
to predict the performance of any existing or new system. A simulation
program, usually written in a high-level programming language, still
requires tremendous amount of time and computing resources to model a
relatively large or complex system precisely. On the other hand, analytical
models attempt to capture the behavior of a computer system quite effec-
tively and can provide quick answers to many questions. However, the
model can become intractable as the system complexity increases.

For example, a very simple model of the average time required for a
processor to access the main memory in the event of a cache miss is given by

In this model, T is the average memory access time that we are trying
to determine, h is the fraction of all memory references that hit in the cache
(the hit ratio), Tc is the time required to read a block from the cache, and Tm

is the time required to read a block from the main memory. Although this
model is an over-simplification of how the memory system of a computer
behaves, it does provide some insights into the effect that certain parameter
changes, such as that the cache hit ratio or the memory access time will have
on the average memory access time.

Although simple analytical models provide a bird’s-eye view of a target
system, sophisticated analytical models can be developed to obtain detailed
information about how the system may behave under different conditions.
For example, such models can be used to find an upper bound on the number
of requests that a system is capable of handling or to quantify the average
queueing time of jobs inside the system. These types of models are also
useful for quickly analyzing the impact of system and workload parameters
on system performance.

The motivation of this chapter is to give a quick review of the mathe-
matical techniques that can be used for performance analysis of computer
systems. It contains two different techniques that have been widely used:
queueing theory and Petri net model. Queueing theory is the study of waiting
in line [1], and is used to predict, for example, how long a job stays in a
queue, how many jobs are in the system, and what is the system throughput.
Petri net [2], on the other hand, is a graphical and mathematical modeling
tool, which is particularly useful for capturing concurrency and synchroni-
zation behaviors [3].

T T h Tc m= + − × .()1

Chapter Ten: Introduction to Analytical Models 195

10.2 Queueing theory
This section provides a concise review of the important queueing models
used in analyzing computer systems. First, we summarize the relevant sto-
chastic process concept that is required to understand queueing systems.
Then, we describe a generic queueing system and introduce some funda-
mental laws of queueing theory before summarizing the main results of
single queue systems. Finally, the solution techniques for network of queues
are included to aid in analyzing complete systems.

10.2.1 Stochastic processes

In studying queueing systems, we need to deal with not only several random
variables but also several different sequences that are functions of time. For
example, the number of jobs in a queue at time t, n(t), is a random variable.
To specify its behavior, we need to know the probability distribution function
for n(t). Similarly, the waiting time in a queue, w(t), is a random time depen-
dent parameter. Such random functions of time, or sequences are called
stochastic processes. Such processes are used to present the behavior of a
queueing system in terms of its state space. The types of stochastic processes
that are used in queueing system analysis are the following:

• Discrete-State and Continuous-State Processes: Depending on the
values that the random variables can take, the process can be discrete
or continuous. For example, n(t) is a discrete-state process, whereas
w(t) is a continuous-state process.

• Markov Processes: If the future states of a process are independent
of its past and depends only on the present state, the process is called
a Markov process. A discrete-state continuous-time Markov process
is called a Markov chain. The most important property of a Markov
process is its memoryless behavior, which is captured by the expo-
nential distribution for continuous-time processes and geometric dis-
tribution for discrete-time processes.

• Birth-Death Processes: A Markov process in which the transitions are
restricted to neighboring states only is called a birth-death process.

• Poisson Processes: If the interarrival times of a Markov process are
independent and identically distributed (IID), the number of arrivals
n over a given time interval (t,t + x) has a Poisson distribution. The
arrival process is called a Poisson process, or Poisson stream. A
Poisson process has the following properties:

(a) Merging of k Poisson processes with mean rates λi(i = 1,2,...,k)
results in a Poisson process with a mean rate given by

λ λ=
=
∑
i

k

i

1

196 Performance Evaluation and Benchmarking

(b) If a Poisson process with a mean rate λ is split into k subpro-
cesses such that the probability of a job going to the ith subprocess
is pi, each subprocess is also a Poisson process with a mean rate
of piλ.
(c) If the arrivals to a single server with exponential service time
are a Poisson process with a mean rate, the departures are also a
Poisson process with the same rate, provided that the arrival rate
is less than the service rate μ.
(d) If the arrivals to a service center with m servers are Poisson
with a mean rate, the departures also constitute a Poisson stream
with the same rate, provided that the arrival rate is less than the
total service rate of all m servers.

With these definitions, let us now look at a generic queueing system.

10.2.2 A generic queueing system

A generic queueing system is represented by a six-tuple notation, given by
A/S/m/B/N/SD, where the first term stands for the arrival process, the
second term represents the service time distribution, the third term denotes
number of servers, the fourth term represents the buffer or queue size, the
fifth term represents the population size, and the last term represents the
service discipline [4]. A general queueing system depicting the six terms is
shown in Figure 10.1.

Figure 10.1 A Generic queueing system.

∑i iμ

Chapter Ten: Introduction to Analytical Models 197

The arrival process to a queueing system is characterized by the inter-
arrival time distribution of the customers to the system. The interarrival
times are usually assumed to be IID random variables. Similarly, the amount
of time a customer spends at a server is given by the underlying service time
distribution. Although any known distribution can be used to represent
the arrival and service time distributions, the commonly used distributions
are exponential or memoryless (M), deterministic (D), and general (G). Other
distributions such as Erlang and hyperexponential have been used to capture
the service time variation of computer systems [5].

The third parameter, number of servers, specifies how many concurrent
jobs can be served by the service center, and the fourth parameter captures
the actual buffering capacity of the server. The fourth parameter is usually
dropped from a queueing system notation if the buffer size is sufficiently
large so that it can be considered an infinite capacity. Similarly, if the
customer population is large, it can be assumed as infinite, and the fifth
parameter is dropped from the system representation. The last term, service
discipline (SD), represents the order in which customers are serviced at the
center. Starting from the most common first-come-first-served (FCFS), sched-
uling to other prioritized policies, such as round robin (RR) and process
sharing (PS), can be captured by this parameter.

Based on this notation, a few queueing systems are described next.

M/M/1: This is the simplest queueing system to analyze. The arrival and
service times are exponentially distributed (Poisson processes), and
the system consists of only one server. This queueing system can be
applied to a wide variety of problems because any system with a
very large number of independent customers can be approximated
as a Poisson process. However, exponential service time distribution
is not realistic for many applications and, thus, is only a crude ap-
proximation.

M/D/n: The arrival process is a Poisson process and the service time
distribution is deterministic. The system has n servers (e.g., a ticket
booking counter with n cashiers), and the service time is the same
for all customers.

G/G/n: This is the most general queueing system, where the arrival and
service time distributions are both arbitrary. The system has n servers.
This is the most complex system, for which no analytical solution is
known.

For such queueing systems, we are interested in determining output
parameters such as the average number of customers in the system (or in
the queue), average response time, and throughput of the system. Although
the arrival and service time distributions are required to analyze a queueing
system as a stochastic process for in-depth understanding of the system
behavior, many times a set of simple relationships can be used for quick

198 Performance Evaluation and Benchmarking

estimate of the system parameters. These relationships, called operational
laws [6,7] or fundamental laws, are summarized in the following subsection.

10.2.3 Fundamental laws

A large number of day-to-day problems in computer system performance
analysis can be solved by using some simple relationships that do not require
any assumptions about the distribution of service times and arrival times.
Several such relationships, called operational laws, were identified originally
by Buzen (1976) [6] and later extended by Denning and Buzen (1978) [7].
Operational means directly measurable quantities such as throughput and
arrival rate.

Let us assume that A is the number of arrivals during time T to the
queueing system, depicted in Figure 10.1, C is the number of completion
during this observation period, and B is the system busy time. Using these
measured quantities, we can define the following simple relations:

• Arrival rate

• Throughput

• Utilization

• Mean service time

• Utilization law

10.2.3.1 Forced flow law
In a queueing system with several resources, the number of arrivals to a
device i is equal to its number of departures,

Ai = Ci.

λ =
A
T

X
C
T

=

U
B
T

=

S
B
C

=

U
B
T

C
T

B
C

XS= = × =

Chapter Ten: Introduction to Analytical Models 199

Simplification of this yields the throughput of device i as

where Vi denotes the number of visits (visit count) to device i. This is called
the forced flow law because it enforces a balance system.

10.2.3.2 Little’s law
Little’s law states that the average number of customers (N) can be deter-
mined as

(1)

where is the average customer arrival rate and R is the average service
time of a customer. The proof of this theorem can be found in any standard
textbook on queueing theory [1]. Here, we will focus on an intuitive under-
standing of the result. Consider an example of a restaurant where the
customer arrival rate (λ) doubles, but the customers still spend the same
amount of time in the restaurant (R). This will double the number of
customers in the restaurant (N). By the same logic, if the customer arrival
rate remains the same, but the customers service time doubles, this will
also double the total number of customers in the restaurant. Little’s law is
an important relation that relates the three important parameters of a
queueing system.

10.2.3.3 General response time law
Using Little’s law, we have

Q = XR,

where Q is the total number of customers in the system and the job flow is
balanced so that arrival is equal to departure. If Qi denotes the queue length
at device i, we have

Because Little’s law can be applied to any device as long as the balance
of the flow is maintained, we have

.

Dividing both sides by X and using forced flow law, we get the average
response time R as

.

X
C
T

XVi
i

i= = ,

N R= ,λ

Q Q Q Q MM= + + + .1 2 � for a system with queues

XR X R X R X RM M= + + +1 1 2 2 �

R R V
i

M

i i=
=
∑

1

200 Performance Evaluation and Benchmarking

This is called the general response time law, where the system response
time is the summation of the product of the response time and visiting counts
at each of the device. This is a very intuitive yet extremely important result
that relates the three system parameters.

10.2.3.4 Interactive response time law
In an interactive system, where users have an average think time Z before
generating requests that are serviced by the system with an average response
time R, the total time spent in the system is R + Z. Each user generates about
T/(R + Z) requests in the time period T. (R + Z) is the average response time
per request, and thus, 1/(R + Z) is the number of requests per unit time.
System throughput is expressed as

or

R = (N/X) Z.

10.2.4 The M/M/1 queue

In this subsection we summarize the M/M/1 queueing system. As we have
seen earlier, M/M/1 refers to negative exponential arrival and service times
with a single server. This is the most widely used queueing system and is a
good approximation for a large number of systems. It assume a Poisson
arrival process, which is a very good approximation for the arrival processes
in real systems that meet the following conditions:

• The number of customers in the system is very large;
• Impact of a single customer on the performance of the system is very

small, that is, a single customer consumes a very small percentage
of the system resources;

• All customers are independent, that is, their decisions to use the
system are independent of each other.

Now that we have established scenarios where we can assume an arrival
process to be Poisson, let us look at the probability density distribution for
a Poisson process. The probability of seeing n arrivals in a period 0 to t is
given by

where t is the time interval 0 to t and n is the total number of arrivals in the
interval 0 to t, and is the average arrival rate in arrivals per sec.

X
N T R Z

T
N

R Z
=

/ +
=

+
[()]

P t
t
n

en

n
t()

()
=

!
,−λ λ

Chapter Ten: Introduction to Analytical Models 201

Suitability of an M/M/1 queue is easy to identify from the server stand-
point. For example, a single transmitting queue feeding an outgoing link is
a single server and can be modeled as an M/M/1 queueing system. If a
single transmit queue feeds two load-sharing links, it should be modeled as
an M/M/2 queue.

Queueing models are usually solved using Markov Chain (MC) models.
For example, an M/M/1 queue is represented by the following state transi-
tion diagram in Figure 10.2, where each state of the queue gives the number
of jobs in the system. Arrival of a job, with an average rate, increases the
number of jobs in the system, whereas departure of a job after completing
service at the server reduces the number of jobs by one. The solution of this
MC gives the probabilities of all states in the system [5,4]. The state proba-
bilities are used to estimate the performance parameters.

First we define the traffic intensity (sometimes called occupancy) as �
= (λ/μ). For a stable system, the average service rate should always be higher
than the average arrival rate. (Otherwise the queues would grow indefinitely).
Thus, � should always be less than one. Also, note that because we are using
average rates here, the instantaneous arrival rate may exceed the service rate.
Over a longer time period, the service rate should always exceed the arrival rate.

The solution of the above MC gives the state probabilities, which can be
used to find the performance parameters.

Now, using the state probabilities, the mean number of customers in the
system (N) becomes

.

Note that as approaches 1, the number of customers would become very
large. This can be easily justified intuitively. The value will approach 1 when
the average arrival rate starts approaching the average service rate. In this
situation, the server would always be busy and a lead to a queue build up.

The average response time including service time, is computed using
Little’s Law as N = R or

.

Again we see that as mean arrival rate (λ) approaches mean service rate
(μ), the waiting time becomes very large. Figure 10.3 depicts the response

Figure 10.2 State transition diagram of the M/M/1 system.

E N np
i

n[] ()= =
−

=

∞

∑
1

1
1

ρ
ρ

E R[] =
−
1

μ λ

202 Performance Evaluation and Benchmarking

time behavior of an M/M/1 queue. For other parameters, the readers should
refer to [5,4].

10.2.5 The M/M/m queue

The M/M/m queueing system is identical to the M/M/1 system except that
there are m servers. A customer at the head of the queue is routed to any
server that is available. The Markov model for the M/M/m system is given later.

As shown in Figure 10.4, in the first m stages, the service rate increases
linearly because more servers are available. After the m customers are busy,

Figure 10.3 Response time for the M/M/1 system.

Figure 10.4 State transition diagram of the M/M/m system.

Chapter Ten: Introduction to Analytical Models 203

the service rate remains constant at mμ. Using the state diagram we obtain
the state probabilities as

where ρ is given by

We can calculate p0 using the relation of , which gives

The probability that a customer has to wait is denoted by

and reduces to

This is known as the well-known Erlang C formula. This equation is
widely used in telephony to estimate the probability of a call request finding
all of the m lines busy.

We can now calculate the mean number of customers (N) in the system.
It is easier to calculate the number of customers in the queue and number
in service separately. The number of customers in the queue is

p

p
m

n
n m

p
m

m
n m

n

n

m n

=
!

, ≤

!
, > ,

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

0

0

()ρ

ρ

ρ
λ
μ

= < .
m

1

n
np

=

∞

∑ =
0

1

p
m

m
m

n

m

n

m n

0
0

1

1 1
1

= +
! −

+
!

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

.
=

−

∑()
()

()ρ
ρ

ρ

P p
p m

m

p m
m

Q

n m

n

n m

m n

m

n m

n m

= =
!

=
!

=

∞

=

∞

=

∞
−

∑ ∑

∑

0

0

ρ

ρ
ρ

()

P
p m
mQ

m

≈
! −

.0

1
()
()

ρ
ρ

E N n m p P
n m

n Q[] ()= − =
−

= +

∞

∑
1

1
ρ
ρ

204 Performance Evaluation and Benchmarking

and the number of customers in the server is

The total number of customers in the system is

The service time is computed as

10.2.6 M/M/m/B Queue with finite buffer

The M/M/m/B system is similar to the M/M/m queue except that the
number of buffers B is finite. After the B buffers are full, all arrivals are lost.
We assume that B is greater than or equal to m.

The state transition diagram for an M/M/m/B queue is shown in
Figure 10.5. The arrival and service rates in the system with n jobs are

The probability of n jobs in the system in terms of the traffic intensity
ρ = λ/mμ is

Figure 10.5 Discrete-time Markov chain for the M/M/m/B system.

E N np mp m
n

m

n

n m

n[] = + = .
=

−

=

∞

∑ ∑
0

1

ρ

E N E n E n m Pq s Q[] [] []= + = +
−

.ρ
ρ
ρ1

E R
E N P

m
Q[]

[]
()

= = +
−

⎛

⎝
⎜

⎞

⎠
⎟ .

λ μ ρ
1

1
1

λ λn n … B= , = , , , , −0 1 2 1

μ

μ

μ
n

n n … m

m n m m … B

=

, = , , , , − ,

, = , + , , .

⎧

⎨
⎪

⎩
⎪

0 1 2 1

1

and

p

m
n

p n … m

m
m

p n m m

n

n

n m

=
!

, = , , , − ,

!
, = , +

()ρ

ρ

0

0

1 2 1 and

11, , .

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪ … B

Chapter Ten: Introduction to Analytical Models 205

The probability of zero jobs in the system is calculated by the following
equation.

This gives

The mean number of customers (N) in the system is

For m = 1,

The mean number of jobs in the queue is

For m = 1,

In the state n = B, the effective arrival rate is

The average service time becomes

n

B

np
=
∑ = .

0

1

p
m

m
m

n

B m m

n

m n

0

1

1

1

1
1

1
= +

−
! −

+
!

⎡

⎣
⎢

− +

=

−

∑ρ ρ
ρ

ρ()
()

()
⎢⎢

⎤

⎦
⎥
⎥

.

−1

E N np
n

B

n[] .=
=
∑

1

E N
B B

B
[]

()
=

−
−

+

−
.

+

+

ρ
ρ

ρ

ρ1
1

1

1

1

N n m pQ

n m

B

n= − .
= +
∑

1

()

N
B

Q

B

B
=

−
−

+

−
.

+

ρ
ρ

ρ
ρ

ρ1
1
1 1

′ = = −
=

−

∑λ λ λ
n

B

n Bp p
0

1

1().

E R
E N E N

pB

[]
[] []

()
=

′
=

−
.

λ λ 1

206 Performance Evaluation and Benchmarking

10.2.7 The M/G/1 queue

Many queueing models used in performance analysis assume exponential
interarrival times and exponential service times, which are covered by M/
M/m systems in the previous sections. In a M/G/1 queue, general service
times are used.

The parameters are

λ: arrival rate in jobs per unit time
E[s]: mean service time per job
Cs: coefficient of variation of the service time.

The traffic intensity, ρ, is defined as E[s], and the system is stable if the
traffic intensity is less than 1. The probability of zero jobs in the system is
p0 = 1 − ρ and the mean number of jobs in the system is

This equation is known as the Pollaczek-Khinchin (P-K) mean-value
formula. It should be noted that the mean number in the queue grows
linearly with the variance of the service time distribution. The variance of
number of jobs in the system is

Then the mean number of jobs in the queue is

and the variance of the number of jobs in the queue is

The mean response time is

and the variance of the response time is

E N Cs[] () [()]= + + − .ρ ρ ρ2 21 2 1/

Var Var[] [] []
[]

()
([]

n E n s
E s E s

= + +
−

+λ
λ

ρ
λ2

3 3 4 2

3 1
))

()

2

24 1−
.

ρ

E n Cq s[] () [()]= + −ρ ρ2 21 2 1/

Var Var[] []n nq = − + .ρ ρ2

E R E N E s E s Cs[] [] [] []() [()]= = + + −/ /λ ρ ρ1 2 12

Var Var / /[] [] [] [()] ([]) [r s E s E s= + − +λ ρ λ3 2 2 23 1 4(()]1 2− .ρ

Chapter Ten: Introduction to Analytical Models 207

The mean waiting time is

For example, if we consider the M/D/1 system then Cs = 0 and

10.2.8 Networks of queues

Although all the systems we have seen so far have only one queue, there
exist many systems that contain multiple queues. Unlike single queueing
systems, there is no easy notation for specifying the type of a queueing
network. The simplest way to classify a queueing network is either that it
is open or closed. An open queueing network has external arrivals and
departures as shown in Figure 10.6. The jobs enter the system at “In” and
exit at “Out.” The number of jobs in the system varies with time. In analyzing
an open system, we assume that the throughput is known and is equal to
the total arrival rate, and the goal is to characterize the distribution of number
of jobs in the system and average response time.

10.2.8.1 Solution of open queueing networks
With the assumption mentioned above, each queue can be analyzed inde-
pendently. Open queueing networks are used to represent transaction pro-
cessing systems, such as airline reservation systems or banking systems.

Figure 10.6 An open queueing network.

E w E s Cs[] []() [()]= + − .ρ ρ1 2 12 /

E w E s[] [] [()]= − .ρ ρ/ 2 1

208 Performance Evaluation and Benchmarking

The key feature is that the arrival rate does not depend on the load of the
system. For all fixed-capacity service centers in an open queueing network,
the response time is

Intuitively, an arriving job sees Qi jobs ahead of it, each of which will
spend Si time in service, thus the total response time is all of its predecessors
plus itself. This is not an operational law because it assumes the memoryless
property of the arrivals (i.e., Poisson arrival), which cannot be tested.

Assuming job flow balance, the throughput is equal to the arrival rate
X = λ. The throughput of the ith device using the forced law is Xi = XVi. The
utilization of the ith device using the utilization law is

The queue length of the ith device using Little’s law is

or

and the response time for device i is

10.2.8.2 Closed queueing networks
On the other hand, a closed queueing network has no external arrivals or
departures as shown in Figure 10.7. The jobs in the system keep circulating
from one queue to the next. The total number of jobs in the system is constant.
In analyzing a closed system, we assume that the number of jobs (N) is given,
and we attempt to determine the throughput or the average service time.
Two types of technique can be used to analyze closed network of queues:
mean value analysis (MVA) and convolution*.

Mean value analysis allows solving closed queueing networks in a manner
similar to that used for open queueing networks. Key differences are that

* For the convolution algorithm, please refer to the studies by Trivedi and Jain [5,4].

R S Qii i= + .()1

U X S XV S Di i i i i i= = = .λ

Q X R X S Q U Qi i i i i i i i= = + = +() ()1 1

Q
U

Ui
i

i

=
−1

R
S

Ui
i

i

=
−

.
1

Chapter Ten: Introduction to Analytical Models 209

there are no outside arrivals and no departures, and the arrival rate at a
device may depend on the load of the device. We will consider only
fixed-capacity device here. Other variations are more complicated.

Given a closed queueing network with N jobs and the service is mem-
oryless (exponential), Reiser and Lavenberg (1980) showed that the response
time of the ith device is given by

This form is similar to the open queueing network. The response time
with N jobs depends on the one with N − 1 jobs. We can calculate the one
with zero jobs in it and then extend to 1, 2,… , N − 1, N.

Given the response times at individual devices, the system response time
using the general response time law is

Figure 10.7 A closed queueing network.

R N S Qi Ni i() [()]= + − .1 1

R N V R N
i

M

i i() ()= .
=
∑

1

210 Performance Evaluation and Benchmarking

The system throughput using the interactive response time law is

The device throughput measured in terms of jobs per second is Xi(N) =
X(N)Vi. The device queue length with N jobs in the network using Little’s
law is

Consider a model of a computer CPU connected to an input/output (I/
O) device. We have a closed network with each job reentering the CPU
directly with probability p1 or after using the I/O device with probability
p2 = 1 − p1. There are N jobs in the system. We can assume that X1(N) = μ1,
X2(N) = p2μ1. With these device throughput (CPU throughput X1, I/O
throughput X2), we can obtain each device queue length and the system
throughput using the equations given.

10.3 Petri nets
Petri nets are a graphical and mathematical modeling tool applicable to
many systems [3]. A Petri net is a particular kind of directed graph, together
with an initial state called the initial marking, M0. The underlying graph
Z of a Petri net is a directed, weighted, bipartite graph consisting of two
kinds of nodes—called places and transitions—where arcs are either from
a place to a transition or from a transition to a place. In graphical repre-
sentation, places are drawn as circles, and transitions as bars or boxes. Arcs
are labeled with their weights (positive integers), where a k-weighted arc
can be interpreted as the set of k parallel arcs. Labels for unity weight are
usually omitted. A marking (state) assigns to each place a nonnegative
integer. If a marking assigns to place p a nonnegative integer k, we say that
p is marked with k tokens. Pictorially, we place k black dots (tokens) in
place p. A marking is denoted by M, an m-vector, where m is the total
number of places. The pth components of M, denoted by M(p), is the
number of tokens in place p.

In modeling, places represent conditions and transitions represent
events. A transition (an event) has a certain number of input and output
places representing the preconditions and postconditions of the event,
respectively. The presence of a token in a place is interpreted as holding the
truth of the condition associated with the place. In another interpretation, k
tokens are put in a place to indicate that k data items or resources are
available.

A formal definition of a Petri net is as follows.

X N
N

R N Z
()

()
=

+
.

Q N X N R N X N V R Ni i i i i() () () () ()= = .

Chapter Ten: Introduction to Analytical Models 211

Definition 10.1

A Petri net is a five-tuple, PN = (P, T, F, W, M0) where is a finite
set of places, is a finite set of transitions, is a
set of arcs (flow relation), is a weight function,
is the initial marking, and .

A Petri net structure Z = (P, T, F, W) without any specific initial marking
is denoted by Z. A Petri net with the given initial marking is denoted by (Z, M0).

In order to simulate the dynamic behavior of a system, a state or marking
in a Petri nets is changed according to the following transition (firing) rule:

1. A transition t is said to be enabled if each input place p of t is marked
with at least w(p, t) tokens, where w(p, t) is the weight of the arc from
p to t.

2. An enabled transition may or may not fire (depending on whether
or not the event actually takes place).

3. A firing of an enabled transition t removes w(p, t) tokens from each
input place p of t, and adds w(t, p) tokens to each output place p of
t, where w(t, p) is the weight of the arc from t to p.

A transition without any input place is called a source transition, and
one without any output place is called a sink transition. It should be noted
that a source transition is unconditionally enabled and that the firing of a
sink transition consumes tokens but does not produce any. A pair of a place
p and a transition t is called a self-loop if p is both an input and output place
of t. A Petri net is said to be pure if it has no self-loops. A Petri net is said
to be ordinary if all of its arc weights are ones.

The firing of a transition may transform a Petri Net (PN) from one
marking into another. With respect to a given initial marking M0, the
reachability set is defined as the set of all markings reachable through any
possible firing sequences of transitions, starting from the initial marking
[5]. The evolution of a PN can be completely described by its reachability
graph, in which each marking in the reachability set is a node in the graph,
while the arcs describe the possible marking-to-marking transitions. Arcs
are labeled with the name of the transition whose firing caused the asso-
ciated changes in the marking.

For the preceding rule of transition enabling, it is assumed that each
place can accommodate an unlimited number of tokens. Such a Petri net is
referred to as an infinite capacity net. For modeling many physical systems,
it is natural to consider an upper limit to the number of tokens that each
place can hold. Such a Petri net is referred to as a finite capacity net. For a
finite capacity net (Z, M0), each place p has an associated capacity K(p), the
maximum number of tokens that p can hold at any time. For finite capacity
nets, for a transition t to be enabled, there is an additional condition that the
number of tokens in each output place p of t cannot exceed its capacity K(p)
after firingt.

P p p … pm= , , ,{ }1 2
T t t … tn= , , ,{ }1 2 F P T T P⊆ × ∪ ×() ()

W F …: → , ,{ }1 2 M P …0 0 1 2: → , , ,{ }
P T∩ = ∅ P T∪ ≠ ∅

212 Performance Evaluation and Benchmarking

This rule with the capacity constraint is called the strict transition rule,
whereas the rule without the capacity constraint is called the (weak) transi-
tion rule. Given a finite capacity net (Z, M0), it is possible to apply either the
strict transition rule to the given net (Z, M0) or, equivalently, the weak
transition rule to a transformed net (Z, M0, the net obtained from (Z, M0) by
the following complementary-place transformation, where it is assumed that
N is pure.

Step 1: Add a complementary place p′ for each place p′, where the initial
marking of p′ is given by M0′(p′) = K(p′) − M0(p′).

Step 2: Between each transition t and some complementary places p′,
draw new arcs (t, p′) or (p′, t) where w(t, p′) = w(p′, t) and w(p′, t) = w(t, p),
so that the sum of tokens in place p and its complementary place p′ equals
its capacity K(p) for each place p, before and after firing the transition t.

10.3.1 Modeling with Petri nets

Petri nets are used in the modeling of a specific class of problems, the class
of discrete-event systems with concurrent or parallel events. Petri nets model
systems, and particularly two aspects of systems—events and condi-
tions—and the relationships among them.

For example, consider the following description of a computer system [8]:

• Jobs appear and are put on an input list. When the processor is free,
and there is a job on the input list, the processor starts to process the
job.

• When the job is complete, it is placed on an output list, and if there
are more jobs on the input list, the processor continues with another
job; otherwise it waits for another job.

We can identify several conditions of interest: The processor is idle; a
job is on the input list; a job is being processed; a job is on the output list.
Also we can identify several events: A new job enters the system; job pro-
cessing is started; job processing is completed; a job leaves the system.

Figure 10.8 illustrates the modeling of this system. The “job enters”
transition in this example is a source and the “job leaves” transition is a sink.
This example shows several characteristics of Petri nets and the systems they
can model. One is inherent concurrency or parallelism. There are two main
kinds of independent entities in the system: the job and the processor. In the
Petri net model, the events, which relate solely to one or the other, can occur
independently; there is no need to synchronize the actions of the jobs and
the processor. However, when synchronization is necessary (e.g., when both
a job and an idle processor must be available for processing to start), the
situation can be easily modeled.

Another major feature of Petri nets is their asynchronous nature. There
is no inherent measure of time or the flow of time in a Petri net. This reflects
a philosophy of time, which states that the only important property of

Chapter Ten: Introduction to Analytical Models 213

time, from a logical point of view, is in defining a partial ordering of the
occurrence of events. Events take variable amounts of time in real life; the
Petri net model reflects this variability by not depending on a notion of
time to control the sequence of events. Therefore, the Petri net structure
itself must contain all necessary information to define the possible
sequences of events of a modeled system. Thus in Figure 10.8, the event
“Job processing is completed” must follow the corresponding event “Job
processing is started” because of the structure of the Petri net, although

Figure 10.8 Modeling of a simple computer system.

214 Performance Evaluation and Benchmarking

no information is given or considered concerning the amount of time
required to process a job.

A Petri net is viewed as a sequence of discrete events whose order of
occurrence is one of possibly many allowed by the basic structure. If at any
time more than one transition is enabled, then any of the several enabled
transitions may fire. The choice as to which transition fires is made in a
nondeterministic manner, that is, randomly or by forces that are not modeled.
Although this nondeterminism is advantageous from a modeling point of
view, it introduces considerable complexity into the analysis of Petri nets.

To reduce the complexity, one generally accepts that the firing of a
transition (occurrence of an event) is considered instantaneous, that is, to
take zero time. Because time is a continuous variable, the probability of any
two or more events happening simultaneously is zero, and two transitions
cannot fire simultaneously. The events modeled are considered primitive
events. For example, in Figure 10.8 the event “Process a job” was modeled.
But because this event is not a primitive one, it is decomposed into a begin-
ning and an ending, which are instantaneous events, and the noninstanta-
neous occurrence.

The nondeterministic and nonsimultaneous firing of transitions in the
modeling of concurrent systems takes two forms:

• Simultaneous events that may occur in any order (Figure 10.9(a));
• Conflicting transitions where the firing of one will disable the other

(Figure 10.9(b)).

In Figure 10.9(a), the two enabled events do not affect each other in any
way, and the possible sequences of events include some in which one event
occurs first and some in which the other occurs first. In the other type of
situation, shown in Figure 10.9(b), the two enabled transitions are in conflict.
Only one transition can fire, because that removes the token from p and
disables the other transition.

An important aspect of Petri nets is that they are uninterpreted models.
The net of Figure 10.8 has been labeled with statements that indicate to a
human observer the intent of the model, but these labels do not, in any way,
affect the execution of the net. We only deal with the abstract properties
inherent in the structure of the net.

Another valuable feature of Petri nets is their ability to model a system
hierarchically. An entire net may be replaced by a single place or transition
for modeling at a more abstract level (abstraction) or places and transitions
may be replaced by subnets to provide more detailed modeling (refinement).

10.3.2 Stochastic Petri nets

Stochastic Petri nets (SPNs) are obtained by associating stochastic and timing
information to Petri nets [5]. We do this by attaching firing time to each
transition, representing the time that must elapse from the instant that the

Chapter Ten: Introduction to Analytical Models 215

transition is enabled until the instant it actually fires in isolation, that is,
assuming that it is not affected by the firing of other transitions. If two or more
transitions are enabled at the same time, the firing of transitions is determined
by the race policy; that is, the transition whose firing time elapses first is chosen

 (a)

(b)

Figure 10.9 Simultaneous and conflicting transitions.

(a)
Simultaneous events that may occur in either order.

(b)
Conflicting transitions.

216 Performance Evaluation and Benchmarking

to fire next. If the firing times can have general distributions, SPNs can be
used to represent a wide range of well-known stochastic processes. However,
choices about execution policy and memory policy, besides the firing time
distributions, must be specified. The firing times are often restricted to have
an exponential distribution to avoid policy choices. A more important fact in
this case is that an SPN can be automatically transformed into a continu-
ous-time Markov Chain (CTMC). In a graphical representation, transitions
with exponentially distributed firing times are drawn as rectangular boxes.

When an SPN is applied to performance analysis of computer networks,
places can be used to denote the number of packets or cells in the buffer or
the number of active users, or flows in the system, and the arrival and depar-
ture of packets, cells, users, or flows can be represented by firing or transitions.

In the following we show an SPN model for a simple M/M/1 queueing
system to illustrate the transformation from an SPN into a CTMC.

In Figure 10.10, the number tokens in Pqueue represents the number of
customers in the system, including the one receiving service, if any. When-
ever there is a customer (one or more tokens) in the system (in place Pqueue),
a customer may complete service when the transition Tservice fires and the
firing time is exponentially distributed with rateμ. The reachability graph of
this SPN is, in fact, a simple birth-death process with an infinite state space,
as shown in Figure 10.2. Measures such as system size, response time, and
throughput can be computed by solving this CTMC.

10.4 Conclusions
In this chapter we have introduced queuing theory and Petri nets, which are
important modeling tools for performance analysis of computer systems.
Unlike other performance analysis techniques, such as measurement and
simulation, analytical modeling can capture the behavior of a computer
system effectively and can provide quick answers to many question. We

Figure 10.10 SPN model of M/M/1 queue.

queuequeue

Chapter Ten: Introduction to Analytical Models 217

have explained queuing theory and related fundamental laws to help the
readers comprehend the basic principles. Then, according to queuing system
classification, we discussed the parameters and related equations. The chap-
ter also gives a quick review of Petri nets.

The motivation of this chapter is to introduce different analytic techniques
that can be used in performance analysis of computer systems. It is impossible
to provide an in-depth treatment of the vast area in a chapter. Interested readers
should refer to the studies by Jain and Trivedi [4,5] for detailed analyses.

References
1. Kleinrock, L., Queueing Systems Volume I: Theory. Wiley-Interscience, Hoboken,

NJ, 1975.
2. Petri, C.A., Kommunikation mit Automaten. Ph.D. thesis, Bonn: Institut für

Instrumentelle Mathematik, Schriften des IIM Nr. 3, 1962. Also, English trans-
lation, Communication with automata, New York: Griffiss Air Force Base,
Tech. Rep. RADC-TR-65-377, Vol. 1, Suppl. 1, 1966.

3. Murata, T., Petri nets: Properties, analysis and applications, Proceedings of the
IEEE 77, 4, 541–580, 1989.

4. Jain, R., The Art of Computer Systems Performance Analysis, John Wiley & Sons,
Inc., 1992.

5. Trivedi, K.S., Probability and Statitics with Reliability, Queuing and Computer
Science Applications. Wiley-Interscience, Hoboken, NJ, 2002.

6. Buzen, J.P., A queueing network model of MVS, ACM Computing Surveys 10,
3, 319–331, 1978.

7. Denning, P.J., and Buzen, J.P., The operational analysis of queueing network
models, ACM Computing Surveys 10, 3, 225–261, 1978.

8. Peterson, J.L., Petri nets ACM Computing Survey 9, 3, 223–252, 1977.

219

Chapter Eleven

Performance Monitoring
Hardware and the Pentium 4
Processor

Brinkley Sprunt

Contents

11.1 Introduction...220
11.2 Performance event monitoring ..220

11.2.1 EMON detectors and counters ..221
11.2.2 Event-based sampling...222
11.2.3 Example uses of EMON hardware ...223

11.2.3.1 Tuning high-level algorithms for different
processor characteristics ...223

11.2.3.2 Finding and eliminating poorly performing
code sequences ...225

11.3 Pentium 4 EMON...225
11.3.1 Pentium 4 EMON features and improvements225
11.3.2 The Pentium 4 EMON interface..227

11.3.2.1 Event detectors and counters...................................228
11.3.2.2 Tagging mechanisms for obtaining

nonspeculative event counts231
11.3.2.3 Event-based sampling support................................231

11.4 The brink and abyss tools...232
11.4.1 The structure and operation of brink and abyss..................232
11.4.2 The brink user interface program ...233

11.4.2.1 The Pentium 4 EMON configuration file...............234
11.4.2.2 The experiment file ..239

11.4.3 The abyss front-end program and device driver241
11.4.4 A brink and abyss example..242

220 Performance Evaluation and Benchmarking

11.4.5 The advantages of the brink and abyss approach242
11.5 Performance-monitoring issues and opportunities

for future processors, systems, and software244
11.6 Summary..245
References...246

11.1 Introduction
Performance-monitoring hardware is included in many of today’s high-
performance processors. This hardware can detect and count numerous per-
formance events as the microprocessor executes. These event-count data
provide a good understanding of how applications, the operating system,
and the processor are performing and can be used to guide efforts to improve
performance. This chapter describes the general capabilities of perfor-
mance-monitoring hardware and provides examples of its use to obtain
performance profiles and expose performance problems. This overview is
followed with a description of the specific performance-monitoring features
of the Intel Pentium 4 processor. The unique capabilities of the Pentium 4
performance-monitoring hardware and its improvements with respect to
previous processors are discussed, including the event detectors and
counters and support for obtaining nonspeculative event counts as well as
precise, event-based profiles. Also, the performance-monitoring support for
the simultaneous multithreaded execution features of the Pentium 4 Xeon
processor are explained. The chapter then introduces the Brink and Abyss
software tools for configuring the Pentium 4’s performance monitoring hard-
ware and collecting performance data. The unique approach taken by these
tools to manage and document the complexity of the Pentium 4’s performance
monitoring features is also described. This chapter closes with a discussion of
the issues facing the designers and users of performance monitoring hardware
and software as microprocessor designs move toward more extensive use of
chip multiprocessing and simultaneous multithreading designs.

11.2 Performance event monitoring
Performance-monitoring hardware (typically referred to as EMON, or event-
monitoring hardware) provides a low-overhead mechanism for collecting
processor performance data [15]. Once enabled, the EMON hardware can
detect and nonintrusively count any of a set of performance events while
the processor is running applications and the operating system. The available
performance events can typically be grouped into five categories: program
characterization, memory, pipeline stalls, branch prediction, and resource
utilization. The program characterization events are used to characterize the
attributes of a program (and/or the operating system) that are largely inde-
pendent of the processor’s implementation. The most common example of
program characterization events are the number and type of instructions

Chapter Eleven: Performance monitoring hardware 221

completed by the program (e.g., loads, stores, floating point, branches). The
memory events often compose the largest event category and are used to
analyze the performance of the processor’s memory hierarchy. For example,
memory events can be used to count references and misses to various caches
and to count transactions on the processor-memory bus. The pipeline stall
events are used to analyze how well the program’s instructions flow through
the pipeline. Processors with deep pipelines rely heavily on branch predic-
tion hardware to keep the pipeline filled with useful instructions. The branch
prediction events indicate how often the processor is able to predict accu-
rately the outcome of branches and keep the correct instructions flowing into
the processor’s pipeline (e.g., by providing counts of mispredicted branches).
The resource utilization events provide counts of the number of cycles a
particular resource is in use or busy (e.g., the number of cycles a floating-point
divider is being used).

11.2.1 EMON detectors and counters

EMON hardware is typically composed of two main components: event
detectors and event counters. By properly configuring the event detectors
and counters, a variety of events under various conditions can be obtained.

An event detector can be configured to detect any one of a large set of
available events (e.g., cache misses or branch mispredictions). Often, event
detectors have an event mask field that allows further qualification of the
event to be specified. For example, the Pentium III event that detects load
accesses to the level-2 cache (L2_LD) has an event mask that allows further
qualification by the state of the cache line being accessed (i.e., modified,
shared, exclusive, or invalid) [6]. The configuration of the event detector also
allows qualification by the current privilege level of the processor. Operating
systems use supervisor and user privilege levels to prevent applications from
accessing and manipulating critical data structures and hardware that should
only be directly used by the operating system. When the operating system
is executing on the processor, it sets the privilege level to supervisor, and
when the operating system selects an application to execute on the processor,
it sets the privilege level to user. As such, the ability to qualify event detection
by the processor’s privilege level allows events to be detected that are caused
only by the application or only by the operating system. By enabling event
detection at either privilege level, events from both applications and the
operating system will be detected.

In addition to counting the events detected by the performance event
detectors, the performance event counters can also be configured to count
only under certain edge and threshold conditions. The edge detection feature
of the event counters is most often used for performance events that detect
the presence or absence of certain conditions every cycle. For these events,
an event count of one represents the presence of the condition and zero
indicates the absence of the condition. For example, a pipeline stall event
indicates the presence or absence of a pipeline stall every cycle. By counting

222 Performance Evaluation and Benchmarking

the number of these events, one obtains the number of cycles the pipeline
is stalled. However, it is often desirable to know how many stalls occurred
(i.e., the number of times a stall began) rather than just the total number of
cycles stalled. To enable the counting of stalls, the edge detect feature of the
event counter can be used. When edge detect is enabled, the performance
counter will increment by one only when the previous number of perfor-
mance events reported by the event detector is less than the current number
being reported by the event detector. In this manner, when the event detector
reports zero events on a cycle followed by one event on the next cycle, the
event counter has detected a rising edge and will increment by one. The sense
of the edge detection can usually be inverted in order to count falling edges
instead. For these events, disabling the edge detection feature counts stall
durations and enabling edge detection counts stall occurrences. Additionally,
by dividing the total stall duration count by the total stall occurrence count,
one can obtain the average cycles stalled for a particular stalling condition.

The second major feature of the event counters is a generalization of the
edge-detection support referred to as threshold support. With the threshold
feature, the event counter compares a threshold value to the value being
reported by the event counter on each cycle. If the value being reported by
the event counter exceeds the threshold, then the counter will increment by
one. The threshold feature is only of use for performance events that can
report values greater than one on each cycle. For example, superscalar pro-
cessors can complete more than one instruction per cycle. To determine how
many times three or more instructions are completed per cycle, one could
select the performance event for instructions completed and set the counter’s
threshold value to two and whenever three or more instructions complete
in one cycle, the counter would increment by one.

11.2.2 Event-based sampling

Although performance event detectors and counters can easily be used to
detect the presence of a performance problem and estimate its severity, to
eliminate the performance problem, or to reduce its impact, it is necessary
to determine the sections of code that are causing the performance problem.
Once the programmer knows the code associated with the performance
problem, the high-level algorithms used by the application and/or the
low-level code to implement those algorithms can be altered to avoid per-
formance problem entirely or lessen its severity.

EMON hardware can be used to create an event-based profile that iden-
tifies the code locations responsible for a particular performance problem.
The approach used to create event-based profiles is similar to the approach
used to create time-based profiles. A time-based profile indicates the code
locations where an application spends the majority of its time and, by focus-
ing performance-tuning efforts on these sections of the application, the ben-
efits of performance tuning efforts are maximized. To create a time-based
profile, a timer is configured to interrupt the application at regular intervals.

Chapter Eleven: Performance monitoring hardware 223

Upon each interrupt, the interrupt service routine (ISR) saves the value of
the program counter. Once the application completes, the sampled program
counter values are used to create a histogram of the number of samples
versus code location. Assuming many program counter samples are col-
lected, the histogram will show the most frequently executed sections of the
program. The creation of an event-based profile is similar to a time-based
profile, but instead of using a timer to interrupt the application at regular
intervals of time, the performance monitoring hardware is configured to
interrupt the application after a specific number of performance events have
occurred. For example, one can configure performance monitoring hardware
to interrupt the processor after every N occurrences of a particular perfor-
mance event. The resulting event-based profile indicates the most frequently
executed sections of code that caused the particular performance event.

To support event-based sampling, performance monitoring hardware
typically provides the ability to cause a performance monitor interrupt upon
the overflow of a performance event counter. In order to generate an inter-
rupt after N occurrences of a performance event, the performance counter
is initialized to a value of “overflow −N” before being enabled. A perfor-
mance monitor ISR must also be installed to handle these interrupts. The
job of the performance monitor ISR is to save away sample data from the
program (e.g., the program counter) and to re-enable the performance event
counter to cause another interrupt after N occurrences of the desired perfor-
mance event. Upon completion of the application, the data samples saved
by the performance monitor ISR can be used to create an event-based profile.

11.2.3 Example uses of EMON hardware

To illustrate the use and benefits of EMON hardware, let us examine two
examples. The first example demonstrates how EMON data can be used to
tune a high-level algorithm for better performance on a specific processor.
The second example demonstrates how EMON data can be used to find a
low-performing code sequence that can then be modified to improve its
performance.

11.2.3.1 Tuning high-level algorithms for different
processor characteristics

Algorithms developed for one processor generation sometimes do not per-
form as well on a successive processor generation. Consider the following
simple algorithm for finding prime numbers. The algorithm creates a large
array where each element in the array represents an integer and begins by
initializing all the array elements to zero. To find prime numbers, the algo-
rithm repeatedly steps through the array with successively greater strides
starting with a stride of two. On all but the initial steps, the array element
is marked by storing a value of “1” into the element. The value of “1”
indicates that the number corresponding to the array element is not prime.
For example, the first pass through the array would use a stride of 2 and

224 Performance Evaluation and Benchmarking

would mark locations 4, 6, 8, and so on, and the second pass would use a
stride of three and mark locations 6, 9, 12, for example. Once all the passes
through the array are complete, the array elements that are still zero corre-
spond to prime numbers.

Now, consider how this algorithm performs on the original Pentium
processor [8] and the Pentium Pro processor [7]. Both of these processors
have an 8K L1 data cache, but the Pentium Pro processor has an additional
256K unified L2 cache. In general, one would expect the overall performance
of the Pentium Pro to be better than Pentium because of its more advanced
design and the presence of the large, unified L2 cache. However, a subtle
difference in the allocation policies for these caches can cause some perfor-
mance surprises. The Pentium processor does not allocate a new cache line
for a store that misses the cache, but the Pentium Pro does. When a new line
is allocated into the caches, the whole line (32 bytes of data) must be loaded
from memory. In steady state, the prime number algorithm described earlier
is accessing a large array (much larger than the caches) using a large stride.
As such, almost every store to the array will miss the caches. On Pentium,
each store miss results in one bus transaction between the processor and
memory because a new cache line is not allocated. However, because the
Pentium Pro allocates a new cache line on each store miss, each store miss
causes four bus transactions to load the 32-byte cache line using the
8-byte-wide processor-memory bus. Also note that, in steady state, most of
the lines in the Pentium Pro caches are dirty (they have data that is more
recent than main memory) because they are holding the “1”s being stored
into the prime number array. As such, when a new line is allocated, a dirty
line must be written back to memory, requiring another four bus transactions.
So, in steady state, the algorithm causes only one bus transaction for each
store to the array for the Pentium processor, but causes eight bus transactions
for the Pentium Pro processor. This 8x difference in required bus bandwidth
is a bottleneck for the Pentium Pro processor and its performance on this
algorithm is low compared to the Pentium processor.

Initially, the reasons for the lower performance of the Pentium Pro on
the prime number algorithm were far from obvious. However, by collecting
cache and bus performance data using the EMON hardware for these pro-
cessors and examining the prime number algorithm, the problem described
earlier soon became apparent. Once the problem was understood, it was
noted that a slight change in the algorithm would substantially reduce the
processor-memory traffic for the Pentium Pro processor. Instead of blindly
storing a 1 into the array elements on each algorithm step, the array value
should be tested and only if the value is 0 should a 1 be stored into the
element. This simple, one-line change to the algorithm eliminates the major-
ity of the dirty cache lines because each element in the prime number array
will only be written once. This significantly reduces processor-memory traffic
for the Pentium Pro by eliminating the write back of dirty cache lines to
main memory and brings the Pentium Pro’s performance to a level on par
with or better than the Pentium. Without the performance-monitoring

Chapter Eleven: Performance monitoring hardware 225

capabilities of these processors, the investigation and resolution of this per-
formance problem would have been much more difficult.

11.2.3.2 Finding and eliminating poorly performing
code sequences

As an example of how hardware EMON features can be used to identify
the presence of a performance problem and locate the code that is causing
the problem, consider the performance problem of partial register stalls on
Intel’s P6-based Pentium processors [6]. On these processors, a partial register
stall occurs when the lower 8 or 16 bits of a 32-bit register are written by an
instruction and then soon followed by another instruction that reads the full
32 bits from the register. On these processors, register renaming causes each
write of a register to go to a different physical register. Consequently, the
newly written 8 or 16 bits reside in a different physical register than the
unchanged upper bits of the register. The full 32 bits of the register cannot
be read until the partial components of the register’s value are merged as the
instructions retire, causing a stall of at least 7 cycles and typically 10-14 cycles.

To determine whether or not partial register stalls are present in an appli-
cation, one can configure the EMON hardware to count the number of partial
register stall cycles as the application runs. If the number of partial register
stall cycles as a percentage of the total cycles for the application is significant
(e.g., greater than 3%), this indicates that performance can be improved by
finding and eliminating the partial register stalls in the application code.

Once partial register stalls are identified as a significant performance
problem, one can use the event-based sampling (EBS) support of the perfor-
mance counters to locate the most frequent occurrences of the partial register
stalls. Once the samples have been collected, a partial-stall, event-based
profile (essentially a histogram of sample counts versus code location) can
be created. This profile enables the programmer to identify the specific
locations in the application code that are causing the majority of the partial
stalls. Once these locations are known, the programmer can modify the code
to eliminate the partial register stalls.

11.3 Pentium 4 EMON
Intel’s introduction of the Pentium 4 processor [4] marked a significant
increase in the general capabilities found in microprocessor performance-
monitoring hardware [14]. This section describes these key features of the
Pentium 4 EMON hardware and describes its structure and interface.

11.3.1 Pentium 4 EMON features and improvements

The most noticeable advance in Pentium 4’s EMON capabilities relative to
prior processors is the inclusion of significantly more event detectors and
counters. Before Pentium 4, microprocessors with EMON support typically

226 Performance Evaluation and Benchmarking

included only two to six event detectors and counters. The Pentium 4 sup-
ports 48 event detectors and 18 event counters. This larger number of event
counters enables much more performance data to be collected simulta-
neously than on previous processors, reducing the number of application
runs to collect the desired data and reducing the inaccuracies introduced by
multiple application runs.

The Pentium 4 also introduced instruction tagging mechanisms that
allow nonspeculative performance event counts to be obtained. On specu-
lative-execution processors, such as the Pentium 4, most instructions are
executed before they are known to be on the correct execution path. Without
a mechanism to separate the detected performance events into those caused
by speculatively executed instructions that never complete from instructions
that do complete (retire), erroneous conclusions about program behavior
could be drawn. The Pentium 4’s instruction tagging mechanisms operate
as follows. As the Pentium 4 decodes each instruction, it breaks it into a
sequence of one or more simple operations called micro-operations or uops.
The Pentium 4 tagging mechanisms enable these uops to be tagged when
they cause certain performance events. Once a uop is tagged, it retains this
tag until it retires successfully or is canceled. As the uops pass through the
retirement logic, tagged uops that retire can be counted, providing a non-
speculative event count.

The accuracy of event-based sampling (EBS) support is also significantly
improved in the Pentium 4. EBS support in previous processors typically
monitored a particular performance counter and signaled a performance mon-
itor interrupt (PMI) when the counter overflowed. The PMI ISR would then
save the value of the program counter for the interrupted instruction. How-
ever, it is usually the case that the interrupted instruction is not the instruction
that caused the performance counter to overflow. The processor’s pipeline
and the delay between counter overflow and the signaling of an interrupt
combine to create an arbitrary distance (in retired instructions) between the
instruction causing the performance event and the instruction whose address
is saved by the PMI ISR. As such, EBS profiles on prior processors were often
too inaccurate to be useful. In contrast, the Pentium 4 processor uses its uop
tagging mechanisms along with microcode-level traps rather than macroin-
struction-level interrupts to provide support for precise event-based sampling
(PEBS). By recognizing tagged uops as they are about to retire and using a
microcode-level trap to collect EBS data, the imprecision of prior EBS imple-
mentations is avoided because no instructions are allowed to retire between
the retirement of the eventing instruction and the capturing of the sample
data. The Pentium 4 EBS support also has a special buffering mechanism that
automatically collects many samples before a macro-level interrupt service
routine must be invoked to save the samples. This buffering technique signif-
icantly lowers the overhead associated with EBS, resulting in fewer perturba-
tions of the application being monitored.

Because the Pentium 4 was also the first microprocessor to support
simultaneous multithreading [11,10], its EMON capabilities support several

Chapter Eleven: Performance monitoring hardware 227

thread qualification options. Simultaneous multithreading (SMT) is a technique
that allows more than one task (thread) to share the processor’s resources
concurrently [16]. Thus, a single SMT processor appears to the operating
system as multiple processors, and the operating system will execute
ready-to-run threads for each processor it sees. The SMT approach provides
a throughput advantage over a nonthreaded processor by allowing the pro-
cessor’s resources to continue to be used when one execution thread becomes
stalled (e.g., due to a cache miss). The Pentium 4 processor provides SMT
support by allowing its resources to be shared by two threads in dual-thread
mode. The Pentium 4 can also operate in single-thread mode where the
whole processor is allocated to only one thread. The Pentium 4 EMON
hardware supports these SMT features by allowing event detection to be
qualified by thread ID and thread mode. Each Pentium 4 event detector
allows one to specify that event detection should only occur for thread 0, or
thread 1, or for either thread. Each Pentium 4 event counter allows one to
specify that event counting should occur when operating in single-thread
mode, dual-thread mode, any-thread mode, or no-thread mode. In no-thread
mode, neither thread is active, but the processor may still respond to bus
transactions initiated by other active processors in the system.

A representative subset of the available Pentium 4 EMON events is
presented in Figure 11.1. These events illustrate the type and diversity of
the Pentium 4 events. The events in Figure 11.1 are divided into two
categories: normal events and tag events. The normal events are selected
by configuring individual event detectors and counters. The tag events are
selected by configuring multiple event detectors (e.g., one that tags an
instruction associated with a key event and another that detects tagged
instructions as they complete execution). These and other events enable
the performance analyst to determine the characteristics of an application
(e.g., the types and counts of instructions used by the application) as well
as how the Pentium 4 performs when executing the application (e.g., cache
and TLB hits and misses, branch mispredictions, front-side bus traffic, and
pipeline flushes).

11.3.2 The Pentium 4 EMON interface

The increased feature set and accuracy of the Pentium 4 EMON capabilities
comes at the price of increased complexity. The interface between system
software and Pentium 4 EMON hardware is significantly more complex than
on prior processors. Even the simplest configuration to detect and count one
event requires the setup of two EMON machine-specific registers (MSRs),
an event detector, and an event counter. An EMON configuration for more
than one event requires the careful allocation of event detectors and event
counters, because only a subset of the 48 event detectors and 18 counters
can be used to count a particular event. This section provides a brief over-
view of the Pentium 4 EMON interface, describing the organization of the
event detectors and counters along with their configuration, the uop-tagging

228 Performance Evaluation and Benchmarking

mechanisms for obtaining nonspeculative event counts, and the PEBS sup-
port and sample buffering mechanism.

11.3.2.1 Event detectors and counters
The basic elements of the Pentium 4 EMON hardware are the event detectors
and event counters. These are configured via two types of MSRs, the event
select control register (ESCR) and the counter configuration control registers
(CCCR). An ESCR is used to select the event to be detected, and the CCCR
is used to configure the counter for the detected events. Each CCCR is also
paired with a 40-bit counter that holds the count for the detected events.
As mentioned previously, an ESCR can only detect a subset of the available
EMON events, and the detected events from an ESCR can only be counted

Figure 11.1 Example Pentium 4 EMON events.

Chapter Eleven: Performance monitoring hardware 229

on a subset of the available CCCR/counter pairs. Figure 11.2 shows the
available interconnections between the ESCRs and CCCR/counter pairs.
The names of the Pentium 4 functional units that contain the ESCRs and
CCCR/counter pairs are noted in the top left of each box in Figure 11.2
(e.g., the BPU and TC). However, Intel has not published the full meaning
and function of each unit (although some are easy to guess, such as BPU
for the branch prediction unit and TC for the trace cache unit). Each gray
box on the left side of Figure 11.2 represents a unit on the Pentium 4
processor that contains event detectors. To support the simultaneous count-
ing of the same event from two different threads while running dual-thread
mode, each of these units has two similarly equipped ESCRs (except for
the CRU, which as three pairs of ESCRs). The units containing ESCRs are
grouped into four sets shown horizontally in Figure 11.2. Each of these
ESCR sets shares one group of CCCR/counter pairs, shown on the right
side of Figure 11.2. The ESCR event select values indicated in the lower left
of each unit box are used when configuring a CCCR to indicate which
ESCR’s events should be counted.

Figure 11.2 Pentium 4 ESCR and CCCR/counter interconnections.

MS

CCCR/Co un te r 0

CCCR/Co un te r 1

CCCR/Co un te r 2

CCCR/Co un te r 3

ESCR0

ESCR1

ESCR0

ESCR1

ESCR0

ESCR1

MS TC TB PU

0 1 2

CCCR/Co un te r 0

CCCR/Co un te r 1

CCCR/Co un te r 2

CCCR/Co un te r 3

ESCR0

ESCR1

ESCR0

ESCR1

ESCR0

ESCR1

ESCR0

ESCR1

ESCR0

ESCR1

ESCR0

ESCR1

ESCR0

ESCR1

ESCR0

ESCR1

BP U

BP U I ST EE R I XL AT IT LB PM H M OB FS B B SU

0 1 2 3 4 5 6 7

CCCR/Co un te r 0

CCCR/Co un te r 1

CCCR/Co un te r 2

CCCR/Co un te r 3

ESCR0

ESCR1

ESCR0

ESCR1

ESCR0

ESCR1

ESCR0

ESCR1

ESCR0

ESCR1

FLA ME

FLA ME FI RM SA AT U2L DAC

0 1 2 3 4

CCCR/Co un te r 0

CCCR/Co un te r 1

CCCR/Co un te r 4
ESCR0

ESCR1

ESCR0

ESCR1

ESCR0

ESCR1

ESCR0

ESCR1

ESCR2

ESCR3

ESCR4

ESCR5

CR U

IQ AL F R AT CRU

0 1 2 4 5 6
CCCR/Co un te r 2

CCCR/Co un te r 3

CCCR/Co un te r 5 ES

© IEEE 2004

CR Se l ect Va lu es Fo r CCCRs

230 Performance Evaluation and Benchmarking

Each ESCR supports the selection of a particular event and allows the
detection of that event to be qualified by an event-specific mask, thread ID,
and privilege level. The layout of the ESCRs is shown in Figure 11.3. The
ESCR event mask allows subsets of the event selected to be counted. For
example, the instr_retired event may be further qualified by the selection
of speculative instructions, nonspeculative instructions, tagged instruc-
tions, or nontagged instructions. The ESCR supports qualification of event
detection by thread ID and privilege level using the T1_USR, T1_OS,
T0_USR, and T0_OS bits. For example, to count only user-level events for
thread one, only the T1_USR bit should be set. The tag enable and tag value
fields of the ESCR are used by the execution tagging mechanism discussed
in section 11.3.2.2.

The CCCR (see Figure 11.4) allows event counting to be qualified by
thread mode and threshold and also supports several features related to
counter overflow. Because the Pentium 4 supports SMT, the processor may
execute in one of several SMT modes: single-thread mode, dual-thread mode,
and no-thread mode. The CCCR supports qualification of event counting for
each or any of these modes (single-thread, dual-thread, no-thread, or
any-thread mode). The CCCR also allows event counting to be qualified by
a threshold. The threshold support allows counting to occur when the num-
ber of events reported in one cycle from an event detector is greater-than or
less-than-or-equal to the specified threshold. The compare, complement,
edge, and threshold bit fields in the CCCR are used to configure the threshold
support. The CCCR also contains an overflow flag bit (OVF) that is set when
the counter overflows. The CCCR can be configured to request an interrupt
on overflow (via the OVF_PMI_T0 and OVF_PMI_T1 bits) and also be forced
to overflow on every event occurrence (via the Force_OVF bit). Finally, upon
counter overflow, the CCCR can be configured to enable another CCCR to
begin counting (via the Cascade bit).

Figure 11.3 Pentium 4 event select control register (ESCR).

© IEEE 2004

v
e
d

e
r

R
e
s

T0_OS
T0_USR
T1_OS
T1_USR

EnableTag

Value
gTa

MaskEventSelect
Event

1 03 27 6 5 49 81 03 27 6 5 49 81 03 27 6 5 49 81 0
123 0

Chapter Eleven: Performance monitoring hardware 231

11.3.2.2 Tagging mechanisms for obtaining nonspeculative
event counts

The Pentium 4 tagging mechanisms allow nonspeculative event counts to
be obtained by enabling uops that encounter certain events to be tagged
and counting tagged uops as they retire. The Pentium 4 implements three
different tagging mechanisms: front-end, execution, and replay. The
front-end tagging mechanism is able to tag uops responsible for events that
occur early in the pipeline that are related to instruction fetching, instruction
types, and uop delivery from the trace cache. The execution tagging mech-
anism is able to tag certain arithmetic uops as they write their results back
to the register file. This mechanism uses a user-specified, 4-bit field to tag
the uops (via the tag enable and the tag value fields in the ESCR). These
uops can be tested as they retire and counted if any of these tag bits are set.
The replay tagging mechanism is able to tag uops that are reissued
(replayed) due to various conditions such as cache misses, branch mispre-
dictions, dependence violations, and resource conflicts. The replay tagging
mechanism relies upon two other MSRs that must be configured to select
the desired replay cause (e.g., a cache miss) as well as the desired uop type
(e.g., a load).

11.3.2.3 Event-based sampling support
The Pentium 4 support for PEBS provides two main advantages over prior
processors: accuracy and low sampling overhead. Prior processors that relied

Figure 11.4 Pentium 4 counter configuration control register (CCCR).

3 2 1 0
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

Reserved

Enable
ESCR Select
Thread Mode (ST/DT/NT/ANY)
Compare
Complement
Threshold
Edge
Force_OVF
OVF_PMI_T0
OVF_PMI_T1
Cascade
OVF

R
es

er
ve

d

© IEEE 2004

232 Performance Evaluation and Benchmarking

solely upon an interrupt service routine to collect sample data upon perfor-
mance counter overflow were inaccurate because often the data collected
did not correspond to the instruction that caused the performance counter
to overflow. Furthermore, an interrupt was needed to collect each sample,
and frequent interrupts can significantly perturb the behavior of the system
being monitored. The Pentium 4 overcomes these problems by using a micro-
code assist to collect sample data for tagged instructions as they retire and
by buffering the samples collected. The microcode assist always collects the
sample data from a tagged (an event-causing) instruction, so the information
is precise. Each sample collected is placed directly in a memory buffer by
the microcode assist, and only when the buffer is approaching capacity is
an interrupt service routine invoked to harvest the samples.

The setup of the Pentium 4 PEBS support is complex. In addition to
configuring the tagging mechanism for the desired EMON event, the Pen-
tium 4 debug store (DS) area must be configured and a PEBS interrupt service
routine must be installed. The DS configuration specifies the base, threshold,
and maximum memory addresses for the PEBS buffer along with the buffer
index and the reset value for the event counter. The PEBS interrupt service
routine harvests the collected samples and re-enables the PEBS interrupt.

11.4 The brink and abyss tools
The advanced EMON capabilities of the Pentium 4 along with its aggressive
processor design combine to make the task of understanding and using these
EMON features significantly more difficult than with previous processors.
This section describes the brink and abyss tools [13] that were designed to
address these difficulties and to provide a high-level, easy-to-use interface
for Pentium 4 EMON features on Linux systems. First, the structure and
operation of the brink and abyss tools are described. Next, the brink user
interface program is discussed along with its two key input files: the EMON
configuration file and the experiment file. The abyss front-end program and
device driver are then described followed by a brief example of the usage
of the brink and abyss tools. This section closes with a discussion of the
advantages of the brink and abyss approach.

11.4.1 The structure and operation of brink and abyss

The high-level structure and operation of the brink and abyss tools are
illustrated in Figure 11.5. Initially, the brink user interface program reads the
XML descriptions of the Pentium 4 EMON capabilities and the desired
EMON setup and then creates a detailed EMON configuration for the desired
experiments (i.e., the values for the various ESCRs, CCCRs, counters, and
other EMON MSRs). Brink passes this detailed EMON configuration to the
abyss front end, which passes it along to the abyss device driver. The abyss
device driver uses the detailed EMON configuration to initialize the various
EMON MSRs and, if necessary, set up an interrupt service routine that will

Chapter Eleven: Performance monitoring hardware 233

harvest samples from the PEBS buffer and pass them up to the abyss front
end. Once the abyss front end has passed the detailed EMON configuration
to the abyss device driver, it executes the application to be monitored, and
periodically samples the EMON counters. The abyss front end buffers these
EMON counter samples until the application completes and then they are
passed to brink. Brink then processes the EMON counter sample data
received from the abyss front end and writes several summary output files
to disk. If PEBS is being used, the abyss front end also buffers these samples
until the application being monitored completes and then writes a PEBS
sample output file to disk.

11.4.2 The brink user interface program

The brink user interface program is a perl script that performs the majority
of the work to make the Pentium 4 EMON capabilities easily accessible to
the user. Brink expects two input files in XML format: a description of the

Figure 11.5 The structure of brink and abyss.

234 Performance Evaluation and Benchmarking

Pentium 4 EMON events and capabilities (referred to as the EMON config-
uration file) and a high-level description of the desired Pentium 4 EMON
events to be monitored (referred to as the experiment file). The experiment
file relies upon the base events and symbols defined in the EMON configu-
ration file to provide a high-level abstraction of the Pentium 4’s EMON
hardware, hiding from the user many of the low-level details, such as bit
field positions, the mapping of events to ESCRs, and the mapping of ESCRs
to CCCRs. Using the information in the EMON configuration file and the
experiment file, brink determines an allocation for the ESCRs and CCCR/
counter pairs necessary for the desired experiments and creates the setup
values for each of these MSRs. These MSR values are passed to the abyss
front end, which then uses the abyss device driver to initialize the EMON
MSRs. Once the abyss front end has completed the execution of the task
being monitored and collected all the raw EMON counter samples, these
samples are passed to brink, which uses the event names specified in the
experiment file to format the event count data and write several output files.

The power and advantages of the XML-based approach used by the
brink and abyss tools become evident when examining the Pentium 4 EMON
configuration file and the experiment file. These files and their advantages
are described in the next two subsections.

11.4.2.1 The Pentium 4 EMON configuration file
The job of the Pentium 4 EMON configuration file is to document and define
the structure and layout of the ESCRs, CCCRs, counters, and events available
in the Pentium 4. This includes all of the ESCR and CCCR information
depicted in Figures 11.1, 11.2, and 11.3 as well as detailed descriptions of all
available events, including the tag events (nonspeculative events obtained
via the Pentium 4 uop tagging mechanisms).

An XML representation for the EMON configuration file was chosen for
the following reasons. The current approach for documenting a processor’s
EMON capabilities is to describe them in a reference manual [5]. This
approach, although good and sufficient, requires programmers to translate
the verbal and pictorial description of these capabilities from the reference
manual into data structures for their programs. Furthermore, when new
versions of the processor are released with additional EMON capabilities
and/or events, these additions must be noted by the programmer, the cor-
responding data structures must be updated, and new releases of the soft-
ware must be made. This reference-manual approach would be significantly
improved if the description of the EMON capabilities were not just
human-readable but also directly usable by the software tools that employ
the EMON capabilities.

Among the key design goals for XML documents were the following:
XML documents should be easy to create, XML documents should be
human-readable, and it should be easy to write programs that process XML
documents [17]. As such, an XML description for the EMON capabilities is
an excellent choice. The human-readable quality of an XML description of

Chapter Eleven: Performance monitoring hardware 235

EMON capabilities augments the reference manual description, improving
the understanding of the programmers using the EMON capabilities, while
also providing a directly usable description of the essential data structures
needed to write programs that use the EMON capabilities. The human-read-
able quality of an XML description also makes the updating of the EMON
capabilities easier as new events and/or features are implemented in newer
versions of the processor. Furthermore, because of the widespread success
and use of XML, various parsers are readily available for XML documents.

An excerpt from the EMON configuration file that contains the XML
description of the layout of the Pentium 4 ESCRs, CCCRs, and counters is
shown in Figure 11.6. The name and range of each bit field in these registers
is defined along with a default value. The names for the bit fields can be
used in the experiment file to define specific values for the fields; otherwise
the default value will be used.

An excerpt from the EMON configuration file, shown in Figure 11.7,
contains the XML description of the mapping and interconnections between
the ESCRs, CCCRs, and counters depicted in Figure 11.2. Note that, although
only a subset of the definitions are shown in Figure 11.7, the omitted defi-
nitions are similar in structure to the ones shown. First, the set of CCCRs is

Figure 11.6 ESCR, CCCR, and counter definitions.

236 Performance Evaluation and Benchmarking

defined and, for each CCCR, the MSR address and associated counter are
defined. Second, the set of counters is defined and, for each counter, the MSR
address and RDPMC index are defined (RDPMC is an instruction that reads
the value of a counter). Third, the set of ESCRs is defined and, for each ESCR,
the MSR address and the select value used when configuring a CCCR to
count the ESCR’s events are defined. Also defined for each ESCR is a list
that indicates all of the CCCRs that can be configured to count the ESCR’s
events. For example, the event detectors configured via the fsb_escr0 ESCR
can be counted only by the counters controlled by the bpu_cccr0 and

Figure 11.7 Mapping definitions for ESCRs, CCCRs, and counters.

Chapter Eleven: Performance monitoring hardware 237

bpu_cccr1 CCCRs, whereas the event detectors configured via the fsb_escr1
ESCR can be counted only by the counters controlled by the bpu_cccr2 and
bpu_cccr2 CCCRs.

Once the layout and interconnections between the ESCRs, CCCRs, and
counters have been defined, it is fairly straightforward to create XML
descriptions of the Pentium 4 EMON events. Two examples of normal (i.e.,
not tag) event definitions are shown in Figure 11.8. The first example shown
in Figure 11.8 is for the retired branch type event, retired_branch_type. First,
the ESCR event select field value used to select this event is given (0x04).
Next, the four event mask bits that allow types of retiring branches to be
counted are defined (conditional, call, return, and indirect). As the last part
of the event definition, a list of the ESCRs that can be used to select this
event is given (ESCRs tbpu_escr0 and tbpu_escr1). Note that the structure
of the second example shown in Figure 11.8 for the itlb_reference event is
very similar in structure to the definition for the retired_branch_type event.
In this manner, all of the normal Pentium 4 events are defined in the EMON
configuration file.

Once the normal events have been defined, the tag event definitions,
which rely upon combinations of normal events and the Pentium 4 tagging
mechanisms, are defined. Two examples of tag event definitions are shown
in Figure 11.9. The tag event definitions are composed of two parts: the tag
setup and the count setup. The tag setup defines the event that will be used

Figure 11.8 Examples of normal event definitions.

238 Performance Evaluation and Benchmarking

to tag a uop as it flows through the Pentium 4 pipeline. The count setup
defines the event that will be used to count the tagged uops as they exit the
pipeline.

Figure 11.9 shows two examples of tag event definitions. The first example
in the upper half of Figure 11.9 is for the load_retired tag event that uses the
front-end tagging mechanism. The tag setup for this event uses the uop_type
event to tag the load uops as they pass through the front end of the pipeline.
This is specified by setting the tagloads bit in the event mask for the uop_type
event. The count setup for this event uses the front_end_event event with the
nbogus bit set (a nonbogus uop is a uop that is along the correct program
execution path). The second example in lower half of Figure 11.9 shows the
definition for one of the more complex tag events, unaligned_ld_retired. This
tag setup for this event requires three different things to be configured in order

Figure 11.9 Examples of tag event definitions.

Chapter Eleven: Performance monitoring hardware 239

to tag the load uops that have unaligned accesses. First, the mob_load_replay
must be enabled with the partial_data and unalgn_addr bits set in the event
mask. Next, two other special MSRs must be configured—pebs_enable and
pebs_matrix_vert—to indicate that the Pentium 4 MOB (memory order buffer)
should tag load uops that are replayed due to unaligned addresses and/or
partial data in the MOB. The count setup for this event uses the replay_event
event with the nbogus bit set. Note that the XML-based approach and the
brink user interface program are flexible enough to accommodate an arbitrary
number of actions for the tag setup.

11.4.2.2 The Experiment File
The job of the XML-based experiment file is to allow the user to specify the
programs to be monitored along with the desired EMON event configuration
to the brink user interface program. The event names and bit fields defined
in the EMON configuration file are used in the experiment file to select the
desired EMON events to monitor and define their configuration. Although
many EMON MSRs must be configured to collect EMON data, no specific
EMON MSRs (e.g., which ESCRs to use) must be specified in the experiment
file. The brink and abyss tools allocate these EMON MSRs without user
intervention, greatly simplifying the configuration task for the user. The
brink and abyss tools will execute a number of jobs equal to the product of
the number of applications and the number of experiments defined to collect
the desired EMON data. As can be seen in example experiment file shown
in Figure 11.10, an experiment file is composed of two sections: the programs
section and the experiments section.

The programs section of the experiment file defines the list of the pro-
grams to be monitored along with the invocation command for the programs.
The experiment file shown in Figure 11.10 lists two simple benchmark pro-
grams: inst_10B, which executes 10 billion instructions, and unalign_ld,
which executes many unaligned load instructions.

The experiments section of the experiment file shown in Figure 11.10
describes the setup for two separate groups of EMON event configurations,
referred to as experiments. Separate experiment descriptions are often neces-
sary because many EMON events share the same event detectors and counters,
and therefore require separate application runs to collect all the desired event
count data. The first part of the experiments section describes the default
settings for all the experiment configurations. The default section shown in
Figure 11.10 enables event detection for both USR and OS modes. The next
two parts of the experiments section define the uop and PEBS experiments.

The uop experiment shown in Figure 11.10 describes the EMON config-
uration necessary to count all nonbogus uops that retire as well as the number
of cycles in which three nonbogus uops retire. In the uop experiment, two
new event names are defined: uops_retired_all and three_uop_retire_cycles.
These event names will be used in the various output files when referring to
these event counts. The specification of base=“uops_retired” in these event
definitions selects the uops_retired event defined in the EMON configuration

240 Performance Evaluation and Benchmarking

file to serve as the base event for this event definition. The set directive for the
nbogus bit in these event definitions indicates that the nbogus bit in the event
mask should be set to enable the detection of all nonbogus retiring uops. The
set directive for the compare bit in the three_uop_retire_cycles event indicates
that the number of events detected each cycle should be compared to a thresh-
old value and that the counter should be incremented only if the number of
events detected exceeds the threshold. The val directive for the threshold field
specifies a threshold value of two (binary 0010), so only cycles where three
uops retire will cause the counter to be incremented.

The PEBS experiment shown in Figure 11.10 describes the EMON con-
figuration necessary to configure PEBS for unaligned loads that retire. The
definition of the unaligned_ld_retired_usr event specifies that the
unaligned_ld_retired event defined in the EMON configuration file (and
shown in Figure 11.9) serves as the base event for this definition. The clr
directive for the OS bit for this event definition specifies that no events in
OS mode (i.e., when the operating system is executing) should be detected.
The ebs directive for this event specifies the necessary parameters to

Figure 11.10 An example experiment configuration file for brink.

Chapter Eleven: Performance monitoring hardware 241

configure the abyss device driver to setup PEBS and collect the resulting
samples. This ebs directive indicates that precise samples be collected (as
opposed to collecting imprecise samples by generating interrupts on counter
overflows), that the interval between each sample should be 100,000, that
500 samples should be buffered before copying the samples from kernel
space to user space, and that a maximum of 20,000 samples be collected.

As can be seen from the examples discussed earlier, the choice to use XML
for the experiment file provides a number of advantages. First, the user can
define the event names to be used for each specific event configuration, avoid-
ing the necessity to predefine all possible event names or force the use of
cumbersome event-naming conventions. Second, the user does not have to
allocate the ESCRs, CCCRs, and counters for each event and does not have to
know or use the various MSR addresses, event select encodings, and ESCR
selection values. Third, the configuration of the event detection and counting
options is done symbolically, using the symbols defined in the EMON config-
uration file, eliminating the need to keep track of the width and location of
various bit fields. Fourth, many application runs to collect various sets of event
data can all be specified in one experiment file, automating the collection of
large amounts of data. Fifth, all of the advantages cited earlier for choosing
XML for the EMON configuration file also apply to the experiment file: The
experiment file is human-readable, easy to create, and easy to process.

11.4.3 The abyss front-end program and device driver

The low-level job of initializing the EMON hardware is handled by the abyss
front-end program and device driver. For each job to be run (a job is the
combination of one application and one EMON experiment configuration),
the brink user interface creates a detailed description of the EMON hardware
configuration and the application to monitor and passes this to the abyss
front end, which interacts directly with the abyss device driver to configure
the EMON hardware and collect event count and PEBS samples. When
executed, the abyss front end creates additional processes to execute the
applications that will be monitored and, if EBS is enabled, to collect
event-based samples. The execution of these processes is coordinated by the
abyss front end with help from the abyss device driver. The abyss device
driver is a Linux device driver module that provides user-level access to the
Pentium 4 EMON MSRs via read(), write(), and ioctl() calls to the /dev/
abyss device file. In addition to providing access to the EMON MSRs, the
abyss device driver also configures the Pentium 4’s event-based sampling
features by allocating the PEBS buffer in the kernel and creating the interrupt
service routines for the imprecise and precise event-based sampling inter-
rupts. Upon the completion of the job, the abyss front end passes the event
count samples back to the brink user interface program, which then creates
a collection of data files containing summaries of the job setup and event
counts along with a set of detailed data files containing all the raw sample
data. Unlike brink, which is a Perl script, the abyss front-end program and

242 Performance Evaluation and Benchmarking

device driver are written in C to minimize the perturbation of the applica-
tions being monitored as event count and PEBS samples are collected.

11.4.4 A Brink and Abyss Example

When brink is run using the experiment file shown in Figure 11.10, a number
of output files are created in an emon_data directory. These files include
copies of the experiment and EMON configuration files along with a direc-
tory for each job executed. For example, four job directories will be created
when the experiment file shown in Figure 11.10 is used (two programs to
execute, each using two different EMON configurations). The brink user
interface program also creates a summary file in the emon_data directory,
which summarizes both the EMON MSR setup for each experiment and the
event counts from each job executed.

Each job executed by brink produces a set of output files. First, a copy
of the input file for the abyss front end is saved. Second, the raw, delta, and
EBS sample data files are written. The raw data file contains the raw counter
values obtained each time the abyss front end samples the performance
counters. The delta file contains the differences between each of the perfor-
mance counter samples contained in the raw data file. The EBS sample file
contains the event-based samples collected by the abyss device driver when
event-based sampling is enabled. These event-based samples are essentially
the Pentium 4 register values, including the program counter, for each event-
ing instruction that was sampled. Finally, a summary file similar to the one
discussed earlier and shown in Figure 11.11 is included in the job directory
that details the EMON MSR setup and event counts just for the job.

An excerpt from the brink summary file resulting from the jobs run for
the experiment file shown in Figure 11.10 is shown in Figure 11.11. The excerpt
shown in Figure 11.11 only displays the information from the inst_10B pro-
gram and the uop_experiment experiment. The summary file lists the names
of the programs and experiments that were defined and, for each experiment,
shows the EMON MSR configuration used to obtain the desired event counts.
The uop_experiment experiment defined two events: uops_retired and
three_uop_retire_cycles. The binary values for ESCR, CCCR, and performance
counter for each of these events is shown. The summary file closes with a list
of the total event counts for each event defined as well as the total cycles
obtained from the time-stamp counter. For example, the total event counts
displayed in Figure 11.10 show that the inst_10B program executed approxi-
mately 16 billion uops in 6.5 billion cycles and was able to retire three uops
per cycle on 3.6 billion of the 6.5 billion cycles executed.

11.4.5 The Advantages of the brink and abyss approach

These XML descriptions of the Pentium 4’s EMON features and the desired
EMON configuration provide a number of advantages over the traditional,
reference-manual approach for documenting performance monitoring features.
First, the XML EMON feature description (i.e., the EMON configuration file)

Chapter Eleven: Performance monitoring hardware 243

provides a well-structured, human-readable document that augments the ref-
erence-manual documentation that can easily be updated or extended as new
events and capabilities are implemented in successive versions of the Pentium
4 processor. Second, the XML EMON feature description can be directly used
by application software to create the data structures necessary to manipulate
the EMON hardware and allocate EMON resources. Third, the XML descrip-
tion of the desired EMON configuration (i.e., the experiment file) can be easily
created by a user to specify desired performance monitoring configurations.
Fourth, these performance-monitoring configurations are described symboli-
cally, eliminating the need for the user to recall detailed EMON MSR
addresses, layouts, and interrelationships. In summary, the XML-based
approach used by brink and abyss to describe EMON features and configu-
rations capitalizes upon three key benefits of XML documents (XML docu-
ments are human-readable, easy to create, and easy to process) to bring the
power and flexibility of XML to the problem of improving the documentation
and ease-of-use of the complex performance-monitoring hardware found in
modern, high-performance microprocessors.

If future versions of performance-monitoring hardware were to be doc-
umented by the computer manufacturer in a fashion similar to the way the
Pentium 4 features were documented using XML for the brink and abyss
tools, then applications that exploit these features would be easier to develop
and maintain. Also, the human-readable qualities of XML-based documentation

Figure 11.11 An excerpt from an example brink summary file.

244 Performance Evaluation and Benchmarking

would aid new users in developing a good understanding of the EMON
features themselves.

11.5 Performance-monitoring issues and opportunities
for future processors, systems, and software

Mainstream computer systems will soon be moving toward a greater use of
symmetric multiprocessing (SMP) systems. Several major microprocessor
manufacturers (IBM, Intel, HP, and Sun) have begun selling or will soon sell
microprocessors that employ chip multiprocessing (CMP) in which more than
one processor core is integrated into the processor package. Additionally, these
manufacturers are also selling or will soon sell processors that support simul-
taneous multithreading (SMT), a technique that allows one physical processor
core to be concurrently shared by more than one task. Consequently, typical
computer systems and applications may soon be concurrently executing mul-
tiple-process applications on systems with multiple, multithreaded processors.
This shift from uniprocessor, single-threaded systems toward multiprocessor,
multithreaded systems has a number of implications for performance-moni-
toring hardware and its associated software tools.

A number of software tools are available to configure EMON hardware
and collect performance data [2,9,3,1], but many of these tools assume that
the applications being monitored consist of single tasks running on sin-
gle-processor systems. This assumption allows the tools to configure the
EMON hardware and collect performance counter data for the whole system
rather than for each task. As such, a performance analyst typically will setup
the system and application to be monitored such that only the desired
application is executing (along with the operating system). With this setup,
the system’s performance is essentially equivalent to the application’s per-
formance. Following this approach simplifies the EMON software tools by
eliminating the need to setup and track EMON configurations on a per-task
or per-thread basis and eliminates the need to manage multiple sets of
EMON hardware in one system (one set for each physical processor).

However, with widespread adoption of CMP and/or SMT processors
running multithreaded applications on SMP operating systems, it will no
longer be practical to assume that the performance of an application can be
measured on a single-processor, single-threaded system as described. As such,
future EMON software tools and systems will need to become more elaborate
in order to track performance of individual tasks or collections of tasks in a
per-task fashion on systems that support multiple, multithreaded processors.
Creating these tools will require even closer interaction and coordination with
the underlying operating system in order to associate performance event
counts with the appropriate tasks or threads. As such, these tools are likely to
be developed first on open-source operating systems, such as Linux.

As EMON hardware capabilities and software tools begin to accommo-
date the move to systems composed of CMP/SMT processors, additional

Chapter Eleven: Performance monitoring hardware 245

opportunities for improving system performance lie in the area of operating
system task scheduling. Because CMP/SMT processors by definition con-
currently share processor and system resources among tasks, it may often
be the case that some sets of tasks will share the resources more productively
than others. For example, a multithreaded processor may productively exe-
cute two tasks concurrently that require different processor resources (e.g.,
one task that needs integer execution units and one task that needs float-
ing-point execution units) but may not execute as productively two tasks
that require the same processor resources (e.g., two tasks that both need the
floating-point execution units). If the number of tasks that are ready to
execute is greater than the number of logical or physical processors available
in the system (as is often the case for servers), then the operating system
may improve overall system performance (throughput) by selecting sets of
tasks to run concurrently that productively share the system’s resources. To
do this type of scheduling, the operating system needs to obtain information
regarding the performance of various task set combinations. The performance
data needed by the operating system to make these high-level scheduling
decisions can be obtained from EMON hardware. This type of scheduling
has been shown to provide significant performance improvements for mul-
tithreaded processors and is referred to as symbiotic task scheduling [12].
As processors and systems move to greater levels of concurrency, and per-
formance-monitoring hardware and tools accommodate these changes, the
development of operating system schedulers that use dynamic processor
performance data to guide task-scheduling decisions will become prevalent.

11.6 Summary
This chapter introduced the basic concepts behind the on-chip hardware
used for performance event monitoring (referred to as EMON for event
monitoring) in modern, high-performance microprocessors. The use of
EMON detectors and counters to obtain program characterization and micro-
processor performance data (such as instruction counts, cache misses, and
branch mispredictions) was described. Additionally, the use of event-based
sampling techniques to locate the code sequences responsible for key per-
formance problems was discussed. The specific features of the Pentium 4’s
EMON hardware along with its improvements over prior processors were
then introduced. Next, the brink and abyss tools that provide a high-level
interface to the Pentium 4’s EMON features were described. These tools
employ the unique approach of using XML documents to describe the Pentium
4’s EMON capabilities. This XML-based approach represents a significant
improvement over the current, reference-manual approach for documenting
EMON capabilities because, in addition to being human-readable (as a ref-
erence manual is), the XML description of the Pentium 4’s EMON capabilities
can also be directly used by EMON software tools to create the data structures
necessary to manipulate the EMON configuration. In closing, this chapter
discussed the issues and opportunities that arise for the users of EMON

246 Performance Evaluation and Benchmarking

hardware and developers of EMON software tools as mainstream micropro-
cessors begin to employ simultaneous multithreading and/or chip multi-
processing techniques.

References
1. Berrendorf, Rudolf, Ziegler, Heinz, and Mohr, Bernd, PCL, The Performance

Counter Library, online at: http://www.fz-juelich.de/zam/PCL/.
2. Browne, S., Dongarra, J., Garner, N., Ho, G., and Mucci, P., A portabe pro-

gramming interface for performance evaluation on modern processors, Inter-
national Journal of High Performance Computing Applications 14, 4, 189–204, 2000.

3. Heller, Don, Rabbit, A Performance Counters Library for Intel/AMD Processors
and Linux, online at: http://www.scl.ameslab.gov/Projects/Rabbit/.

4. Hinton, Glenn, Sager, Dave, Upton, Mike, Boggs, Darrell, Carmean, Doug,
Kyker, Alan, and Roussel, Patrice. The microarchitecture of the Pentium 4
processor. Intel Technology Journal 5, 01, February 2001, online at: http://
www.intel.com/technology/itj/q12001/pdf/art 2.pdf.

5. Intel, Intel Pentium 4 Processor Manuals, online at: http://developer.intel.com/
design/Pentium4/documentation.htm.

6. Intel, Intel Pentium III Processor Manuals, online at: http://developer.in-
tel.com/design/PentiumIII/documentation.htm.

7. Intel, Intel Pentium Pro Processor Manuals, online at: http://developer.in-
tel.com/design/archives/processors/pro/.

8. Intel, Intel Pentium Processor Manuals, online at: http://developer.intel.com/
design/Pentium/manuals/.

9. Intel Corporation, VTune Performance Analyzers, online at: http://www.in-
tel.com/software/products/vtune/index.htm.

10. Koufaty, David, and Marr, Deborah T., Hyperthreading technology in the
Netburst microarchitecture, IEEE Micro Magazine 23, 2, 56–64, 2003.

11. Marr, D., Binns, F., Hill, D., Hinton, G., Koufaty, D., Miller, J., and Upton, M.,
Hyper-threading technology architecture and microarchitecture, Intel Technol-
ogy Journal 6, 01, February 2002, online at: http://developer.intel.com/tech-
nology/itj/2002/volume06issue01/art01 hyper/vol6iss1 art01.pdf.

12. Snavely, Allan, and Tullsen, Dean M., Symbiotic jobscheduling for a simulta-
neous multithreading processor, in Ninth International Conference on Architec-
tural Support for Programming Languages and Operating Systems, November
2000, online at: http://www-cse.ucsd.edu/users/tullsen/asplos00.pdf.

13. Sprunt, Brinkley. Brink and Abyss, Pentium 4 Performance Counter Tools for
Linux, online at: http://www.eg.bucknell.edu/˜bsprunt/emon/brink_abyss
/brink_abyss.shtm.

14. Sprunt, Brinkley. Pentium 4 Performance Monitoring Features. IEEE Micro
Magazine, 22(4):72–82, July-August 2002.

15. Sprunt, Brinkley, The basics of performance monitoring hardware, IEEE Micro
Magazine 22, 4, 64–71, 2002.

16. Tullsen, D.M., Eggers, S.J., and Levy, H.M., Simultaneous multithreading:
Maximizing on-chip parallelism, in 22nd Annual International Symposium on
Computer Architecture, June 1995, online at: http://www-cse.ucsd.edu/users/
tullsen/ISCA95.ps.

17. W3C. Extensible Markup Language (XML) 1.0 (Second Edition), online at: http:/
/www.w3.org/TR/2000/REC-xml-20001006.

247

Chapter Twelve

Performance Monitoring
on the POWER5™
Microprocessor
Alex Mericas

Contents

12.1 Introduction...248
12.1.1 Evolution of powerPC performance

monitoring [3]...248
12.2 Basic features...248

12.2.1 Counters ..248
12.2.2 Control registers...249
12.2.3 Event selection..251

12.3 Advanced features ...253
12.3.1 Performance monitor exceptions ..253
12.3.2 Data source feedback ..254
12.3.3 Profiling support (sampling) ...254

12.3.3.1 Historical background ..255
12.3.3.2 POWER5 sampling..256

12.3.4 CPI breakdown...256
12.3.5 Internal processor performance...258

12.4 Software support ..259
12.4.1 AIX™ ...259
12.4.2 Linux ..262

12.5 Challenges ...264
12.6 Summary..265
References...265
Trademarks ..266

248 Performance Evaluation and Benchmarking

12.1 Introduction
Like most modern microprocessors, the IBM PowerPC Family of micropro-
cessors incorporate built-in hardware for diagnostic and performance mon-
itoring [1]. The POWER5 Performance Monitor Unit (PMU) is the result of
evolutionary improvements that started with the PowerPC 604™ Micropro-
cessor. This chapter will explore the performance-monitoring capabilities of
the PowerPC, with emphasis on the POWER5 processor. Advanced features
of the POWER5 PMU allow performance problems to be quickly identified
and located with minimal overhead. Designed with flexibility in mind, the
PMU supports system-wide global monitoring and thread-level detailed
monitoring. In addition to the hardware capabilities, an overview of software
support for these facilities will also be discussed.

The POWER5 is the latest generation of the PowerPC™ family of pro-
cessors from IBM. Like the POWER4, the POWER5 is a superscalar processor
that exploits speculative and out-of-order execution to minimize the perfor-
mance impact of memory latency. Also like the POWER4, it has two physical
CPUs per chip. In additional to multiple processors per chip, the POWER5
uses simultaneous multithreading (SMT), making a single CPU appear as
two logical CPUs to the operating system [2]. Each CPU can run two inde-
pendent threads, dynamically assigning resources as needed to optimize
throughput. Continuing an evolution that began with the PowerPC 604, the
POWER5 uses an integrated PMU to monitor, record, and report key per-
formance indicators. Each thread has a dedicated PMU Unit that can be
independently configured to monitor the performance of the processor or
memory system.

12.1.1 Evolution of powerPC performance monitoring [3]

12.2 Basic features
The PowerPC performance monitor is register based; all control of the
counters and the counters themselves are special-purpose registers (SPRs).
These SPRs are accessed through the move to SPR (MTSPR) and move from
SPR (MFSPR) instructions. The registers may be read in user mode but
require supervisor mode to be written to.

12.2.1 Counters

The performance monitor counters (PMCs) are 32-bit-wide SPRs. The width
of the counter determines how many event occurrences can be counted
before the counters overflow or wrap. The counters can be configured to
signal the operating system through a performance monitor exception
when the left-most (high order in PowerPC terminology) bit transitions

Chapter Twelve: Performance monitoring on the POWER5™ 249

from 0 to 1, indicating that an overflow is imminent. Alternatively, one
counter can be configured to overflow into another counter, chaining two
or more counters together to increase the number of bits. For most events,
32 bits are more than sufficient even with higher-frequency processors.
Because the counters cause an exception long before they actually wrap,
the counters can continue to count, and the operating system is able to
service the exception before the counters advance to the point of losing
data. Of all the events counted, processor cycles are the most sensitive to
counter overflow. The interrupt rate caused by the cycle counter is still
much lower than other sources of interrupts, particularly the clock inter-
rupt. There is no benefit of increasing the width of the counters.

As shown in Figure 12.1 the number of counters implemented varies
by processor family (and in some cases within a family) from two to eight
PMCs per processor. The PPC604 had two counters, the PPC604e added
two more. The POWER3 and POWER4 implemented eight counters per
CPU. The RS64 processor, which introduced hardware multithreading,
supports eight PMCs but allows them to be shared between the two
threads. The PMU is split into two sets of four counters in multithread
mode with a common set of control registers; each set of counters monitor
the same events for the two threads. Similarly, the Intel Pentium 4 allows
any counter to count from either thread, or both combined. On POWER5
each thread appears to the operating system as a separate processor capable
of running programs from different users independent of each other. The
shared PMU approach was considered unworkable in this environment.
Instead, POWER5 implements thread-specific PMUs with each PMU’s
counters independent of the other thread’s. The ideal situation for
POWER5 would have been to replicate the POWER4 PMU and double the
number of counters to eight per thread, or 16 total. Total chip area was a
concern, which led to an initial design with four counters per thread.
Because most measurements include instructions and cycles a compromise
between area and function was reached, adding two nonprogrammable
counters to each PMU to count instructions and cycles.

The PMCs can be read directly without a state change (into supervisor
state, for example). They can be read before and after code being measured
for low overhead collection.

12.2.2 Control registers

The PowerPC PMU is controlled through SPRs known as monitor mode control
registers (MMCRs). The MMCRs control what events are monitored; when
to start, stop, or pause (freeze) the counters; and other features of the PMU.
The PPC604 had two 32-bit MMCRs, which was sufficient to control the two
counters with bits to spare. As the PowerPC family evolved, these spare bits
were quickly used up, and a third MMCR was defined. The bit fields within
particular MMCRs were generally related by implementation date more than

250 Performance Evaluation and Benchmarking

function. The POWER5 brings some order to the situation by redefining the
registers by function:

MMCR0—Controls major features and when to count (freeze condi-
tions, interrupt enabling, etc.)

MMCR1—Controls what to count (event selection)
MMCRA—Controls advanced features such as profiling support and

thresholding

The POWER5 PMU is always enabled for counting (although by default
the programmable counters count the null event, nothing). The counters can
be programmed to count unconditionally or based on the state of the processor.
In the PowerPC Architecture the machine status register (MSR) is used to

PowerPC 604
Two counters

PowerPC 604e™
Four counters
Load/Store Sampling

RS64™
Eight counters
Instruction Matching
Hardware Multi-threading
Continuous Sampling

POWER3™
Eight counters
Slot-based Sampling

POWER4™
Eight counters
Instruction Matching (multiple match conditions)
Random Sampling
Memory Source Feedback

PowerPC 970™
Eight counters
Completion Stall Accounting

POWER5™
Twelve counters (6*2)
Virtualization support
Latency detection
Completion Stall Accounting
Thread interference detection

Figure 12.1 Evolution of PowerPC performance monitor unit.

Chapter Twelve: Performance monitoring on the POWER5™ 251

describe and control the processor state. For example, when executing non-
privileged applications, the processor is in problem state, designated by the
problem state bit in the MSR. While executing privileged operating system
code the processor is in supervisor state. The PMU can use the state of the
processor to allow monitoring just the operating system or just an application
program. The MSR has a special bit, the performance monitor mark (PMM), to
indicate that the current process has been identified for performance monitor-
ing. The bit has no functional impact; it is only an indicator set by software.
The PMU can be programmed to count only when the PMM bit is set or only
when it is not set to isolate the performance of the monitored process. The run
latch is another indicator bit similar to the PMM. Operating systems can use
the run latch, a bit in the CTRL SPR, to indicate that they are executing a
dispatchable task (i.e., not idle). Early machines used this bit to drive a CPU
busy light on the machine’s front panel. The PMU can be programmed to gate
all events by the run latch, filtering out events occurring in the idle loop.

12.2.3 Event selection

The POWER5 PMU has three classes of events—bus, direct, and hybrid
events—that are a combination of one or more event bus signals with special
processing within the PMU. Direct events are events that are pervasive in
nature or are so critical that they must be available regardless of the config-
uration of the event bus. Events such as processor cycles and instructions
complete are examples of direct events.

Bus events are events that are routed to the PMU via a 32-bit event bus
as shown in Figure 12.2. The event bus is logically divided into four 8-bit
byte lanes. Bus events from the functional units are multiplexed down to
three unit buses. Each byte lane can be configured from a different unit bus,
but each unit bus can only be configured from a single unit (the unit buses
are not byte selectable, when a unit is selected it selects the entire 32-bit bus).

Hybrid events combine one or more events with special processing
within the PMU. The POWER5 is superscalar microprocessor with pairs of
identical functional units (two fixed-point units, two floating-point units,
two load/store units). To allow counting of individual unit events, each unit
typically sends 4 bits of events per byte on the unit event bus. Figure 12.3
shows unit FPU0 using bits 0–3 and FPU1 using bits 4–7. This feature was
first introduced on the POWER4. The PMU also has the ability to decode
packed events (16 bits of information encoded into 4 bits of data and a valid
bit, for example).

The processing of event signals (either discretely or via hybrid events)
is designed generically. The PMU processes the signals the same way regard-
less of the source. This makes adding new events trivial. Discrete events can
be placed anywhere on the event bus (although paired events must be placed
identically within the upper and lower nibbles of a byte). Hybrid events only
need to be placed appropriately on the event bus so that the PMU can process
them.

252 Performance Evaluation and Benchmarking

Fi
gu

re
 1

2.
2

E
ve

nt
 s

el
ec

ti
on

.

Chapter Twelve: Performance monitoring on the POWER5™ 253

Simplicity in hardware implementation does have an effect on software
support. Event selection is hierarchical in nature. With the exception of direct
events, event selection first requires the configuration of the event bus. Each
PMC is individually configured to select from a particular byte lane and then
a bit within that byte lane. Some combinations of events are not possible
(events from different units that are assigned to the same byte lane cannot
be counted simultaneously).

12.3 Advanced features
12.3.1 Performance monitor exceptions

The PMU can be programmed to generate a performance monitor exception
when particular conditions occur, such as a counter overflowing. When the
processor is enabled for external interrupts a performance monitor exception
will cause an interrupt. Because the exception is sticky, it persists until
cleared, the PMU can be used to monitor kernel code where interrupts are
disabled; any pending exception will cause an interrupt once they are
enabled again. Once any performance monitor exception occurs, it disables
future exceptions until the performance monitor interrupt handler enables
them again. The POWER5 was designed to operate in a logical partition
(LPAR) environment, where processors are shared by multiple partitions. To
facilitate performance monitoring in a LPAR environment, the performance
monitor exception is indicated by a MMCR bit. Performance monitor excep-
tions such as those caused by a counter overflow or other hardware condition
set this bit automatically. Software can also set the performance monitor

Figure 12.3 Event layout for adding.

254 Performance Evaluation and Benchmarking

exception bit. If a partition being swapped out has a performance monitor
exception outstanding but has not yet reflected the interrupt (because inter-
rupts are disabled, for example), the pending exception can be preserved
across a partition swap by saving and restoring the MMCRs and PMCs. The
exception will eventually be reflected when the partition is dispatched again,
and interrupts are enabled.

12.3.2 Data source feedback

Introduced with POWER4, data source feedback identifies where in the storage
hierarchy an instruction fetch or data load was sourced from. Previous PowerPC
processors had limited ability to identify L2 misses. The PPC604 used load
thresholding to build a histogram of load resolution times [4]. This was com-
pared to the known latency of the storage subsystem to infer the percentages
of loads from each level. With the multilevel cache structure used on the
POWER4, this technique was limiting (the latencies of some cache levels
could not be differentiated from another). Data source feedback tags each
load with an indicator of where it came from in the hierarchy. The PMU uses
its decode capability to break the source tag into individual events for data
sourced from a particular level. Instead of counting cache misses from each
level, the POWER4 counts cache hits for both instructions and data. To
determine cache misses at a given level, say, L2, would require that all of
the hits from lower levels be counted and summed. POWER5 enhanced this
technique by inspecting the load source and determining whether it was
beyond the L2 and counting that as a L2 miss. It is important to note that
the number of lines loaded into the L1 may not be equal to the number of
L1 misses. The POWER5 has the ability to merge multiple misses to the same
cache line, reducing the number of reloads.

12.3.3 Profiling support (sampling)

Sampling is commonly used to profile executing programs. Instruction sam-
pling is the technique of identifying a particular instruction and collecting
detailed information about that instruction. The information should be
detailed enough to identify the instruction and condition(s) it encountered
during execution. The PowerPC architecture provides two SPRs to identify
sampled instructions. The sampled instruction address register (SIAR) captures
the effective address of the sampled instruction. The sampled data address
register (SDAR) captures the effective address of the sampled instruction’s
data operand, if any. An indicator bit in MMCRA indicates when the SIAR
and SDAR are from the same instruction. The SDAR is not cleared when a
new sampled instruction is selected, so the indicator bit is needed to show
that the SDAR is not for a previous (since executed or cancelled) sampled
instruction. The sampled registers can only be updated by the processor when
performance monitor exceptions are enabled. Performance monitor excep-
tions toggle the enable bit, locking the contents of the sampled registers. This

Chapter Twelve: Performance monitoring on the POWER5™ 255

makes it possible to profile code that is not enabled for interrupts. Because
the exception is persistent, it will eventually trigger an interrupt. The validity
of the execution profile is influenced by the sampling technique. Some sam-
pling techniques include

Event-based sampling—Sampling an instruction based on the occur-
rence of an event, such as a cache miss

Continuous sampling—Sampling every instruction executed
Slot-based sampling—Sample instructions based on some uniform cri-

teria such as position in an internal queue
Random sampling—Sample instructions randomly

Each of these methods have benefits and drawbacks, particularly in a
speculative execution, out-of-order processor [5]. The POWER5 processor can
have over 100 instructions in its pipeline at any given time. Multiple storage
accesses can be concurrently active, including more than one for the same
cache line. Associating any monitored event with a particular instruction is
challenging, and doing so without significantly increasing the overall area of
the processor or impacting the critical pipeline stages is particularly difficult.

12.3.3.1 Historical background
The PowerPC 604 sampled based on the load queue. Instructions occupying
the first slot in the load queue were sampled, or marked. Events caused by
this instruction were annotated as marked events. Only load events could
be marked, but on a RISC machine 20% or more of the instructions are loads
and they heavily influence processor performance, making this was a rea-
sonable approach. The PPC604 can have multiple loads in the load queue,
each of them causing events that could cause a performance monitor excep-
tion. Profiling on marked events avoids this problem by ensuring that the
sampled instruction was the source of the event. [6].

POWER3 continued the slot-based approach but used the reorder buffer
(completion table). Sampling is no longer limited to load events. Slot-based
sampling can induce bias in the sampled events because some instructions
or sequences of instructions are more likely to end up in the instrumented
slot than others. The POWER3 is a speculative execution processor, so some
of the sampled instructions may never complete. It also executes
out-of-order. Like the PPC604, the POWER3 uses marked events to identify
events caused by the sampled instruction.

RS64 uses continuous sampling. The SIAR is updated on every comple-
tion, and the SDAR is updated for every load or store. Execution is in order
and the processor has a short pipeline so the sampled instruction will be
close to the event causing the performance monitor exception for most events
and precise for some. There is no concept of a marked instruction or marked
event.

To eliminate the problems caused by slot-based sampling, POWER4
introduced random sampling. The instruction decode unit (IDU) randomly

256 Performance Evaluation and Benchmarking

picks an instruction from all eligible instructions. Eligibility can be PowerPC
instructions, load/store instructions, instructions with a particular charac-
teristic, or instructions that match a particular pattern (opcode matching).
Because the POWER4 dispatches and tracks instructions in groups of up to
five instructions, the captured instruction address is actually the address of
the first instruction in the group. This is sufficient to profile down to the
basic block level but is not sufficient to identify the particular instruction
within the group that was sampled. As with the PPC604 and POWER3,
marked events are used to identify events caused by marked instructions.
Marked events are provided for performance-sensitive conditions, such as
loads from a particular level of the storage system, translation misses, or
flushes due to unaligned data. The effectiveness of random sampling is
dependent on the sampling rate, how frequently an instruction is selected.
Up to 20 dispatch groups can be active at once, and only one sampled
instruction can be active at any given time, so the worst case sampling rate
is 1 out of 20 groups. Assuming that each group has five instructions, the
worst-case instruction sampling rate would be 1 out of 100. In reality the
average group size is closer to four, even in perfectly scheduled code, bring-
ing the worst-case sampling rate to 1 out of 80 instructions. Actual sampling
rates vary from 1 out of 35 instructions (2.8% of all instructions) to 1 out of 50
(2% of all instructions). This sampling rate is close to the POWER3 (1 out of 32
instructions) without the potential bias of slot-based schemes.

12.3.3.2 POWER5 sampling
The POWER5 offers both random sampling and continuous sampling. With
continuous sampling, every group that completes updates the SIAR and
every load that causes a DL1 reload updates the SDAR. Continuous sampling
is ideal for hot-spot analysis (either execution or data). Although continuous
sampling provides better coverage for execution profiling (every group is
sampled), it is limited to completion and data cache reload events. To profile
on other events (such as the exact level in the memory system a reload was
sourced from) random sampling is still useful. To provide better resolution
with random sampling, POWER5 captures the position of the marked
instruction within the dispatch group.

12.3.4 CPI breakdown

Cycles per instruction (CPI, or the reciprocal, instructions per cycle) is the
fundamental metric in processor performance. Knowing the number of
cycles (or fractions of a cycle) it takes to complete an instruction is critical
to evaluating the performance of the processor. Knowing the components of
CPI is also important (where did the cycles go?). CPI analysis is complicated
on the POWER5 processor because it executes instructions out-of-order and
completes instructions in groups. With up to five instructions per group, any
one of the instructions could block completion. The POWER5, like the POWER4,
is capable of completing one group per cycle (or up to five instructions

Chapter Twelve: Performance monitoring on the POWER5™ 257

per cycle). The POWER4 could count instructions completed, groups com-
pleted, and cycles to be used in CPI analysis. From these, CPI and cycles per
group could be computed (as well as instructions per group to give insight
into how well instructions are being scheduled by the compiler). It would
be trivial to implement a completion stall event to count the cycles when no
group completed, but without details on why nothing completed, the event
would provide no added value. The same metric (cycles when nothing
completed) can be easily computed by subtracting the number of groups
completed (each group takes one cycle to complete) from total cycles. Com-
plicating the analysis, the cause of the stall may not be known until after it
clears. POWER5 aids the analysis of completion stalls by implementing
speculative, or rewind, counters. Two of the programmable counters have
backup registers that are not accessible to software. When software writes
an initial value to the counter, its backup register is also written. A counter
can be configured for a particular stall condition and begins counting on any
cycle when no group is completing. The first group that completes will report
the last condition that held its completion. If the condition matches what the
counter is configured for, the count value is committed by updating the
backup register. If it does not match, the counter is rewound to its previously
checkpointed value. Table 12.1 shows the breakdown of CPI components
and the events that used to calculate the breakdown. The shaded cells are
measured directly.

Table 12.1 Calculating CPI Breakdown

PPC Base completion cycles
<A1: One or more Powe his cycle>rPC instructions completed t

overhead of cracki crocoding
<A2:(A

1>

Branch redirection (branch misprediction) penalty

Completion
cycles <A:group
complete cycles> ng/mi

)-(A1)>
I-cache miss penalty <B

<B2> PMC4SEL=0x38

Completion
Table empty

others (Flush penalty etc)
<B4: (B)-(B1)-(B2)>

Stall by Translation (rejected by
ERAT miss)
<C1A1>

Stall by reject
<C1A>

other reject
<C1A2: (C1A)-(C1A1)>

Stall by D-cache miss
<C1B>

T
ot

al
 c

yc
le

 <

cy
cl

es
>

Completion Stall
cycles <C:

total-(A)-(B)>

Stall by LSU inst
<C1>

Stall by LSU basic latency, LSU Flush penalty
<C1C: (C1)-(C1A)-(C1B)>
Stall by any form of DIV/MTSPR/MFSPR inst
<C2A> Stall by FXU inst

<C2> Stall by FXU basic latency
<C2C: (C2)-(C2A)>
Stall by any form of FDIV/FSQRT inst
<C3A> Stall by FPU inst

<C3> Stall by FPU basic latency
<C3B: (C3)-(C3A)>

others (Stall by BRU/CRU inst, flush penalty (except LSU flush), etc)
<C4: (completion stall cycles)-(C1)-(C2)-(C3) >

258 Performance Evaluation and Benchmarking

The events are hierarchical. Load/store unit (LSU) stalls will include
D-cache miss and rejects. Reject stalls will include Translation stalls due to
effective to real address translation (ERAT) miss. This method only reports the
last condition to clear and will not detect dependency chains. For example,
a fixed-point add instruction that is dependent on a load in the same group
that misses the D-cache will cause the completion stall condition to be
reported as fixed-point unit (FXU). When multiple conditions are reported
at the same time, load/store conditions are favored over all others, and
D-cache miss is favored over rejects.

Completion can also be stalled because there are no instructions in the
pipeline. The primary causes of this are instruction cache misses and branch
mispredicts. The POWER5 has speculative events for these conditions that
are handled in the same way as completion stalls.

12.3.5 Internal processor performance

The POWER5 uses SMT to maximize the performance of the processor. It
does this by sharing resources between two threads to minimize idle
resources. The POWER5 PMU monitors the processor to aid in the analysis
of available resources. Functional units report instructions finished on a
per-unit basis, which can be reported individually or summed by like units;
this is useful to detect compiler scheduling problems that favor one unit
over another. All of the critical queues within the processor are instrumented
to report full conditions. Many queues, such as the completion table, are also
instrumented to report empty conditions. The completion table and the
instruction fetch buffer (instructions waiting for decode) are further instru-
mented to report on the number of entries used for each thread. The load/
store request queues and the load miss queue instrument the first queue slot
to report the total number of allocations for that slot and the number of
cycles when it was occupied. From this can be calculated the average queue
occupancy and an estimate of fullness. For load misses it gives an estimate
of average load latency for L1 misses. In addition to average load latency,
the POWER5 PMU can capture cycles waiting on a particular level of the
storage subsystem using the rewind counters. A counter is configured to
count latency at a particular level, memory, for example. When a sampled
load misses the L1, the latency counter begins counting. When the sampled
load returns, its source information is checked against the level being
counted. If it is correct, the counter is committed. If it is not correct, the
counter is rewound to the previous value. Average storage system latency
can be calculating by dividing the total count of cycles waiting for marked
loads from a particular level by the number of marked loads from that level
of the storage system.

These internal processor events are useful for both single-thread and
multihread mode. The POWER5 PMU also collects information on SMT
operation. Both threads reports the number of cycles it was running at each
thread priority level (1 to 7) as well as the number of cycles at a priority

Chapter Twelve: Performance monitoring on the POWER5™ 259

level higher or lower than the other thread (e.g., my thread 1 higher than
other thread). If my thread is preempted by the other thread, there are events
available to my PMU to record the occurrences and their reasons.

12.4 Software support
12.4.1 AIX™

AIX 5.2 [7] introduced support for the PMAPI package [8]. The libpmapi
library contains a set of application programming interfaces (APIs) that are
designed to provide access to some of the counting facilities of the perfor-
mance monitor feature included in selected IBM microprocessors. Those
APIs include the following:

• A set of system-level APIs to allow counting of the activity of a whole
machine or of a set of processes with a common ancestor

• A set of first-party, kernel-thread-level APIs to allow threads running
in 1:1 mode to count their own activity

• A set of third-party, kernel-thread-level APIs to allow a debug pro-
gram to count the activity of target threads running in 1:1 mode

System-level monitoring requires root access and requires exclusive use
of the PMU facilities on all processors; only one process can use the sys-
tem-level APIs at a time, and it prevents use of thread-level APIs. PMAPI
virtualizes the 32-bit counters into 64-bit counters, handling the overflow
detection. It also abstracts and virtualizes the MMCRs. Virtual control struc-
tures and counters can exist for each thread using the thread-level APIs; each
thread can configure the counters independently.

As mentioned earlier, configuring the POWER5 PMU is a complex task.
To reduce the complexity, PMAPI provides a set of predefined groups of
events. The group concept was first seen on the RS64, which actually imple-
mented event groups in hardware. It was extended to software managed
groups for POWER4 to ease the complexity of configuration. A robust set of
groups is defined that cover the most common uses, and new groups can
be added. Figure 12.4 shows an example of typical predefined groups.

Calls to the PMAPI library can be inserted into program source code to
allow monitoring of specific sections. Figure 12.5 shows the calls required
to configure, start, stop, and collect counter data for a short section of code.
For many studies it is more convenient to measure the entire application’s
execution. A sample program, tcount, is provided that will execute a specified
command while collecting counter data. Figure 12.6 shows the output from
tcount. If the section of code to be studied is small or can easily be isolated
in the source code, calling the PMAPI library as shown in Figure 12.5 will
produce the most accurate results. For measuring the entire application
execution or if the section to be monitored is a significant portion of the

260 Performance Evaluation and Benchmarking

(a)

Figure 12.4 Sample counter groups.

Chapter Twelve: Performance monitoring on the POWER5™ 261

Figure 12.4 (Continued).

(b)

262 Performance Evaluation and Benchmarking

overall executed instructions, a tool like tcount is more convenient and
should be sufficiently accurate.

12.4.2 Linux

Several efforts are underway to add support of the POWER5 PMU to LINUX.
SUSE®; LINUX Enterprise Server 9 has rudimentary support through the
sysfs file system. The MMCRs and PMCs are exposed as files under /sys/

(c)

Figure 12.4 (Continued).

Chapter Twelve: Performance monitoring on the POWER5™ 263

(a)

Figure 12.5 Sample use of AIX PMAPI calls.

264 Performance Evaluation and Benchmarking

devices/system/cpu/cpun/. MMCRs and PMCs can be opened, read, and
written using simple file operations.

12.5 Challenges
The POWER5 is an aggressively out-of-order, superscalar, and speculative
processor capable of processing two independent streams of instructions
per CPU, four per chip. This presents challenges to the design of perfor-
mance instrumentation and the interpretation of data collected. The profil-
ing support already described was designed to allow the performance ana-
lyst to identify particular instructions that encounter or cause performance
sensitive conditions. The ability to combine data from pairs of execution
units into a single count was designed to aggregate the data into more
management metrics. Speculative execution presents a particularly difficult
challenge. To track events only for instructions that complete would require
a significant amount of logic and buffers to capture and maintain event data

(b)

Figure 12.5 (Continued).

Figure 12.6 Sample tcount output.

Chapter Twelve: Performance monitoring on the POWER5™ 265

for all active instructions. Instead, the POWER5 counts most events as they
happen (speculative or not). Analyzing this data requires some understand-
ing of the speculative nature of the machine. Counts taken when they occur
can be used with other such counts but could be misleading when used
with counts taken at completion. Calculating the ratio of load instructions
executed to all instructions executed is meaningful, but the ratio of load
instructions executed to all instructions completed may not be. Some events,
such as cache misses, are only available at execution. Calculating cache
misses per completed instruction is still useful as a relative metric (compar-
ing one workload to another on the same system, or one tuning option to
another) but should not be considered an absolute measurement.

12.6 Summary
The POWER5 Microprocessor is an advanced modern processor. It can pro-
cess two independent threads of execution simultaneously and dynamically
balance resources between the two threads. To monitor and manage the
performance of the processor requires advanced performance-monitoring
techniques. The POWER5 performance monitor unit (PMU) is the culmina-
tion of evolutionary advances beginning with the PowerPC 604. This chapter
only scratches the surface of the capability and use of the PMU. With full
support for the hardware performance monitor standard in AIX, it is
expected that its use will become widespread.

References
1. Sprunt, B., The basics of performance-monitoring hardware, Micro, IEEE 22,

4, 65–71, 2002.
2. Simultaneous multihreading (SMT) on eServer iSeries POWER5 processors,

online at: http://www-1.ibm.com/servers/eserver/iseries/perfmgmt/pdf/
SMT.pdf.

3. Roth, C., Levine, F., PowerPC performance monitor evolution, Proceedings of
IPCCC 1997, 331–336. Feb. 1997.

4. Welbon, E.H., Moore, R.S., Levine, F.E., Roth, C.P., Load miss performance
analysis methodology using the PowerPC 604 performance monitor for OLTP
workloads, Proceedings of Compcon '96, 111–116, Feb. 1996.

5. Dean, J., Hicks, J, Waldspurger, C., Weihl, W., Chrysos, G., et al., ProfileMe:
Hardware Support for Instruction-Level Profiling on Out-of-Order Proces-
sors, Proceedings of Micro-30, 292–302, December 1997.

6. Roth, C., Levine, F., Welbon, E., Performance monitoring on the PowerPC 604
microprocessor, Proceedings of ICCD '95, 212–215, Oct. 1995.

7. AIX 5L Version 5.2 Performance Management Guide (SC23-4876-00) Interna-
tional Business Machines Corporation 1997, 2004.

8. AIX 5L Version 5.2 Performance Tools Guide and Reference (SC23-4859-02)
International Business Machines Corporation 1997, 2004.

266 Performance Evaluation and Benchmarking

Trademarks
The following terms are trademarks or registered trademarks of the IBM
Corporation in the United States or other countries or both: PowerPC,
POWER4, POWER5, PowerPC 970, PowerPC 604, PowerPC 604e, AIX,
eServer, iSeries SUSE is a registered trademark of SUSE AG, a Novell busi-
ness. Linux is a registered trademark of Linus Torvalds.

267

Chapter Thirteen

Performance Monitoring on
the Itanium®* Processor
Family

Rumi Zahir, Kishore Menezes, and Susith Fernando

Contents

13.1 Introduction...268
13.2 Workload characterization and

microarchitecture tuning...269
13.2.1 Event rate monitoring ...270

13.2.1.1 Single-occurrence events and
duration counts..270

13.2.1.2 Multi-occurrence events, thresholding,
and averaging...270

13.2.2 Cycle accounting..272
13.3 Profiling..273

13.3.1 Program counter sampling...273
13.3.2 Miss event address sampling...274

13.4 Event qualification ...275
13.4.1 Combining opcode matching, instruction,

and data address range check ...277
13.4.2 Privilege level constraints ..278

13.5 Branch trace buffer...281
13.6 Summary..282
Acknowledgments ..282
References...283

* Registered trademark of Intel Corporation

268 Performance Evaluation and Benchmarking

13.1 Introduction
The Itanium architecture relies on the extraction of instruction-level paral-
lelism (ILP) in software. One philosophy of the architecture is to enable the
compiler to expose the parallelism in programs, thereby simplifying the hard-
ware implementations. The architecture provides many features that the
compiler can employ in accomplishing this task. The Itanium architecture [1]
provides support for control and data speculation, allowing the compiler to
reduce the impact of memory latency by breaking control and memory
dependence barriers. Full predication support is also available that allows
removal of branches to transform a control dependence to a data depen-
dence. Such architectural support comes with the challenge to use these
features judiciously. The Itanium architecture makes available a full-featured
and extensive performance-monitoring unit (PMU) to ease the burden of
addressing this challenge.

Performance analysis of workloads plays a very important part in
microarchitecture tuning. It is essential to understand the execution proper-
ties of the workloads expected to be executed on the microarchitecture. The
Itanium PMU allows for monitoring dynamic processor behavior. Informa-
tion from this monitoring process can then be used to understand the behav-
ior of a workload and to characterize it. The microarchitectural events cap-
tured by the performance monitoring unit help understand the effect of
compiler optimizations on the workload, the use of architectural features
such as speculation and predication, and the effectiveness of microarchitec-
tural structures such as the advanced load address table (ALAT), the caches
and the translation lookaside buffers (TLBs). In addition to microarchitec-
tural improvements, these measurements provide the data to drive applica-
tion tuning and future processor, compiler, and operating system designs.

Another application of performance monitoring is to understand the
execution characteristics of a program on a given machine. Profile informa-
tion [2] can be used to optimize the execution of the profiled program. Some
of the earliest work on profiling concentrated on obtaining information about
the execution times of the functions within a given program. The same could
also be applied to algorithms. The statistics gathered were then used to
optimize the functions with the highest execution times or to make improve-
ments to badly implemented algorithms.

The scope and applications of profiling have change over the years.
Profile information is steadily gaining importance in the optimization of
program execution, especially in the area of hand tuning of programs [2],
trace scheduling [3], superblock scheduling [4], data preloading [5], branch
prediction [6], and improved instruction cache performance [7]. Issues in the
exploitation of instruction-level parallelism inherent in programs, coupled
with rapid developments in compiler research, have generated interest in
the role of profile information in smart compilation.

Traditionally, profiling and the use of profiles have been achieved through
a long, tedious instrument-run-recompile sequence. During instrumentation,

Chapter Thirteen: Performance monitoring on the itanium® 269

the compiler inserts additional instructions into the original program to
collect accurate execution frequencies of basic blocks or the arcs that connect
these basic blocks. Next, this instrumented code is executed with a variety
of batch inputs. After these multiple executions, the program statistics are
calculated based on the profile information that has been collected. Finally,
the original program is recompiled using profile-driven optimizations. Not
only do these traditional techniques suffer from the need for multiple exe-
cution and compilation passes, they also suffer from slowdown of the pro-
gram being profiled due to the added instructions. The MIPS basic block
profiling tool pixie [8] inserts about five instructions in every basic block [9].
Ball and Larus measured the slowdown of pixie required for arc-based
profiling as between 1.11 to 5.24 times [9]. To offset this slowdown, modifi-
cations involving the reduction in the number of blocks or the arcs that need
to be probed have been suggested in the literature. Ball and Larus investi-
gated one such technique that reduces the slowdown to a maximum of
2.05 times for the SPEC92 benchmarks. Unfortunately, this overhead is still
too large for software vendors to readily absorb. Commercial software
vendors can tolerate only a negligible amount of additional execution
overhead (< = 5%) [10].

If profiling is to gain commercial acceptance, it must be smoothly inte-
grated into the software development cycle. Unfortunately, this requires the
reduction or elimination of the need for a sample input suite, as well as more
efficient profiling methods. The use of performance monitors integrated into
the processor allows software vendors to analyze and optimize applications
with no profile collection overhead. The advantage to using performance
monitors is twofold: It eliminates the need for sample input suites, and the
optimizations are based on actual program usage. Profiling in this manner
is commercially appealing because vendors’ alpha and beta testing processes
are often very well-defined and the hardware-based style of profiling lever-
ages their existing investment to produce better-optimized code.

This chapter defines the performance monitoring features of the Itanium
processor family. The Itanium 2* processor provides four 48-bit performance
counters, more than 100 events that can be monitored, and several advanced
monitoring capabilities. This chapter outlines the targeted performance mon-
itor usage models and defines the software interface and programming model.

13.2 Workload characterization
and microarchitecture tuning

The first step in any performance analysis is to understand the performance
characteristics of the workload under study. There are two fundamental
measures of interest: event rates and program cycle break down.

* Registered trademark of Intel Corporation.

270 Performance Evaluation and Benchmarking

13.2.1 Event rate monitoring

Event rates of interest include average retired instructions per cycle (IPC),
data and instruction cache miss rates, or branch misprediction rates mea-
sured across the entire application. Characterization of operating systems or
large commercial workloads (e.g., online transaction processing) requires a
system-level view of performance relevant events such as TLB miss rates,
virtual hash page table (VHPT) walks per second, interrupts per second, or
bus utilization rates. Event rate monitoring determines event rates by read-
ing the processor event occurrence counters before and after the workload
is run, and then computing the desired rates. For instance, two basic Itanium
processor events that count the number of retired Itanium instructions
(IA64_INST_RETIRED) and the number of elapsed clock cycles
(CPU_CYCLES) allow a workload’s IPC to be computed as follows:

IPC = (IA64_INST_RETIREDt1 − IA64_INST_RETIREDt0)/
(CPU_CYCLESt1 − CPU_CYCLESt0)

Time-based sampling is the basis for many performance debugging tools
[2,12,13]. Time-based sampling can be used to plot the event rates over time,
and can provide insights into the different phases of the workload.

On the Itanium processor, many event types (e.g., TLB misses or branch
mispredictions) are limited to a rate of one per clock cycle. These are referred
to as single occurrence events. However, multiple events of the same type
may occur in the same clock. Such events are referred to as multi-occurrence
events. An example of a multi-occurrence event on the Itanium processor is
data cache read misses. There can be up to two data cache misses per clock.
Multi-occurrence events, such as the number of entries in the memory
request queue, can be used to derive the average number and average latency
of memory accesses. The next two subsections describe the basic Itanium
processor mechanisms for monitoring single- and multi-occurrence events.

 13.2.1.1 Single-occurrence events and duration counts
A single-occurrence event can be monitored by any of the Itanium processor
performance counters with a few exceptions. For all single-occurrence
events, a counter is incremented by up to one per clock cycle. Duration
counters that count the number of clock cycles during which a condition per-
sists are considered single-occurrence events. Examples of single-occurrence
events on the Itanium processor are TLB misses, branch mispredictions, and
cycle-based metrics.

 13.2.1.2 Multi-occurrence events, thresholding, and averaging
Events that, due to hardware parallelism, may occur at rates greater than
one per clock cycle are termed multi-occurrence events. Examples of such
events on the Itanium processor are retired instructions or the number of
live entries in the memory request queue.

Chapter Thirteen: Performance monitoring on the itanium® 271

When dealing with multi-occurrence events, it is sometimes useful to
have the ability to count when the number of events of a certain type exceed
a certain threshold. Thresholding capabilities are available in the Itanium
processor’s multi-occurrence counters and can be used to plot an event
distribution histogram. When a nonzero threshold is specified, the monitor
is incremented by one in every cycle in which the observed event count
exceeds that programmed threshold. This capability allows microarchitec-
tural buffer sizing experiments to be supported by real measurements. For
example, measurements could help find the number of cycles during which
the memory request queue contained more than two entries or the number
of cycles during which more than three instructions were retired. By running
a benchmark with different threshold values, a histogram can be drawn up
that may help to identify the performance “knee” at a certain buffer size.

For overlapping concurrent events, such as pending memory operations,
the average number of concurrently outstanding requests, and the average
number of cycles that requests were pending are of interest. To calculate the
average number or latency of multiple outstanding requests in the memory
queue, we need to know the total number of requests (ntotal) and the number
of live requests per cycle (nlive/cycle). By summing up the live requests (nlive/
cycle) using a multi-occurrence counter, Σnlive is directly measured by hard-
ware. We can now calculate the average number of requests and the average
latency as follows:

Average outstanding requests/cycle = Σnlive/Δt
Average latency per request = Σnlive/ntotal

An example of this calculation is given in Table 13.1. The average out-
standing requests per cycle = 15/8 = 1.825, and the average latency per
request = 15/5 = 3 cycles.

The Itanium processor provides the following capabilities to support
event rate monitoring:

• Clock cycle counter
• Retired instruction counter
• Event occurrence and duration counters
• Multi-occurrence counters with thresholding capability

Table 13.1 Example of Average Latency per Request
and Requests per Cycle Calculation

Time [Cycles] 1 2 3 4 5 6 7 8

Requests In 1 1 1 1 1 0 0 0
Requests Out 0 0 0 1 1 1 1 1
nlive 1 2 3 3 3 2 1 0
nlive 1 3 6 9 12 14 15 15
ntotal 1 2 3 4 5 5 5 5

272 Performance Evaluation and Benchmarking

13.2.2 Cycle accounting

Although event rate monitoring counts the number of events, it does not tell
us whether the observed events contribute to a performance problem. A
commonly used strategy is to plot multiple event rates and correlate them
with the measured IPC rate. If a low IPC occurs concurrently with a peak
of cache miss activity, chances are that cache misses are causing a perfor-
mance problem. To eliminate such guesswork, the Itanium processor pro-
vides a set of cycle accounting monitors that break down the number of
cycles that are lost due to various kinds of microarchitectural events. As
shown in Figure 13.1, this lets us account for every cycle spent by a program
and therefore provides insight into an application’s microarchitectural
behavior. Note that cycle accounting is different from simple stall or flush
duration counting. Cycle accounting is based on the machine’s actual stall
and flush conditions, and accounts for overlapped pipeline delays,
whereas simple stall or flush duration counters do not. Cycle accounting
determines a program’s cycle breakdown by stall and flush reasons, whereas
simple duration counters are useful in determining cumulative stall or
flush latencies.

The Itanium processor cycle accounting monitors account for all major
single- and multi-cycle stall and flush conditions. Overlapping stall and flush
conditions are prioritized in reverse pipeline order (i.e., delays that occur
later in the pipe and that overlap with earlier stage delays are reported as
being caused later in the pipeline). The six back-end stall and flush reasons
are prioritized in the following order:

1. Exception/interruption cycle: Cycles spent flushing the pipe due to
interrupts and exceptions

2. Branch misprediction cycle: Cycles spent flushing the pipe due to
branch mispredictions

3. Data/FPU access cycle: Memory pipeline full, data TLB stalls,
load-use stalls, and access to floating-point unit

4. Execution latency cycle: Scoreboard and other register dependency
stalls

5. RSE active cycle: RSE spill/fill stall
6. Front-end stalls: Stalls due to the back end waiting on the front end

Figure 13.1 Itanium® processor family cycle accounting.

Chapter Thirteen: Performance monitoring on the itanium® 273

Additional front-end stall counters are available, which detail seven
possible reasons for a front-end stall to occur. However, the back-end and
front-end stall events should not be compared, because they are counted in
different stages of the pipeline.

13.3 Profiling
Profiling is used by application developers, profile-guided compilers, opti-
mizing linkers, and run-time systems. Application developers are interested
in identifying performance bottlenecks and relating them back to their source
code. Based on profile feedback, developers can make changes to the
high-level algorithms and data structures of the program. Compilers can use
profile feedback to optimize instruction schedules by employing advanced
Itanium architectural features such as predication and speculation.

To support profiling, performance monitor counts have to be associated
with program locations. The following mechanisms are supported directly
by the Itanium processor’s performance monitors:

• Program counter sampling
• Miss event address sampling: Itanium processor event address registers

(EARs) provide subpipeline-length event resolution for performance-
critical events (instruction and data caches, branch mispredictions,
and instruction and data TLBs).

These profiling features are presented in the next two subsections.

13.3.1 Program counter sampling

Application tuning tools [2,12] use time-based or event-based sampling of
the program counter and other event counters to identify performance crit-
ical functions and basic blocks. The sampled points can be represented in a
histogram by instruction addresses. For application tuning, statistical sam-
pling techniques have been very successful because the programmer can
rapidly identify code hot spots in which the program spends a significant
fraction of its time, or where certain event counts are high.

Program counter sampling can point a performance analyst at code hot
spots, but it does not indicate the cause of the performance problem. Inspec-
tion and manual analysis of the hot-spot region along with a fair amount of
guesswork are required to identify the root cause of the performance prob-
lem. On the Itanium processor, the cycle accounting mechanism described
in subsection 13.2.2 can be used to directly measure an application’s microar-
chitectural behavior.

The Itanium architectural interval timer facilities (ITC and ITM registers)
can be used for time-based program counter sampling. Event-based program
counter sampling is supported by a dedicated performance monitor over-
flow interrupt.

274 Performance Evaluation and Benchmarking

To support program counter sampling, the Itanium processor provides
the following mechanisms:

• Timer interrupt for time-based program counter sampling
• Event count overflow interrupt for event-based program counter

sampling
• Hardware-supported cycle accounting

13.3.2 Miss event address sampling

Program counter sampling and cycle accounting provide an accurate picture
of cumulative microarchitectural behavior, but they do not provide the appli-
cation developer with pointers to specific program elements (code locations
and data structures) that repeatedly cause microarchitectural miss events. In
a cache study of the SPEC92 benchmarks, Lebeck used trace based cache
miss profiling to gain performance improvements of 1.02 to 3.46 on various
benchmarks by making simple changes to the source code [11]. This type of
analysis requires identification of instruction and data addresses related to
microarchitectural miss events such as cache misses, branch mispredictions,
or TLB misses. Using symbol tables or compiler annotations, these addresses
can be mapped back to critical source code elements. Like Lebeck, most
performance analysts in the past have had to capture hardware traces and
resort to trace driven simulation.

Due to the superscalar issue, deep pipelining, and out-of-order instruc-
tion completion of today’s microarchitectures, the sampled program counter
value may not be related to the instruction address that caused a miss event.
On a Pentium processor pipeline, the sampled program counter may be off
by two dynamic instructions from the instruction that caused the miss event.
On a Pentium Pro processor, this distance increases to approximately 32
dynamic instructions. On the Itanium processor, it is approximately 48
dynamic instructions. If program counter sampling is used for miss-event
address identification on the Itanium processor, a miss event might be asso-
ciated with an instruction almost five dynamic basic blocks away from where
it actually occurred (assuming that 10% of all instructions are branches).
Therefore, it is essential for hardware to precisely identify an event’s address.

The Itanium processor provides a set of event address registers (EARs) that
record the instruction and data addresses of data cache misses for loads, the
instruction and data addresses of data TLB misses, and the instruction
addresses of instruction TLB and cache misses. A four-entry-deep branch
trace buffer captures sequences of branch instructions. Table 13.2 summa-
rizes the capabilities offered by the Itanium processor EARs and the branch
trace buffer. Exposing miss-event addresses to software allows them to be
monitored either by sampling or by code instrumentation. This eliminates
the need for trace generation to identify and solve performance problems
and enables performance analysis by a much larger audience on unmodified
hardware.

Chapter Thirteen: Performance monitoring on the itanium® 275

The Itanium processor EARs enable statistical sampling by configuring a
performance counter to count, for instance, the number of data cache misses
or retired instructions. The performance counter value is set up to interrupt
the processor after a predetermined number of events have been observed.
The data cache event address register repeatedly captures the instruction and
data addresses of actual data cache-load misses. Whenever the counter over-
flows, miss-event address collection is suspended until the event address
register is read by software (this prevents software from capturing a miss event
that might be caused by the monitoring software itself). When the counter
overflows, an interrupt is delivered to software, the observed event addresses
are collected, and a new observation interval can be setup by rewriting the
performance counter register. For time-based (rather than event-based) sam-
pling methods, the event address registers indicate to software whether a
qualified event was captured. Statistical sampling can achieve arbitrary event
resolution by varying the number of events within an observation interval
and by increasing the number of observation intervals.

13.4 Event qualification
Many of the performance-monitoring events on the Itanium processor can
be qualified in a number of ways such that only a subset of the events are
counted using performance-monitoring counters. As shown in Figure 13.2,

Table 13.2 Itanium Processor EARs and Branch Trace Buffer

Event Address
Register Triggers On What Is Recorded

 Instruction Cache Instruction fetches that
miss the L1 instruction
cache (demand fetches
only)

Instruction address
Number of cycles fetch was in
flight

 Instruction TLB
(ITLB)

 Instruction fetch
missed L1

 ITLB (demand fetches
only)

Instruction address
Who serviced L1 ITLB miss:
L2 ITLB, VHPT, or software

 Data cache Load instructions that
miss L1 data cache

Instruction address
Data address
 Number of cycles load was in
flight.

 Data TLB
 (DTLB)

 Data references that
miss L1 DTLB

Instruction address
Data address
Who serviced L1 DTLB miss:
L2 DTLB, VHPT, or software

 Branch trace
 buffer

 Branch outcomes Branch instruction address
 Branch target instruction
address

 Mispredict status and reason

276 Performance Evaluation and Benchmarking

events can be qualified for monitoring based on instruction address range,
instruction opcode, data address range, event-specific unit mask (umask),
the privilege level and instruction set the event was caused by, and the status
of the performance-monitoring freeze bit (PMC0.fr). The following list
describes these capabilities in detail.

• Itanium instruction address range check: The Itanium processor al-
lows event monitoring to be constrained to a programmable instruc-
tion address range. This enables monitoring of dynamically linked
libraries (DLLs), functions, or loops of interest in the context of a
large Itanium-based application. The Itanium instruction address
range check is applied at the instruction fetch stage of the pipeline,
and the resulting qualification is carried by the instruction through-
out the pipeline. This enables conditional event counting at a level
of granularity smaller than dynamic instruction length of the pipeline
(approximately 48 instructions).

Figure 13.2 Itanium processor event qualification.

Chapter Thirteen: Performance monitoring on the itanium® 277

• Itanium instruction opcode match: The Itanium processor provides
two independent Itanium opcode match registers, each of which
match the currently issued instruction encodings with a programma-
ble opcode match and mask function. The resulting match events can
be selected as an event type for counting by the performance
counters. This enables creating histograms of instruction types, usage
of destination, and predicate registers as well as basic block profiling
(through insertion of tagged NOPs).

• Itanium data address range check: The Itanium processor allows
event collection for memory operations to be constrained to a pro-
grammable data address range. This enables selective monitoring of
data-cache miss behavior of specific data structures.

• Event-specific unit masks: Some events allow the specification of unit
masks to filter out interesting events directly at the monitored unit.
As an example, the number of counted bus transactions can be qual-
ified by an event specific unit mask to contain transactions that orig-
inated from any bus agent, from the processor itself, or from other
input/output (I/O) bus masters. In this case, the bus unit uses a
three-way unit mask (any, self, or I/O) that specifies which transac-
tions are to be counted. In the Itanium processor, events from the
branch, memory, and bus units support a variety of unit masks.

• Privilege level: Two bits in the processor status register (PSR) are
provided to enable selective process-based event monitoring. The
Itanium processor supports conditional event counting based on the
current privilege level, which allows performance-monitoring soft-
ware to break down event counts into user and operating system
contributions.

• Instruction set: The Itanium processor supports conditional event
counting based on the currently executing instruction set (Itanium
or IA-32) by providing two instruction-set mask bits for each event
monitor. This allows performance-monitoring software to break
down event counts into Itanium and IA-32 contributions.

• Performance monitor freeze: Event counter overflows or software can
freeze event monitoring. When frozen, no event monitoring takes
place until software clears the monitoring freeze bit (PMC0.fr). This
ensures that the performance-monitoring routines themselves (e.g.,
counter overflow interrupt handlers or performance monitoring con-
text switch routines) do not pollute the event counts of the system
under observation.

13.4.1 Combining opcode matching, instruction,
and data address range check

The Itanium processor allows various event qualification mechanisms to be
combined by providing the instruction tagging mechanism shown in
Figure 13.3.

278 Performance Evaluation and Benchmarking

During Itanium instruction execution, the instruction address range
check is applied first. The resulting instruction address range check tag
(IBRRangeTag) is passed to two opcode matchers that combine the instruc-
tion address range check with the opcode match. Each of the two combined
tags can be counted as a retired instruction count event.

One of the combined Itanium address range and opcode match tags,
Tag(PMC8), qualifies all downstream pipeline events. Events in the memory
hierarchy (L1 and L2 data cache and data TLB events) can further be qualified
using a data address range check tag (DBRRangeTag).

As summarized in Table 13.3, data address range checking can be com-
bined with opcode matching and instruction-range checking on the Itanium
processor. Additional event qualifications based on the current privilege
level can be applied to all events and are discussed in subsection 13.4.2.

13.4.2 Privilege level constraints

Performance-monitoring software cannot always count on context switch
support from the operating system. In general, this has made performance
analysis of a single process in a multiprocessing system or a multiprocess
workload impossible. To provide hardware support for this kind of analysis,
the Itanium architecture specifies three global bits—user performance mon-
itor enable (PSR.up), privileged performance monitor enable (PSR.pp), and
interruption privileged performance monitor enable (DCR.pp)—and a
per-monitor privilege monitor bit (PMCi.pm). To break down the performance

Figure 13.3 Instruction tagging mechanism in the Itanium processor.

Chapter Thirteen: Performance monitoring on the itanium® 279

contributions of operating system and user-level application components,
each monitor specifies a 4-bit privilege level mask (PMCi.plm). The mask is
compared to the current privilege level in the processor status register
(PSR.cpl), and event counting is enabled if PMCi.plm[PSR.cpl] is 1.

PMC registers can be configured as user-level monitors (PMCi.pm is 0)
or system-level monitors (PMCi.pm is 1). A user-level monitor is enabled
whenever PSR.up is 1. PSR.up can be controlled by an application using the
set user mask (sum) and reset user mask (rum) instructions. This allows
applications to enable/disable performance monitoring for specific code
sections. A system-level monitor is enabled whenever PSR.pp is 1. PSR.pp
can be controlled at privilege level 0 only, which allows monitor control
without interference from user-level processes. The pp field in the default
control register (DCR.pp) is copied into PSR.pp whenever an interruption is

Table 13.3 Itanium Processor Event Qualification Modes

Event
Qualification

Modes
Opcode Match

Enable

Opcode
Matching

PMC8

Instruction
Address

Range Check
Enable

Data Address
Range Check
(Mem Pipe

Events Only)

Unconstrained
monitoring
(all events)

x 0xffff_ffff
_ffff_ffff

x [1,11] or [0,xx]

Instruction
address range
check only;
channel 0

x 0xffff_ffff
_ffff_fffe

0 [1,00]

Opcode
matching
only

1 Desired
Opcodes

x [1,01]

Data address
range check
only

x 0xffff_ffff
_ffff_ffff

x [1,10]

Instruction
address range
check and
opcode
matching,
channel0

1 Desired
Opcodes

0 [1,01]

Instruction
and data
address range
check

x 0xffff_ffff
_ffff_fffe

0 [1,00]

Opcode
matching and
data address
range check

1 Desired
Opcodes

x [1,00]

280 Performance Evaluation and Benchmarking

delivered. This allows events generated during interruptions to be broken
down separately: If DCR.pp is 0, events during interruptions are not counted;
if DCR.pp is 1, they are included in the kernel counts.

As shown in Figures 13.4, 13.5, and 13.6, single-process, multi-pro-
cess, and system-level performance monitoring are possible by specifying
the appropriate combination of PSR and DCR bits. These bits allow

Figure 13.4 Single-process monitor.

Figure 13.5 Multiple-process monitor.

Chapter Thirteen: Performance monitoring on the itanium® 281

performance monitoring to be controlled entirely from a kernel-level
device driver, without explicit operating system support. Once the
desired monitoring configuration has been setup in a process’s processor
status register (PSR), “regular” unmodified operating context switch code
automatically enables/disables performance monitoring.

With support from the operating system, individual per-process break-
down of event counts can be generated.

13.5 Branch trace buffer
The branch trace buffer on the Itanium 2 processor provides information
about the outcome of the most recent Itanium branch instructions and their
predictions and outcomes. The Itanium 2 branch trace buffer configuration
register (PMC12) defines the conditions under which branch instructions
are captured and allows the trace buffer to capture specific subsets of
branch events.

In every cycle in which a qualified Itanium branch retires, its source
bundle address and slot number are written to the branch trace buffer. The
branch’s target address is written to the next buffer location. If the target
instruction bundle itself contains a qualified Itanium branch, the branch trace
buffer either records a single trace buffer entry (with b-bit set) or makes two
trace buffer entries: one that records the target instruction as a branch target
(b-bit cleared) and another that records the target instruction as a branch
source (b-bit set). As a result, the branch trace buffer may contain a mixed
sequence of branches and targets.

Figure 13.6 System-wide monitor.

282 Performance Evaluation and Benchmarking

The branch trace buffer configuration register (PMC12) defines the con-
ditions under which branch instructions are captured:

• Whether the target of the branch should be captured or additional
information about the prediction should be captured

• The path of the branch (not taken/taken)
• Whether the branch was mispredicted
• Whether the target of the branch was mispredicted
• The type of branch to be captured

The eight branch trace buffer registers PMD8-15 provide information about
the outcome of a captured branch sequence. In every cycle in which a qualified
branch instruction retires, its source bundle address and slot number are
written to the branch trace buffer. If within the next clock the target instruction
bundle contains a branch that retires and meets the same conditions, the
address of the second branch is stored. Otherwise, either the branch’s target
address or details of the branch prediction are written to the next buffer
location.

The Itanium 2 branch trace buffer is a circular buffer containing the last
four to eight qualified Itanium branches. The branch trace buffer index
register (PMD16) identifies the most recently recorded branch or target. In
every cycle in which a qualified branch or target is recorded, the branch
buffer index is postincremented. After eight entries have been recorded, the
branch index wraps around, and the next qualified branch will overwrite
the first trace buffer entry. The wrap condition itself is also recorded by
means of a bit in PMD16.

13.6 Summary
The Itanium architecture and its microarchitectural implementations incor-
porate extensive performance-monitoring capabilities. Innovative perfor-
mance characterization features such as cycle accounting and event rate
monitoring ease the task of performance analysis. This chapter has pro-
vided an overview of these and other performance analysis capabilities.
For more details the reader is referred to The Intel Itanium 2 Processor
Reference Manual [14].

Acknowledgments
The authors would like to thank Jeremy Williamson and Allan Knies of Intel
Corporation for their contributions to this chapter.

Chapter Thirteen: Performance monitoring on the itanium® 283

References
1. IA-64 Application Developer’s Architecture Guide. Intel Corporation, online at:

http://developer.intel.com/design/ia64/devinfo.htm, 1999.
2. Graham S.L., Kessler, P.B., and McKusick, M.K., gprof: A call graph execution

profiler, Proceedings SIGPLAN’82 Symposium on Compiler Construction; SIG-
PLAN Notices 17, 6, 120–126, 1982.

3. Fisher, J.A., Trace scheduling: A technique for global microcode compaction,
IEEE Trans. Computers C-30, 7, 478–490, July 1981.

4. Chang, P.P., Mahlke, S.A., and Hwu, W.W., Using profile information to assist
classic code optimization, Software—Practice and Experience 21, 1301-1321, Dec.
1991.

5. Chen, W.Y., Data preload for superscalar and VLIW processors. Ph.D. thesis, Dept.
of Electrical and Computer Engineering, University of Illinois, Urbana-
Champaign, 1993.

6. McFarling, S., and Hennessy, J.L., Reducing the cost of branches, in Proc. 13th
Ann. Int’l Symp. Computer Architecture (Tokyo, Japan), 396–403, June 1986.

7. Hwu, W.W. and Chang, P.P., Achieving high instruction cache performance
with an optimizing compiler, in Proc. 16th Ann. Int’l. Symp. Computer Archi-
tecture (Jerusalem, Israel), 242–251, May 1989.

8. MIPS Computer Systems, UMIPS-V Reference Manual, Sunnyvale, CA, 1990.
9. Ball, T. and Larus, J.R., Optimally profiling and tracing programs, in Proc. of

the ACM SIGPLAN 1992 Conference on Principles of Programming Languages,
59–70, 1992.

10. Cox, J.S., Howell, D.P., and Conte, T.M., Commercializing profile-driven op-
timization, in Proc. 28th Hawaii Int’l. Conf. On System Sciences (Maui, HI),
1, 221–228, Jan. 1995.

11. Lebeck, Alvin R., and Wood, David A., Cache profiling and the SPEC bench-
marks: A case study, Tech Report 1164, Computer Science Dept., University
of Wisconsin–Madison, July 1993.

12. Atkins, Mark, and Subramaniam, Ramesh, PC software performance tuning,
IEEE Computer, 29, 8, 47–54, 1996.

13. Blake, Russ, Optimizing Windows NT(tm), Microsoft “Windows NT Resource
Kit for Windows NT Version 3.51,” 4, Microsoft Press, 1995.

14. Intel Itanium 2 Processor Reference Manual. Intel Corporation, online at: ftp://
download.intel.com/design/Itanium2/manuals/25111003.pdf, May 2004.

285

Index

A

Abyss, 17, 232
Absolute error, 149
Accuracy, 62
AE, 14
Analytical modeling, 15, 193–217
Analytical-statistical modeling, 153
ANOVA, 72
Arithmetic mean, 51

see also Weighted arithmetic mean
Arrival rate, 198
ASCI, 32
Asim, 11
Atom, 14, 173
Atum, 19

B

Bapco SYSMARK, 41
Basic Block Vector (BBV), 122
Bayesian Information Criterion (BIC),

126, 136
BBV, 122
BDTI, 35
Before-and-after comparison, 69
Berkeley Design Technology Inc. (BDTI),

35
Bias

non-sampling bias, 90
reduction in, 102

sampling bias, 90
reduction in, 107

BIC, 126, 136
Birth-death process, 195
Bottleneck, 84
Brink, 17, 232

C

Cachesim, 5, 9
CACTI, 19
CaffeineMark, 36
CCCR (Counter Configuration Control

Register), 228, 234
Centroid, 127
Cheetah, 143
Checkpointing, 129
Cluster analysis, 125, 170–171

K-means, 125, 135, 171, 184
linkage clustering, 170, 184

Cluster sampling, 89
CMP, 244
Cold-start effect, 90

see also Warm-up
Comparing

before-and-after, 69
noisy measurements, 67
proportions, 70

Complete linkage, 170
Complete-system simulation, 11
Conditional (in)dependence probability,

154
Confidence interval, 109

for the mean, 63
for proportions, 66

Confidence level, 64
Constant-bit method, 94
Continuous sampling, 255
Counter

duration, 270
hardware performance, 219–283
overflow, 230, 253
rewind, 257

CPI breakdown, 256

286 Performance Evaluation and Benchmarking

CPU benchmarks, 27
Cycle-by-cycle simulation, 12

D

Decision support system (DSS), 37
Dependency distance, 142

conditional (in)dependence probability,
154

Delayed update, 144
Dendrogram, 170, 178, 185
Design of experiments, 71
Design matrix, 73
Design space exploration, 72, 133, 152
DineroIV, 9
Distance

Euclidean, 123, 168, 172, 186
Mahalanobis, 173
Manhattan, 124

Distribution
exponential, 155
Gaussian, 64
geometric, 155
normal, 64
power law, 155
Student’s t-distribution, 64

Dhrystone, 26
DSS, 37
Duration counter, 270

E

E-commerce benchmarks, 40
EEMBC, 33
Embedded benchmarks, 33
EMON, 220
Energy consumption, 19
Energy-delay product, 152
Erlang, 197, 203
Error

absolute error, 149
error bound, 109
experimental error, 61
quantization error, 63
relative error, 133, 151

ESCR (Event Select Control Register),
228, 234

Execution-driven simulation, 10, 148
Experimental error, 61
Exponential distribution, 155
Euclidean distance, 123, 168, 172, 186
Event

event-based sampling, 222, 226, 255, 273

event-driven simulation, 12
single-occurrence, 270
monitoring, 220
multi-occurrence, 270
profile, see PEBS
qualification, 275

F

Factor loading, 172
FAST, 10
Fastforwarding, 129
File server benchmarks, 40
Fill reference, 92
Foldover, 73
Forced flow law, 198
Fractional multi-factorial design, 73, 189
Full factorial design, 71
Full-system simulation, 11
Functional simulation, 8
Functional warming, 103
Furthest neighbor linkage clustering,

170

G

Gaussian distribution, 64
General response time law, 199
Geometric distribution, 155
Geometric mean, 55
Goblin, 14
GridNPB3, 33

H

Hardware performance counters, 17,
218–283

Harmonic mean, 51
See also Weighted harmonic mean

HINT, 41
HLS, 160
HotLeakage, 20
Hyperexponential, 197

I

Idtrace, 14
Immediate update, 144
Imprecision, 63
Input set, 173, 181

reduced input set, 186
Instrumentation, 173

microcoded, 19

Index 287

Intensity, 201
Interactive response time law, 200
Interarrival time, 197
ISR (Interrupt Service Routine), 223

J

Jaba, 15
Java, 35, 180, 189

Java Grande Forum, 30, 37
SPECjvm98, 35

K

K-means clustering, 125, 135, 171, 184

L

Lawrence Livermore Labs, 32
Leakage power, 20
Liberty, 11
Linear projection, 125, 135
Linkage clustering, 170, 184
Linkage distance, 170
Little’s law, 199
Logic analyzer, 18

M

MacBench, 41
Mahalanobis distance, 173
Mail server benchmarks, 40
Mambo, 11
Manhattan distance, 124
Markov

chain, 159, 201
process, 195

Mean
mean service time, 198
mean value analysis, 208
sample mean, 63

Media benchmarks, 33
MediaBench, 35
Memory Reference Reuse Latency

(MRRL), 99
MFSPR (Move From SPR), 248
MiBench, 35
Microarchitecture-independent

characteristics, 141, 159
Microarchitecture-dependent

characteristics, 143, 159
Microcoded instrumentation, 19
MicroLib, 11

MinneSPEC, 28, 186
Minimal Subset Evaluation (MSE), 99
Mispredicted path, 10, 148
Miss-distance, 93
MMCR, 249
Modular simulation, 11
Monitoring

hardware
off-chip, 18
on-chip, 17, 218–283

software, 18
interrupts, 226, 273

MorphMark, 36
MP_simplesim, 11
MRRL, 99
MSE, 99
MSR (Machine Specific Register), 227
MSR (Machine Status Register), 250
MTSPR (Move To SPR), 248
Multi-occurrence event, 270

N

NAS parallel benchmarks, 33
National Institute of Standards and

Technology (NIST), 62
Networks of queues, 207
Nixie, 14
Noise, 60, 67
Non-probability sampling, 88
Non-sampling bias, 90

reduction of, 102
Non-speculative performance event

counts, 226, 231
Normal distribution, 64
Normalization, 170
NPB3, 33

O

Occupancy, 201
Off-chip hardware monitoring, 18
On-chip performance monitoring

counters, 17, 218–283
One-factor-at-a-time design, 71
Online transaction processing (OLTP), 37
Operational law, 198

P

Partial register stall, 225
pBOB, 36
PCA, 168

288 Performance Evaluation and Benchmarking

PC benchmarks, 41
PEBS, 226
Perfect Club, 30
Performance monitor, see Monitoring
Petri net, 210
Phase behavior, 119
PIN, 14
Pixie, 14
Plackett and Burman design, 73, 189
PMAPI, 259
PMI (Performance Monitor Interrupt),

226
PMM (Performance Monitor Mark),

251
PMON, 17
Poisson process, 195, 200
Pollaczek-Khinchin, 206
Power dissipation, 19
Power-IMPACT, 19
Power law distribution, 155
Precise event-based sampling, 226
Precision, 62
Primed set, 92
Principal components analysis, 168
Privilege level, 221, 278
Probability sampling, 88
Program characterization, 158
Program profiler, 13
Proportion, 66, 70
Proteus, 10

Q

QPT, 10
Qualified basic block, 159
Quantization error, 63
Queueing networks, 207
Queueing theory, 195
QUIPS, 41

R

Random error, 61
Random linear projection, 125, 135
Random sampling, 89, 255
Reachability, 211
Reduced input set, 186
Relative error, 133, 151
Replay tagging, 231
Resolution, 62
Rewind counter, 257
R-metric, 189

S

Sample, 63
Sampling

bias, 90, 102, 107
cluster sampling, 89
continuous sampling, 255
event-based sampling, 222, 226, 255, 273
for caches, 91
for processors, 98
miss event address sampling, 173
probability sampling, 88
program counter sampling, 173
non-probability sampling, 88
random sampling, 89, 255
statistical sampling, 84, 88, 273
sampling unit, 89
set sampling, 89, 94
slot-based sampling, 255
stratified sampling, 89
time sampling, 89, 91, 273
variability, 90

SciMark, 31,37
SDAR (Sample Data Address register), 254
Service discipline, 197
Set sampling, 89, 94
SFG, 141
Shade, 9, 14
SIAR (Sampled Instruction Address

Register), 254
Significance level, 64
SimICs, 11
Similarity

benchmark similarity, 84, 167, 188
interval similarity, 121
through Plackett and Burman, 84

SimOS, 11
SimpleMP, 11
SimpleScalar, 10, 143, 149
SimPoint, 117–138, 171
Simscript, 12
Simulation

complete-system, 11
cycle-by-cycle, 12
execution-driven, 10, 148
event-driven, 12
full-system, 11
functional, 8
modular, 11
point, 119, 127, 153, 189
sampled, 87–138
statistical, 13, 139–163
synthetic trace, 146–148

Index 289

trace-driven, 8
validation, 20

Simultaneous multithreading (SMT), 133,
226, 244, 248, 255

Single-occurrence event, 270
Slot-based sampling, 255
SMART, 159
SMP, 244
SMT, 133, 226, 244, 248, 255
Software monitoring, 18
SoftWatt, 19
SPEC, 26

SPEC CPU2000, 27
SPECjbb2000, 36, 40
SPECjvm98, 35
SPECmail2001, 40
SPECweb99, 39

Special purpose register, 248r
Speculative update, 144
Speedtracer, 18
Speedup, 52
Spike, 14
SPIX, 14
SPLASH, 33
SPR (Special Purpose Register), 248
Stale state, 104, 130
Standard deviation, 63
Standard error, 108
Statistical flow graph (SFG), 141
Statistical profiling, 141
Statistical sampling, 84, 88, 273
Statistical simulation, 13, 139–163
Stochastic Petri net, 84
Stochastic process, 195
Stratified sampling, 89
Student’s t-distribution, 64
Symmetric multiprocessor system (SMP),

159
Synthetic benchmark, 41
Synthetic trace

generation, 146
simulation, 148

SYSMARK, 41
Systematic error, 61

T

Tagging mechanism, 226
Tango, 10
Thresholding capabilities, 222, 230, 271
Throughput, 198
Time-based profiling, 222
Time sampling, 89, 91, 273

TPC, 26, 37
TPC-C, 38
TPC-H, 38
TPC-R, 39
TPC-W, 39

Trace
trace compression, 9
trace-driven simulation, 8
trace reduction, 9
trace sampling,

for caches, 91
for processors, 98

Trimaran, 11

U

Unknown references, 92, 93
Utilization, 198

V

Validation, 20
Variance

Analysis of variance (ANOVA), 72
Sample variance, 63

VolanoMark, 36, 40
Vtune, 17

W

Warm-up, 99, 103, 129
Wattch, 19, 149
Weak spot, 157, 180
Web server benchmark, 39
Weighted arithmetic mean (WAM), 48
Weighted harmonic mean (WHM), 48
Weighted miss, 94
Whetstone, 26
Winstone, 41
WIPS, 39
Workload

composition, 165, 184
model, 155
space, 157

X

Y

Z

Ziff Davis, 41

