


Quantitative Fund 
Management



CHAPMAN & HALL/CRC
Financial Mathematics Series

Aims and scope:
The field of financial mathematics forms an ever-expanding slice of the financial 

sector. This series aims to capture new developments and summarize what is known 

over the whole spectrum of this field. It will include a broad range of textbooks, 

reference works and handbooks that are meant to appeal to both academics and 

practitioners. The inclusion of numerical code and concrete real-world examples is 

highly encouraged.

Series Editors
M.A.H. Dempster
Centre for Financial 
Research
Judge Business School
University of Cambridge

Dilip B. Madan
Robert H. Smith School 
of Business
University of Maryland

Rama Cont
Center for Financial 
Engineering
Columbia University
New York

Published Titles
American-Style Derivatives; Valuation and Computation, Jerome Detemple

Credit Risk: Models, Derivatives, and Management, Niklas Wagner

Engineering BGM, Alan Brace

Financial Modelling with Jump Processes, Rama Cont and Peter Tankov

An Introduction to Credit Risk Modeling, Christian Bluhm, Ludger Overbeck, and 

Christoph Wagner

Introduction to Stochastic Calculus Applied to Finance, Second Edition, 

Damien Lamberton and Bernard Lapeyre

Numerical Methods for Finance, John A. D. Appleby,  David C. Edelman, and 

John J. H. Miller

Portfolio Optimization and Performance Analysis, Jean-Luc Prigent

Quantitative Fund Management, M. A. H. Dempster, Georg Pflug, and Gautam Mitra

Robust Libor Modelling and Pricing of Derivative Products, John Schoenmakers

Structured Credit Portfolio Analysis, Baskets & CDOs, Christian Bluhm and 

Ludger Overbeck

Understanding Risk: The Theory and Practice of Financial Risk Management, 

David Murphy

Proposals for the series should be submitted to one of the series editors above or directly to:
CRC Press, Taylor & Francis Group
4th, Floor, Albert House
1-4 Singer Street
London EC2A 4BQ
UK



Quantitative Fund 
Management

Edited by

M. A. H. Dempster, Georg Pflug, 
and Gautam Mitra



Chapman & Hall/CRC
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2009 by Taylor & Francis Group, LLC 
Chapman & Hall/CRC is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number-13: 978-1-4200-8191-6 (Hardcover)

This book contains information obtained from authentic and highly regarded sources. Reasonable 
efforts have been made to publish reliable data and information, but the author and publisher can-
not assume responsibility for the validity of all materials or the consequences of their use. The 
authors and publishers have attempted to trace the copyright holders of all material reproduced 
in this publication and apologize to copyright holders if permission to publish in this form has not 
been obtained. If any copyright material has not been acknowledged please write and let us know so 
we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, 
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or 
hereafter invented, including photocopying, microfilming, and recording, or in any information 
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy-
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro-
vides licenses and registration for a variety of users. For organizations that have been granted a 
photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and 
are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Dempster, M. A. H. (Michael Alan Howarth), 1938-
Quantitative fund management / Michael Dempster, Georg Pflug, and Gautam 

Mitra.
p. cm.

Includes bibliographical references and index.
ISBN 978-1-4200-8191-6 (alk. paper)
1. Portfolio management--Mathematical models. 2. Investment 

analysis--Mathematical models. I. Pflug, Georg Ch., 1951- II. Mitra, Gautam, 
1947- III. Title. 

HG4529.5.D465 2008
332.63’2042--dc22 2008014075

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com



Contents

Editors vii

Contributors ix

Introduction xiii

PART 1 j Dynamic Financial Planning 1

CHAPTER 1 j Trends in Quantitative Equity Management:

Survey Results 3
CHAPTER 2 j Portfolio Optimization under the Value-at-Risk

Constraint 17
CHAPTER 3 j Dynamic Consumption and Asset Allocation

with Derivative Securities 43
CHAPTER 4 j Volatility-Induced Financial Growth 67
CHAPTER 5 j Constant Rebalanced Portfolios and Side-Information 85
CHAPTER 6 j Improving Performance for Long-Term Investors:

Wide Diversification, Leverage and Overlay Strategies 107
CHAPTER 7 j Stochastic Programming for Funding Mortgage Pools 129
CHAPTER 8 j Scenario-Generation Methods for an Optimal Public

Debt Strategy 175
CHAPTER 9 j Solving ALM Problems via Sequential

Stochastic Programming 197
CHAPTER 10 j Designing Minimum Guaranteed Return Funds 223

PART 2 j Portfolio Construction and Risk Management 245

CHAPTER 11 j DC Pension Fund Benchmarking with Fixed-Mix

Portfolio Optimization 247
CHAPTER 12 j Coherent Measures of Risk in Everyday Market

Practice 259
CHAPTER 13 j Higher Moment Coherent Risk Measures 271
CHAPTER 14 j On the Feasibility of Portfolio Optimization under

Expected Shortfall 299
CHAPTER 15 j Stability Analysis of Portfolio Management with

Conditional Value-at-Risk 315

v



CHAPTER 16 j Stress Testing for VaR and CVaR 337
CHAPTER 17 j Stable Distributions in the Black�/Litterman Approach to

Asset Allocation 359
CHAPTER 18 j Ambiguity in Portfolio Selection 377
CHAPTER 19 j Mean-Risk Models Using Two Risk Measures:

A Multi-Objective Approach 393
CHAPTER 20 j Implied Non-Recombining Trees and Calibration for

the Volatility Smile 425
Index 451

vi j CONTENTS



Editors

Dr. M.A.H. Dempster was educated at Toronto (BA), Oxford (MA), and Carnegie Mellon

(MS, PhD) Universities and is currently professor emeritus at the Statistical Laboratory,

Centre for Mathematical Sciences, in the University of Cambridge. Previously he was

director of the Centre for Financial Research, director of research and director of the

doctoral programme at the Judge Business School. He was also professor of mathematics

and director of the Institute for Studies in Finance in the University of Essex, R. A. Jodrey

Research Professor of Management and Information Sciences and professor of Mathe-

matics, Statistics and Computing Science at Dalhousie University and fellow and

University Lecturer in Industrial Mathematics at Balliol College, Oxford. Since 1996 he

has been the managing director of Cambridge Systems Associates Limited, a financial

services consultancy and software company. His teaching experience is in a broad range of

mathematical, decision, information and managerial sciences, and he has supervised over

40 doctoral students in these fields. He has held visiting positions at Stanford, Berkeley,

Princeton, Toronto, Rome and IIASA. He has also been a consultant to numerous leading

international commercial and industrial organizations and several governments and is in

demand as a speaker and executive educator around the world.

As well as mathematical and computational finance and economics, his present

research interests include optimization and nonlinear analysis, stochastic systems,

algorithm analysis, decision support and applications software. He is author of over

100 published research articles and reports and is author, editor or translator of 11 books

including Introduction to Optimization Methods (with P. R. Adby), Large Scale Linear

Programming (2 vols., with G. B. Danzig and M. Kallio), Stochastic Programming,

Deterministic and Stochastic Scheduling (with J. K. Lenstra and A. H. G. Rinnooy Kan),

Mathematics of Derivative Securities (with S. R. Pliska) and Risk Management: Value at Risk

and Beyond. He is founding joint Editor-in-Chief of Quantitative Finance with J. Doyne

Farmer and presently shares this position with J.-P. Bouchaud. He was formerly on the

editorial boards of the Review of Economic Studies, Journal of Economic Dynamics and

Control, Mathematical Finance and Computational Economics and is currently an associate

editor of Stochastics, Computational Finance and the Journal of Risk Management in

Financial Institutions. He received the D. E. Shaw Best Paper Award at Computational

Intelligence in Financial Engineering 1999 and became an honorary fellow of the UK

Institute of Actuaries in 2000. In 2004 The Mathematical Programming Society recognized

him as a Pioneer of Stochastic Programming.

vii



Dr. Gautam Mitra qualified as an electrical engineer at Jadavpur University, Kolkata.

He then joined London University, where he completed first an MSc followed by a PhD in

computer methods in operational research. Dr. Mitra joined the faculty of Mathematics,

Statistics and OR at Brunel University in 1974; since 1988 he has held a chair of

Computational Optimisation and Modelling, and between 1990�/2001 he was head of the

Department of Mathematical Sciences. In 2001, under the strategic research initiative of

Brunel University, Professor Mitra established Centre for the Analysis of Risk and

Optimisation Modelling (CARISMA) and has led it as its Director. Professor Mitra’s

research interests cover mathematical optimisation and, more recently, financial model-

ling and risk quantifications. In the year 2003 Brunel University, in recognition of his

academic contributions, honoured him as a distinguished professor.

Professor Mitra, prior to his academic career at Brunel University, worked with

SCICON, SIA and ICL; in all these organisations he was involved in the (software)

development of mathematical programming optimisation and modelling systems. He was

the director of advanced NATO Advanced Study Research Institute, which took place in

Val-d-Isere (1987) on the topic of Mathematical Models for Decision Support. Professor

Mitra has also had substantial involvement with industry-based projects in his role as a

director of UNICOM Seminars and OptiRisk Systems. He is the author of two textbooks,

four edited books and over ninety-five journal papers. His Web sites are http://

www.carisma.brunel.ac.uk and http://www.optirisk-systems.com

Dr. Georg Pflug studied law, mathematics and statistics at the University of Vienna. He

was assistant professor at the University of Vienna, professor at the University of Giessen,

Germany and is currently full professor at the University of Vienna and Head of the

Computational Risk Management Group. He will be Dean of the Faculty of Business,

Economics and Statistics in the period 2008�/2010. Georg Pflug held visting positions

University of Bayreuth, Michigan State University, University of California at Davis,
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Introduction to Quantitative Fund
Management

A T THE TENTH TRIENNIAL INTERNATIONAL CONFERENCE on stochastic programming held at

the University of Arizona in October 2004, it was observed that the fund

management industry as a whole was far from the leading edge of research in financial

planning for asset allocation, asset liability management, debt management and other

financial management problems at the strategic (long term) level. This gap is documented

in the timely survey of quantitative equity management by Fabozzi, Focardi and Jonas

which forms the first chapter of this book. It was therefore agreed to bring out a special

issue of Quantitative Finance to partially address the imbalance between research and

practice by showcasing leading edge applicable theory and methods and their use for

practical problems in the industry. A call for papers went out in August and October of

2005. As an outcome of this, we were able to compile a first special issue with the papers

forming the ten chapters in Part 1 of this book. In fact, the response to the call was so

good that a second special issue focusing on tactical financial planning and risk

management is contained in the ten chapters of Part 2.

Taken together, the twenty chapters of this volume constitute the first collection to cover

quantitative fund management at both the dynamic strategic and one period tactical levels.

They consider optimal portfolio choice for wealth maximization together with integra-

ted risk management using axiomatically defined risk measures. Solution techniques con-

sidered include novel applications to quantitative fund management of stochastic control,

dynamic stochastic programming and related optimization techniques. A number of

chapters discuss actual implemented solutions to fund management problems including

equity trading, pension funds, mortgage funding and guaranteed investment products. All

the contributors are well known academics or practitioners. The remainder of this

introduction gives an overview of their contributions.

In Part I of the book on dynamic financial planning the survey by Fabozzi et al.

(Chapter 1) finds that, at least in the equity world, the interest in quantitative techniques

is shifting from basic Markowitz mean-variance portfolio optimization to risk manage-

ment and trading applications. This trend is represented here with the chapter by Fagiuoli,

Stella and Vetura (Chapter 5). The remaining chapters in Part 1 cover novel aspects of

lifetime individual consumption investment problems, fixed mix portfolio rebalancing

allocation strategies (including Cover-type universal portfolios), debt management for
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funding mortgages and national debt, and guaranteed return fund construction. Of the

ten chapters in Part 1, one is the mentioned survey, three are theoretical, two concern

proofs of concept for practical trading or fund management strategies and the remaining

four concern real-world implementations for major financial institutions.

Chapter 2 by Pirvu expands on the classical consumption investment problem of

Merton to include a value-at-risk constraint. The portfolio selection problem over a finite

horizon is a stochastic control problem which is reduced to pathwise nonlinear

optimization through the use of the stochastic Pontryagin maximum principal. Numerical

results are given and closed form solutions obtained for special cases such as logarithmic

utility. The third chapter by Hsuku extends the classical Merton problem in a different

direction to study the positive effects of adding derivatives to investors’ choices. The

model utilizes a recursive utility function for consumption and allows predictable

variation of equity return volatility. Both of these theoretical studies concern realistically

incomplete markets in which not all uncertainties are priced.

The next three chapters mainly treat variants of the fixed-mix rebalance dynamic asset

allocation strategy. The first of these (Chapter 4) by Dempster, Evstigneev and Schenk-

Hoppé shows under very general stationary ergodic return assumptions that such a

strategy, which periodically rebalances a portfolio to fixed proportions of the current

portfolio value, grows exponentially on almost every path even in the presence of suitable

transactions costs. Chapter 5 in this group by Fagiuoli, Stella and Ventura develops, and

tests on stock data from four major North American indices, an online algorithm for

equity trading based on Cover’s non-parametric universal portfolios in the situation when

some market state information is also available. Chapter 6 by Mulvey, Ural and Zhang

discusses return enhancing additions to both fixed mix rebalance strategies and optimal

dynamic allocation strategies obtained by dynamic stochastic programming in the context

of work for the U.S. Department of Labor. In particular, positive return performance is

demonstrated from diversification to non-traditional asset classes, leverage, and overlay

strategies which require no investment capital outlay.

The next two chapters concern debt management problems which use dynamic

stochastic programming to optimally fund mortgage lending and government spending

requirements respectively. These are asset liability management problems in which assets

are specified and decisions focus on liabilities, namely, when and how to issue bonds. The

first, Chapter 7 by Infanger, is an exemplary study conducted for Freddie Mac which

shows that significant extra profits can be made by employing dynamic models relative to

static Markovitz mean-variance optimization or traditional duration and convexity

matching of assets (mortgage loans) and liabilities (bonds). In addition, efficient out-of-

sample simulation evaluation of the robustness of the recommended optimal funding

strategies is described, but not historical backtesting. Chapter 8 by Bernaschi, Briani, Papi

and Vergni concentrates on yield curve modelling for a dynamic model for funding Italian

public debt by government bond issuance. The idea of this contribution, important in an

EU context, is to model the basic ECB yield curve evolution together with an orthogonal

national idiosyncratic component.
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The last two chapters of Part 1 describe the use of dynamic stochastic programming

techniques to design guaranteed return pension funds which employ dynamic asset

allocations to balance fund return versus guarantee shortfall. Chapter 9 by Hertzog,

Dondi, Keel, Schumann and Geering treats this asset liability management problem using

a deterministic evolution of the guarantee liability, while Chapter 10 by Dempster,

Germano, Medova, Rietbergen, Sandrini and Scrowston treats guarantee shortfall with

respect to a stochastic liability which is evaluated from the forward ECB yield curve

simulation used to price bonds in the dynamic portfolio. Both chapters employ historical

backtesting of their models for respectively a hypothetical Swiss pension fund and (a

simplified version of) actual funds backing guaranteed return products of Pioneer

Investments.

Taken together, the ten chapters of Part 1 give a current snapshot of state-of-the-art

applications of dynamic stochastic optimization techniques to long term financial

planning. These techniques range from new pathwise (Pirvu) and standard dynamic

programming (Hsuku) methods of stochastic control, through sub-optimal, but easily

understood and implemented policies (Dempster et al., Fagiouli et al., Mulvey et al.) to

dynamic stochastic programming techniques involving the forward simulation of many

risk factors (Mulvey et al., Infanger, Bernaschi et al., Hertzog et al., Dempster et al.).

Although there is currently widespread interest in these approaches in the fund

management industry, more than a decade after their commercial introduction they are

still in the early stages of adoption by practitioners, as the survey of Fabozzi et al. shows.

This volume will hopefully contribute to the recognition and wider acceptance of

stochastic optimization techniques in financial practice.

Part 2 of this volume on portfolio construction and risk management concerns the tactical

level of financial planning. Most funds, with or without associated liabilities—and

explicitly or implicitly—employ a three level hierarchy for financial planning. The top

strategic level considers asset classes and risk management over longer term horizons

and necessarily involves dynamics (the topic of Part 1). The middle tactical level of the

financial planning hierarchy concerns portfolio construction and risk management at the

individual security or fund manager level over the period up to the next portfolio

rebalance. This is the focus of the ten contributions of the second part of the book. The

third and bottom operational level of the financial planning hierarchy is actual trading

which, with the rise of hedge funds, and as the survey of quantitative equity management

by Fabozzi et al. in Chapter 1 demonstrates, is becoming increasingly informed by tactical

models and considerations beyond standard Markowitz mean-variance optimization

(MVO). This interaction is the evident motivation for many of the chapters in Part 2

with their emphasis on non-Gaussian returns, new risk-return tradeoffs and robustness of

benchmarks and portfolio decisions. The first two chapters are based on insights gained

from actual commercial applications, while of the remaining eight chapters all but one,

which is theoretically addressing an important practical issue, test new theoretical

contributions on market data. Another theme of all the contributions in this part is that

their concern is with techniques which are scenario—rather than analytically—based

(although the purely theoretical chapter uses a limiting analytical approximation). This
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theme reflects the necessity for nontrivial computational approaches when the classical

independent Gaussian return paradigm is set aside in favour of non-equity instruments

and shorter term (e.g. daily or weekly) returns.

The first chapter of Part 2, Chapter 11 by Dempster, Germano, Medova, Rietbergen,

Sandrini, Scrowston and Zhang treats the problem of benchmarking fund performance

using optimal fixed mix rebalancing strategies (a theme of Part 1) and tests it relative to

earlier work on optimal portfolios for guaranteed return funds described in Chapter 10.

Chapter 12 by Acerbi provides a timely and masterful survey of the recent literature on

coherent risk measures, including practical linear programming models for portfolios

constructed by their minimization. This theme is elaborated further by Krokhmal in

Chapter 13 which treats higher moment coherent risk measures. It examines their

theoretical properties and performance when used in portfolio construction relative to

standard mean variance and expected shortfall conditional value at risk (CVaR)

optimization.

The next three chapters treat the robustness properties of the numerical minimization

of CVaR using linear programming as employed in practice, for example, for bond

portfolios. The first, Chapter 14 by Ciliberti, Kondor and Mezard, uses limiting

continuous approximations suggested by statistical physics to define a critical threshold

for the ratio of the number of assets to the number of historical observations beyond

which the expected shortfall (CVaR) risk measure is not well-defined—a phase-change

phenomenon first noted by Kondor and co-authors. Next Kaut, Vladimirou, Wallace and

Zenios examine in Chapter 15 the stability of portfolio solutions to this problem with

respect to estimation (from historical data) errors. They conclude that sensitivity to

estimation errors in the mean, volatility, skew and correlation all have about the same

non-negligible impact, while error in kurtosis has about half that of the other statistics.

Finally, Chapter 16 by Dupačova and Polı́vka discusses stress-testing the CVaR

optimization problem using the contamination scenario technique of perturbation

analysis. They also show that similar techniques may be applied to the minimal analytical

value at risk (VaR) problem for the Gaussian case, but are not applicable to the

corresponding historical scenario based problem.

The next group of three chapters extend the treatment of portfolio construction and

risk management beyond the usual simple tradeoff of volatility risk and return embodied

in MVO. Chapter 17 by Giacometti, Bertocchi, Rachev and Fabozzi shows that the Black-

Litterman Bayesian approach to portfolio construction, incorporating both market and

practitioner views, can be extended to Student-t and stable return distributions and VaR

and CVaR risk measures. Pflug and Wozabal consider in Chapter 18 the robust

optimization problem of finding optimal portfolios in the Knightian situation when the

distributions underlying returns are not perfectly known. They develop and test an

algorithm for this situation based on two level convex optimization. In the last chapter in

this group, Chapter 19, Roman, Darby-Dowman and Mitra consider the multi-objective

problem of simultaneously trading off expected return with two risk measures based on

variance and expected shortfall (CVaR). In tests with FTSE 100 index securities they find

that an optimal balance with the two risk measures dominates those using either alone.
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The final chapter in Part 2, Chapter 20 by Charalambous, Christofides, Constantinide

and Martzoukos, treats the basic requirement for pricing exotic and over-the-counter

options—fitting vanilla option market price data—using non-recombining (binary) trees, a

special case of the multi-period scenario trees used in Part 1 for strategic portfolio

management. The authors’ approach dominates the usual recombining tree (lattice) in

that it can easily handle transactions costs, liquidity constraints, taxation, non-Markovian

dynamics, etc. The authors demonstrate its practicality using a penalty method and quasi-

Newton unconstrained optimization and its excellent fit to the volatility surface—crucial

for hedging and risk control.

The ten chapters of Part 2 provide an up-to-date overview of current research in tactical

portfolio construction and risk management. Their emphasis on general return distribu-

tions and tail risk measures is appropriate to the increasing penetration of hedge fund

trading techniques into traditional fund and asset liability management. We hope that this

treatment of tactical problems (and its companion strategic predecessor) will make a

valuable contribution to the future practical use of systematic techniques in fund

management.

M.A.H. DEMPSTER, GAUTAM MITRA and GEORG C. PFLUG

Cambridge, London & Vienna
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Trends in Quantitative Equity
Management: Survey Results
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1.1 INTRODUCTION

I N THE SECOND HALF OF THE 1990s, there was so much skepticism about quantitative fund

management that Leinsweber (1999), a pioneer in applying advanced techniques

borrowed from the world of physics to fund management, wrote an article entitled: ‘Is

quantitative investment dead?’ In the article, Leinweber defended quantitative fund

management and maintained that in an era of ever faster computers and ever larger

databases, quantitative investment was here to stay. The skepticism towards quantitative

fund management, provoked by the failure of some high-profile quantitative funds, was

related to the fact that investment professionals felt that capturing market inefficiencies

could best be done by exercising human judgement.

Despite mainstream academic theory that had held that markets are efficient and

unpredictable, the asset managers’ job has always been to capture market inefficiencies for

their clients. At the academic level, the notion of efficient markets has been progressively

relaxed. Empirical evidence that began to be accumulated in the 1970s led to the gradual
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acceptance of the notion that financial markets are somewhat predictable and that

systematic market inefficiencies can be detected (see Granger 1992 for a review to various

models that accept departures from efficiency). Using the variance ratio test, Lo and

MacKinlay (1988) disproved the random walk hypothesis. Additional insights return

predictability was provided by Jegadeesh and Titman (1993), who established the existence

of momentum phenomena. Since then, a growing number of studies have accumulated

evidence that there are market anomalies that can be systematically exploited to earn

excess profits after considering risk and transaction costs (see Pesaran 2005 for an up-to-

date presentation of the status of market efficiency). Lo (2004) proposed replacing the

Efficient Market Hypothesis with the Adaptive Market Hypothesis arguing that market

inefficiencies appear as the market adapts to changes in a competitive environment.

The survey study described in this paper had as its objective to reveal to what extent the

growing academic evidence that asset returns are predictable and that predictability can be

exploited to earn a profit have impacted the way equity assets are being managed. Based

on an Intertek 2003 survey on a somewhat different sample of firms, Fabozzi et al. (2004)

revealed that models were used primarily for risk management, with many firms

eschewing forecasting models. The 2006 survey reported in this chapter sought to reveal to

what extent modelling has left the risk management domain to become full-fledged asset

management methodology. Anticipating the results discussed below, the survey confirms

that quantitative fund management is now an industrial reality, successfully competing

with traditional asset managers for funds. Milevsky (2004) observes that the methods of

quantitative finance have now been applied in the field of personal wealth management.

We begin with a brief description of the field research methodology and the profile of

responding firms. Section 1.3 discusses the central finding, that is, that models are being

used to manage an increasing amount of equity asset value. Section 1.4 discusses the

changing role of modelling in equity portfolio management, from decision-support

systems to a fully automated portfolio construction and trading system, and from passive

management to active management. Section 1.5 looks at the forecasting models most

commonly used in the industry and discusses the industry’s evaluation of the techniques.

Section 1.6 looks at the use (or lack of use) of high-frequency data and the motivating

factors. Section 1.7 discusses risk measures being used and Section 1.8 optimization

methodologies. The survey reveals a widespread use of optimization, which is behind the

growing level of automation in fund management. The wide use of models has created a

number of challenges: survey respondents say that differentiating quantitative products

and improving on performance are a challenge. Lastly, in looking ahead, we discuss the

issue of the role of models in market efficiency.

1.2 METHODOLOGY

The study is based on survey responses and conversations with industry representatives in

2006. In all, managers at 38 asset management firms managing a total of t3.3 trillion ($4.3

trillion) in equities participated in the survey. Participants include persons responsible for

quantitative equity management and quantitative equity research at large and medium-

sized firms in North America and Europe.
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The home market of participating firms is 15 from North America (14 from U.S. 1 from

Canada) and 23 from Europe (U.K. 7, Germany 5, Switzerland 4, Benelux 3, France 2 and

Italy 2). Equities under management by participating firms range from t5 bn to t800 bn.

While most firms whose use of quantitative methods is limited to performance analysis or

risk measurement declined to participate in this study (only 5 of the 38 participating firms

reported no equity funds under quantitative management), the study does reflect the use of

quantitative methods in equity portfolio management at firms managing a total of t3.3

trillion ($4.3 trillion) in equities; 63) of the participating firms are among the largest asset

managers in their respective countries. It is fair to say that these firms represent the way a

large part of the industry is going with respect to the use of quantitative methods in equity

portfolio management. (Note that of the 38 participants in this survey, 2 responded only

partially to the questionnaire. For some questions, there are therefore 36 (not 38) responses.)

1.3 GROWTH IN EQUITY ASSETS UNDER QUANTITATIVE
MANAGEMENT

The skepticism relative to the future of quantitative management at the end of the 1990s

has given way and quantitative methods are now playing a large role in equity portfolio

management. Twenty-nine percent (11/38) of the survey participants report that more

than 75) of their equity assets are being managed quantitatively. This includes a wide

spectrum of firms, with from t5 billion to over t500 billion in equity assets under

management. Another 58) (22/38) report that they have some equities under

quantitative management, though for most of these (15/22) the percentage of equities

under quantitative management is less than 25)—often under 5)—of total equities

under management. Thirteen percent (5/38) report no equities under quantitative

management. Figure 1.1 represents the distribution of percentage of equities under

quantitative management at different intervals for responding firms.

Relative to the period 2004�/2005, the amount of equities under quantitative manage-

ment has grown at most firms participating in the survey. Eighty-four percent of the

respondents (32/38) report that the percentage of equity assets under quantitative

management has either increased with respect to 2004–2005 (25/38) or has remained

stable at about 100) of equity assets (7/38). The percentage of equities under quantitative

management was down at only one firm and stable at five.

2 

5 

5 

15 

11 More than 75% 

Number of Firms with Percentage of Equities under
Quant Management in Different Intervals

More than 0 to 24% 

None 

50% to 74% 

25% to 49% 

FIGURE 1.1 Distribution of the percentage of equities under quant management.
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One reason given by respondents to explain the growth in equity assets under

quantitative management is the flows into existing quantitative funds. A source at a large

U.S. asset management firm with more than 50) of its equities now under quantitative

management said, ‘The firm has three distinct equity products: value, growth and quant.

Quant is the biggest and is growing the fastest.’ The trend towards quantitative

management is expected to continue.

According to survey respondents, the most important factor contributing to a wider use

of quantitative methods in equity portfolio management is the positive result obtained

with these methods. Half of the participants rated positive results as the single most

important factor contributing to the widespread use of quantitative methods. Other

factors contributing to a wider use of quantitative methods in equity portfolio

management are, in order of importance attributed to them by participants, the

computational power now available on the desktop, more and better data, and the

availability of third-party analytical software and visualization tools. Figure 1.2 represents

the distribution of the score attributed to each factor. Participants were asked to rate from

1 to 5 in order of importance, 5 being the most important. Given the sample of 36 firms

that responded, the maximum possible score is 180.

Sources identified the prevailing in-house culture as the most important factor holding

back a wider use of quantitative methods (this evaluation obviously does not hold for

firms that can be described as quantitative): more than one third (10/27) of the

respondents at other than quant-oriented firms considered this the major blocking factor.

Figure 1.3 represents the distribution of the total score attributed to each factor.

The positive evaluation of models in equity portfolio management is in contrast with

the skepticism of some 10 years ago. A number of changes have occurred. First,

expectations are now more realistic. In the 1980s and 1990s, traders were experimenting

with methodologies from advanced science in hopes of making huge excess returns.

Experience of the last 10 years has shown that models can indeed deliver but that their

performance must be compatible with a well-functioning market.1

Other 

STP 

More/Better Data 

3rd-Party s/w 

Desktop Computers 

Positive Results 

0 20 40 60 80 100 120

Contributing to a Wider Use of Quant Methods

FIGURE 1.2 Score attributed to each factor contributing to a wider use of quant methods.

1 There was a performance decay in quantitatively managed equity funds in 2006�/2007. Many attribute this decaying
performance to the fact that there are now more portfolio managers using the same factors and the same data.
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Other technical reasons include a manifold increase in computing power and more and

better data. Modellers have now available on their desktop computing power that, at the

end of the 1980s, could be got only from multimillion dollar supercomputers. Data,

including intraday data, can now be had (though the cost remains high) and are in general

‘cleaner’ and more complete. Current data include corporate actions, dividends, and fewer

errors—at least in developed-country markets.

In addition, investment firms (and institutional clients) have learned how to use

models throughout the investment management process. Models are now part of an

articulated process that, especially in the case of institutional investors, involves satisfying

a number of different objectives, such as superior information ratios.

1.4 CHANGING ROLE FOR MODELS IN EQUITY PORTFOLIO
MANAGEMENT

The survey reveals that quantitative models are now used in active management to find

alphas (i.e. sources of excess returns), either relative to a benchmark or absolute. This is a

considerable change with respect to the past when quantitative models were used

primarily to manage risk and to select parsimonious portfolios for passive management.

Another finding of this study is the growing amount of funds managed automatically by

computer programs. The once futuristic vision of machines running funds automatically

without the intervention of a portfolio manager is becoming a reality on a large scale: 55)
of the respondents (21/38) report that at least part of their equity assets are now being

managed automatically with quantitative methods; another three plan to automate at least

a portion of their equity portfolios within the next 12 months. The growing automation of

the equity investment process indicates that that there is no missing link in the technology

chain that leads to automatic quantitative management. From return forecasting to

portfolio formation and optimization, all the needed elements are in place.

Until recently, optimization represented the missing technology link in the automation

of portfolio engineering. Considered too brittle to be safely deployed, many firms

eschewed optimization, limiting the use of modelling to stock ranking or risk control

functions. Advances in robust estimation methodologies and in optimization now allow a

manager to construct portfolios of hundreds of stocks chosen in universes of thousands of

stocks with little or no human intervention outside of supervising the models.

Other

Holding Back a Wider Use of Quant Methods
2

37

53

52
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60

80

Poor Results

Complexity

Cost Persons

Cost Data
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In-House Culture

FIGURE 1.3 Score attributed to each factor holding back a wider use of quant methods.
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1.5 MODELLING METHODOLOGIES AND THE INDUSTRY’S
EVALUATION

At the end of the 1980s, academics and researchers at specialized quant boutiques

experimented with many sophisticated modelling methodologies including chaos theory,

fractals and multi-fractals, adaptive programming, learning theory, complexity theory,

complex nonlinear stochastic models, data mining and artificial intelligence. Most of these

efforts failed to live up to expectations. Perhaps expectations were too high. Or perhaps

the resources or commitment required were lacking. Derman (2001) provides a lucid

analysis of the difficulties that a quantitative analyst has to overcome. As observed by

Derman, though modern quantitative finance uses some of the techniques of physics, a

wide gap remains between the two disciplines.

The modelling landscape revealed by the survey is simpler and more uniform.

Regression analysis and momentum modelling are the most widely used techniques:

respectively, 100) and 78) of the survey respondents say that these techniques are being

used at their firms. Other modelling methods being widely used include cash flow analysis

and behavioural modelling. Forty-seven percent (17/36) of the participating firms model

cash flows; 44) (16/36) use behavioural modelling. Figure 1.4 represents the distribution

of modelling methodologies among participants.

Let us observe that regression models used today have undergone a substantial change

since the first multifactor models such as Arbitrage Pricing Theory (APT) were

introduced. Classical multifactor models such as APT are static models embodied in

linear regression between returns and factors at the same time:

ri ¼ ai þ
Xp

j¼1

bij fj þ ei:

Models of this type allow managers to measure risk but not to forecast returns, unless the

factors are forecastable. Sources at traditional asset management firms typically use factor

models to control risk or build stock screening systems. A source doing regression on

factors to capture the risk-return trade-off of assets said, ‘Factor models are the most

intuitive and most comprehensive models for explaining the sources of risk.’

Shrinkage/Averaging 9 
4 

7 
7 

17 
16 

28 
36 

Methodologies Used in Production 

Regime Shifting 
Nonlinear 

Cointegration 
Cash Flow 

Behavioural
Momentum/Reversal 

Regression 

FIGURE 1.4 Distribution of modelling methodologies among participants.
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However, modern regression models are dynamic models where returns at time t � 1

are regressed on factors at time t:

ri;tþ1 ¼ ai þ
Xp

j¼1

bij fj;t þ ei;t :

Models of this type are forecasting models insofar as the factors at time t are predictors of

returns at time behaviour t � 1. In these models, individual return processes might

exhibit zero autocorrelation but still be forecastable from other variables.

Predictors might include financial and macroeconomic factors as well as company

specific parameters such as financial ratios. Predictors might also include human

judgment, for example analyst estimates, or technical factors that capture phenomena

such as momentum. A source at a quant shop using regression to forecast returns said,

‘Regression on factors is the foundation of our model building. Ratios derived from

financial statements serve as one of the most important components for predicting future

stock returns. We use these ratios extensively in our bottom-up equity model and

categorize them into five general categories: operating efficiency, financial strength,

earnings quality (accruals), capital expenditures and external financing activities.’

Momentum and reversals are the second most widely used modelling technique among

survey participants. In general, momentum and reversals are used as a strategy not as a

model of asset returns. Momentum strategies are based on forming portfolios choosing

the highest/lowest returns, where returns are estimated on specific time windows. Survey

participants gave these strategies overall good marks but noted that (1) they do not always

perform so well, (2) they can result in high turnover (though some use constraints/

penalties to deal with this problem) and (3) identifying the timing of reversals is tricky.

Momentum was first reported in Jegadeesh and Titman (1993) in the U.S. market.

Jegadeesh and Titman (2002) confirm that momentum continued to exist in the 1990s in

the US market throughout the 1990s. Karolyi and Kho (2004) examined different models

for explaining momentum and introduced a new bootstrap test. Karolyi and Kho

conclude that no random walk or autoregressive model is able to explain the magnitude of

momentum empirically found; they suggest that models with time varying expected

returns come closer to explaining the empirical magnitude of momentum.

Momentum and reversals are presently explained in the context of local models

updated in real time. For example, momentum as described in Jegadeesh and Titman

(1993) is based on the fact that stock prices can be represented as independent random

walks when considering periods of the length of one year. However, it is fair to say that

there is no complete agreement on the econometrics of asset returns that would justify

momentum and reversals and stylized facts on a global scale, and not as local models. It

would be beneficial to know more about the econometrics of asset returns that sustain

momentum and reversals.

Behavioural phenomena are considered to play an important role in asset predictability;

as mentioned, 44) of the survey respondents say they use behavioural modelling.

Behavioural modellers attempt to capture phenomena such as departures from rationality
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on the part of investors (e.g. belief persistence), patterns in analyst estimates, and

corporate executive investment/disinvestment behaviour. Behavioural finance is related to

momentum in that the latter is often attributed to various phenomena of persistence in

analyst estimates and investor perceptions.

A source at a large investment firm that has incorporated behavioural modelling into its

active equity strategies commented, ‘The attraction of behavioural finance is now much

stronger than it was just five years ago. Everyone now acknowledges that markets are not

efficient, that there are behavioural anomalies. In the past, there was the theory that was

saying that markets are efficient while market participants such as the proprietary trading

desks ignored the theory and tried to profit from the anomalies. We are now seeing a

fusion of theory and practice.’

We remark that the term behavioural modelling is often used rather loosely. Full-

fledged behavioural modelling exploits a knowledge of human psychology to identify

situations where investors are prone to show behaviour that leads to market inefficiencies.

The tendency now is to call ‘behavioural’ any model that exploits market inefficiency.

However, implementing true behavioural modelling is a serious challenge. Even firms with

very large, powerful quant teams say that ‘considerable work is required to translate

[departures from rationality] into a set of rules for identifying stocks as well as entry and

exit points for a quantitative stock selection process.’

As for other methodologies used in return forecasting, sources cited nonlinear methods

and co-integration. Nonlinear methods are being used to model return processes at 19)
(7/36) of the responding firms. The nonlinear method most widely used among survey

participants is classification and regression trees (CART). The advantage of CART is its

simplicity and the ability of CART methods to be cast in an intuitive framework.

A source using CART as a central part of the portfolio construction process in enhanced

index and longer-term value-based portfolios said, ‘CART compresses a large volume of

data into a form which identifies its essential characteristics, so the output is easy to

understand. CART is non-parametric—which means that it can handle an infinitely wide

range of statistical distributions—and nonlinear so as a variable selection technique it is

particularly good at handling higher-order interactions between variables.’

Only 11) (4/36) of the respondents use nonlinear regime-shifting models; at most

firms, judgment is used to assess regime change. Obstacles to modelling regime shifts

include the difficulty in detecting the precise timing of a regime switch and the very long

time series required for true estimation.

A source at a firm where regime-shifting models have been experimented with

commented, ‘Everyone knows that returns are conditioned by market regimes, but the

potential for overfitting when implementing regime-switching models is great. If you

could go back with fifty years of data—but we have only some ten years of data and this is

not enough to build a decent model.’

Co-integration is being used by 19) (7/36) of the respondents. Co-integration models

the short-term dynamics (direction) and long-run equilibrium (fair value). A perceived

plus of co-integration is the transparency that it provides: the models are based on

economic and finance theory and calculated from economic data.
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1.6 USING HIGH-FREQUENCY DATA

High frequency data (HFD) are being used at only 14) of the responding firms (5/36), to

identify profit opportunities and improve forecasts. Another three plan to use HFD within

the next 12 months. A source at a large investment firm that is using HFD said, ‘We use

high-frequency data in event studies. The objective is to gain an understanding of the

mechanisms of the market.’ A source which is planning to use high-frequency data in the

coming 12 months remarked, ‘We believe that high-frequency data will allow us to

evaluate exactly when it is optimal to trade, for example at close, VWAP, or midday, and to

monitor potential market impact of our trades and potential front-running of our

brokers.’ (VWAP stands for volume-weighted average price.)

Though it is believed that HFD could be useful, cost of data is the blocking factor.

Survey participants voiced concerns that the cost of data will hamper the development of

models in the future. One source observes, ‘The quasi monopolistic positioning of data

vendors allows them to charge prices that are incompatible with the revenues structure of

all but the biggest firms.’ Other reasons cited by the sources not using HFD are a

(perceived) unattractive noise-to-signal ratio and resistance to HFD-based strategies on

the part of institutional investors.

1.7 MEASURING RISK

Risk is being measured at all the responding firms. Risk measures most widely used among

participants include variance (97) or 35/36), Value at Risk (VaR) (67) or 24/36) and

downside risk measures (39) or 14/36), Conditional VaR (CVaR), and extreme value

theory (EVT) are used at 4 (11)) and 2 (6)) firms, respectively. The considerable use of

asymmetric risk measures such as downside risk can be ascribed to the growing popularity

of financial products with guaranteed returns. Many firms compute several risk measures:

the challenge here is to merge the different risk views into a coherent risk assessment.

Figure 1.5 represents the distribution of risk measures used by participants.

It is also interesting to note that among survey participants, there is a heightened

attention to model risk. Model averaging and shrinkage techniques are being used by one-

fourth (9/36) of the survey participants. The recent take-up of these techniques is related

to the fact that most firms are now using multiple models to forecast returns, a trend that

is up compared to two or three years ago. Other techniques to mitigate model risk, such as

EVT 2
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4
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35

Downside Risk

Risk Measures Being Used

CVaR

VaR

Variance

FIGURE 1.5 Distribution of risk measures adopted by participants.
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random coefficient models, are not used much in the industry. In dealing with model risk

we must distinguish between averaging model results and averaging models themselves.

The latter technique, embodied in random coefficient models, is more difficult and

requires more data.

1.8 OPTIMIZATION

Another area where much has changed recently is optimization. According to sources,

optimization is now performed at 92) (33/36) of the participating firms, albeit in some

cases only rarely. Mean-variance is the most widely used technique among survey

participants: it is being used by 83) (30/36) of the respondents. It is followed by utility

optimization (42) or 15/36) and, more recently, robust optimization (25) or 9/36).

Only one firm mentioned that it is using stochastic optimization. Figure 1.6 represents the

distribution of optimization methods.

The wider use of optimization is a significant development compared to just a few years

ago when many sources reported that they eschewed optimization: the difficulty of

identifying the forecasting error was behind the then widely held opinion that

optimization techniques were too brittle and prone to ‘error maximization.’ The greater

use of optimization is due to advances in large-scale optimization coupled with the ability

to include constraints and robust methods for estimation and optimization itself. It is

significant: portfolio formation strategies rely on optimization. With optimization now

feasible, the door is open to a fully automated investment process. In this context, it is

noteworthy that 55) of the survey respondents report that at least a portion of their

equity assets is being managed by a fully automated process.

Optimization is the engineering part of portfolio construction. Most portfolio

construction problems can be cast in an optimization framework, where optimization

is applied to obtain the desired optimal risk-return profile. Optimization is the technology

behind the current offering of products with specially engineered returns, such as

guaranteed returns. However, the offering of products with particular risk-return profiles

requires optimization methodologies that go well beyond the classical mean-variance

optimization. In particular one must be able to (1) work with real-world utility functions

and (2) apply constraints to the optimization process.

Stochastic Opt 1
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15
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Optimization Methods in Use

Robust Opt

Utility Opt

Mean-Var

None

FIGURE 1.6 Distribution of optimization methods adopted by participants.
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1.9 CHALLENGES

The growing diffusion of models is not without challenges. Survey participants noted

three:

� increasing difficulty in differentiating products;

� difficulty in marketing quant funds, especially to non-institutional investors; and

� performance decay.

Quantitative equity management has now become so widespread that a source at a

long-established quantitative investment firm remarked, ‘There is now a lot of

competition from new firms entering the space [of quantitative investment management].

The challenge is to continue to distinguish ourselves from competition in the minds of

clients.’

With many quantitative funds based on the same methodologies and using the same

data, the risk is to construct products with the same risk-return profile. The head of active

equities at a large quantitative firm with more than a decade of experience in quantitative

management remarked, ‘Everyone is using the same data and reading the same articles: it’s

tough to differentiate.’

While sources report that client demand is behind the growth of (new) pure

quantitative funds, some mentioned that quantitative funds might be something of a

hard sell. A source at a medium-sized asset management firm servicing both institutional

clients and high net worth individuals said, ‘Though clearly the trend towards quantitative

funds is up, quant approaches remain difficult to sell to private clients: they remain too

complex to explain, there are too few stories to tell, and they often have low alpha. Private

clients do not care about high information ratios.’

Markets are also affecting the performance of quantitative strategies. A recently released

report from the Bank for International Settlements (2006) noted that this is a period of

historically low volatility. What is exceptional about this period, observes the report, is the

simultaneous drop in volatility in all variables: stock returns, bond spread, rates and so on.

While the role of models in reducing volatility is unclear, what is clear is that models

produce a rather uniform behaviour. Quantitative funds try to differentiate themselves

either finding new unexploited sources of return forecastability, for example novel ways of

looking at financial statements, or using optimization creatively to engineer special risk-

return profiles.

A potentially more serious problem is performance decay. Survey participants remarked

that model performance was not so stable. Firms are tackling these problems in two ways.

First, they are protecting themselves from model breakdown with model risk mitigation

techniques, namely by averaging results obtained with different models. It is unlikely that

all models breakdown in the same way in the same moment, so that averaging with

different models allows managers to diversify model risk. Second, there is an on-going

quest for new factors, new predictors, and new aggregations of factors and predictors. In

the long run, however, something more substantial might be required: this is the subject of

the next and final section.

TRENDS IN QUANTITATIVE EQUITY MANAGEMENT j 13



1.10 LOOKING AHEAD

Looking ahead, we can see a number of additional challenges. Robust optimization, robust

estimation and the integration of the two are probably on the research agenda of many

firms. As asset management firms strive to propose innovative products, robust and

flexible optimization methods will be high on the R & D agenda. In addition, as asset

management firms try to offer investment strategies to meet a stream of liabilities (i.e.,

measured against liability benchmarking), multistage stochastic optimization methods

will become a priority for firms wanting to compete in this arena. Pan et al. (2006) call

‘Intelligent Finance’ the new field of theoretical finance at the confluence of different

scientific disciplines. According to the authors, the theoretical framework of intelligent

finance consists of four major components: financial information fusion, multilevel

stochastic dynamic process models, active portfolio and total risk management, and

financial strategic analysis.

The future role of high-frequency data is not yet clear. HFD are being used (1) to

improve on model quality thanks to the 2000-fold increase in sample size they offer with

respect to daily data and (2) to find intraday profit opportunities. The ability to improve

on model quality thanks to HFD is the subject of research. It is already known that

quantities such as volatility can be measured with higher precision using HFD. Using

HFD, volatility ceases to be a hidden variable and becomes the measurable realized

volatility, introduced by Torbin et al. (2003). If, and how, this increased accuracy impacts

models whose time horizon is in the order of weeks or months is a subject not entirely

explored. It might be that in modelling HFD one captures short-term effects that

disappear at longer time horizons.

Regardless of the frequency of data sampling, modellers have to face the problem of

performance decay that is the consequence of a wider use of models. Classical financial

theory assumes that agents are perfect forecasters in the sense that they know the

stochastic processes of prices and returns. Agents do not make systematic predictable

mistakes: their action keeps the market efficient. This is the basic idea underlying rational

expectations and the intertemporal models of Merton.

Practitioners (and now also academics) have relaxed the hypothesis of the universal

validity of market efficiency; indeed, practitioners have always being looking for asset

mispricings that could produce alpha. As we have seen, it is widely believed that

mispricings are due to behavioural phenomena, such as belief persistence. This behaviour

creates biases in agent evaluations—biases that models attempt to exploit in applications

such as momentum strategies.

However, the action of models tends to destroy the same sources of profit that they are

trying to exploit. This fact receives attention in applications such as measuring the impact

of trades. In almost all current implementations, measuring the impact of trades means

measuring the speed at which models constrain markets to return to an unprofitable

efficiency. To our knowledge, no market impact model attempts to measure the opposite

effect, that is, the eventual momentum induced by a trade.

It is reasonable to assume that the diffusion of models will reduce the mispricings due

to behavioural phenomena. However, one might reasonably ask whether the action of
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models will ultimately make markets more efficient, destroying any residual profitability

in excess of market returns, or if the action of models will create new opportunities that

can be exploited by other models, eventually by a new generation of models based on an

accurate analysis of model biases. It is far from being obvious that markets populated by

agents embodied in mathematical models will move toward efficiency. In fact, models

might create biases of their own. For example, momentum strategies (buy winners, sell

losers) are a catalyst for increased momentum, farther increasing the price of winners and

depressing the price of losers.

This subject has received much attention in the past as researchers studied the

behaviour of markets populated by boundedly rational agents. While it is basically

impossible, or at least impractical, to code the behaviour of human agents, models belong

to a number of well-defined categories that process past data to form forecasts. Studies,

based either on theory or on simulation, have attempted to analyse the behaviour of

markets populated by agents that have bounded rationality, that is, filter past data to form

forecasts.2 One challenge going forward will be to understand what type of inefficiencies

are produced by markets populated by automatic decision-makers whose decisions are

based on past data. It is foreseeable that simulation and artificial markets will play a

greater role as discovery devices.
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CHAPTER 2

Portfolio Optimization under the
Value-at-Risk Constraint
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2.1 INTRODUCTION

M ANAGERS LIMIT THE RISKINESS of their traders by imposing limits on the risk of their

portfolios. Lately, the Value-at-Risk (VaR) risk measure has become a tool used to

accomplish this purpose. The increased popularity of this risk measure is due to the fact

that VaR is easily understood. It is the maximum loss of a portfolio over a given horizon,

at a given confidence level. The Basle Committee on Banking Supervision requires U.S.

banks to use VaR in determining the minimum capital required for their trading

portfolios.

In the following we give a brief description of the existing literature. Basak and Shapiro

(2001) analyse the optimal dynamic portfolio and wealth-consumption policies of utility

maximizing investors who must manage risk exposure using VaR. They find that VaR risk
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managers pick a larger exposure to risky assets than non-risk managers, and consequently

incur larger losses when losses occur. In order to fix this deficiency they choose another

risk measure based on the risk-neutral expectation of a loss. They call this risk measure

Limited Expected Loss (LEL). One drawback of their model is that the portfolios VaR is

never re-evaluated after the initial date, making the problem a static one. In a similar

setup, Berkelaar et al. (2002) show that, in equilibrium, VaR reduces market volatility, but

in some cases raises the probability of extreme losses. Emmer et al. (2001) consider a

dynamic model with Capital-at-Risk (a version of VaR) limits. However, they assume that

portfolio proportions are held fixed during the whole investment horizon and thus the

problem becomes a static one as well.

Cuoco et al. (2001) develop a more realistic dynamically consistent model of the

optimal behaviour of a trader subject to risk constraints. They assume that the risk of the

trading portfolio is re-evaluated dynamically by using the conditioning information, and

hence the trader must satisfy the risk limit continuously. Another assumption they make is

that when assessing the risk of a portfolio, the proportions of different assets held in the

portfolio are kept unchanged. Besides the VaR risk measure, they consider a coherent risk

measure Tail Value at Risk (TVaR), and establish that it is possible to identify a dynamic

VaR risk limit equivalent to a dynamic TVaR limit. Another of their findings is that the

risk exposure of a trader subject to VaR and TVaR limits is always lower than that of an

unconstrained trader.

Pirvu (2005) started with the model of Cuoco et al. (2001). We find the optimal growth

portfolio subject to these risk measures. The main finding is that the optimal policy is a

projection of the optimal portfolio of an unconstrained log agent (the Merton proportion)

onto the constraint set with respect to the inner product induced by the volatility matrix of

the risky assets. Closed-form solutions are derived even when the constraint set depends on

the current wealth level.

Cuoco and Liu (2003) study the dynamic investment and reporting problem of a

financial institution subject to capital requirements based on self-reported VaR estimates.

They show that optimal portfolios display a local three-fund property. Leippold et al.

(2002) analyse VaR-based regulation rules and their possible distortion effects on financial

markets. In partial equilibrium the effectiveness of VaR regulation is closely linked to the

leverage effect, the tendency of volatility to increase when the prices decline.

Vidovic et al. (2003) considered a model with time-dependent parameters, but the risk

constraints were imposed in a static fashion.

Yiu (2004) looks at the optimal portfolio problem, when an economic agent is

maximizing the utility of her intertemporal consumption over a period of time under a

dynamic VaR constraint. A numerical method is proposed to solve the corresponding HJB

equation. They find that investment in risky assets is optimally reduced by the VaR

constraint. Atkinson and Papakokinou (2005) derive the solution to the optimal port-

folio and consumption subject to CaR and VaR constraints using stochastic dynamic

programming.

This paper extends Pirvu (2005) by allowing for intertemporal consumption. We address

an issue raised by Yiu (2004) and Atkinson and Papakokinou (2005) by considering a
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market with random coefficients. It was also suggested as a new research direction by

Cuoco et al. (2001). To the best of our knowledge this is the first work in portfolio choice

theory with CRRA-type preferences, time-dependent market coefficients, incomplete

financial markets, and dynamically consistent risk constraints in a Brownian motion

framework.

2.1.1 Our Contribution

We propose a new approach with the potential for numerical applications. The main idea

is to consider, on every probabilistic path, an auxiliary deterministic control problem,

which we analyse. The existence of a solution of the deterministic control problem does

not follow from classical results. We establish it and we also show that first-order necessary

conditions are also sufficient for optimality. We prove that a solution of this deterministic

control problem is the optimal portfolio policy for a given path. The advantage of our

method over classical methods is that it allows for a better numerical treatment.

The remainder of this chapter is organized as follows. Section 2.2 describes the model,

including the definition of the Value-at-Risk constraint. Section 2.3 formulates the

objective and shows the limitations of the stochastic dynamic programming approach in

this context. Section 2.4 treats the special case of logarithmic utility. The problem of

maximizing expected logarithmic utility of intertemporal consumption is solved in closed

form. This is done by reducing it to a nonlinear program, which is solved pathwise. One

finding is that, at the final time, the agent invests the least proportion of her wealth in

stocks. The optimal policy is a projection of the optimal portfolio and consumption of an

unconstrained agent onto the constraint set. Section 2.5 treats the case of power utility, in

the totally unhedgable market coefficients paradigm (see Example 2.7.4, p. 305 of Karatzas

and Shreve 1998). The stochastic control portfolio problem is transformed into a

deterministic control problem. The solution is characterized by the Pontryagin maximum

principle (first-order necessary conditions). Section 2.6 contains an appropriate discretiza-

tion of the deterministic control problem. It leads to a nonlinear program that can be

solved by standard methods. It turns out that the necessary conditions of the discretized

problem converge to the necessary conditions of the continuous problem. For numerical

experiments, one can use NPSOL, a software package for solving constrained optimization

problems that employs a sequential quadratic programming (SQP) algorithm. We end this

section with some numerical experiments. The conclusions are summarized in Section 2.7.

We conclude the paper with an appendix containing the proofs of the lemmas.

2.2 MODEL DESCRIPTION

2.2.1 The Financial Market

Our model of a financial market, based on a filtered probability space

ðO; fF tg0�t�1;F ;PÞ satisfying the usual conditions, consists of m � 1 assets. The first,

fS0ðtÞgt2½0;1
, is a riskless bond with a positive interest rate r, i.e. dS0ðtÞ ¼ S0ðtÞr dt . The

remaining m are stocks and evolve according to the following stochastic differential

equation:
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dSiðtÞ ¼ SiðtÞ aiðtÞdt þ
Xn

j¼1

sijðtÞdWjðtÞ
" #

;

0 � t � 1; i ¼ 1; . . . ;m;

ð2:1Þ

where the process fW ðtÞgt2½0;1Þ ¼ fðWjðtÞÞj¼1;...;ngt2½0;1Þ is an n-dimensional standard

Brownian motion. Here, faðtÞgt2½0;1Þ ¼ fðaiðtÞÞi¼1;...;mgt2½0;1Þ is an Rm-valued mean rate

of return process, and fsðtÞgt2½0;1Þ ¼ fðsijðtÞÞ
j¼1;...;n

i¼1;...;mgt2½0;1Þ is an m�n matrix-valued

volatility process. We impose the following regularity assumptions on the coefficient

processes a(t) and s(t).

� All the components of the process faðtÞgt2½0;1Þ are assumed positive, continuous and

fF tg-adapted.

� The matrix-valued volatility process fsðtÞgt2½0;1Þ is assumed continuous, fF tg-
adapted and with linearly independent rows for all t 2 ½0;1Þ, a.s.

The last assumption precludes the existence of a redundant asset and arbitrage

opportunities. The rate of excess return is the Rm-valued process fmðtÞgt2½0;1Þ ¼
fðmiðtÞÞi¼1;...;mgt2½0;1Þ, with miðtÞ ¼ aiðtÞ 
 r, which is assumed positive. This also covers

the case of an incomplete market if n �m (more sources of randomness than stocks).

2.2.2 Consumption, Trading Strategies and Wealth

In this model the agent is allowed to consume. The intermediate consumption process,

denoted fCðtÞgt2½0;1Þ, is assumed positive, and fF tg-progressively measurable. Let

fðzðtÞ; cðtÞÞgt2½0;1Þ ¼ fðziðtÞi¼1;...;m; cðtÞgt2½0;1Þ be an Rmþ1-valued portfolio-proportion

process. At time t its components are the proportions of the agent’s wealth invested in

stocks, z(t), and her consumption rate, c(t). An R
mþ1-valued portfolio-proportion process is

called admissible if it is fF tg-progressively measurable and satisfies

Z t

0

zTðuÞmðuÞ
�� ��du þ

Z t

0

zTðuÞsðuÞ
�� ��2

du

þ
Z t

0

cðuÞdu <1; a.s.; 8t 2 ½0;1Þ;
ð2:2Þ

where, as usual, I �I is the standard Euclidean norm in R
m. Given fðzðtÞ; cðtÞÞgt2½0;1Þ is a

portfolio-proportion process, the leftover wealth Xz;cðtÞð1

Pm

i¼1 ziðtÞÞ is invested in the

riskless bond S0(t). It may be that this quantity is negative, in which case we are borrowing

at rate r � 0. The dynamics of the wealth process fXz;cðtÞgt2½0;1Þ of an agent using the

portfolio-proportion process fðzðtÞ; cðtÞÞgt2½0;1Þ is given by the following stochastic

differential equation:
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dXz;cðtÞ ¼ Xz;cðtÞ zTðtÞaðtÞ 
 cðtÞ
� 	

dt þ zTðtÞsðtÞdW ðtÞ
� 	

þ 1

Xm

i¼1

ziðtÞ
 !

Xz;cðtÞr dt

¼ Xz;cðtÞ r 
 cðtÞ þ zTðtÞmðtÞ
� 	

dt

þ zTðtÞsðtÞdW ðtÞÞ:

Let us define the p-quadratic correction to the saving rate r:

Qpðt ; z; cÞ¼
4

r 
 c þ zTmðtÞ þ p 
 1

2
zTsðtÞ
�� ��2

: ð2:3Þ

The above stochastic differential equation has a unique strong solution if (2.2) is satisfied

and is given by the explicit expression

Xz;cðtÞ ¼ Xð0Þ exp

�Z t

0

Q0ðu; zðuÞ; cðuÞÞdu þ
Z t

0

zTðuÞsðuÞdW ðuÞ


: ð2:4Þ

The initial wealth Xz;cð0Þ ¼ Xð0Þ takes values in (0,�) and is exogenously given.

2.2.3 Value-at-Risk Limits

For the purposes of risk measurement, one can use an approximation of the distribution

of the investor’s wealth at a future date. A detailed explanation of why this practice should

be employed can be found on p. 8 of Cuoco et al. (2001) (see also p. 18 of Leippold et al.

(2002)). Given a fixed time instance t ] 0, and a length t � 0 of the measurement

horizon [t, t � t], the projected distribution of wealth from trading and consumption is

usually calculated under the assumptions that

1. the portfolio proportion process fðzðuÞ; cðuÞÞgu2½t ;tþt
, as well as

2. the market coefficients fðaðuÞgu2½t ;tþt
Þ and fðsðuÞgu2½t ;tþt
,

will stay constant and equal their present value throughout [t, t �t]. If t is small, for

example t � 1 trading day, the market coefficients will not change much and this

supports assumption 2. The wealth’s dynamics equation yields the projected wealth at t�t:

Xz;cðt þ tÞ ¼ Xz;cðtÞ exp
�

Q0ðt ; zðtÞ; cðtÞÞt
þ zTðtÞsðtÞðW ðt þ tÞ 
W ðtÞÞ

�
;

whence the projected wealth loss on the time interval [t, t�t] is

X z;cðtÞ 
 Xz;cðt þ tÞ ¼ Xz;cðtÞ½1
 exp
�

Q0ðt ; zðtÞ; cðtÞÞt
þ zTðtÞsðtÞðW ðt þ tÞ 
W ðtÞÞ

��
:
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The random variable zTðtÞsðtÞðW ðt þ tÞ 
W ðtÞÞ is, conditionally on F t , normally

distributed with mean zero and standard deviation kzTðtÞsðtÞk
ffiffiffi
t
p

. Let the confidence

parameter a 2 ð0; 1=2
 be exogenously specified. The a-percentile of the projected loss

X z;cðtÞ 
 Xz;cðt þ tÞ conditionally on F t is

X z;cðtÞ
�
1
 exp

�
Q0ðt ; zðtÞ; cðtÞÞtþ N
1ðaÞkzTðtÞsðtÞk

ffiffiffi
t
p ��

;

where N( �) denotes the standard cumulative normal distribution function. This prompts

the Value-at-Risk (VaR) of projected loss

VaRðt ; z; c; xÞ¼4 x
�
1
 exp

�
Q0ðt ; z; cÞtþ N
1ðaÞ

��zTsðtÞ
�� ffiffiffi

t
p ��þ

:

Let aV �(0,1) be an exogenous risk limit. The Value-at-Risk constraint is that the agent at

every time instant t ] 0 must choose a portfolio proportion (z(t), c(t)) that would result

in a relative VaR of the projected loss on [t, t�t] less than aV. This, strictly speaking, is the

set of all admissible portfolios which, for all t ] 0, belong to FV(t), defined by

FV ðtÞ¼
4 ðz; cÞ 2 Rm � ½0;1Þ; VaRðt ; z; c; xÞ

x
� aV

� 

: ð2:5Þ

The fraction VaRux rather than VaR is employed, whence the name relative VaR. If one

imposes VaR in absolute terms, the constraint set depends on the current wealth level and

this makes the analysis more involved (see Cuoco et al. 2001; Pirvu 2005). For a given path

v let us denote oðtÞ ¼ ðosÞs�t as the projection up to time t of its trajectory. One can see

that, for a fixed vt, the set FV(t) is compact and convex, being the level set of a convex,

unbounded function fV(t, z, c),

FV ðtÞ ¼ ðz; cÞ 2 Rm � ½0;1Þ; fV ðt ; z; cÞ � log
1

1
 aV

( )
;

where

fV ðt ; z; cÞ¼
4 
 Q0ðt ; z; cÞt
 N
1ðaÞ

��zTsðtÞ
�� ffiffiffi

t
p
: ð2:6Þ

The function fV, although quadratic in z and linear in c, may still fail to be convex in (z, c)

if a]1u2, thus FV (t) may not be a convex set (see Figure 2.1, p. 10 of Cuoco et al. 2001).

However, the choice of a 2 ð0; ð1=2Þ
 makes N
1ðaÞ � 0 and this yields convexity.

2.3 OBJECTIVE

Let finite time horizon T and the discount factor d (the agent’s impatient factor) be

primitives of the model. Given X(0), the agent seeks to choose an admissible portfolio-

proportion process such that ðzðtÞ; cðtÞÞ 2 FV ðtÞ for all 05t5T, and the expected value

of her CRRA utility of intertemporal consumption and final wealth,
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Z T

0

e
dt UpðCðtÞÞdt þ e
dT UpðXz;cðT ÞÞ; ð2:7Þ

is maximized over all admissible portfolios processes satisfying the same constraint. Here,

UpðxÞ¼
4

xp=p, with pB1 the coefficient of relative risk aversion (CRRA). Let us assume for

the moment that the market coefficients are constants. In this case the constraint set FV(t)

does not change over time and we denote it by FV. Then one can use dynamic

programming techniques to characterize the optimal portfolio and consumption policy.

The problem is to find a solution to the HJB equation. Define the optimal value function as

V ðx; tÞ ¼ max
ðz;cÞ2FV

Et

Z T

t

e
dt UpðCðuÞÞdu þ e
dT Up Xz;cðT Þ
� 	� �

;

where Et is the conditional operator given the information known up to time t and

Xz;cðtÞ ¼ x. The HJB equation is

max
ðz;cÞ2FV

Jðt ; x; z; cÞ ¼ 0;

where

Jðt ; x; c; zÞ¼4 e
dt UpðcxÞ þ @V

@t
þ x r 
 c þ zTm
� 	 @V

@x

þ kz
Tsk2

x2

2

@2V

@x2
;

with the boundary condition V ðx;T Þ ¼ e
dT UpðxÞ. The value function V inherits the

concavity of the utility functions Up. Being jointly concave in (z, c), the function J is

maximized over the set FV at a unique point ð z; cÞ. Moreover, this point should lie on the

boundary of FV and one can derive first-order optimality conditions by means of Lagrange

multipliers. Together with the HJB equation this yields a highly nonlinear PDE that is hard

to solve numerically (a numerical scheme was proposed by Yiu (2004), but no convergence

result was reported). In the following we approach the portfolio optimization problem by

reducing it to a deterministic control problem. We are then able to obtain explicit solutions

for logarithmic utility.

2.4 LOGARITHMIC UTILITY

Let us consider the case where the agent is deriving utility from intermediate consumption

only. It is straightforward to extend it to also encompass the utility of the final wealth. In

light of (2.4),
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log Xz;cðtÞ ¼ log Xð0Þ þ
Z t

0

Q0ðs; zðsÞ; cðsÞÞds

þ
Z t

0

zTðsÞsðsÞdW ðsÞ:
ð2:8Þ

What facilitates the analysis is the decomposition of the utility from intertemporal

consumption into a signal, a Lebesque integral and noise, which comes at an Itô integral

rate. The decomposition is additive and the expectation operator cancels the noise. Indeed,

Z T

0

e
dt log CðtÞdt ¼
Z T

0

e
dt log ðcðtÞXz;cðtÞÞdt

¼ 1
 e
dT

d
log Xð0Þ þ

Z T

0

e
dt log cðtÞdt

þ
Z T

0

Z t

0

e
dt Q0ðs; zðsÞ; cðsÞÞds dt

þ
Z T

0

e
dt

Z t

0

zTðsÞsðsÞdW ðsÞdt :

By Fubini’s theorem

Z T

0

Z t

0

e
dt Q0ðs; zðsÞ; cðsÞÞds dt ¼
Z T

0

Z T

s

e
dt Q0ðs; zðsÞ; cðsÞÞdt

� �
ds

¼
Z T

0

e
dt 
 e
dT

d
Q0ðt ; zðtÞ; cðtÞÞdt ;

hence

Z T

0

e
dt log CðtÞdt ¼ 1
 e
dT

d
log Xð0Þ

þ
Z T

0

e
dt log cðtÞ þ 1

d
ð1
 e
dðT
tÞÞQ0ðt ; zðtÞ; cðtÞÞ

� �
dt

þ
Z T

0

e
dt

Z t

0

zTðsÞsðsÞdW ðsÞdt :

ð2:9Þ

The linearly independent rows assumption on the matrix-valued volatility process yields

the existence of the inverse ðsðtÞsTðtÞÞ
1
and so equation

sðtÞsTðtÞzMðtÞ ¼ mðtÞ ð2:10Þ

uniquely defines the stochastic process fzMðtÞgt2½0;1Þ ¼ fðsðtÞðsTðtÞÞ
1mðtÞgt2½0;1Þ, called

the Merton-ratio process. It has the property that it maximizes (in the absence of portfolio

constraints), the rate of growth, and the log-optimizing investor would invest exactly using
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the components of zM(t) as portfolios proportions (see Section 3.10 of Karatzas and Shreve

1991). By (2.10)

zT
MðtÞsðtÞ

�� ��2¼ zT
MðtÞmðtÞ ¼ mTðtÞðsðtÞsTðtÞÞ
1mðtÞ: ð2:11Þ

The following integrability assumption is rather technical, but it guarantees that a local

martingale (Itô integral) is a (true) martingale (see p. 130 of Karatzas and Shreve 1991).

Let us assume that

E

Z T

0

zT
MðuÞsðuÞ

�� ��2
du <1: ð2:12Þ

This requirement, although imposed on the market coefficients (see Equation (2.11)), is

also inherited for all portfolios satisfying the Value-at-Risk constraint.

Lemma 2.1: For every ðzðtÞ; cðtÞÞ 2 FV ðtÞ the process
R t

0
zTsðsÞsðsÞ dW ðsÞ, t �[0,T ], is a

martingale, hence E
R t

0
zTðsÞsðsÞ dW ðsÞ ¼ 0.

Proof: See Appendix 2.A. I

In light of this lemma, the expectation of the noise vanishes, i.e.

E

Z T

0

e
dt

Z t

0

zTðsÞsðsÞdW ðsÞdt ¼ 0;

after interchanging the order of integration. Thus, taking expectation in the additive

utility decomposition (2.9),

E

Z T

0

e
dt log CðtÞdt ¼ 1
 e
dT

d
log Xð0Þ

þ E

Z T

0

e
dt

�
log cðtÞ þ 1

d
1
 e
dðT
tÞ� 	

� Q0ðt ; zðtÞ; cðtÞÞ
�

dt :

ð2:13Þ

Therefore, to maximize

E

Z T

0

e
dt log CðtÞdt

over the constraint set, it suffices to maximize

gðt ; z; cÞ¼4 log cðtÞ þ 1

d
1
 e
dðT
tÞ� 	

Q0ðt ; zðtÞ; cðtÞÞ ð2:14Þ
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pathwise over the constraint set. For a fixed path v and a time instance t, we need to solve

ðP1Þ maximize gðt ; z; cÞ;

subject to fV ðt ; z; cÞ¼
4 
 Q0ðt ; z; cÞt
 N
1ðaÞkzTsðtÞk

ffiffiffi
t
p
� log

1

1
 aV

:

The optimal policy for an agent maximizing her logarithmic utility of intertemporal

consumption without the risk constraint is to hold the proportion fðzMðtÞ; cMðtÞÞgt2½0;T 
,

where cMðtÞ¼
4
d=½1
 e
dðT
tÞ
 (the optimum of (P1) without the constraint is

ðzMðtÞ; cMðtÞÞÞ.

Lemma 2.2: The solution of (P1) is given by

�zðtÞ ¼ ð1 ^ ðbðtÞ _ 0ÞÞzMðtÞ; ð2:15Þ

�cðtÞ ¼ uðt ; ð1 ^ bðtÞÞÞcMðtÞ1fbðtÞ> 0g

þ r þ 1

t
log

1

1
 aV

 !
1fbðtÞ�0g;

ð2:16Þ

where b(t) is the root of the equation

fV ðt ; zzMðtÞ; uðt ; zÞcMðtÞÞ ¼ log
1

1
 aV

ð2:17Þ

in the variable z, with

uðt ; zÞ¼4 1þ
ffiffiffi
t
p

zT
MðtÞsðtÞ

�� ��

N
1ðaÞ
ð1
 zÞ: ð2:18Þ

Proof: See Appendix 2.A. I

Theorem 2.3: To maximize the logarithmic utility of intertemporal consumption,

E

Z T

0

e
dt log CðtÞ dt ;

over processes ðzðtÞ; cðtÞÞ 2 FV ðtÞ, 05t5T, the optimal portfolio is fð�zðtÞ; �cðtÞÞgt2½0;T 
.

Proof: This is a direct consequence of (2.13) and Lemma 2.2. I
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Remark 1: Since at the final time cMðT Þ ¼ 1 and �cðtÞ is bounded we must have

b(T)50, so �zðT Þ ¼ 0, and this means that, at the final time, the agent invests the least

proportion (in absolute terms) of her wealth in stocks. By (2.15) and (2.16) it follows that
�zðtÞ � zMðtÞ, and �cðtÞ � cMðtÞ, for any 05t5T, which means that the constrained agent

is consuming and investing less in the risky assets than the unconstrained agent. Let T1 and

T2 be two final time horizons, T1 �T2. Because cMðt ;T1Þ< cM (t, T2), from Equations

(2.15) and (2.16) we conclude that bðt ;T1Þ> bðt ;T2Þ, hence �zðt ;T1Þ> �zðt ;T2Þ, and

�cðt ;T1Þ> �cðt ;T2Þ. Therefore, long-term agents can afford to invest more in the stock

market and consume more than short-term agents (in terms of proportions).

2.5 NONLOGARITHMIC UTILITY

Let us recall that we want to maximize the expected CRRA utility (UpðxÞ ¼ xp=p;p " 0)

from intertemporal consumption and terminal wealth,

E

Z T

0

e
dt UpðCðtÞÞdt þ Ee
dT UpðXz;cðT ÞÞ; ð2:19Þ

over portfolio-proportion processes satisfying the Value-at-Risk constraint, i.e.

ðzðtÞ; cðtÞÞ 2 FV ðtÞ, 05t5T. One cannot obtain an additive decomposition into signal

and noise as in the case of logarithmic utility. However, a multiplicative decomposition

can be performed. By (2.7),

UpðXz;cðtÞÞ ¼Xpð0Þ
p

exp

Z t

0

pQ0ðs; zðsÞ; cðsÞÞds þ
Z t

0

pzTðsÞsðsÞdW ðsÞ
� �

¼Xpð0Þ
p

exp

 Z t

0

pQpðs; zðsÞ; cðsÞÞ 

1

2
p2kzTðsÞsðsÞk2

� �
ds

þ
Z t

0

pzTðsÞsðsÞdW ðsÞ
!
¼ Xpð0Þ

p
N z;cðtÞZ zðtÞ;

where

N z;cðtÞ¼4 exp

Z t

0

pQpðs; zðsÞ; cðsÞÞds

� �
; ð2:20Þ

Z zðtÞ¼4 exp 
 1

2

Z t

0

p2jjzTðsÞsðsÞjj2ds

� �

þ
Z t

0

pzTðsÞsðsÞdWðsÞÞ;
ð2:21Þ

with Qp defined in (2.3). By taking expectation,

PORTFOLIO OPTIMIZATION UNDER THE VALUE-AT-RISK CONSTRAINT j 27



EUpðXz;cðtÞÞ ¼ Xpð0Þ
p

EðN z;cðtÞZ zðtÞÞ: ð2:22Þ

The process N z,c(t) is the signal and Z z(t), a stochastic exponential, is the noise. Stochastic

exponentials are local martingales, but if we impose the assumption

E exp
p2

2

Z T

0

zT
MðuÞsðuÞ

�� ��2
du

� �� �
<1 ð2:23Þ

on market coefficients (see Equation (2.11)), the process Z z(t) is a (true) martingale for all

portfolio processes satisfying the constraint, as the following lemma shows.

Lemma 2.4: For every ðzðtÞ; cðtÞÞ 2 FV ðtÞ the process Z z(t), t �[0, T ], is a martingale,

hence EZ zðtÞ ¼ 1.

Proof: See Appendix 2.A. I

As for utility from intertemporal consumption,

Z T

0

e
dt UpðCðtÞÞdt ¼
Z T

0

e
dt UpðXz;cðtÞcðtÞdt

¼ Xpð0Þ
p

Z T

0

e
dt cpðtÞN z;cðtÞZ zðtÞdt :

ð2:24Þ

We claim that

E

Z T

0

e
dt cpðtÞN z;cðtÞðZ zðtÞ 
 Z zðT ÞÞdt

� �
¼ 0:

Indeed, by conditioning and Lemma 2.4 we obtain

E cpðtÞN z;cðtÞ Z zðtÞ 
 Z zðT Þ
� 	� 	

¼ E E cpðtÞN z;cðtÞ Z zðtÞ 
 Z zðT Þ
� 	

jF t

� �� 	

¼ E cpðtÞN z;cðtÞE Z zðtÞ 
 Z zðT Þ
� 	

jF t

� �� 	

¼ 0;

and Fubini’s theorem proves the claim. Hence, combined with (2.24), we obtain

E

Z T

0

e
dt UpðCðtÞÞdt ¼ Xpð0Þ
p

E Z zðT Þ
Z T

0

e
dt cpðtÞN z;cðtÞdt

� �
: ð2:25Þ

The decomposition for the total expected utility (Equations (2.22) and (2.25)) is
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E

Z T

0

e
dt UpðCðtÞÞdt þ Ee
dT Up Xz;cðT Þ
� 	

¼ Xpð0Þ
p

E Z zðT ÞY z;cðT Þ
� 	

;

ð2:26Þ

where the signal Yz, c(T) is given by

Y z;cðT Þ ¼
Z T

0

e
dt cpðtÞN z;cðtÞdt þ e
dT N z;cðT Þ; ð2:27Þ

with N z, c(t) defined in (2.20). It appears natural at this point to maximize Y z, c(T)

pathwise over the constraint set. For a given path v, the existence of an optimizer

fð�zðt ;oÞ; �cðt ;oÞÞgt2½0;T 
 is given by Lemma 2.5. Note that N z; cðt ;oÞ depends on the

trajectory of ðzð�;oÞ; cð�;oÞÞ on [0,t] so one is faced with a deterministic control problem.

From now on, to keep the notation simple we drop v. In the language of deterministic

control we can write (2.27) as a cost functional I [x, u] given in the form

I ½x; u
 ¼ gðxðT ÞÞ þ
Z T

0

f0ðt ; xðtÞ; uðtÞÞdt ; gðxÞ¼4 e
dT x; ð2:28Þ

where u�(z,c) is the control, x is the state variable, and the function

f0ðt ; x; uÞ¼
4

e
dt cpx ð2:29Þ

is defined on the set

A ¼ fðt ; x; uÞjðt ; xÞ 2 ½0;T 
 � ð0;K 
; uðtÞ 2 FV ðtÞg � R
mþ3: ð2:30Þ

The dynamics of the state variable is given by the differential equation

dx

dt
¼ f ðt ; xðtÞ; uðtÞÞ; 0 � t � T ; ð2:31Þ

with the boundary condition x(0)�1, where

f ðt ; x; uÞ¼4 x pr 
 pc þ pzTmðtÞ þ pð p 
 1Þ
2

zTsðtÞ
�� ��2

� �
: ð2:32Þ

The constraints are ðt ; xðtÞÞ 2 ½0;T 
 � ð0;K 
 and u(t) �FV(t). Due to the compactness of

the set FV(t), 05t5T, it follows that K B�. A pair (x, u) satisfying the above conditions is

called admissible. The problem of finding the maxima of I [x, u] within all admissible pairs

(x, u) is called the Bolza control problem. Classical existence theory for deterministic control

does not apply to the present situation and we proceed with a direct proof of existence.

PORTFOLIO OPTIMIZATION UNDER THE VALUE-AT-RISK CONSTRAINT j 29



Lemma 2.5: There exists a solution f�uðtÞg0�t�T ¼
4 fð�zðtÞ; �cðtÞÞg0�t�T for the Bolza control

problem defined above.

Proof: See Appendix 2.A. I

An optimal solution f�uðtÞg0�t�T ¼
4 fð�zðtÞ; �cðtÞÞg0�t�T is characterized by a system of

forward backward equations (also known as the Pontryagin maximum principle). Let
~l ¼ ðl0; l1Þ be the adjoint variable and

Hðt ; x; u; ~lÞ ¼ l0 f0ðt ; x; uÞ þ l1 f ðt ; x; uÞ

the Hamiltonian function. The necessary conditions for the Bolza control problem (the

Pontryagin maximum principle) can be found in Cesari (1983) (Theorem 2.5.1.i). In

general, they are not sufficient for optimality. We prove that, in our context, the necessary

conditions are also sufficient, as the following lemma shows.

Lemma 2.6: A pair �xðtÞ; �uðtÞ ¼ ð�zðtÞ; �cðtÞÞ 2 FV ðtÞ, 05t5T, is optimal, i.e. it gives the

maximum for the functional I [x, u], if and only if there is an absolutely continuous non-zero

vector function of Lagrange multipliers �l ¼ ðl0; l1Þ, 05t5T, with l0 a constant, l0]0, such

that the function MðtÞ¼4 Hðt ; �xðtÞ; �uðtÞ; �lðtÞÞ is absolutely continuous and one has

1. adjoint equations:

dM

dt
¼ Htðt ; �xðtÞ; �uðtÞ; �lðtÞÞ a:e:; ð2:33Þ

dl1

dt
¼ 
Hxðt ; �xðtÞ; �uðtÞ; �lðtÞÞ a:e:; ð2:34Þ

2. maximum condition:

�uðtÞ 2 arg maxv2FV ðtÞHðt ; �xðtÞ; v; �lðtÞÞ a:e:; ð2:35Þ

3. transversality:

l1ðT Þ ¼ l0g 0ð�xðT ÞÞ: ð2:36Þ

Proof: See Appendix 2.A. I

The following technical requirement on the market coefficients is sufficient to make

fð�zðtÞ; �cðtÞÞgt2½0;T 
 an optimal portfolio process for maximizing the CRRA utility under

the Value-at-Risk constraint, as Theorem 2.7 shows. We assume that market coefficients are
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totally unhedgeble, i.e. the mean rate of return process faðtÞgt2½0;T 
 and the matrix-valued

volatility process fsðtÞgt2½0;T 
 are adapted to filtration f �F tg0�t�1 generated by a Brownian

motion independent of the Brownian motion driving the stocks (see Equation (2.1)).

Theorem 2.7: A solution for maximizing

E

Z T

0

e
dt UpðCðtÞÞ dt þ E e
dT UpðXðT ÞÞ

over processes ðzðtÞ; cðtÞÞ 2 FV ðtÞ, 05t5T, is a process fð�zðtÞ; �cðtÞÞgt2½0;T 
, which, on every

v, solves (2.33), (2.34), (2.35) and (2.36).

Proof: Lemma 2.5 gives the existence, on every v, of fð�zðtÞ; �cðtÞÞgt2½0;T 
, optimal for the

Bolza control problem, i.e. it maximizes Yz,c(T) defined in (2.27) over FV(t), 05t5T.

According to Lemma 2.5 it should solve (2.33), (2.34), (2.35) and (2.36) pathwise and these

equations are sufficient for optimality. Let ðzðtÞ; cðtÞÞ 2 FV ðtÞ be another control. Let

Zz(t), Z
�zðtÞ and Yz,c(T), Y

�z; �cðT Þ be as in (2.21) and (2.27). The processes fZ zðtÞg0�t�T ,

fZ�zðtÞg0�t�T are martingales by Lemma 2.4. Moreover, the independence of f �F tg0�t�1
and fF tg0�t�1 implies

E Z zðT Þ
�� �FðT Þ

� �
¼ E Z

�zðT Þ
�� �FðT Þ

h i
¼ 1:

Lemma 2.6 shows that Y
�z;�cðT Þ is measurable with respect to �FðT Þ. Therefore, by (2.26)

and iterated conditioning

E

Z T

0

e
dt Upð �CðtÞÞdt þ Ee
dT Up

�
X

�z;�cðT Þ
	

¼ Xpð0Þ
p

E
�
Z

�zðT ÞY �z;�cðT Þ
	

¼ Xpð0Þ
p

E
�
E
�
Z

�zðT ÞY �z;�cðT Þ j �FðT Þ
�	

¼ Xpð0Þ
p

E
�
Y

�z;�cðT ÞE
�
Z

�zðT Þ j �FðT Þ
�	

¼ Xpð0Þ
p

EY
�z;�cðT Þ:

Since ð�zðtÞ; �cðtÞÞ maximizes Y z;cðT Þ over the constraint set,
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E

Z T

0

e
dt UpðCðtÞÞdt þ Ee
dT UpðXz;cðT ÞÞ

¼ Xpð0Þ
p

EðZ zðT ÞY z;cðT ÞÞ

� Xpð0Þ
p

EðZ zðT ÞY �z;�cðT ÞÞ

¼ Xpð0Þ
p

EðE½Z zðT ÞY �z;�cðT Þ j �FðT Þ
Þ

¼ Xpð0Þ
p

EðY �z;�cðT ÞE½Z zðT Þ j �FðT Þ
Þ

¼ Xpð0Þ
p

EY
�z;�cðT Þ:

Remark 1: Let the interest rate and the discount factor be stochastic processes. In the

formulae of fV(t, z, c) and Qp(t, z, c) the constant r is replaced by r(t). All the results remain

true if we assume that frðtÞg0�t�1 and fdðtÞg0�t�1 are non-negative uniformly bounded

continuous processes adapted to �FðtÞ. We have considered the case of Value-at-Risk (VaR)

in defining the risk constraint. The same methodology applies if one considers other

measures of risk, as long as the corresponding constraint set is convex and compact.

2.6 NUMERICAL SOLUTION

Theorem 2.7 shows that the solution for every path of a Bolza control problem yields the

optimal portfolio proportion for a VaR-constrained agent. The solution exists and is

characterized by a system of forward backward equations that are also sufficient for

optimality. In this section, by an appropriate discretization of control and state variables,

the Bolza control problem is transformed into a finite-dimensional nonlinear program that

can be solved by standard sequential quadratic programming (SQP) methods. The first step

is to transform the Bolza problem into a Mayer control problem by introducing a new state

variable x0, with the boundary condition x0(0) � 0 and an additional differential equation,

dx0

dt
¼ f0ðt ; xðtÞ; uðtÞÞ:

The cost functional is then I ½x; u
 ¼ x0ðT Þ þ gðxðT ÞÞ (see Equation (2.28)). Let us

denote as y ¼ ðx0; xÞ the vector of state variables that satisfy the differential equation

dy

dt
¼ ~f ðt ; xðtÞ; uðtÞÞ;
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with ~f ¼ ð f0; f Þ (see Equations (2.29) and (2.31)). The following discretization scheme is

taken from Stryk (1993). The novel feature here is that the necessary first-order conditions

of the discretized problem converge to the necessary first-order conditions of the

continuous problem.

A partition of the time interval

0 ¼ t1 < t2 < � � � < tN ¼ T

is chosen. The parameters Y of the nonlinear program are the values of the control and

state variables at the grod points tj, j ¼ 1; . . . ;N , and the final time tN � T,

Y ¼ ðuðt1Þ; . . . ; uðtN Þ; yðt1Þ; . . . ; yðtN Þ; tN Þ 2 R4Nþ1:

The controls are chosen as piecewise linear interpolating functions between u(tj) and

uðtjþ1Þ, for tj � t < tjþ1,

uappðtÞ ¼ uðtjÞ þ
t 
 tj

tjþ1 
 tj

ðuðtjþ1Þ 
 uðtjÞÞ:

The states are chosen as continuously differentiable functions and piecewise cubic

Hermite polynomials between y(tj) and yðtjþ1Þ, with _yappðsÞ ¼ ~f ðxðsÞ; uðsÞ; sÞ at

s ¼ tj; tjþ1,

yappðtÞ ¼
X3

k¼0

d
j

k

t 
 tj

hj

 !k

;

tj � t < tjþ1; j ¼ 1; . . . ;N 
 1;

ð2:37Þ

d
j

0 ¼ yðtjÞ; d
j

1 ¼ hj
~fj ; ð2:38Þ

d
j

2 ¼ 
3yðtjÞ 
 2hj
~fj þ 3yðtjþ1Þ 
 hj

~fjþ1; ð2:39Þ

d
j

3 ¼ 2yðtjþ1Þ þ hj
~fj 
 2yðtjþ1Þ þ hj

~fjþ1; ð2:40Þ

where

~fj ¼
4 ~f ðxðtjÞ; uðtjÞ; tjÞ; hj ¼

4
tjþ1 
 tj:

The reader can learn more about this in common textbooks of Numerical Analysis such

as, Stoer and Bulrisch (1983). This way of discretizing has two advantages. The number of

parameters of the nonlinear program is reduced because _yðtjÞ; j ¼ 1; . . . ;N , are not
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parameters and the number of constraints is reduced because the constraints

_yappðtjÞ ¼ ~f ðxðtjÞ; uðtjÞ; tjÞ, j ¼ 1; . . . ;N , are already fulfilled.

We impose the Value-at-Risk constraint (see Equation (2.6)) at the grid points

fV ðtj; uðtjÞÞ � log
1

1
 aV

; u ¼ ðz; cÞ; j ¼ 1; . . . ;N : ð2:41Þ

Another constraint imposed is the so-called collocation constraint

~f ðxð~tjÞ; uð~tjÞ; ~tjÞ ¼ _yappð~tjÞ; j ¼ 1; . . . ;N ;

or componentwise

f0ðxð~tjÞ; uð~tjÞ; ~tjÞ ¼ _x0
appð~tjÞ; j ¼ 1; . . . ;N ; ð2:42Þ

and

f ðxð~tjÞ; uð~tjÞ; ~tjÞ ¼ _xappð~tjÞ; j ¼ 1; . . . ;N ; ð2:43Þ

where ~tj ¼
4 ðtj þ tjþ1Þ=2, and the boundary condition y(0) � (0,1). The nonlinear program is

to maximize I [yN , tN] subject to constraints (2.41), (2.42) and (2.43). It can be solved using

NPSOL, a set of Fortran subroutines developed by Gill et al. (1986). NPSOL uses a sequential

quadratic programming (SQP) algorithm, in which the search direction is the solution of a

quadratic programming (QP) subproblem. The Lagrangian of the nonlinear program is

LðY ;f; uÞ ¼ I ½yN ; tN 
 þ
XN

j¼1

uj fV ðtj; uðtjÞÞ 
 log
1

1
 aV

 !

þ
XN
1

j¼1

f0
j ðf0ðxð~tjÞ; uð~tjÞ; ~tjÞ 
 _x0

appð~tjÞÞ

þ
XN
1

j¼1

f1
j ðf ðxð~tjÞ; uð~tjÞ; ~tjÞ 
 _xappð~tjÞÞ;

where u ¼ ðu1; . . . ; uNÞ 2 RN , f0 ¼ ðf0
1; . . . ;f0

N
1Þ 2 RN
1 and f1 ¼ ðf1
1; . . . ;f1

N
1Þ 2
RN
1 are the shadow prices. Let us denote zðtiÞ¼

4
zi, cðtiÞ¼

4
ci and xðtiÞ¼

4
xi. A solution of the

nonlinear program satisfies the necessary first-order conditions of Karush, Kuhn and Tucker

@L

@zi

¼ 0;
@L

@ci

¼ 0;
@L

@xi

¼ 0;

i ¼ 1; . . . ;N :

ð2:44Þ

The necessary first-order optimality conditions of the continuous problem are obtained in

the limit from (2.44) as follows. Let h¼4 maxfhj ¼ tjþ1 
 tj : j ¼ 1; . . . ;N 
 1g be the norm
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of the partition. Letting h00, after some calculations (see p. 5 of Stryk 1993) it is shown that,

at t � ti,

@L

@zi


! 3

2
f1

i

@f ðxðtiÞ; uðtiÞ; tiÞ
@z

þ 3

2
f0

i

@f0ðxðtiÞ; uðtiÞ; tiÞ
@z

þ ui

@fV ðuðtiÞ; tiÞ
@z

;

@L

@ci


! 3

2
f1

i

@f ðxðtiÞ; uðtiÞ; tiÞ
@c

þ 3

2
f0

i

@f0ðxðtiÞ; uðtiÞ; tiÞ
@c

þ ui

@fV ðuðtiÞ; tiÞ
@c

;

@L

@xi


! 3

2

_f1
i þ

3

2
f1

i

@f ðxðtiÞ; uðtiÞ; tiÞ
@x

þ 3

2
f0

i

@f0ðxðtiÞ; uðtiÞ; tiÞ
@x

:

Therefore, @L=@zi ¼ 0 and @L=@ci ¼ 0 converge to an equation equivalent to the maximum

condition (2.35), and @L=@xi ¼ 0 converges to the adjoint Equation (2.34). This

discretization scheme gives good estimates for the adjoint variables.

In the following we perform some numerical experiments. We consider one stock

following a geometric Brownian motion with drift a1 � 0.12 and volatility s � 0.2. The

choices for the horizon t and the confidence level a are largely arbitrary, although

the Basle Committee proposals of April 1995 prescribed that VaR computations for the

purpose of assessing bank capital requirements should be based on a uniform horizon of 10

trading days (two calendar weeks) and a 99) confidence level (Jorion 1997). We take

t � 1u25, a � 0.01, the interest rate r � 0.05 and the discount factor d � 0.1 (Figure 2.1).

2.7 CONCLUDING REMARKS

Let us summarize the results. This chapter examines in a stochastic paradigm the portfolio

choice problem under a risk constraint, which is applied dynamically consistent at every

time instant. The classical stochastic control methods, Dynamic Programming and the

Martingale Method, are not very effective in this context. The latter works if the risk

constraint is imposed in a static way. The Dynamic Programming approach (as shown in

Section 2.3) leads to a highly nonlinear PDE. If the agent has CRRA preferences we

propose a new method that relies on a decomposition of the utility into signal and noise.

We neglect the noise (the expectation operator takes care of this) and this leads to a

deterministic control problem on every path. We have reported explicit analytical

solutions for the case of logarithmic utility even if the market coefficients are random

processes. In this case, on every path the deterministic control problem is just a time-

dependent constrained nonlinear program. The explicit solution shows that constrained

agents consume and invest less in stocks than unconstrained agents, and long-term agents

invest and consume more than short-term agents. These effects support the use of

dynamically consistent risk constraints. If the utility is non-logarithmic CRRA we have to

analyse a Bolza control problem on every path. We still allow the market coefficients to be
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random, but independent of the Brownian motion driving the stocks. Theorem 2.7 shows

that a solution of the deterministic control problem is an optimal policy. Although the

existence of an optimal policy is known if the constraint set is convex (Cvitanic and

Karatzas 1992), it does not necessarily yield the existence for the Bolza problem. Standard

existence theorems do not apply, but we manage to give a direct proof of existence in

Lemma 2.5. The solution of the Bolza problem must solve a system of forward backward

equations (the first-order necessary conditions) and this is also sufficient for optimality. In

Section 2.6 we suggest a numerical treatment of the Bolza problem. The reduction of the

stochastic control problem to a deterministic problem relies on the structure of the CRRA

preferences. It would be interesting to extend this to other classes of preferences, because it

turns out to be very effective for the case of dynamically consistent risk constraints.
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p��1 (Graph 2), p��0.5 (Graph 3) and p � 0.5 (Graph 4). The x axis represents the time and the y axis the

proportion of wealth invested in stocks. Note that the Merton line and, as time goes by, the portfolio value,

increase, hence the VaR constraint becomes binding and reduces the investment in the risky asset. At the final

time the agent is investing the least in stocks (in terms of proportions). When p increases, i.e. when the agent

becomes less risk-averse, the effect of the VaR constraint becomes more significant.

36 j CHAPTER 2



REFERENCES

Atkinson, C. and Papakokinou, M., Theory of optimal consumption and portfolio selection under a

Capital-at-Risk (CaR) and a Value-at-Risk (VaR) constraint. IMA J. Mgmt. Math., 2005, 16,

37�/70.

Basak, S. and Shapiro, A., Value-at-risk-based risk management: Optimal policies and asset prices.

Rev. Finan. Stud., 2001, 14, 371�/405.

Berkelaar, A., Cumperayot, P. and Kouwenberg, R., The effect of VaR-based risk management on

asset prices and volatility smile. Eur. Finan. Mgmt., 2002, 8, 139�/164; 1, 65�/78.

Cesari, L., Optimization—Theory and Applications Problems with Ordinary Differential Equations,

1983 (Springer: New York).

Cuoco, D. and Liu, H., An analysis of VaR-based capital requirements. Preprint, Finance

Department, The Wharton School, University of Pennsylvania, 2003.

Cuoco, D., Hua, H. and Issaenko, S., Optimal dynamic trading strategies with risk limits. Preprint,

Yale International Center for Finance, 2001.

Cvitanic, J. and Karatzas, I., Convex duality in convex portfolio optimization. Ann. Appl. Probabil.,

1992, 3, 652�/681.

Delbaen, F. and Schachermayer, W., A general version of the fundamental theorem of asset pricing.

Math. Ann., 1994, 300, 463�/520.
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APPENDIX 2.A

Proof (proof of Lemma 2.1): In order to prove the martingale property ofR t

0
zTðsÞsðsÞdW ðsÞ it suffices to show that

E

Z T

0

kzTðuÞsðuÞk2
du <1: ðA2:1Þ
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Note that

zTðtÞmðtÞ
�� �� ¼

��zTðtÞsðtÞsTðtÞzMðtÞ
��

�
��zTðtÞsðtÞ

�� �
��zT

MðtÞsðtÞ
��:

ðA2:2Þ

For ðzðtÞ; cðtÞÞ 2 FV ðtÞ, we have

r 
 cðtÞ þ zTðtÞmðtÞ 
 1

2

��zTðtÞsðtÞ
��2

� �
t

þ N
1ðaÞkzTðtÞsðtÞk
ffiffiffi
t
p

� logð1
 aV Þ:

This combined with (A2.2) yields

��zTðtÞsðtÞ
�� � k1 _

��zT
MðtÞsðtÞ

��; ðA2:3Þ

for some positive constant k1, where, as usual, a _ b ¼ maxða; bÞ. In light of assumption

(2.12) the inequality (A2.1) follows. I

Proof (proof of Lemma 2.2): The proof relies on the method of Lagrange multipliers. The

concave function

gðt ; z; cÞ¼4 log c þ 1

d
ð1
 e
dðT
tÞÞQ0ðt ; z; cÞ ðA2:4Þ

is maximized over ðz; cÞ 2 R
m � ½0;1Þ by ðzMðtÞ; cMðtÞÞ, where

zMðtÞ¼
4 ðsðtÞsTðtÞÞ
1mðtÞ and cMðtÞ¼

4
d=½1
 e
dðT
tÞ
. If this point is in the Value-at-

Risk constraint set, then is the optimal solution of (P 1). Otherwise, the concave function g

is maximized over the compact, convex set FV(t) at a unique point ð�zðtÞ; �cðtÞ); moreover,

this point must be on the boundary of FV(t). Hence, it solves the optimization problem

(P2) maximize gðt ; z; cÞ;

subject to fV ðt ; z; cÞ¼
4 
 Q0ðt ; z; cÞt
 N
1ðaÞkzTsðtÞk

ffiffiffi
t
p
¼ log

1

1
 aV

:

The function fV is not differentiable when z is the zero vector. Let us assume that the

optimal �zðtÞ is not the zero vector. According to the Lagrange multiplier theorem, either

HfV ðt ;�zðtÞ; �cðtÞÞ is the zero vector or there is a positive l such that

Hgðt ;�zðtÞ; �cðtÞÞ ¼ lHfV ðt ;�zðtÞ; �cðtÞÞ: ðA2:5Þ

The first case cannot occur and computations show that �zðtÞ is parallel to zM(t). This implies

that the optimal solution ð�zðtÞ; �cðtÞÞ ¼ ð�l1zMðtÞ; �l2cMðtÞÞ, with �l1;
�l2 the solution of
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(P3) maximize lðl1; l2Þ;

subject to fV ðt ; l1zMðtÞ; l2cMðtÞÞ ¼ log
1

1
 aV

;

where

lðl1; l2Þ¼
4

gðt ; l1zMðtÞ; l2cMðtÞÞ: ðA2:6Þ

The concave function l is maximized over R
2 at (1,1). We know that this point is not in the

constraint set (this is because we have assumed ðzMðtÞ; cMðtÞÞ =2 FV ðtÞ), hence �l1 < 1, �l2 < 1

and either HfV ðt ; �l1zMðtÞ; �l2cMðtÞÞ ¼ 0 orHlð�l1;
�l2Þ ¼ gHfV ðt ; �l1zMðtÞ; �l2cMðtÞÞ, for some

positive Lagrange multiplier g. The first case cannot occur and by eliminating g we obtain
�l2 ¼ uðt ; �l1Þ, where u was defined in (2.18). Henceforth, �l1 is the unique root of the

equation

fV ðt ; zzMðtÞ; uðt ; zÞcMðtÞÞ ¼ log
1

1
 aV

ðA2:7Þ

in the variable z. It may be the case that the root of this equation is negative, in which case

ð�zðtÞ; �cðtÞÞ ¼ 0m; r þ
1

t
log

1

1
 aV

 !
;

where 0m is the m-dimensional vector of zeros.

Proof (proof of Lemma 2.4): Assumption (2.23) combined with (A2.3) and the Novikov

condition (see Karatzas and Shreve 1991, p. 199, Corollary 5.13) make the process Z z(t) a

martingale. I

Proof (proof of Lemma 2.5): According to (2.31) and (2.32),

xðtÞ ¼ exp

Z t

0

f1ðt ; cðuÞ; zðuÞÞdu

� �
; ðA2:8Þ

with

f1ðt ; c; zÞ¼
4

pr 
 pc þ pzTmðtÞ þ pð p 
 1Þ
2

��zTsðtÞ
��2
:

Let us recall that, for uðtÞ ¼ ðzðtÞ; cðtÞÞ 2 FV ðtÞ,

��zTðtÞsðtÞ
�� � k1 _

��zT
MðtÞsðtÞ

��; ðA2:9Þ
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hence kzTðtÞsðtÞk is uniformly bounded on [0, T ] due to the continuity of market

coefficients (see Equation (2.11)). Moreover, one can conclude that kzðtÞk � K1 and

cðtÞ � K1 for some constant K1. Gronwall’s lemma gives xðtÞ � K2 and j _xðtÞj � K2 on

[0, T] (here, _xðtÞ ¼ dx=dtÞ. Let (x_n, u_n) be a maximizing sequence, i.e.

I ½xn; un

! sup I ½x; u
. The above arguments show that the sequence xn is uniformly

bounded and equicontinuous, thus by the Arzela�/Ascoli theorem it converges uniformly

to some function ~x. According to Komlos’ Lemma (see Lemma A1.1 of Delbaen and

Schachermayer 1994) we can find some sequences of convex combinations
�zn 2 convðzn; znþ1; Þ and �cn 2 convðcn; cnþ1; Þ that converge a.e. to some measurable

functions �z and �c. Moreover, �uðtÞ¼4 ð�zðtÞ; �cðtÞÞ 2 FV ðtÞ, 05t5T, due to the convexity

and compactness of the set FV(t). Let us denote �xn as the sequence of state variables

corresponding to these controls, i.e.

�xnðtÞ ¼ exp

Z t

0

f1ðt ; �cnðsÞ;�zðsÞÞds

� �
; 0 � t � T

(see Equation (A2.8)). Let us assume p � 0; the case pB0 can be treated similarly. Due to

the concavity of the function f1, ln �xnðtÞ � convðln xnðtÞ; ln xnþ1ðtÞ; . . .Þ, where the convex

combination is that defining �zn, �cn. If �yn¼
4

expðconvðln xnðtÞ; ln xnþ1ðtÞ; . . .ÞÞ, then �xnðtÞ �
�ynðtÞ and �ynðtÞ
!~xðtÞ, i.e. �ynðtÞ 
 xnðtÞ
! 0 for t �[0,T ]. By the dominated convergence

theorem �xnðtÞ
!�xðtÞ, 05t5T, a.e., where

�xðtÞ ¼ exp

Z t

0

f1ðt ; �cðsÞ;�zðsÞÞds

� �
; 0 � t � T :

From Fatou’s lemma, the dominated convergence theorem and the concavity of the

function f0 in u (see Equation (2.29)), it follows that

I ½�x; �u
 � lim sup I ½�xn; �un
 � lim sup I ½�yn; �un

¼ lim sup I ½xn; �un
 ¼ sup I ½x; u
:

Proof (proof of Lemma 2.6): By Theorem 5.1.i of Cesari (1983), fð�zðtÞ; �cðtÞÞgt2½0;T 

should solve (2.33), (2.34), (2.35) and (2.36). For sufficiency, let us consider l0 ¼ 1, and

define the maximized Hamiltonian

H�ðt ; x; �lÞ¼4 max
v2FV ðtÞ

Hðt ; x; v; �lÞ:

Let (x(t), u(t)) be another admissible pair. Since the Hamiltonian is linear in x, by the

adjoint equation for l1and the maximum condition

40 j CHAPTER 2



Hðt ; �xðtÞ; �uðtÞ; �lðtÞÞ 
Hðt ; xðtÞ; uðtÞ; �lðtÞÞ
� H �ðt ; �xðtÞ; �lðtÞÞ 
H�ðt ; x; �lðtÞÞ
¼ l01ðtÞðxðtÞ 
 �xðtÞÞ;

ðA2:10Þ

one has

I ½�x; �u
 
 I ½x; u
 ¼
Z T

0

ðHðt ; �xðtÞ; �uðtÞ; �lðtÞÞ 
Hðt ; xðtÞ; uðtÞ; �lðtÞÞÞdt

þ
Z T

0

l1ðtÞð _xðtÞ 
 _�xðtÞÞdt 
 gðxðT ÞÞ þ gð�xðT ÞÞ:

The inequality (A2.10) and the transversality condition (2.36) yield

I ½x; �u
 
 I ½x; u
 �
Z T

0

l01ðtÞðxðtÞ 
 �xðtÞÞdt

þ
Z T

0

l1ðtÞð _xðtÞ 
 _�xðtÞÞdt 
 gðxðT ÞÞ þ gð�xðT ÞÞ

¼ l1ðT ÞðxðT Þ 
 �xðT ÞÞ 
 gðxðT ÞÞ þ gð�xðT ÞÞ
¼ g 0ð�xðT ÞÞðxðT Þ 
 �xðT ÞÞ 
 gðxðT ÞÞ þ gð�xðT ÞÞ
¼ gðxðT ÞÞ 
 gð�xðT ÞÞ 
 gðxðT ÞÞ þ gð�xðT ÞÞ ¼ 0;

proving the optimality of ð�xðtÞ; �uðtÞÞ. I
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3.1 INTRODUCTION

T HIS PAPER FINDS THE OPTIMAL consumption and dynamic asset allocation of stocks,

bonds and derivatives for long-term investors in contrast to the standard optimal

dynamic asset allocation strategies involving only stocks and bonds. The chapter explores

and attempts to understand the effect of introducing a non-redundant derivative security

on an already-existing stock—in particular, on the volatility of stock returns. Instead of a

single-period (two-date) result, we also delve into the optimal intertemporal consumption

as well as dynamic asset allocation strategies under a stochastic investment opportunity set.
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We show that these long-term investors have access to an environment where

investment opportunities vary over time with stochastic volatility. There is abundant

empirical evidence that the conditional variance of stock returns is not constant over time.

Merton (1969, 1971, 1973a) shows that if investment opportunities vary over time, then

multi-period investors will have a very different optimal consumption rule and portfolio

strategies than those of single-period investors. If multi-period investors hope to maintain

a stable long-run consumption stream, then they may seek to hedge their exposures to

future shifts in the time-varying investment opportunity set, and this creates extra

intertemporal hedging demands for financial assets.

Following Merton’s (1969, 1971) introduction of the standard intertemporal consump-

tion and investment model, it has been studied extensively in the finance literature and has

become a classical problem in financial economics. The literature on the broad set of issues

covering intertemporal consumption and investment or optimal dynamic asset allocation

strategies restricts investors’ access to bond and stock markets only, while excluding the

derivatives market. Haugh and Lo (2001), Liu and Pan (2003) and Ilhan et al. (2005) remove

this restriction and introduce derivative securities in the financial market. Cont

et al. (2005) consider the problem of hedging a contingent claim in a market where prices

of traded assets can undergo jumps, by trading in the underlying asset and a set of traded

options, and they work in a continuous time setting. However, they give an expression for

the hedging strategy which minimizes the variance of the hedging error, while our model

provides an investor who aims to maximize expected utility and gives an expression for the

dynamic asset allocation strategies. They take a look at optimal dynamic or buy-and-hold

portfolio strategies for an investor who can control not just the holding of stocks and bonds,

but also derivatives. Our work is related to their research and makes several extensions.

The classical option pricing framework of Black and Scholes (1973) and Merton (1973)

is based on a replication argument in a continuous trading model with no transaction

costs. The presence of transaction costs, however, invalidates the Black�/Scholes arbitrage

argument for option pricing, since continuous revision requires that the portfolio be

rebalanced infinitely, implying infinite transaction costs (Chalasani and Jha 2001). As a

result, some of the recent literature has begun to work on transactions costs. However, this

is beyond the scope of this chapter which follows Black and Scholes (1973) and Merton

(1973) in assuming zero transaction costs for stocks and options trading.

First, Cont et al. (2005) solve the optimal investment or asset allocation problem of a

representative investor whose investment opportunity includes not only the usual riskless

bond and risky stock, but also derivatives on the stock. In their model, investors are

assumed to have a specified utility defined over wealth at a single terminal date. This

chapter extends this setting to consider a model in which a long-term investor chooses

consumption as well as an optimal portfolio including the riskless bond, risky stock and

derivatives on the stock. We then maximize a utility function defined over intermediate

consumption rather than terminal wealth.

Abstraction from the choice of consumption over time implies that investors value only

wealth at a single terminal date, no consumption takes place before the terminal date, and

all portfolio returns are reinvested until that date. The assumption that investors derive
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utility only from terminal wealth and not from intermediate consumption simplifies the

analysis through avoidance of an additional source of non-linearity in the differential

equation. However, many long-term investors seek a stable consumption path over a long

horizon. This simplification makes it hard to apply the above-mentioned papers’ results to

the realistic problem facing an investor saving for the future. Very often, intermediate

consumption can be used as an indicator of marginal utility, especially in the asset pricing

related literature (Campbell and Viceira 1999).

The second extension of this chapter is in contrast to Liu and Pan (2003), in which

investors are assumed to have power utility, in contrast to Ilhan et al. (2005), in which

investors maximize expected exponential utility of terminal wealth and also in contrast to

Haugh and Lo (2001), who set the special cases of CRRA and CARA preferences. In this

model we assume that investors have continuous-time recursive preferences introduced by

Duffie and Epstein (1992b). This allows us not only to provide the effects of risk aversion,

but also to separate cleanly an investor’s elasticity of intertemporal substitution in

consumption from the coefficient of relative risk aversion. This is because power utility

functions restrict risk aversion to be the reciprocal of the elasticity of intertemporal

substitution, but in fact these parameters have very different effects on optimal

consumption and portfolio choice (Campbell and Viceira 1999; Bhamra and Uppal

2003; Chacko and Viceira 2005).

Under the model settings of Liu and Pan (2003), the mean�/variance allocation to

stocks, i.e. the ratio between expected stock excess returns and stock return volatility, is

constant, while our work more realistically reflects the real-world situation with time-

varying allocation components. Liu and Pan (2003) consider the Heston (1993) and Stein

and Stein (1991) models of stochastic volatility, in which volatility follows a mean-

reverting process and stock returns are a linear function of volatility. Our setting is the

more general assumption that expected stock returns are an affine function of volatility. In

this setting, the Liu and Pan (2003) result is the special case where we constrain the

intercept of the affine function to be zero. Therefore, we provide a dynamic asset

allocation in both stocks and derivatives, in contrast both to Ilhan et al. (2005), who

restrict to a static position in derivative securities, and to Haugh and Lo (2001), who

construct a buy-and-hold portfolio of stocks, bonds and options that involves no trading

once established at the start of the investment horizon. A buy-and-hold portfolio with a

derivative securities strategy may come closest to optimal dynamic asset-allocation

policies involving only stocks and bonds, as concluded by Haugh and Lo (2001). We know

that the problem of dynamic investment policies, i.e. asset-allocation rules, arise from

standard dynamic optimization problems in which an investor maximizes the expected

utility as shown by Haugh and Lo (2001). At the same time they pose the following

problem: given an investor’s optimal dynamic investment policy for two assets, stocks and

bonds, construct a ‘buy-and-hold’ portfolio—a portfolio that involves no trading once it

is established—of stocks, bonds and options at the start of the investment horizon. They

state that this comes closest to the optimal dynamic policy (Haugh and Lo 2001), but their

strategies differ from our dynamic asset allocation strategies which involve not only stocks,

but also derivative securities.
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Chacko and Viceira (2005) examine the optimal consumption and portfolio choice

problem of long-horizon investors who only have access to a riskless asset with constant

return and a risky asset (stocks), without introducing any derivative securities. Comparing

with Chacko and Viceira (2005), our generalized model considers that holding derivative

securities complicates the asset allocation strategies for long-horizon investors. If one does

not hold any derivative securities as in Chacko and Viceira (2005), the assumption of

imperfect instantaneous correlation between risky stock returns and its stochastic

volatility means that the intertemporal hedging component of the risky stock can only

provide partial hedging ability for multi-period investors when facing the time-varying

investment opportunity set. In this chapter, where we introduce non-redundant derivative

securities written on the risky stock in the incomplete financial market under this optimal

dynamic asset allocation, the derivative securities in the asset allocation can provide

differential exposures to stochastic volatility and make the market complete. The

derivative securities can also supplement the deficient hedging ability of the intertemporal

hedging component of the risky stock, because of the nonlinear nature of derivative

securities.

The chapter will obtain a solution to this problem which is exact for investors with unit

elasticity of intertemporal substitution of consumption, and approximate otherwise. The

chapter is organized as follows. Section 3.2 describes the model and environment assumed

in this chapter. Section 3.3 develops the model of optimal consumption policy and

dynamic asset allocation strategies. We also extend the model with constant expected

excess returns and constant volatility risk premiums to time-varying instantaneous

expected excess returns in relation to the risky stock and time-varying stochastic volatility

risk premium. Section 3.4 provides the analyses of optimal consumption policy and

dynamic asset allocation strategies. Finally, conclusions are given in Section 3.5.

3.2 THE MODEL

3.2.1 Investment Opportunity Set

In this chapter we assume that wealth comprises investments in traded assets only. There

are two prime assets available for trading in the economy. One of the assets is an

instantaneously riskless bond (Bt) with a constant interest rate of r. Its instantaneous

return is

dBt

Bt

¼ r dt : ð3:1Þ

The second prime asset is a risky stock that represents the aggregate equity market. Its

instantaneous total return dynamics are given by

dSt

St

¼ m dt þ
ffiffiffiffiffi
Vt

p
dZS; ð3:2Þ
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where St denotes the price of the risky asset at time t,
ffiffiffiffiffi
Vt

p
is the time-varying

instantaneous standard deviation of the return on the risky asset, and dZS is the increment

of a standard Brownian motion. We assume that the short rate is constant in order to

focus on the stochastic volatility of the risky asset. From these asset return dynamics, we

have the assumption of constant expected excess return on the risky asset over the riskless

asset, i.e. (m � r); this assumption will be relaxed in Section 3.3.2. We denote time

variation with the subscript ‘t’ and let the conditional variance of the risky asset vary

stochastically over time.

From the following the investment opportunity is time-varying. We assume that the

instantaneous variance process is

dVt ¼ kðy� VtÞdt þ s
ffiffiffiffiffi
Vt

p
r dZS þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
dZV

� �
; ð3:3Þ

where the parameter u � 0 describes the long-term mean of the variance, k � (0, 1) is the

reversion parameter of the instantaneous variance process, i.e. this parameter describes the

degree of mean reversion, and r is the correlation between the two Brownian motions,

which is assumed to be negative to capture the asymmetric effect (Black 1976, Glosten et

al. 1993). This negative correlation assumption, together with the mean-reversion of the

stock return volatility, can capture major important features of the empirical literature of

the equity market.

In the traditional theory of derivative pricing (Black and Scholes 1973; Merton 1973b),

derivative assets like options are viewed as redundant securities, the payoffs of which can

be replicated by portfolios of primary assets. Thus, the market is generally assumed to be

complete without the options. In this chapter we introduce derivative securities that allow

the investor to include them in dynamic asset allocation strategies. If only a risky stock

and a riskless bond are available for trading, then the financial market here is incomplete.

The nonlinear nature of derivative securities serves to complete the market. This follows

from our setting in which stock returns are not instantaneously perfectly correlated with

their time-varying volatility. In this chapter the derivative securities written on the stock

are non-redundant assets. In our setting derivative securities can provide differential

exposure to the imperfect instantaneous correlation and make the market complete.

Following Sircar and Papanicolaou (1999) and Liu and Pan (2003), in the above setting

the non-redundant derivative Ot � p(St, Vt), that is the function (p) of the prices of the

stock (St) and on the volatility of stock returns (Vt) at time t, will have the following price

dynamics:

dOt ¼ ðm� rÞðpsSt þ rspvÞ þ ls
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
pv þ rOt

h i
dt

þ ðpsSt þ rspvÞ
ffiffiffiffiffiffiffi
V t

p
dZS þ ðs

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
pvÞ

ffiffiffiffiffiffi
V t

p
dZV ; ð3:4Þ
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where l determines the stochastic volatility risk premium and ps and pv are measures of

the derivative’s price sensitivity to small changes in the underlying stock price and

volatility, respectively.

3.2.2 Preferences

We assume that the investor’s preferences are recursive and of the form described by

Duffie and Epstein (1992a, b). Recursive utility is a generalization of the standard and

time-separable power utility function that separates the elasticity of intertemporal

substitution of consumption from the relative risk aversion. This means that the power

utility is just a special case of the recursive utility function in which the elasticity of the

intertemporal substitution parameter is the inverse of the relative risk aversion coefficient.

The value function of the problem (J ) is to maximize the investor’s expected lifetime

utility. We adopt the Duffie and Epstein (1992b) parameterization

J ¼ Et

Z 1

t

f ðCt; JtÞdt
� 	

; ð3:5Þ

where the utility f (Ct, Jt) is a normalized aggregator of an investor’s current consumption

(Ct) and has the following form:

f ðC; J Þ ¼ b 1� 1

j


 ��1

ð1� gÞJ C

ðð1� gÞJ Þ1=ð1�gÞ

 !1�ð1=jÞ

�1

2
4

3
5; ð3:6Þ

with g is the coefficient of relative risk aversion,b is the rate of time preference and 8 is the

elasticity of intertemporal substitution. They are all larger than zero. The normalized

aggregator f (Ct,Jt) takes the following form when 8 approaches one:

f ðC; J Þ ¼ bð1� gÞJ logðCÞ � 1

1� g
logðð1� gÞJ Þ

� 	
:

The investor’s objective is to maximize expected lifetime utility by choosing consump-

tion and the proportions of wealth to invest across the risky stock and the derivative

securities subject to the following intertemporal budget constraint:

dWt ¼
�

ntðm� rÞWt þ pt

�
ðm� rÞ



psSt

Ot

þ rs
pv

Ot

�
þ ls

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p pv

Ot

	
Wt þ rWt � Ct

�
dt

þnt

ffiffiffiffiffi
Vt

p
Wt dZS þ pt

�

psSt

Ot

þ rs
pv

Ot

� ffiffiffiffiffi
Vt

p
Wt dZSþ s

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p pv

Ot

ffiffiffiffiffi
Vt

p
Wt dZV

	
;

ð3:7Þ
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where Wt represents the investor’s total wealth, nt and pt are the fractions of the investor’s

financial wealth allocated to the stock and the derivative securities at time t, respectively,

and Ct represents the investor’s instantaneous consumption.

3.3 OPTIMAL CONSUMPTION POLICY AND DYNAMIC ASSET
ALLOCATION STRATEGIES

3.3.1 Optimal Consumption and Dynamic Asset Allocation Strategies

The principle of optimality leads to the following Bellman equation for the utility

function. In the above setting, the Bellman equation becomes

0 ¼ sup
n;p;C

�
f ðCt; JtÞ þ JW

�
ntðm� rÞWt þ pt

�
ðm� rÞ

�



psSt

Ot

þ rs
pv

Ot

�
þls

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p pv

Ot

	
Wt þ rWt � Ct

�

þ JV ½kðy� VtÞ	 þ
1

2
JWW W 2

t Vt



ðntÞ

2 þ 2ntpt



psSt

Ot

þ rs
pv

Ot

�

þ ðptÞ
2

�

psSt

Ot

þ rs
pv

Ot

�2

þ


s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p pv

Ot

�2	�
þ 1

2
JVVs

2Vt þ JWV WtsVt

�



ntrþ pt

�

psSt

Ot

þ rs
pv

Ot

�
rþ sð1� r2Þ pv

Ot

	��
; ð3:8Þ

where Jw , Jv denote the derivatives of the value function J with respect to wealth W and

stochastic volatility V, respectively. We use a similar notation for higher derivatives as well.

The first-order conditions for the optimization in (3.8) are

Ct ¼ J
�j

W J ð1�jgÞ=ð1�gÞbjð1� gÞð1�jgÞ=ð1�gÞ; ð3:9Þ

nt ¼ �
JW

JWW Wt

ðm� rÞ
Vt

� JWV

JWW Wt

rs

þ JW

JWW Wt

l

Vt

ð psSt þ rspvÞ
s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
pv

þ JWV

JWW Wt

ð psSt þ rspvÞ
pv

; ð3:10Þ

pt ¼ �
JW

JWW Wt

l

s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p Ot

pv

1

Vt

� JWV

JWW Wt

Ot

pv

: ð3:11Þ

Equation (3.9), which demonstrates the rule of optimal consumption, stems from the

envelope condition, fc � Jw , once the value function is obtained. Equations (3.10) and

(3.11) show that the optimal portfolio allocation in the stock has four components, while

the derivative allocation has two. In the optimal asset allocation in both the risky stock
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and the derivative, their first terms are the mean�/variance portfolio weights. These are the

myopie demands for an investor who only invests in a single period horizon or under a

constant investment opportunity set. The second terms of both the stock and the

derivative are the intertemporal hedging demands that characterize demand arising from

the desire to hedge against changes in the investment opportunity set induced by the

stochastic volatility. These terms are determined by the instantaneous rate of changes in

relation to the value function. Without introducing the derivative security, the optimal

asset allocation of the stock will contain only the first two terms. Aside from the mean�/

variance weights of the optimal derivative allocation, the derivative plays a role that allows

the investor to insure against changes in the stochastic volatility and the time-varying

investment opportunity set. The second term, i.e. the intertemporal hedging demand, of

the optimal asset allocation on the stock also partially provides a similar rule, so that the

introduction of the derivative makes the stock allocation interact with the derivative

allocation and is expressed in the third and the fourth terms of the stock demand.

The first-order conditions for our problem are not in fact explicit solutions unless we

know the complicated form of the value function. After substituting the first-order

conditions back into the Bellman equation and rearranging them, we conjecture that

there exists a solution of the functional form JðWt ;VtÞ ¼ IðVtÞðW
1�g
t =ð1� gÞÞ. We first

restrict to the special case of 8 � 1. We then substitute this form into Equation (3.A1) of

Appendix 3.A, and the resulting ordinary differential equation will have a solution of the

form I � exp(Q0 � Q1Vt � Q2logVt). Rearranging this equation, we have three equations

for Q2, Q1, and Q0 after collecting terms in 1/Vt , Vt , and 1. We provide the full details in

Appendix 3.A. Hence, we obtain the form of the value function and the optimal

consumption rule and dynamic asset allocation strategies for investing in the stock and the

derivative security when 8 � 1. The value function is

JðWt ;VtÞ ¼ IðVtÞ
W 1�g

t

1� g
¼ exp Q0 þ Q1Vt þ Q2 log Vtð ÞW 1�g

t

1� g
: ð3:12Þ

The investor’s optimal consumption�/wealth ratio and dynamic asset allocation strategies

for investing in the stock and the derivative are

Ct

Wt

¼ b; ð3:13Þ

nt ¼
1

g

m� r

Vt

þ 1

g
Q1 þ Q2

1

Vt

 !
rs� 1

g

l

Vt

ð psSt þ rspvÞ
s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
pv

� 1

g
Q1 þ Q2

1

Vt

 !
ð psSt þ rspvÞ

pv

; ð3:14Þ
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pt ¼
1

g

l

Vt

1

s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
ðpv=OtÞ

þ 1

g
Q1 þ Q2

1

Vt

 !
Ot

pv

: ð3:15Þ

Equation (3.13) demonstrates the invariance of the optimal log consumption�/wealth

ratio to changes in volatility. It equals investors’ rate of time preference with unit elasticity

of intertemporal substitution. The substitution effect and the intertemporal income effect

on consumption resulting from a change in investment opportunity set perfectly cancel

each other out, and the consumption of a fixed proportion of investors’ wealth each

period is optimal. This is why such a consumption policy is normally referred to as being

myopic (Chacko and Viceira 2005).

In the more general case 8 " 1, there is no exact analytical solution. However, we can

still find an approximate analytical solution following the methods described in Campbell

and Viceira (2002) and Chacko and Viceira (2005). The basic idea behind the use of

approximate analytical methods is that of formulating a general problem, on the

condition that we can find a particular case that has a known solution, and then using that

particular case and its solution as a starting point for computing approximate solutions to

nearby problems. In the context of our problem, the insight we obtain is the solution for

the recursive utility function when 8 � 1 which provides a convenient starting point for

performing the expansion.

Without the restriction of 8 � 1, the Bellman equation can be expressed as the

following equation by substituting (3.9) into (3.A1) and again conjecturing that there

exists a solution of the functional form JðWt ;VtÞ ¼ IðVtÞðW
1�g
t =ð1� gÞÞ:

0 ¼ � bj

1� j
I 1þ½ð1�jÞ=ð1�gÞ	 þ j

1� j
bI þ 1

2

1

g
I

1

Vt

ðm� rÞ2 þ l2
� �

þ 1

g
IVs ðm� rÞrþ l

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

ph i
þ Ir þ IV

1

1� g
kðy� VtÞ½ 	

þ 1

2
IVV

1

1� g
s2Vt þ

1

2

1

g

ðIV Þ
2

I
s2Vt : ð3:16Þ

To simplify, we can make the transformation IðVtÞ ¼ FðVtÞ
�½ð1�gÞ=ð1�jÞ	

and have a non-

homogeneous ordinary differential equation. Unfortunately, this non-homogeneous

ordinary differential equation cannot be solved in closed form. Our approach is to

obtain the asymptotic approximation to Equation (3.B1) shown in Appendix 3.B, by

taking a log-linear expansion of the consumption�/wealth ratio around its unconditional

mean as introduced in the papers of Campbell and Viceira (2002) and Chacko and Viceira

(2005). We provide the full details of our model’s approximate results in Appendix 3.B.

We are now able to obtain the form of the value function and the optimal consumption

and dynamic asset allocation strategies toward investing in the risky stock and the derivative

in the stochastic environment without the constraint 8 � 1. The value function is
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JðWt ;VtÞ ¼ IðVtÞ
W 1�g

t

1� g
¼ FðVtÞ

�½ð1�gÞ=ð1�jÞ	W
1�g
t

1� g

¼ exp � 1� g

1� j


 �
ðQ̂0 þ Q̂1Vt þ Q̂2 log VtÞ

� 	
W

1�g
t

1� g
: ð3:17Þ

The investor’s optimal instantaneous consumption�/wealth ratio is

Ct

Wt

¼ bj expð�Q̂0 � Q̂1Vt � Q̂2 log VtÞ: ð3:18Þ

The investor’s optimal dynamic asset allocation strategies toward investing in the stock and

the derivative are

nt ¼
1

g
ðm� rÞ � ð psSt þ rspvÞ

s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
pv

l

 !
1

Vt

þ 1� 1

g


 �
Q̂1

1� j
þ Q̂2

1� j

1

Vt

 !
rs

� 1� 1

g


 �
Q̂1

1� j
þ Q̂2

1� j

1

Vt

 !
ð psSt þ rspvÞ

pv

; ð3:19Þ

pt ¼
1

g

l

s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
ðpv=OtÞ

1

Vt

þ 1� 1

g


 �
Q̂1

1� j
þ Q̂2

1� j

1

Vt

 !
Ot

pv

: ð3:20Þ

We have now solved the approximate closed-form solution of the optimal consumption

and dynamic asset allocation strategy. In the next section we provide a general extension

of this model.

3.3.2 Optimal Consumption and Dynamic Asset Allocation Strategies with
Time-Varying Risk Premiums

We next extend the model with constant expected excess returns of the risky stock and the

constant volatility risk premiums of the derivative to a more general case in order to

explore the optimal consumption rule and dynamic asset allocation strategies with time-

varying instantaneous expected excess returns and time-varying stochastic volatility risk

premium of the risky stock.

Following Chacko and Viceira (2005), we replace the assumption of the constant excess

returns on the stock with one that allows for the expected excess returns on the stock to

vary with volatility:

E

�
dSt

St � r dt

 !����Vt

	
¼ ðm0 þ m1VtÞdt : ð3:21Þ
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When m1 � 0, the functional form implies that an increase in volatility increases risk and

the expected excess return on the stock. Similarly, we replace the assumption of the

constant volatility risk premium (l) with one that allows the volatility risk premium to

vary with volatility in the form l0 � l1Vt. Ever since the seminal work of Engle (1982),

discrete-time ARCH models have become a proven approach to modeling security price

volatility. For a review of the substantial literature, see Bollerslev et al. (1992). Following

Nelson (1990), it is understood that GARCH-type models have well-defined continuous-

time limits. Therefore, it seems reasonable to model the risk premium dependent on the

conditional variance. As a basis, some empirical papers assume an ARCH/GARCH-M

model with a risk premium for stochastic volatility, which is a linear function of the

conditional standard deviation or variance as in this chapter. Using Heston’s (1993)

option pricing formula to price currency options, Lamoureux and Lastrapes (1993)

suggest a time-varying volatility risk premium. Empirical applications of the ARCH-M

model have met with much success. Some studies (see, e.g. French et al. (1987), Chou

(1988) and Campbell and Hentschel (1992)) have reported consistently positive and

significant estimates of the risk premium. When l1 � 0, the functional form implies that

an increase in volatility increases risk and also the stochastic volatility risk premium.

When m1 � 0 and l1 � 0, the results of this section will reduce to those of Section 3.3.1.

In the above setting, the non-redundant derivative (Ot � p(St, Vt)), which is a function

(p) of the prices of the stock (St) and the volatility of stock returns (Vt) at time t, will have

the following price dynamics:

dOt ¼
h
ðm0 þ m1VtÞðpsSt þ rspvÞ þ ðl0 þ l1VtÞs

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
pv þ rOt

i
dt

þ ðpsSt þ rspvÞ
ffiffiffiffiffi
Vt

p
dZS þ ðs

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
pvÞ

ffiffiffiffiffi
Vt

p
dZV : ð3:22Þ

From these extensions, the Bellman equation can be expressed as

0 ¼ � bj

1� j
I1þ½ð1�jÞ=ð1�gÞ	 þ j

1� j
bI þ 1

2

1

g
I

1

Vt

ðm0 þ m1VtÞ
2 þ ðl0 þ l1VtÞ

2
� �

þ Ir þ 1

g
IVs ðm0 þ m1VtÞrþ ðl0 þ l1VtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

ph i

þ IV

1

1� g
kðy� VtÞ½ 	 þ 1

2
IVV

1

1� g
s2Vt þ

1

2

1

g

ðIV Þ
2

I
s2Vt : ð3:23Þ

We follow the same method in Section 3.3.1 to derive the optimal consumption and

dynamic asset allocation strategies under these assumptions. The main steps of the

derivation are guessing the same functional form for J(Wt ,Vt) and I(Vt) as in Appendix

3.B. We then can reduce the Bellman equation to an ODE in F(Vt) as follows:
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0 ¼ �bjF�1 þ jbþ 1

2g
ð1� jÞ � ðm2

0 þ l2
0Þ

1

Vt

þ 2ðm0m1 þ l0l1Þ þ ðm2
1 þ l2

1ÞVt

" #

� 1� g

g

FV

F
s m0rþ l0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
þ m1rþ l1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p� �
Vt

h i

þ ð1� jÞr � FV

F
kðy� VtÞ þ

1

2

1� g

1� j
þ 1


 �
FV

F


 �2

�FVV

F

" #
s2Vt

þ 1

2

ð1� gÞ2

g

1

1� j

FV

F


 �2

s2Vt : ð3:24Þ

Following the steps in Equation (3.A8) to Equation (3.A10), we obtain the solution of the

ODE in F(Vt) with FðVtÞ ¼ expð ~Q0 þ ~Q1Vt þ ~Q2 log VtÞ, and can express Equation

(3.24) as

0 ¼ �
�
f0 þ f1

�
j logb� ~Q0 � ~Q1Vt � ~Q2



log yþ 1

y
Vt � 1

�	�

þ jbþ 1

2g
ð1� jÞ �

�
ðm2

0 þ l2
0Þ

1

Vt

þ 2ðm0m1 þ l0l1Þ þ ðm2
1 þ l2

1ÞVt

	

� 1� g

g



~Q1 þ ~Q2

1

Vt

�
s�

�
m0rþ l0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
þ


m1rþ l1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2
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Vt

	

þ ð1� jÞr �
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1

Vt

�
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1

2

�
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1
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s2Vt þ

1

2
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g

1
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1

Vt

�2
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Rearranging this equation after collecting terms in 1/Vt , Vt and 1 we have three equations

for ~Q2,
~Q1, and ~Q0:

1

2

1� g

1� j
s2 þ 1

2

ð1� gÞ2

g

1

1� j
s2

" #
~Q2

2

� 1� g

g
sm0rþ

1� g

g
l0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
sþ ky� 1

2
s2


 �
~Q2

þ 1

2g
ð1� jÞ m2

0 þ l2
0

� �
¼ 0; ð3:26Þ
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1

2

1� g

1� j
s2 þ 1

2

ð1� gÞ2

g

1

1� j
s2

" #
~Q2

1 þ f1 �
1� g

g
s m1rþ l1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p� �
þ k

� 	
~Q1

þ f1

1

y
~Q2 þ

1

2g
1� jð Þ m2

1 þ l2
1

� �
¼ 0; ð3:27Þ

f1 log y� f1 �
1� g

g
s m1rþ l1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p� �
þ k

� 	
~Q2

� 1� g

g
sm0rþ

1� g

g
l0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
sþ ky


 �
~Q1 þ

1� g

1� j
s2 þ ð1� gÞ2

g

1

1� j
s2

" #
~Q1

~Q2

þ f1
~Q0 � f0 � f1j logbþ jbþ 1

g
ð1� jÞðm0m1 þ l0l1Þ þ ð1� jÞr ¼ 0: ð3:28Þ

We are now able to obtain the value function and the investor’s optimal consumption and

dynamic asset allocation strategy for investing in the stock and derivative security with

time-varying risk premiums. The value function is

JðWt ;VtÞ ¼ IðVtÞ
W

1�g
t

1� g
¼ FðVtÞ

�½ð1�gÞ=ð1�jÞ	W
1�g
t

1� g

¼ exp � 1� g

1� j


 �
~Q0 þ ~Q1Vt þ ~Q2 log Vt

� �� 	
W

1�g
t

1� g
: ð3:29Þ

The investor’s optimal instantaneous consumption�/wealth ratio is

Ct

Wt

¼ bj exp � ~Q0 � ~Q1Vt � ~Q2 log Vt

� �
: ð3:30Þ

The investor’s optimal dynamic asset allocation strategy toward investing in the stock and

the derivative security is

nt ¼
1

g
m1 þ m0

1

Vt

 !
þ 1� 1

g


 � ~Q1

1� j
þ
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1� j

1

Vt

 !
rs

� 1
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1

Vt

 !
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s
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p
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 !
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 !
� 1
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1
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 !
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; ð3:31Þ
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�

1

g

1

s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p


l1 þ l0

1

Vt

�
þ



1� 1

g

�
 ~Q1

1� j
þ

~Q2

1� j

1

Vt

�#
Ot

pv

: ð3:32Þ

We have solved for the approximate solution of the optimal consumption and dynamic

asset allocation strategies with time-varying risk premiums. In the next section we discuss

the optimal consumption rule and dynamic asset allocation of our results and the effects

of the introduction of derivative securities. We also provide analyses of our results, in this

section and of a numerical example shown in the figures.

3.4 ANALYSES OF THE OPTIMAL CONSUMPTION RULE AND
DYNAMIC ASSET ALLOCATION STRATEGY

In Section 3.3.2 we have the most general results. Equation (3.30) shows that the optimal

log consumption�/wealth ratio is a function of stochastic volatility, with coefficients
~Q1=ð1� jÞ and ~Q2=ð1� jÞ. While ~Q2 is the solution to the quadratic Equation (3.26),
~Q1 is the solution to Equation (3.27) given ~Q2, and ~Q0 is the solution to Equation (3.28)

given ~Q1 and ~Q2. When g � 1 for coefficient ~Q2, Equation (3.26) has two real roots of

opposite signs. In each quadratic equation, we would like to know which solution is good

for our problem from the following criteria. First, we must ensure that the roots of the

discriminant are real. We must then determine the sign of the roots that we will choose.

Campbell and Viceira (1999, 2002), Campbell et al. (2004) and Chacko and Viceira (2005)

show that only one of them maximizes the value function. This is also the only root that

ensures ~Q2 is equal to zero when g � 8 � 1, that is, in the log utility case. Under these

criteria, the value function J is maximized only with the solution associated with the

negative root of the discriminant of the quadratic Equation (3.26), i.e. the positive root of

Equation (3.26). It can immediately be shown that ~Q2=ð1� jÞ> 0.

By the same criteria, it can immediately be shown that ~Q1=ð1� jÞ< 0. Thus, the ratio

of consumption to wealth is shown to be an increasing function of volatility for those

investors whose elasticity of intertemporal substitution of consumption (8) is less than

one. Conversely, this ratio is a decreasing function of volatility when the elasticity of

intertemporal substitution of consumption for an investor is greater than one. (It is

assumed that � ~Q1 � ~Q2=Vt > 0.) The relative importance of intertemporal income and

substitution effects of volatility on consumption is thus demonstrated. For illustration,

suppose the greater effect of volatility on consumption. The increase in volatility provides

greater opportunities for investment, because derivative securities can provide volatility

exposures. Moreover, assuming positively priced volatility risk, returns on the portfolio do

not increase in volatility, yet there is an improvement in the expected return. A negative

intertemporal substitution effect on consumption will result from these investment

opportunities, since the latter are more favorable than at other times. A positive income

effect also results, as an increase in expected returns decreases the marginal utility of

consumption. The income effect dominates the substitution effect for investors whose
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8 B 1 and their current consumption rises relative to wealth. Investors whose 8 � 1 will

see the substitution effect dominate and will therefore cut their current consumption

relative to wealth.

The optimal dynamic asset allocation strategy for the risky stock has four components,

as with the first equality of Equation (3.31) and in Figure 3.1. If we do not introduce any

derivative security and the investor holds only the risky stock, then the optimal dynamic

asset allocation for the risky stock will only have the first two components in the first

equality of Equation (3.31), i.e. the myopic component and the intertemporal hedging

component. First, the dependence of the myopic component is simple. It is an affine

function of the reciprocal of the time-varying volatility and decreases with the coefficient

of relative risk aversion. Since volatility is time-varying, the myopic component is time-

varying too. The position of the myopic component can be either positive or negative,

depending on m0, m1, and the level of volatility. We know that if m1 � 0 and m0 �m � r,

then the result also nests the model results in Section 3.3.1. An extension of the

replacement of the constant expected excess return with one that allows an expected excess

return on the risky stock to vary with volatility implies that increased risk is rewarded with

an increase in expected excess return when m1 � 0. Hence, the investor will take a long

position on the myopic component of the risky stock.

The intertemporal hedging component of the optimal dynamic asset allocation for the

risky stock is an affine function of the reciprocal of the time-varying volatility, with
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�e optimal dynamic asset allocation for the risky stock
�e myopic component
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�e intertemporal correction term for holding derivatives
�e myopic correction term for holding derivatives

FIGURE 3.1 The optimal dynamic asset allocation strategy toward investing in the stock and its components in

relation to g.
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coefficients ~Q1=ð1� jÞ and ~Q2=ð1� jÞ. Since ~Q2=ð1� jÞ> 0, the sign of the coefficient

of the intertemporal hedging demand coming from pure changes in time-varying

volatility is positive when g � 1 [this is true only for r � 0]. If we do not introduce any

derivative security and instead hold only risky stock, then the intertemporal hedging

component for the risky stock will consist of the correlation or asymmetric effect. The

intertemporal hedging component of the optimal asset allocation for risky stock is affected

by the instantaneous correlation between the two Brownian motions. If the instantaneous

correlation is perfect, then markets are complete, without the need for holding any

derivative securities. However, we allow for imperfect instantaneous correlation in the

model. In particular, if r B 0, this means that the unexpected return of the risky asset is

low (the market situation is bad), and then the state of the market uncertainty will be

high. Since Q̂2=ð1� jÞ> 0 when g � 1, the negative instantaneous correlation implies the

investor will have negative intertemporal hedging demand due to changes solely in the

volatility of the risky asset, which lacks the hedging ability against an increase in volatility.

Similar discussions are found in Liu (2005) and Chacko and Viceira (2005). However, in

our generalized model the consideration of holding derivative securities complicates the

asset allocation strategies for long-horizon investors.

The other two components of the optimal dynamic asset allocation for the risky stock

are correction terms for holding the derivative. The first and the second component of

these two correction terms (i.e. the third and the fourth terms of the optimal dynamic

asset allocation for the risky stock) are the myopic correction term and the intertemporal

correction term for the derivatives held, respectively. These terms are from the interaction

between the derivative and its underlying stock. We can see that from the first equality to

the second equality of Equation (3.31), the intertemporal hedging demand on the risky

stock will be canceled by the correction term of holding the derivative. In the second

equality of Equation (3.31), in its first term we show that the net demand for the risky

stock will finally link to the risk-and-return tradeoff associated with price risk, because

volatility exposures have been captured by holding the derivatives. The second term is

the correction term of the correlation effect, and the third correction term is to correct for

the delta effect of the derivative held. The relationships between these components with

the degree of risk aversion (g) are also seen in Figure 3.2.

The optimal dynamic asset allocation for the derivative depends on the proportion of

derivative’s price to its volatility exposure. This proportion measures the dollars expended

on the derivative for each unit of volatility exposure. The less expenditure that a derivative

provides for the same unit of volatility exposure, the more effective it is as a vehicle to

hedge volatility risk. Therefore, a smaller portion of the investor’s wealth need be allocated

to the derivative (Liu and Pan 2003). Furthermore, the optimal dynamic asset allocation

strategy for the derivative security can also be separated into two components: the myopic

demand and the intertemporal hedging demand, which are also seen in Figure 3.3. The

myopic demand is an affine function of the reciprocal of the time-varying volatility with

coefficients of l0 and l1, and it depends on (1/g). The time-varying volatility also makes

the myopic demand time-varying. The long or short position of the myopic derivative’s
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demand depends on the volatility�/risk premium parameters l0 and l1, and the level of

volatility.

The second term of the optimal dynamic asset allocation of the derivative is the

intertemporal hedging component, which depends on all the parameters that characterize

investor preferences and the investment opportunity set. Without loss of generality we

may assume that the option is volatility exposure is positive. In our setting, the

instantaneous correlation between unexpected returns of the derivative and changes in

volatility is perfect positive. In addition, since ~Q2=ð1� jÞ> 0 when g � 1, for more risk-

averse investors the intertemporal hedging demand is positive due to changes solely in the

stochastic volatility. Investors who are more risk-averse than logarithmic investors have a

positive intertemporal hedging demand for the derivative, because it tends to do better

when there is an increase in volatility risk. The derivative provides hedging ability against

an increase in volatility.

3.5 CONCLUSIONS

Ever since Merton (1969, 1971) introduced the standard intertemporal consumption and

investment model, it has been studied extensively in the finance literature and has become

a classical problem in financial economics. The literature on the broad set of issues of

intertemporal consumption and investment or optimal dynamic asset allocation strategies

deals with investors’ access only to bond and stock markets and excludes the derivatives

market. While a few recent studies include derivative securities in the investment

portfolio, investors are assumed to have a specified utility defined over wealth at a single

terminal date, abstraction from the choice of consumption over time, and the studies are

restricted to a static position in derivative securities or the construction of a buy-and-

hold portfolio. This chapter considers a model in which a long-term investor chooses

consumption as well as optimal dynamic asset allocation including a riskless bond, risky

stock and derivatives on the stock when there is predictable variation in return volatility.

We then maximize a more general recursive utility function defined over intermediate

consumption rather than terminal wealth to reflect the realistic problem facing an investor

saving for the future.

We show that the optimal log consumption�/wealth ratio is a function of stochastic

volatility. Furthermore, the consumption�/wealth ratio is an increasing function of

volatility for investors whose elasticity of intertemporal substitution of consumption is

smaller than one, while it is a decreasing function of volatility for investors whose

elasticity of intertemporal substitution of consumption is larger than one. This result

reflects the comparative importance of intertemporal income and substitution effects of

volatility on consumption.

Merton (1971, 1973a) shows that dynamic hedging is necessary for forward-looking

investors when investment opportunities are time-varying. In this chapter we show that

considering derivative securities in portfolio decisions to create a dynamic asset allocation

strategy brings benefits of improvements to the hedging ability in the intertemporal

hedging component. When we introduce a non-redundant derivative written on the risky

stock in the incomplete financial market in this optimal dynamic asset allocation, the
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derivative in the asset allocation can provide differential exposures to stochastic volatility

and make the market complete. Derivative securities are a significant tool for expanding

investors’ dimensions for risk-and-return tradeoffs, as a vehicle to hedge the additional

risk factor of stochastic volatility in the stock market. Non-myopic investors utilize

derivative securities, which provide access to volatility risk, to capitalize upon the time-

varying nature of their opportunity set.
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APPENDIX 3.A: DERIVATION OF THE EXACT SOLUTION WHEN j � 1

Substituting the first-order conditions (i.e. Equations (3.9)�/(3.11)) back into the Bellman

equation (i.e. Equation (3.8)) and rearranging we get

0 ¼ f ðCðJ Þ; J Þ � JW CðJ Þ � 1

2

ðJW Þ
2

JWW

1

Vt

ðm� rÞ2 þ l2
� �

� JW JWV

JWW

s ðm� rÞrþ l
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

ph i
þ JW rWt þ JV

�
kðy� VtÞ

�

þ 1

2
JVVs

2Vt �
1

2

ðJWV Þ
2

JWW

s2Vt : ð3:A1Þ

We conjecture that there exists a solution of the functional form JðWt ;VtÞ ¼ IðVtÞ�
½W 1�g

t =ð1� gÞ	 when 8 � 1, and substituting it into Equation (3.A1) we obtain

0 ¼ log b� 1

1� g
log I � 1


 �
bI þ 1
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g
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2
IVV

1

1� g
s2Vt þ

1

2

1

g

ðIV Þ
2

I
s2Vt : ð3:A2Þ

The above ordinary differential equation has a solution of the form

I ¼ expðQ0 þ Q1Vt þQ2 log Vt , and so Equation (3.A2) can be expressed as
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0 ¼ log b� 1

1� g
Q0 þ Q1Vt þ Q2 log yþ 1

y
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s2Vt : ð3:A3Þ

Rearranging that equation, we have three equations for Q2, Q1, and Q0 after collecting

terms in 1/Vt , Vt , and 1:
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bQ0 þ b log b� bþ r ¼ 0; ð3:A6Þ

and in Equation (3.A4), we have

Q2 ¼
�b 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac
p

2a
;
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where

a ¼ 1

2

1
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s2 þ 1

2

1

g
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:

APPENDIX 3.B: DERIVATION OF THE APPROXIMATE RESULTS

For simplicity, we can make the transformation IðVtÞ ¼ FðVtÞ
�½ð1�gÞ=ð1�jÞ	

and obtain the

following non-homogeneous ordinary differential equation:
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ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

ph i
þ ð1� jÞr � FV

F
kðy� VtÞ

þ 1

2

1� g

1� j
þ 1


 �
FV

F


 �2

�FVV

F

" #
s2Vt þ

1

2

ðg� 1Þ2

g

1

1� j

FV

F


 �2

s2Vt : ð3:B1Þ

From the transformation, we obtain the envelope condition of Equation (3.9):1

Ct

Wt

¼ bjF�1 ¼ exp log
Ct

Wt

 !( )
� expfct � wtg: ð3:B2Þ

1 From Equation (3.9) we have Ct ¼ J
�j

W J ð1�jgÞ=ð1�gÞbjð1� gÞð1�jgÞ=ð1�gÞ, and we also conjecture that there exists a
solution of the functional form JðWt ;Vt Þ ¼ IðVt Þ½W

1�g
t =ð1� gÞ	, and we make the transformation

IðVt Þ ¼ FðVt Þ
�ð1�gÞ=ð1�jÞ

. We thus have J ¼ ½W 1�g
t =ð1� gÞ	F�ð1�gÞ=ð1�jÞ and JW ¼ F�ð1�gÞ=ð1�jÞW�g

t . Therefore, we
have

Ct ¼ J
�j

W J ð1�jgÞ=ð1�gÞbjð1� gÞð1�jgÞ=ð1�gÞ

¼ ðF�ð1�gÞ=ð1�jÞW �g
t Þ

�j W 1�g
t

1� g
F�ð1�gÞ=ð1�jÞ


 �ð1�jgÞ=ð1�gÞ
bjð1� gÞð1�jgÞ=ð1�gÞ

¼ F�1bjWt :
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Using a first-order Taylor expansion of exp{ct � wt} around the expectation of (ct � wt),

we can write

bjF�1 � exp Eðct � wtÞf g þ exp Eðct � wtÞf g � ðct � wtÞ � Eðct � wtÞ½ 	

¼ exp Eðct � wtÞf g � 1� Eðct � wtÞf g þ exp Eðct � wtÞf g � ðct � wtÞ

� f0 þ f1ðct � wtÞ: ð3:B3Þ

Substituting (3.B3) into Equation (3.B1) and assuming this equation has a solution of the

form FðVtÞ ¼ expðQ̂0 þ Q̂1Vt þ Q̂2 log VtÞ, from this guessed solution an Equation (3.B2)

we can show that

ðct � wtÞ ¼ log bj expðQ̂0 þ Q̂1Vt þ Q̂2 log VtÞ
� ��1

n o

¼ j log b� Q̂0 � Q̂1Vt � Q̂2 log Vt : ð3:B4Þ

As such, we can express Equation (3.B1) as

0 ¼ �
�
f0 þ f1 j log b� Q̂0 � Q̂1Vt � Q̂2 log yþ 1

y
Vt � 1


 �� 	�

þ jbþ 1

2g
ð1� jÞ

h
m� rð Þ2þl2

i 1

Vt

� 1� g

g
Q̂1 þ Q̂2

1

V t


 �
s m� rð Þrþ l

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

ph i

þ ð1� jÞr � Q̂1 þ Q̂2

1

Vt

 !
kðy� VtÞ

þ 1

2

�

1� g

1� j
þ 1

�

Q̂1 þ Q̂2

1

Vt

�2

�



Q̂1 þ Q̂2

1

Vt

�2

þ Q̂2

1

V 2
t

#
s2Vt

þ 1

2

ð1� gÞ2

g

1

1� j



Q̂1 þ Q̂2

1

V t

�2

s2Vt : ð3:B5Þ

Rearranging the above equation we have the following three equations for Q̂2, Q̂1, and Q̂0:

1

2

1� g

1� j
s2 þ 1

2

ð1� gÞ2

g

1

1� j
s2

" #
Q̂2

2

�
�

1� g

g
sðm� rÞrþ 1� g

g
l
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
sþ ky� 1

2
s2

	
Q̂2

þ 1

2g
ð1� jÞ½ðm� rÞ2 þ l2	 ¼ 0; ð3:B6Þ
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1

2

1� g

1� j
s2 þ 1

2

ð1� gÞ2

g

1

1� j
s2

" #
Q̂2

1 þ ðf1 þ kÞQ̂1 þ f1

1

y
Q̂2 ¼ 0; ð3:B7Þ

ðf1 log y� f1 þ kÞQ̂2

� 1� g

g
sðm� rÞrþ 1� g

g
l
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
sþ ky

� 	
Q̂1

þ 1� g

1� j
s2 þ ð1� gÞ2

g

1

1� j
s2

" #
Q̂1Q̂2 þ f1Q̂0 � f0

� f1j logbþ jbþ ð1� jÞr ¼ 0; ð3:B8Þ

where Q̂2 can be found from the quadratic Equation (3.B6), Q̂1 can be found from

Equation (3.B7) given Q̂2, and Q̂0 can be found from Equation (3.B8), given Q̂1 and Q̂2.
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Volatility-Induced Financial
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4.1 INTRODUCTION

C AN VOLATILITY, WHICH IS PRESENT in virtually every financial market and usually

thought of in terms of a risky investment’s downside, serve as an ‘engine’ for

financial growth? Paradoxically, the answer to this question turns out to be positive.

To demonstrate this paradox, we examine the long-run performance of constant

proportions investment strategies in a securities market. Such strategies prescribe

rebalancing the investor’s portfolio, depending on price fluctuations, so as to keep fixed

proportions of wealth in all the portfolio positions. Assume that asset returns form a

stationary ergodic process and asset prices grow (or decrease) at a common asymptotic

rate r. It is shown in this chapter that if an investor employs any constant proportions

strategy, then the value of his/her portfolio grows almost surely at a rate strictly greater

than r, provided that the investment proportions are strictly positive and the stochastic

price process is in a sense non-degenerate. The very mild assumption of non-degeneracy
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we impose requires at least some randomness, or volatility, of the price process. If this

assumption is violated, then the market is essentially deterministic and the result ceases to

hold. Thus, in the present context, the price volatility may be viewed as an endogenous

source of acceleration of financial growth. This phenomenon might seem counterintuitive,

especially in stationary markets (Evstigneev and Schenk-Hoppé 2002; Dempster et al.

2003), where the asset prices themselves, and not only their returns, are stationary. In this

case, r � 0, i.e. each asset grows at zero rate, while any constant proportions strategy

exhibits growth at a strictly positive exponential rate with probability one!

To begin with, we focus on the case where all the assets have the same growth rate r.

The results are then extended to a model with different growth rates r 1; . . . ; rK . In this

setting, a constant proportions strategy with proportions l 1 > 0; . . . ; lK > 0 grows almost

surely at a rate strictly greater than
P

k l
kr k (see Theorem 4.1 in Section 4.2).

The phenomenon highlighted in this paper has been mentioned in the literature, but its

analysis has been restricted to examples involving specialized models. The terms ‘excess

growth’ (Fernholz and Shay 1982) and the more discriptive ‘volatility pumping’

(Luenberger 1998) have been used to name similar effects to those discussed here. Cover

(1991) used the mechanism of volatility pumping in the construction of universal

portfolios. These ideas have been discussed in connection with financial market data in

Mulvey and Ziemba (1998), Mulvey (2001) and Dries et al. (2002). Such questions have

typically been studied in the context of maximization of expected logarithmic utilities—

‘log-optimal investments’ (Kelly 1956; Breiman 1961; Algoet and Cover 1988; MacLean et

al. 1992; Hakansson and Ziemba 1995; Li 1998; Aurell et al. 2000). In this chapter we

ignore questions of optimality of trading strategies and do not use the related notion of

expected utility involved in optimality criteria.1

Constant proportions strategies play an important role in various practical financial

computations, see e.g. Perold and Sharpe (1995). The assumption of stationarity of asset

returns is widely accepted in financial theory and practice allowing, as it does, expected

exponential price growth and mean reversion, volatility clustering and very general

intertemporal dependence, such as long memory effects, of returns. However, no general

results justifying and explaining the fact of volatility-induced growth have been established

up to now. In spite of the fundamental importance and generality of this fact, no results

pertaining to an arbitrary constant proportions strategy (regardless of its optimality) and

any securities market with stationary non-degenerate asset returns have been available in

the literature. The purpose of this chapter is to fill this gap.

Most of our results are rather easy consequences of some general mathematical facts, and

the mathematical aspects do not play a crucial role. The main contribution of the present

work is that we pose and analyse a number of questions that have not been systematically

analysed before. These questions are especially interesting because the common intuition

1 In connection with the discussion of relevant literature, we can mention a strand of publications dealing with
Parrondo games (Harmer and Abbott 1999). Models considered in those publications are based on the analysis of
lotteries whose odds depend on the investor’s wealth. It is pointed out that losing lotteries, being played in a
randomized alternating order, can become winning. In spite of some similarity, there are no obvious direct links
between this phenomenon and that studied in the present chapter.
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currently prevailing in the mathematical finance community suggests wrong answers to

them (see the discussion in Section 4.4). Therefore it is important to clarify the picture in

order to reveal and correct misconceptions. This is a central goal in this study.

The chapter is organized as follows. In Section 4.2 we describe the model, formulate the

assumptions and state the main results. Section 4.3 contains proofs of the results and a

discussion of their intuitive meaning. In Sections 4.4 and 4.5 we analyse the phenomenon

of volatility-induced growth from various angles, focusing primarily on the case of

stationary prices. We answer a number of questions arising naturally in connection with

the theory developed. In Section 4.6, we show how this theory can be extended to markets

with small transaction costs. Section 4.7 analyses an example in which estimates for the

size of transaction cost rates allowing volatility-induced growth can be established.

4.2 THE MODEL AND THE MAIN RESULTS

Consider a financial market with K ] 2 securities (assets). Let St :¼ ðS 1
t ; . . . ; S K

t Þ denote

the vector of security prices at time t �0; 1; 2; . . . : Assume that S k
t > 0 for each t and k,

and define by

R k
t :¼ S k

t

S k
t�1

ðk ¼ 1; 2; . . . ;K ; t ¼ 1; 2; . . .Þ ð4:1Þ

the (gross) return on asset k over the time period (t�1, t]. Let Rt :¼ ðR 1
t ; . . . ;R K

t Þ. At each

time period t, an investor chooses a portfolio ht ¼ ðh 1
t ; . . . ; h K

t Þ, where h k
t is the number of

units of asset k in the portfolio ht. Generally, ht might depend on the observed values of

the price vectors S0; S1; . . . ; St . A sequence H ¼ ðh0; h1; . . .Þ specifying a portfolio ht ¼
htðS0; . . . ; StÞ at each time t as a measurable function of S0; S1; . . . ; St is called a trading

strategy. If not otherwise stated, we will consider only those trading strategies for which

h k
t � 0, thus excluding short sales of assets (h k

t can take on all non-negative real values).

One can specify trading strategies in terms of investment proportions (or portfolio

weights). Suppose that for each t ¼ 1; 2; . . . ; we are given a vector lt ¼ ðl 1
t ; . . . ; lK

t Þ in

the unit simplex

D :¼ l ¼ l 1; . . . ; lK
� �

: l k � 0;
XK

k¼1

l k ¼ 1

( )
:

The vector lt is assumed to be a measurable function of S0; . . . ; St . Given an initial

portfolio h0 (specified by a non-negative non-zero vector), we can construct a trading

strategy H recursively by the formula

h k
t ¼ l k

t St ht�1=S k
t ðk ¼ 1; 2; . . . ;K ; t ¼ 1; 2; . . .Þ: ð4:2Þ

Here the scalar product St ht�1 ¼
PK

k¼1 S k
t h k

t�1 expresses the value of the portfolio ht�1 in

terms of the prices S k
t at time t. An investor following the strategy (4.2) rebalances

(without transaction costs) the portfolio ht�1 at time t so that the available wealth St ht�1 is
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distributed across the assets k�1, 2, . . . , K according to the proportions l 1
t ; . . . ; lK

t . It is

immediate from (4.2) that

St ht ¼ St ht�1; t ¼ 1; 2; . . . ; ð4:3Þ

i.e. the strategy H is self-financing. If a strategy is self-financing, then the relations (4.2)

and

S k
t h k

t ¼ l k
t St ht ; t ¼ 1; 2; . . . ; ð4:4Þ

are equivalent. If the vectors of proportions lt are fixed (do not depend on time and on

the price process), i.e. lt ¼ l ¼ ðl 1; . . . ; lK Þ 2 D, then the strategy H defined recursively

by

h k
t ¼ l kSt ht�1=S k

t ðk ¼ 1; 2; . . . ;K ; t ¼ 1; 2; . . .Þ ð4:5Þ

is called a constant proportions strategy (or a fixed-mix strategy) with vector of proportions

l ¼ ðl 1; . . . ; lK Þ. If l k > 0 for each k, then H is said to be completely mixed.

We will assume that the price vectors St , and hence the return vectors Rt , are random,

i.e. they change in time as stochastic processes. Then the trading strategy

ht ; t ¼ 0; 1; 2; . . . , generated by the investment rule (4.2) and the value

Vt ¼ St ht ; t ¼ 0; 1; 2; . . . , of the portfolio ht are stochastic processes as well. We are

interested in the asymptotic behaviour of Vt as t0� for constant proportions strategies.

We will assume:

(R) The vector stochastic process Rt ; t ¼ 1; 2; . . . ; is stationary and ergodic.

The expected values Ej ln R k
t j, k�1,2, . . . , K, are finite.

Recall that a stochastic process R1;R2; . . . is called stationary if, for any m ¼ 0; 1; 2; . . .

and any measurable function fðx0; x1; . . . ; xmÞ, the distribution of the random variable

ft :¼ fðRt ;Rtþ1; . . . ;RtþmÞ (t�1, 2, . . .) does not depend on t. According to this

definition, all probabilistic characteristics of the process Rt are time-invariant. If Rt is

stationary, then for any measurable function f for which EjfðRt ;Rtþ1; . . . ;RtþmÞj<1,

the averages

f1 þ 
 
 
 þ ft

t
ð4:6Þ

converge almost surely (a.s.) as t0� (Birkhoff ’s ergodic theorem—see, e.g. Billingsley

1965). If the limit of all averages of the form (4.6) is non-random (equal to a constant

a.s.), then the process Rt is called ergodic. In this case, the above limit is equal a.s. to the

expectation Eft , which does not depend on t by virtue of stationarity of Rt.

An example of a stationary ergodic process is a sequence of independent identically

distributed (i.i.d.) random variables. To avoid misunderstandings, we emphasize that
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Brownian motion and a random walk are not stationary. According to the conventional

probabilistic terminology, these Markov processes are (time) homogeneous.

We have S k
t ¼ S k

0 R k
1 . . . R k

t , where (according to (R)) the random sequence R k
t is

stationary. This assumption on the structure of the price process is a fundamental

hypothesis commonly accepted in finance. Moreover, it is quite often assumed that the

random variables R k
t ; t ¼ 1; 2; . . . are independent, i.e. the price process S k

t forms a

geometric random walk. This postulate, which is much stronger than the hypothesis of

stationarity of R k
t , lies at the heart of the classical theory of asset pricing (Black, Scholes,

Merton), see e.g. Luenberger (1998).

By virtue of Birkhoff ’s ergodic theorem, we have

lim
t!1

1

t
ln S k

t ¼ lim
t!1

1

t

Xt

j¼1

ln R k
j ¼ E ln R k

t ða:s:Þ ð4:7Þ

for each k�1, 2, . . ., K. This means that the price of each asset k has almost surely a well-

defined and finite (asymptotic, exponential) growth rate, which turns out to be equal a.s.

to the expectation r k :¼ E ln R k
t , the drift of this asset’s price. The drift can be positive,

zero or negative. It does not depend on t in view of the stationarity of Rt. Let H ¼
ðh0; h1; . . .Þ be a trading strategy. If the limit

lim
t!1

1

t
ln St htð Þ

exists, it is called the (asymptotic, exponential) growth rate of the strategy H.

We now formulate central results of this paper—Theorems 4.1 and 4.2. In these

theorems, H ¼ ðh0; h1; . . .Þ is a constant proportions strategy with some vector of

proportions l ¼ ðl 1; . . . ; lK Þ 2 D and a non-zero initial portfolio h0]0. In Theorems

4.1 and 4.2, we assume that the following condition holds:

(V) With strictly positive probability,

S k
t

S m
t

6¼ S k
t�1

S m
t�1

for some 1 
 k;m 
 K and t � 1:

Theorem 4.1: If all the coordinates lk of the vector l are strictly positive, i.e. the strategy H is

completely mixed, then the growth rate of the strategy H is almost surely equal to a constant

which is strictly greater than
P

k l
kr k, where rk is the drift of asset k.

Condition (V) is a very mild assumption of volatility of the price process. This

condition does not hold if and only if, with probability one, the ratio S k
t =S m

t of the prices

of any two assets k and m does not depend on t. Thus condition (V) fails to hold if and

only if the relative prices of the assets are constant in time (a.s.).
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We are primarily interested in the situation when all the assets under consideration have

the same drift and hence a.s. the same asymptotic growth rate:

(R1) There exists a number r such that, for each k ¼ 1; . . . ;K , we have E ln R k
t ¼ r.

From Theorem 4.1, we immediately obtain the following result.

Theorem 4.2: Under assumption (R1), the growth rate of the strategy H is almost surely

strictly greater than the growth rate of each individual asset.

In the context of Theorem 4.2, the volatility of the price process appears to be the only

cause for any completely mixed constant proportions strategy to grow at a rate strictly

greater than r, the growth rate of each particular asset. This result contradicts

conventional finance theory, where the volatility of asset prices is usually regarded as an

impediment to financial growth. The result shows that in the present context volatility

serves as an endogenous source of its acceleration.

4.3 PROOFS OF THE MAIN RESULTS AND THEIR EXPLANATION

We first observe that if a strategy H is generated according to formula (4.2) by a sequence

l1; l2; . . . of vectors of investment proportions, then

Vt ¼ St ht ¼
XK

m¼1

S m
t h m

t�1 ¼
XK

m¼1

S m
t

S m
t�1

S m
t�1h m

t�1

¼
XK

m¼1

S m
t

S m
t�1

lm
t�1St�1ht�1 ¼ Vt�1

XK

m¼1

R m
t lm

t�1

¼ ðRtlt�1ÞVt�1 ð4:8Þ

for each t ] 2, and so

Vt ¼ ðRtlt�1ÞðRt�1lt�2Þ . . . ðR2l1ÞV1; t � 2: ð4:9Þ

Proof of Theorem 4.1: By virtue of (4.9), we have

Vt ¼ V1ðR1lÞ
�1

� �
ðR1lÞðR2lÞ . . . ðRtlÞ; ð4:10Þ

and so

lim
t!1

1

t
ln Vt ¼ lim

t!1

1

t

Xt

j¼1

lnðRjlÞ ¼ E lnðRtlÞ ða:s:Þ ð4:11Þ

72 j CHAPTER 4



by virtue of Birkhoff ’s ergodic theorem. It remains to show that if assumption (V) holds,

then E lnðRtlÞ>
PK

k¼1 l
kr k . To this end observe that condition (V) is equivalent to the

following one.

(V1) For some t ] 1 (and hence, by virtue of stationarity, for each t ] 1),

the probability

P R k
t 6¼ R m

t for some 1 
 k;m 
 K
	 


is strictly positive.

Indeed, we have S k
t =S m

t 6¼ S k
t�1=S m

t�1 if and only if S k
t =S k

t�1 6¼ S m
t =S m

t�1, which can be

written as R k
t 6¼ R m

t . Denote by dt the random variable that is equal to 1 if the event

fR k
t 6¼ R m

t for some 1 
 k;m 
 Kg occurs and 0 otherwise. Condition (V) means that

Pfmaxt�1 dt ¼ 1g> 0, while (V1) states that, for some t (and hence for each t),

Pfdt ¼ 1g> 0. The latter property is equivalent to the former because

max
t�1

dt ¼ 1

� �
¼
[1

t¼1

dt ¼ 1f g:

By using Jensen’s inequality and (V1), we find that

ln
XK

k¼1

R k
t l

k >
XK

k¼1

l k ln R k
t

� �

with strictly positive probability, while the non-strict inequality holds always. Conse-

quently,

E lnðRtlÞ>
XK

k¼1

l kE ln R k
t

� �
¼
XK

k¼1

l kr k; ð4:12Þ

which completes the proof. I

The above considerations yield a rigorous proof of the fact of volatility induced growth.

But what is the intuition, the underlying fundamental reason for it? We have only one

explanation, which is nothing but a repetition in one phrase of the idea of the above proof.

If R 1
t ; . . . ;R K

t are random returns of assets k�1, 2, . . . , K, then the asymptotic growth

rates of these assets are E ln R k
t , while the asymptotic growth rate of a constant

proportions strategy is E lnð
P

l kR k
t Þ, which is strictly greater than

P
l kE lnðR k

t Þ by

Jensen’s inequality—because the function ln x is strictly concave.

It would be nice, however, to give a general common-sense explanation of volatility-

induced growth, without using such terms as a ‘strictly convex function,’ ‘Jensen’s

inequality,’ etc. One can, indeed, find in the literature explanations of examples of

volatility pumping based on the following reasoning (see e.g. Fernholz and Shay 1982;
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Luenberger 1998). The reason for growth lies allegedly in the fact that constant

proportions always force one to ‘buy low and sell high’—the common sense dictum of

all trading. Those assets whose prices have risen from the last rebalance date will be

overweighted in the portfolio, and their holdings must be reduced to meet the required

proportions and to be replaced in part by assets whose prices have fallen and whose

holdings must therefore be increased. Obviously, for this mechanism to work the prices

must change in time; if they are constant, one cannot get any profit from trading.

We have, alas, repeated this reasoning ourselves (e.g. in Evstigneev and Schenk-Hoppé

2002 and in an earlier version of the present chapter), but somewhat deeper reflection on

this issue inevitably leads to the conclusion that the above argument does not explain

everything and raises more questions than it gives answers. For example, what is the

meaning of ‘high’ and ‘low?’ If the price follows a geometric random walk, the set of its

values is generally unbounded, and for every value there is a larger value. One can say that

‘high’ and ‘low’ should be understood in relative terms, based on the comparison of the

prices today and yesterday. Fine, but what if the prices of all the assets increase or decrease

simultaneously? Thus, the above argument, to be made valid, should be at least relativized,

both with respect to time and the assets.

However, a more substantial lacuna in such reasoning is that it does not reflect the

assumption of constancy of investment proportions. This leads to the question: what will

happen if the ‘common sense dictum of all trading’ is pushed to the extreme and the

portfolio is rebalanced so as to sell all those assets that gain value and buy only those ones

which lose it? Assume, for example, that there are two assets, the price S 1
t of the first

(riskless) is always 1, and the price S 2
t of the second (risky) follows a geometric random

walk, so that the gross return on it can be either 2 or 1/2 with equal probabilities. Suppose

the investor sells the second asset and invests all wealth in the first if the price S 2
t goes up

and performs the converse operation, betting all wealth on the risky asset, if S 2
t goes down.

Then the sequence lt ¼ ðl 1
t ; l

2
t Þ of the vectors of investment proportions will be i.i.d. with

values (0, 1) and (1, 0) taken on with equal probabilities. Furthermore, lt�1 will

be independent of Rt. By virtue of (4.9), the growth rate of the portfolio value for this

strategy is equal to E lnðRtlt�1Þ ¼ ½lnð0 
 1þ 1 
 2Þ þ lnð0 
 1þ 1 
 1
2
Þ þ lnð1 
 1þ 0 
 2Þþ

lnð1 
 1þ 0 
 1
2
Þ�=4 ¼ 0, which is the same as the growth rate of each of the two assets

k � 1, 2 and is strictly less than the growth rate of any completely mixed constant

proportions strategy.

4.4 STATIONARY MARKETS: PUZZLES AND MISCONCEPTIONS

Consider a market where the price process St (and not only the process of asset returns Rt)

is ergodic and stationary and where Ej ln S k
t j<1. This situation is a special case of

stationary returns, because if the vector process St is stationary, then the process Rt is

stationary as well. In this case the growth rate of each asset is zero,

E ln R k
t ¼ E ln S k

t � E ln S k
t�1 ¼ 0;
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while, as we have seen, any completely mixed constant proportions strategy grows at a

strictly positive exponential rate. The assumption of stationarity of asset prices, perhaps

after some detrending, seems plausible when modelling currency markets (Kabanov 1999;

Dempster et al. 2003). Then the ‘prices’ are determined by exchange rates of all the

currencies with respect to some selected reference currency.

We performed a casual experiment, asking numerous colleagues (in private, at seminars

and at conferences) to promptly guess the correct answer to the following question.

Question 4.1: Suppose vectors of asset prices St ¼ (S 1
t ; . . . ; S K

t ) fluctuate randomly,

forming a stationary stochastic process (assume even that St are i.i.d.). Consider a fixed-

mix self-financing investment strategy prescribing rebalancing one’s portfolio at each of the

dates t� 1, 2, . . . , so as to keep equal investment proportions of wealth in all the assets. What

will happen with the portfolio value in the long run, as t0�? What will be its tendency: (a) to

decrease; (b) to increase; or (c) to fluctuate randomly, converging in one sense or another to a

stationary process?

The audience of our respondents was quite broad and professional, but practically

nobody succeeded in guessing the correct answer, (b). Among those who expressed a clear

guess, nearly all selected (c). There were also a couple of respondents who decided to bet

on (a).

Common intuition suggests that if the market is stationary, then the portfolio value Vt

for a constant proportions strategy must converge in one sense or another to a stationary

process. The usual intuitive argument in support of this conjecture appeals to the self-

financing property (3). The self-financing constraint seems to exclude possibilities of

unbounded growth. This argument is also substantiated by the fact that in the deterministic

case both the prices and the portfolio value are constant. This way of reasoning makes the

answer (c) to the above question more plausible a priori than the others.

It might seem surprising that the wrong guess (c) has been put forward even by those

who have known about examples of volatility pumping for a long time. The reason for this

might lie in the non-traditional character of the setting where not only the asset returns

but the prices themselves are stationary. Moreover, the phenomenon of volatility-induced

growth is more paradoxical in the case of stationary prices, where growth emerges ‘from

nothing.’ In the conventional setting of stationary returns, volatility serves as the cause of

an acceleration of growth, rather than its emergence from prices with zero growth rates.

A typical way of understanding the correct answer to Question 4.1 is to reduce it to

something well known that is apparently relevant. A good candidate for this is the concept

of arbitrage. Getting something from nothing as a result of an arbitrage opportunity seems

to be similar to the emergence of growth in a stationary setting where there are no obvious

sources for growth.

As long as we deal with an infinite time horizon, we would have to consider some kind

of asymptotic arbitrage (e.g. Ross 1976; Huberman 1982; Kabanov and Kramkov 1994;

Klein and Schachermayer 1996). However, all known concepts of this kind are much

weaker than what we would need in the present context. According to our results, growth

is exponentially fast, unbounded wealth is achieved with probability one, and the effect of
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growth is demonstrated for specific (constant proportions) strategies. None of these

properties can be directly deduced from asymptotic arbitrage.

Thus there are no convincing arguments showing that volatility-induced growth in

stationary markets can be derived from, or explained by, asymptotic arbitrage over an

infinite time horizon. But what can be said about relations between stationarity and

arbitrage over finite time intervals? As is known, there are no arbitrage opportunities (over

a finite time horizon) if and only if there exists an equivalent martingale measure. A

stationary process can be viewed as an ‘antipodal concept’ to the notion of a martingale.

This might lead to the conjecture that in a stationary market arbitrage is a typical

situation. Is this true or not? Formally, the question can be stated as follows.

Question 4.2: Suppose the process St ¼ ðS 1
t ; . . . ; S K

t Þ of the vectors of asset prices is

stationary, and moreover, assume that the vectors St are i.i.d. Furthermore, suppose the first

asset k � 1 is riskless and its price S 1
t is equal to one. Does this market have arbitrage

opportunities over a finite time horizon?

When asking this question, we assume that the market is frictionless and that there are

no portfolio constraints. In particular, all short sales are allowed. An arbitrage opportunity

over a time horizon t ¼ 0; . . . ;T is understood in the conventional sense. It means the

existence of a self-financing trading strategy ðh0; . . . ; hTÞ such that S0h0 ¼ 0, ST hT � 0 a.s.

and PfST hT > 0g> 0.

The answer to this question, as well as to the previous one, is practically never guessed

immediately. Surprisingly, the answer depends, roughly speaking, on whether the distri-

bution of the random vector ~St :¼ ðS 2
t ; . . . ; S K

t Þ of prices of the risky assets is continuous

or discrete. For example, if ~St takes on a finite number of values, then an arbitrage

opportunity exists. If the distribution of ~St is continuous, there are no arbitrage opport-

unities. More precisely, the result is as follows. Let G be the support of the distribution of

the random vector ~St (which is assumed to be non-degenerate) and let F:�cl co G be the

closure of the convex hull of G. Denote by 1rF the relative boundary of F, i.e. the boundary

of the convex set F in the smallest linear manifold containing F.

Theorem 4.3: If Pf~St 2 @r F g ¼ 0, then for any T there are no arbitrage opportunities over

the time horizon of length T. If Pf~St 2 @r Fg> 0, then for each T there is an arbitrage

opportunity over the time horizon of length T.

For a proof of this result see Evstigneev and Kapoor (2006).

4.5 GROWTH ACCELERATION, VOLATILITY REDUCTION AND
NOISE-INDUCED STABILITY

The questions we analyse in this section stem from an example of volatility pumping

considered originally by Fernholz and Shay (1982) and later others (e.g. Luenberger 1998).

The framework for this example is the well-known continuous-time model developed by

Merton and others, in which the price processes S k
t ðt � 0Þ of two assets k � 1, 2 are

supposed to be solutions to the stochastic differential equations dS k
t =S k

t ¼ mkdt þ skdW k
t ,

where the W k
t are independent (standard) Wiener processes and Sk

0 ¼ 1. As is well known,
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these equations admit explicit solutions S k
t ¼ exp½mkt � ðs 2

k =2Þt þ skW k
t �. Given some

y 2 ð0; 1Þ, the value Vt of the constant proportions portfolio prescribing investing the

proportions u and 1� y of wealth into assets k � 1, 2 is the solution to the equation

dVt

Vt

¼ ym1 þ ð1� yÞm2½ �dt þ ys1dW 1
t þ ð1� yÞs2dW 2

t :

Equivalently, Vt can be represented as the solution to the equation

dVt=Vt ¼ �mdt þ �sdWt , where �m :¼ ym1þ ð1� yÞm2, �s 2 :¼ ðys1Þ
2 þ ½ð1� yÞs2�

2
and

Wt is a standard Wiener process. Thus, Vt ¼ exp½�mt � ð�s 2=2Þt þ �sWt �, and so the growth

rate and the volatility of the portfolio value process Vt are given by �m� ð�s 2=2Þ and �s. In

particular, if m1 ¼ m2 ¼ m and s1 ¼ s2 ¼ s, then the growth rate and the volatility of Vt

are equal to

m� ð�s 2=2Þ and �s ¼ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y 2 þ ð1� yÞ 2

q
< s; ð4:13Þ

while for each individual asset the growth rate and the volatility are m� ðs 2=2Þ and s,

respectively.

Thus, in this example, the use of a constant proportions strategy prescribing investing

in a mixture of two assets leads (due to diversification) to an increase of the growth rate

and to a simultaneous decrease of the volatility. When looking at the expressions in (4.13),

the temptation arises even to say that the volatility reduction is the cause of volatility-

induced growth. Indeed, the growth rate m� ð�s 2=2Þ is greater than the growth rate

m� ðs 2=2Þ because �s< s. This suggests speculation along the following lines. Volatility

is something like energy. When constructing a mixed portfolio, it converts into growth

and therefore itself decreases. The greater the volatility reduction, the higher the growth

acceleration.

Do such speculations have any grounds in the general case, or do they have a

justification only in the above example? To formalize this question and answer it, let us

return to the discrete time-framework we deal with in this paper. Suppose there are two

assets with i.i.d. vectors of returns Rt ¼ ðR 1
t ;R

2
t Þ. Let ðx; ZÞ :¼ ðR 1

1 ;R
2
1 Þ and assume, to

avoid technicalities, that the random vector ðx; ZÞ takes on a finite number of values and is

strictly positive. The value Vt of the portfolio generated by a fixed-mix strategy with

proportions x and 1�x (0BxB1) is computed according to the formula

Vt ¼ V1

Yt

j¼2

xR 1
j þ ð1� xÞR 2

j

h i
; t � 2;

see (4.9). The growth rate of this process and its volatility are given, respectively, by the

expectation E ln zx and the standard deviation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var ln zx

p
of the random variable ln zx ,

where zx :¼ ln½xxþ ð1� xÞZ�. We know from the above analysis that the growth rate

increases when mixing assets with the same growth rate. What can be said about volatility?

Specifically, let us consider the following question.
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Question 4.3: (a) Suppose Var ln x ¼ Var ln Z. Is it true that Var ln½xxþ ð1� xÞZ�

 Var ln x when x �(0,1)? (b) More generally, is it true that Var ln½xxþ ð1� xÞZ� 

maxðVar ln x;Var ln ZÞ for x �(0,1)?

Query (b) asks whether the logarithmic variance is a quasi-convex functional. Ques-

tions (a) and (b) can also be stated for volatility defined as the square root of logarithmic

variance. They will have the same answers because the square root is a strictly monotone

function. Positive answers to these questions would substantiate the above conjecture of

volatility reduction—negative, refute it.

It turns out that in general (without additional assumptions on j and h) the above

questions 4.3(a) and 4.3(b) have negative answers. To show this consider two i.i.d. random

variables U and V with values 1 and a � 0 realized with equal probabilities. Consider the

function

f ðyÞ :¼ Var ln½yU þ ð1� yÞV �; y 2 ½0; 1�: ð4:14Þ

By evaluating the first and the second derivatives of this function at y�1/2, one can show

the following. There exist some numbers 0 < a� < 1 and aþ > 1 such that the function f(y)

attains its minimum at the point y�1/2 when a belongs to the closed interval ½a�; aþ� and

it has a local maximum (!) at y�1/2 when a does not belong to this interval. The numbers

a� and a� are given by

a� ¼ 2e 4 � 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2e 4 � 1Þ 2 � 1

q
;

where a�:0.0046 and a�:216.388. If a 2 ½a�; aþ�, the function f (y) is convex, but if

a =2 ½a�; aþ�, its graph has the shape illustrated in Figure 4.1.

Fix any a for which the graph of f (y) looks like the one depicted in Figure 4.1. Consider

any number y0B1/2 which is greater than the smallest local minimum of f (y) and define

x :¼ y0U þ ð1� y0ÞV and Z :¼ y0V þ ð1� y0ÞU . (U and V may be interpreted as

‘factors’ on which the returns j and h on the two assets depend.) Then Var ln½ðxþ
ZÞ=2�> Var ln x ¼ Var ln Z, which yields a negative answer both to (a) and (b). In this

f (y)

y

1/2 10

FIGURE 4.1 Graph of the function f (y) in Equation (4.14) for a�104.
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example j and h are dependent. It would be of interest to investigate questions (a) and (b)

for general independent random variables j and h. It can be shown that the answer to (b)

is positive if one of the variables j and h is constant. But even in this case the function

Var ln½xxþ ð1� xÞZ� is not necessarily convex: it may have an inflection point in (0, 1),

which can be easily shown by examples involving two-valued random variables.

Thus it can happen that a mixed portfolio may have a greater volatility than each of the

assets from which it has been constructed. Consequently, the above conjecture and the

‘energy interpretation’ of volatility are generally not valid. It is interesting, however, to find

additional conditions under which assertions regarding volatility reduction hold true. In

this connection, we can assert the following fact.

Theorem 4.4: Let U and V be independent random variables bounded above and below by

strictly positive constants. If U is not constant, then Var ln½ yU þ ð1� yÞV �< Var In U for all

y �(0,1) sufficiently close to 1.

Volatility can be regarded as a quantitative measure of instability of the portfolio value.

The above result shows that small independent noise can reduce volatility. This result is

akin to a number of known facts about noise-induced stability, e.g. Abbott (2001) and

Mielke (2000). An analysis of links between the topic of the present work and results about

stability under random noise might constitute an interesting theme for further research.

Proof of Theorem 4.4: This can be obtained by evaluating the derivative of the function

f(y) defined by (4.14) at y � 1. Basic computations show that

f 0ð1Þ ¼ 2ðEV Þð�Ee �Z Z þ Ee �Z 
 EZÞ; ð4:15Þ

where Z�ln U. The assertion of the theorem is valid because f 0ð1Þ> 0. The verification of

this inequality is based on the following fact. If f(z) is a function on (��,��) with

f 0ðzÞ> 0, then

E ½ZfðZÞ�> ðEZÞEfðZÞ ð4:16Þ

for any non-constant bounded random variable Z. This fact follows from Jensen’s

inequality applied to the strictly convex function cðxÞ :¼
R x

0
fðzÞdz and from the

relation cðyÞ � cðxÞ � fðxÞðy � xÞ (to obtain (16) put x:�Z, y:�EZ and take the

expectation). By applying (16) to fðzÞ :¼ �e �z, we find that the expression in (4.15) is

positive. I

4.6 VOLATILITY-INDUCED GROWTH UNDER SMALL
TRANSACTION COSTS

We now assume that, in the market under consideration (see Section 4.2), there are

transaction costs for buying and selling assets. When selling x units of asset k at time t, one

receives the amount ð1� e k
�ÞS k

t x (rather than S k
t x as in the frictionless case). To buy x

units of asset k, one has to pay ð1þ e k
þÞS k

t x. The numbers e k
�; e

k
þ � 0, k�1, 2, . . . , K
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(the transaction cost rates) are assumed given. In this market, a trading strategy

H ¼ ðh0; h1; . . .Þ is self-financing if

XK

k¼1

1þ e k
þ

� �
S k

t h k
t � h k

t�1

� �
þ


XK

k¼1

1� e k
�

� �
S k

t h k
t�1 � h k

t

� �
þ; t � 1; ð4:17Þ

where xþ ¼ maxfx; 0g. Inequality (4.17) means that asset purchases can be made only at

the expense of asset sales.

Relation (4.17) is equivalent to

XK

k¼1

S k
t h k

t � h k
t�1

� �

 �

XK

k¼1

e k
þS k

t h k
t � h k

t�1

� �
þ�
XK

k¼1

e k
�S k

t h k
t�1 � h k

t

� �
þ

(which follows from the identity xþ � ð�xÞþ ¼ x). Therefore, if the portfolio ht differs

from the portfolio ht�1 in at least one position k for which e k
þ 6¼ 0 and e k

� 6¼ 0, then

St ht < St ht�1. Thus, under transaction costs, portfolio rebalancing typically leads to a loss

of wealth. The number St ht=St ht�1 
 1 is called the loss coefficient (of the portfolio

strategy H at time t).

We say that H ¼ ðh0; h1; . . .Þ is a constant proportions strategy with vector of

proportions l ¼ ðl 1; . . . ; lK Þ 2 D if S k
t h k

t ¼ l kSt ht for all k ¼ 1; 2; . . . ;K and

t� 1, 2, . . . (cf. (4)). Let d �(0, 1) be a constant. Given a vector of proportions l ¼
ðl 1; . . . ; lK Þ 2 D and a non-zero initial portfolio h0]0, define recursively

h k
t ¼
ð1� dÞl kSt ht�1

S k
t

ðk ¼ 1; 2; . . . ;K ; t ¼ 1; 2; . . .Þ: ð4:18Þ

This rule defines a trading strategy with constant investment proportions l 1; . . . ; lK and a

constant loss coefficient 1�d. We will call it the (d, l)-strategy.

Theorem 4.5 below extends the results of Theorems 4.1 and 4.2 to the model with

transaction costs. As before, we assume that hypotheses (R) and (V) hold.

Theorem 4.5: Let l ¼ ðl 1; . . . ; lK Þ 2 D be a strictly positive vector. If d �(0,1) is small

enough, then the (d, l)-strategy H defined by (4.18) has a growth rate strictly greater thanPK

k¼1 l
kr k (a.s.), and so if r 1 ¼ 
 
 
 ¼ rK ¼ r, then the growth rate of H is strictly greater

than r (a.s.). Further, if the transaction cost rates e k
�; e

k
þ � 0, k�1, 2, . . ., K, are small

enough (in particular, if they do not exceed du2), then the strategy H is self-financing.

The purpose of this theorem is to demonstrate that the results on volatility-induced

growth remain valid under small transaction costs. In contrast with a number of the

questions we considered previously, the answer to the question we pose here is quite

predictable and does not contradict intuition. We deal in Theorem 4.5 with constant

proportions strategies of a special form—those for which the loss rate is constant (and

small enough). We are again not concerned with the question of optimality of such

strategies for one criterion or another.
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Proof of Theorem 4.5: We first observe that the growth rate of the strategy H is equal to

E ln½ð1� dÞRtl�. This fact is proved exactly like (4.11) (simply multiply the vectors of

proportions in (4.8), (4.9), (4.10) and (4.11) by (1�d)). According to (4.12), we have

E lnðRtlÞ>
PK

k¼1 l
kr k. This inequality will remain valid if l is replaced by (1�d)l,

provided d �(0, 1) is small enough. Fix any such d �(0, 1). Denote by o the greatest of the

numbers e k
�; e

k
þ. It remains to show that H is self-financing when e 
 d=2. To this end we

note that inequality (4.17) is implied by

XK

k¼1

ð1þ eÞS k
t h k

t � h k
t�1

� �
þ


XK

k¼1

ð1� eÞS k
t h k

t�1 � h k
t

� �
þ;

which is equivalent to

e
XK

k¼1

S k
t h k

t � S k
t h k

t�1

�� �� 
 Stðht�1 � htÞ: ð4:19Þ

In view of (4.18), the right-hand side of the last inequality is equal to dSt ht�1, and the left-

hand side can be estimated as follows:

e
XK

k¼1

jð1� dÞlkSt ht�1 � Sk
t hk

t�1j 
 e
XK

k¼1

ð1� dÞlkSt ht�1 þ e
XK

k¼1

Sk
t hk

t�1

¼ eð1� dÞSt ht�1 þ eSt ht�1 
 2eSt ht�1:

Consequently, if 0 
 e 
 d=2, then the strategy H is self-financing. I

4.7 GROWTH UNDER TRANSACTION COSTS: AN EXAMPLE

In this section we consider an example (a binomial model) in which quantitative estimates

for the size of the transaction costs needed for the validity of the result on volatility-

induced growth can be provided. Suppose that there are two assets k � 1, 2: one riskless

and one risky. The price of the former is constant and equal to 1. The price of the latter

follows a geometric random walk. It can either jump up by u � 1 or down by u�1 with

equal probabilities. Thus both securities have zero growth rates.

Suppose the investor pursues the constant proportions strategy prescribing to keep

50) of wealth in each of the securities. There are no transaction costs for buying and

selling the riskless asset, but there is a transaction cost rate for buying and selling the risky

asset of e 2 ð0; 1Þ. Assume the investor’s portfolio at time t � 1 contains v units of cash;

then the value of the risky position of the portfolio must be also equal to v. At time t, the

riskless position of the portfolio will remain the same, and the value of the risky position

will become either uv or u�1v with equal probability. In the former case, the investor

rebalances his/her portfolio by selling an amount of the risky asset worth A so that

v þ ð1� eÞA ¼ vu � A: ð4:20Þ
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by selling an amount of the risky asset of value A in the current prices, the investor receives

ð1� eÞA, and this sum of cash is added to the riskless position of the portfolio. After

rebalancing, the values of both portfolio positions must be equal, which is expressed in

(4.20). From (4.20) we obtain A ¼ vðu � 1Þð2� eÞ�1
. The positions of the new

(rebalanced) portfolio, measured in terms of their current values, are equal to

v þ ð1� eÞA= v[1� ð1� eÞð2� eÞ�1ðu � 1Þ�. In the latter case (when the value of the

risky position becomes u�1), the investor buys some amount of the risky asset worth B,

for which the amount of cash ð1þ eÞB is needed, so that

v � ð1þ eÞB ¼ u�1v þ B:

From this, we find �B ¼ vðu�1 � 1Þð2þ eÞ�1
, and so v � ð1þ eÞB ¼ v½1þ ð1þ eÞ

ð2þ eÞ�1ðu�1 � 1Þ�.
Thus, the portfolio value at each time t is equal to its value at time t � 1 multiplied by

the random variable j such that Pfx ¼ g 0g ¼ Pfx ¼ g 00g ¼ 1=2, where g 0 :¼ 1þ ð1þ eÞ
ð2þ eÞ�1ðu�1 � 1Þ and g 00 :¼ 1þ ð1� eÞ � ð2� eÞ�1ðu � 1Þ . Consequently, the asymp-

totic growth rate of the portfolio value, E ln x ¼ ð1=2Þðln g 0 þ ln g 00Þ, is equal to

ð1=2Þ lnfðe; uÞ, where

fðe; uÞ :¼ 1þ ð1þ eÞ u�1 � 1

2þ e

� �
1þ ð1� eÞ u � 1

2� e

� �
:

We have E ln x> 0, i.e. the phenomenon of volatility induced growth takes place, if

fðe; uÞ> 1. For e 2 ½0; 1Þ, this inequality turns out to be equivalent to the following very

simple relation: 0 
 e< ðu � 1Þðu þ 1Þ�1
. Thus, given u � 1, the asymptotic growth rate

of the fixed-mix strategy under consideration is greater than zero if the transaction cost

rate o is less than e�ðuÞ :¼ ðu � 1Þðu þ 1Þ�1
. We call e�ðuÞ the threshold transaction cost

rate. Volatility-induced growth takes place—in the present example, where the portfolio is

rebalanced in every one period2—when 0 
 e< e�ðuÞ.
The volatility s of the risky asset under consideration (the standard deviation of its

logarithmic return) is equal to ln u. In the above considerations, we assumed that s—or

equivalently, u—is fixed, and we examined fðe; uÞ as a function of o. Let us now examine

fðe; uÞ as a function of u when the transaction cost rate o is fixed and strictly positive. For

the derivative of fðe; uÞ with respect to u, we have

f 0uðe; uÞ ¼
1þ e

4� e 2

1� e

1þ e
� u�2

� �
:

If u � 1, then f 0uðe; 1Þ< 0. Thus if the volatility of the risky asset is small, the

performance of the constant proportions strategy at hand is worse than the performance of

each individual asset. This fact refutes the possible conjecture that ‘the higher the volatility,

2 For the optimal timing of rebalancing in markets with transaction costs see, e.g. Aurell and Muratore (2000).
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the higher the induced growth rate.’ Further, the derivative f 0uðe; uÞ is negative when

u 2 ½0; u�ðeÞÞ, where u�ðeÞ :¼ ð1� eÞ�1=2ð1þ eÞ 1=2
. For u ¼ u�ðeÞ the asymptotic growth

rate of the constant proportions strategy at hand attains its minimum value. For those

values of u which are greater than u�ðeÞ, the growth rate increases, and it tends to infinity

as u0�. Thus, although the assertion ‘the greater the volatility, the greater the induced

growth rate’ is not valid always, it is valid (in the present example) under the additional

assumption that the volatility is large enough.

4.8 CONCLUSION

In this chapter we have established the surprising result that when asset returns are

stationary ergodic, their volatility, together with any fixed-mix trading strategy, generates

a portfolio growth rate in excess of the individual asset growth rates. As a consequence,

even if the growth rates of the individual securities all have mean zero, the value of a fixed-

mix portfolio tends to infinity with probability one. By contrast with the 25 years in which

the effects of ‘volatility pumping’ have been investigated in the literature by example, our

results are quite general. They are obtained under assumptions which accommodate

virtually all the empirical market return properties discussed in the literature. We have in

this chapter also dispelled the notion that the demonstrated acceleration of portfolio

growth is simply a matter of ‘buying lower and selling higher.’ The example of Section 4.3

shows that our result depends critically on rebalancing to an arbitrary fixed mix of

portfolio proportions. Any such mix defines the relative magnitudes of individual asset

returns realized from volatility effects. This observation and our analysis of links between

growth, arbitrage and noise-induced stability suggest that financial growth driven by

volatility is a subtle and delicate phenomenon.
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5.1 INTRODUCTION

T HE PORTFOLIO SELECTION PROBLEM is one of the basic problems within the research

area of computational finance. It has been studied intensively throughout the last

50 years, producing several relevant contributions described in the specialized

literature. Portfolio selection originates from the seminal paper of Markowitz (1952),

who introduced and motivated the mean-variance investment framework. This conven-

tional approach to portfolio selection, which has received increasing attention, consists of

two separate steps. The first step concerns distributional assumptions about the behaviour

of stock prices, while the second step is related to the selection of the optimal portfolio

depending on some objective function and/or utility function defined according to the

investor’s goal. This conceptual model has proved in the past to be useful in spite of the

many drawbacks that have been pointed out by finance practitioners, private investors and

researchers. Indeed, the first step, related to distributional assumptions concerning the

behaviour of stock prices, encounters many difficulties because the future evolution of

stock prices is notoriously difficult to predict, while the selection of a distribution class

inevitably brings a measure of arbitrariness. These problems become even more evident

and dramatic in the case where there are reasons to believe that the process that governs

stock price behaviour changes over time.
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A different approach to portfolio selection, to overcome the main limitations and

problems related to the mean variance approach, has been proposed by Cover (1991a, b).

The main characteristic of Cover’s approach to portfolio selection is that no distributional

assumptions on the sequence of price relatives are required. Indeed, within Cover’s

investment framework, portfolio selection is based completely on the sequence of past

prices, which is taken as is, with little, if any, statistical processing. No assumptions are

made concerning the family of probability distributions that describes the stock prices, or

even concerning the existence of such distributions. To emphasize this independence from

statistical assumptions, such portfolios are called universal portfolios. It has been shown

that such portfolios possess important theoretical properties concerning their asymptotic

behaviour and exhibit reasonable finite time behaviour. Indeed, it is well known (Bell

and Cover 1980; Algoet and Cover 1988; Cover 1991a) that if the price relatives are

independent and identically distributed, the optimal growth rate of wealth is achieved by a

constant rebalanced portfolio, i.e. an investment strategy that keeps fixed through time,

trading period by trading period, the distribution of wealth among a set of assets. In

recent years, constant rebalanced portfolios have received increasing attention (Auer and

Warmuth 1995; Herbster and Warmuth 1995; Helmbold et al. 1996; Singer 1997; Browne

1998; Vovk and Watkins 1998; Borodin et al. 2000; Gaivoronski and Stella 2000, 2003) and

have also been studied in the case where transaction costs are involved (Blum and Kalai

1998; Evstigneev and Schenk-Hoppè 2002).

It is worth noting that the best constant rebalanced portfolio, as well as the universal

portfolio, are designed to deal with the portfolio selection problem in the case where no

additional information is available concerning the stock market. However, it is common

practice that investors, fund managers and private investors adjust their portfolios, i.e.

rebalance, using various sources of information concerning the stock market which can be

conveniently summarized by the concept of side-information. A typical example of side-

information originates from sophisticated trading strategies that often develop signalling

algorithms that individuate the nature of the investment opportunity about to be faced. In

this context, the side-information is usually considered to be a causal function of past stock

market performance. Cover and Ordentlich (1996) presented the state constant rebalanced

portfolio, i.e. a sequential investment algorithm that achieves, to first order in the exponent,

the same wealth as the best side-information-dependent investment strategy determined in

hindsight from observed market and side-information outcomes. The authors, at each

trading period t � {1, . . ., n}, used a state constant rebalanced portfolio investment

algorithm that invests in the market using one of k distinct portfolios x(1), . . ., x(k)

depending on the current state of side-information yt. They established a set of allowable

investment actions (sequence of portfolio choices xt), and sought to achieve the same

asymptotic growth rate of wealth as the best action in this set, not in any stochastic sense,

but uniformly over all possible sequences of price relatives and side-information states.

In this chapter we study and analyse the topic proposed by Cover and Ordentlich

(1996). Attention is focused on the interplay between constant rebalanced portfolios and

side-information. A mathematical framework is proposed for dealing with constant

rebalanced portfolios in the case where side-information is available concerning the stock
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market. The mathematical framework introduces a new investment strategy, namely the

mixture best constant rebalanced portfolio, which directly exploits the available

side-information to outperform, in terms of the achieved wealth, the best constant

rebalanced portfolio determined in hindsight, i.e. by assuming perfect knowledge of future

stock prices. We provide a mathematical comparison of the achieved wealth by means of

the best constant rebalanced portfolio and its counterpart, namely the mixture best

constant rebalanced portfolio. The mixture best constant rebalanced portfolio is shown to

outperform the best constant rebalanced portfolio by an exponential factor in terms of the

achieved wealth. In addition, we present an online investment algorithm, namely

the mixture successive constant rebalanced portfolio with side-information, that relies on

the mixture best constant rebalanced portfolio and side-information. The proposed online

investment algorithm assumes the existence of an oracle, which, by exploiting the available

side-information, is capable of predicting, with different levels of accuracy (Han and

Kamber 2001), the state of the stock market for the next trading period. The empirical

performance of the online investment algorithm is investigated using a set of numerical

experiments concerning four major stock market data sets, namely the Dow Jones

Industrial Average, the Standard and Poor’s 500, the Toronto Stock Exchange (Borodin

et al. 2000) and the New York Stock Exchange (Cover 1991b; Helmbold et al. 1996). The

results obtained emphasize the relevance of the proposed sequential investment strategy

and underline the central role of the quality of the side-information in outperforming the

best constant rebalanced portfolio.

The remainder of the chapter is organized as follows. In Section 5.2 we introduce the

notation and main definitions concerning the stock market, the price relative, the constant

rebalanced portfolio and the successive constant rebalanced portfolio (Gaivoronski and

Stella 2000). Side-information, the mixture best constant rebalanced portfolio and the

mixture successive constant rebalanced portfolio are introduced and analysed in Section

5.3. Section 5.3 is concerned with the theoretical framework for online investment in the

case where side-information is available and provides the theoretical analysis and

comparison between the best constant rebalanced portfolio, the mixture best constant

rebalanced portfolio and the mixture successive constant rebalanced portfolio. Finally,

Section 5.4 presents and comments on the results of a set of numerical experiments

concerning some of the main financial market data sets described in the specialized

literature (Cover 1991b; Helmbold et al. 1996; Borodin et al. 2000).

5.2 CONSTANT REBALANCED PORTFOLIOS

Following Cover (1991b), a stock market vector is represented as a vector

z ¼ ðz1; . . . ; zmÞ;

such that zi]0, �i�1, . . ., m, where m is the number of stocks and zi is the price relative,

i.e. it represents the ratio of the price at the end of the trading period to the price at the

beginning of the trading period.
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A portfolio is described by the vector

x ¼ ðx1; . . . ; xmÞ;

such that

x 2 X ¼ x j xi � 0; 8i ¼ 1; . . . ; m;
Xm

i¼1

xi ¼ 1

( )
:

The portfolio x is an allocation of the current wealth across the stocks in the sense that xi

represents the fraction of wealth invested in the ith stock.

By assuming that x and z represent, respectively, the portfolio and the stock market

vector for one investment period, the wealth relative (i.e. the ratio of the wealth at the end

of the trading period to the wealth at the beginning of the trading period), given by

S ¼ xT z;

represents the factor by which the wealth increases/decreases in one investment period

using portfolio x.

The problem of portfolio selection consists of selecting a portfolio x that would

maximize S in some sense. Financial theory has developed various notions of optimality

for the portfolio selection problem. One possibility is to maximize the expected value of

S subject to a constraint on the variance as proposed by the Sharpe�/Markowitz theory

of investment (Markowitz 1952), which deals with the long-term behaviour of fixed

portfolios. However, the mean-variance investment framework does not take into proper

account the possibilities of frequent portfolio rebalances, which are one of the most

important features characterizing a stock market.

To overcome this limitation, another possibility for the portfolio selection problem was

proposed and described by Cover (1991a, b) that exploits the concept of the constant

rebalanced portfolio (CRP), i.e. a portfolio such that, after each trading period, it is

arranged in order to keep constant the fraction of wealth invested in every stock. By

considering an arbitrary non-random sequence of n stock market vectors zð1Þ; . . . ; zðnÞ, a

CRP x achieves wealth

Sðx; nÞ ¼
Yn

t¼1

xT zðtÞ;

where we assume that the initial wealth (t�0) is normalized to 1 (S(x,0)�1).

Within the class of constant rebalanced portfolios (CRPs), the best of such portfolios

determined in hindsight, namely the best constant rebalanced portfolio (BCRP), i.e. the

CRP computed by assuming perfect knowledge of future stock prices, possesses interesting

properties. Indeed, Cover (1991a, b) showed that the wealth achieved by means of the
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BCRP is not inferior to that achieved by the best stock, to that associated with the value

line and to that associated with the arithmetic mean.

These properties have motivated increasing interest in the study and analysis of the

main features of this investment strategy and the use of this portfolio as the reference

benchmark to evaluate and compare sequential investment strategies.

Let us now formally introduce the BCRP x
�ðnÞ that solves the following optimization

problem:

max
x2X

Sðx; nÞ: ð5:1Þ

The vector x
�ðnÞ

maximizes the wealth S(x,n) across the stock market vector sequence

z(1), . . ., z(n) and therefore it is defined as the BCRP for the stock market vector sequence

z(1), . . ., z(n).

The portfolio x
�ðnÞ

cannot be used, however, for actual stock selection, at trading period

n, because it explicitly depends on the sequence z(1), . . ., z(n) which becomes known only

after the expiration of this time interval.

Therefore, a reasonable objective might be to construct a sequence of portfolios fxðtÞg,
i.e. a sequential investment strategy such that, at trading periods t�2, . . ., n, the portfolio

x(t), used for stock selection, depends on the sequence z(1), . . ., z(t�1). Let us denote by

S ({x(t)}, n) the wealth generated after n trading periods by successive application of the

sequence of portfolios {x(t)}, then

S
��

xðtÞ
�
; n
�
¼
Yn

t¼1

xðtÞ
T

zðtÞ:

It would be desirable if such a sequential investment strategy {x(t)} would yield wealth in

some sense close to the wealth obtained by means of the BCRP x
�ðnÞ

. One such strategy was

proposed by Cover (1991b) under the name of the universal portfolio (UP) and consists of

selecting the investment portfolio as follows:

bxð1Þ ¼ 1

m
; . . . ;

1

m


 �
; bxðtþ1Þ ¼

R
X

xSðx; tÞ dx
R

X
Sðx; tÞ dx

: ð5:2Þ

The UP (5.2) has been shown by Cover (1991a) to possess a very interesting property: it

has the same exponent, to first order, as the BCRP. Formally, by letting

S
��
bxðtÞ
�
; n
�
¼
Yn

t¼1

bxðtÞT

zðtÞ

be the wealth achieved by means of the UP, then it has been shown that

1

n
log S

��
bxðtÞ
�
; n
�
� 1

n
log S

�
x
�ðnÞ
; n
�
! 0;
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with the following inequality holding:

S
��
bxðtÞ
�
; n
�
� S
�
x
�ðnÞ
; n
�
Cnn�ðm�1Þ=2;

where Cn tends to some limit along subsequences for which

W
�
x
�ðnÞ
; n
�
¼ 1

n
log S

�
x
�ðnÞ
; n
�
! W

�
x
�ðnÞ�

for some strictly concave function W(x) (see theorem 6.1 of Cover 1991a).

Another example of an investment strategy that exploits the definition of BCRP has

been proposed by Gaivoronski and Stella (2000). This strategy, called the successive

constant rebalanced portfolio (SCRP), selects the investment portfolio as follows:

exð1Þ ¼ 1

m
; . . . ;

1

m


 �
; exðtþ1Þ ¼ arg max

x2X
Sðx; tÞ;

where X ¼ fx : xi � 0; 8i ¼ 1; . . . ;m;
Pm

i¼1 xi ¼ 1g. The SCRP fexðtÞg possesses inter-

esting properties. Indeed, its asymptotic wealth S
��
exðtÞ
�
; n
�

coincides with the wealth

obtained by means of the BCRP to first order in the exponent, i.e.

1

n
log S

��
exðtÞ
�
; n
�
� 1

n
log S

�
x
�ðnÞ
; n
�
! 0;

with the following inequality holding:

S
��
exðtÞ
�
; n
�
� S
�
x
�ðnÞ
; n
�
Cðn � 1Þ�2K 2=d

; ð5:4Þ

where K ¼ supt ;x2X kHx½lnðxT zðtÞÞ�k, while C and d are constants.

5.3 ONLINE INVESTMENT WITH SIDE-INFORMATION

BCRP, UP and SCRP are investment strategies designed to deal with the portfolio selection

problem in the case where no additional information is available concerning the stock

market. However, it is common practice that investors, fund managers and private

investors adjust their portfolios, i.e. rebalance, using various sources of information

concerning the stock market, which can be conveniently summarized by the concept of

side-information.

A typical example of side-information originates from sophisticated trading strategies

that often develop signalling algorithms that individuate the nature of the investment

opportunity about to be faced. In this context, side-information is usually considered to be a

causal function of past stock market performance. Therefore, the availability of side-

information concerning the stock market calls for the definition of a new investment

benchmark, other than the BCRP, capable of appropriately exploiting side-information

about the stock market. In this direction, Cover and Ordentlich (1996) proposed the state
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constant rebalanced portfolio, which is capable of appropriately exploiting the available side-

information concerning the stock market. The state constant rebalanced portfolio achieves,

to first order in the exponent, the same wealth as the best side-information-dependent

investment strategy determined in hindsight from the observed stock market vector and

side-information outcomes.

Following the main ideas of Cover and Ordentlich (1996) we propose and describe a

theoretical framework for online investment in the case where side-information is

available concerning the stock market. We propose a mathematical model for the stock

market in the presence of side-information and define a new investment benchmark that

appropriately exploits the available side-information.

The proposed mathematical model assumes that, at any trading period t, the stock

market can be in one of H possible states belonging to H � { 1, . . ., H }. The stock market

state at trading period t influences the stock market vector z(t). Formally, the model

assumes that the infinite sequence of stock market vectors zð1Þ; . . . ; zð1Þ is a realization

from a mixture consisting of H components. Each mixture’s component is associated with

a given stock market state. Therefore, any infinite sequence of stock market vectors

zð1Þ; . . . ; zð1Þ partitions into H mutually exclusive subsets Z1; . . . ;ZH , each subset Zh

containing those stock market vectors associated with the corresponding stock market

state h. It should be emphasized that the partitioning Z1; . . . ;ZH is assumed to be data

independent, i.e. it does not depend on the given infinite sequence of stock market vectors

zð1Þ; . . . ; zð1Þ, but it only depends on the mixture’s components. The same model applies

to finite stock market vector sequences zð1Þ; . . . ; zðnÞ. However, in order to avoid

confusion, for any given finite stock market vector sequence zð1Þ; . . . ; zðnÞ, we will let

Z
ðnÞ
h be the subset containing only those stock market vectors z(t), t�1, . . ., n, associated

with the stock market state h. Furthermore, we let n
ðnÞ
h be the cardinality of Z

ðnÞ
h ,PH

h¼1 n
ðnÞ
h ¼ n and assume that n

ðnÞ
h !1 as n 0�, � h � H.

This stock market model requires the definition of a new investment benchmark, the

mixture best constant rebalanced portfolio (MBCRP), in the case where side-information is

available, and can be used to make an inference about the current stock market state.

To introduce the mathematical framework for dealing with the proposed stock market

model and side-information, let us take into account the generic stock market state h and

let x
�ðnÞ

h solve the optimization problem (5.1) for those stock market vectors zð1Þ; . . . ; zðnÞ

belonging to subset Z
ðnÞ
h , i.e. x

�ðnÞ
h maximizes the logarithmic wealth relative associated with

stock market state h

log Shðx; nÞ ¼
Xn

t¼1

I
zðtÞ2Z

ðnÞ
h

log
�

xT zðtÞ
�
: ð5:5Þ

Let us now expand (5.5) in a Taylor series, up to second order, centred at x
�ðnÞ

h to obtain
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log Shðx; nÞ ¼
Xn

t¼1

I
zðtÞ2Z

ðnÞ
h

"
log
�
x
�ðnÞ

h
T zðtÞ

�
þ
�

x � x
�ðnÞ

h

�T
zðtÞ

x
�ðnÞ

h
T zðtÞ

�
�

x � x
�ðnÞ

h

�T�
zðtÞðzðtÞÞT

��
x � x

�ðnÞ
h

�

2
�
x
�ðnÞ

h
T zðtÞ

�2

þ
��

x � x
�ðnÞ

h

�T
zðtÞ
�3

3
�
ET zðtÞ

�3

#

for a given vector � between x and x
�ðnÞ

h . Equation (5.6), by exploiting (5.5) and by

isolating the contribution for each of its four terms, can be rewritten as

log Shðx; nÞ � log Shðx
�ðnÞ

h ; nÞ

¼
Xn

t¼1

I
zðtÞ2Z

ðnÞ
h

" �
x � x

�ðnÞ
h

�T
zðtÞ

x
�ðnÞ

h
T zðtÞ

�
�

x � x
�ðnÞ

h

�T�
zðtÞðzðtÞÞT

��
x � x

�ðnÞ
h

�

2
�
x
�ðnÞ

h
T zðtÞ

�2
þ
��

x � x
�ðnÞ

h

�T
zðtÞ
�3

3
�
ET zðtÞ

�3

#
: ð5:7Þ

Now, according to Gaivoronski and Stella (2000), the following conditions hold:

� Asymptotic independence

lim inf
n

gmin

Xn

t¼1

I
zðtÞ2Z

ðnÞ
h

zðtÞðzðtÞÞT

kzðtÞk2

 !
� dh > 0;

where by gmin(A) we denote the smallest eigenvalue of matrix A;

� Uniform boundedness

0 < z� � z
ðtÞ
i � zþ; 8t ; i:

Theorem 5.2 in Gaivoronski and Stella (2000) ensures that (5.5) is strictly concave

on X uniformly over n and therefore the following inequality holds:

log Shðx; nÞ � log Sh x
�ðnÞ

h ; n
� �

�
Xn

t¼1

I
zðtÞ2Z

ðnÞ
h

�
x � x

�ðnÞ
h

�T
zðtÞ

x
�ðnÞ

h
T zðtÞ

� dh

2
x � x

�ðnÞ
h

���
���

2

: ð5:8Þ

Now, from optimality conditions, applied to the BCRP x
�ðnÞ

h , we know that, for each

stock market state h and for any CRP x, the following condition holds:
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Xn

t¼1

I
zðtÞ2Z

ðnÞ
h

�
x � x

�ðnÞ
h

�T
zðtÞ

x
�ðnÞ

h
T zðtÞ

� 0; ð5:9Þ

and, therefore, by combining (5.8) with (5.9) we can write

log Sh

�
x
�ðnÞ

h ; n
�
� log Shðx; nÞ �

dh

2
x � x

�ðnÞ
h

���
���

2

: ð5:10Þ

Finally, by recalling (5.8) and using the relationship between dh and n
ðnÞ
h , we obtain the

inequality

log Sh

�
x
�ðnÞ

h ; n
�
� log Shðx; nÞ �

1

2
n
ðnÞ
h gh x � x

�ðnÞ
h

���
���

2

; ð5:11Þ

where gh is the lim inf of the minimum eigenvalue of the matrix

1

n
ðnÞ
h

Xn

t¼1

I
zðtÞ2Z

ðnÞ
h

zðtÞzðtÞT
��zðtÞ

��2 :

Let us now return to the proposed mathematical framework for dealing with stock

markets and side-information, i.e. let us take into account the case where the stock market

can be in one of H possible states belonging to H � {1, . . ., H}. In such a framework,

given a sequence of stock market vectors zð1Þ; . . . ; zðnÞ, where each stock market vector is

associated with a given stock market state, the achieved logarithmic wealth, by means of

the investment strategy fx�ðnÞH g that, at each trading period t, exploits knowledge of the

current stock market state h and applies the corresponding BCRP x
�ðnÞ

h according to (5.5), is

given by

log S
��

x
�ðnÞ

H

�
; n
�
¼
XH

h¼1

log Sh

�
x
�ðnÞ

h ; n
�
; ð5:12Þ

whereas the logarithmic wealth achieved by means of any CRP x is given by

log Sðx; nÞ ¼
Pn

t¼1 logðxT zðtÞÞ.
The difference between the logarithmic wealth achieved by means of the investment

strategy fx�ðnÞH g and the logarithmic wealth achieved by means of any other CRP x is given

by

log S
��

x
�ðnÞ

H

�
; n
�
� log Sðx; nÞ ¼

XH

h¼1

log Sh

�
x
�ðnÞ

h ; n
�
�
Xn

t¼1

log
�

xT zðtÞ
�
;

and from (5.11) we can write
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log S
��

x
�ðnÞ

H

�
; n
�
� log Sðx; nÞ � 1

2

XH

h¼1

n
ðnÞ
h gh

��x � x
�ðnÞ

h

��2
:

Therefore, given the investment strategy fx�ðnÞH g and the BCRP x
�ðnÞ

, the following inequality

holds:

log S
��

x
�ðnÞ

H

�
; n
�
� log S

�
x
�ðnÞ; n

�
� 1

2

XH

h¼1

n
ðnÞ
h gh

��x
�ðnÞ � x

�ðnÞ
h

��2: ð5:13Þ

The bound (5.13) strongly motivates interest in investment strategies depending on

knowledge of the current stock market state. Indeed, coming back to wealth, the following

condition holds:

S
��

x
�ðnÞ

H

�
; n
�
� Sðx�ðnÞ; nÞ exp

1

2

XH

h¼1

n
ðnÞ
h gh

��x
�ðnÞ � x

�ðnÞ
h

��2

 !
; ð5:14Þ

and, therefore, the investment strategy fx�ðnÞH g achieves a wealth that is exponential with

respect to the wealth achieved by means of the BCRP x
�ðnÞ

.

Let us now give the formal definition of the MBCRP investment strategy fx�ðnÞH g, that, at

each trading period t, exploits knowledge of the current stock market state h to select and

to apply the corresponding BCRP x
�ðnÞ

h .

Definition 5.3.1 (Mixture best constant rebalanced portfolio): Given a stock market

characterized by the states in H � {1, . . ., H}, the MBCRP is defined as the following

investment strategy, i.e. the set of BCRPs:

�
x
�ðnÞ

H

�
¼
�

x
�ðnÞ

1 ; . . . ; x
�ðnÞ

H

�
; ð5:15Þ

where each portfolio x
�ðnÞ

h is the BCRP, according to (5.5), associated with stock market state

h. The MBCRP is the investment strategy that, at each trading period t, knows the stock

market state h and therefore invests using the corresponding BCRP x
�ðnÞ

h .

The MBCRP possesses an interesting property; it outperforms by an exponential factor

the corresponding BCRP in terms of the wealth achieved as stated by the following theorem.

Theorem 5.3.2: The wealth accumulated after n trading periods from the MBCRP fx�ðnÞH g
outperforms the wealth of the corresponding BCRP x

�ðnÞ
by an exponential factor. Formally,

S
��

x
�ðnÞ

H

�
; n
�
� S
�
x
�ðnÞ
; n
�

exp
1

2

XH

h¼1

n
ðnÞ
h gh

��x
�ðnÞ � x

�ðnÞ
h

��2

 !
: ð5:16Þ

Proof: The proof follows directly from Equation (5.14). I
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Let us now introduce an online investment strategy, namely the mixture successive

constant rebalanced portfolio (MSCRP), which approximates the MBCRP and relies on the

successive constant rebalanced portfolio (SCRP) online investment strategy introduced and

analysed by Gaivoronski and Stella (2000).

Definition 5.3.3 (Mixture successive constant rebalanced portfolio): Given a stock market

characterized by the states in H � {1, . . ., H}, the MSCRP is defined as the following

investment strategy, i.e. the set of SCRPs:

�
exðnÞH

�
¼
��
exðtÞ1

�
; . . . ;

�
exðtÞH

��
; ð5:17Þ

where each portfolio fexðtÞh g is the SCRP associated with the stock market state h at trading

period t. The MSCRP is the investment strategy that, at each trading period t, knows the

stock market state h and therefore invests using the corresponding SCRP exðtÞh .

The relationship between the accumulated wealth, after n trading periods, by means of

the MBCRP benchmark and by means of the MSCRP online investment strategy, is

clarified by the following theorem.

Theorem 5.3.4: For each stock market characterized by states in H � {1, . . ., H}, the

MSCRP (5.17) is universal with respect to the MBCRP (5.15). Formally,

1

n
log S

��
exðnÞH

�
; n
�
� 1

n
log S

��
x
�ðnÞ

H

�
; n
�
! 0:

Proof: From property (5.4) of the SCRP (5.3) online investment strategy, for any given

stock market state h, the following inequality holds:

S
�
x
�ðnÞ

h ; n
�
� S
��
exðtÞ

h

�
; n
�
C ðhÞ

�
n
ðnÞ
h � 1

�Q ðhÞ

; ð5:18Þ

where C(h) and Q(h) are constants depending on the stock market state h.

Then, by combining Equation (5.12) with Equation (5.18), it is possible to write the

inequality

S
��

x
�ðnÞ

H

�
; n
�
¼
YH

h¼1

S
�
x
�ðnÞ

h ; n
�
�
YH

h¼1

S
��
exðtÞh

�
; n
�
C ðhÞ

�
n
ðnÞ
h � 1

�Q ðhÞ

; ð5:19Þ

and, thus, by taking the logarithm of both sides we obtain

log S
��

x
�ðnÞ

H

�
; n
�
�
XH

h¼1

�
log S

��
exðtÞh

�
; n
�
þ Q ðhÞ log

�
n
ðnÞ
h � 1

�
þ log C ðhÞ

�
;
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which can be rewritten as

log S
��

x
�ðnÞ

H

�
; n
�
� log S

��
exðnÞH

�
; n
�
�
XH

h¼1

�
Q ðhÞ log

�
n
ðnÞ
h � 1

�
þ log C ðhÞ

�
:

Therefore, dividing both sides by n, it is possible to conclude that

1

n
log S

��
exðnÞH

�
; n
�
� 1

n
log S

��
x
�ðnÞ

H

�
; n
�
! 0;

which completes the proof. I

Let us now compare the MSCRP with the corresponding BCRP in terms of the

accumulated wealth after n trading periods.

Theorem 5.3.5: For each stock market characterized by the states in H�{1, . . ., H}, the

accumulated wealth after n trading periods by means of the MSCRP fexðnÞH g outperforms the

accumulated wealth by means of the corresponding BCRP x
�ðnÞ by an exponential factor.

Formally, we have that, for n0�, the following inequality holds:

S
��
exðnÞH

�
; n
�
� S
�
x
�ðnÞ
; n
�

exp

 
1

2

XH

h¼1

�
n
ðnÞ
h gh

��x
�ðnÞ � x

�ðnÞ
h

��2

� Q ðhÞ log
�
n
ðnÞ
h � 1

�
� log C ðhÞ

�
!
:

Proof: Inequality (5.16) from theorem 5.3.2 states that

S
��

x
�ðnÞ

H

�
; n
�
� S
�
x
�ðnÞ
; n
�

exp
1

2

XH

h¼1

n
ðnÞ
h gh

��x
�ðnÞ � x

�ðnÞ
h

��2

 !
;

therefore using (5.19) it is possible to write

YH

h¼1

S
��
exðtÞh

�
; n
�
C ðhÞ

�
n
ðnÞ
h � 1

�Q ðhÞ

� S
��

x
�ðnÞ

H

�
; n
�
� S
�
x
�ðnÞ
; n
�

exp
1

2

XH

h¼1

n
ðnÞ
h gh

��x
�ðnÞ � x

�ðnÞ
h

��2

 !
;

and, by taking the logarithm and reordering, we obtain the inequality
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log S
��
exðnÞH

�
; n
�
� log S

�
x
�ðnÞ
; n
�

� 1

2

XH

h¼1

n
ðnÞ
h gh

��x
�ðnÞ � x

�ðnÞ
h

��2

�
XH

h¼1

Q ðhÞ log
�
n
ðnÞ
h � 1

�
� log C ðhÞ:

Now, by taking the limit n 0�, where for each stock market state h we assume that

n
ðnÞ
h !1, we have

S
��
exðnÞH

�
; n
�
� S
�
x
�ðnÞ
; n
�

exp

 
1

2

XH

h¼1

n
ðnÞ
h gh

��x
�ðnÞ � x

�ðnÞ
h

��2
�

�Q ðhÞ log
�
n
ðnÞ
h � 1

�
� log C ðhÞ

�!
:

Furthermore, we can write

S
�
x
�ðnÞ
; n
�

exp

 
1

2

XH

h¼1

n
ðnÞ
h gh

��x
�ðnÞ � x

�ðnÞ
h

��2
�

�Q ðhÞ log
�
n
ðnÞ
h � 1

�
� log C ðhÞ

�!

� S
�
x
�ðnÞ
; n
�

exp
1

2

XH

h¼1

n
ðnÞ
h gh

��x
�ðnÞ � x

�ðnÞ
h

��2

 !
;

and therefore it is possible to write the following inequality:

S
��
exðnÞH

�
; n
�
� S
�
x
�ðnÞ
; n
�

exp
1

2

XH

h¼1

n
ðnÞ
h gh

��x
�ðnÞ � x

�ðnÞ
h

��2

 !
;

which completes the proof. I

According to theorems 5.3.2, 5.3.4 and 5.3.5 the MSCRP investment strategy (definition

5.3.3) possesses interesting theoretical properties in the case where side-information is

available concerning the stock market. However, the MSCRP cannot be used directly to

invest in the stock market because, for each trading period t, it assumes perfect knowledge

about the current stock market state h, which is indeed known just after the current

trading period t has expired. Therefore, it would be desirable to develop an algorithm that,

by using past information about the stock market, makes predictions about the stock
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market state h for the next trading period t. More precisely, the algorithm to be developed

should exploit the available side-information to provide predictions about the stock

market state associated with the next trading period t.

In order to clarify how the prediction task concerning the stock market state h for the

next trading period t can be formulated and therefore to complete the proposed

mathematical framework for online investment with side-information, we adopt the

Bayesian paradigm.

In particular, we let m 2 R be the side-information vector and p(Y|h) the state

conditional probability density function for Y, i.e. the probability density function for the

side-information vector Y conditioned on h being the stock market state. Furthermore, we

let P(h) be the a priori probability that the stock market is in state h. Then, the posterior

probability P(h|Y) that the stock market is in state h given the side-information vector Y

can be computed using the celebrated Bayes’ rule (Duda and Hart 1973) as follows:

PðhjY Þ ¼ pðY jhÞPðhÞ
pðY Þ

: ð5:20Þ

The Bayes’ rule (5.20) offers a precious theoretical model for exploiting the available

side-information and therefore to make an inference concerning the stock market state for

the next trading period. However, the quantities on the right-hand side of (5.20), i.e. the

state conditional probability density p(Y|h) as well as the a priori probability P(h), are

unknown and must be estimated by combining a priori knowledge with the available data.

Several computational approaches and algorithms have been proposed and developed in

recent years and published in the specialized literature (Duda and Hart 1973; Bernardo

and Smith 2000; Duda et al. 2001; Zaffalon 2002; Congdon 2003; Zaffalon and Fagiuoli

2003) to deal with the problem of the unknown likelihood p(Y |h) and prior P(h), and

treatment of such problem is out of the scope of this chapter.

In this chapter we assume the existence of an oracle that, at each trading period t and

using the available side-information vector Y, is capable of making an inference concerning

the true stock market state for trading period t � 1 with different accuracy levels q (Han

and Kamber 2001). In each trading period t the oracle first accesses the available side-

information vector Y and then makes inference bh concerning the stock market state h for

the next trading period t � 1. The oracle is assumed to provide predictions with different

levels of accuracy, i.e. it is assumed that the following condition holds:

Pðbh ¼ hÞ ¼ q; 8h 2 H: ð5:21Þ

It is worth noting that condition (5.21) states that the oracle is capable of providing

predictions that, in the long run, are associated with a misclassification error equal to

1�q with q defined as the oracle’s accuracy level.

Let us now describe an online investment algorithm that relies on the MSCRP

investment strategy and which, to make an inference concerning the stock market state for

each trading period, uses the predictions provided by means of the considered oracle.
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Algorithm 5.1 MSCRP with side-information

1. At the beginning of the first trading period take

exð1Þ ¼ 1

m
; . . . ;

1

m


 �
:

2. At the end of trading period t�1, . . . use side-information Y to make an inference

concerning the stock market state at trading period t � 1. Assume the oracle makes an

inference in favour of stock market state h.

3. Let zð1Þ; . . . ; zðtÞ be the stock market vectors available up to trading period t. Compute

exðtþ1Þ as the solution of the following optimization problem:

max
x2X

log Shðx; tÞ;

where log Shðx; tÞ ¼
Pt

s¼1 I
zðsÞ2Z

ðtÞ
h

logðxT zðsÞÞ:
The MSCRP with side-information algorithm exploits the side-information Y available

at trading period t and makes inference bh ¼ h for the next stock market state, i.e. at

trading period t � 1. Then, the MSCRP with side-information algorithm exploits the

forecast bh ¼ h and invests in the stock market by means of the corresponding SCRP exðtÞh .

Therefore, the MSCRP with side-information algorithm approximates the MSCRP

sequential investment strategy. The theoretical properties of the MSCRP with side-

information algorithm clearly depend on the capability of correctly assessing the stock

market state for the next trading period and therefore depend on the oracle’s accuracy

level q (5.21).

5.4 NUMERICAL EXPERIMENTS

This section illustrates and comments on the results obtained from a set of numerical

experiments concerning the MSCRP with side-information algorithm in the case where

four major stock market data sets described in the specialized literature are considered.

The four stock market data sets are the Dow Jones Industrial Average, the Standard and

Poor’s 500, the Toronto Stock Exchange (Borodin et al. 2000) and the New York Stock

Exchange (Cover 1991b; Helmbold et al. 1996).

The first data set consists of the 30 stocks belonging to the Dow Jones Industrial

Average (DJIA) for the 2-year period (507 trading periods, days) starting from Jan 14,

2001 to Jan 14, 2003. The second data set consists of the 25 stocks from the Standard and

Poors 500 (S&P500) having the largest market capitalization during the period starting

from Jan 2, 1998 to Jan 31, 2003 (1276 trading periods, days). The Toronto Stock

Exchange (TSE) data set consists of 88 stocks for the 5-year period (1259 trading periods,

days) starting from Jan 4, 1994 to Dec 31, 1998. Finally, the New York Stock Exchange

(NYSE) data set consists of 5651 daily prices (trading periods) for 35 stocks for the 22-

year period starting from July 3, 1962 to Dec 31, 1984.
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We assume that each stock market is characterized by two states (H � {1, 2}) with state

h � 1 associated with trading periods for which the average value of price relatives over all

stocks is greater than one, whereas state h � 2 is associated with the remaining trading

periods. This partitioning can be conveniently interpreted as generating bull (h � 1) and

bear (h � 2) trading periods. It represents a first proposal and much effort will be devoted

to finding alternative partitioning criteria to improve the effectiveness of the MSCRP with

side-information online investment algorithm.

Numerical experiments were performed without the help of any inference device in the

sense that no computational devices were used to predict the stock market state h for the

next trading period. The inference concerning the stock market state h for the next trading

period is obtained by exploiting predictions provided by means of an oracle associated

with different accuracy levels q (5.21).

It should be noted that an accuracy level equal to one (q � 1) corresponds to perfect

knowledge of the stock market state h before the investment step takes place, thus leading

to invest according to the corresponding optimal SCRP fexðtÞh g. The results associated with

the numerical experiments in the case where the oracle is assumed to have perfect

knowledge of the stock market state (q � 1) are reported in Table 5.1.

The data reported in Table 5.1 demonstrate the effectiveness of the MSCRP with

side-information: indeed, the achieved wealth significantly outperforms that achieved by

means of the corresponding BCRP algorithm. However, it is unrealistic to assume perfect

knowledge concerning the stock market state and a further investigation is required. It is of

central relevance to analyse how the MSCRP with side-information behaves in the case

where different values of the accuracy level q are considered. To this extent, a set of

numerical experiments for the DJIA, S&P500, TSE and the NYSE stock market data sets

was planned and performed by considering different values for the oracle’s accuracy level q.

The numerical experiments were organized in such a way that, at each trading period, given

the oracle’s accuracy level q, we extract a random number r from a uniform distribution in

the interval [0,1]. If the extracted random number r is less than or equal to the selected

oracle’s accuracy level q, i.e. if r 5 q, then the stock market state h for the next trading

period is correctly predicted, otherwise the stock market state is wrongly assessed. The

results are summarized for each stock market data set using the mean value of achieved

wealth by means of the MSCRP with side-information. The mean value of the wealth

is computed using the described random sampling procedure in the case where 1000

samples are extracted for each trading period and different values of the oracle’s accuracy

TABLE 5.1 Wealth for the MSCRP with Side-Information Assuming Perfect Knowledge (q � 1)

BCRP MBCRP MSCRP

DJIA 1.24 54.70 21.27

S&P500 4.07 10 527.00 3750.00

TSE 6.78 591.61 45.08

NYSE 250.59 3.62E�10 1.02E�10
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level q belonging to the interval [0,1]. The stock market state frequency, i.e. the percentage of

trading periods associated with each stock market state h, is reported in Table 5.2.

The results of the numerical experiments are summarized using a graphical

representation of the extra wealth obtained using the MSCRP with side-information

over the corresponding BCRP, defined as

o ¼ SðfexðnÞH g; nÞ
Sðx�ðnÞ; nÞ

; ð5:22Þ

with respect to the oracle’s accuracy level q and the trading period t for each data set

(Figures 5.1�/5.4).

Figures 5.1 to 5.4, where the minimum value of v (5.22) is zero, clearly show the

exponential nature of the extra wealth obtained for the MSCRP with side-information

over the corresponding BCRP. It is possible to observe the exponential nature of the extra

wealth v for an increasing number t of trading periods and depending on the oracle’s

accuracy level q.

The oracle’s accuracy level required to achieve extra wealth v (5.22) equal to one, i.e.

the value of q such that the MSCRP with side-information achieves the same wealth as the

TABLE 5.2 Stock Market State Frequency

h � 1 h � 2

DJIA 0.48 0.52

S&P500 0.52 0.48

TSE 0.58 0.42

NYSE 0.53 0.47
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FIGURE 5.1 MSCRP extra wealth for the DJIA data set.
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corresponding BCRP, is defined as the oracle’s parity accuracy level and is reported, for

each stock market data set, in Table 5.3.

The data reported in Table 5.3 allow us to assess the effectiveness of the MSCRP with

side-information depending on the oracle accuracy level q required. It is interesting to

investigate the relationship between the extra wealth v and the variables: number of
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FIGURE 5.2 MSCRP extra wealth for the S&P500 data set.
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FIGURE 5.3 MSCRP extra wealth for the TSE data set.
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trading periods t and oracle accuracy level q. To this end the linear regression model for

the logarithm of the extra wealth v with four d.o.f.,

logðoÞ ¼ a0 þ a1t þ a2q þ a3tq; ð5:23Þ

was fitted using a different number of data points N for each stock market data set.

Parameter estimates for model (5.23) together with the corresponding R2 values are

reported in Table 5.4.

Finally, Figures 5.5�/5.8 plot the estimated value, using regression model (5.23), of the

logarithm of the extra wealth log(v) with respect to trading period t and oracle accuracy

level q.

NYSE
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FIGURE 5.4 MSCRP extra wealth for the NYSE data set.

TABLE 5.3 Oracle’s Parity Accuracy Levels

q

DJIA 0.60

S&P500 0.59

TSE 0.77

NYSE 0.55

TABLE 5.4 Parameter Estimates for Model (5.23) and R2 Values

a0 a1 a2 a3 R2 N

DJIA 0.4272 �0.0086 �0.9871 0.0148 0.9791 51 207

S&P500 1.0097 �0.0084 �1.8281 0.0144 0.9850 128 876

TSE 0.3058 �0.0056 �0.8444 0.0075 0.9814 127 159

NYSE �3.8365 �0.0041 7.7298 0.0073 0.9880 570 751
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5.5 CONCLUSIONS AND FURTHER RESEARCH DIRECTIONS

This chapter deals with online portfolio selection in the case where side-information is

available concerning the stock market. Its theoretical achievements strongly support the

further study and investigation of the class of MBCRP investment strategies. The

experimental evidence that the MSCRP with side-information investment algorithm

outperforms, in terms of the achieved wealth, the corresponding BCRP investment

algorithm by an exponential factor is a basic result of the present work. However, this

empirical achievement strongly depends on the oracle’s accuracy level. Therefore, the
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FIGURE 5.5 Estimated logarithm of the extra wealth for the DJIA data set.
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FIGURE 5.6 Estimated logarithm of the extra wealth for the S&P500 data set.
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problem is shifted to the study and development of efficient and reliable computational

devices for predicting the stock market state, at each trading period, by exploiting the

available side-information. A second issue of interest, which probably has significant

interplay with the development of reliable prediction models, is the choice of the stock

market states. These motivations orient the next step of this research to the study and

analysis of stock market state partitioning criteria as well as to the study and development

of efficient models for the prediction of the stock market state by exploiting the available

side-information.
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FIGURE 5.8 Estimated logarithm of the extra wealth for the NYSE data set.
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FIGURE 5.7 Estimated logarithm of the extra wealth for the TSE data set.
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CHAPTER 6

Improving Performance for
Long-Term Investors: Wide
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6.1 INTRODUCTION

A LTERNATIVE ASSETS, INCLUDING HEDGE FUNDS, private equity and venture capital, have

gained in popularity due to the low return of equities since early 2000 and the

commensurate search by institutional investors to improve performance in order to regain

lost funding surpluses. In theory, alternative assets possess small dependencies with

traditional assets such as stocks, bonds and the general level of economic activity—GDP,

earnings and interest rates. However, a number of alternative asset categories have shown

greater dependencies than originally perceived. We focus on a special class of dynamic

(multi-stage) strategies for improving performance in the face of these issues.

To set the stage for our analysis, we describe the historical returns and risks of two

prototypical benchmarks for long-term investors in the United States: (1) 70) S&P 500

107



and 30) long government bonds (70/30); and (2) 60) S&P 500 and 40) government

bonds (60/40). These two strategies have proven resilient over the last five decades with

reasonable performance during most economic conditions. We conduct our historical

evaluation over the recent 12-year period—1 January 1994 to 31 December 2005.1 This

interval is divided into two distinct periods—the first six years (high equity � 23.5)
annual returns), and the last six years (low equity � �1.1) annual returns). For the

tests, we employ the so-called fixed-mix rule; the portfolio composition is rebalanced to

the target mix (either 70/30 or 60/40) at the beginning of each time period (monthly). We

will show the benefits of this rule in subsequent sections.

Unfortunately, both the 70/30 and 60/40 strategies greatly under performed their long-

term averages in the second six-year period 2000�/2005, leading to a massive drop in the

surpluses of pension plans and other institutional investors.

To evaluate performance, we employ two standard measures of risks—volatility, and

maximum drawdown. Other measures—value at risk, conditional/tail value at risk, and

certainty equivalent returns—are closely related to these. Risk-adjusted returns are

indicated by Sharpe and return to drawdown ratios. As a significant issue, the under

performance of the fixed-mix 70/30 and 60/40 benchmarks as well as similar approaches

over the past six years has caused severe difficulties for institutional investors, especially

pension trusts. The large drawdown values—28.9) and 22.8), respectively, during

2000�/2005 pinpoint the problems better than volatility—10.4) and 8.9), respectively,

for the two benchmarks (Table 6.1).

How can an investor improve upon these results? First, she might discover assets that

provide higher returns than either the S&P 500 or long government bonds. Categories

such as real estate investment trusts (REIT) have done just that over the past decade.2

Investors continue to search for high performing assets.

Once a set of asset categories is chosen, there is a decision regarding the best asset

allocation. Much has been written about financial optimization models. Rather than

performing an optimization, we can search for novel diversifying assets. In this case, we

might accept equal or lower expected returns in exchange for an improved risk profile. To

this end, investors interested in achieving wide diversification might turn to assets such as

foreign equity, emerging market equity and debt, and so on. Given wide diversification, we

can apply leverage to achieve higher returns and lower (or equal) risks than the 70/30 or

the 60/40 mix. Mulvey (2005) discusses increasing diversification and associated leverage

for improving risk adjusted returns.

Alternatively, a savvy investor might dynamically modify her asset mix as conditions

warrant—moving into equity when certain indictors are met or reducing equity exposure

when other conditions occur. Such an investor applies more complex decision rules than

fixed-mix. Numerous fundamental and technical approaches are employed in this quest.

In Section 6.4, we show that many dynamic strategies can be incorporated within the

context of a multi-stage stochastic program.

1 Performance results for several alternative asset categories are unavailable or suspect before 1994.
2 As always, these assets are not guaranteed to provide superior results in the future.
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The developed ‘overlay’ securities/strategies prove beneficial for both fixed-mix and

dynamic mix investors. To define an overlay in a simplified setting, we start with a single-

period static model. (A multi-stage version appears in the Appendix.) An un-levered,

long-only portfolio model allocates the investor’s initial capital, C, to a set of assets {I} via

decision variables xi]0 so as to optimize the investor’s random wealth at the horizon:

½SP� Maximize UðZ1;Z2Þ;
Subject to Z1 � EðewÞ and Z2 � RiskðewÞ:

X

i2I

xi ¼ C; ð6:1Þ

ew ¼
X

i2I

erixi: ð6:2Þ

The generic utility function Uð�Þ consists of two terms—expected return and a risk func-

tion. The latter encompasses most implemented approaches, including volatility, down-

side, value-at-risk, conditional-value-at-risk and expected von Neumann Morgenstern

utility (Bell 1995). Random asset returns are identified as eri. It is a simple matter to address

traditional leverage: we add a borrowing variable y]0 and replace Equations (6.1) and (6.2)

with

X

i2I

xi 	 C þ y; ð6:3Þ

TABLE 6.1 Historical Returns for 70/30 and 60/40 Fixed-Mix Benchmarks and Variants (Large Drawdowns Are

Common over the Period)

S&P 500 100) 70) 60)
LB Agg. 100) 30) 40)
S&P equal weighted index 70) 60)
LB 20-year STRIPS index 30) 40)

1994�/2005 Geometric return 10.5) 6.8) 9.7) 9.3) 12.5) 12.4)
Standard deviation 14.8) 4.5) 10.4) 9.1) 11.5) 10.8)
Sharpe ratio 0.45 0.66 0.56 0.61 0.76 0.80

Maximum drawdown 44.7) 5.3) 28.9) 22.8) 15.5) 11.6)
Return/drawdown 0.24 1.29 0.33 0.41 0.81 1.07

1994�/1999 Geometric return 23.5) 5.9) 18.2) 16.4) 14.4) 13.5)
Standard deviation 13.6) 4.0) 10.0) 8.9) 11.2) 10.8)
Sharpe ratio 1.37 0.24 1.32 1.30 0.85 0.79

Maximum drawdown 15.4) 5.2) 10.2) 8.5) 11.8) 11.6)
Return/drawdown 1.53 1.14 1.77 1.92 1.22 1.16

2000�/2005 Geometric return �1.1) 7.7) 1.8) 2.7) 10.6) 11.3)
Standard deviation 15.2) 5.1) 10.4) 8.9) 11.8) 10.8)
Sharpe ratio �0.25 0.99 �0.09 �0.01 0.67 0.79

Maximum drawdown 44.7) 5.3) 28.9) 22.8) 15.5) 10.4)
Return/drawdown �0.03 1.47 0.06 0.12 0.69 1.09
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ew ¼
X

erixi � erby; ð6:4Þ

where the borrowing rate is erb, with perhaps an upper limit on the amount of borrowing

y5uy . To improve risk-adjusted performance, the borrowing rate needs to be low enough

so the optimal dual variable on the y]0 constraint equals zero (i.e. the constraint is

non-binding).

In contrast to traditional leverage, the overlays (called securities, positions, assets) do

not require a capital outlay. For example, two creditworthy investors might establish a

forward contract on currencies between themselves. Herein, the net returns—positive or

negative—are simply added to the investor’s horizon wealth. Under selective conditions,

futures markets approximate this possibly favourable environment. In the static model, we

expand the decision variables to include the overlays, xj]0 for j � J. The relevant

constraints, replacing (6.3) and (6.4), are (6.1) and

ew ¼
X

i2I

erixi þ
X

j2J

gðrj � 1Þxj; ð6:5Þ

Importantly, due to the nature of futures markets, the overlay variables can refer to a wide

variety of underlying strategies—long-only, short-only, or long�/short.3 Thus, the overlay

variables xj]0 for j � J indicate the presence of a particular futures market contract (long,

short or dynamic strategy), and its size.

In this chapter, we evaluate the overlays within a classical trend-following rule (Mulvey

et al. 2004); alternative rules are worthy of future tests. For risk management purposes, we

limit at each time period the designated notional value of the overlays to a small

multiple—say 15m54—of investor’s capital:
P

j2J xj 	 m � C. Since capital is not

directly allocated for the overlays, the resulting portfolio problem falls into the domain of

risk allocation/budgeting. The static portfolio model may be generalized in a manner to

multi-stage planning models (Appendix). However, as we will see, some of the standard

features of asset performance statistics must be re-evaluated in a multi-stage environment.

6.2 FIXED-MIX PORTFOLIO MODELS AND REBALANCING GAINS

The next three sections take up multi-stage investment models via fixed-mix rules. First,

we discuss general issues relating to the fixed-mix rule; then we measure the advantages of

the overlays for improving performance within a fixed-mix context. To start, we describe

the advantages of fixed-mix over a static, buy-and-hold approach.

The topic of re-balancing gains (also called excess growth or volatility pumping) as

derived from the fixed-mix decision rule is well understood from a theoretical perspective.

The fundamental solutions were developed by Merton (1969) and Samuelson (1969) for

long-term investors. Further work was done by Fernholz and Shay (1982) and Fernholz

3 An overlay asset must include a form of investment strategy, since the investment must be re-evaluated before or at
the expiration date of the futures or forward contract.
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(2002). Luenberger (1997) presents a clear discussion. We illustrate how rebalancing the

portfolio to a fixed-mix creates excess growth. Suppose that the stock price process Pt is

lognormal so that it can be represented by the equation

dPt ¼ aPt dt þ sPt dzt ; ð6:6Þ

where a is the rate of return of Pt and s2 is its variance, zt is Brownian motion with mean 0

and variance t.

The risk-free asset follows the same price process with rate of return equal to r and

standard deviation equal to 0. If we represent the price process of risk-free asset by Bt ,

dBt ¼ rBt dt : ð6:7Þ

When we integrate (6.6), the resulting stock price process is

Pt ¼ P0e a�s2=2ð Þtþszt : ð6:8Þ

Clearly, the growth rate g :¼ a� s2=2 is the most relevant measure for long-run

performance. For simplicity, we assume equality of growth rates across all assets. This

assumption is not required for generating excess growth, but it makes the illustration

easier to understand.

Let us assume that the market consists of n stocks with stock price processes

P1;t ; . . . ;Pn;t each following the lognormal price process. A fixed-mix portfolio has a

wealth process Wt that can be represented by the equation

dWt

Wt

¼
Z1dP1;t

P1;t

þ 
 
 
 þ
ZndPn;t

Pn;t

; ð6:9Þ

where Z1; . . . ; Zn are the fixed weights given to each stock (proportion of capital allocated

to each stock) which sum up to one:

Xn

i¼1

Zi ¼ 1: ð6:10Þ

The fixed-mix strategy in continuous time always applies the same weights to stocks over

time. The instantaneous rate of return of the fixed-mix portfolio at anytime is the weighted

average of the instantaneous rates of returns of the stocks in the portfolio.

In contrast, a buy-and-hold portfolio is one where there is no rebalancing and therefore

the number of shares for each stock does not change over time. This portfolio can be

represented by the wealth process Wt following

dWt ¼ m1dP1;t þ 
 
 
 þmndPn;t ; ð6:11Þ

where m1; . . . ;mn depicts the number of shares for each stock.
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Again for simplicity, let us assume that there is one stock and a risk-free instrument in

the market. This case is sufficient to demonstrate the concept of excess growth in a fixed-

mix portfolio as originally presented in Fernholz and Shay (1982). Assume that we invest

h portion of our wealth in the stock and the rest (1�h) in the risk-free asset. Then the

wealth process Wt with these constant weights over time can be expressed as

dWt

Wt

¼ ZdPt

Pt

þ ð1� ZÞdBt

Bt

; ð6:12Þ

where Pt is the stock price process and Bt is the risk-free asset value.

When we substitute the dynamic equations for Pt and Bt , we get

dWt

Wt

¼ ðr þ Zða� rÞÞdt þ Zsdzt : ð6:13Þ

As before, we assume the growth rate of the stock and the risk-free asset are equal. Hence

a� s2=2 ¼ r: ð6:14Þ

From Equation (6.13), we can see that the rate of return of the portfolio, av, is

aw ¼ r þ Zða� rÞ: ð6:15Þ

From (6.14) this rate of return is equal to

aw ¼ r þ Zs2=2: ð6:16Þ

The variance of the resulting portfolio return is

s2
w ¼ Z2s2: ð6:17Þ

Hence the growth rate of the fixed-mix portfolio becomes

gw ¼
aw � s2

w

2
¼ r þ ðZ� Z2Þs2

2
: ð6:18Þ

This quantity is greater than r for 0 B h B 1. As it is greater than r, which is the growth

rate of individual assets, the portfolio growth rate has an excess component, which is

ðZ� Z2Þs2=2. Excess growth is due to rebalancing the portfolio constantly to a fixed-mix.

The strategy moves capital out of stock when it performs well and moves capital into stock

when it performs poorly. By moving capital between the two assets in the portfolio, a

higher growth rate than each individual asset is achievable. See Dempster et al. (2007) for

a more general discussion of this phenomenon.

The buy-and-hold investor with equal returning assets lacks the excess growth

component. Therefore, buy-and-hold portfolios will under-perform fixed-mix portfolios
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in various cases. We can easily see from (6.16) that the excess growth component is larger

when s takes a higher value. In this sense, the volatility of an asset is considered not as a

risk but rather can be an opportunity to create excess growth in a re-balanced portfolio

although of course from (6.17) portfolio return volatility also scales with s versus s2 for

rate of return. Surprisingly perhaps, there is no need for mean reversion in the stock price

processes. Higher performance is obtained through greater volatility in individual assets.

Accordingly as we will see in the next section, Sharpe ratios may not provide adequate

information about the marginal impact of including an asset category within a fixed-mix,

re-balanced portfolio.

6.3 EMPIRICAL RESULTS WITH HISTORICAL DATA AND FIXED-MIX
STRATEGIES

In this section, we describe the results of applying several fixed-mix decision rules to data

over the 12-year historical period summarized in Table 6.1. The purpose of these empirical

tests is to set benchmarks, to find suitable mixes of assets, and to illustrate the advantages

of the overlay variables, as compared with solely traditional assets. Of course dynamic

decision rules such as the multi-stage stochastic programs discussed in Section 6.5, may be

implemented in practice. Here again, the overlays prove to be beneficial for improving risk

adjusted returns. In the historical results the portfolio is re-balanced monthly via the

fixed-mix rule.

First, we show that re-balancing gains were readily attainable over the turbulent period

1994 to 2005 by deploying assets so as to attain wide diversification and leverage. As

described above, we follow the fixed-mix strategy—re-balancing the portfolio at the

beginning of each month. The strategies work best when the investor incurs small

transaction costs such as for tax-exempt and tax-deferred accounts. Index funds and

exchange traded funds present ideal securities since they are highly liquid and can be

moved with minimal transaction costs.

Table 6.2 depicts the returns and volatilities for a set of 12 representative asset

categories—both traditional and alternative—over the designated 12-year period—1994

to 2005. Annual geometric returns and the two risk measure values are shown. We focus

on general asset categories rather than sub-categories, such as, small/medium/large

equities, in order to evaluate general benefits. Clearly, further diversification is possible via

other investment categories.

Over the period, annual returns range from low�2.6) (for currencies) to high�13.1)
(for real estate investment trusts, REITs). Many assets display disparate behaviour over the

two six-year sub-periods: The Goldman Sachs commodity index (GSCI) and NAREIT had

their worst showing during 1994�/1999—the lowest returns and highest drawdown values,

whereas EAFE and S&P 500 had the opposite results. As a general observation, investors

should be ready to encounter sharp drops in individual asset categories. Drawdown for half

of the categories lies in the range 26) to 48) (Table 6.2).

Two of the highest historical Sharpe ratios occur in the hedge fund categories: (1) the

CSFB hedge fund index (0.87); and (2) the Tremont long/short index (0.78). In both cases,

returns are greater than the S&P 500 index with much lower volatility. This performance
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has led to increasing interest in hedge funds. Many experts believe that the median future

returns for hedge funds are likely to be lower than historical values—due in part to the

large number of managers entering the arena. And as we will see, in fact low volatility may

be a detriment for increasing overall portfolio performance by means of excess growth.

Similarly, there are advantages to combining assets with inferior Sharpe ratios and

reasonable returns, when these inferior values are caused by higher volatility.

Interestingly, by comparing the capital-weighted S&P 500 index with an equal-weighted

S&P 500,4 we see that the returns for the latter are higher than the former, and with higher

volatility. The capital weighed index approximates a buy-and-hold portfolio. Extra volatility

improves overall portfolio growth for the equal weighted index (as expected from the theore-

tical results of the previous section). To a degree, the equal-weighted index achieves rebalanc-

ing gains, but also displays a tilt to mid-size over the largest companies in the S&P 500 index.

A similar issue pertains to the long-government bond index versus the 20-year strip

index. The strip category has a lower Sharpe ratio (0.43 versus 0.66) due to the extra

volatility embedded in the index. Strips are penalized by higher volatility. In contrast,

Table 6.1 depicts the superior performance of the equal-weighted equity/strip portfolios

over the traditional equity/bond portfolios. For the modified portfolio, not only is the

Sharpe ratio higher for the fixed-mix 70/30 portfolio, but the excess returns are higher due to

the higher volatility of the portfolio components—12.5) geometric return versus 11.9)
for the static portfolio. The modified 70/30 mix, although much better than the traditional

70/30 mix, moderately under performs during 2000�/2005 as compared with the earlier

period—10.6) versus 14.4), respectively. The modified 60/40 mix performs better over

the second time period, for a slightly more robust result due, in part, to the rebalancing gains

obtained from the fixed-mix rule.

What else can be done to increase performance vis-à-vis the 70/30 and 60/40

benchmarks? As a first idea, we might try adding leverage to the benchmarks.5 While

the returns increase with leverage (Table 6.3), the two risk measures also increase so that

risk adjusted returns remains modest—Sharpe ratios around 0.55 and return/drawdown

around 0.30. Increasing leverage does not improve the situation. The large drawdown

values persist during the 2000�/2005 period.

As the next idea, we strive to achieve much wider diversification among the asset

categories in our portfolio. To this end, we assemble an equally weighted mix (10) each)

across 10 asset categories. The resulting fixed-mix portfolio takes a neutral view of any

particular asset category, except that we disfavour assets with ultra low volatility (t-bills).

The resulting portfolio displays much better performance over the full 12-year period and

the two sub-periods (Table 6.4). In particular, the widely diversified portfolio can be

levered to achieve 10) to 15) returns with reasonable drawdowns (under 15)). The risk

adjusted returns are much better than the previous benchmarks (with or without leverage).

Clearly, there are advantages to wide diversification and leverage in a fixed-mix portfolio.

4 Rydex Investments sponsors an exchange traded fund with equal weights on the S&P 500 index. See Mulvey (2005).
5 We charge t-bill rates here for leverage. Most investors will be required to pay additional fees.
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TABLE 6.3 Historical Results of Leverage Applied to the Fixed-Mix 70/30 Asset Mix (Higher Returns Are

Possible, but with Higher Volatility)

Leverage 0) 20) 50) 100)
S&P 500 equal weighted index 70) 70) 70) 70)
LB Agg. 30) 30) 30) 30)

1994�/2005 Geometric return 9.7) 10.7) 12.2) 14.6)
Standard deviation 10.4) 12.5) 15.6) 20.8)
Sharpe ration 0.56 0.55 0.54 0.52

Maximum drawdown 28.9) 34.8) 42.9) 54.6)
Return/drawdown 0.33 0.31 0.29 0.27

1994�/1999 Geometric return 18.2) 20.9) 24.9) 31.7)
Standard deviation 10.0) 12.0) 15.0) 20.0)
Sharpe ration 1.32 1.33 1.33 1.34

Maximum drawdown 10.2) 12.4) 15.7) 21.1)
Return/drawdown 1.77 1.68 1.59 1.50

2000�/2005 Geometric return 1.8) 1.4) 0.9) -0.3)
Standard deviation 10.4) 12.5) 15.7) 21.0)
Sharpe ration �0.09 �0.10 �0.12 �0.15

Maximum drawdown 28.9) 34.8) 42.9) 54.6)
Return/drawdown 0.06 0.04 0.02 �0.01

TABLE 6.4 Historical Results of Leverage Applied to a Widely Diversified Fixed-Mix Asset Mix (Each Asset

Takes 10) Allocation—Excellent Risk-Adjusted Performance)

Leverage 0) 20) 50) 100)
LB Agg. 10) 10) 10) 10)
EAFE 10) 10) 10) 10)
NAREIT 10) 10) 10) 10)
GSCI 10) 10) 10) 10)
Hedge fund index 10) 10) 10) 10)
CSFB managed futures index 10) 10) 10) 10)
Currency index 10) 10) 10) 10)
Tremont long/short 10) 10) 10) 10)
S&P 500 equal weighted index 10) 10) 10) 10)
LB 20-year STRIPS index 10) 10) 10) 10)

1994�/2005 Geometric return 9.8) 10.9) 12.7) 15.6)
Standard deviation 6.2) 7.4) 9.3) 12.4)
Sharpe ration 0.96 0.96 0.95 0.95

Maximum drawdown 6.4) 8.0) 10.4) 14.4)
Return/drawdown 1.54 1.37 1.22 1.08

1994�/1999 Geometric return 9.6) 10.5) 11.9) 14.1)
Standard deviation 6.3) 7.5) 9.4) 12.5)
Sharpe ration 0.75 0.75 0.74 0.73

Maximum drawdown 6.4) 8.0) 10.4) 14.4)
Return/drawdown 1.51 1.32 1.14 0.98

2000�/2005 Geometric return 9.9) 11.3) 13.5) 17.2)
Standard deviation 6.2) 7.4) 9.3) 12.4)
Sharpe ration 1.16 1.16 1.16 1.16

Maximum drawdown 4.7) 6.3) 8.7) 12.6)
Return/drawdown 2.10 1.81 1.56 1.35
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As the final improvement, we apply three overlay variables (commodities, currencies

and fixed income) as defined in Section 6.1. These variables employ trend following rules

based on the longstanding Mt. Lucas Management (MLM) index. Mulvey et al. (2004)

evaluate the index with regard to re-balancing gains and related measures. The MLM

index has produced equity-like returns with differential patterns over the past 30 years.

However, an important change is made for our analysis. Rather than designating t-bills for

the margin capital requirements, we assign the core assets (xi variables) for the margin

capital, consistent with the model defined in Section 6.1 (as would be the case for a multi-

strategy hedge fund). Table 6.5 displays the results. Here, we lever the overlay variables at

three values—20), 50) and 100)—within a fixed-mix rule. In all cases, the overlays

greatly improve the risk-adjusted returns over the historical period (Sharpe and return to

drawdown ratios greater than 1 and 1.5, respectively). (See also Brennan and Schwartz

1998 where continuous dynamic programming is used to optimize a traditional three asset

model with a Treasury bond futures overlay.) The performance is positively affected by the

relatively high volatility of individual asset categories, increasing portfolio returns via re-

balancing gains. The overlay variables with the fixed-mix rule markedly improved

performance over the historical period.

TABLE 6.5 Historical Results of Overlay Variables—Fixed-Mix (Overlays Are More Efficient than Simple

Leverage)

LB Agg. 10) 10) 10) 10)
EAFE 10) 10) 10) 10)
NAREIT 10) 10) 10) 10)
GSCI 10) 10) 10) 10)
Hedge fund index 10) 10) 10) 10)
CSFB managed futures index 10) 10) 10) 10)
Currency index 10) 10) 10) 10)
Tremont long/short 10) 10) 10) 10)
S&P 500 equal weighted index 10) 10) 10) 10)
LB 20-year STRIPS index 10) 10) 10) 10)
Mt. Lucas commodity index 0) 20) 50) 100)
Mt. Lucas currency index 0) 20) 50) 100)
Mt. Lucas fixed income index 0) 20) 50) 100)

1994�/2005 Geometric return 9.8) 12.4) 16.5) 23.0)
Standard deviation 6.2) 7.1) 9.7) 15.3)
Sharpe ration 0.96 1.21 1.30 1.26

Maximum drawdown 6.4) 5.8) 9.2) 15.0)
Return/drawdown 1.54 2.13 1.80 1.53

1994�/1999 Geometric return 9.6) 12.6) 17.0) 24.3)
Standard deviation 6.3) 6.7) 8.6) 13.5)
Sharpe ration 0.75 1.14 1.40 1.43

Maximum drawdown 6.4) 5.8) 9.2) 14.5)
Return/drawdown 1.51 2.15 1.85 1.68

2000�/2005 Geometric return 9.9) 12.3) 15.9) 21.7)
Standard deviation 6.2) 7.6) 10.8) 16.9)
Sharpe ration 1.16 1.26 1.23 1.12

Maximum drawdown 4.7) 5.4) 8.0) 15.0)
Return/drawdown 2.10 2.27 2.00 1.45
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To summarize, the historical tests illustrate that (6.1) re-balancing gains are possible

with assets displaying relatively high volatility within fixed-mix portfolios and that (6.2)

including overlay variables and leverage via fixed-mix can result in excellent risk-adjusted

performance (almost hedge fund acceptable—23) annual geometric returns). Herein to

reduce data mining concerns, we did not change the asset proportions during the period,

except to re-balance back to the target mix each month. Also, we did not optimize asset

proportions on the historical data, again to minimize data mining. The next section takes

up the advantages of applying overlays in multi-period (dynamic mix) optimization

models.

6.4 A STOCHASTIC PROGRAMMING PLANNING MODEL

A stochastic program (SP) gives the investor greater opportunities to improve

performance as a function of changing economic conditions. These models can be

constructed in two basic ways: (1) asset only, or (2) asset and liability management. We

focus on asset-only problems in this report.6 It is generally agreed that the equity risk

premium changes over longer time periods. In response, a number of researchers have

developed equity valuation models. Bakshi and Chen (2005) designed a ‘fair’ equity

valuation model based on three correlated stochastic processes: interest rates, projected

earnings growth and actual earnings. The parameters of these processes are calibrated with

market data (mostly historical prices of assets). They showed that future prices of equity

assets revert on average to the calculated fair values. This type of analysis can be applied

directly to a financial planning model based on a stochastic program.

We highlight here only the major features of a stochastic program. The appendix provides

further details. Also, see Mulvey and Thorlacius (1998) and Mulvey et al. (2000). In multi-

stage stochastic programs, the evolution of future uncertainties is depicted in terms of a

scenario tree. Constructing such a tree requires attention to three critical issues: (1) the

realism of the model equations, (2) calibration of the parameters and (3) procedures to

extract the sample set of scenarios. The projection system should be evaluated with historical

data (back-testing), as well as on an ongoing basis.

Our model employs a scenario generator that has been implemented widely for pension

plans and insurance companies—the CAP:Link system (Mulvey et al. 2000). The system

develops a close connection between the government spot rate and other economic and

monetary factors such as GDP, inflation and currency movements. These connections are

described in a series of references including Mulvey and Thorlacius (1998) and Mulvey et al.

(1999, 2000). To illustrate, we describe a pair of linked stochastic processes for modelling

the long and short interest rates. We assume that the rates link together through a correlated

white noise term and by means of a stabilizing term that keeps the long�/short spread under

control. The resulting spot rates follow

6 See Mulvey et al. (2000) for details of related issues in ALM.
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drt ¼ krð�r � rtÞdt þ grðst � �sÞdt þ fr r
1=2
t dzr ;

dlt ¼ klð�l � ltÞdt þ glðst � �sÞdt þ fl l
1=2
t dzl;

st ¼ rt � lt ;

where rt and lt are the short and long interest rate, respectively, st is the spread between long

and short interest rates, and white noise terms dzr and dzl are correlated. The model

parameters include:

kr ;kl drift on short and long interest rates,

gr ; gl drift on the spread between long and short interest rates,

fr ;fl instantaneous volatility,

�r mean reversion level of short rate,
�l mean reversion level of long rate,

�s mean reversion level of the spread between long and short interest rates.

The second step involves parameter estimation. We calibrate parameters as a function of a

set of common factors over the multi-period horizon. For example, equity returns and

bond returns link to interest rate changes and underlying economic factors. Mulvey et al.

(1999) described an integrated parameter estimation approach. Also, Bakshi and Chen

(2005) and Chen and Dong (2001) discuss a related approach based on market prices of

assets.

Given the scenarios of traditional asset returns derived by means of the CAP:Link

system, we obtain return scenarios of the overlay variables by assuming that they are

conditionally normally distributed with the traditional asset categories according to

historical relationships. This assumption is often employed in scenario generators as a

form of a mixture model;7 see Chatfield and Collins (1980) for a discussion of the general

properties.

For our tests, we developed a condensed stochastic program in order to illustrate the

issues for long-term investors. To this end, the resulting scenario tree is defined over a

nine-year planning period, with three three-year time steps. The resulting problem

consists of a modest (by current standards) nonlinear program. In this chapter, we employ

a tree with 500 scenarios.8 The corresponding stochastic program contains 22,507 decision

variables and 22,003 linear constraints. On average, it takes 10�/20 s to solve for each point

on the efficient frontier using a PC. Much larger stochastic programs are readily solvable

with modern computers. See Dempster and Consigli (1998), Dempster et al. (2003) and

Zenios and Ziemba (2006) for examples.

Assume that an investor can invest her capital in the following core asset categories:

treasury bills, S&P 500 index and 20-year zero coupon government bonds (STRIPS).

7 The characteristics of the return series for the overlay strategies will be similar to those of the independent variables,
such as mean reversion of interest rates and bond returns or fat tailed distributions.
8 There are 10 arcs (states) pointing out of the first node, followed by 50 arcs pointing out of the second stage nodes.
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In addition, she has the option to add the three previous overlay variables—commodity,

currency and fixed income futures indices. As mentioned, in the scenario generator, we

applied a conditional mean/covariance approach, based on historical relations between the

core assets and the overlay variables. Remember that the overlays do not require any

capital outlay. Table 6.6 lists the summary statistics of the generated scenario data for the

six asset classes.

Next, under a multi-period framework, we can calculate sample efficient frontiers, with

any two objectives, for example, portfolio expected geometric returns and portfolio

volatility9—Z1 and Z2 (Appendix). The first stochastic program forces the investor to

invest solely in traditional assets. In contrast, under the latter two stochastic programs, the

investor is allowed to add the overlays up to a given bound: 200) of the wealth at any

time period in the second case and 300) in the last case. Note that unlike the historical

back tests (previous sections), the allocation among overlays is no longer a fixed-mix, but

is determined by the recommendation of the optimization and therefore will vary

dynamically across time periods and scenarios.

Figure 6.1 displays the illustrative efficient frontier under the described investment

constraints.10 As expected, the solutions possessing the higher overlay bound dominate

those under the lower overlay bounds and, as before, the overlay results dominate the

traditional strategy. The larger the overlay bound, the greater potential to obtain higher

returns at the cost of higher volatilities.

For each efficient frontier, Table 6.7 lists descriptive statistics and asset allocations for

the first period of three selected points on each frontier: the maximum return point, the

minimum risk point and a compromise solution. Several observations are noteworthy.

First, for all points under both strategies, the optimization chooses to invest either

exclusively or dominantly in the commodity index for the first period. Second, although

TABLE 6.6 Summary Statistics of Scenario Data for Six Asset Classes across a Nine-Year Planning Period

T-bills S&P 500

20-year

STRIPS

Commodity

index

Currency

index

Fixed income

index

Expected return 3.17) 9.58) 8.13) 6.49) 3.29) 1.18)
Standard deviation 0.016 0.172 0.284 0.106 0.058 0.057

Sharpe ratio 0.000 0.374 0.175 0.313 0.021 �0.347

Correlation matrix

T-bills 1.000 �0.017 �0.030 0.004 0.009 0.009

S&P 500 �0.017 1.000 �0.008 �0.165 0.110 0.284

20-year STRIPS �0.030 �0.008 1.000 0.003 �0.024 �0.016

Commodity index 0.004 �0.165 0.003 1.000 0.002 �0.028

Currency index 0.009 0.110 �0.024 0.002 1.000 0.164

Fixed income index 0.009 0.284 �0.016 �0.028 0.164 1.000

9 We advocate that the investor evaluate a wide range of risk measures. These two are employed for illustration
purposes. Mulvey et al. (2007) discuss real-world, multi-objective issues.
10 This model is a highly simplified version of an ALM system that has been implemented for the U.S. Department of
Labor. The goals of the model are to assist pension plans in recovering their lost surpluses by optimizing assets in
conjunction with managing liabilities (Mulvey et al. 2007). The unabridged system takes on the multi-objective
environment discussed in the Appendix.
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the minimum risk points display the smallest volatility, they tend to have large expected

maximum drawdown compared with other points on the efficient frontier. For example,

for the minimum point under 300) overlay bound, the volatility is 2) while the

expected maximum drawdown is 23), and for the maximum point, although the

volatility is 56), the expected maximum drawdown is only 6). Investors should choose

a compromise point among the objectives that fits their risk appetite. In many cases, a

compromise tends to possess reasonable trade-offs among the risk measures.

As with the historical back tests, the three overlay assets improve investment

performance. There are strong advantages to a stochastic program for assisting in financial

planning. However, in most cases, a stochastic program is more complex to implement

than a simple decision rule such as fixed-mix. Mulvey et al. (2007) demonstrated that

running a stylized stochastic program can be helpful in discovering novel, improved policy

rules.

The results of the stochastic program show that the overlay (trend following approach)

for commodities provides the best marginal risk/reward characteristics as compared with

the other overlays (trend following for currencies and fixed income). In practice,

alternative investment strategies should be considered. For example, Crownover (2006)

shows that a combination of strategies (combined with a z-score approach) improves

performance for currencies. These and related concepts can be readily applied via the

discussed models.

6.5 SUMMARY AND FUTURE DIRECTIONS

This chapter shows that risk-adjusted performance can be enhanced by adding specialized

overlays to multi-stage portfolios. We improved the returns in both the historical back-

tests with the fixed-mix rule and the stochastic programs. In the former case, with wide
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FIGURE 6.1 Efficient frontiers under three investment constraints.
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diversification, the investor benefits by the overlays within a fixed-mix rule. In this

context, we demonstrated that long-term investors can take advantage of the overlay’s

relatively high volatility. As mentioned, improvements are most appropriate for tax-

advantaged investors such as pension trusts. Further, the re-balancing gains are available at

the fund level (e.g. equal weighted S&P 500), and at the asset allocation level (for fixed-

mix). The use of overlays provides significant opportunities when linked with core asset

categories requiring capital outlays: (1) there are potential roll returns11 via the futures

markets—which reduce leverage costs, and (2) transaction costs can be often minimized

through the liquid futures market. Importantly, the Sharpe ratios, while helpful at the

portfolio level, can be misleading regarding the marginal benefit of an asset category

within a fixed-mix portfolio context since volatility is penalized.

What are potential implementation barriers? First, the fixed-mix rule requires re-

balancing the asset mix at the end of each time period. The investor must take a

disciplined approach, even in the face of large swings in asset returns, and be able to invest

in a wide range of assets. Also, transaction costs must be considered; Mulvey and Simsek

(2002) discuss approaches for addressing transaction costs through no-trade zones.

Another possible barrier involves institutional legal constraints. Additionally individual

investors may be unable to deploy equity and related assets as margin capital for their

futures positions.12

In the domain of stochastic programs, we saw that the overlays can be beneficial as well.

However, the resulting model grows exponentially as a function of the number of time

periods and scenarios. For our simple example, the nine-year model with three-year time

periods allows minimal re-balancing. A more realistic stochastic program with a greater

number of time periods, while larger, would improve the trade-off between re-balancing

gains and the extra returns derived from dynamic asset allocation in the face of changing

economic conditions. Current computational power and greater information regarding

the economic environment and patterns of asset prices helps overcome this barrier.

A continuing research topic involves the search for assets with novel patterns of return

(driven by factors outside the usual triple—interest rates, earnings and the general level of

risk premium). An example might involve selling a limited amount of catastrophe

insurance for hurricanes and earthquakes, or perhaps, taking on other weather related

risks. Another example would be the numerous long�/short equity strategies that have

become available. While these securities/strategies are not currently treated as asset

categories, numerous novel futures-market instruments are under development; several

have been recently implemented by exchanges such as the CME and CBOT. Undoubtedly,

some of these instruments will help investors improve their risk-adjusted performance by

achieving wider diversification in conjunction with selective leverage.

11 Positive roll returns are possible when the futures market is in contango and the investor has a short position, or
when backwardation occurs and the investor has a long position in the futures market.
12 The decision depends upon the arrangement with the investor’s prime broker. Swaps are ideal in this regard.
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APPENDIX 6.A: MATHEMATICAL MODEL FOR THE MULTI-STAGE
STOCHASTIC PROGRAM

This appendix defines the asset-only investment problem as a multi-stage stochastic

program. We define the set of planning periods as T ¼ f0; 1; . . . ; t; tþ 1g. We focus on

the investor’s position at the beginning of period t� 1. Decisions occur at the beginning

of each time period. Under a multi-period framework, we assume that the portfolio is

rebalanced at the beginning of each period.

Asset investment categories—assets requiring capital outlays—are defined by set

I ¼ f1; 2; . . . ;Ng, with category 1 representing cash. The remaining categories can

include broad investment groupings such as growth and value domestic and international

stocks, long-term government and corporate bonds, and real estate. The overlay variables

are defined by set J ¼ f1; 2; . . . ;Mg. Uncertainty is represented by a set of scenarios s �S.

The scenarios may reveal identical values for the uncertain quantities up to a certain

period—i.e. they share common information history up to that period. We address the

representation of the information structure through non-anticipativity constraints, which

require that variables sharing a common history, up to time period t, must be set equal to

each other.

For each i � I, j � J, t �T and s �S, we define the following parameters and decision

variables:

Parameters

ri;t ;s¼ 1þ ri;t ;s; where ri;t ;s is return of traditional asset i in period t, under

scenario s (e.g. Mulvey et al. (2000)).

rj;t ;s¼ 1þ rj;t ;s, where rj;t ;s is return of overlay asset j in period t, under scenario s.

ps Probability that scenario s occurs -
P

s2S ps ¼ 1:

x 7!i;0;s Amount allocated to traditional asset class i, at the end of period 0, under

scenario s, before first rebalancing.

si;t Transaction costs for rebalancing asset i in period t (symmetric transaction costs

are assumed).

BOL Total overlay bound.

GTA Target assets at the horizon.

Decision variables

xi;t ;s Amount allocated to traditional asset class i, at the beginning of period t, under

scenario s, after rebalancing.

x 7!i;t ;s Amount allocated to traditional asset class i at the end of period t, under

scenario s, before rebalancing.

xBUY
i;t ;s Amount of traditional asset class i purchased for rebalancing in period t, under

scenario s.

xSELL
i;t ;s Amount of traditional asset class i sold for rebalancing in period t, under

scenario s.
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xj;t ;s Amount allocated to overlay asset j, at the beginning of period t, under

scenario s.

x 7!j;t ;s Amount allocated to overlay asset j at the end of period t, under scenario s.

xTA 7!
t ;s Asset wealth at the end of time period t, under scenario s.

Given these definitions, we present the deterministic equivalent of the stochastic asset-only

allocation problem:

Model [MSP] (general structure)

Maximize UfZ1;Z2; . . . ;Zkg; ð6:A1Þ

where the goals are defined as functions of the decision variables (examples of various

goals are shown below):

Zk ¼ fkðxÞ;

subject to:

X

i2I

x 7!i;0;s ¼ xTA 7!
0;s 8 s 2 S; ð6:A2Þ

X

i2I

x 7!i;t ;s þ
X

i2J

x 7!j;t ;s ¼ xTA 7!
t ;s 8 s 2 S; t ¼ 1; . . . ; tþ 1; ð6:A3Þ

x 7!
i;t ;s
¼ ri;t ;sxi;t ;s 8 s 2 S; t ¼ 1; . . . ; t; i 2 I ; ð6:A4Þ

x 7!
j;t ;s
¼ ðrj;t ;s � 1Þxj;t ;s 8 s 2 S; t ¼ 1; . . . ; t; j 2 J ; ð6:A5Þ

X

j2J

xj;t ;s 	 BOLxTA 7!
t�1;s

8 s 2 S; t ¼ 1; . . . ; t ð6:A6Þ

xi;t ;s ¼ x 7!i;t�1;s þ xBUY
i;t�1;sð1� si;t�1Þ � xSELL

i;t�1;s 8 s 2 S; i 6¼ 1; t ¼ 1; . . . ; tþ 1; ð6:A7Þ

x1;t ;s ¼ x 7!1;t�1;s þ
X

i 6¼1

xSELL
i;t�1;sð1� si;t�1Þ �

X

i 6¼1

xBUY
i;t�1;s

� bt�1;s þ yCONT
t�1;s 8 s 2 S; t ¼ 1; . . . ; tþ 1;

ð6:A8Þ
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xi;t ;s1
¼ xi;t ;s2

;xj;t ;s1

¼ xj;t ;s2
8 s1and s2 with identical past up to time t ;

ð6:A9Þ

RiskfZ1;Z2; . . . ;Zkg 	 Riskmax: ð6:A10Þ

The objective function (6.A1) depicts a generic multi-objective optimization problem. It

can take several forms. For instance, we could employ the von Neumann�/Morgenstern

utility function of the final wealth. Alternatively, we could use the classical return-risk

function Z ¼ Z 
MeanðxTA 7!
t Þþ ð1� ZÞ 
 RiskðxTA 7!

t Þ, where MeanðxTA 7!
t Þ is the expected

total assets at the end of t and RiskðxTA 7!
t Þ is a risk measure of the total final wealth across

all scenarios. The weight parameter h indicates the relative importance of risk as

compared with expected wealth.

Constraint (6.A2) represents the initial total value of assets at the end of period 0.

Constraint (6.A3) depicts wealth at the end of period t, aggregating assets in traditional

asset classes and investment gains/losses from overlay strategies. The wealth accumulated

at the end of period t before rebalancing in traditional asset class i is given by (6.A4). The

wealth accumulation due to overlay variable j at the end of period t is depicted in (6.A5).

Constraint (6.A6) sets the bound for overlays for each time period and across all scenarios.

The flow balance constraints for all traditional asset classes except cash, for all periods, are

given by (6.A7). (6.A8) represents the flow balance constraint for cash. Non-anticipativity

constraints are represented by (6.A9), ensuring that the scenarios with the same past will

have identical decisions up to that period.

Risk-based constraints appear in (6.A10). Here we list a few popular goals among

numerous others. Especially, we set GTA to be the target wealth for the investor at t�1.

The first goal is to maximize the expected final investor wealth at the horizon:

Z1 ¼
X

s

psx
TA 7!
t;s :

Both the second and the third goals quantify the risk of missing the target wealth at the

planning horizon. Goal 2 is the downside risk of the expected final wealth:

Z2 ¼
X

s

ps Z1 � xTA 7!
t;s

� �þ� �2

:

A similar goal is the downside risk of the expected final investor wealth with respect to

target wealth GTA at the horizon:

Z3 ¼
X

s

ps GTA � xTA 7!
t;s

� �þ� �2

:

Goal 3 is zero if and only if final wealth reaches the target under all scenarios.
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The fourth and fifth goals focus on the timing of achieving the target wealth. Goal 4

measures the expected earliest time for the investor’s assets to reach the target:

Z4 ¼
X

s

ps inf t : xTA 7!
t ;s � GTA

n o
:

The goal Z4 could be greater than t�1 if the wealth could not reach the target before the

planning horizon.

Aiming at measuring the risk of missing the target date of reaching the goal, we propose

the fifth goal, the downside risk of the time to achieve the goal:

Z5 ¼
X

s

ps inf t : xTA 7!
t ;s � GTA

n o
� t

� �þ� �2

:

The model could be readily modified to incorporate liability-related decisions and other

investment strategies. For instance, the fixed-mix rule enforces the following constraint at

each juncture:

li ¼
xi;t ;s

xTA
t ;s

; for any time period t and under any scenario s;

where xt ;s is the total wealth at the beginning of period t and we define the proportion of

wealth to be li for each asset i �I. Ideally, we would maintain the target proportion l at all

time periods and under every scenario. Rebalancing under a fixed-mix rule automatically

‘buys low and sells high.’ However, the fixed-mix constraints induce non-convexity into

the stochastic program. Specially designed algorithms are needed to solve such a problem.
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Stochastic Programming for
Funding Mortgage Pools
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7.1 INTRODUCTION

H ISTORICALLY, THE BUSINESS OF CONDUITS, like Freddie Mac, Fannie Mae or Ginnie Mae,

has been to purchase mortgages from primary lenders, pool these mortgages into

mortgage pools, and securitize some if not all of the pools by selling the resulting

Participation Certificates (PCs) to Wall Street. Conduits keep a fixed markup on the

interest for their profit and roll over most of the (interest rate and prepayment) risk to the

PC buyers. Recently, a more active approach, with the potential for significantly higher

profits, has become increasingly attractive: instead of securitizing, funding the purchase of

mortgage pools by issuing debt. The conduit firm raises the money for the mortgage

purchases through a suitable combination of long- and short-term debt. Thereby, the

conduit assumes a higher level of risk due to interest rate changes and prepayment risk but

gains higher expected revenues due to the larger spread between the interest on debt and

mortgage rates compared with the fixed markup by securitizing the pool.

The problem faced by the conduits is an asset-liability management problem, where the

assets are the mortgages bought from primary lenders and the liabilities are the bonds

issued. Asset liability problems usually are faced by pension funds and insurance

companies. Besides assets, pension plans need to consider retirement obligations, which

may depend on uncertain economic and institutional variables, and insurance companies

need to consider uncertain pay-out obligations due to unforseen and often catastrophic

events. Asset liability models are most useful when both asset returns and liability pay-

outs are driven by common, e.g. economic, factors. Often, the underlying stochastic

processes and decision models are multi-dimensional and require multiple state variables

for their representation. Using stochastic dynamic programming, based on Bellman’s

(1957) dynamic programming principle, for solving such problems is therefore

computationally difficult, well known as the ‘curse of dimensionality.’ If the number of

state variables of the problem is small, stochastic dynamic programming can be applied

efficiently. Infanger (2006) discusses a stochastic dynamic programming approach for

determining optimal dynamic asset allocation strategies over an investment horizon with

many re-balancing periods, where the value-to-go function is approximated via Monte

Carlo sampling. The chapter uses an in-sample/out-of-sample approach to avoid

optimization bias.

Stochastic programming can take into account directly the joint stochastic processes of

asset and liability cash flows. Traditional stochastic programming uses scenario trees to

represent possible future events. The trees may be constructed by a variety of scenario-

generation techniques. The emphasis is on keeping the resulting tree thin but representative

of the event distribution and on arriving at a computationally tractable problem, where

obtaining a good first-stage solution rather than obtaining an entire accurate policy is the
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goal. Early practical applications of stochastic programming for asset liability management

are reported in Kusy and Ziemba (1986) for a bank and in Carino et al. (1994) for an

insurance company. Ziemba (2003) gives a summary of the stochastic programming

approach for asset liability and wealth management. Early applications of stochastic

programming for asset allocation are discussed in Mulvey and Vladimirou (1992),

formulating financial networks, and Golub et al. (1995). Examples of early applications of

stochastic programming for dynamic fixed-income strategies are Zenios (1993), discussing

the management of mortgage-backed securities, Hiller and Eckstein (1993), and Nielsen

and Zenios (1996). Wallace and Ziemba (2005) present recent applications of stochastic

programming, including financial applications. Frauendorfer and Schüerle (2005) discuss

the re-financing of mortgages in Switzerland.

Monte Carlo sampling is an efficient approach for representing multi-dimensional

distributions. An approach, referred to as decomposition and Monte Carlo sampling, uses

Monte Carlo (importance) sampling within a decomposition for estimating Benders cut

coefficients and right-hand sides. This approach has been developed by Dantzig and

Glynn (1990) and Infanger (1992). The success of the sampling within the decomposition

approach depends on the type of serial dependency of the stochastic parameter processes,

determining whether or not cuts can be shared or adjusted between different scenarios of a

stage. Infanger (1994) and Infanger and Morton (1996) show that, for serial correlation of

stochastic parameters (in the form of autoregressive processes), unless the correlation is

limited to the right-hand side of the (linear) program, cut sharing is at best difficult for

more than three-stage problems.

Monte Carlo pre-sampling uses Monte Carlo sampling to generate a tree, much like the

scenario-generation methods referred to above, and then employs a suitable method for

solving the sampled (and thus approximate) problem. We use Monte Carlo pre-sampling

for representing the mortgage funding problem, and combine optimization and

simulation techniques to obtain an accurate and tractable model. We also provide an

efficient way to independently evaluate the solution strategy from solving the multi-stage

stochastic program to obtain a valid upper bound on the objective. The pre-sampling

approach provides a general framework of modeling and solving stochastic processes with

serial dependency and many state variables; however, it is limited in the number of

decision stages. Assuming a reasonable sample size for representing a decision tree,

problems with up to four decision stages are meaningfully tractable. Dempster and

Thorlacius (1998) discuss the stochastic simulation of economic variables and related asset

returns. A recent review of scenario-generation methods for stochastic programming is

given by Di Domenica et al. (2006), discussing also simulation for stochastic program-

ming scenario generation.

In this chapter we present how multi-stage stochastic programming can be used for

determining the best funding of a pool of similar fixed-rate mortgages through issuing

bonds, callable and non-callable, of various maturities. We show that significant profits

can be obtained using multi-stage stochastic programming compared with using a single-

stage model formulation and compared with using duration and convexity hedging,

strategies often used in traditional finance. For the comparison we use an implementation
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of Freddie Mac’s interest rate model and prepayment function. We describe in Section 7.2

the basic formulation of funding mortgage pools and discuss the estimation of expected

net present value and risk for different funding instruments using Monte Carlo sampling

techniques. In Section 7.3 we discuss the single-stage model. In Section 7.4 we present the

multi-stage model. Section 7.5 discusses duration and convexity and delta and gamma

hedging. In Section 7.6 we discuss numerical results using practical data obtained from

Freddie Mac. We compare the efficient frontiers from the single-stage and multi-stage

models, discuss the different funding strategies and compare them with delta and gamma

hedged strategies, and evaluate the different strategies using out-of-sample simulations. In

particular, Section 7.6.5 presents the details of the out-of-sample evaluation of the

solution strategy obtained from solving a multi-stage stochastic program. Section 7.7

reports on the solution of very large models and gives model sizes and solution times.

Finally, Section 7.8 summarizes the results of the chapter.

While not explicitly discussed in this chapter, the problem of what fraction of the

mortgage pool should be securitized, and what portion should be retained and funded

through issuing debt can be addressed through a minor extension of the models

presented. Funding decisions for a particular pool are not independent of all other pools

already in the portfolio and those to be acquired in the future. The approach can of course

be extended to address also the funding of a number of pools with different

characteristics. While the chapter focuses on funding a pool of fixed-rate mortgages,

the framework applies analogously to funding pools of adjustable-rate mortgages.

7.2 FUNDING MORTGAGE POOLS

7.2.1 Interest Rate Term Structure

Well-known interest rate term structure models in the literature are Vasicek (1977), Cox

et al. (1985), Ho and Lee (1986), and Hull and White (1990), based on one factor, and

Longstaff and Schwarz (1992) based on two factors.

Observations of the distributions of future interest rates are obtained using an

implementation of the interest rate model of Luytjes (1993) and its update according to

the Freddie Mac document. The model reflects a stochastic process based on equilibrium

theory using random shocks for short rate, spread (between the short rate and the ten-

year rate) and inflation.

We do not use the inflation part of the model and treat it as a two-factor model, where

the short rate and the spread are used to define the yield curve. To generate a possible

interest rate path we feed the model at each period with realizations of two standard

normal random variables and obtain as output for each period a possible outcome of a

yield curve of interest rates based on the particular realizations of the random shocks.

Given a realization of the short rate and the spread, the new yield curve is constructed free

of arbitrage for all calculated yield points.

We denote as it(m), t�1,. . .,T, the random interest rate of a zero coupon bond of term

m in period t.
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7.2.2 The Cash Flows of a Mortgage Pool

We consider all payments of a pool of fixed-rate mortgages during its lifetime. Time

periods t range from t�0,. . .,T, where T denotes the end of the horizon; e.g. T � 360

reflects a horizon of 30 years considering monthly payments. We let Bt be the balance of

the principal of the pool at the end of period t. The principal capital B0 is given to the

homeowners at time period t � 0 and is regained through payments bt and through

prepayments at at periods t�1,. . .,T. The balance of the principal is updated periodically

by

Bt ¼ Bt�1ð1þ k0Þ � bt � at ; t ¼ 1; . . . ;T :

The rate k0 is the contracted interest rate of the fixed-rate mortgage at time t � 0. We

define lt to be the payment factor at period t�1,. . .,T. The payment factor when

multiplied by the mortgage balance yields the constant monthly payments necessary to

pay off the loan over its remaining life, e.g.

lt ¼ k0=ð1� ð1þ k0Þ
t�T�1Þ;

thus,

bt ¼ lt Bt�1:

The payment factor lt depends on the interest rate k0. For fixed-rate mortgages the

quantity k0, and thus the quantities lt, are known with certainty. However, prepayments

at, at periods t�1,. . .,T, depend on future interest rates and are therefore random

parameters.

Prepayment models or functions represent the relationship between interest rates and

prepayments. See, for example, Kang and Zenios (1992) for a detailed discussion of

prepayment models and factors driving prepayments.

In order to determine at we use an implementation of Freddie Mac’s prepayment

function according to Lekkas and Luytjes (1993). Denoting the prepayment rates obtained

from the prepayment function as gt , t � 1,. . ., T, we compute the prepayments at in

period t as

at ¼ gt Bt�1:

7.2.3 Funding through Issuing Debt

We consider funding through issuing bonds, callable and non-callable, with various

maturities. Let ‘ be a bond with maturity m‘, ‘ 2 L, where L denotes the set of bonds

under consideration. Let f t
‘t be the payment factor for period t, corresponding to a bond

issued at period t, t5t5t�m‘:
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f t
‘t �

þ1; if t � t ¼ 0;

�ðitðm‘Þ þ st‘Þ; if 0 < t � t< m‘;

�ð1þ itðm‘Þ þ st‘Þ; if t � t ¼ m‘;

8
>>><

>>>:

where it (m‘) reflects the interest rate of a zero coupon bond with maturity ml, issued at

period t, and st‘ denotes the spread between the zero coupon rate and the actual rate of

bond l issued at t. The spread st‘ includes the spread of bullet bonds over zero coupon

bonds (referred to as agency spread) and the spread of callable bonds over bullet bonds

(referred to as agency call spread), and is computed according to the model specification

given in the Freddie Mac document (Luytjes 1996).

Let M ‘
t denote the balance of a bond ‘ at the time t it is issued. The finance payments

resulting from bond ‘ are

d ‘
t ¼ f t

‘t M ‘
t ; t ¼ t; . . . ; tþm‘;

from the time of issue (t) until the time it matures (t�ml) or, if callable, it is called. We

consider the balance of the bullet from the time of issue until the time of maturity as

M ‘
t ¼ M ‘

t ; t ¼ t; . . . ; tþm‘:

7.2.4 Leverage Ratio

Regulations require that, at any time t, t�0,. . .,T, equity is set aside against debt in an

amount such that the ratio of the difference of all assets minus all liabilities to all assets is

greater than or equal to a given value m. Let Et be the balance of an equity (cash) account

associated with the funding. The equity constraint requires that

Bt þ Et �Mt

Bt þ Et

� m;

where the total asset balance is the sum of the mortgage balance and the equity balance,

Bt � Et , and Mt ¼
P

‘ M ‘
t is the total liability balance.

At time periods t�0,. . .,T, given the mortgage balance Bt , and the liability balance Mt ,

we compute the equity balance that fulfills the leverage ratio constraint with equality as

Et ¼
Mt � Btð1� mÞ

1� m
; t ¼ 0; . . . ;T :

We assume that the equity account accrues interest according to the short rate it(short),

the interest rate of a 3-month zero coupon bond. Thus, we have the following balance

equation for the equity account:

134 j CHAPTER 7



Et ¼ Et�1ð1þ it�1ðshortÞÞ þ et�1;

where et are payments into the equity account (positive) or payments out of the equity

account (negative). Using this equation we compute the payments et to and from the

equity account necessary to maintain the equity balance Et computed for holding the

leverage ratio m.

7.2.5 Simulation

Using the above specification we may perform a (Monte Carlo) simulation in order to

obtain an observation of all cash flows resulting from the mortgage pool and from

financing the pool through various bonds. In order to determine in advance how the

funding is carried out, we need to specify certain decision rules defining what to do when

a bond matures, when to call a callable bond, at what level to fund, and how to manage

profits and losses. For the experiment we employed the following six rules.

(i) Initial funding is obtained at the level of the initial balance of the mortgage pool,

M0 � B0.

(ii) Since at time t � 0, M0 � B0, it follows that E0 ¼ ½m=ð1� mÞ
B0, an amount that we

assume to be an endowed initial equity balance.

(iii) When a bond matures, refunding is carried out using short-term debt (non-callable

3-month bullet bond) until the end of the planning horizon, each time at the level of

the balance of the mortgage pool.

(iv) Callable bonds are called according to the call rule specification in Freddie Mac’s

document (Luytjes 1996). Upon calling, refunding is carried out using short-term

debt until the end of the planning horizon, each time at the level of the balance of the

mortgage pool.

(v) The leverage ratio (ratio of the difference of all assets minus all liabilities to all assets)

is m� 0.025.

(vi) At each time period t, after maintaining the leverage ratio, we consider a positive sum

of all payments as profits and a negative sum as losses.

According to the decision rules, when funding a mortgage pool using a single bond ‘,

we assume at time t � 0 that M ‘
0 ¼ B0, i.e. that exactly the amount of the initial mortgage

balance is funded using bond ‘. After bond matures refunding takes place using another

bond (according to the decision rules, short-term debt, say, bond ‘̂), based on the interest

rate and the level of the mortgage balance at the time it is issued. If the initial bond ‘ is

callable, it may be called, and then funding carried out through another bond (say, short-

term debt ‘̂). Financing based on bond ‘̂ is continued until the end of the planning

horizon, i.e. until T � t< m‘̂, and no more bond is issued. Given the type of bond being

used for refunding, and given an appropriate calling rule, all finance payments for the

initial funding using bond ‘ and the subsequent refunding using bond ‘̂ can be

determined. We denote the finance payments accruing from the initial funding based on

bond ‘ and its consequent refunding based on bond ‘̂ as
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d ‘
t ; t ¼ 1; . . . ;T :

Once the funding and the corresponding liability balance M ‘
t is determined, the

required equity balance Et ¼ E ‘
t and the payments et ¼ e ‘t are computed.

7.2.6 The Net Present Value of the Payment Stream

Finally, we define as

P ‘
t ¼ bt þ at þ d ‘

t � e ‘t ; t ¼ 1; . . . ;T ; P0 ¼ M0 � B0 ¼ 0

the sum of all payments in period t, t�0,. . .,T, resulting from funding a pool of mortgages

(initially) using bond ‘.

Let It be the discount factor for period t, i.e.

It ¼
Yt

k¼1

ð1þ ikðshortÞÞ; t ¼ 1; . . . ;T ; I0 ¼ 1;

where we use the short rate at time t, it(short), for discounting. The net present value

(NPV) of the payment stream is then calculated as

r‘ ¼
XT

t¼0

P ‘
t

It

:

So far, we consider all quantities that depend on interest rates as random parameters. In

particular, P ‘
t is a random parameter, since bt , at , d ‘

t , and e ‘t are random parameters

depending on random interest rates. Therefore, the net present value r‘ is a random

parameter as well. In order to simplify the notation we do not label any specific outcomes

of the random parameters. A particular run of the interest rate model requires 2T random

outcomes of unit normal random shocks. We now label a particular path of the interest

rates obtained from one run of the interest rate model and all corresponding quantities with

v. In particular, we label a realization of the net present value based on a particular

interest rate path as ro‘ .

7.2.7 Estimating the Expected NPV of the Payment Stream

We use Monte Carlo sampling to estimate the expected value of the NPV of a payment

stream. Under a crude Monte Carlo approach to the NPV estimation, we sample N paths

v�S, N�|S|, using different observations of the distributions of the 2T random

parameters as input to the interest rate model, and we compute ro‘ for each v�S.

Then, an estimate for the expected net present value (NPV) of the cash flow stream based

on initial funding using bond ‘ is
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�r‘ ¼
1

N

X

o2S

r o
‘ :

We do not describe in this document how we use advanced variance reduction

techniques (e.g. importance sampling) for the estimation of the expected net present value

of a payment stream. We refer to Prindiville (1996) for how importance sampling could be

applied.

7.2.8 The Expected NPV of a Funding Mix

Using simulation (as described above) we compute the net present value of the payment

stream ro‘ for each realization v�S and each possible initial funding ‘�L. The net present

value of a funding mix is given by the corresponding convex combination of the net

present values of the components ‘�L, i.e.

ro ¼
X

‘2L

ro‘ x‘;
X

‘2L

x‘ ¼ 1; xl � 0;

where x‘ are non-negative weights summing to one. The expected net present value of a

funding mix,

�r ¼ 1

N

X

o2S

ro;

is also represented as the convex combination of the expected net present values of the

components ‘�L, i.e.

�r ¼
X

‘2L

�r‘x‘;
X

‘2L

x‘ ¼ 1; x‘ � 0:

7.2.9 Risk of a Funding Mix

In order to measure risk, we use as an appropriate asymmetric penalty function the negative

part of the deviation of the NPV of a funding portfolio from a pre-specified target u, i.e.

vo ¼
X

‘2L

ro‘ x‘ � u

 !�
;

and consider risk as the expected value of vv, estimated as

�v ¼ 1

N

X

o2S

v o:
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A detailed discussion of this particular risk measure is given in Infanger (1996). The

efficient frontier with risk as the first lower partial moment is also referred to as the

‘put�call efficient frontier;’ see, for example, Dembo and Mausser (2000).

7.3 SINGLE-STAGE STOCHASTIC PROGRAMMING

Having computed the NPVs ro‘ for all initial funding options ‘�L and for all paths v�S,

we optimize the funding mix with respect to expected returns and risk by solving the

(stochastic) linear program

min
1

N

X
vo ¼ �v;

s.t.
X

‘

ro‘ x‘ þ vo � u; o 2 S;

X

‘

�r‘x‘ � r;

X

‘

x‘ ¼ 1; x‘ � 0; vo � 0:

The parameterr is a pre-specified value that the expected net present value of the

portfolio should exceed or be equal to. Clearly, r � rmax ¼ max‘f�r‘g. Using the model we

trace out an efficient frontier starting with r ¼ rmax and successively reducingr until

r� 0, each time solving the linear program to obtain the portfolio with the minimum

risk �v corresponding to a given value of r.

The single-stage stochastic programming model optimizes funding strategies based on

decision rules defined over the entire planning horizon of T � 360 periods, where the net

present value of each funding strategy using initially bond ‘ and applying the decision

rules is estimated using simulation.

A variant of the model arises by trading off expected NPV and risk in the objective,

with l denoting the risk-aversion coefficient:

min �
X

‘

�r‘x‘ þ l
1

N

X
vo;

s.t.
X

‘

ro‘ x‘ þ vo � u; o 2 S;

X

‘

x‘ ¼ 1; x‘ � 0; vo � 0:

For a risk aversion of l � 0, risk is not part of the objective and expected NPV is

maximized. The efficient frontier can be traced out by increasing the risk aver-

sion l successively from zero to very large values, where the risk term in the objective

entirely dominates.

This approach is very different to Markowitz’s (1952) mean variance analysis in that the

distribution of the NPV is represented through scenarios (obtained through simulations
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over a long time horizon, considering the application of decision rules) and a downside

risk measure is used for representing risk.

7.4 MULTI-STAGE STOCHASTIC PROGRAMMING

In the following we relax the application of decision rules at certain decision points within

the planning horizon, and optimize the funding decisions at these points. This leads to a

multi-stage stochastic programming formulation.

We partition the planning horizon �0,T� into n sub-horizons hT1;T2i; hT2;T3i; . . . ;

hTn;Tnþ1i, where T1 � 0, and Tnþ1 ¼ T . For the experiment, we consider n � 4, and

partition at T1 � 0, T2 � 12, T3 � 60, and T4 � 360. We label the decision points at time

t�T1 as stage 1, at time t�T2 as stage 2, and at time t�T3 as stage 3 decisions. Funding

obtained at the decision stages is labeled as ‘1�L1, ‘2�L2, and ‘3�L3 according to the

decision stages. At time t�T4, at the end of the planning horizon, the (stage 4) decision

involves merely evaluating the net present value of each end point for calculating the

expected NPV and risk. In between the explicit decision points, at which funding is subject

to optimization, we apply the decision rules defined above.

Instead of interest rate paths as used in the single-stage model, we now use an interest

rate tree with nodes at each stage. We consider NS2N paths v2�S2 between t�T1 and

t�T2; for each node v2�S2 we consider NS3N paths v3�S3 between t�T2 and t�T3; for

each node ðo2;o3Þ 2 fS2 � S3g we consider NS4N paths v4�S4 between t�T3 and t�T4.

Thus, the tree has NS2�S3�S4N end points. We may denote S ¼ fS2 � S3 � S4g and

o ¼ ðo2;o3;o4Þ. Thus a particular path through the tree is now labeled as o ¼
ðo2;o3;o4Þ using an index for each partition. Figure 7.1 presents the decision tree of the

multi-stage model for only two paths for each period.

The simulation runs for each partition of the planning horizon are carried out in such a

way that the dynamics of the interest rate process and the prepayment function are fully

carried forward from one partition to the next. Since the interest rate model and the

e.g. < 1yr > < 4yrs > < 25yrs >

Simulation path (monthly)
application of decision rules

Decision node
all decisions subject to optimization

Now

TimeT4T3T2T1

ω2    S2 (ω2, ω3)    (S2 × S3) (ω2, ω3, ω4)    (S2 × S3 × S4) = S

FIGURE 7.1 Multi-stage model setup, decision tree.
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prepayment function include many lagged terms and require the storing of 64 state

variables, the application of dynamic programming for solving the multi-stage program is

not tractable.

Let Itt be the discount factor of period t, discounted to period t, i.e.

Itt ¼
Yt

k¼tþ1

ð1þ ikðshortÞÞ; t > t; Itt ¼ 1;

where we use the short rate at time t, it(short), for discounting.

Let L1 be the set of funding instruments available at time T1. Funding obtained at time

T1 may mature or be called during the first partition (i.e. before or at time T2), during the

second partition (i.e. after time T2 and before or at time T3), or during the third partition

(i.e. after time T3 and before or at time T4). We denote the set of funding instruments

issued at time T1 and matured or called during the first partition of the planning horizon

as L
o2

11 , the set of funding instruments issued at time T1 and matured or called during the

second partition of the planning horizon as L
o2o3

12 , and the set of funding instruments

issued at time T1 and matured or called during the third partition of the planning horizon

as L
o2o3o4

13 . Clearly, L1 ¼ L
o2

11 [ L
o2o3

12 [ L
o2o3o4

13 , for each ðo2;o3;o4Þ 2 fS2 � S3 � S4g.
Similarly, we denote the set of funding instruments issued at time T2 and matured or

called during the second partition of the planning horizon as L
o2o3

22 , and the set of funding

instruments issued at time T2 and matured or called during the third partition of the

planning horizon as L
o2o3o4

23 . Clearly, L2 ¼ L
o2o3

22 [ L
o2o3o4

23 , for each ðo2;o3;o4Þ 2
fS2 � S3 � S4g. Finally, we denote the set of funding instruments issued at time T3 and

matured or called during the third partition of the planning horizon as L33. Clearly,

L3 ¼ L33 ¼ L
o2o3o4

33 , for each ðo2;o3;o4Þ 2 fS2 � S3 � S4g.
For all funding instruments ‘1 2 L

o2

1 initiated at time t � 0 that mature or are called

during the first partition, we obtain the net present values

r
o2

‘1ð11Þ ¼
XT2

t¼0

P
‘1o2

t

I
o2

0t

;

for all funding instruments ‘1 2 L
o2o3

12 initiated at time t � 0 that mature or are called

during the second partition, we obtain the net present values

r
o2;o3

‘1ð12Þ ¼
1

I
o2

0T2

XT3

t¼T2þ1

P
‘1o3

t

I
o3

T2t

;

and all initial funding instruments ‘1 2 L
o2o3o4

13 , initiated at time t � 0 that mature or are

called during the third partition, we obtain the net present values
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r
o2;o3;o4

‘1ð13Þ ¼ 1

I
o2

0T2

1

I
o3

T2T3

XT4

t¼T3þ1

P
‘1o4

t

I
o4

T3t

:

For all funding instruments ‘2 2 L
o2o3

22 , initiated at time t�T2, that mature or are called

during the second partition, we obtain the net present values

r
o2;o3

‘2ð22Þ ¼
1

I
o2

0T2

XT3

t¼T2þ1

P
‘2o3

t

I
o3

T2t

;

and for all funding instruments ‘2 2 L
o2o3

23 , initiated at time t�T2, that mature or are

called during the third partition, we obtain the net present values

r
o2;o3;o4

‘2ð23Þ ¼ 1

I
o2

0T2

1

I
o3

T2T3

XT4

t¼T3þ1

P
‘2o4

t

I
o4

T3t

:

We obtain for all initial funding ‘�L33 initiated at time t�T3 the net present values

r
o2;o3;o4

‘3ð33Þ ¼ 1

I
o2

0T2

1

I
o3

T2T3

XT4

t¼T3þ1

P
‘3o4

t

I
o4

T3t

:

Let N � |S|. Let Ro
‘1
¼ r

o2

‘1ð11Þ þ r
o2o3

‘1ð12Þ þ r
o2o3o4

‘1ð13Þ , Ro
‘2
¼ r

o2o3

‘2ð22Þ þ r
o2o3o4

‘2ð23Þ , and Ro
‘3
¼ r

o2o3o4

‘3ð33Þ .

Let x‘1
be the amount of funding in instrument ‘1 2 L1 issued at time t�T1, x‘2

be the

amount of funding in instrument ‘2 2 L2 issued at time t�T2, and x‘3
be the amount of

funding in instrument ‘3�L3 issued at time t�T3. Based on the computation of the net present

values, we optimize the funding mix solving the multi-stage (stochastic) linear program:

min E vo ¼ �v;

s.t.
X

‘12L1

x‘1
¼ 1;

�
X

‘12L
o2
11

x‘1
þ
X

‘22L2

x
o2

‘2
¼ 0;

�
X

‘12L
o2o3
12

x‘1
�

X

‘22L
o2o3
22

x
o2

‘2
þ
X

‘32L3

x
o2o3

‘3
¼ 0;

X

‘12L1

Ro
‘1

x‘1
þ
X

‘22L2

Ro
‘2

x
o2

‘2
þ
X

‘32L3

Ro
‘3

x
o2o3

‘3
� wo ¼ 0;

vo þ wo � u; E wo � r; x‘1
; x

o2

‘2
; x

o2o3

‘3
; vo � 0;

where E wo ¼ ð1=NÞ
P

wo is the estimate of the expected net present value and E vo ¼
ð1=NÞ

P
vo is the estimate of the risk. As in the single-stage model before, the parameterr is a

pre-specified value for the expected net present value of the portfolio. Starting with r ¼ rmax,
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the maximum value of r that can be assumed without the linear program becoming infeasible,

we trace out an efficient frontier by successively reducingr from r ¼ rmax to r� 0 and

computing for each level ofr the corresponding value of risk �v by solving the multi-stage

stochastic linear program. The quantity r , the maximum expected net present value without

considering risk, can be obtained by solving the linear program

max E wo ¼ rmax;

s.t.
X

‘12L1

x‘1
¼ 1;

�
X

‘12L
o2
11

x‘1
þ
X

‘22L2

x
o2

‘2
¼ 0;

�
X

‘12L
o2o3
12

x‘1
�

X

‘22L
o2o3
22

x
o2

‘2
þ
X

‘32L3

x
o2o3

‘3
¼ 0;

X

‘12L1

Ro
‘1

x‘1
þ
X

‘22L2

Ro
‘2

x
o2

‘2
þ
X

‘32L3

Ro
‘3

x
o2o3

‘3
� wo ¼ 0; x‘1

; x
o2

‘2
; x

o2o3

‘3
� 0:

Note that the model formulation presented above does not consider the calling of

callable bonds as subject to optimization at the decision stages; rather the calling of

callable bonds is handled through the calling rule as part of the simulation. Optimizing

also the calling of callable bonds at the decision stages requires only a minor extension to

the model formulation, but this is not discussed here.

A variant of the multi-stage model arises by trading off expected net present value and

risk in the objective with l as the risk-aversion coefficient:

min lE vo � E wo;

s.t.
X

‘12L1

x‘1
¼ 1;

�
X

‘12L
o2
11

x‘1
þ
X

‘22L2

x
o2

‘2
¼ 0;

�
X

‘12L
o2o3
12

x‘1
�

X

‘22L
o2o3
22

x
o2

‘2
þ
X

‘32L3

x
o2o3

‘3
¼ 0;

X

‘12L1

Ro
‘1

x‘1
þ
X

‘22L2

Ro
‘2

x
o2

‘2
þ
X

‘32L3

Ro
‘3

x
o2o3

‘3
� wo ¼ 0;

vo þ wo � u; x‘1
; x

o2

‘2
; x

o2o3

‘3
; vo � 0:

7.5 DURATION AND CONVEXITY

Since the payments from a mortgage pool are not constant, indeed the prepayments

depend on the interest rate term structure and its history since the inception of the pool,
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an important issue arises as to how the net present value (price) of the mortgage pool

changes as a result of a small change in interest rates. The same issue arises for all funding

instruments, namely, how bond prices change as a result of small changes in yield. This is

especially interesting in the case of callable bonds. In order to calculate the changes in

expected net present value due to changes in interest rates, one usually resorts to first- and

second-order approximations, where the first-order (linear, or delta) approximation is

called the duration and the second-order (quadratic, or gamma) approximation is called

the convexity. While the duration and convexity of non-callable bonds could be calculated

analytically, the duration and convexity of a mortgage pool and callable bonds can only be

estimated through simulation. We use the terms effective duration and effective convexity

to refer to magnitudes estimated through simulation.

7.5.1 Effective Duration and Convexity

Let

p ¼
XT

t¼0

P
pool

t

It

be the net present value of the payments from the mortgage pool, where P
pool

t ¼ at þ bt

and It is the discount factor using the short rate for discounting. We compute pv, for

scenarios v�S, using Monte Carlo simulation, and we calculate the expected net present

value (price) of the payments of the mortgage pool as

�p ¼ 1

N

X

o2S

po:

Note that the payments P
pool
t ¼ P

pool
t ðik; k ¼ 0; . . . ; tÞ depend on the interest rate term

structure and its history up to period t, where it denotes the vector of interest rates for

different maturities at time t. Writing explicitly the dependency,

�p ¼ �pðit ; t ¼ 0; . . . ;T Þ:

We now define

�pþ ¼ �pðit þ D; t ¼ 0; . . . ;T Þ

as the net present value of the payments of the mortgage pool for an upward shift of all

interest rates by D), and

�p� ¼ �pðit � D; t ¼ 0; . . . ;T Þ

as the net present value of the payments of the mortgage pool for a downward shift of all

interest rates by D), where D is a shift of, say, one percentage point in the entire term

structure at all periods t�1,. . .,T.
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Using the three points �p�, �p, �pþ, and the corresponding interest rate shifts �D, 0, �D,

we compute the effective duration of the mortgage pool, as

dur ¼
�p� � �pþ

2D�p
;

and the effective convexity of the mortgage pool,

con ¼
�p� þ �pþ � 2�p

100D2 �p
:

The quantities of the effective duration and effective convexity represent a local first-order

(duration) and second-order (duration and convexity) Taylor approximation of the net

present value of the payments of the mortgage pool as a function of interest. The app-

roximation considers the effects on a constant shift of the entire yield curve across all points t,

t � 1,. . ., T. The number 100 in the denominator of the convexity simply scales the resulting

numbers. The way it is computed, we expect a positive value for the duration, meaning that

decreasing interest rates result in a larger expected net present value and increasing interest

rates result in a smaller expected net present value. We also expect a negative value for the

convexity, meaning that the function of price versus yield is locally concave.

In an analogous fashion we compute the duration durl and the convexity conl for all

funding instruments ‘. Let

p‘ ¼
Xm‘

t¼0

d ‘
t

It

be the net present value of the payments of the bond ‘, where d ‘
t represents the payments

of bond ‘ until maturity or until it is called. We compute po
‘ using Monte Carlo simulation

over v�S, and we calculate the expected net present value (price) of the payments for the

bond ‘ as

�p‘ ¼
1

N

X

o2S

po
‘ :

We calculate

�p‘þ ¼ �p‘ðit þ D; t ¼ 0; . . . ;T Þ;

and

�p‘� ¼ �p‘ðit � D; t ¼ 0; . . . ;T Þ;

the expected net present values for an upwards and downwards shift of interest rates,

respectively. Analogously to the mortgage pool, we obtain the duration of bond ‘ as
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dur‘ ¼
�p‘� � �p‘þ

2D�p‘
;

and its convexity as

con‘ ¼
�p‘� þ �p‘þ � 2�p‘

100D2 �p‘
:

Since in the case of non-callable bonds the payments d ‘
t are fixed, changes in expected

net present value due to changes in interest rates are influenced by the discount factor

only. For non-callable bonds we expect a positive value for duration, meaning that

increasing interest rates imply a smaller bond value and decreasing interest rates imply a

larger bond value. We expect a positive value for convexity, meaning that the function of

expected net present value versus interest rates is locally convex. In the case of callable

bonds the behavior of the function of expected net present value versus interest rates is

influenced not only by the discount rate but also by the calling rule. If interest rates

decrease, the bond may be called and the principal returned. The behavior of callable

bonds is similar to that of mortgage pools in that we expect a positive value for duration

and a negative value for convexity.

7.5.2 Traditional Finance: Matching Duration and Convexity

Applying methods of traditional finance, one would hedge interest rate risk by

constructing a portfolio with a duration and a convexity of close to zero, respectively,

thus achieving that the portfolio would exhibit no change in expected net present value

(price) due to a small shift in the entire yield curve. Duration and convexity matching is

also referred to as immunization (see, for example, Luenberger (1998) or as delta and

gamma hedging).

In the situation of funding mortgage pools, hedging is carried out in such a way that a

change in the price of the mortgage pool is closely matched by the negative change in the

price of the funding portfolio, such that the change of the total portfolio (mortgage pool and

funding) is close to zero. Thus, the duration of the total portfolio is close to zero. In addition,

the convexity of the mortgage pool is matched by the (negative) convexity of the funding

portfolio, such that the convexity of the total portfolio (mortgage pool and funding) is close

to zero. We write the corresponding duration and convexity hedging model as

max
X

‘

r‘x‘

X

‘

dur‘x‘ � dg ¼ dur;

X

‘

con‘x‘ � cg ¼ con;

X

‘

x‘ ¼ 1; x‘ � 0;
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and

�dgmax � dg � dgmax; �cgmax � cg � cgmax;

and expected net present value is maximized in the objective. The variable dg accounts for

the duration gap, cg accounts for the convexity gap, dgmax represents a predefined upper

bound on the absolute value of the duration gap, and cgmax a predefined upper bound on the

absolute value of the convexity gap. Usually, when a duration and convexity hedged strategy

is implemented, the model needs to be revised over time as the mortgage pool and the yield

curve changes. In practice, updating the funding portfolio may be done on a daily or

monthly basis to reflect changes in the mortgage pool due to prepayments and interest rate

variations.

The duration and convexity hedging model is a deterministic model, uncertainty is

considered as a shift of the entire yield curve, and hedged to the extent of the effect of the

remaining duration and convexity gap.

7.5.3 Duration and Convexity in the Single-Stage Model

In the single-stage case we add the duration and convexity constraints

X

‘

dur‘x‘ � dg ¼ dur;

X

‘

con‘x‘ � cg ¼ con;

and

�dg max � dg � dg max; �cg max � cg � cg

to the single-stage linear program using the formulation in which expected net present

value and risk are traded off in the objective. Setting the risk aversion l to zero, only the

expected net present value is considered in the objective, and the resulting single-stage

stochastic program is identical to the duration and convexity hedging formulation from

traditional finance as discussed in the previous section. This formulation allows one to

constrain the absolute value of the duration and convexity gap to any specified level, to the

extent that the single-stage stochastic program remains feasible. By varying the duration

and convexity gap, we may study the effect of the resulting funding strategy on expected

net present value and risk.

7.5.4 Duration and Convexity in the Multi-Stage Model

In the multi-stage model we wish to constrain the duration and convexity gap not only in

the first stage, but at any decision stage and in any scenario. Thus, in the four-stage model

discussed above we have one pair of constraint for the first stage, NS2N pairs of constraints

in the second stage, and NS2�S3N pairs of constraints in the third stage. Accordingly, we
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need to compute the duration and the convexity for the mortgage pool and all funding

instruments at any decision point in all stages from one to three.

In order to simplify the presentation, we omit the scenario indices v2�S2 and

ðo2;o3Þ 2 fS2 � S3g. Let durt and cont be the duration and convexity of the mortgage

pool in each stage t, and dur‘t
and con‘t

be the duration and convexity of the funding

instruments issued at each period t.

Let durF
t and conF

t be symbols used to conveniently present the duration and convexity

of the funding portfolio at each period t. In the first stage, durF
1 ¼

P
‘12L1

dur‘1
x‘1

. In the

second stage, durF
2 ¼

P
‘22L2

dur‘2
x‘2
þ
P

‘12L12
dur‘1ð12Þx‘1

, where dur‘1ð12Þ represents the

duration of the funding instruments from the first stage that are still available in the

second stage. In the third stage, durF
3 ¼

P
‘32L3

dur‘3
x‘3
þ
P

‘22L23
dur‘2ð23Þx‘2

þ
P

‘12L13
-

dur‘1ð13Þ x‘1
, where dur‘2ð23Þ represents the duration of the funding instruments issued in

the second stage still available in the third stage, and dur‘1ð13Þ represents the duration of

the funding instruments from the first stage still available in the third stage.

Analogously, in the first stage, conF
1 ¼

P
‘12L1

con‘1
x‘1

. In the second stage,

conF
2 ¼

P
‘22L2

con‘2
x‘2
þ
P

‘12L12
con‘1ð12Þx‘1

, where con‘1ð12Þ is the convexity of the funding

instruments from the first stage still available in the second stage. In the third stage,

conF
3 ¼

P
‘32L3

con‘3
x‘3
þ
P

‘22L23
con‘2ð23Þx‘2

þ
P

‘12L13
con‘1ð13Þx‘1

, where con‘2ð23Þ is the

convexity of the funding instruments issued in the second stage still available in the third

stage, and con‘1ð13Þ is the convexity of the funding instruments from the first stage still

available in the third stage.

Thus, in the multi-stage case, we add in each stage t ¼ 1; . . . ; 3 and in each scenario

v2�S2 and ðo2;o3Þ 2 fS2 � S3g the constraints

durF
t � dgt ¼ durt ;

conF
t � cgt ¼ cont ;

and

�dg max
t � dgt � dg max

t ; �cg max
t � cgt � cg max

t :

The variables dgt , cgt account for the duration and convexity gap, respectively, in each

decisions stage and in each of the scenarios v2�S2 and ðo2;o3Þ 2 fS2 � S3g. At each

decision node the absolute values of the duration and convexity gap are constrained by dgt

and cgt , respectively. This formulation allows one to constrain the duration and convexity

gap to any specified level, even at different levels at each stage, to the extent that the multi-

stage stochastic linear program remains feasible.

Using the formulation of the multi-stage model, in which expected net present value

and risk are traded off in the objective, and setting the risk aversion coefficient l to zero,

we obtain a model in which the duration and convexity are constrained at each node of

the scenario tree and expected net present value is maximized. Since the scenario tree

represents simulations of possible events of the future, the model results in a duration and

convexity hedged funding strategy, where duration and convexity are constrained at the
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decision points of the scenario tree, but not constrained at points in between, where the

funding portfolios are carried forward using the decision rules. We use this as an

approximation for other duration and convexity hedged strategies, in which duration and

convexity are matched, for example, at every month during the planning horizon. One

could, in addition, apply funding rules in the simulation that result in duration and

convexity hedged portfolios at every month, but such rules have not been applied in the

computations used for this chapter.

We are now in the position to compare the results from the multi-stage stochastic

model trading off expected net present value and downside risk with the deterministic

duration and convexity hedged model on the same scenario tree. The comparison looks at

expected net present value and risk (represented by various measures), as well as

underlying funding strategies.

7.6 COMPUTATIONAL RESULTS

7.6.1 Data Assumptions

For the experiment we used three data sets, based on different initial yield curves, labeled

‘Normal,’ ‘Flat’ and ‘Steep.’ The data represent assumptions about the initial yield curve,

the parameters of the interest rate model, and the prepayment function, assumptions

about the funding instruments, assumptions about refinancing and the calling rule, and

the planning horizon and its partitioning.

Table 7.1 presents the initial yield curve (corresponding to a zero coupon bond) for

each data set. For each data set the mortgage contract rate is assumed to be one percentage

point above the 10-year rate (labeled ‘y10’).

For the experiment we consider 16 different funding instruments. Table 7.2 presents

the maturity, the time after which the instrument may be called, and the initial spread

over the corresponding zero coupon bond (of the same maturity) for each instrument

and for each of the data sets. For example, ‘y03nc1’ refers to a callable bond with a

maturity of 3 years (36 months) and callable after 1 year (12 months). Corresponding

to the data set ‘Normal,’ it could be issued initially (at time t � 0) at a rate of

TABLE 7.1 Initial Yield Curves

Interest rate ())

Label Maturity (months) Normal Flat Steep

m03 3 5.18 5.88 2.97

m06 6 5.31 6.38 3.16

y01 12 5.55 6.76 3.36

y02 24 5.97 7.06 4.18

y03 36 6.12 7.36 4.58

y05 60 6.33 7.56 5.56

y07 84 6.43 7.59 5.97

y10 120 6.59 7.64 6.36

y30 360 6.87 7.76 7.20
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6:12)þ 0:36) ¼ 6:48), where 6.12) is the interest rate from Table 7.1 and 0.36) is

the spread from Table 7.2.

We computed the results for a pool of $100M. As the target for risk, u, we used the

maximum expected net present value obtained using single-stage optimization, i.e. we

considered risk as the expected net present value below this target, defined for each data

set. In particular, the target for risk equals u � 10.5M for the ‘Normal’ data set,

u � 11.3M for the ‘Flat’ data set and u � 18.6M for the ‘Steep’ data set.

We first used single-stage optimization using N � 300 interest rate paths. These results

are not presented here. Then, in order to more accurately compare single-stage and multi-

stage optimization, we used a tree with N � 4000 paths, where the sample sizes in each

stage are |S2|�10, |S3|�20 and |S4|�20. For this tree the multi-stage linear program has

8213 rows, 11 377 columns and 218 512 non-zero elements. The program can easily be

solved on a modern personal computer in a very small amount of (elapsed) time. Also, the

simulation runs to obtain the coefficients for the linear program can easily be carried out

on a modern personal computer.

7.6.2 Results for the Single-Stage Model

As a base case for the experiment we computed the efficient frontier for each of the data

sets using the single-stage model. Figure 7.2 presents the result for the ‘Normal’ data set in

comparison with the efficient frontiers obtained from the multi-stage model. (The single-

stage results obtained from optimizing on the tree closely resemble the efficient frontiers

obtained from optimizing on 300 interest rate paths.) The efficient frontiers for the ‘Flat’

and ‘Steep’ data sets are similar in shape to that of the ‘Normal’ data set. While ‘Normal’

and ‘Flat’ have the typical shape one would expect, i.e. steep at low levels of risk and

TABLE 7.2 Spreads for Different Funding Instruments

Spread ())

Label Maturity (months) Callable after (months) Normal Flat Steep

m03n 3 0.17 0.15 0.19

m06n 6 0.13 0.10 0.13

y01n 12 0.02 0.08 0.08

y02n 24 0.00 0.11 0.1

y03n 36 0.04 0.18 0.12

y03nc1 36 12 0.36 0.61 0.22

y05n 60 0.08 0.21 0.13

y05nc1 60 12 0.65 0.84 0.22

y05nc3 60 36 0.32 0.41 0.18

y07n 84 0.17 0.22 0.15

y07nc1 84 12 0.90 0.95 0.45

y07nc3 84 36 0.60 0.73 0.35

y10n 120 0.22 0.29 0.22

y10nc1 120 12 1.10 1.28 0.57

y10nc3 120 36 0.87 0.94 0.48

y30n 360 0.30 0.32 0.27
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bending more flat with increasing risk, it is interesting to note that the efficient frontier for

data set ‘Steep’ is very steep at all levels of risk.

As a base case we look at the optimal funding strategy at the point of 95) of the

maximum expected net present value. In the graphs of the efficient frontiers this is the

second point down from the point of the maximum expected net present value point.

The funding strategies for all three data sets are presented in Table 7.3. The label ‘j1’ in

front of the funding acronyms means that the instrument is issued in stage 1, and the label

‘j2’ refers to the instrument’s issuance in stage 2. For example, a funding instrument called

Efficient Frontier, Normal
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FIGURE 7.2 Efficient frontier for the Normal data set, single- versus multi-stage.

TABLE 7.3 Funding Strategies from the Single-Stage Model, Case 95) of Maximum Expected Return, for All

Three Data Sets

Model Normal Flat Steep

Stage 1 Allocation

j1m06n j1y07n j1m03n j1y07n j1m03n

0.853 0.147 0.911 0.089 1.000

Stage 2 Allocation

Scenario j2m03n j2m03n j2m03n

1 0.853 0.911 1.000

2 0.853 0.911 1.000

3 0.853 0.911 1.000

4 0.853 0.911 1.000

5 0.853 0.911 1.000

6 0.853 0.911 1.000

7 0.853 0.911 1.000

8 0.853 0.911 1.000

9 0.853 0.911 1.000

10 0.853 0.911 1.000
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‘j1y07n’ is a non-callable bond with a maturity of 7 years issued at stage 1. While the

single-stage model naturally does not have a second stage, variables with the prefix ‘j2’ for

the second stage represent the amount of each instrument to be held at stage 2 according

to the decision rules. This is to facilitate easy comparisons between the single-stage and

multi-stage funding strategies.

In the ‘Normal’ case, the optimal initial funding mix consists of 85.3) six-month non-

callable debt and 14.7) seven-year non-callable debt. The risk level of this strategy is

3.1M NPV. In the ‘Flat’ case, the optimal initial funding mix consists of 91.1) three-

month non-callable debt and 8.9) seven-year non-callable debt. The risk level of this

strategy is 3.1M NPV. In the ‘Steep’ case, the initial funding mix consists of 100.0) three-

month non-callable debt (short-term debt). The risk level of this strategy is 2.6M NPV.

7.6.3 Results for the Multi-Stage Model

Figure 7.2 presents the efficient frontier for the ‘Normal’ data set. In addition to the multi-

stage efficient frontier, the graph also contains the corresponding single-stage efficient

frontier for better comparison. The results for the ‘Flat’ and ‘Steep’ data sets are very

similar in shape to that of the ‘Normal’ data set and therefore are not presented

graphically. The results show substantial differences in the risk and expected net present

value profile of multi-stage versus single-stage funding strategies. For any of the three data

sets, the efficient frontier obtained from the multi-stage model is significantly north-west

of that from the single-stage model, i.e. multi-stage optimization yields a larger expected

net present value at the same or smaller level of risk.

In all three data cases, we cannot compare the expected net present values from the

single-stage and multi-stage model at the same level of risk, because the risk at the

minimum risk point of the single-stage model is larger than the risk at the maximum risk

point of the multi-stage model. In the ‘Normal’ case, the minimum risk of the single-stage

curve is about 2.7M NPV. Since the efficient frontier is very steep at low levels of risk, we

use the point of 85) of the maximum risk as the ‘lowest risk’ point, even if the risk could

be further decreased by an insignificant amount. The maximum expected net present

value point of the multi-stage curve has a risk of about 2.4M NPV. At this level of risk, the

expected net present value on the single-stage efficient frontier is about 8.9M NPV, versus

the expected net present value on the multi-stage curve of about 13.6M NPV, which

represents an improvement of 52.8). In the ‘Flat’ case, we compare the point with the

smallest risk of 3.0M NPV on the single-stage efficient frontier with that with the largest

risk of 2.5M NPV on the multi-stage efficient frontier. The expected net present value at

the two points is 13.6M NPV (multi-stage) versus 9.6M NPV (single-stage), which

represents an improvement of 41.7). In the ‘Steep’ case, we compare the point with the

smallest risk of 2.6M NPV on the single-stage efficient frontier with that with the largest

risk of 1.9M NPV on the multi-stage efficient frontier. The expected net present value at

the two points is 20.4M NPV (multi-stage) versus 18.6M NPV (single-stage), which

represents an improvement of 9.7).

As for the single-stage model, we look at the funding strategies at the point of 95) of

the maximum expected return (on the efficient frontier the second point down from the
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maximum expected return point). The funding strategies are presented in Table 7.4 for the

‘Normal’ data set, and in Table 7.A1 and Table 7.A2 of Appendix 7.A for the ‘Steep’ and

‘Flat’ data sets, respectively.

In the ‘Normal’ case, the initial funding mix consists of 78.5) six-month non-callable

debt, and 21.5) five-year debt callable after one year. After one year the 78.5) six-month

debt (that according to the decision rules is refinanced through short-term debt and is for

disposition in the second stage) and, if called in certain scenarios, also the five-year

callable debt are refunded through various mixes of short-term debt: three-year, five-year

and ten-year callable and non-callable debt. In one scenario, labeled ‘1,’ in which interest

rates fall to a very low level, the multi-stage model resorts to funding with 30-year non-

callable debt in order to secure the very low rate for the future. The risk associated with

this strategy is 1.85M NPV and the expected net present value is 12.9M NPV. The

corresponding (95) of maximum net present value) strategy of the single-stage model,

discussed above, has a risk of 3.1M NPV and a net present value of 10.0M NPV. Thus, the

multi-stage strategy exhibits 57.4) of the risk of the single-stage strategy and a 29)
larger expected net present value.

In the ‘Flat’ case, the initial funding mix consists of 50.9) three-month non-callable

debt and 49.1) six-month non-callable debt. After one year the entire portfolio is

refunded through various mixes of short-term, three-year, and ten-year callable and non-

callable debt. The multi-stage strategy exhibits 68) of the risk of the single-stage strategy

and a 20.6) larger expected net present value. In the ‘Steep’ case, the initial funding

consists of 100) three-month non-callable debt. After one year the portfolio is refunded

through various mixes of short-term, three-year and five-year non-callable, and ten-year

callable and non-callable debt. The multi-stage strategy exhibits 62) of the risk of the

single-stage strategy, and a 4.3) larger expected net present value.

TABLE 7.4 Funding Strategy from the Multi-Stage Model, Case 95) of Maximum Expected Return, Normal

Data Set

Stage 1 Allocation

j1m06n j1y05nc1

0.785 0.215

Stage 2 Allocation

Scenario j2m03n j2y03n j2y03nc1 j2y05nc1 j2y10n j2y10nc1 j2y10nc3 j2y30n

1 1.000

2 0.597 0.188

3 0.125 0.420 0.240

4 0.785

5 0.508 0.423 0.069

6 0.785

7 0.785

8 0.251 0.749

9 0.301 0.035 0.261 0.188

10 0.785
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Summarizing, the results demonstrate that multi-stage stochastic programming

potentially yields significantly larger net present values at the same or even lower levels

of risk, with significantly different funding strategies, compared with single-stage

optimization. Using multi-stage stochastic programming for determining the funding of

mortgage pools promises to lead, in the average, to significant profits compared with

using single-stage funding strategies.

7.6.4 Results for Duration and Convexity

Funding a mortgage pool by a portfolio of bonds that matches the (negative) value of

duration and convexity, the expected net present value of the total of mortgage pool and

bonds is invariant to small changes in interest rates. However, duration and convexity give

only a local approximation, and the portfolio needs to be updated as time goes on and

interest rates change. The duration and convexity hedge is one-dimensional, since it

considers only changes of the whole yield curve by the same amount and does not

consider different shifts for different maturities. The multi-stage stochastic programming

model takes into account multi-dimensional changes of interest rates and considers (via

sampling) the entire distribution of possible yield curve developments. In this section we

quantify the difference between duration and convexity hedging versus hedging using the

single- and multi-stage stochastic programming models. Table 7.5 gives the initial (first

stage) values for duration and convexity (as obtained from the simulation runs) for the

mortgage pool and for all funding instruments for each of the three yield curve cases

‘Normal,’ ‘Flat’ and ‘Steep.’ In each of the three yield curve cases the mortgage pool

exhibits a positive value for duration and a negative value for convexity. All funding

instruments have positive values for duration, non-callable bonds exhibit a positive value

TABLE 7.5 Initial Duration and Convexity

Normal Flat Steep

Label Dur. Conv. Dur. Conv. Dur. Conv.

mortg. 3.442 �1.880 2.665 �1.548 2.121 �2.601

m03n 0.248 0.001 0.247 0.001 0.249 0.001

m06n 0.492 0.003 0.491 0.003 0.495 0.003

y01n 0.971 0.010 0.964 0.010 0.982 0.011

y02n 1.882 0.038 1.861 0.038 1.917 0.039

y03n 2.737 0.081 2.686 0.079 2.801 0.084

y03nc1 1.596 �0.384 1.376 �0.186 1.338 �0.235

y05n 4.278 0.205 4.160 0.197 4.378 0.212

y05nc1 1.914 �0.810 1.613 �0.700 1.478 �0.632

y05nc3 3.274 �0.012 3.068 �0.111 3.114 �0.241

y07n 5.622 0.367 5.448 0.351 5.769 0.380

y07nc1 2.378 0.128 1.671 0.959 0.898 0.032

y07nc3 3.406 0.269 3.117 �0.298 3.122 �0.230

y10n 7.335 0.656 7.083 0.624 7.538 0.681

y10nc1 1.555 0.246 1.397 �0.052 0.593 �0.119

y10nc3 3.409 �0.160 3.265 �0.346 3.086 �0.446

y30n 13.711 2.880 13.306 2.743 14.204 3.011
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for convexity, and callable bonds show a negative value for convexity. Note as an exception

the positive value for convexity of bond ‘y07nc1.’

To both the single-stage and multi-stage stochastic programming models we added

constraints that, at any decision point, the duration and convexity of the mortgage pool

and the funding portfolio are as close as possible. Maximizing expected return by setting

the risk aversion l to zero, we successively reduced the gap in duration and convexity

between the mortgage pool and the funding portfolio. We started from the unconstrained

case (the maximum expected return�maximum risk case from the efficient frontiers

discussed above) and reduced first the duration gap and subsequently the convexity gap,

where we understand as duration gap the absolute value of the difference in duration

between the funding portfolio and the mortgage pool, and as convexity gap the absolute

value of the difference in convexity between the funding portfolio and the mortgage pool.

We will discuss the results with respect to the downside risk measure (expected value of

returns below a certain target), as discussed in Section 7.2.9, and also with respect to the

standard deviation of the returns. We do not discuss the results for duration and convexity

obtained from the single-stage model and focus on the more interesting multi-stage case.

7.6.5 Duration and Convexity, Multi-Stage Model

Figures 7.3 and 7.4 give the risk�return profile for the ‘Normal’ case with respect to

downside risk and standard deviation, respectively. We compare the efficient frontier

(already depicted in Figure 7.2) obtained from minimizing downside risk for different

levels of expected return (labeled ‘Downside’) with the risk�return profile obtained from

restricting the duration and convexity gap (labeled ‘Delta–Gamma’). For different levels of

duration and convexity gap, we maximized expected return. The unconstrained case with

respect to duration and convexity is identical to the point on the efficient frontier with the

maximum expected return. Figure 7.3 shows that the downside risk eventually increases
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when decreasing the duration and convexity gap and was significantly larger than the

minimized downside risk on the efficient frontier. We are especially interested in

comparing the point with the smallest duration and convexity gap with the point of

minimum downside risk on the efficient frontier. The point with the smallest downside

risk on the efficient frontier exhibits expected return of 9.5M NPV and a downside risk of

1.5M NPV. The point with the smallest duration and convexity gap has expected return of

7.9M NPV and a downside risk of 3.1M NPV. The latter point is characterized by a

maximum duration gap in the first and second stage of 0.5 and of 1.0 in the third stage,

and by a maximum convexity gap of 2.0 in the first and second stage and of 4.0 in the

third stage. A further decrease of the convexity gap was not possible as it led to an

infeasible problem. The actual duration gap in the first stage was �0.5, where the negative

value indicates that the duration of the funding portfolio was smaller than that of the

mortgage pool, and the actual convexity gap in the first stage was 1.57, where the positive

value indicates that the convexity of the funding portfolio was larger than that of the

mortgage pool. Comparing the points with regard to their performance, restricting the

duration and convexity gap led to a decrease in expected return of 15) and an increase of

downside risk by a factor of 2. It is interesting to note that, for the point on the efficient

frontier with the smallest risk, the first-stage duration gap was �0.97 and the first-stage

convexity gap was 1.75. Looking at the risk in terms of standard deviation of returns, both

minimizing downside risk and controlling the duration and convexity gap led to smaller

values of standard deviation. In the unconstrained case, the smallest standard deviation

was 3.3M NPV obtained at the minimum downside risk point, and the smallest standard

deviation in the constrained case (3.8M NPV) was obtained when the duration and

convexity gap was smallest.

Table 7.6 gives the funding strategy for the minimum downside risk portfolio and

Table 7.7 the funding strategy for the duration and convexity constrained case at
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minimum gap. Both strategies use six-month non-callable debt, five-year non-callable

debt and five-year debt callable after one year for the initial funding. The minimum

downside risk portfolio used in addition five-year debt callable after three years, while the

duration and convexity constrained case used seven-year non-callable debt and ten-year

non-callable debt. In the second stage, funding differed significantly across the different

scenarios for both funding strategies. In the duration and convexity constrained case, the

multi-stage optimization model resorted to calling five-year debt callable after one year in

scenario ‘4’ at a fraction and in scenario ‘10’ at the whole amount. In the minimum risk

case, calling of debt other than by applying the decision rules did not happen. In the

second stage, interest rates were low in scenarios ‘1’ and ‘8’ and were high in scenarios ‘4,’

‘6’ and ‘10.’ The minimum downside risk strategy tended towards more long-term debt

when interest rates were low and towards more short-term debt when interest rates were

high. The amounts for each of the scenarios depended on the dynamics of the process and

the interest rate distributions. The duration and convexity constrained strategy was, of

course, not in the position to take advantage of the level of interest rates, and funding was

balanced to match the duration and convexity of the mortgage pool.

The results for the case of the ‘Flat’ and ‘Steep’ yield curves are very similar. For the

‘Flat’ case, the maximum duration gap in the first and second stage was set to 0.5 and to

1.0 in the third stage, and the maximum convexity gap was set to 2.0 in the first and

second stage and to 4.0 in the third stage. The duration and convexity gap could not be

decreased further since the problem became infeasible. The actual duration gap in the first

stage was �0.5, and the actual convexity gap in the first stage was 1.5. In Appendix 7.A,

Table 7.A3 gives the initial funding and the second-stage updates for the minimum

downside risk portfolio, and Table 7.A4 gives the funding strategy for the duration and

convexity constrained case. For the ‘Steep’ case, the maximum duration gap in the first

and second stage was set to 0.5 and was set to 1.0 in the third stage, and the maximum

TABLE 7.6 Funding Strategy, Case Minimum Downside Risk, Multi-Stage Model, Normal Data Set

Stage 1 Allocation

j1m06n j1y05n j1y05nc1 j1y05nc3

0.266 0.235 0.218 0.281

Stage 2 Allocation

Scenario j2m03n j2y01n j2y03nc1 j2y05n j2y10n j2y10nc1 j2y10nc3 j2y30n

1 0.017 0.148 0.240 0.079

2 0.102 0.165

3 0.117 0.149

4 0.266

5 0.031 0.032 0.237 0.185

6 0.266

7 0.014 0.252

8 0.118 0.300 0.019 0.047

9 0.012 0.201 0.053

10 0.266
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convexity gap was set to 3.0 in the first and second stage and to 6.0 in the third stage.

Further decrease made the problem become infeasible. The actual duration gap in the first

stage was �0.5, and the actual convexity gap in the first stage was 1.6. In Appendix 7.A,

Table 7.A5 gives the initial funding and the second-stage updates for the minimum

downside risk portfolio, and Table 7.A6 gives the funding strategy for the duration and

convexity constrained case. Again, in both the ‘Flat’ and ‘Steep’ case, one could see in the

minimum downside risk case a tendency to use longer-term debt when interest rates were

low and shorter-term debt when interest rates were high, and in the duration and

convexity constrained case, funding was balanced to match the duration and convexity of

the mortgage pool.

Summarizing, in each case reducing the duration and convexity gap helped control the

standard deviation of net present value but did nothing to reduce downside risk. Multi-

stage stochastic programming led to larger than or equal expected net present value at

each level of risk (both downside risk and standard deviation of net present value). There

may be reasons for controlling the duration and convexity gap in addition to controlling

TABLE 7.7 Funding Strategy, Case Duration and Convexity Constrained, Multi-Stage Model, Normal Data Set

Stage 1 Allocation

j1m06n j1y05n j1y05nc1 j1y07n j1y10n

0.122 0.083 0.534 0.239 0.022

Stage 2 Allocation

Scenario j2m03n j2m06n j2y01n j2y03nc1 j2y05n j2y05nc1 j2y07nc1

1 0.466 0.117

2

3 0.064

4

5 0.506 0.043 0.044

6 0.064

7

8 0.567

9 0.072

10 0.316 0.340

Stage 2 Allocation Call

]Scenario ]j2y10n ]j2y10nc1 ]j2y10nc3 j1y05nc1

1 0.073

2 0.011 0.112

3 0.058

4 0.152 0.029

5 0.058 0.004

6 0.059

7 0.122

8 0.089

9 0.051

10 0.534
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downside risk via the multi-stage stochastic programming model. For example, a conduit

might like the results of the stochastic programming model, but not wish to take on too

much exposure regarding duration and convexity gap. In the following we will therefore

compare runs of the multi-stage model with and without duration and convexity

constraints.

Figure 7.5 sheds more light on the cause of the performance gain of the multi-stage

model versus the duration and convexity hedged strategy. The figure presents the duration

gap (the difference of the duration of the funding portfolio and the mortgage pool) versus

the interest rate (calculated as the average of the yield curve) for each of the second-stage

scenarios of the data set ‘Normal.’ When interest rates are very low, the 95) maximum

expected return strategy takes on a significant positive duration gap to lock in the low

rates for a long time. It takes on a negative duration gap when interest rates are high, in

order to remain flexible, should interest rates fall in the future. The minimum downside

risk strategy exhibits a similar pattern, but less extreme. Thus, the multi-stage model

makes a bet on the direction interest rates are likely to move, based on the information

about the interest rate process. In contrast, the duration and convexity constrained

strategy cannot take on any duration gap (represented by the absolute value of 0.5 at

which the gap was constrained) and therefore must forsake any gain from betting on the

likely direction of interest rates.

7.6.6 Out-of-Sample Simulations

In order to evaluate the performance of the different strategies in an unbiased way, true

out-of-sample evaluation runs need to be performed. Any solution at any node in the tree

obtained by optimization must be evaluated using an independently sampled set of

observations.
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For the single-stage model this evaluation is rather straightforward. Having obtained an

optimal solution from the single-stage model (using sample data set one), we run

simulations again with a different seed. Using the new independent sample (data set two),

we start the optimizer again, however now with the optimal solution fixed at the values as

obtained from the optimization based on sample data set one. Using the second set of

observations of data set two we calculate risk and expected returns.

To independently evaluate the results obtained from a K-stage model (having n � K�1

sub-periods), we need K independent sets of K-stage trees of observations. We describe the

procedure for K � 4. Using data set one we solve the multi-stage optimization problem

and obtain an optimal first-stage solution. We simulate again (using a different seed) over

all stages to obtain data set two. Fixing the optimal first-stage solution at the value

obtained from the optimization based on data set one, we optimize based on data set two

and obtain a set of optimal second-stage solutions. We simulate again (with a different

seed) to obtain independent realizations for stages three and four, thereby keeping the

observations for stage two the same as in data set two, and obtain data set three. Fixing the

first-stage decision at the level obtained from the optimization using data set one and all

second-stage decisions at the level obtained from the optimization based on data set two,

we optimize again to obtain a set of optimal third-stage decisions. We simulate again

(using a different seed) to obtain independent outcomes for stage four, thereby keeping

the observations for stage two and three the same as in data sets two and three,

respectively, and obtain data set four. Fixing the first-stage decision, all second-stage

decisions, and all third-stage decisions at the levels obtained from the optimization based

on data sets one, two and three, respectively, we finally calculate risk and returns based on

data set four.

The out-of-sample evaluations resemble how the model could be used in practice.

Solving the multi-stage model (based on data set one), an optimal first-stage solution

(initial portfolio) would be obtained and implemented. Then one would follow the

strategy (applying the decision rules) for 12 months until decision stage two arrives. At

this point, one would re-optimize, given that the initial portfolio had been implemented

and that particular interest rates and prepayments had occurred (according to data set

two). The optimal solution for the second stage would be implemented, and one would

follow the strategy for four years until decision stage three arrives. At this point, one

would re-optimize, given that the initial portfolio and a second stage update had been

implemented and that particular interest rates and prepayments had occurred (according

to data set three). The optimal solution for the third stage would be implemented, and

one would follow the strategy (applying the decision rules) until the end of the horizon

(according to data set four). Now one possible path of using the model has been evaluated.

Decisions had no information about particular outcomes of future interest rates and

prepayments, and were computed based on model runs using data independent from the

observed realization of the evaluation simulation. Alternatively, one could simulate a

strategy involving re-optimization every month, but this would take significantly more

computational effort with likely only little to be gained.
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Using the out-of-sample evaluation procedure, we obtain N�|S| out-of-sample

simulations of using the model as discussed in the above paragraph, and we are now in

the position to derive statistics about out-of-sample expected returns and risk.

Figure 7.6 presents the out-of-sample efficient frontiers for the ‘Normal’ data set and

downside risk. The figure gives the out-of-sample efficient frontier for the multi-stage

model without duration and convexity constraints, the out-of-sample efficient frontier

when the duration gap was constrained to be less than or equal to 1.5), and the out-of-

sample efficient frontier for the single-stage model. The out-of-sample evaluations

demonstrate clearly that the multi-stage model gives significantly better results than the

single-stage model. For example, the point with the maximum expected returns of the

multi-stage model gave expected returns of 10.2M NPV and a downside risk of 3.5M NPV.

The minimum risk point on the single-stage out-of-sample efficient frontier gave expected

returns of 7.6M NPV, and a downside risk of also 3.5M NPV. Thus, at the same level of

downside risk the multi-stage model gave 34) higher expected returns. The minimum

downside risk point of the multi-stage model gave expected returns of 9.0M NPV and a

downside risk of 2.1M NPV. Comparing the minimum downside risk point of the multi-

stage model with that of the single-stage model, the multi-stage model had 19.2) larger

expected returns at 61) of the downside risk of the single-stage model. The efficient

frontier of the duration-constrained strategy was slightly below that without duration and

convexity constraints.

Figure 7.7 gives the out-of-sample risk�return profiles when measuring risk in terms of

standard deviation. In this setting the multi-stage strategy performed significantly better

than the single-stage strategy at every level of risk, where the difference was between

17.6) and 23.6). The duration-constrained strategy did not span as wide a range in risk

as the unconstrained strategy. But for the risk points attained by the constrained strategy,

the unconstrained strategy achieved a somewhat higher expected return.
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The out-of-sample evaluations for the ‘Flat’ and ‘Steep’ data sets gave very similar

results qualitatively. The results are included in Appendix 7.A. For the ‘Flat’ data set,

Figure 7.A1 presents out-of-sample efficient frontiers for downside risk and Figure 7.A2

the risk�return profile for risk in standard deviations. For the ‘Steep’ data set, Figure 7.A3

presents out-of-sample efficient frontiers for downside risk and Figure 7.A4 the

risk�return profile for risk in standard deviations for the data set ‘Steep.’ For both data

sets, the multi-stage model gave significantly better results; the downside risk was smaller

and expected returns were larger.

7.6.7 Larger Sample Size

All results discussed so far were obtained from solving a model with a relatively small

number of scenarios at each stage, i.e. |S2| � 10, |S3| � 20 and |S4| � 20, with a total of

4000 scenarios at the end of the forth stage. This served well for analysing and

understanding the behavior of the multi-stage model in comparison with the single-stage

model and with Gamma and Delta hedging. Choosing a larger sample size will improve

the obtained strategies (initial portfolio and future revisions) and therefore result in better

(out-of-sample simulation) results. Of course, the accuracy of prediction of the models

will be improved also. In order to show the effect of using a larger sample size, we solved

and evaluated the models using a sample size of 24 000 scenarios, i.e. |S2| � 40, |S3| � 30

and |S4|� 20. The results for the data set ‘Normal’ are presented in Figure 7.8 for

downside risk and in Figure 7.9 for risk as standard deviation. Indeed, one can see

improved performance in both smaller risk and larger expected NPV compared with the

smaller sample size (compare with Figures 7.6 and 7.7).

The point with the maximum expected returns for the multi-stage model gave expected

returns of 12.9M NPV and a downside risk of 2.4M NPV. The minimum risk point for the
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single-stage model had expected returns of 9.0M NPV and a downside risk of 2.7M NPV.

So, at slightly smaller downside risk the multi-stage model gave expected returns that were

43) higher. The minimum downside risk point of the multi-stage model had expected

returns of 10.9M NPV and a downside risk of 1.5M NPV. Comparing the minimum

downside risk points of the multi-stage and single-stage models, the multi-stage model

has 18.4) larger expected returns at 57) of the downside risk of the single-stage model.

Again, the efficient frontier of the duration-constrained strategy was slightly below that
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without duration and convexity constraints. Measuring risk in terms of standard

deviation, results are similar to those when using the small sample size: the multi-stage

strategy performed significantly better than the single-stage strategy at every level of risk,

with a difference in expected returns between 23.3) and 24.0). Again, the duration-

constrained strategy exhibited smaller risk (in standard deviations) at the price of slightly

smaller expected returns.

Figure 7.10 gives a comparison of the multi-stage efficient frontiers predicted (in-

sample) versus evaluated out-of-sample. One can see that when using the larger sample

size of 24,000, the predicted and the out-of-sample evaluated efficient frontier look almost

identical, thus validating the model. It is evident that using larger sample sizes will result

in both better performance and a more accurate prediction.

7.7 LARGE-SCALE RESULTS

For the actual practical application of the proposed model, we need to consider a large

number of scenarios in order to obtain small estimation errors regarding expected returns

and risk and accordingly stable results. We now explore the feasibility of solving large-scale

models. Table 7.8 gives measures of size for models with larger numbers of scenarios. For

example, model L4 has 80,000 scenarios at the fourth stage, composed of |S2| � 40,

|S|� 40 and |S4| � 50, and model L5 has 100,000 scenarios at the fourth stage composed

of |S2| � 50, |S3|� 40 and |S4| � 50; both models have a sufficiently large sample size in

each stage.

In the case of problem L5 with 100,000 scenarios the corresponding linear program had

270,154 constraints, 249,277 variables, and 6,291,014 non-zero coefficients. Table 7.9 gives
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the elapsed times for simulation and optimization, obtained on a Silicon Graphics Origin

2000 workstation.

While the Origin 2000 at our disposition is a multi-processor machine with 32

processors, we did not use the parallel feature, and all results were obtained using single

processor computations. For the direct solution of the linear programs, we used CPLEX

(1989–1997) as the linear programming optimizer. We contrast the results to using DECIS

(Infanger 1989–1999), a system for solving stochastic programs, developed by the author.

Both CPLEX and DECIS were accessed through GAMS (Brooke et al. 1988). DECIS

exploited the special structure of the problems and used dual decomposition for their

solution. The problems were decomposed into two stages, breaking between the first and

the second stage. The simulation runs for model L5 took less than an hour. The elapsed

solution time solving the problem directly was 13 hours and 28 minutes. Solving the

problem using DECIS took significantly less time, 2 hours and 33 minutes. Encouraged by

the quick solution time using DECIS, we generated problem L20 with 400,000 scenarios

(composed of |S2| � 200, |S3|� 40 and |S4| � 50) and solved it in 11 hours and 34

minutes using DECIS. Problem L20 had 808,201 constraints, 931,271 variables, and

14,259,216 non-zero coefficients.

Using parallel processing, the simulation times and the solution times could be reduced

significantly. Based on our experiences with parallel DECIS, using six processors we would

expect the solution time for the model L5 with 100,000 scenarios to be less than 40

minutes, and using 16 processors one could solve model L20 with 400,000 scenarios in

about one hour. We actually solved a version of the L3 model with 60,000 scenarios,

composed of |S2| � 50, |S3|� 40 and |S4| � 30, in less than 5 minutes using parallel

DECIS on 16 processors.

TABLE 7.9 Large-Scale Models, Solution Times

Model Scenarios Simul. time (s) Direct sol. time (s) Decomp. sol. time (s)

L1 20,000 688 1389.75 1548.91

L2 40,000 1390 6144.56

L3 60,000 2060 14 860.54 5337.76

L4 80,000 2740 28 920.69

L5 100,000 3420 48 460.02 9167.47

L20 400,000 41 652.28

TABLE 7.8 Large-Scale Models, Dimensions

Scenarios Problem Size

Model Stage 2 Stage 3 Stage 4 Total Rows Columns Non-zeros

L1 10 40 50 20,000 54,034 49,918 1,249,215

L2 20 40 50 40,000 108,064 99,783 2,496,172

L3 30 40 50 60,000 162,094 149,623 3,756,498

L4 40 40 50 80,000 216,124 199,497 5,021,486

L5 50 40 50 100,000 270,154 249,277 6,291,014

L20 200 40 50 400,000 808,201 931,271 14,259,216
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7.8 SUMMARY

The problem of funding mortgage pools represents an important problem in finance faced

by conduits in the secondary mortgage market. The problem concerns how to best fund a

pool of similar mortgages through issuing a portfolio of bonds of various maturities,

callable and non-callable, and how to refinance the debt over time as interest rates change,

prepayments are made and bonds mature. This chapter presents the application of

stochastic programming in combination with Monte Carlo simulation for effectively and

efficiently solving the problem.

Monte Carlo simulation was used to estimate multiple realizations of the net present

value of all payments when a pool of mortgages is funded initially with a single bond,

where pre-defined decision rules were applied for making decisions not subject to

optimization. The simulations were carried out in monthly time steps over a 30-year

horizon. Based on a scenario tree derived from the simulation results, a single-stage

stochastic programming model was formulated as a benchmark. A multi-stage stochastic

programming model was formulated by splitting up the planning horizon into multiple

sub-periods, representing the funding decisions (the portfolio weights and any calling of

previously issued callable bonds) for each sub-period, and applying the pre-defined

decision rules between decision points.

In order to compare the results of the multi-stage stochastic programming model with

hedging methods typically used in finance, the effective duration and convexity of the

mortgage pool and of each funding instrument was estimated at each decision node, and

constraints bounding the duration and convexity gap to close to zero were added (at each

node) to the multi-stage model to approximate a duration and convexity hedged strategy.

An efficient method for obtaining an out-of-sample evaluation of an optimal strategy

obtained from solving a K-stage stochastic programming model was presented, using K

independent (sub-)trees for the evaluation.

For different data assumptions, the efficient frontier of expected net present value

versus (downside) risk obtained from the multi-stage model was compared with that from

the single-stage model. Under all data assumptions, the multi-stage model resulted in

significantly better funding strategies, dominating the single-stage model at every level of

risk, both in-sample and by evaluating the obtained strategies via out-of-sample

simulations. Also, for all data assumptions, the out-of-sample simulations demonstrated

that the multi-stage stochastic programming model dominated the duration and

convexity hedged strategies at every level of risk. Constraining the duration and convexity

gap reduced risk in terms of the standard deviation of net present value at the cost of a

smaller net present value, but failed in reducing the downside risk.

The results demonstrate clearly that using multi-stage stochastic programming results

in significantly larger profits, both compared with using single-stage optimization models

and with using duration and convexity hedged strategies. The multi-stage model is better

than the single-stage model because it has the option to revise the funding portfolio

according to changes in interest rates and pre-payments, therefore reflecting a more

realistic representation of the decision problem. It is better than the duration and

convexity hedged strategies because it considers the entire distribution of the yield curve
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represented by the stochastic process of interest rates, compared with the much simpler

hedge against a small shift of the entire yield curve as used in the duration and convexity

hedged strategies.

Small models with 4000 scenarios and larger ones with 24,000 scenarios were used for

determining the funding strategies and the out-of-sample evaluations. The out-of-sample

efficient frontiers of the larger models were shown to be very similar to the (in-sample)

predictions, indicating a small optimization bias. The larger models were solved in a very

short (elapsed) time of a few minutes. Large-scale models with up to 100,000 scenarios

were shown to solve in a reasonable elapsed time using decomposition on a serial

computer, and in a few minutes on a parallel computer.
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APPENDIX 7.A: TABLES AND GRAPHS FOR DATA SETS ‘FLAT’ AND
‘STEEP’

TABLE 7.A1 Funding Strategy from the Multi-Stage Model, Case 95) of Maximum Expected Return, Flat

Data Set

Stage 1 Allocation

j1m03n j1m06n

0.509 0.491

Stage 2 Allocation

Scenario j2m03n j2y03n j2y03nc1 j2y10n j2y10nc1 j2y10nc3 j2y30n

1 0.397 0.603

2 1.000

3 0.251 0.590 0.011 0.148

4 1.000

5 0.514 0.248 0.238

6 1.000

7 0.984 0.016

8 0.620 0.380

9 0.521 0.151 0.328

10 1.000

TABLE 7.A2 Funding Strategy from the Multi-Stage Model, Case 95) of Maximum Expected Return, Steep

Data Set

Stage 1 Allocation

j1m03n

1.000

Stage 2 Allocation

Scenario j2m03n j2y03n j2y03nc1 j2y05n j2y10n j2y10nc1 j2y30n

1 0.038 0.296 0.544 0.122

2 0.717 0.283

3 1.000

4 1.000

5 0.745 0.085 0.170

6 1.000

7 1.000

8 0.609 0.272 0.119

9 0.973 0.027

10 1.000
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TABLE 7.A3 Funding Strategy from the Multi-Stage Model, Case Minimum Downside Risk, Flat Data Set

Stage 1 Allocation

j1m06n j1y05nc3

0.698 0.302

Stage 2 Allocation

Scenario j2m03n j2m06n j2y03n j2y03nc1 j2y05n j2y05nc3

1 0.046 0.418 0.052

2

3 0.201 0.292

4 0.698

5 0.119 0.145

6 0.698

7 0.603

8 0.333

9 0.302

10 0.698

Stage 2 Allocation

Scenario j2y10n j2y10nc1 j2y10nc3 j2y30n

1 0.129 0.053

2 0.698

3 0.039 0.039 0.127

4

5 0.221 0.214

6

7 0.095

8 0.280 0.085

9 0.095 0.301

10
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TABLE 7.A5 Funding Strategy from the Multi-Stage Model, Case Minimum Downside Risk, Steep Data Set

Stage 1 Allocation

j1m03n

1.000

Stage 2 Allocation

Scenario j2m03n j2y01n j2y03n j2y03nc1 j2y05n j2y10n j2y10nc1 j2y30n

1 0.299 0.389 0.215 0.097

2 0.644 0.356

3 1.000

4 1.000

5 0.734 0.088 0.178

6 1.000

7 1.000

8 0.600 0.005 0.246 0.149 5.126743E-4

9 0.958 0.042 8.23454E-4

10 1.000

TABLE 7.A4 Funding Strategy from the Multi-Stage Model, Case Duration and Convexity Constrained, Flat

Data Set

Stage 1 Allocation

j1m06n j1y05n j1y05nc1 j1y07n

0.448 0.225 0.201 0.125

Stage 2 Allocation Call

Scenario j2m03n j2m06n j2y02n j2y03n j2y03nc1 j2y10n j2y10nc1 j1y05nc1

1 0.567 0.082

2 0.102 0.346

3 0.370 0.078

4 0.251 0.033 0.164

5 0.018 0.631

6 0.397 0.051

7 0.036 0.412

8 0.634 0.016

9 0.448

10 0.277 0.372 0.201
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TABLE 7.A6 Funding Strategy from the Multi-Stage Model, Case Duration and Convexity Constrained, Steep

Data Set

Stage 1 Allocation

j1y01n j1y03n j1y10n

0.682 0.305 0.013

Stage 2 Allocation

Scenario j2m03n j2y01n j2y02n j2y03n j2y03nc1 j2y10n j2y30n

1 0.598 0.084

2 0.053 0.629

3 0.049 0.633

4 0.531 0.151

5 0.682

6 0.158 0.524

7 0.500 0.182

8 0.682

9 0.682

10 0.392 0.289
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FIGURE 7.A1 Out-of-sample risk�/return profile for the multi-stage model, Flat data set, risk as downside risk.
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FIGURE 7.A4 Out-of-sample risk�/return profile for the multi-stage model, Steep data set, risk as standard

deviation.
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an Optimal Public Debt Strategy
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8.1 INTRODUCTION

T HE MANAGEMENT OF THE PUBLIC DEBT is of paramount importance for any country.

Mathematically speaking, this is a stochastic optimal control problem with a number

of constraints imposed by national and supranational regulations and by market practices.

The Public Debt Management Division of the Italian Ministry of Economy decided to

establish a partnership with the Institute for Applied Computing in order to examine this

problem from a quantitative viewpoint. The goal is to determine the composition of the

portfolio issued every month that minimizes a predefined objective function (Adamo et al.

2004), which can be described as an optimal combination between cost and risk of the

public debt service.

Since the main stochastic component of the problem is represented by the evolution of

interest rates, a key point is to determine how various issuance strategies perform under
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different scenarios of interest rate evolution. In other words, an optimal strategy for the

management of the public debt requires a suitable modeling of the stochastic nature of the

term structure of interest rates.

Note that hereafter we do not report how to forecast the actual future term structure,

but how to generate a set of realistic possible scenarios. For our purposes, the scenarios

should cover a wide range of possible outcomes of future term structures in order to

provide a reliable estimate of the possible distribution of future debt charges. This

distribution is useful in a risk-management setting to estimate, for instance, a sort of Cost

at Risk (CaR) of the selected issuance policy (Risbjerg and Holmund 2005).

The chapter is organized as follows. Section 8.2 describes the problem. Section 8.3

describes the models employed for generating future interest rate scenarios. Section 8.4

introduces criteria to validate a scenario. Section 8.5 concludes with future perspectives of

this work.

8.2 PROBLEM DESCRIPTION AND BASIC GUIDELINES

It is widely accepted that stock prices, exchange rates and most other interesting

observables in finance and economics cannot be forecast with certainty. Interest rates are

an even more complex issue because it is necessary to consider the term structure, which is

a multi-value observable. Despite this difficulty, there are a number of studies that, from

both the academic and practitioner viewpoint, deal with interest rate modeling (for a

comprehensive survey of interest rate modeling, see James and Webber (2000)).

The most common application of existing term structure models is the evaluation of

interest-rate-contingent claims. However, our purpose is different, since we aim to find an

optimal strategy for the issuance of Italian public debt securities. In a very simplified form

the problem can be described as follows. The Italian Treasury Department issues a number

of different types of securities. Securities differ in the maturity (or expiration date) and in

the rules for the payment of interest. Short-term securities (those having maturity up to

two years) do not have coupons. Medium- and long-term securities (up to 30 years) pay

cash dividends, every 6 months, by means of coupons. The problem is to find a strategy

for the selection of public debt securities that minimizes the expenditure for interest

payment (according to the ESA95 criteria (Jackson 2000)) and satisfies, at the same time,

the constraints on debt management. The cost of future interest payments depends on the

future value of the term structure (roughly speaking, when a security expires or a coupon

is paid, there is the need to issue a new security whose cost depends on the term structure

at expiration time). That is the reason why we need to generate scenarios of future interest

rates. Adamo et al. (2004) show that, for a set of term structure evolutions and Primary

Budget Surplus (PBS) realizations, such an optimization problem can be formulated as a

linear programming problem with linear constraints.

Broadly speaking, this is a typical risk-management problem: once we find an optimal

strategy for a specific realization of the term structure evolution, we need to determine the

expenditure for interest if a different scenario takes place. As a consequence, we need to

simulate the term structure under the objective measure dynamics. This requirement

entails an implicit evaluation of market-price-of-risk dynamics.
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The first issue to consider in the model selection process is the time frame. For the

purposes of the Ministry, a reasonable planning period is 3�/5 years. Within such a long

period, the term structure may change significantly, as shown in Figure 8.1.

Figure 8.2 reports the monthly evolution of the swap interest rates for the following

maturities: 3, 6, 12, 24, 36, 60, 120, 180, 360 months, along with the value of the European

Central Bank (ECB) official rate and a simple interpolation of such rate in the same period

(January 1999�/September 2005). The interpolation is obtained by joining two successive

jumps of the ECB official rate by means of a line. Such an interpolation mimics the

evolution of interest rates, especially for short maturities, and we use it as a simple

approximation of the ECB trend.

This is our basic data set for the analysis and generation of new scenarios of term

structure evolution. We selected swap rates due to their availability for any maturity

regardless of the actual issuance of a corresponding security.

8.3 MODELS FOR THE GENERATION OF INTEREST RATE SCENARIOS

From Figure 8.2 it is apparent that any rate (regardless of its maturity) has a strong

correlation with the ECB rate. This is not surprising and we use this observation to

develop an original approach to the generation of future term-structure scenarios that can

be described as a multi-step process:

i. generation of a scenario for the future ECB official rate;

ii. generation of the fluctuations of each rate with respect to the ECB official rate;

iii. validation of the resulting scenario to determine whether it is acceptable or not.
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FIGURE 8.1 Evolution of the term structure in the time frame January 1999�/September 2005.
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The basic idea is that the ECB official rate represents a ‘reference rate’ and all the other

rates are generated by the composition of this ‘reference rate’ plus a characteristic,

maturity-dependent, fluctuation. In other words, each rate is determined by the sum of

two components: the first component is proportional to the (linearly interpolated) ECB

official rate; the second component is the orthogonal fluctuation of that rate with respect

to the ECB. In mathematical terms, each rate rh is decomposed as

rh
t ¼ ahrecb

t þ ph;?
t ; ð8:1Þ

where recb
t is the linear interpolation of the ECB official rate and ah is given by the

expression

ah ¼
hrh � recbi 	 hrhi � hrecbi
hðrecbÞ2i 	 hrecbi2

; ð8:2Þ

where � �� denotes the average value of the enclosed time series. By construction, the time

series ph;?
t has null correlation with recb. The factors ah are different for each maturity and

a larger value of ah indicates a stronger correlation with the ECB official rate. Table 8.1

reports the value of ah for each maturity considered. As expected, longer maturities are

less correlated with the ECB official rate.
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FIGURE 8.2 Evolution of interest rates with maturity from three months up to 30 years in the time frame

January 1999�/September 2005. The thick line is a linear interpolation of the ECB official rate (represented

by �).
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8.3.1 Simulation of the ECB Official Rate

For the simulation of the future ECB official rate we do not employ a macroeconomic

model since we assume that the interventions of the ECB can be represented as a

stochastic jump process (we return to this point in Section 8.5). Some features of this

process are readily apparent by looking at the evolution of the ECB official rate since

January 1999 (see Figure 8.2) when the ECB official rate replaced national official rates for

the Euro ‘zone’ countries:

� there are, on average, three ECB interventions per year;

� the ECB rate jumps (with approximately the same probability) by either 25 or 50 basis

points; and

� there is a strong ‘persistence’ in the direction of the jumps. That is, there is a high

probability that a rise will be followed by another rise and that a cut will be followed by

another cut.

We model the ECB interventions as a combination of two processes: (i) a Poisson

process that describes when the ECB changes the official rate; and (ii) a Markov process

that describes the sign of the change. Then we resort to an exponential distribution to

simulate the waiting time between two changes of the ECB official rate, and to a Markov

Chain for simulation of the direction (positive or negative) of the change.

The parameter of the exponential distribution can easily be estimated from available

data (that is from the waiting times, in months, between the jumps occurring in the past)

by means of the Maximum Likelihood Estimation (MLE) method. It turns out to be

approximately equal to three months.

Since there are two possible states (positive and negative) in the Markov chain, the

corresponding transition matrix has four entries (positive�/positive, positive�/negative,

negative�/negative, negative�/positive). We estimate the values of each entry by looking at

the historical data and, in particular, at the probability that a change is in the same, or in

the opposite, direction of the previous change. It is interesting to note that the probability

of having a change in the same direction of the previous change is pretty high,

approximately 85). The width of the jump is selected between two possible values (25 or

50 basis point) with the same probability. In summary, the ECB official rate at time t is

defined as

ECBt ¼ ECB0 þ
XNt

s¼1

asCs	1;s; ð8:3Þ

TABLE 8.1 Value of a for Different Maturities

Maturity ah Maturity ah Maturity ah

3 months 0.9833 2 years 0.7693 10 years 0.3949

6 months 0.9514 3 years 0.6695 15 years 0.3545

12 months 0.9094 5 years 0.5425 30 years 0.3237
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where Nt is the realization at time t of the Poisson process that represents the total number

of jumps up to time t, as is the random width of jump s, and Cs-1,s represents the sign of

jump s given the sign of jump s�1.

Moreover, in order to prevent the ECB official rate from reaching unrealistic values (e.g.

negative values), we impose a lower bound on the simulated rate. This lower bound is set

equal to a fixed value (currently 1)). Of course, such a value can easily be modified if the

evolution of the real ECB rate shows that it is no longer adequate. Any jump of the ECB

rate that brings it below the lower bound is discarded. Figure 8.3 shows a few simulations

of the future ECB official rate produced using this approach.

8.3.2 Simulation of the Fluctuations

Figure 8.4 shows the result of decomposition (8.1) applied to the data of Figure 8.2 (only

the component having null correlation with the ECB rate is shown in the figure).

First, we highlight that the historical fluctuations are correlated. This is apparent from

the correlation matrix reported in Table 8.2. As a consequence, simulation of their

evolution requires multivariate models in order to represent this correlation. In other

words, it is not possible to model the dynamics of the fluctuations of a single rate without

taking into account the dynamics of the fluctuations of all rates. To this end, we decided to

follow two approaches having different features that complement each other. The first

approach is based on principal component analysis.
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FIGURE 8.3 Simulations of the future ECB official rate for a planning period of 48 months (the initial value is

always the September 2005 official rate, that is 2)).

180 j CHAPTER 8



8.3.3 Principal Component Analysis

Principal component analysis (PCA) is a well-known technique in time series analysis and

has been in use for a number of years in the study of fixed income markets (Litterman and

Scheinkman 1991). In general, PCA assumes that the underlying process is a diffusion.

The data we employ do not have the jump components produced by the ECB

interventions thanks to the decomposition procedure (8.1) described previously. From

this viewpoint the data appear suitable for PCA. The procedure we follow is the standard

one.
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FIGURE 8.4 Evolution of the components of interest rates, ph;?
t , having null correlation with the linearly

interpolated ECB rate in the time frame January 1999�/September 2005.

TABLE 8.2 Correlation Matrix of the Components of Each Rate Having Null Correlation with the (Linearized)

ECB Official Rate

p3,� p6,� p12,� p24,� p36,� p60,� p120,� p180.� p360,�

p3,� 1.000 0.822 0.625 0.533 0.505 0.490 0.431 0.384 0.311

p6,� 0.822 1.000 0.937 0.867 0.827 0.779 0.682 0.612 0.520

p12,� 0.625 0.937 1.000 0.970 0.934 0.877 0.770 0.697 0.610

p24,� 0.533 0.867 0.970 1.000 0.991 0.956 0.869 0.803 0.717

p36,� 0.505 0.827 0.934 0.991 1.000 0.986 0.922 0.866 0.786

p60,� 0.490 0.779 0.877 0.956 0.986 1.000 0.971 0.931 0.862

p120,� 0.431 0.682 0.770 0.869 0.922 0.971 1.000 0.990 0.949

p180,� 0.384 0.612 0.697 0.803 0.866 0.931 0.990 1.000 0.981

p360,� 0.311 0.520 0.610 0.717 0.786 0.862 0.949 0.981 1.000
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� For each de-trended rate ph;?
t we calculate the differences dh

t ¼ ph;?
t 	ph;?

t	1 (t is the time

index).

� We apply PCA to the m time series of the differences, which we indicate by d. This

means:

�/ calculating the empirical covariance matrix (Lij) of d; and

�/ finding a diagonal matrix of eigenvalues Ld and an orthogonal matrix of

eigenvectors E � [e1,. . .,em] such that the covariance matrix is factored as

Ld ¼ ELhistET .

The eigenvectors with the largest eigenvalues correspond to the components that have

the strongest correlation in the data set.

For the data set of the monthly yield changes from January 1999 to September 2005, the

first three components represent 98.3) of the total variance in the data. The projections

of the original data onto the first three principal components do not show autocorrelation

phenomena (the covariance matrix is, as expected in the PCA, very close to the Ld

matrix). Usually, the first three components are interpreted respectively as (i) a level shift,

(ii) a slope change, and (iii) a curvature change. Since the PCA is applied, in our case, to

de-trended data (with respect to the ECB official rate) the meaning of the components

could be different. However, the plot of the first three components shown in Figure 8.5

does not seem too different from similar studies that consider yield changes directly

(Baygun et al. 2000).

To create a new scenario for the fluctuations it is necessary to take a linear combination

of the principal components. If N is the number of principal components (N�3 in the

present case), an easy way is to compute d¼ Fm, where F � [e1,. . . ,eN] is an m�N matrix

composed of the eigenvectors corresponding to the first N eigenvalues, and m a vector with
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FIGURE 8.5 The three most significant components computed from monthly yield changes, January 1999�/

September 2005.
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N elements. In principle, the value of each element of this vector could be selected at will.

However, there are two common choices: the first is to assign a value taking into account

the meaning of the corresponding principal component. For instance, if the purpose is to

test the effect of a level shift with no slope or curvature change, it is possible to assign a

value only to the first element, leaving the other two elements equal to zero. The other

choice is to compute d ¼ F
ffiffiffiffiffiffi
Ld

p
Z , where Z is a vector of N independent, normally

distributed, variables. Therefore, each element of the vector m is drawn from a normal

distribution with variance equal to the eigenvalue corresponding to the principal

component. In the present work, we followed the second approach since we did not

want to make a priori assumptions. Hence, the evolution of ph;?
t is described by the

following equation:

ph;?
t ¼ ph;?

t	1 þ
XN

j¼1

Fhj

ffiffiffiffi
lj

q
Zj; ð8:4Þ

where lj is the jth eigenvalue. Note that a linear combination of the principal components

provides a vector of fluctuations for one time period only. Actually, since the planning

period is 3�/5 years and the time step is one month, we need, for a single simulation, a

minimum of 36 up to a maximum of 60 vectors of fluctuations. Obviously, it is possible to

repeat the procedure for the generation of the fluctuations, but, as a result of limited

sampling, the covariance matrix of the resulting simulated fluctuations may appear quite

different with respect to the covariance matrix of the historical fluctuations. Although a

different behavior does not necessarily imply that the simulated fluctuations are

meaningless, it is clear that we must keep this difference under control. In Section 8.4

we describe how we dealt with this issue.

Figure 8.6 shows the results of a simulation, based on the PCA, of the evolution of

interest rates for a planning period of 48 months and a few samples of the corresponding

term structures. The results of another simulation reported in Figure 8.7 show how this

technique is able to also produce inverted term structures in which long-term or medium-

term maturities have lower returns with respect to short-term maturities. This is not the

most common situation, of course, but it may happen, as shown in Figure 8.1 (see the

term structure of January 2001).

The second approach for the simulation of the fluctuations aims at maintaining a closer

relationship with the historical fluctuations and assumes that each fluctuation has its own

long-term level to which it tends to return. For this reason, we simulate the fluctuations as

a set of mean-reverting processes.

8.3.4 Multivariate Mean-Reverting Models

8.3.4.1 The basic stochastic process A widely used model for the description of interest rate

evolution is based on the following equation proposed by Cox, Ingersoll and Ross (1985)

(CIR):
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drt ¼ kðm	 rtÞ dt þ s
ffiffiffiffi
rt

p
dBt ; ð8:5Þ

where k,m ands are positive constants and rt is the short-term interest rate. The CIR model

belongs to the class of mean-reverting and exponential-affine models (Duffie and Kan

1996). This means that the short rate is elastically pulled to the constant long-term

value m (mean-reversion) and that the yield to maturity on all bonds can be written as a

linear function of the state variables (affine models have been carefully analysed by Duffie

et al. 2000). With respect to other, more simple, models belonging to the same class, such as

the Vasicek (1977) model, the CIR model guarantees that the interest rates are represented

by continuous paths and remain positive if condition 2km> s2 is fulfilled, and r0 � 0.

Moreover, the volatility is proportional to the interest rate. A review of some of the

estimation methods for these models is reported in Appendix 8.A.

As already mentioned, if we used the simple one-factor model (8.5), we would neglect a

fundamental point for the generation of scenarios of the future term structure, that is the

correlation among fluctuations corresponding to different maturities. In order to capture

this correlation element, in the following we propose a simple multi-dimensional

extension of model (5) for the generation of the orthogonal fluctuations with respect

to the ECB official rate. We consider the following equation:

dph;?
t ¼ khðmh 	 ph;?

t Þ dt þ
ffiffiffiffiffiffiffiffi
ph;?

t

q XM

j¼1

shj dB j
t ; for h ¼ 1; . . . ;M ð8:6Þ

on the interval [0, T], T being the time horizon for the generation of scenarios. Here

Bt ¼ ðB1
t ; . . . ;BM

t Þ is an M-dimensional Brownian motion representing M sources of
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FIGURE 8.7 Another set of term structures produced by the PCA-based technique. Note how those

corresponding to 30, 36, 42 and 48 months are inverted.
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randomness in the market, and kh � 0, mh�0, and shj are constants such that the

matrix s is symmetric and the following conditions hold true:

detðsÞ 6¼ 0; khmh >
1

2
ðs2Þhh; 8h ¼ 1; . . . ;M : ð8:7Þ

It is easy to show that the inequality (8.7) is a sufficient condition for the existence of a

unique solution with positive trajectories to the stochastic differential Equation (8.6)

starting at p0 2 ð0;1Þ
M

; see, in particular, Duffie and Kan (1996). Since the var�/cov

matrix SðpÞSðpÞ>, with Si;jðpÞ¼
ffiffiffiffi
pi

p
sij , i; j¼1; . . . ;M , is not an affine function of p,

model (8.6) does not belong to the affine yield class (Duffie et al. 2000) unless s

is diagonal, in which case the model reduces to a collection of M uncorrelated CIR

univariate processes. However, model (8.6) preserves some features of the class studied in

Duffie anf Kan (1996) and Duffie et al. (2000), such as analytical tractability and

convenient econometric implementation, while the volatility of each component is

proportional only to the component itself. Below, we focus our attention on the problem

of the estimation of (8.6).

8.3.4.2. The estimation of model (8.6) There is a growing literature on estimation methods for

term structure models; see, in particular, Ait-Sahalia (2002). A vast literature is specifically

devoted to the estimation of affine models (see Balduzzi et al. 1996 and references therein).

Here we shall discuss an ad hoc method to estimate model (8.6), which is based on a

discrete-time maximum likelihood method (MLE). It is now well recognized that

discretization of continuous-time stochastic differential equations introduces a bias in

the estimation procedure. However, such a bias is negligible when the data have daily

frequency (Bergstrom 1988). For this reason we use daily swap data in this case. In discrete

time, the process in Equation (8.6) becomes

ph
tiþ1
¼ ph

ti
þ khðmh 	 ph

ti
ÞDþ

ffiffiffiffiffiffiffiffi
ph

ti
D

q XM

j¼1

shjZ
j
i ; i ¼ 1; . . . ; n	1; ð8:8Þ

for h�1, . . . , M, where ti�iD and D�Tun. Here, Zi ¼ ðZ 1
i ; . . . ;Z M

i Þ, i�1,. . . ,n�1, are

independent multivariate normal random variables with zero mean and covariance matrix

IM, IM being the identity matrix of order M. We observe that the distributional properties of

the process (8.8) depend only on k,m and s2. Therefore, in order to generate scenarios from

model (8.8), it suffices to know an estimate of this matrix. For this, we introduce the matrix

G ¼ ½s2�	1
. Estimation involves maximizing the log-likelihood function associated with a

sequence of observations p̂h
ti

> 0:

‘n ¼ zþ n	 1

2
logðdetGÞ 	 1

2

Xn	1

i¼1

e>i Gei; ð8:9Þ

where z ¼ 	½ðn 	 1ÞM logð2pÞ�=2 and
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eh
i :¼ Eh

i þ Zh
i khmh þ ch

i kh; ð8:10Þ

Eh
i , Zh

i and ch
i being constants independent of the parameters of the model, given by

Eh
i ¼

p̂h
tiþ1
	 p̂h

tiffiffiffiffiffiffiffiffi
p̂h

ti
D

q ; Zh
i ¼ 	

ffiffiffiffiffi
D

p̂h
ti

s
; ch

i ¼
ffiffiffiffiffiffiffiffi
p̂h

ti
D

q
; ð8:11Þ

for every i�1,. . . ,n�1 and h�1, . . . , M. We reduce the number of parameters from

2M�M2 to 2M � [M(M�1)/2] by introducing the following new variables:

G ¼ C>C; ah ¼ khmh; h ¼ 1; . . . ;M ; ð8:12Þ

where C is a lower triangular matrix with strictly positive entries on the main diagonal.

(using the Cholesky factorization of G	1 ¼ A>A, with A upper triangular, C ¼ ½A	1�>). We

associate with this matrix a vector c 2 IRMðMþ1Þ=2 according to the relation

Ci;j ¼ c½iði	1Þ=2�þj ; 8M � i � j � 1: ð8:13Þ

Using these variables, we have detG ¼ ½det C�2 ¼ PM
h¼1C2

hh, while (8.9) can be rewritten as

follows:

‘nðc; a; kÞ ¼ zþ ðn 	 1Þ
XM

h¼1

logðChhÞ 	
1

2

Xn	1

i¼1

jCeij
2
: ð8:14Þ

Therefore, the calibration of model (8.6) can be obtained by computing the maximum of

ln for a; k 2 ð0;1ÞM and c 2 IRMðMþ1Þ=2, satisfying chðhþ1Þ=2 > 0, for any h�1, . . . , M. We

observe that the computation can be reduced to the maximum of

Uða; kÞ ¼ sup
c

‘nðc; a; kÞ ð8:15Þ

on ð0;1ÞM � ð0;1ÞM . Since ln is concave compared with c, it is easy to show that U is

well defined and, for every ða; kÞ 2 ð0;1Þ2M
, there is a c� ¼ c�ða; kÞ such that

Uða; kÞ ¼ ‘nðc�; a; kÞ ð8:16Þ

holds true. The optimizer c� is related, via relation (8.13), to the lower triangular matrix

ðR�ij=
ffiffiffiffiffi
R�ii
p Þi�j defined by
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R�i1

R�i2

..

.

R�ii

0
BBBB@

1
CCCCA
¼ V	1

i

0

0

..

.

n 	 1

0
BBBB@

1
CCCCA
; i ¼ 1; . . . M ; ð8:17Þ

where

ðViÞh1h2
¼ ðViða; kÞÞh1h2

:¼ ½eh1 �>eh2 ; h1; h2 ¼ 1; . . . ; i: ð8:18Þ

For details of this result, see Papi (2004).

Summarizing, it is possible to select an optimal value of C�C(a ,k) and then calculate

the maximum of the function U which depends only on 2M variables, thus reducing the

computational burden. Since we do not know whether the function U is concave or not, it

is not possible to resort to gradient methods in order to find a global maximum. For this

reason, we employ a stochastic algorithm based on Adaptive Simulated Annealing (ASA)

combined with Newton’s method. Table 8.3 reports representative results of this reduction

method applied to the estimation of the parameters of model (8.6).

Note that Equation (8.6) may be generalized as follows:

dph;?
t ¼ khðmh 	 ph;?

t Þ dt þ ½ph;?
t �

v
XM

j¼1

shj dBj
t ; for h ¼ 1; . . . ;M ; ð8:19Þ

where the exponent n belongs to the interval [0,1.5] (Duffie 1996) (this restriction is

needed for the existence and uniqueness of solutions).

The discrete-time maximum-likelihood method does not involve particular difficulties

with respect to the case we have dealt with (i.e. n�0.5). More precisely, the reduction

method described by (8.12)�/(8.18) can be easily adapted to this more general situation.

Table 8.4 reports the results of a comparison (for the sake of simplicity, only two maturities

are considered) between the estimates provided by model (8.6) and a simpler pure-

Gaussian version (i.e. n � 0) corresponding to a multivariate Vasicek model.

Path generation using model (8.6) is carried out by means of the discrete version (8.8).

The generation of a scenario with time frequency D � 0 assigns the last observed data to

TABLE 8.3 MLE of the Multivariate Model. Parameters for Some Representative Maturities Provided by the

Multivariate Model (8.6) of the Orthogonal Components (ph;?
t of Equation (8.1)) of Italian

Treasury Rates. The Estimate is Obtained from Daily Data of the 1999�/2005 Period by Means of

the Techniques Described in Section 8.3.4.2 using Adaptive Simulated Annealing

Maturity k m s6 s36 s60 s360

6 months 4.3452 0.4353 0.7356 0.0421 0.0081 �0.0167

36 months 3.4351 2.0429 0.0421 0.2994 0.1871 0.0874

60 months 3.4195 2.8469 0.0081 0.1871 0.2455 0.1010

360 months 4.3450 4.5369 �0.0167 0.0874 0.1010 0.1993
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ph
1 for every h�1, . . . , M. Then, at each time step i, where 15i5n�1, we generate

independent random vectors zi from the multivariate normal distribution N(0, IM), and

we set

ph
iþ1¼ph

i þ khðmh 	 ph
i ÞDþ

ffiffiffiffiffiffiffiffi
ph

i D
q

ðC	1 � ziÞh; ð8:20Þ

for i � 1, . . . , n�1, where k,m and C are the MLE estimators.

Figure 8.8 shows the results of a simulation, based on the multivariate CIR model

described in this section, for a planning period of 48 months.

8.4 VALIDATION OF THE SIMULATED SCENARIOS

The stochastic models presented above allow the generation of a ‘realistic’ future term

structure. However, we need to generate a (pretty long) temporal sequence of term

structures starting from the present interest rates curve. As mentioned in Section 8.3, this

requires control of the evolution in time of the simulated term structure in such a way

that, for instance, its behavior is not too different from the behavior observed in the past.

Besides control on the value of the simulated ECB with respect to a predefined lower

bound as described in Section 8.3.1, we resort to two techniques to assess the reliability of

the sequence of simulated term structures. The first method, which we classify as ‘local,’

ensures that, at each time step of the planning period, the simulated term structure is

‘compatible’ with the historical term structure. The second (which we classify as ‘global’)

considers the whole term structure evolution, and ensures that the correlation among the

increments of ph;?
t are close to the correlation of the increments of the historical

fluctuations.

TABLE 8.4 Comparison of the Parameters of the Multivariate CIR Model (Equation (8.8)) and a Multivariate

Vasicek (i.e. Pure Gaussian) Model, Corresponding to Equation (8.19) with n � 0. For the

Estimation We Resorted to the Discrete Maximum-Likelihood Method Applied to Daily

Observations in the Period January 1999�/September 2005 of the ph;?
t Components of Two

Maturities (60 and 120 Months, Indicated, Respectively, as 1 and 2). The Values of the t-statistics in

the Multivariate CIR Model and the Larger Log-likelihood Indicate that Model (8.8) provides a

Better Fit of the Original Data with Respect to the Pure-Gaussian Model

Model

Multivariate CIR Multivariate Vasicek

Parameter Estimate t-Stat. Estimate t-Stat.

k1 1.6208 17.1201 1.4542 17.2518

k2 1.4175 15.0218 1.4243 16.4660

m1 1.6959 0.0917 1.6992 0.0950

m2 2.6422 0.5381 2.6557 0.5463

s11 0.5545 2.0263 0.6667 34.190

s12 0.2788 2.0269 0.4079 24.419

s22 0.3302 1.4483 0.5686 33.843

Log-likelihood �1001.925337 �2206.122226
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The local test is based upon the observation that the shape of the term structure does

not vary widely over time. Obviously, there is some degree of variability. For instance, it is

known that the term structure is usually an increasing function of the maturity, but, at

times, it can be inverted for a few maturities. This is the fundamental assumption of

Nelson and Siegel’s (1987) parsimonious model of the term structure.

In the present case, since we are not interested in a functional representation of the

term structure but in the interest rates at fixed maturities, we take as the indicator of the

term structure shape the relative increment and the local convexity of the interest rates:

d h
t ¼ rh

t 	 rh	1
t ; ch

t ¼ ~rh
t 	 rh

t ; ð8:21Þ

where ~rh
t is the value at mh of the linear interpolation between rhþ1

t and rh	1
t :

~r h
t ¼ rh	1

t þ rhþ1
t 	 rh	1

t

mhþ1 	mh	1
ðmh 	mh	1Þ:

A positive convexity (ch
t > 0) means that the rate rh

t at maturity mh is below the line

joining the rates rh	1
t and rhþ1

t at maturities mh	1 and mh, respectively, therefore the

curvature opens upward. The case of ch
t < 0 can be interpreted along the same lines, but

the curvature opens downward.

At any time step, we accept the simulated interest rates if the corresponding values

of d h
t and ch

t are not too different from the historical values. Briefly, we compute the

historical mean and standard deviation (mh
d , sd

h) and (mh
c , sc

h) of d h
t and ch

t , respectively,

and then we check that
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XM	1

h¼1

1

ðsh
dÞ

2 ðd
h

t 	 mh
dÞ

2 � ðM 	 1Þ;

XM	1

h¼2

1

ðsh
c Þ

2 ðch
t 	 mh

c Þ
2 � ðM 	 2Þ:

ð8:22Þ

The meaning of such tests is straightforward. If the simulated interest rates pass the

tests, we are quite confident that their increments and the local convexity have statistical

behaviour similar to the historical rates.

The global test controls the correlation among the increments of ph;?
t , since it can be

quite different from the correlation of the historical data. In order to avoid ‘pathological’

situations like anti-correlated increments or increments that are too correlated with each

other, we compute the ‘one-norm’ of the matrix difference between the correlation matrix

of the increments of the historical fluctuations and the correlation matrix of the simulated

increments. The ‘one-norm’ is defined as follows: for each column, the sum of the

absolute values of the elements in the different rows of that column is calculated. The

‘one-norm’ is the maximum of these sums:

kShist
i;j 	 Si;jk1 ¼ sup

i

XM

j¼1

jShist
i;j 	 Si;jj: ð8:23Þ

We compare the result of this calculation with a predefined acceptance threshold. If the

‘one-norm’ is below the threshold, the simulated scenario is accepted, otherwise it is

rejected and a new set of fluctuations is generated. Currently, the threshold is set equal to

0.05. Since the correlation is a number within the range [�1,1], this simple mechanism

guarantees that the covariance among the increments of the interest rates of different

maturities in the simulated scenarios is pretty close to the historical covariance.

Note how the local and global tests are complementary since the first test involves the

shape of the term structure, whereas the second test concerns how the rates’ increments

are correlated in time, that is, how the term structure evolves from one time step of the

simulation to the next.

8.5 CONCLUSIONS AND FUTURE PERSPECTIVES

The management of public debt is of paramount importance for any country. Such an

issue is especially important for European countries after the definition of compulsory

rules by the Maastricht Treaty. Together with the Italian Ministry of Economy and

Finance, we have studied the problem of finding an optimal strategy for the issuance of

public debt securities. This turned out to be a stochastic optimal control problem where

the evolution of the interest rates plays a crucial role.

We have presented the techniques we employ to simulate the future behaviour of

interest rates for a wide range of maturities (from 3 months up to 30 years). Since the

planning period that we consider is pretty long (up to five years), most existing models
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need to be modified in order to provide realistic scenarios. In particular, the evolution of

the ‘leading’ rate (which we assume to be the European Central Bank’s official rate) is

simulated as if it were a stochastic jump process. We are aware that there is a long tradition

of studies that try to explain the links between prices, interest rates, monetary policy,

output and inflation. Webber and Babbs (1997) were among the first to propose yield-

curve models able to capture some aspects of monetary policies. Piazzesi (2001)

introduced a class of linear-quadratic jump-diffusion processes in order to develop an

arbitrage-free time-series model of yields in continuous time that incorporates the central

bank policy and estimates the model with U.S. interest rates and the Federal Reserve’s

target rate.

A general framework for these models has recently been presented by Das and Chacko

(2002), where the authors introduce factors that influence the marginal productivity of

capital, and thus the interest rates, in the economy. Their technique is general, since it

applies to any multi-factor, exponential-affine term structure model with multiple Wiener

and jump processes.

From an empirical point of view, there is some evidence that important central banks,

like the U.S. Federal Reserve, conduct a monetary policy (i.e. set the official rate) that is

well described by the so-called Taylor’s rule (Taylor 1993). Basically, the rule states that the

‘real’ short-term interest rate (that is, the interest rate adjusted for inflation) should be

determined according to three factors: (1) where the actual inflation is relative to the

targeted level that the central bank wishes to achieve, (2) how far economic activity is

above or below its ‘full employment’ level, and (3) what the level of the short-term interest

rate is that would be consistent with full employment. Although Taylor’s rule appears to

be more robust than more-complex rules with many other factors, it requires knowledge

of inflation and the real Gross Domestic Product (GDP). The simulation of future

inflation and GDP is far from easy, so, in some sense, the application of Taylor’s rule

changes, but does not solve, the problem of generating meaningful scenarios for the

evolution of the ECB official rate.

The models proposed in the present chapter are fully integrated into the software

prototype in use at the Ministry. The time required by the simulations (a few seconds on a

personal computer) is such that we can afford on-line generation of the simulated

scenarios even if the validation procedures described in Section 8.4 may require multiple

executions before a scenario is accepted.

Open problems and future analysis directions include the following:

� Modeling of the Primary Budget Surplus, Gross Domestic Product and Inflation in

order to implement Taylor’s rule and possibly other models for the evolution of the

European Central Bank’s official rate.

� Overcoming the assumption that interest rates are independent of the portfolio of

existing securities and independent of the new securities issued every month. To limit

the impact on the optimization problem, we should devise a description of these

interactions that is compatible with the linear formulation of the problem.
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APPENDIX 8.A: ESTIMATION WITH DISCRETE OBSERVATIONS

We deal with the case of a diffusion process Xt (i.e. the interest rate rt) that is observed at

discrete times 0 ¼ t0 < t1 < � � � < tn, not necessarily equally spaced.

If the transition density of Xt from y at time s to x at time t is p(x,t,y,s; u), where u is

a collection of parameters to be estimated, we can resort to the Maximum Likelihood

Estimator (MLE) byn which maximizes the likelihood function

LnðyÞ ¼
Yn

i¼1

pðXti
; ti;Xti	1

; ti	1; yÞ; ð8:A1Þ

or, equivalently, the log-likelihood function

‘nðyÞ ¼ logðLnðyÞÞ ¼
Xn

i¼1

logðpðXti
; ti;Xti	1

; ti	1; yÞÞ: ð8:A2Þ

In the case of observations equally spaced in time, the consistency and asymptotic

normality of ŷn as n 0� can be proved (Dacunha-Castelle and Florens-Zmirou 1986). In

general, the transition density of Xt is not available. In this case the classical alternative

estimator is obtained by means of an approximation of the log-likelihood function

for u based on continuous observations of Xt. Unfortunately, this approach has the

undesirable property that the estimators are biased, unless p ¼ maxi jti 	 ti	1j is small. To

overcome the difficulties due to the dependence of the parameters on p, different

solutions have been proposed. One of the most efficient methods resorts to martingale

estimating functions (Bibby and Sorensen 1995). This method is based on the

construction of estimating equations having the following form:

GnðyÞ ¼ 0; ð8:A3Þ

where

GnðyÞ ¼
Xn

i¼1

gi	1ðXti	1
; yÞðXti

	 IEðXti
j Xti	1

ÞÞ; ð8:A4Þ

gi-1 being continuously differentiable in u, for i � 1, . . . , n. Bibby and Sorensen (1995)

proved, under technical conditions on gi-1, that an estimator that solves Equation (8.A3)

exists with probability tending to one as n 0�, and this estimator is consistent and

asymptotically normal.

A simpler approach, which can be used when p is sufficiently small, is based on the

Euler discretization of the diffusion equation associated with Xt. In this case, one can use

the log-likelihood approach since the transition density can be easily computed. We

discuss the application of this method to (8.5). Let
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rtiþ1
¼ rti

þ kðm	 rti
ÞDþ s

ffiffiffiffiffiffiffi
rti
D

q
Zi; i ¼ 1; . . . ; n 	 1; ð8:A5Þ

be the first-order discretization of Equation (8.5) on time interval [0, T], where D � T/n

and with Zi the increment DBi of the Brownian motion between ti � iD and

tiþ1 ¼ ði þ 1ÞD. Since these increments are independent N(0, D) distributed random

variables, the transition density from y � 0 to x during an interval of length D is

pðx j y; yÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pys2D

p exp 	 1

2ys2D
x 	 kðm	 yÞDð Þ2

� �
; ð8:A6Þ

where y ¼ ðk;m; sÞ. Therefore, given a sequence of observations frigi, an estimator of

(8.32) is obtained by maximizing the log-likelihood function

max
y

Xn	1

i¼1

logðpðrtiþ1
j rti

; yÞÞ: ð8:A7Þ

If one expands the function in (8.34) and sets equal to zero its partial derivatives with

respect to ðk; m;s2Þ, it is easy to show that the corresponding equations admit a unique

solution that is a maximum point of the log-likelihood function. The following relations

represent this ML estimator:

m ¼ EF 	 2CD

2EB 	 FD
; k ¼ D

2mB 	 F
; ð8:A8Þ

s2 ¼ 1

n 	 1
ðA þ k2m2B þ k2C 	 kmD þ kE 	 k2mFÞ; ð8:A9Þ

TABLE 8.A1 Assessment of the Discrete Estimator (1D case). Results for a Simulation Evaluation of the Log-

likelihood Estimator to the Univariate CIR Model. Using the True Values of the Parameters We

Simulated 500 Sample Paths of Length 2610 Daily Observations Each. For Each Sample Path We

Undertook Discrete MLE Estimation Via Euler Discretization. The Table Presents Summary

Statistics of the Simulated Estimations. We Computed the Mean and Standard Error for the

Estimator (k̂; m̂; ŝ), and Computed t-Statistics for the Difference between the Simulated

Parameter Estimate and the True Parameter. The Null Hypothesis Cannot be Rejected at the

5) Significance Level

Parameter

Statistics (N�500) k m s

True parameter 0.8 3.24 0.03

Estimated parameter 0.79928 3.2405 0.030009

Standard error 0.00081491 0.0011 0.00001936

t-Statistics 0.8835 0.4545 0.4649
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where

A ¼
Xn	1

i¼0

ðriþ1 	 riÞ
2

riD
; B ¼ D

Xn	1

i¼0

1

ri

; C ¼ D
Xn	1

i¼0

ri;

D ¼ 2
Xn	1

i¼0

riþ1 	 ri

ri

; E ¼ 2ðrn 	 r0Þ; F ¼ 2Dðn 	 1Þ:
ð8:A10Þ

Here, ri is the interest rate at time ti. We report the results of this method in Table 8.A1.

In Table 8.A2 the method is applied to each orthogonal component ph;?
t .

TABLE 8.A2 MLE of the Univariate CIR Model. Results for the Estimation of the Univariate CIR Model of ph;?
t

of Equation (8.1). Estimation was Carried Out Using Discrete Maximum-likelihood (8.34). We

Report the Value of the Log-likelihood (Log (L)), the Norm of its Gradient (|9Log (L)|) and the

Maximum Eigenvalue (lL) of its Hessian Matrix at the Maximum Point

Parameter BOT3 BOT6 BOT12 CTZ

k 5.4611 4.0217 2.1634 1.1265

m 0.32712 0.43815 0.72852 1.457

s 0.78513 0.76817 0.74801 0.57573

log (L) 1866.541 2174.4863 1920.0013 1791.6797

|9log (L)| 1.2268�10-13 3.0103�10-15 6.3497�10-15 2.2739�10-13

lL �0.54044 �1.1819 �1.5844 �1.7826

BTP36 BTP60 BTP120 BTP180 BTP360

k 1.1488 1.4039 1.7635 1.9973 2.4133

m 2.0531 2.8686 3.9144 4.2957 4.5355

s 0.50163 0.4293 0.33892 0.31716 0.30738

log (L) 1756.6086 1743.7829 1822.044 1839.9547 1840.362

|9log (L)| 1.4118�10-14 0 9.0949� 10-13 0 1.504�10-13

lL �1.8906 �1.8071 �1.5539 �1.3116 �0.93247
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9.1 INTRODUCTION

I N RECENT YEARS, A GROWING NUMBER of real-world applications of asset liability

management (ALM) with discrete-time models have emerged. Insurance companies

and pension funds pioneered these applications, which include the Russell�/Yasuada

investment system (Carino and Ziemba 1998), the Towers�/Perrin System (Mulvey 1995),

the Siemens Austria Pension Fund (Ziemba 2003; Geyer et al. 2004), and Pioneer

Investment guaranteed funds (Dempster et al. 2006). In each of the applications, the

investment decisions are linked to liability choices, and the funds are maximized over time

using multi-stage stochastic programming methods. Other examples of the use of

stochastic programming to solve dynamic ALM problems are given by Dempster and

Consigli (1998) and Dondi (2005).

All authors propose stochastic programming as the most suitable solution framework

for ALM problems. However, since most of the asset or liability models are dynamic

stochastic models, the ALM problem is one of dynamic optimization which can be solved

by applying the continuous state dynamic programming (DP) algorithm. In this chapter,

we show that the DP algorithm can be approximated locally by stochastic programming

(SP) methods. By using a sufficient number of scenarios, the difference between the exact

solution and the approximation can be made arbitrarily small. The SP optimization is re-

solved for every time-step based on a new set of stochastic scenarios that is computed

according to the latest conditional information. In this way, a feedback from the actual

observed state is introduced which is not from the coarse scenario approximation from

an earlier time-step. This procedure, often called rolling-horizon planning, is frequently

used as heuristic, but we show here that by carefully posing and computing the SP

optimization, the continuous state DP algorithm is being applied approximately.

This DP approximation is applied to the problem of a fund that guarantees a minimal

return on investments and faces transaction costs when investing. The situation resembles

the problem faced by Swiss pension funds or German life insurance policies. The minimal

return guarantee changes the fund problem from a pure asset allocation problem to

an ALM problem, see Dempster et al. (2007). First, models of the asset returns and

portfolio dynamics with transaction costs are introduced. Then we propose that the most

suitable risk measure for such a situation is a shortfall risk measure that penalizes all

possible scenarios for the future in which the minimal return is not achieved. The

optimization problem is solved with the aim of maximizing the return above the guarantee

over the planning horizon, while limiting the shortfall risk. The problem is tested in an

eight year out-of-sample backtest with a quarterly trading frequency from the perspective

of a Swiss Fund that invests domestically and in the EU markets and faces transaction costs.

The chapter is organized as follows: in Section 9.2, the approximation of dynamic

programming is introduced. In Section 9.3, we present the application of the stochastic

programming approximation to a portfolio problem with transaction costs. Additionally,

we introduce a dynamically coherent risk measure for asset liability situations. In Section

9.4, a case study is examined from the perspective of a Swiss fund that invests domestically

in stocks, bonds and cash, as well as in the EU stock and bond markets. Section 9.5

concludes the chapter.
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9.2 STOCHASTIC PROGRAMMING APPROXIMATION OF THE
CONTINUOUS STATE DYNAMIC PROGRAMMING ALGORITHM

We discuss how to use dynamic stochastic programming as one possible approximation of

dynamic programming (DP). It is well known that any dynamic optimization problem

(DOP) in discrete-time may be solved in principle by employing the DP algorithm.

However for situations with realistic assumptions, such as control constraints or non-

Gaussian white noise processes, it is very difficult to obtain closed-form solutions. In these

cases it is necessary to resort to numerical solution methods.

9.2.1 Basic Problem and Description of the Algorithm

In this chapter, we approximate the continuous state dynamic programming method by

discretizing not the state space but the possible outcomes of the white noise process.

Starting from the current state value the DP approximation solves a SP problem over a

finite horizon at each sampling time. The optimization procedure yields an optimal

control sequence over the planning horizon but only the first control decision of the

sequence is applied to the system and the rest are disregarded. At the next time-step, the

calculation is repeated based on the new value of the state variable and over a shifted

horizon, which leads to a receding horizon policy. The receding horizon policy means

that we solve the multi-period decision problem always with the same number of

periods to the horizon. Other authors have investigated the same idea in a portfolio

optimization context, see Brennan et al. (1997), but based on numerical solutions of the

Hamilton�/Jacobi�/Bellman PDE to solve the optimal control problem. A useful advantage

of the present DP approximation is the capability to solve DP problems using established

methods from stochastic programming and their known properties and algorithms.

Other techniques, such as discrete DP solutions, often lead to computationally

overwhelming tasks which often prevent their application. The technique proposed here

however, solves the problem only for the current state and the approximate trajectory

of the underlying dynamical system and thus avoids the curse of dimensionality. In

Figure 9.1, the approximation algorithm is summarized; in Table 9.1 it is described in

detail.

Scenario
Generation

Solving
Stochastic
Program

Measure State (y(t))

u(t)u(t), us(t+1), ..
...u(t+T )s

y(t+1) = D(t, y(t))
+ S(t, y(t)) ε(t)

Realization
of ε(t)

FIGURE 9.1 Graphical description of the approximation algorithm.
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A general DOP can be stated as

Jðt ; yðtÞÞ : ¼ max
u2U

E
XT�1

t¼t

Lðt; yðtÞ; uðtÞÞ þMðT ; yðT ÞÞ
" #( )

s.t. yðtþ 1Þ ¼ Dðt; yðtÞ; uðtÞÞ þ Sðt; yðtÞ; uðtÞÞEðtÞ;
ð9:1Þ

where t � t, t � 1, . . . , T � 1, L( �) and M( �) are the strictly concave value functionals,

D( �) and S( �) define the state dynamics and are assumed to be continuously differentiable

functions, uðtÞ is a bounded control vector constrained to the convex set U and e(t) is a

strictly covariance stationary white noise process. It is assumed that all functionals L( �),

M( �), D( �) and S( �) are Lipschitz continuous and fulfil the necessary conditions for this

dynamic optimization problem to be well defined and possesses a unique solution. For

details refer to Bertsekas and Shreve (1978). Note that the white noise process is

stationary, but the dynamics of y(t) are both state and time dependent since the

functional Sðt; yðtÞ; uðtÞÞ depends on both y(t) and t.

In order to obtain a feedback solution to the DOP problem (9.1), the dynamic

programming (DP) algorithm is given by

JðT ; yðTÞÞ ¼ MðT ; yðT ÞÞ;

Jðt; yðtÞÞ ¼ max
uðtÞ2U

n
E½Lðt; yðtÞÞ þ Jðtþ 1;Dðt; yðtÞ; uðtÞÞ þ Sðt; yðtÞ; uðtÞÞ; EðtÞÞ	

o
:

ð9:2Þ

This condition for optimality can be found in Bertsekas (1995, Chapter 1). Instead of

solving the DP algorithm for J to yield the true stochastic dynamics, we locally

approximate the stochastic dynamics by a finite number of scenarios at the current

decision time and solve the problem repeatedly at each decision time-step.

The standard DP procedure discretizes the state space for each dimension of y(t) and

each time-step until the horizon T. Then, beginning at time T, the optimization problem

of (9.2) is solved for each discretized state of y(t). Based on the optimal solution for each

state discretization of y(t) the optimal value of J(T, y(T)) is known. The optimal control

decision for time T � 1 is solved by maximizing the backward recursion in (9.2). This

procedure is repeated until we reach the current time t. In this way, the DP algorithm

TABLE 9.1 Algorithm to Compute the Stochastic Programming Approximation

1. Based on the information at time t, determine y(t). Set an accuracy parameter h, set J ¼ 1, and define the

number of scenarios per period. Start with a relatively low number of scenarios.

2. Compute the scenario approximation of e(t) for t�t, t � 1, . . . , T� 1 based on the number of samples

per time period.

3. Solve the multi-stage stochastic program as outlined in Proposition 9.1.

4. In the case that jJ sðt ; yðtÞÞ � J j< Z stop and go to step 5. Otherwise set J :¼ J sðt ; yðtÞÞ and increase the

number of scenarios to refine the approximation, see Section 9.4.2.1. Go to step 2.

5. Apply only the first control decision uðtÞ and disregard all future control decisions for the next time-step.

Until the optimization has reached its fixed end date (horizon) go to step 1, else stop.
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solves (T � t � 1)pk optimization problems, where p is the number of states, k is the

number of discretizations for each state and T � t � 1 is the number of remaining time-

steps. For example, for a problem with five states, 10 discretizations and five remaining

time-steps, the DP procedure involves 48 millon optimizations, which is already an

enormous amount for this rather coarse discretization. This fact is often called the ‘curse

of dimensionality’ since the number of computations increases exponentially with the

number of states.

9.2.2 Scenario Approximations

If a regular grid is used to discretize the state space of (1), the optimization is computed at

many points in the state space which are reached with low probability. A standard

approach to overcome these drawbacks is to use a scenario approach and a sampling

approximation of the true expectation. The difficulty with solving the DP problem directly

is the computation of the recursion under realistic assumptions. Instead of computing

the exact optimal control policy, we solve an approximate problem where we replace

the expectation by the sample mean and the true dynamics by a finite number of

representative scenarios. To calculate the scenario and sample mean, a number of samples

has to be drawn from the underlying path probability distribution. This procedure is

repeated at each time-step so that a new control decision is based on the current time and

state. Instead of solving the DP problem for all possible states and time, the DP problem is

approximated at the current state and time by an SP problem. At each time-step t, we

replace the probability distribution of e(t) by k(t) scenarios, denoted by es(t). We denote

by t � t, t � 1, . . . , T � 1 time in the scenario tree and thus in the SP problem. The

‘physical’ time is denoted by t. At time t� 1 conditional on the scenario es(t), we

generate k(t� 1) scenarios for each previous scenario of es(t) as shown in Figure 9.2.

Since we assume that the white noise process is stationary, at each node e(t) is replaced by

the same scenario values. The system dynamics however are different at each node, since

both D( �) and S( �) are time and state dependent. The scenarios are defined as the set S

Number Branches
for Each Node Scenario Tree Time Steps

Time 1

Time 2

Time 3

Time 4

24

5

2

FIGURE 9.2 Graphical description of a scenario tree.
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that represents a reasonable description of the future uncertainties. A scenario s � S

describes a unique path through consecutive nodes of the scenario tree, as depicted in

Figure 9.2. In this way, we generate a tree of scenarios that grows exponentially with the

time horizon and the number of scenarios is given by N ¼
QT

i¼t kðiÞ. By this procedure we

generate an irregular grid of the state space along a highly probable evolution of the

system. The optimization is then computed for the approximate dynamics in terms of

the sample expectation. For the approximate problem we still effectively execute the DP

algorithm, but only for the approximate paths of the state dynamics and the current state

and time.

9.2.3 Approximate of Dymanic Programming

When we replace the ‘true’ stochastic dynamics of the state equation by its sample

approximation, we need to compute the sample mean of the objective function instead of

its expectation. The objective function at time t on one scenario s with feedback mapping

(policy) PsðtÞ :¼ ½psðtÞ; psðtþ 1Þ; . . . ; psðT � 1Þ	 is given by

V sðt; ysðtÞ;PsðtÞÞ ¼
XT�1

i¼t
Lði; ysðiÞ; psðiÞÞ þMðT ; ysðT ÞÞ: ð9:3Þ

The control decisions Ps(t) define a feedback mapping, since for each scenario s and time

t a predetermined control decision based on a feedback rule ps(t): � u(t, ys(t)) is used.

The sample mean of the objective function is given by

Ê
h

V sðt; ysðtÞ;PsðtÞÞ
i
¼ 1

S

XN

s¼1

V sðt; ysðtÞ;PsðtÞÞ; ð9:4Þ

where Ê½�	 ¼ ð1=SÞ
PS

s¼1½�	 denotes the sample mean. Using (9.4) we define the sample

approximation of the dynamic optimization problem as

Ĵ sðt; yðtÞÞ :¼ max
PsðtÞ2U

n
Ê
h

V sðt; ysðtÞ;PsðtÞÞ
io

s.t. ysðtþ 1Þ ¼ Dðt; ysðtÞ; psðtÞÞ þ Sðt; ysðtÞ;psðtÞÞEsðtÞ;
ð9:5Þ

where Ĵ sðt; yðtÞÞ is the value of the objective function at time t under scenario s and we

must impose non-anticipativity constraints, i.e. y(t)s � y(t)s’ when s and s? have the same

past until time t. At the root of the scenario tree Ĵ sð�Þ and ps(t) are the same for all

scenarios (s � 1, . . . , N?).

Theorem 9.1: The sample approximation of the optimization problem given in (9.5) can be

recursively computed by the following dynamic program:
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Ĵ sðt; ysðtÞÞ ¼ max
uðtÞ2U

n
Ê
h

Lðt; ysðtÞ; usðtÞÞ þ Ĵ sðtþ 1;Dðt; ysðtÞ;

usðtÞÞ þ Sðt; ysðtÞ; usðtÞÞEsðtÞÞÞ
io ð9:6Þ

with terminal condition Ĵ sðT ysðT ÞÞ ¼ MðT ; ysðT ÞÞ.
The proof of Theorem 9.1 is given in Appendix 9.B. Note that using (9.6) to solve (9.5),

we use a backward recursion that automatically takes into account the non-anticipative

constraints which prevent exact knowledge of future scenarios.

Proposition 9.1: The dynamic programming formulation of the approximated dynamic

optimization problem can be written as a multi-stage stochastic program.

This proposition follows directly from Louveaux and Birge (1997, Chapter 3, p. 128). In

Table 9.1 we state the algorithm to compute the stochastic programming approximation

of the dynamic programming approach. By starting with a low number of scenarios, we

ensure that the multi-stage stochastic program is solved rather quickly. The algorithm

cycles between step 2 and step 4 until the desired accuracy has been reached. The relation

of the approximation algorithm and the true problem defined in (9.1) is given in

Proposition 9.2.

Proposition 9.2: Under the assumptions of Section 9.2.1, the sample approximation of the

objective function Ĵ sðt; yðtÞÞ defined in (9.5) converges with probability 1 to the true objective

function J(t, y(t)) as defined in (9.1) for N 0 �. Especially Ĵ sðt ; yðtÞÞ converges with

probability 9.1 to J(t, y(t)) for N 0�.

Proof: Given a predetermined feedback mapping Ps(t) as defined above and using the

Tchebychev inequality (Casella and Berger 2002) the following holds:

lim
N!1

P
�

Ê½V ðt; ysðtÞ;PsðtÞÞ	 � E½V ðt; yðtÞ;PðtÞÞ	



< Z
�
¼ 1; 8Z> 0; ð9:7Þ

where t � t, t � 1, . . . , T � 1. We know that exchanging the expectation with the sample

mean has a negligible effect with arbitrarily large probability, since Ê½V ðt; ysðtÞ;PsðtÞÞ	
converges to E½V ðt; yðtÞ;PðtÞÞ	 with probability 1 and using

Ĵ sðt; ysðtÞÞ ¼ max
PsðtÞ2U

n
Ê
h

V sðt; ysðtÞ;PsðtÞÞ
io
;

it follows under suitable assumptions that

lim
N!1

P
�

Ê½Ĵðt; ysðtÞÞ	 � E½Jðt; yðtÞÞ	



< Z
�
¼ 1; 8Z> 0: ð9:8Þ

I
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The proof of Proposition 9.2 holds only under the restrictive assumptions for the

problem stated in Section 9.2.1. The more general case is discussed in detail in Römisch

(2003) and Dempster (2004). The result of Proposition 9.2 states that the approximate

objective function converges in probability to the true value of the objective function.

However this does not imply that the control law computed by the approximation

converges in probability to the true control law. The approximation by stochastic

programming techniques determines only the control law for the scenarios used. For other

values of the state variables, which are not covered by the scenario approximation, the

control law is not defined. Since we only apply the first control decision for the fixed

(measured) state y(t) the issue of feedback for uncovered state variables may not

constitute a problem in the absence of nonlinearities. By using the approximation

procedure at every time-step, however, the control decisions are always based on current

information, but remain scenario dependent. A similar analysis for linear stochastic

systems with quadratic performance criteria can be found in Batina et al. (2002), however

without the explicit connection to stochastic programming.

The scenario approximation does not depend on the dimension of the state variables

but on the number of scenarios used. The algorithm’s complexity is thus independent of

the state space dimension. However, to obtain results with a desired accuracy we need a

sufficiently large number of scenarios. By solving the stochastic programming problem at

every time-step we introduce feedback into our system. This method requires the solution

of T � t � 1 stochastic programming problems. The approach is very suitable for

historical backtesting, but is less suitable for simulation studies, since for each time-step in

the simulation a stochastic program must be solved. Furthermore, this approach is limited

by the exponential growth of the scenario tree. If a very large number of scenarios is

needed, it becomes very slow and computationally intractable.

The convergence speed of the proposed method relies on the convergence speed of the

stochastic program and the scenario generation. As shown in Koivu (2005), the scenario

generation method determines the convergence speed and the accuracy of the solution.

For this reason we use the method proposed in Koivu (2005) for scenario generation, since

it outperforms standard Monte Carlo techniques (see Section 9.4.2.1).

9.3 PORTFOLIO OPTIMIZATION

In this section, the general asset return statistical model and the portfolio model with

transaction costs are given. Further, the objective function and the problem of portfolio

optimization under transaction costs is stated.

9.3.1 Asset Return Models

The returns of assets (or asset classes) in which we are able to invest are described by

rðt þ 1Þ ¼ GxðtÞ þ g þ ErðtÞ; ð9:9Þ

where rðtÞ ¼ ðr1ðtÞ; r2ðtÞ; . . . ; rnðtÞÞ
T 2 R

n is the vector of asset returns, ErðtÞ 2 R
n is a

white noise process with E½ErðtÞ	 ¼ 0 and E½ErðtÞErTðtÞ	 :¼ SðtÞ 2 R
n�n is the covariance
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matrix, GxðtÞ þ g 2 R
n is the local expected return, xðtÞ 2 R

m is the vector of factors,

G 2 R
n�m is the factor loading matrix, and g 2 R

n is a constant vector. We assume that

the conditional expectation is time-varying and stochastic, since G x(t) � g is a function

of the factor levels x(t) which themselves are governed by a stochastic process. The white

noise process er(t) is assumed to be strictly covariance stationary. The prices of the risky

assets evolve according to

Piðt þ 1Þ ¼ PiðtÞ
�
1þ riðtÞ

�
; Pið0Þ ¼ pi0 > 0; ð9:10Þ

where P(t) � (P1(t), P2(t), . . . , Pn(t)) denotes the prices of the risky assets. A locally risk-

free bank account with interest rate r0(t, x(t)) is given as

P0ðt þ 1Þ ¼ P0ðtÞ
�
1þ F0xðtÞ þ f0

�
; P0ð0Þ ¼ p00 > 0; ð9:11Þ

where P0(t) denotes the bank account. The interest rate of the bank account, described by

(9.11), is modelled by

r0ðtÞ ¼ F0xðtÞ þ f0; ð9:12Þ

where F0 2 R1�m and f0 2 R.

The factor process affecting the expected return of the risky assets and the interest rate

of the bank account is described by the following linear stochastic process difference

equation

xðt þ 1Þ ¼ AxðtÞ þ a þ nExðtÞ; ð9:13Þ

where A 2 Rm�m, a 2 Rm, n 2 Rm�m and ExðtÞ 2 Rm is a strictly covariance stationary

white noise process. The white noise process of the risky asset dynamics er(t) is not

restricted to have a Gaussian distribution. We also assume that er(t) and ex(t) are

correlated. The stochastic process of the asset returns has a Markov structure and therefore

we can apply DP techniques to solve the corresponding portfolio optimization problem.

9.3.2 Portfolio Dynamics with Transaction Costs

For the case of transaction costs, we limit our description of the wealth dynamics to linear

transaction costs and use the scenario approach to describe multi-period asset prices.

Many different formulations of multi-period investment problems can be found in the

literature. Here, we adopt the basic model formulation presented in Mulvey and Shetty

(2004). The portfolio optimization horizon consists of T time-steps represented by

t � {1, 2, . . . , T }. At every time-step t, the investors are able to make a decision regarding

their investments and face inflows and outflows from and to their portfolio. The

investment classes belong to the set I � {1, 2, . . . , n}.

Let zs
i ðtÞ be the amount of wealth invested in instrument i at the beginning of the time-

step t under scenario s. The units we use are the investor’s home currency (e.g. Swiss

francs). Foreign assets, hedged or un-hedged against exchange rate fluctuations, are also
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denoted in the portfolio’s home currency. At time t the total wealth of the portfolio is

W sðtÞ ¼
Xn

i¼1

zs
i ðtÞ 8s 2 S; ð9:14Þ

where W s(t) denotes the total wealth under scenario s. Given the returns of each

investment class, the asset values at the end of the time period are

zs
i ðtÞð1þ rs

i ðtÞÞ ¼ ~zs
i ðtÞ 8s 2 S; 8i 2 I ; ð9:15Þ

where rs
i ðtÞ is the return of investment class i at time t under scenario s. The returns are

obtained from the scenario generation system. Therefore, ~zs
i ðtÞ is the ith asset value at

the end of the time period t under scenario s. The sales or purchases of assets occur at the

beginning of the time period, where ds
i ðtÞ � 0 denotes the amount of asset i sold at time t

under scenario s, and ps
i ðtÞ � 0 denotes the purchase of asset i at time t under scenario s.

The asset balance equation for each asset is

zs
i ðtÞ ¼ ~zs

i ðt � 1Þ þ ps
i ðtÞð1� diÞ � ds

i ðtÞ 8s 2 S; 8i 2 I n f1g; ð9:16Þ

where di is the proportional (linear) transaction cost of asset i. We make the assumption

that the transaction costs are not a function of time, but depend only on the investment

class involved.

We treat the cash component of our investments as a special asset. The balance equation

for cash is

zs
1ðtÞ ¼ ~zs

1ðt � 1Þ þ
Xn

i¼2

ds
i ðtÞð1� diÞ �

Xn

i¼2

ps
i ðtÞ þ qsðtÞ 8s 2 S; ð9:17Þ

where zs
1ðtÞ is the cash account at time t under scenario s and qs(t) is the inflow or outflow

of funds at time t under scenario s, respectively.

All of the variables in Equations (9.14)�/(9.17) are dependent on the actual scenario s.

These equations could be decomposed into subproblems for each scenario in which we

anticipate that this scenario will evolve. To model reality, we must, however, impose non-

anticipativity constraints. All scenarios which inherit the same past up to a certain time

period must evoke the same decisions in that time period, otherwise the non-

anticipativity requirement would be violated. So zs
i ðtÞ ¼ zs0

i ðtÞ when s and s? have same

past until time t.

9.3.3 Risk Measure and Objective Function

We introduce a linear risk measure that is well suited for problems with assets and

liabilities. Liabilities can be explicit payments promised at future dates, as well as capital

guarantees (promises) to investors or investment goals.

We define our risk measure as a penalty function for net-wealth, i.e. wealth minus

liabilities. We want to penalize small ‘non-achievement’ of the goal differently from large
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‘non-achievement.’ Therefore, the penalty function should have an increasing slope

with increasing ‘non-achievement.’ The risk of the portfolio is measured as one-sided

downside risk based on non-achievement of the goals. As penalty function Pf ( �) we

choose the expectation of a piecewise linear function of the net wealth as shown in Figure

9.3. The penalty function is convex, but not a coherent risk measure in the sense of

Artzner et al. (1999) However, it fulfills the modified properties for coherent risk measures

defined by Ziemba and Rockafellar (2000). Furthermore, we can formulate a backward

recursion to compute the risk measure and, thus, it is dynamically coherent in the sense of

Riedel (2004). The same approach is discussed in detail by Dondi et al. (2007) where this

method is applied to the management of a Swiss pension fund. Furthermore, for the case

of multi-period capital guarantees, a suitable risk measure that is linear is given by

G ¼
XN

s¼1

XT

t¼t

Pf

�
W sðtÞ � GðtÞ

�
" #

; ð9:18Þ

where Pf denotes the piecewise linear penalty function, G(t) denotes the capital guarantee

at time t and W(t) the portfolio value at time t. By multi-period capital guarantee we

mean a capital guarantee not only for the final period but for all intermediate periods.

This risk measure is convex and fulfills the properties of a dynamic risk measure.

Standard coherent risk measures (CVaR, maximum loss) or traditional risk measures

(utility functions, variance, VaR) can be used in ALM situations, when applied to the

fund’s net wealth, e.g. the sum of the assets minus all the present value of the remaining

liabilities. For example, CVaR penalizes linearly all events which are below the VaR limit

for a given confidence level. The inherent VaR limit is a result of the CVaR optimization,

see Rockafellar and Uryasev (2000, 2002). The VaR limit therefore depends on the

confidence level chosen and the shape of the distribution. The VaR limit (quantile) may be

a negative number, i.e. a negative net wealth may result. For a pension fund we do not

only want to penalize scenarios that are smaller than a given quantile, but all scenarios
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FIGURE 9.3 Depiction of the penalty function.
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where the net wealth is non-positive. Similarly, traditional risk measures do not measure

the shortfall, but the inherent ‘randomness’ of the investment policy. We have therefore

chosen the approach described in the previous paragraph.

The objective of our ALM problem is to maximize the expected wealth at the end of the

planning horizon, while keeping the penalty function under a certain level. Therefore, we

propose the following objective function

max
XN

s¼1

W sðT Þ þ l
XT

t¼t

Pf

�
t;W sðtÞ � GðtÞ

�


FðtÞ
" #( )

; ð9:19Þ

where t � t, t � 1, . . . , T, and l B 0 denotes the coefficient of risk aversion.

9.3.4 Multi-Period Portfolio Optimization with Transaction Costs

For the case of portfolio optimization problems with long-term goals and transaction

costs we use the approach presented in Section 9.2. The optimization problem for the

minimal guaranteed return fund is

max
ps

i
ðtÞ;ds

i
ðtÞ

XS

s¼1

W sðT Þ þ l
XT

t¼t

Pf

�
t;W ðtÞ � GðtÞ

�


FðtÞ
" #( )

;

W sðtÞ ¼
Xn

i¼1

zs
i ðtÞ 8s 2 S;

zs
i ðtÞð1þ rs

i ðtÞÞ ¼ ~zs
i ðtÞ 8s 2 S; 8i 2 I ;

zs
i ðtÞ ¼ ~zs

i ðt� 1Þ þ ps
i ðtÞð1� diÞ � ds

i ðtÞ 8s 2 S; 8i 2 Inf1g;

zs
1ðtÞ ¼ ~zs

1ðt� 1Þ þ
Xn

i¼2

ds
i ðtÞð1� diÞ �

Xn

i¼2

ps
i ðtÞ þ qsðtÞ 8s 2 S;

ð9:20Þ

where t � t, t � 1, . . . , T, l B 0, denotes coefficient of risk aversion, and initial

conditions zi(t), i � 1, . . . , n are given. The optimization problem is given directly as

the SP problem that needs to be solved at every time-step. Furthermore, we may impose

constraints for short positions or leveraging and we may limit the position in a specific

asset (or asset class) by imposing the constraints

u
ðminÞ
i � zs

i ðtÞ
W sðtÞ

� u
ðmaxÞ
i ;

where u
ðminÞ
i is the minimum allowed fraction and u

ðmaxÞ
i is the maximum allowed fraction

of wealth invested in asset i respectively. Similar constraints can be introduced to enforce

minimum and maximum investments into certain sets of assets, e.g. international

investments, or stocks. This kind of constraint can be formulated as linear and thus, the
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optimization given in (9.20) is still a large-scale LP. Many specialized algorithms exist to

solve this special form of an LP, such as the L-shaped algorithm, see e.g. Birge et al. (1994).

The portfolio optimization problem is solved by employing the algorithm outlined in

Section 9.2. At every time-step, we generate the scenario approximation of the return

dynamics used for the specific investment universe based on the current information at

time t. Then, we solve the optimization problem given by (9.20) with all of the

corresponding constraints. Next we then check the accuracy and refine the scenario tree.

When we reach the predetermined accuracy, we terminate the tree generation and

optimization and apply the investment decisions pi(t) and pi(t). The procedure then

moves one time-step ahead.

9.4 CASE STUDY: ASSET AND LIABILITY MANAGEMENT WITH
TRANSACTION COSTS FOR A SWISS FUND

In this case study, we take the view of an investment fund that resides in Switzerland

which invests domestically and abroad. The fund is assumed to be large and we therefore

cannot neglect the market impacts of its trading activities which result in trading costs.

The problem of portfolio optimization is solved with the framework presented in Section

9.3.2. Moreover, we assume that the fund gives a capital (performance) guarantee which

introduces a liability. The situation resembles the situation of a Swiss pension fund and,

thus, we impose similar restrictions on the case study. Designing funds with performance

guarantees is also discussed in Dempster et al. (2006, 2007).

The critical connection between the assets and liabilities is modelled through the capital

guarantee GðtÞ. In the case of fixed discount rates, such as in the Swiss or German case,

the capital guarantee increases with the discount rate. For the case in which the capital

guarantee is linked to the current term structure of interest rates, the capital guarantee

would increase along the term structure. The guarantee is not necessarily deterministic, it

could be stochastic, e.g. the guarantee could increase with a LIBOR rate that changes in

the future. Then the guarantee must be part of the stochastic scenario generation. In this

case study, we assume that the discount rate is fixed to 4) and the nominal liabilities

increases accordingly. Therefore, we do not include the capital guarantee in the scenario

generation. Other approaches that feature a two-step method to calculate the optimal

ALM are described in Mulvey et al. (2000), where the liabilities are described by a detailed

interest rate model. A three factor yield curve model is also used in Dempster et al. (2006,

2007). Classical techniques are the immunization of liabilities by bonds, as described in

Fabozzi (2005). A detailed overview of different approaches to ALM modelling is given in

Dondi et al. (2007) and Zenios and Ziemba (2007).

9.4.1 Data Sets and Data Analysis

The data sets consists of the Datastream (DS) Swiss total stock market index, the DS Swiss

government benchmark bond index, the DS European Union (EU) total stock market, and

the DS EU government benchmark bond index. For the money market account, we use

the 3-month LIBOR (SNB) interest rate. The data set starts on 1 January 1988 and finishes

on 1 January 2005 with quarterly frequency. The two international indices are used in two
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different ways in our case study. In the first the indices are simply recalculated in Swiss

francs (CHF) and the in other the currency risk is eliminated by completely hedging the

currency risk. The risk-return profile is changed in the latter case since hedging introduces

costs that reduce the performance but eliminate the currency risk. The hedging costs are

computed on the basis of the difference of the 3-month forward rates between the Swiss

franc and euro. Before 1999, we use the difference between forward rates of the Swiss franc

and German mark as an approximation for the Euro�/Swiss France hedging costs. Also,

before 1999 the EU stock and bond indices are calculated in German marks. We simply

substitute the euro by German mark (with euro reference conversion of 1.95583), since the

German mark was the major currency of the euro predecessor the ECU (the German mark

and linked currencies such as the Dutch gilder made up more than 50) of the ECU). The

correlation of the ECU and the German mark were extremely high, especially after 1996

where the out-of-sample backtesting starts. This substitution is of course a simplification,

but does not change the return distributions significantly. In Figure 9.4, the return

histograms for the Swiss stock market, the Swiss bond market, the EU stock market in

CHF, and the EU stock market hedged are shown. The figure shows the histograms and

the best fits of a normal distribution. Except for the bond market index, we can clearly

reject the assumption that the stock market data are normally distributed. When we fit a

multivariate student-t distribution on a rolling basis to the stock market data, we get

degrees of freedom between 6.7 and 9.6, which indicate a very clear deviation from

normality. These results are supported by two tests for normality which reject the

assumption of normality at 5) confidence level. The two tests are the Jarque�/Bera test
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FIGURE 9.4 Histogram of the quarterly returns for different assets of the Swiss case study.
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(J�/B) and the Lilliefors test (LF) (Alexander 2001, Chapter 10). For these reasons, we

model the returns of the stock market data by a non-normal distribution. The results of

the normality tests for the out-of-sample period are given in Table 9.4, Section 9.4.4. We

obtain similar results for the in-sample time period from 1 January 1988 to 1 June 1996.

9.4.2 Implementation

The implementation of the out-of-sample test for the portfolio allocation method consists

of three main steps: the scenario generation, the parameter estimation and the

computation of the asset allocation. By using the methods discussed in Section 9.3.2

one crucial step of the implementation is the generation of scenarios. The scenarios

describe the future stochastic evolution of the asset returns and must reasonably well

approximate the underlying stochastic model.

9.4.2.1. Scenario generation The most common techniques to generate scenarios for

multistage stochastic programs are discussed in Dupacova et al. (2000). Among the

most important methods of scenario generation are moment matching (Hoyland et al.

2003), importance sampling (Dempster and Thompson 1999, Dempster 2004) or

discretizations via integration quadratures (Pennanen 2005, Pennanen and Koivu 2005).

We use the method of discretization via integration quadratures, because we believe that

this method is superior to Monte Carlo methods, especially for high dimensional problems.

Furthermore, numerical tests validate the stability of the optimization results, as shown in

Pennanen and Koivu (2005). The method is used by approximating the white noise process

at every stage of the dynamic model. Since we have assumed that the white noise process is

stationary and identically distributed, we can use the same scenario generation method for

er(t) and ex(t) for each time-step and scenario. The resulting scenarios of the dynamic

stochastic evolution of the system are different for each scenario, since the asset return

evolution depends on the evolution of the factors and the correlation of asset return

dynamics and factors. The scenarios for the asset and portfolio evolution therefore become

stochastic and dynamic. For the generation of the low discrepancy sequences, which are

essential for the discretization we use the Sobol sequence, see Bratley and Fox (1988).

We discuss the implementation of scenario generation for the student-t distribution

which we assume for the white noise process of the asset returns. The multivariate

student-t distribution possesses the following parameters: mean vector m, degrees of

freedom n and diffusion matrix S. The algorithm to compute an s-sample from a

multivariate student-t distribution is based on the following result (Glasserman 2004,

Chapter 9, p. 510):

X � Nðm;SÞ; z � w2
n; Y ¼

ffiffiffi
n
p X

ffiffiffi
z
p � t n

n ;

where N denotes the normal distribution in R
n, w2

n the standard chi-square distribution

with n degrees of freedom, and t n
n the student-t distribution in R

n with n degrees of

freedom. The covariance of the student-t distribution is given by n=ðn� 2ÞS and exists
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only for n � 2. The scenario generation algorithm for the student-t distribution is given

in Table 9.2. With similar algorithms for scenario generation, any kind of normal

(variance) mixture distributions as defined in McNeil et al. (2005, Chapter 3, p. 78) can be

approximated, as long as the method of inverses (Glasserman 2004, Chapter 2, p. 54) can

be applied. Distributions such as the generalized hyperbolic distribution which belong to

the family of normal (variance) mixture distributions can be expressed as a function of the

multivariate normal distribution and a mixing univariate distribution. The normal

distribution can again be simulated by generating n independent realizations of the

uniform [0, 1] distribution and using the tables of the inverse univariate standard normal

distribution. This is possible since we can generate the multivariate normal distribution

from its univariate marginal distributions and the Cholesky factorization of its covariance

matrix. For the univariate mixing distribution also realizations of the uniform [0, 1]

distribution are generated and realizations of the mixing distribution are calculated from

tables of the inverse. The resulting realizations of the non-normal distributions are

generated by using the functional relationship of the normal (variance) mixture

distributions.

9.4.3 Factor Selection, Parameter Estimation and Asset Allocation Strategy

The factor selection determines which of the factors best explain the expected returns of

the risky assets. Factor selection is used for the regression problem between the

expectation of the risky asset returns Gx(t) � g and the factors x(t). Often, this selection

is predetermined using literature recommendations or economic logic. However, when we

use a very large set of factors, it is difficult to decide which factors explain the expected

returns best. Moreover, by using a predefined set of factors a bias is introduced into the

out-of-sample test, since from knowing the history we include factors where it is known

that they have worked as predictors. In order to solve this problem, we employ a heuristic

as described in Givens and Hoeting (2005, p. 55) known as stepwise regression. When we

want to choose the best possible subset of factors, we face a combinatorial number of

possible subsets. For this reason we use a ‘greedy’ strategy that reduces the number

of factors by the factor with the lowest impact. Given m factors, the heuristic creates

only m subsets and we choose the best subset by a so-called information criterion.

TABLE 9.2 Scenario Generation for a Multivariate Student-t Distribution

1. Use the Sobol sequence to generate an s-sample from the marginally independent uniform distribution in

the unit cube [0, 1]n�1 distributions, denoted by S � [0, 1](n � 1) � s.

2. Use the tables of the inverse standard normal distribution to transform the uniformly distributed

realizations (Si, i � 1 ,. . ., n) to standard normal distributed random variables (exi i ¼ 1; . . . ; n), i.e.
exið jÞ ¼ F�1ðSið jÞÞ, i � 1 , . . . , n, j� 1, . . . , s. The realizations of the n normal distribution are summarized

in the vector exð jÞ ¼ ½ex1ð jÞ; . . . ;exnð jÞ	, j� 1 , . . . , s. Use tables of the inverse of the chi-square distribution to

transform Sn�1(j) to chi-square distributed realizations which we denote by f(j), j � 1 , . . . , s.

3. Compute the covariance matrix eS :¼ covðexÞ, the covariance matrix of the realizations of the normal

distribution of step 2, and calculate the normalized sequence of standard random variables xð jÞ ¼ eS�1exð jÞ,
j� 1 , . . . , s. In this way, we ensure that xðsÞ possesses unit variance.

4. Calculate the realizations of the white noise by Eð jÞ ¼
ffiffiffi
n
p
ðmþ sxð jÞÞ=

ffiffiffiffiffiffiffiffiffiffi
fð jÞ

p
, j � 1 , . . . , s where S ¼ ssT ,

m and n are the parameters of the multivariate student-t distribution.
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The information criterion is a trade-off between the number of regressors and the

regression quality. For factor selection we either use the modified Akaike criterion or the

Schwartz�/Bayesian criterion. The information criterion here is used to select the best

regression model for the expected return, but is not applied to select the best distribution.

This factor selection procedure is used for all risky assets independently. Different

expected returns of the risky assets are regressed on different sets of factors. The factor

selection is recomputed every 12 months, i.e. the factors are selected at the beginning of

every year. In this way, we remove of the factor selection bias and the model selects only

the factors that have worked in the past without any information about the future. This

heuristic and the two information criteria are discussed in detail in Illien (2005).

The estimation of parameters for the risky return is computed on a rolling basis with

the last 8 years of data used. See Table 9.A1 in Appendix 9.A for a list of potential factors.

The factor selection determines which time series of factors are used to predict the

expected returns of the four risky assets.

We assume that the fund faces different transaction costs for domestic and international

assets. The costs (due to market impact and international brokerage cost) for the domestic

market are 1) for stocks and 0.5) for bonds. For the European stock market, the

transaction costs are assumed to be 2) and for the bond market 1). The transaction

costs for European assets are independent of the hedging, since we calculate the hedging

cost as part of the realized returns in Swiss francs.

The asset allocation decisions are calculated with the optimization algorithm proposed

in (9.20). We assume that the fund possess a two-year moving investment horizon and we

use a tree structure with 50, 20 and 5 branches which results in 5000 scenarios which we

denote by 5000 (50,20,5). For the first branching, we use a one quarter time-step, for

the second branching we use two quarters, and for the third branching we use five

quarters. The algorithm to approximate (locally) the DP algorithm given in Section 9.2 is

implemented by first computing 500 (10,10,5), 1000 (20,10,5), 3000 (20,15,10), 4000

(40,20,5) and 5000 (50,20,5) scenarios. The relative error between using 4000 and 5000

scenarios was smaller than 1) (measured by the objective function value obtained with

5000 scenarios). This test was done at the first time-step of the out-of-sample test and

repeated every 12 quarters. In all tests, the difference was smaller than the 1).

The constraints for the optimization are similar to the constraints which Swiss pension

funds face. In Table 9.3 the maximum limits for investments in the different asset classes

are given.

TABLE 9.3 Investment Constraints

Swiss stock market 50)
Swiss bond market 100)
EU stock market 25)
EU bond market 70)
EU stock market in CHF (hedged) 40)
EU bond market in CHF (hedged) 70)
All international assets 70)
All stock market investments 50)
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As mentioned before, we assume that the fund gives the same capital guarantee of 4) as

a Swiss pension fund (until 2002). Since 2002, the minimum guarantee has been reduced

to the region of 2.5) and, therefore, we calculate a second portfolio with minimal

guarantee of 2.5). The capital guarantee function is given as G(q) �100(1 � ru4)q where

r is either 4) or 2.5) and q is the number of quarters in the backtesting.

When we solve the optimization problem at every time-step, the current asset allocation

is taken as the initial asset allocation. In this way, the transaction costs for every

rebalancing of the portfolios are correctly considered.

The risk measure used for this case study is an expected shortfall measure, computed as

the expected shortfall of the portfolio wealth minus the capital guarantees. Therefore we

use the piecewise linear risk measure given in (9.18) but with only one linear function and

a slope of 5. The expected shortfall is not only used at the terminal date of the

optimization but at all time-steps in between. In our strategy we compute the expected

shortfall for one quarter, three quarters and eight quarters in advance.

9.4.4 Results of the Historical Out-of-Sample Backtest

The out-of-sample test starts on 1 June 1996 and ends on 1 January 2005 with a quarterly

frequency. The results are simulated results with all the inherent weaknesses and deviations

from actual policies of large financial institutions. The statistics of the out-of-sample test

for the portfolios and the assets are shown in Table 9.4. The asset and the portfolio

evolutions throughout the historical out-of-sample test are shown in Figure 9.5. The

graph shows that both portfolios would have a relatively steady evolution throughout

the historical backtest with only one longer drawdown period between the third quarter in

2000 until the third quarter in 2002. The largest loss occurs in the third quarter of 1998,

where the portfolio (9.1) loss is 16.3). The initial investments are mostly into the EU

bond market and the subsequent portfolio gain allows the system to invest more into the

stock market between 1996 and 1998. In the bull market phase, the portfolio with lower

return guarantee would have had a higher return, since it could invest more into the risky

assets. This higher allocation into the stock and bond market arises from the higher

TABLE 9.4 Summary Statistics of the 4 Indices from 1 June 1996 to 1 January 2005 and Results of the

Normality Tests for the Standard Residuals. A 0 Indicates that We Cannot Reject the Normality

Assumption and a 1 Indicates the Rejection of Normality

Time series r()) s()) SR krt skw J�/B (5)) LF (5))

Swiss stock market 7.0 24.6 0.22 1.5 �0.9 1 1

Swiss bond market 5.5 4.5 0.88 �0.9 �0.3 0 0

EU stock market in CHF 9.1 26.2 0.28 0.5 �0.8 1 1

EU bond market in CHF 9.2 7.4 1.04 �0.7 0.0 0 0

EU stock market hedged 10.0 22.1 0.39 0.0 �0.5 1 1

EU bond market hedged 9.4 6.1 1.29 �0.3 �0.3 0 0

3-month LIBOR (SNB) 1.41 � � � � 0 0

Portfolio (1) (4) guarantee) 7.2 9.5 0.6 3.4 �1.4 1 1

Portfolio (2) (2.5) guarantee) 5.7 11.3 0.4 4.5 �0.9 1 1
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distance to the minimum guarantee barrier and thus constrains the allocation less in this

market phase. The evolution of the asset allocations of portfolio (1) are shown in Figure 9.6

as percentages of portfolio value. The large loss in the third quarter of 1998 leads to a

dramatic increase of the money market investments and a sharp decrease of the investments

into the Swiss stock market. The capacity to incur losses is reduced at this moment and the

risky investments are consequently reduced. A similar behaviour can be seen during the

drawdown from 2000 to early 2003, where the fund invests mostly into Swiss bonds and

non-hedged EU bonds. Large changes in the asset allocation happen usually after

significant changes in the portfolio value or after significant changes in the risk-return

perception of the assets. In this phase (2000�/2003) the portfolio (2) has a longer and

stronger drawdown than portfolio (1), since portfolio (1) is more constrained by the

distance to the minimal return guarantee. Also, the higher return guarantee forces

the allocation to be more conservative and, therefore, limits the losses in this phase. When

the stock markets are rising again (mid 2003�/2005), portfolio (1) increases but not as

strongly as portfolio (2). Therefore, we can conclude that the return guarantee acts as a

security measure that limits losses in unfavourable times but has significant opportunity

costs in rising markets. The dynamic changes in the asset allocation hold the wealth above

the guarantee barrier, but would be impossible to be implemented in reality by a large
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FIGURE 9.5 Results of the out-of-sample test for the Swiss case study and comparison to the asset classes.
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financial institution. This behaviour is induced by the type of risk measure and the factor

model. Institutions stick much closer to their strategic allocation and change their

allocation less dramatically. This method could, however, provide a guide for tactical asset

allocation.

Most of the stock investments are hedged as shown in Figure 9.6. The risk-return trade-

off for stocks seems to be more acceptable with hedging than without hedging. Moreover,

most of the investment in stocks occurs before 2001 and in this period the Swiss franc is

constantly gaining in value and thus reducing returns from the international investments.

The Swiss franc loses value after mid-2002 when most of the international bond

investment occurs. Therefore, most of the bond investment takes place without hedging.

By introducing the international assets twice as either hedged or not hedged, we use the

standard portfolio optimization to make the hedging decision in parallel with the

portfolio construction.

However, a historical backtest starting after 2000 would have much more difficulties to

remain above the barriers, since the two least risky assets (Swiss money market and bond

market) did not yield returns above 4). For this reason, many Swiss pension funds came

into a situation of severe financial stress. This was one of the reasons why the capital

guarantee has been strongly reduced and is adjusted biennially according to market

expectations.

Despite the relatively high transaction costs, the performance of portfolio (1) is

satisfactory with an average return of 7.1). The performance is similar to the Swiss stock

market but markedly higher than that of the Swiss bond market or money market accounts.
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The standard deviation is moderate, but much smaller than any of the stock market

investment possibilities. Hence, the Sharpe ratio lies between the one for the stock and the

bond markets. The performance and the risk numbers for portfolio (2) are not as good, but

a backtest that would have started earlier, e.g. 1990, would have shown better results.

Both portfolios show the strengths and weaknesses of performance guarantees for funds.

Often guarantees are only judged with respect to the opportunity costs they carry. In this

case study, since it includes a strong bull and bear market, the positive sides are also

highlighted. However, the very dynamic changes in the allocation would be very difficult to

follow by a large financial institution which limits this backtest to be only a demonstration

of the proposed method.

9.5 CONCLUSION AND OUTLOOK

The first part of the chapter shows that we can approximately solve dynamic pro-

gramming problems for dynamic portfolio management problems. We prove that by

approximating the true dynamics by a set of scenarios and re-solving the problem at every

time-step, we solve the dynamic programming problem with an arbitrarily objective

function error. Future work should address the question of computational efficiency

versus other established method.

In the second part of the chapter, we describe asset return and portfolio dynamics. We

argue that the most suitable risk measures for ALM situations or guaranteed return funds

are shortfall risk measures. A penalty function classifies the shortfall of the assets with

respect to the liabilities where large ‘non-achievements’ are more severely penalized than

small ‘non-achievements’ on future scenarios where the minimal return is not achieved.

The optimization problem is solved with the aim of maximizing the return above the

guarantee over the planning horizon, while keeping the shortfall risk below a predeter-

mined limit.

In this case study, the risk aversion varies throughout the historical backtest and

depends on the distance to the barrier. The optimization always reduces the risk exposure

when the portfolio wealth moves closer to the barrier and increases the risk exposure when

the portfolio moves away from the barrier. In this way, we introduce a feedback from the

portfolio results to the current portfolio decisions and adapt the risk aversion to the loss

incurring capacity.

The backtesting results will be compared in future research to other well known ALM

techniques such as immunization or fixed-mix allocations. These comparisons could

further illustrate the strength and weakness of this approach.
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APPENDIX 9.A: ADDITIONAL DATA FOR THE CASE STUDY

In Table 9.A1 we give the factors of the case study reported. Factors that were never

selected, such as the dividend yield or macroeconomic variables (GNP), are omitted from

the table.

Table 9.A1 All Factors for Case Study 3 with Swiss and EU Data

Factor no. Factor name

1 10-year Swiss Government bond interest rate

2 10-year EU Benchmark Government bond (GB) interest rate

3 log (EP ratio) � log (10-year GB int. rate) Switzerland

4 log (EP ratio) � log (10-year GB int. rate) EU

5 10-year GB rate � 3-month LIBOR Switzerland

6 10-year GB rate � 3-month LIBOR EU

7 FX sopt rate CHFuEuro (DM)

8 3 months momentum. Swiss stock market

9 3 months momentum. EU stock market

10 3 months momentum. Swiss bond market

11 3 months momentum. EU bond market

12 FX 3-monthforward rate CHFuEuro (DM)
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APPENDIX 9.B: DYNAMIC PROGRAMMING RECURSION FOR THE SAMPLE
APPROXIMATION

Proof of Theorem 9.1: Let PsðtÞ :¼ ½psðtÞ; psðtþ 1Þ; . . . ; psðT � 1Þ	 and insert (9.3) into

(9.5) which yields

Ĵ sðt; yðtÞÞ ¼ max
PsðtÞ

Ê
XT�1

i¼t
Lði; ysðiÞ;psðiÞÞ þMðT ; psðT ÞÞ

" #( )

¼ max
psðtÞ;Psðtþ1Þ

�
Ê

�
Lðt; ysðtÞ; psðtÞÞ þ

XT�1

i¼tþ1

Lði; ysðiÞ;psðiÞÞ þMðT ; psðT ÞÞ
��

s.t. ysðtþ 1Þ ¼ Dðt; ys;psÞ þ Sðt; ys; psÞEsðtÞ;
ð9:B1Þ

and nonanticipativity. Since L(t, ys(t), ps(t)) is independent of the future decisions

Ps(t � 1) and the scenarios for es(i), i � t are independent of ps(t), move the

maximization operator over Ps(t � 1) inside the bracket to obtain

Ĵ sðt; yðtÞÞ ¼ max
psðtÞ

(
Ê

"
Lðt; ysðtÞ; psðtÞÞ

þ max
Psðtþ1Þ

Ê
XT�1

i¼tþ1

Lði; ysðiÞ; psðiÞÞ þMðT ;psðT ÞÞ
" #( )#)

¼ max
psðtÞ

n
Ê
h

Lðt; ysðtÞ; psðtÞÞ þ Ĵ sðtþ 1; ysðtþ 1ÞÞ
io
;

subject to the dynamical constraints and nonanticipativity. From the first of the dynamical

constraints ys(t� 1) � D(t, ys, ps) � S(t, ys, ps)es(t) and the basic idea of Bellman’s

principle

Ĵ sðtþ 1; yðtþ 1ÞÞ ¼ max
Psðtþ1Þ

Ê
XT�1

i¼tþ1

Lði; ysðiÞ; psðiÞÞ þMðT ; psðT ÞÞ
" #( )

;

subject to the remaining dynamical constraints and nonanticipativity, to give

Ĵ sðt; yðtÞÞ ¼ max
psðtÞ

n
Ê
h

Lðt; ysðtÞ;psðtÞÞ þ Ĵ sðtþ 1;Dðt; ys; psÞ þ Sðt; ys; psÞ EsðtÞÞ
io

¼ max
usðtÞ2U

n
Ê
h

Lðt; ysðtÞ; usðtÞÞ þ Ĵ sðtþ 1;Dðt; ys; usÞ þ Sðt; ys; usÞ EsðtÞÞ
io
;

subject to the appropriate dynamical constraints and nonanticipativity, where we convert

the maximization over ps(t) to a maximization over us(t), using the fact that for any
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function f of x and u it is true that

max
p2Q
f f ðx; pðxÞÞg ¼ max

u2U
f f ðx; uÞg;

whereQ is the set of all functions p(x) such that pðxÞ 2 U 8x. This statement can be found

in Bertsekas (1995, Chapter 2). I
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10.1 INTRODUCTION

I N RECENT YEARS THERE HAS BEEN A SIGNIFICANT GROWTH of investment products aimed at

attracting investors who are worried about the downside potential of the financial

markets for pension investments. The main feature of these products is a minimum

guaranteed return together with exposure to the upside movements of the market.

There are several different guarantees available in the market. The most common one is

the nominal guarantee which guarantees a fixed percentage of the initial investment.

However there also exist funds with a guarantee in real terms which is linked to an inflation

index. Another distinction can be made between fixed and flexible guarantees, with the
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fixed guarantee linked to a particular rate and the flexible to, for instance, a capital market

index. Real guarantees are a special case of flexible guarantees. Sometimes the guarantee of

a minimum rate of return is even set relative to the performance of other pension funds.

Return guarantees typically involve hedging or insuring. Hedging involves eliminating

the risk by sacrificing some or all of the potential for gain, whereas insuring involves

paying an insurance premium to eliminate the risk of losing a large amount.

Many government and private pension schemes consist of defined benefit plans. The

task of the pension fund is to guarantee benefit payments to retiring clients by investing

part of their current wealth in the financial markets. The responsibility of the pension

fund is to hedge the client’s risk, while meeting the solvency requirements in such a way

that all benefit payments are met. However at present there are significant gaps between

fund values, contributions made by employees and pension obligations to retirees.

One way in which a guarantee can be achieved is by investing in zero-coupon Treasury

bonds with a maturity equal to the time horizon of the investment product in question.

However using this option foregoes all upside potential. Even though the aim is protect

the investor from the downside, a reasonable expectation of returns higher than

guaranteed needs to remain.

In this chapter we will consider long-term nominal minimum guaranteed return plans

with a fixed time horizon. They will be closed end guarantee funds; after the initial

contribution there is no possibility of making any contributions during the lifetime of the

product. The main focus will be on how to optimally hedge the risks involved in order to

avoid having to buy costly insurance.

However, this task is not straightforward, as it requires long-term forecasting for all

investment classes and dealing with a stochastic liability. Dynamic stochastic programming

is the technique of choice to solve this kind of problem as such a model will automatically

hedge current portfolio allocations against the future uncertainties in asset returns and

liabilities over a long horizon (see e.g. Consigli and Dempster 1998; Dempster et al. 2000,

2003). This will lead to more robust decisions and previews of possible future benefits and

problems contrary to, for instance, static portfolio optimization models such as the

Markowitz (1959) mean-variance allocation model.

Consiglio et al. (2007) have studied fund guarantees over single investment periods and

Hertzog et al. (2007) treat dynamic problems with a deterministic risk barrier. However, a

practical method should have the flexibility to take into account multiple time periods,

portfolio constraints such as prohibition of short selling and varying degrees of risk

aversion. In addition, it should be based on a realistic representation of the dynamics of

the relevant factors such as asset prices or returns and should model the changing market

dynamics of risk management. All these factors have been carefully addressed here and are

explained further in the sequel.

The rest of the chapter is organized as follows. In Section 10.2 we describe the stochastic

optimization framework, which includes the problem set up, model constraints and

possible objective functions. Section 10.3 presents a three-factor term structure model and

its application to pricing the bond portfolio and the liability side of the fund on individual

scenarios. As our portfolio will mainly consist of bonds, this area has been extensively
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researched. Section 10.4 presents several historical backtests to show how the framework

would have performed had it been implemented in practice, paying particular attention to

the effects of using different objective functions and varying tree structures. Section 10.5

repeats the backtest when the stock index is modelled as a jumping diffusion so that the

corresponding returns exhibit fat tails and Section 10.6 concludes. Throughout this

chapter boldface is used to denote random entities.

10.2 STOCHASTIC OPTIMIZATION FRAMEWORK

In this section we describe the framework for optimizing minimum guaranteed return

funds using stochastic optimization. We will focus on risk management as well as strategic

asset allocation concerned with allocation across broad asset classes, although we will

allow specific maturity bond allocations.

10.2.1 Set Up

This section looks at several methods to optimally allocate assets for a minimum

guaranteed return fund using expected average and expected maximum shortfall risk

measures relative to the current value of the guarantee. The models will be applied to eight

different assets: coupon bonds with maturity equal to 1, 2, 3, 4, 5, 10 and 30 years and an

equity index, and the home currency is the euro. Extensions incorporated into these

models are the presence of coupon rates directly dependent on the term structure of bond

returns and the annual rolling over of the coupon-bearing bonds.

We consider a discrete time and space setting. The time interval considered is given by

0; ð1=12Þ; ð2=12Þ; . . . ;Tf g, where the times indexed by t�0,1, . . . , T�1 correspond to

decision times at which the fund will trade and T to the planning horizon at which no

decision is made (see Figure 10.1). We will be looking at a five-year horizon.

Uncertainty V is represented by a scenario tree, in which each path through the tree

corresponds to a scenario v in V and each node in the tree corresponds to a time along

one or more scenarios. An example scenario tree is given in Figure 10.2. The probability

p(v) of scenario v in V is the reciprocal of the total number of scenarios as the scenarios

are generated by Monte Carlo simulation and are hence equiprobable.

The stock price process S is assumed to follow a geometric Brownian motion, i.e.

dSt

St

¼ mSdt þ sSdWS
t ; ð10:1Þ

Stages:

Time

s=1 s=2

t=0 t=15/12t=1/12 t=2/12 t=3/12 t=4/12 t=5/12 t=1/2 t=7/12 t=8/12 t=9/12 t=10/12 t=11/12 t=1 t=13/12 t=14/12

FIGURE 10.1 Time and stage setting.
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where dWS
t is correlated with the dWt terms driving the three term structure factors

discussed in Section 10.3.

10.2.2 Model Constraints

Let (see Table 10.1)

� ht(v) denote the shortfall at time t and scenario v, i.e.

ht oð Þ :¼ max 0; LtðoÞ �WtðoÞð Þ 8o 2 O t 2 T total: ð10:2Þ

� H oð Þ :¼ maxt2T total ht oð Þ denote the maximum shortfall over time for scenario v.

The constraints considered for the minimum guaranteed return problem are:

� Cash balance constraints. These constraints ensure that the net cash flow at each time

and at each scenario is equal to zero

X

a2A

fP
buy
0;a ðoÞxþ0;aðoÞ ¼ W0; o 2 O; ð10:3Þ

X

a2An Sf g

1

2
da

t�1ðoÞF ax�t ;aðoÞ þ
X

a2A

gPsell
t ;a ðoÞx�t ;aðoÞ

¼
X

a2A

fPbuy
t ;a ðoÞxþt ;aðoÞ; o 2 O t 2 T dn 0f g: ð10:4Þ

In (10.4) the left-hand side represents the cash freed up to be reinvested at time

t 2 T dnf0g and consists of two distinct components. The first term represents the

semi-annual coupons received on the coupon-bearing Treasury bonds held between

time t�1 and t, the second term represents the cash obtained from selling part of the

portfolio. This must equal the value of the new assets bought given by the right-hand

side of (10.4).

t=0 t=1/4 t=1/2 t=3/4 t=1 t=5/4 t=3/2 t=7/4 t=2

s=1 s=2 s=3

FIGURE 10.2 Graphical representation of scenarios.
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� Short sale constraints. In our model we assume no short selling of any stocks or bonds

xt ;aðoÞ � 0; a 2 A; o 2 O; t 2 T total; ð10:5Þ

xþt ;aðoÞ � 0; 8a 2 A; 8o 2 O; 8t 2 T totalnfT g; ð10:6Þ

x�t ;aðoÞ � 0; 8a 2 A; 8o 2 O; 8t 2 T totalnf0g: ð10:7Þ

� Information constraints. These constraints ensure that the portfolio allocation cannot

be changed during the period from one decision time to the next and hence that no

decisions with perfect foresight can be made

xþt ;aðoÞ ¼ x�t ;aðoÞ ¼ 0; a 2 A; o 2 O; t 2 T inT c : ð10:8Þ

TABLE 10.1 Variables and Parameters of the Model

Time sets

T total ¼ 0; 1
12
; . . . ;

� �
Set of all times considered in the stochastic program

T d ¼ 0; 1; . . . ;T � 1f g Set of decision times

T i ¼ T totalnT d Set of intermediate times

T c ¼ 1
2
; 3

2
; . . . ;T � 1

2

� �
Times when a coupon is paid out in-between decision times

Instruments

St(v) Dow Jones Eurostoxx 50 index level at time t in scenario v

BT
t oð Þ EU Treasury bond with maturity T at time t in scenario v

dBT

t oð Þ coupon rate of EU Treasury bond with maturity T at time

t in scenario v

FBT

face value of EU Treasury bond with maturity T

Zt(v) EU zero-coupon Treasury bond price at time t in scenario v

Risk management barrier

yt,T(v) EU zero-coupon Treasury yield with maturity T at time t

in scenario v

G Annual guaranteed return

LN
t oð Þ Nominal barrier at time t in scenario v

Portfolio evolution

A Set of all assets

P
buy
t ;a oð Þ=Psell

t ;a oð Þ Buy/sell price of asset a � A at time t in scenario v

f g Transaction costs for buying/selling

xt,a(v) Quantity held of asset a � A between time t and t � 1/12

in scenario v

xþt ;a oð Þ=x�t ;a oð Þ Quantity bought/sold of asset a � A at time t in scenario v

W0 Initial portfolio wealth

Wt (v) Portfolio wealth before rebalancing at time t � T in scenario v

wt (v) Portfolio wealth after rebalancing at time t � T c [ T dnfT g
in scenario v

ht oð Þ :¼ max 0; Lt oð Þ �Wt oð Þð Þ Shortfall at time t in scenario v
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� Wealth constraint. These constraints determine the portfolio wealth at each point in

time prior to and after rebalancing

wtðoÞ ¼
X

a2A

Pbuy
t ;a ðoÞxt ;aðoÞ; o 2 O t 2 T totaln Tf g; ð10:9Þ

WtðoÞ ¼
X

a2A

Psell
t ;a ðoÞxt�ð1=12Þ;aðoÞ; o 2 O t 2 T totaln 0f g; ð10:10Þ

wTðoÞ ¼
X

a2A

gPsell
T ;aðoÞxT�ð1=12Þ;aðoÞ þ

X

a2An Sf g

1

2
da

T�1ðoÞF axT�ð1=12Þ;aðoÞ; o 2 O:

ð10:11Þ

� Accounting balance constraints. These constraints give the quantity invested in each

asset at each time and for each scenario

x0;aðoÞ ¼ xþ0;aðoÞ; a 2 A; o 2 O; ð10:12Þ

xt ;aðoÞ ¼ xt�1=12;aðoÞ þ xþt ;aðoÞ � x�t ;aðoÞ; a 2 A; o 2 O; t 2 T totaln 0f g:
ð10:13Þ

The total quantity invested in asset a � A between time t and t � (1u12) is equal to the

total quantity invested in asset a �A between time t�(1u12) and t plus the quantity of

asset a � A bought at time t minus the quantity of asset a � A sold at time t.

� Annual rolling constraint. This constraint ensures that at each decision time all the

coupon-bearing Treasury bond holdings are sold

x�t ;aðoÞ ¼ xt�ð1=12Þ;aðoÞ; a 2 AnfSg; o 2 O; t 2 T dnf0g: ð10:14Þ

� Coupon re-investment constraints. We assume that the coupon paid every six months

will be re-invested in the same coupon-bearing Treasury bond

xþt ;aðoÞ ¼
ð1=2Þda

t ðoÞF axt�ð1=12Þ;aðoÞ
fP

buy
t ;a ðoÞ

; x�t ;aðoÞ ¼ 0; xþt ;SðoÞ ¼ x�t ;SðoÞ ¼ 0;

a 2 An Sf g; o 2 O; t 2 T c : ð10:15Þ
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� Barrier constraints. These constraints determine the shortfall of the portfolio at each

time and scenario as defined in Table 10.1

htðoÞ þWtðoÞ � LtðoÞ; o 2 O; t 2 T total; ð10:16Þ

htðoÞ � 0; o 2 O; t 2 T total: ð10:17Þ

As the objective of the stochastic program will put a penalty on any shortfall,

optimizing will ensure that ht (v) will be zero if possible and as small as possible

otherwise, i.e.

ht oð Þ ¼ max 0; Lt oð Þ �Wt oð Þð Þ; o 2 O; t 2 T total; ð10:18Þ

which is exactly how we defined ht (v) in (10.2).

To obtain the maximum shortfall for each scenario, we need to add one of the following

two sets of constraints:

HðoÞ � htðoÞ; o 2 O; t 2 T d [ Tgf ð10:19Þ

H oð Þ � ht oð Þ; o 2 O; t 2 T total: ð10:20Þ

Constraint (10.19) needs to be added if the max shortfall is to be taken into account on a

yearly basis and constraint (10.20) if max shortfall is calculated on a monthly basis.

10.2.3 Objective Functions: Expected Average Shortfall and Expected
Maximum Shortfall

Starting with an initial wealth W0 and an annual nominal guarantee of G, the liability at

the planning horizon at time T is given by

W0 1þ Gð ÞT : ð10:21Þ

To price the liability at time t BT consider a zero-coupon Treasury bond which pays 1

at time T, i.e. ZT (v) � 1, for all scenarios v � V. The zero-coupon Treasury bond price at

time t in scenario v assuming continuous compounding is given by

Zt oð Þ ¼ e�yt ;T oð Þ T�tð Þ; ð10:22Þ

where yt,T (v) is the zero-coupon Treasury yield with maturity T at time t in scenario v.

This gives a formula for the value of the nominal (fixed) guarantee barrier at time t in

scenario v as
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LN
t ðoÞ :¼ W0ð1þ GÞT ZtðoÞ ¼ W0ð1þ GÞT e�yt ;T ðoÞðT�tÞ: ð10:23Þ

In a minimum guaranteed return fund the objective of the fund manager is twofold;

firstly to manage the investment strategies of the fund and secondly to take into account

the guarantees given to all investors. Investment strategies must ensure that the guarantee

for all participants of the fund is met with a high probability.

In practice the guarantor (the parent bank of the fund manager) will ensure the investor

guarantee is met by forcing the purchase of the zero coupon bond of (10.22) when the

fund is sufficiently near the barrier defined by (10.23). Since all upside potential to

investors is thus foregone, the aim of the fund manager is to fall below the barrier with

acceptably small if not zero probability.

Ideally we would add a constraint limiting the probability of falling below the barrier in

a VaR-type minimum guarantee constraint, i.e.

P max
t2T total

ht oð Þ> 0

� �

 a ð10:24Þ

for a small. However, such scenario-based probabilistic constraints are extremely difficult

to implement, as they may without further assumptions convert the convex large-scale

optimization problem into a non-convex one. We therefore use the following two convex

approximations in which we trade off the risk of falling below the barrier against the

return in the form of the expected sum of wealth.

Firstly, we look at the expected average shortfall (EAS) model in which the objective

function is given by

max
xt ;a ðoÞ;xþt ;a ðoÞ;x

�
t ;a
ðoÞ:

a2A;o2O;t2T d[T

n o
X

o2O

X

t2T d[T

pðoÞ ð1� bÞWtðoÞ � b
htðoÞ
jT d [T j

� �( )

¼ max
xt ;a ðoÞ;xþt ;a ðoÞ;x

�
t ;a
ðoÞ:

a2A;o2O;t2T d[T

n o ð1� bÞ
X

o2O
pðoÞ

X

t2T d[T

WtðoÞ
 !

� b
X

o2O
pðoÞ

X

t2T d[T

htðoÞ
jT d [T j

 !( )
:

ð10:25Þ

In this case we maximize the expected sum of wealth over time while penalizing each time

the wealth falls below the barrier. For each scenario v � V we can calculate the average

shortfall over time and then take expectations over all scenarios.

In this case only shortfalls at decision times are taken into account and any serious loss

in portfolio wealth in-between decision times is ignored. However, from the fund

manager’s and guarantor’s perspective the position of the portfolio wealth relative to the

fund’s barrier is significant on a continuous basis and serious or repeated drops below this

barrier might force the purchase of expensive insurance. To capture this feature specific to

minimum guaranteed return funds, we also consider an objective function in which the

shortfall of the portfolio is considered on a monthly basis.
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For the expected average shortfall with monthly checking (EAS MC) model the objective

function is given by

max
xt ;a ðoÞ;xþt ;a ðoÞ;x

�
t ;a
ðoÞ:

a2A;o2O;t2T d[T

n o ð1�bÞ
X

o2O
pðoÞ

X

t2T d[T

WtðoÞ
 !

�b
X

o2O
pðoÞ

X

t2T total

htðoÞ
jT totalj

 !( )
: ð10:26Þ

Note that although we still only rebalance once a year shortfall is now being measured on a

monthly basis in the objective and hence the annual decisions must also take into account

the possible effects they will have on the monthly shortfall.

The value of 05b51 can be chosen freely and sets the level of risk aversion. The

higher the value of b, the higher the importance given to shortfall and the less to the

expected sum of wealth, and hence the more risk-averse the optimal portfolio allocation

will be. The two extreme cases are represented by b�0, corresponding to the

‘unconstrained’ situation, which is indifferent to the probability of falling below

the barrier, and b�1, corresponding to the situation in which the shortfall is penalized

and the expected sum of wealth ignored.

In general short horizon funds are likely to attract more risk-averse participants than

long horizon funds, whose participants can afford to tolerate more risk in the short run.

This natural division between short and long-horizon funds is automatically incorporated

in the problem set up, as the barrier will initially be lower for long-term funds than for

short-term funds as exhibited in Figure 10.3. However, the importance of closeness to the

barrier can be adjusted by the choice of b in the objective.

The second model we consider is the expected maximum shortfall (EMS) model given by

max
xt ;aðoÞ;xþt ;aðoÞ;x�t ;aðoÞ:
a2A;o2O;t2T d[ Tf g

n o 1� bð Þ
X

o2O
pðoÞ

X

t2T d[ Tf g
WtðoÞ

 !
� b

X

o2O
pðoÞHðoÞ

 !( )
ð10:27Þ

using the constraints (10.19) to define H(v).
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FIGURE 10.3 Barrier for one-year and five-year 2) guaranteed return fund.
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For the expected maximum shortfall with monthly checking (EMS MC) model the

objective function remains the same but H(v) is now defined by (10.20).

In both variants of this model we penalize the expected maximum shortfall, which

ensures that H(v) is as small as possible for each scenario v � V. Combining this with

constraints (10.19)/(10.20) it follows that H(v) is exactly equal to the maximum shortfall.

The constraints given in Section 10.2.2 apply to both the expected average shortfall and

expected maximum shortfall models.

The EAS model incurs a penalty every time portfolio wealth falls below the barrier, but

it does not differentiate between a substantial shortfall at one point in time and a series of

small shortfalls over time. The EMS model on the other hand, focuses on limiting the

maximum shortfall and therefore does not penalize portfolio wealth falling just slightly

below the barrier several times. So one model limits the number of times portfolio wealth

falls below the barrier while the other limits any substantial shortfall.

10.3 BOND PRICING

In this section we present a three-factor term structure model which we will use to price

both our bond portfolio and the fund’s liability. Many interest-rate models, like the classic

one-factor Vasicek (1977) and Cox et al. (1985) class of models and even more recent

multi-factor models like Anderson and Lund (1997), concentrate on modelling just the

short-term rate.

However, for minimum guaranteed return funds we have to deal with a long-term

liability and bonds of varying maturities. We therefore must capture the dynamics of the

whole term structure. This has been achieved by using the economic factor model described

below in Section 10.3.1. In Section 10.3.2 we describe the pricing of coupon-bearing bonds

and Section 10.3.3 investigates the consequences of rolling the bonds on an annual basis.

10.3.1 Yield Curve Model

To capture the dynamics of the whole term structure, we will use a Gaussian economic factor

model (EFM) (see Campbell 2000 and also Nelson and Siegel 1987) whose evolution under

the risk-neutral measure Q is determined by the stochastic differential equations

dXt ¼ mX � lX Xtð Þdt þ sX dWX
t ; ð10:28Þ

dYt ¼ mY � lY Ytð Þdt þ sY dWY
t ; ð10:29Þ

dRt ¼ k Xt þ Yt � Rtð Þdt þ sRdWR
t ; ð10:30Þ

where the dW terms are correlated. The three unobservable Gaussian factors R, X and Y

represent respectively a short rate, a long rate and the slope between an instantaneous short

rate and the long rate. Solving these equations the following formula for the yield at time t

with time to maturity equal to T�t is obtained (for a derivation, see Medova et al. 2005)

yt ;T ¼
Aðt ;T ÞRt þ Bðt ;T ÞXt þ Cðt ;T ÞYt þ Dðt ;T Þ

T
; ð10:31Þ
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where

A t ;Tð Þ :¼ 1

k
1� e�k T�tð Þ� 


; ð10:32Þ

B t ;Tð Þ :¼ k

k � lX

1

lX

1� e�lX T�tð Þ� 

� 1

k
1� e�k T�tð Þ� 


( )
; ð10:33Þ

C t ;Tð Þ :¼ k

k � lY

1

lY

1� e�lY T�tð Þ� 

� 1

k
1� e�k T�tð Þ� 


( )
; ð10:34Þ

D t ;Tð Þ :¼ T � t � 1

k
1� e�k T�tð Þ� 
� �

mX

lX

þ mY

lY

 !
� mX

lX

B t ;Tð Þ � mY

lY

C t ;Tð Þ

� 1

2

X3

i¼1

m2
Xi

2lX

1� e�2lX T�tð Þ� 

þ

m2
Yi

2lY

1� e�2lY T�tð Þ� 

(

þ n2
i

2k
1� e�2k T�tð Þ� 


þ p2
i T � tð Þ

þ
2mXi

mYi

lX þ lY

1� e� lXþlYð Þ T�tð Þ� 

þ

2mXi
ni

lX þ k
1� e� lXþkð Þ T�tð Þ� 


þ
2mXi

pi

lX

1� e�lX T�tð Þ� 


þ
2mYi

ni

lY þ k
1� e� lYþkð Þ T�tð Þ� 


þ
2mYi

pi

lY

1� e�lY T�tð Þ� 

þ 2nipi

k
1� e�k T�tð Þ� 
�

ð10:35Þ

and

mXi
:¼ �

ksXi

lX k � lXð Þ
;

mYi
:¼ �

ksYi

lY k � lYð Þ
;

ni :¼
sXi

k � lX

þ
sYi

k � lY

�
sRi

k
;

pi :¼ � mXi
þmYi

þ ni

� �
: ð10:36Þ

Bond pricing must be effected under the risk-neutral measure Q. However, for the

model to be used for forward simulation the set of stochastic differential equations must

be adjusted to capture the model dynamics under the real-world or market measure P. We

therefore have to model the market prices of risk which take us from the risk-neutral

measure Q to the real-world measure P.
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Under the market measure P we adjust the drift term by adding the risk premium given

by the market price of risk g in terms of the quantity of risk. The effect of this is a change in

the long-term mean, e.g. for the factor X the long-term mean now equals

ðmX þ gXsXÞ=lX . It is generally assumed in a Gaussian world that the quantity of risk is

given by the volatility of each factor.

This gives us the following set of processes under the market measure

dXt ¼ ðmX � lX Xt þ gXsXÞdt þ sX dWX
t ; ð10:37Þ

dYt ¼ ðmY � lY Yt þ gYsY Þdt þ sY dWY
t ; ð10:38Þ

dRt ¼ fkðXt þ Yt � RtÞ þ gRsRgdt þ sRdWR
t ; ð10:39Þ

where all three factors contain a market price of risk g in volatility units.

The yields derived in the economic factor model are continuously compounded while

most yield data are annually compounded. So for appropriate comparison when

estimating the parameters of the model we will have to convert the annually compounded

yields into continuously compounded yields using the transformation

ycontinuous ¼ lnð1þ yannualÞ: ð10:40Þ

In the limit as T tends to infinity it can be shown that expression (10.31) derived for the

yield does not tend to the ‘long rate’ factor X, but to a constant. This suggests that the

three factors introduced in this term structure model may really be unobservable. To

handle the unobservable state variables we formulate the model in state space form, a

detailed description of which can be found in Harvey (1993) and use the Kalman filter to

estimate the parameters (see e.g. Dempster et al. 1999 or Medova et al. 2005).

10.3.2 Pricing Coupon-Bearing Bonds

As sufficient historical data on Euro coupon-bearing Treasury bonds is difficult to obtain

we use the zero-coupon yield curve to construct the relevant bonds. Coupons on newly-

issued bonds are generally closely related to the ccorresponding spot rate at the time, so

the current zero-coupon yield with maturity T is used as a proxy for the coupon rate of a

coupon-bearing Treasury bond with maturity T. For example, on scenario v the coupon

rate dB10

2 ðoÞ on a newly issued 10-year Treasury bond at time t�2 will be set equal to the

projected 10-year spot rate y2,10 (v) at time t�2.

Generally

dB Tð Þ

t oð Þ ¼ yt ;T oð Þ; 8t 2 T d ; 8o 2 O; ð10:41Þ

dB Tð Þ

t oð Þ ¼ d Tð Þ
tb c oð Þ; 8t 2 T i; 8o 2 O; ð10:42Þ

where � �� denotes integral part. This ensures that as the yield curve falls, coupons on

newly-issued bonds will go down correspondingly and each coupon cash flow will be

discounted at the appropriate zero-coupon yield.
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The bonds are assumed to pay coupons semi-annually. Since we roll the bonds on an

annual basis, a coupon will be received after six months and again after a year just before

the bond is sold. This forces us to distinguish between the price at which the bond is sold

at rebalancing times and the price at which the new bond is purchased.

Let P
sellð Þ

t ;B Tð Þ denote the selling price of the bond B Tð Þ at time t, assuming two coupons

have now been paid out and the time to maturity is equal to T�1, and let P
buyð Þ

t ;B Tð Þ denote

the price of a newly issued coupon-bearing Treasury bond with a maturity equal to T.

The ‘buy’ bond price at time t is given by

BT
t ðoÞ ¼ FBT

e� Tþ tb c�tð Þyt ;Tþ tb c�t ðoÞ

þ
X

s¼ 2tb c
2
þ1

2
;

2tb c
2
þ1;...; tb cþT

dBT

t ðoÞ
2

FBT

e� s�tð Þyt ; s�tð ÞðoÞ; o 2 O; t 2 T total; ð10:43Þ

where the principal FBT

of the bond is discounted in the first term and the stream of

coupon payments in the second.

At rebalancing times t the sell price of the bond is given by

BT
t oð Þ ¼ FBT

e� T�1ð Þyt ;T�1ðoÞ

þ
X

s¼1
2
;1;...;T�1

dBT

t�1ðoÞ
2

FBT

e� s�tð Þyt ; s�tð ÞðoÞ o 2 O t 2 T dn 0f g
� �

[ Tf g ð10:44Þ

with coupon rate dBT

t�1ðoÞ. The coupon rate is then reset for the newly-issued Treasury

bond of the same maturity. We assume that the coupons paid at six months are re-invested

in the on-the-run bonds. This gives the following adjustment to the amount held in bond

BT at time t.

xt ;BT ðoÞ ¼ xt� 1
12
; BT ðoÞ þ

1
2
dBT

t ðoÞFBT

xt� 1
12
; BT ðoÞ

fP
buy

t ;BT ðoÞ
; t 2 T c ; o 2 O: ð10:45Þ

10.4 HISTORICAL BACKTESTS

We will look at an historical backtest in which statistical models are fitted to data up to a

trading time t and scenario trees are generated to some chosen horizon t � T. The optimal

root node decisions are then implemented at time t and compared to the historical returns

at time t � 1. Afterwards the whole procedure is rolled forward for T trading times. Our

backtest will involve a telescoping horizon as depicted in Figure 10.4.

At each decision time t the parameters of the stochastic processes driving the stock

return and the three factors of the term structure model are re-calibrated using historical

data up to and including time t and the initial values of the simulated scenarios are given

by the actual historical values of the variables at these times. Re-calibrating the simulator
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parameters at each successive initial decision time t captures information in the history of

the variables up to that point.

Although the optimal second and later-stage decisions of a given problem may be of

‘what-if ’ interest, manager and decision maker focus is on the implementable first-stage

decisions which are hedged against the simulated future uncertainties. The reasons for

implementing stochastic optimization programs in this way are twofold. Firstly, after one

year has passed the actual values of the variables realized may not coincide with any of the

values of the variables in the simulated scenarios. In this case the optimal investment

policy would be undefined, as the model only has optimal decisions defined for the nodes

on the simulated scenarios. Secondly, as one more year has passed new information has

become available to re-calibrate the simulator’s parameters. Relying on the original

optimal investment strategies will ignore this information. For more on backtesting

procedures for stochastic optimization models see Dempster et al. (2003).

For our backtests we will use three different tree structures with approximately the

same number of scenarios, but with an increasing initial branching factor. We first solve

the five-year problem using a 6.6.6.6.6 tree, which gives 7776 scenarios. Then we use

32.4.4.4.4 � 8192 scenarios and finally the extreme case of 512.2.2.2.2 � 8192 scenarios.

For the subsequent stages of the telescoping horizon backtest we adjust the branching

factors in such a way that the total number of scenarios stays as close as possible to the

original number of scenarios and the same ratio is maintained. This gives us the tree

structures set out in Table 10.2.

Historical backtests show how specific models would have performed had they been

implemented in practice. The reader is referred to Rietbergen (2005) for the calibrated

parameter values employed in these tests. Figures 10.5 to 10.10 show how the various

optimal portfolios’ wealth would have evolved historically relative to the barrier. It is also

TABLE 10.2 Tree Structures for Different Horizon Backtests

Jan 1999 6.6.6.6.6 � 7776 32.4.4.4.4 � 8192 512.2.2.2.2 � 8192

Jan 2000 9.9.9.9 � 6561 48.6.6.6 � 10368 512.2.2.2 � 4096

Jan 2001 20.20.20 � 8000 80.10.10 � 8000 768.3.3 � 6912

Jan 2002 88.88 � 7744 256.32 � 8192 1024.8 � 8192

Jan 2003 7776 8192 8192

5-Year Scenario Tree

4-Year Scenario Tree

3-Year Scenario Tree

2-Year Scenario Tree

1-Year Scenario Tree
Jan 1999 Jan 2000 Jan 2001 Jan 2002 Jan 2003 Jan 2004

FIGURE 10.4 Telescoping horizon backtest schema.
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Backtest 99-04: 6.6.6.6.6 = 7776 Scenarios
Expected Average Shortfall

170
160
150
140
130
120
110
100

90
80

Barrier EAS EAS MCExp EAS Exp EAS MC

31-Dec-00 31-Dec-01 31-Dec-02 31-Dec-031-Jan-001-Jan-99

FIGURE 10.5 Backtest 1999�/2004 using expected average shortfall for the 6.6.6.6.6 tree.

Backtest 99-04: 6.6.6.6.6 = 7776 Scenarios
Expected Maximum Shortfall

170
160
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140
130
120
110
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80

Barrier EMS EMS MCExp EMS Exp EMS MC

31-Dec-00 31-Dec-01 31-Dec-02 31-Dec-031-Jan-001-Jan-99

FIGURE 10.6 Backtest 1999�/2004 using expected maximum shortfall for the 6.6.6.6.6 tree.

Backtest 99-04: 32.4.4.4.4 = 8192 Scenarios
Expected Average Shortfall

150
140
130
120
110
100

90
80

Barrier EAS EAS MCExp EAS Exp EAS MC

31-Dec-00 31-Dec-01 31-Dec-02 31-Dec-031-Jan-001-Jan-99

FIGURE 10.7 Backtest 1999�/2004 using expected average shortfall for the 32.4.4.4.4 tree.
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important to determine how the models performed in-sample on the generated scenario

trees and whether or not they had realistic forecasts with regard to future historical

returns. To this end one-year-ahead in-sample expectations of portfolio wealth are shown

as points in the backtest performance graphs. Implementing the first-stage decisions in-

sample, the portfolio’s wealth is calculated one year later for each scenario in the simulated

tree after which an expectation is taken over the scenarios.

Backtest 99-04: 32.4.4.4.4 = 8192 Scenarios
Expected Maximum Shortfall

150
140
130
120
110
100

90
80

Barrier EMS EMS MCExp EMS Exp EMS MC

31-Dec-00 31-Dec-01 31-Dec-02 31-Dec-031-Jan-001-Jan-99

FIGURE 10.8 Backtest 1999�/2004 using expected maximum shortfall for the 32.4.4.4.4 tree.

Backtest 99-04: 512.2.2.2.2 = 8192 Scenarios
Expected Average Shortfall

140
130
120
110
100

90
80

Barrier EAS EAS MCExp EAS Exp EAS MC

31-Dec-00 31-Dec-01 31-Dec-02 31-Dec-031-Jan-001-Jan-99

FIGURE 10.9 Backtest 1999�/2004 using expected average shortfall for the 512.2.2.2.2 tree.

Backtest 99-04: 512.2.2.2.2 = 8192 Scenarios
Expected Maximum Shortfall

140

130

120

110

100

90

80

Barrier EMS EMS MCExp EMS Exp EMS MC

31-Dec-00 31-Dec-01 31-Dec-02 31-Dec-031-Jan-001-Jan-99

FIGURE 10.10 Backtest 1999�/2004 using expected maximum shortfall for the 512.2.2.2.2 tree.
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From these graphs a first observation is that the risk management monitoring

incorporated into the model appears to work well. In all cases the only time portfolio

wealth dips below the barrier, if at all, is on 11 September 2001. The initial in-sample

wealth overestimation of the models is likely to be due mainly to the short time series

available for initial parameter estimation which led to hugely inflated stock return

expectations during the equity bubble. However as time progresses and more data points

to re-calibrate the model are obtained, the models’ expectations and real-life realizations

very closely approximate each other.

For reference we have included the performance of the Eurostoxx 50 in Figure 10.11 to

indicate the performance of the stock market over the backtesting period. Even though

this was a difficult period for the optimal portfolios to generate high historical returns, it

provides an excellent demonstration that the risk management incorporated into the

models operates effectively. It is in periods of economic downturn that one wants the

portfolio returns to survive.

Tables 10.3 and 10.4 give the optimal portfolio allocations for the 32.4.4.4.4 tree using

the two maximum shortfall objective functions. In both cases we can observe a for the

portfolio to move to the safer, shorter-term assets as time progresses. This is naturally

built into the model as depicted in Figure 10.3.

For the decisions made in January 2002/2003, the portfolio wealth is significantly closer

to the barrier for the EMS model than it is for the EMS MC model. This increased risk for

the fund is taken into account by the EMS model and results in an investment in safer

short-term bonds and a negligible equity component. Whereas the EMS model stays in the

one to three year range the EMS MC model invests mainly in bonds with a maturity in

the range of three to five years and for both models the portfolio wealth manages to stay

above the barrier.

From Figures 10.5 to 10.10 it can be observed that in all cases the method with monthly

checking outperforms the equivalent method with just annual shortfall checks. Similarly

as the initial branching factor is increased, the models’ out-of-sample performance is

generally improved. For the 512.2.2.2.2�8192 scenario tree, all four objective functions

give optimal portfolio allocations which keep the portfolio wealth above the barrier at all

times, but the models with the monthly checking still outperform the others. The more

important difference however seems to lie in the deviation of the expected in-sample

portfolio’s wealth from the actual historical realization of the portfolio value. Table 10.5

displays this annual deviation averaged over the five rebalances and shows a clear

reduction in this deviation for three of the four models as the initial branching factor is

increased. Again the model that uses the expected maximum shortfall with monthly

checking as its objective function outperforms the rest.

Overall the historical backtests have shown that the described stochastic optimization

framework carefully considers the risks created by the guarantee. The EMS MC model

produces well-diversified portfolios that do not change drastically from one year to the

next and results in optimal portfolios which even through a period of economic downturn

and uncertainty remained above the barrier.
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10.5 ROBUSTNESS OF BACKTEST RESULTS

Empirical equity returns are now well known not to be normally distributed but rather to

exhibit complex behaviour including fat tails. To investigate how the EMS MC model

performs with more realistic asset return distributions we report in this section experiments

using a geometric Brownian motion with Poisson jumps to model equity returns. The stock

price process S is now assumed to follow

Backtest 99-04: 512.2.2.2.2 = 8192 Scenarios
Expected Maximum Shortfall

140

160

120

100

60

80

Barrier EMS Eurostoxx 50EMS MC

31-Dec-00 31-Dec-01 31-Dec-02 31-Dec-031-Jan-001-Jan-99

FIGURE 10.11 Comparison of the fund’s portfolio performance to the Eurostoxx 50.

TABLE 10.3 Portfolio Allocation Expected Maximum Shortfall Using the 32.4.4.4.4 Tree

1y 2y 3y 4y 5y 10y 30y Stock

Jan 99 0 0 0 0 0 0.23 0.45 0.32

Jan 00 0 0 0 0 0 0 0.37 0.63

Jan 01 0.04 0 0 0 0 0.39 0.53 0.40

Jan 02 0.08 0.16 0.74 0 0 0 0 0.01

Jan 03 0.92 0 0 0 0 0.07 0 0.01

TABLE 10.4 Portfolio Allocation Expected Maximum Shortfall with Monthly Checking Using the

32.4.4.4.4 Tree

1y 2y 3y 4y 5y 10y 30y Stock

Jan 99 0 0 0 0 0.49 0.27 0 0.24

Jan 00 0 0 0 0 0.25 0.38 0 0.36

Jan 01 0 0 0 0 0.49 0.15 0 0.36

Jan 02 0 0 0 0.47 0.44 0 0 0.10

Jan 03 0 0 0.78 0.22 0 0 0 0.01

TABLE 10.5 Average Annual Deviation

EAS EAS MC EMS EMS MC

6.6.6.6.6 9.87) 13.21) 9.86) 10.77)
32.4.4.4.4 10.06) 9.41) 9.84) 7.78)
512.2.2.2.2 10.22) 8.78) 7.78) 6.86)
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dSt

St

¼ ~mSdt þ ~sSd ~W
S

t þ JtdNt; ð10:46Þ

where N is an independent Poisson process with intensity l and the jump saltus J at Poisson

epochs is an independent normal random variable.

As the EMS MC model and the 512.2.2.2.2 tree provided the best results with Gaussian

returns the backtest is repeated for this model and treesize. Figure 10.12 gives the

historical backtest results and Tables 10.6 and 10.7 represent the allocations for the

512.2.2.2.2 tests with the EMS MC model for the original GBM process and the GBM with

Poisson jumps process respectively. The main difference in the two tables is that the

120
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80
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Barrier EMS MC Exp EMS MC

31-Dec-00 31-Dec-01 31-Dec-02 31-Dec-031-Jan-001-Jan-99

FIGURE 10.12 Expected maximum shortfall with monthly checking using the 512.2.2.2.2 tree for the GBM

with jumps equity index process.

TABLE 10.6 Portfolio Allocation Expected Maximum Shortfall with Monthly Checking Using the

512.2.2.2.2 Tree

1y 2y 3y 4y 5y 10y 30y Stock

Jan 99 0 0 0 0 0.69 0.13 0 0.18

Jan 00 0 0 0 0 0.63 0 0 0.37

Jan 01 0 0 0 0 0.37 0.44 0 0.19

Jan 02 0 0 0 0 0.90 0 0 0.10

Jan 03 0 0 0.05 0 0.94 0 0 0.01

TABLE 10.7 Portfolio Allocation Expected Maximum Shortfall with Monthly Checking Using the 512.2.2.2.2

Tree for the GBM with Poisson Jumps Equity Index Process

1y 2y 3y 4y 5y 10y 30y Stock

Jan 99 0 0 0 0 0.12 0.77 0 0.11

Jan 00 0 0 0 0 0 0.86 0 0.14

Jan 01 0 0 0 0 0.43 0.56 0 0.01

Jan 02 0 0 0 0 0.70 0.11 0 0.19

Jan 03 0 0 0 0 0.04 0.81 0 0.15
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investment in equity is substantially lower initially when the equity index volatility is high

(going down to 0.1) when the volatility is 28) in 2001), but then increases as the

volatility comes down to 23) in 2003. This is born out by Figure 10.12 which shows

much more realistic in-sample one-year-ahead portfolio wealth predictions (cf. Figure

10.10) and a 140 basis point increase in terminal historical fund return over the Gaussian

model. These phenomena are the result of the calibration of the normal jump saltus

distributions to have negative means and hence more downward than upwards jumps

resulting in downwardly skewed equity index return distributions, but with the same

compensated drift as in the GBM case. As a consequence the optimal portfolios are more

sensitive to equity variation and take benefit from its lower predicted values in the last two

years.

Although much more complex equity return processes are possible, these results show

that the historical backtest performance of the EMS MC model is only improved in the

presence of downwardly skewed asset equity return distributions possessing fat tails due to

jumps.

10.6 CONCLUSIONS

This chapter has focused on the design of funds to support investment products which

give a minimum guaranteed return. We have concentrated here on the design of the

liability side of the fund, paying particular attention to the pricing of bonds using a three-

factor term structure model with reliable results for long-term as well as the short-term

yields. Several objective functions for the stochastic optimization of portfolios have been

constructed using expected average shortfall and expected maximum shortfall risk

measures to combine risk management with strategic asset allocation. We also introduced

the concept of monthly shortfall checking which improved the historical backtesting

results considerably. In addition to the standard GBM model for equity returns we

reported experiments using a GBM model with Poisson jumps to create downwardly

skewed fat tailed equity index return distributions. The EMS MC model responded well

with more realistic expected portfolio wealth predictions and the historical fund portfolio

wealth staying significantly above the barrier at all times.

The models of this chapter have been extended in practice to open ended funds which

allow for contributions throughout the lifetime of the corresponding investment products.

In total funds of the order of 10 billion euros have been managed with these extended

models. In future research we hope to examine open multi-link pension funds constructed

using several unit linked funds of varying risk aversion in order to allow the application of

individual risk management to each client’s portfolio.

ACKNOWLEDGEMENTS

The authors wish to thank Drs. Yee Sook Yong and Ning Zhang for their able assistance

with computational matters. We also acknowledge the helpful comments of two

anonymous referees which led to material improvements in the chapter.

242 j CHAPTER 10



REFERENCES

Andersen, T.G. and Lund, J., Estimating continuous-time stochastic volatility models of the short-

term interest rate. J. Econometrics, 1997, 77(2), 343�/377.

Campbell, R., The economic factor model: Theory and applications. Lehman Brothers Presentation to

Europlus Research and Management Dublin, 31 March 2000.

Consigli, G. and Dempster, M.A.H., The CALM stochastic programming model for dynamic asset-

liability management. In Worldwide Asset and Liability Modeling, edited by J.M. Mulvey and

W.T. Ziemba, pp. 464�/500, 1998 (Cambridge University Press: Cambridge).

Consiglio, A., Cocco, F. and Zenios, S.A., The PROMETEIA model for managing insurance policies

with guarantees. In Handbook of Asset and Liability Management, edited by S. Zenios and W.T.

Ziemba, Vol. 2, 2007 (North-Holland: Oxford); in press.

Cox, J.C., Ingersoll, J.E. and Ross, S.A., A theory of the term structure of interest rates. Econometrica,

1985, 53, 385�/407.

Dempster, M.A.H., Germano, M., Medova, E.A. and Villaverde, M., Global asset liability

management. Br. Actuarial J., 2003, 9(1), 137�/216.

Dempster, M.A.H., Hicks-Pedron, N., Medova, E.A., Scott, J.E. and Sembos, A., Planning logistics

operations in the oil industry. J. Operat. Res. Soc, 2000, 51, 1271�/1288.

Dempster, M.A.H., Jones, C.M., Khokhar, S.Q. and Hong, G.S-S., Implementation of a model of the

stochastic behaviour of commodity prices. Report to Rio Tinto, Centre for Financial Research,

Judge Institute of Management, University of Cambridge, 1999 .

Harvey, A.C., Time Series Models, 1993 (Harvester Wheatsheaf: Hemel Hempstead).

Hertzog, F., Dondi, G., Keel, S., Schumani, L.M. and Geering, H.P., Solving ALM problems via

sequential stochastic programming. Quant. Finance, 2007, 7(2), 231�/244.

Hull, J.C., Options, Futures and Other Derivatives, 1997 (Prentice Hall: Upper Saddle River, NJ).

Markowitz, H.M., Portfolio Selection, 1959 (Wiley: New York).

Medova, E.A., Rietbergen, M.I., Villaverde, M. and Yong, Y.S., Modelling the long-term dynamics of

the yield curve. Working Paper, 2005 (Centre for Financial Research, Judge Business School,

University of Cambridge).

Nelson, C.R. and Siegel, A.F., Parsimonious modeling of yield curves. J. Bus, 1987, 60, 473�/489.

Rietbergen, M.I., Long term asset liability management for minimum guaranteed return funds.

PhD Dissertation, Centre for Financial Research, Judge Business School, University of

Cambridge, 2005.

Vasicek, O., An equilibrium characterization of the term structure. J. Financ. Econ, 1977, 5(2),

177�/188.

DESIGNING MINIMUM GUARANTEED RETURN FUNDS j 243





PART 2

Portfolio Construction and Risk
Management





CHAPTER 11

DC Pension Fund Benchmarking
with Fixed-Mix Portfolio
Optimization

M. A. H. DEMPSTER, M. GERMANO, E. A. MEDOVA,
M. I. RIETBERGEN, F. SANDRINI, M. SCROWSTON and
N. ZHANG

CONTENTS

11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

11.2 Current Market Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

11.3 Optimal Benchmark Definition for DC Funds. . . . . . . . . . . . . . . . . . . . 249

11.4 Fund Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

11.5 Nominal Guarantee Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

11.6 Inflation-Linked Guarantee Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

11.7 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

11.1 INTRODUCTION

C ORPORATE SPONSORED DEFINED BENEFIT (DB) pension schemes have recently found

themselves in hot water. Accounting practices that led to over-exposure to equity

markets, increases in longevity of the scheme participants and low interest rates have all

contributed to the majority of schemes in the EU and the U.K. finding themselves

underfunded. In essence, a DB scheme promises to pay its participants an annuity at

retirement that gives them a pension equal to a proportion of their final salary (the

proportion depending on the number of years of service). Therefore the responsibility to

meet these promises (liabilities) rests firmly with the scheme’s trustees and ultimately with

the corporate sponsor.

The management of these corporate schemes was greatly affected in the past by quarterly

earnings reports which directly impacted stock prices in the quest for ‘shareholder value.’
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Consequently DB scheme sponsors resorted to a management style that was able to keep

the liabilities, if not off the balance sheet, then at least to a minimum. One sanctioned tactic

that achieved these aims was the ability to discount liabilities by the expected return of the

constituent asset classes of the fund. In other words, by holding a large part of the fund in

equities, the liabilities could be discounted away at over 10) p.a. The recent performance

of the equity markets and the perception of equity as a long-horizon asset class assisted in

justifying this asset-mix in the eyes of the scheme’s trustees. However, with the collapse of

the equity-market bubble in 2001, many funds found their schemes grossly underfunded

and were forced to crystallize their losses by panicked trustees. Consequent tightening of

the regulations has made the situation even worse (e.g. all discounting must be done by the

much lower AA credit quality bond yield rates in the UK FRS17 standard).

As a result many DB schemes have closed and are now being replaced with defined

contribution (DC) schemes.1 In this world of corporate sponsored DC pension schemes

the liability is separated from the sponsor and the market risk is placed on the shoulders of

the participants. The scheme is likely to be overseen by an investment consultant and if

the scheme invests in funds that perform badly over time a decision may be made by the

consultant to move the capital to another fund. However, any losses to the fund will be

borne by the participants in the scheme and not by the corporate sponsor.

Since at retirement date scheme participants will wish to either purchase an annuity or

invest their fund payout in a self-managed portfolio, an obvious need arises in the market

place for real return guaranteed schemes which are similar to those often found in life

insurance policies. These guarantees will typically involve inflation protection plus some

element of capital growth, for example, inflation rate plus 1) per annum. From the DC

fund manager’s viewpoint provision of the relevant guarantee requires very tight risk,

control, as the recent difficulties at Equitable Life so graphically illustrate.

The question addressed in this chapter is how consultants or DC fund-managers can

come to a sensible definition of an easily understandable liability-related benchmark against

which the overall fund performance for a DC scheme can be measured. Performance of both

fund and benchmark must be expressed to fund participants in easy-to-understand concepts

such as probability of achieving some target wealth level above the scheme guarantee—a

measure easily derived from the solutions of the models discussed in this chapter.

11.2 CURRENT MARKET PRACTICE

Currently, DC pension funds are market-benchmarked against either a fixed-mix of defined

asset classes (total return bond and equity indices) or against some average performance of

their peers. The benchmark is not defined in terms of the pension liability and investment

is not liability-driven. The standard definitions of investment risk—standard deviation,

semi-variance and downside risk—do not convey information regarding the probability of

missing the scheme participants’ investment goals and obligations.

1 DC pension scheme participants typically make a lump sum initial payment and regular contributions to the pension
fund which are employer matched.
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For example, the macro-asset benchmark may be defined as 20) of certain equity

indices and 80) of particular bond indices, but may not reflect the risk that the scheme

participants are willing to take in order to attain a specific substitution rate between their

final salary and pension income (pension earnings/final salary).

11.3 OPTIMAL BENCHMARK DEFINITION FOR DC FUNDS

In line with current market practice, we wish to find a definition of a fixed asset mix

benchmark similar to that given in the example above but with an asset mix that optimizes

returns against user-defined risk preferences. Specifically, for participants that are willing

to take a certain amount of risk in order to aim for a given substitution rate between final

salary and pension, we should be able to ‘tune’ the asset mix in an optimal way to reflect

the participants desire to reach this substitution rate. The risk could then be defined as the

probability of not reaching that substitution rate.

In contrast to dynamic multi-stage portfolio optimization, where the asset-mix is

changed dynamically over time to reflect changing attitudes to risk as well as market

performance (dynamic utility), a fixed-mix rebalance strategy benchmark in some sense

reflects an average of this dynamic utility over the fund horizon. For such a strategy the

realized portfolio at each decision stage is rebalanced back to a fixed set of portfolio

weights. In practice for DC pension schemes we want the returns to be in line with salary

inflation in the sense that the required substitution rate is reached with a given probability.

The solution to this problem will entail solving a fixed-mix dynamic stochastic

programme that reflects the long run utility of the scheme participants.

In general multi-period dynamic stochastic optimization will be more appropriate for long-

term investors. Single-period models construct optimal portfolios that remain unchanged

over the planning horizon while fixed mix rebalance strategies fail to consider possible

investment opportunities that might arise due to market conditions over the course of the

investment horizon. Dynamic stochastic programmes on the other hand capture optimally an

investment policy in the face of the uncertainty about the future given by a set of scenarios.

Carino and Turner (1998) compare a multi-period stochastic programming approach

to a fixed-mix strategy employing traditional mean-variance efficient portfolios. Taking a

portfolio from the mean-variance efficient frontier, it is assumed that the allocations are

rebalanced back to that mix at each decision stage. They also highlight the inability of the

mean-variance optimization to deal with derivatives such as options due to the skewness

of the resulting return distributions not being taken into account. The objective function

of the stochastic programme is given by maximizing expected wealth less a measure of risk

given by a convex cost function. The stochastic programming approach was found to

dominate fixed-mix in the sense that for any given fixed-mix rebalance strategy, there is a

strategy that has either the same expected wealth and lower shortfall cost, or the same

shortfall cost and higher expected wealth. Similar results were found by Hicks-Pedrón

(1998) who also showed the superiority in terms of final Sharpe ratio of both methods to

the constant proportion portfolio insurance (CPPI) strategy over long horizons.

Fleten et al. (2002) compare the performance of four-stage stochastic models to fixed-

mix strategies of in- and out-of-sample, using a set of 200 flat scenarios to obtain the

DC PENSION FUND BENCHMARKING WITH FIXED-MIX PORTFOLIO j 249



out-of-sample results. They show that the dynamic stochastic programming solutions

dominate the fixed-mix solutions both in- and out-of-sample, although to a lesser extent

out-of-sample. This is due to the ability of the stochastic programming model to adapt to

the information in the scenario tree in-sample, although they do allow the fixed-mix

solution to change every year once new information has become available, making this

sub-optimal strategy inherently more dynamic.

Mulvey et al. (2003) compare buy-and-hold portfolios to fixed-mix portfolios over a

ten-year period, showing that in terms of expected return versus return standard deviation,

the fixed-mix strategy generates a superior efficient frontier, where the excess returns are

due to portfolio rebalancing. Dempster et al. (2007a) discuss the theoretical cause of this

effect (and the historical development of its understanding) under the very general

assumption of stationary ergodic returns. A similar result was found in Mulvey et al.

(2004) with respect to including alternative investments into the portfolio. In particular

they looked at the use of the Mt. Lucas Management index in multi-period fixed-mix

strategies. A multi-period optimization will not only identify these gains but also take

advantage of volatility by suggesting solutions that are optimal in alternative market

scenarios. In Mulvey et al. (2007) the positive long term performance effects of new asset

classes, leverage and various overlay strategies are demonstrated for both fixed-mix and

dynamically optimized strategies.

11.4 FUND MODEL

The dynamic optimal portfolio construction problem for a DC fund with a performance

guarantee is modelled here at the strategic level with annual rebalancing. The objective is

to maximize the expected sum of accumulated wealth while keeping the expected

maximum shortfall of the portfolio relative to the guarantee over the 5 year planning

horizon as small as possible. A complete description of the dynamic stochastic

programming model can be found in Dempster et al. (2006). In the fixed-mix model the

portfolio is rebalanced to fixed proportions at all future decision nodes, but not at the

intermediate time stages used for shortfall checking.

This results in annual rebalancing while keeping the risk management function

monthly, leading to the objective function for both problems as

max
xt ;aðoÞ;xþt ;aðoÞ;x�t ;aðoÞ:
a2A;o2O;t2T d[fT g

n o ð1� bÞ
X

o2O
pðoÞ

X

t2T d[fT g
WtðoÞ

 !(

�b
X

o2O
pðoÞ maxt2T total htðoÞ

 !)
; ð11:1Þ

where

� p(v) denotes the probability of scenario v in V—here p(v): � 1uN with N scenarios,

� Wt (v) denotes the portfolio wealth at time t �Ttotal in scenario v,

� ht (v) denotes the shortfall relative to the barrier at time t in scenario v.
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For the nominal or fixed guarantee, the barrier at time t in scenario v, below which the

fund will be unable to meet the guarantee, is given by

LF
t ðoÞ ¼ W0ð1þ GÞT ZtðoÞ ¼ W0ð1þ GÞT e�yt ;T ðoÞðT�tÞ; ð11:2Þ

where

� G denotes the annual nominal guarantee

� Zt (v) denotes the zero-coupon Treasury bond price at time t in scenario v.

For simplicity we model closed-end funds here, but see Dempster et al. (2006, 2007) and

Rietbergen (2005) for the treatment of contributions. We employ a five-period (stage)

model with a total of 8192 scenarios to obtain the solutions for the dynamic optimization

and fixed mix approaches.2

For this chapter, five different experiments were run on a five-year closed-end fund

with a minimum nominal guarantee of 2) and an initial wealth of 100 using a 512.2.2.2.2

tree.3 (See Dempster et al. (2006, 2007) for more details on this problem). The parameter

of risk aversion b is set to 0.99 and the parameter values used were estimated over the

period June 1997�/December 2002. The Pioneer CASM simulator was used to generate the

problem data at monthly intervals.

The five experiments run were as follows.

� Experiment 1: No fixed-mix constraints. Objective function: fund wealth less expected

maximum shortfall with monthly checking.

� Experiment 2: Arbitrary fixed-mix: 30) equity and 10) in each of the bonds.

� Experiment 3: The fixed-mix is set equal to the root node decision of Experiment 1.

� Experiment 4: The fixed-mix is set equal to the root node decision of Experiment 1 but

only applied after the first stage. The root node decision is optimized.

� Experiment 5: The fixed-mix is determined optimally.

Experiments 2�/4 with fixed-mixed constraints are ‘fixed fixed-mix’ problems in which the

fixed-mix is specified in advance in order to keep the optimization problem convex.

Finally Experiment 5 uses fixed-mix constraints without fixing them in advance. This

renders the optimization problem non-convex so that a global optimization technique

needs to be used. In preliminary experiments we found that although the resulting

unconstrained problems are multi-extremal they are ‘near-convex’ and can be globally

optimized by a search routine followed by a local convex optimizer. For this purpose we

used Powell’s (1964) algorithm followed by the SNOPT solver. Function evaluations

involving all fixed-mix rebalances were evaluated by linear programming using CPLEX.

This method is described in detail in Scott (2002).

As the fixed-mix policy remains the same at all rebalances, theoretically there is no

reason to have a scenario tree which branches more than once at the beginning of the first

2 In practice 10 and 15 year horizons have also been employed.
3 Assets employed are Eurobonds of 1, 2, 3, 4, 5, 10 and 30 year maturities and equity represented by the Eurostock 50
index.
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year. A simple fan tree structure would be perfectly adequate as the fixed-mix approach is

unable to exploit the perfect foresight implied after the first stage in this tree. However for

comparison reasons we use the same tree for both the dynamic stochastic programme

(Experiment 1) and the fixed-mix approach (Experiments 2�/5).

11.5 NOMINAL GUARANTEE RESULTS

Table 11.1 shows the expected terminal wealth and expected maximum shortfall for the

five experiments.

As expected, Experiment 1 with no fixed-mix constraints results in the highest expected

terminal wealth and lowest expected maximum shortfall. Whereas Experiments 2 and 3

underperform, Experiment 3 in which the initial root node solution of Experiment 1 is

used as the fixed-mix is a significant improvement on Experiment 2 (arbitrary fixed-mix)

and might serve as an appropriate benchmark. Experiment 4 resulted in a comparable

expected terminal wealth to Experiment 3, but the expected maximum shortfall is now an

order of magnitude smaller. Finally in Experiment 5 global optimization was used which

correctly resulted in an improvement relative to Experiment 3 in both the expected

terminal wealth and the expected maximum shortfall.

Table 11.2 shows the optimal root node decisions for all five experiments. With the

equity market performing badly and declining interest rates over the 1997�/2002 period,

we see a heavy reliance on bonds in all portfolios.

Figures 11.1 and 11.2 show the efficient frontiers for the dynamic stochastic

programme and the fixed-mix solution, where the risk measure is given by expected

maximum shortfall. Figure 11.1 shows that the dynamic stochastic programme generates a

much bigger range of possible risk return trade-offs and even if we limit the range of risk

parameters to that given for the fixed-mix experiments as in Figure 11.2, we see that the

DSP problems clearly outperform the fixed-mix problems.

TABLE 11.1 Expected Terminal Wealth and Maximum Shortfall for the Nominal Guarantee

Expected terminal wealth Expected maximum shortfall

Experiment 1 126.86 8.47 E-08

Experiment 2 105.58 14.43

Experiment 3 120.69 0.133

Experiment 4 119.11 0.014

Experiment 5 122.38 0.122

TABLE 11.2 Root Node Solutions for the Nominal Guarantee

1y 2y 3y 4y 5y 10y 30y Stock

Exp 1 0 0 0.97 0 0 0 0.02 0.01

Exp 2 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.30

Exp 3 0 0 0.97 0 0 0 0.02 0.01

Exp 4 0 0 0.06 0.94 0 0 0 0

Exp 5 0 0 0.96 0.04 0 0 0 0
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FIGURE 11.3 Terminal wealth distribution for optimal dynamic stochastic policy of Experiment 1.
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We also considered the distribution of the terminal wealth as shown in Figures 11.3 and

11.4. From Figure 11.3 we observe a highly skewed terminal wealth distribution for

Experiment 1 with most of the weight just above the guaranteed wealth of 110.408. The

effect of dynamic allocation is to alter the overall probability distribution of the final

wealth. Carino and Turner (1998) also note this result in their experiments. For

Experiments 2 and 3 in which there is no direct penalty in the optimization problem for

shortfall, we see the more traditional bell-shaped distribution. Using the initial root node

solution of Experiment 1 as the fixed-mix portfolio results in a distribution with a higher

mean and lower standard deviation (the standard deviation drops from 20.51 to 6.43). In

Experiment 4 we see an increase again in the probability of the terminal wealth ending up

just above the minimum guarantee of 110 as the optimization problem has flexibility at

the initial stage. The standard deviation is further reduced in this experiment to 4.04. The

mean and standard deviation of Experiment 5 is comparable to that of Experiment 3,

which is as expected since the portfolio allocations of the two experiments are closely

related.

11.6 INFLATION-LINKED GUARANTEE RESULTS

In the case of an inflation-indexed guarantee the final guarantee at time T is given by

W0

YT

s¼1=12

1þ iðmÞs ðoÞ
	 


; ð11:3Þ

where iðmÞs ðoÞ represents the monthly inflation rate at time s in scenario v.

However, unlike the nominal guarantee, at time t BT the final inflation-linked

guarantee is still unknown. We propose to approximate the final guarantee by using the

inflation rates which are known at time t, combined with the expected inflation at time t

for the period ½t þ ð1=12Þ;T �.
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FIGURE 11.4 Terminal wealth distribution for the optimal fixed-mix policy of Experiment 5.
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The inflation-indexed barrier at time t is then given by

LI
tðoÞ ¼ W0

Yt

s¼ 1
12

1þ iðmÞs ðoÞ
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Ae�yt ;T ðoÞðT�tÞ:

ð11:4Þ

In general the expected terminal wealth is higher for the inflation-linked barrier, but we

also see an increase in the expected maximum shortfall (see Table 11.3). This reflects the

increased uncertainty related to the inflation-linked guarantee which also forces us to

increase the exposure to more risky assets. With an inflation-linked guarantee the final

guarantee is only known for certain at the end of the investment horizon. Relative to the

nominal guarantee results of Table 11.2, Table 11.4 shows that the initial portfolio

allocations for the inflation-linked guarantee are more focused on long-term bonds.

TABLE 11.3 Expected Terminal Wealth and Maximum Shortfall for the Inflation-Linked Guarantee

Expected terminal wealth Expected maximum shortfall

Experiment 1 129.88 0.780

Experiment 2 122.81 13.60

Experiment 3 129.34 1.580

Experiment 4 129.54 1.563

Experiment 5 128.23 1.456

TABLE 11.4 Root Node Solution for the Inflation-Linked Guarantee

1y 2y 3y 4y 5y 10y 30y Stock

Exp 1 0 0 0 0 0.77 0.23 0 0

Exp 2 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.30

Exp 3 0 0 0 0 0.77 0.23 0 0

Exp 4 0 0 0 0 0.88 0.12 0 0

Exp 5 0 0 0 0 0.94 0.06 0 0
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As in Figure 11.3, Figure 11.5 shows that there is a noticeable pattern of asymmetry in

the final wealth outcomes for the dynamic stochastic programme of Experiment 1.

However the skewness is not so marked. This is due to the fact that for the inflation-linked

guarantee problems inflation rates differ on each scenario and the final guarantee is

scenario dependent which results in a different value of the barrier being pursued along

each scenario. This symmetrizing effect is even more marked for the inflation-linked

guarantee as shown in Figure 11.6 (cf. Figure 11.4).

Figure 11.7 shows for the inflation-linked guarantee problem similar out-performance

of DSP relative to the optimal fixed-mix policy as in Figure 11.2.
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11.7 CONCLUSION

In this chapter we have compared the performance of two alternative versions of a

dynamic portfolio management model for a DC pension scheme which accounts for the

liabilities arising from a guaranteed fund return. The results show that a fixed-mixed

rebalance policy can be used as a benchmark for the dynamic stochastic programming

optimal solution with less complexity and lower computational cost. Whereas the risk-

return trade-off for a fixed-mix portfolio rebalancing strategy is constant over the planning

horizon, for the dynamic stochastic programming solutions portfolio allocations shift to

less volatile assets as the excess over the liability barrier is reduced. The resulting guarantee

shortfall risk for the easy-to-explain fixed-mix portfolio rebalancing strategy is therefore

higher and its portfolio returns are lower than those of the dynamic optimal policy. On a

percentage basis however these differences are sufficiently small to be able to use the easier-

to-compute fixed-mix results as a conservative performance benchmark for both in-

sample (model) and actual out-of-sample fund performance. For out-of-sample historical

backtests of optimal dynamic stochastic programming solutions for these and related

problems the reader is referred to Dempster et al. (2006, 2007b). Perhaps the easiest way to

explain both benchmark and actual fund performances to DC pension scheme participants

is to give probabilities of achieving (expected) guaranteed payouts and more. These are

easily estimated a priori by scenario counts in both models considered in this paper for

fund design and risk management. It is of course also possible to link final fund payouts to

annuity costs and substitution rates with the corresponding probability estimates.
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Quant. Finance, 2007a, 7(2), 151�/160.

Dempster, M.A.H., Germano, M., Medova, E.A., Rietbergen, M.I., Sandrini, F. and Scrowston, M.,

Designing minimum guaranteed return funds. Quant. Finance, 2007b, 7(2), 245�/256.

Fleten, S.E., Hoyland, K. and Wallace, S.W., The performance of stochastic dynamic and fixed mix

portfolio models. Eur. J. Oper. Res., 2002, 140(1), 37�/49.

Hicks-Pedrón, N., Model-based asset management: A comparative study. PhD dissertation, Centre

for Financial Research, Judge Institute of Management, University of Cambridge, 1998.

Mulvey, J.M., Pauling, W.R. and Madey, R.E., Advantages of multiperiod portfolio models.

J. Portfolio Manag., 2003, 29(2), 35�/45.

Mulvey, J.M., Kaul, S.S.N. and Simsek, K.D., Evaluating a trend-following commodity index for

multi-period asset allocation J. Alternat. Invest., 2004, 7(1), 54�/69.

Mulvey, J.M., Ural, C. and Zhang, Z., Improving performance for long-term investors: Wide

diversification, leverage and overlay strategies. Quant. Finance, 2007, 7(2), 175�/187.

Powell, M.J.D., An efficient method for finding the minimum of a function of several variables

without calculating derivatives. Comput. J., 1964, 7, 303�/307.

Rietbergen, M.I., Long term asset liability management for minimum guaranteed return funds.

PhD dissertation, Centre for Financial Research, Judge Business School, University of

Cambridge, 2005.

Scott, J.E., Modelling and solution of large-scale stochastic programmes. PhD dissertation, Centre

for Financial Research, Judge Institute of Management, University of Cambridge, 2002.

258 j CHAPTER 11



CHAPTER 12

Coherent Measures of Risk in
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12.1 MOTIVATION

T HIS CHAPTER IS A GUIDED TOUR of the recent (sometimes very technical) literature on

Coherent Risk Measures (CRMs). Our purpose is to review the theory of CRMs from

the perspective of practical risk management applications. We have tried to single out those

results from the theory which help to understand which CRMs can today be considered as

realistic candidate alternatives to Value at Risk (VaR) in financial risk management practice.

This has also been the spirit of the author’s research line in recent years Acerbi 2002, Acerbi

and Simonetti 2002, Acerbi and Tasche 2002a, b (see Acerbi 2003 for a review).

12.2 COHERENCY AXIOMS AND THE SHORTCOMINGS OF VAR

In 1997, a seminal paper by Artzner et al. (1997, 1999) introduced the concept of a

Coherent Measure of Risk, by imposing, via an axiomatic framework, specific

mathematical conditions which enforce some basic principles that a sensible risk measure

should always satisfy. This cornerstone of financial mathematics was welcomed by many as
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the first serious attempt to give a precise definition of financial risk itself, via a deductive

approach. Among the four celebrated axioms of coherency, a special role has always been

played by the so-called subadditivity axiom

rðX þ Y Þ � rðXÞ þ rðY Þ; ð12:1Þ

where r( �) represents a measure of risk acting on portfolios’ profit�/loss r.v.’s X, Y over a

chosen time horizon. The reason why this condition has been long debated is probably due

to the fact that VaR—the most popular risk measure for capital adequacy purposes—-

turned out to be not subadditive and consequently not coherent. As a matter of fact, since

inception, the development of the theory of CRMs has run in parallel with the debate on

whether and how VaR should be abandoned by the risk management community.

The subadditivity axiom encodes the risk diversification principle. The quantity

HðX ;Y ; rÞ ¼ rðXÞ þ rðY Þ � rðX þ Y Þ ð12:2Þ

is the hedging benefit or, in capital adequacy terms, the capital relief associated with the

merging of portfolios X and Y. This quantity will be larger when the two portfolios contain

many bets on the same risk driver, but of opposite direction, which therefore hedge each

other in the merged portfolio. It will be zero in the limiting case when the two portfolios

bet on the same directional move of every common risk factor. But the problem with non-

subadditive risk measures such as VaR is that there happen to be cases in which the

hedging benefit turns out to be negative, which is simply nonsensical from a risk�/

theoretical perspective.

Specific examples of subadditivity violations of VaR are available in the literature

(Artzner et al. 1999; Acerbi and Tasche 2002a), which typically involve discrete

distributions. It may be surprising to know however that examples of subadditivity

violations of VaR can also be built with very inoffensive distributions. For instance, a

subadditivity violation of VaR with confidence level p � 10�2 occurs with two portfolios

X and Y which are identically distributed as standard univariate Gaussian Nð0; 1Þ, but are

dependent through the copula function

Cðx; yÞ ¼ dðx � yÞ 1fx > q;y > qg þ dðq � x � yÞ 1fx < q;y < qg ð12:3Þ

with q � p�� . For instance, choosing � � 10�4 one finds

HðX ;Y ; VaRpÞ ’ 2:4þ 2:4� 5:2 ¼ �0:4: ð12:4Þ

This may be surprising for the many people who have always been convinced that VaR is

subadditive in the presence of ‘normal distributions.’ This is in fact true, provided that the

full joint distribution is a multivariate Gaussian, but it is false, as in this case, when only

the two marginal distributions are Gaussian. This leads to the conclusion that it is never

sufficient to study the marginals to ward off a VaR violation of subadditivity, because the

trigger of such events is a subtler copula property.
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Other examples of subadditivity violation by VaR (see Acerbi 2003, Examples 2.15 and

4.4) allow us to display the connection between the coherence of a risk measure and the

convexity of risk surfaces. By risk surface, we mean the function ~w 7!rðPð~wÞÞ which maps

the vector of weights ~w of the portfolio Pð~wÞ ¼
P

iwi Xi onto the risk rðPð~wÞÞ of the

portfolio. The problem of r-portfolio optimization amounts to a global search for

minima of the surface. An elementary consequence of coherency is the convexity of risk

surfaces (see Figure 12.1)

r coherent) rðPð~wÞÞ convex: ð12:5Þ

This immediate result tells us that risk-optimization—if we just define carefully our

variables—is an intrinsically convex problem. This bears enormous practical conse-

quences, because the border between convex and non-convex optimization in fact delimits

solvable and unsolvable problems when things are complex enough, whatever super-

computer you may have. In examples, VaR exhibits non-convex risk surfaces, infested with

local minima, which can easily be recognized to be just artefacts of the chosen (non-

coherent) risk measure (see Figure 12.2).

In the same examples, thanks to convexity, any CRM displays conversely a single global

minimum, which corresponds undoubtedly to the correct optimal portfolio, as can be

shown by symmetry arguments.

The lesson we learn is that adopting a non-coherent measure as a decision-making tool

for asset allocation means choosing to face formidable (and often unsolvable) computa-

tional problems related to the minimization of risk surfaces plagued by a plethora of risk�/

nonsensical local minima. As a matter of fact we are persuaded that no bank in the world

has actually ever performed a true VaR minimization in its portfolios, if we exclude

multivariate Gaussian frameworks á la Riskmetrics where VaR is actually just a disguised

version of standard deviation and hence convex.
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FIGURE 12.1 The one-dimensional non-convex VaR5)(Pl) risk surface (dotted line) and the convex

ES5)(Pl) risk surface (solid line) for a specific portfolio Pl l � [0, 1]. From Acerbi (2003), Example 2.15.

COHERENT MEASURES OF RISK IN EVERYDAY MARKET PRACTICE j 261



Nowadays, sacrificing the huge computational advantage of convex optimization only

for the sake of VaR fanaticism is pure masochism.

12.3 THE OBJECTIVIST PARADIGM

The general representation of CRMs is well known (Artzner et al. 1999; Delbaen 2000).

Any CRM rF is in one-to-one correspondence with a family F of probability measures P.

The formula is strikingly simple

rFðXÞ ¼ sup
P2F

E
P �X½ �: ð12:6Þ

But this representation is of little help for a risk manager. It gives him too much freedom.

And more importantly, it generates a sort of philosophical impasse as it assumes an

intrinsically subjectivist point of view that is opposite to the typical risk manager’s

philosophy, which is objectivist. The formula defines the CRM rF as the worst case

expected loss of the portfolio in a family F of ‘parallel universes’ P.

Objectivists are, in a word, those statisticians who believe that a unique real probability

measure of future events must necessarily exist somewhere, and whose principal aim is to

try to estimate it empirically. Subjectivists on the contrary, are intransigent statisticians

who, starting from the observation that even if this real probability measure existed it

would be unknowable, simply prefer to give up considering this concept at all and think of

probability measures as mere mathematical instruments. Representation (12.6) is

manifestly subjectivist as it is based on families of probability measures.
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FIGURE 12.2 The risk of an equally weighted portfolio of i.i.d. defaultable bonds, as a function of the number

of bonds N. The global minimum is expected at N �� by diversification principle and symmetry arguments.

Notice however that VaR and TCE (Tail Conditional Expectation (Artzner et al. 1997)), being non-coherent,

display also an infinite number of nonsensical local minima. Do not expect convexity for the ES plot because it

is not a ‘risk surface’ (which at N � 400 would be a 400-dimensional hypersurface in R401). From Acerbi (2003)

Example 4.4.
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Risk Managers are objectivists because the algorithm they use to assess capital adequacy

via VaR is intrinsically objectivist. We can in fact split this process into two clearly distinct

steps:

1. model the probability distribution of your portfolio;

2. compute VaR on this distribution.

An overwhelmingly larger part of the computational effort (data mining, multivariate

risk-factors distribution modelling, asset pricing, . . .) is done in step 1, which has no

relation with VaR and is just an objectivist paradigm. The computation of VaR, given the

distribution, is typically a single last code line. Hence, in this scheme, replacing VaR with

any other CRM is immediate, but it is clear that for this purpose it is necessary to identify

those CRMs that fit the objectivist paradigm.

If we look for something better than VaR we cannot forget that despite its

shortcomings, this risk measure brought a real revolution into risk management practice

thanks to some features, which were innovative at the time of its advent, and that nobody

would be willing to give up today.

� universality (VaR applies to risks of any nature);

� globality (VaR condenses multiple risks into a single figure);

� probability (VaR contains probabilistic information on the measured risks);

� right units of measure (VaR is simply expressed in ‘lost money’).

The last two features explain why VaR is worshipped by any firm’s boss, whose daily

refrain is: ‘how much money do we risk and with what probability?’ Remember that risk

sensitivities (aka ‘greeks,’ namely partial derivatives of the portfolio value with respect to a

specific risk factor) do not share any of the above features and you will immediately

understand why VaR became so popular. As a matter of fact a bank’s greeks-based risk

report is immensely more cumbersome and less communicative than a VaR-based one.

But if we look more closely at the features that made the success of VaR, we notice that

in fact they have nothing to do with VaR in particular, but rather with the objectivist

paradigm above. In other words, if in step 2 above, we replace VaR with any sensible risk

measure defined in terms of some monetary statistics of the portfolio distribution, we

automatically preserve these features. That is why looking for CRMs that fit the objectivist

paradigm is so crucial.

In our opinion, the real lasting heritage of VaR in the development of the theory and

practice of risk management is precisely the very fact that it served to introduce for the

first time the objectivist paradigm into the market practice. Risk managers started to plot

the distribution of their portfolio’s values and learned to fear its left tail thanks to the

lesson of VaR.

12.4 ESTIMABILITY

The property that characterizes the subset of those CRMs that fit the objectivist paradigm

is law invariance, first studied in this context by Kusuoka (2001). A measure of risk r is

said to be law-invariant (LI) if it is a functional of the portfolio’s distribution function
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FX( �) only. The concept of law invariance therefore can be defined only with reference to a

single chosen probability space,

r law invariant , rðXÞ ¼ r½FXð�Þ� ð12:7Þ

or equivalently

r law invariant , FXð�Þ ¼ FY ð�Þ ) rðXÞ ¼ rðY Þ½ �: ð12:8Þ

It is easy to see that law invariance means estimability from empirical data.

Theorem 12.1:

r law invariant , r estimable ð12:9Þ

Proof (<): suppose r estimable and let X and Y be r.v.’s with identical probability

distribution function. Consider N i.i.d. realizations {xi}i�1, . . . , N and {yi}i�1, . . . , N and an

estimator r̂. We will have

r̂ðfxigÞ �!
N!1

rðXÞ;

r̂ðfyigÞ �!
N!1

rðY Þ:

But for large N, the samples {xi} and {yi} are indistinguishable, hence r(X) �r(Y).

Proof ([): suppose r LI. Then a (canonical) estimator is defined by

r̂ðfxigÞ :¼ rðF̂XðfxigÞÞ ð12:10Þ

where F̂XðfxigÞ represents the empirical distribution estimated from the data {xi}. I

It is then clear that for CRMs to be measurable with respect to a single given probability

distribution it must also be LI. That is why, unless an unlikely subjectivistic revolution

takes place in the market, risk managers will always focus their attention on just the subset

of LI CRMs for any practical application. Law invariance, in other words, is a sort of

unavoidable ‘fifth axiom’ for practitioners.

Popular examples of LI CRMs are for instance a-expected shortfall (ESa) (aka CVaR, aka

AV@R, . . .) (Rockafellar and Uryasev 2000; Acerbi and Tasche 2002a)

ESaðXÞ ¼ �
1

a

Z a

0

F�1
X ðpÞdp; a 2 ð0; 1Þ; ð12:11Þ

namely the ‘average loss of the portfolio in the worst a cases’ or the family of CRMs based on

one-sided moments (Fischer 2001)
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rp;aðXÞ ¼ �E½X � þ akðX � XÞ�kp; a 2 ½0; 1�; p � 1 ð12:12Þ

among which we recognize semivariance (when a � 1, p � 2).

12.5 THE DIVERSIFICATION PRINCIPLE REVISITED

There is one aspect of the diversification principle which subadditivity does not capture. It

is related to the limiting case when we sum two portfolios X and Y which are comonotonic.

This means that we can write X � f(Z) and Y � g(Z) where f and g are non-decreasing

functions driven by the same random risk factor Z. Such portfolios go up and down

together in all cases, and hence provide no mutual hedge at all, i.e. no diversification. For

comonotonic random variables people speak also of ‘perfect dependence’ because it turns

out that the dependence structure of such variables is in fact the same (copula maxima)

that links any random variable X to itself.

The diversification principle tells us that for a measure of risk r the hedging benefit

H(X,Y; r) should be exactly zero when X and Y are comonotonic. This property of r is

termed comonotonic additivity (CA)

r comonotonic additive , X ;Y comonotonic ) rðX þ Y Þ ¼ rðXÞ þ rðY Þ½ �: ð12:13Þ

Subadditivity does not imply CA. There are in fact CRMs that are not comonotonic

additive, such as (12.12), for instance.

We think that the diversification principle is well embodied only by requiring both

subadditivity and CA in a risk measure. Each property separately is not enough. To

understand this fact the clearest explanation we know is showing that in the absence of

each of these conditions, there exists a specific regulatory arbitrage (RA) allowing a risk

manager to reduce the capital requirement for a portfolio without reducing at all the risks

he runs.

RA1 Lack of Subadditivity: split your portfolio into suitable subportfolios and

compute capital adequacy for each one.

RA2 Lack of Comonotonic Additivity: merge your portfolio with the one of some

‘comonotone’ partner and compute capital adequacy on the global portfolio.

CA is therefore a natural further condition to add to the list of properties of a good risk

measure. It becomes a sort of ‘sixth axiom,’ because it is a condition distinct from LI when

imposed on a CRM. There exist CRMs which satisfy LI and not CA (for instance (12.12))

and vice versa (for instance Worst Conditional Expectation as defined in Artzner et al.

(1997)).

The above arguments support the description of the class of CRMs that satisfy also LI

and CA (LI CA CRMs).
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12.6 SPECTRAL MEASURES OF RISK

The class of LI CA CRMs was first described exhaustively by Kusuoka (2001). They have

the general representation

rmðXÞ ¼
Z 1

0

dmðpÞ ESpðXÞ dm any measure on ½0; 1�: ð12:14Þ

The same class were termed spectral measures of risk independently in Acerbi (2002) with

an equivalent representation

rfðXÞ ¼ �
Z 1

0

fðpÞF�1
X ðpÞdp; ð12:15Þ

where the function f : ½0; 1� 7!R, named the risk spectrum, satisfies the coherence

conditions

(1) f(p) ] 0,

(2)
R 1

0
fðpÞdp ¼ 1;

(3) f(p1) ] f(p2) if p1 5 p2.

Despite the complicated formula, a spectral measure rf is nothing but the f-weighted

average of all outcomes of the portfolio, from the worst (p � 0) to the best (p � 1). This is

the most general form that a LI CA CRM can assume. The only residual freedom is in the

choice of the weighting function f within the above conditions.

Condition 3 is related to subadditivity. It just says that in general worse cases must be

given a larger weight when we measure risk, and this seems actually very reasonable. This

is also where VaR fails, as it measures the severity of the loss associated with the quantile

threshold, forgetting to give a weight to the losses in the tail beyond it. VaR can also in fact

be expressed via formula (12.15), but with a Dirac-delta risk spectrum peaked on the

confidence level which therefore does not fulfil condition 3 (see Figure 12.3). Expected

12

10

8

6

4

2

0

50

40

30

20

10

0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

FIGURE 12.3 The risk spectrum fES of ESq (left plot) and the risk spectrum fVaR of VaRq (right plot), for

q � 0.1. The latter, being a (here stylized) Dirac-delta peaked on q, violates condition 3.
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shortfall ESa is a special case of a spectral measure of risk whose risk spectrum is a

constant function with domain [0, a].

Spectral measures of risk turned out to be strictly related to the class of distortion risk

measures introduced in actuarial mathematics in 1996 by Wang (1996) in a different

setting.

12.7 ESTIMATORS OF SPECTRAL MEASURES

It is easy to provide estimators of spectral measures. Given N i.i.d. scenario outcomes

fxðkÞi gi¼1;...;N for the vector of market variables (possibly assets) ~X ¼ X ðkÞ and given any

portfolio function of them Y ¼ Y ð~XÞ, we can just exploit law-invariance and use the [
proof of Theorem 12.1 to obtain canonical estimators as

r̂ðNÞf ðY Þ ¼ rf F̂
ðNÞ
Y ðf~xigÞ

h i
; ð12:16Þ

where we have defined the empirical marginal distribution function of Y

F̂
ðNÞ
Y ðf~xigÞ tð Þ :¼ 1

N

XN

i¼1

y t � yið Þ; ð12:17Þ

which is nothing but the cumulative empirical histogram of the outcomes yi :¼ Y ð~xiÞ.
Equation (12.16) can in fact be solved to give simply

r̂ðNÞf ðY Þ ¼ �
XN

i¼1

yi:N
�fi; ð12:18Þ

where we have adopted the notation yi:N of order statistics (i.e. the sorted version of the

vector yi) and defined the weights

�fi :¼
Z i=N

ði�1Þ=N

fðpÞdp: ð12:19Þ

In (12.18) we see in a very transparent language that a spectral measure is nothing but a

weighted average of all the outcomes of a portfolio sorted from the worst to the best.

In the case of ESa the estimator (12.18) specializes to

cESðNÞa ðY Þ ¼ �
1

Na

XbNac

i¼1

yi:N þ ðNa� bNacÞ ybNacþ1:N

 !
: ð12:20Þ

All these estimators can be easily implemented in a simple spreadsheet or in any

programming language.

We remark that these estimators not only converge for large N to the estimated

measure, but also preserve coherency for every finite N by construction.
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12.8 OPTIMIZATION OF CRMS: EXPLOITING CONVEXITY

As we have already stressed, CRMs’ surfaces are convex. Nonetheless, setting up an

optimization program using, say, the estimator (12.20) of ES, requires some clever trick. In

fact, suppose you want to minimize the ESaðY~wÞ of a portfolio Y~w ¼
P

kwkX ðkÞ choosing

the optimal weights wk under some given constraints. A naive minimization procedure

using (12.20) will simply fail, because the order statistics yi:N ¼ fsortj¼1;...;N ½
P

kwk x
ðkÞ
j �gi

reshuffle discretely when the parameters ~w change continuously. In other words,
cESðNÞa ðY~wÞ is not analytical in the weights ~w and this creates big troubles for any standard

minimization routine. Moreover, the sort algorithm is a very slow and memory

consuming one for large samples.

The problem of finding efficient optimization routines for ESa was however elegantly

solved by Pflug (2000), and Rockafellar and Uryasev (2000, 2002) who mapped it onto the

equivalent problem of finding the minima of the functional

GðNÞa ðY~w ;cÞ :¼ �cþ 1

Na

XN

i¼1

c� yið Þþ ð12:21Þ

with yi ¼
P

kwk x
ðkÞ
i . Despite the presence of an additional parameter c, G is a much

simpler objective function to minimize, thanks to the manifest analyticity and convexity

w.r.t the weights ~w:Notice, in particular, that expression (12.21) is free from order statistics.

The main result of Rockafellar and Uryasev (2000) is that cESaðY~wÞ (as a function of ~w )

and GðNÞa ðY~w ;cÞ (as a function of both ~w and c) attain their minima on the same

argument weights ~w: So, we can find ESa optimal portfolios minimizing Ga instead, which

is dramatically easier. Furthermore, it can be shown (Rockafellar and Uryasev 2000) that

this convex non-linear program can be mapped onto an equivalent linear program, at the

price of introducing further additional parameters ~z.

min
~w;c;~z

�cþ 1

Na

XN

i¼1

zi

( )

s.t. zi � c� yi i ¼ 1; . . . ;N

~w 2 W weights domain

c 2 R

zi � 0

yi ¼
X

kwk x
ðkÞ
i

ð12:22Þ

It is for this linearized version that the most efficient routines are obtained, making it

possible to set up an optimization procedure for portfolios of essentially any size and

complexity.

It is difficult to overestimate the importance of this result. It allows the full exploitation

of the advantages of convex optimization with ESa and opens the way to efficient routines

for large and complex portfolios, under any distributional assumptions. In practice, using
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this methodology with ESa, risk managers have at last the possibility of solving problems

that using VaR they had just dreamed of.

This methodology was extended from ESa to any spectral measure rf (i.e. any LI CA

CRM) in Acerbi and Simonetti (2002). Also in the general case, the main problem to

tackle is the presence of sorting routines induced in (12.18) by the order statistics. In

parallel to the above result, one introduces the functional

GðNÞf ðY~w ;
~cÞ :¼

XN�1

j¼1

ð�fjþ1 � �fjÞ j cj �
XN

i¼1

ðcj � yiÞ
þ

( )
� �fN

XN

i¼1

yi; ð12:23Þ

whose minimum (as a function of both ~w and ~c) can be shown to occur at the same

argument ~w that minimizes r̂ðNÞf ðY~wÞ. Therefore we see that generalizing from ESa to any

spectral measure rf the only difference is that the additional parameter c has become a

vector of additional parameters ~c ¼ ðc1; . . . ;cJÞ, where J is essentially the number of

‘steps’ of the chosen risk spectrum f. Also for this extended methodology, it is possible to

map the non-linear convex problem onto an equivalent linear one:

min
~w;~c;~z

XJ

j¼1

D�fj j cj �
XN

i¼1

zij

( )
� �fN

XN

i¼1

yi

( )

s.t. zij � cj � yi i ¼ 1; . . . ;N j ¼ 1; . . . ; J

~w 2 W
~c 2 RJ

zij � 0

yi ¼
X

kwk x
ðkÞ
i

ð12:24Þ

This extends the efficiency of the ESa optimization routines available also for any other LI

CA CRMs. See Acerbi and Simonetti (2002), and Acerbi (2003) for more details.

12.9 CONCLUSIONS

We have discussed why, in our opinion, the class of CRMs is too large from the perspective

of practical risk management applications. If the practice of risk management remains

intrinsically objectivistic, the additional constraint of law-invariance will always be

implicitly assumed by the market. A further restriction is provided by a closer look at the

risk diversification principle, which naturally introduces the condition of comonotonic

additivity.

The subset of CRMs which possess also LI and CA coincide with the class of spectral

measures. This class lends itself to immediate transparent representation, straightforward

estimation and—adopting nontrivial tricks—to powerful optimization techniques which

exploit the convexity of the risk minimization problems and allow, probably for the first

time, risk managers to face the problem of finding optimal portfolios with virtually no

restrictions of size, complexity and distributional assumptions.

COHERENT MEASURES OF RISK IN EVERYDAY MARKET PRACTICE j 269



REFERENCES

Acerbi, C., Spectral measures of risk: A coherent representation of subjective risk aversion J. Bank.

Finance, 2002, 26, 1505�/1518.

Acerbi, C., Coherent representations of subjective risk aversion. In Risk Measures for the XXI Century,

edited by G. Szego, 2003 (Wiley: New York).

Acerbi, C. and Simonetti, P., 2002, Portfolio optimization with spectral measures of risk. Abaxbank

preprint. Available online at: www.gloriamundi.org.

Acerbi, C. and Tasche, D., On the coherence of expected shortfall. J. Bank. Finance, 2002a, 26, 1487�/

1503.

Acerbi, C. and Tasche, D., Expected shortfall: A natural coherent alternative to value at risk. Econ.

Notes, 2002b, 31(2), 379�/388.

Artzner, P., Delbaen, F., Eber, J.-M. and Heath, D., Thinking coherently. RISK, 1997, 10(11), 68�/71.

Artzner, P., Delbaen, F., Eber, J.-M. and Heath, D., Coherent measures of risk. Math. Fin., 1999, 9(3),

203�/228.

Delbaen, F., Coherent risk measures on general probability spaces. Preprint, 2000 (ETH Zürich)
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13.1 INTRODUCTION

R ESEARCH AND PRACTICE OF PORTFOLIO management and optimization is driven to a

large extent by tailoring the measures of reward (satisfaction) and risk (unsatisfac-

tion/regret) of the investment venture to the specific preferences of an investor. While

there exists a common consensus that an investment’s reward may be adequately

associated with its expected return, the methods for proper modelling and measurement

of an investment’s risk are subject to much more pondering and debate. In fact, the risk-

reward or mean-risk models constitute an important part of the investment science subject

and, more generally, the field of decision making under uncertainty.
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The cornerstone of modern portfolio analysis was set up by Markowitz (1952, 1959),

who advocated identification of the portfolio’s risk with the volatility (variance) of its

returns. On the other hand, Markowitz’s work led to formalization of the fundamental

view that any decision under uncertainties may be evaluated in terms of its risk and

reward. Markowitz’s seminal ideas are still widely used today in many areas of decision

making, and the entire paradigm of bi-criteria ‘risk-reward ’ optimization has received

extensive development in both directions of increasing the computational efficiency and

enhancing the models for risk measurement and estimation.

At the same time, it has been recognized that the symmetric attitude of the classical

Mean-Variance (MV) approach, where both the ‘positive’ and ‘negative’ deviations from

the expected level are penalized equally, does not always yield an adequate estimation of

risks induced by the uncertainties. Hence, significant effort has been devoted to the

development of downside risk measures and models. Replacing the variance by the lower

standard semi-deviation as a measure of investment risk so as to take into account only

‘negative’ deviations from the expected level has been proposed as early as by Markowitz

(1959); see also more recent works by Ogryczak and Ruszczyński (1999, 2001, 2002).

Among the popular downside risk models we mention the Lower Partial Moment and

its special case, the Expected Regret, which is also known as Integrated Chance Constraint in

stochastic programming (Bawa 1975; Fishburn 1977; Dembo and Rosen 1999; Testuri and

Uryasev 2003; van der Vlerk 2003). Widely known in the finance and banking industry is

the Value-at-Risk measure (JP Morgan 1994; Jorion 1997; Duffie and Pan 1997). Being

simply a quantile of loss distribution, the Value-at-Risk (VaR) concept has its counterparts

in stochastic optimization (probabilistic, or chance programming, see Prékopa 1995),

reliability theory, etc. Yet, minimization or control of risk using the VaR measure proved

to be technically and methodologically difficult, mainly due to VaR’s notorious non-

convexity as a function of the decision variables. A downside risk measure that

circumvents the shortcomings of VaR while offering a similar quantile approach to

estimation of risk is the Conditional Value-at-Risk measure (Rockafellar and Uryasev 2000,

2002; Krokhmal et al. 2002a). Risk measures that are similar to CVaR and/or may coincide

with it, are Expected Shortfall and Tail VaR (Acerbi and Tasche 2002), see also Conditional

Drawdown-at-Risk (Krokhmal et al. 2002b; Chekhlov et al. 2005). A simple yet effective

risk measure closely related to CVaR is the so-called Maximum Loss, or Worst-Case Risk

(Young 1998; Krokhmal et al. 2002b), whose use in problems with uncertainties is also

known as the robust optimization approach (see, e.g. Kouvelis and Yu 1997).

In the last few years, the formal theory of risk measures received a major impetus from

the works of Artzner et al. (1999) and Delbaen (2002), who introduced an axiomatic

approach to definition and construction of risk measures by developing the concept of

coherent risk measures. Among the risk measures that satisfy the coherency properties,

there are Conditional Value-at-Risk, Maximum Loss (Pflug 2000; Acerbi and Tasche

2002), coherent risk measures based on one-sided moments (Fischer 2003), etc. Recently,

Rockafellar et al. (2006) have extended the theory of risk measures to the case of deviation

measures, and demonstrated a close relationship between the coherent risk measures and

deviation measures; spectral measures of risk have been proposed by Acerbi (2002).
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An approach to decision making under uncertainty, different from the risk-reward

paradigm, is embodied by the von Neumann and Morgenstern (vNM) utility theory, which

exercises a mathematically sound axiomatic description of preferences and construction of

the corresponding decision strategies. Along with its numerous modifications and

extensions, the vNM utility theory is widely adopted as a basic model of rational choice,

especially in economics and social sciences (see, e.g. Fishburn 1970, 1988; Karni and

Schmeidler 1991, etc). Thus, substantial attention has been paid in the literature to the

development of risk-reward optimization models and risk measures that are consistent

with expected utility maximization. In particular, it has been shown that under certain

conditions the Markovitz MV framework is consistent with the vNM theory (Kroll et al.

1984). Ogryczak and Ruszczyński (1999, 2001, 2002) developed mean-semideviation

models that are consistent with stochastic dominance concepts (Fishburn 1964; Rothschild

and Stiglitz 1970; Levy 1998); a class of risk-reward models with SSD-consistent coherent

risk measures was discussed in De Giorgi (2005). Optimization with stochastic dominance

constraints was recently considered by Dentcheva and Ruszcsyński (2003); stochastic

dominance-based portfolio construction was discussed in Roman et al. (2006).

In this chapter we aim to offer an additional insight into the properties of axiomatically

defined measures of risk by developing a number of representations that express risk

measures via solutions of stochastic programming problems (Section 13.2.1); using the

developed representations, we construct a new family of higher-moment coherent risk

(HMCR) measures. In Section 13.2.2 it is demonstrated that the suggested representations

are amenable to seamless incorporation into stochastic programming problems. In

particular, implementation of the HMCR measures reduces to p-order conic program-

ming, and can be approximated via linear programming. Section 13.2.3 shows that the

developed results are applicable to deviation measures, while Section 13.2.4 illustrates that

the HMCR measures are compatible with the second-order stochastic dominance and

utility theory. The conducted case study (Section 13.3) indicates that the family of HMCR

measures has a strong potential for practical application in portfolio selection problems.

Finally, the appendix contains the proofs of the theorems introduced in the chapter.

13.2 MODELLING OF RISK MEASURES AS STOCHASTIC PROGRAMS

The discussion in Section 13.1 has illustrated the variety of approaches to definition and

estimation of risk. Arguably, the recent advances in risk theory are associated with the

axiomatic approach to construction of risk measures pioneered by Artzner et al. (1999).

The present endeavor essentially exploits this axiomatic approach in order to devise

simple computational recipes for dealing with several types of risk measures by

representing them in the form of stochastic programming problems. These representa-

tions can be used to create new risk measures to be tailored to specific risk preferences, as

well as to incorporate these preferences into stochastic programming problems. In

particular, we present a new family of Higher Moment Coherent Risk (HMCR) measures.

It will be shown that the HMCR measures are well behaved in terms of theoretical

properties, and demonstrate very promising performance in test applications.
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Within the axiomatic framework of risk analysis, risk measure R(X) of a random

outcome X from some probability space (V, F, m) may be defined as a mapping

R:X 7! R, where X is a linear space of F-measurable functions X :O 7! R. In a more

general setting one may assume X to be a separated locally convex space; for our purposes

it suffices to consider X �Lp (V, F, P), 1 5 p 5�, where the particular value of p

shall be clear from the context. Traditionally to convex analysis, we call function f :X 7!R

proper if f (X) � �� for all X � X and dom f " fi, i.e. there exists X � X such that

f (X) B�� (see, e.g. Rockafellar 1970, Zălinescu 2002). In the remainder of the chapter,

we confine ourselves to risk measures that are proper and not identically equal to ��.

Also, throughout the chapter it is assumed that X represents a loss function, i.e. small

values of X are ‘good’, and large values are ‘bad.’

13.2.1 Convolution-Type Representations for Coherent Measures of Risk

A coherent risk measure, according to Artzner et al. (1999) and Delbaen (2002), is defined

as a mapping R:X 7! R that further satisfies the next four properties (axioms):

(A1) monotonicity: X 5 0 [ R (X) 5 0 for all X � X ,

(A2) sub-additivity: R(X � Y) 5R (X) �R(Y) for all X, Y � X,

(A3) positive homogeneity: R (l X) � lR(X) for all X � X , l � 0,

(A4) translation invariance: R(X � a) �R(X) � a for all X � X , a � R.

Observe that given the positive homogeneity (A3), the requirement of sub-additivity (A2)

in the above definition can be equivalently replaced with the requirement of convexity (see

also Schied and Follmer 2002):

(A2?) convexity: R(lX � (1 �l)Y) 5 l R (X) � (1 �l) R (Y), X, Y � X, 0 5l 5 1.

From the axioms (A1)–(A4) one can easily derive the following useful properties of

coherent risk measures (see, e.g. Delbaen 2002, Ruszczyński and Shapiro 2006):

(C1) R(0) � 0 and, in general, R(a) � a for all a � R,

(C2) X 5Y [R(X) 5R(Y), and, in particular, X 5 a [R(X) 5 a, a � R,

(C3) R(X �R(X)) � 0,

(C4) if X is a Banach lattice, R(X) is continuous in the interior of its effective domain,

(where the inequalities X ] a , X 5Y, etc., are assumed to hold almost surely).

From the definition of coherent risk measures it is easy to see that, for example,

EX and ess.sup X, where

ess:sup X ¼ minf Z 2 R j X � Z g; if f Z 2 R j X � Z g 6¼ ;;
1; otherwise;

�

are coherent risk measures; more examples can be found in Rockafellar et al. (2006).

Below we present simple computational formulas that aid in construction of coherent risk

measures and their incorporation into stochastic programs. Namely, we execute the idea

that one of the axioms (A3) or (A4) can be relaxed and then ‘reinstated’ by solving an

appropriately defined mathematical programming problem. In other words, one can
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construct a coherent risk measure via solution of a stochastic programming problem that

involves a function f: X �R satisfying only three of the four axioms (A1)�/(A4).

First we present a representation for coherent risk measures that is based on the

relaxation of the translation invariance axiom (A4). The next theorem shows that if one

selects a function f :X �R satisfying axioms (A1)�/(A3) along with additional technical

conditions, then there exists a simple stochastic optimization problem involving f whose

optimal value would satisfy (A1)�/(A4).

Theorem 13.1 Let function f :X �R satisfy axioms (A1)�/(A3), and be a lower

semicontinuous (lsc) function such that f (h) � h for all real h " 0. Then the optimal

value of the stochastic programming problem

r ðX Þ ¼ inf
Z

Zþ fðX � ZÞ ð13:1Þ

is a proper coherent risk measure, and the infimum is attained for all X, so infh in (13.1) may

be replaced by minh �R.

For proof of Theorem 13.1, as well as other theorems introduced in the chapter, see the

appendix.

Remark 13.1.1 It is all-important that the stochastic programming problem (13.1) is

convex, due to the convexity of the function f. Also, it is worth mentioning that one cannot

substitute a coherent risk measure itself for function f in (1), as it will violate the condition

f (h) � h of the Theorem.

Corollary 13.1.1 The set arg minZ2R

�
Zþ fðX � ZÞ

�
� R of optimal solutions of (13.1) is

closed.

Example 13.1.1 (Conditional Value-at-Risk): A famous special case of (13.1) is the

optimization formula for Conditional Value-at-Risk (Rockafellar and Uryasev 2000, 2002):

CVaRa ðX Þ ¼ min
Z2R

Zþ ð1� aÞ�1EðX � ZÞþ; 0 < a< 1; ð13:2Þ

where ðXÞ� ¼ maxf�X ; 0g, and function fðXÞ ¼ ð1� aÞ�1EðXÞþ evidently satisfies the

conditions of Theorem 1. The space in this case can be selected as L2(V, F, P). One of

the many appealing features of (2) is that it has a simple intuitive interpretation: if X

represents loss/unsatisfaction, then CVaRaðXÞ is, roughly speaking, the conditional

expectation of losses that may occur in (1 �/ a) �100) of the worst cases. In the case of a

continuously distributed X, this rendition is exact: CVaRaðXÞ ¼ E
�
X j X � VaRaðXÞ

�
,

where VaRaðXÞ is defined as the a-quantile of X: VaRaðXÞ ¼ inf
�
z j P½X � z� � a

�
. In

the general case the formal definition of CVaRaðXÞ becomes more intricate (Rockafellar

and Uryasev 2002) but representation (13.2) still applies.
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Example 13.1.2 A generalization of (13.2) can be constructed as (see also Ben-Tal and

Teboulle 1986)

Ra;b ðX Þ ¼ min
Z2R

Zþ a EðX � ZÞþ � b EðX � ZÞ� ð13:3Þ

where, in accordance with the conditions of Theorem 13.1, one has to put a � 1 and

0 5 b B 1.

Example 13.1.3 (Maximum loss): If the requirement of finiteness of f in (1) is relaxed,

i.e. the image of f is (��, ��], then the optimal value of (1) still defines a coherent risk

measure, but the infimum may not be achievable. An example is served by the so-called

MaxLoss measure,

MaxLoss ðXÞ ¼ ess:sup X ¼ inf
Z

Zþ f�ðX � ZÞ;

where f�ðXÞ ¼
0; X � 0;

1; X > 0:

�

It is easy to see that f+ is positive homogeneous convex, non-decreasing, lsc, and satisfies

f�ðZÞ> Z for all Z 6¼ 0, but is not finite.

Example 13.1.4 (Higher moment coherent risk measures): Let X ¼LpðO;F; PÞ, and

for some 0 B a B 1 consider fðXÞ ¼ ð1� aÞ�1kðXÞþkp; where kXkp ¼
�
EjX jp

�1=p
.

Clearly, f satisfies the conditions of Theorem (13.1), thus we can define a family of

higher-moment coherent risk measures (HMCR) as

HMCRp;aðXÞ ¼ min
Z2R

Zþ ð1� aÞ�1
��ðX� ZÞþ

��
p
; p � 1; a 2 ð0; 1Þ: ð13:4Þ

From the fact that kXkp � kXkq for 1 � p < q, it immediately follows that the HMCR

measures are monotonic with respect to the order p:

HMCR p;aðX Þ � HMCR q;aðXÞ for p < q and X 2Lq: ð13:5Þ

Of special interest is the case p � 2 that defines the second-moment coherent risk measure

(SMCR):

SMCRaðXÞ ¼ min
Z2R

Zþ ð1� aÞ�1
��ðX � ZÞþ

��
2
; 0 < a< 1: ð13:6Þ

We will see below that SMCRaðXÞ is quite similar in properties to CVaRaðXÞ while

measuring the risk in terms of the second moments of loss distributions. Implemen-

tation-wise, the SMCR measure can be incorporated into a mathematical programming

problem via the second-order cone constraints (see Section 13.3). The second-order cone

programming (SOCP) is a well-developed topic in the field of convex optimization (see,
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for example, a review by Alizadeh and Goldfarb 2003), and a number of commercial

off-the-shelf software packages are available for solving convex problems with second-

order cone constraints.

Now we comment briefly on the relation between the above-introduced HMCR family

and other known in the literature risk measures that involve higher moments of

distributions. The Lower Partial Moment (see, e.g. Bawa 1975, Fishburn 1977)1

LPMpðX ; tÞ ¼ E
�
ðX � tÞþ

�p
; p � 1; t 2 R; ð13:7Þ

is convex in X, but not positive homogeneous or translation invariant. In the context of

axiomatically defined risk measures, an interesting example of spectral risk measure that

corresponds to ‘pessimistic manipulation’ of X and is sensitive to higher moments was

considered by Tasche (2002). Closely related to the proposed here HMCR measures are the

so-called coherent measures based on one-sided moments, or coherent measures of semi-

Lp type (Fischer 2003; Rockafellar et al. 2006):2

RðXÞ ¼ EX þ b ðX � EXÞþ
�� ��

p
; p � 1; b � 0: ð13:8Þ

A key difference between (13.8) and the HMCR measures (13.4) is that the HMCR family

are tail risk measures, while the measures of type (13.8) are based on central semi-

moments (see Example 13.2.3).

Example 13.1.5 (Composition of risk measures): Formula (13.1) readily extends to the

case of multiple functions fi, i � 1, . . . , n, that are cumulatively used in measuring the risk

of element X � X and conform to the conditions of Theorem 13.1. Namely, one has that

rnðX Þ ¼ min
Zi 2R; i¼1;...;n

Xn

i¼1

Zi þ fiðX � ZiÞð Þ; ð13:9Þ

is a proper coherent risk measure.

The value of h that delivers minimum in (13.1) does also possess some noteworthy

properties as a function of X. In establishing these properties the following notation is

convenient. Assuming that the set argminx � , R f (x) is closed for some function f : R �R,

we denote its left endpoint as

Arg min
x 2R

f ðxÞ ¼ min y j y 2 arg minx2R f ðxÞ
� �

:

1 Here, the traditional terminology is preserved: according to the convention adopted in this chapter, X denotes losses
and therefore the proper term for (7) would be the upper partial moment.
2 Interestingly, Fischer (2003) restricted the range of values for the constant b in (8) to b � [0,1], whereas Rockafellar
et al. (2006) allowed b to take values in (0,�).
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Theorem 13.2 Let function f:X �R satisfy the conditions of Theorem (13.1). Then

function

ZðX Þ ¼ Arg min
Z2R

Zþ f ðX � ZÞ ð13:10Þ

exists and satisfies properties (A3) and (A4). If, additionally, f (X) � 0 for every X 5 0, then

h(X) satisfies (A1), along with the inequality h (X) 5r (X), where r(X) is the optimal value

of (13.1).

Remark 13.2.1 If f satisfies all the conditions of Theorem 13.2, the optimal solution

h(X) of the stochastic optimization problem (13.1) complies with all axioms for coherent

risk measures, except (A2), thereby failing to be convex.

Example 13.2.1 (Value-at-Risk): A well-known example of two risk measures obtained

by solving a stochastic programming problem of type (1) is again provided by formula (2)

due to Rockafellar and Uryasev (2000, 2002), and its counterpart

VaRaðXÞ ¼ Arg min
Z2R

Zþ ð1� aÞ�1EðX � ZÞþ: ð13:11Þ

The Value-at-Risk measure VaRaðXÞ, despite being adopted as a de facto standard for

measurement of risk in finance and banking industries, is notorious for the difficulties it

presents in risk estimation and control.

Example 13.2.2 (Higher moment coherent risk measures): For higher-moment co-

herent risk measures, the function f in (13.10) is taken as f(X) � (1�a)�1I(X)�Ip, and

the corresponding optimal hp,a(X) satisfies the equation

ð1� aÞ�1=ðp�1Þ ¼
���X � Zp;aðXÞ

�þ��
p���X � Zp;aðXÞ

�þ��
p�1

; p > 1: ð13:12Þ

A formal derivation of equality (13.12) can be carried out using the techniques employed in

Rockafellar and Uryasev (2002) to establish formula (13.11). Although the optimal hp,a(X)

in (12) is determined implicitly, Theorem 13.2 ensures that it has properties similar to

those of VaRa (monotonicity, positive homogeneity, etc). Moreover, by plugging relation

(13.12) with p � 2 into (13.6), the second-moment coherent risk measure (SMCR) can be

presented in the form that involves only the first moment of losses in the tail of the

distribution:

SMCRaðXÞ ¼ Z2;aðXÞ þ ð1� aÞ�2 ðX � Z2;aðXÞÞ
þ�� ��

1

¼ Z2;aðXÞ þ ð1� aÞ�2E
�
X � Z2;aðXÞ

�þ
: ð13:13Þ
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Note that in (13.13) the second-moment information is concealed in the h2, a(X). Further,

by taking a CVaR measure with the confidence level a+�2a�a2, one can write

SMCRa ðXÞ ¼ Zsmcr þ
1

1� a�
E
�
X � Zsmcr

�þ

� Zcvar þ
1

1� a�
E
�
X � Zcvar

�þ

¼ CVaRa�ðXÞ;

ð13:14Þ

where hsmcr � hp,a(X) as in (13.12) with p � 2, and Zcvar ¼ VaRa�ðXÞ; note that the

inequality in (13.14) holds due to the fact that Zcvar ¼ VaRa�ðXÞ minimizes the expression

Zþ ð1� a�Þ�1EðX � ZÞþ. In other words, with the above selection of a and a+, the

expressions for SMCRaðXÞ and CVaRa�ðXÞ differ only in the choice of h that delivers the

minimum to the corresponding expressions (13.6) and (13.2). For Conditional Value-at-

Risk, it is the a-quantile of the distribution of X, whereas the optimal h2,a(X) for the SMCR

measure incorporates the information on the second moment of losses X.

Example 13.2.3 (HMCR as tail risk measures): It is easy to see that the HMCR

family are tail risk measures, namely that 0 B a 1 Ba 2 B 1 implies Zp;a1
ðXÞ � Zp;a2

ðXÞ,
where Zp;ai

¼ Arg minZfZþ ð1� aiÞ
�1kðX � ZÞþkpg; in addition, one has

lima!1 Zp;aðXÞ ¼ ess:sup X , at least when ess.sup X is finite (see the appendix).

These properties puts the HMCR family in a favorable position comparing to

the coherent measures of type (13.8) (Fischer 2003; Rockafellar et al. 2006), where the

‘tail cutoff ’ point, about which the partial moments are computed, is always fixed

at EX . In contrast to (13.8), the location of tail cutoff in the HMCR measures is

determined by the optimal hp, a(X) and is adjustable by means of the parameter a.

In a special case, for example, the HMCR measures (13.4) can be reduced to form

(13.8) with b ¼ ð1� apÞ
�1

> 1 by selecting ap according to (13.12) as

ap ¼ 1�
�
kðX � EXÞþkp�1



kðX � EXÞþkp

�p�1
; p > 1:

13.2.1.1 Representations based on relaxation of (A3) Observe that formula (1) in Theorem 13.1

is analogous to the operation of infimal convolution, well known in convex analysis:

ð f & gÞðxÞ ¼ inf
y

f ðx � yÞ þ g ðyÞ:

Continuing this analogy, consider the operation of right scalar multiplication

ðfZÞðXÞ ¼ ZfðZ�1XÞ; Z � 0;

where for h � 0 we set ðf0ÞðXÞ ¼ ðf0þÞðX Þ: If f is proper and convex, then it is known

that (fh)(X) is a convex proper function in h ] 0 for any X � dom f (see, e.g. Rockafellar

1970). Interestingly enough, this fact can be pressed into service to formally define a

coherent risk measure as
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rðXÞ ¼ inf
Z�0

Zf
�
Z�1X

�
; ð13:15Þ

if function f, along with some technical conditions similar to those of Theorem 13.1,

satisfies axioms (A1), (A2?) and (A4). Note that excluding the positive homogeneity (A3)

from the list of properties of f denies also its convexity, thus one must replace (A2) with

(A2?) to ensure convexity in (13.15). In the terminology of convex analysis the function

rðXÞ defined by (13.15) is known as the positively homogeneous convex function generated

by f. Likewise, by direct verification of conditions (A1)�/(4) it can be demonstrated that

rðX Þ ¼ sup
Z > 0

ZfðZ�1X Þ; ð13:16Þ

is a proper coherent risk measure, provided that f(X) satisfies (A1), (A2) and (A4). By

(C1), axioms (A1) and (A2) imply that f(0) � 0, which allows one to rewrite (13.16) as

rðXÞ ¼ sup
Z > 0

fðZX þ 0Þ � fð0Þ
Z

¼ f0þðXÞ; ð13:17Þ

where the last equality in (13.17) comes from the definition of the recession function

(Rockafellar 1970; Zălinescu 2002).

13.2.2 Implementation in Stochastic Programming Problems

The developed results can be efficiently applied in the context of stochastic optimization,

where the random outcome X ¼ Xðx;oÞ can be considered as a function of the decision

vector x � Rm, convex in x over some closed convex set CƒRm. Firstly, representation

(1) allows for efficient minimization of risk in stochastic programs. For a function f that

complies with the requirements of Theorem 13.1, denote

Fðx; ZÞ ¼ Zþ f
�
Xðx;oÞ � Z

�
and RðxÞ ¼ r

�
Xðx;oÞ

�
¼ min

Z2R
Fðx; ZÞ: ð13:18Þ

Then, clearly,

min
x2C

r
�
Xðx;oÞ

�
() min

ðx;ZÞ 2 C�R
Fðx; ZÞ; ð13:19Þ

in the sense that both problems have the same optimal objective values and optimal vector

x+. The last observation enables seamless incorporation of risk measures into stochastic

programming problems, thereby facilitating the modelling of risk-averse preferences. For

example, a generalization of the classical 2-stage stochastic linear programming (SLP)

problem (see, e.g. Prékopa 1995; Birge and Louveaux 1997) where the outcome of the

second-stage (recourse) action is evaluated by its risk rather than the expected value, can

be formulated by replacing the expectation operator in the second-stage problem with a

coherent risk measure R:
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min
x�0

c>x þR min
y�0

qðoÞ>yðoÞ
� �

s:t: Ax ¼ b; TðoÞ x þWðoÞ yðoÞ ¼ hðoÞ: ð13:20Þ

Note that the expectation operator is a member of the class of coherent risk measures

defined by (A1)–(A4), whereby the classical 2-stage SLP problem is a special case of

(13.20). Assuming that the risk measure R above is amenable to representation (1) via

some function f, problem (13.20) can be implemented by virtue of Theorem 13.1 as

min c>x þ Zþ f
�

qðoÞ>yðoÞ � Z
�

s:t: Ax ¼ b; TðoÞ x þWðoÞ yðoÞ ¼ hðoÞ;
x � 0; yðoÞ � 0; Z 2 R;

with all the distinctive properties of the standard SLP problems (e.g. the convexity of the

recourse function, etc.) being preserved.

Secondly, representation (1) also admits implementation of risk constraints in stochastic

programs. Namely, let g(x) be a function that is convex then, the following two problems

are equivalent, as demonstrated by Theorem 13.3 below:

min
x2C
f gðxÞ j RðxÞ � cg; ð13:21aÞ

min
ðx;ZÞ 2 C�R

f gðxÞ j Fðx; ZÞ � cg: ð13:21bÞ

Theorem 13.3 Optimization problems (13.21a) and (13.21b) are equivalent in the sense that

they achieve minima at the same values of the decision variable x and their optimal objective

values coincide. Further, if the risk constraint in (13.21a) is binding at optimality, ðx�; Z�Þ
achieves the minimum of (13.21b) if and only if x+ is an optimal solution of (13.21a) and

Z� 2 arg minZ Fðx�; ZÞ.
In other words, one can implement the risk constraint r

�
Xðx;oÞ

�
� c by using

representation (1) for the risk measure r with the infimum operator omitted.

13.2.2.1 HMCR measures in stochastic programming problems The introduced higher moment

coherent risk measures can be incorporated in stochastic programming problems via conic

constraints of order p � 1. Namely, let {v1, . . . ,vJ} ⁄V where Pfojg ¼ pj 2 ð0; 1Þ be the

scenario set of a stochastic programming model. Observe that a HMCR-based objective or

constraint can be implemented via the constraint HMCRp;a

�
Xðx;oÞ

�
, with u being either a

variable or a constant, correspondingly. By virtue of Theorem 13.3, the latter constraint

admits a representation by the set of inequalities

u � Zþ ð1� aÞ�1
t ; ð13:22aÞ

HIGHER MOMENT COHERENT RISK MEASURES j 281



t �
�
w

p
1 þ � � � þ w

p
J

�1=p
; ð13:22bÞ

wj � p1=p
j

�
Xðx;ojÞ � Z

�
; j ¼ 1; . . . ; J ; ð13:22cÞ

wj � 0; j ¼ 1; . . . ; J : ð13:22dÞ

Note that the convexity of X as a function of the decision variables x implies convexity of

(13.22c), and, consequently, convexity of the set (13.22). Constraint (13.22b) defines a

J � 1-dimensional cone of order p, and is central to practical implementation of

constraints (13.22) in mathematical programming models. In the special case of p � 2,

it represents a second-order (quadratic) cone in RJ�1, and well-developed methods of

second-order cone programming (SOCP) can be invoked to handle the constructions of

type (13.22). In the general case of p � (1,�), the p-order cone within the positive orthant

�
w

p
1 þ � � � þ w

p
J

�1=p � t ; t ;wj � 0; j ¼ 1; . . . ; J ; ð13:23Þ

can be approximated by linear inequalities when J � 2d. Following Ben-Tal and

Nemirovski (1999), the 2d � 1-dimensional p-order conic constraint (13.23) can be

represented by a set of 3-dimensional p-order conic inequalities

�
w
ðk�1Þ
2j�1

�p þ
�
w
ðk�1Þ
2j

�p
h i1=p

� w
ðkÞ
j ; j ¼ 1; . . . ; 2d�k; k ¼ 1; . . . ; d; ð13:24Þ

where w
ðdÞ
1 � t and w

ð0Þ
j � w j ð j ¼ 1; . . . ; 2dÞ. Each of the 3-dimensional p-order cones

(13.24) can then be approximated by a set of linear equalities. For any partition 0 �
a0 < a1 < � � � < am � p=2 of the segment [0, p/2], an internal approximation of the p-order

cone in the positive orthant of R3

x3 �
�
xp

1 þ xp
2

�1=p
; x1; x2; x3 � 0; ð13:25Þ

can be written in the form

x3

�
sin2=p aiþ1 cos2=p ai � cos2=p aiþ1 sin2=p ai

�

� x1

�
sin2=p aiþ1 � sin2=p ai

�
þ x2

�
cos2=p ai � cos2=p aiþ1

�
;

i ¼ 0; . . . ;m � 1; ð13:26aÞ

and an external approximation can be constructed as

x3

�
cosp ai þ sinp ai

�ðp�1Þ=p � x1 cosp�1 ai þ x2 sinp�1 ai; i ¼ 0; . . . ;m: ð13:26bÞ
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For example, the uniform partition ai �p i/2m (i � 0 , . . . , m) generates the following

approximations of a 3-dimensional second-order cone:

x3 cos
p

4m
� x1 cos

pð2i þ 1Þ
4m

þ x2 sin
pð2i þ 1Þ

4m
; i ¼ 0; . . . ;m � 1;

x3 � x1 cos
pi

2m
þ x2 sin

pi

2m
; i ¼ 0; . . . ;m:

13.2.3 Application to Deviation Measures

Since being introduced in Artzner et al. (1999), the axiomatic approach to construction of

risk measures has been repeatedly employed by many authors for the development of

other types of risk measures tailored to specific preferences and applications (see Acerbi

2002; Rockafellar et al. 2006; Ruszczyński and Shapiro 2006). In this subsection we

consider deviation measures as introduced by Rockafellar et al. (2006). Namely, deviation

measure is a mapping D :X � [0, ��] that satisfies

(D1) D(X) � 0 for any non-constant X � X , whereas D(X) � 0 for constant X,

(D2) D(X � Y) 5D(X) �D(Y) for all X, Y � X, 0 5 l 5 1,

(D3) D(lX) � lD(X) for all X � X , l � 0,

(D4) D (X � a) �D(X) for all X � X , a � R.

Again, from axioms (D1) and (D2) follows convexity of D(X). In Rockafellar et al. (2006)

it was shown that deviation measures that further satisfy

(D5) D(X) 5 ess.sup X � EX for all X � X ,

are characterized by the one-to-one correspondence

DðXÞ ¼ RðX � EXÞ ð13:27Þ

with expectation-bounded coherent risk measures, i.e. risk measures that satisfy (A1)�/(A4)

and an additional requirement (A5) R(X) � EX, for all non-constant X � X , whereas

RðXÞ ¼ EX for all constant X.

Using this result, it is easy to provide an analogue of formula (1) for deviation

measures.

Theorem 13.4 Let function f :X �R satisfy axioms (A1)�/(A3), and be a lsc function such

that f (X) � EX for all X " 0. Then the optimal value of the stochastic programming problem

DðX Þ ¼ �EX þ inf
Z
fZþ fðX � ZÞg ð13:28Þ

is a deviation measure, and the infimum is attained for all X, so that infh in (13.28) may be

replaced by minh �R.

Given the close relationship between deviation measures and coherent risk measures, it

is straightforward to apply the above results to deviation measures.
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13.2.4 Connection with Utility Theory and Second-Order Stochastic Dominance

As has been mentioned in Section 13.1, considerable attention has been devoted in the

literature to the development of risk models and measures compatible with the utility

theory of von Neumann and Morgenstern (1944), which represents one of the

cornerstones of the decision-making science.

The vNM theory argues that when the preference relation ‘�’ of the decision-maker

satisfies certain axioms (completeness, transitivity, continuity and independence), there

exists a function u : R �R, such that an outcome X is preferred to outcome Y (‘X �Y’) if

and only if E½uðXÞ� � E½uðY Þ�. If the function u is non-decreasing and concave, the

corresponding preference is said to be risk averse. Rothschild and Stiglitz (1970) have

bridged the vNM utility theory with the concept of the second-order stochastic

dominance by showing that X dominating Y by the second-order stochastic dominance,

X �SSD Y , is equivalent to the relation E½uðXÞ� � E½uðY Þ� holding true for all concave

non-decreasing functions u, where the inequality is strict for at least one such u. Recall

that a random outcome X dominates outcome Y by the second-order stochastic

dominance if

Z z

�1
P½X � t � dt �

Z z

�1
P½Y � t �dt for all z 2 R:

Since coherent risk measures are generally inconsistent with the second-order stochastic

dominance (see an example in De Giorgi (2005)), it is of interest to introduce risk

measures that comply with this property. To this end, we replace the monotonicity axiom

(A1) in the definition of coherent risk measures by the requirement of SSD isotonicity

(Pflug 2000; De Giorgi 2005):

ð�XÞ �SSD ð�Y Þ ) RðXÞ � RðY Þ:

Namely, we consider risk measures R:X 7!R that satisfy the following set of axioms:3

(A1?) SSD isotonicity : ð�XÞ �SSD ð�Y Þ ) RðXÞ � RðY Þ for X ;Y 2 X ;
(A2?) convexity : R

�
lX þ ð1� lÞY

�
� lRðXÞ þ ð1� lÞRðY Þ; X ;Y 2 X ; 0 � l � 1;

(A3) positive homogeneity: RðlXÞ ¼ lRðXÞ; X 2 X ; l > 0;

(A4) translation invariance : RðX þ aÞ ¼ RðXÞ þ a;X 2 X ; a 2 R:

Note that unlike the system of axioms (A1)�/(A4), the above axioms, and in particular

(A1?), require X and Y to be integrable, i.e. one can take the space in (A1?)�/(A4) to be L1

(for a discussion of topological properties of sets defined by stochastic dominance

relations, see, e.g. Dentcheva and Ruszczyński (2004).

3 See Mansini et al. (2003) and Ogryczak and Opolska-Rutkowska (2006) for conditions under which SSD-isotonic
measures also satisfy the coherence properties.
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Again, it is possible to develop an analogue of formula (1), which would allow for

construction of risk measures with the above properties using functions that comply with

(A1?), (A2?) and (A3).

Theorem 13.5 Let function f: X �R satisfy axioms (A1?), (A2?), and (A3), and be a lsc

function such that f(h)�h for all real h " 0. Then the optimal value of the stochastic

programming problem

rðXÞ ¼ min
Z2R

Zþ fðX � ZÞ ð13:29Þ

exists and is a proper function that satisfies (A1?), (A2?), (A3) and (A4).

Obviously, by solving the risk-minimization problem

min
x2C

r
�
Xðx;oÞ

�
;

where r is a risk measure that is both coherent and SSD-compatible in the sense of (A1?),

one obtains a solution that is SSD-efficient, i.e. acceptable to any risk-averse rational

utility maximizer, and also bears the lowest risk in terms of coherence preference metrics.

Below we illustrate that functions f satisfying the conditions of Theorem 13.5 can be

easily constructed in the scope of the presented approach.

Example 13.5.1 Let fðXÞ ¼ E½uðXÞ�, where u : R �R is a convex, positively homo-

geneous, non-decreasing function such that u(h)�h for all h " 0. Obviously, function

f(X) defined in this way satisfies the conditions of Theorem 13.5. Since �u(�h) is

concave and non-decreasing, one has that �E½uðXÞ� � �E½uðY Þ�, and, consequently,

f(X) 5f(Y), whenever ð�XÞ �SSD ð�Y Þ. It is easy to see that, for example, function f of

the form

fðXÞ ¼ aEðXÞþ � bEðXÞ�; a 2 ð1;þ1Þ; b 2 ½0; 1Þ;

satisfies the conditions of Theorem 13.5. Thus, in accordance with Theorems 13.1 and 13.5,

the coherent risk measure Ra,b (3) is also consistent with the second-order stochastic

dominance. A special case of (3) is Conditional Value-at-Risk, which is known to be

compatible with the second-order stochastic dominance (Pflug 2000).

Example 13.5.2 (Higher moment coherent risk measures) SMCR and, in general, the

family of higher-moment coherent risk measures constitute another example of risk

measures that are both coherent and compatible with the second-order stochastic

dominance. Indeed, function uðZÞ ¼ ððZÞþÞp is convex and non-decreasing, whence

ðE½uðXÞ�Þ1=p � ðE½uðY Þ�Þ1=p
for any ð�XÞ �SSD ð�Y Þ. Thus, the HMCR family, defined by

(29) with fðXÞ ¼ ð1� aÞ�1kðXÞþkp,
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HMCRp;aðX Þ ¼ min
Z2R

Zþ ð1� aÞ�1
��ðX� ZÞþ

��
p
; p � 1;

is both coherent and SSD-compatible, by virtue of Theorems 13.1 and 13.5. Implementa-

tion of such a risk measure in stochastic programming problems enables one to introduce

risk preferences that are consistent with both concepts of coherence and second-order

stochastic dominance.

The developed family of higher-moment risk measures (4) possesses all the outstanding

properties that are sought after in the realm of risk management and decision making

under uncertainty: compliance with the coherence principles, amenability for an efficient

implementation in stochastic programming problems (e.g. via second-order cone

programming), and compatibility with the second-order stochastic dominance and utility

theory. The question that remains to be answered is whether these superior properties

translate into an equally superior performance in practical risk management applications.

The next section reports a pilot study intended to investigate the performance of the

HMCR measures in real-life risk management applications. It shows that the family of

HMCR measures is a promising tool for tailoring risk preferences to the specific needs of

decision-makers, and can be compared favourably with some of the most widely used risk

management frameworks.

13.3 PORTFOLIO CHOICE USING HMCR MEASURES:
AN ILLUSTRATION

In this section we illustrate the practical utility of the developed HMCR measures on the

example of portfolio optimization, a typical testing ground for many risk management

and stochastic programming techniques. To this end, we compare portfolio optimization

models that use the HMCR measures with p � 2 (SMCR) and p � 3 against portfolio

allocation models based on two well-established, and theoretically as well as practically

proven methodologies, the Conditional Value-at-Risk measure and the Markowitz Mean-

Variance framework.

This choice of benchmark models is further supported by the fact that the HMCR

family is similar in the construction and properties to CVaR (more precisely, CVaR is a

HMCR measure with p � 1), but, while CVaR measures the risk in terms of the first

moment of losses residing in the tail of the distribution, the SMCR measure quantifies risk

using the second moments, in this way relating to the MV paradigm. The HMCR measure

with p � 3 demonstrates the potential benefits of using higher-order tail moments of loss

distributions for risk estimation.

13.3.1 Portfolio Optimization Models and Implementation

The portfolio selection models employed in this case study have the general form

min
x

Rð�r>xÞ ð13:30aÞ
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s:t: e>x ¼ 1; ð13:30bÞ

Er>x � r0; ð13:30cÞ

x � 0; ð13:30dÞ

where x � (x1 , . . . , xn)i is the vector of portfolio weights, r � (r1, . . ., rn)i is the

random vector of assets’ returns, and e � (1, . . . , 1)i. The risk measure R in (13.30a) is

taken to be either SMCR (6), HMCR with p � 3 (4), CVaR (2), or variance s2 of the

negative portfolio return, �rix � X. In the above portfolio optimization problem,

(13.30b) represents the budget constraint, which, together with the no-short-selling

constraint (13.30d) ensures that all the available funds are invested, and (13.30c) imposes

the minimal required level r0 for the expected return of the portfolio.

We have deliberately chosen not to include any additional trading or institutional

constraints (transaction costs, liquidity constraints, etc.) in the portfolio allocation

problem (13.30) so as to make the effect of risk measure selection in (13.30a) onto the

resulting portfolio rebalancing strategy more marked and visible.

Traditionally to stochastic programming, the distribution of random return ri of asset i

is modelled using a set of J discrete equiprobable scenarios {ri1, . . . , r i J}. Then,

optimization problem (13.30) reduces to a linear programming problem if CVaR is

selected as the risk measure R in (13.30a) (see, for instance, Rockafellar and Uryasev 2000;

Krokhmal et al. 2002a). Within the Mean-Variance framework, (13.30) becomes a convex

quadratic optimization problem with the objective

Rð�r>xÞ ¼
Xn

i;k¼1

sikxixk; where

sik ¼
1

J � 1

XJ

j¼1

ðrij � �riÞðrkj � �rkÞ; �ri ¼
1

J

XJ

j¼1

rij :

ð13:31Þ

In the case of RðXÞ ¼ HMCRp;aðXÞ; problem (13.30) transforms into a linear

programming problem with a single p-order cone constraint (13.32e):

min Zþ 1

1� a

1

J 1=p
t ð13:32aÞ

s:t:
Xn

i¼1

x i ¼ 1; ð13:32bÞ

1

J

XJ

j¼1

Xn

i¼1

rij xi � r0; ð13:32cÞ

wj � �
Xn

i¼1

rij xi � Z; j ¼ 1; . . . ; J ; ð13:32dÞ
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t �
�
w

p
1 þ � � � þ w

p
J

�1=p
; ð13:32eÞ

xi � 0; i ¼ 1; . . . ; n; ð13:32f Þ

wj � 0; j ¼ 1; . . . ; J : ð13:32g Þ

When p � 2, i.e. R is equal to SMCR, (32) reduces to a SOCP problem. In the case when

R is selected as HMCR with p � 3, the 3rd-order cone constraint (13.32e) has been

approximated via linear inequalities (13.26a) with m � 500, thereby transforming

problem (13.32) to a LP. The resulting mathematical programming problems have been

implemented in C��, and we used CPLEX 10.0 for solving the LP and QP problems,

and MOSEK 4.0 for solving the SOCP problem.

13.3.2 Set of Instruments and Scenario Data

Since the introduced family of HMCR risk measures quantifies risk in terms of higher tail

moments of loss distributions, the portfolio optimization case studies were conducted

using a data set that contained return distributions of fifty S&P 500 stocks with the so-

called ‘heavy tails.’ Namely, for scenario generation we used 10-day historical returns over

J � 1024 overlapping periods, calculated using daily closing prices from 30 October 1998

to 18 January 2006. From the set of S&P 500 stocks (as of January 2006) we selected

n � 50 instruments by picking the ones with the highest values of kurtosis of biweekly

returns, calculated over the specified period. In such a way, the investment pool had the

average kurtosis of 51.93, with 429.80 and 17.07 being the maximum and minimum

kurtosis, correspondingly. The particular size of scenario model, J � 1024 � 210, has been

chosen so that the linear approximation techniques (13.26) can be employed for the

HMCR measure with p � 3.

13.3.3 Out-of-Sample Simulations

The primary goal of our case study is to shed light on the potential ‘real-life’ performance

of the HMCR measures in risk management applications, and to this end we conducted

the so-called out-of-sample experiments. As the name suggests, the out-of-sample tests

determine the merits of a constructed solution using out-of-sample data that have not

been included in the scenario model used to generate the solution. In other words,

the out-of-sample setup simulates a common situation when the true realization of

uncertainties happens to be outside of the set of the ‘expected,’ or ‘predicted’ scenarios (as

is the case for most portfolio optimization models). Here, we employ the out-of-sample

method to compare simulated historic performances of four self-financing portfolio

rebalancing strategies that are based on (13.30) with R chosen either as a member of the

HMCR family with a � 0.90, namely, CVaR0.90( �), SMCR0.90( �) HMCR3,0.90( �), or as

variance s2( �).

It may be argued that in practice of portfolio management, instead of solving (13.30), it

is of more interest to construct investment portfolios that maximize the expected return

subject to risk constraint(s), e.g.
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max
x� 0

n
Er>x

�� Rð�r>xÞ � c0; e>x ¼ 1
o
: ð13:33Þ

Indeed, many investment institutions are required to keep their investment portfolios in

compliance with numerous constraints, including constraints on risk. However, our main

point is to gauge the effectiveness of the HMCR risk measures in portfolio optimization by

comparing them against other well-established risk management methodologies, such as

the CVaR and MV frameworks. And since these risk measures yield risk estimates on

different scales, it is not obvious which risk tolerance levels c0 should be selected in (13.33)

to make the resulting portfolios comparable.

Thus, to facilitate a fair ‘apple-to-apple’ comparison, we construct self-financing

portfolio rebalancing strategies by solving the risk-minimization problem (13.30), so that

the resulting portfolios all have the same level r0 of expected return, and the success of a

particular portfolio rebalancing strategy will depend on the actual amount of risk borne

by the portfolio due to the utilization of the corresponding risk measure.

The out-of-sample experiments have been set up as follows. The initial portfolios were

constructed on 11 December 2002 by solving the corresponding variant of problem

(13.30), where the scenario set consisted of 1024 overlapping bi-weekly returns covering

the period from 30 October 1998 to 11 December 2002. The duration of the rebalancing

period for all strategies was set at two weeks (ten business days). On the next rebalancing

date of 26 December 2002,4 the 10-day out-of-sample portfolio returns, r̂>x�, were

observed for each of the three portfolios, where r̂ is the vector of out-of-sample (11

December 2002–26 December 2002) returns and x+ is the corresponding optimal portfolio

configuration obtained on 11 December 2002. Then, all portfolios were rebalanced by

solving (13.30) with an updated scenario set. Namely, we included in the scenario set the

ten vectors of overlapping biweekly returns that realized during the ten business days from

11 December 2002 to 26 December 2002, and discarded the oldest ten vectors from

October–November of 1998. The process was repeated on 26 December 2002, and so on.

In such a way, the out-of-sample experiment consisted of 78 biweekly rebalancing periods

covering more than three years. We ran the out-of-sample tests for different values of the

minimal required expected return r0 and typical results are presented in Figures 13.1 to

13.3.

Figure 13.1 reports the portfolio values (in percent of the initial investment) for the

four portfolio rebalancing strategies based on (13.30) with SMCR0.90( �) CVaR0.90( �),

variance s2( �), and HMCR3,0.90( �) as R( �), and the required level r0 of the expected return

being set at 0.5). One can observe that in this case the clear winner is the portfolio based

on the HMCR measure with p � 3, the SMCR-based portfolio is runner-up, with the

CVaR- and MV-based portfolios falling behind these two. This situation is typical for

smaller values of r0; as r0 increases and the rebalancing strategies become more aggressive,

the CVaR- and MV-portfolios become more competitive, while the HMCR (p � 3)

portfolio remains dominant most of the time (Figure 13.2).

4 Holidays were omitted from the data.
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An illustration of typical behaviour of more aggressive rebalancing strategies is

presented in Figure 13.3, where r0 is set at 1.3) (in the dataset used in this case study,

infeasibilities in (13.30) started to occur for values of r 0 � 0.013). As a general trend, the

HMCR (p � 2, 3) and CVaR portfolios exhibit similar performance (which can be

250

230

210

190

170

MV

CVaR

SMCR
HMCR

Po
rt

fo
lio

 V
al

ue
 (%

)

150

130

110

90

Dec-
11

-20
02

Jan
-27

-20
03

Mar-
11

-20
03

Apr-2
3-2

00
3

Jun-05
-20

03
Jul-1

8-2
00

3
Aug-2

9-2
00

3

Aug-1
3-2

00
4

Sep
-27

-20
04

Nov-0
8-2

00
4

Dec-
21

-20
04

Feb
-03

-20
05

Mar-
18

-20
05

May-
02

-20
05

Jun-14
-20

05
Jul-2

7-2
00

5
Sep

-08
-20

05
Oct-

20
-20

05
Dec-

02
-20

05
Jan

-18
-20

06

Oct-
13

-20
03

Nov-2
4-2

00
3

Jan
-08

-20
04

Feb
-23

-20
04

Apr-0
5-2

00
4

May-
18

-20
04

Jul-0
1-2

00
4

FIGURE 13.1 Out-of-sample performance of conservative (r0 � 0.5)) self-financing portfolio rebalancing

strategies based on the MV model, and CVaR, SMCR (p � 2) and HMCR (p � 3) measures of risk with

a � 0.90.
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FIGURE 13.2 Out-of-sample performance of self-financing portfolio rebalancing strategies that have expected

return r0 � 1.0) and are based on the MV model, and CVaR, SMCR (p � 2) and HMCR (p � 3) risk

measures with a � 0.90.
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explained by the fact that at high values of r0 the set of instruments capable of providing

such a level of expected return is rather limited). Still, it may be argued that the HMCR

(p � 3) strategy can be preferred to the other three, based on its overall stable

performance throughout the duration of the run.

Finally, to illuminate the effects of taking into account higher-moment information in

estimation of risks using the HMCR family of risk measures, we compared the simulated

historical performances of the SMCR measure with parameter a � 0.90 and CVaR

measure with confidence level a+ � 0.99, so that the relation a+ � 2a�/a2 holds (see the

discussion in Example 13.2.2). Recall that in such a case the expressions for SMCR and

CVaR differ only in the location of the optimal h+ (see (13.14)). For CVaR, the optimal h
equals to VaR, and for SMCR the corresponding value of h is determined by (13.12) and

depends on the second tail moment of the distribution.

Figure 13.4 presents a typical outcome for mid-range values of the expected return level

r0: most of the time, the SMCR portfolio dominates the corresponding CVaR portfolio.

However, for smaller values of expected return (e.g. r0 5 0.005), as well as for values

approaching r0 � 0.013, the SMCR- and CVaR-based rebalancing strategies demonstrated

very close performance. This can be explained by the fact that lower values of r0 lead to

rather conservative portfolios, while the values of r0 close to the infeasibility barrier of

0.013 lead to very aggressive and poorly diversified portfolios that are comprised of a

limited set of assets capable of achieving this high level of the expected return.

Although the obtained results are data-specific, the presented preliminary case studies

indicate that the developed HMCR measures demonstrate very promising performance,

and can be successfully employed in the practice of risk management and portfolio

optimization.
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FIGURE 13.3 Out-of-sample performance of aggressive (r0 � 1.3)) self-financing portfolio rebalancing

strategies based on SMCR (p � 2), CVaR, MV and HMCR (p � 3) measures of risk.
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13.4 CONCLUSIONS

In this chapter we have considered modelling of risk-averse preferences in stochastic

programming problems using risk measures. We utilized the axiomatic approach to

construction of coherent risk measures and deviation measures in order to develop simple

representations for these risk measures via solutions of specially designed stochastic

programming problems. Using the developed general representations, we introduced a

new family of higher-moment coherent risk measures (HMCR). In particular, we

considered the second-moment coherent risk measure (SMCR), which is implementable

in stochastic optimization problems using the second-order cone programming, and the

third-order HMCR (p � 3). The conducted numerical studies indicate that the HMCR

measures can be effectively used in the practice of portfolio optimization, and compare

well with the well-established benchmark models such as Mean-Variance framework or

CVaR.
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APPENDIX 13.A

Proof of Theorem 13.1 Convexity, lower semicontinuity, and sublinearity of f inX imply

that the function fX(h) � h� f(X�h) is also convex, lsc, and proper in h � R for each

fixed X � X . For the infimum of fX(h) to be achievable at finite h, its recession function has

to be positive: fX0�(91) � 0, which is equivalent to fX0�(j) � 0, j " 0, due to the
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positive homogeneity of f. By definition of the recession function (Rockafellar 1970;

Zălinescu 2002) and positive homogeneity of f, we have that the last condition holds if

f (j) � j for all j " 0:

fX 0þðxÞ ¼ lim
t!1

Zþ txþ fðX � Z� txÞ � Z� fðX � ZÞ
t

¼ xþ fð�xÞ:

Hence, r(X) defined by (1) is a proper lsc function, and minimum in (1) is attained at

finite h for all X � X . Below we verify that r(X) satisfies axioms (A1)–(A4).

(A1) Let X 5 0. Then f(X)5 0 as f satisfies (A1) which implies

min
Z2R

Zþ fðX � ZÞ � 0þ fðX � 0Þ � 0:

(A2) For any Z � X let ZZ 2 arg min
Z2R

fZþ fðZ � ZÞg � R then

rðXÞ þ rðY Þ ¼ ZX þ fðX � ZXÞ þ ZY þ fðY � ZY Þ
� ZX þ ZY þ fðX þ Y � ZX � ZY Þ
� ZXþY þ fðX þ Y � ZXþY Þ ¼ rðX þ Y Þ:

(A3) For any fixed l � 0 we have

rðlXÞ ¼ min
Z2R

�
Zþ fðlX � ZÞ

�
¼ lmin

Z2R

�
Z=lþ fðX � Z=lÞ

�
¼ lrðXÞ ð13:A1Þ

(A4) Similarly, for any fixed a � R,

rðX þ aÞ ¼ min
Z2R

n
Zþ fðX þ a � ZÞ

o

¼ a þmin
Z2R

n
ðZ� aÞ þ f

�
X � ðZ� aÞ

�o
¼ a þ rðXÞ: ð13:A2Þ

Thus, r(X) defined by (1) is a proper coherent risk measure. I

Proof of Theorem 13.2 Conditions on function f ensure that the set of optimal solutions

of problem (1) is closed and finite, whence follows the existence of h(X) in (13.10).

Property (A3) is established by noting that for any l � 0 equality (13.A1) implies

ZðlXÞ ¼ Arg min
Z2R

Zþ fðlX � ZÞf g ¼ Arg min
Z2R

Z=lþ fðlX � Z=lÞf g;

from which follows that h(lX) � lh(X). Similarly, by virtue of (13.A2), we have

ZðX þ aÞ ¼ Arg min
Z2R

Zþ fðX þ a � ZÞf g ¼ Arg min
Z2R

ðZ� aÞ þ f lX � ðZ� aÞð Þf g;
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which leads to the sought relation (A4): h(X � a) � h (X) � a. To validate the remaining

statements of the Theorem, consider f to be such that f(X) � 0 for every X 5 0. Then,

(C2) immediately yields f(X) ] 0 for all X � X , which proves

ZðXÞ � ZðXÞ þ f X � ZðXÞð Þ ¼ rðXÞ:

By the definition of h(X), we have for all X 5 0

ZðXÞ þ f
�
X � ZðXÞ

�
� 0þ fðX � 0Þ ¼ 0; or ZðXÞ � �f

�
X � ZðXÞ

�
: ð13:A3Þ

Assume that h(X) � 0, which implies f(�h(X)) � 0. From (A2) it follows that

f(X�h(X))5 f(X) �f (�h(X)) � 0, leading to f(X�h(X)) � 0, and, consequently,

to h(X) 5 0 by (13.A3). The contradiction furnishes the statement of the theorem. I

Proof of Theorem 13.3 Denote the feasible sets of (13.21a) and (13.21b), respectively, as

Sa ¼ fx 2 C j RðxÞ � c and Sb ¼ fðx; ZÞ 2 C � R j Fðx; ZÞ � cg:

Now observe that projection PCðSbÞ of the feasible set of (21b) onto ,

PCðSbÞ ¼ fx 2 C j ðx; ZÞ 2 Sb for some Z 2 Rg
¼ fx 2 C j Fðx; ZÞ � c for some Z 2 Rg;

coincides with the feasible set of (13.21a):

Sa ¼ PCðSbÞ:

Indeed, x? � Sa means that x? � C and R(x?) � minh F(x?,h) 5 c. By virtue of Theorem

13.1 there exists h? � R such that F(x?, h?) � minhF(x?, h), whence (x?, h?) � Sb, and,

consequently, x? � P C ðSb). If, on the other hand, xƒ � P C ðSb), then there exists hƒ � R

such that (xƒ,hƒ) � Sb and therefore f(xƒ, hƒ) 5 c. By definition of R( �),

R(xƒ) 5f(xƒ, hƒ) 5 c, thus xƒ � Sa.

Given (13.37), it is easy to see that (13.21a) and (13.21b) achieve minima at the same

values of x � C and their optimal objective values coincide. Indeed, if x+ is an optimal

solution of (13.21a) then x+ � Sa and g(x+) 5 g(x) holds for all x �Sa. By (13.37), if

x �Sa then there exists some h � R such (x, h) � Sb. Thus, for all (x, h) � Sb one has

g(x+) 5 g(x), meaning that (x+, h+) is an optimal solution of (13.21b), where h+ � R is

such that (x+, h+) � Sb. Inversely, if (x+, h+) solves (13.21b), then (x+, h+) � Sb and

g(x+) 5 g(x) for all (x, h) � Sb. According to (13.A4), (x, h) � Sb also yields x �Sa, hence

for all x � Sa one has g(x+) 5 g(x), i.e. x+ is an optimal solution of (13.21a).

Finally, assume that the risk constraint in (13.21a) is binding at optimality. If (x+, h+)

achieves the minimum of (13.21b), then F(x+, h+) 5 c and, according to the above, x+ is

an optimal solution of (13.21a), whence c � R(x+) 5F(x+, h+) 5 c. From the last

relation we have F(x+, h+) � R(x+) and thus h+ � argminh F(x+, h). Now consider x+ that
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solves (13.21a) and h+ such that h+ � argminh F(x+, h). This implies that

F(x+, h+) � R(x+) � c, or (x+, h+) � Sb. Taking into account that g(x+) 5 g(x) for all

x � Sa and consequently for all (x,h) � Sb, one has that (x+, h+) is an optimal solution of

(13.21b).

Proof of Theorem 13.4 Since formula (13.28) differs from (13.1) by the constant

summand ð�EXÞ, we only have to verify that R(X) � infh{h�f(X � h)} satisfies (A5).

As f(X) � EX for all X " 0, we have that f(X �hX) � E(X � hX) for all non-constant

X � X , where hX � argminh h�f(X � h). From the last inequality it follows that

hX �f(X � hX) � EX, or R(X) � EX for all non-constant X � X . Thus, D(X) � 0 for

all non-constant X. For a � R, infh{h�f(a � h)} � a, whence D(a) � 0. I

Proof of Theorem 13.5 The proof of existence and all properties except (A1?) is identical

to that of Theorem 13.1. Property (A1?) follows elementarily: if ð�XÞ �SSD ð�Y Þ, then

ð�X þ cÞ �SSD ð�Y þ cÞ, and consequently, f(X � c) 5f(Y � c) for c � R, whence

rðX Þ ¼ ZX þ fðX � ZXÞ � ZY þ fðX � ZY Þ � ZY þ fðY � ZY Þ ¼ rðY Þ; ð13:A4Þ

where, as usual, hZ � arg minh{h�f(Z � h)} ƒR, for any Z � X . I

Example 13.2.3 (Additional details): To demonstrate the monotonicity of hp,a(X) with

respect to a � (0, 1), observe that by definition of Zp;a1
ðXÞ

Zp;a1
ðXÞ þ ð1� a1Þ

�1
�
X � Zp;a1

���
�þ��

p
� Zp;a2

ðXÞ þ ð1� a1Þ
�1
���X � Zp;a2

�þ��
p
: ð13:A5Þ

Now, assume that hp,a1
(X) � hp,a2

(X) for some a1 Ba2, then (13.A5) yields

0 < Zp;a1
ðXÞ � Zp;a2

ðXÞ � ð1� a1Þ
�1 � X � Zp;a2

� �þ���
���

p
� X � Zp;a1

� �þ���
���

p

� �

< ð1� a2Þ
�1

X � Zp;a2

� �þ���
���

p
� X � Zp;a1

� �þ���
���

p

� �
:

From the last inequality it follows directly that

Zp;a1
ðXÞ þ ð1� a2Þ

�1
���X � Zp;a1

�þ��
p

< Zp;a2
ðXÞ þ ð1� a2Þ

�1
���X � Zp;a2

�þ��
p
;

which contradicts the definition of Zp;a2
ðXÞ.

The limiting behaviour of hp, a(X) can be verified by noting first that for 1 5 p B�

lim
a!1

HMCRp;aðXÞ ¼ ess:sup X: ð13:A6Þ
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Indeed, using the notation of Example 13.1.3 one has

lim
a!1

inf
Z

Zþ ð1� aÞ�1 ðX � ZÞþ
�� ��

p

n o
� inf

Z
lim
a!1

Zþ ð1� aÞ�1 ðX � ZÞþ
�� ��

p

n o

¼ inf
Z

Zþ f�ðX � ZÞ ¼ ess:sup X :

On the other hand, from the inequality (see Example 13.1.4)

HMCRp;aðXÞ � HMCRq;aðXÞ for 1 � p < q;

and the fact that lima!1 CVaRaðXÞ ¼ ess:sup X (see, e.g. Rockafellar et al. 2006) we obtain

ess:sup X ¼ lim
a!1

CVaRaðXÞ � lim
a!1

HMCRp;aðXÞ;

which verifies (13.A6). The existence of lima!1 Zp;aðXÞ 2 R follows from the monotonicity

of hp,a(X) with respect to a. Theorem 13.2 maintains that Zp;aðXÞ � HMCRp;aðXÞ, whence

lim
a!1

Zp;aðXÞ � ess:sup X :

In the case of finite ess.sup X, by rewriting (13.A6) in the form

lim
a!1

Zp;aðXÞ þ ð1� aÞ�1 ðX � Zp;aðXÞÞ
þ

���
���

p

� �
¼ ess:sup X ;

and assuming that lima 0 1hp,a(X)�ess.supX�o for some o]0, it is easy to see that the

above equality holds only in the case of o�0.
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14.1 INTRODUCTION

A MONG THE SEVERAL EXISTING RISK MEASURES in the context of portfolio optimization,

expected shortfall (ES) has certainly gained increasing popularity in recent years. In

several practical applications, ES is starting to replace the classical Value-at-Risk (VaR).

There are a number of reasons for this. For a given threshold probability b, the VaR is

defined so that with probability b the loss will be smaller than VaR. This definition only

gives the minimum loss one can reasonably expect but does not tell anything about the

typical value of that loss which can be measured by the conditional value-at-risk (CVaR,

which is the same as ES for the continuous distributions that we consider here).1 We will

be more precise with these definitions below. The point we want to stress here is that the

VaR measure, lacking the mandatory properties of subadditivity and convexity, is not

1 See Acerbi and Tasche (2002) for the subtleties related to a discrete distribution.
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coherent (Artzner et al. 1999). This means that summing the VaRs of individual portfolios

will not necessarily produce an upper bound for the VaR of the combined portfolio, thus

contradicting the holy principle of diversification in finance. A nice practical example of

the inconsistency of VaR in credit portfolio management is reported by Frey and McNeil

(2002). On the other hand, it has been shown (Acerbi and Tasche 2002) that ES is a

coherent measure with interesting properties (Pflug 2000). Moreover, the optimization of

ES can be reduced to linear programming (Rockafellar and Uryasev 2000) (which allows

for a fast implementation) and leads to a good estimate for the VaR as a byproduct of the

minimization process. To summarize, the intuitive and simple character, together with the

mathematical properties (coherence) and the fast algorithmic implementation (linear

programming), are the main reasons behind the growing importance of ES as a risk

measure.

In this chapter we focus on the feasibility of the portfolio optimization problem under

the ES measure of risk. The control parameters of this problem are (i) the imposed

threshold in probability, b and (ii) the ratio N/T between the number N of financial assets

making up the portfolio and the time series length T used to sample the probability

distribution of returns. It is curious, albeit trivial, that the scaling in N/T had not been

explicitly pointed out before (Pafka and Kondor 2002). It was reported by Kondor et al.

(2007) that, for certain values of these parameters, the optimization problem does not

have a finite solution because, even if convex, it is not bounded from below. Extended

numerical simulations allowed these authors to determine the feasibility map of the

problem. Here, in order to better understand the root of the problem and to study the

transition from a feasible to an unfeasible regime (corresponding to an ill-posed

minimization problem) we address the same problem from an analytical point of view.

The chapter is organized as follows. In Section 14.2 we briefly recall the basic

definitions of b-VaR and b-CVaR and we show how the portfolio optimization problem

can be reduced to linear programming. We introduce a ‘cost function’ to be minimized

under linear constraints and we discuss the rationale for a statistical mechanics approach.

In Section 14.3 we solve the problem of optimizing large portfolios under ES using the

replica approach. Our results and a comparison with numerics are reported in Section

14.4, and our conclusions are summarized in Section 14.5.

14.2 THE OPTIMIZATION PROBLEM

We consider a portfolio of N financial instruments w � {w1, . . ., wN} where wi is the

position of asset i. The global budget constraint fixes the sum of these numbers: we

impose, for example,

XN

i¼1

wi ¼ N : ð14:1Þ

We do not stipulate any constraint on short selling, so that wi can be any negative or

positive number. This is, of course, unrealistic for liquidity reasons, but considering this
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case allows us to demonstrate the essence of the phenomenon. If we imposed a constraint

that would render the domain of wi bounded (such as a ban on short selling, for example),

this would evidently prevent the weights from diverging, but a vestige of the transition

would still remain in the form of large, although finite, fluctuations of the weights, and in

a large number of them sticking to the ‘walls’ of the domain.

We denote the returns on the assets by x ¼ fx1; x2; . . . ; xNg and we assume that there

exists an underlying probability distribution function p(x) of the returns. The loss of

portfolio w given the returns x is ‘ðw j xÞ ¼ �
PN

i¼1 wixi, and the probability of that loss

being smaller than a given threshold a is

P < ðw; aÞ ¼
Z

dx pðxÞyða� ‘ðw j xÞÞ; ð14:2Þ

where u( �) is the Heaviside step function, equal to 1 if its argument is positive and 0

otherwise. The b-VaR of this portfolio is formally defined by

b-VaRðwÞ ¼ minfa : P < ðw; aÞ 	 bg ð14:3Þ

(see Figure 14.1), While the CVaR (or ES, in this case) associated with the same portfolio

is the average loss on the tail of the distribution,

b-CVaRðwÞ ¼
R

dx pðxÞ‘ðwjxÞyð‘ðwjxÞ � b-VaRðwÞÞR
dx pðxÞyð‘ðwjxÞ � b-VaRðwÞÞ

¼ 1

1� b

Z
dx pðxÞ‘ðwjxÞyð‘ðwjxÞ � b-VaRðwÞÞ: ð14:4Þ

The threshold b then represents a confidence level. In practice, the typical values of b

which one considers are b � 0.90, 0.95, and 0.99, but we will address the problem for any

1

β

β-VaR(w)

P<
(w

; α
)

0
α

FIGURE 14.1 Schematic representation of the VaR measure of risk. P < ðwÞ is the probability of a loss

associated with the portfolio w being smaller than a. The conditional VaR b-CVaR (or ES) is the average loss

when this is constrained to be greater than the b-VaR.
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b � [0, 1]. What is usually called ‘exceedance probability’ in previous literature would

correspond here to (1�b).

As mentioned in the Introduction, the ES measure can be obtained from a variational

principle (Rockafellar and Uryasev 2000). The minimization of a properly chosen

objective function leads directly to (14.4)

b-CVaRðwÞ ¼ min
v

Fbðw; vÞ; ð14:5Þ

Fbðw; vÞ 
 v þ ð1� bÞ�1

Z
dx pðxÞ½‘ðwjxÞ � v
þ: ð14:6Þ

Here, [a]� � (a � NaN)/2. The external parameter v over which one has to minimize is

claimed to be relevant in itself (Rockafellar and Uryasev 2000), since its optimal value may

represent a good estimate for the actual value-at-risk of the portfolio. We will come back

to this point when we discuss our results. We stress here that minimizing (14.6) over w

and v is equivalent to minimizing (14.4) over the portfolio vectors w.

Of course, in practical cases the probability distribution of the loss is not known and

must be inferred from past data. In other words, we need an ‘in-sample’ estimate of the

integral in (14.6) which would turn a well-posed (but useless) optimization problem into

a practical approach. We thus approximate the integral by sampling the probability

distributions of returns. If we have a time series x(1), . . . , x(T ), our objective function

simply becomes

F̂bðw; vÞ ¼ v þ 1

ð1� bÞT
XT

t¼1

½‘ðw j xðtÞÞ � v
þ

¼ v þ 1

ð1� bÞT
XT

t¼1

�v �
XN

i¼1

wixit

" #þ
; ð14:7Þ

where we denote by xit the return of asset i at time t.

Minimizing this risk measure is the same as the following linear programming

problem:

� given one data sample, i.e. a matrix xit, i � 1, . . . , N, t � 1, . . . , T,

� minimize the cost function

Eb½Y; fxitg
 ¼ Eb½v; fwig; futg; fxitg
 ¼ ð1� bÞTv þ
XT

t¼t
ut; ð14:8Þ

� over the (N � T � 1) variables Y � {w1, . . . , wN, u1, . . . , uT , v},
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� under the (2T � 1) constraints

ut 	 0; ut þ v þ
XN

i¼1

xitwi 	 0; 8t and
XN

i¼1

wi ¼ N : ð14:9Þ

Since we allow short positions, not all the wi are positive, which makes this problem

different from standard linear programming. To keep the problem tractable, we impose

the condition that wi ] �W, where W is a very large cutoff, and the optimization

problem will be said to be ill-defined if its solution does not converge to a finite limit

when W 0�. It is now clear why constraining all the wi to be non-negative would

eliminate the feasibility problem: a finite solution will always exist because the weights are

by definition bounded, the worst case being an optimal portfolio with only one non-zero

weight taking care of the total budget. The control parameters that govern the problem are

the threshold b and the ratio N/T of assets to data points. The resulting ‘phase diagram’ is

then a line in the b � N/T plane separating a region in which, with high probability, the

minimization problem is not bounded and thus does not admit a finite solution, and

another region in which a finite solution exists with high probability. These statements are

non-deterministic because of the intrinsic probabilistic nature of the returns. We will

address this minimization problem in the non-trivial limit where T 0�, N 0�, while

N/T stays finite. In this ‘thermodynamic’ limit, we shall assume that extensive quantities

(like the average loss of the optimal portfolio, i.e. the minimum cost function) do not

fluctuate, namely that their probability distribution is concentrated around the mean

value. This ‘self-averaging’ property has been proved for a wide range of similar statistical

mechanics models (Guerra and Toninelli 2004). Then, we will be interested in the average

value of the minimum of the cost function (14.8) over the distribution of returns. Given

the similarity of portfolio optimization to the statistical physics of disordered systems,

this problem can be addressed analytically by means of a replica approach (Mézard

et al. 1987).

14.3 THE REPLICA APPROACH

For a given history of returns xit , one can compute the minimum of the cost function,

minY Eb½Y; fxitg
. In this section we show how to compute analytically the expectation

value of this quantity over the histories of returns. For simplicity we shall keep to the case

in which the xit are independent identically distributed (iid) normal variables, so that a

history of returns xit is drawn from the distribution

pðfxitgÞ �
Y

it

e�Nx2
it
=2: ð14:10Þ

This assumption of an iid normal distribution of returns is very restrictive, but we would

like to emphasize that the method that we use can be generalized easily to iid variables

with other distributions, and also in some cases to correlated variables. Certainly, the
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precise location of the critical value of N/T separating an infeasible from a feasible phase

depends on the distribution of returns. But we expect that broad features like the existence

of this critical value, or the way the fluctuations in the portfolio diverge when approaching

the transition, should not depend on this distribution. This property, called universality,

has been one of the major discoveries of statistical mechanics in the last

50 years.

Instead of focusing only on the minimal cost, the statistical mechanics approach makes

a detour: it considers, for a given history of returns xit, a probability distribution in the

space of variables Y, defined by PgðYÞ ¼ 1=Zg½fxitg
 exp½�gEb½Y; fxitg

. The parameter g is

an auxiliary parameter. In physics it is the inverse of the temperature, however in the

present case it is just a parameter that we introduce in order to have a probability

distribution on Y that interpolates between the uniform probability (g � 0) and a

probability that is peaked on the value of Y which minimizes the cost Eb½Y; fxitg
 (the case

where g ��).

The normalization constant Zg½fxitg
 is called the partition function at inverse

temperature g it is defined as

Zg½fxitg
 ¼
Z

V

dY exp½�gEb½Y; fxitg

; ð14:11Þ

where V is the convex polytope defined by (14.9).

The partition function contains a lot of information on the problem. For instance, the

minimal cost can be expressed as limg!1ð�1Þ=ðNgÞ log Zg½fxitg
. We shall be interested in

computing the large N limit of the minimal cost per variable:

e½fxitg
 ¼ lim
N!1

min E ½fxitg

N

¼ lim
N!1

lim
g!1

�1

Ng
log Zg½fxitg
: ð14:12Þ

In the following we will compute the average value of this quantity over the choice of the

sample xit. Using Equation (14.12) we can compute this average minimum cost if we are

able to compute the average of the logarithm of Z. This is a difficult problem that is usually

circumvented by means of the so-called ‘replica trick:’ one computes the average of Z n,

where n is an integer, and then the average of the logarithm is obtained from

log Z ¼ lim
n!1

@Z n

@n
; ð14:13Þ

thus assuming that Zn can be analytically continued to real values of n. The overline

indicates an average over different samples, i.e. over the probability distribution (14.10).

This technique has a long history in the physics of spin glasses (Mézard et al. 1987): the

proof that it leads to the correct solution has recently been reported (Talagrand 2002).
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The partiton function (14.11) can be written more explicity as

Zg½fxitg
 ¼
Z þ1

�1
dv

Z þ1

0

YT

t¼1

dut

Z þ1

�1

YN

i¼1

dwi

�
Z þi1

�i1
dl exp l

XN

i¼1

wi � N

 !" #Z þ1

0

YT

t¼1

dmt

�
Z þi1

�i1

YT

t¼1

dm̂t exp
XT

t¼1

m̂t ut þ v þ
XN

i¼1

xit wi � mt

 !" #

� exp �gð1� bÞTv � g
XT

t¼1

ut

" #
; ð14:14Þ

where the constraints are imposed by means of the Lagrange multipliers l; m; m̂. The

replica trick is based on the idea that the nth power of the partition function appearing

in (14.13) can be written as the partition function for n independent replicas Y1, . . . , Yn

of the system: all the replicas correspond to the same history of returns {xit},

and their joint probability distribution function is PgðY1; . . . ;YnÞ ¼ 1=Z n
g ½fxitg


exp½�g
Pn

a¼1 Eb½Ya; fxitg

. It is not difficult to write down the expression for Zn and

average it over the distribution of samples x it. One introduces the overlap matrix

Qab ¼ 1

N

XN

i¼1

wa
i wb

i ; a; b ¼ 1; . . . ; n; ð14:15Þ

as well as its conjugate Q̂ab (the Lagrange multiplier imposing (14.15)), where a and b are

replica indexes. This matrix characterizes how the portfolios in different replicas differ:

they provide some indication of how the measure Pg(Y) is spread. After (several)

Gaussian integrations, one obtains

Z n
g ½fxitg
 �

Z þ1

�1

Yn

a¼1

dva

Z þ1

�1

Y

a;b

dQab

Z þi1

�i1

Y

a;b

dQ̂ab

� exp

(
N
X

a;b

QabQ̂ab � N
X

a;b

Q̂ab � gð1� bÞT
X

a

va

� Tn log gþ T log Ẑgðfvag; fQabgÞ

� T

2
Tr log Q � N

2
Tr log Q̂ � nN

2
log 2

)
; ð14:16Þ
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where

Ẑgðfvag; fQabgÞ 

Z þ1

�1

Yn

a¼1

dya exp

"
� 1

2

Xn

a;b¼1

ðQ�1Þabð ya � vaÞ

� ð yb � vbÞ þ g
Xn

a¼1

yayð�yaÞ
#
: ð14:17Þ

We now write T � tN and work with fixed t while N 0�.

The most natural solution is obtained by realizing that all the replicas are identical.

Given the linear character of the problem, the symmetric solution should be the correct

one. The replica-symmetric solution corresponds to the ansatz

Qab ¼
q1; if a ¼ b;

q0; if a 6¼ b;

�
Q̂ab ¼

q̂1; if a ¼ b;

q̂0; if a 6¼ b;

�
ð14:18Þ

and va � v for any a. As we discuss in detail in appendix 14.A, one can show that the

optimal cost function, computed from Equation (14.12), is the minimum of

eðv; q0;DÞ ¼
1

2D
þ D



tð1� bÞv � q0

2
þ t

2
ffiffiffi
p
p

Z þ1

�1
ds e�s2

g
�

v þ s
ffiffiffiffiffiffiffi
2q0

p ��
; ð14:19Þ

where D � limg0� gDq and the function g( �) is defined as

gðxÞ ¼
0; x 	 0;

x2; �1 � x < 0;

�2x � 1; x < � 1:

8
><

>:
ð14:20Þ

Note that this function and its derivative are continuous. Moreover, v and q0 in (14.19) are

solutions of the saddle point equations

1� bþ 1

2
ffiffiffi
p
p

Z
ds e�s2

g 0ðv þ s
ffiffiffiffiffiffiffi
2q0

p
Þ ¼ 0; ð14:21Þ

�1þ t
ffiffiffiffiffiffiffiffiffi
2pq0

p
Z

ds e�s2

sg 0ðv þ s
ffiffiffiffiffiffiffi
2q0

p
Þ ¼ 0: ð14:22Þ

We require that the minimum of (14.19) occurs at a finite value of D. In order to

understand this point, we recall the meaning of D (see also (14.18)):

D=g � Dq ¼ ðq1 � q0Þ ¼
1

N

XN

i¼1

�
w
ð1Þ
i

�2 � 1

N

XN

i¼1

w
ð1Þ
i w

ð2Þ
i � w2 � w2; ð14:23Þ
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where the superscripts (1) and (2) represent two generic replicas of the system. We then

find that D is proportional to the fluctuations in the distribution of the w?s. An infinite

value of D would then correspond to a portfolio which is infinitely short on some

particular positions and, because of the global budget constraint (1), infinitely long on

others.

Given (14.19), the existence of a solution at finite D translates into the following

condition:

tð1� bÞv � q0

2
þ t

2
ffiffiffi
p
p

Z þ1

�1
ds e�s2

gðv þ s
ffiffiffiffiffiffiffi
2q0

p
Þ 	 0; ð14:24Þ

which defines, along with Equations (14.21) and (14.22), our phase diagram.

14.4 THE FEASIBLE AND INFEASIBLE REGIONS

We can now chart the feasibility map of the expected shortfall problem. Following the

notation of Kondor et al. (2007), we will use as control parameters N/T � 1/t and b. The

limiting case b 0 1 can be determined analytically and one can show that the critical

value t+ is given by

1

t�
¼ 1

2
�O ð1� bÞ3e�ð4pð1�bÞ

2Þ�1
h i

: ð14:25Þ

This limit corresponds to the over-pessimistic case of maximal loss, in which the single

worst loss contributes to the risk measure. The optimization problem is the following:

min
w

max
t
�
X

i

wixit

 !" #
: ð14:26Þ

A simple ‘geometric’ argument of Kondor et al. (2007) leads to the critical value

1/t+ � 0.5 in this extreme case. The idea is the following. According to Equation (14.26),

one has to look for the minimum of a polytope made by a large number of planes, whose

normal vectors (the xit) are drawn from a symmetric distribution. The simplex is convex,

but with some probability it can be unbounded from below and then the optimization

problem is ill-defined. Increasing T means that the probability of this event decreases,

because there are more planes and thus it is more likely that for large values of wi the max

over t has a positive slope in the ith direction. The exact law for this probability can be

obtained by induction on N and T (Kondor et al. 2007) and, as we said, it jumps in the

thermodynamic limit from 1 to 0 at N/T � 0.5. The example of the max-loss risk measure

is also helpful because it allows us to stress two aspects of the problem: (1) even for finite

N and T there is a finite chance that the risk measure is unbounded from below in some

samples, and (2) the phase transition occurs in the thermodynamic limit when N/T is

strictly smaller than 1, i.e. much before the covariance matrix develops zero modes. The

very nature of the problem is that the risk measure there is simply not bounded from
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below. As for the ES risk measure, the threshold value N/T � 0.5 can be thought of as a

good approximation of the actual value for many cases of practical interest (i.e. b H 0.9),

since the corrections to this limit case are exponentially small (Equation (14.25)).

For finite values of b we solve numerically Equations (14.21), (14.22) and (14.24) using

the following procedure. We first solve the two Equations (14.21) and (14.22), which

always admit a solution for (v, q0). We then plot the l.h.s. of Equation (14.24) as a function

of 1/t for a fixed value of b. This function is positive at small 1/t and becomes negative

beyond a threshold 1/t+. By keeping track of 1/t+ (obtained numerically via linear

interpolations) for each value of b we build up the phase diagram (Figure 14.2, left). This

diagram is in agreement with the numerical results obtained by Kondor et al. (2007).

We show in the right panel of Figure 14.2 the divergence of the order parameter D versus

1/t � 1/t+. The critical exponent is found to be 1/2:

D � 1

t
� 1

t�ðbÞ

 !�1=2

; ð14:27Þ

again in agreement with the scaling found by Kondor et al. (2007). We performed

extensive numerical simulations in order to check the validity of our analytical findings.

For a given realization of the time series, we solve the optimization problem (14.8) by

standard linear programming (Press et al. 1992). We impose a large negative cutoff for the

w’s, that is wi � �W, and we say that a feasible solution exists if it stays finite for

W 0�. We then repeat the procedure for a certain number of samples, and then average

our final results (optimal cost, optimal v, and the variance of the w’s in the optimal

portfolio) over those that produced a finite solution. In Figure 14.3 we show how the

probability of finding a finite solution depends on the size of the problem. Here, the

probability is simply defined in terms of the frequency. We see that the convergence

towards the expected 1�/0 law is fairly slow, and a finite size scaling analysis is shown in
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FIGURE 14.2 Left: phase diagram of the feasibility problem for the expected shortfall. Right: the order

parameter D diverges with exponent 1/2 as the transition line is approached. A curve of slope �1/2 is also

shown for comparison.
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the right panel. Without loss of generality, we can summarize the finite-N numerical

results by writing the probability of finding a finite solution as

pðN ;T ; bÞ ¼ f
1

t
� 1

t�ðbÞ

 !
� N aðbÞ

" #
; ð14:28Þ

where f(x) 0 1 if x��1 and f(x) 0 0 if xBB1, and where a(1) � 1/2. It is interesting to

note that these results do not depend on the initial conditions of the algorithm used to

solve the problem: for a given sample, the algorithm finds, in linear time, the minimum of

the polytope by looking at all its vertexes exhaustively. The statistics are taken by repeating

such a deterministic procedure on a large number of samples chosen at random.

In Figure 14.4 (left panel) we plot, for a given value of b, the optimal cost found

numerically for several values of the size N compared with the analytical prediction at

infinite N. One can show that the cost vanishes as D�1 � (1/t � 1/t+)1/2. The right panel
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FIGURE 14.3 Left: the probability of finding a finite solution as obtained from linear programming at

increasing values of N and with b � 0.8. Right: scaling plot of the same data. The critical value is set equal to the

analytical value, N/T � 0.4945, and the critical exponent is 1/2, i.e. that obtained by Kondor et al. (2007) for

the limit case b 0 1. The data do not collapse perfectly, and better results can be obtained by slightly changing

either the critical value or the exponent.
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numerically for several values of N compared with the analytical solution.
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of the same figure shows the behaviour of the value of v which leads to the optimal cost

versus N/T for the same fixed value of b. Also in this case, the analytical (N 0�) limit is

plotted for comparison. We note that this quantity has been suggested (Rockafellar and

Uryasev 2000) to be a good approximation of the VaR of the optimal portfolio: we find

here that vopt diverges at the critical threshold and becomes negative at an even smaller

value of N/T.

14.5 CONCLUSIONS

We have shown that the problem of optimizing a portfolio under the expected shortfall

measure of risk using empirical distributions of returns is not well-defined when the ratio

N/T of assets to data points is larger than a certain critical value. This value depends on the

threshold b of the risk measure in a continuous way and this defines a phase diagram. The

smaller the value of b the longer the length of the time series needed for portfolio

optimization. The analytical approach we have discussed in this chapter allows us to have

a clear understanding of this phase transition. The mathematical reason for the non-

feasibility of the optimization problem is that, with a certain probability p(N, T,b), the

linear constraints in (14.9) define a simplex which is not bounded from below, thus

leading to a solution which is not finite (Dq 0� in our language), in the same way as

occurs in the extreme case b 0 1 discussed by Kondor et al. (2007). From a more physical

point of view, it is reasonable that the feasibility of the problem depends on the number of

data points we take from the time series with respect to the number of financial

instruments of our portfolio. The probabilistic character of the time series is reflected in

the probability p(N, T,b). Interestingly, this probability becomes a threshold function at

large N if N/T � 1/t is finite, and its general form is given by (14.28).

These results have practical relevance in portfolio optimization. The order parameter

discussed in this chapter is tightly related to the relative estimation error Kondor et al.

(2007). The fact that this order parameter has been found to diverge means that, in some

regions of parameter space, the estimation error blows up, which makes the task of

portfolio optimization completely meaningless. The divergence of the estimation error is

not limited to the case of expected shortfall: as shown by Kondor et al. (2007), it also

occurs in the case of variance and absolute deviation, but the noise sensitivity of the

expected shortfall turns out to be even greater than that of these more conventional risk

measures.

There is nothing surprising about the fact that if there are insufficient data, the

estimation error is large and we cannot make a good decision. What is surprising is the

fact that there is a sharply defined threshold where the estimation error actually diverges.

For a given portfolio size, it is important to know that a minimum number of data

points is required in order to perform an optimization based on empirical distributions.

We also note that the divergence of the parameter D at the phase transition, which is

directly related to the fluctuations of the optimal portfolio, may play a dramatic role in

practical cases. To stress this point, we can define a sort of ‘susceptibility’ with respect to

the data,
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wt
ij ¼

@hwji
@xit

; ð14:29Þ

and one can show that this quantity diverges at the critical point, since xij �D. A small

change (or uncertainty) in xit becomes increasingly relevant as the transition is

approached, and the portfolio optimization could then be very unstable even in the

feasible region of the phase diagram. We stress that the susceptibility we have introduced

might be considered as a measure of the effect of noise on portfolio selection and is very

reminiscent of the measure proposed by Pafka and Kondor (2002).

In order to present a clean, analytic picture, we have made several simplifying

assumptions in this work. We have omitted the constraint on the returns, liquidity

constraints, correlations between the assets, non-stationary effects, etc. Some of these can

be systematically taken into account and we plan to return to these finer details in

subsequent work.
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APPENDIX 14.A: THE REPLICA SYMMETRIC SOLUTION

We show in this appendix how the minimum cost function corresponding to the replica-

symmetric ansatz is obtained.

The ‘Tr log Q’ term in (14.16) is computed by realizing that the eigenvalues of such a

symmetric matrix are (q1 � (n � 1)q0), with multiplicity 1, and (q1 � q0), with

multiplicity n � 1. Then,

Tr log Q ¼ log detQ ¼ logðq1 þ ðn � 1Þq0Þ

þ ðn� 1Þ logðq1 � q0Þ ¼ n logDq þ q1

Dq

� �
þOðn2Þ; ð14:A1Þ

where Dq � q1 � q0. The effective partition function in (14.17) depends on Q�1, the

elements of which are

ðQ�1Þab ¼ ðDq � q0Þ=ðDqÞ2 þOðnÞ; if a ¼ b;

�q0=ðDqÞ2 þOðnÞ; if a 6¼ b:

(
ð14:A2Þ

By introducing a Gaussian measure dPq0
ðsÞ 
 ðds=

ffiffiffiffiffiffiffiffiffi
2pq0

p Þe�s2=2q0 , one can show that

1

n
log Ẑðv; q1; q0Þ ¼

1

n
log

(Z Y

a

dxa e�ð1=2DqÞ
P

a
ðxaÞ2þg

P
a
ðxaþvÞyð�xa�vÞ

�
Z

dPq0
ðsÞ e

ðs=DqÞ
P

a
xa

)

¼ q0

2Dq
þ
Z

dPq0
ðsÞ log Bgðs; v;DqÞ þ OðnÞ; ð14:A3Þ

where we have defined

Bgðs; v;DqÞ 

Z

dx exp �ðx � sÞ2

2Dq
þ gðx þ vÞyð�x � vÞ

 !
: ð14:A4Þ

The exponential in (14.16) now reads exp Nn½Sðq0;Dq; q̂0;Dq̂Þ þ OðnÞ
, where

Sðq0;Dq; q̂0;Dq̂Þ ¼ q0Dq̂ þ q̂0Dq þ DqDq̂ � Dq̂ � gtð1� bÞv

� t log gþ t

Z
dPq0
ðsÞ log Bgðs; v;DqÞ

� t

2
logDq � 1

2
logDq̂ þ q̂0

Dq̂

� �
� log 2

2
: ð14:A5Þ

The saddle point equations for q̂0 and Dq̂ then allow us to simplify this expression. The

free energy ð�gÞfg ¼ limn!0 @Z n
g =@n is given by
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�gfgðv; q0;DqÞ ¼ 1

2
� t log gþ 1� t

2
logDq þ q0 � 1

2Dq

� gtð1� bÞv þ t

Z
dPq0
ðsÞ log Bgðs; v;DqÞ; ð14:A6Þ

where the actual values of v, q0 and Dq are fixed by the saddle point equations

@fg

@v
¼
@fg

@q0

¼
@fg

@Dq
¼ 0: ð14:A7Þ

Close inspection of these saddle point equations allows one to perform the low

temperature g 0� limit by assuming that Dq � D/g while v and q0 do not depend on

the temperature. In this limit, one can show that

lim
g!1

1

g
log Bgðs; v;D=gÞ ¼

s þ v þ D=2; s < � v � D;
�ðv þ sÞ2=2D; �v � D � s < � v;

0; s 	 �v:

8
<

: ð14:A8Þ

If we plug this expression into Equation (14.A6) and perform the large-g limit we obtain

the minimum cost:

E ¼ lim
g!1

fg ¼ �
q0 � 1

2D
þ tð1� bÞv � t �

Z �D

�1

dx
ffiffiffiffiffiffiffiffiffi
2pq0

p e�ðx�vÞ2=2q0 x þ D

2

� �

þ t

2D

Z 0

�D

dx
ffiffiffiffiffiffiffiffiffi
2pq0

p e�ðx�vÞ2=2q0 x2: ð14:A9Þ

We rescale x 0 xD, v 0 vD, and q0 0 q0D2, and after some algebra we obtain Equation

(14.19).
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15.1 INTRODUCTION

T HE CONVENTIONAL MEAN-VARIANCE APPROACH, which constitutes the primary basis for

portfolio selection, assumes that asset returns follow normal distributions and/or

that the investor has a quadratic utility function. Despite the long and widespread use of

the mean-variance method in portfolio management, its fundamental assumptions often

do not hold in practice. The returns of many financial securities exhibit skewed and

leptokurtic distributions. Derivatives, or securities with embedded options, have, by

construction, highly skewed return distributions. Many other investments are exposed to

multiple risk factors whose joint effect on portfolio returns often cannot be modelled by a

normal distribution.
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Substantial research effort has been directed toward the development of models that

properly capture asymmetries and dynamic effects in the observed behaviour of asset

returns. At the same time, alternative risk metrics have been sought. Such measures are

concerned with other, or additional, characteristics of the return distribution (e.g. the

tails) besides the variance, and can accommodate a wide range of investor priorities and

regulatory requirements for risk management. Value-at-risk (VaR) has essentially attained

the status of a de-facto standard in financial practice (see, e.g. Jorion 2001). VaR is defined

as the maximal loss (or minimal return) of a portfolio over a specific time horizon at a

specified confidence level; VaR corresponds to a percentile of the portfolio’s loss (or

return) distribution at a specified confidence level.

Despite its widespread popularity in recent years, VaR suffers from a number of

theoretical and practical limitations. Although its calculation for a certain portfolio

indicates that shortfall returns, below VaR, will occur only with a prespecified likelihood,

it provides no information on the extent of the distribution’s tail which may be quite long;

in such cases, the portfolio return may take substantially lower values than VaR and result

in severe losses. More importantly, VaR is not a coherent risk measure in the sense defined

by Artzner et al. (1999). It fails to reward diversification, as it is not subadditive; hence, the

VaR of a diversified portfolio can be larger than the sum of the VaRs of its constituent

asset components. Moreover, when the returns of assets are expressed in terms of discrete

distributions (i.e. scenarios) VaR is a non-smooth and non-convex function of the

portfolio positions and exhibits multiple local extrema (see, e.g. Rockafellar and Uryasev

2002). Incorporating such functions in mathematical programs is very difficult, thus

making impractical the use of VaR in portfolio optimization models.

To overcome the deficiencies of VaR, suitable alternative risk metrics have been sought.

Artzner et al. (1999) discuss such metrics and specify the properties that sound risk

measures should satisfy, which they characterize as coherent risk measures. A family of

closely related risk metrics—termed as expected shortfall, mean excess loss, tail VaR,

conditional VaR—have been suggested that quantify the mass in the tail of the distribution

beyond VaR. Tasche (2002) examines the properties of this family of measures; he shows

that it characterizes the smallest coherent risk measures to dominate VaR and that it can

incorporate higher moment effects. Acerbi and Tasche (2002) show that the alternative

definitions of these measures lead to the same results when applied to continuous loss

distributions. They note that differences appear when the underlying distribution has

discontinuities and they demonstrate that, in such cases, care must be exercised in the

details of the definition to maintain the desired properties of coherence. The theoretical

underpinnings of coherent risk measures and their properties are thoroughly discussed in

Foellmer and Schied (2004).

Rockafellar and Uryasev (2002) introduced a definition of the conditional value-at-risk

(CVaR) measure for general distributions, including discrete distributions that exhibit

discontinuities, and showed that CVaR is a continuous and convex function of the portfolio

positions. They also showed that a CVaR optimization model can be formulated as a linear

program in the case of discrete distributions of the stochastic input parameters. CVaR is

defined as the conditional expectation of losses exceeding VaR; it is a coherent risk measure
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that quantifies the worst (lowest) portfolio returns below the respective VaR.1 As CVaR is

concerned with the tail of the distribution it is a suitable risk measure when the distribution

is asymmetric and/or heavy-tailed.

As a result, CVaR models are seeing increasing use in various financial management

applications. For example, CVaR models have been suggested by Bogentoft et al. (2001)

for asset-liability management of pension funds, by Krokhmal et al. (2002, 2003) for hedge

fund portfolios and by Anderson et al. (2001) for credit risk optimization. Jobst and

Zenios (2001) showed that CVaR models are effective for modelling credit risk and

accounting for default events in the tails. Topaloglou et al. (2002, 2008) applied CVaR

models to international portfolio management problems to account for asymmetric and

leptokurtic distributions of exchange rates and asset returns.

A specification of the distribution of stochastic parameters (asset returns) is a critical

input for all portfolio management models. In parametric models, the multivariate

distribution is specified by the values of key statistics that are usually estimated using

historical data, analytical methods, analysts’ forecasts and other methods. In nonparametric

models, the distribution is usually represented in terms of a discrete set of plausible

outcomes (scenarios) that are generated by simulation, bootstrapping historical data or

even subjective estimates in some cases. In all cases, the reliability of the model’s results

depends on the accuracy with which the postulated distribution approximates the true

distribution of the random variables—which is never actually observable. Hence, the models

are inevitably exposed to estimation errors. Consequently, it is important to understand the

sensitivity of a model to mis-specifications of distributional characteristics, and to assess the

relative effects that mis-specifications of various statistical properties have on the results.

This can guide analysts in their choice among alternative estimation methods, as well as in

the relative effort they invest to obtain robust estimates of the various model inputs.

As CVaR is concerned with the tail of the portfolio’s return distribution, models that

employ this measure are expected to be sensitive to higher moments of the constituent

assets’ random returns. This chapter aims specifically to study the stability of a CVaR

portfolio management model with respect to changes in input specifications. In this

respect, we follow previous studies on stability of mean-variance models.

Most notably, Kallberg and Ziemba (1984), Broadie (1993) and Chopra and Ziemba

(1993) examined the relative effects of estimation errors in the mean, variance and

covariance of asset returns on mean-variance efficient portfolios. They found that the model

results are most sensitive to mis-specifications in the means of asset returns. They reported

that the impact of errors in the variance of asset returns was about an order of magnitude

lower than that of errors in the means, while errors in covariance values had about half the

impact of errors in the variance. Chopra and Ziemba found that the sensitivity of the

model’s results to estimation errors of statistical properties of asset returns varies with the

level of risk aversion. Broadie pointed out that the impact of estimation errors on the mean-

variance model increases with the number of securities included in the portfolio.

1 When defined in terms of portfolio return this risk measure is commonly referred to as Return-at-Risk (RaR).
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Here, we extend these studies as we similarly investigate the effects of mis-specifications

of statistical properties—including higher moments—of asset returns on the results of a

model based on the CVaR measure. As a test case we use a portfolio optimization model for

international investments. The portfolio is exposed to market risk in multiple countries and

to currency risk. We use discrete scenarios to model the uncertainty in asset returns and spot

exchange rates. The scenarios are generated by the moment matching method of Høyland

et al. (2003) so that in the set of generated scenarios the random variables have statistical

properties that match specific target values as determined from historical market data.

First, we define in-sample and out-of-sample stability and we demonstrate that the

scenario generation procedure does not bias the results of the optimization model. That is,

for sufficiently large scenario sets, the portfolio model produces stable solutions that are

not dependent on the specific scenario sets (i.e. the results are stable with respect to

sample). We then conduct extensive computational experiments to assess the effects on

the model’s results due to variations in the target statistics: mean, standard deviation,

skewness, kurtosis and correlations of the random variables. We demonstrate that the

CVaR model is indeed sensitive to the higher moments of the stochastic inputs. Moreover,

we quantify the relative impact of mis-specifications in the various statistical properties of

the inputs on the model’s results.

The chapter is organized as follows. Section 15.2 presents the CVaR model for inter-

national portfolio management that we use as a test case in this study. Section 15.3

describes the scenario generation method, the input data, and the tests to verify the

stability of the optimization model with respect to the scenario generation procedure. In

Section 15.4 we describe the computational experiments involving mis-specifications of

the statistical properties of stochastic input parameters and we present the effects of these

errors on the model’s results. Finally, Section 15.5 concludes.

15.2 CVAR MODEL FOR INTERNATIONAL PORTFOLIO MANAGEMENT

We test a CVaR model for international portfolio management. We view the problem from

the perspective of a US investor who may construct a portfolio composed of domestic and

foreign securities starting with an initial endowment in US dollars. Thus, we have a simple

portfolio construction problem with a holding period of one month. To purchase foreign

securities, the investor must first convert funds to the respective currency; the current spot

exchange rates apply in the currency exchange transactions.

The asset set includes a stock index (Stk), a short-term (Bnd1) and a long-term (Bnd7)

government bond index in each of four countries: United States (USA), United Kingdom

(UK), Germany (Ger) and Japan (Jap). The values of the assets and the exchange rates at

the end of the holding period are uncertain; their joint distribution is modelled in terms

of a scenario set (i.e. a set of discrete outcomes with associated probabilities).2 At the end

of the holding period we compute the scenario-dependent value of each investment using

2In this model instance we have 15 random variables: the returns of the 12 indices (3 for each of the 4 countries)
during the holding period, and the exchange rates of the 3 foreign currencies to USD at the end of the holding period.
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its projected price under the respective scenario. The USD-equivalent value is determined

by applying the estimate of the appropriate spot exchange rate to USD at the end of the

period under the same scenario.

The portfolio is exposed to market risk in the various countries, as well as to currency

risk. To (partly) hedge the currency risk, the investor may enter into forward currency

exchange contracts. The monetary amounts (in USD) of forward contracts are decided at

the time of portfolio selection, but the currency exchanges are executed at the end of the

holding period.

We define the following notation.

User-specified parameters:

a confidence (percentile) level for VaR and CVaR

q minimal allowable CVaR of portfolio returns

Sets and indices:

M set of markets (synonymously, countries, currencies)

‘ � M index of investor’s base (reference) currency in the set of currencies

Mf set of foreign markets; Mf � M\{‘}

Ij set of available asset classes (stock and bond indices) in market j � M

S set of scenarios: S � {1, . . . , S}

Deterministic input data:

c‘ amount of initially available cash in base currency ‘, (c‘ � 100)

p0
ij current market price of asset i � Ij, j � M; in units of local currency j

gij transaction cost rate for purchases of asset i � Ij, j � M, (gStk,j � 0.001, �j � M;

gBnd1,j � gBnd7,j � 0.0005, �j � M)

l transaction cost rate for spot currency exchanges, (l � 0.0001)

e0
j current spot exchange rate of currency j � M

fj current one-moth forward exchange rate of currency j � M (i.e. the market-quoted

rate for a currency exchange to be executed at the end of the holding period)

Scenario dependent data:

S number of scenarios, S � NSN
ps probability of scenario s � S—in our tests, scenarios are equiprobable (i.e. ps � 1/S)

ps
ij price of asset i � Ij, j � M at the end of the holding period under scenario s � S; in

units of local currency j

es
j spot exchange rate of currency j � M at the end of the holding period under scenario

s � S

Decision variables:

xij number of assets i � Ij, j � M in the portfolio, in units of face value

fj amount of base currency collected from sale of currency j � Mf in the forward

market (i.e. amount of forward contract, in units of the base currency)
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Auxiliary variables:

vs total value of the portfolio at the end of the holding period under scenario s � S, in

units of the base currency

rs portfolio return under scenario s � S

z variable in definition of CVaR—equals VaR at the optimal solution

ys return shortfall below VaR under scenario s � S, ys � [0, z � rs]
�

All exchange rates are expressed as the equivalent amount of the base currency for one

unit of the foreign currency. Obviously, the exchange rate of the base currency to itself is

trivially equal to one e0
‘ ¼ es

‘ ¼ 1, �s � S.

We formulate the international portfolio selection model as follows:

maximize
X

s2S

psr
s ð15:1aÞ

s:t: c‘ ¼
X

i2I ‘

xi‘p
0
i‘ð1þ gi‘Þ þ

X

j2Mf

e0
j ð1þ lÞ

X

i2I j

xijp
0
ij ð1þ gijÞ

0

@

1

A ð15:1bÞ

vs ¼
X

i2I ‘

xi‘p
s
i‘ þ

X

j2Mf

fj þ es
j

X

i2I j

xijp
s
ij �

fj

jj

0
@

1
A

8
<

:

9
=

; 8s 2 S ð15:1cÞ

rs ¼ ðvs � c‘Þ=c‘; 8s 2 S ð15:1dÞ

ys � z � rs; 8s 2 S ð15:1eÞ

z � 1

1� a

X

s2S

psys � W ð15:1fÞ

ys � 0; 8s 2 S ð15:1gÞ

fj � 0; xij � 0; 8j 2 M ; 8i 2 I j ð15:1hÞ

This is a simplified version of the international portfolio management model in

Topaloglou et al. (2002). The model in that chapter accounts for an initial portfolio—

including cash and asset positions in any currency—and determines transactions—asset

sales and purchases, as well as spot currency exchanges—so as to obtain a revised

portfolio. A multi-stage extension of that model to address dynamic international
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portfolio management problems is developed in Topaloglou et al. (2008). Here, we

consider a simple portfolio construction model that selects a portfolio starting with an

initial cash endowment in the base currency only.

The objective function (15.1a) maximizes the expected portfolio return over the

holding period. Equation (15.1b) is the budget constraint; it indicates that the cost for the

purchase of domestic and foreign assets is covered by the available cash (cl). Linear

transaction costs (gij) are charged for asset purchases (xij); a linear transaction cost (l) is

also charged for spot currency exchanges that are effected in order to purchase foreign

assets. Note that the entire budget is allocated to the available assets; a simple extension of

the model can allow investments in money market accounts in the various currencies.

Equation (15.1c) determines the scenario-dependent values of the portfolio (vs), in units

of the base currency, at the end of the holding period. These valuation equations account for

the revenues from the liquidation of all portfolio positions at the end of the holding period

at the projected asset prices (ps
ij) for the corresponding scenario. The contribution of foreign

investments to the total value of the portfolio accounts for the settlement of any outstanding

forward contracts (fj). The residual amount in a foreign currency is valued in terms of the

base currency by using the projected spot exchange rates (es
j ) at the end of the holding

period. Equation (15.1d) determines the return of the portfolio under each scenario.

Constraints (15.1e) and (15.1g) determine the excess shortfall returns, beyond VaR,

under each scenario. Constraint (1f) imposes a minimal allowable value (q) on the CVaR

of portfolio returns over the holding period at the (1 � a)100th percentile. At the optimal

solution, the variable z is equal to the VaR at the same percentile—when constraint

(15.1f) is active, which is always the case in this model. The constraints in (15.1h) disallow

short positions.

The linear programming formulation of CVaR models when the stochastic inputs

follow a discrete distribution is due to Rockafellar and Uryasev (2002). The model here

maximizes the expected portfolio return while constraining the CVaR value of portfolio

returns; with constraint (15.1f) the expected excess loss in the tail of the distribution,

beyond VaR, is bounded by the parameter q. Financial optimization models with CVaR

constraints are reported, for example, in Anderson et al. (2001), Bogentoft et al. (2001),

and Krokhmal et al. (2002, 2003). Alternatively, we could have opted to maximize the

CVaR of portfolio returns and impose a minimal target on expected return, as is done in

Topaloglou et al. (2002). We chose this formulation as it is more natural to interpret the

impact of estimation errors in stochastic inputs on the expected portfolio return, rather

than on the value of a risk measure.

As was shown in Topaloglou et al. (2002, 2008) the monthly variations of exchange

rates—also the returns of several stock indices—exhibit skewed and fat-tailed distribu-

tions. The use of the CVaR metric is appropriate in the context of the international

portfolio management model, as it can accommodate the skewed and leptokurtic

distributions of the stochastic inputs (see Table 15.A1 in Appendix 15.A). As we noted

earlier, many other portfolio management models involve securities with asymmetric and

leptokurtic return distributions, for which a CVaR model would be suitable.

STABILITY ANALYSIS OF PORTFOLIO MANAGEMENT j 321



15.3 SCENARIO GENERATION

We used the method of Høyland et al. (2003) to generate scenarios of asset returns and

spot currency exchange rates. The method generates a set of discrete scenarios for the

random variables so that the first four moments of the marginal distributions (mean,

standard deviation, skewness and kurtosis), as well as the correlation coefficients match

specified targets. We estimate the target values for these statistics from historical data.

However, this is not a prerequisite for the scenario generation procedure. We could, as

easily, use subjective estimates for the target statistics, as well as target values determined

with alternative estimation procedures.

The moment-matching method allows full control of the moments when generating

scenarios. This capability is essential for the purposes of this study. To investigate the

impact on the model of variations in the values of some moment of the random variables,

we need a procedure that can generate scenarios effected differing only in terms of the

moment studied, while keeping all other statistical properties of the stochastic inputs

unchanged. The moment-matching method provides this capability.

15.3.1 Data

The data for the stock indices were obtained from the Morgan Stanley Capital

International, Inc. database (www.mscidata.com). The data for the bond indices and

the currency exchange rates were collected from DataStream. All time series have a

monthly time-step and cover the period from January 1990 to April 2001 (i.e. a total of

136 monthly observations). The statistical properties of these data series are reported in

Tables 15.A1 and 15.A2 in Appendix 15.A.

15.3.2 Assessment of the Scenario Generation Method

In Section 15.4, we investigate the behaviour of the CVaR model with respect to the

number of scenarios and with respect to mis-specifications in the statistical properties of

stochastic inputs. To ensure the reliability of the results, however, we must first show that

the scenario generation method used does not influence the results by causing instability

of the solutions. That is, if the solutions changed for different scenario sets then the results

of Section 15.4 would be suspect.

Ideally, we would like to determine that the scenario generation procedure can

effectively produce robust solutions with respect to the true distribution of the random

variables. This is not an attainable goal as the true distribution is not observable. Hence,

we assess the scenario generation method in terms of its ability to closely approximate a

benchmark distribution, and the stability of the results with respect to the benchmark. It is

important that the benchmark distribution is provided exogenously, that is, it is not

generated by the same method which we are testing.

We use as benchmark a discrete distribution (scenario set) generated by a method based

on principal component analysis as described in Topaloglou et al. (2002). The benchmark

distribution has 15 000 scenarios that jointly depict the co-variation of the 15 random

variables in the international portfolio management problem. We note that the scenarios

of the benchmark are not equiprobable. From the benchmark scenario set, we compute
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the moments and correlations of the random variables. We use these values as the target

statistics to match with the scenario generation procedure.

First, we verify that moments of the random variables in the scenario sets that we

generate match the target values. We also check that the generated scenario sets reproduce

other distributional characteristics (e.g. the entire marginal distributions).

15.3.2.1 Matching marginal distributions The easiest to check is a match of the marginal

distributions. We generated scenario sets ranging in size from 250 to 5000 scenarios. For

each set we determined the marginal distributions of the random variables from generated

scenario sets and compared them to the corresponding distributions from the benchmark.

The comparison in the case of the US stock index (Stk.USA) is depicted in Figure 15.1. The

reproduction of the marginal distributions of the remaining random variables is quite

similar.

We observe that even with moderate-size scenario sets (�250 scenarios) we can closely

reproduce the marginal distributions from the 1st to the 99th percentile. At the extreme

tails the distribution is not as accurately matched unless a sufficiently large number of

scenarios is generated. This is understandable, as we should expect more samples in the

tails as the number of scenarios increases.

The desired degree of matching the distributions depends on the decision model in

which the scenarios will be used. For example, if we are to apply a mean-variance model

then the accuracy of match at the tails will not make any difference, as long as the first two

marginal moments and the correlations are matched. A close match of the tails becomes

relevant for the CVaR model which is concerned with the tail of the portfolio’s return

distribution.

The match of the marginal distributions of the random variables is illustrative. Yet, it is

not sufficient, even though the generated scenario sets also match the desired correlations

as well. We need to establish that the portfolio optimization model produces stable results

regardless of the specific scenario set generated in any given run—i.e. that it is stable with

respect to sample. Evidently, scenario sets of sufficiently large size are needed to ensure

�e Whole CDF Detail of the Lower Tail
max
0.99
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0.60
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1000 sc.
2500 sc.
5000 sc.

Return Return
0.15 0.2 0.250.10–0.1–0.2 –0.15 –0.05–0.1–0.2

FIGURE 15.1 Match of the distribution function for the US stock index. Comparison of the distribution

function for the monthly returns of the US stock index in the benchmark (data) and in generated scenarios sets

of different size. The scale of the vertical axis is not linear, the two outer intervals are prolonged.
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such stability. We need to test jointly the scenario generation method and the

optimization model in order to verify that the scenario generation method does not

cause instability of the solutions.

15.3.2.2 Joint stability test of scenario generation and the CVaR model We generate 25 different

scenario sets of a given size, each matching the moments and correlations of the benchmark

distribution. We solve the optimization model with each scenario set and record the

optimal portfolio composition and the expected portfolio return. The confidence level in

all tests is a � 0.95; thus, CVaR is the expected return for the 5) worst scenarios. The

bound on CVaR is q � �1). As the constraint (15.1f) is always active, the CVaR of

portfolio returns is always at its minimal value (�1)) at the optimal solution; thus, the

expected excess loss over the 5) worst scenarios is 1).

As stochastic programs tend to have multiple optimal or near-optimal solutions, we

study the stability in terms of the optimal value; we do not compare the optimal portfolio

compositions. We then simulate all the solutions on the benchmark distribution and

record the out-of-sample values of both the expected return and CVaR.

As in Kaut and Wallace (2007) we examine two types of stability:

In-sample stability: The solutions should not vary across scenario sets of the same

size. We examine the in-sample variation of the optimal values (expected return)

across the 25 scenario sets of a given size; ideally these should be equal.

Out-of-sample stability: We examine the variation of the expected portfolio returns

and CVaR values obtained when the solutions are simulated on the benchmark

distribution. These out-of-sample values should ideally be equal for all scenario sets.

They should also be equal to the in-sample values.

The two notions of stability are not equivalent. We can have in-sample stability without

out-of-sample stability. Consider, for example, a case in which all the scenario sets are

identical but incorrect in comparison to the benchmark. On the other hand, we can have

alternative scenario sets for which the model yields the same optimal solution. Then the

in-sample objective values could differ for different scenario sets, but the out-of-sample

values would be equal.

Verifying out-of-sample stability in terms of a benchmark indicates that the model

yields robust solutions that do not vary with respect to sample. This is essential in this

study as we need to ensure that the variations in the solutions that are observed in the tests

of the next section are caused by the variations in the statistics of the inputs, and not by

instability with respect to sample. Hence, the purpose of our tests is to assess whether we

can achieve both types of stability.

Results of the tests are depicted in Figure 15.2. We see that as we increase the number of

scenarios to around 5000 we indeed achieve both in-sample and out-of-sample stability.

Thus, the scenario generation method is effective, in the sense that it does not cause

instability in the solutions of the CVaR model.
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15.4 SENSITIVITY TESTS OF THE CVAR MODEL

This section studies the sensitivity of the CVaR model with respect to mis-specifications in

the statistics of stochastic parameters. Again we need a benchmark as a reference. Here we

calibrate the scenario generation method using the statistical properties estimated from

historical market data, as reported in Tables 15.A1 and 15.A2 of Appendix 15.A; all

scenario sets in the following tests are generated so as to match these target statistics. First,

we generate a benchmark with 20,000 scenarios. This scenario set is sufficiently large

(according to the findings of the previous section), to ensure both in-sample and out-of-

sample stability of the solutions, while it is still easily solvable so as to trace the reference

efficient frontier. The efficient frontier, depicting the tradeoff between expected portfolio

return and the CVaR risk metric, is obtained by repeatedly solving the parametric

optimization model for different allowable limits q on CVaR.

To interpret the results of the tests, we must understand the source of differences

between the in-sample and out-of-sample expected return of a given portfolio. If the

portfolio is invested solely in domestic assets, the expected return would depend only on

the portfolio composition and the means (expected values) of asset returns. The

contribution of a foreign asset, however, on the portfolio’s return depends on the product

of the asset return (in its local currency) and the change of the exchange rate to the

reference currency. When foreign investments are present in a portfolio, the return

depends on products of random variables; hence, the expected portfolio return depends
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FIGURE 15.2 Stability of the CVaR model with respect to the exogenous benchmark. The horizontal axis

shows the CVaR value, the vertical axis the expected portfolio return (monthly).
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not only on the means of the random variables, but also on their covariances. Thus, for

a given portfolio, the in-sample and the out-of-sample expected portfolio returns would

be equal only if the random variables have the same means, standard deviations and

correlations in the respective scenario sets (i.e. the test set and the benchmark). This

condition is satisfied by construction in our scenario generation method as the random

variables have matching moments and correlations in the benchmark and in the test sets.

Hence, a portfolio has the same in-sample and out-of-sample expected return, but its

CVaR value is different when it is simulated on the benchmark scenario set in comparison

to its value on a test set.

15.4.1 Determining a Sufficient Number of Scenarios

Before proceeding to the sensitivity tests, we verify that we employ sufficiently large

scenario sets in our tests to ensure stability with respect to sample. That is, we must ensure

that variations observed in the model’s results stem from changes in the statistical

properties of the stochastic inputs and not from insufficiency of the scenario test sets. In

the tests of Section 15.3.2 we found that at least 5000 scenarios were needed to attain both

in-sample and out-of-sample stability to an acceptable level. As the benchmark is now

different we repeat the same tests here; the statistics of both the benchmark as well as the

test sets in this section were estimated from time series of market data. The results of the

tests are summarized in Figure 15.3. Again, we observe that we need at least 5000 scenarios

to ensure adequate stability of the CVaR model.

Some comments on the figures follow.

� The in-sample results always lie on a vertical line, as the CVaR value is always equal to

its minimal allowable limit q at the optimal solution. The range of this line indicates

the in-sample variation of expected return with respect to scenario sets of a given size.

� As the in-sample values are computed on the respective scenario sets—and not the

benchmark—they can cross the reference efficient frontier that is generated using the

benchmark.
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FIGURE 15.3 Stability of CVaR model with respect to the number of scenarios. The horizontal axis shows the

CVaR value, the vertical axis the expected portfolio return (monthly).
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� Because the random variables have the same moments and correlations in the test sets

and in the benchmark, the in-sample and the out-of-sample expected portfolio returns

are the same for a given portfolio, as we explained at the start of this section. Only the

CVaR values of a portfolio change when it is simulated on the benchmark scenario set.

Table 15.1 presents measures of variation of expected portfolio returns for tests using

scenario sets of increasing size. Variations in expected return decrease monotonically with

increasing number of scenarios; this is a necessary consistency check.

15.4.2 Effects of Mis-Specifications in Statistical Properties

In this section we assess the sensitivity of the CVaR model with respect to mis-

specifications in the statistical properties of the stochastic inputs. Controlled errors are

systematically introduced to the target statistics (first four moments and correlations) of

the random variables at the scenario generation phase. Multiple scenario test sets are then

generated to match the perturbed statistical properties. Similar tests for the mean-variance

model are presented in Kallberg and Ziemba (1984) and Chopra and Ziemba (1993).

We quantify the induced errors by means of the following approach. We compute the

moments and correlations of the random variables based on subsets of our data set, using a

moving time window of half the size of the available time series. Thus, we obtain a series of

plausible estimates for the moments and correlations of the random variables. For each

statistic, we take the interval from the minimal to the maximal estimated value which we call

the variation interval for the corresponding statistic. These variation intervals for moments

and correlations are reported in Tables 15.A3 and 15.A4 in Appendix 15.A. We term the

value of the respective statistic, calculated on the basis of the entire data set, the true value.

We define a d-percent error in a statistical property as

true value þ e
d

100
length ðvariation interval Þ; ð15:2Þ

where o is a random number from the uniform distribution on the interval [�1, 1]. With

this definition, the average absolute error is

1

2

d

100
length ðvariation interval Þ:

Note that this is different from the corresponding definition in Chopra and Ziemba

(1993). There, the d-percent error was defined as true valueð1þ eðd=100ÞÞ; e 2 N ð0; 1Þ.
If we have a statistic (e.g. skewness or correlation) with a true value equal to zero, then this

TABLE 15.1 Standard Deviation and Range of Out-of-Sample Expected Portfolio Returns

# of scenarios 250 500 1000 2500 5000 10000

Standard deviation 0.010) 0.007) 0.005) 0.002) 0.002) 0.001)
Range (max-min) 0.034) 0.026) 0.023) 0.009) 0.006) 0.003)
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statistic would never be changed if we introduced errors using the approach of Chopra

and Ziemba; variations of statistics with very small values would also be very small. For

this reason, we chose to calculate controlled errors by means of (15.2).

A potential problem when introducing random errors to statistical properties is that we

may specify a property, or a combination of properties, that is not feasible. For example,

we may end up with specifications that may violate the condition, kurt � 1 � skew2, or

we may specify a correlation matrix that is not positive definite. When this happens, we

simply discard these particular specifications.

To test the impact of mis-specifications in each statistic we generate 100 scenario sets

(with 5000 scenarios each) by randomly varying the value of the statistic. Every test

proceeds as follows.

i. For each random variable, perturb the selected statistic using (15.2).

ii. Generate a scenario set, matching the perturbed statistical properties.

iii. Solve the portfolio optimization model and record the expected portfolio return and

the value of CVaR at the optimal solution.

iv. Simulate the solution on the benchmark—which was generated with unperturbed

statistics—estimating the expected portfolio return and the value of CVaR.

15.4.2.1 Results of the sensitivity tests We ran tests for 10) and 25) errors (i.e. for d � 0.10

and 0.25). In the case of errors in marginal moments, we never obtained an infeasible

specification. In the case of 25) errors in correlations, however, many of the generated

correlation matrices were not positive definite, and were discarded and replaced. The

discarded cases resulted from samples that introduced the larger levels of errors, i.e.

o:91. As the large error instances were discarded, the effective errors in correlations in

this case are somewhat smaller.

The results of the tests with parameter settings a � 0.95 and q ��1.0) are shown in

Figures 15.4 and 15.5 for 10) and 25) errors, respectively. We observe that the larger

levels of error, in any statistic, have a discernibly higher impact on the expected portfolio

return. Estimation errors in the means clearly exhibit the highest impact on the solutions,

followed by errors in standard deviations.

To examine the effects of estimation errors at different levels of risk aversion, we

repeated the tests at different levels of the parameters a and q; the combination of these

parameters relates to the level of risk aversion. Increasing values of the percentile level a

refer to more extreme tails of the return distribution. The parameter q controls the

allowable mass in the tail of the distribution; thus, lower values of this parameter (in

absolute terms) constrain more tightly the size of the tail (beyond the percentile level

specified by a), and reflect higher risk aversion. Results of the tests are summarized in

Table 15.2.

Table 15.2 summarizes the impacts of estimation errors in statistics of the stochastic

inputs to the CVaR model. It reports the sample ranges of out-of-sample expected

(monthly) return estimates when errors were introduced to the respective statistics. For all

statistics, the impact of errors increases with the level of the error; the larger rate of

increase results from errors in the means, followed by errors in the standard deviations.
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We assess the impacts of estimation errors in statistics of the stochastic inputs in terms of

the variation they induce to the out-of-sample estimates of expected portfolio return.

We summarize our observations on the results as follows.

� In all tests, the CVaR model is most sensitive to errors in the means of the stochastic

inputs. The mean is by far the most important statistical property to estimate

accurately, as errors in the means of the random variables have the most significant

impact on the results—about 2 to 10 times higher than the effect of errors in any other

statistical property.

� After errors in the means, mis-specifications of standard deviations have the next most

important impact on the out-of-sample estimates of expected portfolio return —about

2 to 5 times lower than the impacts of the means. Next is the impact of estimation
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FIGURE 15.4 Stability of CVaR model with parameters a � 95); q � �1); 10) estimation errors in the

respective statistics. The horizontal axis shows the CVaR value, the vertical axis the expected monthly return.
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FIGURE 15.5 Stability of CVaR model with parameters a � 95); q � �1); 25) estimation errors in the

respective statistics. The horizontal axis shows the CVaR value, the vertical axis the expected monthly return.

The graph for errors in means has a bigger scale on the vertical axis.

TABLE 15.2 Sample Ranges (max–min) of Out-of-Sample Expected (Monthly) Portfolio Return Estimates

Caused by Estimation Errors in Statistics of the Stochastic Inputs

Benchmark expected

Range of out-of-sample expected return estimates

caused by estimation errors in respective statistics

a q return Mean Std dev. Skew Kurt Corr

10) error 95) �0.5) 0.601) 0.065) 0.035) 0.031) 0.024) 0.022)
95) �2.0) 0.782) 0.045) 0.025) 0.022) 0.020) 0.027)
99) �2.0) 0.707) 0.060) 0.034) 0.030) 0.022) 0.031)

25) error 95) �0.5) 0.601) 0.255) 0.073) 0.058) 0.039) 0.031)
95) �2.0) 0.782) 0.247) 0.058) 0.028) 0.016) 0.039)
99) �2.0) 0.707) 0.247) 0.057) 0.034) 0.036) 0.043)
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errors in values of skewness—about 2 to 9 times lower than the impacts of the

means—followed by the impact of errors in the estimates of kurtosis—about 3 to 12

times lower compared to the impacts of the means. The effects of estimation errors in

correlations are between those of the standard deviations and skewness.3

� Errors in the values of kurtosis have a detectable and non-negligible influence on the

results of the CVaR model, though their impact is lower in comparison to that of the

other statistics.

� For all marginal moments, the effect of estimation errors seems to increase for more

risk averse settings of the model’s parameters, i.e. for smaller allowable tails (as

controlled by the parameter q).

� The mean and the correlations are the only statistics whose mis-specifications result in

portfolios that deviate significantly from the efficient frontier. Errors—especially when

they are relatively small—in the other statistics seem to result in portfolios with

different CVaR values, which are, however, still close to the efficient frontier.

The results demonstrate that estimation errors in higher-order moments of stochastic

inputs do indeed affect in measurable ways portfolio management models that use the

CVaR risk measure. The results imply that it pays to devote care and effort so as to

accurately estimate the values of higher-order moments when employing risk measures

concerned with the tails of the return distribution in portfolio management models.

15.5 CONCLUSIONS

We tested a risk management model for international portfolios based on the CVaR risk

metric. We employed a scenario generation procedure based on principles of moment

matching. We showed that this scenario generation method is effective and ‘unbiased,’ in

the sense that it can closely reproduce the characteristics of a desired distribution and it

leads to stable solutions of the portfolio optimization model.

We investigated the sensitivity of the CVaR model with respect to errors introduced to

the statistical properties of stochastic inputs, as represented by discrete scenario sets. The

statistical properties investigated include the first four marginal moments and the

correlations of the random variables (assets returns and spot currency exchange rates).

The tests quantify the relative effects of errors in these statistics on the model’s results. The

results confirm that the mean value of the random variables is the most important statistic

to accurately estimate; the CVaR model exhibits high sensitivity to mis-specifications of

the means. But, unlike the mean-variance model, the CVaR model shows sensitivity to

errors in the estimates of higher-order moments as well. Errors in the standard deviation,

correlations and skewness of the random variables have considerable impact on the

model’s results, in this order of importance. Estimation errors in the values of kurtosis

have lesser, yet non-negligible, effects.

3 We note that the effects of mis-specifications in correlation values at 25) errors are underestimated. In these tests,
samples with the larger levels of errors in correlations yielded non-positive definite correlation matrices and were
discarded. Hence, the effective estimation errors in this case are somewhat lower, and the corresponding effects are
underestimated.
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When assessing the potential effects of estimation errors in statistical properties, we

should have a sense of the magnitude of such errors in practice. Much more care is

exercised in generating reliable estimates of the means, variances and covariances of

random financial variables, and more effective tools are available for their estimation, in

comparison to higher-order moments. This is because the mean-variance model continues

to be the primary paradigm for portfolio management, and because the importance of the

first two moments is well understood. The need for accurate estimates of higher-order

moments is often overlooked as their potential impact in portfolio management models is

not as well understood and appreciated. This study sheds some light in this respect, by

indicating the relative importance of accurate estimates of higher-order moments for

random variables in risk management models that employ risk measures tailored to

control the tails of the portfolio’s return distribution.
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APPENDIX 15A: PROPERTIES OF THE DATA

Tables 15.A1 and 15.A2 present the first four marginal moments and the correlation

matrix of the monthly differentials in the historical market data of the random variables

(returns of the stock and bond indices, as well as of the spot currency exchange rates).

These statistics constitute the targets matched in the scenario sets used in the empirical

tests of Section 15.4. Note that the random variables have skewness ranging from �1.00

to 1.36 and kurtosis ranging from 2.78 to 7.39. The historical observations indicate that

the random variables in the international portfolio management problem are not

normally distributed—Jarque�Berra (1980) tests reject the normality hypothesis for

these data (see Topaloglou et al. 2008). This was a primary factor behind modelling

choices in this study. That is,

(1) we adopted the CVaR risk measure as it is suitable to accommodate higher-order

moments and measures risk in the tail of the portfolio’s return distribution;

(2) we employed a scenario generation method based on principles of moment-

matching as it provides full control of the moments in the generation of scenarios.

Tables 15.A3 and 15.A4 present the lengths of the variation intervals for the moments

and correlations. The variation intervals are defined and used in the model sensitivity tests

in Section 15.4.2.

TABLE 15.A1 Moments of Monthly Differentials of the Historical Market Data

Stk.USA Stk.UK Stk.Ger Stk.Jap Bnd1.USA Bnd7.USA Bnd1.UK Bnd7.UK

Mean 0.01296 0.01047 0.01057 �0.00189 0.00553 0.00702 0.00718 0.00894

SD 0.04101 0.04150 0.05796 0.06184 0.00467 0.01620 0.00688 0.01884

Skewness �0.47903 �0.19051 �0.47281 0.04768 �0.18341 �0.07482 1.36036 0.12127

Kurtosis 3.76519 3.11399 4.11970 3.62119 2.77801 3.23974 7.38764 3.52858

Bnd1.Ger Bnd7.Ger Bnd1.Jap Bnd7.Jap ExR.UK ExR.Ger ExR.Jap

0.00535 0.00671 0.00318 0.00622 �0.00077 �0.00152 0.00179

0.00455 0.01368 0.00506 0.01681 0.02801 0.03021 0.03607

0.55214 �0.87820 0.54803 �0.53562 �0.99772 �0.25505 1.09286

5.13927 4.42483 4.28775 5.23964 6.51592 3.80887 6.75996
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TABLE 15.A2 Correlations of Monthly Differentials of the Historical Market Data

Stk.USA Stk.UK Stk.Ger Stk.Jap Bnd1.USA Bnd7.USA Bnd1.UK

Stk.UK 0.6651

Stk.Ger 0.5573 0.5911

Stk.Jap 0.3568 0.3601 0.3429

Bnd1.USA 0.1965 0.0844 �0.0578 �0.0105

Bnd7.USA 0.2656 0.1150 0.0027 0.0205 0.8768

Bnd1.UK 0.0853 0.4014 0.0276 0.0018 0.3600 0.3176

Bnd7.UK 0.2258 0.5075 0.1714 0.0392 0.4314 0.4815 0.8175

Bnd1.Ger 0.0556 0.2642 0.0536 0.0081 0.3466 0.3574 0.6121

Bnd7.Ger 0.1687 0.3066 0.2326 0.0408 0.4385 0.5453 0.4639

Bnd1.Jap 0.0557 0.0814 �0.0005 0.0226 0.2513 0.2186 0.3274

Bnd7.Jap 0.0463 0.0493 0.0140 �0.0029 0.2831 0.3235 0.1815

ExR.UK 0.0247 �0.2177 �0.1062 0.1162 0.2422 0.1911 �0.2811

ExR.Ger �0.0643 �0.2263 �0.2651 �0.0828 0.2716 0.2129 �0.1429

ExR.Jap 0.1126 0.0945 �0.1414 0.0475 0.1319 0.0975 0.0927

Bnd7.UK Bnd1.Ger Bnd7.Ger Bnd1.Jap Bnd7.Jap ExR.UK ExR.Ger

Bnd1.Ger 0.5688

Bnd7.Ger 0.6627 0.7779

Bnd1.Jap 0.2645 0.4008 0.2853

Bnd7.Jap 0.2100 0.3025 0.3093 0.7827

ExR.UK �0.1588 �0.2227 �0.0948 0.0145 0.0262

ExR.Ger �0.1332 �0.0638 �0.0598 0.1021 0.1375 0.6949

ExR.Jap 0.0680 0.0825 �0.0072 0.0334 �0.0122 0.2680 0.4236

TABLE 15.A3 Lengths of the Variation Intervals of Moments

Stk.USA Stk.UK Stk.Ger Stk.Jap Bnd1.USA Bnd7.USA Bnd1.UK Bnd7.UK

Mean 0.00946 0.00764 0.01836 0.01055 0.00166 0.00435 0.00351 0.00591

SD 0.02035 0.01217 0.02153 0.02321 0.00171 0.00293 0.00485 0.00952

Skewness 1.62256 0.8916 1.0513 0.54337 0.79795 0.62041 2.32511 0.78578

Kurtosis 3.87492 1.82066 2.56178 0.99143 1.2739 0.891 7.2035 1.04044

Bnd1.Ger Bnd7.Ger Bnd1.Jap Bnd7.Jap ExR.UK ExR.Ger ExR.Jap

0.00366 0.00284 0.00433 0.00487 0.0057 0.0107 0.01108

0.00174 0.00262 0.00249 0.00351 0.01533 0.00954 0.0132

1.18387 0.55199 1.21049 1.48868 1.62235 1.22593 1.55678

3.12805 2.33646 2.18066 5.13353 6.35287 2.086 4.0713
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TABLE 15.A4 Lengths of the Variation Intervals of Correlations

Stk.USA Stk.UK Stk.Ger Stk.Jap Bnd1.USA Bnd7.USA Bnd1.UK

Stk.UK 0.28245

Stk.Ger 0.41613 0.1814

Stk.Jap 0.33692 0.27907 0.38272

Bnd1.USA 0.48044 0.43639 0.3613 0.21907

Bnd7.USA 0.43832 0.44669 0.37637 0.28547 0.07029

Bnd1.UK 0.25762 0.63827 0.47922 0.29948 0.32842 0.3272

Bnd7.UK 0.18449 0.53845 0.3226 0.18788 0.30047 0.29125 0.10638

Bnd1.Ger 0.32837 0.53526 0.44861 0.20951 0.23945 0.21754 0.23587

Bnd7.Ger 0.28289 0.4632 0.52714 0.18048 0.25918 0.25712 0.1254

Bnd1.Jap 0.39658 0.30524 0.38022 0.47467 0.35529 0.34925 0.42718

Bnd7.Jap 0.53725 0.42657 0.43082 0.53627 0.1201 0.19085 0.34086

ExR.UK 0.32612 0.2294 0.23331 0.34925 0.37893 0.34466 0.48376

ExR.Ger 0.34274 0.23943 0.30395 0.41129 0.4128 0.42665 0.49304

ExR.Jap 0.35474 0.3389 0.22861 0.29166 0.23326 0.21832 0.19624

Bnd7.UK Bnd1.Ger Bnd7.Ger Bnd1.Jap Bnd7.Jap ExR.UK ExR.Ger

Bnd1.Ger 0.18615

Bnd7.Ger 0.19871 0.08346

Bnd1.Jap 0.39379 0.41627 0.31011

Bnd7.Jap 0.39649 0.35563 0.26651 0.11535

ExR.UK 0.41516 0.57385 0.39195 0.26009 0.36195

ExR.Ger 0.43402 0.33271 0.3127 0.22496 0.23136 0.34187

ExR.Jap 0.18262 0.24788 0.25119 0.44653 0.5184 0.32304 0.27371
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CHAPTER 16

Stress Testing for VaR and CVaR

JITKA DUPAČOVÁ and JAN POLÍVKA
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16.1 STRESS TESTING AND CONTAMINATION

S TRESS TESTING IS A TERM used in financial practice without any generally accepted

definition. It appears in the context of quantification of losses or risks that may

appear under special, mostly extremal circumstances (Kupiec 2002). Such circumstances

are described by certain scenarios which may come from historical experience (a crisis

observed in the past)—historical stress test, or may be judged to be possible in the future

given changes of macroeconomic, socioeconomic or political factors—prospective stress

test, etc. The performance of the obtained optimal decision is then evaluated along these,
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possibly dynamic, scenarios or the model is solved with an alternative input. Stress testing

approaches differ among institutions and also due to the nature of the tested problem and

the way in which the stress scenarios have been selected. In this chapter, we focus on the

stress testing of two risk measures, VaR and CVaR, giving the ‘test’ a more precise

meaning. This is made possible by the exploitation of parametric sensitivity results and

the contamination technique.

The contamination approach was initiated in mathematical statistics as one of the tools

for the analysis of the robustness of estimators with respect to deviations from the

assumed probability distribution and/or its parameters. It goes back to von Mises and the

concepts are briefly described, for example, in Serfling (1980). In stochastic programming,

it was developed in a series of papers; see, for example, Dupačová (1986, 1996) for results

applicable to two-stage stochastic linear programs. For application of contamination

bounds, it is important that the stochastic program is reformulated as

min
x2X

Fðx; PÞ :¼
Z

O
f ðx;oÞPðdoÞ; ð16:1Þ

with X independent of P.

Via contamination, robustness analysis with respect to changes in the probability

distribution P is reduced to a much simpler analysis with respect to scalar parameter l.

Assume that (16.1) is solved for probability distribution P. Denote 8 (P) the optimal value

and X�ðPÞ the set of optimal solutions. The possible changes in the probability

distribution P are modeled using contaminated distributions Pl,

Pl :¼ð1� lÞP þ lQ; l 2 ½0; 1
; ð16:2Þ

with Q another fixed probability distribution. Limiting the analysis to a selected direction

Q�P only, the results are directly applicable, but they are less general than quantitative

stability results with respect to arbitrary (but small) changes in P, summarized, for

example, in Römisch (2003).

The objective function in (16.1) is linear in P, hence

Fðx; lÞ :¼
Z

O
f ðx;oÞPlðdoÞ ¼ ð1� lÞFðx;PÞ þ lFðx;QÞ

is linear in l. Suppose that stochastic program (16.1) has an optimal solution for all

considered distributions Pl, 05l51, of the form (16.2). Then the optimal value function

jðlÞ :¼ min
x2X

Fðx; lÞ

is concave on [0, 1], which implies its continuity and the existence of directional

derivatives on (0, 1). Continuity at the point l � 0 is a property related to the stability

results for the stochastic program in question. In general, one needs a non-empty,

bounded set of optimal solutions X�ðPÞ of the initial stochastic program (16.1). This
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assumption, together with the stationarity of derivatives dFðx; lÞ=dl¼ Fðx;QÞ � Fðx;PÞ,
is used to derive the form of the directional derivative,

j0ð0þÞ ¼ min
x2X�ðPÞ

Fðx;QÞ � jð0Þ; ð16:3Þ

which enters the upper bound for the optimal value function 8 (l):

jð0Þ þ lj0ð0þÞ � jðlÞ � ð1� lÞjð0Þ þ ljð1Þ; l 2 ½0; 1
; ð16:4Þ

for details, see Dupačová (1986, 1996) and references therein.

If x+ (P) is the unique optimal solution of (16.1), j0ð0þÞ ¼ Fðx�ðPÞ;QÞ � jð0Þ, i.e. the

local change in the optimal value function caused by a small change in P in direction Q�P is

the same as that of the objective function at x+(P). If there are multiple optimal solutions,

each of them leads to an upper bound 8?(0�)5F(x(P), Q) �8 (0), xðPÞ 2 X�ðPÞ.
Contamination bounds can then be written as

ð1� lÞj ðPÞ þ lFðxðPÞ;QÞ � j ðPlÞ � ð1� lÞj ðPÞ þ ljðQÞ; ð16:5Þ

valid for an arbitrary optimal solution xðPÞ 2 X�ðPÞ and for all l �[0,1].

Contamination bounds (16.4) and (16.5) help to quantify the change in the optimal

value due to the considered perturbations of (16.1). They exploit the optimal value 8(Q)

of the problem solved under the alternative probability distribution Q and the expected

performance F(x(P), Q) of the optimal solution x(P) obtained for the original probability

distribution P in situations where Q applies. Note that both of these values appear under

the heading of stress testing methods.

The contaminated probability distribution Pl may also be understood as a result of

contaminating Q by P. Provided that the set of optimal solutions x(Q) of the problem

minx2X Fðx;QÞ is non-empty and bounded, an alternative upper bound may be

constructed in a similar way. Together with the original upper bound from (16.5), one

may use a tighter upper bound

min
n
ð1� lÞjðPÞ þ lFðxðPÞ;QÞ; ljðQÞ þ ð1� lÞFðxðQÞ;PÞ

o
; ð16:6Þ

for 8 (l).

The contamination bounds are global, valid for all l �[0,1]. They are suitable for post-

optimality analysis, out-of-sample analysis and stress testing in various disparate

situations. For example, the choice of a degenerated distribution Q ¼ dfo�g may

correspond to an additional stress or out-of-sample scenario v+ or to increasing

probability of an already considered scenario v+. Contamination bounds (16.4), (16.5)

and (16.6) then provide information concerning the influence of including an additional

scenario on the optimal results, etc. For stability studies with respect to small changes in

the underlying probability distribution P, small values of the contamination parameter l

are typical. The choice of l may reflect the degree of confidence in the expert’s opinion,
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represented as the contaminating probability distribution Q, or the wish to obtain

equiprobable scenarios, atoms of the contaminated distribution Pl, and so on.

Contamination bounds were applied, inter alia, in Dupačová et al. (1998) for post-

optimality analysis for multi-period two-stage bond portfolio management problems with

respect to additional scenarios. In the present chapter they will be exploited for the stress

testing of various optimization problems related to risk measures CVaR and VaR. There

are results on the stability of optimal solutions of contaminated stochastic programs and

also results for the case where the set X depends on P. They are not ready for direct

application, but possibilities will be explained in the context of VaR.

Section 16.2 includes definitions of CVaR and VaR and the basic formulae from

Rockafellar and Uryasev (2001), which open up the possibility of applying the

contamination technique to the stress testing of these risk measures with respect to

changes in the probability distribution. Section 16.3 is devoted to the stress testing of

CVaR and of its optimal value. The results are illustrated numerically. Finally, the

problems encountered in the exploitation of the contamination technique to CVaR-mean

return efficient solutions are explained.

Stress testing for VaR is substantially more complicated. This can be attributed to the

fact that VaR is one of the optimal solutions of an auxiliary optimization problem and that

its definition involves a probability constraint. Applicable contamination results can then

be obtained only under additional assumptions concerning the probability distribution P.

In Section 16.4 we present stress testing for parametric VaR with respect to changes in the

covariance matrix and with respect to an additional scenario. The section is concluded by

an illustrative result dealing with contamination of the non-parametric VaR.

16.2 BASIC FORMULAE

Let X � Rn be a non-empty, closed set of feasible decisions x, and v �VƒRm be a

random vector with probability measure P on V which does not depend on x. Denote

further

� g(x, v) the random loss defined on X � O,

� Gðx; P; vÞ :¼ Pfo : gðx;oÞ � vg the distribution function of the loss associated with a

fixed decision x 2 X , and

� a �(0,1) the selected confidence level.

Value at Risk (VaR) was introduced and recommended as a generally applicable risk

measure to quantify, monitor and limit financial risks, to identify losses that occur with an

acceptably small probability. There exist several slightly different formal definitions of VaR

that coincide for continuous probability distributions. Here, we shall also deal with VaR

for discrete distributions and we shall use the definition from Rockafellar and Uryasev

(2001).

The Value at Risk at confidence level a is defined as

VaRaðx; PÞ ¼ minfv 2 R: Gðx;P; vÞ � ag; ð16:7Þ
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and the ‘upper’ Value at Risk is

VaRþa ðx; PÞ ¼ inffv 2 R: Gðx; P; vÞ> ag:

Hence, a random loss greater than VaRa occurs with probability equal to (or less than)

1 � a. This interpretation is well understood in financial practice.

However, VaRa does not quantify the loss, it is a qualitative risk measure, and, in

general, it lacks the subadditivity property. (An exception is the elliptic distributions G

(Embrechts et al. 2002), of which the normal distribution is a special case.) Various

specific features and weak points of the recommended VaR methodology are summarized

and discussed, for example, in Dempster (2002) and in chapter 10 of Rachev and Mittnik

(2000). To solve these problems, new risk measures have been introduced; see, for

example, Acerbi and Tasche (2002). We shall exploit the results of Rockafellar and Uryasev

(2001) to discuss one of them, the Conditional Value at Risk, which may be linked to

integrated chance constraints (Klein Haneweld 1986), to constraints involving conditional

expectations (Prékopa 1973) and to the absolute Lorenz curve at point a (Ogryczak and

Ruszczyński 2002).

According to Rockafellar and Uryasev (2001), CVaRa, the Conditional Value at Risk at

confidence level a, is defined as the mean of the a-tail distribution of g(x, v), which, in

turn, is defined as

Gaðx; P; vÞ ¼ 0; for v < VaRaðx; PÞ;

Gaðx; P; vÞ ¼ Gðx; P; vÞ � a

1� a
; for v � VaRaðx; PÞ: ð16:8Þ

We shall assume below that g(x, v) is a continuous function of x for all v �V and

EPNg(x, v)N B�, 8x 2 X . For v �R, define

Faðx; v;PÞ :¼ v þ 1

1� a
EPðgðx;oÞ � vÞþ: ð16:9Þ

The fundamental minimization formula of Rockafellar and Uryasev (2001) helps to

evaluate CVaR for general loss distributions and to analyse its stability, including stress

testing.

Theorem 16.2.1 (Rockafellar and Uryasev 2001): As a function of v, Fa(x, v, P) is finite

and convex (hence continuous) with

minv Faðx; v;PÞ ¼ CVaRaðx;PÞ; ð16:10Þ
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and

arg min vFaðx; v;PÞ ¼ ½VaRaðx;PÞ;VaRþa ðx;PÞ
; ð16:11Þ

a non-empty compact interval (possibly one point only).

The auxiliary function Fa(x, v, P) is evidently linear in P and convex in v. Moreover, if

g(x, v) is a convex function of x, Fa(x, v, P) is convex jointly in (v, x). In addition,

CVaRa(x, P) is continuous with respect to a (Rockafellar and Uryasev 2001).

If P is a discrete probability distribution concentrated on v1, . . ., vS, with probabilities

ps � 0, s � 1, . . ., S, and x a fixed element of X , then the optimization problem (16.10)

has the form

min
v

v þ 1

1� a

X

s

psðgðx;osÞ � vÞþ
( )

; ð16:12Þ

and can be further rewritten as

min
v; y1;...;yS

v þ 1

1� a

X

s

psys : ys � 0; ys þ v � gðx;osÞ; 8s

( )
:

There are various papers that discuss the properties of VaR and CVaR and the relations

between them; see, for example, Dempster (2002) and Pflug (2001). We shall focus on

contamination-based stress testing for these two risk measures.

16.3 STRESS TESTING FOR CVAR

For a fixed vector x we now consider a stress test of CVaRa(x, P), i.e. of the optimal value

of (16.10). Let Q be the stress probability distribution. We apply the contamination

technique and proceed as explained in Section 16.1. According to theorem 16.2.1, Fa(x, v,

P) is the corresponding objective function whose minimum equals CVaRa(x, P). Evidently,

the contaminated objective function

Faðx; v; lÞ :¼Faðx; v; PlÞ

is linear in l and convex in v. Its optimal value CVaRa(x, l): � CVaRa(x, Pl) is concave in

l on [0, 1] and the set of optimal solutions (16.11) of the initial problem (16.10) is

bounded. Hence, the derivative of CVaRa(x, l), i.e. of the optimal value of the

contaminated problem (16.10), at l �0� is

d

dl
CVaRaðx; 0þÞ ¼ min

v
Faðx; v;QÞ � CVaRaðx;PÞ; ð16:13Þ

with minimization carried over the set (16.11) of optimal solutions of (16.10) formulated

and solved for the probability distribution P. An upper bound for the derivative is
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obtained when minimization over (16.11) is replaced by the evaluation of Fa(x, v, Q) at an

arbitrary optimal solution v+(x, P) of (16.10), for example at v�ðx; PÞ ¼ VaRaðx;PÞ.
The contamination bounds for CVaRa(x, l) for a fixed x follow from the concavity of

CVaRa(x, l) with respect to l:

ð1� lÞCVaRaðx; 0Þ þ lCVaRaðx; 1Þ

� CVaRaðx; lÞ � CVaRaðx; 0Þ þ l
d

dl
CVaRaðx; 0þÞ

¼ ð1� lÞCVaRaðx; 0Þ þ lmin
v

Faðx; v;QÞ; ð16:14Þ

for all 05l51. The combined upper bound (16.6) can be constructed in a similar way.

16.3.1 Stress Testing of the Scenario-Based Form of CVaR

Consider first an application of the contamination bounds to the stress testing of the

scenario-based form (16.12) of CVaR. Let P be a discrete probability distribution

concentrated on v1, . . ., vS with probabilities ps, s�1, . . ., S, x a fixed element of X and Q

a discrete probability distribution carried by S? stress or out-of-sample scenarios vs,

s�S�1, . . ., S�S?, with probabilities ps, s�S�1, . . ., S�S?. Both CVaRa(x, P) and

CVaRa(x, Q) can be obtained by solving the corresponding linear programs (16.12).

Denote by v+(x, P) an optimal solution of (16.12) for fixed x 2 X and for distribution P.

Bounds for CVaRa for the contaminated probability distribution Pl carried by the

initial scenarios vs, s�1, . . ., S, with probabilities (1�l)ps, s� 1, . . ., S, and by the stress

scenarios vs, s�S�1, . . ., S�S?, with probabilities lps , s�S�1, . . ., S�S?, have the

form

ð1� lÞCVaRaðx;PÞ þ lCVaRaðx;QÞ � CVaRaðx; PlÞ
� ð1� lÞCVaRaðx;PÞ þ lFaðx; v�ðx; PÞ;QÞ
¼ Faðx; v�ðx; PÞ; PlÞ; ð16:15Þ

and are valid for all l �[0,1]; compare with (16.13) and (16.14).

In the special case of a degenerate probability distribution Q carried only by one scenario

v+, CVaRaðx;QÞ ¼ gðx;o�Þ and

Faðx; v�ðx;PÞ;QÞ ¼ v�ðx;PÞ þ 1

1� a
ðgðx;o�Þ � v�ðx;PÞÞþ:

The difference between the upper and lower bounds in (16.14) is

l½Faðx; v�ðx;PÞ;QÞ � CVaRaðx;QÞ


¼ l v�ðx;PÞ þ 1

1� a
ðgðx;o�Þ � v�ðx;PÞÞþ � gðx;o�Þ

� �
:
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In typical applications, the ‘stress test’ is reduced to evaluating the performance of the

already obtained optimal solution along the new scenarios, i.e. the evaluation of

Faðx; v�ðx;PÞ;QÞ, or obtaining the optimal value such as CVaRaðx;QÞ for Q carried by

the stress scenarios. Contamination bounds (16.15) exploit these criteria simultaneously

to quantify the influence of the stress scenarios, also taking into account the probability of

their occurrence. As a result, they provide a genuine stress test.

16.3.2 Sensitivity Properties of Optimal Solutions

To derive the sensitivity properties of the optimal solutions of (16.10) for fixed x, assume

that the optimal solution of (16.10) is unique, v+(x, P); hence, it equals VaRaðx;PÞ.
This also simplifies the form of the derivative of CVaRa(x, l) in (16.13) to

Faðx;VaRaðx;PÞ;QÞ�CVaRaðx; PÞ.
The general results concerning the properties of optimal solutions for contaminated

distributions (see, for example, Dupačová 1986, 1987 and Shapiro 1990) require

additional properties concerning the smoothness of the objective function (16.9) in

(16.10). To this end we assume that the probability distribution function G(x, P; v) is

continuous, with a positive, continuous density p(x, P; v) on a neighborhood of the

unique optimal solution v�ðx; PÞ ¼ VaRaðx; PÞ of (16.10).

For fixed x 2 X we denote Z :¼ gðx;oÞ, v :¼ v�ðx; PÞ and use definition (16.9) of

Fa(x, v, P). Except for v � h, the derivative ðd=dvÞðZ� vÞþ exists and

d

dn
ðZ� vÞþ ¼ � 1

2
1þ Z� v

jZ� vj

	 

:

Thanks to the assumed properties of the distribution function G(x, P; v), the expected

value

EP

d

dn
ðZ� vÞþ ¼ �PðZ> vÞ ¼ �1þ Gðx;P; vÞ;

and

d

dn
Faðx; v; PÞ ¼ 1þ Gðx;P; vÞ � 1

1� a
:

The optimality condition ðd=dnÞFaðx; v;PÞ ¼ 0 provides, as expected,

VaRaðx; PÞ ¼ v�ðx; PÞ ¼ Gðx; PÞ�1ðaÞ:

The second-order derivative ðd2=dn2ÞFaðx; v; PÞ ¼ [p(x, P ; v)u(1 � a)] is positive on a

neighborhood of v+(x, P). Direct application of the implicit function theorem to the

system
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d

dn
Faðx; v; PlÞ ¼ 0

implies the existence and uniqueness of optimal solution v�ðx; lÞ :¼ v�ðx;PlÞ of the

contaminated problem (16.10) for l � 0 sufficiently small, and the form of its derivative

d

dl
v�ðx; PlÞ ¼

d

dl
VaRaðx;PlÞ ¼

a� Gðx;Q; v�ðx; PÞÞ
pðx; P; v�ðx; PÞÞ

; ð16:16Þ

for l � 0�. Here, G(x, Q ; v) denotes the loss distribution function under probability

distribution Q. Note that, except for the existence of the expected values, no further

assumptions are required concerning Q. Related results for absolutely continuous

probability distributions P and Q can be found, for example, in Rau-Bredow (2004).

16.3.3 Optimization Problems with the CVaRaðx; PÞ Objective Function

For the next step, let us briefly discuss optimization problems with the CVaRa(x, P)

objective function, which provide the optimal (with respect to the CVaRa(x, P) criterion)

solutions

minimize CVaRaðx; PÞ on a closed set ; 6¼ X � Rn:

Using (16.10), the problem is

min
x;v

Faðx; v;PÞ; x 2 X : ð16:17Þ

For X convex, independent of P, and for loss functions g(�, v) convex for all v, Fa(x, v,

P) is convex in (x, v) and standard stability results apply. Moreover, if P is the discrete

probability distribution considered in Section 16.3.1, g(�, v) a linear function of x, say

gð�;oÞ ¼ x>o, and X convex polyhedral, we obtain the linear program

min
v; y1;...;yS ; x

�
v þ 1

1� a

X

s

psys :ys � 0; x>os � v � ys � 0; 8s; x 2 X
�
: ð16:18Þ

Let ðv�CðPÞ; x�CðPÞÞ be an optimal solution of (16.17) and denote by 8C(P) the optimal

value. To obtain contamination bounds for the optimal value of (16.17) with P

contaminated by stress probability distribution Q, it is sufficient to assume a compact

set X , e.g. X ¼ fx 2 Rn :
P

i xi ¼ 1; xi � 0;8ig. The bounds follow the usual pattern

(compare with (16.15)):

ð1� lÞjCðPÞ þ ljCðQÞ � jCðPlÞ � ð1� lÞjCðPÞ þ lFaðx�CðPÞ; v�CðPÞ;QÞ: ð16:19Þ

To apply them, one has to evaluate Faðx�CðPÞ; v�CðPÞ;QÞ and solve (16.17) with P replaced

by the stress distribution Q.
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16.3.4 An Illustrative Example

The instruments used in the portfolio management problem (16.18) are the total return

indices given in Table 16.1.

The portfolio limits were set in all cases to xi 5 0.3, hence,

X ¼ x 2 Rn :
X

i

xi ¼ 1; 0 � xi � 0:3; 8i

( )
:

Assume that the probability distribution P is the distribution of losses under ‘normal’

conditions, whereas probability distribution Q refers to the situation when adverse

conditions prevail on the world market. Both P and Q are distributions of monthly

percentage losses to assets i�1, . . . , 12, which were converted into the home currency

(EUR) using the exchange rate mid. We do not consider transaction costs.

The following approach, resembling an historical simulation, was taken to construct

discrete distributions P and Q. For asset i�1 (US asset market returns) the percentage

returns (not losses) in the home currency were computed. We took the empirical 25)
quantile to be the cut-off value for all returns of asset 1. The returns below the cut-off

value (and all corresponding returns of other assets on the same date) are attributed to a

period of adverse conditions prevailing on the market and hence this data set serves as the

input for the approximation of the distribution Q. The rest of the data sample was used

for fitting the distribution P.

The two discrete probability distributions P, Q approximating the true continuous

distribution of assets’ percentage losses in the home currency were constructed using the

method of Høyland et al. (2003). We prescribed that both discrete approximations P, Q

were carried by 5184 equiprobable scenarios. The empirical means, variances, covariances,

skewnesses and kurtoses computed separately from the two data samples enter the

scenario fitting procedure for P and Q.

After solving the two CVaR minimization problems with a�0.99, contamination bounds

(16.19) sharpened according to (16.6), were constructed. The results of contamination are

TABLE 16.1 Portfolio Assets (MSCI and JP Morgan Indexes)

Asset Acronym Description

MSCI Gross Return index US, USD 1 Stock index

MSCI Gross Return index UK, USD 2 Stock index

MSCI Gross Return index Germany, USD 3 Stock index

MSCI Gross Return index Japan, USD 4 Stock index

US Government Bond index (1�/3 y mat), USD 5

US Government Bond index (7�/10 y mat), USD 6

UK Government Bond index (1�/3 y mat), GPB 7

UK Government Bond index (7�/10 y mat), GPB 8

Germany Government Bond index (1�/5 y mat), EUR 9

Germany Government Bond index (7� y mat), EUR 10

Japan Government Bond index (1�/3 y mat), JPY 11

Japan Government Bond index (7�/10 y mat), JPY 12
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presented in Figure 16.1 and Table 16.2. The VaR values v�CðPÞ; v�CðQÞ for distributions P, Q

calculated for the optimal portfolios x�CðPÞ; x�CðQÞ are obtained as a by-product.

ð1� lÞjCðPÞ þ ljCðQÞ � jCðPlÞ � minfð1� lÞjCðPÞ
þ lFaðx�CðPÞ; v�CðPÞ;QÞ; ljCðQÞ þ ð1� lÞFaðx�CðQÞ; v�CðQÞ;PÞg; ð16:20Þ
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FIGURE 16.1 Contamination bounds for the CVaR optimization problem without constraint on returns.

TABLE 16.2 Quantities used in Contamination Bounds (16.20) and Nonzero

Components of Optimal Solutions x�CðPÞ and x�CðQÞ; a ¼ 0:99

Quantity Value

8 C(P) 0.01731

8 C(Q) 0.01765

Faðx�CðPÞ; v�ðPÞ;QÞ 0.06309

Faðx�CðQÞ; v�ðQÞ; PÞ 0.02135

x�1 ðPÞ 0.12880

x�7 ðPÞ 0.20030

x�9 ðPÞ 0.30000

x�10ðPÞ 0.26470

x�11ðPÞ 0.10620

v�CðPÞ 0.01365

x�5 ðQÞ 0.10000

x�7 ðQÞ 0.30000

x�9 ðQÞ 0.30000

x�10ðQÞ 0.30000

v�CðQÞ 0.01588

CVaRðx�CðPÞ;QÞ 0.02607
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Some observations are given below.

� The two minimal CVaR values 8C(P), 8C(Q) (indicated in the figure by a square and a

triangle, respectively) are not very different. This is the result of optimally restructuring

the portfolio in the adverse market situation; see the changed composition of the

optimal portfolios. The CVaR value for probability distribution Q and for the original

optimal portfolio x�CðPÞ, i.e. without restructuring the portfolio (indicated by the

isolated point in the right upper corner of the figure), is much higher.

� The value Faðx�CðPÞ; v�CðPÞ;QÞ is relatively large and this determines the steep slope of

the left upper bound.

� The contamination bounds in this example are not very tight (see Figure 16.1). The

maximal difference between the upper and lower bounds occurs approximately at

l�0.1. For l�0.5, i.e. for the distribution carried by the pooled sample of 10 368

equiprobable scenarios, the minimal CVaR value lies in [0.0175, 0.0195]. If this

precision is sufficient, one does not need to solve the problem with twice the number

of scenarios—atoms of the contaminated probability distribution.

16.3.5 Stress Testing for CVaR-Mean Return Problems

Finally, consider stress testing for CVaR-mean return problems, i.e. for bi-criteria

problems in which one aims simultaneously for a minimization of CVaRa(x, P) and a

maximization of the expected return criterion EPr (x, v) on X ; see, for example,

Rockafellar and Uryasev (2000), Andersson et al. (2001), Pflug (2001), Topaloglou et al.

(2002), and Kaut et al. (2007).

To obtain an efficient solution, one minimizes on X the parametrized objective

function

CVaRaðx; PÞ � rEPrðx;oÞ; ð16:21Þ

with parameter r�0, or assigns a parametric bound on one of the criteria and solves, for

example,

min CVaRaðx; PÞ on the set X \ fx : EPrðx;oÞ � rg: ð16:22Þ

The optimal solution and the corresponding values of the two criteria, CVaRa and the

expected return, depend on the chosen parameter values. To obtain the efficient frontier,

(16.21) and (16.22) may be solved by parametric programming techniques with scalar

parameters r or r, respectively. For gðx;oÞ ¼ x>o ¼ �rðx;oÞ, for polyhedral set X and a

discrete probability distribution P, both (16.21) and (16.22) are then parametric linear

programs with one scalar parameter; see, for example, Ruszcyński and Vanderbei (2003).

By solving (16.22), the efficient frontier is obtained directly. To obtain the efficient frontier

in the case of (16.21), values of EPr(x, v) and CVaRa(x, P) have to be computed at the

optimal solution of (16.21) obtained for a specific value of r. Hence, (16.22) is favored for

the straightforward possibility of interpreting the trade-off between the two criteria,
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whereas (16.21) is suitable for developing sensitivity and stability results, including stress

testing.

Contamination of the probability distribution P introduces an additional parameter l
into (16.21) and (16.22) and the two problems, in general, lose the readily solvable form of

parametric linear programs: nonlinearity with respect to r and l appears in the objective

function of (16.21) and both the objective function and the set of feasible solutions of

(16.22) depend on the parameters. It is still possible to obtain directional derivatives of

the optimal value function for the corresponding contaminated problem. However, the

optimal value function is no longer concave, hence the crucial property for the

construction of contamination bounds is lost. The same applies also to problem

formulations with several CVaR constraints, each with a different confidence level a,

called ‘risk-shaping’ (Rockafellar and Uryasev 2001).

Nevertheless, contamination bounds may be obtained for the special form of the return

function rðx;oÞ ¼ �x>o and for a certain class of probability distributions. Rewrite

problem (16.22) as

minimize CVaRaðx;PÞ

on the set

XðP; rÞ ¼ fx 2 X : �x>EPo � rg: ð16:23Þ

Let 8r(P) denote the optimal value and X�r ðPÞ the set of optimal solutions and assume

that X�r ðPÞ is non-empty and bounded.

Assume, in addition, that the expected values are equal, EPo ¼ EQo ¼ �o. (Such an

assumption is not typical for stress testing, but it is in agreement with scenario generation

methods based on moment fitting (e.g. Høyland et al. (2003) and Høyland and Wallace

(2001)), and has also been used in the stability studies of Kaut et al. (2003).) Then the

expected return constraint is �x> �o, both for the initial probability distribution P and the

contaminating distribution Q, as well as for all Pl, l �[0,1], and it does not depend on l.

The optimal value function jrðPlÞ ¼ jrðlÞ is concave and the contamination bounds

have a form similar to (16.19) and (16.20). They are obtained for (16.17) with the set of

feasible decisions X replaced by XðP; rÞ ¼ fx 2 X : �x> �o � rg. Moreover, there are

parametric programming techniques (e.g. Guddat et al. 1985) applicable to the

contaminated problem (16.23), i.e. the minimization of CVaRa(x, Pl) on the set

XðP; rÞ ¼ fx 2 X : �x> �o � rg. They are discussed in Dupačová (2006) and a qualitative

conclusion can be summarized as follows.

Under modest non-degeneracy assumptions, a small contamination of P does not influence

the composition of CVaR-mean return efficient portfolios.

Note that, for EPo ¼ EQo ¼ �o, problem (16.21) is also simplified, and the objective

function is linear in the two parameters r and l.

When the expected loss differs under P and Q, the optimal value 8C(Pl) is a natural

lower bound for 8r(Pl), hence by (16.19),
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jrðPlÞ � ð1� lÞjCðPÞ þ ljCðQÞ: ð16:24Þ

To construct an upper bound for 8r(Pl) we add the additional constraint �x>EQo]

XðP; rÞ. The set of feasible solutions XðP; rÞ \ XðQ; rÞ � XðPl; rÞ is polyhedral and does

not depend on l. If XðP; rÞ \ XðQ; rÞ 6¼ ; we obtain a concave upper bound

UrðlÞ :¼ min
x2XðP;rÞ\XðQ;rÞ

CVaRaðx; PlÞ � jrðPlÞ;

which may be bounded from above by the corresponding upper contamination bound.

The derivative at the point l�0� is of a familiar form—minFaðx; v;QÞ �Urð0Þ with

minimization carried over the set of optimal solutions of (16.17) for X replaced by

XðP; rÞ \ XðQ; rÞ; denote one of them by x̂rðPÞ; v̂rðPÞ:

ð1� lÞUrð0Þ þ lFaðx̂rðPÞ; v̂rðPÞ;QÞ � UrðlÞ � jrðPlÞ: ð16:25Þ

We have not tested bounds (16.24) and (16.25) numerically, but we expect that they may

be quite loose.

16.4 STRESS TESTING FOR VAR

Up to the non-uniqueness of the definitions, VaRa(x,P) is the same as the a-quantile of the

loss distribution G(x, P; v). One can also treat VaRa(x, P) as the optimal value of the

stochastic program (16.7) with one probabilistic constraint. Such an approach enables us

to exploit the existing stability results for stochastic programs of that form (Römisch

2003), which are valid under special distributional and regularity assumptions.

A normal distribution of losses is one of the manageable cases and, initially, parametric

VaR was developed to quantify the risks associated with normally distributed losses

g(x, v), the distribution of which at a fixed point x is fully determined by its expectation

m(x) and variance s2(x):

absoluteVaRaðxÞ ¼ mðxÞ þ sðxÞ � ua;

and relative VaRaðxÞ ¼ sðxÞ � ua;

where ua is the a-quantile of the standard normal Nð0; 1Þ distribution.

For an arbitrary a�0.5, minimization of the relative VaRa reduces to minimization of

the standard deviation (volatility) of the portfolio losses, and minimization of the absolute

VaRa is minimization of the weighted sum of the standard deviation and the expectation.

16.4.1 Optimization Problem with the Relative VaRaðx; PÞ Objective Function

Choose a�0.5 and assume that losses are of the form

gðx;oÞ ¼ x>o;
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X is a non-empty, convex polyhedral set, 0 =2 X , v is normally distributed with mean

vector m and a positive definite variance matrix S.

The problem is to select portfolio composition x 2 X such that VaRa is minimal, i.e. to

minimize the convex quadratic function x>Sx on the set X . In this case, for all values of

a�0.5 there is the same, unique optimal solution x+(S), the composition of the portfolio,

which depends on the input variance matrix S that was obtained by an estimation

procedure and is subject to an estimation error. The same optimal solution is arrived at by

minimization of CVaRa(x, P) (Rockafellar and Uryasev 2000).

Asymptotic statistics and a detailed analysis of optimal solutions of parametric

quadratic programs may help to derive asymptotic results concerning the ‘estimated’

optimal portfolio composition obtained for an asymptotically normal estimate ~S of S.

Here we follow a suggestion of Kupiec (2002) and rewrite the variance matrix as

S�DCD with the diagonal matrix D of ‘volatilities’ (standard deviations of the marginal

distributions) and the correlation matrix C. Changes in the covariances may then be

modeled by ‘stressing’ the correlation matrix C by a positive semi-definite stress correlation

matrix Ĉ

CðgÞ ¼ ð1� gÞC þ gĈ; ð16:26Þ

with g �[0,1] a parameter. This type of perturbation of the initial quadratic program

allows us to apply the related stability results of Bank et al. (1982) to the perturbed

problem,

min
x2X

x>DCðgÞDx; g 2 ½0; 1
 : ð16:27Þ

� the optimal value 8V(g) of (16.27) is concave and continuous in g �[0,1];

� the optimal solution x+(g) is a continuous vector in the range of g where C(g) is

positive definite;

� the directional derivative of 8V(g)

j0V ð0þÞ ¼ x�>ð0ÞDĈDx�ð0Þ � jV ð0Þ:

Contamination bounds constructed as suggested in Section 16.1,

ð1� gÞx�>ð0ÞDCDx�ð0Þ þ gx�>ð1ÞDĈDx�ð1Þ � min
x2X

x>DCDx

� ð1� gÞx�>ð0ÞDCDx�ð0Þ þ gx�>ð0ÞDĈDx�ð0Þ;

quantify the effect of the considered change in the input data.
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16.4.2 Stress Testing of the Relative VaR with Respect to an Additional Scenario o�

In this case, the contaminating distribution Q is degenerate, Q ¼ dfo�g. Rewriting (16.16)

for the case of a normally distributed loss, we obtain

d

dl
VaRaðx; PlÞjl¼0þ ¼

a� Ifgðx;o�Þ � VaRaðx; PÞg
fðVaRaðx; PÞÞ

: ð16:28Þ

In the above formula, x is fixed, f denotes the density of the normal distribution

NðmðxÞ;SðxÞÞ of g(x, v) and I is the indicator function.

Assume, in addition, that gðx;oÞ ¼ x>o. Using the results of Sections 16.4.1 and 16.3.2

for the normal distribution P � Nðm;SÞ and degenerate distribution Q ¼ dfo�g, we have

the unique optimal portfolio x+(S) for P and both VaRa(x, Pl) and its derivative with

respect to l are continuous for l ] 0 sufficiently small. This can be used to derive

sensitivity properties of the minimal relative VaR value,

jðlÞ :¼ min
x2X

VaRaðx; PlÞ;

in the case of X 6¼ ;, compact and for small l � 0, i.e. when testing the influence of a rare

stress scenario. Here, VaRa(x, Pl) is not linear in l. Still, using (16.28) and the general

formula for the derivative of the optimal value of nonlinear objective functions from

Danskin (1967), we obtain

j0ð0þÞ ¼ d

dl
VaRaðx�ðSÞ;PlÞjl¼0þ

¼ a� Ifgðx�ðSÞ;o�Þ � VaRaðx�ðSÞ;PÞg
fðVaRaðx�ðSÞ; PÞÞ

:

Then, the minimal VaRa value for the stressed distribution Pl is approximated by

min
x2X

VaRaðx; PlÞ ffi VaRaðx�ðSÞ;PÞ þ lj0ð0þÞ

for l � 0 sufficiently small.

This approach may easily be extended to sensitivity analysis and stress testing of VaR

with respect to an additional scenario for a broad class of probability measures P for

which the probability distribution of loss G(x,P;v) fulfils the assumptions of Section 16.3.2.

16.4.3 Nonparametric VaR

For general probability distributions the evaluation of VaRa for a fixed portfolio x is

mostly based on a non-parametric approach that is distribution free and also applicable

for complicated financial instruments. One exploits a finite number, S, of scenarios so

that, for each fixed x 2 X , the underlying probability distribution P is replaced by a

discrete distribution PS carried by these scenarios and the probability distribution of the

loss g(x, v) is discrete with jumps at g(x, vs) �s.
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For a fixed x, let us order g(x, vs) as

g ½1
 < � � � < g ½S
; ð16:29Þ

with the probability of g[s] equal to p[s] � 0, �s. Let sa, PS be the unique index such that

Xsa;PS

s¼1

p½s
 � a>
Xsa;PS
�1

s¼1

p½s
: ð16:30Þ

then VaRaðx;PSÞ ¼ g ½sa;PS

.

The consistency of sample quantiles is valid under mild assumptions regarding the

smoothness of the distribution function G, and one may even prove their asymptotic

normality (Serfling 1980). For example, if there is a positive continuous density p(x, P; v)

of G(x, P; v) on a neighborhood of VaRa(x, P) and PS denotes an associated empirical

distribution, then VaRa(x, PS) is asymptotically normal,

VaRaðx;PSÞ � N VaRaðx; PÞ;
að1� aÞ

Sp2ðx;P; VaRaðx;PÞÞ

 !
:

Estimating VaRa(x,P) by the non-parametric VaRa(x, PS) calls for a large number of

scenarios, especially for a close to 1; see Rachev and Mittnik (2000) for extensive

numerical results. Moreover, it is evident from (16.30) that, even for fixed x, the inclusion

of an additional scenario may cause an abrupt change in VaRa.

Sensitivity results for VaRa similar to (16.38) are obtained if the (unique) optimal

solution of the CVaRa problem (16.10) is differentiable (recall Section 16.3.2). Another

possibility is to derive them by a direct sensitivity analysis of the simple chance-

constrained stochastic program (16.7). In both cases, additional assumptions concerning

the probability distribution P are required, such as its continuity properties listed in

Section 16.3.2. There is more freedom as to the choice of the contaminating distribution

Q. We refer to Dobiáš (2003) and Römisch (2003) for details.

16.4.4 Stress Testing of Nonparametric VaR

The stress testing of non-parametric VaR computed for a discrete probability distribution

P carried by a finite number of scenarios vs, s�1, . . ., S, is more involved. To obtain an

upper bound for VaRa(x, Pl) for a fixed portfolio x, one may use the contamination-based

upper bound for CVaRa(x, Pl) in (16.15). Formula (16.30) in the definition of the

empirical VaRa implies that, for a<
Psa;P

s¼1 p½s
, the value of VaRa is robust with respect to

small changes in probabilities p[s]. This indicates the possibility of covering the interval

[0, 1] by a finite number of non-overlapping intervals ½0; l1
; ðl1; l2
; . . . ; ðl�i; 1
 and

constructing bounds for VaRa(x, Pl) separately for each of them.

We shall illustrate the approach for the case of one additional ‘stress’ scenario v+ with

g ½1
 < � � � < g ½so��1
 < gðx;o�Þ< g ½so� 
 < � � � < g ½S
; ð16:31Þ
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and with probabilities

ð1� lÞp½1
; . . . ; ð1� lÞp½so��1
; l; ð1� lÞp½so� 
; . . . ; ð1� lÞp½S
;

i.e. for degenerate probability distribution Q ¼ dfo�g.
Suppose that the stress scenario satisfies g ½sa;P 
 < g ½so��1
. It is easy to see that, in the case ofPsa;P
s¼1 p½s
 > a, we obtain VaRaðx; PlÞ ¼ g ½sa;P 
 ¼ VaRaðx; PÞ for sufficiently small l]0. On

the other hand, if
Psa;P

s¼1 p½s
 ¼ a, then VaRaðx;PlÞ ¼ g ½sa;Pþ1
 for sufficiently small l�0.

The a-quantile g ½sa;Pl 
 of the contaminated distribution fulfills

Xsa;Pl

s¼1

ð1� lÞp½s
 � a and
Xsa;Pl�1

s¼1

ð1� lÞp½s
 < a: ð16:32Þ

for l�0, these inequalities are identical to (16.30). They remain valid with sa, Pl
replaced

by the original sa,P for

l � 1� a
Psa;P

s¼1 p½s

and 1� a

Psa;P�1

s¼1 p½s

< l:

The first inequality provides an upper bound l1 and the second is fulfilled for all l ] 0.

For l � l1, VaRaðx; PlÞ ¼ g ½sa;Pþ1
, and by solving (16.32) for sa;Pl
¼ sa;P þ 1 with

respect to l, we obtain an upper bound l2 of the interval on which VaRaðx;PlÞ ¼ g ½sa;Pþ1


holds true. Note that l1 � 0 if
Psa;PS

s¼1 p½s
 ¼ a and, in this case, l2 � 0.

Similarly for l � li with i < so� � sa;P , we obtain an upper bound li�1 of the interval

for which VaRaðx;PlÞ ¼ g ½sa;Pþi
. This procedure stops when i ¼ �i :¼ so� � sa;P . In this case,

(16.32) is modified to

Xsa;Pþ�i�1

s¼1

ð1� lÞp½s
 þ l � 1 � a;

valid for all l ] 0; hence, VaRaðx;PlÞ ¼ gðx;o�Þ for l�i < l � 1.

To summarize: for contamination by one scenario as in (16.31), setting

l0 ¼ 0;

li ¼ 1� a
Psa;Pþi�1

s¼1 p½s

; for i ¼ 1; . . . ; so� � sa;P;

li ¼ 1; for i > so� � sa;P;

we obtain the following theorem.

Theorem 16.4.1: For g ½sa;P 
 < g ½so��1
, l 2 ðli; liþ1
, i ¼ 0; 1; . . . ; so� � sa;P � 1,

(a) VaRaðx;PlÞ ¼ g ½sa;Pþi
 � VaRaðx;QÞ;

354 j CHAPTER 16



(b) if
Psa;P

s¼1 p½s
 > a or if i ] 2 and
Psa;P

s¼1 p½s
 ¼ a, then

VaRaðx;Pli
Þ ¼ VaRaðx;PlÞ< VaRaðx;Pliþ1

Þ; if
Psa;P

s¼1 p½s
 ¼ a, then

VaRaðx;Pl1
Þ ¼ g ½sa;P 
 and VaRaðx;PlÞ ¼ g ½sa;Pþ1
 for l �(l1, l2];

(c) VaRaðx;PlÞ ¼ gðx;o�Þ ¼ VaRaðx;QÞ, for l> l�i, �i ¼ so� � sa;P .

This procedure can be extended to stress testing with respect to another discrete

probability distribution Q, carried by scenarios o�1; . . . ;o�
S
0 with probabilities q½1
; . . . ; q½S

0 


and associated losses gðx;o�1Þ< � � � < gðx;o�
S
0 Þ. Now, we have to determine how the

support of P is related to the support of Q, e.g. that the following ordering holds:

g ½1
 < � � � < g ½sa;P 
 < � � � < g
½so�

1
�1


< gðx;o�1Þ< g
½so�

1


< � � � < g

½so�
2
�1


< gðx;o�2Þ< g
½so�

2


< � � � < g

½so�
S
0
�1


< gðx;o�
S
0 Þ< g

½so�
S
0


< � � � < g ½S


The covering of the interval [0, 1] depends on probabilities q[s], namely on the difference

in their partial cumulative sums and a. For the obtained li values, statements parallel to

(a) and (b) of theorem 16.4.1 can be derived (Polı́vka 2005).

16.4.5 Minimization of VaRaðx;PÞ with Respect to x

Except for the case of the normal distribution considered in Sections 16.4.1 and 16.4.2, the

minimization of VaRa(x, P) with respect to x is, in general, a non-convex, even

discontinuous problem, which may have several local minima. It can be written as

minfv : Pfo : gðx;oÞ � vg � a; x 2 X ; v 2 Rg: ð16:33Þ

Stability of the minimal VaRa(P) value v�V ðPÞ and of the optimal solutions x�V ðPÞ with

respect to P holds true only under additional, restrictive assumptions (Römisch 2003). For

g(x, v) jointly continuous in x, v and Hðx; vÞ :¼ of : g(x, v)5v}, a verifiable sufficient

condition is PðHðx�V ðPÞ; v�V ðPÞÞÞ> a, which is fulfilled, for instance, for (non-degenerate)

normal distributions, or a<
Psa;P

s¼1 p½s
 in (16.30) for the ordered sample of gðx�V ðPÞ;osÞ
with discrete distribution PS (Dobiáš 2003).

To approximate VaR minimization problems, one may apply the corresponding

problems with CVaR criteria, as suggested and tested numerically in Rockfellar and

Uryasev (2000): the v�CðPÞ part of the optimal solution of (16.18) is then the value of

VaRa(x+(P),P) for the optimal (or efficient) CVaRa(x, P) portfolio. Further suggestions are

to approximate VaR minimization problems by a sequence of CVaR minimizations (Pflug

2001), to use a smoothed VaR objective (Gaivoronski and Pflug 2004), or to apply the

worst-case VaR criterion for the family of probability distributions with given first- and

second-order moments (El Ghaoui et al. 2003).

16.5 CONCLUSIONS

The application of the contamination technique to CVaR evaluation and optimization is

straightforward, and the obtained results provide a genuine stress quantification. Stress

testing via contamination for CVaR-mean return problems turns out to be more delicate.
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The presence of the simple chance constraint in the definition of VaR requires that, for

VaR stress testing via contamination, various distributional and structural properties are

fulfilled for the unperturbed problem. These requirements rule out direct applications of

the contamination technique in the case of discrete distributions, which includes the

empirical VaR. Nevertheless, even in this case, it is possible to construct bounds for VaR of

the contaminated distribution. In the case of a normal distribution and parametric VaR,

one may exploit stability results valid for quadratic programs to stress testing of VaR

minimization problems.

Using the contamination technique, we have derived computable bounds which can be

extended to stress testing of other risk criteria and risk optimization problems. The

presented approaches provide a deeper insight into the stress behaviour of VaR and CVaR

than the common numerical evaluations based solely on backtesting and out-of-sample

analysis.
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Stable Distributions in the
Black�/Litterman Approach to
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17.1 INTRODUCTION

T HE MEAN-VARIANCE MODEL FOR PORTFOLIO management as formulated by Markowitz

(1952) is probably one of the most known and cited financial models. Despite its

introduction in 1952, there are several reasons cited by academics and practitioners as to

why its use is not more widespread. Some of the major reasons are the scarcity of

diversification, see Green and Hollifield 1992, or highly concentrated portfolios and

the sensitivity of the solution to inputs (especially to estimation errors of the mean, see

Kallberg and Ziemba 1981, 1984, Michaud 1989, and Best and Grauer 1991) and the

approximation errors in the solution of the maximization problem.

The integration of quantitative asset allocation models and the judgement of portfolio

managers and analysts (i.e. qualitative view) has been motivated by various discussions on

increasing the usefulness of quantitative models for global portfolio management. The

framework dates back to papers by Black and Litterman (1991a, b, 1992) that led to the
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development of extensions of the framework proposed by members of both the academic

and practitioner communities. Subsequent research has explained the advantages of this

framework, what is now popularly referred to as the Black�/Litterman model (BL model

hereafter), as well as the model’s main characteristics.1

The BL model contributes to the asset management literature in two distinct directions.

The first direction is the idea that there should exist an equilibrium portfolio, with which

one can associate an equilibrium distribution of the market. The equilibrium distribution

summarizes neutral information and is not as sensitive to estimation risk as estimations

that are purely based on time-series analysis. The second contribution is the process that

twists the equilibrium distribution according to the practitioner’s views. In particular, the

BL model uses a Bayesian argument to perform this step, giving rise to a posterior

distribution for the market. The computation of both the equilibrium portfolio and the

posterior distribution rely on the assumption of a normal market. As far as the

computation of the posterior distribution (under the non-normal assumption) is

concerned, results have been obtained in Meucci (2006a, b).

In most of the papers mentioned above, there are explicit or implicit assumptions that

returns on N asset classes are multivariate Gaussian distributed, an assumption consistent

with other mainstream theories in finance such as the standard Black�/Scholes (1973)

model. However, there are numerous empirical studies2 that show that in many cases

returns are quite far from being normally distributed, especially for high frequency data.

Many recent papers (see Ortobelli et al. 2002a, b; Bertocchi et al. 2005) show that stable

Paretian distributions are suitable for the autoregressive portfolio return process in the

framework of the asset allocation problem over a fixed horizon.

As we pointed out above, there are two distinct directions in which the BL model

contributes to the field of portfolio management. In this chapter, we investigate further

the first direction by exploring more generic distributional assumptions, namely in the

computation of the equilibrium portfolio. We investigate whether the BL model can be

enhanced by using the stable Paretian distributions as a statistical tool for asset returns.

We use as a portfolio of assets a subset, duly constructed, of the S&P500 benchmark. We

generalize the procedure of the BL model allowing the introduction of dispersion matrices

obtained from the multivariate Gaussian, symmetric t-Student and a-stable distributions

for computing the equilibrium returns. Moreover, three different measures of risk

(variance, value at risk and conditional value at risk) are considered. Results are reported

for monthly data and goodness of the models are tested through a rolling window of fixed

size along a fixed horizon. Results for weekly data are also available, however, the BL

approach, which is a strategic asset allocation model, is usually adopted for at least

monthly data. Finally, our analysis shows that the incorporation of the views of investors

1 See the papers by Fusai and Meucci (2003), Satchell and Scowcroft (2000), He and Litterman (1999) and the books
by Litterman (2003) and Meucci (2005).
2 See Eberlein and Keller (1995), Panorska et al. (1995), Mittnik and Paolella (2000), Rachev and Mittnik (2000) and
the references therein, Tokat and Schwartz (2002), Embrechts et al. (2003), and Tokat et al. (2003).
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into the model provides information as to how the different distributional hypotheses can

impact the optimal composition of the portfolio.

17.2 THE a-STABLE DISTRIBUTION

The a-stable distributions describe a general class of distribution functions.

The a-stable distribution is identified by four parameters: the index of stability

a � (0,2] which is the parameter of the kurtosis, the skewness parameter b 2 ½�1; 1�;
m 2 R and g 2 Rþ which are, respectively, the location and the dispersion parameter. If X

is a random variable whose distribution is a-stable, we use the following notation to

underline the parameter dependence

X¼d Saðg; b; mÞ: ð17:1Þ

The stable distribution is normal when a � 2, and it is leptokurtotic when a B 2. A

positive skewness (b � 0) identifies distributions with right fat tails, while a negative

skewness (b B 0) typically characterizes distributions with left fat tails. Therefore, the

stable density functions synthesize the distributional forms empirically observed in

the real financial data. The Maximum Likelihood Estimation (MLE) procedure used to

approximate stable parameters is described by Rachev and Mittnik (2000). Unfortunately

the density of stable distributions cannot be express in closed form. Thus, in order to

value the density function, it is necessary to invert the characteristic function.

In the case where the vector r � [r1, r2, . . . , rn] of returns is sub-Gaussian a-stable

distributed with 1 Ba B 2, then the characteristic function of r. assumes the following

form:

FrðtÞ ¼ Eðexpðit0rÞÞ ¼ expð�ðt0VtÞa=2 þ it0EðrÞÞ: ð17:2Þ

For the dispersion matrix V ¼ ½v2
ij � we use the following estimation ~V ¼ ½~v2

ij�
(see Ortobelli et al. 2004, Lamantia et al. 2005):

~v2
ij ¼ ð ~vjjÞ

2�q
AðqÞ 1

T

XT

k¼1

~rikj ~rikj
q�1

sgnð ~rjkÞ; ð17:3Þ

where ~rjk ¼ rjk � EðrjÞ is the kth centred observation of the jth asset,

AðqÞ ¼
G 1� q

2

� � ffiffiffi
p
p

2qG 1� q

a

� �
G

q þ 1

2

� �

and 1 B q B a
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~vjj ¼ AðpÞ 1

n

Xn

k¼1

j~rjkj
p

 !2=p

; 1 < p < 2; ð17:4Þ

where ~rjk ¼ rjk � EðrjÞ is the kth centred observation of the jth asset.

17.3 THE BLACK�/LITTERMAN MODEL FOR ASSET ALLOCATION AND
OUR EXTENSION

As previously mentioned, the BL model overcomes the critical step of expected return

estimation, using the equilibrium returns defined as the returns implicit in the

benchmark. If the Capital Asset Pricing Model holds and if the market is in equilibrium,

the weights based on market capitalizations are also the weights of the optimal portfolio. If

the benchmark is a good proxy for the market portfolio, its composition is the solution of

an optimization problem for a vector of unknown equilibrium returns. Moreover, the

equilibrium returns provide a neutral reference point for asset allocation. Black and

Litterman argue that the only sensible definition of neutral returns is the set of expected

returns that would clear the market if all investors had identical views. In fact, an investor

with neutral views should select a passive strategy, tracking the benchmark portfolio. The

equilibrium returns P of the stocks comprising the benchmark are obtained by solving the

unconstrained maximization problem faced by an investor with quadratic utility function

or assuming normally distributed returns

MaxP0x � l

2
x0Sx; ð17:5Þ

where S is the covariance matrix of our stocks’ returns.
From Kuhn�/Tucker conditions on (17.5), and solving the reverse optimization

problem we get

P ¼ lSx: ð17:6Þ

The expected return EðrÞ is assumed to be normally distributed EðrÞ � NðP; tSÞ with

the covariance matrix proportional to the historical one, rescaled by a shrinkage factor;

since uncertainty of the mean is lower than the uncertainty of the returns themselves, the

value of t should be close to zero.

An active asset manager can deviate from the benchmark tracking strategy, according to

his or her economic reasoning in the tactical asset allocation. The major contribution of the

BL model is to combine the equilibrium returns with uncertain views about expected

returns. In particular, the optimal portfolio weights are moved in the direction of assets

favoured by the investor. The investor’s views have the effect of modifying EðrÞ according to

the degree of uncertainty. The larger the uncertainty the lesser the deviation from the

neutral views. To this aim the new vector of expected returns is computed minimizing the

Mahalanobis distance between the expected returns EðrÞ and the equilibrium returns
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which are additionally constrained by the investor’s view on the expected return. This

brings us to the following model:

minðEðrÞ �PÞ0tSðEðrÞ �PÞ ð17:7Þ

s.t. constraint

PEðrÞ ¼ q þ e; ð17:8Þ

where P is a matrix with each row corresponding to one view, q is the vector containing the

specific investor views, and e is a random vector of errors in the view. If all views are

independent, the covariance matrix is diagonal. Its diagonal elements are collected in the

vector e. This formulation leads to the interpretation of using one view at a time with a

certain degree of uncertainty, i.e. scenario by scenario. The idea of seeing the market

expected return distribution conditioned on the investor’s views as the solution to (17.7)

and (17.8) is intuitive and quite general since it does not depend on the type of

distribution, see also Zimmermann et al. (2002, Chapter 10). Using Bayes rule, we know

that it is possible to compute the distribution of the market conditioned on the investor’s

views, see Meucci (2005).

In our analysis we consider different problems of optimal allocation among n risky

assets with returns [r1, r2, . . . ,rn] using different risk measures—variance, value at risk

(VaR), and conditional value at risk (CVaR). Assume that all portfolios r0x are uniquely

determined by the neutral mean P0x and by the risk measure rð Þ that is defined

alternatively as the dispersion x0Vx, the VaRdðr0xÞ and the CVaRdðr0xÞ. This means that

instead of (17.5) we have

Max P0x � l

2
rðr0xÞ: ð17:9Þ

We recall here that VaRdðXÞ is implicitly defined by PðX 
 �VaRdðXÞÞ ¼ d, i.e. the d

percentile of the probability density function of the random variable X such that the

probability that the random variable assumes a value less than x is greater than d, where d

represents, in this framework, the maximum probability of loss that the investor would

accept. We also recall that CVaRdðXÞ for continuous random variables X is defined as

�EðX jX 
 �VaRdðXÞÞ, i.e it measures the expected value of the tail of the distribution for

values less than VaRd. Note also that CVaRdðXÞ is a coherent risk measure in the sense of

Artzner et al. (1998) while VaRdðXÞ is not.3

Notice that for elliptical distributions, following Embrechts et al. (2003) and Stoyanov

et al. (2006), the CVaR of portfolio returns is expressed as

CVaRdðr0xÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
x0Vt x

p
CVaRdðY Þ � x0u; ð17:10Þ

3For a detailed description of CVaR see for example Rockafeller and Uryasev (2000) and for a-stable see Stoyanov
et al. (2006). For comparisons between CVaR and VaR see Gaivoronski and Pflug (2005).
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where CVaRdðY Þ for the univariate t-distribution takes the following form:

CVaRdðY Þ ¼
Gð�þ 1Þ=2

Gð�=2Þ

ffiffiffi
�
p

ð�� 1Þd
ffiffiffi
p
p 1þ VaRdðY Þ

2

�

 !ð1��Þ=2

; ð17:11Þ

where Y is distributed according to a t-student with �> 1 degree of freedom.

Using again Stoyanov et al. (2006), we can represent the CVaRdðXÞ for the multivariate

standardized a-stable distribution, X 2 Saðg; b;mÞ as

CVaRdðXÞ ¼
a

1� a

jVaRdðXÞj
pd

�
Z p=2

�y0

gðyÞ expð�jVaRdðXÞj
a=ða�1Þ

vðyÞÞdy; ð17:12Þ

where

gðyÞ ¼ sinðaðy0 þ yÞ � 2yÞ
sin aðy0 þ yÞ

� a cos2 y

sin2 aðy0 þ yÞ
; ð17:13Þ

vðyÞ ¼ ðcos ay0Þ
1=ða�1Þ cos y

sin aðy0 þ yÞ

 !a=ð1�aÞ

� cosðay0 þ ða� 1ÞyÞ
cos y

; ð17:14Þ

and

y0 ¼
1

a
arctan b tan

pa

2

� �
; b ¼ �sgnðVaRdðXÞÞb: ð17:15Þ

In the case where we have a non-standardized a-stable, we need to use the following

transformation

CVaRdðgX þ mÞ ¼ gCVaRdðXÞ � m; ð17:16Þ

where

gX þ m 2 Saðg;b; mÞ: ð17:17Þ

Properties similar to (17.10) and (17.16) hold for VaR too (see Lamantia et al. 2005).

Notice that the optimization problem for CVaR risk measures, using properties (17.10)

and (17.16), can be written as

Max P0x � l

2
CVaRd

ffiffiffiffiffiffiffiffiffiffi
x0Vx
p

� EðrÞ0x
	 


: ð17:18Þ

Similar considerations apply to VaRd.
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Applying first-order Kuhn�/Tucker conditions to (17.18), the reverse optimization

model, and using the three different measures of risks and the three different return

distributions (Gaussian, t-student, stable) we obtain the following equilibrium returns for

the three different dispersion measures V characterizing the three distributions:

Risk Measure: variance

P ¼ lVx: ð17:19Þ

Risk Measure: CVaR

P ¼ l

2
CVaRd

Vxffiffiffiffiffiffiffiffiffiffi
x0Vx
p � EðrÞ

� �
: ð17:20Þ

Risk Measure: VaR

P ¼ l

2
VaRd

Vxffiffiffiffiffiffiffiffiffiffi
x0Vx
p � EðrÞ

� �
: ð17:21Þ

In formulas (17.19), (17.20), and (17.21), we will substitute the convenient estimate for

the dispersion matrix, CVaR and VaR depending on the corresponding distribution.

Notice that the coefficient l can be interpreted as a coefficient of risk aversion: if l is

zero the investor is risk neutral, if l � 0, the investor is risk averse because investments

with large dispersion are penalized, if l B 0, the investor is a risk seeker because

investments with large dispersion are favoured. Once we found the neutral returns implied

in the benchmark, we wanted to test the goodness of these equilibrium returns over a 20

month horizon. We thought that a reasonable way was to compute the sum of squared

errors between the neutral view return suggested by our model and the day after

realization of return for 20 consecutive months, using a rolling window of 110 months for

the parameters’ estimation. We compare the equilibrium returns obtained under different

distributional hypotheses and different risk measures with a naive forecast: the

unconditional mean. We recall that for a stationary return process the best forecast of

future realizations is the unconditional mean.

But what is the optimal value of l to be used? Black and Litterman suggest, under the

normal distributional hypothesis, using the market risk premium, which is 0.32 in our case.4

If we try to determine the value of l which minimizes the distance between the optimal

solution of the portfolio and the weight of the benchmark we get l � 36.29, i.e. the risk

aversion parameter becomes very large. This may be considered reasonable when we look

at it from the equity premium puzzle side (see Fama and French 2002, Mehra and Prescott

1985, 2003). However since we consider three different risk measures we must consider

different values of l. Indeed, in (17.19)�/(17.21), the coefficient l acts as a scaling factor,

4 This is computed as the excess mean return divided by the variance.
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i.e. a larger l increases the equilibrium returns. Large values of l will eventually scale all

the equilbrium returns to very large values that would not be realistic.

We set the value of l equal to the solution of an optimization problem. For each risk

measure, we fix l equal to the value that minimizes the sum of the squared error under all

distributional hypotheses described before, computed for the first day of the out-of-

sample analysis. We maintain the same values for all the out-of-sample analysis. Therefore,

we choose l � 0.5 for the case where risk was measured by dispersion and l/2 � 0.15 for

the other cases. Finally, we tested how the forcing of a special investor view (both under

certainty and under uncertainty) may influence the benchmark composition.

17.4 ANALYSIS OF THE DATA

In this section we analyse the time series data for the benchmark used in the

computational part and we estimate the parameters of the different distributions (normal,

symmetric t-student and a-stable) and the related dispersion matrices. We selected as the

benchmark the S&P 500 and we obtained daily, weekly and monthly data from July 1995

to July 2005 from DataStream. The analysis was done for all the frequencies mentioned

above. However, only results for the monthly data are reported here.

We divided the data into two samples: the first 110 data for the parameter estimation

and the remaining 20 data for out-of-sample analysis. The out-of-sample analysis is

repeated for 20 consecutive months using a rolling window of length 110 to estimate the

parameters for each month. In order to better analyse the results, we chose to reduce the

dimension of the benchmark, considering the most capitalized shares which account for

about 50) of the index. We collected the data for the 50 most capitalized shares and

rescaled the weights to sum up to 1. We used the new weights to construct a synthetic

index that we will refer to as the S&P 50 in the following. We also tested that the S&P 50

returns are almost perfectly correlated (r � 0.98) to the S&P 500 along the considered

horizon.

In Table 17.1 we report for each of the 50 stocks included in the synthetic index, the

ticker, the name of the company, the weight in the S&P 500, the new weight in the S&P 50,

the mean, the volatility, the skewness and the kurtosis of each stock in the sample. Recall

that we selected monthly data because in an asset allocation problem the reasonable time

horizon should not be too short. Because of the frequency selected, we tested for the

absence of autocorrelation in the returns and squared returns, but we found no evidence

of it. Based on the Bera�/Jarque test, we rejected for 19 of the 50 stocks the null hypothesis

of the normal distribution at the 5) significance level, for 21 of the 50 at the 10)
significance level, and for 23 of the 50 at the 15) significance level. From the results

reported in Table 17.1 we can observe that about half of the 50 stocks could be well

described by a normal distribution. In Table 17.2 we report the average of the estimated

parameters a,b, g for the a-stable distribution and the average of the degree of freedom

for the t-student computed as the mean of 20 estimations over the rolling window. A

similar analysis is done for a rolling window of increasing size, with no significant changes

in the results. Therefore, we do not report those results. From Table 17.2 we note that only
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TABLE 17.1 Statistics on the Single Time Series

Ticker Company ) of S&P 500) of S&P 50 Mean Volatility Skewness Kurtosis BJ (p-value)

XOM Exxon Mobil Corp. 3.33 6.86 11.73) 0.90 �0.20 3.90 0.361

GE General Electric 3.31 6.82 10.96) 0.60 0.12 2.93 0.870

MSFT Microsoft Corp. 2.40 4.94 13.41) 1.24 �0.19 5.58 0.000

C Citigroup Inc. 2.16 4.45 17.07) 1.08 �0.02 4.23 0.246

WMT Wal-Mart Stores 1.81 3.73 12.15) 0.84 �0.39 3.28 0.128

PFE Pfizer Inc. 1.81 3.73 11.46) 0.89 0 2.68 0.811

JNJ Johnson & Johnson 1.73 3.56 11.97) 0.67 �0.08 3.16 �0.930

BAC Bank of America Corp. 1.62 3.34 10.79) 1.06 �0.41 4.46 0.057

INTC Intel Corp. 1.45 2.99 10.85) 1.50 �0.88 5.74 0.000

AIG American Intl Group 1.37 2.82 11.44) 0.87 0.01 3.40 0.600

MO Altria Group Inc. 1.21 2.49 8.92) 1.11 �0.33 3.85 0.216

PG Procter & Gamble 1.18 2.43 10.61) 0.85 �1.69 11.18 0.000

JPM JPMorgan Chase & Co. 1.11 2.29 6.62) 1.25 �0.18 5.41 0.001

CSCO Cisco Systems 1.09 2.24 16.87) 1.62 �0.63 4.60 0.000

IBM Int. Business Machines 1.08 2.22 10.11) 1.17 0.37 4.86 0.003

CVX Chevron Corp. 1.07 2.20 7.87) 0.63 0.38 3.31 0.140

WFC Wells Fargo 0.93 1.92 13.53) 0.80 �0.05 3.82 0.737

KO Coca Cola Co. 0.91 1.87 2.36) 0.84 �0.29 3.02 0.376

VZ Verizon Communications 0.86 1.77 1.56) 0.83 0.00 3.32 0.990

DELL Dell Inc. 0.85 1.75 33.87) 1.72 �0.66 4.89 0.000

PEP Pepsico Inc. 0.80 1.65 8.67) 0.73 �0.02 4.14 0.183

HD Home Depot 0.76 1.57 13.12) 1.08 �0.67 4.38 0.001

COP Conoco Philips 0.74 1.52 11.47) 0.76 0.18 3.32 0.839

SBC SBC Communications Inc. 0.71 1.46 �0.09) 0.93 0.08 4.91 0.017

TWX Time Warner Inc. 0.70 1.44 20.97) 1.96 0.43 3.72 0.340

UPS United Parcel Service 0.69 1.42 6.86) 0.95 �0.60 4.39 0.008

ABT Abbott Labs 0.68 1.40 8.89) 0.76 �0.32 3.70 0.162

AMGN Amgen 0.68 1.40 17.35) 1.05 0.58 4.64 0.002

MRK Merck & Co. 0.61 1.26 2.68) 1.00 �0.69 5.34 0.691

ORCL Oracle Corp. 0.61 1.26 13.80) 1.68 �0.13 3.41 0.752

HPQ Hewlett-Packard 0.61 1.26 4.03) 1.46 0.25 4.76 0.021

CMCSA Comcast Corp. 0.60 1.24 10.99) 1.22 �0.06 5.52 0.000

UNH United Health Group Inc. 0.60 1.24 20.27) 1.27 �2.31 14.11 0.000

AXP Amercian Express 0.60 1.24 13.44) 0.94 �0.34 4.26 0.059

LLY Lilly(Eli) & Co. 0.56 1.15 9.80) 0.97 0.03 3.48 0.654

MDT Medtronic Inc. 0.56 1.15 15.04) 0.97 0.07 3.89 0.698

WYE Wyeth 0.54 1.11 7.69) 1.13 �1.69 12.61 0.000

TYC Tyco International 0.53 1.09 14.57) 1.43 �1.00 6.17 0.000

MWD Morgan Stanley 0.52 1.07 13.50) 1.35 �0.33 3.85 0.174

FNM Fannie Mae 0.51 1.05 8.61) 0.79 �0.36 2.98 0.280

MMM 3M Company 0.50 1.03 9.47) 0.71 0.20 3.17 0.559

QCOM Qualcomm Inc. 0.49 1.01 23.80) 1.97 0.16 4.11 0.353

BA Boeing Company 0.48 0.99 6.28) 1.04 �0.35 3.87 0.198

UTX United Technologies 0.47 0.97 14.82) 0.89 �0.13 5.50 0.000

MER Merrill Lynch 0.47 0.97 13.20) 1.30 �0.36 4.80 0.007

VIA.B Viacom Inc. 0.47 0.97 2.23) 1.11 0.08 3.10 0.870

DIS Walt Disney Co. 0.46 0.95 2.81) 1.05 �0.01 3.40 0.940

G Gillette Co. 0.45 0.93 3.94) 0.94 �0.50 4.05 0.004

BMY Bristol-Myers Squibb 0.44 0.91 7.94) �0.41 �0.36 3.67 0.264

BLS Bell South 0.44 0.91 4.32) 0.80 0.13 3.54 0.769

Notes: From the table we observe the skewness and kurtosis of the single stocks on the complete sample. We perform

Bera�/Jarque test and we cannot reject the null hypothesis of normal distribution for 19 of the 50 at 5) significance

level, for 21 of the 50 at 10) significance level, and for 23 of the 50 at 15) significance level.
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TABLE 17.2 Estimated Parameters with a-stable and t-student Distributions

Numbering Ticker Company

) of

S&P 500 ) of S&P 50 a b g

Degree of

freedom

1 XOM Exxon Mobil Corp. 3.33 6.86 1.95 �0.91 0.64 18

2 GE General Electric 3.31 6.82 2.00 0.96 0.42 100

3 MSFT Microsoft Corp. 2.40 4.94 1.71 0.49 0.79 7

4 C Citigroup Inc. 2.16 4.45 1.88 �0.18 0.74 10

5 WMT Wal-Mart Stores 1.81 3.73 1.85 �1.00 0.58 22

6 PFE Pfizer Inc. 1.81 3.73 2.00 �0.85 0.64 100

7 JNJ Johnson & Johnson 1.73 3.56 2.00 �0.14 0.48 54

8 BAC Bank of America Corp. 1.62 3.34 1.48 �0.44 0.58 4

9 INTC Intel Corp. 1.45 2.99 1.81 �0.86 0.97 6

10 AIG American Intl Group 1.37 2.82 2.00 �0.20 0.61 17

11 MO Altria Group Inc. 1.21 2.49 1.90 �0.84 0.78 10

12 PG Procter & Gamble 1.18 2.43 1.82 �1.00 0.51 4

13 JPM JPMorgan Chase & Co. 1.11 2.29 1.69 �0.14 0.76 5

14 CSCO Cisco Systems 1.09 2.24 1.77 �0.69 1.05 5

15 IBM Int. Business Machines 1.08 2.22 1.77 0.39 0.73 6

16 CVX Chevron Corp. 1.07 2.20 1.86 1.00 0.42 11

17 WFC Wells Fargo 0.93 1.92 1.87 �0.01 0.56 8

18 KO Coca Cola Co. 0.91 1.87 1.95 �1.00 0.59 92

19 VZ Verizon Communications 0.86 1.77 2.00 �0.19 0.61 37

20 DELL Dell Inc. 0.85 1.75 1.76 �0.69 1.08 5

21 PEP Pepsico Inc. 0.80 1.65 1.80 �0.02 0.47 6

22 HD Home Depot 0.76 1.57 1.83 �1.00 0.72 9

23 COP Conoco Philips 0.74 1.52 2.00 0.57 0.53 10

24 SBC SBC Communications Inc. 0.71 1.46 1.81 �0.36 0.61 7

25 TWX Time Warner Inc. 0.70 1.44 1.82 0.91 1.30 14

26 UPS United Parcel Service 0.69 1.42 1.46 �0.45 0.51 4

27 ABT Abbott Labs 0.68 1.40 1.94 �0.93 0.53 18

28 AMGN Amgen 0.68 1.40 1.84 0.88 0.69 4

29 MRK Merck & Co. 0.61 1.26 1.93 �1.00 0.67 16

30 ORCL Oracle Corp. 0.61 1.26 2.00 �0.40 1.26 36

31 HPQ Hewlett-Packard 0.61 1.26 1.74 0.05 0.94 5

32 CMCSA Comcast Corp. 0.60 1.24 1.73 �0.16 0.75 4

33 UNH United Health Group Inc. 0.60 1.24 1.54 0.15 0.54 3

34 AXP Amercian Express 0.60 1.24 1.53 �0.84 0.54 8

35 LLY Lilly(Eli) & Co. 0.56 1.15 1.94 �0.22 0.68 14

36 MDT Medtronic Inc. 0.56 1.15 1.81 0.27 0.62 6

37 WYE Wyeth 0.54 1.11 1.65 �0.56 0.62 4

38 TYC Tyco International 0.53 1.09 1.71 �0.59 0.87 4

39 MWD Morgan Stanley 0.52 1.07 1.82 �0.75 0.92 10

40 FNM Fannie Mae 0.51 1.05 1.91 �1.00 0.54 100

41 MMM 3MCompany 0.50 1.03 1.96 1.00 0.50 57

42 QCOM Qualcomm Inc. 0.49 1.01 1.76 0.19 1.28 6

43 BA Boeing Company 0.48 0.99 1.72 �0.42 0.67 6

44 UTX United Technologies 0.47 0.97 1.67 �0.43 0.53 5

45 MER Merrill Lynch 0.47 0.97 1.81 �0.35 0.86 6

46 VIA.B Viacom Inc. 0.47 0.97 2.00 �0.55 0.83 100

47 DIS Walt Disney Co. 0.46 0.95 2.00 0.89 0.78 61

48 G Gillette Co. 0.45 0.93 1.84 �0.87 0.65 7

49 BMY Bristol-Myers Squibb 0.44 0.91 1.87 �0.97 0.60 7

50 BLS Bell South 0.44 0.91 1.97 0.69 0.57 19

Notes: In this table we report the average estimate of the a-stable computed on a rolling window.
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9 stocks show a value of the a parameter equal to 2. The a-stable distribution looks more

appropriate in describing the behaviour of the remaining stock returns.

In order to assess the hypothesis of non-normal behaviour of the stocks and the

statistical significance of the a-stable parameters, we estimated an autoregressive model on

each estimated parameter of the a-stable distribution along the 20 consecutive months.

Our reason for doing so is to have a statistical model that describes the evolution of the a-

stable parameters over time. We then used the estimated statistical model to construct a

confidence interval for the parameters. The following AR(1,1) model was estimated in

order to construct a 90) confidence level for a and b

yt ¼ a1 þ a2yt�1 þ Et

ffiffiffiffiffiffi
a3

2
p

; ð17:22Þ

where yt is the a (or b) series, and a1, a2, and a3 the parameters to be estimated.

The estimated coefficients, together with their statistical significance, are reported in

Table 3 for a and in Table 17.4 for b. We do not consider stocks with a � 2 and b � 1 or

b � �1 for all the out-of-sample period. So we exclude 9 stocks from Table 17.3 and 17

stocks from Table 17.4. Each table contains the ticker, the estimated coefficients of the

AR(1,1) process, the ratio between the value of the coefficients and the standard error, the

value of the likelihood function, the 5th, the 50th and the 95th percentiles for the 40

stocks. We observe that the autoregressive coefficient is significant for 80) of the stocks

for a and for 70) of the stocks for b (see columns Ta2
). We used the model given by

(17.22) to create 5000 scenarios for each of the parameters a and b and each stock in the

benchmark, thus obtaining the related distributions: we report in Tables 17.3 and 17.4

the median, the 5th and 95th percentiles of those ones which construct the 90)
confidence level.

The analysis of the 90) confidence interval confirms that for 82) of the stocks

considered, the true value of a is less than 2, suggesting the presence of leptokurtic

behaviour. Only for 9 stocks is the normal distribution suitable. Moreover, the upper value

of the confidence level of b is less than 0 for 19 stocks and b is equal to �1 for 6 stocks,

suggesting a left fat tail distribution for 50) of the stocks. The lower value of the

confidence level of b exceeds 0 for 7 stocks and b is equal to 1 for 2 stocks of the 50 stocks

considered, suggesting a right fat tail for 18) of the stocks. Only for 7 stocks does

the confidence interval include the null value, suggesting that at most 16 stocks can show a

symmetric behaviour. This explains the poor behaviour of the symmetric t-student

distributional model which indeed seems to give the same result as the normal

distribution. This is a further confirmation that the a-stable distribution is suitable

for describing the returns of our data.

17.5 COMPUTATIONAL RESULTS

In general under the normal and t-student distributions we get very similar equilibrium

returns and portfolio composition under all the different risk measures while the a-stable

hypothesis implies different equilibrium returns and portfolio composition, see

Giacometti et al. (2006) for the detailed analysis.
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TABLE 17.3 Estimated Parameters of the AR(1,1) Process on a Values

Numbering Ticker a1 a2 a3 T a1
T a2

Ta3
LLF Perc. 5) Perc. 50) Perc. 95)

1 XOM 0.724 0.629 �/ 1.997 3.376 2.136 79.249 1.9357 1.9433 1.9507

2 GE �/ �/ �/ �/ �/ �/ �/ �/ �/ �/

3 MSFT 0.349 0.793 0.005 0.831 3.497 3.406 25.658 1.4907 1.5982 1.7095

4 C 0.072 0.961 �/ 0.345 8.717 3.338 82.661 1.8551 1.8614 1.8680

5 WMT 0.361 0.805 �/ 1.130 4.677 1.543 70.703 1.8483 1.8598 1.8711

6 PFE �/ �/ �/ �/ �/ �/ �/ �/ �/ �/

7 JNJ �/ �/ �/ �/ �/ �/ �/ �/ �/ �/

8 BAC 0.232 0.842 �/ 0.962 5.265 2.959 47.765 1.4178 1.4538 1.4905

9 INTC 0.600 0.668 �/ 1.192 2.403 2.805 62.988 1.7805 1.7978 1.8144

10 AIG �/ �/ �/ �/ �/ �/ �/ �/ �/ �/

11 MO 0.122 0.934 �/ 0.297 4.306 3.432 49.386 1.7882 1.8219 1.8567

12 PG 0.015 0.993 �/ 0.062 7.664 1.876 78.473 1.8378 1.8457 1.8534

13 JPM 0.187 0.889 �/ 0.612 4.949 3.775 59.791 1.6460 1.6667 1.6873

14 CSCO 0.827 0.532 �/ 2.981 3.400 2.789 48.111 1.7286 1.7640 1.7991

15 IBM 0.145 0.917 �/ 0.366 4.103 3.847 60.213 1.7101 1.7295 1.7491

16 CVX 0.991 0.468 �/ 3.667 3.203 3.582 64.867 1.8459 1.8610 1.8771

17 WFC 0.096 0.946 0.001 0.262 4.979 3.766 37.453 1.7114 1.7738 1.8348

18 KO 0.674 0.655 �/ 1.560 2.967 2.501 82.666 1.9445 1.9510 1.9575

19 VZ �/ �/ �/ �/ �/ �/ �/ �/ �/ �/

20 DELL 0.025 0.980 0.003 0.031 2.158 2.347 29.273 1.4427 1.5345 1.6267

21 PEP 0.296 0.834 �/ 1.214 6.148 1.750 58.839 1.7261 1.7466 1.7680

22 HD 0.505 0.724 �/ 1.671 4.380 1.710 73.083 1.8217 1.8320 1.8421

23 COP �/ �/ �/ �/ �/ �/ �/ �/ �/ �/

24 SBC 0.275 0.848 �/ 1.880 4.920 3.815 77.941 1.8063 1.8145 1.8228

25 TWX 0.191 0.894 0.001 0.434 3.700 3.648 46.213 1.7440 1.7825 1.8206

26 UPS 0.181 0.877 0.001 0.900 6.435 2.987 45.839 1.4429 1.4828 1.5227

27 ABT 1.853 0.045 �/ 0.620 0.029 1.511 57.538 1.9183 1.9411 1.9630

28 AMGN 0.695 0.622 0.002 1.501 2.358 2.351 33.662 1.7800 1.8543 1.9298

29 MRK 0.258 0.866 �/ 0.176 1.149 1.944 51.033 1.8728 1.9033 1.9341

30 ORCL �/ �/ �/ �/ �/ �/ �/ �/ �/ �/

31 HPQ 0.133 0.922 �/ 0.519 6.250 3.758 57.519 1.6797 1.7025 1.7248

32 CMCSA 1.107 0.358 �/ 2.150 1.203 3.041 57.611 1.7001 1.7224 1.7452

33 UNH 0.412 0.733 0.001 0.791 2.153 2.913 43.604 1.4799 1.5252 1.5713

34 AXP 0.258 0.832 �/ 1.178 5.811 2.236 53.223 1.5128 1.5392 1.5675

35 LLY 0.168 0.912 0.001 0.411 4.361 3.423 44.314 1.8213 1.8654 1.9085

36 MDT 0.210 0.880 0.003 0.477 3.724 3.118 29.431 1.5760 1.6674 1.7598

37 WYE 0.484 0.706 �/ 0.806 1.943 3.730 51.040 1.6047 1.6354 1.6659

38 TYC 0.166 0.903 �/ 0.622 5.778 3.323 56.193 1.6705 1.6939 1.7178

39 MWD 0.675 0.630 0.001 1.041 1.808 1.784 40.896 1.7651 1.8172 1.8702

40 FNM 0.545 0.716 �/ 1.616 4.065 2.147 65.505 1.9010 1.9161 1.9321

41 MMM 0.456 0.767 �/ 1.552 5.105 2.480 73.090 1.9474 1.9578 1.9683

42 QCOM 0.268 0.847 0.001 0.619 3.463 3.689 44.868 1.6753 1.7170 1.7593

43 BA 0.647 0.624 0.001 2.402 3.948 2.584 45.355 1.6726 1.7132 1.7538

44 UTX 0.464 0.723 �/ 1.491 3.890 2.847 58.561 1.6539 1.6762 1.6973

45 MER 0.243 0.865 �/ 0.546 3.524 4.650 69.746 1.7862 1.7982 1.8103

46 VIA.B �/ �/ �/ �/ �/ �/ �/ �/ �/ �/

47 DIS �/ �/ �/ �/ �/ �/ �/ �/ �/ �/

48 G 1.100 0.401 �/ 1.505 1.011 2.053 55.033 1.8080 1.8329 1.8578

49 BMY 1.618 0.135 0.001 0.256 0.040 1.787 37.088 1.7882 1.8497 1.9112

50 BLS 1.299 0.339 �/ 2.196 1.143 1.333 54.315 1.9363 1.9633 1.9895

Notes: The analysis of the 90) confidence interval confirms that for 82) of the stocks considered (i.e. those

with a different from 2) the true value of a is smaller than 2, suggesting the presence of leptokurtic behaviour.

Only for 9 stocks is the normal distribution suitable.
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TABLE 17.4 Estimated Parameters of the AR(1,1) Process on b Values

Numbering Ticker a1 a2 a3 Ta1
Ta2

Ta3
LLF Perc. 5) Perc. 50) Perc. 95)

1 XOM 0.016 0.990 0.014 0.060 2.859 2.032 14.274 �0.5791 �0.3036 �0.1924

2 GE �/ �/ �/ �/ �/ �/ �/ �/ �/ �/

3 MSFT 0.261 0.472 0.192 1.036 1.658 1.895 �11.859 �0.1468 0.5880 1.3106

4 C �0.066 0.623 0.002 �1.289 2.198 3.043 35.618 �0.2072 �0.1405 �0.0746

5 WMT �/ �/ �/ �/ �/ �/ �/ �/ �/ �/

6 PFE �/ �/ �/ �/ �/ �/ �/ �/ �/ �/

7 JNJ �/ �/ �/ �/ �/ �/ �/ �/ �/ �/

8 BAC �0.014 0.959 �/ �0.151 4.331 3.426 48.559 �0.4008 �0.3660 �0.3313

9 INTC �0.015 0.975 0.001 �0.091 5.404 2.399 37.926 �0.7761 �0.7170 �0.6570

10 AIG �/ �/ �/ �/ �/ �/ �/ �/ �/ �/

11 MO �0.192 0.757 0.017 �0.720 2.353 1.905 12.488 �0.7972 �0.5816 �0.3709

12 PG �/ �/ �/ �/ �/ �/ �/ �/ �/ �/

13 JPM �0.037 0.737 0.001 �1.552 4.105 3.456 47.167 �0.1706 �0.1342 �0.0964

14 CSCO �0.195 0.712 0.005 �1.527 4.227 2.171 24.582 �0.7508 �0.6355 �0.5192

15 IBM 0.004 0.966 0.003 0.041 3.872 4.751 30.636 0.1086 0.1927 0.2794

16 CVX �/ �/ �/ �/ �/ �/ �/ �/ �/ �/

17 WFC 0.096 0.946 0.001 0.262 4.979 3.766 37.453 1.7114 1.7738 1.8348

18 KO �/ �/ �/ �/ �/ �/ �/ �/ �/ �/

19 VZ �/ �/ �/ �/ �/ �/ �/ �/ �/ �/

20 DELL �0.011 0.936 0.051 �0.011 0.703 1.182 1.441 �0.3535 0.0161 0.3791

21 PEP �0.008 0.599 0.001 �0.884 1.510 3.668 38.309 �0.0925 �0.0346 0.0262

22 HD �/ �/ �/ �/ �/ �/ �/ �/ �/ �/

23 COP �/ �/ �/ �/ �/ �/ �/ �/ �/ �/

24 SBC �0.120 0.668 �/ �1.930 3.780 3.230 47.633 �0.3885 �0.3516 �0.3138

25 TWX 0.199 0.785 0.005 0.782 2.638 2.198 23.887 0.8665 0.9836 1.1046

26 UPS �0.190 0.577 �/ �2.036 2.759 3.232 54.503 �0.4741 �0.4477 �0.4219

27 ABT �0.977 �0.055 0.104 �0.056 �0.003 0.390 �5.739 �1.4412 �0.9204 �0.3926

28 AMGN 0.333 0.624 0.055 1.732 1.612 1.853 0.586 0.5667 0.9582 1.3432

29 MRK �/ �/ �/ �/ �/ �/ �/ �/ �/ �/

30 ORCL �/ �/ �/ �/ �/ �/ �/ �/ �/ �/

31 HPQ 0.012 0.728 0.001 0.848 3.593 1.909 43.827 �0.0299 0.0151 0.0604

32 CMCSA 0.005 0.980 0.002 0.146 5.190 5.146 34.298 �0.0683 0.0044 0.0790

33 UNH 0.026 0.860 0.003 0.405 2.431 3.941 29.404 0.1545 0.2446 0.3351

34 AXP �0.179 0.788 �/ �0.600 2.217 2.260 63.458 �0.8579 �0.8406 �0.8242

35 LLY 0.007 0.897 0.110 0.095 5.689 4.415 �6.319 �0.1457 0.4035 0.9520

36 MDT 0.196 0.259 0.006 3.042 1.386 2.744 23.535 0.1365 0.2571 0.3789

37 WYE �0.176 0.687 0.001 �1.140 2.481 3.373 47.454 �0.6063 �0.5695 �0.5312

38 TYC �0.036 0.930 0.002 �0.241 3.828 4.387 35.015 �0.5459 �0.4764 �0.4081

39 MWD �0.255 0.653 0.013 �0.392 0.910 0.878 15.149 �0.8484 �0.6553 �0.4647

40 FNM �/ �/ �/ �/ �/ �/ �/ �/ �/ �/

41 MMM �/ �/ �/ �/ �/ �/ �/ �/ �/ �/

42 QCOM 0.034 0.808 0.001 0.815 3.773 3.859 37.019 0.0862 0.1486 0.2110

43 BA �0.321 0.244 �/ �2.092 0.681 2.442 57.426 �0.4422 �0.4200 �0.3975

44 UTX �0.150 0.648 0.001 �1.570 2.889 2.430 45.302 �0.4441 �0.4042 �0.3628

45 MER �0.049 0.852 0.001 �0.520 3.123 3.812 45.335 �0.3261 �0.2847 �0.2452

46 VIA.B �/ �/ �/ �/ �/ �/ �/ �/ �/ �/

47 DIS �/ �/ �/ �/ �/ �/ �/ �/ �/ �/

48 G �0.249 0.708 0.004 �0.955 2.390 2.783 25.784 �0.8737 �0.7651 �0.6516

49 BMY �1.972 �1.000 0.014 �0.001 �0.001 0.109 14.410 �1.7079 �1.5127 �1.3212

50 BLS 0.496 0.287 0.359 0.918 0.378 0.503 �18.137 �0.2001 0.7659 1.7537

Notes: We can observe that, at 90) confidence level, 50) of the stocks show a left fat tail, 18) a right fat tail.

Since for 9 stocks, that account for 18) of the total, b � 0 by definition since a � 2, and only for 7 stocks the

confidence interval includes the null value, we can suggest that at most 16 stocks can show a symmetric behaviour.
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We consider the equilibrium returns as a forecast of the future returns. Of course, we

assume that when we compare the forecast with the future realizations, the data that we

observe in the future are the products of a market in equilibrium. In Table 17.5 we report

the sum of squared errors for 20 months between the neutral view and realization of

the month after using a rolling window of 110 months. Note that we re-estimate the

parameters of the distribution as we move the rolling window. We observe that

the hypothesis of a stable distribution and the use of dispersion as a risk measure gives

the best combination.5 For 13 months of the 20 months, it is the combination that gives

the best forecast (65) success rate). The second best combination is the a-stable

distribution and the use of CVaR as a risk measure. For this combination 3 of the

20 months give the best forecast (15) success rate). The third best combination is

the unconditional mean which resulted in 2 of the 20 months (10) success rate). Finally,

TABLE 17.5 Squared Errors among the Optimal Composition and the Unconditional Mean over the Rolling

Window Horizon

Dispersion VaR CVaR

Date Normal Stable Normal Stable Normal Stable Unc. mean

01/28/04 9.08 9.18 8.90 9.03 8.99 9.37 9.18

02/25/04 22.89 21.74 22.24 22.07 22.71 23.01 21.81

03/24/04 47.70 38.47 43.12 42.89 46.35 49.26 41.72

04/21/04 16.34 17.26 16.81 16.64 16.57 16.19 15.87

05/19/04 22.58 17.26 19.81 19.60 21.70 23.29 19.63

06/16/04 10.60 14.26 12.19 12.30 11.05 10.23 12.75

07/14/04 27.42 20.90 24.27 23.97 26.55 28.54 22.69

08/11/04 29.53 24.04 26.63 26.62 28.60 30.69 26.59

09/08/04 17.30 20.40 18.74 18.79 17.79 17.04 18.23

10/06/04 44.86 44.51 44.49 44.61 44.74 45.32 44.47

11/03/04 15.68 14.38 14.77 14.88 15.33 16.29 15.32

12/01/04 14.33 16.59 15.31 15.54 14.69 14.49 14.73

12/29/04 9.31 11.13 10.01 10.11 9.51 9.24 10.15

01/05/05 25.65 19.38 22.54 22.39 24.72 27.27 21.76

02/23/05 22.58 20.54 21.36 21.35 22.15 23.32 21.71

03/23/05 19.71 15.55 17.58 17.39 19.05 20.85 17.23

04/20/05 35.37 29.25 32.27 31.85 34.38 36.63 32.26

05/18/05 15.82 20.07 17.71 18.01 16.42 15.31 17.58

06/15/05 12.24 11.22 11.53 11.61 12.00 12.92 11.59

07/13/05 11.21 10.19 10.59 10.54 11.04 11.74 10.23

Notes: The hypothesis of stable distribution and the use of dispersion as the risk measure gives the best

combination. For 13 of the 20 considered months, it is the combination that gives the best forecast (65)
success rate). The second best combination is the a-stable distribution and the use of CVaR as the risk measure.

For this combination 3 of the 20 months gives the best forecast (15) success rate). The third best combination

is the unconditional mean resulting in the best forecast in 2 of the 20 months (10) success rate).

5 The use of a symmetric risk measure is not particularly surprising since we are dealing with a model of strategic
allocation to find the optimal composition of our portfolio on a relatively long time horizon. Generally this phase is
followed by a tactical allocation strategy where it is more likely that a relative VaR can be considered by the market, i.e.
the additional tail risk that we accept when we move from the benchmark replication strategy assuming specific risk.
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following Satchell and Scowcroft (2000), we compute the optimal composition for

28 January 2004 under a specific view for the different distributions and different risk

measures with absolute certainty and with uncertainty.

We observe that the difference between the new returns and neutral view equilibrium

are larger for the dispersion measure and normal returns, see Giacometti et al. (2006) for

details. Indeed, this is the case with the highest variation in the portfolio composition.

Once again the a-stable hypothesis with the same risk measure led to a more stable

portfolio. If we consider the same view with uncertainty, we have similar effects but

mitigated by the uncertainty that we put in our view.

17.6 CONCLUSIONS

The purpose of our work is twofold. The first is to improve the classical BL model by

applying more realistic models for asset returns. We compare the BL model under the

normal, t-student, and the stable distributions for asset returns. The second is to enhance

the BL model by using alternative risk measures which are currently used in risk

management and portfolio analysis. They include dispersion-based risk measures, value at

risk, and conditional value at risk.

For the stocks in our sample, only a minority can be characterized as having a normal

return distribution based on the statistical tests we performed. As a result of incorporating

heavy-tailed distribution models for asset returns and alternative risk measures, we

obtained the following results: (1) the appropriateness of the a-stable distributional

hypothesis is more evident when we compute the equilibrium returns and (2) the

combination of a-stable distribution and the choice of dispersion risk measure provides

the best forecast.
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CHAPTER 18

Ambiguity in Portfolio Selection
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18.1 INTRODUCTION: THE AMBIGUITY PROBLEM

T HE DECISION ABOUT OPTIMAL COMPOSITION of a portfolio is a complex process, not just

a single optimization task. It comprises of the selection of a statistical model, the

collection of data, the estimation of the model in a parametric, semi-parametric or

nonparametric way, the choice of an appropriate optimization criterion and finally the

numerical solution of an optimization problem. It is well understood that the precision of

the final decision depends on the quality of the described complete chain of subtasks.

In his 1921 book, the American economist Frank Knight (1921) made a famous

distinction between ‘risk’ and ‘uncertainty.’ In Knight’s view, ‘risk’ refers to situations

where the decision-maker can assign mathematical probabilities to the randomness, which

he is faced with. In contrast, Knight’s ‘uncertainty’ refers to situations when this

randomness cannot be expressed in terms of specific mathematical probabilities.

Since the days of Knight, the terms have changed. As introduced by Ellsberg (1961), we

refer today to the ambiguity problem if the probability model is unknown and to the

uncertainty problem, if the model is known, but the realizations of the random variables

are unknown. While large classes of portfolio optimization problems under uncertainty

have been successfully solved (see e.g. the surveys by Yu et al. (2003) or Ziemba and

Vickson (1973) and references therein), there is a common observation that these

solutions lack stability with respect to the chosen parameters (see e.g. Klein and Bawa

1976; Chopra and Ziemba 1993).
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The aim of this chapter is to discuss an approach that explicitly takes into account the

ambiguity in choosing the probability model and therefore is robust in the following

sense: the selected portfolio is slightly suboptimal for the given basic probability model,

but performs also well under neighbouring models. In contrast, non-robust portfolio

decisions show a dramatic drop in performance, when deviating from the underlying

model.

The organization of this chapter is as follows. In Section 18.2, the decision model is

formulated. The successive convex program as a solution technique is presented in Section

18.3. In Sections 18.4 and 18.5, the choice of ambiguity sets is discussed. Section 18.6

illustrates the approach by an example.

18.2 PROBLEM FORMULATION

As introduced in the seminal work of Markowitz (1959), the basic portfolio selection

problem in this chapter is to minimize the risk under a constraint for the expected return

or—equivalently—maximize the expected return under a risk constraint. We follow the

latter approach here.

Let Yx ¼
PM

m¼1 xixi be the random return of a portfolio consisting of M assets with

individual returns ji and portfolio weights xi. The chosen or estimated probability model

P determines the distribution of the return vector (j1, . . . , jm) on RM.

Once a probability model is specified, the expected return is well defined. There are

however several ways of quantifying the risk. In this chapter, risk is measured as negative

acceptability. Acceptability in turn is measured by acceptability functionals A defined on

the random asset returns.

Let (V, F ) be a measure space, X a linear space of F measurable functions, X : 0R,

then a coherent acceptability functional A from X to �R is required to fulfill the following

axioms (see Pflug (2006) for a discussion of coherent acceptability functionals)

[A1] Concavity: �X, Y � X, l � [0,1]

AðlX þ ð1� lÞY Þ 	 lAðXÞ þ ð1� lÞAðY Þ:

[A2] Monotonicity: if X5Y then AðXÞ 
 AðY Þ.
[A3] Translation equivariance: AðX þ aÞ ¼ AðXÞ þ a.

[A4] Positive homogeneity: if l�0 then AðlXÞ ¼ lAðXÞ.

We interpret the negative acceptability as risk, i.e. a risk functional is of the form

R� �A. The resulting risk functionals have properties coinciding with the convex risk

functionals commonly used in the literature (see e.g. Delbaen 2002; Föllmer and Schied

2002). The goal in this chapter is to find decisions with high acceptability and thereby low

risk. Note that since acceptability functionals and risk functionals differ only by their sign,

they have the same level sets, which are called acceptance sets. For a given return Y, the

acceptability value A(Y) indicates the maximal shift of the distribution in the negative

direction, which still keeps the return acceptable. Note that since the acceptability

functions are concave, the level sets are convex sets. We will further assume that the
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acceptability functionals A are continuous, which assures that the respective level sets are

closed.

Examples for such acceptability functionals A are for instance

� the average-value-at risk (conditional value-at-risk, expected shortfall)

AðY Þ ¼ AV @RaðY Þ ¼
1

a

Z a

0

G�1
Y ðpÞdp; ð18:1Þ

where G�1
Y ðpÞ ¼ inffv : PfY 
 vg 	 pg is the quantile function of Y. An alternative

representation is

AV @RaðY Þ ¼ max a � 1

a
Eð½Y � a��Þ : a 2 R

� �
:

(see Rockafellar and Uryasev 2000). A dual representation of AV @RaðY Þ is

AV @RaðY Þ ¼ minfEðY ZÞ : EZ ¼ 1; 0 
 Z 
 1=ag:

� also utility functionals of the following types

1. A(Y) � E(Y)� l Var(Y),

2. E(Y)� lStd(Y),

3. A(Y) � E(Y)�Var([Y�EY]�),

4. E(Y)�lStd([Y�EY]�),

with 0B l5 1 respectively, fall in the category of acceptability functionals (see Tokat

et al. (2003) for a more detailed discussion of functionals of this form).

To translate acceptability back into risk, one may use �A(Y), or, as we will do in the

numerical examples, 1�A(Y) as a risk functional.

Having identified the criteria for the optimization and the risk bound, we can now

write the problem as an optimization problem under uncertainty using the basic

probability model P̂ which can be regarded as the ‘best guess’ for the real model. In most

cases P̂ will be determined by empirical data, but also other ways of obtaining P̂ like the

incorporation expert opinion may be considered (see e.g. Clemen and Winkler 1999).

As mentioned before the portfolio selection model we consider is a simple Markowitz

type model without shortselling. The asset returns are modelled to be uncertain.

Assuming there is no ambiguity about the statistical model of the returns the model reads

Maximize (in x) : EP̂ðYxÞ
subject to

AP̂ðYxÞ 	 q

x>11 ¼ 1

x 	 0:

������������

ð18:2Þ
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Note that the restriction to positive portfolio weights is chosen just for simplicity of

exposition. It would pose neither theoretical nor computational problems to allow short

selling in this setting as long as the feasible set of asset compositions remains bounded. In

fact it might be rewarding to study the effects of ambiguity in the more risky setting where

shortselling is permitted.

Let x̂� be the optimal portfolio composition found by solving (18.2). The robustness of

this solution is often checked by stress testing. A stress test consists in finding an alternative

probability model P and calculating EPðYx̂�Þ as well as APðYx̂�Þ to judge the change in the

return dimension as well as in the risk dimension under model variation. While stress

testing helps in assessing the robustness of a given portfolio selection, it does not help to

find a robust portfolio.

For the latter goal, one has to replace the basic model (18.2) by its ambiguity extension.

To this end, let P be an ambiguity set, i.e. the set of probability models, to which the

modeller is indifferent. The portfolio selection model under P�ambiguity is of maximin

type and reads

Maximize (in x) : minfEPðYxÞ : P 2 Pg
subject to

APðYxÞ 	 q for all P 2 P
x>11 ¼ 1

x 	 0:

������������

ð18:3Þ

Let us comment on the structure of problem (18.3). It is a combination of a robust and

a stochastic problem (see Zackova 1966 for the earliest occurrence of problems of the form

(18.3)). Recall the definition of a robust optimization problem (see Ben-Tal and

Nemirovski 2002):

If a deterministic optimization problem

Maximize (in x) : f ðx; zÞ
subject to

fiðx; zÞ 
 0; i ¼ 1; . . . ; k

�������
ð18:4Þ

contains some parameters z and the decision maker only knows some range Z of these

parameters, he/she may use the robust version of (18.4), namely

Maximize minff ðx; zÞ : z 2 Zg
subject to fiðx; zÞ 
 0; i ¼ 1; . . . ; k for all z 2 Z :

����� ð18:5Þ

While in stochastic optimization one has at least a distributional information about the

unknown parameters, the only information one has in robust optimization is a given set

of parameters. Thus one may say that stochastic programs look at the average situation,

while robust programs look at the worst-case situation.
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The proposed portfolio selection under ambiguity contains both aspects: while

assuming that the realizations of the return vectors come from some probability

distribution, we allow on the other hand to vary this distribution within a certain set P
without further structuring it. Should we impose a probability distribution on this set of

probabilities (called a prior distribution), we would still solve an uncertainty problem, but

of Bayesian type. In our approach we do not specify a prior and our problem (18.3) has

the structure of a robust-stochastic problem.

18.3 SOLUTION TECHNIQUES

Introducing the set of constraints for the vector of portfolio weights x

X ¼ fx : x>11 ¼ 1; x 	 0; APðYxÞ 	 q for all P 2 Pg;

the ambiguity problem (18.3) reads

max
x2X

min
P2P

EP½Yx�: ð18:6Þ

By continuity and concavity of A, X is a compact convex set. Moreover, (P, x)�EP[Yx] is

bilinear in P and x and hence convex-concave. Therefore x+ � X is a solution of (18.6) if

and only if there is a P+ � P such that (P+, x+) is a saddle point, i.e.

EP� ½Yx� 
 EP� ½Yx� � 
 EP½Yx� � ð18:7Þ

for all (P, x) � P� X (see Rockafellar 1997).

Since there are infinitely many constraints present, problem (18.6) is a semi-infinite

program. There are several solution methods for such problems. Direct methods use

gradients to find the saddle point (Rockafellar 1976; Nemirovskii and Yudin 1978). In

Shapiro and Ahmed (2004) it is proposed to dualize the inner minimization problem in

order to get a pure optimization problem: in particular they suppose that the set P is of

the form

P ¼ P :

Z
fiðuÞdPðuÞ 
 bi; i ¼ 1; . . . ; k; P1 � P � P2

� �
;

where Pi are some measures, the fi are P integrable and bi � R. Then using the dual

representation

minfEP½Yx� : P 2 Pg ¼ max

Z X

i

lifiðuÞ
" #þ

dP1ðuÞ þ
Z X

i

lifiðuÞ
" #�

dP2ðuÞ
( )

;

the maximin problem is transformed into a pure maximization problem.

In this chapter, we propose a successive convex programming (SCP) solution method,

which uses a finitely generated inner approximation of the ambiguity set P. To be more
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precise, we approximate the infinitely many constraints AP(Yx)] q for all P � P by

finitely many ones. One starts with no risk constraints. In every new step, two new

probabilities enter the set of constraints. These new probabilities are chosen as current

worst case probabilities and this makes the algorithm work.

In particular, the successive SCP algorithm proceeds as follows.

1. Set n � 0 and P0 ¼ fP̂g with P̂ 2 P.

2. Solve the outer problem

Maximize (in x; tÞ : t

subject to

t 
 EPðYxÞ for all P 2 Pn

APðYxÞ 	 q for all P 2 Pn

x>11 ¼ 1

x 	 0

��������������

ð18:8Þ

and call the solution (xn, tn).

3. Solve the first inner problem

Minimize (in P) : EPðYxn
Þ

subject to

P 2 P:

�������
ð18:9Þ

and call the solution Pð1Þn .

4. Solve the second inner problem

Minimize (in P) : APðYxn
Þ

subject to

P 2 P

�������
ð18:10Þ

call the solution Pð2Þn and let Pnþ1 ¼ Pn [ fPð1Þn g [ fPð2Þn g.
5. If

a. Pnþ1 ¼ Pn or

b. the optimal value of (18.9) equals tn and the solution of (18.10) is equal to

minP2Pn
APðYxn

Þ

then a saddle point is found and the algorithm stops. Otherwise set n � n � 1 and

go to 2.

The two inner problems (18.9) and (18.10) may yield non-unique optimizers. In this case

we simply choose one of the optimizing worst case measures and proceed with the

algorithm.
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To see that the second stopping criterion actually yields a saddle point, consider a

situation where the condition 5(b) is fulfilled in the nth run. Note that since (18.10) does

not yield a lower acceptability, then the minimum of the measures in Pn the point xn is

feasible for the original problem. Since (18.9) gives the optimal value EP0 ðYxn
Þ, there is no

measure P giving smaller expectation than P?. Furthermore it is clear from the optimality

in (18.8), that there can be no x, such that EP0 ðYxÞ. This establishes that (xn, P?) is indeed a

saddle point of the problem.

Note that if the measures Pð1Þn or Pð2Þn are in the convex hull of the measures in Pn they

do not have to be added to the set Pnþ1 (since the functions Ep and A are concave and

therefore take their minima on the extreme points of convex sets).1 Whether or not a

discrete probability measure on Rn is a convex combination of other such measures can be

easily checked by linear programming techniques.

Notice that the set tn is a decreasing sequence of numbers and Pn is an increasing

sequence of sets. The convergence of this algorithm is stated below. Since one cannot

exclude that there are several saddle points (in this case the set of saddle points is closed

and convex), only a weak limit result is available in general.

Proposition: Assume that P is compact and convex and that (P, x) � EP[Yx] as well as

(P, x) �AP[Yx] are jointly continuous. Then every cluster point of (xn) is a solution of (18.6).

If the saddle point is unique, then the algorithm converges to the optimal solution.

Proof Since both X and P are compact sets, the sequence xn has a cluster point x+. W.l.o.g.

we may in fact assume that this is a limit point. Let

Xn ¼ fx : x>11 ¼ 1; x 	 0;APðYxÞ 	 q for all P 2 Png:

Then Xn is a decreasing sequence of compact convex sets, which all contain X. Let

X� �þnXn. On the other hand, Pn is an increasing sequence of sets with upper limit P�,

which is the closure of �nPn.

By construction, xn is a solution of

max
x2Xn

min
P2Pn

EP½Yx�; ð18:11Þ

i.e. there is a probability P�
n such that ðP�

n ; xnÞ is a saddle point. W.l.o.g. we may assume

that the sequence ðP�
nÞ has a limit P+. Therefore, (P+, x+) is a saddle point for

max
x2Xþ

min
P2Pþ

EP½Yx�: ð18:12Þ

1We are indebted to a referee for pointing this out to us and also led us to discover the second condition for having
found a saddle point in step 5 of the algorithm.
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Since minP2P EP½Yxn
� ¼ minP2Pnþ1

EP½Yxn
� one sees by continuity that (x+,P+) is a saddle

point for

max
x2Xþ

min
P2P

EP½Yx�: ð18:13Þ

Finally, notice that x+ � X. If not, inf P2P APðYx+Þ< q. But then there is an xn such that

inf P2P APðYxn
Þ< q and in the next step this xn together with an open neighbourhood will

be excluded from Xnþ1, a contradiction.

Therefore (P+, x+) is a saddle point for

max
x2X

min
P2P

EP½Yx�; ð18:14Þ

i.e. x+ is a solution of the original problem. I

18.4 AMBIGUITY SETS

Typically, ambiguity sets are in some sense neighbourhoods of basic models. Basic models

are found by estimation from historic data, consistency considerations as the no-arbitrage

rule, expert choice or a combination thereof. In all these cases, the found basic model is

the most likely one, but model ambiguity is present. To express this ambiguity, one may

allow some variations of the basic models in such a way that they differ in distance from

the basic model not more than some o.

In particular, consider ambiguity sets of the form

P ¼ fP : dðP; P̂Þ 
 Eg; ð18:15Þ

where d is some distance for probability measures.

The choice of the distance d is crucial for the final result. In this chapter we use the

Kantorovich distance (also called the L1 distance—see Vallander 1973 and Dall’Aglio

1972) defined as

dðP1;P2Þ ¼ sup

(Z
f ðuÞdP1ðuÞ �

Z
f ðuÞdP2ðuÞ : where f has Lipschitz

constant 1; i:e: f ðuÞ � f ðvÞ 
 ku � vk1for all u; v

)
:

Here ku � vk1 ¼
P

i jui � vij. To ensure that the Kantorovich distance is finite, we restrict

ourselves to the space of measures with finite first absolute moment, i.e.

P ¼ P :
R
Rn

kxkdPðxÞ<1
� �

.

The choice is motivated by the fact that the expected return has Lipschitz constant 1

under this distance, i.e.
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jEP1
ðYxÞ � EP2

ðYxÞj 
 dðP1; P2Þ

for all portfolios x. Hence, the distance of probability models provides a bound for the

difference in expectations and therefore a bound in the optimal values of the considered

problems.

Furthermore if the chosen acceptability functional is the AV@R, then one has also

Lipschitz continuity of the risk functional with respect to the Kantorovich distance, i.e.

jAV@RP1;a
ðYxÞ � AV@RP2;a

ðYxÞj 

1

a
dðP1; P2Þ

for all a and all portfolio compositions x. If the acceptability functional involves higher

moments, then the Fortet–Mourier (1953) extension of the Kantorovich distance appears

more appropriate.

By the well-known theorem of Kantorovich–Rubinstein (see Rachev 1991), the

Kantorovich ambiguity set (18.15) can be represented as

fP : dðP; P̂Þ 
 Eg ¼
(

P : there is a bivariate probability Kð�; �Þ such that

Z

v

Kðu; dvÞ ¼ PðuÞ;
Z

u

Kðdu; vÞ ¼ P̂ðvÞ;
Z

u

Z

v

ku � vk1Kðdu; dvÞ 
 E

)
:

If the probability space V is finite, i.e. if it consists of S scenarios j(1), . . . ,j(S), with

j(s) � RM then a probability model is just a S-vector (P1, . . .PS) and the ambiguity set is a

polyhedral set

P : dðP; P̂Þ 
 E
� 


¼
(

P ¼ ðP1; . . . ;PSÞ : Pj ¼
X

i

Ki;j;
X

j

Ki;j ¼ P̂i;

Ki;j 	 0;
X

i;j

kxðiÞ � xðjÞk1Ki;j 
 E

)
:

The bivariate probability K has the interpretation as the solution of Monge’s mass

transportation problem. The Kantorovich distance describes the minimal effort (in terms of

expected transportation distances), to change the mass distribution P̂ into the new mass

distribution P (see Rachev and Rüschendorf 1998).

In the case of a finite probability space V it is not difficult to find a solution

for the inner problems, i.e. to determine inffEPðYxÞ : dðP; P̂Þ 
 Eg and inffAPðYxÞ :

dðP; P̂Þ 
 Eg.
For a given portfolio composition x, let y � (yi) with yi � xij(i); i � 1, . . . , S. Denote

by P̂i the probability mass sitting on yi under P̂. To find the worst case probability P � P,
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one has to consider mass transportation from scenarios i to other scenarios j, which in

total do need more than o as expected transportation distance.

To this end, for minimizing EP, let for every pair (i, j), wi;j ¼ yi � yj and

vi;j ¼ kxðiÞ � xðjÞk1. The needed worst case is found by transferring masses from i to j

in a stepwise manner: starting with the pair i, j for which wi;j=vi;j is maximal, the new

masses are assigned in descending order of wi;j=vi;j , but only if wi;j > 0 until the maximal

allowed distance e is reached.

In a similar manner, for minimizing AP, one sets

wi;j ¼
@APðYxÞ
@Pi

� @APðYxÞ
@Pj

and proceeds as before. Therefore the two inner problems are in fact directly solvable and

do not need an optimization run.

If the acceptability functional is the average-value at risk, then constraint sets are

polyhedral and the outer problems are linear. Therefore, in this case, the whole maximin

algorithm is a sequential linear program, as studied in Byrd et al. (2005).

18.5 STATISTICAL CONFIDENCE SETS

Scenario models for asset returns are typically based on statistical data. If the portfolio

decision follows a parametric model, as for instance the Markowitz model, then these

parameters, as the mean return, the volatility and the correlations are estimated from the

given data material and the estimation error may be quantified by estimating the standard

errors or by determining confidence sets, see for instance Goldfarb and Iyengar (2003).

Since our approach uses a nonparametric setup, nonparametric confidence sets have to

be found. Starting with a basic estimate P̂n for the probability model for asset returns, a

nonparametric confidence set has to be found: the basic estimate may be either the

empirical distribution, i.e. the historical model or some variants of it, for instance models

with parametric tail estimates to better accommodate extremal events. The second step is

the choice of the size a such that a certain confidence level e is reached, i.e.

PfdðP; P̂nÞ 	 ag 
 E ð18:16Þ

for a large class of models P. The parameter n refers to the number of observations.

As argued before, we use the Kantorovich distance here. Moreover, we consider only

model variants which differ only in probabilities and not in values. The argument for

doing so is that all model variants must be discrete for the numerical treatment and that

variations in values would need some parametric modelling, which we want to avoid.

For getting a confidence set of the form (18.16), one has to assume that the true

probability model P has no mass outside a ball in RM. For the empirical estimate, which

puts mass 1/n on each of the n historical observations, one has that

EP½dðP; P̂nÞ� 
 Cn�1=M
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for some constant C as was shown by Dudley (1968). Consequently, using Markov’s

inequality, it follows that

P dðP; P̂nÞ 	
Cn�1=M

E

� �

 E½dðP; P̂nÞ�E

n�1=M C

 E:

If some smoothness properties of the unknown model P are known, the confidence sets

may be improved, see for instance Kersting (1978). In any case, increasing the size n of the

data set reduces the confidence set and leads to smaller costs for ambiguity. It should also

be noted that in general the shrinking of the confidence sets can be arbitrary slow if the

tails of the involved probability measures are heavy enough (see the results in Kersting

1978).

18.6 A NUMERICAL EXAMPLE

The following analysis is intended to demonstrate the impact of the size of the confidence

sets (i.e. the robustness) on the optimal solutions of the outlined portfolio selection

problem. The presented analysis furthermore makes it possible to asses the value of

information in the model by comparing the optimal expected values for different levels of

robustness.

To perform this analysis the maximin approach was implemented and applied to the

following data set, downloaded from finance.yahoo.com: the data consists of monthly

returns within the period 1 January 1990 to 31 December 2004 of stocks from six com-

panies, namely,

� IBM—International Business Machines Corporation,

� PRG—Procter & Gamble Corporation,

� ATT—AT&T Corporation,

� VER—Verizon Communications Inc.,

� INT—Intel Corporation,

� EXX—Exxon Mobil Corporation.

The selection of these six assets was motivated as follows. Among all assets represented in

the Dow–Jones index, IBM and PRG show the least correlation and ATT and VER show

the highest correlation. INT is the asset with smallest and EXX with largest variance.

Under the basic model P̂, all observations have the same probability of 1/180.

The 10) average value-at-risk AV@R0:1 was chosen as the acceptability functional. In

order to translate the acceptance level into a risk level, we used 1� AV@R0:1 as the risk

functional. The bounds were set to AV@R0:1 	 0:9, i.e. the risk was bounded by 0.1. The

ambiguity sets were determined as

P ¼ fP : dðP; P̂Þ 
 ag:
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Since the a in the above formula is hard to interpret, for our analysis we vary the a with

dependence on a robustness parameter g, g � a(g) and P ¼ fP : dðP; P̂Þ 
 aðgÞg
whereby

aðZÞ ¼ maxfZ : sup
dðP;P̂Þ
Z

EPðxðiÞÞ 
 ð1þ gÞEP̂ðxðiÞÞ : for all ig:

The parameter as robustness parameter g is displayed in Figures 18.1�/18.3. The

maximin problem was solved by successive linear programming as described above.

Figure 18.1 shows the change in return, risk and portfolio composition as a function of

the robustness parameter g. As one can see, more robust portfolios are more diversified.

The worst case expected return decreases with robustness, but the basic model expected

return EP̂ only drops slightly. On the other hand, the worst case risk stays at the bound,

because this bound is binding, while the basic model risk 1� AV@R0:1;P̂ drops

significantly. Thus, for the given data set, the price for model robustness is very small

while the portfolio composition changes dramatically with the increase in robustness.

The robustness parameter influences the efficient frontier. We have plotted the efficient

surface: the optimal expected return as a function of risk and robustness. Figure 18.2

shows this surface, when risk and return are calculated under the basic probability, while

Figure 18.3 shows the surface when risk and return are calculated under the pertaining

worst case. Notice that for each point on the surface, this might be another worst case
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FIGURE 18.1 For different robustness parameters g, the upper figure shows the expected returns, the middle

figure shows the risks and the lower figure shows the portfolio composition. The assets are ordered from top to

bottom as: EXX, VER, ATT, PRG, INT, IBM.
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model. While under P̂, although the efficient frontier is greatly deformed by increasing

robustness, there is a much smaller influence on the worst cases.

18.7 CONCLUSIONS

We have presented a maximin approach for portfolio selection, which accommodates

scenario uncertainty (aleatoric uncertainty) and probability ambiguity (epistemic

uncertainty). Ambiguity is modelled by Kantorovich neighbourhoods of a basic

probability model.

The size of the ambiguity neighbourhood may be chosen to correspond to a

probabilistic confidence region for the estimated basic model. The more information is

collected about the model, the smaller is the ambiguity set and the smaller is the loss in

expected return one has to sacrifice for the sake of robustness. Therefore, the value of

better statistical information expressed in possible shrinks of the ambiguity set can be

assessed by looking at the pertaining losses in the expected return for the basic model.
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FIGURE 18.2 Efficient frontiers with dependence on the robustness parameter g. Risk and return are

calculated with respect to the basic model P̂.
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FIGURE 18.3 Efficient frontiers with dependence on the robustness parameter g. Risk and return are

calculated with respect to the worst case model.
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The chosen example showed a relative small drop in expected return, but a considerable

decrease of risk in exchange for a reasonable gain in robustness. It suggests that looking at

portfolios which are robust against model ambiguities is very advisable for portfolio

managers.
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(Academic Press: London).

Delbaen, F., Coherent measures of risk on general probability spaces. In Advances in Finance and

Stochastics. Essays in Honour of Dieter Sondermann, edited by K. Sandmann and P.J.
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19.1 INTRODUCTION AND MOTIVATION

M EAN-RISK MODELS ARE STILL THE MOST WIDELY USED APPROACH in the practice of

portfolio selection. With mean-risk models, return distributions are characterized

and compared using two statistics: the expected value and the value of a risk measure.

Thus, mean-risk models have a ready interpretation of results and in most cases are

convenient from a computational point of view. Sceptics on the other hand may question

these advantages since the practice of describing a distribution by just two parameters

involves great loss of information.

It is evident that the risk measure used plays an important role in making the decisions.

Variance was the first risk measure used in mean-risk models (Markowitz 1952) and, in

spite of criticism and many proposals of new risk measures (see e.g. Fishburn 1977;

Yitzhaki 1982; Konno and Yamazaki 1991; Ogryczak and Ruszczynski 1999, 2001,

Rockafellar and Uryasev 2000, 2002), variance is still the most widely used measure of

risk in the practice of portfolio selection. For regulatory and reporting purposes, risk

measures concerned with the left tails of distributions (extremely unfavourable outcomes)

are used. The most widely used risk measure for such purposes is Value-at-Risk (VaR).

However, it is known that VaR has undesirable theoretical properties (it is not subadditive,

as shown, for example, in Tasche (2002) and thus fails to reward diversification). In

addition, optimization of VaR leads to a non-convex NP-hard problem which is

computationally intractable. In spite of a considerable amount of research, optimizing

VaR is still an open problem (see e.g. Larsen et al. 2002, Leyffer et al. 2005 and references

therein). For these reasons, another risk measure concerned with the left tail, the

Conditional Value-at-Risk (CVaR), is gaining more popularity. CVaR has attractive

theoretical properties: it controls the magnitude of losses beyond VaR and it is coherent

(see e.g. Artzner et al. 1999; Pflug 2000; Acerbi and Tasche 2002; Rockafellar and Uryasev

2002; Tasche 2002). In addition, CVaR is easy to optimize. Optimizing CVaR is a convex

programming problem. In the case when the random variables under consideration are

discrete, with a finite number of outcomes, represented by various outcomes under

different scenarios, optimizing CVaR leads to a linear programming model of finite

dimension (Rockafellar and Uryasev 2000, 2002).

Variance and CVaR quantify risk from different perspectives. Variance measures the

spread around the expected value of a random variable, while CVaR measures the expected

loss corresponding to a number of worst cases, depending on the chosen confidence level.

Thus, the mean-variance and the mean-CVaR models may lead to very different solutions.

A portfolio obtained as a solution in the mean-variance model may be considered

unacceptable by a regulator, since it may have an excessively large CVaR, leading to big

losses under unfavourable scenarios. On the other hand, traditional fund managers may

consider a portfolio obtained with the mean-CVaR model unacceptable since it may have

an excessively large variance and thus an excessively small Sharpe index (see Luenberger

1998).

In this chapter, we seek to address the requirements of the traditional fund manager

and the regime imposed by the regulator. We propose a model for portfolio selection

that uses both variance and CVaR in order to make decisions. We call this model the
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mean-variance-CVaR model. Random variables are described and compared using three

statistics: the expected value, variance and CVaR. Thus, the model may be considered as

belonging to the family of mean-risk models.

We formally define the preference relation for random variables in this model. The

efficient solutions with respect to this preference relation are such that we cannot improve

on one statistic (of the three: expected value, variance and CVaR) without worsening

another. Mathematically, the problem is multi-objective (maximize expected return,

minimize variance, minimize CVaR) and the efficient solutions of the mean-variance-

CVaR model are the Pareto optimal solutions of the multi-objective problem.

We prove that the efficient solutions of this model may be found by solving a single

objective optimization problem in which variance is minimized while constraints are

imposed on the expected return and the CVaR level. The practical importance of this

approach is twofold. Firstly, a solution obtained in this way has an intuitive appeal. For

example, if the CVaR of a mean-variance efficient portfolio is considered as unacceptably

large, a constraint could be imposed on the CVaR level and a new portfolio obtained,

which has a minimal variance under these conditions. Secondly, the problem is tractable

from a computational point of view. In the case where the random variables under

consideration are discrete and described by their realizations under various scenarios, the

problem is one of quadratic programming.

Generally, the mean-variance and mean-CVaR efficient portfolios are particular

efficient solutions of the proposed model.1 However, most of the efficient portfolios in

the mean-variance-CVaR model are dominated in both mean-variance and mean-CVaR

models, although they may represent improved distributions: a compromise between the

classical fund managers’ and the regulators’ points of view.

The rest of this chapter is structured as follows. In Section 19.2 the portfolio selection

problem is described. Section 19.3 is concerned with mean-risk models, in particular with

the mean-variance and the mean-CVaR models. In Section 19.4 we present the mean-

variance-CVaR model. Firstly, the preference relation among random variables is defined.

The efficient solutions of the proposed model are Pareto non-dominated solutions of a

multi-objective problem. Secondly, an optimization approach for solving the multi-

objective problem is proposed. With this approach, the efficient solutions of the proposed

model are found by solving a single optimization problem, in which variance is minimized

and constraints are imposed on the expected value and the CVaR level. Thirdly, we

describe how all the efficient solutions of the model may be obtained. Finally, the algebraic

form of the mean-variance-CVaR model for the case of scenario models is presented.

Section 19.5 presents the computational results. A dataset, drawn from the FTSE 100 index

is used to evaluate the performance of the proposed model. For several fixed levels of

expected return, we consider the mean-variance and the mean-CVaR efficient portfolios

together with other portfolios, efficient only in the mean-variance-CVaR model. We

1 There may be a situation when several mean-CVaR efficient portfolios have the same mean return and the same
(optimal) CVaR, but different variances. Only the portfolio with the minimal variance is efficient in the proposed
model. The same discussion applies for mean-variance efficient portfolios. We reconsider the issue in Section 19.4.4.
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evaluate their performances using both in-sample and out-of-sample analysis. Section 19.6

presents the conclusions.

19.2 THE PORTFOLIO SELECTION PROBLEM

The problem of portfolio selection with one investment period is an example of the

general problem of deciding between random variables when larger outcomes are

preferred. Decisions are required on the amount (proportion) of capital to be invested in

each of a number of available assets such that at the end of the investment period the

return is as high as possible. Consider a set of n assets, with asset j in {1, . . . , n} giving a

return Rj at the end of the investment period. Rj is a random variable, since the future

price of the asset is not known. Let xj be the proportion of capital invested in asset j

(xj � wj/w where wj is the capital invested in asset j and w is the total amount of capital to

be invested), and let x � (x1, . . . , xn) represent the portfolio resulting from this choice.

This portfolio’s return is the random variable: Rx � x1R1� � � � �xnRn, with distribution

function F(r) � P(Rx 5 r) that depends on the choice x � (x1, . . . , xn).

To represent a portfolio, the weights (x1, . . . , xn) must satisfy a set of constraints that

forms a feasible set A of decision vectors. The simplest way to define a feasible set is by the

requirement that the weights must sum to 1 and short selling is not allowed. For this basic

version of the problem, the set of feasible decision vectors is

A ¼
(
ðx1; . . . ; xnÞ

����
Xn

j¼1

xj ¼ 1; xj � 0; 8j 2 f1; . . . ; ng
)
: ð19:1Þ

Consider a different portfolio defined by the decision vector y � (y1, . . . , yn) � A,

where yj is the proportion of capital invested in asset j. The return of this portfolio is given

by the random variable Ry � y1R1� � � ��ynRn.

The problem of choosing between portfolio x � (x1, . . . , xn) and portfolio

y � (y1, . . . , yn) becomes the problem of choosing between random variables Rx and

Ry . The criteria by which one random variable is considered ‘better’ than another random

variable need to be specified and models for choosing between random variables (models

for preference) are required. The purpose of such models is firstly, to define a preference

relation among random variables and secondly, to identify random variables that are non-

dominated with respect to that preference relation.

The next issue is to consider a practical representation for the random variables that

describe asset and portfolio returns. We treat these random variables as discrete and

described by realizations under T states of the world, generated using scenario generation

or finite sampling of historical data. For any i � 1, . . . , T, let state vi occur with

probability pi,
PT

i¼1 pi ¼ 1. Thus, the random returns are defined on a discrete probability

space {V,F , P} with V � {v1, . . . , vT}, F a s-field and P(vi) � pi.

Let rij be the return of asset j under scenario i, i � {1, . . . , T}, j � {1, . . . , n}. Thus, the

random variable Rj representing the return of asset j is finitely distributed over {r1j, . . . ,rTj}

with probabilities p1, . . . , pT . The random variable Rx representing the return of portfolio
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x � (x1, . . . , xn) is finitely distributed over {Rx1, . . . , RxT}, where Rxi � x1ri1 � � � � � xnrin,

�i � {1, . . . , T}.

19.3 MEAN-RISK MODELS

19.3.1 The General Case

Mean-risk models were developed in the early 1950s for the portfolio selection problem.

In his seminal work ‘Portfolio selection,’ Markowitz (1952) proposed variance as a risk

measure. Since then, many alternative risk measures have been proposed. The question of

which risk measure is most appropriate is still the subject of much debate.

In mean-risk models, two scalars are attached to each random variable: the expected

value (mean) and the value of a risk measure. Preference is then defined using a trade-off

between the mean where a larger value is desirable and risk where a smaller value is

desirable:

In the mean-risk approach with the risk measure denoted by r, random variable Rx

dominates (is preferred to) random variable Ry if and only if: E(Rx) ] E(Ry) and

r(Rx) 5r(Ry) with at least one strict inequality. Alternatively, we can say that

portfolio x dominates portfolio y.

In this approach, the choice x (or the random variable Rx) is efficient (non-dominated) if

and only if there is no other choice y such that Ry has higher expected value and less risk

than Rx. This means that, for a given level of minimum expected return, Rx has the lowest

possible risk, and, for a given level of risk, it has the highest possible expected return.

Plotting the efficient portfolios in a mean-risk space gives the efficient frontier.

Thus, the efficient solutions in a mean-risk model are Pareto efficient solutions of a

multi-objective problem, in which the expected return is maximized and the risk is

minimized:

maxfðEðRxÞ;�rðRxÞÞ : x 2 Ag:

Generally, for a multi-objective problem:

maxff ðxÞ ¼ ðf1ðxÞ; . . . ; fTðxÞÞ : x 2 Ag; ð19:2Þ

the Pareto preference relation is defined as follows:

A feasible solution x1 � A Pareto dominates another feasible solution x2 � A if

fi(x1)]fi(x2) for all i with at least one strict inequality.

x0 is a Pareto efficient (non-dominated) solution of (19.2) if and only if there does not

exist a feasible x such that x Pareto dominates x0. In other words, a Pareto efficient

solution is a feasible solution such that, in order to improve upon one objective function,

at least one other objective function must assume a worse value.
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In order to find an efficient portfolio, we solve an optimization problem with decision

variables x1, . . . xn:

Minimize rðRxÞ
Subject to : EðRxÞ � d and ðx1; . . . xnÞ 2 A;

where d represents the desired level of expected return for the portfolio.

Varying d and repeatedly solving the corresponding optimization problem identifies the

minimum risk portfolio for each value of d. These are the efficient portfolios that compose

the efficient set. By plotting the corresponding values of the objective function and of the

expected return respectively in a return-risk space, we trace out the efficient frontier.

An alternative formulation, which explicitly trades risk against return in the objective

function, is

Maximize EðRxÞ � trðRXÞðt � 0Þ
Subject to : ðx1; . . . xnÞ 2 A:

Varying the trade-off coefficient t and repeatedly solving the corresponding optimiza-

tion problems traces out the efficient frontier.

19.3.2 The Mean-Variance Model

The variance of a random variable Rx is defined as its second central moment:

s2ðRxÞ ¼ E½ðRx � EðRxÞÞ
2
:

An important property is that the variance of the portfolio return

Rx � x1R1 � � � � � xnRn, resulting from choice (x1, . . . ,xn), can be expressed as:

s2ðRxÞ ¼
Xn

k¼1

Xn

j¼1

xkxjskj;

where skj is the covariance of Rk and Rj, and thus variance is expressed as a quadratic

function of x1, . . . ,xn.

The mean-variance model can be formulated for the portfolio selection problem as

follows:

Minimize
Xn

k¼1

Xn

j¼1

xkxjskj

Subject to
Xn

j¼1

mjxj � d
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Xn

i¼1

xj ¼ 1

xj � 0; 8j ¼ 1; . . . ; n;

where mj is the expected rate of return of asset j, j �{1, . . . , n}; skj is the covariance between

returns of asset k and asset j, with k, j � {1, . . . , n}; and d is the desired expected value of

the portfolio return.

19.3.3 The Mean-CVaR Model

Let Rx be a random variable representing the return of a portfolio x over a given holding

period and A) � a �(0,1) a percentage which represents a sample of ‘worst cases’ for the

outcomes of Rx (usually, a � 0.01 or a � 0.05).

The definition of CVaR at the specified level a is the mathematical transcription of the

concept ‘average of losses in the worst A) of cases’2 (Acerbi and Tasche 2002), where a

‘loss’ is a negative outcome of Rx (thus the loss associated with Rx is described by the

random variable �Rx).

Formally, the Conditional Value-at-Risk at level a of Rx is defined as minus the mean of

the a-tail distribution of Rx, where the a-tail distribution is obtained by taking the lower a

part of the distribution of Rx (corresponding to extreme unfavourable outcomes) and

rescaling its distribution function to span [0,1]:

CVaRaðRxÞ ¼ �
1

a
EðRx1fRx�qaðRxÞgÞ � qaðRxÞ½PðRx � qaðRxÞÞ � a

n o

; ð19:3Þ

where qa is an a-quantile of Rx, meaning a real number r such that

P(Rx B r) 5 a 5P(Rx 5 r) (see Laurent (2003) for more details on a-quantiles), and

1fRelationg ¼ 1; if Relation is true

0; if Relation is false

(see Rockafellar and Uryasev (2000, 2002) for more details).

An important result, proved by Rockafellar and Uryasev (2000, 2002), and inde-

pendently by Ogryczak and Ruszczynski (2002), is that the CVaR of a random variable Rx

can be calculated by solving a convex optimization problem. Moreover, CVaR can be

minimized over the set of feasible decision vectors. These results are summarized below:

Proposition 19.1: (CVaR calculation and optimization). Let Rx be a random variable

depending on a decision vector x that belongs to a feasible set A, and a � (0,1). Consider the

function:

2 This is not necessarily the same as ‘the expected value of losses exceeding VaR at confidence level a,’ as it is defined in
earlier papers on CVaR. The two definitions lead to the same results when the distribution of the random variable
under consideration is continuous, but differences may appear when the considered distribution has discontinuities—
see Acerbi and Tasche (2002), and Rockafellar and Uryasev (2002) for more details.
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Faðx; vÞ ¼
1

a
Ef½�Rx þ v
þg � v;

where

½u
þ ¼ u for u � 0;

½u
þ ¼ 0 for u < 0:

Then:

(a) As a function of v, Fa is finite and continuous (hence convex) and

CVaRaðRxÞ ¼ min
v2R

Faðx; vÞ:

In addition, the set consisting of the values of v for which the minimum is attained, denoted

by Aa(x), is a non-empty, closed and bounded interval (possibly formed by just one point).

(b) Minimizing CVaRa with respect to x �A is equivalent to minimizing Fa with respect to

(x, v) � AxR:

min
x2A

CVaRaðRxÞ ¼ min
ðx;vÞ2AxR

Faðx; vÞ:

In addition, a pair (x+,v+) minimizes the right-hand side if and only if x+ minimizes the left-

hand side and v+ � Aa(x+).

(c) CVaRa (Rx) is convex with respect to x and Fa (x, v) is convex with respect to (x, v).

Thus, if the set A of feasible decision vectors is convex (which is the case for the basic

version of the portfolio selection problem), and even if we impose a further lower limit on

the expected return, minimizing CVaR is a convex optimization problem.

In the case when Rx is a discrete random variable (as described in Section 19.2),

calculating and optimizing CVaR are linear programming problems. Suppose that Rx has

T possible outcomes Rx1, . . . , RxT with probabilities p1, . . . , pT. Then:

Faðx; vÞ ¼
1

a

XT

i¼1

pi½v � Rxi

þ � v:

For the portfolio selection problem, as presented in Section 19.2, where Rxi ¼
Pn

j¼1 xjrij

with rij the return of asset j under scenario i,

Faðx; vÞ ¼
1

a

XT

i¼1

pi v �
Xn

j¼1

xjrij

" #þ
�v:

Thus, the mean-CVaRa model can be formulated for the portfolio selection problem as

follows:
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Minimize� v þ 1

a

XT

i¼1

piyi

Subject to
Xn

j¼1

�rijxj þ v � yi; 8i ¼ 1; . . . ;T yi � 0; 8i ¼ 1; . . . ;T

Xn

j¼1

mjxj � d

Xn

j¼1

xj ¼ 1

xj � 0; 8j ¼ 1; . . . ; n:

19.4 THE MEAN-VARIANCE-CVAR MODEL

19.4.1 The Theoretical Background

In this section, a model for portfolio selection is proposed, in which random variables are

described by three statistics: the expected value, the variance and the CVaR at a specified

confidence level a � (0,1). We claim that taking three parameters into consideration,

instead of two, gives a better modelling power. The proposed model may bring an

improvement in the solution, in the case where a mean-variance efficient portfolio has an

excessively large CVaR, or a mean-CVaR efficient portfolio has an excessively large variance.

The idea of restricting the risk of a distribution from two different perspectives has been

used before in various contexts.

Konno et al. (1993) proposed a ‘mean-absolute deviation skewness portfolio optimiza-

tion model,’ in which the lower semi-third moment of the portfolio return is maximized

subject to constraints on the mean and on the absolute deviation of the portfolio return.

A ‘mean-variance-skewness portfolio optimization model’ was proposed by Konno et al.

(1995): they maximized the third moment of the portfolio return subject to constraints on

the mean and on the variance of the portfolio return. Optimization approaches are

provided, in which the corresponding cubic and quadratic functions are approximated by

linear functions.

Wang (2000) proposed a model in which the portfolio return has constraints on both

variance and Value-at-Risk (VaR), and a maximum expected return under these

conditions. However, no practical optimization approach is provided.

Harvey et al. (2003) proposed a model in which random variables are chosen with

respect to their expected value, variance and skewness. Thus, it may be considered that

they use two risk measures in order to control the selection of a solution: the variance and

the negative of skewness. Their model has a distributional assumption for portfolio

returns and uses an expected utility maximization approach, with the utility function

depending on the expected value, variance and skewness.

Jorion (2003) proposed that a portfolio return distribution should have constraints on

both variance and ‘tracking error volatility,’ which is ‘the volatility of the deviation of the
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active portfolio from the benchmark,’ with a maximum expected return under these

conditions. Thus, this approach may also fall into the category of index-tracking models.

There have been various formulations of portfolio selection problems as multiple

criteria models (see e.g. Ogryczak 2000, 2002). However, to the best of our knowledge, the

use of CVaR together with variance within a multi-attribute model is novel. A categorized

bibliography on the applications of multiple criteria decision-making techniques in

finance is provided in Steuer and Na (2003).

The model proposed in this chapter does not assume a particular distribution for the

returns and, in addition, is convenient from a computational point of view. We define a

preference relation for random variables and provide an optimization approach for

finding the efficient solutions with respect to this preference relation.

Consider again the portfolio selection problem described in Section 19.2, with the random

variable Rx and Ry describing the returns of portfolios x and y respectively, with x, y � A.

We consider a model for choice under risk that we refer to as the mean-variance-CVaR

model, in which the preference relation among random variables is defined as follows:

In the mean-variance-CVaR model, a random variable Rx is preferred to a random

variable Ry (or, similarly, the portfolio x is preferred to portfolio y) if and only if

E(Rx) ] E(Ry), s2 (Rx) 5s2(Ry) and CVaRa(Rx) 5CVaRa(Ry), with at least one

strict inequality.

Thus, the non-dominated (efficient) solutions in the mean-variance-CVaR model are

the Pareto efficient solutions of a multi-objective problem in which the expected value is

maximized while the variance and the CVaR are minimized:

ðMVCÞ : maxðEðRxÞ;�s2ðRxÞ;�CVaRaðRxÞÞ
Subject to : x 2 A:

When plotting the efficient solutions in a mean-variance-CVaR space, a surface is

obtained; we refer to this surface as ‘the efficient frontier’ of the mean-variance-CVaR model.

19.4.2 An Optimization Approach

The next issue to address is how to obtain the efficient solutions of the mean-variance-

CVaR model.

Firstly, the multi-objective problem (MVC) is transformed into a single objective

problem in which one objective function is optimized while lower limits are imposed on

the remaining objective functions and transformed into constraints. This method, known

in multi-objective optimization as the ‘o-constraint method’ (Haimes et al. 1971, see also

Steuer 1986) generally requires some regularization in order to guarantee that an optimal

solution of the single-objective problem obtained is a Pareto optimal solution of the

original multi-objective problem.

We choose to minimize variance for two reasons. Firstly, it is more intuitively appealing

to impose limits on the expected value and CVaR, rather than on variance. Secondly, we
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show that minimizing variance is more convenient from a computational point of view.

In either case, a convex optimization problem would be obtained3 irrespective of which

statistic we choose for the objective function, but, when optimizing variance, a quadratic

programming problem is obtained, as shown below.

In what follows, for a random variable Rx that depends on the decision vector x, the

variance of Rx is denoted alternatively by s2(x) or s2(Rx). Similarly, the Conditional

Value-at-Risk at level a of Rx is denoted by CVaRa(x) or CVaRa(Rx), and the expected

value of Rx by E(x) or E(Rx).

We consider the following optimization problem:

(P1): min s2ðxÞ

Subject to: CVaRaðxÞ � z; EðxÞ � d; x 2 A

where z and d are real numbers.

It is easy to prove that: if x+ is a Pareto optimal solution of (MVC) then x+ is also an

optimal solution of (P1) with z � CVaRa(x+) and d � E(x+).

Indeed, assume that x+ is not an optimal solution of (P1). Obviously x+ is a feasible

solution of (P1). Denote by x? an optimal solution of (P1). It follows that s2(x?) 5s2(x+),

CVaRa(x?) 5CVaRa(x+) and E(x?) ] E(x+), which means that x? Pareto dominates x+ and

we have a contradiction.

The converse is also true, with the additional assumption of uniqueness of the optimal

solution:

If x+ is the unique optimal solution of (P1), then x+ is also a Pareto optimal solution

of (MVC).

Indeed, assume that x+ is Pareto dominated in (MVC) and denote by x? a point that

Pareto dominates x+. This means that s2ðx 0Þ � s2ðx�Þ, CVaRaðx 0Þ � CVaRaðx�Þ � z and

Eðx 0Þ � Eðx�Þ � d with at least one strict inequality. Thus x? is another feasible solution of

(P1) such that s2ðx 0Þ � s2ðx�Þ, which is a contradiction.

Remark 1: If the covariance matrix of returns is positive definite, then variance is a strictly

convex function of x. In this case, minimizing variance over a convex set has at most one

optimal solution; thus, the possibility of multiple optimal solutions for (P1) is eliminated.

This is usually the case; if there are no redundant assets (ones that can be replicated by the

remaining of the assets) or risk-free assets in the collection of assets considered, then the

covariance matrix is positive definite.

We summarize these results below:

3 As stated in Proposition 1, CVaR is a convex function of x. Variance is also a convex function of x, since the variance-
covariance matrix is positive semi-definite. The expected value is a linear function of x.
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Proposition 19.2: If the covariance matrix is positive definite, a point x+ is a Pareto efficient

solution of (MVC) if and only if x+ is an optimal solution of (P1) with z ¼ CVaRaðx�Þ and

d ¼ Eðx�Þ.
Thus, in the case of a positive definite covariance matrix of returns, the Pareto efficient

solutions of (MVC) can be fully characterized as optimal solutions in (P1) with active

constraints on mean and on CVaR. In Appendix 19.A we treat the general case of a positive

semi-definite covariance matrix.

The next issue that arises is how to represent the CVaR constraint in (P1). As presented

in Proposition (19.1), the function Faðx; vÞ ¼ ð1=aÞEf½v � Rx

þg � v may be used both

for calculating the CVaR of a given random variable and for optimizing CVaR with respect

to all feasible decisions vectors.

Furthermore, Krokhmal et al. (2002) proved that the same function Faðx; vÞmay be used

for imposing an upper limit on the CVaR of a random variable, while maximizing its

expected value. Their result may be extended to a much more general case. In fact, the

constraint ‘CVaRa(x) 5 z’ can be replaced with the constraint ‘Fa(x, v)5 z’ in all

optimization problems, irrespective of the form of the objective function or the feasible set.

Proposition 19.3: Consider two optimization problems (P) and (P?) with A ƒRn a feasible

set of decision vectors and the objective function f : Rn 0R of any form:

ðPÞ : min f ðxÞ
Subject to : CVaRaðxÞ � z x 2 A

ðP0Þ : min f ðxÞ
Subject to : Faðx; vÞ � z x 2 A; v 2 R:

In (P), the variables are x1, . . . ,xn while in (P?), the variables are x1, . . . ,xn and v.

Then: (P) and (P?) achieve the same optimal value. Moreover, a point x+ � A is an optimal

solution for (P) iff there exists v+ � R such that (x+,v*) is an optimal solution for (P?). If, in

addition, the constraint CVaRaðxÞ � z in (P) is active, then v+ � Aa(x+) (meaning that

F(x+,v+) � minv2RFa(x+,v)).

Proof: As stated in Proposition 1, CVaRaðxÞ ¼ min
v2R

Faðx; vÞ. Thus, the problem (P) may

be written as:

ðPÞ : min f ðxÞ
Subject to: min

v2R
Faðx; vÞ � z x 2 A:

Suppose now that x+ is an optimal solution for (P). Obviously (x+,v+) is a feasible

solution for (P?), where v+ is such that Fðx�; v�Þ ¼ minv2R Faðx�; vÞ. Assume that there

exists (x?,v?) another feasible solution for (P?) such that f(x?)Bf(x+). Since Fa(x?,v?) 5 z it
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follows that minv2R Faðx 0; vÞ � z; thus, x? is a feasible solution of (P1) which improves the

objective function as compared to x+, which is a contradiction.

Similarly, in a straightforward way, the converse may be proven; the last part of the

proposition is obvious. I

Thus, we consider another optimization problem, with variables x � (x1, . . . ,xn) �

A ƒRn and v � R:

ðP2Þ : min s2ðxÞ
Subject to: Faðx; vÞ � z

EðxÞ � d

x 2 A;
v 2 R;

where A is the (convex) set of feasible decision vectors, as given, for example, by (19.1).

The result below follows from Propositions 19.2 and 19.3:

Proposition 19.4: If the covariance matrix of returns is positive definite, the Pareto efficient

solutions of (MVC) are fully characterized as optimal solutions of (P2) with active constraints

on mean and on CVaR.

In other words, x+ is a Pareto efficient solution of (MVC) if and only if there exists v+ � R

such that (x+,v+) is an optimal solution to (P2) with z � Fa(x+,v+) and d � E(x+).

Therefore, varying d and z in the problem (P2) such that the constraints on CVaR and

on the expected value are active produces all the efficient solutions of the mean-variance-

CVaR model. As shown in Section 19.4.4, this means varying d and z between some finite

limits that can be easily determined.

19.4.3 Alternative Optimization Approaches

The optimization approach described in the previous subsection is not unique. A commonly

used method of obtaining a Pareto efficient solution of a multi-objective optimization

problem is to use a scalarizing function, meaning a real-valued function that is a composite of

all objective functions. When optimized, the scalarizing function produces a Pareto efficient

solution of the multi-objective optimization problem. Thus, the problem is reduced to a

single objective optimization problem. We give below two examples of scalarizing functions,

leading to two alternative optimization approaches for the mean-variance-CVaR model.

The most common scalarizing function is a weighted sum of the objective functions in

the original multi-objective optimization problem. The general requirement on weights is

that they should be strictly positive but usually they are normalized such they sum to 1. In

our case, the single objective optimization problem that results is:

max w1EðxÞ � w2s
2ðxÞ � w3CVaRaðxÞ ðP3Þ

Subject to : x 2 A
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where w1, w2, w3 are strictly positive.4

It is clear that every optimal solution of (P3) is a Pareto efficient solution of (MVC).

The converse is not always true, in the sense that there may be Pareto optimal solutions of

(MVC) that cannot be obtained as optimal solutions of a problem (P3) with strictly

positive w1, w2 and w3 (for example, the Pareto optimal solution of (MVC) that globally

minimizes variance).

However, due to the convexity of all objective functions on (MVC), every Pareto

optimal solution of (MVC) can be obtained as an optimal solution of (P3) with non-

negative weights (see Jahn 1985). For example, the Pareto optimal solution of (MVC) that

globally minimizes variance is obtained as an optimal solution of (P3) with w1 � w3 �0,

w2 �1.

This approach has several disadvantages (see Das and Dennis 1997), one of them being

the fact that the weights w1, w2, w3 are rather difficult to interpret. It is more meaningful

to set desired levels of expected return and of CVaR and solve (P2).

Another example of a scalarizing function is obtained by considering target values

(called reference points or aspiration points) for the values of the objective functions. This

technique for multi-objective optimization, named The Reference Point Method is fully

described in Wierzbicki (1998). Consider the general multi-objective problem

ðMO0Þ : maxðf1ðxÞ; f2ðxÞ; . . . ; fTðxÞÞ
Subject to: x 2 X ;

and let w�1 ;w
�
2 ; . . . ;w�T be the user-defined aspiration points for the objective functions.

The simplest form of scalarizing function is:

gw�ðxÞ ¼ min
1�k�T

ðfkðxÞ � w�k Þ þ e
XT

k¼1

ðfkðxÞ � w�k Þ; ð19:4Þ

where o � 0 is an arbitrary small parameter.

The terms fkðxÞ � w�k in (4) are usually replaced by more complicated functions of x

and w�k ; gkðx;w�k Þ, which must satisfy certain properties (see e.g. Wierzbicki 1998;

Makowski and Wierzbicki 2003). These functions are called partial achievement functions

since they measure the actual achievement of the kth objective function with respect to its

corresponding aspiration level w�k .

Various functions gkðx;w�k Þ provide a wide modelling environment for measuring

individual achievements. Other examples of such functions may be found in Wierzbicki

(1998), and Makowski and Wierzbicki (2003).

Provided that all the reference points lie between the lower and the upper bound of the

corresponding objective function, the maximization of (19.4) provides a Pareto efficient

solution of (MO0). The converse is true, in the sense that for every Pareto efficient solution

4 If additionally there is the assumption of unique optimal solutions of (P3) when some of the weights are zero, then
only the non-negativity condition is required for w1, w2 and w3.
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of (MO0), there exist aspiration levels such that this efficient solution maximizes the

corresponding achievement function (see Wierzbicki 1998). In our case, the scalarizing

achievement function to maximize is:

gw�ðxÞ ¼ minfEðxÞ � w�1 ;w
�
2 � s2ðxÞ;w�3 � CVaRaðxÞg

þ e½EðxÞ � w�1 þ w�2 � s2ðxÞ þ w�3 � CVaRaðxÞg
;

where o � 0 is an arbitrary small parameter.

The Reference Point Method is primarily designed for obtaining a specific solution of a

multi-objective problem rather than the whole set of efficient solutions. Although all the

efficient solutions may be obtained with this method by choosing appropriate reference

points, care must be taken in choosing the reference points between the lower and upper

bound of each objective function. The lower bounds for the objective functions are

difficult to find and often approximations are used.

In contrast, the optimization method described in Section 19.4.2 produces the entire set

of efficient solutions of the mean-variance-CVaR model with no difficulty, as described in

the next section.

19.4.4 The Efficient Frontier of the Mean-Variance-CVaR Model

We consider the case when the covariance matrix of returns is positive definite; the general

case of a positive semi-definite covariance matrix is treated in Appendix 19.A.

As presented in Section 19.4.2, varying the right-hand sides d and z in (P2) such that

the corresponding constraints on mean and CVaR are active produces all the efficient

solutions of (MVC).

Thus, the level d for the expected value must lie in the interval ½dmin; dmax
. We define

dmin ¼ maxfdminvar; dminCVaRg, where dminvar and dminCVaR are the expected returns of the

minimum variance portfolio (mean-variance efficient) and minimum CVaR portfolio

(mean-CVaR efficient) respectively. dminvar may be found as the optimal value of the

variable d0 in the problem:

min s2ðxÞ
Subject to: EðxÞ � d0

x 2 A;
d0 2 R:

dminCVaR may be found as the optimal value of the variable d1 in the problem:

min Faðx; vÞ
Subject to: EðxÞ � d1 x 2 A; v 2 R; d1 2 R:

To be more precise, dminCVaR may be found as above only when the minimization of

Fa(x, v) with respect to (x, v) over AxR provides a unique optimal solution. In the case of

non-unique optimal solutions, we can obtain portfolios having the same minimal CVaR
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but different expected returns; among these, we are interested in the portfolio with the

maximum expected return. To obtain this portfolio, we denote by CVaRmin the optimal

value of the above problem and solve another optimization problem:

max EðxÞ
Subject to: Faðx; vÞ � CVaRmin x 2 A; v 2 R:

We define dmax as the maximum possible expected return:5 the optimal value of the

objective function in the problem:

max EðxÞ
Subject to: x 2 A:

Furthermore, for a specific d� 2 ½dmin; dmax
, the level z of CVaRa must lie in the interval

½zd�;min; zd�;max
, where zd�;min is the best (minimum) CVaRa level for the expected return d+

and zd�;max is the CVaRa level of the (unique) portfolio that minimizes variance for the

expected return d+. zd�;min is the optimal value of the objective function in the problem:

min Faðx; vÞ
Subject to: EðxÞ � d�

x 2 A;
v 2 R:

zd�;max may be found as the optimal value of the objective function in the problem:

minFaðx�; vÞ
Subject to: v 2 R;

where x� ¼ ðx�1 ; . . . ; x�nÞ is the (unique) portfolio that minimizes variance for the mean

return d+.

The fact that the imposed limit z on CVaRa is greater than or equal to zd�;min ensures

that the problem (P2) is not infeasible, while z being less than or equal to zd�;max ensures

that the constraint on CVaR in (P2) is active. When solving problem (P2) for a level of

expected return equal to d+ and a CVaR level equal to zd�;min, we obtain a mean-CVaR

efficient portfolio; more precisely, the mean-CVaR efficient portfolio with the lowest

variance for expected return d+.

When solving problem (P2) for a level of expected return equal to d+ and a CVaR level

equal to zd�;max, we obtain the mean-variance efficient portfolio with expected return d+.

For a fixed level of expected return, the efficient solutions in the mean-variance-CVaR

model form a curve when plotted in a variance-CVaR space, where the lower end of this

5 dmax is also equal to the highest expected return of the component assets in the portfolio selection problem.
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curve is represented by the mean-CVaR efficient solution (with the lowest variance) and the

upper end is represented by the mean-variance efficient solution (see Figure 19.1). The other

points of this curve are not efficient in either the mean-variance or the mean-CVaR model.

For the maximum level of expected return dmax, this curve degenerates into just one

point, with the coordinates equal to the variance and CVaR of the (only) efficient portfolio

obtained for dmax, consisting of the asset with the highest expected return.

19.4.5 The Formulation of the Mean-Variance-CVaR Model for Scenario Models

For the portfolio selection problem, as presented in Section 19.2, consider T scenarios and

n assets with

rij � the return of asset j under scenario i, for i� 1, . . . , T and j � 1, . . . , n;

pi � the probability of scenario i occurring, for i � 1 . . . T;

mj � the expected return of asset j, j � 1, . . . , n;

sjk � the covariance between the returns of assets j and k, for j, k � 1, . . . , n.

As presented in Section 19.3.3, the function Fa can be written as:

Faðx; vÞ ¼
1

a

XT

i¼1

pi v �
Xn

j¼1

xjrij

" #þ
�v:

Thus, we write the mean-variance-CVaR model as:

min
Xn

j;k¼1

xjxksjk

Subject to:
Xn

j¼1

xjmj � d
1

a

XT

i¼1

piyi � v � z

Variance

C
Va

R

FIGURE 19.1 The efficient solutions of the mean-variance-CVaR model, for a fixed level of expected value,

plotted in a variance-CVaR space.
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yi � v �
Xn

j¼1

xjrij ; 8i 2 1; . . . ;T

yi � 0; 8i 2 1; . . . ;T

Xn

j¼1

xj ¼ 1

xj � 0 8j 2 1; . . . ; n:

The minimization is over v, x1, . . . ,xn, y1, . . . ,yT .

19.5 COMPUTATIONAL RESULTS

19.5.1 The Data Set and Methodology

The purpose of this section is to investigate the practical performance of the mean-

variance-CVaR model as compared to that of the mean-variance or mean-CVaR model.

Precisely, for several levels of expected return, we select portfolios that are efficient in the

mean-variance-CVaR model, but dominated in the mean-variance or mean-CVaR model,

and we also consider the corresponding mean-variance efficient portfolio and the mean-

CVaR efficient portfolio. We compare their in-sample and out-of-sample performances.

We use CVaR at 0.01 confidence level. A dataset, drawn from the FTSE 100 index, was

used for this analysis. The returns of the 76 stocks that belonged to the index throughout

the period January 1993–December 2003 were considered (for each of the remaining 24

stocks data there is at least one missing data item in the specified period). The dataset

consists of monthly returns and has 132 time periods, considered as equally probable

scenarios (n � 76, T � 132). For the out-of sample analysis, the behaviour of the

portfolios obtained was examined over the eighteen months following the date of selection

(January 2004–June 2005). The models were written in the MPL modelling language

(Maximal Software Inc. 2000) and processed using CPLEX 9.0 optimization solver (ILOG

2003). The matrix of covariances of the returns is computed from historical data.

19.5.2 In-Sample Analysis

We consider six levels of expected return, which divide the interval ½dmin; dmax
 (see Section

19.4.4) into 5 equal parts: d1�dmin�0.009268, d2�0.014034, d3�0.018801,

d4�0.023567, d5�0.028334, d6�dmax�0.0331. For each level of expected return di,

with i � 1, . . . ,5, we determine zdi ;min: the minimum level of CVaR (corresponding to the

mean-CVaR efficient portfolio) and zdi ;max: the maximum level of CVaR (the lowest CVaR

of a mean-variance efficient portfolio with expected return di) and, between them, another

3 equally spaced levels of CVaR. Thus, the interval ½zdi ;min; zdi ;max
 for CVaR is divided

into 4 equal parts. For a specific level of expected return, when solving the mean-

variance-CVaR model with these CVaR levels, we obtain 5 portfolios, denoted by: PCVaR,

P1=4CVaR, P1=2CVaR, P3=4CVaR and Pvar respectively. Thus, PCVaR is the mean-CVaR efficient

portfolio (with the lowest variance, for the specified expected return) and Pvar is the
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(unique) mean-variance efficient portfolio for the specified expected return (see

Figure 19.2).6

We first investigate the composition of the considered portfolios. For all levels of

expected return, the mean-variance efficient portfolios have considerably more assets in

their composition than the mean-CVaR efficient portfolios. This was expected, since the

‘diversification effect’ is the basis of the mean-variance theory.

The other three portfolios P1=4CVaR, P1=2CVaR, P3=4CVaR have usually a number of assets in

composition significantly higher than mean-CVaR efficient portfolios, but usually smaller

than mean-variance efficient portfolios. There are cases in which these portfolios are as well

as or even more diversified than the mean-variance efficient portfolios (see Table 19.1) we

notice that this happens when the expected return of the portfolio is high, thus, at high

levels of risk. However, in most cases, the number of assets in the composition increases

while the level of variance decreases (and the level of CVaR increases). Generally, the assets

there are in the composition of mean-CVaR efficient portfolios are also in the composition

of portfolios with a higher CVaR level. However, there are assets in the composition of the

mean-CVaR portfolios but not in the composition of portfolios with a higher CVaR level.

This aspect happens for small portfolio expected returns, thus, at low levels of risk. It may

be noticed that, while the expected portfolio return (and thus the risk) increases, those

assets are no longer in the composition of any efficient portfolio.

Variance

Pvar

P3/4CVaR

P1/2CVaR

P1/4CVaR

PCVar
C

Va
R

FIGURE 19.2 The efficient frontier for a fixed level of expected return, in a variance-CVaR space. The interval

for CVaR is divided into 4 equal parts.

TABLE 19.1 The Number of Assets in the Composition of Mean-Variance-CVaR Efficient Portfolios

PCVaR P1/4CVaR P1/2CVaR P3/4CVaR Pvar

d1 � 0.00927 10 18 21 21 23

d2 � 0.01403 7 17 20 22 21

d3 � 0.01880 7 12 14 13 13

d4 � 0.02357 6 9 9 8 7

d5 � 0.02833 4 5 5 6 6

6 The CVaR level of P1=2CVaR is the arithmetic mean of the CVaR levels of PCVaR and Pvar. Similarly, the CVaR level of
P1=4CVaR is the arithmetic mean of the CVaR levels of PCVaR and P1=2CVaR.
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The portfolio weights of the efficient portfolios considered are presented in Appendix

19.B. We next investigate the in-sample performances of P1=4CVaR, P1=2CVaR, P3=4CVaR, as

compared with those of PCVaR and Pvar. We analyse their return distributions using

common in sample parameters. Obviously, the CVaR levels of P1=4CVaR, P1=2CVaR, P3=4CVaR

are better than the CVaR of Pvar. On the other hand, their variance is generally significantly

smaller than that of PCVaR. All the other in-sample parameters are between those of PCVaR

and Pvar. In most cases, PCVaR has the return distribution with the best skewness, kurtosis

and minimum of returns but also with the worst variance.

In contrast, Pvar has the return distribution with the best variance but usually the worst

skewness, kurtosis and minimum of returns. This is in line with the modelling paradigm

since minimization of CVaR leads to reduction in the (weighted) tail of the resulting

portfolio return distribution. The other portfolios P1=4CVaR, P1=2CVaR, P3=4CVaR represent a

compromise in between these two ‘extremes.’ Their return distribution improves in the left

tail, as compared with Pvar and also has a significantly smaller spread around the mean, as

compared with PCVaR. In particular, P1=4CVaR has return distributions with the variance

significantly smaller than that of PCVaR at the expense of a relatively small increase in

CVaR. This aspect can be seen from Tables 19.C1�/19.C5 (with the best values in italic bold

and the worst values enclosed by rectangles) in Appendix 19.C and is also illustrated in

Figure 19.2.

In Figure 19.3 the histogram of the return distribution of PCVaR for expected return

d1�0.009 27 is presented. This distribution is positively skewed, with a short left tail, a

long right tail and a large probability of outcomes below the expected value. Therefore, the

probability of large losses is very small, but there is a large probability of small losses. In

addition, this distribution is particularly ‘flat’, that is, not concentrated around the

expected value.

In Figure 19.4 the histogram of the return distribution of Pvar for the same expected

return d1�0.00927 is presented. This distribution is negatively skewed, with a long left

tail, a short right tail and also a large probability of outcomes above the expected value;

thus, there is a large probability of small gains. This distribution is concentrated around

the expected value.

In Figure 19.5 the histogram of the return distribution of P1=4CVaR for the same expected

return d1�0.00927 is presented. This distribution has approximately the same shape as

the return distribution of Pvar: concentrated around the expected value and with a large
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FIGURE 19.3 The histogram of the return distribution of PCVaR for expected return d1�0.00927.
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probability of outcomes just above the expected value. However, its left tail is shorter, due

to the constraint imposed on the CVaR level, and thus the probability of large losses is

reduced.

19.5.3 Out-of-Sample Analysis

We analyse the performance of the portfolios described in the previous section over the

next 18 time periods following the date of selection (January 2004–June 2005).

The portfolios that are non-efficient in either the mean-variance or the mean-CVaR

model, denoted by P1=4CVaR, P1=2CVaR and P3=4CVaR, have an out-of-sample performance

comparable to that of the mean-variance and the mean-CVaR efficient portfolios. It may

be noted the generally good out-of-sample performance of the mean-CVaR portfolios and

the somewhat poorer performance of the mean-variance portfolios, although the

differences were not significant.

In general, the best out-of-sample parameters correspond to mean-CVaR portfolios,

but for some levels of expected return, P1=4CVaR had equally good or even better out-of-

sample parameters (see Tables 19.2, 19.3, with the best values in italic bold and the worse

values enclosed by rectangles).

Figure 19.6 presents the compound out-of-sample returns of the mean-variance-CVaR

efficient portfolios with in-sample mean return d1�0.009268. P1=4CVaR had a better out-

of-sample performance than PCVaR in the first eight out-of-sample periods (January–

August 2004) (moreover, PCVaR had a compound return less than one in February 2004,

which means that its value fell below the amount invested). At the same time, P1=4CVaR had

a better out-of-sample performance than Pvar in the last ten out-of-sample periods

(September 2004–June 2005).
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FIGURE 19.5 The histogram of the return distribution of P1/4CVaR for expected return d1 � 0.00927.
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FIGURE 19.4 The histogram of the return distribution of Pvar for expected return d1�0.00927.
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Figure 19.7 presents the compounded out-of-sample returns of the mean-variance-

CVaR efficient portfolios with in-sample mean return d3 � 0.018 80. P1=4CVaR had a better

out-of-sample performance than both PCVaR and Pvar, although the differences are small.

19.6 SUMMARY AND CONCLUSIONS

In this chapter, we presented a model for portfolio selection, which selects a solution

(distribution) on the basis of three parameters: the expected value, the variance and the

CVaR at a specified confidence level. We called this model the mean-variance-CVaR

model. The problem of selecting an efficient solution of this model is multi-objective:
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FIGURE 19.6 Ex-post compounded returns of the mean-variance-CVaR efficient portfolios with in-sample

mean return d1 � 0.009268.

TABLE 19.3 Ex-Post Parameters of the Mean-Variance-CVaR Efficient Portfolios with In-Sample Mean Return

d3 � 0.01880

PCVaR P1/4CVaR P1/2CVaR P3/4CVaR Pvar

Mean 0.01133 0.012532 0.012342 0.012352 0.012342

Median 0.010171 0.013783 0.013118 0.012365 0.01231

Standard

Deviation

0.028682 0.031943 0.03221 0.032159 0.032581

Minimum �0.04247 �0.03263 �0.03614 �0.03817 �0.04004

Maximum 0.081765 0.08752 0.082737 0.078024 0.072908

TABLE 19.2 Ex-Post Parameters of the Mean-Variance-CVaR Efficient Portfolios with In-Sample Mean Return

d1 � 0.009 268

PCVaR P1/4CVaR P1/2CVaR P3/4CVaR Pvar

Mean 0.016294 0.01472 0.013835 0.013556 0.01345

Median 0.013106 0.015918 0.01456 0.012515 0.011549

Standard

Deviation
0.029173 0.026514 0.025082 0.023893 0.022882

Minimum �0.034941 �0.03156 �0.03316 �0.02945 �0.02491

Maximum 0.052624 0.07282 0.071134 0.068515 0.066001
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the expected value is maximized, while the variance and CVaR are minimized. We

chose variance and CVaR mainly because they are well established risk measures that

quantify risk from different perspectives: variance measures the deviation around the

expected value while CVaR measures the average loss over a specified number of worst

cases.

Computationally, the problem reduces to solving a single objective problem in which

variance is minimized, while constraints are imposed on the expected value and CVaR. In

the practice of portfolio selection, the random variables under consideration are usually

represented as discrete and described by realizations under various scenarios. In this case,

the problem is one of quadratic programming, thus routinely solved by standard available

software. Having a constraint on CVaR rather than on the variance has advantages not

only from a computational point of view. It is more natural to impose a maximum CVaR

level than a maximum variance level, since CVaR represents the mean of the worst

outcomes of a distribution.

Varying the right-hand side of the constraints on the expected value and on CVaR such

that these constraints are active produces all the efficient solutions of the mean-variance-

CVaR model.

When solving the model for a fixed level of expected return, there is a range of efficient

solutions. Plotted in a variance-CVaR space, they form a curve, with one end represented

by the minimum variance portfolio (with the lowest CVaR), the other represented by the

minimum CVaR portfolio (with the lowest variance).

The model was tested on a dataset drawn from the FTSE 100 index. Several levels of

expected return were considered, and, for each level of expected return, five portfolios that

were efficient in the mean-variance-CVaR model, were analysed: the minimum variance

portfolio, the minimum CVaR portfolio and other three portfolios that were dominated in

both mean-variance and mean-CVaR models. As expected, the best in-sample parameters

concerning the left tail of distributions corresponded to mean-CVaR efficient portfolios:

highest skewness, lowest kurtosis and highest maximum. However, the return distribu-

tions of mean-CVaR efficient portfolios have also the highest variances. In contrast, the
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FIGURE 19.7 Ex-post compounded returns of the mean-variance-CVaR efficient portfolios with in-sample

mean return d3 � 0.01880.
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mean-variance efficient portfolios have the return distributions with the lowest variance, but

also with the ‘worst’ left tail (as described by skewness, kurtosis, minimum and CVaR). The

other portfolios, efficient only in the mean-variance-CVaR model, improve on the left tail of

the mean-variance efficient distributions: they have higher skewness, lower kurtosis higher

maximum and higher CVaR. In some cases, this improvement comes at the expense of only a

marginal increase in variance. The out-of-sample performances of these portfolios are

comparable to those of the mean-variance and mean-CVaR efficient portfolios. In two out of

five cases, such a portfolio achieved the highest mean of out-of-sample returns and in almost

all cases led to the highest maximum of out-of-sample returns.

As a final remark, it may be noted that the proposed model does not dismiss mean-

variance or mean-CVaR models, but on the contrary, it ‘embeds’ them. Most of the mean-

variance and the mean-CVaR efficient solutions are particular solutions of the proposed

model. For example, a mean-variance efficient solution is not a solution of the proposed

model only if there is another mean-variance efficient solution with the same mean and

variance but with lower CVaR. Likewise, from the set of mean-CVaR efficient solutions

with a specified mean return, only the one(s) with the lowest variance is solution of the

proposed model. Thus, the proposed model makes a ‘positive’ discrimination between

mean-variance and mean-CVaR efficient solutions. In addition, the mean-variance-CVaR

model has a range of solutions that are normally discarded by both mean-variance and

mean-CVaR model. These solutions may bring an improvement in the distribution, in the

case when the CVaR of a mean-variance efficient portfolio is considered to be

unacceptably large. They represent a compromise between regulators’ requirements for

short tails and classical fund managers’ requirements for small variance. In making the

final choice, the personal preference of the decision-maker plays a key role.
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APPENDIX 19.A: THE GENERAL CASE OF A POSITIVE SEMI-DEFINITE
COVARIANCE MATRIX

In the general case, when the covariance matrix of returns is positive semi-definite, the

minimization of variance over a convex set may not have a unique optimal solution. Thus,

when using the optimization problem (P2) as described in Section 19.4.4, we may obtain

solutions that are Pareto dominated in (MVC).7 However, we can still use (P2) for

obtaining efficient solutions of (MVC), provided the right-hand sides d and z for the

mean and CVaR constraints are chosen as described below.

The level d for the expected value must lie in the interval ½d0min; dmax
, where dmax is the

maximum possible expected return (as presented in Section 19.4.4). We define

d 0min ¼ maxfd 0minvar; dminCVaRg, where d 0minvar and dminCVaR are the expected returns of

the minimum variance portfolio (mean-variance efficient) and minimum CVaR portfolio

(mean-CVaR efficient) respectively. dminCVaR may be found as described in Section 19.4.4.

The expected return of the minimum variance portfolio d 0minvar cannot be determined so

straightforward as for the case of a positive definite covariance matrix. We cannot just

minimize variance over the whole feasible set A (with no constraints on the mean) since

there may be different optimal solutions to this problem, with the same (optimal) variance

but with different expected returns. Among these solutions that globally minimize

variance, we consider only the one with the maximum expected return. To obtain this

solution, we first solve the problem:

min s2ðxÞ
Subject to: x 2 A:

Denote the optimum value of this problem by smin. In order to find the specific optimal

solution of this problem with the maximum possible expected return, we propose a

convex program with quadratic constraint:

max EðxÞ
Subject to: s2ðxÞ � smin x 2 A:

The optimal value of the above optimization problem is d 0minvar. Furthermore, for a

specific d 2 ½d 0min; dmax
, the right-hand side for the CVaR constraint z must lie in the

interval ½zd;min; z
0
d;max
; zd;min is the best (minimum) CVaRa level for the expected return d

and may be found as described in Section 19.4.4. z 0d;max is the minimum CVaRa level of the

mean-variance efficient portfolios with expected return d.8

In order to determine z 0d;max, one may solve two optimization problems. Firstly, the

optimal variance for the expected return d (denoted by s2
d) may be found as the optimal

value of the objective function in the problem:

7 For example, multiple optimal solutions of (P2) may have the same variance, the same expected return but different
CVaRs; only the one with the lowest CVaR is Pareto efficient in (MVC).
8 In case there are several mean-variance efficient portfolios with expected return d, with different CVaR levels, only
the portfolio with the lowest CVaR is efficient in the (MVC) model; its CVaR level is denoted by zd;max.
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min s2ðxÞ
Subject to: EðxÞ � d

x 2 A:

Secondly, z 0d;max may be found as the optimal value of the objective function in the problem:

minFaðx; vÞ
Subject to: EðxÞ � d

s2ðxÞ � s2
d

x 2 A;
v 2 R:

Proposition 19.5: Consider the optimization problem

ðP1Þ : min s2ðxÞ
Subject to : CVaRaðxÞ � z EðxÞ � d x 2 A:

If x+; is an optimal solution of (P1) for d 2 ½d 0min; dmax
 and z 2 ½zd;min; z
0
d;max
 (as described

above), then x+; is Pareto efficient in (MVC).

Proof: Assume that x+; is not Pareto efficient in (MVC). Denote by x? a feasible solution of

(MVC) that Pareto dominates x+. This means that s2ðx0Þ � s2ðx�Þ, CVaRaðx 0Þ �
CVaRaðx�Þ � z and Eðx 0Þ � Eðx�Þ � d with at least one strict inequality. Thus, x? is a

feasible solution of (P1). The case s2ðx0Þ< s2ðx�Þ is excluded since this contradicts the fact

that x+; is an optimal solution of (P1). It only remains the possibility that x? and x+ are both

optimal solutions of (P1) and CVaRa(x?) B CVaRa(x+) 5z or E(x?) � E(x+) ] d.

Consider first the case: CVaRa(x?)BCVaRa(x+)5z; thus, x? is an optimal solution of

(P1) and the constraint CVaRa(x)5z is not binding. Since (P1) is a convex optimization

problem, it follows that x? is an optimal solution of the ‘reduced’ problem, obtained from

(P1) by removing the constraint on CVaR:

ðP1redÞ : min s2ðxÞ
Subject to : EðxÞ � d

x 2 A:

This means that both x? and x+; are mean-variance efficient portfolios with expected

return d 2 ½d 0min; dmax
. Thus, we have two mean-variance efficient solutions with the same

variance, the same expected return d but different CVaRs.

CVaRaðx 0Þ< CVaRaðx�Þ � z � z 0d;max. However, z 0d;max is, by construction, the lowest

possible CVaR of a mean-variance efficient portfolio with mean return d and we have a

contradiction.

Obviously the constraint E(x) ] d in (P1) is binding for d 2 ½d 0min; dmax
; thus, the case

E(x?) >E(x+)]d is also impossible and this ends the proof. I
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Thus, when the right-hand sides d and v are chosen as above, the constraints on CVaR

and on mean are active.

It was shown in Section 19.4.2 that the constraint CVaRa(x) 5 z can be replaced with the

constraint Fa(x, v) 5z, v � R and thus the problem (P2), equivalent to (P1), is obtained:

(P2): min s2ðxÞ
Subject to: Faðx; vÞ �z

EðxÞ �d

x 2A; v 2 R

Solving problem (P2) with d varying between d 0minand dmax and z varying between zd;min

andz 0d;max as described above, gives an efficient solution of the mean-variance-CVaR model.

APPENDIX 19.B: THE COMPOSITION OF EFFICIENT PORTFOLIOS

The composition of efficient portfolios are given in Tables 19.B1�/19.B5.

For the highest level of expected return d6 � dmax � 0.0331, the efficient portfolio

consists of the asset no. 58.

TABLE 19.B1 The Portfolio Weights of the Efficient Portfolios for d1 � 0.009268

Asset no PCVaR P1/4CVaR P1/2CVaR P3/4CVaR Pvar

4 0 0.050 0.050 0.048 0.042

5 0.182 0.060 0.043 0.028 0.021

11 0 0 0.023 0.047 0.068

13 0 0.002 0.028 0.052 0.068

16 0 0.063 0.052 0.037 0.019

17 0 0.071 0.064 0.054 0.046

21 0 0 0 0 0.001

24 0 0.011 0.016 0.019 0.023

25 0 0.000 0.020 0.034 0.044

27 0 0.029 0.054 0.070 0.077

29 0.026 0 0 0 0

40 0.222 0.097 0.081 0.075 0.07

42 0 0.075 0.075 0.065 0.055

43 0.036 0.066 0.062 0.062 0.061

44 0.016 0.088 0.083 0.066 0.05

45 0.053 0 0.010 0.022 0.033

48 0 0 0 0 0.004

52 0 0.001 0 0 0

63 0 0.017 0.002 0.006 0.006

64 0 0.050 0.045 0.028 0.011

65 0 0 0 0 0.04

66 0 0.039 0.060 0.065 0.064

69 0.186 0.050 0.021 0.008 0

70 0 0 0 0.035 0.059

71 0.019 0 0 0 0

72 0.045 0.104 0.115 0.107 0.081

73 0.215 0.129 0.096 0.072 0.057
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TABLE 19.B2 The Portfolio Weights of the Efficient Portfolios for d2 � 0.01403

Asset no PCVaR P1/4CVaR P1/2CVaR P3/4CVaR Pvar

4 0.008 0.058 0.069 0.075 0.079

5 0 0.073 0.062 0.058 0.057

13 0 0.037 0.063 0.078 0.086

16 0 0.004 0.027 0.021 0.010

17 0.289 0.096 0.081 0.075 0.070

20 0.086 0 0 0 0

21 0 0.070 0.064 0.052 0.043

24 0 0.014 0.022 0.019 0.018

25 0 0 0.009 0.019 0.026

27 0 0.001 0.011 0.022 0.026

29 0.04 0.030 0 0 0

40 0 0.081 0.092 0.066 0.043

42 0 0 0.005 0.012 0.013

43 0 0.020 0.006 0.004 0

44 0 0.121 0.118 0.097 0.077

45 0.258 0.106 0.093 0.093 0.097

48 0 0 0 0.005 0.019

56 0 0.041 0.042 0.037 0.031

58 0 0 0.002 0.014 0.027

63 0 0.098 0.068 0.059 0.045

65 0 0 0 0.002 0.031

66 0 0.009 0.034 0.047 0.053

69 0.05 0 0 0 0

70 0 0 0.013 0.045 0.066

73 0.269 0.139 0.120 0.100 0.085

TABLE 19.B3 The Portfolio Weights of the Efficient Portfolios for d3 � 0.0188

Asset no PCVaR P1/4CVaR P1/2CVaR P3/4CVaR Pvar

4 0 0.041 0.065 0.088 0.116

5 0 8.1E-05 0.029 0.048 0.066

13 0 0 0.009 0.023 0.032

16 0 0 0.002 0.017 0.035

17 0 0.113 0.119 0.102 0.065

20 0.016 0 0 0 0

21 0.116 0.183 0.163 0.144 0.124

28 0.02 0 0 0 0

29 0.134 0.023 0 0 0

40 0 0.052 0.028 0 0

44 0 0.121 0.126 0.125 0.125

45 0.303 0.179 0.173 0.168 0.161

56 0.209 0.145 0.137 0.124 0.112

58 0 0.021 0.034 0.048 0.066

63 0 0 0.001 0.009 0.012

73 0.202 0.102 0.095 0.084 0.068

76 0 0.022 0.019 0.018 0.019
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APPENDIX 19.C: THE IN-SAMPLE PARAMETERS FOR THE RETURN
DISTRIBUTIONS OF EFFICIENT PORTFOLIOS

The in-sample parameters for the return distributions of efficient portfolios are given in

Tables 19.C1�/19.C5.

TABLE 19.B4 The Portfolio Weights of the Efficient Portfolios for d4 � 0.02357

Asset no PCVaR P1/4CVaR P1/2CVaR P3/4CVaR Pvar

4 0 0 0.046 0.09 0.134

17 0 4E-05 0.007 0 0

21 0.49 0.298 0.278 0.247 0.214

28 0.072 0 0 0 0

29 0 0.0138 0 0 0

44 0 0.027 0.041 0.053 0.059

45 0.373 0.269 0.225 0.222 0.217

56 0 0.249 0.248 0.225 0.2

58 6E-04 0.057 0.087 0.112 0.139

73 9E-04 0.007 0.016 0.007 0

76 0.063 0.079 0.054 0.045 0.036

TABLE 19.B5 The Portfolio Weights of the Efficient Portfolios for d5 � 0.02833

Asset no PCVaR P1/4CVaR P1/2CVaR P3/4CVaR Pvar

4 0 0 0 0.003 0.018

21 0.472 0.418 0.367 0.325 0.324

45 0.119 0.105 0.066 0.032 0.022

56 0 0.065 0.138 0.197 0.196

58 0.29 0.342 0.370 0.394 0.397

76 0.119 0.069 0.059 0.049 0.043

TABLE 19.C1 In-Sample Parameters for the Return Distributions of Efficient Portfolios in the Mean-Variance-

0.01CVaR Model with Expected Return d1 � 0.009268

PCVaR P1/4CVaR P1/2CVaR P3/4CVaR Pvar

Median 0.010905 0.009989 0.010678 0.011774 0.011348

Standard

Deviation
0.039557 0.032288 0.030899 0.030186 0.030006

Skewness 0.175763 �0.43318 �0.59261 �0.75996 �0.89894

Kurtosis �0.16328 0.214433 0.763715 1.35481 1.964419

Minimum �0.05813 �0.06857 �0.08198 �0.09601 �0.10946

Maximum 0.128209 0.085995 0.084375 0.081927 0.077194
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TABLE 19.C2 In-Sample Parameters for the Return Distributions of Efficient Portfolios in the Mean-Variance-

0.01CVaR Model with Expected Return d2 � 0.014034

PCVaR P1/4CVaR P1/2CVaR P3/4CVaR Pvar

Median 0.009982 0.016801 0.016398 0.017359 0.0176

Standard

Deviation
0.043277 0.035516 0.034453 0.03398 0.033852

Skewness 0.238317 �0.5367 �0.64824 �0.75897 �0.87193

Kurtosis 0.100689 0.329636 0.799505 1.213484 1.633637

Minimum �0.07056 �0.07906 �0.08756 �0.09606 �0.10498

Maximum 0.149618 0.095584 0.093019 0.090123 0.087926

TABLE 19.C3 In-Sample Parameters for the Return Distributions of Efficient Portfolios in the Mean-Variance-

0.01CVaR Model with Expected Return d3 � 0.018801

PCVaR P1/4CVaR P1/2CVaR P3/4CVaR Pvar

Median 0.019982 0.021909 0.021945 0.022453 0.02225

Standard

Deviation
0.051467 0.045116 0.043917 0.043138 0.042869

Skewness 0.105138 �0.27928 �0.35782 �0.44374 �0.50531

Kurtosis 0.816632 0.588582 0.748811 1.016336 1.309189

Minimum �0.09186 �0.10046 �0.11094 �0.12183 �0.13216

Maximum 0.188287 0.139995 0.132851 0.127387 0.12672

TABLE 19.C4 In-Sample Parameters for the Return Distributions of Efficient Portfolios in the Mean-Variance-

0.01CVaR Model with the Expected Return d4 � 0.023567

PCVaR P1/4CVaR P1/2CVaR P3/4CVaR Pvar

Median 0.026665 0.02185 0.023582 0.022484 0.023786

Standard

Deviation
0.071333 0.061135 0.059382 0.058374 0.058031

Skewness 0.595438 �0.12047 �0.23122 �0.30692 �0.36555

Kurtosis 3.354617 0.816052 0.797705 0.808283 0.834841

Minimum �0.12247 �0.13142 �0.14231 �0.1528 �0.16327

Maximum 0.367729 0.204922 0.181086 0.162425 0.159635

TABLE 19.C5 In-Sample Parameters for the Return Distributions of Efficient Portfolios in the Mean-Variance-

0.01CVaR Model with Expected Return d5 � 0.028334

PCVaR P1/4CVaR P1/2CVaR P3/4CVaR Pvar

Median 0.035256 0.032523 0.027021 0.023606 0.022036

Standard

Deviation
0.091039 0.088892 0.087699 0.087357 0.087337

Skewness 0.319572 0.215952 0.112308 0.050204 0.041352

Kurtosis 1.470049 1.069079 0.885207 0.817357 0.841093

Minimum �0.19129 �0.19541 �0.19749 �0.19974 �0.20228

Maximum 0.358639 0.308329 0.26884 0.266499 0.267819

MEAN-RISK MODELS USING TWO RISK MEASURES j 423





CHAPTER 20

Implied Non-Recombining Trees
and Calibration for the
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20.1 INTRODUCTION

C ALIBRATING A TREE, OTHERWISE KNOWN AS CONSTRUCTING an implied tree, means

finding the stock price and/or associated probability at each node in such a way that

the tree reproduces the current market prices for a set of benchmark instruments. The

main benefit of calibrating a model to a set of observed option prices is that the calibrated

model is consistent with today’s market prices. The calibrated model can then be used to

price other more complex or less liquid securities, such as Over The Counter (OTC)

options whose prices may not be available in the market.
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The binomial tree is the most widely used tool in the fnancial pricing industry. The

classic Cox�/Ross�/Rubinstein (CRR, 1979) binomial tree is a discretization of the Black�/

Scholes (BS, 1973) model since it is based on the assumption of the BS model that the

underlying asset evolves according to a geometric Brownian motion with a constant

volatility factor. This, however, contradicts the observed implied volatility, which suggests

that volatility depends on both the strike and maturity of an option, a relationship

commonly known as the volatility smile. This problem has motivated the recent literature

on ‘smile consistent’ no-arbitrage models. Consistency is achieved by extracting an implied

evolution for the stock price from market prices of liquid standard options on the

underlying asset. There are two classes of methodologies within this approach. Smile

consistent deterministic volatility models (Derman and Kani 1994; Dupire 1994;

Rubinstein 1994; Barle and Kakici 1995; Jackwerth and Rubinstein 1996; Jackwerth

1997; etc.); and stochastic volatility smile consistent models which allow for smile-

consistent option pricing under the no-arbitrage evolution of the volatility surface

(Derman and Kani 1998; Ledoit and Santa-Clara 1998; Britten-Jones and Neuberger 2000;

etc.). The latter class of models is more general and it nests the former class of models

(Skiadopoulos 2001). There also exist non-parametric methods, like Stutzer (1996) who

uses the maximum entropy concept to derive the risk neutral distribution from the

historical distribution of the asset price and Ait-Sahalia and Lo (1998) who propose a non-

parametric estimation procedure for state-price densities using observed option prices.

Smile consistent deterministic volatility models are based on the assumption that the

local volatility of the underlying asset is a known function of time and of the path and

level of the underlying asset price. However, they do not specify local volatility in advance,

but derive it endogenously from the European option prices. Therefore, they preserve the

‘pricing by no-arbitrage’ property of the BS model, and the markets are complete since the

option’s pay-off can be synthesized from existing assets.

Rubinstein (1994) finds the implied risk-neutral terminal-node probability distribution

which is in the least-squares sense, closest to the lognormal subject to some constraints.

The probabilities must add up to one and be non-negative. Moreover, they are calculated

so that the present value of the underlying assets and all the European options calculated

with these probabilities, fall between their respective bid�/ask prices. This methodology

allows for an arbitrary terminal-node probability distribution, but assumes that path

probabilities leading to the same ending node are equal. Rubinstein’s (1994) methodology

suffers from the fact that options expiring at early time steps cannot be used for the

construction of the tree. Thus, options with maturity other than the maturity of the

options used during the construction of the tree are not consistent with market prices.

Jackwerth (1997) introduced generalized binomial trees as an extension of Rubinstein

(1994). His model allows for an arbitrary terminal-node probability distribution, but also

allows path probabilities leading to the same node to take different values.

Derman and Kani (1994) and Dupire (1994) constructed recombining binomial trees

using a large set of option prices. For each node they need a corresponding option price

with strike price equal to the previous node’s stock price and expiring at the time

associated with that node. Since they have fewer option prices than required, they need to
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interpolate and extrapolate from given option prices. Their trees are sensitive to the

interpolation and extrapolation method and require adjustments to avoid arbitrage

violations.

Barle and Cakici (1995) introduced a number of modifications which aimed to

eliminate negative probabilities and improve the general stability of Derman’s and Kani’s

(1994) model. Although their modified method fits the smile accurately, negative

probabilities may still occur with increases in the volatility smile and interest rate. As

they state, this is because of their ‘. . . strict requirement that continuous diffusion be

modelled as a binomial process and on a recombining tree.’ This problem can be referred

to as a problem of interdependencies between nodes.

Possible methods that can be used to reduce the problem of inter-dependencies are the

calibration of trinomial (or multinomial) trees or non-recombining trees. These extra

degrees of freedom allow for more flexibility in the estimation of the distribution of the

underlying asset.

Trinomial trees provide a much better approximation to the continuous time process

than the binomial trees for the same number of steps. However, the extra degrees of

freedom (additional number of nodes) require a larger number of simultaneous equations

to be solved. Derman et al. (1996) proposed implied trinomial trees. In their model they

use the additional parameters to conveniently choose the ‘state space’of all node prices in

the tree, and let only the transition probabilities be constrained by market options prices.

Chriss (1996) generalized their method for American style options.

In this chapter we propose a method for calibrating a non-recombining (binary) tree,

based on optimization. Specifically, we minimize the discrepancy between the observed

market prices and the theoretical values with respect to the underlying asset at each node,

subject to constraints that maintain risk neutrality and prevent arbitrage opportunities.

Our model is built on a non-recombining tree1 so as to allow the local volatility to be a

function of the underlying asset and of time and to enable each node of the tree to act as

an independent variable. Effectively, the problem under consideration is a non-convex

optimization problem with linear constraints. We elaborate on the initial guess for the

volatility term structure, and using methods from nonlinear constrained optimization we

minimize the least-squares error function. Specifically, we adopt a penalty method and for

the optimization we use a quasi-Newton algorithm. Because of the combinatorial nature

of the tree and the large number of constraints, the search for an optimum solution as well

as the choice of an algorithm that performs well becomes a very challenging problem.

Our model was created as a response for the need of a non-recombining implied tree.

The main benefit of the model is its analytical structure which enables us to use efficient

methods for nonlinear optimization. Although the method uses a large number of

variables, due to the fact that we use efficient methods for optimization the model is not

computationally intensive. Also, the proposed methodology can be easily modified to

capture the observed bid/ask spreads in the market. This is very useful since the reported

1 Other work we are aware of that uses a non-recombining tree is of Talias (2005) where for the calibration he uses
genetic algorithms.
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closing prices may not always be accurate, or may be inaccurate due to various market

frictions. In addition, calibration of the non-recombining tree can be used for option

replication with transaction costs as in Edirisinghe et al. (1993) and other related

methodologies that require non-recombining trees.

In contrast to Rubinstein (1994), the proposed methodology can be easily modified to

account for European contracts with different maturities. Our method does not need any

interpolation or extrapolation across strikes and time to find hypothetical options as

opposed to Derman and Kani (1994). Finally, the extra degrees of freedom and the

analytical structure of the model would allow us to impose smoothness constraints on the

distribution of the underlying asset if required.

We test our model using options data on the FTSE 100 index, for the year 2003

obtained from LIFFE. The results strongly support our modelling approach. Pricing

results are smooth without the presence of an over-fitting problem and the derived

implied distributions are realistic. Also, the computational burden is not a major issue.

The chapter continues as follows: In Section 20.2 we describe the proposed methodology

and the initialization of the non-recombining tree. In Section 20.3 we discuss the imposed

risk neutrality and no-arbitrage constraints. In Section 20.4 we describe the optimization

algorithm. In Section 20.5 we test the model using FTSE 100 options data. Conclusions

are in Section 20.6. In Appendix 20.A we prove the feasibility of the initialized tree, in

Appendix 20.B we prove the feasibility of the initialized tree taking into account that the

risk-free rate, dividend yield and time step are time dependent and in Appendix 20.C we

adjust the formulas for time dependent risk free rate, dividend yield and step size.

20.2 THE PROPOSED METHODOLOGY AND INITIALIZATION OF THE
NON-RECOMBINING TREE

Our goal is to develop an arbitrage-free risk neutral model that fits the smile, is preference-

free, and can be used to value options form easily observable data. In order to allow more

degrees of freedom, we use a non-recombining tree. In the following section we present

the proposed methodology, and describe the initialization of the tree. Figure 20.1 shows a

non-recombining tree with four steps.

The point (i, j) on the tree denotes:

i : the time dimension, i � 1, . . . , n

j : the asset (time specific) dimension, j � 1, . . . , 2i�1

S(i, j) is the value of the underlying asset at node (i, j).

Figure 20.2 shows a typical triplet in a non-recombining tree.

Let CMkt(k), k � 1, . . . , N denote the market prices of N European calls, with strikes

K(k) and single maturities T. Also, let CMod(x, k), k � 1, . . . , N denote the theoretical

prices of the N calls obtained using the model. x denotes a vector containing the variables

of the model which are the values of the underlying asset at each node of the tree,

excluding its current value. The ideal solution is to find the values of the underlying asset

(the model variables) at each node of the tree such that a perfect match is achieved
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between the option market prices and those predicted by the tree. However, due to market

imperfections and other factors perfect matching may not always be possible. Therefore,

we minimize the discrepancy between the observed market prices and the theoretical

values produced by the model subject to constraints that prevent arbitrage opportunities.

We have to solve a non-convex constrained minimization problem with respect to the

values of the underlying asset at each node:

min
x

XN

k¼1

wkf CModðx; kÞ;CMktðkÞð Þ; ð20:1Þ

where f denotes a suitable objective function on the error between the observed and

market prices. We can also allow for a weight factor, wk.2 In this chapter we use the least-

squares error function which is defined as the sum of square differences between market

prices and theoretical prices produced by the tree. The method can be adjusted easily for

any other objective function.

S(4, 8)
S(5, 16)
S(5, 15)
S(5, 14)
S(5, 13)
S(5, 12)
S(5, 11)
S(5, 10)
S(5, 9)

S(5, 1)
S(5, 2)
S(5, 3)
S(5, 4)
S(5, 5)
S(5, 6)
S(5, 7)
S(5, 8)

S(3, 4)

S(2, 2)

S(1, 1)

S(2, 1)

S(3, 3)

S(3, 2)

S(3, 1)

S(4, 7)

S(4, 6)

S(4, 5)

S(4, 4)

S(4, 3)

S(4, 2)

S(4, 1)

FIGURE 20.1 Non-recombining tree with 4 steps.

P(i, j)

1–P(i, j)

(i+1, 2j)

(i+1, 2j–1)

(i, j)

FIGURE 20.2 A typical triplet in a non-recombining tree.

2 Weights can be related for example to the trading volume of the options.
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The philosophy of the initialization of the non-recombining tree is the same as that of

the construction of the standard CRR binomial tree, but we adjust the formulas so that the

tree does not necessarily recombine.

We denote with u(i, j) and d(i, j) the up and down factors by which the underlying asset

price can move in the single time step, Dt , given that we are at node (i, j). Dt, u(i, j) and

d(i, j) factors are given by the following formulas:3

Dt ¼ T

n � 1
; ð20:2Þ

uði; jÞ ¼ esðiÞ
ffiffiffiffi
Dt
p
; i ¼ 1; . . . ; n � 1; j ¼ 1; . . . ; 2i�1; ð20:3aÞ

dði; jÞ ¼ e�sðiÞ
ffiffiffiffi
Dt
p
¼ 1

uði; jÞ
; ð20:3bÞ

where T is the option’s time to maturity and s(i) is the volatility term structure at time

step i.

We initialize the tree using the following volatility term structure:

sðiÞ ¼ sð1Þelði�1ÞDt ; l 2 R; i ¼ 1; . . . ; n � 1; ð20:4Þ

where l is a constant parameter and s(1) is a properly chosen initial value for the

volatility. If l is positive, then volatility increases as we approach maturity and if l is

negative, then volatility decreases as we approach maturity.4

In order to preserve the risk neutrality at every time step and hence obtain a feasible

initial tree, we choose l to belong to the following interval (for proof see Appendix 20.A):

l 2 1

T
log

rf � d
���

���
ffiffiffiffiffiffi
Dt
p

sð1Þ

0
@

1
A;þ1

2
4

1
A: ð20:5Þ

By choosing l from the above interval, we allow the initial volatility to increase or decrease

across time. We make several consecutive draws from interval (20.5) until we find the

value of l that gives the ‘optimal’ tree.5

3 For simplicity, we make the assumption that the risk free rate, the dividend yield and the step size do not change
across time. Formulas adjusted for time dependence can be found in Appendices 20.B and 20.C.
4 Other non-monotonic functions could also be used for s (i) but what we have tried proved adequate for our
purposes.
5 Optimal tree is the one that gives the lowest-value objective function subject to the initial constraints.
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We denote with S(1, 1) the current value of the underlying asset. The odd nodes of the

tree S(i, j), are initialized using the following equation:

Sði; jÞ ¼ S i � 1;
j þ 1

2


 �
d i � 1;

j þ 1

2


 �
; i ¼ 2; . . . ; n; j ¼ 1; 3; . . . ; 2i�1 � 1:

ð20:6aÞ
The even nodes of the tree S(i, j), are initialized using the following equation:

Sði; jÞ ¼ S i � 1;
j

2


 �
u i � 1;

j

2


 �
; i ¼ 2; . . . ; n; j ¼ 2; 4; . . . ; 2i�1: ð20:6bÞ

We want to point out that Equations (20.3) to (20.6) are used only for initialization. Once

the optimization process starts, each value of the underlying asset (except from S(1,1))

acts as an independent variable in the system.

Upward transition probabilities give the probability of moving from node (i, j) to node

(i�1, 2j) whereas downward transition probabilities give the probability of moving from

node (i, j) to node (i�1, 2j �1) for i � 1, . . ., n �1 and j � 1, . . . , 2i�1. For the upward

transition probabilities p(i, j) between the various nodes of the tree we use the risk-neutral

probability formula:6

pði; jÞ ¼ Sði; jÞeðrf�dÞDt � Sði þ 1; 2j � 1Þ
Sði þ 1; 2jÞ � Sði þ 1; 2j � 1Þ

; i ¼ 1; . . . ; n � 1; j ¼ 1; . . . ; 2i�1; ð20:7Þ

where rf denotes the annually continuously compounded riskless rate of interest and d

denotes the annually continuously compounded dividend yield. Their respective down-

ward probability is equal to one minus the upward probability.

The call option value at the last time step is given by:

Cðn; jÞ ¼ maxfSðn; jÞ � K ; 0g; j ¼ 1; . . . ; 2n�1: ð20:8Þ

However, the function max is non-differentiable at S(n, j) � K. To overcome this

problem, we propose the following smoothing approximation to C(n, j):

Caðn; jÞ
K

¼

0; for Sðn; jÞ=K � 1� z=2;

Sðn; jÞ
K
� 1; for Sðn; jÞ=K � 1þ z=2;

1

2z

Sðn; jÞ
K
� 1


 �
þ z

2

� 
2

; for 1� z=2 < Sðn; jÞ=K < 1þ z=2;

j ¼ 1; . . . ; 2n�1;

8
>>>>>>>><

>>>>>>>>:

ð20:9aÞ

6 Probability Equation (20.7) is effectively a martingale restriction (see Equation (6) and relevant discussion in
Longstaff (1995)). Thus the numerical implementation of the model with this probability equation is restricted to a
Markovian stochastic process.
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where z is a small positive constant, for example 0.01 (see Figure 20.3).

The value of the call at intermediate nodes is given by the following equation:

Cði; jÞ ¼ pði; jÞCði þ 1; 2jÞ þ ð1� pði; jÞÞCði þ 1; 2j � 1Þð Þe�rf Dt ;

i ¼ n� 1; . . . ; 1; j ¼ 1; . . . ; 2i�1:
ð20:9bÞ

20.3 RISK NEUTRALITY AND NO-ARBITRAGE CONSTRAINTS

In this section we describe the risk neutrality and no-arbitrage constraints. In order for the

transition probabilities p(i, j) defined in Equation (20.7) to be well specified, they should

take values between zero and one. This implies the following risk-neutrality constraints:

For i ¼ 1; . . . ; n� 1; j ¼ 1; . . . ; 2i�1;

Sði; jÞeðrf�dÞDt � Sði þ 1; 2jÞ; ð20:10aÞ

and

Sði; jÞeðrf�dÞDt � Sði þ 1; 2j � 1Þ: ð20:10bÞ

Risk neutrality constraints in the non-recombining tree prevent nodes 2j � 1 and 2j to

cross, for i � 1, . . . , n and j � 1, . . . , 2i�1 (see Figure 20.1).

Options (puts and calls) have upper and lower bounds that do not depend on any

particular assumptions on the factors that affect option prices. If the option price is above

the upper bound or below the lower bound, there are profitable opportunities for

arbitrageurs. To avoid such opportunities, we include the no-arbitrage constraints.

Specifically, a European call with dividends should lie between the following bounds:

S/K

Cα/K

1 1 + Z/21 – Z/2

C/K

FIGURE 20.3 Smoothing of the option pay-off function at maturity.
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max Sð1; 1Þe�dT � K e�rf T ; 0
� �

� CMod � Sð1; 1Þ: ð20:11Þ

Also, every value of the underlying asset on the tree should be greater or equal to zero.

Thus, we also impose the following constraint:

Sði; jÞ � 0; i ¼ 2; . . . ; n; j ¼ 1; . . . ; 2i�1: ð20:12Þ

20.4 THE OPTIMIZATION ALGORITHM

The objective of the problem is to minimize the least-squares error function of the

discrepancy between the observed market prices and the theoretical values produced by

the model. Thus, we have the following optimization problem:

min
x

1

2

XN

k¼1

CModðx; kÞ � CMktðkÞð Þ2; ð20:13Þ

where CMod(k) and CMkt(k) denote the model and market price respectively of the kth call,

k � 1, . . . , N, subject to the constraints:

ðiÞ g1ði; jÞ ¼ Sði; jÞeðrf�dÞDt � Sði þ 1; 2j � 1Þ � 0;

i ¼ 1; . . . ; n � 1; j ¼ 1; . . . ; 2i�1:
ð20:14aÞ

ðiiÞ g2ði; jÞ ¼ Sði þ 1; 2jÞ � Sði; jÞeðrf�dÞDt � 0;

i ¼ 1; . . . ; n � 1; j ¼ 1; . . . ; 2i�1:
ð20:14bÞ

ðiiiÞ g3ðkÞ ¼ Sð1; 1Þ � CModðkÞ � 0; k ¼ 1; . . . ;N : ð20:14cÞ

ðivÞ g4ðkÞ ¼ CModðkÞ �maxðSð1; 1Þe�dT � KðkÞe�rf T ; 0Þ � 0;

k ¼ 1; . . . ;N :
ð20:14dÞ

ðvÞ g5ði; jÞ ¼ Sði; jÞ � 0; i ¼ 2; . . . ; n; j ¼ 1; . . . ; 2i�1: ð20:14eÞ

Since the problem under consideration is a non-convex optimization problem with

linear constraints we adopt an exterior penalty method (Fiacco and McCormick 1968) to

convert the nonlinear constrained problem into a nonlinear unconstrained problem. The

Exterior Penalty Objective function that we use is the following:
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Pðx; aÞ ¼ 1

2

XN

k¼1

CModðx; kÞ � CMktðkÞð Þ2

þ a

2

Xn�1

i¼1

X2i�1

j¼1

min g1ði; jÞ; 0ð Þ½ �2þ min g2ði; jÞ; 0ð Þ½ �2
� �

þ a

2

XN

k¼1

min g3ðkÞ; 0ð Þ½ �2þ min g4ðkÞ; 0ð Þ½ �2
� �

þ a

2

Xn

i¼2

X2i�1

j¼1

min g5ði; jÞ; 0ð Þ½ �2
� �

: ð20:15Þ

The second, third and fourth terms in P(x, a) give a positive contribution if and only if

x infeasible. Under mild conditions it can be proved that minimizing the above penalty

function for strictly increasing sequence a tending to infinity, the optimum point x(a) of

P tends to x+, a solution of the constrained problem.

For the optimization we use a quasi-Newton algorithm. Specifically we use the BFGS

formula7 (Fletcher 1987). For the procedure of Line Search in the algorithm we use the

Charalambous (1992) method. To achieve the best feasible solution, i.e. the solution that

gives us a feasible tree with the smallest error function we force the algorithm to draw

consecutively values of l from the specified interval (20.5) until the objective function is

smaller than 1.E-4 and also the penalty term equals zero, i.e. we have a feasible solution.

20.4.1 Implementation

For the implementation of the optimization method, we need to calculate the partial

derivatives of CMod(k)8 with respect to the value of the underlying asset at each node, for

k � 1, . . . , N, i.e. we want to find 1C(1, 1, k)/1S(i, j), i � 2, . . . , n, j � 1, . . . , 2i�1 9 and

k � 1, . . . , N. For notational simplicity in the following, we assume that we have only one

call option. For the computation of 1C(1,1)/1S(i, j), � i, j we implement the following

steps. We define the triplet vector (see Figure 20.2):

S
ðlÞ
i;j ¼ ½Sði; jÞ Sði þ 1; 2jÞ Sði þ 1; 2j � 1Þ�: ð20:16Þ

1st step: Compute the partial derivatives of the risk neutral transition probabilities,

1p(i, j)/1S(i, j), 1p(i, j)/1S(i � 1, 2j) and 1p(i, j)/1S(i � 1, 2j�1) for i � 1, . . . , n�1, and

j � 1, . . . , 2i�1. We summarize the derivatives in vector form (20.17):

7 The BFGS formula was discovered in 1970 independently by Broyden, Fletcher, Goldfarb and Shanno.
8 From now on we will use C(1,1) instead of CMod.
9 We do not calculate @Cð1; 1; kÞ=@Sð1; 1Þ since S(1, 1) is a known, fixed parameter, and thus does not take part in the
optimization.

434 j CHAPTER 20



H
S
ðlÞ
i;j

pði; jÞ �

@pði; jÞ=@Sði; jÞ

@pði; jÞ=@Sði þ 1; 2jÞ

@pði; jÞ=@Sði þ 1; 2j � 1Þ

2
664

3
775

¼ 1

Sði þ 1; 2jÞ � Sði þ 1; 2j � 1Þ

eðrf�dÞDt

� pði; jÞ

� ð1� pði; jÞÞ

2
664

3
775: ð20:17Þ

2nd step: Compute the partial derivatives 1C(i, j)/1S(i, j), for i � 2, . . . , n�1 and

j � 1, . . . , 2i�1, 1C(i, j)/1S(i�1, 2j) and 1C(i, j)/1S(i�1, 2j�1) for i�1, . . . , n�1,

j�1,. . .2i�1. We summarize the derivatives in vector form (20.18):

r
S
ðlÞ
i;j

Cði; jÞ �

@Cði; jÞ=@Sði; jÞ

@Cði; jÞ=@Sði þ 1; 2jÞ

@Cði; jÞ=@Sði þ 1; 2j � 1Þ

2
664

3
775

¼

Dði; jÞ

pði; jÞ Dði þ 1; 2jÞ � Dði; jÞedDt
� �

e�rf Dt

1� pði; jÞð Þ Dði þ 1; 2j � 1Þ � Dði; jÞedDt
� �

e�rf Dt

2
664

3
775; ð20:18Þ

where

Dði; jÞ ¼ Cði þ 1; 2jÞ � Cði þ 1; 2j � 1Þ
Sði þ 1; 2jÞ � Sði þ 1; 2j � 1Þ

e�dDt

¼ @Cði; jÞ
@Sði; jÞ

� Delta Ratio.

ð20:19Þ

3rd step: Compute the partial derivatives 1Ca(n, j)/1S(n, j) for j � 1, . . . , 2n�1. They

are given by the following formula:

@Caðn; jÞ
@Sðn; jÞ

¼

0; for Sðn; jÞ � Kð1� z=2Þ;

1; for Sðn; jÞ � kð1þ z=2Þ;

1

z

Sðn; jÞ
K
� 1


 �
þ z

2

� 

; for kð1� z=2Þ � Sðn; jÞ

< Kð1þ z=2Þ:

8
>>>>>>><

>>>>>>>:

ð20:20Þ
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4th step: Compute the partial derivatives 1C(1, 1)/1S(i, j) for i]3.

@Cð1; 1Þ
@Sði; jÞ

¼
Y�

of the probabilities on the path that take

us from node (1,1) to node (i �1, k)
�

� @Cði � 1; kÞ
@Sði; jÞ

e�ði�2Þrf Dt

k ¼
j=2; for even j;

ð j þ 1Þ=2; for odd j:

�
ð20:21Þ

For example,

@Cð1; 1Þ
@Sð4; 6Þ

¼ pð1; 1Þ 1� pð2; 2Þð Þ @Cð3; 3Þ
@Sð4; 6Þ

e�2rf Dt ;

@Cð1; 1Þ
@Sð5; 3Þ

¼ 1� pð1; 1Þð Þ 1� pð2; 1Þð Þpð3; 1Þ @Cð4; 2Þ
@Sð5; 3Þ

e�3rf Dt :

20.5 APPLICATION USING FTSE 100 OPTIONS DATA

We use the daily closing prices of FTSE 100 call options of January 2003 to December 2003

as reported by LIFFE.10 For the risk-free rate rf , we use nonlinear cubic spline

interpolation for matching each option contract with a continuous interest rate that

corresponds to the option’s maturity, by utilizing the 1-month to 12-month LIBOR offer

rates, collected from Datastream.

Our initial sample (for the 12-month period) consists of 99051 observations. We adopt

the following filtering rules.

i. Eliminate calls for which the call price is greater than the value of the underlying

asset, i.e. CMkt � S(1, 1). No observations are eliminated from this rule.

ii. Eliminate calls if the call price is less than its lower bound, i.e.

CMkt B S(1, 1) e�dT�Ke�rfT. This rule eliminates 3206 observations.

iii. Eliminate calls with time to maturity less than 6 calendar days, i.e. T B 6. This rule

eliminates 3109 observations.

10 FTSE 100 options are traded with expiries in March, June, September and December. Additional serial contracts are
introduced so that options trade with expiries in each of the nearest four months. FTSE 100 options expire on the
third Friday of the expiry month. FTSE 100 option positions are marked-to-market daily based on the daily settlement
price, which is determined by LIFFE and confirmed by the Clearing House.
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iv. Eliminate calls if their closing price is less than 0.5 index points. This rule eliminates

11,373 observations.

v. Eliminate calls for which the trading volume is zero (since we want highly liquid

options for calibration). This rule eliminates 66,826 observations.

The final sample consists of 14,537 observations.

In the implementation, for s(1) we use the at-the-money implied volatility given by

LIFFE and for time to maturity, T, we use the calendar days to maturity. Also, since the

underlying asset of the options on FTSE 100 is a futures contract, we make the standard

assumption that the dividend yield equals the risk free rate. The model is applied every

day, with n � 6 and also with n � 7. For each implementation, the options used have the

same underlying asset and the same time to maturity.

The evidence for the behaviour of the futures volatility in the literature is not clear.

According to Samuelson (1965) the volatility of futures price changes should increase as

the delivery date nears. However, Bessembinder et al. (1996) find that the Samuelson

hypothesis is not supported for options on financial futures. In order to choose the value

of l that gives the best feasible solution we make consecutive draws from interval (20.5),

which allows for both, positive and negative values of l. The first value of l is that of its

lower bound. However, since dividend yield equals risk free rate, instead of Nrf �dN we set

1.E-8. The next value of l equals the old plus an appropriately chosen step size.

For brevity, we present results only for the first trading day of each month of the year

2003 and only for n � 6 (Table 20.1). Trading Day is the trading day of each contract,

Expiry is the expiration month of each contract, Asset is the value of the underlying asset

at the specified trading day, N is the number of contracts used for the calibration (the

contracts that on the same trading day, have the same underlying asset and the same

expiration day), Error is the value of the objective function, Penalty is the value of the

penalty term. Ideally we want the error function and the penalty term to tend to zero.

Maturity is the calendar days until the maturity of the contract, and lambda is the value of

l that gives the best feasible solution. Also, we present results only when the number of

option contracts is greater than 3, since with fewer options the distribution of the

underlying asset taken will not be reliable.11

The results obtained support our modelling approach. As we can see in Table 20.1, in all

cases the solution strictly satisfies the constraints since the penalty term equals zero. Also,

we see that in 67 out of 69 cases, i.e. in 97.1) of the cases the error function tends to zero

with an average value of 2.34E-08. In the other 2 cases, where the error function is greater

than 1.E-4, the average error is 0.01. Similar results were found for n � 7.

Even though the problem requires a constrained non-convex optimization in

2(2n�1�1) variables, the use of efficient optimization algorithms prevents the calibration

of the model from becoming computationally too intensive. On average, the computa-

tional time in minutes required for each calibration had a mean (median) 1.10 (0.03) for

11 In Table 20.1 we note that for the same contract (same underlying asset, same expiration) the number of contracts
used in the model changes across months. That is because some contracts were removed because of the filtering rules.

IMPLIED NON-RECOMBINING TREES AND CALIBRATION j 437



TABLE 20.1 Results for the Application of the Model on the 1st Trading Day of Each Month of the Year 2003:

Trading Day is the Trading Day of Each Contract, Expiry is the Expiration Month of Each

Contract, Asset is the Value of the Underlying Asset at the Specified Trading Day, N is the Number

of Contracts Used for the Calibration, Error is the Value of the Objective Function, Penalty is the

Value of the Penalty Term, Maturity is the Calendar Days until the Maturity of the Contract and

lambda is the Value of l that Gives the Best Feasible Solution

Trading day Expiry Asset N Error Penalty Maturity Lambda

01/02/2003 Jan-03 4014 17 7.933E-11 0 15 4.3429

01/02/2003 Feb-03 4019 19 4.2E-05 0 50 �1.3851

01/02/2003 Mar-03 3991 12 5.855E-12 0 78 �6.6823

01/02/2003 Jun-03 3995 11 2.721E-13 0 169 �0.3963

01/02/2003 Dec-03 3999 6 0.0208333 0 351 0.4096

02/03/2003 Feb-03 3675.5 16 7.254E-08 0 18 �3.9616

02/03/2003 Mar-03 3646 14 8.611E-11 0 46 �1.5180

02/03/2003 Apr-03 3644.5 15 2.722E-12 0 73 �6.4346

02/03/2003 May-03 3645 6 2.355E-14 0 102 �6.6918

02/03/2003 Jun-03 3647 7 2.196E-12 0 137 �4.9425

02/03/2003 Sep-03 3640 5 1.337E-14 0 228 �1.1252

02/03/2003 Dec-03 3653.5 7 5.859E-11 0 319 �0.9666

03/03/2003 Mar-03 3657 16 6.572E-13 0 18 �3.9616

03/03/2003 Apr-03 3655 13 2.573E-11 0 45 �1.5455

03/03/2003 May-03 3655 9 2.466E-12 0 74 �8.3274

03/03/2003 Jun-03 3655.5 7 9.825E-14 0 109 �6.2312

03/03/2003 Sep-03 3645 9 1.735E-12 0 200 �3.3359

04/01/2003 Apr-03 3684.5 16 4.548E-11 0 16 �5.0218

04/01/2003 May-03 3683.5 16 4.396E-12 0 45 �1.5510

04/01/2003 Jun-03 3686.5 10 2.096E-11 0 80 �5.0920

04/01/2003 Jul-03 3693 7 1.222E-11 0 108 �6.1873

04/01/2003 Sep-03 3676.5 5 4.563E-11 0 171 �3.9295

04/01/2003 Mar-04 3667 5 1.301E-11 0 352 �1.8670

05/01/2003 May-03 3874 15 8.178E-08 0 15 �4.1763

05/01/2003 Jun-03 3879 14 1.581E-11 0 50 �1.3588

05/01/2003 Jul-03 3885.5 10 2.535E-11 0 78 �8.6239

05/01/2003 Sep-03 3870.5 4 2.657E-12 0 141 �2.1062

05/01/2003 Mar-04 3869 5 2.448E-13 0 322 �1.8172

06/02/2003 Jun-03 4132 16 3.535E-09 0 18 �25.1320

06/02/2003 Jul-03 4138.5 9 6.685E-12 0 46 �1.4751

06/02/2003 Aug-03 4128.5 9 9.668E-13 0 74 �9.0523

06/02/2003 Sep-03 4124 11 5.437E-11 0 109 �6.0923

06/02/2003 Dec-03 4136.5 9 3.798E-14 0 200 �3.2689

06/02/2003 Jun-04 4124 5 1.825E-11 0 381 �1.6875

07/01/2003 Jul-03 3967 13 0.0007343 0 17 13.5874

07/01/2003 Aug-03 3958 12 4.422E-12 0 45 0.1871

07/01/2003 Sep-03 3955 12 3.807E-11 0 80 �1.5851

07/01/2003 Oct-03 3959 4 5.92E-14 0 108 �6.1578

07/01/2003 Dec-03 3964 11 1.544E-12 0 171 �1.8451

07/01/2003 Mar-04 3956 7 1.265E-13 0 261 �2.4906

08/01/2003 Aug-03 4091.5 11 7.597E-12 0 14 1.1396

08/01/2003 Sep-03 4088.5 14 7.022E-11 0 49 5.6305

08/01/2003 Oct-03 4094.5 4 5.318E-11 0 77 �8.6243

08/01/2003 Nov-03 4096.5 5 2.43E-13 0 112 �5.8741

08/01/2003 Dec-03 4100.5 5 1.804E-14 0 140 �0.4681

08/01/2003 Mar-04 4097 4 1.013E-12 0 230 �1.7231
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n � 6 and 2.27 (0.08) for n � 7. The computer used for the calibration of the model had

the following specifications: a Pentium 4 (3.2 GHz) CPU, Memory 1GB (RAM) and

Windows XP Professional operating system. The codes were written in Matlab R2006a.

The computational time needed would have decreased if the codes were written in the

C/C�� language.

When models provide an exact fit there is always the concern of over-fitting. We

checked the model for over-fitting by pricing options with strikes in-between those used

for the optimization (calibration). Then we made plots of the call prices (market prices

and estimated from the model) versus moneyness. Over-fitting was also checked using a

restricted sample consisting only of options with moneyness between 0.8 and 1.1, since

these options are expected to be more liquid and more accurately priced.12 For brevity, we

exhibit only the plots for optimizations done in the first trading day of June (middle of the

year) for the two samples using a tree with n � 6. As we see, for both samples the

estimated call values increase smoothly with increasing moneyness without any evidence

of over-fitting (see Figure 20.4). Similar results were obtained when a tree with n � 7 was

used for the calibration procedure.

As a further check for over-fitting we use only part of the information to calibrate the

tree and the other part to check the model using n � 6, 7, 8. Specifically, we leave out

Table 20.1 (Continued)

Trading day Expiry Asset N Error Penalty Maturity Lambda

08/01/2003 Jun-04 4098.5 6 7.7014E-12 0 321 0.9996

09/01/2003 Sep-03 4215 16 9.231E-11 0 18 �3.8161

09/01/2003 Oct-03 4222 9 4.986E-13 0 46 �1.4569

09/01/2003 Nov-03 4225 9 4.4323E-12 0 81 �8.1673

09/01/2003 Dec-03 4229 12 1.0014E-12 0 109 �0.6026

09/01/2003 Mar-04 4224.5 4 1.1111E-11 0 199 �32.5850

10/01/2003 Oct-03 4162.5 12 1.1715E-06 0 16 �4.3573

10/01/2003 Nov-03 4167 12 1.7641E-13 0 51 �1.3282

10/01/2003 Dec-03 4169.5 19 2.796E-12 0 79 �8.4832

10/01/2003 Jan-04 4173.5 5 5.4217E-13 0 107 �62.1642

10/01/2003 Mar-04 4162 8 1.1045E-11 0 169 �3.8885

10/01/2003 Jun-04 4171.5 5 1.0698E-13 0 260 �2.4977

11/03/2003 Nov-03 4330 12 9.9737E-12 0 18 26.2023

11/03/2003 Dec-03 4333 15 4.1511E-11 0 46 0.5538

11/03/2003 Jan-04 4344 9 3.2388E-12 0 74 �8.7229

11/03/2003 Feb-04 4354 7 2.0997E-12 0 109 �2.1552

11/03/2003 Mar-04 4329 7 2.6622E-13 0 136 �4.7931

11/03/2003 Jun-04 4343.5 7 4.4587E-13 0 227 �28.4200

12/01/2003 Dec-03 4415.5 13 6.9791E-11 0 18 15.2128

12/01/2003 Jan-04 4426 10 2.5172E-13 0 46 �1.4475

12/01/2003 Feb-04 4433.5 13 3.7691E-12 0 81 �8.1270

12/01/2003 Mar-04 4410.5 10 5.3369E-12 0 108 �6.0614

12/01/2003 Jun-04 4423.5 4 9.9101E-16 0 199 �3.2410

12 This sub-sample has a total of 13 696 observations for the year 2003.
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consecutively one of the N options at each time and we calibrate our model with the

remaining options. In order to preserve the options’ moneyness range stability and avoid

problems of extrapolation, we do not remove the options with the highest and lowest

moneyness. Over-fitting is checked like before using the full and the restricted sample of

options. For the calibration only cases consisting of N � 8 were used. Results for the

mean and median absolute errors are given in Table 20.2. We see that the error (given an

average contract size of 90 for the full and 74.4 for the restricted sample) is small and

rather stable.13

Since implied volatility changes with strike and time to maturity (volatility smile) the

index should have a non-lognormal distribution which implies that the log-returns will

deviate from normality. In order to see how realistic is the distribution obtained from our

model for year 2003, we calculate the statistics of the 1-month log-returns obtained from

our model and compare them with the historical 1-month log-returns for the year 2003

and the years 2001�2005. Specifically, for each calibration (with n � 6 and n � 7) for

which the options maturity was between 28 and 32 calendar days, we calculate the first

four moments (mean, variance, skewness and kurtosis). Then, in order to get a feeling for

the representative statistics of 1-month log-returns we provide for each of those moments

the mean and the median. The statistics for n � 6 are summarized in Table 20.3. Similar

statistics were found for n � 7. Liu et al. (2005) discuss the derivations of historical, and

implied real and risk-neutral distributions for the FTSE 100 index. They demonstrate that

the needed adjustments to get the implied real variance, skewness and kurtosis from the

implied risk-neutral ones are minimal. Thus, knowing that our implied risk-neutral

moments (beyond the mean) are very close to the implied real ones, we can then compare

them with the historical ones (without expecting the two distributions to be identical). As

we would expect, the mean of the implied risk-neutral distribution of log-returns differs

from that of the historical distribution. Also, as we see, both the implied risk-neutral and

the historical distribution deviate from normality since they exhibit negative skewness and

(mostly) excess kurtosis. This is an indication that the implied distribution is realistic.

In order to give further evidence for the implied distributions obtained by our model,

representative implied distributions (histograms) for the 1-month log-returns in June

2003 are shown in Figure 20.5a (full sample) and Figure 20.5b (restricted sample) for

n � 6 and n � 7. To make the histograms of the implied distributions we make use of the

Pearson system of distributions14 as applied in Matlab.15 Using the first four moments of

the data it is easy to find in the Pearson system the distribution that matches these

moments and to generate a random sample in order to produce a histogram

13 Also, we compare our model (with respect to over-fitting) with the Black�/Scholes model using the Whaley (1982)
approach. According to this approach we find the volatility that minimizes the sum of square differences of the Black�/

Scholes option prices with their corresponding market prices using nonlinear minimization. Results show that the
mean (median) absolute error using this approach is 7.36 (5.94) for the full sample and 6.61 (5.60) for the restricted
sample which are much higher than the errors obtained using our model for n � 6, 7, 8.
14 In the Pearson system there is a family of distributions that includes a unique distribution corresponding to every
valid combination of mean, standard deviation, skewness and kurtosis.
15 Copyright 2005 The MathWorks, Inc.
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FIGURE 20.4 Plots of the call prices (market and estimated) for the FTSE 100 index, for the 1st trading day of

June 2003. S denotes the value of the underlying asset and T the calendar days to maturity.
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corresponding to the implied distribution. From the figures, it is obvious that the implied

distributions have negative skewness and positive kurtosis which is consistent with

historical data. These figures are representative of the vast majority of cases.16 Another

interesting thing we observe is that distributions for n � 6 and n � 7 are practically

indistinguishable for both samples.

20.6 CONCLUSIONS

In most options markets, the implied Black�Scholes volatilities vary with both strike and

expiration, a relationship commonly known as the volatility smile. In this chapter we

capture the implied distribution from option market data using a non-recombining

(binary) tree allowing the local volatility to be a function of the underlying asset and of

time. The problem under consideration is a non-convex optimization problem with linear

constraints. We elaborate on the initial guess for the volatility term structure, and use

nonlinear constrained optimization to minimize the least-squares error function on

market prices. Specifically we adopt a penalty method and the optimization is

implemented using a quasi-Newton algorithm. Appropriate constraints allow us to

maintain risk neutrality and to prevent arbitrage opportunities. The proposed model can

accommodate European options with single maturities and, with minor modifications,

TABLE 20.3 Implied Risk-Netural and Historical Statistics of the Distribution of the FTSE 100 1-Month Log-

Returns

Mean Variance Skewness Kurtosis Observations

Implied(2003, n � 6)

Mean �0.0024 0.0048 �0.6938 4.5075 58

Median �0.0013 0.0027 �0.6653 3.6405 58

Historical

2003 0.0106 0.0014 �0.6572 2.7689 12

2001�/2005 �0.0021 0.0018 �1.1177 4.4749 59

TABLE 20.2 Mean and Median Absolute Errors Using Our Model for n � 6, 7, 8 and Data from the Full and

the Restricted Sample

Absolute errors

Model Full sample Restricted sample

n � 6 Mean 1.2458 1.1065

Median 0.9163 0.8709

n � 7 Mean 1.1375 0.9792

Median 0.8005 0.6929

n � 8 Mean 1.1286 0.9350

Median 0.7928 0.6886

Observations 446 405

16 In rare exceptions only we have implied distributions close to normal or even leptokurtic.
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options with multiple maturities. Also, this method is flexible since it applies to arbitrary

underlying asset distributions, which implies arbitrary local volatility distributions.

Market implied information embodied in the constructed tree can help the pricing and

hedging of exotic options and of OTC options on the same underlying process. We test

our model using FTSE 100 options data. The results obtained strongly support our

modelling approach. Pricing results are smooth without the presence of an over-fitting

problem, and the derived implied distributions are realistic. Also, the computational

burden is not a major issue.
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FIGURE 20.5 (a) Implied probability distributions (histograms) obtained for the 1-month log-return of June

2003 using the full sample for n � 6 and n � 7. (b) Implied probability distributions (histograms) obtained

for the 1-month log-retrun of June 2003 using the restricted sample for n � 6 and n � 7.
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APPENDIX 20.A: FEASIBILITY OF THE INITIALIZED NON-RECOMBINING
TREE

We initialize the tree using the following volatility term structure:

sðiÞ ¼ sð1Þelði�1ÞDt ; l 2 R;

where i � 1, . . . , n. The feasibility of the initial tree depends on the right choice of the

local volatility term structure; hence to obtain a feasible initial tree we must find an

interval with the appropriate values of l. In order to preserve the risk neutrality at every

time step, the following constraints must be satisfied:

Sði; jÞeðrf�dÞDt � Sði þ 1; 2jÞ; ð20:A1aÞ

Sði; jÞeðrf�dÞDt � Sði þ 1; 2j � 1Þ: ð20:A1bÞ

Also,

Sði þ 1; 2jÞ ¼ Sði; jÞuði; jÞ ¼ Sði; jÞesðiÞ
ffiffiffiffi
Dt
p
; ð20:A2aÞ

Sði þ 1; 2j � 1Þ ¼ Sði; jÞdði; jÞ ¼ Sði; jÞe�sðiÞ
ffiffiffiffi
Dt
p
: ð20:A2bÞ

Substituting (20.A2a) and (20.A2b) to (20.A1a) and (20.A1b) respectively, we get the

following inequalities:

sðiÞ � ðrf � dÞ
ffiffiffiffiffiffi
Dt
p

; ð20:A3aÞ

sðiÞ � �ðrf � dÞ
ffiffiffiffiffiffi
Dt
p

: ð20:A3bÞ

Thus we have that

sðiÞ � rf � d
���

���
ffiffiffiffiffiffi
Dt
p

8i: ð20:A4Þ

For l ] 0, s (i) �s (1)el(i � 1)Dt is strictly increasing. Since (20.A4) holds for every i this

means that

min sðiÞ � rf � d
���

���
ffiffiffiffiffiffi
Dt
p

or sð1Þ � rf � d
���

���
ffiffiffiffiffiffi
Dt
p

: ð20:A5Þ

The minimum value of s (i) is for i � 1 (s(1)) thus (20.A5) is independent of l.

Therefore, if l is positive there is no upper bound for l.
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For lB 0, s (i) �s(1)el(i � 1)Dt is strictly decreasing. Since (20.A4) holds for every i

this means that

min sðiÞ � rf � d
���

���
ffiffiffiffiffiffi
Dt
p

)

sðnÞ � rf � d
���

���
ffiffiffiffiffiffi
Dt
p

)

elðn�1ÞDt �
rf � d
���

���
ffiffiffiffiffiffi
Dt
p

sð1Þ
:

But (n � 1)Dt � T, thus,

l � 1

T
log

rf � d
���

���
ffiffiffiffiffiffi
Dt
p

sð1Þ

0
@

1
A: ð20:A6Þ

If we allow l to take both negative and positive values, then l should belong in the

interval,

l 2 1

T
log

rf � d
���

���
ffiffiffiffiffiffi
Dt
p

sð1Þ

0

@

1

A;þ1

2

4

1

A: ð20:A7Þ

APPENDIX 20.B: FEASIBILITY OF THE INITIALIZED NON-RECOMBINING
TREE ASSUMING TIME DEPENDENT rf, d AND Dt

We denote with rf (i) and d(i) the risk free rate and dividend yield respectively between

two consecutive time steps, i.e. between time step i and i � 1, i � 1, . . . , n � 1. (See

Figure 20.B1.).

We initialize the tree using the following volatility term structure:

sðiÞ ¼ sð1Þe
l
Pi�1

j¼1

DtðjÞ
; l 2 R;

where i � 1, . . . , n. The feasibility of the initial tree depends on the right choice of the

local volatility term structure; hence to obtain a feasible initial tree we must find an

interval with the appropriate values of l. In order to preserve the risk neutrality at every

time step, the following constraints must be satisfied:

Sði; jÞeðrf ðiÞ�dðiÞÞDtðiÞ � Sði þ 1; 2jÞ; ð20:B1aÞ

Sði; jÞeðrf ðiÞ�dðiÞÞDtðiÞ � Sði þ 1; 2j � 1Þ: ð20:B1bÞ

446 j CHAPTER 20



Also,

Sði þ 1; 2jÞ ¼ Sði; jÞuði; jÞ ¼ Sði; jÞesðiÞ
ffiffiffiffi
Dt
p
ðiÞ; ð20:B2aÞ

Sði þ 1; 2j � 1Þ ¼ Sði; jÞdði; jÞ ¼ Sði; jÞe�sðiÞ
ffiffiffiffi
Dt
p
ðiÞ ð20:B2bÞ

Substituting (20.B2a) and (20.B2b) to (20.B1a) and (20.B1b) respectively we get the

following inequalities:

sðiÞ � ðrf ðiÞ � dðiÞÞ
ffiffiffiffiffiffiffiffiffiffiffi
DtðiÞ

p
; ð20:B3aÞ

sðiÞ � �ðrf ðiÞ � dðiÞÞ
ffiffiffiffiffiffiffiffiffiffiffi
DtðiÞ

p
: ð20:B3bÞ

Thus we have that

sðiÞ � rf ðiÞ � dðiÞ
���

���
ffiffiffiffiffiffiffiffiffiffiffi
DtðiÞ

p
8i: ð20:B4Þ

For l ] 0, sðiÞ ¼ sð1Þ exp½l
Pi�1

j¼1 DtðjÞ� is strictly increasing. Let xM ¼
max

i
rf ðiÞ � dðiÞ
���

���
ffiffiffiffiffiffiffiffiffiffiffi
DtðiÞ

p
: Then (20.B4) holds for every i if

min
i

sðiÞ � xM or sð1Þ � xM : ð20:B5Þ

The minimum value of s(i) is for i�1 (s(1)), thus (20.B5) is independent of l.

Therefore, if l is positive there is no upper bound for l.

S (i, j)
rf (i), δ(i) S (i, j)e(rf (i)–δ(i))Δt(i)

Δt(i)

S (i, j)eσ(i)√Δt(i)

S (i, j)e–σ(i)√Δt(i)

FIGURE 20.B1 A typical triplet in the initialization of the non-recombining tree assuming rf, d and Dt to be

time dependent.
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For lB 0, sðiÞ ¼ sð1Þ exp½l
Pi�1

j¼1 DtðjÞ� is strictly decreasing. Let xm ¼
min

i
rf ðiÞ � dðiÞ
���

���
ffiffiffiffiffiffiffiffiffiffiffi
DtðiÞ

p
: Then (20.B4) holds for every i if

min
i

sðiÞ � xm;

sðnÞ � xm;

sð1Þe
l
Pn�1

j¼1

DtðjÞ
� xm:

But,
Pn�1

j¼1 Dtð jÞ ¼ T , thus,

l � 1

T
log

xm

sð1Þ

 !
: ð20:B6Þ

If we allow l to take both negative and positive values, then l should belong to the

interval,

l 2 1

T
log

xm

sð1Þ

 !
;þ1

" !
: ð20:B7Þ

APPENDIX 20.C: FORMULAS ADJUSTED FOR TIME DEPENDENT rf, d
AND Dt

We denote with rf (i) and d(i) the risk free rate and dividend yield respectively between

two consecutive time steps, i.e. between time step i and i � 1, i � 1, . . . , n � 1 and with r?f
and d? we denote the risk free rate and dividend yield respectively from today until the

maturity of the option, i.e. from i � 1 to i � n.

If we allow rf , d and Dt to be time dependent the equations of the main text are

replaced with the following:

uði; jÞ ¼ esðiÞ
ffiffiffiffi
Dt
p
ðiÞ ð20:3a0Þ

dði; jÞ ¼ e�sðiÞ
ffiffiffiffi
Dt
p
ðiÞ ¼ 1

uði; jÞ
; i ¼ 1; . . . ; n � 1; j ¼ 1; . . . ; 2i�1 ð20:3b0Þ

l 2 1

T
log

xm

sð1Þ

 !
;þ1

" !
; ð20:50Þ

where
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xm ¼ min
i

rf ðiÞ � dðiÞ
���

���
ffiffiffiffiffiffiffiffiffiffiffi
DtðiÞ

p
:

pði; jÞ ¼ Sði; jÞeðrf ðiÞ�dðiÞÞDtðiÞ � Sði þ 1; 2j � 1Þ
Sði þ 1; 2jÞ � Sði þ 1; 2j � 1Þ

;

i ¼ 1; . . . ; n � 1; j ¼ 1; . . . ; 2i�1;

ð20:70Þ

Cði; jÞ ¼ pði; jÞCði þ 1; 2jÞ þ ð1� pði; jÞÞCði þ 1; 2j � 1Þð Þe�rf ðiÞDtðiÞ

i ¼ n� 1; . . . ; 1; j ¼ 1; . . . ; 2i�1
ð20:9b0Þ

Sði; jÞeðrf ðiÞ�dðiÞÞDtðiÞ � Sði þ 1; 2jÞ; i ¼ 1; . . . ; n � 1;

j ¼ 1; . . . ; 2i�1
ð20:10a0Þ

Sði; jÞeðrf ðiÞ�dðiÞÞDtðiÞ � Sði þ 1; 2j � 1Þ i ¼ 1; . . . ; n � 1;

j ¼ 1; . . . ; 2i�1
ð20:10b0Þ

max Sð1; 1Þe�d0T � K e�r 0
f
T ; 0

! "
� CMod � Sð1; 1Þ; ð20:110Þ

g1ði; jÞ ¼ Sði; jÞeðrf ðiÞ�dðiÞÞDtðiÞ � Sði þ 1; 2j � 1Þ � 0

i ¼ 1; . . . ; n � 1; j ¼ 1; . . . ; 2i�1;
ð20:14a0Þ

g2ði; jÞ ¼ Sði þ 1; 2jÞ � Sði; jÞeðrf ðiÞ�dðiÞÞDtðiÞ � 0

i ¼ 1; . . . ; n � 1; j ¼ 1; . . . ; 2i�1;
ð20:14b0Þ

g3ðkÞ ¼ Sð1; 1Þ � CModðkÞ � 0; k ¼ 1; . . . ;N ; ð20:14c0Þ

g4ðkÞ ¼ CModðkÞ �maxðSð1; 1Þe�d0T � K ðkÞe�r 0
f
T ; 0Þ � 0;

k ¼ 1; . . . ;N
ð20:14d0Þ
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H
S
ðlÞ
i;j

pði; jÞ �

@pði; jÞ=@Sði; jÞ

@pði; jÞ=@Sði þ 1; 2jÞ

@pði; jÞ=@Sði þ 1; 2j � 1Þ

2
664

3
775

¼ 1

Sði þ 1; 2jÞ � Sði þ 1; 2j � 1Þ

eðrf ðiÞ�dðiÞÞDtðiÞ

� pði; jÞ

� ð1� pði; jÞÞ

2
664

3
775;

ð20:170Þ

H
S
ðlÞ
i;j

Cði; jÞ �

@Cði; jÞ=@Sði; jÞ

@Cði; jÞ=@Sði þ 1; 2jÞ

@Cði; jÞ=@Sði þ 1; 2j � 1Þ

2

664

3

775

¼

Dði; jÞ
pði; jÞ Dði þ 1; 2jÞ � Dði; jÞedðiÞDtðiÞ� �

e�rf ðiÞDtðiÞ

ð1� pði; jÞÞðDði þ 1; 2j � 1Þ
�Dði; jÞedðiÞDtðiÞÞe�rf ðiÞDtðiÞ

� #

2

66664

3

77775
ð20:180Þ

Dði; jÞ ¼ Cði þ 1; 2jÞ � Cði þ 1; 2j � 1Þ
Sði þ 1; 2jÞ � Sði þ 1; 2j � 1Þ

e�dðiÞDtðiÞ

¼ @Cði; jÞ
@Sði; jÞ

� Delta Ratio;

ð20:190Þ

@Cð1; 1Þ
@Sði; jÞ

¼
Y
fof the probabilities on the path that take

us from nodeð1; 1Þto nodeði � 1; kÞg

� @Cði � 1; kÞ
@Sði; jÞ

e
�
Pi�1

h¼2
rf ðhÞDtðhÞ

k ¼
j=2; for even j;

ð j þ 1Þ=2; for odd j:

�

ð20:210Þ
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