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Introduction to Quantitative Fund
Management

A T THE TENTH TRIENNIAL INTERNATIONAL CONFERENCE on stochastic programming held at
the University of Arizona in October 2004, it was observed that the fund
management industry as a whole was far from the leading edge of research in financial
planning for asset allocation, asset liability management, debt management and other
financial management problems at the strategic (long term) level. This gap is documented
in the timely survey of quantitative equity management by Fabozzi, Focardi and Jonas
which forms the first chapter of this book. It was therefore agreed to bring out a special
issue of Quantitative Finance to partially address the imbalance between research and
practice by showcasing leading edge applicable theory and methods and their use for
practical problems in the industry. A call for papers went out in August and October of
2005. As an outcome of this, we were able to compile a first special issue with the papers
forming the ten chapters in Part 1 of this book. In fact, the response to the call was so
good that a second special issue focusing on tactical financial planning and risk
management is contained in the ten chapters of Part 2.

Taken together, the twenty chapters of this volume constitute the first collection to cover
quantitative fund management at both the dynamic strategic and one period tactical levels.
They consider optimal portfolio choice for wealth maximization together with integra-
ted risk management using axiomatically defined risk measures. Solution techniques con-
sidered include novel applications to quantitative fund management of stochastic control,
dynamic stochastic programming and related optimization techniques. A number of
chapters discuss actual implemented solutions to fund management problems including
equity trading, pension funds, mortgage funding and guaranteed investment products. All
the contributors are well known academics or practitioners. The remainder of this
introduction gives an overview of their contributions.

In Part I of the book on dynamic financial planning the survey by Fabozzi et al.
(Chapter 1) finds that, at least in the equity world, the interest in quantitative techniques
is shifting from basic Markowitz mean-variance portfolio optimization to risk manage-
ment and trading applications. This trend is represented here with the chapter by Fagiuoli,
Stella and Vetura (Chapter 5). The remaining chapters in Part 1 cover novel aspects of
lifetime individual consumption investment problems, fixed mix portfolio rebalancing
allocation strategies (including Cover-type universal portfolios), debt management for

xiii



xiv Hl INTRODUCTION TO QUANTITATIVE FUND MANAGEMENT

funding mortgages and national debt, and guaranteed return fund construction. Of the
ten chapters in Part 1, one is the mentioned survey, three are theoretical, two concern
proofs of concept for practical trading or fund management strategies and the remaining
four concern real-world implementations for major financial institutions.

Chapter 2 by Pirvu expands on the classical consumption investment problem of
Merton to include a value-at-risk constraint. The portfolio selection problem over a finite
horizon is a stochastic control problem which is reduced to pathwise nonlinear
optimization through the use of the stochastic Pontryagin maximum principal. Numerical
results are given and closed form solutions obtained for special cases such as logarithmic
utility. The third chapter by Hsuku extends the classical Merton problem in a different
direction to study the positive effects of adding derivatives to investors’ choices. The
model utilizes a recursive utility function for consumption and allows predictable
variation of equity return volatility. Both of these theoretical studies concern realistically
incomplete markets in which not all uncertainties are priced.

The next three chapters mainly treat variants of the fixed-mix rebalance dynamic asset
allocation strategy. The first of these (Chapter 4) by Dempster, Evstigneev and Schenk-
Hoppé shows under very general stationary ergodic return assumptions that such a
strategy, which periodically rebalances a portfolio to fixed proportions of the current
portfolio value, grows exponentially on almost every path even in the presence of suitable
transactions costs. Chapter 5 in this group by Fagiuoli, Stella and Ventura develops, and
tests on stock data from four major North American indices, an online algorithm for
equity trading based on Cover’s non-parametric universal portfolios in the situation when
some market state information is also available. Chapter 6 by Mulvey, Ural and Zhang
discusses return enhancing additions to both fixed mix rebalance strategies and optimal
dynamic allocation strategies obtained by dynamic stochastic programming in the context
of work for the U.S. Department of Labor. In particular, positive return performance is
demonstrated from diversification to non-traditional asset classes, leverage, and overlay
strategies which require no investment capital outlay.

The next two chapters concern debt management problems which use dynamic
stochastic programming to optimally fund mortgage lending and government spending
requirements respectively. These are asset liability management problems in which assets
are specified and decisions focus on liabilities, namely, when and how to issue bonds. The
first, Chapter 7 by Infanger, is an exemplary study conducted for Freddie Mac which
shows that significant extra profits can be made by employing dynamic models relative to
static Markovitz mean-variance optimization or traditional duration and convexity
matching of assets (mortgage loans) and liabilities (bonds). In addition, efficient out-of-
sample simulation evaluation of the robustness of the recommended optimal funding
strategies is described, but not historical backtesting. Chapter 8 by Bernaschi, Briani, Papi
and Vergni concentrates on yield curve modelling for a dynamic model for funding Italian
public debt by government bond issuance. The idea of this contribution, important in an
EU context, is to model the basic ECB yield curve evolution together with an orthogonal
national idiosyncratic component.
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The last two chapters of Part 1 describe the use of dynamic stochastic programming
techniques to design guaranteed return pension funds which employ dynamic asset
allocations to balance fund return versus guarantee shortfall. Chapter 9 by Hertzog,
Dondi, Keel, Schumann and Geering treats this asset liability management problem using
a deterministic evolution of the guarantee liability, while Chapter 10 by Dempster,
Germano, Medova, Rietbergen, Sandrini and Scrowston treats guarantee shortfall with
respect to a stochastic liability which is evaluated from the forward ECB yield curve
simulation used to price bonds in the dynamic portfolio. Both chapters employ historical
backtesting of their models for respectively a hypothetical Swiss pension fund and (a
simplified version of) actual funds backing guaranteed return products of Pioneer
Investments.

Taken together, the ten chapters of Part 1 give a current snapshot of state-of-the-art
applications of dynamic stochastic optimization techniques to long term financial
planning. These techniques range from new pathwise (Pirvu) and standard dynamic
programming (Hsuku) methods of stochastic control, through sub-optimal, but easily
understood and implemented policies (Dempster et al., Fagiouli et al., Mulvey et al.) to
dynamic stochastic programming techniques involving the forward simulation of many
risk factors (Mulvey et al., Infanger, Bernaschi et al., Hertzog et al., Dempster et al.).
Although there is currently widespread interest in these approaches in the fund
management industry, more than a decade after their commercial introduction they are
still in the early stages of adoption by practitioners, as the survey of Fabozzi et al. shows.
This volume will hopefully contribute to the recognition and wider acceptance of
stochastic optimization techniques in financial practice.

Part 2 of this volume on portfolio construction and risk management concerns the tactical
level of financial planning. Most funds, with or without associated liabilities—and
explicitly or implicitly—employ a three level hierarchy for financial planning. The top
strategic level considers asset classes and risk management over longer term horizons
and necessarily involves dynamics (the topic of Part 1). The middle factical level of the
financial planning hierarchy concerns portfolio construction and risk management at the
individual security or fund manager level over the period up to the next portfolio
rebalance. This is the focus of the ten contributions of the second part of the book. The
third and bottom operational level of the financial planning hierarchy is actual trading
which, with the rise of hedge funds, and as the survey of quantitative equity management
by Fabozzi et al. in Chapter 1 demonstrates, is becoming increasingly informed by tactical
models and considerations beyond standard Markowitz mean-variance optimization
(MVO). This interaction is the evident motivation for many of the chapters in Part 2
with their emphasis on non-Gaussian returns, new risk-return tradeoffs and robustness of
benchmarks and portfolio decisions. The first two chapters are based on insights gained
from actual commercial applications, while of the remaining eight chapters all but one,
which is theoretically addressing an important practical issue, test new theoretical
contributions on market data. Another theme of all the contributions in this part is that
their concern is with techniques which are scenario—rather than analytically—based
(although the purely theoretical chapter uses a limiting analytical approximation). This
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theme reflects the necessity for nontrivial computational approaches when the classical
independent Gaussian return paradigm is set aside in favour of non-equity instruments
and shorter term (e.g. daily or weekly) returns.

The first chapter of Part 2, Chapter 11 by Dempster, Germano, Medova, Rietbergen,
Sandrini, Scrowston and Zhang treats the problem of benchmarking fund performance
using optimal fixed mix rebalancing strategies (a theme of Part 1) and tests it relative to
earlier work on optimal portfolios for guaranteed return funds described in Chapter 10.

Chapter 12 by Acerbi provides a timely and masterful survey of the recent literature on
coherent risk measures, including practical linear programming models for portfolios
constructed by their minimization. This theme is elaborated further by Krokhmal in
Chapter 13 which treats higher moment coherent risk measures. It examines their
theoretical properties and performance when used in portfolio construction relative to
standard mean variance and expected shortfall conditional value at risk (CVaR)
optimization.

The next three chapters treat the robustness properties of the numerical minimization
of CVaR using linear programming as employed in practice, for example, for bond
portfolios. The first, Chapter 14 by Ciliberti, Kondor and Mezard, uses limiting
continuous approximations suggested by statistical physics to define a critical threshold
for the ratio of the number of assets to the number of historical observations beyond
which the expected shortfall (CVaR) risk measure is not well-defined—a phase-change
phenomenon first noted by Kondor and co-authors. Next Kaut, Vladimirou, Wallace and
Zenios examine in Chapter 15 the stability of portfolio solutions to this problem with
respect to estimation (from historical data) errors. They conclude that sensitivity to
estimation errors in the mean, volatility, skew and correlation all have about the same
non-negligible impact, while error in kurtosis has about half that of the other statistics.
Finally, Chapter 16 by Dupacova and Polivka discusses stress-testing the CVaR
optimization problem using the contamination scenario technique of perturbation
analysis. They also show that similar techniques may be applied to the minimal analytical
value at risk (VaR) problem for the Gaussian case, but are not applicable to the
corresponding historical scenario based problem.

The next group of three chapters extend the treatment of portfolio construction and
risk management beyond the usual simple tradeoff of volatility risk and return embodied
in MVO. Chapter 17 by Giacometti, Bertocchi, Rachev and Fabozzi shows that the Black-
Litterman Bayesian approach to portfolio construction, incorporating both market and
practitioner views, can be extended to Student-t and stable return distributions and VaR
and CVaR risk measures. Pflug and Wozabal consider in Chapter 18 the robust
optimization problem of finding optimal portfolios in the Knightian situation when the
distributions underlying returns are not perfectly known. They develop and test an
algorithm for this situation based on two level convex optimization. In the last chapter in
this group, Chapter 19, Roman, Darby-Dowman and Mitra consider the multi-objective
problem of simultaneously trading off expected return with two risk measures based on
variance and expected shortfall (CVaR). In tests with FTSE 100 index securities they find
that an optimal balance with the two risk measures dominates those using either alone.
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The final chapter in Part 2, Chapter 20 by Charalambous, Christofides, Constantinide
and Martzoukos, treats the basic requirement for pricing exotic and over-the-counter
options—fitting vanilla option market price data—using non-recombining (binary) trees, a
special case of the multi-period scenario trees used in Part 1 for strategic portfolio
management. The authors’ approach dominates the usual recombining tree (lattice) in
that it can easily handle transactions costs, liquidity constraints, taxation, non-Markovian
dynamics, etc. The authors demonstrate its practicality using a penalty method and quasi-
Newton unconstrained optimization and its excellent fit to the volatility surface—crucial
for hedging and risk control.

The ten chapters of Part 2 provide an up-to-date overview of current research in tactical
portfolio construction and risk management. Their emphasis on general return distribu-
tions and tail risk measures is appropriate to the increasing penetration of hedge fund
trading techniques into traditional fund and asset liability management. We hope that this
treatment of tactical problems (and its companion strategic predecessor) will make a
valuable contribution to the future practical use of systematic techniques in fund
management.

M.A.H. DEMPSTER, GAUTAM MITRA and GEORG C. PFLUG
Cambridge, London & Vienna
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1.1 INTRODUCTION

N THE SECOND HALF OF THE 19908, there was so much skepticism about quantitative fund
management that Leinsweber (1999), a pioneer in applying advanced techniques
borrowed from the world of physics to fund management, wrote an article entitled: ‘Is
quantitative investment dead? In the article, Leinweber defended quantitative fund
management and maintained that in an era of ever faster computers and ever larger

databases, quantitative investment was here to stay. The skepticism towards quantitative
fund management, provoked by the failure of some high-profile quantitative funds, was
related to the fact that investment professionals felt that capturing market inefficiencies
could best be done by exercising human judgement.

Despite mainstream academic theory that had held that markets are efficient and
unpredictable, the asset managers’ job has always been to capture market inefficiencies for
their clients. At the academic level, the notion of efficient markets has been progressively
relaxed. Empirical evidence that began to be accumulated in the 1970s led to the gradual

3
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acceptance of the notion that financial markets are somewhat predictable and that
systematic market inefficiencies can be detected (see Granger 1992 for a review to various
models that accept departures from efficiency). Using the variance ratio test, Lo and
MacKinlay (1988) disproved the random walk hypothesis. Additional insights return
predictability was provided by Jegadeesh and Titman (1993), who established the existence
of momentum phenomena. Since then, a growing number of studies have accumulated
evidence that there are market anomalies that can be systematically exploited to earn
excess profits after considering risk and transaction costs (see Pesaran 2005 for an up-to-
date presentation of the status of market efficiency). Lo (2004) proposed replacing the
Efficient Market Hypothesis with the Adaptive Market Hypothesis arguing that market
inefficiencies appear as the market adapts to changes in a competitive environment.

The survey study described in this paper had as its objective to reveal to what extent the
growing academic evidence that asset returns are predictable and that predictability can be
exploited to earn a profit have impacted the way equity assets are being managed. Based
on an Intertek 2003 survey on a somewhat different sample of firms, Fabozzi et al. (2004)
revealed that models were used primarily for risk management, with many firms
eschewing forecasting models. The 2006 survey reported in this chapter sought to reveal to
what extent modelling has left the risk management domain to become full-fledged asset
management methodology. Anticipating the results discussed below, the survey confirms
that quantitative fund management is now an industrial reality, successfully competing
with traditional asset managers for funds. Milevsky (2004) observes that the methods of
quantitative finance have now been applied in the field of personal wealth management.

We begin with a brief description of the field research methodology and the profile of
responding firms. Section 1.3 discusses the central finding, that is, that models are being
used to manage an increasing amount of equity asset value. Section 1.4 discusses the
changing role of modelling in equity portfolio management, from decision-support
systems to a fully automated portfolio construction and trading system, and from passive
management to active management. Section 1.5 looks at the forecasting models most
commonly used in the industry and discusses the industry’s evaluation of the techniques.
Section 1.6 looks at the use (or lack of use) of high-frequency data and the motivating
factors. Section 1.7 discusses risk measures being used and Section 1.8 optimization
methodologies. The survey reveals a widespread use of optimization, which is behind the
growing level of automation in fund management. The wide use of models has created a
number of challenges: survey respondents say that differentiating quantitative products
and improving on performance are a challenge. Lastly, in looking ahead, we discuss the
issue of the role of models in market efficiency.

1.2 METHODOLOGY

The study is based on survey responses and conversations with industry representatives in
2006. In all, managers at 38 asset management firms managing a total of €3.3 trillion ($4.3
trillion) in equities participated in the survey. Participants include persons responsible for
quantitative equity management and quantitative equity research at large and medium-
sized firms in North America and Europe.
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The home market of participating firms is 15 from North America (14 from U.S. 1 from
Canada) and 23 from Europe (U.K. 7, Germany 5, Switzerland 4, Benelux 3, France 2 and
Italy 2). Equities under management by participating firms range from €5 bn to €800 bn.

While most firms whose use of quantitative methods is limited to performance analysis or
risk measurement declined to participate in this study (only 5 of the 38 participating firms
reported no equity funds under quantitative management), the study does reflect the use of
quantitative methods in equity portfolio management at firms managing a total of €3.3
trillion ($4.3 trillion) in equities; 63% of the participating firms are among the largest asset
managers in their respective countries. It is fair to say that these firms represent the way a
large part of the industry is going with respect to the use of quantitative methods in equity
portfolio management. (Note that of the 38 participants in this survey, 2 responded only
partially to the questionnaire. For some questions, there are therefore 36 (not 38) responses.)

1.3 GROWTH IN EQUITY ASSETS UNDER QUANTITATIVE
MANAGEMENT

The skepticism relative to the future of quantitative management at the end of the 1990s

has given way and quantitative methods are now playing a large role in equity portfolio
management. Twenty-nine percent (11/38) of the survey participants report that more
than 75% of their equity assets are being managed quantitatively. This includes a wide
spectrum of firms, with from €5 billion to over €500 billion in equity assets under
management. Another 58% (22/38) report that they have some equities under
quantitative management, though for most of these (15/22) the percentage of equities
under quantitative management is less than 25%—often under 5%—of total equities
under management. Thirteen percent (5/38) report no equities under quantitative
management. Figure 1.1 represents the distribution of percentage of equities under
quantitative management at different intervals for responding firms.

Relative to the period 2004—2005, the amount of equities under quantitative manage-
ment has grown at most firms participating in the survey. Eighty-four percent of the
respondents (32/38) report that the percentage of equity assets under quantitative
management has either increased with respect to 2004-2005 (25/38) or has remained
stable at about 100% of equity assets (7/38). The percentage of equities under quantitative
management was down at only one firm and stable at five.

Number of Firms with Percentage of Equities under
Quant Management in Different Intervals

More than 75% 111
50% to 74%_:| 2
25% to 49%‘:| 5
More than 0 to 24%_ 115

None | 5

FIGURE 1.1 Distribution of the percentage of equities under quant management.
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Contributing to a Wider Use of Quant Methods

Other ]

STP

1 |
More/Better Data | ]
3rd-Party s/w ]

Desktop Computers ]

Positive Results . . |
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FIGURE 1.2 Score attributed to each factor contributing to a wider use of quant methods.

One reason given by respondents to explain the growth in equity assets under
quantitative management is the flows into existing quantitative funds. A source at a large
U.S. asset management firm with more than 50% of its equities now under quantitative
management said, ‘The firm has three distinct equity products: value, growth and quant.
Quant is the biggest and is growing the fastest’ The trend towards quantitative
management is expected to continue.

According to survey respondents, the most important factor contributing to a wider use
of quantitative methods in equity portfolio management is the positive result obtained
with these methods. Half of the participants rated positive results as the single most
important factor contributing to the widespread use of quantitative methods. Other
factors contributing to a wider use of quantitative methods in equity portfolio
management are, in order of importance attributed to them by participants, the
computational power now available on the desktop, more and better data, and the
availability of third-party analytical software and visualization tools. Figure 1.2 represents
the distribution of the score attributed to each factor. Participants were asked to rate from
1 to 5 in order of importance, 5 being the most important. Given the sample of 36 firms
that responded, the maximum possible score is 180.

Sources identified the prevailing in-house culture as the most important factor holding
back a wider use of quantitative methods (this evaluation obviously does not hold for
firms that can be described as quantitative): more than one third (10/27) of the
respondents at other than quant-oriented firms considered this the major blocking factor.
Figure 1.3 represents the distribution of the total score attributed to each factor.

The positive evaluation of models in equity portfolio management is in contrast with
the skepticism of some 10 years ago. A number of changes have occurred. First,
expectations are now more realistic. In the 1980s and 1990s, traders were experimenting
with methodologies from advanced science in hopes of making huge excess returns.
Experience of the last 10 years has shown that models can indeed deliver but that their
performance must be compatible with a well-functioning market.'

! There was a performance decay in quantitatively managed equity funds in 2006—2007. Many attribute this decaying
performance to the fact that there are now more portfolio managers using the same factors and the same data.
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Holding Back a Wider Use of Quant Methods

Other [J 2
Poor Results 137

Complexity 153

Cost Persons ] 52

Cost Data ] 54
Cost IT ] 60

In-House Culture ] 80

FIGURE 1.3 Score attributed to each factor holding back a wider use of quant methods.

Other technical reasons include a manifold increase in computing power and more and
better data. Modellers have now available on their desktop computing power that, at the
end of the 1980s, could be got only from multimillion dollar supercomputers. Data,
including intraday data, can now be had (though the cost remains high) and are in general
‘cleaner’ and more complete. Current data include corporate actions, dividends, and fewer
errors—at least in developed-country markets.

In addition, investment firms (and institutional clients) have learned how to use
models throughout the investment management process. Models are now part of an
articulated process that, especially in the case of institutional investors, involves satisfying
a number of different objectives, such as superior information ratios.

1.4  CHANGING ROLE FOR MODELS IN EQUITY PORTFOLIO
MANAGEMENT

The survey reveals that quantitative models are now used in active management to find
alphas (i.e. sources of excess returns), either relative to a benchmark or absolute. This is a
considerable change with respect to the past when quantitative models were used
primarily to manage risk and to select parsimonious portfolios for passive management.

Another finding of this study is the growing amount of funds managed automatically by
computer programs. The once futuristic vision of machines running funds automatically
without the intervention of a portfolio manager is becoming a reality on a large scale: 55%
of the respondents (21/38) report that at least part of their equity assets are now being
managed automatically with quantitative methods; another three plan to automate at least
a portion of their equity portfolios within the next 12 months. The growing automation of
the equity investment process indicates that that there is no missing link in the technology
chain that leads to automatic quantitative management. From return forecasting to
portfolio formation and optimization, all the needed elements are in place.

Until recently, optimization represented the missing technology link in the automation
of portfolio engineering. Considered too brittle to be safely deployed, many firms
eschewed optimization, limiting the use of modelling to stock ranking or risk control

functions. Advances in robust estimation methodologies and in optimization now allow a
manager to construct portfolios of hundreds of stocks chosen in universes of thousands of
stocks with little or no human intervention outside of supervising the models.
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1.5  MODELLING METHODOLOGIES AND THE INDUSTRY’S
EVALUATION

At the end of the 1980s, academics and researchers at specialized quant boutiques

experimented with many sophisticated modelling methodologies including chaos theory,
fractals and multi-fractals, adaptive programming, learning theory, complexity theory,
complex nonlinear stochastic models, data mining and artificial intelligence. Most of these
efforts failed to live up to expectations. Perhaps expectations were too high. Or perhaps
the resources or commitment required were lacking. Derman (2001) provides a lucid
analysis of the difficulties that a quantitative analyst has to overcome. As observed by
Derman, though modern quantitative finance uses some of the techniques of physics, a
wide gap remains between the two disciplines.

The modelling landscape revealed by the survey is simpler and more uniform.
Regression analysis and momentum modelling are the most widely used techniques:
respectively, 100% and 78% of the survey respondents say that these techniques are being
used at their firms. Other modelling methods being widely used include cash flow analysis
and behavioural modelling. Forty-seven percent (17/36) of the participating firms model
cash flows; 44% (16/36) use behavioural modelling. Figure 1.4 represents the distribution
of modelling methodologies among participants.

Let us observe that regression models used today have undergone a substantial change
since the first multifactor models such as Arbitrage Pricing Theory (APT) were
introduced. Classical multifactor models such as APT are static models embodied in
linear regression between returns and factors at the same time:

P
r=0+ Eﬁijﬁ te;.
=1

Models of this type allow managers to measure risk but not to forecast returns, unless the
factors are forecastable. Sources at traditional asset management firms typically use factor
models to control risk or build stock screening systems. A source doing regression on
factors to capture the risk-return trade-off of assets said, ‘Factor models are the most
intuitive and most comprehensive models for explaining the sources of risk.

Methodologies Used in Production

Shrinkage/Averaging-:] 9
Regime Shifting = 4
Nonlinear == 7
Cointegration T
Cash Flow [ 17
Behavioural [ 16
Momentum/Reversal | 128

Regression: 136

FIGURE 1.4 Distribution of modelling methodologies among participants.
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However, modern regression models are dynamic models where returns at time ¢ + 1
are regressed on factors at time #

p
Tipe1 = 0+ E ﬁijfj,t + &,
=1

Models of this type are forecasting models insofar as the factors at time t are predictors of
returns at time behaviour ¢+ 1. In these models, individual return processes might
exhibit zero autocorrelation but still be forecastable from other variables.

Predictors might include financial and macroeconomic factors as well as company
specific parameters such as financial ratios. Predictors might also include human
judgment, for example analyst estimates, or technical factors that capture phenomena
such as momentum. A source at a quant shop using regression to forecast returns said,
‘Regression on factors is the foundation of our model building. Ratios derived from
financial statements serve as one of the most important components for predicting future
stock returns. We use these ratios extensively in our bottom-up equity model and
categorize them into five general categories: operating efficiency, financial strength,
earnings quality (accruals), capital expenditures and external financing activities.

Momentum and reversals are the second most widely used modelling technique among
survey participants. In general, momentum and reversals are used as a strategy not as a
model of asset returns. Momentum strategies are based on forming portfolios choosing
the highest/lowest returns, where returns are estimated on specific time windows. Survey
participants gave these strategies overall good marks but noted that (1) they do not always
perform so well, (2) they can result in high turnover (though some use constraints/
penalties to deal with this problem) and (3) identifying the timing of reversals is tricky.

Momentum was first reported in Jegadeesh and Titman (1993) in the U.S. market.
Jegadeesh and Titman (2002) confirm that momentum continued to exist in the 1990s in
the US market throughout the 1990s. Karolyi and Kho (2004) examined different models
for explaining momentum and introduced a new bootstrap test. Karolyi and Kho
conclude that no random walk or autoregressive model is able to explain the magnitude of
momentum empirically found; they suggest that models with time varying expected
returns come closer to explaining the empirical magnitude of momentum.

Momentum and reversals are presently explained in the context of local models
updated in real time. For example, momentum as described in Jegadeesh and Titman
(1993) is based on the fact that stock prices can be represented as independent random
walks when considering periods of the length of one year. However, it is fair to say that
there is no complete agreement on the econometrics of asset returns that would justify
momentum and reversals and stylized facts on a global scale, and not as local models. It
would be beneficial to know more about the econometrics of asset returns that sustain
momentum and reversals.

Behavioural phenomena are considered to play an important role in asset predictability;
as mentioned, 44% of the survey respondents say they use behavioural modelling.
Behavioural modellers attempt to capture phenomena such as departures from rationality
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on the part of investors (e.g. belief persistence), patterns in analyst estimates, and
corporate executive investment/disinvestment behaviour. Behavioural finance is related to
momentum in that the latter is often attributed to various phenomena of persistence in
analyst estimates and investor perceptions.

A source at a large investment firm that has incorporated behavioural modelling into its
active equity strategies commented, ‘The attraction of behavioural finance is now much
stronger than it was just five years ago. Everyone now acknowledges that markets are not
efficient, that there are behavioural anomalies. In the past, there was the theory that was
saying that markets are efficient while market participants such as the proprietary trading
desks ignored the theory and tried to profit from the anomalies. We are now seeing a
fusion of theory and practice’

We remark that the term behavioural modelling is often used rather loosely. Full-
fledged behavioural modelling exploits a knowledge of human psychology to identify
situations where investors are prone to show behaviour that leads to market inefficiencies.
The tendency now is to call ‘behavioural’ any model that exploits market inefficiency.
However, implementing true behavioural modelling is a serious challenge. Even firms with
very large, powerful quant teams say that ‘considerable work is required to translate
[departures from rationality] into a set of rules for identifying stocks as well as entry and
exit points for a quantitative stock selection process.

As for other methodologies used in return forecasting, sources cited nonlinear methods
and co-integration. Nonlinear methods are being used to model return processes at 19%
(7/36) of the responding firms. The nonlinear method most widely used among survey
participants is classification and regression trees (CART). The advantage of CART is its
simplicity and the ability of CART methods to be cast in an intuitive framework.

A source using CART as a central part of the portfolio construction process in enhanced
index and longer-term value-based portfolios said, ‘CART compresses a large volume of
data into a form which identifies its essential characteristics, so the output is easy to
understand. CART is non-parametric—which means that it can handle an infinitely wide
range of statistical distributions—and nonlinear so as a variable selection technique it is
particularly good at handling higher-order interactions between variables.

Only 11% (4/36) of the respondents use nonlinear regime-shifting models; at most
firms, judgment is used to assess regime change. Obstacles to modelling regime shifts
include the difficulty in detecting the precise timing of a regime switch and the very long
time series required for true estimation.

A source at a firm where regime-shifting models have been experimented with
commented, ‘Everyone knows that returns are conditioned by market regimes, but the
potential for overfitting when implementing regime-switching models is great. If you
could go back with fifty years of data—Dbut we have only some ten years of data and this is
not enough to build a decent model’

Co-integration is being used by 19% (7/36) of the respondents. Co-integration models
the short-term dynamics (direction) and long-run equilibrium (fair value). A perceived
plus of co-integration is the transparency that it provides: the models are based on
economic and finance theory and calculated from economic data.
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1.6 USING HIGH-FREQUENCY DATA

High frequency data (HFD) are being used at only 14% of the responding firms (5/36), to
identify profit opportunities and improve forecasts. Another three plan to use HFD within
the next 12 months. A source at a large investment firm that is using HFD said, “We use
high-frequency data in event studies. The objective is to gain an understanding of the
mechanisms of the market. A source which is planning to use high-frequency data in the
coming 12 months remarked, “We believe that high-frequency data will allow us to
evaluate exactly when it is optimal to trade, for example at close, VWAP, or midday, and to
monitor potential market impact of our trades and potential front-running of our
brokers” (VWAP stands for volume-weighted average price.)

Though it is believed that HFD could be useful, cost of data is the blocking factor.
Survey participants voiced concerns that the cost of data will hamper the development of
models in the future. One source observes, “The quasi monopolistic positioning of data
vendors allows them to charge prices that are incompatible with the revenues structure of
all but the biggest firms. Other reasons cited by the sources not using HFD are a
(perceived) unattractive noise-to-signal ratio and resistance to HFD-based strategies on
the part of institutional investors.

1.7 MEASURING RISK

Risk is being measured at all the responding firms. Risk measures most widely used among
participants include variance (97% or 35/36), Value at Risk (VaR) (67% or 24/36) and
downside risk measures (39% or 14/36), Conditional VaR (CVaR), and extreme value
theory (EVT) are used at 4 (11%) and 2 (6%) firms, respectively. The considerable use of
asymmetric risk measures such as downside risk can be ascribed to the growing popularity

of financial products with guaranteed returns. Many firms compute several risk measures:
the challenge here is to merge the different risk views into a coherent risk assessment.
Figure 1.5 represents the distribution of risk measures used by participants.

It is also interesting to note that among survey participants, there is a heightened
attention to model risk. Model averaging and shrinkage techniques are being used by one-
fourth (9/36) of the survey participants. The recent take-up of these techniques is related
to the fact that most firms are now using multiple models to forecast returns, a trend that
is up compared to two or three years ago. Other techniques to mitigate model risk, such as

Risk Measures Being Used
EVT_:| 2
Downside Risk-:I 14
CVaR-:| 4

VaR | 24

Variance 135

FIGURE 1.5 Distribution of risk measures adopted by participants.
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random coefficient models, are not used much in the industry. In dealing with model risk
we must distinguish between averaging model results and averaging models themselves.
The latter technique, embodied in random coefficient models, is more difficult and
requires more data.

1.8 OPTIMIZATION

Another area where much has changed recently is optimization. According to sources,

optimization is now performed at 92% (33/36) of the participating firms, albeit in some
cases only rarely. Mean-variance is the most widely used technique among survey
participants: it is being used by 83% (30/36) of the respondents. It is followed by utility
optimization (42% or 15/36) and, more recently, robust optimization (25% or 9/36).
Only one firm mentioned that it is using stochastic optimization. Figure 1.6 represents the
distribution of optimization methods.

The wider use of optimization is a significant development compared to just a few years
ago when many sources reported that they eschewed optimization: the difficulty of
identifying the forecasting error was behind the then widely held opinion that
optimization techniques were too brittle and prone to ‘error maximization.” The greater
use of optimization is due to advances in large-scale optimization coupled with the ability
to include constraints and robust methods for estimation and optimization itself. It is
significant: portfolio formation strategies rely on optimization. With optimization now
feasible, the door is open to a fully automated investment process. In this context, it is
noteworthy that 55% of the survey respondents report that at least a portion of their
equity assets is being managed by a fully automated process.

Optimization is the engineering part of portfolio construction. Most portfolio
construction problems can be cast in an optimization framework, where optimization
is applied to obtain the desired optimal risk-return profile. Optimization is the technology
behind the current offering of products with specially engineered returns, such as
guaranteed returns. However, the offering of products with particular risk-return profiles
requires optimization methodologies that go well beyond the classical mean-variance
optimization. In particular one must be able to (1) work with real-world utility functions
and (2) apply constraints to the optimization process.

Optimization Methods in Use

Stochastic Opt [ 1

Robust Opt 9
Utility Opt |15

Mean-Var 130

None 13

FIGURE 1.6 Distribution of optimization methods adopted by participants.
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1.9  CHALLENGES

The growing diffusion of models is not without challenges. Survey participants noted
three:

e increasing difficulty in differentiating products;
e difficulty in marketing quant funds, especially to non-institutional investors; and
e performance decay.

Quantitative equity management has now become so widespread that a source at a
long-established quantitative investment firm remarked, ‘There is now a lot of
competition from new firms entering the space [of quantitative investment management].
The challenge is to continue to distinguish ourselves from competition in the minds of
clients’

With many quantitative funds based on the same methodologies and using the same
data, the risk is to construct products with the same risk-return profile. The head of active
equities at a large quantitative firm with more than a decade of experience in quantitative
management remarked, ‘Everyone is using the same data and reading the same articles: it’s
tough to differentiate’

While sources report that client demand is behind the growth of (new) pure
quantitative funds, some mentioned that quantitative funds might be something of a
hard sell. A source at a medium-sized asset management firm servicing both institutional
clients and high net worth individuals said, “Though clearly the trend towards quantitative
funds is up, quant approaches remain difficult to sell to private clients: they remain too
complex to explain, there are too few stories to tell, and they often have low alpha. Private
clients do not care about high information ratios.

Markets are also affecting the performance of quantitative strategies. A recently released
report from the Bank for International Settlements (2006) noted that this is a period of
historically low volatility. What is exceptional about this period, observes the report, is the
simultaneous drop in volatility in all variables: stock returns, bond spread, rates and so on.
While the role of models in reducing volatility is unclear, what is clear is that models
produce a rather uniform behaviour. Quantitative funds try to differentiate themselves
either finding new unexploited sources of return forecastability, for example novel ways of
looking at financial statements, or using optimization creatively to engineer special risk-
return profiles.

A potentially more serious problem is performance decay. Survey participants remarked
that model performance was not so stable. Firms are tackling these problems in two ways.
First, they are protecting themselves from model breakdown with model risk mitigation
techniques, namely by averaging results obtained with different models. It is unlikely that
all models breakdown in the same way in the same moment, so that averaging with
different models allows managers to diversify model risk. Second, there is an on-going
quest for new factors, new predictors, and new aggregations of factors and predictors. In
the long run, however, something more substantial might be required: this is the subject of
the next and final section.
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1.10  LOOKING AHEAD

Looking ahead, we can see a number of additional challenges. Robust optimization, robust

estimation and the integration of the two are probably on the research agenda of many
firms. As asset management firms strive to propose innovative products, robust and
flexible optimization methods will be high on the R & D agenda. In addition, as asset
management firms try to offer investment strategies to meet a stream of liabilities (i.e.,
measured against liability benchmarking), multistage stochastic optimization methods
will become a priority for firms wanting to compete in this arena. Pan et al. (2006) call
‘Intelligent Finance’ the new field of theoretical finance at the confluence of different
scientific disciplines. According to the authors, the theoretical framework of intelligent
finance consists of four major components: financial information fusion, multilevel
stochastic dynamic process models, active portfolio and total risk management, and
financial strategic analysis.

The future role of high-frequency data is not yet clear. HFD are being used (1) to
improve on model quality thanks to the 2000-fold increase in sample size they offer with
respect to daily data and (2) to find intraday profit opportunities. The ability to improve
on model quality thanks to HFD is the subject of research. It is already known that
quantities such as volatility can be measured with higher precision using HFD. Using
HFD, volatility ceases to be a hidden variable and becomes the measurable realized
volatility, introduced by Torbin et al. (2003). If, and how, this increased accuracy impacts
models whose time horizon is in the order of weeks or months is a subject not entirely
explored. It might be that in modelling HFD one captures short-term effects that
disappear at longer time horizons.

Regardless of the frequency of data sampling, modellers have to face the problem of
performance decay that is the consequence of a wider use of models. Classical financial
theory assumes that agents are perfect forecasters in the sense that they know the
stochastic processes of prices and returns. Agents do not make systematic predictable
mistakes: their action keeps the market efficient. This is the basic idea underlying rational
expectations and the intertemporal models of Merton.

Practitioners (and now also academics) have relaxed the hypothesis of the universal
validity of market efficiency; indeed, practitioners have always being looking for asset
mispricings that could produce alpha. As we have seen, it is widely believed that
mispricings are due to behavioural phenomena, such as belief persistence. This behaviour
creates biases in agent evaluations—biases that models attempt to exploit in applications
such as momentum strategies.

However, the action of models tends to destroy the same sources of profit that they are
trying to exploit. This fact receives attention in applications such as measuring the impact
of trades. In almost all current implementations, measuring the impact of trades means
measuring the speed at which models constrain markets to return to an unprofitable
efficiency. To our knowledge, no market impact model attempts to measure the opposite
effect, that is, the eventual momentum induced by a trade.

It is reasonable to assume that the diffusion of models will reduce the mispricings due
to behavioural phenomena. However, one might reasonably ask whether the action of
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models will ultimately make markets more efficient, destroying any residual profitability
in excess of market returns, or if the action of models will create new opportunities that
can be exploited by other models, eventually by a new generation of models based on an
accurate analysis of model biases. It is far from being obvious that markets populated by
agents embodied in mathematical models will move toward efficiency. In fact, models
might create biases of their own. For example, momentum strategies (buy winners, sell
losers) are a catalyst for increased momentum, farther increasing the price of winners and
depressing the price of losers.

This subject has received much attention in the past as researchers studied the
behaviour of markets populated by boundedly rational agents. While it is basically
impossible, or at least impractical, to code the behaviour of human agents, models belong
to a number of well-defined categories that process past data to form forecasts. Studies,
based either on theory or on simulation, have attempted to analyse the behaviour of
markets populated by agents that have bounded rationality, that is, filter past data to form
forecasts.” One challenge going forward will be to understand what type of inefficiencies
are produced by markets populated by automatic decision-makers whose decisions are
based on past data. It is foreseeable that simulation and artificial markets will play a
greater role as discovery devices.
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2.1 INTRODUCTION

D 1 ANAGERS LIMIT THE RISKINESS of their traders by imposing limits on the risk of their
portfolios. Lately, the Value-at-Risk (VaR) risk measure has become a tool used to

accomplish this purpose. The increased popularity of this risk measure is due to the fact
that VaR is easily understood. It is the maximum loss of a portfolio over a given horizon,
at a given confidence level. The Basle Committee on Banking Supervision requires U.S.
banks to use VaR in determining the minimum capital required for their trading
portfolios.

In the following we give a brief description of the existing literature. Basak and Shapiro
(2001) analyse the optimal dynamic portfolio and wealth-consumption policies of utility
maximizing investors who must manage risk exposure using VaR. They find that VaR risk

17
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managers pick a larger exposure to risky assets than non-risk managers, and consequently
incur larger losses when losses occur. In order to fix this deficiency they choose another
risk measure based on the risk-neutral expectation of a loss. They call this risk measure
Limited Expected Loss (LEL). One drawback of their model is that the portfolios VaR is
never re-evaluated after the initial date, making the problem a static one. In a similar
setup, Berkelaar et al. (2002) show that, in equilibrium, VaR reduces market volatility, but
in some cases raises the probability of extreme losses. Emmer et al. (2001) consider a
dynamic model with Capital-at-Risk (a version of VaR) limits. However, they assume that
portfolio proportions are held fixed during the whole investment horizon and thus the
problem becomes a static one as well.

Cuoco et al. (2001) develop a more realistic dynamically consistent model of the
optimal behaviour of a trader subject to risk constraints. They assume that the risk of the
trading portfolio is re-evaluated dynamically by using the conditioning information, and
hence the trader must satisty the risk limit continuously. Another assumption they make is
that when assessing the risk of a portfolio, the proportions of different assets held in the
portfolio are kept unchanged. Besides the VaR risk measure, they consider a coherent risk
measure Tail Value at Risk (TVaR), and establish that it is possible to identify a dynamic
VaR risk limit equivalent to a dynamic TVaR limit. Another of their findings is that the
risk exposure of a trader subject to VaR and TVaR limits is always lower than that of an
unconstrained trader.

Pirvu (2005) started with the model of Cuoco et al. (2001). We find the optimal growth
portfolio subject to these risk measures. The main finding is that the optimal policy is a
projection of the optimal portfolio of an unconstrained log agent (the Merton proportion)
onto the constraint set with respect to the inner product induced by the volatility matrix of
the risky assets. Closed-form solutions are derived even when the constraint set depends on
the current wealth level.

Cuoco and Liu (2003) study the dynamic investment and reporting problem of a
financial institution subject to capital requirements based on self-reported VaR estimates.
They show that optimal portfolios display a local three-fund property. Leippold et al.
(2002) analyse VaR-based regulation rules and their possible distortion effects on financial
markets. In partial equilibrium the effectiveness of VaR regulation is closely linked to the
leverage effect, the tendency of volatility to increase when the prices decline.

Vidovic et al. (2003) considered a model with time-dependent parameters, but the risk
constraints were imposed in a static fashion.

Yiu (2004) looks at the optimal portfolio problem, when an economic agent is
maximizing the utility of her intertemporal consumption over a period of time under a
dynamic VaR constraint. A numerical method is proposed to solve the corresponding HJB
equation. They find that investment in risky assets is optimally reduced by the VaR
constraint. Atkinson and Papakokinou (2005) derive the solution to the optimal port-
folio and consumption subject to CaR and VaR constraints using stochastic dynamic
programming.

This paper extends Pirvu (2005) by allowing for intertemporal consumption. We address
an issue raised by Yiu (2004) and Atkinson and Papakokinou (2005) by considering a
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market with random coefficients. It was also suggested as a new research direction by
Cuoco et al. (2001). To the best of our knowledge this is the first work in portfolio choice
theory with CRRA-type preferences, time-dependent market coefficients, incomplete
financial markets, and dynamically consistent risk constraints in a Brownian motion
framework.

2.1.1  Our Contribution

We propose a new approach with the potential for numerical applications. The main idea
is to consider, on every probabilistic path, an auxiliary deterministic control problem,
which we analyse. The existence of a solution of the deterministic control problem does
not follow from classical results. We establish it and we also show that first-order necessary
conditions are also sufficient for optimality. We prove that a solution of this deterministic
control problem is the optimal portfolio policy for a given path. The advantage of our
method over classical methods is that it allows for a better numerical treatment.

The remainder of this chapter is organized as follows. Section 2.2 describes the model,
including the definition of the Value-at-Risk constraint. Section 2.3 formulates the
objective and shows the limitations of the stochastic dynamic programming approach in
this context. Section 2.4 treats the special case of logarithmic utility. The problem of
maximizing expected logarithmic utility of intertemporal consumption is solved in closed
form. This is done by reducing it to a nonlinear program, which is solved pathwise. One
finding is that, at the final time, the agent invests the least proportion of her wealth in
stocks. The optimal policy is a projection of the optimal portfolio and consumption of an
unconstrained agent onto the constraint set. Section 2.5 treats the case of power utility, in
the totally unhedgable market coefficients paradigm (see Example 2.7.4, p. 305 of Karatzas
and Shreve 1998). The stochastic control portfolio problem is transformed into a
deterministic control problem. The solution is characterized by the Pontryagin maximum
principle (first-order necessary conditions). Section 2.6 contains an appropriate discretiza-
tion of the deterministic control problem. It leads to a nonlinear program that can be
solved by standard methods. It turns out that the necessary conditions of the discretized
problem converge to the necessary conditions of the continuous problem. For numerical
experiments, one can use NPSOL, a software package for solving constrained optimization
problems that employs a sequential quadratic programming (SQP) algorithm. We end this
section with some numerical experiments. The conclusions are summarized in Section 2.7.
We conclude the paper with an appendix containing the proofs of the lemmas.

2.2 MODEL DESCRIPTION
2.2.1  The Financial Market

Our model of a financial market, based on a filtered probability space
(Q{F, }ocrcnns F, P) satistying the usual conditions, consists of m + 1 assets. The first,
{So(t)}te[ojxg, is a riskless bond with a positive interest rate r, i.e. dS,(t) = S,(¢)r dt. The
remaining m are stocks and evolve according to the following stochastic differential
equation:
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dsS,(t) = S,(t) |o;(¢)dt + Zn: o, (t)dWi(t) |, @)

0<t<oo,i=1,...,m,

where the process {W()},c.) = {(Wj(#)),1 .} icpo) 18 an n-dimensional standard

Brownian motion. Here, {ot(#)},cj0o) = {(%:(£)) i n}ticio.n) 18 an R -valued mean rate
of return process, and {a(t)},p0.) = {(oij(t))i’:ll"“ﬁ}te[o,oo) is an m x n matrix-valued

volatility process. We impose the following regularity assumptions on the coefficient
processes o) and o(f).

o All the components of the process {a(f)},(g ., are assumed positive, continuous and
{F,}-adapted.

e The matrix-valued volatility process {a(f)},. ., is assumed continuous, {F,}-
adapted and with linearly independent rows for all ¢ € [0, 00), a.s.

The last assumption precludes the existence of a redundant asset and arbitrage
opportunities. The rate of excess return is the R"-valued process {u(t)},cp o) =

ey

the case of an incomplete market if # > m (more sources of randomness than stocks).

2.2.2  Consumption, Trading Strategies and Wealth

In this model the agent is allowed to consume. The intermediate consumption process,
denoted {C(#)},cjo)> is assumed positive, and {F,}-progressively measurable. Let

{0, ) by = LD,y ()} iy be an R -valued portflio-proportion
process. At time ¢ its components are the proportions of the agent’s wealth invested in
stocks, {(#), and her consumption rate, c(t). An R"""-valued portfolio-proportion process is

called admissible if it is {F,}-progressively measurable and satisfies

e uldns [ ¢ et d
o “ (22)
—|—/ c(u)du<oo, as., Vte[0,00),

where, as usual, | -|| is the standard Euclidean norm in R". Given {({(?), ¢(?))},cjp ) is 2
portfolio-proportion process, the leftover wealth X*<(¢)(1 — Y7 {.(t)) is invested in the
riskless bond Sy(?). It may be that this quantity is negative, in which case we are borrowing
at rate r > 0. The dynamics of the wealth process {Xg’c(t)}te[opc) of an agent using the
portfolio-proportion process {({(t),c())},c(p) is given by the following stochastic
differential equation:
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dX“(t) = X() ((CT()ault) — e(8))dt + LT (1) a(r)dW (1))

( Zg )X‘C t)rdt

= X(t) (r — c(t) + " ()u(t))dt
+ M (H)a(r)dW(r)).

Let us define the p-quadratic correction to the saving rate r:

QL) =1 —c+ Tu(t) HC ol (2.3)

The above stochastic differential equation has a unique strong solution if (2.2) is satisfied
and is given by the explicit expression

Xo< (1) = exp{/ Qy (1, u))du+/OtCT(u)a(u)dW(u)}. (2.4)

The initial wealth X<(0) = X(0) takes values in (0,c0) and is exogenously given.

2.2.3  Value-at-Risk Limits

For the purposes of risk measurement, one can use an approximation of the distribution
of the investor’s wealth at a future date. A detailed explanation of why this practice should
be employed can be found on p. 8 of Cuoco et al. (2001) (see also p. 18 of Leippold et al.
(2002)). Given a fixed time instance ¢t >0, and a length 7 > 0 of the measurement
horizon [t, t + 7], the projected distribution of wealth from trading and consumption is
usually calculated under the assumptions that

1. the portfolio proportion process {({(u), c(u)) },e(s 4> as well as
2. the market coefficients {(ot(1) },c(, ;1) and {(() } (s s>

will stay constant and equal their present value throughout [¢#, ¢+ 7]. If T is small, for
example T =1 trading day, the market coefficients will not change much and this
supports assumption 2. The wealth’s dynamics equation yields the projected wealth at t+ 1:

XN (4 1) = X0 (1) exp { Q1 L(1), c(1))r
+ T (Da()(W(r+1) — W)},

whence the projected wealth loss on the time interval [t, t+ 1] is

Xo6(1) = X (4 1) = XH(0)[1 = exp { Qy(1,L(1), e(1))r
+ (e (W(t+1) = W(0)}].
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The random variable (" (t)a(t)(W(t + 1) — W(t)) is, conditionally on F,, normally
distributed with mean zero and standard deviation ||{"(t)a(t)||y/z. Let the confidence
parameter o € (0,1/2] be exogenously specified. The a-percentile of the projected loss
X5¢(t) — X%¢(t + 1) conditionally on F, is

X5(t)[1 = exp { Qy(t,L(1), (1)) + N @)K (D)o ()| v/7 Y],

where N(-) denotes the standard cumulative normal distribution function. This prompts
the Value-at-Risk (VaR) of projected loss

VaR(t,(, ¢, x) éx[l —exp {Qy(t,{, )T+ N_l(oc)HCTa(t)H\/f}r.

Let ay€(0,1) be an exogenous risk limit. The Value-at-Risk constraint is that the agent at
every time instant ¢ > 0 must choose a portfolio proportion ({(#), c(¢)) that would result
in a relative VaR of the projected loss on [#, t+ 7] less than ay. This, strictly speaking, is the
set of all admissible portfolios which, for all #+ > 0, belong to Fy(f), defined by

F,(t)= {(C,c) € R™ x [0, 00); VaR(t,G, ¢,x) < av}. (2.5)

X

The fraction VaR/x rather than VaR is employed, whence the name relative VaR. If one
imposes VaR in absolute terms, the constraint set depends on the current wealth level and
this makes the analysis more involved (see Cuoco et al. 2001; Pirvu 2005). For a given path
o let us denote ) = (w,) ., as the projection up to time ¢ of its trajectory. One can see
that, for a fixed ®’, the set }_7\/( 1) is compact and convex, being the level set of a convex,
unbounded function fy/(%, {, ¢),

Fy(1) = {m € R" x 0.00)s fy(1.£,0) < log—— }

where

2

fv(t7C7 C) - Qo(t,C,c)r—N’l(oc)HCTa(t)H\/f. (2'6)

The function fy, although quadratic in { and linear in ¢, may still fail to be convex in (, ¢)
if o >1/2, thus Fy/(f) may not be a convex set (see Figure 2.1, p. 10 of Cuoco et al. 2001).
However, the choice of o € (0, (1/2)] makes N~'(«) < 0 and this yields convexity.

2.3 OBJECTIVE

Let finite time horizon T and the discount factor & (the agent’s impatient factor) be
primitives of the model. Given X(0), the agent seeks to choose an admissible portfolio-
proportion process such that ({(t), c(t)) € F,(¢t) for all 0 <t<T, and the expected value
of her CRRA utility of intertemporal consumption and final wealth,
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/0 e U, (C(1))dt 4 e °TU,(X>(T)), (2.7)

is maximized over all admissible portfolios processes satisfying the same constraint. Here,
U, (x) = x? /p, with p <1 the coefficient of relative risk aversion (CRRA). Let us assume for
the moment that the market coefficients are constants. In this case the constraint set Fy/(t)
does not change over time and we denote it by Fy. Then one can use dynamic
programming techniques to characterize the optimal portfolio and consumption policy.

The problem is to find a solution to the HJB equation. Define the optimal value function as

V(x,t) = max E, [/t ef‘”Up(C(u))du—{- ef‘STUp(XC’C(T)) ,

(Lic)eFy,

where [E, is the conditional operator given the information known up to time t and
X%¢(t) = x. The HJB equation is

t =0
(gnseglgvl( ,x,0,¢) =0,

where

J(t,x,¢,0) 2 e 'U,(ex) + ?‘9_‘; +x(r—c+ ) Z—Z
ol v
2 ox?’

with the boundary condition V(x, T) = e °"U,(x). The value function V inherits the
concavity of the utility functions U,. Being jointly concave in (, ¢), the function J is
maximized over the set Fy at a unique point (, ¢). Moreover, this point should lie on the
boundary of Fyand one can derive first-order optimality conditions by means of Lagrange
multipliers. Together with the HJB equation this yields a highly nonlinear PDE that is hard
to solve numerically (a numerical scheme was proposed by Yiu (2004), but no convergence
result was reported). In the following we approach the portfolio optimization problem by
reducing it to a deterministic control problem. We are then able to obtain explicit solutions
for logarithmic utility.

2.4  LOGARITHMIC UTILITY

Let us consider the case where the agent is deriving utility from intermediate consumption

only. It is straightforward to extend it to also encompass the utility of the final wealth. In
light of (2.4),
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log X“(t) =log X(0) / Q, (s, (s))ds

+ /0 {M(s)a(s)dW (s).

What facilitates the analysis is the decomposition of the utility from intertemporal
consumption into a signal, a Lebesque integral and noise, which comes at an It6 integral
rate. The decomposition is additive and the expectation operator cancels the noise. Indeed,

(2.8)

/O " e log C(1)dt = /O o log (c(£) X5 (1))

1 _ e—5T

log X(0) + / ' log c(t)dt

/ / e Qy(s.£(5). e(s))dsdr
i / / (a5 dW(s)dr.

By Fubini’s theorem

[ [ eaeocnase= [ ([ emaimna)as
J

T e—ét _ 0T
——— Q(5,{(1), c(1))dt,

e

0

hence

T 1 — 6_(5T
/ e ' log C(t)dt = 5 log X(0)
0

+ /OTef” (logc(t) +%(1 - e5<Tf>)Q0(t,g(t),c(t))>dt (2.9)

v = [ esawar

The linearly independent rows assumption on the matrix-valued volatility process yields
the existence of the inverse (¢(¢)a”(¢))”" and so equation

a(t)a’ (1) () = u(t) (2.10)

uniquely defines the stochastic process {{y (1) },cj0.0) = {(0(2) (O'T(t))flu(t)}[doym), called
the Merton-ratio process. It has the property that it maximizes (in the absence of portfolio
constraints), the rate of growth, and the log-optimizing investor would invest exactly using
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the components of {,(t) as portfolios proportions (see Section 3.10 of Karatzas and Shreve
1991). By (2.10)

[Eh(Da(0)|'= Cy(u(t) = 1" () (a(t)a™ (£) " (). (2.11)

The following integrability assumption is rather technical, but it guarantees that a local
martingale (It6 integral) is a (true) martingale (see p. 130 of Karatzas and Shreve 1991).
Let us assume that

[E/O 12 (W) du< oo. (2.12)

This requirement, although imposed on the market coefficients (see Equation (2.11)), is
also inherited for all portfolios satisfying the Value-at-Risk constraint.

Lemma 2.1: For every ({(t),c(t)) € F,(t) the process [; (" (s)a(s) dW(s), te[0,T], is a
martingale, hence E [ (" (s)a(s) dW(s) =

o

Proof: See Appendix 2.A. |

In light of this lemma, the expectation of the noise vanishes, i.e.

¢ [ [ esawsar-o,

after interchanging the order of integration. Thus, taking expectation in the additive
utility decomposition (2.9),

—oT

[E/T e *'log C(t)dt = Lo log X(0)
+ [E/T e <log c(t) +é(1 — 1) (2.13)
X Qo(t,C(t),c(t))>dt.

Therefore, to maximize

T
E / e *'log C(t)dt
0

over the constraint set, it suffices to maximize

(60,6 2 logc(t) +é(1 — TYQ (8, (1), (1)) (2.14)
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pathwise over the constraint set. For a fixed path ® and a time instance t, we need to solve
(P1)  maximize g(¢,(, ¢),

1

l—av'

subject to f, (1,{,¢) = — Qy(t,{, o)t — N7 (@)[[ o (1)||V7 < log

The optimal policy for an agent maximizing her logarithmic utility of intertemporal
consumption without the risk constraint is to hold the proportion {({y,(#), ¢y (t))} .o >
where ¢, (t) =5/[1 — e *T=9] (the optimum of (P1) without the constraint is

(L (1), e (1)))-
Lemma 2.2: The solution of (P1) is given by

(t) = (LA (B(1) V 0))C (1), (2.15)

c(t) = u(t, (1A B(1))) e () Ly 0y

+(ratioe—t (2.16)
r — 10 y
T g, ) =0

where f(#) is the root of the equation

1
o8, 285 (1), u(t, 2) e (1)) = log (2.17)
1—ay,
in the variable z, with
T
u(t,z)éww(l—z). (2.18)
N='(a)

Proof: See Appendix 2.A. O

Theorem 2.3: To maximize the logarithmic utility of intertemporal consumption,

T
[E/ ¢ " log C(t) dt,
0
over processes ({(t),c(t)) € Fy(t), 0 <t<T, the optimal portfolio is {({(t), () }iepo.r)-

Proof: This is a direct consequence of (2.13) and Lemma 2.2. |
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Remark 1: Since at the final time ¢, (T) = oo and &(t) is bounded we must have
S(T) <0, so Z(T) = 0, and this means that, at the final time, the agent invests the least
proportion (in absolute terms) of her wealth in stocks. By (2.15) and (2.16) it follows that
{(t) < ¢y(t), and €(t) < ¢y (t), for any 0 <t < T, which means that the constrained agent
is consuming and investing less in the risky assets than the unconstrained agent. Let T} and
T, be two final time horizons, T; > T>. Because ¢,,(t, T,) < cu (t, T5), from Equations
(2.15) and (2.16) we conclude that f(t,T,)>p(t,T,), hence {(t,T,)>{(t,T,), and
c(t, T,) >c(t, T,). Therefore, long-term agents can afford to invest more in the stock
market and consume more than short-term agents (in terms of proportions).

2.5 NONLOGARITHMIC UTILITY

Let us recall that we want to maximize the expected CRRA utility (U,(x) = x*/p,p # 0)
from intertemporal consumption and terminal wealth,

[E/OTe—f”Up(c(t))dH Ee " U,(X>(T)), (2.19)

over portfolio-proportion processes satisfying the Value-at-Risk constraint, i.e.
({(¢),¢(t)) € Fy(t), 0 <t<T One cannot obtain an additive decomposition into signal
and noise as in the case of logarithmic utility. However, a multiplicative decomposition
can be performed. By (2.7),

X?(0)
p
Xr(0)
p

U, (X4 (1)) =

exp( [ pauts. 19 e+ [ ot ot9awes))

o ( [ (#0509 ct9) = IS s

+ OtPCT(S)G(S)dW(5)> Z%(O)NC’CU)ZCU)?

where

N2 e [ p0y(s. L.l ). (2.20)

202 (- [ P GaIas)

t (2.21)
" / pL (5)o(5)AW (),

with Q, defined in (2.3). By taking expectation,
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EU,(X*(r)) = E(N“(£)Z5(1)). (2.22)

The process N g,c( t) is the signal and Z g(t), a stochastic exponential, is the noise. Stochastic
exponentials are local martingales, but if we impose the assumption

ol [motal] e

on market coefficients (see Equation (2.11)), the process Z (1) is a (true) martingale for all
portfolio processes satisfying the constraint, as the following lemma shows.

Lemma 2.4: For every ({(t),c(t)) € F,(t) the process Z*(t), te[0, T, is a martingale,
hence EZ*(t) = 1

Proof: See Appendix 2.A. a

As for utility from intertemporal consumption,

/O e U (C(1))dt = /O e UL (XE (1) e(r)dt

_ X‘;EO) /O L (N (0 2 (1)

(2.24)

We claim that

T
[E(/ e P ()N (1)(Z5(t) — ZC(T))dt> =0
0
Indeed, by conditioning and Lemma 2.4 we obtain

E(c())N"(1)(Z5(r) — Z5(T)))

E(E[(ON(1)(2(1) = Z:(T))|F.])
E(c (N> ()E[(Z°(r) = 22(T))|F.])
0,

and Fubini’s theorem proves the claim. Hence, combined with (2.24), we obtain

[E/OT e ' U,(C(t))dt = XP;O) [E(ZC(T) /OT e‘”cP(t)NC‘(t)dt>. (2.25)

The decomposition for the total expected utility (Equations (2.22) and (2.25)) is
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[E/ e "' U,(C(1))dt 4+ Ee " U, (X>(T))

(2.26)
XP(0) .
OV 72y vie(ry),
p
where the signal Y>“(T) is given by
o« T v N I
YT = / e (N(1)dt + ¢ TN(T), (2.27)
0

with N© “(t) defined in (2.20). It appears natural at this point to maximize Y® “(T)
pathwise over the constraint set. For a given path o, the existence of an optimizer
{((t, @), &(t,®))},co7) i given by Lemma 2.5. Note that N“¢(#, ) depends on the
trajectory of ({(-, w), c(-, w)) on [0,] so one is faced with a deterministic control problem.
From now on, to keep the notation simple we drop . In the language of deterministic
control we can write (2.27) as a cost functional I [x, u] given in the form

>

e Tx, (2.28)

T
ol = (1) + [ f(ex(0)u()dr, g(x
where u = ({,c) is the control, x is the state variable, and the function

fi(t,x,u) 2 e chx (2.29)
is defined on the set
A={(t,x,u)|(t,x) € [0, T] x (0,K],u(t) € F,(t)} ¢ R"", (2.30)
The dynamics of the state variable is given by the differential equation

dx

3 =f(x(0),u(®), 0<i<T, (2.31)

with the boundary condition x(0) =1, where

e x(pr ~pet pu(n) + 22 Hc%(r)Hz)- (232)

The constraints are (¢,x(¢)) € [0, T| x (0, K] and u(t) € Fy(t). Due to the compactness of
the set Fy(1), 0 <t < T, it follows that K < c0. A pair (x, u) satisfying the above conditions is
called admissible. The problem of finding the maxima of I [x, u] within all admissible pairs
(x, u) is called the Bolza control problem. Classical existence theory for deterministic control
does not apply to the present situation and we proceed with a direct proof of existence.
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Lemma 2.5: There exists a solution {u(t) }< = {((), c(t)) }o<,<r for the Bolza control
problem defined above.

Proof: See Appendix 2.A. O

An optimal solution {u(t)},.,<r ={((1), ¢(t)) }o<i<r is characterized by a system of
forward backward equations (also known as the Pontryagin maximum principle). Let
% = (Ay, 4,) be the adjoint variable and

H(t,%,u,2) = A fi (£, %, u) + 4, f (¢, x, 1)

the Hamiltonian function. The necessary conditions for the Bolza control problem (the
Pontryagin maximum principle) can be found in Cesari (1983) (Theorem 2.5.1.i). In
general, they are not sufficient for optimality. We prove that, in our context, the necessary
conditions are also sufficient, as the following lemma shows.

Lemma 2.6: A pair x(t), u(t) = ({(t),c(t)) € Fy(t), 0 <t <T, is optimal, i.e. it gives the
maximum for the functional I [x, u), if and only if there is an absolutely continuous non-zero
vector function of Lagrange multipliers .. = (Ay, 4,), 0 <t < T, with Ay a constant, hy >0, such

that the function M(t) = H(t, %(t), #(t), A(t)) is absolutely continuous and one has

1. adjoint equations:

o H,(t,%(t), u(t), A(t)) a.e.; (2.33)
% = —H,(t,x(t), u(t), A(t)) a.e.; (2.34)

2. maximum condition:

u(t) € argmax, . H(t,%(t),v, (1)) a.e; (2.35)

3. transversality:
(T) = 28" (x(T)). (2.36)
Proof: See Appendix 2.A. O

The following technical requirement on the market coefficients is sufficient to make
{(¢(t),e(t)) }1co,r) an optimal portfolio process for maximizing the CRRA utility under
the Value-at-Risk constraint, as Theorem 2.7 shows. We assume that market coefficients are
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totally unhedgeble, i.e. the mean rate of return process {o(t)},c, | and the matrix-valued
volatility process {0 ()}, 7| are adapted to filtration {F, },_,, generated by a Brownian
motion independent of the Brownian motion driving the stocks (see Equation (2.1)).

Theorem 2.7: A solution for maximizing

[E/OTe‘”UP(C(t))dtJr Ee"U,(X(T))

over processes ({(t), c(t)) € Ey(t),0 <t <T, isa process {({(t), c(t)) }iejo,r)> Which, on every
w, solves (2.33), (2.34), (2.35) and (2.36).

Proof: Lemma 2.5 gives the existence, on every o, of {({(t),e(t ))}icpp.rp optimal for the
Bolza control problem, i.e. it maximizes Y*“(T) defined in (2.27) over Fiy(f), 0 <t<T.
According to Lemma 2.5 it should solve (2.33), (2.34), (2.35) and (2.36) pathwise and these
equations are sufficient for optimality. Let ({(¢), c(t)) € F,,(t) be another control. Let
Z:(t), Z5(t) and Y*°(T), Y5¢(T) be as in (2.21) and (2.27). The processes {Z°(£)}o<, s
{Z(t)} o<,y are martingales by Lemma 2.4. Moreover, the independence of {F,},_,...
and {F,},-,-.. implies o

E[Z5(T)|F(T)] = [E[Zi(T)\ﬁ(T)} =1

Lemma 2.6 shows that Yo%(T') is measurable with respect to (T ). Therefore, by (2.26)
and iterated conditioning

[E/ e U, (C(1))dt + Ee U (X“(T))
z%(o)[E(Z*(T)Y“(T))
_ XPIEO)[E([E[ZS(T)YZ’C(T) | F(T)])
_ X”ISO)[E(W(T)[E[Z%T) | F(T)))
_ X0 EYS(T)
P

Since ({(t), ¢(t)) maximizes Y*¢(T) over the constraint set,
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[E/OTe‘”UP(C(t))dtJr Ee*"U,(X"(T))

E(Z*(T)Y*(T))

E(Z*(T)Y"(T))

Remark 1: Let the interest rate and the discount factor be stochastic processes. In the
formulae of fy/(t, {, ¢) and Q,(t, {, ¢) the constant ris replaced by r(t). All the results remain
true if we assume that {r(¢)},.,.. and {6(t)},.,... are non-negative uniformly bounded
continuous processes adapted to F (t). We have considered the case of Value-at-Risk (VaR)
in defining the risk constraint. The same methodology applies if one considers other
measures of risk, as long as the corresponding constraint set is convex and compact.

2.6 NUMERICAL SOLUTION

Theorem 2.7 shows that the solution for every path of a Bolza control problem yields the
optimal portfolio proportion for a VaR-constrained agent. The solution exists and is
characterized by a system of forward backward equations that are also sufficient for
optimality. In this section, by an appropriate discretization of control and state variables,

the Bolza control problem is transformed into a finite-dimensional nonlinear program that
can be solved by standard sequential quadratic programming (SQP) methods. The first step
is to transform the Bolza problem into a Mayer control problem by introducing a new state
variable x°, with the boundary condition x°(0) = 0 and an additional differential equation,

O (e x(0), u(t)).

The cost functional is then I[x,u] = x°(T)+ g(x(T)) (see Equation (2.28)). Let us
denote as y = (x°, x) the vector of state variables that satisfy the differential equation

d)/_ f X u
a_f(tv (t)’ (t))a



PORTFOLIO OPTIMIZATION UNDER THE VALUE-AT-RISK CONSTRAINT m 33

with f = ( f,, f) (see Equations (2.29) and (2.31)). The following discretization scheme is
taken from Stryk (1993). The novel feature here is that the necessary first-order conditions
of the discretized problem converge to the necessary first-order conditions of the
continuous problem.

A partition of the time interval

0=t<t,<---<ty=T

is chosen. The parameters Y of the nonlinear program are the values of the control and
state variables at the grod points ¢, j = 1,..., N, and the final time ty = T,

Y= (u(t), .. u(ty),y(8), - y(ty), ty) € RO

The controls are chosen as piecewise linear interpolating functions between u(t;) and

u(t,), for t; <t <t

! (”(tjﬂ) - “(tj))

The states are chosen as continuously differentiable functions and piecewise cubic
Hermite polynomials between y(#;) and y(t,,), with y, (s) = f(x(s), u(s),s) at
s=1t,t

o T
> AN
ya (t) = dkj< ]) ’
. ; by (2.37)
tj§t<tj+1’] 1’ aN_la
dj = y(t), df =hf, (2.38)
dzj = _3)’(1}) - 2hj]§ + 3)’(tj+1) - hjﬁ+1> (2.39)
dsj = 2)’(tj+1) + hjﬁ - 2)’(tj+1) + hjﬁ+1> (2.40)
where

~ A = é

f]_' = f(x(t])a u(tj)v t])> hj tj+l - t]

The reader can learn more about this in common textbooks of Numerical Analysis such
as, Stoer and Bulrisch (1983). This way of discretizing has two advantages. The number of
parameters of the nonlinear program is reduced because y(t,),j=1,...,N, are not
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parameters and the number of constraints is reduced because the constraints

Jap(8) = f(x(t),u(t), £), j=1,..., N, are already fulfilled.

We impose the Value-at-Risk constraint (see Equation (2.6)) at the grid points

fu(t, u(t)) < log ! , u=({¢),j=1,...,N. (2.41)
1—a,

Another constraint imposed is the so-called collocation constraint

or componentwise

f(x(8), u(8), ) = X, (), j=1,...,N, (2.42)

and

f(x(fj)’”(%)’fj) :xapp(i})7 j=1...,N, (2.43)

where ZJ = (t + t,,)/2, and the boundary condition y(0) = (0,1). The nonlinear program is
to maximize I [yy, tn] subject to constraints (2.41), (2.42) and (2.43). It can be solved using
NPSOL, a set of Fortran subroutines developed by Gill et al. (1986). NPSOL uses a sequential
quadratic programming (SQP) algorithm, in which the search direction is the solution of a
quadratic programming (QP) subproblem. The Lagrangian of the nonlinear program is

LY. 9.0) = Iy 1 +Zoj< (1 u(t) ~ log-— )

where v = (v,,...,0y) € RN, ¢° = (¢?,... ,Agb(])\,_l) € §N‘1 and gblA: (P1,- o br_y) €
RN"1 are the shadow prices. Let us denote {(#,) = {;, ¢(#,) = ¢;and x(t,) = x;. A solution of the
nonlinear program satisfies the necessary first-order conditions of Karush, Kuhn and Tucker

oL oL oL

e Y - Y% 07
o, ac.

ox, (2.44)
i=1,...,N.

The necessary first-order optimality cAonditions of the continuous problem are obtained in
the limit from (2.44) as follows. Let h= max{h; = t,,, — t;: j=1,..., N — 1} be thenorm
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of the partition. Letting h —0, after some calculations (see p. 5 of Stryk 1993) it is shown that,
att =1,

@—>§¢} of (x(t), u(t), t;) +§¢? Ofo(x(t,), u(t), ;)
a2 aC 2 aC
Ofy(u(t), ;)

+UiT;
oL 3 ,0f(x(t), u(t), ;) 3 o0f(x(t), u(t),t,)
8_ci—>£¢i Oc +E¢i oc

+u, Ofy (u(t), ;) ’

c

oL 3003 G O0f(x(t),u(t),t) 3 o0f(x(t),u(t),t)
o 20 TR0 e 0T e

1

Therefore, 0L/0(; = 0 and OL/Jc; = 0 converge to an equation equivalent to the maximum
condition (2.35), and OL/Ox; =0 converges to the adjoint Equation (2.34). This
discretization scheme gives good estimates for the adjoint variables.

In the following we perform some numerical experiments. We consider one stock
following a geometric Brownian motion with drift «; = 0.12 and volatility ¢ = 0.2. The
choices for the horizon t and the confidence level o are largely arbitrary, although
the Basle Committee proposals of April 1995 prescribed that VaR computations for the
purpose of assessing bank capital requirements should be based on a uniform horizon of 10
trading days (two calendar weeks) and a 99% confidence level (Jorion 1997). We take
7 = 1/25, & = 0.01, the interest rate r = 0.05 and the discount factor & = 0.1 (Figure 2.1).

2.7 CONCLUDING REMARKS

Let us summarize the results. This chapter examines in a stochastic paradigm the portfolio
choice problem under a risk constraint, which is applied dynamically consistent at every
time instant. The classical stochastic control methods, Dynamic Programming and the
Martingale Method, are not very effective in this context. The latter works if the risk
constraint is imposed in a static way. The Dynamic Programming approach (as shown in
Section 2.3) leads to a highly nonlinear PDE. If the agent has CRRA preferences we
propose a new method that relies on a decomposition of the utility into signal and noise.
We neglect the noise (the expectation operator takes care of this) and this leads to a
deterministic control problem on every path. We have reported explicit analytical
solutions for the case of logarithmic utility even if the market coefficients are random

processes. In this case, on every path the deterministic control problem is just a time-
dependent constrained nonlinear program. The explicit solution shows that constrained
agents consume and invest less in stocks than unconstrained agents, and long-term agents
invest and consume more than short-term agents. These effects support the use of
dynamically consistent risk constraints. If the utility is non-logarithmic CRRA we have to
analyse a Bolza control problem on every path. We still allow the market coefficients to be
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FIGURE 2.1 Asset allocation with and without VaR constraints, for the utility maximization of intertemporal
consumption and final wealth. The graphs corresponds to different values of CRRA, p:p = —1.5 (Graph 1),
p= —1(Graph2), p= —0.5(Graph 3) and p = 0.5 (Graph 4). The x axis represents the time and the y axis the
proportion of wealth invested in stocks. Note that the Merton line and, as time goes by, the portfolio value,
increase, hence the VaR constraint becomes binding and reduces the investment in the risky asset. At the final
time the agent is investing the least in stocks (in terms of proportions). When p increases, i.e. when the agent
becomes less risk-averse, the effect of the VaR constraint becomes more significant.

random, but independent of the Brownian motion driving the stocks. Theorem 2.7 shows
that a solution of the deterministic control problem is an optimal policy. Although the
existence of an optimal policy is known if the constraint set is convex (Cvitanic and
Karatzas 1992), it does not necessarily yield the existence for the Bolza problem. Standard
existence theorems do not apply, but we manage to give a direct proof of existence in
Lemma 2.5. The solution of the Bolza problem must solve a system of forward backward
equations (the first-order necessary conditions) and this is also sufficient for optimality. In
Section 2.6 we suggest a numerical treatment of the Bolza problem. The reduction of the
stochastic control problem to a deterministic problem relies on the structure of the CRRA
preferences. It would be interesting to extend this to other classes of preferences, because it
turns out to be very effective for the case of dynamically consistent risk constraints.
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APPENDIX 2.A

Proof (proof of Lemma 2.1): In order to prove the martingale property of
[5 (" (s)a(s)dW (s) it suffices to show that

[E/O 17 () ()| dus < o, (A2.1)
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Note that

[T = (1T ()a()a" (1) (1)]]

(A2.2)
< "o - HCM a (1)
For ({(t),c(t)) € F,(t), we have
(r—c()—i—C( ——Hc t)H2>r
@I (e (r)IVE
> log(1 — ay).
This combined with (A2.2) yields
17 ()a(1)]] < & V|G (Do ()], (A2.3)

for some positive constant k;, where, as usual, a V b = max(a, b). In light of assumption
(2.12) the inequality (A2.1) follows. a

Proof (proof of Lemma 2.2): The proof relies on the method of Lagrange multipliers. The
concave function

g(t,(,¢) = log ¢ —l—%(l — e‘fw_t))Qo(t, {c) (A2.4)

is maximized over ({,c) € R™ x [0,00) by (Cy (1), e (), where
(D)= (a(0)a™ (1) u(t) and ¢, (t) =9/[1— e °(T-9)]. If this point is in the Value-at-
Risk constraint set, then is the optimal solution of (P 1). Otherwise, the concave function g
is maximized over the compact, convex set Fy(t) at a unique point ({(t), ¢(t)); moreover,
this point must be on the boundary of Fi(t). Hence, it solves the optimization problem

(P2) maximize g(t,{, c),

subject 10 f,(1,£,€) 2 = Q. £, )7 = N ()| o(1) |7 = log—

_av

The function fy is not differentiable when C is the zero vector. Let us assume that the
optimal {(¢) is not the zero vector. According to the Lagrange multiplier theorem, either
V£, (t,((t),c(t)) is the zero vector or there is a positive 4 such that

Vg(t,{(1), €(t)) = AVf, (1, (1), (1)) (A2.5)

The first case cannot occur and computations show that { (t)is parallel to Cp(#). This implies
that the optimal solution ({(t), ¢(t)) = (4,{,,(t), A,¢y(1)), with A, 2, the solution of
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(P3) maximize (1, 4,),
1
subject to f,, (¢, 4,{y, (1), A,¢, (1)) = log ,
where
A
12y, 2y) = g(t, 2,80 (1), Ayeps (1)) (A2.6)

The concave function [ is maximized over R* at (1,1). We know that this point is not in the
constraint set (this is because we have assumed ({,,(t), ¢, (t)) ¢ F, (t)), hence 1, <1, 1, < 1
and either Vf,, (t, ,{,,(t), 4,6y (£)) = 00r VI(4, 4y) = yVf, (£, 2,83 (1), Aycps (1)), for some
positive Lagrange multiplier . The first case cannot occur and by eliminating y we obtain
2, = u(t,2,), where u was defined in (2.18). Henceforth, A, is the unique root of the
equation

1

1—ay,

fV(tv ZgM(t)vu(tﬂ Z)CM(t)) = log (A2'7)

in the variable z. It may be the case that the root of this equation is negative, in which case

(Z(t)&(f)):(omﬂJr%lOg 1 >,

1—ay
where 0,,, is the m-dimensional vector of zeros.

Proof (proof of Lemma 2.4): Assumption (2.23) combined with (A2.3) and the Novikov
condition (see Karatzas and Shreve 1991, p. 199, Corollary 5.13) make the process Z(t) a
martingale. O

Proof (proof of Lemma 2.5): According to (2.31) and (2.32),
w(0) = exp [ 1.l L), (A28)
with
filt.c.O) = pr— pe+ pl u(t) +@ 1a(o)]]"
Let us recall that, for u(t) = ({(¢),c(t)) € Fy(¢),

(MOLO] B IHOLO

, (A2.9)
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hence || (t)a(t)|| is uniformly bounded on [0, T] due to the continuity of market
coefficients (see Equation (2.11)). Moreover, one can conclude that ||{(#)|] < K, and
¢(t) < K, for some constant K;. Gronwall’s lemma gives x(¢) < K, and |x(¢)] < K, on
[0, T] (here, x(t)=dx/dt). Let (x_mu_n) be a maximizing sequence, i.e.
I[x,, u,]— sup I [x, u]. The above arguments show that the sequence x,, is uniformly
bounded and equicontinuous, thus by the Arzela—Ascoli theorem it converges uniformly
to some function X. According to Komlos’ Lemma (see Lemma Al.1 of Delbaen and
Schachermayer 1994) we can find some sequences of convex combinations

{, €conv((,,(,.,,) and ¢, € conv(c,, ¢,4;,) that converge a.e. to some measurable

functions { and ¢. Moreover, u(t) = ({(t),c(t)) € Fy(t), 0 <t<T, due to the convexity
and compactness of the set Fi (). Let us denote X, as the sequence of state variables
corresponding to these controls, i.e.

w0 =eo( [ fa.loe), o<t

(see Equation (A2.8)). Let us assume p > 0; the case p <0 can be treated similarly. Due to
the concavity of the function f;, InX,(t) > conv(Inx,(¢),Inx,,,(),...), where the convex
combination is that defining {,, ¢,. If 7, = exp(conv(Inx,(t),Inx,, ,(t),...)), thenx, () >
y,(t)and y, (t) —x(t),1.e. y,(t) — x,(t) — 0 for t€[0,T]. By the dominated convergence
theorem X, (t)—x(t), 0 <t < T, a.e., where

() = esp [ At lnas), o<i<T

From Fatou’s lemma, the dominated convergence theorem and the concavity of the
function f, in u (see Equation (2.29)), it follows that

I[x,u] > limsupI[x,, u,] > limsupI[y,, ii,]

=limsup I [x,,u,] = supI [x, u].

Proof (proof of Lemma 2.6): By Theorem 5.1.i of Cesari (1983), {(Z’(t),f(t))}te[o_ﬂ
should solve (2.33), (2.34), (2.35) and (2.36). For sufficiency, let us consider 4, = 1, and
define the maximized Hamiltonian

H*(t,x,1) 2 max H(t,x,v, 7).

veF, (1)

Let (x(#), u(t)) be another admissible pair. Since the Hamiltonian is linear in x, by the
adjoint equation for 4,and the maximum condition
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(1)) — HY (£, %, 4(1)) (A2.10)
_ (t

one has

+A‘%Uﬂﬂﬂ—kUD&—g@Uﬁ)+ﬂMTﬁ.

The inequality (A2.10) and the transversality condition (2.36) yield

T

1[5 8 — I[x,u] > / 26 (x(8) — %(1))dt

0

= 4(T)(X(T) = x(T)) = g(x(T)) + g(x(T))
=g (x(T))(x(T) = x(T)) = g(x(T)) + g(x(T))
= 8(x(T)) — g(x(T)) — g(x(T)) + g(x(T)) = 0

proving the optimality of (x(t), u(t)).
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3.1 INTRODUCTION

HIS PAPER FINDS THE OPTIMAL consumption and dynamic asset allocation of stocks,
bonds and derivatives for long-term investors in contrast to the standard optimal

dynamic asset allocation strategies involving only stocks and bonds. The chapter explores
and attempts to understand the effect of introducing a non-redundant derivative security
on an already-existing stock—in particular, on the volatility of stock returns. Instead of a
single-period (two-date) result, we also delve into the optimal intertemporal consumption
as well as dynamic asset allocation strategies under a stochastic investment opportunity set.
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We show that these long-term investors have access to an environment where
investment opportunities vary over time with stochastic volatility. There is abundant
empirical evidence that the conditional variance of stock returns is not constant over time.
Merton (1969, 1971, 1973a) shows that if investment opportunities vary over time, then
multi-period investors will have a very different optimal consumption rule and portfolio
strategies than those of single-period investors. If multi-period investors hope to maintain
a stable long-run consumption stream, then they may seek to hedge their exposures to
future shifts in the time-varying investment opportunity set, and this creates extra
intertemporal hedging demands for financial assets.

Following Merton’s (1969, 1971) introduction of the standard intertemporal consump-
tion and investment model, it has been studied extensively in the finance literature and has
become a classical problem in financial economics. The literature on the broad set of issues
covering intertemporal consumption and investment or optimal dynamic asset allocation
strategies restricts investors’ access to bond and stock markets only, while excluding the
derivatives market. Haugh and Lo (2001), Liu and Pan (2003) and Ilhan et al. (2005) remove
this restriction and introduce derivative securities in the financial market. Cont
et al. (2005) consider the problem of hedging a contingent claim in a market where prices
of traded assets can undergo jumps, by trading in the underlying asset and a set of traded
options, and they work in a continuous time setting. However, they give an expression for
the hedging strategy which minimizes the variance of the hedging error, while our model
provides an investor who aims to maximize expected utility and gives an expression for the
dynamic asset allocation strategies. They take a look at optimal dynamic or buy-and-hold
portfolio strategies for an investor who can control not just the holding of stocks and bonds,
but also derivatives. Our work is related to their research and makes several extensions.

The classical option pricing framework of Black and Scholes (1973) and Merton (1973)
is based on a replication argument in a continuous trading model with no transaction
costs. The presence of transaction costs, however, invalidates the Black—Scholes arbitrage
argument for option pricing, since continuous revision requires that the portfolio be
rebalanced infinitely, implying infinite transaction costs (Chalasani and Jha 2001). As a
result, some of the recent literature has begun to work on transactions costs. However, this
is beyond the scope of this chapter which follows Black and Scholes (1973) and Merton
(1973) in assuming zero transaction costs for stocks and options trading.

First, Cont et al. (2005) solve the optimal investment or asset allocation problem of a
representative investor whose investment opportunity includes not only the usual riskless
bond and risky stock, but also derivatives on the stock. In their model, investors are
assumed to have a specified utility defined over wealth at a single terminal date. This
chapter extends this setting to consider a model in which a long-term investor chooses
consumption as well as an optimal portfolio including the riskless bond, risky stock and
derivatives on the stock. We then maximize a utility function defined over intermediate
consumption rather than terminal wealth.

Abstraction from the choice of consumption over time implies that investors value only
wealth at a single terminal date, no consumption takes place before the terminal date, and
all portfolio returns are reinvested until that date. The assumption that investors derive
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utility only from terminal wealth and not from intermediate consumption simplifies the
analysis through avoidance of an additional source of non-linearity in the differential
equation. However, many long-term investors seek a stable consumption path over a long
horizon. This simplification makes it hard to apply the above-mentioned papers’ results to
the realistic problem facing an investor saving for the future. Very often, intermediate
consumption can be used as an indicator of marginal utility, especially in the asset pricing
related literature (Campbell and Viceira 1999).

The second extension of this chapter is in contrast to Liu and Pan (2003), in which
investors are assumed to have power utility, in contrast to Ilhan ef al. (2005), in which
investors maximize expected exponential utility of terminal wealth and also in contrast to
Haugh and Lo (2001), who set the special cases of CRRA and CARA preferences. In this
model we assume that investors have continuous-time recursive preferences introduced by
Duffie and Epstein (1992b). This allows us not only to provide the effects of risk aversion,
but also to separate cleanly an investor’s elasticity of intertemporal substitution in
consumption from the coefficient of relative risk aversion. This is because power utility
functions restrict risk aversion to be the reciprocal of the elasticity of intertemporal
substitution, but in fact these parameters have very different effects on optimal
consumption and portfolio choice (Campbell and Viceira 1999; Bhamra and Uppal
2003; Chacko and Viceira 2005).

Under the model settings of Liu and Pan (2003), the mean—variance allocation to
stocks, i.e. the ratio between expected stock excess returns and stock return volatility, is
constant, while our work more realistically reflects the real-world situation with time-
varying allocation components. Liu and Pan (2003) consider the Heston (1993) and Stein
and Stein (1991) models of stochastic volatility, in which volatility follows a mean-
reverting process and stock returns are a linear function of volatility. Our setting is the
more general assumption that expected stock returns are an affine function of volatility. In
this setting, the Liu and Pan (2003) result is the special case where we constrain the
intercept of the affine function to be zero. Therefore, we provide a dynamic asset
allocation in both stocks and derivatives, in contrast both to Ilhan et al. (2005), who
restrict to a static position in derivative securities, and to Haugh and Lo (2001), who
construct a buy-and-hold portfolio of stocks, bonds and options that involves no trading
once established at the start of the investment horizon. A buy-and-hold portfolio with a
derivative securities strategy may come closest to optimal dynamic asset-allocation
policies involving only stocks and bonds, as concluded by Haugh and Lo (2001). We know
that the problem of dynamic investment policies, i.e. asset-allocation rules, arise from
standard dynamic optimization problems in which an investor maximizes the expected
utility as shown by Haugh and Lo (2001). At the same time they pose the following
problem: given an investor’s optimal dynamic investment policy for two assets, stocks and
bonds, construct a ‘buy-and-hold’ portfolio—a portfolio that involves no trading once it
is established—of stocks, bonds and options at the start of the investment horizon. They
state that this comes closest to the optimal dynamic policy (Haugh and Lo 2001), but their
strategies differ from our dynamic asset allocation strategies which involve not only stocks,
but also derivative securities.
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Chacko and Viceira (2005) examine the optimal consumption and portfolio choice
problem of long-horizon investors who only have access to a riskless asset with constant
return and a risky asset (stocks), without introducing any derivative securities. Comparing
with Chacko and Viceira (2005), our generalized model considers that holding derivative
securities complicates the asset allocation strategies for long-horizon investors. If one does
not hold any derivative securities as in Chacko and Viceira (2005), the assumption of
imperfect instantaneous correlation between risky stock returns and its stochastic
volatility means that the intertemporal hedging component of the risky stock can only
provide partial hedging ability for multi-period investors when facing the time-varying
investment opportunity set. In this chapter, where we introduce non-redundant derivative
securities written on the risky stock in the incomplete financial market under this optimal
dynamic asset allocation, the derivative securities in the asset allocation can provide
differential exposures to stochastic volatility and make the market complete. The
derivative securities can also supplement the deficient hedging ability of the intertemporal
hedging component of the risky stock, because of the nonlinear nature of derivative
securities.

The chapter will obtain a solution to this problem which is exact for investors with unit
elasticity of intertemporal substitution of consumption, and approximate otherwise. The
chapter is organized as follows. Section 3.2 describes the model and environment assumed
in this chapter. Section 3.3 develops the model of optimal consumption policy and
dynamic asset allocation strategies. We also extend the model with constant expected
excess returns and constant volatility risk premiums to time-varying instantaneous
expected excess returns in relation to the risky stock and time-varying stochastic volatility
risk premium. Section 3.4 provides the analyses of optimal consumption policy and
dynamic asset allocation strategies. Finally, conclusions are given in Section 3.5.

3.2 THE MODEL
3.2.1 Investment Opportunity Set

In this chapter we assume that wealth comprises investments in traded assets only. There
are two prime assets available for trading in the economy. One of the assets is an
instantaneously riskless bond (B;) with a constant interest rate of . Its instantaneous
return is

dB,
— = rdt. 3.1
=T (3.1)

t

The second prime asset is a risky stock that represents the aggregate equity market. Its
instantaneous total return dynamics are given by

ds
?‘ = pdt ++/V,dZ, (3.2)
t
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where S, denotes the price of the risky asset at time f, 1/V, is the time-varying
instantaneous standard deviation of the return on the risky asset, and dZs is the increment
of a standard Brownian motion. We assume that the short rate is constant in order to
focus on the stochastic volatility of the risky asset. From these asset return dynamics, we
have the assumption of constant expected excess return on the risky asset over the riskless
asset, i.e. (L — r); this assumption will be relaxed in Section 3.3.2. We denote time
variation with the subscript ‘/ and let the conditional variance of the risky asset vary
stochastically over time.

From the following the investment opportunity is time-varying. We assume that the
instantaneous variance process is

AV, = k(0 — V,)dr + aﬁ(p dZg+/1— p? dZV), (3.3)

where the parameter 0 > 0 describes the long-term mean of the variance, x € (0, 1) is the
reversion parameter of the instantaneous variance process, i.e. this parameter describes the
degree of mean reversion, and p is the correlation between the two Brownian motions,
which is assumed to be negative to capture the asymmetric effect (Black 1976, Glosten et
al. 1993). This negative correlation assumption, together with the mean-reversion of the
stock return volatility, can capture major important features of the empirical literature of
the equity market.

In the traditional theory of derivative pricing (Black and Scholes 1973; Merton 1973b),
derivative assets like options are viewed as redundant securities, the payoffs of which can
be replicated by portfolios of primary assets. Thus, the market is generally assumed to be
complete without the options. In this chapter we introduce derivative securities that allow
the investor to include them in dynamic asset allocation strategies. If only a risky stock
and a riskless bond are available for trading, then the financial market here is incomplete.
The nonlinear nature of derivative securities serves to complete the market. This follows
from our setting in which stock returns are not instantaneously perfectly correlated with
their time-varying volatility. In this chapter the derivative securities written on the stock
are non-redundant assets. In our setting derivative securities can provide differential
exposure to the imperfect instantaneous correlation and make the market complete.

Following Sircar and Papanicolaou (1999) and Liu and Pan (2003), in the above setting
the non-redundant derivative O, = p(S, V), that is the function (p) of the prices of the
stock (S;) and on the volatility of stock returns (V) at time #, will have the following price
dynamics:

40, = (1= 1)(p.S, + pop,) + ioy/T— p2p, + 10, |dt

+ (p.S; + pop,)/ V. dZs + (o/1 = p?p,)\/V,dZ,, (3.4)
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where 4 determines the stochastic volatility risk premium and p; and p, are measures of
the derivative’s price sensitivity to small changes in the underlying stock price and
volatility, respectively.

3.2.2  Preferences

We assume that the investor’s preferences are recursive and of the form described by
Duffie and Epstein (1992a, b). Recursive utility is a generalization of the standard and
time-separable power utility function that separates the elasticity of intertemporal
substitution of consumption from the relative risk aversion. This means that the power
utility is just a special case of the recursive utility function in which the elasticity of the
intertemporal substitution parameter is the inverse of the relative risk aversion coefficient.
The value function of the problem (J) is to maximize the investor’s expected lifetime
utility. We adopt the Duffie and Epstein (1992b) parameterization

J—E [/tmf(cf,mdf], (3.5)

where the utility f(C,, J;) is a normalized aggregator of an investor’s current consumption
(C;) and has the following form:

-1 1-(1/9)
1 C
fen=s(1-<) - (W) Y

with y is the coefficient of relative risk aversion, f is the rate of time preference and ¢ is the
elasticity of intertemporal substitution. They are all larger than zero. The normalized
aggregator f (CJ;) takes the following form when ¢ approaches one:

F(CT) = B — 7)) [log<c> LIS y>1>].

1=y

The investor’s objective is to maximize expected lifetime utility by choosing consump-
tion and the proportions of wealth to invest across the risky stock and the derivative
securities subject to the following intertemporal budget constraint:

S
dw, = {nt(,u —r)W,+m, [(,u — ) (%—i—pa%)—l—ia\/l — pZ%] W, + W, — Ct}dt
t t t

S
+n,/V,W,dZs + =, [(pé)t—l—pa%)\/VtWt dZ+a4/1 —pz%\/VtWtdZv},
t t

t

(3.7)



DYNAMIC CONSUMPTION AND ASSET ALLOCATION H 49

where W, represents the investor’s total wealth, 7, and m; are the fractions of the investor’s
financial wealth allocated to the stock and the derivative securities at time t, respectively,
and C; represents the investor’s instantaneous consumption.

3.3 OPTIMAL CONSUMPTION POLICY AND DYNAMIC ASSET
ALLOCATION STRATEGIES

3.3.1  Optimal Consumption and Dynamic Asset Allocation Strategies

The principle of optimality leads to the following Bellman equation for the utility
function. In the above setting, the Bellman equation becomes

0= sup{f(Cf,L) —|—]W<nt(,u — )W, +m, [(H — )

n,m,C

x(p(;t—i—pJO)—i—}G\/ p”}www c)

t

L0 = V)3 T W2V, () 2, (P05 o)

+ (nt)zKps L 8 aa> ( \/—pv> D + %Iwa2vt+]wtho—vt

Ot t

x (ntp+nt[<psott+pa%t)p+o( 2)%})}, (3.8)

where J,,, J, denote the derivatives of the value function J with respect to wealth Wand
stochastic volatility V, respectively. We use a similar notation for higher derivatives as well.
The first-order conditions for the optimization in (3.8) are

_]W(p] /(1— ;ﬁw( )1 </J>')/(1*>')7 (3'9)

n = — Jw (,u—r)_ Jwv oo
JwwWe Ve Tww W,

]W (pss +p6pv)+ ]WV (psst+p6pv)

]wwW V, o/T=pp, b 7

(3.10)

A O, 1 O
n,=— Jw _f__]&_t (3.11)

JwwW, a4/1 = po Ve TwwW. p,

Equation (3.9), which demonstrates the rule of optimal consumption, stems from the
envelope condition, f, = J,, once the value function is obtained. Equations (3.10) and
(3.11) show that the optimal portfolio allocation in the stock has four components, while
the derivative allocation has two. In the optimal asset allocation in both the risky stock
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and the derivative, their first terms are the mean—variance portfolio weights. These are the
myopie demands for an investor who only invests in a single period horizon or under a
constant investment opportunity set. The second terms of both the stock and the
derivative are the intertemporal hedging demands that characterize demand arising from
the desire to hedge against changes in the investment opportunity set induced by the
stochastic volatility. These terms are determined by the instantaneous rate of changes in
relation to the value function. Without introducing the derivative security, the optimal
asset allocation of the stock will contain only the first two terms. Aside from the mean—
variance weights of the optimal derivative allocation, the derivative plays a role that allows
the investor to insure against changes in the stochastic volatility and the time-varying
investment opportunity set. The second term, i.e. the intertemporal hedging demand, of
the optimal asset allocation on the stock also partially provides a similar rule, so that the
introduction of the derivative makes the stock allocation interact with the derivative
allocation and is expressed in the third and the fourth terms of the stock demand.

The first-order conditions for our problem are not in fact explicit solutions unless we
know the complicated form of the value function. After substituting the first-order
conditions back into the Bellman equation and rearranging them, we conjecture that
there exists a solution of the functional form J(W,, V,) = I(V,)(W, 7 /(1 — y)). We first
restrict to the special case of ¢ = 1. We then substitute this form 1nto Equation (3.A1) of
Appendix 3.A, and the resulting ordinary differential equation will have a solution of the
form I = exp(Qy + Q;V; + Q,logV,). Rearranging this equation, we have three equations
for Q,, Qy, and Qq after collecting terms in 1/V;, V,, and 1. We provide the full details in
Appendix 3.A. Hence, we obtain the form of the value function and the optimal
consumption rule and dynamic asset allocation strategies for investing in the stock and the
derivative security when ¢ = 1. The value function is

17? 1—y

W, :
](Wt7Vt) :I(Vt) 1 :eXp(Q0+Q1Vt+Q210g Vt) 1

(3.12)

The investor’s optimal consumption—wealth ratio and dynamic asset allocation strategies
for investing in the stock and the derivative are

C, B
w=h (3.13)

Tlt:

llu 1 }" (pss +papv)
= +
Y Vt ) (Ql Q2 t) 7 Vt O/ 1— p v
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L/ ! +1 Q +Q L)< (3.15)
T, =—— - — | —. .
’y Vta\/]‘_p2(pv/ot) y ' 2Vt v

Equation (3.13) demonstrates the invariance of the optimal log consumption—wealth
ratio to changes in volatility. It equals investors’ rate of time preference with unit elasticity
of intertemporal substitution. The substitution effect and the intertemporal income effect
on consumption resulting from a change in investment opportunity set perfectly cancel
each other out, and the consumption of a fixed proportion of investors’ wealth each
period is optimal. This is why such a consumption policy is normally referred to as being
myopic (Chacko and Viceira 2005).

In the more general case ¢ # 1, there is no exact analytical solution. However, we can
still find an approximate analytical solution following the methods described in Campbell
and Viceira (2002) and Chacko and Viceira (2005). The basic idea behind the use of
approximate analytical methods is that of formulating a general problem, on the
condition that we can find a particular case that has a known solution, and then using that
particular case and its solution as a starting point for computing approximate solutions to
nearby problems. In the context of our problem, the insight we obtain is the solution for
the recursive utility function when ¢ = 1 which provides a convenient starting point for
performing the expansion.

Without the restriction of ¢ =1, the Bellman equation can be expressed as the
following equation by substituting (3.9) into (3.A1) and again conjecturing that there
exists a solution of the functional form J(W,, V,) = I(V,)(W, /(1 —y)):

? 11 1
0=~ peeooen @ g L1 Lo e
1—¢ l—¢ 27V,
1
Iy (0= ) AT 2] I Ly (0 = V)
Y -7
1 1 11 (L,)
—i——IVV—GZVt—F——MJZV,. (3.16)
2 1—9 2y 1
To simplify, we can make the transformation I(V,) = ®(V,)" "™/~ 4nd have a non-

homogeneous ordinary differential equation. Unfortunately, this non-homogeneous
ordinary differential equation cannot be solved in closed form. Our approach is to
obtain the asymptotic approximation to Equation (3.B1) shown in Appendix 3.B, by
taking a log-linear expansion of the consumption—wealth ratio around its unconditional
mean as introduced in the papers of Campbell and Viceira (2002) and Chacko and Viceira
(2005). We provide the full details of our model’s approximate results in Appendix 3.B.

We are now able to obtain the form of the value function and the optimal consumption
and dynamic asset allocation strategies toward investing in the risky stock and the derivative
in the stochastic environment without the constraint ¢ = 1. The value function is
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Wl—”,' o B Wl_y
J(W,, V,) = (V) —— = @(v,) -/l 2
1—7 1—y
1—v A A R Wi
:eXp|:—< >(Q0+Q1Vt+Q210g Vt) ; (317)
1—o 11—
The investor’s optimal instantaneous consumption—wealth ratio is
Ct @ A ~ ~
W B?exp(—Q, — Q,V, — Q,log V,). (3.18)

t

The investor’s optimal dynamic asset allocation strategies toward investing in the stock and
the derivative are

1 (p,S, + pap,) 1 < 1) Q Q 1
n=—|(u-r-———=1|—+ (1—-)]| —+———]po
y( agy/1 — p?p, )Vt Y/\l—¢@ 1—09V,

N <l _l) Ql + QZ i (psSt +po—pv)’ (319)
YV \l=-¢ 1-0¢V, Py

1 p 1 ( 1) 0, 0, 1\0,
m, == — 4 (1-- + — = (3.20)
" v e/1-0p%(p,/0,) Y, y <l—<p 1—¢ V,) p,

We have now solved the approximate closed-form solution of the optimal consumption
and dynamic asset allocation strategy. In the next section we provide a general extension
of this model.

3.3.2  Optimal Consumption and Dynamic Asset Allocation Strategies with
Time-Varying Risk Premiums

We next extend the model with constant expected excess returns of the risky stock and the
constant volatility risk premiums of the derivative to a more general case in order to
explore the optimal consumption rule and dynamic asset allocation strategies with time-
varying instantaneous expected excess returns and time-varying stochastic volatility risk
premium of the risky stock.

Following Chacko and Viceira (2005), we replace the assumption of the constant excess
returns on the stock with one that allows for the expected excess returns on the stock to
vary with volatility:

E[(%) M = (3o + 11, V;)dt. (3.21)
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When g; > 0, the functional form implies that an increase in volatility increases risk and
the expected excess return on the stock. Similarly, we replace the assumption of the
constant volatility risk premium (4) with one that allows the volatility risk premium to
vary with volatility in the form /o + 4;V,. Ever since the seminal work of Engle (1982),
discrete-time ARCH models have become a proven approach to modeling security price
volatility. For a review of the substantial literature, see Bollerslev et al. (1992). Following
Nelson (1990), it is understood that GARCH-type models have well-defined continuous-
time limits. Therefore, it seems reasonable to model the risk premium dependent on the
conditional variance. As a basis, some empirical papers assume an ARCH/GARCH-M
model with a risk premium for stochastic volatility, which is a linear function of the
conditional standard deviation or variance as in this chapter. Using Heston’s (1993)
option pricing formula to price currency options, Lamoureux and Lastrapes (1993)
suggest a time-varying volatility risk premium. Empirical applications of the ARCH-M
model have met with much success. Some studies (see, e.g. French et al. (1987), Chou
(1988) and Campbell and Hentschel (1992)) have reported consistently positive and
significant estimates of the risk premium. When 4; > 0, the functional form implies that
an increase in volatility increases risk and also the stochastic volatility risk premium.
When y; = 0 and 4; = 0, the results of this section will reduce to those of Section 3.3.1.

In the above setting, the non-redundant derivative (O, = p(S, V;)), which is a function
(p) of the prices of the stock (S;) and the volatility of stock returns (V;) at time t, will have
the following price dynamics:

do, = [(.uo +u, V) (.S, + pap,) + (A + 4,V oy 1— y T rO}

+(pS, + pop,)\/V,dZs + (a\/1 - p? V>\/VI dZy. (3.22)

From these extensions, the Bellman equation can be expressed as

B o)/
0= P _proosay @ g My + (2 + 4V,
I~ o - B 27 Vt[(.uo Hy ) ( )]
1
+1r+;lvo' (o +m Vi) + (Ao + 2, V) V1 — ,02]
1 1 1 11 (I,)
k(0 — V)] +=I,,——3*V, +~- -~ g%V, 3.23
vl_y[( Bl RSP ; (3.23)

We follow the same method in Section 3.3.1 to derive the optimal consumption and
dynamic asset allocation strategies under these assumptions. The main steps of the
derivation are guessing the same functional form for J(W,,V,) and I(V,) as in Appendix
3.B. We then can reduce the Bellman equation to an ODE in ®(V,) as follows:
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1
0= —ﬂ*”<1>*1+<pﬂ+2—y(1—<p) X

o1
(6 + 20) 7+ 2oty + Zok) + (i + DV,

t

1—79®
_Tyéa[ﬂop‘i‘io 1_p2+(ulp+il\/1_p2)vti|

(ﬂH)(&)Z_q’_w
1—o () ()

11-9)° 1 [®,\°
+—( ) —(—V) a*V,. (3.24)
2 Y 11— \®

a’V,

D, 1
+(1—@)r——Lk0—V,)+=
(1= @)r = —2Lw(0 = V) + 3

Following the steps in Equation (3.A8) to Equation (3.A10), we obtain the solution of the
ODE in &(V,) with @(V,) =exp(Q, + Q,V, + Q,logV,), and can express Equation
(3.24) as

0= _{¢0+¢1 [([)logﬁ— Qo_ ler_ Qz<log9+ %Vt_ 1>]}

! o 1
HD[HZ(I — @) x [(ué+mé)7+2(uoﬂl+;~0,11)+(”%H3)Vt]

t

1- ~ -1
_TV<Q1+Q27>G>< [Moerio 1—p2+<u1p+m/1—p2>vt]
t

.1 1[/1— - 1Y
+(1—QD)T—<Q1+Q2v>K(0—Vt)+5|:<ﬁ+l><Q1+sz>

(aral) ral]ev t L (oo ) u gy
1 ZV[ ZVtZ t 2 ’)) 1_(p 1 2V t* .

Rearranging this equation after collecting terms in 1/V;, V;and 1 we have three equations

for Q,, Q,, and Q;:

11— 1(1—97)Y 1 .
- V62+_( y) 0_2 Qg
21—0¢ 2 Y 1—9o

1 - 1-— 1 ~
- ( yo'#op“‘—y}“o\/ 1 —pZG—{—K@—Eaz)Qz
v v

1
+2—y(1 — @) (1 +73) =0, (3.26)
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1—y

11— 1(1—97)? 1
[_—yaz_i__g—o'z

~f+[¢1_ 0<H1P+/11v1—/02>+f<}©1

(3.27)

1— 3
FJ%9_¢f‘yya@m+%Vl_ﬁ>+@Qz

1—y l—yz 1 ~
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l—o y l1—o
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(3.28)

We are now able to obtain the value function and the investor’s optimal consumption and

dynamic asset allocation strategy for investing in the stock and derivative security with
time-varying risk premiums. The value function is

Wl—“/ o B WI_V
J(W,, V) = I[(V,) —— = o(v,) 1=/l
1 - ~ ~ - Wl—y
= exp [— <ﬁ> (Q+QV,+QlogV,) 1 P (3.29)

The investor’s optimal instantaneous consumption—wealth ratio is

C

ﬁ:ﬂ%@@Q—Qm—prq (3.30)

t

The investor’s optimal dynamic asset allocation strategy toward investing in the stock and
the derivative security is

1 1 1 0 D, 1
S AR O (R SR
Y V, V) \1—¢ 1—09V,

_l (il +j~0i> (psst+po-pv)
Vt

Y ay/1—p’p,
_(1_1) Q . @ 1)(nS +rop)
V\1l-¢ l—9¢V, p,
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1 1 , 1 1 Ql Qz 1)
M= (A A |+ (1) [+ —2 —
N il G R G s

We have solved for the approximate solution of the optimal consumption and dynamic
asset allocation strategies with time-varying risk premiums. In the next section we discuss
the optimal consumption rule and dynamic asset allocation of our results and the effects
of the introduction of derivative securities. We also provide analyses of our results, in this
section and of a numerical example shown in the figures.

O )
P,

3.4  ANALYSES OF THE OPTIMAL CONSUMPTION RULE AND
DYNAMIC ASSET ALLOCATION STRATEGY

In Section 3.3.2 we have the most general results. Equation (3.30) shows that the optimal
log consumption—wealth ratio is a function of stochastic volatility, with coefficients
Q,/(1 —¢) and Q,/(1 — ¢). While Q, is the solution to the quadratic Equation (3.26),
Ql is the solution to Equation (3.27) given Qz, and Qo is the solution to Equation (3.28)
given Q, and Q,. When y > 1 for coefficient Q,, Equation (3.26) has two real roots of
opposite signs. In each quadratic equation, we would like to know which solution is good

for our problem from the following criteria. First, we must ensure that the roots of the
discriminant are real. We must then determine the sign of the roots that we will choose.
Campbell and Viceira (1999, 2002), Campbell et al. (2004) and Chacko and Viceira (2005)
show that only one of them maximizes the value function. This is also the only root that
ensures Q, is equal to zero when y = @ = 1, that is, in the log utility case. Under these
criteria, the value function J is maximized only with the solution associated with the
negative root of the discriminant of the quadratic Equation (3.26), i.e. the positive root of
Equation (3.26). It can immediately be shown that Q,/(1 — ¢) > 0.

By the same criteria, it can immediately be shown that Q, /(1 — ¢) <0. Thus, the ratio
of consumption to wealth is shown to be an increasing function of volatility for those
investors whose elasticity of intertemporal substitution of consumption (¢) is less than
one. Conversely, this ratio is a decreasing function of volatility when the elasticity of
intertemporal substitution of consumption for an investor is greater than one. (It is
assumed that —Q, — Q,/V,>0.) The relative importance of intertemporal income and
substitution effects of volatility on consumption is thus demonstrated. For illustration,
suppose the greater effect of volatility on consumption. The increase in volatility provides
greater opportunities for investment, because derivative securities can provide volatility
exposures. Moreover, assuming positively priced volatility risk, returns on the portfolio do
not increase in volatility, yet there is an improvement in the expected return. A negative
intertemporal substitution effect on consumption will result from these investment
opportunities, since the latter are more favorable than at other times. A positive income
effect also results, as an increase in expected returns decreases the marginal utility of
consumption. The income effect dominates the substitution effect for investors whose
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¢ < 1 and their current consumption rises relative to wealth. Investors whose ¢ > 1 will
see the substitution effect dominate and will therefore cut their current consumption
relative to wealth.

The optimal dynamic asset allocation strategy for the risky stock has four components,
as with the first equality of Equation (3.31) and in Figure 3.1. If we do not introduce any
derivative security and the investor holds only the risky stock, then the optimal dynamic
asset allocation for the risky stock will only have the first two components in the first
equality of Equation (3.31), i.e. the myopic component and the intertemporal hedging
component. First, the dependence of the myopic component is simple. It is an affine
function of the reciprocal of the time-varying volatility and decreases with the coefficient
of relative risk aversion. Since volatility is time-varying, the myopic component is time-
varying too. The position of the myopic component can be either positive or negative,
depending on o, u;, and the level of volatility. We know that if 4; =0 and py =y — 1,
then the result also nests the model results in Section 3.3.1. An extension of the
replacement of the constant expected excess return with one that allows an expected excess
return on the risky stock to vary with volatility implies that increased risk is rewarded with
an increase in expected excess return when u; > 0. Hence, the investor will take a long
position on the myopic component of the risky stock.

The intertemporal hedging component of the optimal dynamic asset allocation for the
risky stock is an affine function of the reciprocal of the time-varying volatility, with
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FIGURE 3.1 The optimal dynamic asset allocation strategy toward investing in the stock and its components in
relation to 7.
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coefficients Q, /(1 — ¢) and Q,/(1 — ). Since Q,/(1 — ¢) >0, the sign of the coefficient
of the intertemporal hedging demand coming from pure changes in time-varying
volatility is positive when y > 1 [this is true only for p > 0]. If we do not introduce any
derivative security and instead hold only risky stock, then the intertemporal hedging
component for the risky stock will consist of the correlation or asymmetric effect. The
intertemporal hedging component of the optimal asset allocation for risky stock is affected
by the instantaneous correlation between the two Brownian motions. If the instantaneous
correlation is perfect, then markets are complete, without the need for holding any
derivative securities. However, we allow for imperfect instantaneous correlation in the
model. In particular, if p < 0, this means that the unexpected return of the risky asset is
low (the market situation is bad), and then the state of the market uncertainty will be
high. Since Q,/(1 — @) >0 when y > 1, the negative instantaneous correlation implies the
investor will have negative intertemporal hedging demand due to changes solely in the
volatility of the risky asset, which lacks the hedging ability against an increase in volatility.
Similar discussions are found in Liu (2005) and Chacko and Viceira (2005). However, in
our generalized model the consideration of holding derivative securities complicates the
asset allocation strategies for long-horizon investors.

The other two components of the optimal dynamic asset allocation for the risky stock
are correction terms for holding the derivative. The first and the second component of
these two correction terms (i.e. the third and the fourth terms of the optimal dynamic
asset allocation for the risky stock) are the myopic correction term and the intertemporal
correction term for the derivatives held, respectively. These terms are from the interaction
between the derivative and its underlying stock. We can see that from the first equality to
the second equality of Equation (3.31), the intertemporal hedging demand on the risky
stock will be canceled by the correction term of holding the derivative. In the second
equality of Equation (3.31), in its first term we show that the net demand for the risky
stock will finally link to the risk-and-return tradeoff associated with price risk, because
volatility exposures have been captured by holding the derivatives. The second term is
the correction term of the correlation effect, and the third correction term is to correct for
the delta effect of the derivative held. The relationships between these components with
the degree of risk aversion (y) are also seen in Figure 3.2.

The optimal dynamic asset allocation for the derivative depends on the proportion of
derivative’s price to its volatility exposure. This proportion measures the dollars expended
on the derivative for each unit of volatility exposure. The less expenditure that a derivative
provides for the same unit of volatility exposure, the more effective it is as a vehicle to
hedge volatility risk. Therefore, a smaller portion of the investor’s wealth need be allocated
to the derivative (Liu and Pan 2003). Furthermore, the optimal dynamic asset allocation
strategy for the derivative security can also be separated into two components: the myopic
demand and the intertemporal hedging demand, which are also seen in Figure 3.3. The
myopic demand is an affine function of the reciprocal of the time-varying volatility with
coefficients of 4y and 4;, and it depends on (1/y). The time-varying volatility also makes
the myopic demand time-varying. The long or short position of the myopic derivative’s
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FIGURE 3.2 The optimal dynamic asset allocation strategy toward investing in the risky stock and its
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demand depends on the volatility—risk premium parameters /g and /Z;, and the level of
volatility.

The second term of the optimal dynamic asset allocation of the derivative is the
intertemporal hedging component, which depends on all the parameters that characterize
investor preferences and the investment opportunity set. Without loss of generality we
may assume that the option is volatility exposure is positive. In our setting, the
instantaneous correlation between unexpected returns of the derivative and changes in
volatility is perfect positive. In addition, since Q,/(1 — ¢) >0 when 7 > 1, for more risk-
averse investors the intertemporal hedging demand is positive due to changes solely in the
stochastic volatility. Investors who are more risk-averse than logarithmic investors have a
positive intertemporal hedging demand for the derivative, because it tends to do better
when there is an increase in volatility risk. The derivative provides hedging ability against
an increase in volatility.

3.5 CONCLUSIONS

Ever since Merton (1969, 1971) introduced the standard intertemporal consumption and

investment model, it has been studied extensively in the finance literature and has become
a classical problem in financial economics. The literature on the broad set of issues of
intertemporal consumption and investment or optimal dynamic asset allocation strategies
deals with investors’ access only to bond and stock markets and excludes the derivatives
market. While a few recent studies include derivative securities in the investment
portfolio, investors are assumed to have a specified utility defined over wealth at a single
terminal date, abstraction from the choice of consumption over time, and the studies are
restricted to a static position in derivative securities or the construction of a buy-and-
hold portfolio. This chapter considers a model in which a long-term investor chooses
consumption as well as optimal dynamic asset allocation including a riskless bond, risky
stock and derivatives on the stock when there is predictable variation in return volatility.
We then maximize a more general recursive utility function defined over intermediate
consumption rather than terminal wealth to reflect the realistic problem facing an investor
saving for the future.

We show that the optimal log consumption—wealth ratio is a function of stochastic
volatility. Furthermore, the consumption—wealth ratio is an increasing function of
volatility for investors whose elasticity of intertemporal substitution of consumption is
smaller than one, while it is a decreasing function of volatility for investors whose
elasticity of intertemporal substitution of consumption is larger than one. This result
reflects the comparative importance of intertemporal income and substitution effects of
volatility on consumption.

Merton (1971, 1973a) shows that dynamic hedging is necessary for forward-looking
investors when investment opportunities are time-varying. In this chapter we show that
considering derivative securities in portfolio decisions to create a dynamic asset allocation
strategy brings benefits of improvements to the hedging ability in the intertemporal
hedging component. When we introduce a non-redundant derivative written on the risky
stock in the incomplete financial market in this optimal dynamic asset allocation, the
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derivative in the asset allocation can provide differential exposures to stochastic volatility
and make the market complete. Derivative securities are a significant tool for expanding
investors’ dimensions for risk-and-return tradeoffs, as a vehicle to hedge the additional
risk factor of stochastic volatility in the stock market. Non-myopic investors utilize
derivative securities, which provide access to volatility risk, to capitalize upon the time-
varying nature of their opportunity set.
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APPENDIX 3.A: DERIVATION OF THE EXACT SOLUTION WHEN ¢ =1

Substituting the first-order conditions (i.e. Equations (3.9)—(3.11)) back into the Bellman
equation (i.e. Equation (3.8)) and rearranging we get

0=f(CU),T) - TwCU) EMi[(u— r)’ + 7]

2 Sy V.
—MU[(M—T’)p‘F}v 1—p2:| +]WrWt+]v[K(6— Vt)]
Jww
1 ) 1 (]WV)2 2
Loy 10w) L, Al
+2]VVG t 2 ]WW oV (3 )

We conjecture that there exists a solution of the functional form J(W,, V,) = I(V,) x
[W;7/(1 —9)] when ¢ = 1, and substituting it into Equation (3.A1) we obtain

1 11 1 2 a2
0= (logp — logI —1|fI+—--1— —r) 4+ A
( 8f — 1 log )ﬁ > Vt[(u )"+ 7]
1 1
+_IVU{(N_7)P+/IVI_PZ}+17’+IV1 [1(0 = V)]
Y -7
1 1 11 (1)
+—Iw—a2vt+——ﬂo—2vt. (3.A2)
2 1—v 2y

The above ordinary differential equation has a solution of the form
I =exp(Q, + Q,V, + Q,logV,, and so Equation (3.A2) can be expressed as
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Rearranging that equation, we have three equations for Q,, Q;, and Q, after collecting
terms in 1/V,, V,, and 1:

1 1 11 1 1 1 1 1
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and in Equation (3.A4), we have

b+ Vb —4ac

Q =
: 2a
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where
1 1 11 1
=——0"+--0>, b=-a(u—r)p
21—y 2y Y
11
+-0l\/1—p>+ KO — — g,
v - 21—y
and
c==~[(u—r)*+2].

APPENDIX 3.B: DERIVATION OF THE APPROXIMATE RESULTS

For simplicity, we can make the transformation I(V,) = ®(V,) (""/0=9) and obtain the
following non-homogeneous ordinary differential equation:

P i B N2 2 i
0=—-p® +(pﬁ+2y(1 (p)[(u r)—i—i]xv

t

_%%[w— Do+ T+ (1= g = (0 - V)

1{/1—- o\ @ 1(y—-1)°" 1 [\’
4o <_V+1> <_V> _ 2w O_thJr_(V ) _<_V> o*V.. (3.Bl)
2(\l—¢o () () 2 Y 11— \®

From the transformation, we obtain the envelope condition of Equation (3.9):'

% =pPo = exp{log (%) } = exp{c, — w,}. (3.B2)

t t

! From Equation (3.9) we have C, = J,,*J 1=o0/0= g2 (1 — )*=9/077) "and we also conjecture that there exists a
solution of the functional form J(W,, V,)=I(V)[W/7/(1—79), and we make the transformation
(V) = (D(Vt)f(lﬂ')/ﬂfw). We thus have | = [thfz‘/(l _ .)))}qy(lfv)/(lfw) and J,, = ®(1-0/(1-9) W7, Therefore, we
have

Ct — ]‘7/’](17(07)/(17}')[{(0 (1 _ y)(]*W’)/(I*}')
w7
L=y

(1=gp)/(1=7)
_ (@-(1—;~)/(1-¢)W7«,)7m( cD-(l-y)/(l-@)) Bo(1 — },)(l—wv’)/(l—;')

t

=0 'p'W,



DYNAMIC CONSUMPTION AND ASSET ALLOCATION B 65

Using a first-order Taylor expansion of exp{c; — w;} around the expectation of (¢; — wy),
we can write

BPD " ~ exp{E(c, — w,)} + exp{E(c, — w,)} - [(c, — w,) — E(c, — w,)]
=exp{E(c, —w,)} - {1 — E(c, = w,)} + exp{E(c, —w,)} - (¢, — w,)
= ¢, + ¢,(c, — w,). (3.B3)
Substituting (3.B3) into Equation (3.B1) and assuming this equation has a solution of the

form &(V,) = exp(Q, + Q,V, + Q,log V,), from this guessed solution an Equation (3.B2)
we can show that

(¢, —w)= log{ﬂw [eXP(Qo + Ql V,+ Qz log Vr)}il}
=@logf — QO — QIVt — Qz log V. (3.B4)

As such, we can express Equation (3.B1) as
N N A 1
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Rearranging the above equation we have the following three equations for Qz, Q,, and QO:
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where Qz can be found from the quadratic Equation (3.B6), Ql can be found from
Equation (3.B7) given Q,, and Q, can be found from Equation (3.B8), given Q, and Q,.
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4.1 INTRODUCTION

( : AN VOLATILITY, WHICH IS PRESENT in virtually every financial market and usually
thought of in terms of a risky investment’s downside, serve as an ‘engine’ for

financial growth? Paradoxically, the answer to this question turns out to be positive.

To demonstrate this paradox, we examine the long-run performance of constant
proportions investment strategies in a securities market. Such strategies prescribe
rebalancing the investor’s portfolio, depending on price fluctuations, so as to keep fixed
proportions of wealth in all the portfolio positions. Assume that asset returns form a
stationary ergodic process and asset prices grow (or decrease) at a common asymptotic
rate p. It is shown in this chapter that if an investor employs any constant proportions
strategy, then the value of his/her portfolio grows almost surely at a rate strictly greater
than p, provided that the investment proportions are strictly positive and the stochastic
price process is in a sense non-degenerate. The very mild assumption of non-degeneracy

67
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we impose requires at least some randomness, or volatility, of the price process. If this
assumption is violated, then the market is essentially deterministic and the result ceases to
hold. Thus, in the present context, the price volatility may be viewed as an endogenous
source of acceleration of financial growth. This phenomenon might seem counterintuitive,
especially in stationary markets (Evstigneev and Schenk-Hoppé 2002; Dempster et al.
2003), where the asset prices themselves, and not only their returns, are stationary. In this
case, p = 0, i.e. each asset grows at zero rate, while any constant proportions strategy
exhibits growth at a strictly positive exponential rate with probability one!

To begin with, we focus on the case where all the assets have the same growth rate p.
The results are then extended to a model with different growth rates p',..., pX. In this
setting, a constant proportions strategy with proportions ' >0, ..., 1% >0 grows almost
surely at a rate strictly greater than ), 2¥p* (see Theorem 4.1 in Section 4.2).

The phenomenon highlighted in this paper has been mentioned in the literature, but its
analysis has been restricted to examples involving specialized models. The terms ‘excess
growth’ (Fernholz and Shay 1982) and the more discriptive ‘volatility pumping’
(Luenberger 1998) have been used to name similar effects to those discussed here. Cover
(1991) used the mechanism of volatility pumping in the construction of universal
portfolios. These ideas have been discussed in connection with financial market data in
Mulvey and Ziemba (1998), Mulvey (2001) and Dries et al. (2002). Such questions have
typically been studied in the context of maximization of expected logarithmic utilities—
‘log-optimal investments’ (Kelly 1956; Breiman 1961; Algoet and Cover 1988; MacLean et
al. 1992; Hakansson and Ziemba 1995; Li 1998; Aurell ef al. 2000). In this chapter we
ignore questions of optimality of trading strategies and do not use the related notion of
expected utility involved in optimality criteria.'

Constant proportions strategies play an important role in various practical financial
computations, see e.g. Perold and Sharpe (1995). The assumption of stationarity of asset
returns is widely accepted in financial theory and practice allowing, as it does, expected
exponential price growth and mean reversion, volatility clustering and very general
intertemporal dependence, such as long memory effects, of returns. However, no general
results justifying and explaining the fact of volatility-induced growth have been established
up to now. In spite of the fundamental importance and generality of this fact, no results
pertaining to an arbitrary constant proportions strategy (regardless of its optimality) and
any securities market with stationary non-degenerate asset returns have been available in
the literature. The purpose of this chapter is to fill this gap.

Most of our results are rather easy consequences of some general mathematical facts, and
the mathematical aspects do not play a crucial role. The main contribution of the present
work is that we pose and analyse a number of questions that have not been systematically
analysed before. These questions are especially interesting because the common intuition

! In connection with the discussion of relevant literature, we can mention a strand of publications dealing with
Parrondo games (Harmer and Abbott 1999). Models considered in those publications are based on the analysis of
lotteries whose odds depend on the investor’s wealth. It is pointed out that losing lotteries, being played in a
randomized alternating order, can become winning. In spite of some similarity, there are no obvious direct links
between this phenomenon and that studied in the present chapter.
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currently prevailing in the mathematical finance community suggests wrong answers to
them (see the discussion in Section 4.4). Therefore it is important to clarify the picture in
order to reveal and correct misconceptions. This is a central goal in this study.

The chapter is organized as follows. In Section 4.2 we describe the model, formulate the
assumptions and state the main results. Section 4.3 contains proofs of the results and a
discussion of their intuitive meaning. In Sections 4.4 and 4.5 we analyse the phenomenon
of volatility-induced growth from various angles, focusing primarily on the case of
stationary prices. We answer a number of questions arising naturally in connection with
the theory developed. In Section 4.6, we show how this theory can be extended to markets
with small transaction costs. Section 4.7 analyses an example in which estimates for the
size of transaction cost rates allowing volatility-induced growth can be established.

4.2  THE MODEL AND THE MAIN RESULTS

Consider a financial market with K > 2 securities (assets). Let S, := (S}, ..., SX) denote
the vector of security prices at time t =0, 1,2,.... Assume that S} >0 for each t and k,
and define by

Sk
o= (k=12 K, t=1.2,..) (4.1)
St

the (gross) return on asset k over the time period (r—1, t]. Let R, := (R}, ..., RX). At each
time period t, an investor chooses a portfolio h, = (h/}, ..., hX), where h* is the number of
units of asset k in the portfolio h,. Generally, h, might depend on the observed values of
the price vectors S,,S,,...,S,. A sequence H = (hy, h,,...) specifying a portfolio h, =
h.(S,,---,S,) at each time t as a measurable function of S, S,,...,S, is called a trading
strategy. If not otherwise stated, we will consider only those trading strategies for which
h¥ > 0, thus excluding short sales of assets (h} can take on all non-negative real values).

One can specify trading strategies in terms of investment proportions (or portfolio
weights). Suppose that for each t = 1,2,..., we are given a vector 4, = (1,,...,A5) in

t
the unit simplex

K
A= {1: (225 ik =0, ) ik = }

The vector A, is assumed to be a measurable function of S,...,S,. Given an initial
portfolio hy (specified by a non-negative non-zero vector), we can construct a trading
strategy H recursively by the formula

hk=258,h, /SF (k=1,2,...,K, t=1,2,...). (4.2)

Here the scalar product S,h, | = Z,fi . SKh} | expresses the value of the portfolio h, | in
terms of the prices S at time ¢ An investor following the strategy (4.2) rebalances
(without transaction costs) the portfolio h, , at time ¢ so that the available wealth S,h, | is
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distributed across the assets k=1, 2,...,K according to the proportions /13, .. ,)LtK LIt is
immediate from (4.2) that

Sh,=Sh_,, t=12,..., (4.3)

i.e. the strategy H is self-financing. If a strategy is self-financing, then the relations (4.2)
and

Skhk=2fS,h, t=1,2,..., (4.4)

are equivalent. If the vectors of proportions A; are fixed (do not depend on time and on
the price process), i.e. 2, = 2 = (1',...,1%) € A, then the strategy H defined recursively
by

hk=2%S,h,_/SF (k=1,2,...,K, t=1,2,...) (4.5)

is called a constant proportions strategy (or a fixed-mix strategy) with vector of proportions
A= (A" ... 25). If A¥>0 for each k, then H is said to be completely mixed.

We will assume that the price vectors S;, and hence the return vectors R;, are random,
ie. they change in time as stochastic processes. Then the trading strategy
h, t=0,1,2,..., generated by the investment rule (4.2) and the value
V,=Sh, t=0,1,2,..., of the portfolio h, are stochastic processes as well. We are
interested in the asymptotic behaviour of V;as f— oo for constant proportions strategies.

We will assume:

(R) The vector stochastic process R,, t = 1,2,..., is stationary and ergodic.
The expected values E|In Rtk|, k=1,2,..., K, are finite.

Recall that a stochastic process R, R,, ... is called stationary if, for any m = 0,1,2, ...
and any measurable function ¢(x,, x,,...,x,), the distribution of the random variable
¢, =¢(R,R,...,R,,) (t=1,2,...) does not depend on t. According to this
definition, all probabilistic characteristics of the process R, are time-invariant. If R, is
stationary, then for any measurable function ¢ for which E|¢(R,,R,,,,...,R,,,,)| <00,
the averages

)+t 0,

; (4.6)

converge almost surely (a.s.) as t— oo (Birkhoff’s ergodic theorem—see, e.g. Billingsley
1965). If the limit of all averages of the form (4.6) is non-random (equal to a constant
a.s.), then the process R; is called ergodic. In this case, the above limit is equal a.s. to the
expectation E¢,, which does not depend on t by virtue of stationarity of R,.

An example of a stationary ergodic process is a sequence of independent identically
distributed (i.i.d.) random variables. To avoid misunderstandings, we emphasize that



VOLATILITY-INDUCED FINANCIAL GROWTH m 71

Brownian motion and a random walk are nof stationary. According to the conventional
probabilistic terminology, these Markov processes are (time) homogeneous.

We have Sk = SfRF...R}, where (according to (R)) the random sequence R is
stationary. This assumption on the structure of the price process is a fundamental
hypothesis commonly accepted in finance. Moreover, it is quite often assumed that the
random variables R} t=1,2 ... are independent, i.e. the price process Sf forms a
geometric random walk. This postulate, which is much stronger than the hypothesis of
stationarity of R}, lies at the heart of the classical theory of asset pricing (Black, Scholes,
Merton), see e.g. Luenberger (1998).

By virtue of Birkhoff’s ergodic theorem, we have

lim — lnSk—hm Zlan EInR} (as.) (4.7)

t—00 t t—00 t

for each k=1, 2, ..., K. This means that the price of each asset k has almost surely a well-
defined and finite (asymptotic, exponential) growth rate, which turns out to be equal a.s.
to the expectation p* := Eln R}, the drift of this asset’s price. The drift can be positive,
zero or negative. It does not depend on t in view of the stationarity of R,. Let H =
(hy, hy, . ..) be a trading strategy. If the limit

lim — ln(S h,)

t—oo f

exists, it is called the (asymptotic, exponential) growth rate of the strategy H.

We now formulate central results of this paper—Theorems 4.1 and 4.2. In these
theorems, H = (hy, h,,...) is a constant proportions strategy with some vector of
proportions A = (1',...,2%) € A and a non-zero initial portfolio hy> 0. In Theorems
4.1 and 4.2, we assume that the following condition holds:

(V) With strictly positive probability,

t ;é St for some 1 < k,m < K and t > 1.
S
t

Theorem 4.1: If all the coordinates A* of the vector ). are strictly positive, i.e. the strategy H is
completely mixed, then the growth rate of the strategy H is almost surely equal to a constant
which is strictly greater than y", .*p*, where p* is the drift of asset k.

Condition (V) is a very mild assumption of volatility of the price process. This
condition does not hold if and only if, with probability one, the ratio S}/S/" of the prices
of any two assets k and m does not depend on t. Thus condition (V) fails to hold if and
only if the relative prices of the assets are constant in time (a.s.).
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We are primarily interested in the situation when all the assets under consideration have
the same drift and hence a.s. the same asymptotic growth rate:

(R1) There exists a number p such that, for each k =1,..., K, we have ElnRF = p.
From Theorem 4.1, we immediately obtain the following result.

Theorem 4.2: Under assumption (R1), the growth rate of the strategy H is almost surely
strictly greater than the growth rate of each individual asset.

In the context of Theorem 4.2, the volatility of the price process appears to be the only
cause for any completely mixed constant proportions strategy to grow at a rate strictly
greater than p, the growth rate of each particular asset. This result contradicts
conventional finance theory, where the volatility of asset prices is usually regarded as an
impediment to financial growth. The result shows that in the present context volatility
serves as an endogenous source of its acceleration.

4.3 PROOFS OF THE MAIN RESULTS AND THEIR EXPLANATION

We first observe that if a strategy H is generated according to formula (4.2) by a sequence

Ays Ay . .. Of vectors of investment proportions, then
K K
m m Sm m
S SOV BE )
m=1 m=1 “t—1
S’ X
= Z ;'” WSeih =V, > RN
m=1
= (Rtit—l) -1 (4.8)
for each t > 2, and so
V.= (Rt/"btfl)(Rtfl}“th) cee (Rz;“l)vla t>2. (4'9)
Proof of Theorem 4.1: By virtue of (4.9), we have
V, = [Vi(RA) T T(RA)(RZ) ... (RA), (4.10)
and so
lim - ln V, = lim - Z In(R4) = EIn(R,4) (ass.) (4.11)

t—oo f t—oo f
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by virtue of Birkhoff ’s ergodic theorem. It remains to show that if assumption (V) holds,
then Eln(R,2)> S5, A*p*. To this end observe that condition (V) is equivalent to the
following one.

(V1) For some ¢t > 1 (and hence, by virtue of stationarity, for each > 1),
the probability

P{Rf# R forsomel <k,m<K}
is strictly positive.

Indeed, we have Sk/S™ # S} /S, if and only if S¥/Sk # S™/S", which can be
written as R} # R/™. Denote by &, the random variable that is equal to 1 if the event
{Rtk # R for some 1 < k,m < K} occurs and 0 otherwise. Condition (V) means that
P{max,,, 0, = 1} >0, while (V1) states that, for some t (and hence for each t),
P{0, = 1} >0. The latter property is equivalent to the former because

frwes, =1}~ =1

By using Jensen’s inequality and (V1), we find that

K K
In) RS AN (InRf)
k=1 k=1

with strictly positive probability, while the non-strict inequality holds always. Conse-
quently,

K

Eln(R,2)> > i*E(InR/) Z)L (4.12)

k=1

which completes the proof. |

The above considerations yield a rigorous proof of the fact of volatility induced growth.
But what is the intuition, the underlying fundamental reason for it? We have only one
explanation, which is nothing but a repetition in one phrase of the idea of the above proof.
If R',...,RX are random returns of assets k=1,2,..., K, then the asymptotic growth
rates of these assets are ElnR/, while the asymptotic growth rate of a constant
proportions strategy is EIn(3_ A*RF), which is strictly greater than Y 2*Eln(R}) by
Jensen’s inequality—because the function In x is strictly concave.

It would be nice, however, to give a general common-sense explanation of volatility-
induced growth, without using such terms as a ‘strictly convex function, ‘Jensen’s
inequality, etc. One can, indeed, find in the literature explanations of examples of
volatility pumping based on the following reasoning (see e.g. Fernholz and Shay 1982;
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Luenberger 1998). The reason for growth lies allegedly in the fact that constant
proportions always force one to ‘buy low and sell high'—the common sense dictum of
all trading. Those assets whose prices have risen from the last rebalance date will be
overweighted in the portfolio, and their holdings must be reduced to meet the required
proportions and to be replaced in part by assets whose prices have fallen and whose
holdings must therefore be increased. Obviously, for this mechanism to work the prices
must change in time; if they are constant, one cannot get any profit from trading.

We have, alas, repeated this reasoning ourselves (e.g. in Evstigneev and Schenk-Hoppé
2002 and in an earlier version of the present chapter), but somewhat deeper reflection on
this issue inevitably leads to the conclusion that the above argument does not explain
everything and raises more questions than it gives answers. For example, what is the
meaning of ‘high’ and ‘low?’ If the price follows a geometric random walk, the set of its
values is generally unbounded, and for every value there is a larger value. One can say that
‘high’ and ‘low’ should be understood in relative terms, based on the comparison of the
prices today and yesterday. Fine, but what if the prices of all the assets increase or decrease
simultaneously? Thus, the above argument, to be made valid, should be at least relativized,
both with respect to time and the assets.

However, a more substantial lacuna in such reasoning is that it does not reflect the
assumption of constancy of investment proportions. This leads to the question: what will
happen if the ‘common sense dictum of all trading’ is pushed to the extreme and the
portfolio is rebalanced so as to sell all those assets that gain value and buy only those ones
which lose it? Assume, for example, that there are two assets, the price St1 of the first
(riskless) is always 1, and the price S? of the second (risky) follows a geometric random
walk, so that the gross return on it can be either 2 or 1/2 with equal probabilities. Suppose
the investor sells the second asset and invests all wealth in the first if the price S} goes up
and performs the converse operation, betting all wealth on the risky asset, if S goes down.
Then the sequence 4, = (4!, 2) of the vectors of investment proportions will be i.i.d. with
values (0,1) and (1,0) taken on with equal probabilities. Furthermore, 4, ;, will
be independent of R, By virtue of (4.9), the growth rate of the portfolio value for this
strategy is equal to EIn(R4,_;) =[In(0-1+1-2)+In(0-1+1-3)+1In(1-14+0-2)+
In(1-140-1)]/4 = 0, which is the same as the growth rate of each of the two assets
k =1,2 and is strictly less than the growth rate of any completely mixed constant
proportions strategy.

4.4 STATIONARY MARKETS: PUZZLES AND MISCONCEPTIONS

Consider a market where the price process S; (and not only the process of asset returns R;)
is ergodic and stationary and where E|InS}|<oo. This situation is a special case of
stationary returns, because if the vector process S, is stationary, then the process R, is
stationary as well. In this case the growth rate of each asset is zero,

ElnRF=EInSf—ElnS} =0,
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while, as we have seen, any completely mixed constant proportions strategy grows at a
strictly positive exponential rate. The assumption of stationarity of asset prices, perhaps
after some detrending, seems plausible when modelling currency markets (Kabanov 1999;
Dempster et al. 2003). Then the ‘prices’ are determined by exchange rates of all the
currencies with respect to some selected reference currency.

We performed a casual experiment, asking numerous colleagues (in private, at seminars
and at conferences) to promptly guess the correct answer to the following question.

Question 4.1: Suppose vectors of asset prices S, = (S},...,SX) fluctuate randomly,
forming a stationary stochastic process (assume even that S, are i.i.d.). Consider a fixed-
mix self-financing investment strategy prescribing rebalancing one’s portfolio at each of the
datest= 1,2, ..., so as to keep equal investment proportions of wealth in all the assets. What
will happen with the portfolio value in the long run, as t — o0 ? What will be its tendency: (a) to
decrease; (b) to increase; or (c) to fluctuate randomly, converging in one sense or another to a
stationary process?

The audience of our respondents was quite broad and professional, but practically
nobody succeeded in guessing the correct answer, (b). Among those who expressed a clear
guess, nearly all selected (c). There were also a couple of respondents who decided to bet
on (a).

Common intuition suggests that if the market is stationary, then the portfolio value V,
for a constant proportions strategy must converge in one sense or another to a stationary
process. The usual intuitive argument in support of this conjecture appeals to the self-
financing property (3). The self-financing constraint seems to exclude possibilities of
unbounded growth. This argument is also substantiated by the fact that in the deterministic
case both the prices and the portfolio value are constant. This way of reasoning makes the
answer (c) to the above question more plausible a priori than the others.

It might seem surprising that the wrong guess (c) has been put forward even by those
who have known about examples of volatility pumping for a long time. The reason for this
might lie in the non-traditional character of the setting where not only the asset returns
but the prices themselves are stationary. Moreover, the phenomenon of volatility-induced
growth is more paradoxical in the case of stationary prices, where growth emerges ‘from
nothing.” In the conventional setting of stationary returns, volatility serves as the cause of
an acceleration of growth, rather than its emergence from prices with zero growth rates.

A typical way of understanding the correct answer to Question 4.1 is to reduce it to
something well known that is apparently relevant. A good candidate for this is the concept
of arbitrage. Getting something from nothing as a result of an arbitrage opportunity seems
to be similar to the emergence of growth in a stationary setting where there are no obvious
sources for growth.

As long as we deal with an infinite time horizon, we would have to consider some kind
of asymptotic arbitrage (e.g. Ross 1976; Huberman 1982; Kabanov and Kramkov 1994;
Klein and Schachermayer 1996). However, all known concepts of this kind are much
weaker than what we would need in the present context. According to our results, growth
is exponentially fast, unbounded wealth is achieved with probability one, and the effect of
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growth is demonstrated for specific (constant proportions) strategies. None of these
properties can be directly deduced from asymptotic arbitrage.

Thus there are no convincing arguments showing that volatility-induced growth in
stationary markets can be derived from, or explained by, asymptotic arbitrage over an
infinite time horizon. But what can be said about relations between stationarity and
arbitrage over finite time intervals? As is known, there are no arbitrage opportunities (over
a finite time horizon) if and only if there exists an equivalent martingale measure. A
stationary process can be viewed as an ‘antipodal concept’ to the notion of a martingale.
This might lead to the conjecture that in a stationary market arbitrage is a typical
situation. Is this true or not? Formally, the question can be stated as follows.

Question 4.2: Suppose the process S, = (S},...,SX) of the vectors of asset prices is
stationary, and moreover, assume that the vectors S; are i.i.d. Furthermore, suppose the first
asset k =1 is riskless and its price S} is equal to one. Does this market have arbitrage
opportunities over a finite time horizon?

When asking this question, we assume that the market is frictionless and that there are
no portfolio constraints. In particular, all short sales are allowed. An arbitrage opportunity
over a time horizon t =0, ..., T is understood in the conventional sense. It means the
existence of a self-financing trading strategy (h,, . .., hy) such that Sjhy = 0, S;hy > 0 as.
and P{S;h;>0}>0.

The answer to this question, as well as to the previous one, is practically never guessed
immediately. Surprisingly, the answer depends, roughly speaking, on whether the distri-
bution of the random vector S, := (S2,...,SK) of prices of the risky assets is continuous
or discrete. For example, if §t takes on a finite number of values, then an arbitrage
opportunity exists. If the distribution of S, is continuous, there are no arbitrage opport-
unities. More precisely, the result is as follows. Let G be the support of the distribution of
the random vector S, (which is assumed to be non-degenerate) and let F: = cl co G be the
closure of the convex hull of G. Denote by 0,F the relative boundary of F i.e. the boundary
of the convex set F in the smallest linear manifold containing E

Theorem 4.3: IfP{S, € 9,F} = 0, then for any T there are no arbitrage opportunities over
the time horizon of length T. If P{S, € 0,F} >0, then for each T there is an arbitrage
opportunity over the time horizon of length T.

For a proof of this result see Evstigneev and Kapoor (2006).

4.5  GROWTH ACCELERATION, VOLATILITY REDUCTION AND
NOISE-INDUCED STABILITY

The questions we analyse in this section stem from an example of volatility pumping

considered originally by Fernholz and Shay (1982) and later others (e.g. Luenberger 1998).
The framework for this example is the well-known continuous-time model developed by
Merton and others, in which the price processes Stk (t > 0) of two assets k = 1,2 are
supposed to be solutions to the stochastic differential equations dS}/S} = p,dt + o, dW},
where the W[ are independent (standard) Wiener processes and S¥ = 1. As is well known,
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these equations admit explicit solutions S} = exp[u,t — (67/2)t + o6, W/}]. Given some
0 € (0,1), the value V, of the constant proportions portfolio prescribing investing the
proportions @ and 1 — 0 of wealth into assets k = 1,2 is the solution to the equation

% = [0n, + (1 — O),)dt + 0, dW! + (1 — 0)a,dW>.

t

Equivalently, V, can be represented as the solution to the equation
dV,/V, = idt + 6dW,, where i :=0u, + (1 —0)u,, 52 := (0o,)” + [(1 — 0)a,]* and
W, is a standard Wiener process. Thus, V, = exp[it — (62/2)t + ¢ W,], and so the growth
rate and the volatility of the portfolio value process V;, are given by it — (6°/2) and 4. In
particular, if 4, = u, = p and o, = 0, = 0, then the growth rate and the volatility of V,
are equal to

u—(32/2) and G=01/0>+(1—-0)"<o, (4.13)

while for each individual asset the growth rate and the volatility are i — (¢2/2) and o,
respectively.

Thus, in this example, the use of a constant proportions strategy prescribing investing
in a mixture of two assets leads (due to diversification) to an increase of the growth rate
and to a simultaneous decrease of the volatility. When looking at the expressions in (4.13),
the temptation arises even to say that the volatility reduction is the cause of volatility-
induced growth. Indeed, the growth rate u — (6%/2) is greater than the growth rate
u— (0%/2) because @ <o. This suggests speculation along the following lines. Volatility
is something like energy. When constructing a mixed portfolio, it converts into growth
and therefore itself decreases. The greater the volatility reduction, the higher the growth
acceleration.

Do such speculations have any grounds in the general case, or do they have a
justification only in the above example? To formalize this question and answer it, let us
return to the discrete time-framework we deal with in this paper. Suppose there are two
assets with i.i.d. vectors of returns R, = (R}, R?). Let (£,) := (R}, R}) and assume, to
avoid technicalities, that the random vector (&, 17) takes on a finite number of values and is
strictly positive. The value V; of the portfolio generated by a fixed-mix strategy with
proportions x and I —x (0 <x <) is computed according to the formula

t
V.=V, H[ijl r(1- x)Rf} > 2,

j=2

see (4.9). The growth rate of this process and its volatility are given, respectively, by the
expectation Eln(, and the standard deviation,/Varln{, of the random variable In(,,
where (, := In[x¢ + (1 — x)n]. We know from the above analysis that the growth rate
increases when mixing assets with the same growth rate. What can be said about volatility?
Specifically, let us consider the following question.
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Question 4.3: (a) Suppose Varlné = Varlnn. Is it true that Varln[x¢ + (1 — x)n]
<Varln¢ when x€(0,1)? (b) More generally, is it true that Varln[x¢ 4 (1 — x)n] <
max(Varln &, Varlnn) for xe(0,1)?

Query (b) asks whether the logarithmic variance is a quasi-convex functional. Ques-
tions (a) and (b) can also be stated for volatility defined as the square root of logarithmic
variance. They will have the same answers because the square root is a strictly monotone
function. Positive answers to these questions would substantiate the above conjecture of
volatility reduction—negative, refute it.

It turns out that in general (without additional assumptions on ¢ and #) the above
questions 4.3(a) and 4.3(b) have negative answers. To show this consider two i.i.d. random
variables U and V with values 1 and a > 0 realized with equal probabilities. Consider the
function

f(y):=VarlnyU + (1 —y)V], ye€]0,1]. (4.14)

By evaluating the first and the second derivatives of this function at y = 1/2, one can show
the following. There exist some numbers 0 <a_ <1 and a, >1 such that the function f(y)
attains its minimum at the point y = 1/2 when a belongs to the closed interval [a_, a, ] and
it has a local maximum (!) at y =1/2 when a does not belong to this interval. The numbers
a_ and a, are given by

a, =2e* —141/(2e* —1)" -1,

where a_ ~0.0046 and a, ~216.388. If a € [a_, a_], the function f(y) is convex, but if
a¢ [a_,a,], its graph has the shape illustrated in Figure 4.1.

Fix any a for which the graph of f(y) looks like the one depicted in Figure 4.1. Consider
any number y, <1/2 which is greater than the smallest local minimum of f(y) and define
E=ypU+(1—-y)V and n:=y,V+ (1 —y,)U. (U and V may be interpreted as
‘factors’ on which the returns & and m on the two assets depend.) Then Varln|[(¢ +
1)/2] >Varln ¢ = Varlnn, which yields a negative answer both to (a) and (b). In this

f)

|

K /_\\Jy

0 1/2 1

FIGURE 4.1 Graph of the function f(y) in Equation (4.14) for a = 10%,
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example ¢ and # are dependent. It would be of interest to investigate questions (a) and (b)
for general independent random variables ¢ and #. It can be shown that the answer to (b)
is positive if one of the variables ¢ and 7 is constant. But even in this case the function
VarIn[x¢ 4 (1 — x)#] is not necessarily convex: it may have an inflection point in (0, 1),
which can be easily shown by examples involving two-valued random variables.

Thus it can happen that a mixed portfolio may have a greater volatility than each of the
assets from which it has been constructed. Consequently, the above conjecture and the
‘energy interpretation’ of volatility are generally not valid. It is interesting, however, to find
additional conditions under which assertions regarding volatility reduction hold true. In
this connection, we can assert the following fact.

Theorem 4.4: Let U and V be independent random variables bounded above and below by
strictly positive constants. If U is not constant, then Var In[ yU + (1 — y) V] < Var In U for all
y€(0,1) sufficiently close to 1.

Volatility can be regarded as a quantitative measure of instability of the portfolio value.
The above result shows that small independent noise can reduce volatility. This result is
akin to a number of known facts about noise-induced stability, e.g. Abbott (2001) and
Mielke (2000). An analysis of links between the topic of the present work and results about
stability under random noise might constitute an interesting theme for further research.

Proof of Theorem 4.4: This can be obtained by evaluating the derivative of the function
fly) defined by (4.14) at y = 1. Basic computations show that

f'(1) = 2(EV )(—Ee “Z + Ee % - EZ), (4.15)

where Z=In U. The assertion of the theorem is valid because f'(1) > 0. The verification of

this inequality is based on the following fact. If ¢(z) is a function on ( — 00,4+ 00) with
¢'(z) >0, then

E[Z¢(Z)]> (E2)E¢(Z) (4.16)

for any non-constant bounded random variable Z. This fact follows from Jensen’s
inequality applied to the strictly convex function ¥(x):= [ ¢(z)dz and from the
relation Y(y) — y(x) > ¢(x)(y —x) (to obtain (16) put x:=Z2, y:=EZ and take the
expectation). By applying (16) to ¢(z) := —e %, we find that the expression in (4.15) is
positive. O

4.6 VOLATILITY-INDUCED GROWTH UNDER SMALL
TRANSACTION COSTS

We now assume that, in the market under consideration (see Section 4.2), there are
transaction costs for buying and selling assets. When selling x units of asset k at time ¢, one
receives the amount (1 — &*)S¥x (rather than S)fx as in the frictionless case). To buy x
units of asset k, one has to pay (1 —|—sﬁ)5th. The numbers sf,af >0, k=1,2,..., K
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(the transaction cost rates) are assumed given. In this market, a trading strategy
H = (hy, hy,...) is self-financing if

K K
S (14eb)sknf—nf), <> (1 —ef)sknt, —nf) =1, (4.17)
k=1

k=1

where x, = max{x, 0}. Inequality (4.17) means that asset purchases can be made only at
the expense of asset sales.
Relation (4.17) is equivalent to

K K
Z Stk(htk - ht]il) < - Zgistk(htk - htlil)+_ zgfstk(hzlil - htk)+
k=1

k

Il
-
o~
Il
-

(which follows from the identity x, — (—x), = x). Therefore, if the portfolio h, differs
from the portfolio h,_, in at least one position k for which &f # 0 and ¢* # 0, then
S,h, <S,h,_,. Thus, under transaction costs, portfolio rebalancing typically leads to a loss
of wealth. The number S,h,/S,h,_, <1 is called the loss coefficient (of the portfolio
strategy H at time ?).

We say that H = (hy, h,,...) is a constant proportions strategy with vector of
proportions A= (1',...,2X) € A if S*hF=1"S,h, for allk=1,2,...,K and
t=1,2,... (cf. (4)). Let 6€(0,1) be a constant. Given a vector of proportions 1 =
(2',...,25) € A and a non-zero initial portfolio h,> 0, define recursively

hk o (1 B 5)/1k5tht—1
t Sk

t

(k=1,2,....K, t=1,2,...). (4.18)

This rule defines a trading strategy with constant investment proportions 4',..., 2% and a
constant loss coefficient 1 —98. We will call it the (6, 4)-strategy.

Theorem 4.5 below extends the results of Theorems 4.1 and 4.2 to the model with
transaction costs. As before, we assume that hypotheses (R) and (V) hold.

Theorem 4.5: Let A = (1',...,A%) € A be a strictly positive vector. If 6 €(0,1) is small
enough, then the (0, A)-strategy H defined by (4.18) has a growth rate strictly greater than
Zszl 2p* (as.), and so ifp' =--- = pX = p, then the growth rate of H is strictly greater
than p (a.s.). Further, if the transaction cost rates ek, sf >0, k=1, 2, ..., K, are small
enough (in particular, if they do not exceed J/2), then the strategy H is self-financing.

The purpose of this theorem is to demonstrate that the results on volatility-induced
growth remain valid under small transaction costs. In contrast with a number of the
questions we considered previously, the answer to the question we pose here is quite
predictable and does not contradict intuition. We deal in Theorem 4.5 with constant
proportions strategies of a special form—those for which the loss rate is constant (and
small enough). We are again not concerned with the question of optimality of such
strategies for one criterion or another.
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Proof of Theorem 4.5: We first observe that the growth rate of the strategy H is equal to
Eln[(1 — 0)R,A]. This fact is proved exactly like (4.11) (simply multiply the vectors of
proportions in (4.8), (4.9), (4.10) and (4.11) by (1 —0)). According to (4.12), we have
EIn(RA)> S5 2*p*. This inequality will remain valid if A is replaced by (1 —0)4,
provided 0 €(0, 1) is small enough. Fix any such 0 €(0, 1). Denote by € the greatest of the
numbers ¢¥, ¢¥. It remains to show that H is self-financing when ¢ < /2. To this end we
note that inequality (4.17) is implied by

which is equivalent to
K
SZ‘Stkhtk - Stkhtlil‘ < St(htfl - ht) (4'19)
k=1

In view of (4.18), the right-hand side of the last inequality is equal to 6S,h,_,, and the left-
hand side can be estimated as follows:

K K K
SZ ‘(1 - 6)}“k5tht71 - thffl‘ <e Z(l - 5)ikstht71 + SZ thffl
k=1 k=1 k=1
=¢&(1 —9)S,h,_, +&S,h,_, <2eS,h,_,.
Consequently, if 0 < ¢ < 6/2, then the strategy H is self-financing. a

4.7 GROWTH UNDER TRANSACTION COSTS: AN EXAMPLE

In this section we consider an example (a binomial model) in which quantitative estimates
for the size of the transaction costs needed for the validity of the result on volatility-
induced growth can be provided. Suppose that there are two assets k = 1,2: one riskless
and one risky. The price of the former is constant and equal to 1. The price of the latter
follows a geometric random walk. It can either jump up by u > 1 or down by u~ ' with
equal probabilities. Thus both securities have zero growth rates.

Suppose the investor pursues the constant proportions strategy prescribing to keep
50% of wealth in each of the securities. There are no transaction costs for buying and
selling the riskless asset, but there is a transaction cost rate for buying and selling the risky
asset of ¢ € (0,1). Assume the investor’s portfolio at time t — 1 contains v units of cash;
then the value of the risky position of the portfolio must be also equal to v. At time ¢, the
riskless position of the portfolio will remain the same, and the value of the risky position
will become either uv or 1~ 'v with equal probability. In the former case, the investor
rebalances his/her portfolio by selling an amount of the risky asset worth A so that

v+ (1 —e)A=vu—A. (4.20)
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by selling an amount of the risky asset of value A in the current prices, the investor receives
(1 —&)A, and this sum of cash is added to the riskless position of the portfolio. After
rebalancing, the values of both portfolio positions must be equal, which is expressed in
(4.20). From (4.20) we obtain A= v(u—1)(2—¢) '. The positions of the new
(rebalanced) portfolio, measured in terms of their current values, are equal to
v+ (1 —e)A= v[I1+ (1 —¢)(2—¢) '(u—1)]. In the latter case (when the value of the
risky position becomes u '), the investor buys some amount of the risky asset worth B,

for which the amount of cash (1 + ¢)B is needed, so that
v—(1+¢&B=u"'v+B.

From this, we find —B=1v(u"'—1)(2+¢) ', and so v— (1+¢&)B=v[l + (1 +¢)
2+e) '(ut —1))

Thus, the portfolio value at each time ¢ is equal to its value at time t — 1 multiplied by
the random variable ¢ such that P{¢ = ¢’} = P{{ = ¢"} = 1/2, where g’ :== 1+ (1 +¢)
(2+¢) (u'—1)andg” :=1+ (1 —¢) x (2—¢&) '(u— 1) . Consequently, the asymp-
totic growth rate of the portfolio value, EIn¢ = (1/2)(Ing’+1ng”), is equal to
(1/2)In ¢ (e, u), where

(e, 1) = 1+(1+e)“21+_81] [H(I_S)Z:j'

We have EIn¢ >0, i.e. the phenomenon of volatility induced growth takes place, if
¢(¢,u)>1. For ¢ € [0, 1), this inequality turns out to be equivalent to the following very
simple relation: 0 < &< (u — 1)(u+ 1) '. Thus, given u > 1, the asymptotic growth rate
of the fixed-mix strategy under consideration is greater than zero if the transaction cost
rate ¢ is less than &*(u) := (u— 1)(u+1)"". We call &*(u) the threshold transaction cost
rate. Volatility-induced growth takes place—in the present example, where the portfolio is
rebalanced in every one period>—when 0 < &<&*(u).

The volatility ¢ of the risky asset under consideration (the standard deviation of its
logarithmic return) is equal to In u. In the above considerations, we assumed that c—or
equivalently, u—is fixed, and we examined ¢ (e, u) as a function of ¢. Let us now examine
¢ (e, u) as a function of u when the transaction cost rate ¢ is fixed and strictly positive. For
the derivative of ¢ (e, u) with respect to u, we have

1+¢e|l—¢
¢l (e,u) = [ —uz}.
4—g2[1+¢

If u=1, then ¢ (¢1)<0. Thus if the volatility of the risky asset is small, the
performance of the constant proportions strategy at hand is worse than the performance of
each individual asset. This fact refutes the possible conjecture that ‘the higher the volatility,

% For the optimal timing of rebalancing in markets with transaction costs see, e.g. Aurell and Muratore (2000).
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the higher the induced growth rate! Further, the derivative ¢/ (¢, u) is negative when
u € [0, ux(e)), where ux(e) == (1 — &) ~"/*(1 + &) /%, For u = ux(¢) the asymptotic growth
rate of the constant proportions strategy at hand attains its minimum value. For those
values of u which are greater than ux(¢), the growth rate increases, and it tends to infinity
as u—o00. Thus, although the assertion ‘the greater the volatility, the greater the induced
growth rate’ is not valid always, it is valid (in the present example) under the additional
assumption that the volatility is large enough.

4.8  CONCLUSION

In this chapter we have established the surprising result that when asset returns are

stationary ergodic, their volatility, together with any fixed-mix trading strategy, generates
a portfolio growth rate in excess of the individual asset growth rates. As a consequence,
even if the growth rates of the individual securities all have mean zero, the value of a fixed-
mix portfolio tends to infinity with probability one. By contrast with the 25 years in which
the effects of ‘volatility pumping’ have been investigated in the literature by example, our
results are quite general. They are obtained under assumptions which accommodate
virtually all the empirical market return properties discussed in the literature. We have in
this chapter also dispelled the notion that the demonstrated acceleration of portfolio
growth is simply a matter of ‘buying lower and selling higher” The example of Section 4.3
shows that our result depends critically on rebalancing to an arbitrary fixed mix of
portfolio proportions. Any such mix defines the relative magnitudes of individual asset
returns realized from volatility effects. This observation and our analysis of links between
growth, arbitrage and noise-induced stability suggest that financial growth driven by
volatility is a subtle and delicate phenomenon.
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5.1 INTRODUCTION

r I 1 HE PORTFOLIO SELECTION PROBLEM is one of the basic problems within the research
area of computational finance. It has been studied intensively throughout the last

50 years, producing several relevant contributions described in the specialized
literature. Portfolio selection originates from the seminal paper of Markowitz (1952),
who introduced and motivated the mean-variance investment framework. This conven-
tional approach to portfolio selection, which has received increasing attention, consists of
two separate steps. The first step concerns distributional assumptions about the behaviour
of stock prices, while the second step is related to the selection of the optimal portfolio
depending on some objective function and/or utility function defined according to the
investor’s goal. This conceptual model has proved in the past to be useful in spite of the
many drawbacks that have been pointed out by finance practitioners, private investors and
researchers. Indeed, the first step, related to distributional assumptions concerning the
behaviour of stock prices, encounters many difficulties because the future evolution of
stock prices is notoriously difficult to predict, while the selection of a distribution class
inevitably brings a measure of arbitrariness. These problems become even more evident
and dramatic in the case where there are reasons to believe that the process that governs
stock price behaviour changes over time.
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A different approach to portfolio selection, to overcome the main limitations and
problems related to the mean variance approach, has been proposed by Cover (1991a, b).
The main characteristic of Cover’s approach to portfolio selection is that no distributional
assumptions on the sequence of price relatives are required. Indeed, within Cover’s
investment framework, portfolio selection is based completely on the sequence of past
prices, which is taken as is, with little, if any, statistical processing. No assumptions are
made concerning the family of probability distributions that describes the stock prices, or
even concerning the existence of such distributions. To emphasize this independence from
statistical assumptions, such portfolios are called universal portfolios. It has been shown
that such portfolios possess important theoretical properties concerning their asymptotic
behaviour and exhibit reasonable finite time behaviour. Indeed, it is well known (Bell
and Cover 1980; Algoet and Cover 1988; Cover 1991a) that if the price relatives are
independent and identically distributed, the optimal growth rate of wealth is achieved by a
constant rebalanced portfolio, i.e. an investment strategy that keeps fixed through time,
trading period by trading period, the distribution of wealth among a set of assets. In
recent years, constant rebalanced portfolios have received increasing attention (Auer and
Warmuth 1995; Herbster and Warmuth 1995; Helmbold et al. 1996; Singer 1997; Browne
1998; Vovk and Watkins 1998; Borodin et al. 2000; Gaivoronski and Stella 2000, 2003) and
have also been studied in the case where transaction costs are involved (Blum and Kalai
1998; Evstigneev and Schenk-Hoppe 2002).

It is worth noting that the best constant rebalanced portfolio, as well as the universal
portfolio, are designed to deal with the portfolio selection problem in the case where no
additional information is available concerning the stock market. However, it is common
practice that investors, fund managers and private investors adjust their portfolios, i.e.
rebalance, using various sources of information concerning the stock market which can be
conveniently summarized by the concept of side-information. A typical example of side-
information originates from sophisticated trading strategies that often develop signalling
algorithms that individuate the nature of the investment opportunity about to be faced. In
this context, the side-information is usually considered to be a causal function of past stock
market performance. Cover and Ordentlich (1996) presented the state constant rebalanced
portfolio, i.e. a sequential investment algorithm that achieves, to first order in the exponent,
the same wealth as the best side-information-dependent investment strategy determined in
hindsight from observed market and side-information outcomes. The authors, at each
trading period t = {1, ..., n}, used a state constant rebalanced portfolio investment
algorithm that invests in the market using one of k distinct portfolios x(1), ..., x(k)
depending on the current state of side-information y,. They established a set of allowable
investment actions (sequence of portfolio choices x;), and sought to achieve the same
asymptotic growth rate of wealth as the best action in this set, not in any stochastic sense,
but uniformly over all possible sequences of price relatives and side-information states.

In this chapter we study and analyse the topic proposed by Cover and Ordentlich
(1996). Attention is focused on the interplay between constant rebalanced portfolios and
side-information. A mathematical framework is proposed for dealing with constant
rebalanced portfolios in the case where side-information is available concerning the stock
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market. The mathematical framework introduces a new investment strategy, namely the
mixture best constant rebalanced portfolio, which directly exploits the available
side-information to outperform, in terms of the achieved wealth, the best constant
rebalanced portfolio determined in hindsight, i.e. by assuming perfect knowledge of future
stock prices. We provide a mathematical comparison of the achieved wealth by means of
the best constant rebalanced portfolio and its counterpart, namely the mixture best
constant rebalanced portfolio. The mixture best constant rebalanced portfolio is shown to
outperform the best constant rebalanced portfolio by an exponential factor in terms of the
achieved wealth. In addition, we present an online investment algorithm, namely
the mixture successive constant rebalanced portfolio with side-information, that relies on
the mixture best constant rebalanced portfolio and side-information. The proposed online
investment algorithm assumes the existence of an oracle, which, by exploiting the available
side-information, is capable of predicting, with different levels of accuracy (Han and
Kamber 2001), the state of the stock market for the next trading period. The empirical
performance of the online investment algorithm is investigated using a set of numerical
experiments concerning four major stock market data sets, namely the Dow Jones
Industrial Average, the Standard and Poor’s 500, the Toronto Stock Exchange (Borodin
et al. 2000) and the New York Stock Exchange (Cover 1991b; Helmbold et al. 1996). The
results obtained emphasize the relevance of the proposed sequential investment strategy
and underline the central role of the quality of the side-information in outperforming the
best constant rebalanced portfolio.

The remainder of the chapter is organized as follows. In Section 5.2 we introduce the
notation and main definitions concerning the stock market, the price relative, the constant
rebalanced portfolio and the successive constant rebalanced portfolio (Gaivoronski and
Stella 2000). Side-information, the mixture best constant rebalanced portfolio and the
mixture successive constant rebalanced portfolio are introduced and analysed in Section
5.3. Section 5.3 is concerned with the theoretical framework for online investment in the
case where side-information is available and provides the theoretical analysis and
comparison between the best constant rebalanced portfolio, the mixture best constant
rebalanced portfolio and the mixture successive constant rebalanced portfolio. Finally,
Section 5.4 presents and comments on the results of a set of numerical experiments
concerning some of the main financial market data sets described in the specialized
literature (Cover 1991b; Helmbold et al. 1996; Borodin et al. 2000).

5.2 CONSTANT REBALANCED PORTFOLIOS

Following Cover (1991b), a stock market vector is represented as a vector

2=z, ..., 2,),

such that z; >0, Vi=1, ..., m, where m is the number of stocks and z is the price relative,
i.e. it represents the ratio of the price at the end of the trading period to the price at the
beginning of the trading period.
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A portfolio is described by the vector

x=(x, ..., X,),

such that

m
XEX:{x]xiZO, Vizl,...,m,in:I}.
i1

The portfolio x is an allocation of the current wealth across the stocks in the sense that x;
represents the fraction of wealth invested in the ith stock.

By assuming that x and z represent, respectively, the portfolio and the stock market
vector for one investment period, the wealth relative (i.e. the ratio of the wealth at the end
of the trading period to the wealth at the beginning of the trading period), given by

S=x"z,

represents the factor by which the wealth increases/decreases in one investment period
using portfolio x.

The problem of portfolio selection consists of selecting a portfolio x that would
maximize S in some sense. Financial theory has developed various notions of optimality
for the portfolio selection problem. One possibility is to maximize the expected value of
S subject to a constraint on the variance as proposed by the Sharpe—Markowitz theory
of investment (Markowitz 1952), which deals with the long-term behaviour of fixed
portfolios. However, the mean-variance investment framework does not take into proper
account the possibilities of frequent portfolio rebalances, which are one of the most
important features characterizing a stock market.

To overcome this limitation, another possibility for the portfolio selection problem was
proposed and described by Cover (1991a, b) that exploits the concept of the constant
rebalanced portfolio (CRP), i.e. a portfolio such that, after each trading period, it is
arranged in order to keep constant the fraction of wealth invested in every stock. By
considering an arbitrary non-random sequence of 7 stock market vectors zV, ... z", a
CRP x achieves wealth

S(x,n) = Hxsz,
t=1

where we assume that the initial wealth (# =0) is normalized to 1 (S(x,0) =1).

Within the class of constant rebalanced portfolios (CRPs), the best of such portfolios
determined in hindsight, namely the best constant rebalanced portfolio (BCRP), i.e. the
CRP computed by assuming perfect knowledge of future stock prices, possesses interesting
properties. Indeed, Cover (1991a, b) showed that the wealth achieved by means of the
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BCRP is not inferior to that achieved by the best stock, to that associated with the value
line and to that associated with the arithmetic mean.

These properties have motivated increasing interest in the study and analysis of the
main features of this investment strategy and the use of this portfolio as the reference
benchmark to evaluate and compare sequential investment strategies.

Let us now formally introduce the BCRP x(") that solves the following optimization
problem:

max S(x, n). 5.1
nax S(x, n) (5.)
The vector X" maximizes the wealth S(x,n) across the stock market vector sequence
2V, .. z™ and therefore it is defined as the BCRP for the stock market vector sequence
Z(l) z(n)

The portfolio 52(”) cannot be used, however, for actual stock selection, at trading period

n, because it explicitly depends on the sequence z'", .. ., z™

which becomes known only
after the expiration of this time interval.

Therefore, a reasonable objective might be to construct a sequence of portfolios {x(},
i.e. a sequential investment strategy such that, at trading periods t =2, .. ., n, the portfolio
x, used for stock selection, depends on the sequence z2V, ..,z Y. Let us denote by
S ({x'”}, n) the wealth generated after » trading periods by successive application of the

sequence of portfolios {x'”}, then

S({x},m) = [ x"2".

It would be desirable if such a sequential investment strategy {x'”} would yield wealth in
some sense close to the wealth obtained by means of the BCRP %", One such strategy was
proposed by Cover (1991b) under the name of the universal portfolio (UP) and consists of
selecting the investment portfolio as follows:

X = (l l) gy = JxSCo ) dx (5.2)
’ Jx S(x,t) dx

LA

The UP (5.2) has been shown by Cover (1991a) to possess a very interesting property: it
has the same exponent, to first order, as the BCRP. Formally, by letting

S({x},n) = [[x""2"
t=1
be the wealth achieved by means of the UP, then it has been shown that

1 log S({im}, n) — 1 log S()*(("), n) —0,
n n
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with the following inequality holding:

S({E}, ) = SE",my I,

where C, tends to some limit along subsequences for which

w(E” ) = Llog sG”, n) — w(E")
n

for some strictly concave function W(x) (see theorem 6.1 of Cover 1991a).

Another example of an investment strategy that exploits the definition of BCRP has
been proposed by Gaivoronski and Stella (2000). This strategy, called the successive
constant rebalanced portfolio (SCRP), selects the investment portfolio as follows:

~ 1 1 ~
XM = <, e ,), XD = arg max S(x, t),
m m xeX

where X = {x:x,>0, Vi=1,...,m, >i' x,=1}. The SCRP {X(} possesses inter-
esting properties. Indeed, its asymptotlc wealth S ({SE(’)}, n) coincides with the wealth
obtained by means of the BCRP to first order in the exponent, i.e.

! log S({x\"}, n) — ! log S()*(("), n) — 0,
n n

with the following inequality holding:

SH{EY, n) > S, n)C(n— 1), (5.4)

where K = sup, .y ||V, [In(x"z")]||, while C and & are constants.

5.3 ONLINE INVESTMENT WITH SIDE-INFORMATION

BCRP, UP and SCRP are investment strategies designed to deal with the portfolio selection
problem in the case where no additional information is available concerning the stock
market. However, it is common practice that investors, fund managers and private

investors adjust their portfolios, i.e. rebalance, using various sources of information
concerning the stock market, which can be conveniently summarized by the concept of
side-information.

A typical example of side-information originates from sophisticated trading strategies
that often develop signalling algorithms that individuate the nature of the investment
opportunity about to be faced. In this context, side-information is usually considered to be a
causal function of past stock market performance. Therefore, the availability of side-
information concerning the stock market calls for the definition of a new investment
benchmark, other than the BCRP, capable of appropriately exploiting side-information
about the stock market. In this direction, Cover and Ordentlich (1996) proposed the state
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constant rebalanced portfolio, which is capable of appropriately exploiting the available side-
information concerning the stock market. The state constant rebalanced portfolio achieves,
to first order in the exponent, the same wealth as the best side-information-dependent
investment strategy determined in hindsight from the observed stock market vector and
side-information outcomes.

Following the main ideas of Cover and Ordentlich (1996) we propose and describe a
theoretical framework for online investment in the case where side-information is
available concerning the stock market. We propose a mathematical model for the stock
market in the presence of side-information and define a new investment benchmark that
appropriately exploits the available side-information.

The proposed mathematical model assumes that, at any trading period ¢, the stock
market can be in one of H possible states belongingto H = { 1, ..., H}. The stock market
state at trading period t influences the stock market vector z'”. Formally, the model
assumes that the infinite sequence of stock market vectors z("), ... z(>) is a realization
from a mixture consisting of H components. Each mixture’s component is associated with
a given stock market state. Therefore, any infinite sequence of stock market vectors
zW ...,z partitions into H mutually exclusive subsets Z,,...,Z,, each subset Z,
containing those stock market vectors associated with the corresponding stock market
state h. It should be emphasized that the partitioning Z,, ..., Z, is assumed to be data
independent, i.e. it does not depend on the given infinite sequence of stock market vectors
2, ...z, but it only depends on the mixture’s components. The same model applies
to finite stock market vector sequences z'',...,z(". However, in order to avoid
confusion, for any given finite stock market vector sequence zV, ... z", we will let
Z;ln) be the subset containing only those stock market vectors 29 t=1, ..., n, associated
with the stock market state h. Furthermore, we let 11;1") be the cardinality of ZET">,
S " = 1 and assume that n!"”

This stock market model requires the definition of a new investment benchmark, the

—ooasn—>o0, VheH.

mixture best constant rebalanced portfolio (MBCRP), in the case where side-information is
available, and can be used to make an inference about the current stock market state.
To introduce the mathematical framework for dealing with the proposed stock market
model and side-information, let us take into account the generic stock market state h and
*
let ng) solve the optimization %)roblem (5.1) for those stock market vectors z(V, ...,z
. (n) .  x(n .. . . . . .

belonging to subset Z,”, i.e. x;, " maximizes the logarithmic wealth relative associated with
stock market state h

log S, (x, n) = Z I]ZmEan) log (x"z1"). (5.5)

Let us now expand (5.5) in a Taylor series, up to second order, centred at )*(;n) to obtain
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. oy (x_)*(;"))Tz(t)
log S,,(x, n)=;”zmez;"> log (x, "2") + 700
x5 (@6 (x - %)
27
(n)
NSO,
3(6Tz<’))3

for a given vector € between x and )*(;”). Equation (5.6), by exploiting (5.5) and by
isolating the contribution for each of its four terms, can be rewritten as

log S, (x, n) —log S, ()*cin), n)

* (n)) Tz(t>

-3 (x—%) 2
IR
8 @ E) )R | - gp)%«f]

2(3 770’ 3(€720)’

(5.7)

Now, according to Gaivoronski and Stella (2000), the following conditions hold:

o Asymptotic independence
" (0 (2T
o z\(z
lim H’}f Vmin < E ”zmez;p W) > 0,>0,
t=1

where by Ymin(A) we denote the smallest eigenvalue of matrix A;
e Uniform boundedness

0<z < Z,-(t) <z', Vi

Theorem 5.2 in Gaivoronski and Stella (2000) ensures that (5.5) is strictly concave
on X uniformly over n and therefore the following inequality holds:

«(n) . (x— 5251")) 200
log S, (x,n) — log S, <xh ,n> < Z ”z<ﬂez§”> R T

= %720

5;1H «(m)||2
——lx—=x
2 h

(5.8)

Now, from optimality conditions, applied to the BCRP )*(;n), we know that, for each
stock market state h and for any CRP x, the following condition holds:
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x(n)\ T
“ (x—x, ) z
> ez gt < .
=1 z<fJeZ§1) )’EE,") Ty(1) =0, (5 9)

and, therefore, by combining (5.8) with (5.9) we can write

0y H «(m) |2

log S, ()*(;n), n) —log S,(x,n) > 5y X — X,

(5.10)

Finally, by recalling (5.8) and using the relationship between 0, and n,(f), we obtain the
inequality

2

S (5.11)

o(n 1,
log, (%, n) — log S, (x, n) > Eni )VhHX
where vy, is the lim inf of the minimum eigenvalue of the matrix

n 20Z(OT

1
5 2 bz T2

n, " =1

Let us now return to the proposed mathematical framework for dealing with stock
markets and side-information, i.e. let us take into account the case where the stock market
can be in one of H possible states belonging to H = {1, ..., H}. In such a framework,
given a sequence of stock market vectors z(, ..., z("), where each stock market vector is
associated with a given stock market state, the achleved logarithmic wealth, by means of
the investment strategy {XH } that, at each trading period f, exp101ts knowledge of the
current stock market state /1 and applies the corresponding BCRP xﬁl according to (5.5), is
given by

log S {XH , Z log S, ( xh ,n , (5.12)

whereas the logarithmic wealth achieved by means of any CRP x is given by
log S(x,n) = >, log(x"z!").

The dlfference between the logarithmic wealth achieved by means of the investment
strategy {XH } and the logarithmic wealth achieved by means of any other CRP x is given
by

logS({)?g)}, n) — log S(x, n) Z log S,,( xh , —Z log (x"z"
t=1

and from (5.11) we can write
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H

LI 1 y ol
logS({X;)}, n) —log S(x,n) > S z ”1(1 )Vth _ x; )Hz‘

h=1

Therefore, given the investment strategy {)*(gl )} and the BCRP )*((n), the following inequality
holds:

H

=EPIL s

h=1

- (5.13)

NIP—‘

log S({%y }, n) — log S(x'

The bound (5.13) strongly motivates interest in investment strategies depending on
knowledge of the current stock market state. Indeed, coming back to wealth, the following
condition holds:

S({xn) > S exp< = §;”>H2>, (5.14)

and, therefore, the investment strategy {XH } achieves a wealth that is exponential with
respect to the wealth achieved by means of the BCRP K,

Let us now give the formal definition of the MBCRP investment strategy {XH }, that, at
each trading period ¢, exploits knowledge of the current stock market state h to select and
to apply the corresponding BCRP x

Definition 5.3.1 (Mixture best constant rebalanced portfolio): Given a stock market
characterized by the states in H = {1, ..., H}, the MBCRP is defined as the following
investment strategy, i.e. the set of BCRPs:

= (&5 (5.15)

where each portfolio )*(;n) is the BCRP, according to (5.5), associated with stock market state
h. The MBCRP is the investment strategy that, at each trading period t, knows the stock
market state / and therefore invests using the corresponding BCRP X,

The MBCRP possesses an interesting property; it outperforms by an exponential factor
the corresponding BCRP in terms of the wealth achieved as stated by the following theorem.

Theorem 5.3.2: The wealth accumulated after n trading periods from the MBCRP {a*cgo}
outperforms the wealth of the corresponding BCRP x" by an exponential factor. Formally,

2). (5.16)

Proof: The proof follows directly from Equation (5.14). m|

x(n)

S({;*c(;)},n) > ( exp( Znh 74|l
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Let us now introduce an online investment strategy, namely the mixture successive
constant rebalanced portfolio (MSCRP), which approximates the MBCRP and relies on the
successive constant rebalanced portfolio (SCRP) online investment strategy introduced and
analysed by Gaivoronski and Stella (2000).

Definition 5.3.3 (Mixture successive constant rebalanced portfolio):  Given a stock market
characterized by the states in H = {1, ..., H}, the MSCRP is defined as the following
investment strategy, i.e. the set of SCRPs:

x)={{x"} &) (5.17)

where each portfolio {igp} is the SCRP associated with the stock market state h at trading

period t. The MSCRP is the investment strategy that, at each trading period ¢, knows the

stock market state h and therefore invests using the corresponding SCRP ’)ng).

The relationship between the accumulated wealth, after n trading periods, by means of
the MBCRP benchmark and by means of the MSCRP online investment strategy, is
clarified by the following theorem.

Theorem 5.3.4: For each stock market characterized by states in H = {1, ..., H}, the
MSCRP (5.17) is universal with respect to the MBCRP (5.15). Formally,

1 i 1 «(n
~log S({y}. ) —;logS({X;)}, n) — 0.

Proof: ~ From property (5.4) of the SCRP (5.3) online investment strategy, for any given
stock market state h, the following inequality holds:

S, m) < SR}, m)c® (nf) — 1) (5.18)

where C" and Q" are constants depending on the stock market state h.

Then, by combining Equation (5.12) with Equation (5.18), it is possible to write the
inequality

({3 bom) = [T sG" ) gﬁs({i,f)},n)cw(né”)—1)Q(h), (5.19)

H
h= h=1

—

and, thus, by taking the logarithm of both sides we obtain
H
log S( {)*(Hn }, Z log S {xh , 1) + Q" log (ngf') — 1) +logC™),

h—

1
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which can be rewritten as

logS({;(g)}, ) log S {XH ) Z log 1)+logC(h)).

h=1

Therefore, dividing both sides by n, it is possible to conclude that

1 e 1 «(n
—logS({x{'}.n) —;logS({X;)}, n) — 0,

which completes the proof. |
Let us now compare the MSCRP with the corresponding BCRP in terms of the
accumulated wealth after n trading periods.

Theorem 5.3.5:  For each stock market characterized by the states in H={1, ..., H}, the
accumulated wealth after n trading periods by means of the MSCRP {i}; } outperforms the
accumulated wealth by means of the corresponding BCRP x\") by an exponential factor.
Formally, we have that, for n— oo, the following inequality holds:

~(n *(n 1 u n *(\n *(n
(R} ) > S n) exp<E POICRA

h=1

2

— Q" log (n” —1) — log C(h>)>.

Proof:  Inequality (5.16) from theorem 5.3.2 states that

S} ) = 56 exp(

*(n) 2
)30 )

therefore using (5.19) it is possible to write

H
[Ts(E 3, m)c® (m? — 1)
h=1

h=1

() (1) L (o qx) s)
S({XH },n)ZS(X ,n)exp(zznlg)yhx — X 2>’

and, by taking the logarithm and reordering, we obtain the inequality
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log S({&;'}, n) — log (X", n)

*(n)

2

H

- Q"1log (112”) —1) —logC®

h=1

Now, by taking the limit # — oo, where for each stock market state h we assume that

né") — 00, we have

~(n «(n 1 & n x\n
s({xy'},n) > S(x( , n) exp (5 Z(”g v, .

h=1

*(n
— X% H

— QW log (ngfo —1) —log C(h)>).

Furthermore, we can write

‘*(n) *(n) 12

H
S (i -

h=1

N | =

S()*((n) , n) exp (

— Q" log (nglw —1) —log C(h))>

R S( exp<

and therefore it is possible to write the following inequality:

(n)

—%;"W),

which completes the proof. O

S({ig)},n) ZS( exp(

According to theorems 5.3.2, 5.3.4 and 5.3.5 the MSCRP investment strategy (definition
5.3.3) possesses interesting theoretical properties in the case where side-information is
available concerning the stock market. However, the MSCRP cannot be used directly to
invest in the stock market because, for each trading period t, it assumes perfect knowledge
about the current stock market state h, which is indeed known just after the current
trading period t has expired. Therefore, it would be desirable to develop an algorithm that,
by using past information about the stock market, makes predictions about the stock
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market state h for the next trading period t. More precisely, the algorithm to be developed
should exploit the available side-information to provide predictions about the stock
market state associated with the next trading period t.

In order to clarify how the prediction task concerning the stock market state h for the
next trading period t can be formulated and therefore to complete the proposed
mathematical framework for online investment with side-information, we adopt the
Bayesian paradigm.

In particular, we let © € R be the side-information vector and p(Ylh) the state
conditional probability density function for Y, i.e. the probability density function for the
side-information vector Y conditioned on & being the stock market state. Furthermore, we
let P(h) be the a priori probability that the stock market is in state h. Then, the posterior
probability P(hlY) that the stock market is in state h given the side-information vector Y
can be computed using the celebrated Bayes’ rule (Duda and Hart 1973) as follows:

_ p(YImP(R)

P(hY) (1)

(5.20)

The Bayes’ rule (5.20) offers a precious theoretical model for exploiting the available
side-information and therefore to make an inference concerning the stock market state for
the next trading period. However, the quantities on the right-hand side of (5.20), i.e. the
state conditional probability density p(Ylh) as well as the a priori probability P(h), are
unknown and must be estimated by combining a priori knowledge with the available data.
Several computational approaches and algorithms have been proposed and developed in
recent years and published in the specialized literature (Duda and Hart 1973; Bernardo
and Smith 2000; Duda et al. 2001; Zaffalon 2002; Congdon 2003; Zaffalon and Fagiuoli
2003) to deal with the problem of the unknown likelihood p(Ylh) and prior P(h), and
treatment of such problem is out of the scope of this chapter.

In this chapter we assume the existence of an oracle that, at each trading period ¢ and
using the available side-information vector Y, is capable of making an inference concerning
the true stock market state for trading period ¢ + 1 with different accuracy levels g (Han
and Kamber 2001). In each trading period t the oracle first accesses the available side-
information vector Yand then makes inference h concerning the stock market state h for
the next trading period t 4 1. The oracle is assumed to provide predictions with different
levels of accuracy, i.e. it is assumed that the following condition holds:

P(lh=h)=q, VheH. (5.21)

It is worth noting that condition (5.21) states that the oracle is capable of providing
predictions that, in the long run, are associated with a misclassification error equal to
1 —q with g defined as the oracle’s accuracy level.

Let us now describe an online investment algorithm that relies on the MSCRP
investment strategy and which, to make an inference concerning the stock market state for
each trading period, uses the predictions provided by means of the considered oracle.
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Algorithm 5.1 MSCRP with side-information

1. At the beginning of the first trading period take

2. At the end of trading period t=1, ... use side-information Y to make an inference
concerning the stock market state at trading period ¢ + 1. Assume the oracle makes an
inference in favour of stock market state h.

3. Letz®,... z" be the stock market vectors available up to trading period . Compute
x(+1) as the solution of the following optimization problem:

max log S, (x, t),
xeX

s=1 "z

where log S, (x,t) = >_!_| 1 oezt) log(x"z")).

The MSCRP with side-information algorithm exploits the side-information Y available
at trading period t and makes inference h = h for the next stock market state, i.e. at
trading period ¢+ 1. Then, the MSCRP with side-information algorithm exploits the
forecast /1 = h and invests in the stock market by means of the corresponding SCRP x xh
Therefore, the MSCRP with side-information algorithm approximates the MSCRP
sequential investment strategy. The theoretical properties of the MSCRP with side-
information algorithm clearly depend on the capability of correctly assessing the stock
market state for the next trading period and therefore depend on the oracle’s accuracy
level g (5.21).

5.4 NUMERICAL EXPERIMENTS

This section illustrates and comments on the results obtained from a set of numerical

experiments concerning the MSCRP with side-information algorithm in the case where
four major stock market data sets described in the specialized literature are considered.
The four stock market data sets are the Dow Jones Industrial Average, the Standard and
Poor’s 500, the Toronto Stock Exchange (Borodin et al. 2000) and the New York Stock
Exchange (Cover 1991b; Helmbold et al. 1996).

The first data set consists of the 30 stocks belonging to the Dow Jones Industrial
Average (DJIA) for the 2-year period (507 trading periods, days) starting from Jan 14,
2001 to Jan 14, 2003. The second data set consists of the 25 stocks from the Standard and
Poors 500 (S&P500) having the largest market capitalization during the period starting
from Jan 2, 1998 to Jan 31, 2003 (1276 trading periods, days). The Toronto Stock
Exchange (TSE) data set consists of 88 stocks for the 5-year period (1259 trading periods,
days) starting from Jan 4, 1994 to Dec 31, 1998. Finally, the New York Stock Exchange
(NYSE) data set consists of 5651 daily prices (trading periods) for 35 stocks for the 22-
year period starting from July 3, 1962 to Dec 31, 1984.
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We assume that each stock market is characterized by two states (H = {1, 2}) with state
h = 1 associated with trading periods for which the average value of price relatives over all
stocks is greater than one, whereas state h = 2 is associated with the remaining trading
periods. This partitioning can be conveniently interpreted as generating bull (h = 1) and
bear (h = 2) trading periods. It represents a first proposal and much effort will be devoted
to finding alternative partitioning criteria to improve the effectiveness of the MSCRP with
side-information online investment algorithm.

Numerical experiments were performed without the help of any inference device in the
sense that no computational devices were used to predict the stock market state h for the
next trading period. The inference concerning the stock market state & for the next trading
period is obtained by exploiting predictions provided by means of an oracle associated
with different accuracy levels g (5.21).

It should be noted that an accuracy level equal to one (g = 1) corresponds to perfect
knowledge of the stock market state h before the investment step takes place, thus leading
to invest according to the corresponding optimal SCRP {igf) }. The results associated with
the numerical experiments in the case where the oracle is assumed to have perfect
knowledge of the stock market state (¢ = 1) are reported in Table 5.1.

The data reported in Table 5.1 demonstrate the effectiveness of the MSCRP with
side-information: indeed, the achieved wealth significantly outperforms that achieved by
means of the corresponding BCRP algorithm. However, it is unrealistic to assume perfect
knowledge concerning the stock market state and a further investigation is required. It is of
central relevance to analyse how the MSCRP with side-information behaves in the case
where different values of the accuracy level g are considered. To this extent, a set of
numerical experiments for the DJIA, S&P500, TSE and the NYSE stock market data sets
was planned and performed by considering different values for the oracle’s accuracy level g.
The numerical experiments were organized in such a way that, at each trading period, given
the oracle’s accuracy level g, we extract a random number 7 from a uniform distribution in
the interval [0,1]. If the extracted random number r is less than or equal to the selected
oracle’s accuracy level g, i.e. if r < g, then the stock market state / for the next trading
period is correctly predicted, otherwise the stock market state is wrongly assessed. The
results are summarized for each stock market data set using the mean value of achieved
wealth by means of the MSCRP with side-information. The mean value of the wealth
is computed using the described random sampling procedure in the case where 1000
samples are extracted for each trading period and different values of the oracle’s accuracy

TABLE 5.1 Wealth for the MSCRP with Side-Information Assuming Perfect Knowledge (g = 1)

BCRP MBCRP MSCRP
DJIA 1.24 54.70 21.27
S&P500 4.07 10527.00 3750.00
TSE 6.78 591.61 45.08

NYSE 250.59 3.62E+10 1.02E410
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level g belonging to the interval [0,1]. The stock market state frequency, i.e. the percentage of
trading periods associated with each stock market state h, is reported in Table 5.2.

The results of the numerical experiments are summarized using a graphical
representation of the extra wealth obtained using the MSCRP with side-information
over the corresponding BCRP, defined as

z(n)
w— S{Xy },n) ’ (5.22)
SE™ n)
with respect to the oracle’s accuracy level g and the trading period t for each data set
(Figures 5.1-5.4).

Figures 5.1 to 5.4, where the minimum value of w (5.22) is zero, clearly show the
exponential nature of the extra wealth obtained for the MSCRP with side-information
over the corresponding BCRP. It is possible to observe the exponential nature of the extra
wealth @ for an increasing number ¢ of trading periods and depending on the oracle’s
accuracy level q.

The oracle’s accuracy level required to achieve extra wealth @ (5.22) equal to one, i.e.
the value of g such that the MSCRP with side-information achieves the same wealth as the

TABLE 5.2 Stock Market State Frequency

h=1 h=2

DJIA 0.48 0.52

S&P500 0.52 0.48

TSE 0.58 0.42

NYSE 0.53 0.47
DJIA

15

500 -

0

FIGURE 5.1 MSCRP extra wealth for the DJIA data set.
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S&P500
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600 - -

3 400

200 -

1200

FIGURE 5.2 MSCRP extra wealth for the S&P500 data set.

TSE

FIGURE 5.3 MSCRP extra wealth for the TSE data set.

corresponding BCRP, is defined as the oracle’s parity accuracy level and is reported, for
each stock market data set, in Table 5.3.

The data reported in Table 5.3 allow us to assess the effectiveness of the MSCRP with
side-information depending on the oracle accuracy level g required. It is interesting to
investigate the relationship between the extra wealth @ and the variables: number of
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NYSE

x107 Pame Y

FIGURE 5.4 MSCRP extra wealth for the NYSE data set.

TABLE 5.3 Oracle’s Parity Accuracy Levels

q

DJIA 0.60

S&P500 0.59

TSE 0.77

NYSE 0.55
TABLE 5.4 Parameter Estimates for Model (5.23) and R? Values

a9 a a as R N

DJIA 0.4272 —0.0086 —0.9871 0.0148 0.9791 51 207
S&P500 1.0097 —0.0084 —1.8281 0.0144 0.9850 128 876
TSE 0.3058 —0.0056 —0.8444 0.0075 0.9814 127 159
NYSE —3.8365 —0.0041 7.7298 0.0073 0.9880 570 751

trading periods f and oracle accuracy level q. To this end the linear regression model for
the logarithm of the extra wealth @ with four d.o.f.,

log(w) = a, + a,t + a,q + astq, (5.23)

was fitted using a different number of data points N for each stock market data set.
Parameter estimates for model (5.23) together with the corresponding R values are
reported in Table 5.4.

Finally, Figures 5.5—-5.8 plot the estimated value, using regression model (5.23), of the
logarithm of the extra wealth log(w) with respect to trading period ¢ and oracle accuracy
level q.
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DJIA

FIGURE 5.5 Estimated logarithm of the extra wealth for the DJIA data set.

S&P500

Log (w)

1200~
1000

FIGURE 5.6 Estimated logarithm of the extra wealth for the S&P500 data set.

5.5 CONCLUSIONS AND FURTHER RESEARCH DIRECTIONS

This chapter deals with online portfolio selection in the case where side-information is
available concerning the stock market. Its theoretical achievements strongly support the
further study and investigation of the class of MBCRP investment strategies. The
experimental evidence that the MSCRP with side-information investment algorithm
outperforms, in terms of the achieved wealth, the corresponding BCRP investment
algorithm by an exponential factor is a basic result of the present work. However, this
empirical achievement strongly depends on the oracle’s accuracy level. Therefore, the
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TSE

Log (w)

FIGURE 5.7 Estimated logarithm of the extra wealth for the TSE data set.

NYSE

Log (w)

FIGURE 5.8 Estimated logarithm of the extra wealth for the NYSE data set.

problem is shifted to the study and development of efficient and reliable computational
devices for predicting the stock market state, at each trading period, by exploiting the
available side-information. A second issue of interest, which probably has significant
interplay with the development of reliable prediction models, is the choice of the stock
market states. These motivations orient the next step of this research to the study and
analysis of stock market state partitioning criteria as well as to the study and development

of efficient models for the prediction of the stock market state by exploiting the available
side-information.
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6.1 INTRODUCTION

A LTERNATIVE ASSETS, INCLUDING HEDGE FUNDS, private equity and venture capital, have
gained in popularity due to the low return of equities since early 2000 and the

commensurate search by institutional investors to improve performance in order to regain
lost funding surpluses. In theory, alternative assets possess small dependencies with
traditional assets such as stocks, bonds and the general level of economic activity—GDP,
earnings and interest rates. However, a number of alternative asset categories have shown
greater dependencies than originally perceived. We focus on a special class of dynamic
(multi-stage) strategies for improving performance in the face of these issues.

To set the stage for our analysis, we describe the historical returns and risks of two
prototypical benchmarks for long-term investors in the United States: (1) 70% S&P 500
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and 30% long government bonds (70/30); and (2) 60% S&P 500 and 40% government
bonds (60/40). These two strategies have proven resilient over the last five decades with
reasonable performance during most economic conditions. We conduct our historical
evaluation over the recent 12-year period—1 January 1994 to 31 December 2005." This
interval is divided into two distinct periods—the first six years (high equity = 23.5%
annual returns), and the last six years (low equity = —1.1% annual returns). For the
tests, we employ the so-called fixed-mix rule; the portfolio composition is rebalanced to
the target mix (either 70/30 or 60/40) at the beginning of each time period (monthly). We
will show the benefits of this rule in subsequent sections.

Unfortunately, both the 70/30 and 60/40 strategies greatly under performed their long-
term averages in the second six-year period 2000—2005, leading to a massive drop in the
surpluses of pension plans and other institutional investors.

To evaluate performance, we employ two standard measures of risks—volatility, and
maximum drawdown. Other measures—value at risk, conditional/tail value at risk, and
certainty equivalent returns—are closely related to these. Risk-adjusted returns are
indicated by Sharpe and return to drawdown ratios. As a significant issue, the under
performance of the fixed-mix 70/30 and 60/40 benchmarks as well as similar approaches
over the past six years has caused severe difficulties for institutional investors, especially
pension trusts. The large drawdown values—28.9% and 22.8%, respectively, during
2000—2005 pinpoint the problems better than volatility—10.4% and 8.9%, respectively,
for the two benchmarks (Table 6.1).

How can an investor improve upon these results? First, she might discover assets that
provide higher returns than either the S&P 500 or long government bonds. Categories
such as real estate investment trusts (REIT) have done just that over the past decade.’
Investors continue to search for high performing assets.

Once a set of asset categories is chosen, there is a decision regarding the best asset
allocation. Much has been written about financial optimization models. Rather than
performing an optimization, we can search for novel diversifying assets. In this case, we
might accept equal or lower expected returns in exchange for an improved risk profile. To
this end, investors interested in achieving wide diversification might turn to assets such as
foreign equity, emerging market equity and debt, and so on. Given wide diversification, we
can apply leverage to achieve higher returns and lower (or equal) risks than the 70/30 or
the 60/40 mix. Mulvey (2005) discusses increasing diversification and associated leverage
for improving risk adjusted returns.

Alternatively, a savvy investor might dynamically modify her asset mix as conditions
warrant—moving into equity when certain indictors are met or reducing equity exposure
when other conditions occur. Such an investor applies more complex decision rules than
fixed-mix. Numerous fundamental and technical approaches are employed in this quest.
In Section 6.4, we show that many dynamic strategies can be incorporated within the
context of a multi-stage stochastic program.

! Performance results for several alternative asset categories are unavailable or suspect before 1994.
% As always, these assets are not guaranteed to provide superior results in the future.
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TABLE 6.1 Historical Returns for 70/30 and 60/40 Fixed-Mix Benchmarks and Variants (Large Drawdowns Are
Common over the Period)

S&P 500 100% 70% 60%
LB Agg. 100% 30% 40%
S&P equal weighted index 70% 60%
LB 20-year STRIPS index 30% 40%
1994-2005 Geometric return 10.5% 6.8% 9.7% 9.3% 12.5% 12.4%
Standard deviation 14.8% 4.5% 10.4% 9.1% 11.5% 10.8%
Sharpe ratio 0.45 0.66 0.56 0.61 0.76 0.80
Maximum drawdown 44.7% 5.3% 28.9% 22.8% 15.5% 11.6%
Return/drawdown 0.24 1.29 0.33 0.41 0.81 1.07
1994-1999  Geometric return 23.5% 5.9% 18.2% 16.4% 14.4% 13.5%
Standard deviation 13.6% 4.0% 10.0% 8.9% 11.2% 10.8%
Sharpe ratio 1.37 0.24 1.32 1.30 0.85 0.79
Maximum drawdown 15.4% 5.2% 10.2% 8.5% 11.8% 11.6%
Return/drawdown 1.53 1.14 1.77 1.92 1.22 1.16
2000—-2005 Geometric return —1.1% 7.7% 1.8% 2.7% 10.6% 11.3%
Standard deviation 15.2% 5.1% 10.4% 8.9% 11.8% 10.8%
Sharpe ratio —0.25 0.99 —0.09 —0.01 0.67 0.79
Maximum drawdown 44.7% 5.3% 28.9% 22.8% 15.5% 10.4%
Return/drawdown —0.03 1.47 0.06 0.12 0.69 1.09

The developed ‘overlay’ securities/strategies prove beneficial for both fixed-mix and
dynamic mix investors. To define an overlay in a simplified setting, we start with a single-
period static model. (A multi-stage version appears in the Appendix.) An un-levered,
long-only portfolio model allocates the investor’s initial capital, C, to a set of assets {I} via
decision variables x; > 0 so as to optimize the investor’s random wealth at the horizon:

[SP] Maximize U(Z,,Z,),
Subject to Z, =E(w) and Z, = Risk(w).

Y x=¢, (6.1)

i€l

W= Fx, (6.2)
i€l

The generic utility function U(e) consists of two terms—expected return and a risk func-
tion. The latter encompasses most implemented approaches, including volatility, down-
side, value-at-risk, conditional-value-at-risk and expected von Neumann Morgenstern
utility (Bell 1995). Random asset returns are identified as 7.. It is a simple matter to address
traditional leverage: we add a borrowing variable y > 0 and replace Equations (6.1) and (6.2)
with

Z’%‘SC"’}’, (6.3)
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W= T Ty, (6.4)

where the borrowing rate is 7, with perhaps an upper limit on the amount of borrowing
y < u,. To improve risk-adjusted performance, the borrowing rate needs to be low enough
so the optimal dual variable on the y >0 constraint equals zero (i.e. the constraint is
non-binding).

In contrast to traditional leverage, the overlays (called securities, positions, assets) do
not require a capital outlay. For example, two creditworthy investors might establish a
forward contract on currencies between themselves. Herein, the net returns—positive or
negative—are simply added to the investor’s horizon wealth. Under selective conditions,
futures markets approximate this possibly favourable environment. In the static model, we
expand the decision variables to include the overlays, x;>0 for je]. The relevant
constraints, replacing (6.3) and (6.4), are (6.1) and

=3+ > (-, (6.5)

i€l i€l

Importantly, due to the nature of futures markets, the overlay variables can refer to a wide
variety of underlying strategies—long-only, short-only, or long—short.> Thus, the overlay
variables x; > 0 for je] indicate the presence of a particular futures market contract (long,
short or dynamic strategy), and its size.

In this chapter, we evaluate the overlays within a classical trend-following rule (Mulvey
et al. 2004); alternative rules are worthy of future tests. For risk management purposes, we
limit at each time period the designated notional value of the overlays to a small

multiple—say 1 <m <4—of investor’s capital: ) < m=x C. Since capital is not

jer %
directly allocated for the overlays, the resulting portfolio problem falls into the domain of
risk allocation/budgeting. The static portfolio model may be generalized in a manner to
multi-stage planning models (Appendix). However, as we will see, some of the standard

features of asset performance statistics must be re-evaluated in a multi-stage environment.

6.2 FIXED-MIX PORTFOLIO MODELS AND REBALANCING GAINS

The next three sections take up multi-stage investment models via fixed-mix rules. First,

we discuss general issues relating to the fixed-mix rule; then we measure the advantages of
the overlays for improving performance within a fixed-mix context. To start, we describe
the advantages of fixed-mix over a static, buy-and-hold approach.

The topic of re-balancing gains (also called excess growth or volatility pumping) as
derived from the fixed-mix decision rule is well understood from a theoretical perspective.
The fundamental solutions were developed by Merton (1969) and Samuelson (1969) for
long-term investors. Further work was done by Fernholz and Shay (1982) and Fernholz

* An overlay asset must include a form of investment strategy, since the investment must be re-evaluated before or at
the expiration date of the futures or forward contract.
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(2002). Luenberger (1997) presents a clear discussion. We illustrate how rebalancing the
portfolio to a fixed-mix creates excess growth. Suppose that the stock price process P; is
lognormal so that it can be represented by the equation

dP, = «P,dt + oP,dz, (6.6)

where  is the rate of return of P, and ¢? is its variance, z, is Brownian motion with mean 0
and variance t.

The risk-free asset follows the same price process with rate of return equal to r and
standard deviation equal to 0. If we represent the price process of risk-free asset by B,

dB, = rB,dt. (6.7)
When we integrate (6.6), the resulting stock price process is

Pt _ Poe(ocfoz/Z)tJrazt. (68)

Clearly, the growth rate y:=a —0?/2 is the most relevant measure for long-run
performance. For simplicity, we assume equality of growth rates across all assets. This
assumption is not required for generating excess growth, but it makes the illustration
easier to understand.

Let us assume that the market consists of n stocks with stock price processes
P, ...,P,, each following the lognormal price process. A fixed-mix portfolio has a
wealth process W, that can be represented by the equation

de _ rlldpl,t NI nndPn,t
Wt Pl,t p

n,t

, (6.9)

where 7, ..., 7, are the fixed weights given to each stock (proportion of capital allocated
to each stock) which sum up to one:

Zn:ni =1 (6.10)
P

The fixed-mix strategy in continuous time always applies the same weights to stocks over
time. The instantaneous rate of return of the fixed-mix portfolio at anytime is the weighted
average of the instantaneous rates of returns of the stocks in the portfolio.

In contrast, a buy-and-hold portfolio is one where there is no rebalancing and therefore
the number of shares for each stock does not change over time. This portfolio can be
represented by the wealth process W; following

dW, = mdP,, +---+m,dP,, (6.11)

where m,, ..., m, depicts the number of shares for each stock.
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Again for simplicity, let us assume that there is one stock and a risk-free instrument in
the market. This case is sufficient to demonstrate the concept of excess growth in a fixed-
mix portfolio as originally presented in Fernholz and Shay (1982). Assume that we invest
n portion of our wealth in the stock and the rest (1 —#) in the risk-free asset. Then the
wealth process W, with these constant weights over time can be expressed as

th _ WdPt + (l _ ﬂ)dBr

: (6.12)
Wt Pt Bt
where P, is the stock price process and B, is the risk-free asset value.
When we substitute the dynamic equations for P; and B;, we get
Wt
= (r+n(o—r))dt + nadz,. (6.13)

t

As before, we assume the growth rate of the stock and the risk-free asset are equal. Hence
w—a’/2=r. (6.14)
From Equation (6.13), we can see that the rate of return of the portfolio, a,,, is
a, =r+nloe—r). (6.15)
From (6.14) this rate of return is equal to
u, =r+ne’/2. (6.16)
The variance of the resulting portfolio return is
o, =n’c’. (6.17)
Hence the growth rate of the fixed-mix portfolio becomes

— 12\ 42
_ =0 (=)o
2 2

(6.18)

This quantity is greater than r for 0 < < 1. As it is greater than r, which is the growth
rate of individual assets, the portfolio growth rate has an excess component, which is
(n — n*)o? /2. Excess growth is due to rebalancing the portfolio constantly to a fixed-mix.
The strategy moves capital out of stock when it performs well and moves capital into stock
when it performs poorly. By moving capital between the two assets in the portfolio, a
higher growth rate than each individual asset is achievable. See Dempster et al. (2007) for
a more general discussion of this phenomenon.

The buy-and-hold investor with equal returning assets lacks the excess growth
component. Therefore, buy-and-hold portfolios will under-perform fixed-mix portfolios
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in various cases. We can easily see from (6.16) that the excess growth component is larger
when ¢ takes a higher value. In this sense, the volatility of an asset is considered not as a
risk but rather can be an opportunity to create excess growth in a re-balanced portfolio
although of course from (6.17) portfolio return volatility also scales with ¢ versus ¢ for
rate of return. Surprisingly perhaps, there is no need for mean reversion in the stock price
processes. Higher performance is obtained through greater volatility in individual assets.
Accordingly as we will see in the next section, Sharpe ratios may not provide adequate
information about the marginal impact of including an asset category within a fixed-mix,
re-balanced portfolio.

6.3 EMPIRICAL RESULTS WITH HISTORICAL DATA AND FIXED-MIX
STRATEGIES

In this section, we describe the results of applying several fixed-mix decision rules to data

over the 12-year historical period summarized in Table 6.1. The purpose of these empirical
tests is to set benchmarks, to find suitable mixes of assets, and to illustrate the advantages
of the overlay variables, as compared with solely traditional assets. Of course dynamic
decision rules such as the multi-stage stochastic programs discussed in Section 6.5, may be
implemented in practice. Here again, the overlays prove to be beneficial for improving risk
adjusted returns. In the historical results the portfolio is re-balanced monthly via the
fixed-mix rule.

First, we show that re-balancing gains were readily attainable over the turbulent period
1994 to 2005 by deploying assets so as to attain wide diversification and leverage. As
described above, we follow the fixed-mix strategy—re-balancing the portfolio at the
beginning of each month. The strategies work best when the investor incurs small
transaction costs such as for tax-exempt and tax-deferred accounts. Index funds and
exchange traded funds present ideal securities since they are highly liquid and can be
moved with minimal transaction costs.

Table 6.2 depicts the returns and volatilities for a set of 12 representative asset
categories—both traditional and alternative—over the designated 12-year period—1994
to 2005. Annual geometric returns and the two risk measure values are shown. We focus
on general asset categories rather than sub-categories, such as, small/medium/large
equities, in order to evaluate general benefits. Clearly, further diversification is possible via
other investment categories.

Over the period, annual returns range from low = 2.6% (for currencies) to high =13.1%
(for real estate investment trusts, REITs). Many assets display disparate behaviour over the
two six-year sub-periods: The Goldman Sachs commodity index (GSCI) and NAREIT had
their worst showing during 1994—1999—the lowest returns and highest drawdown values,
whereas EAFE and S&P 500 had the opposite results. As a general observation, investors
should be ready to encounter sharp drops in individual asset categories. Drawdown for half
of the categories lies in the range 26% to 48% (Table 6.2).

Two of the highest historical Sharpe ratios occur in the hedge fund categories: (1) the
CSFB hedge fund index (0.87); and (2) the Tremont long/short index (0.78). In both cases,
returns are greater than the S&P 500 index with much lower volatility. This performance
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has led to increasing interest in hedge funds. Many experts believe that the median future
returns for hedge funds are likely to be lower than historical values—due in part to the
large number of managers entering the arena. And as we will see, in fact low volatility may
be a detriment for increasing overall portfolio performance by means of excess growth.
Similarly, there are advantages to combining assets with inferior Sharpe ratios and
reasonable returns, when these inferior values are caused by higher volatility.

Interestingly, by comparing the capital-weighted S&P 500 index with an equal-weighted
S&P 500,* we see that the returns for the latter are higher than the former, and with higher
volatility. The capital weighed index approximates a buy-and-hold portfolio. Extra volatility
improves overall portfolio growth for the equal weighted index (as expected from the theore-
tical results of the previous section). To a degree, the equal-weighted index achieves rebalanc-
ing gains, but also displays a tilt to mid-size over the largest companies in the S&P 500 index.

A similar issue pertains to the long-government bond index versus the 20-year strip
index. The strip category has a lower Sharpe ratio (0.43 versus 0.66) due to the extra
volatility embedded in the index. Strips are penalized by higher volatility. In contrast,
Table 6.1 depicts the superior performance of the equal-weighted equity/strip portfolios
over the traditional equity/bond portfolios. For the modified portfolio, not only is the
Sharpe ratio higher for the fixed-mix 70/30 portfolio, but the excess returns are higher due to
the higher volatility of the portfolio components—12.5% geometric return versus 11.9%
for the static portfolio. The modified 70/30 mix, although much better than the traditional
70/30 mix, moderately under performs during 2000—2005 as compared with the earlier
period—10.6% versus 14.4%, respectively. The modified 60/40 mix performs better over
the second time period, for a slightly more robust result due, in part, to the rebalancing gains
obtained from the fixed-mix rule.

What else can be done to increase performance vis-a-vis the 70/30 and 60/40
benchmarks? As a first idea, we might try adding leverage to the benchmarks.” While
the returns increase with leverage (Table 6.3), the two risk measures also increase so that
risk adjusted returns remains modest—Sharpe ratios around 0.55 and return/drawdown
around 0.30. Increasing leverage does not improve the situation. The large drawdown
values persist during the 2000—2005 period.

As the next idea, we strive to achieve much wider diversification among the asset
categories in our portfolio. To this end, we assemble an equally weighted mix (10% each)
across 10 asset categories. The resulting fixed-mix portfolio takes a neutral view of any
particular asset category, except that we disfavour assets with ultra low volatility (t-bills).
The resulting portfolio displays much better performance over the full 12-year period and
the two sub-periods (Table 6.4). In particular, the widely diversified portfolio can be
levered to achieve 10% to 15% returns with reasonable drawdowns (under 15%). The risk
adjusted returns are much better than the previous benchmarks (with or without leverage).
Clearly, there are advantages to wide diversification and leverage in a fixed-mix portfolio.

* Rydex Investments sponsors an exchange traded fund with equal weights on the S&P 500 index. See Mulvey (2005).
> We charge t-bill rates here for leverage. Most investors will be required to pay additional fees.
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TABLE 6.3 Historical Results of Leverage Applied to the Fixed-Mix 70/30 Asset Mix (Higher Returns Are

Possible, but with Higher Volatility)

1994-2005

1994-1999

2000-2005

Leverage

S&P 500 equal weighted index

LB Agg.

Geometric return
Standard deviation
Sharpe ration
Maximum drawdown
Return/drawdown
Geometric return
Standard deviation
Sharpe ration
Maximum drawdown
Return/drawdown
Geometric return
Standard deviation
Sharpe ration
Maximum drawdown
Return/drawdown

0%
70%
30%
9.7%
10.4%
0.56
28.9%
0.33
18.2%
10.0%
1.32
10.2%
1.77
1.8%
10.4%
—0.09
28.9%
0.06

20%
70%
30%
10.7%
12.5%
0.55
34.8%
0.31
20.9%
12.0%
1.33
12.4%
1.68
1.4%
12.5%
—0.10
34.8%
0.04

50%
70%
30%
12.2%
15.6%
0.54
42.9%
0.29
24.9%
15.0%
1.33
15.7%
1.59
0.9%
15.7%
—0.12
42.9%
0.02

100%
70%
30%
14.6%
20.8%

0.52
54.6%
0.27
31.7%
20.0%
1.34
21.1%
1.50
-0.3%
21.0%

—0.15
54.6%

—0.01

TABLE 6.4 Historical Results of Leverage Applied to a Widely Diversified Fixed-Mix Asset Mix (Each Asset

Takes 10% Allocation—Excellent Risk-Adjusted Performance)

1994-2005

1994-1999

2000—-2005

Leverage

LB Agg.

EAFE

NAREIT

GSCI

Hedge fund index

CSFB managed futures index

Currency index
Tremont long/short

S&P 500 equal weighted index
LB 20-year STRIPS index

Geometric return
Standard deviation
Sharpe ration
Maximum drawdown
Return/drawdown
Geometric return
Standard deviation
Sharpe ration
Maximum drawdown
Return/drawdown
Geometric return
Standard deviation
Sharpe ration
Maximum drawdown
Return/drawdown

0%
10%
10%
10%
10%
10%
10%
10%
10%
10%
10%
9.8%
6.2%
0.96
6.4%
1.54
9.6%
6.3%
0.75
6.4%
1.51
9.9%
6.2%
1.16
4.7%
2.10

20%
10%
10%
10%
10%
10%
10%
10%
10%
10%
10%
10.9%
7.4%
0.96
8.0%
1.37
10.5%
7.5%
0.75
8.0%
1.32
11.3%
7.4%
1.16
6.3%
1.81

50%
10%
10%
10%
10%
10%
10%
10%
10%
10%
10%
12.7%
9.3%
0.95
10.4%
1.22
11.9%
9.4%
0.74
10.4%
1.14
13.5%
9.3%
1.16
8.7%
1.56

100%
10%
10%
10%
10%
10%
10%
10%
10%
10%
10%
15.6%
12.4%
0.95
14.4%
1.08
14.1%
12.5%
0.73
14.4%
0.98
17.2%
12.4%
1.16
12.6%
1.35
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As the final improvement, we apply three overlay variables (commodities, currencies
and fixed income) as defined in Section 6.1. These variables employ trend following rules
based on the longstanding Mt. Lucas Management (MLM) index. Mulvey et al. (2004)
evaluate the index with regard to re-balancing gains and related measures. The MLM
index has produced equity-like returns with differential patterns over the past 30 years.
However, an important change is made for our analysis. Rather than designating t-bills for
the margin capital requirements, we assign the core assets (x; variables) for the margin
capital, consistent with the model defined in Section 6.1 (as would be the case for a multi-
strategy hedge fund). Table 6.5 displays the results. Here, we lever the overlay variables at
three values—20%, 50% and 100%—within a fixed-mix rule. In all cases, the overlays
greatly improve the risk-adjusted returns over the historical period (Sharpe and return to
drawdown ratios greater than 1 and 1.5, respectively). (See also Brennan and Schwartz
1998 where continuous dynamic programming is used to optimize a traditional three asset
model with a Treasury bond futures overlay.) The performance is positively affected by the
relatively high volatility of individual asset categories, increasing portfolio returns via re-
balancing gains. The overlay variables with the fixed-mix rule markedly improved
performance over the historical period.

TABLE 6.5 Historical Results of Overlay Variables—Fixed-Mix (Overlays Are More Efficient than Simple

Leverage)
LB Agg. 10% 10% 10% 10%
EAFE 10% 10% 10% 10%
NAREIT 10% 10% 10% 10%
GSCI 10% 10% 10% 10%
Hedge fund index 10% 10% 10% 10%
CSFB managed futures index 10% 10% 10% 10%
Currency index 10% 10% 10% 10%
Tremont long/short 10% 10% 10% 10%
S&P 500 equal weighted index 10% 10% 10% 10%
LB 20-year STRIPS index 10% 10% 10% 10%
Mt. Lucas commodity index 0% 20% 50% 100%
Mt. Lucas currency index 0% 20% 50% 100%
Mt. Lucas fixed income index 0% 20% 50% 100%
1994-2005 Geometric return 9.8% 12.4% 16.5% 23.0%
Standard deviation 6.2% 7.1% 9.7% 15.3%
Sharpe ration 0.96 1.21 1.30 1.26
Maximum drawdown 6.4% 5.8% 9.2% 15.0%
Return/drawdown 1.54 2.13 1.80 1.53
1994—-1999 Geometric return 9.6% 12.6% 17.0% 24.3%
Standard deviation 6.3% 6.7% 8.6% 13.5%
Sharpe ration 0.75 1.14 1.40 1.43
Maximum drawdown 6.4% 5.8% 9.2% 14.5%
Return/drawdown 1.51 2.15 1.85 1.68
2000—2005 Geometric return 9.9% 12.3% 15.9% 21.7%
Standard deviation 6.2% 7.6% 10.8% 16.9%
Sharpe ration 1.16 1.26 1.23 1.12
Maximum drawdown 4.7% 5.4% 8.0% 15.0%

Return/drawdown 2.10 2.27 2.00 1.45




118 M CHAPTER 6

To summarize, the historical tests illustrate that (6.1) re-balancing gains are possible
with assets displaying relatively high volatility within fixed-mix portfolios and that (6.2)
including overlay variables and leverage via fixed-mix can result in excellent risk-adjusted
performance (almost hedge fund acceptable—23% annual geometric returns). Herein to
reduce data mining concerns, we did not change the asset proportions during the period,
except to re-balance back to the target mix each month. Also, we did not optimize asset
proportions on the historical data, again to minimize data mining. The next section takes
up the advantages of applying overlays in multi-period (dynamic mix) optimization
models.

6.4 A STOCHASTIC PROGRAMMING PLANNING MODEL

A stochastic program (SP) gives the investor greater opportunities to improve

performance as a function of changing economic conditions. These models can be
constructed in two basic ways: (1) asset only, or (2) asset and liability management. We
focus on asset-only problems in this report.® It is generally agreed that the equity risk
premium changes over longer time periods. In response, a number of researchers have
developed equity valuation models. Bakshi and Chen (2005) designed a ‘fair’ equity
valuation model based on three correlated stochastic processes: interest rates, projected
earnings growth and actual earnings. The parameters of these processes are calibrated with
market data (mostly historical prices of assets). They showed that future prices of equity
assets revert on average to the calculated fair values. This type of analysis can be applied
directly to a financial planning model based on a stochastic program.

We highlight here only the major features of a stochastic program. The appendix provides
further details. Also, see Mulvey and Thorlacius (1998) and Mulvey et al. (2000). In multi-
stage stochastic programs, the evolution of future uncertainties is depicted in terms of a
scenario tree. Constructing such a tree requires attention to three critical issues: (1) the
realism of the model equations, (2) calibration of the parameters and (3) procedures to
extract the sample set of scenarios. The projection system should be evaluated with historical
data (back-testing), as well as on an ongoing basis.

Our model employs a scenario generator that has been implemented widely for pension
plans and insurance companies—the CAP:Link system (Mulvey et al. 2000). The system
develops a close connection between the government spot rate and other economic and
monetary factors such as GDP, inflation and currency movements. These connections are
described in a series of references including Mulvey and Thorlacius (1998) and Mulvey ef al.
(1999, 2000). To illustrate, we describe a pair of linked stochastic processes for modelling
the long and short interest rates. We assume that the rates link together through a correlated
white noise term and by means of a stabilizing term that keeps the long—short spread under
control. The resulting spot rates follow

% See Mulvey et al. (2000) for details of related issues in ALM.
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dr, = k,(F — r,)dt +7,(s, — 5)dt + ¢,r//*dz,,

dl, = w,(I—1)dt + y,(s, — 5)dt + ¢,11/*dz,

S

I
-
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where r, and [, are the short and long interest rate, respectively, s, is the spread between long
and short interest rates, and white noise terms dz, and dz; are correlated. The model
parameters include:

K, k;  drift on short and long interest rates,

,,7;  drift on the spread between long and short interest rates,

¢,,¢, instantaneous volatility,

T mean reversion level of short rate,

mean reversion level of long rate,

mean reversion level of the spread between long and short interest rates.

Gl o=

The second step involves parameter estimation. We calibrate parameters as a function of a
set of common factors over the multi-period horizon. For example, equity returns and
bond returns link to interest rate changes and underlying economic factors. Mulvey et al.
(1999) described an integrated parameter estimation approach. Also, Bakshi and Chen
(2005) and Chen and Dong (2001) discuss a related approach based on market prices of
assets.

Given the scenarios of traditional asset returns derived by means of the CAP:Link
system, we obtain return scenarios of the overlay variables by assuming that they are
conditionally normally distributed with the traditional asset categories according to
historical relationships. This assumption is often employed in scenario generators as a
form of a mixture model;” see Chatfield and Collins (1980) for a discussion of the general
properties.

For our tests, we developed a condensed stochastic program in order to illustrate the
issues for long-term investors. To this end, the resulting scenario tree is defined over a
nine-year planning period, with three three-year time steps. The resulting problem
consists of a modest (by current standards) nonlinear program. In this chapter, we employ
a tree with 500 scenarios.® The corresponding stochastic program contains 22,507 decision
variables and 22,003 linear constraints. On average, it takes 10—20 s to solve for each point
on the efficient frontier using a PC. Much larger stochastic programs are readily solvable
with modern computers. See Dempster and Consigli (1998), Dempster et al. (2003) and
Zenios and Ziemba (2006) for examples.

Assume that an investor can invest her capital in the following core asset categories:
treasury bills, S&P 500 index and 20-year zero coupon government bonds (STRIPS).

7 The characteristics of the return series for the overlay strategies will be similar to those of the independent variables,
such as mean reversion of interest rates and bond returns or fat tailed distributions.
8 There are 10 arcs (states) pointing out of the first node, followed by 50 arcs pointing out of the second stage nodes.
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TABLE 6.6 Summary Statistics of Scenario Data for Six Asset Classes across a Nine-Year Planning Period

20-year Commodity  Currency  Fixed income

T-bills S&P 500 STRIPS index index index
Expected return 3.17% 9.58% 8.13% 6.499% 3.29% 1.18%
Standard deviation 0.016 0.172 0.284 0.106 0.058 0.057
Sharpe ratio 0.000 0.374 0.175 0.313 0.021 —0.347
Correlation matrix
T-bills 1.000 —0.017 —0.030 0.004 0.009 0.009
S&P 500 —0.017 1.000 —0.008 —0.165 0.110 0.284
20-year STRIPS —0.030 —0.008 1.000 0.003 —0.024 —0.016
Commodity index 0.004 —0.165 0.003 1.000 0.002 —0.028
Currency index 0.009 0.110 —0.024 0.002 1.000 0.164
Fixed income index 0.009 0.284 —0.016 —0.028 0.164 1.000

In addition, she has the option to add the three previous overlay variables—commodity,
currency and fixed income futures indices. As mentioned, in the scenario generator, we
applied a conditional mean/covariance approach, based on historical relations between the
core assets and the overlay variables. Remember that the overlays do not require any
capital outlay. Table 6.6 lists the summary statistics of the generated scenario data for the
six asset classes.

Next, under a multi-period framework, we can calculate sample efficient frontiers, with
any two objectives, for example, portfolio expected geometric returns and portfolio
Volatilityg—Zl and Z, (Appendix). The first stochastic program forces the investor to
invest solely in traditional assets. In contrast, under the latter two stochastic programs, the
investor is allowed to add the overlays up to a given bound: 200% of the wealth at any
time period in the second case and 300% in the last case. Note that unlike the historical
back tests (previous sections), the allocation among overlays is no longer a fixed-mix, but
is determined by the recommendation of the optimization and therefore will vary
dynamically across time periods and scenarios.

Figure 6.1 displays the illustrative efficient frontier under the described investment
constraints.'” As expected, the solutions possessing the higher overlay bound dominate
those under the lower overlay bounds and, as before, the overlay results dominate the
traditional strategy. The larger the overlay bound, the greater potential to obtain higher
returns at the cost of higher volatilities.

For each efficient frontier, Table 6.7 lists descriptive statistics and asset allocations for
the first period of three selected points on each frontier: the maximum return point, the
minimum risk point and a compromise solution. Several observations are noteworthy.
First, for all points under both strategies, the optimization chooses to invest either
exclusively or dominantly in the commodity index for the first period. Second, although

? We advocate that the investor evaluate a wide range of risk measures. These two are employed for illustration
purposes. Mulvey et al. (2007) discuss real-world, multi-objective issues.

'% This model is a highly simplified version of an ALM system that has been implemented for the U.S. Department of
Labor. The goals of the model are to assist pension plans in recovering their lost surpluses by optimizing assets in
conjunction with managing liabilities (Mulvey et al. 2007). The unabridged system takes on the multi-objective
environment discussed in the Appendix.
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FIGURE 6.1 Efficient frontiers under three investment constraints.

the minimum risk points display the smallest volatility, they tend to have large expected
maximum drawdown compared with other points on the efficient frontier. For example,
for the minimum point under 300% overlay bound, the volatility is 2% while the
expected maximum drawdown is 23%, and for the maximum point, although the
volatility is 56%, the expected maximum drawdown is only 6%. Investors should choose
a compromise point among the objectives that fits their risk appetite. In many cases, a
compromise tends to possess reasonable trade-offs among the risk measures.

As with the historical back tests, the three overlay assets improve investment
performance. There are strong advantages to a stochastic program for assisting in financial
planning. However, in most cases, a stochastic program is more complex to implement
than a simple decision rule such as fixed-mix. Mulvey et al. (2007) demonstrated that
running a stylized stochastic program can be helpful in discovering novel, improved policy
rules.

The results of the stochastic program show that the overlay (trend following approach)
for commodities provides the best marginal risk/reward characteristics as compared with
the other overlays (trend following for currencies and fixed income). In practice,
alternative investment strategies should be considered. For example, Crownover (2006)
shows that a combination of strategies (combined with a z-score approach) improves
performance for currencies. These and related concepts can be readily applied via the
discussed models.

6.5 SUMMARY AND FUTURE DIRECTIONS

This chapter shows that risk-adjusted performance can be enhanced by adding specialized
overlays to multi-stage portfolios. We improved the returns in both the historical back-

tests with the fixed-mix rule and the stochastic programs. In the former case, with wide
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diversification, the investor benefits by the overlays within a fixed-mix rule. In this
context, we demonstrated that long-term investors can take advantage of the overlay’s
relatively high volatility. As mentioned, improvements are most appropriate for tax-
advantaged investors such as pension trusts. Further, the re-balancing gains are available at
the fund level (e.g. equal weighted S&P 500), and at the asset allocation level (for fixed-
mix). The use of overlays provides significant opportunities when linked with core asset
categories requiring capital outlays: (1) there are potential roll returns'' via the futures
markets—which reduce leverage costs, and (2) transaction costs can be often minimized
through the liquid futures market. Importantly, the Sharpe ratios, while helpful at the
portfolio level, can be misleading regarding the marginal benefit of an asset category
within a fixed-mix portfolio context since volatility is penalized.

What are potential implementation barriers? First, the fixed-mix rule requires re-
balancing the asset mix at the end of each time period. The investor must take a
disciplined approach, even in the face of large swings in asset returns, and be able to invest
in a wide range of assets. Also, transaction costs must be considered; Mulvey and Simsek
(2002) discuss approaches for addressing transaction costs through no-trade zones.
Another possible barrier involves institutional legal constraints. Additionally individual
investors may be unable to deploy equity and related assets as margin capital for their
futures positions.?

In the domain of stochastic programs, we saw that the overlays can be beneficial as well.
However, the resulting model grows exponentially as a function of the number of time
periods and scenarios. For our simple example, the nine-year model with three-year time
periods allows minimal re-balancing. A more realistic stochastic program with a greater
number of time periods, while larger, would improve the trade-off between re-balancing
gains and the extra returns derived from dynamic asset allocation in the face of changing
economic conditions. Current computational power and greater information regarding
the economic environment and patterns of asset prices helps overcome this barrier.

A continuing research topic involves the search for assets with novel patterns of return
(driven by factors outside the usual triple—interest rates, earnings and the general level of
risk premium). An example might involve selling a limited amount of catastrophe
insurance for hurricanes and earthquakes, or perhaps, taking on other weather related
risks. Another example would be the numerous long—short equity strategies that have
become available. While these securities/strategies are not currently treated as asset
categories, numerous novel futures-market instruments are under development; several
have been recently implemented by exchanges such as the CME and CBOT. Undoubtedly,
some of these instruments will help investors improve their risk-adjusted performance by
achieving wider diversification in conjunction with selective leverage.

! positive roll returns are possible when the futures market is in contango and the investor has a short position, or
when backwardation occurs and the investor has a long position in the futures market.
12 The decision depends upon the arrangement with the investor’s prime broker. Swaps are ideal in this regard.
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APPENDIX 6.A: MATHEMATICAL MODEL FOR THE MULTI-STAGE
STOCHASTIC PROGRAM

This appendix defines the asset-only investment problem as a multi-stage stochastic
program. We define the set of planning periods as T = {0, 1,...,7,7 + 1}. We focus on
the investor’s position at the beginning of period 7 + 1. Decisions occur at the beginning
of each time period. Under a multi-period framework, we assume that the portfolio is
rebalanced at the beginning of each period.

Asset investment categories—assets requiring capital outlays—are defined by set
I={1,2,...,N}, with category 1 representing cash. The remaining categories can
include broad investment groupings such as growth and value domestic and international
stocks, long-term government and corporate bonds, and real estate. The overlay variables
are defined by set ] = {1, 2,..., M}. Uncertainty is represented by a set of scenarios s€S.
The scenarios may reveal identical values for the uncertain quantities up to a certain
period—i.e. they share common information history up to that period. We address the
representation of the information structure through non-anticipativity constraints, which
require that variables sharing a common history, up to time period f, must be set equal to
each other.

For each i€l, je], teT and seS, we define the following parameters and decision
variables:

Parameters

.= 1+p;,, where p, is return of traditional asset i in period f, under

 scenario s (e.g. MulVéy et al. (2000)).
ri.—1+p;,, where p;  is return of overlay asset j in period #, under scenario s.

n] Probability that scenario s occurs - > (7 = 1.

Amount allocated to traditional asset class i, at the end of period 0, under
scenario s, before first rebalancing.

Transaction costs for rebalancing asset i in period t (symmetric transaction costs
are assumed).

B  Total overlay bound.

G™  Target assets at the horizon.
Decision variables

Amount allocated to traditional asset class i, at the beginning of period ¢, under
scenario s, after rebalancing.

Amount allocated to traditional asset class 7 at the end of period t, under
scenario s, before rebalancing.

Amount of traditional asset class i purchased for rebalancing in period ¢, under
scenario s.

Amount of traditional asset class i sold for rebalancing in period f, under
scenario .
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X; Amount allocated to overlay asset j, at the beginning of period #, under

7,t,5

scenario s.
x;;,  Amount allocated to overlay asset j at the end of period f, under scenario s.
x2~  Asset wealth at the end of time period t, under scenario s.

t,s

Given these definitions, we present the deterministic equivalent of the stochastic asset-only
allocation problem:
Model [MSP] (general structure)

Maximize u{z.,z,...,2.}, (6.A1)

where the goals are defined as functions of the decision variables (examples of various
goals are shown below):

2 = h(x),
subject to:
Zx;,s—xg’;H VseS, (6.A2)
el
Sxp 4 ks = WseS, r=1,. 041, (6.4%)
i€l i€] )
x:i = ri,t,sxi,t,s v s€ S’ I = 17 e T le Iy (6A4)
= (e~ D% VsES, t=1...,1, j€], (6.A5)
D x, SBA™T VseS t=1,...1 (6.A6)
i€l

Xips = X1 xf}jfl’s(l —0;,4) — xlsfles VseS, i#l, t=1,....,.t+1, (6.A7)

SELL
Xits — 'xltls+§ :xzt lsl_gltl E :xzt 1,s

i#1 i#l (6A8)
—b,_ ls—i—ytcof\iT Vses, t=1,...,t+1,
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xi,t,s1 = ’X:i,t,sz’x]',z‘.sl (6 A9)
=x;,, V sand s, with identical past up to time f, ‘
Risk{Z,,Z,,...,Z,} < Risk,,. (6.A10)

The objective function (6.A1) depicts a generic multi-objective optimization problem. It
can take several forms. For instance, we could employ the von Neumann—Morgenstern
utility function of the final wealth. Alternatively, we could use the classical return-risk
function Z = - Mean(x"~)+ (1 —n) - Risk(x!*~), where Mean(x") is the expected

total assets at the end of 7 and Risk(x'*7) is a risk measure of the total final wealth across
all scenarios. The weight parameter m indicates the relative importance of risk as
compared with expected wealth.

Constraint (6.A2) represents the initial total value of assets at the end of period 0.
Constraint (6.A3) depicts wealth at the end of period ¢, aggregating assets in traditional
asset classes and investment gains/losses from overlay strategies. The wealth accumulated
at the end of period ¢ before rebalancing in traditional asset class i is given by (6.A4). The
wealth accumulation due to overlay variable j at the end of period ¢ is depicted in (6.A5).
Constraint (6.A6) sets the bound for overlays for each time period and across all scenarios.
The flow balance constraints for all traditional asset classes except cash, for all periods, are
given by (6.A7). (6.A8) represents the flow balance constraint for cash. Non-anticipativity
constraints are represented by (6.A9), ensuring that the scenarios with the same past will
have identical decisions up to that period.

Risk-based constraints appear in (6.A10). Here we list a few popular goals among
numerous others. Especially, we set G™ to be the target wealth for the investor at 7+ 1.
The first goal is to maximize the expected final investor wealth at the horizon:

_ TA—
Z, = g X -
N

Both the second and the third goals quantify the risk of missing the target wealth at the
planning horizon. Goal 2 is the downside risk of the expected final wealth:

2
+
z, :Zns[(zl — ) } |

A similar goal is the downside risk of the expected final investor wealth with respect to
target wealth G™ at the horizon:

2
+
Z, - Zn{(GTA—xE’;H) ] |

s

Goal 3 is zero if and only if final wealth reaches the target under all scenarios.
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The fourth and fifth goals focus on the timing of achieving the target wealth. Goal 4
measures the expected earliest time for the investor’s assets to reach the target:

Z, = Znsinf{t : xZ?H > GTA}.

The goal Z, could be greater than 7+ 1 if the wealth could not reach the target before the
planning horizon.

Aiming at measuring the risk of missing the target date of reaching the goal, we propose
the fifth goal, the downside risk of the time to achieve the goal:

Z, = Zns [(inf{t : xZ?H > GTA} - r>+]2.

The model could be readily modified to incorporate liability-related decisions and other
investment strategies. For instance, the fixed-mix rule enforces the following constraint at
each juncture:

it, . . .
A= ITAS, for any time period t and under any scenario s,
X
t,s

where x,  is the total wealth at the beginning of period  and we define the proportion of
wealth to be /; for each asset i . Ideally, we would maintain the target proportion £ at all
time periods and under every scenario. Rebalancing under a fixed-mix rule automatically
‘buys low and sells high” However, the fixed-mix constraints induce non-convexity into
the stochastic program. Specially designed algorithms are needed to solve such a problem.
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7.1 INTRODUCTION

ISTORICALLY, THE BUSINESS OF CONDUITS, like Freddie Mac, Fannie Mae or Ginnie Mae,
has been to purchase mortgages from primary lenders, pool these mortgages into
mortgage pools, and securitize some if not all of the pools by selling the resulting
Participation Certificates (PCs) to Wall Street. Conduits keep a fixed markup on the

interest for their profit and roll over most of the (interest rate and prepayment) risk to the
PC buyers. Recently, a more active approach, with the potential for significantly higher
profits, has become increasingly attractive: instead of securitizing, funding the purchase of
mortgage pools by issuing debt. The conduit firm raises the money for the mortgage
purchases through a suitable combination of long- and short-term debt. Thereby, the
conduit assumes a higher level of risk due to interest rate changes and prepayment risk but
gains higher expected revenues due to the larger spread between the interest on debt and
mortgage rates compared with the fixed markup by securitizing the pool.

The problem faced by the conduits is an asset-liability management problem, where the
assets are the mortgages bought from primary lenders and the liabilities are the bonds
issued. Asset liability problems usually are faced by pension funds and insurance
companies. Besides assets, pension plans need to consider retirement obligations, which
may depend on uncertain economic and institutional variables, and insurance companies
need to consider uncertain pay-out obligations due to unforseen and often catastrophic
events. Asset liability models are most useful when both asset returns and liability pay-
outs are driven by common, e.g. economic, factors. Often, the underlying stochastic
processes and decision models are multi-dimensional and require multiple state variables
for their representation. Using stochastic dynamic programming, based on Bellman’s
(1957) dynamic programming principle, for solving such problems is therefore
computationally difficult, well known as the ‘curse of dimensionality. If the number of
state variables of the problem is small, stochastic dynamic programming can be applied
efficiently. Infanger (2006) discusses a stochastic dynamic programming approach for
determining optimal dynamic asset allocation strategies over an investment horizon with
many re-balancing periods, where the value-to-go function is approximated via Monte
Carlo sampling. The chapter uses an in-sample/out-of-sample approach to avoid
optimization bias.

Stochastic programming can take into account directly the joint stochastic processes of
asset and liability cash flows. Traditional stochastic programming uses scenario trees to
represent possible future events. The trees may be constructed by a variety of scenario-
generation techniques. The emphasis is on keeping the resulting tree thin but representative
of the event distribution and on arriving at a computationally tractable problem, where
obtaining a good first-stage solution rather than obtaining an entire accurate policy is the
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goal. Early practical applications of stochastic programming for asset liability management
are reported in Kusy and Ziemba (1986) for a bank and in Carino et al. (1994) for an
insurance company. Ziemba (2003) gives a summary of the stochastic programming
approach for asset liability and wealth management. Early applications of stochastic
programming for asset allocation are discussed in Mulvey and Vladimirou (1992),
formulating financial networks, and Golub et al. (1995). Examples of early applications of
stochastic programming for dynamic fixed-income strategies are Zenios (1993), discussing
the management of mortgage-backed securities, Hiller and Eckstein (1993), and Nielsen
and Zenios (1996). Wallace and Ziemba (2005) present recent applications of stochastic
programming, including financial applications. Frauendorfer and Schiierle (2005) discuss
the re-financing of mortgages in Switzerland.

Monte Carlo sampling is an efficient approach for representing multi-dimensional
distributions. An approach, referred to as decomposition and Monte Carlo sampling, uses
Monte Carlo (importance) sampling within a decomposition for estimating Benders cut
coefficients and right-hand sides. This approach has been developed by Dantzig and
Glynn (1990) and Infanger (1992). The success of the sampling within the decomposition
approach depends on the type of serial dependency of the stochastic parameter processes,
determining whether or not cuts can be shared or adjusted between different scenarios of a
stage. Infanger (1994) and Infanger and Morton (1996) show that, for serial correlation of
stochastic parameters (in the form of autoregressive processes), unless the correlation is
limited to the right-hand side of the (linear) program, cut sharing is at best difficult for
more than three-stage problems.

Monte Carlo pre-sampling uses Monte Carlo sampling to generate a tree, much like the
scenario-generation methods referred to above, and then employs a suitable method for
solving the sampled (and thus approximate) problem. We use Monte Carlo pre-sampling
for representing the mortgage funding problem, and combine optimization and
simulation techniques to obtain an accurate and tractable model. We also provide an
efficient way to independently evaluate the solution strategy from solving the multi-stage
stochastic program to obtain a valid upper bound on the objective. The pre-sampling
approach provides a general framework of modeling and solving stochastic processes with
serial dependency and many state variables; however, it is limited in the number of
decision stages. Assuming a reasonable sample size for representing a decision tree,
problems with up to four decision stages are meaningfully tractable. Dempster and
Thorlacius (1998) discuss the stochastic simulation of economic variables and related asset
returns. A recent review of scenario-generation methods for stochastic programming is
given by Di Domenica et al. (2006), discussing also simulation for stochastic program-
ming scenario generation.

In this chapter we present how multi-stage stochastic programming can be used for
determining the best funding of a pool of similar fixed-rate mortgages through issuing
bonds, callable and non-callable, of various maturities. We show that significant profits
can be obtained using multi-stage stochastic programming compared with using a single-
stage model formulation and compared with using duration and convexity hedging,
strategies often used in traditional finance. For the comparison we use an implementation
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of Freddie Mac’s interest rate model and prepayment function. We describe in Section 7.2
the basic formulation of funding mortgage pools and discuss the estimation of expected
net present value and risk for different funding instruments using Monte Carlo sampling
techniques. In Section 7.3 we discuss the single-stage model. In Section 7.4 we present the
multi-stage model. Section 7.5 discusses duration and convexity and delta and gamma
hedging. In Section 7.6 we discuss numerical results using practical data obtained from
Freddie Mac. We compare the efficient frontiers from the single-stage and multi-stage
models, discuss the different funding strategies and compare them with delta and gamma
hedged strategies, and evaluate the different strategies using out-of-sample simulations. In
particular, Section 7.6.5 presents the details of the out-of-sample evaluation of the
solution strategy obtained from solving a multi-stage stochastic program. Section 7.7
reports on the solution of very large models and gives model sizes and solution times.
Finally, Section 7.8 summarizes the results of the chapter.

While not explicitly discussed in this chapter, the problem of what fraction of the
mortgage pool should be securitized, and what portion should be retained and funded
through issuing debt can be addressed through a minor extension of the models
presented. Funding decisions for a particular pool are not independent of all other pools
already in the portfolio and those to be acquired in the future. The approach can of course
be extended to address also the funding of a number of pools with different
characteristics. While the chapter focuses on funding a pool of fixed-rate mortgages,
the framework applies analogously to funding pools of adjustable-rate mortgages.

7.2 FUNDING MORTGAGE POOLS

7.2.1 Interest Rate Term Structure

Well-known interest rate term structure models in the literature are Vasicek (1977), Cox
et al. (1985), Ho and Lee (1986), and Hull and White (1990), based on one factor, and
Longstaff and Schwarz (1992) based on two factors.

Observations of the distributions of future interest rates are obtained using an
implementation of the interest rate model of Luytjes (1993) and its update according to
the Freddie Mac document. The model reflects a stochastic process based on equilibrium
theory using random shocks for short rate, spread (between the short rate and the ten-
year rate) and inflation.

We do not use the inflation part of the model and treat it as a two-factor model, where
the short rate and the spread are used to define the yield curve. To generate a possible
interest rate path we feed the model at each period with realizations of two standard
normal random variables and obtain as output for each period a possible outcome of a
yield curve of interest rates based on the particular realizations of the random shocks.
Given a realization of the short rate and the spread, the new yield curve is constructed free
of arbitrage for all calculated yield points.

We denote as i,(m), t=1,...,T, the random interest rate of a zero coupon bond of term
m in period t.
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7.2.2  The Cash Flows of a Mortgage Pool

We consider all payments of a pool of fixed-rate mortgages during its lifetime. Time
periods t range from t=0,...,T, where T denotes the end of the horizon; e.g. T = 360
reflects a horizon of 30 years considering monthly payments. We let B, be the balance of
the principal of the pool at the end of period t. The principal capital B, is given to the
homeowners at time period ¢ = 0 and is regained through payments f; and through
prepayments o, at periods t=1,...,T. The balance of the principal is updated periodically
by

B,=B,_ (1+x)—p,—o, t=1,...,T.

The rate K is the contracted interest rate of the fixed-rate mortgage at time t = 0. We
define /4, to be the payment factor at period r=1,...,T. The payment factor when
multiplied by the mortgage balance yields the constant monthly payments necessary to
pay off the loan over its remaining life, e.g.

Ay =15/ (1 = (1 + KO)FPI%

thus,

ﬁt = ;“tBt—l'

The payment factor 4, depends on the interest rate x,. For fixed-rate mortgages the
quantity x,, and thus the quantities 4, are known with certainty. However, prepayments
o5 at periods t=1,. .., T, depend on future interest rates and are therefore random
parameters.

Prepayment models or functions represent the relationship between interest rates and
prepayments. See, for example, Kang and Zenios (1992) for a detailed discussion of
prepayment models and factors driving prepayments.

In order to determine o, we use an implementation of Freddie Mac’s prepayment
function according to Lekkas and Luytjes (1993). Denoting the prepayment rates obtained
from the prepayment function as y,, t = I,..., T, we compute the prepayments o, in
period t as

o, = q/tBtfl'

7.2.3  Funding through Issuing Debt

We consider funding through issuing bonds, callable and non-callable, with various
maturities. Let ¢ be a bond with maturity m,, ¢ € L, where L denotes the set of bonds
under consideration. Let f,; be the payment factor for period t, corresponding to a bond
issued at period 1, T <t <7 +my:
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+1, ift—1=0,
f:/tTE _<i‘r(m2)+512)7 if0<t—T<mz,

_(1+i‘c(m€)+sr€)7 if t_T:mb

where i, (m,) reflects the interest rate of a zero coupon bond with maturity m;, issued at
period 1, and s, denotes the spread between the zero coupon rate and the actual rate of
bondlissued at 1. The spread s, includes the spread of bullet bonds over zero coupon
bonds (referred to as agency spread) and the spread of callable bonds over bullet bonds
(referred to as agency call spread), and is computed according to the model specification
given in the Freddie Mac document (Luytjes 1996).

Let M denote the balance of a bond / at the time 7 it is issued. The finance payments
resulting from bond ¢ are

b _ rriaqsl _
d =M, t=r1,...,7+my,

from the time of issue (7) until the time it matures (7 +m;) or, if callable, it is called. We
consider the balance of the bullet from the time of issue until the time of maturity as

Mf:Mf, t=1,...,7+m,.

7.2.4  Leverage Ratio

Regulations require that, at any time t, t=0,...,T, equity is set aside against debt in an
amount such that the ratio of the difference of all assets minus all liabilities to all assets is
greater than or equal to a given value u. Let E; be the balance of an equity (cash) account
associated with the funding. The equity constraint requires that

B, +E — M,
B.+E
where the total asset balance is the sum of the mortgage balance and the equity balance,
B, + E;, and M, = >, M/ is the total liability balance.
At time periods t=0,. . .,T, given the mortgage balance B;, and the liability balance M,,
we compute the equity balance that fulfills the leverage ratio constraint with equality as

M, — B,(1 —
Et:#? t:O,,T

We assume that the equity account accrues interest according to the short rate i,(short),
the interest rate of a 3-month zero coupon bond. Thus, we have the following balance
equation for the equity account:
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E = Et71(1 + it—l(Short)) +e

where e; are payments into the equity account (positive) or payments out of the equity
account (negative). Using this equation we compute the payments e, to and from the
equity account necessary to maintain the equity balance E, computed for holding the
leverage ratio s

7.2.5 Simulation

Using the above specification we may perform a (Monte Carlo) simulation in order to
obtain an observation of all cash flows resulting from the mortgage pool and from
financing the pool through various bonds. In order to determine in advance how the
funding is carried out, we need to specify certain decision rules defining what to do when
a bond matures, when to call a callable bond, at what level to fund, and how to manage
profits and losses. For the experiment we employed the following six rules.

(i) Initial funding is obtained at the level of the initial balance of the mortgage pool,
M, = B,.

(ii) Since at time t = 0, M, = B, it follows that E, = [11/(1 — u)]B,, an amount that we
assume to be an endowed initial equity balance.

(iii) When a bond matures, refunding is carried out using short-term debt (non-callable
3-month bullet bond) until the end of the planning horizon, each time at the level of
the balance of the mortgage pool.

(iv) Callable bonds are called according to the call rule specification in Freddie Mac’s
document (Luytjes 1996). Upon calling, refunding is carried out using short-term
debt until the end of the planning horizon, each time at the level of the balance of the
mortgage pool.

(v) The leverage ratio (ratio of the difference of all assets minus all liabilities to all assets)
is u = 0.025.

(vi) At each time period t, after maintaining the leverage ratio, we consider a positive sum

of all payments as profits and a negative sum as losses.

According to the decision rules, when funding a mortgage pool using a single bond ¢,
we assume at time ¢ = 0 that M, = B,, i.e. that exactly the amount of the initial mortgage
balance is funded using bond /. After bond matures refunding takes place using another
bond (according to the decision rules, short-term debt, say, bond 2), based on the interest
rate and the level of the mortgage balance at the time it is issued. If the initial bond ¢ is
callable, it may be called, and then funding carried out through another bond (say, short-
term debt /). Financing based on bond / is continued until the end of the planning
horizon, i.e. until T — 7 < m;, and no more bond is issued. Given the type of bond being
used for refunding, and given an appropriate calling rule, all finance payments for the
initial funding using bond ¢ and the subsequent refunding using bond ¢ can be
determined. We denote the finance payments accruing from the initial funding based on
bond ¢ and its consequent refunding based on bond { as
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Once the funding and the corresponding liability balance M, is determined, the

required equity balance E, = E! and the payments e, = ¢/ are computed.

7.2.6  The Net Present Value of the Payment Stream

Finally, we define as
Pl=B,+a,+d/ —¢/, t=1,...,T, bb=M,—B,=0

the sum of all payments in period ¢, t=0,. . ., T, resulting from funding a pool of mortgages
(initially) using bond /.
Let I, be the discount factor for period #, i.e.

t

I = H(l + i (short)), t=1,...,T, I, =1,
k=1

where we use the short rate at time ¢, ishort), for discounting. The net present value
(NPV) of the payment stream is then calculated as

So far, we consider all quantities that depend on interest rates as random parameters. In
particular, Pf is a random parameter, since f;, o, df, and ef are random parameters
depending on random interest rates. Therefore, the net present value r, is a random
parameter as well. In order to simplify the notation we do not label any specific outcomes
of the random parameters. A particular run of the interest rate model requires 2T random
outcomes of unit normal random shocks. We now label a particular path of the interest
rates obtained from one run of the interest rate model and all corresponding quantities with
. In particular, we label a realization of the net present value based on a particular
interest rate path as r’.

7.2.7  Estimating the Expected NPV of the Payment Stream

We use Monte Carlo sampling to estimate the expected value of the NPV of a payment
stream. Under a crude Monte Carlo approach to the NPV estimation, we sample N paths
weS, N=IS|, using different observations of the distributions of the 2T random
parameters as input to the interest rate model, and we compute r{’ for each weS.
Then, an estimate for the expected net present value (NPV) of the cash flow stream based
on initial funding using bond ¢ is
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7, —%Zrz‘”.

weS

We do not describe in this document how we use advanced variance reduction
techniques (e.g. importance sampling) for the estimation of the expected net present value
of a payment stream. We refer to Prindiville (1996) for how importance sampling could be
applied.

7.2.8  The Expected NPV of a Funding Mix

Using simulation (as described above) we compute the net present value of the payment
stream r;” for each realization we S and each possible initial funding /€ L. The net present
value of a funding mix is given by the corresponding convex combination of the net
present values of the components /€L, i.e.

r’ :ng"x[, szz 1, x>0,

el lel

where x, are non-negative weights summing to one. The expected net present value of a
funding mix,

is also represented as the convex combination of the expected net present values of the
components /€L, i.e.

7.2.9 Risk of a Funding Mix

In order to measure risk, we use as an appropriate asymmetric penalty function the negative
part of the deviation of the NPV of a funding portfolio from a pre-specified target , i.e.

 __ (]
v = X, —u s
leL

«

and consider risk as the expected value of v

1
v=— Zv“.
N weS

, estimated as
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A detailed discussion of this particular risk measure is given in Infanger (1996). The
efficient frontier with risk as the first lower partial moment is also referred to as the
‘put—call efficient frontier; see, for example, Dembo and Mausser (2000).

7.3 SINGLE-STAGE STOCHASTIC PROGRAMMING

Having computed the NPVs r{’ for all initial funding options /€L and for all paths weS§,
we optimize the funding mix with respect to expected returns and risk by solving the
(stochastic) linear program

The parameter pis a pre-specified value that the expected net present value of the
portfolio should exceed or be equal to. Clearly, p < p™>* = max,{7,}. Using the model we
trace out an efficient frontier starting with p = p™ and successively reducing p until
p = 0, each time solving the linear program to obtain the portfolio with the minimum
risk ¥ corresponding to a given value of p.

The single-stage stochastic programming model optimizes funding strategies based on
decision rules defined over the entire planning horizon of T = 360 periods, where the net
present value of each funding strategy using initially bond £ and applying the decision
rules is estimated using simulation.

A variant of the model arises by trading off expected NPV and risk in the objective,
with 4 denoting the risk-aversion coefficient:

min  — Z[:Qxf —i—i% Zv‘“,

s.t. Z 'x, +v">u, weS,
7

dx=1, x>0 >0
0

For a risk aversion of A = 0, risk is not part of the objective and expected NPV is
maximized. The efficient frontier can be traced out by increasing the risk aver-
sion A successively from zero to very large values, where the risk term in the objective
entirely dominates.

This approach is very different to Markowitz’s (1952) mean variance analysis in that the
distribution of the NPV is represented through scenarios (obtained through simulations
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over a long time horizon, considering the application of decision rules) and a downside
risk measure is used for representing risk.

7.4 MULTI-STAGE STOCHASTIC PROGRAMMING

In the following we relax the application of decision rules at certain decision points within
the planning horizon, and optimize the funding decisions at these points. This leads to a
multi-stage stochastic programming formulation.

We partition the planning horizon <0,T) into n sub-horizons (T, T,),(T,, T5), ...,
(T,, T,.;), where T; = 0, and T,,, = T. For the experiment, we consider n = 4, and
partition at T} = 0, T, = 12, T5 = 60, and T, = 360. We label the decision points at time
t=T), as stage 1, at time t= T, as stage 2, and at time = T; as stage 3 decisions. Funding
obtained at the decision stages is labeled as ¢,€L,, ¢,€L,, and ¢;€L; according to the
decision stages. At time = T, at the end of the planning horizon, the (stage 4) decision
involves merely evaluating the net present value of each end point for calculating the
expected NPV and risk. In between the explicit decision points, at which funding is subject
to optimization, we apply the decision rules defined above.

Instead of interest rate paths as used in the single-stage model, we now use an interest
rate tree with nodes at each stage. We consider |S,| paths w,€S, between t=T, and
t=T,; for each node w,€S, we consider |S;| paths ws;€S; between t= T, and t= Ts; for
each node (w,,w;) € {S, x S;} we consider |S,| paths m4€S, between t=T; and t= T,
Thus, the tree has [S, xS;xS,| end points. We may denote S={S, x S; x S,} and
o = (w,,w;,w,). Thus a particular path through the tree is now labeled as w =
(w,, w;,®,) using an index for each partition. Figure 7.1 presents the decision tree of the
multi-stage model for only two paths for each period.

The simulation runs for each partition of the planning horizon are carried out in such a
way that the dynamics of the interest rate process and the prepayment function are fully
carried forward from one partition to the next. Since the interest rate model and the

54l

@, € S, (@9, w3) €(SyxS3) (g, W3, Wy) €(SyxS3xSy) =

b b

—0
—
—o
e.g. <lyr> < 4yrs > < 25yrs >
1 [ 1 [
T J T —
T, T, T, T, Time
Now
Q@ Decision node —— Simulation path (monthly)
all decisions subject to optimization application of decision rules

FIGURE 7.1 Multi-stage model setup, decision tree.
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prepayment function include many lagged terms and require the storing of 64 state
variables, the application of dynamic programming for solving the multi-stage program is
not tractable.

Let I,; be the discount factor of period t, discounted to period 1, i.e.

t

I‘ct = H (1 + ik(Short))v t>1, ITT =1,

k=t+1

where we use the short rate at time ¢, i,(short), for discounting.

Let L; be the set of funding instruments available at time T;. Funding obtained at time
T, may mature or be called during the first partition (i.e. before or at time T5), during the
second partition (i.e. after time T, and before or at time T3), or during the third partition
(i.e. after time T5 and before or at time T,). We denote the set of funding instruments
issued at time T and matured or called during the first partition of the planning horizon
as L7, the set of funding instruments issued at time T; and matured or called during the

23

second partition of the planning horizon as L;*, and the set of funding instruments
issued at time T; and matured or called during the third partition of the planning horizon
as L3, Clearly, L, = L)} UL ULZ"", for each (w,,w;,0,) € {S, X S5 x S,}.
Similarly, we denote the set of funding instruments issued at time T, and matured or
called during the second partition of the planning horizon as L,,**, and the set of funding
instruments issued at time 7, and matured or called during the third partition of the
planning horizon as L,>””. Clearly, L, = L,>’"* U L,;*”*", for each (w,,w;,®,) €
{S, x S; x S,}. Finally, we denote the set of funding instruments issued at time T3 and
matured or called during the third partition of the planning horizon as Lj;. Clearly,
L, = Ly; = L™, for each (w,,w;,w,) € {S, X S; x S, }.

For all funding instruments ¢, € L, initiated at time t = 0 that mature or are called
during the first partition, we obtain the net present values

T, Pllwz

o, t .
rzl(ll) - Iwz !

0t

[ONON

for all funding instruments ¢, € L;;" initiated at time ¢t = 0 that mature or are called
during the second partition, we obtain the net present values

T £y

rwz,w3 _ 1 Pt .

4,(12) _Iwz E : Iw3 ’
0T, t=T,+1 1Tyt

[ONONON

and all initial funding instruments ¢, € L,;”"™, initiated at time ¢ = 0 that mature or are
called during the third partition, we obtain the net present values
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T, 4w,
B 1 1 b,
£,(13) _Iwz st § : I :
0T, “T,T; t=T;+1 ~Tst

For all funding instruments ¢, € L;Z)Zw3, initiated at time = T, that mature or are called
during the second partition, we obtain the net present values

Ty by

W,,05 1 Pt
r€2(22) - Iwz Iw3 ’
0T, t=T,+1 1T,t

[ONON

and for all funding instruments ¢, € L,;" °, initiated at time t=T,, that mature or are
called during the third partition, we obtaln the net present values

T,

b,
W,,05,0,4 1 1 Pt
TEZ(ZS) - 12 Iwz 12 .
o, In,1, t=1+1 11,

We obtain for all initial funding /€ L;; initiated at time t=T; the net present values

T, Ly,
Wy,03,04 __ 1 1 Pt
rl3(33) _Iwz 1(1)3 Iw4 .
0T, *T,T; t=T,+1 ~“T;t

wzw3w4

Let N = ISl Let R = 1”2, + 1,700 + 170, RY = 1% + 155, and RY = 1,75
Let x, be the amount of fundlng 1n 1nstrument l € L 1ssued at tlme t= TI, Xy, be the
amount of funding in instrument ¢, € L, issued at time t=T), and x, be the amount of
funding in instrument ¢;€L; issued at time = Tj. Based on the computation of the net present
values, we optimize the funding mix solving the multi-stage (stochastic) linear program:

min E v’ =7,
s.t. g X, =1,
leL,
; __
- 2D w0,
é‘leLl";z bLeL,
. wz W03 __
PO D D DI
/ eLLJz()3 [ EL(/)ztug [ZELZ
D Rx, + Y R+ Y RIS —w? =0,
LEL leL, leL,

)5 ().
VHw? >u, EwC>p, ox,x7 %07 v >0,

where E w®” = (1/N)Y_ w” is the estimate of the expected net present value and E v* =
(1/N) > v is the estimate of the risk. As in the single-stage model before, the parameter p is a
pre-specified value for the expected net present value of the portfolio. Starting with p = p™,
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the maximum value of p that can be assumed without the linear program becoming infeasible,
we trace out an efficient frontier by successively reducing p from p = p™* to p = 0 and
computing for each level of p the corresponding value of risk ¥ by solving the multi-stage
stochastic linear program. The quantity p, the maximum expected net present value without
considering risk, can be obtained by solving the linear program

lEL? LEeL,
o 2 : x/ E : xwz z : 003 __
0, EL e el
(&) W, (&) W,
E waé—l—g R)x, 2—|—E RPx, ™™ —w” =0, x,,x.7,x.°">0.
"2
LEeL bLEL, lEL,

Note that the model formulation presented above does not consider the calling of
callable bonds as subject to optimization at the decision stages; rather the calling of
callable bonds is handled through the calling rule as part of the simulation. Optimizing
also the calling of callable bonds at the decision stages requires only a minor extension to
the model formulation, but this is not discussed here.

A variant of the multi-stage model arises by trading off expected net present value and
risk in the objective with A as the risk-aversion coefficient:

@, W03 __
DI D DI D DE el

ZIEL(%UJS A GLmZm} l,eL,

Z wa/ + Z Rw wz + Z Rw wzwg —w® = O,

leL; LeL, €Ly

CL)
VW >, x % X v > 0.

7.5 DURATION AND CONVEXITY

Since the payments from a mortgage pool are not constant, indeed the prepayments
depend on the interest rate term structure and its history since the inception of the pool,
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an important issue arises as to how the net present value (price) of the mortgage pool
changes as a result of a small change in interest rates. The same issue arises for all funding
instruments, namely, how bond prices change as a result of small changes in yield. This is
especially interesting in the case of callable bonds. In order to calculate the changes in
expected net present value due to changes in interest rates, one usually resorts to first- and
second-order approximations, where the first-order (linear, or delta) approximation is
called the duration and the second-order (quadratic, or gamma) approximation is called
the convexity. While the duration and convexity of non-callable bonds could be calculated
analytically, the duration and convexity of a mortgage pool and callable bonds can only be
estimated through simulation. We use the terms effective duration and effective convexity
to refer to magnitudes estimated through simulation.

7.5.1  Effective Duration and Convexity
Let

T Ptpool

p:

t=0 It

be the net present value of the payments from the mortgage pool, where PP**' = o, + 3,
and I, is the discount factor using the short rate for discounting. We compute p®, for
scenarios we S, using Monte Carlo simulation, and we calculate the expected net present
value (price) of the payments of the mortgage pool as

p=— > p”

Z

Note that the payments P/ = PP*'(i,, k =0,..., ) depend on the interest rate term

structure and its history up to period t, where 7, denotes the vector of interest rates for
different maturities at time . Writing explicitly the dependency,

p=p@, t=0,...,T).
We now define
p.=pli,+A, t=0,...,T)

as the net present value of the payments of the mortgage pool for an upward shift of all
interest rates by A%, and

p=pli,—A, t=0,...,T)

as the net present value of the payments of the mortgage pool for a downward shift of all
interest rates by A%, where A is a shift of, say, one percentage point in the entire term
structure at all periods t=1,...,T.
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Using the three points p_, p, p., and the corresponding interest rate shifts —A, 0, +A,
we compute the effective duration of the mortgage pool, as
dur = p—;er’

2Ap

and the effective convexity of the mortgage pool,

The quantities of the effective duration and effective convexity represent a local first-order
(duration) and second-order (duration and convexity) Taylor approximation of the net
present value of the payments of the mortgage pool as a function of interest. The app-
roximation considers the effects on a constant shift of the entire yield curve across all points ¢,
t = 1,..., T. The number 100 in the denominator of the convexity simply scales the resulting
numbers. The way it is computed, we expect a positive value for the duration, meaning that
decreasing interest rates result in a larger expected net present value and increasing interest
rates result in a smaller expected net present value. We also expect a negative value for the
convexity, meaning that the function of price versus yield is locally concave.

In an analogous fashion we compute the duration dur; and the convexity con; for all
funding instruments /. Let

be the net present value of the payments of the bond ¢, where d/ represents the payments
of bond £ until maturity or until it is called. We compute p{’ using Monte Carlo simulation
over we S, and we calculate the expected net present value (price) of the payments for the
bond / as

_ 1
Pz:ﬁwZG;Pf
We calculate
P =p(i, +A, t=0,...,T),
and
P =pi,— A, t=0,...,T),

the expected net present values for an upwards and downwards shift of interest rates,
respectively. Analogously to the mortgage pool, we obtain the duration of bond ¢ as
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dur( — Do _7pf+ ,
4 2Ap,
and its convexity as
_ s o5
con, = P+ Pz+27 P
100A”p,

Since in the case of non-callable bonds the payments d’ are fixed, changes in expected
net present value due to changes in interest rates are influenced by the discount factor
only. For non-callable bonds we expect a positive value for duration, meaning that
increasing interest rates imply a smaller bond value and decreasing interest rates imply a
larger bond value. We expect a positive value for convexity, meaning that the function of
expected net present value versus interest rates is locally convex. In the case of callable
bonds the behavior of the function of expected net present value versus interest rates is
influenced not only by the discount rate but also by the calling rule. If interest rates
decrease, the bond may be called and the principal returned. The behavior of callable
bonds is similar to that of mortgage pools in that we expect a positive value for duration
and a negative value for convexity.

7.5.2  Traditional Finance: Matching Duration and Convexity

Applying methods of traditional finance, one would hedge interest rate risk by
constructing a portfolio with a duration and a convexity of close to zero, respectively,
thus achieving that the portfolio would exhibit no change in expected net present value
(price) due to a small shift in the entire yield curve. Duration and convexity matching is
also referred to as immunization (see, for example, Luenberger (1998) or as delta and
gamma hedging).

In the situation of funding mortgage pools, hedging is carried out in such a way that a
change in the price of the mortgage pool is closely matched by the negative change in the
price of the funding portfolio, such that the change of the total portfolio (mortgage pool and
funding) is close to zero. Thus, the duration of the total portfolio is close to zero. In addition,
the convexity of the mortgage pool is matched by the (negative) convexity of the funding
portfolio, such that the convexity of the total portfolio (mortgage pool and funding) is close
to zero. We write the corresponding duration and convexity hedging model as

max E 1%,
7
E dur,x, — dg = dur,
7
E con,x, — ¢g = con,
7

Zxézl, x, > 0,
¢
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and
—dg™ <dg <dg™, —cg™ <cg < g™,
and expected net present value is maximized in the objective. The variable dg accounts for
the duration gap, cg accounts for the convexity gap, dg™"* represents a predefined upper

%% a predefined upper bound on the
absolute value of the convexity gap. Usually, when a duration and convexity hedged strategy

bound on the absolute value of the duration gap, and cg

is implemented, the model needs to be revised over time as the mortgage pool and the yield
curve changes. In practice, updating the funding portfolio may be done on a daily or
monthly basis to reflect changes in the mortgage pool due to prepayments and interest rate
variations.

The duration and convexity hedging model is a deterministic model, uncertainty is
considered as a shift of the entire yield curve, and hedged to the extent of the effect of the
remaining duration and convexity gap.

7.5.3  Duration and Convexity in the Single-Stage Model

In the single-stage case we add the duration and convexity constraints

Z dur,x, — dg = dur,
¢

E con,x, — cg = con,
¢

and
_dgmax S dg S dgmax, _Cgmax S Cg S Cg

to the single-stage linear program using the formulation in which expected net present
value and risk are traded off in the objective. Setting the risk aversion A to zero, only the
expected net present value is considered in the objective, and the resulting single-stage
stochastic program is identical to the duration and convexity hedging formulation from
traditional finance as discussed in the previous section. This formulation allows one to
constrain the absolute value of the duration and convexity gap to any specified level, to the
extent that the single-stage stochastic program remains feasible. By varying the duration
and convexity gap, we may study the effect of the resulting funding strategy on expected
net present value and risk.

7.5.4  Duration and Convexity in the Multi-Stage Model

In the multi-stage model we wish to constrain the duration and convexity gap not only in
the first stage, but at any decision stage and in any scenario. Thus, in the four-stage model
discussed above we have one pair of constraint for the first stage, | S,| pairs of constraints
in the second stage, and |S, x S;| pairs of constraints in the third stage. Accordingly, we
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need to compute the duration and the convexity for the mortgage pool and all funding
instruments at any decision point in all stages from one to three.

In order to simplify the presentation, we omit the scenario indices w,€S, and
(w,, ;) € {S, x S;}. Let dur, and con, be the duration and convexity of the mortgage
pool in each stage #, and dur, and con, be the duration and convexity of the funding
instruments issued at each period .

Let dur} and con! be symbols used to conveniently present the duration and convexity
of the funding portfolio at each period . In the first stage, dur] = > 1, dury x, . In the
second stage, dur) = dorer, dury x, +3°, o dury ;5% , where dur, ;) represents the
duration of the funding instruments from the first stage that are still available in the
second stage. In the third stage, dur) = Do duryx, + 30, o dur, onx, +30, o -
dur, (15, X, , where dur, (,;) represents the duration of the funding instruments issued in
the second stage still available in the third stage, and dur, ;3 represents the duration of
the funding instruments from the first stage still available in the third stage.

Analogously, in the first stage, conf = Zfle 1, congx, . In the second stage,
cony =37, ., con, x, + Y, ., cony X, , where con, () is the convexity of the funding
instruments from the first stage still available in the second stage. In the third stage,
cony =3, . CONg X, + Do, CONy X, + D oy CONy (13X, , Where cony ;) is the
convexity of the funding instruments issued in the second stage still available in the third
stage, and con, ;) is the convexity of the funding instruments from the first stage still
available in the third stage.

Thus, in the multi-stage case, we add in each stage t = 1,...,3 and in each scenario
@,€S, and (w,, ;) € {S, x S;} the constraints

dur’ — dg, = dur,,

t

F _
con, — cg, = con,,
and

—dg ™ < dg <dg™, —cg"™ <cg < g™

The variables dg,, cg, account for the duration and convexity gap, respectively, in each
decisions stage and in each of the scenarios @,€S, and (w,,m;) € {S, x S;}. At each
decision node the absolute values of the duration and convexity gap are constrained by dg,
and cg,, respectively. This formulation allows one to constrain the duration and convexity
gap to any specified level, even at different levels at each stage, to the extent that the multi-
stage stochastic linear program remains feasible.

Using the formulation of the multi-stage model, in which expected net present value
and risk are traded off in the objective, and setting the risk aversion coefficient A to zero,
we obtain a model in which the duration and convexity are constrained at each node of
the scenario tree and expected net present value is maximized. Since the scenario tree
represents simulations of possible events of the future, the model results in a duration and
convexity hedged funding strategy, where duration and convexity are constrained at the
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decision points of the scenario tree, but not constrained at points in between, where the
funding portfolios are carried forward using the decision rules. We use this as an
approximation for other duration and convexity hedged strategies, in which duration and
convexity are matched, for example, at every month during the planning horizon. One
could, in addition, apply funding rules in the simulation that result in duration and
convexity hedged portfolios at every month, but such rules have not been applied in the
computations used for this chapter.

We are now in the position to compare the results from the multi-stage stochastic
model trading off expected net present value and downside risk with the deterministic
duration and convexity hedged model on the same scenario tree. The comparison looks at
expected net present value and risk (represented by various measures), as well as
underlying funding strategies.

7.6 COMPUTATIONAL RESULTS
7.6.1  Data Assumptions

For the experiment we used three data sets, based on different initial yield curves, labeled
‘Normal, ‘Flat’ and ‘Steep.” The data represent assumptions about the initial yield curve,
the parameters of the interest rate model, and the prepayment function, assumptions
about the funding instruments, assumptions about refinancing and the calling rule, and
the planning horizon and its partitioning.

Table 7.1 presents the initial yield curve (corresponding to a zero coupon bond) for
each data set. For each data set the mortgage contract rate is assumed to be one percentage
point above the 10-year rate (labeled ‘y10’).

For the experiment we consider 16 different funding instruments. Table 7.2 presents
the maturity, the time after which the instrument may be called, and the initial spread
over the corresponding zero coupon bond (of the same maturity) for each instrument
and for each of the data sets. For example, ‘y03ncl’ refers to a callable bond with a
maturity of 3 years (36 months) and callable after 1 year (12 months). Corresponding
to the data set ‘Normal, it could be issued initially (at time ¢#=0) at a rate of

TABLE 7.1 Initial Yield Curves

Interest rate (%)

Label Maturity (months) Normal Flat Steep
mO03 3 5.18 5.88 2.97
mO06 6 5.31 6.38 3.16
y01 12 5.55 6.76 3.36
y02 24 5.97 7.06 4.18
y03 36 6.12 7.36 4.58
y05 60 6.33 7.56 5.56
y07 84 6.43 7.59 5.97
y10 120 6.59 7.64 6.36

y30 360 6.87 7.76 7.20
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TABLE 7.2 Spreads for Different Funding Instruments

Spread (%)

Label Maturity (months) Callable after (months) Normal Flat Steep
mO03n 3 0.17 0.15 0.19
m06n 6 0.13 0.10 0.13
y0ln 12 0.02 0.08 0.08
y02n 24 0.00 0.11 0.1

y03n 36 0.04 0.18 0.12
y03ncl 36 12 0.36 0.61 0.22
y05n 60 0.08 0.21 0.13
y05ncl 60 12 0.65 0.84 0.22
y05nc3 60 36 0.32 0.41 0.18
y07n 84 0.17 0.22 0.15
y07ncl 84 12 0.90 0.95 0.45
y07nc3 84 36 0.60 0.73 0.35
y10n 120 0.22 0.29 0.22
y1l0ncl 120 12 1.10 1.28 0.57
y10nc3 120 36 0.87 0.94 0.48
y30n 360 0.30 0.32 0.27

6.12% + 0.36% = 6.48%, where 6.12% is the interest rate from Table 7.1 and 0.36% is
the spread from Table 7.2.

We computed the results for a pool of $100M. As the target for risk, u, we used the
maximum expected net present value obtained using single-stage optimization, i.e. we
considered risk as the expected net present value below this target, defined for each data
set. In particular, the target for risk equals u = 10.5M for the ‘Normal data set,
u = 11.3M for the ‘Flat’ data set and u = 18.6M for the ‘Steep’ data set.

We first used single-stage optimization using N = 300 interest rate paths. These results
are not presented here. Then, in order to more accurately compare single-stage and multi-
stage optimization, we used a tree with N = 4000 paths, where the sample sizes in each
stage are 1S,/ =10, 1S3/ =20 and 15,1 =20. For this tree the multi-stage linear program has
8213 rows, 11377 columns and 218512 non-zero elements. The program can easily be
solved on a modern personal computer in a very small amount of (elapsed) time. Also, the
simulation runs to obtain the coefficients for the linear program can easily be carried out
on a modern personal computer.

7.6.2  Results for the Single-Stage Model

As a base case for the experiment we computed the efficient frontier for each of the data
sets using the single-stage model. Figure 7.2 presents the result for the ‘Normal’ data set in
comparison with the efficient frontiers obtained from the multi-stage model. (The single-
stage results obtained from optimizing on the tree closely resemble the efficient frontiers
obtained from optimizing on 300 interest rate paths.) The efficient frontiers for the ‘Flat’
and ‘Steep’ data sets are similar in shape to that of the ‘Normal’ data set. While ‘Normal’
and ‘Flat’ have the typical shape one would expect, i.e. steep at low levels of risk and
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FIGURE 7.2 Efficient frontier for the Normal data set, single- versus multi-stage.

TABLE 7.3 Funding Strategies from the Single-Stage Model, Case 95% of Maximum Expected Return, for All
Three Data Sets

Model Normal Flat Steep
Stage 1 Allocation
jlmO6n jly07n jlmO3n jly07n jlmO3n
0.853 0.147 0.911 0.089 1.000
Stage 2 Allocation
Scenario j2mo03n j2mo03n j2mo03n
1 0.853 0.911 1.000
2 0.853 0.911 1.000
3 0.853 0.911 1.000
4 0.853 0.911 1.000
5 0.853 0.911 1.000
6 0.853 0.911 1.000
7 0.853 0.911 1.000
8 0.853 0.911 1.000
9 0.853 0.911 1.000
10 0.853 0.911 1.000

bending more flat with increasing risk, it is interesting to note that the efficient frontier for
data set ‘Steep’ is very steep at all levels of risk.

As a base case we look at the optimal funding strategy at the point of 95% of the
maximum expected net present value. In the graphs of the efficient frontiers this is the
second point down from the point of the maximum expected net present value point.

The funding strategies for all three data sets are presented in Table 7.3. The label 1’ in
front of the funding acronyms means that the instrument is issued in stage 1, and the label
2’ refers to the instrument’s issuance in stage 2. For example, a funding instrument called
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91y07n’ is a non-callable bond with a maturity of 7 years issued at stage 1. While the
single-stage model naturally does not have a second stage, variables with the prefix 42’ for
the second stage represent the amount of each instrument to be held at stage 2 according
to the decision rules. This is to facilitate easy comparisons between the single-stage and
multi-stage funding strategies.

In the ‘Normal’ case, the optimal initial funding mix consists of 85.3% six-month non-
callable debt and 14.7% seven-year non-callable debt. The risk level of this strategy is
3.1IM NPV. In the ‘Flat’ case, the optimal initial funding mix consists of 91.1% three-
month non-callable debt and 8.9% seven-year non-callable debt. The risk level of this
strategy is 3.1M NPV. In the ‘Steep’ case, the initial funding mix consists of 100.0% three-
month non-callable debt (short-term debt). The risk level of this strategy is 2.6M NPV.

7.6.3  Results for the Multi-Stage Model

Figure 7.2 presents the efficient frontier for the ‘Normal’ data set. In addition to the multi-
stage efficient frontier, the graph also contains the corresponding single-stage efficient
frontier for better comparison. The results for the ‘Flat’ and ‘Steep’ data sets are very
similar in shape to that of the ‘Normal’ data set and therefore are not presented
graphically. The results show substantial differences in the risk and expected net present
value profile of multi-stage versus single-stage funding strategies. For any of the three data
sets, the efficient frontier obtained from the multi-stage model is significantly north-west
of that from the single-stage model, i.e. multi-stage optimization yields a larger expected
net present value at the same or smaller level of risk.

In all three data cases, we cannot compare the expected net present values from the
single-stage and multi-stage model at the same level of risk, because the risk at the
minimum risk point of the single-stage model is larger than the risk at the maximum risk
point of the multi-stage model. In the ‘Normal’ case, the minimum risk of the single-stage
curve is about 2.7M NPV. Since the efficient frontier is very steep at low levels of risk, we
use the point of 85% of the maximum risk as the ‘lowest risk’ point, even if the risk could
be further decreased by an insignificant amount. The maximum expected net present
value point of the multi-stage curve has a risk of about 2.4M NPV. At this level of risk, the
expected net present value on the single-stage efficient frontier is about 8.9M NPV, versus
the expected net present value on the multi-stage curve of about 13.6M NPV, which
represents an improvement of 52.8%. In the ‘Flat’ case, we compare the point with the
smallest risk of 3.0M NPV on the single-stage efficient frontier with that with the largest
risk of 2.5M NPV on the multi-stage efficient frontier. The expected net present value at
the two points is 13.6M NPV (multi-stage) versus 9.6M NPV (single-stage), which
represents an improvement of 41.7%. In the ‘Steep’ case, we compare the point with the
smallest risk of 2.6M NPV on the single-stage efficient frontier with that with the largest
risk of 1.9M NPV on the multi-stage efficient frontier. The expected net present value at
the two points is 20.4M NPV (multi-stage) versus 18.6M NPV (single-stage), which
represents an improvement of 9.7%.

As for the single-stage model, we look at the funding strategies at the point of 95% of
the maximum expected return (on the efficient frontier the second point down from the
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TABLE 7.4 Funding Strategy from the Multi-Stage Model, Case 95% of Maximum Expected Return, Normal
Data Set

Stage 1 Allocation

jlm06n  jly05ncl

0.785 0.215
Stage 2 Allocation

Scenario  j2mO03n j2y03n j2y03ncl  j2y05ncl  j2ylOn  j2ylOncl  j2ylOnc3  j2y30n

1 1.000
2 0.597 0.188

3 0.125 0.420 0.240

4 0.785

5 0.508 0.423 0.069

6 0.785

7 0.785

8 0.251 0.749

9 0.301 0.035 0.261 0.188

10 0.785

maximum expected return point). The funding strategies are presented in Table 7.4 for the
‘Normal’ data set, and in Table 7.A1 and Table 7.A2 of Appendix 7.A for the ‘Steep’ and
‘Flat’ data sets, respectively.

In the ‘Normal’ case, the initial funding mix consists of 78.5% six-month non-callable
debt, and 21.5% five-year debt callable after one year. After one year the 78.5% six-month
debt (that according to the decision rules is refinanced through short-term debt and is for
disposition in the second stage) and, if called in certain scenarios, also the five-year
callable debt are refunded through various mixes of short-term debt: three-year, five-year
and ten-year callable and non-callable debt. In one scenario, labeled ‘1, in which interest
rates fall to a very low level, the multi-stage model resorts to funding with 30-year non-
callable debt in order to secure the very low rate for the future. The risk associated with
this strategy is 1.85M NPV and the expected net present value is 12.9M NPV. The
corresponding (95% of maximum net present value) strategy of the single-stage model,
discussed above, has a risk of 3.1M NPV and a net present value of 10.0M NPV. Thus, the
multi-stage strategy exhibits 57.4% of the risk of the single-stage strategy and a 29%
larger expected net present value.

In the ‘Flat’ case, the initial funding mix consists of 50.9% three-month non-callable
debt and 49.1% six-month non-callable debt. After one year the entire portfolio is
refunded through various mixes of short-term, three-year, and ten-year callable and non-
callable debt. The multi-stage strategy exhibits 68% of the risk of the single-stage strategy
and a 20.6% larger expected net present value. In the ‘Steep’ case, the initial funding
consists of 100% three-month non-callable debt. After one year the portfolio is refunded
through various mixes of short-term, three-year and five-year non-callable, and ten-year
callable and non-callable debt. The multi-stage strategy exhibits 62% of the risk of the
single-stage strategy, and a 4.3% larger expected net present value.
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Summarizing, the results demonstrate that multi-stage stochastic programming
potentially yields significantly larger net present values at the same or even lower levels
of risk, with significantly different funding strategies, compared with single-stage
optimization. Using multi-stage stochastic programming for determining the funding of
mortgage pools promises to lead, in the average, to significant profits compared with
using single-stage funding strategies.

7.6.4  Results for Duration and Convexity

Funding a mortgage pool by a portfolio of bonds that matches the (negative) value of
duration and convexity, the expected net present value of the total of mortgage pool and
bonds is invariant to small changes in interest rates. However, duration and convexity give
only a local approximation, and the portfolio needs to be updated as time goes on and
interest rates change. The duration and convexity hedge is one-dimensional, since it
considers only changes of the whole yield curve by the same amount and does not
consider different shifts for different maturities. The multi-stage stochastic programming
model takes into account multi-dimensional changes of interest rates and considers (via
sampling) the entire distribution of possible yield curve developments. In this section we
quantify the difference between duration and convexity hedging versus hedging using the
single- and multi-stage stochastic programming models. Table 7.5 gives the initial (first
stage) values for duration and convexity (as obtained from the simulation runs) for the
mortgage pool and for all funding instruments for each of the three yield curve cases
‘Normal, ‘Flat” and ‘Steep. In each of the three yield curve cases the mortgage pool
exhibits a positive value for duration and a negative value for convexity. All funding
instruments have positive values for duration, non-callable bonds exhibit a positive value

TABLE 7.5 Initial Duration and Convexity

Normal Flat Steep

Label Dur. Conv. Dur. Conv. Dur. Conv.

mortg. 3.442 —1.880 2.665 —1.548 2.121 —2.601
mO03n 0.248 0.001 0.247 0.001 0.249 0.001
mO06n 0.492 0.003 0.491 0.003 0.495 0.003
y0ln 0.971 0.010 0.964 0.010 0.982 0.011
y02n 1.882 0.038 1.861 0.038 1.917 0.039
y03n 2.737 0.081 2.686 0.079 2.801 0.084
y03ncl 1.596 —0.384 1.376 —0.186 1.338 —0.235
y05n 4.278 0.205 4.160 0.197 4.378 0.212
y05ncl 1.914 —0.810 1.613 —0.700 1.478 —0.632
y05nc3 3.274 —0.012 3.068 —0.111 3.114 —0.241
y07n 5.622 0.367 5.448 0.351 5.769 0.380
y07ncl 2.378 0.128 1.671 0.959 0.898 0.032
y07nc3 3.406 0.269 3.117 —0.298 3.122 —0.230
y10n 7.335 0.656 7.083 0.624 7.538 0.681
yl0ncl 1.555 0.246 1.397 —0.052 0.593 —0.119
y10nc3 3.409 —0.160 3.265 —0.346 3.086 —0.446

y30n 13.711 2.880 13.306 2.743 14.204 3.011
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for convexity, and callable bonds show a negative value for convexity. Note as an exception
the positive value for convexity of bond ‘y07ncl’

To both the single-stage and multi-stage stochastic programming models we added
constraints that, at any decision point, the duration and convexity of the mortgage pool
and the funding portfolio are as close as possible. Maximizing expected return by setting
the risk aversion Ato zero, we successively reduced the gap in duration and convexity
between the mortgage pool and the funding portfolio. We started from the unconstrained
case (the maximum expected return—maximum risk case from the efficient frontiers
discussed above) and reduced first the duration gap and subsequently the convexity gap,
where we understand as duration gap the absolute value of the difference in duration
between the funding portfolio and the mortgage pool, and as convexity gap the absolute
value of the difference in convexity between the funding portfolio and the mortgage pool.
We will discuss the results with respect to the downside risk measure (expected value of
returns below a certain target), as discussed in Section 7.2.9, and also with respect to the
standard deviation of the returns. We do not discuss the results for duration and convexity
obtained from the single-stage model and focus on the more interesting multi-stage case.

7.6.5 Duration and Convexity, Multi-Stage Model

Figures 7.3 and 7.4 give the risk—return profile for the ‘Normal’ case with respect to
downside risk and standard deviation, respectively. We compare the efficient frontier
(already depicted in Figure 7.2) obtained from minimizing downside risk for different
levels of expected return (labeled ‘Downside’) with the risk—return profile obtained from
restricting the duration and convexity gap (labeled ‘Delta—Gamma’). For different levels of
duration and convexity gap, we maximized expected return. The unconstrained case with
respect to duration and convexity is identical to the point on the efficient frontier with the
maximum expected return. Figure 7.3 shows that the downside risk eventually increases
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FIGURE 7.3 Risk-return profile, multi-stage model, Normal data set, risk as downside risk.
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FIGURE 7.4 Risk-return profile, multi-stage model, Normal data set, risk as standard deviation.

when decreasing the duration and convexity gap and was significantly larger than the
minimized downside risk on the efficient frontier. We are especially interested in
comparing the point with the smallest duration and convexity gap with the point of
minimum downside risk on the efficient frontier. The point with the smallest downside
risk on the efficient frontier exhibits expected return of 9.5M NPV and a downside risk of
1.5M NPV. The point with the smallest duration and convexity gap has expected return of
7.9M NPV and a downside risk of 3.1M NPV. The latter point is characterized by a
maximum duration gap in the first and second stage of 0.5 and of 1.0 in the third stage,
and by a maximum convexity gap of 2.0 in the first and second stage and of 4.0 in the
third stage. A further decrease of the convexity gap was not possible as it led to an
infeasible problem. The actual duration gap in the first stage was — 0.5, where the negative
value indicates that the duration of the funding portfolio was smaller than that of the
mortgage pool, and the actual convexity gap in the first stage was 1.57, where the positive
value indicates that the convexity of the funding portfolio was larger than that of the
mortgage pool. Comparing the points with regard to their performance, restricting the
duration and convexity gap led to a decrease in expected return of 15% and an increase of
downside risk by a factor of 2. It is interesting to note that, for the point on the efficient
frontier with the smallest risk, the first-stage duration gap was —0.97 and the first-stage
convexity gap was 1.75. Looking at the risk in terms of standard deviation of returns, both
minimizing downside risk and controlling the duration and convexity gap led to smaller
values of standard deviation. In the unconstrained case, the smallest standard deviation
was 3.3M NPV obtained at the minimum downside risk point, and the smallest standard
deviation in the constrained case (3.8M NPV) was obtained when the duration and
convexity gap was smallest.

Table 7.6 gives the funding strategy for the minimum downside risk portfolio and
Table 7.7 the funding strategy for the duration and convexity constrained case at
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TABLE 7.6 Funding Strategy, Case Minimum Downside Risk, Multi-Stage Model, Normal Data Set

Stage 1 Allocation

jlm06n  jly05n  jly05ncl  jly05nc3

0.266 0.235 0.218 0.281
Stage 2 Allocation

Scenario  j2m03n  j2y0ln  j2y03ncl j2y05n j2ylOn  j2ylOncl j2ylOnc3  j2y30n

1 0.017 0.148 0.240 0.079
2 0.102 0.165

3 0.117 0.149

4 0.266

5 0.031 0.032 0.237 0.185

6 0.266

7 0.014 0.252

8 0.118 0.300 0.019 0.047
9 0.012 0.201 0.053

10 0.266

minimum gap. Both strategies use six-month non-callable debt, five-year non-callable
debt and five-year debt callable after one year for the initial funding. The minimum
downside risk portfolio used in addition five-year debt callable after three years, while the
duration and convexity constrained case used seven-year non-callable debt and ten-year
non-callable debt. In the second stage, funding differed significantly across the different
scenarios for both funding strategies. In the duration and convexity constrained case, the
multi-stage optimization model resorted to calling five-year debt callable after one year in
scenario ‘4’ at a fraction and in scenario ‘10” at the whole amount. In the minimum risk
case, calling of debt other than by applying the decision rules did not happen. In the
second stage, interest rates were low in scenarios ‘1’ and ‘8’ and were high in scenarios ‘4,
‘6’ and ‘10. The minimum downside risk strategy tended towards more long-term debt
when interest rates were low and towards more short-term debt when interest rates were
high. The amounts for each of the scenarios depended on the dynamics of the process and
the interest rate distributions. The duration and convexity constrained strategy was, of
course, not in the position to take advantage of the level of interest rates, and funding was
balanced to match the duration and convexity of the mortgage pool.

The results for the case of the ‘Flat’ and ‘Steep’ yield curves are very similar. For the
‘Flat’ case, the maximum duration gap in the first and second stage was set to 0.5 and to
1.0 in the third stage, and the maximum convexity gap was set to 2.0 in the first and
second stage and to 4.0 in the third stage. The duration and convexity gap could not be
decreased further since the problem became infeasible. The actual duration gap in the first
stage was —0.5, and the actual convexity gap in the first stage was 1.5. In Appendix 7.A,
Table 7.A3 gives the initial funding and the second-stage updates for the minimum
downside risk portfolio, and Table 7.A4 gives the funding strategy for the duration and
convexity constrained case. For the ‘Steep’ case, the maximum duration gap in the first
and second stage was set to 0.5 and was set to 1.0 in the third stage, and the maximum
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TABLE 7.7 Funding Strategy, Case Duration and Convexity Constrained, Multi-Stage Model, Normal Data Set

Stage 1 Allocation

jlmO6n jly05n jly05ncl jly07n jlylOn

0.122 0.083 0.534 0.239 0.022

Stage 2 Allocation
Scenario j2mO03n j2mO06n j2y0ln j2y03ncl j2y05n j2y05ncl j2y07ncl
1 0.466 0.117
2
3 0.064
4
5 0.506 0.043 0.044
6 0.064
7
8 0.567
9 0.072
10 0.316 0.340
Stage 2 Allocation Call
]Scenario ]j2y10n 1j2y10ncl ]j2y10nc3 jly05ncl
1 0.073
2 0.011 0.112
3 0.058
4 0.152 0.029
5 0.058 0.004
6 0.059
7 0.122
8 0.089
9 0.051
10 0.534

convexity gap was set to 3.0 in the first and second stage and to 6.0 in the third stage.
Further decrease made the problem become infeasible. The actual duration gap in the first
stage was —0.5, and the actual convexity gap in the first stage was 1.6. In Appendix 7.A,
Table 7.A5 gives the initial funding and the second-stage updates for the minimum
downside risk portfolio, and Table 7.A6 gives the funding strategy for the duration and
convexity constrained case. Again, in both the ‘Flat’ and ‘Steep’ case, one could see in the
minimum downside risk case a tendency to use longer-term debt when interest rates were
low and shorter-term debt when interest rates were high, and in the duration and
convexity constrained case, funding was balanced to match the duration and convexity of
the mortgage pool.

Summarizing, in each case reducing the duration and convexity gap helped control the
standard deviation of net present value but did nothing to reduce downside risk. Multi-
stage stochastic programming led to larger than or equal expected net present value at
each level of risk (both downside risk and standard deviation of net present value). There
may be reasons for controlling the duration and convexity gap in addition to controlling
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Duration Gap versus Interest Rate
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FIGURE 7.5 Duration gap versus interest rate, multi-stage, Normal data set.

downside risk via the multi-stage stochastic programming model. For example, a conduit
might like the results of the stochastic programming model, but not wish to take on too
much exposure regarding duration and convexity gap. In the following we will therefore
compare runs of the multi-stage model with and without duration and convexity
constraints.

Figure 7.5 sheds more light on the cause of the performance gain of the multi-stage
model versus the duration and convexity hedged strategy. The figure presents the duration
gap (the difference of the duration of the funding portfolio and the mortgage pool) versus
the interest rate (calculated as the average of the yield curve) for each of the second-stage
scenarios of the data set ‘Normal” When interest rates are very low, the 95% maximum
expected return strategy takes on a significant positive duration gap to lock in the low
rates for a long time. It takes on a negative duration gap when interest rates are high, in
order to remain flexible, should interest rates fall in the future. The minimum downside
risk strategy exhibits a similar pattern, but less extreme. Thus, the multi-stage model
makes a bet on the direction interest rates are likely to move, based on the information
about the interest rate process. In contrast, the duration and convexity constrained
strategy cannot take on any duration gap (represented by the absolute value of 0.5 at
which the gap was constrained) and therefore must forsake any gain from betting on the
likely direction of interest rates.

7.6.6  Out-of-Sample Simulations

In order to evaluate the performance of the different strategies in an unbiased way, true
out-of-sample evaluation runs need to be performed. Any solution at any node in the tree
obtained by optimization must be evaluated using an independently sampled set of
observations.
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For the single-stage model this evaluation is rather straightforward. Having obtained an
optimal solution from the single-stage model (using sample data set one), we run
simulations again with a different seed. Using the new independent sample (data set two),
we start the optimizer again, however now with the optimal solution fixed at the values as
obtained from the optimization based on sample data set one. Using the second set of
observations of data set two we calculate risk and expected returns.

To independently evaluate the results obtained from a K-stage model (having n = K— I
sub-periods), we need K independent sets of K-stage trees of observations. We describe the
procedure for K = 4. Using data set one we solve the multi-stage optimization problem
and obtain an optimal first-stage solution. We simulate again (using a different seed) over
all stages to obtain data set two. Fixing the optimal first-stage solution at the value
obtained from the optimization based on data set one, we optimize based on data set two
and obtain a set of optimal second-stage solutions. We simulate again (with a different
seed) to obtain independent realizations for stages three and four, thereby keeping the
observations for stage two the same as in data set two, and obtain data set three. Fixing the
first-stage decision at the level obtained from the optimization using data set one and all
second-stage decisions at the level obtained from the optimization based on data set two,
we optimize again to obtain a set of optimal third-stage decisions. We simulate again
(using a different seed) to obtain independent outcomes for stage four, thereby keeping
the observations for stage two and three the same as in data sets two and three,
respectively, and obtain data set four. Fixing the first-stage decision, all second-stage
decisions, and all third-stage decisions at the levels obtained from the optimization based
on data sets one, two and three, respectively, we finally calculate risk and returns based on
data set four.

The out-of-sample evaluations resemble how the model could be used in practice.
Solving the multi-stage model (based on data set one), an optimal first-stage solution
(initial portfolio) would be obtained and implemented. Then one would follow the
strategy (applying the decision rules) for 12 months until decision stage two arrives. At
this point, one would re-optimize, given that the initial portfolio had been implemented
and that particular interest rates and prepayments had occurred (according to data set
two). The optimal solution for the second stage would be implemented, and one would
follow the strategy for four years until decision stage three arrives. At this point, one
would re-optimize, given that the initial portfolio and a second stage update had been
implemented and that particular interest rates and prepayments had occurred (according
to data set three). The optimal solution for the third stage would be implemented, and
one would follow the strategy (applying the decision rules) until the end of the horizon
(according to data set four). Now one possible path of using the model has been evaluated.
Decisions had no information about particular outcomes of future interest rates and
prepayments, and were computed based on model runs using data independent from the
observed realization of the evaluation simulation. Alternatively, one could simulate a
strategy involving re-optimization every month, but this would take significantly more
computational effort with likely only little to be gained.
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Out-of-Sample Efficient Frontier, Normal
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FIGURE 7.6 Out-of-sample risk—return profile, multi-stage model, Normal data set, risk as downside risk.

Using the out-of-sample evaluation procedure, we obtain N=IS| out-of-sample
simulations of using the model as discussed in the above paragraph, and we are now in
the position to derive statistics about out-of-sample expected returns and risk.

Figure 7.6 presents the out-of-sample efficient frontiers for the ‘Normal’ data set and
downside risk. The figure gives the out-of-sample efficient frontier for the multi-stage
model without duration and convexity constraints, the out-of-sample efficient frontier
when the duration gap was constrained to be less than or equal to 1.5%, and the out-of-
sample efficient frontier for the single-stage model. The out-of-sample evaluations
demonstrate clearly that the multi-stage model gives significantly better results than the
single-stage model. For example, the point with the maximum expected returns of the
multi-stage model gave expected returns of 10.2M NPV and a downside risk of 3.5M NPV.
The minimum risk point on the single-stage out-of-sample efficient frontier gave expected
returns of 7.6M NPV, and a downside risk of also 3.5M NPV. Thus, at the same level of
downside risk the multi-stage model gave 34% higher expected returns. The minimum
downside risk point of the multi-stage model gave expected returns of 9.0M NPV and a
downside risk of 2.1M NPV. Comparing the minimum downside risk point of the multi-
stage model with that of the single-stage model, the multi-stage model had 19.2% larger
expected returns at 61% of the downside risk of the single-stage model. The efficient
frontier of the duration-constrained strategy was slightly below that without duration and
convexity constraints.

Figure 7.7 gives the out-of-sample risk—return profiles when measuring risk in terms of
standard deviation. In this setting the multi-stage strategy performed significantly better
than the single-stage strategy at every level of risk, where the difference was between
17.6% and 23.6%. The duration-constrained strategy did not span as wide a range in risk
as the unconstrained strategy. But for the risk points attained by the constrained strategy,
the unconstrained strategy achieved a somewhat higher expected return.
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Out-of-Sample Risk-Return Profile, Normal, Larger Sample
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FIGURE 7.7 Out-of-sample risk—return profile, multi-stage model, Normal data set, risk as standard
deviation.

The out-of-sample evaluations for the ‘Flat’ and ‘Steep’ data sets gave very similar
results qualitatively. The results are included in Appendix 7.A. For the ‘Flat’ data set,
Figure 7.A1 presents out-of-sample efficient frontiers for downside risk and Figure 7.A2
the risk—return profile for risk in standard deviations. For the ‘Steep’ data set, Figure 7.A3
presents out-of-sample efficient frontiers for downside risk and Figure 7.A4 the
risk—return profile for risk in standard deviations for the data set ‘Steep.” For both data
sets, the multi-stage model gave significantly better results; the downside risk was smaller
and expected returns were larger.

7.6.7  Larger Sample Size

All results discussed so far were obtained from solving a model with a relatively small
number of scenarios at each stage, i.e. |S,] = 10, IS;| = 20 and 1S4l = 20, with a total of
4000 scenarios at the end of the forth stage. This served well for analysing and
understanding the behavior of the multi-stage model in comparison with the single-stage
model and with Gamma and Delta hedging. Choosing a larger sample size will improve
the obtained strategies (initial portfolio and future revisions) and therefore result in better
(out-of-sample simulation) results. Of course, the accuracy of prediction of the models
will be improved also. In order to show the effect of using a larger sample size, we solved
and evaluated the models using a sample size of 24 000 scenarios, i.e. |IS,| = 40, |S;/ = 30
and 1S4/=20. The results for the data set ‘Normal’ are presented in Figure 7.8 for
downside risk and in Figure 7.9 for risk as standard deviation. Indeed, one can see
improved performance in both smaller risk and larger expected NPV compared with the
smaller sample size (compare with Figures 7.6 and 7.7).

The point with the maximum expected returns for the multi-stage model gave expected
returns of 12.9M NPV and a downside risk of 2.4M NPV. The minimum risk point for the
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FIGURE 7.8 Larger sample, out-of-sample risk—return profile for the multi-stage model, Normal data set, risk
as downside risk.
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FIGURE 7.9 Larger sample, out-of-sample risk—return profile for the multi-stage model, Normal data set, risk
as standard deviation.

single-stage model had expected returns of 9.0M NPV and a downside risk of 2.7M NPV.
So, at slightly smaller downside risk the multi-stage model gave expected returns that were
43% higher. The minimum downside risk point of the multi-stage model had expected
returns of 10.9M NPV and a downside risk of 1.5M NPV. Comparing the minimum
downside risk points of the multi-stage and single-stage models, the multi-stage model
has 18.4% larger expected returns at 57% of the downside risk of the single-stage model.
Again, the efficient frontier of the duration-constrained strategy was slightly below that
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Predicted vs. Out-of-Sample Efficient Frontier, Normal, Larger Sample
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FIGURE 7.10 Larger sample, predicted versus out-of-sample efficient frontier for the multi-stage model,
Normal data set.

without duration and convexity constraints. Measuring risk in terms of standard
deviation, results are similar to those when using the small sample size: the multi-stage
strategy performed significantly better than the single-stage strategy at every level of risk,
with a difference in expected returns between 23.3% and 24.0%. Again, the duration-
constrained strategy exhibited smaller risk (in standard deviations) at the price of slightly
smaller expected returns.

Figure 7.10 gives a comparison of the multi-stage efficient frontiers predicted (in-
sample) versus evaluated out-of-sample. One can see that when using the larger sample
size of 24,000, the predicted and the out-of-sample evaluated efficient frontier look almost
identical, thus validating the model. It is evident that using larger sample sizes will result
in both better performance and a more accurate prediction.

7.7 LARGE-SCALE RESULTS

For the actual practical application of the proposed model, we need to consider a large
number of scenarios in order to obtain small estimation errors regarding expected returns

and risk and accordingly stable results. We now explore the feasibility of solving large-scale
models. Table 7.8 gives measures of size for models with larger numbers of scenarios. For
example, model L4 has 80,000 scenarios at the fourth stage, composed of IS,| = 40,
ISI= 40 and IS4/ = 50, and model L5 has 100,000 scenarios at the fourth stage composed
of 15,1 = 50, 1S51= 40 and IS4l = 50; both models have a sufficiently large sample size in
each stage.

In the case of problem L5 with 100,000 scenarios the corresponding linear program had
270,154 constraints, 249,277 variables, and 6,291,014 non-zero coefficients. Table 7.9 gives
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TABLE 7.8 Large-Scale Models, Dimensions

Scenarios Problem Size
Model Stage 2 Stage 3 Stage 4 Total Rows Columns Non-zeros
L1 10 40 50 20,000 54,034 49,918 1,249,215
L2 20 40 50 40,000 108,064 99,783 2,496,172
L3 30 40 50 60,000 162,094 149,623 3,756,498
L4 40 40 50 80,000 216,124 199,497 5,021,486
L5 50 40 50 100,000 270,154 249,277 6,291,014
L20 200 40 50 400,000 808,201 931,271 14,259,216

the elapsed times for simulation and optimization, obtained on a Silicon Graphics Origin
2000 workstation.

While the Origin 2000 at our disposition is a multi-processor machine with 32
processors, we did not use the parallel feature, and all results were obtained using single
processor computations. For the direct solution of the linear programs, we used CPLEX
(1989-1997) as the linear programming optimizer. We contrast the results to using DECIS
(Infanger 1989-1999), a system for solving stochastic programs, developed by the author.
Both CPLEX and DECIS were accessed through GAMS (Brooke et al. 1988). DECIS
exploited the special structure of the problems and used dual decomposition for their
solution. The problems were decomposed into two stages, breaking between the first and
the second stage. The simulation runs for model L5 took less than an hour. The elapsed
solution time solving the problem directly was 13 hours and 28 minutes. Solving the
problem using DECIS took significantly less time, 2 hours and 33 minutes. Encouraged by
the quick solution time using DECIS, we generated problem L20 with 400,000 scenarios
(composed of IS,| =200, IS;1=40 and I1S,] = 50) and solved it in 11 hours and 34
minutes using DECIS. Problem L20 had 808,201 constraints, 931,271 variables, and
14,259,216 non-zero coefficients.

Using parallel processing, the simulation times and the solution times could be reduced
significantly. Based on our experiences with parallel DECIS, using six processors we would
expect the solution time for the model L5 with 100,000 scenarios to be less than 40
minutes, and using 16 processors one could solve model L20 with 400,000 scenarios in
about one hour. We actually solved a version of the L3 model with 60,000 scenarios,
composed of 1S,l =50, 1S5/=40 and IS4 = 30, in less than 5 minutes using parallel
DECIS on 16 processors.

TABLE 7.9 Large-Scale Models, Solution Times

Model Scenarios Simul. time (s) Direct sol. time (s) Decomp. sol. time (s)
L1 20,000 688 1389.75 1548.91

L2 40,000 1390 6144.56

L3 60,000 2060 14 860.54 5337.76

L4 80,000 2740 28920.69

L5 100,000 3420 48 460.02 9167.47

L20 400,000 41652.28
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7.8 SUMMARY

The problem of funding mortgage pools represents an important problem in finance faced

by conduits in the secondary mortgage market. The problem concerns how to best fund a
pool of similar mortgages through issuing a portfolio of bonds of various maturities,
callable and non-callable, and how to refinance the debt over time as interest rates change,
prepayments are made and bonds mature. This chapter presents the application of
stochastic programming in combination with Monte Carlo simulation for effectively and
efficiently solving the problem.

Monte Carlo simulation was used to estimate multiple realizations of the net present
value of all payments when a pool of mortgages is funded initially with a single bond,
where pre-defined decision rules were applied for making decisions not subject to
optimization. The simulations were carried out in monthly time steps over a 30-year
horizon. Based on a scenario tree derived from the simulation results, a single-stage
stochastic programming model was formulated as a benchmark. A multi-stage stochastic
programming model was formulated by splitting up the planning horizon into multiple
sub-periods, representing the funding decisions (the portfolio weights and any calling of
previously issued callable bonds) for each sub-period, and applying the pre-defined
decision rules between decision points.

In order to compare the results of the multi-stage stochastic programming model with
hedging methods typically used in finance, the effective duration and convexity of the
mortgage pool and of each funding instrument was estimated at each decision node, and
constraints bounding the duration and convexity gap to close to zero were added (at each
node) to the multi-stage model to approximate a duration and convexity hedged strategy.

An efficient method for obtaining an out-of-sample evaluation of an optimal strategy
obtained from solving a K-stage stochastic programming model was presented, using K
independent (sub-)trees for the evaluation.

For different data assumptions, the efficient frontier of expected net present value
versus (downside) risk obtained from the multi-stage model was compared with that from
the single-stage model. Under all data assumptions, the multi-stage model resulted in
significantly better funding strategies, dominating the single-stage model at every level of
risk, both in-sample and by evaluating the obtained strategies via out-of-sample
simulations. Also, for all data assumptions, the out-of-sample simulations demonstrated
that the multi-stage stochastic programming model dominated the duration and
convexity hedged strategies at every level of risk. Constraining the duration and convexity
gap reduced risk in terms of the standard deviation of net present value at the cost of a
smaller net present value, but failed in reducing the downside risk.

The results demonstrate clearly that using multi-stage stochastic programming results
in significantly larger profits, both compared with using single-stage optimization models
and with using duration and convexity hedged strategies. The multi-stage model is better
than the single-stage model because it has the option to revise the funding portfolio
according to changes in interest rates and pre-payments, therefore reflecting a more
realistic representation of the decision problem. It is better than the duration and
convexity hedged strategies because it considers the entire distribution of the yield curve
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represented by the stochastic process of interest rates, compared with the much simpler
hedge against a small shift of the entire yield curve as used in the duration and convexity
hedged strategies.

Small models with 4000 scenarios and larger ones with 24,000 scenarios were used for
determining the funding strategies and the out-of-sample evaluations. The out-of-sample
efficient frontiers of the larger models were shown to be very similar to the (in-sample)
predictions, indicating a small optimization bias. The larger models were solved in a very
short (elapsed) time of a few minutes. Large-scale models with up to 100,000 scenarios
were shown to solve in a reasonable elapsed time using decomposition on a serial
computer, and in a few minutes on a parallel computer.
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APPENDIX 7.A: TABLES AND GRAPHS FOR DATA SETS ‘FLAT” AND

‘STEEP’

TABLE 7.A1 Funding Strategy from the Multi-Stage Model, Case 95% of Maximum Expected Return, Flat

Data Set

Stage 1 Allocation
jlmO3n jlmO6n
0.509 0.491

Stage 2 Allocation
Scenario j2mO03n j2y03n j2y03ncl j2y10n j2ylOncl j2y10nc3 j2y30n
1 0.397 0.603
2 1.000
3 0.251 0.590 0.011 0.148
4 1.000
5 0.514 0.248 0.238
6 1.000
7 0.984 0.016
8 0.620 0.380
9 0.521 0.151 0.328
10 1.000

TABLE 7.A2 Funding Strategy from the Multi-Stage Model, Case 95% of Maximum Expected Return, Steep

Data Set

Stage 1 Allocation
jlmO3n
1.000

Stage 2 Allocation
Scenario j2mO03n j2y03n j2y03ncl j2y05n j2y10n j2yl0ncl j2y30n
1 0.038 0.296 0.544 0.122
2 0.717 0.283
3 1.000
4 1.000
5 0.745 0.085 0.170
6 1.000
7 1.000
8 0.609 0.272 0.119
9 0.973 0.027
10 1.000
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TABLE 7.A3 Funding Strategy from the Multi-Stage Model, Case Minimum Downside Risk, Flat Data Set

Stage 1 Allocation
jlmO06n jly05nc3
0.698 0.302
Stage 2 Allocation
Scenario j2m03n j2mO06n j2y03n j2y03ncl j2y05n j2y05nc3
1 0.046 0.418 0.052
2
3 0.201 0.292
4 0.698
5 0.119 0.145
6 0.698
7 0.603
8 0.333
9 0.302
10 0.698
Stage 2 Allocation
Scenario j2yl0n j2yloncl j2y10nc3 j2y30n
1 0.129 0.053
2 0.698
3 0.039 0.039 0.127
4
5 0.221 0.214
6
7 0.095
8 0.280 0.085
9 0.095 0.301
10
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TABLE 7.A4 Funding Strategy from the Multi-Stage Model, Case Duration and Convexity Constrained, Flat
Data Set

Stage 1 Allocation

jlmO6n jly05n jly05ncl  jly07n

0.448 0.225 0.201 0.125
Stage 2 Allocation Call

Scenario  j2m03n  j2mO06n j2y02n j2y03n  j2y03ncl  j2ylOn  j2ylOncl  jlyO5ncl

1 0.567 0.082

2 0.102 0.346

3 0.370 0.078

4 0.251 0.033 0.164

5 0.018 0.631

6 0.397 0.051

7 0.036 0.412

8 0.634 0.016

9 0.448

10 0.277 0.372 0.201

TABLE 7.A5 Funding Strategy from the Multi-Stage Model, Case Minimum Downside Risk, Steep Data Set

Stage 1 Allocation
jlmO3n

1.000
Stage 2 Allocation
Scenario  j2m03n  j2y0ln  j2y03n  j2yO3ncl  j2y05n  j2ylOn j2yloncl j2y30n
1 0.299 0.389 0.215 0.097
2 0.644 0.356
3 1.000
4 1.000
5 0.734 0.088 0.178
6 1.000
7 1.000
8 0.600 0.005 0.246 0.149 5.126743E-4
9 0.958 0.042 8.23454E-4

—
[«

1.000
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TABLE 7.A6 Funding Strategy from the Multi-Stage Model, Case Duration and Convexity Constrained, Steep

Data Set
Stage 1 Allocation
jly0ln jly03n jlylOn
0.682 0.305 0.013
Stage 2 Allocation
Scenario j2m03n j2y0ln j2y02n j2y03n j2y03ncl j2yl0n j2y30n
1 0.598 0.084
2 0.053 0.629
3 0.049 0.633
4 0.531 0.151
5 0.682
6 0.158 0.524
7 0.500 0.182
8 0.682
9 0.682
10 0.392 0.289
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FIGURE 7.A1 Out-of-sample risk—return profile for the multi-stage model, Flat data set, risk as downside risk.
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Out-of-Sample Risk-Return Profile, Flat
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FIGURE 7.A2 Out-of-sample risk—return profile for the multi-stage model, Flat data set, risk as standard
deviation.

Out-of-Sample Efficient Frontier, Steep
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FIGURE 7.A3 Out-of-sample risk—return profile for the multi-stage model, Steep data set, risk as downside
risk.
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Out-of-Sample Risk-Return Profile, Steep
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FIGURE 7.A4 Out-of-sample risk—return profile for the multi-stage model, Steep data set, risk as standard
deviation.
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8.1 INTRODUCTION

HE MANAGEMENT OF THE PUBLIC DEBT is of paramount importance for any country.
Mathematically speaking, this is a stochastic optimal control problem with a number

of constraints imposed by national and supranational regulations and by market practices.
The Public Debt Management Division of the Italian Ministry of Economy decided to
establish a partnership with the Institute for Applied Computing in order to examine this
problem from a quantitative viewpoint. The goal is to determine the composition of the

portfolio issued every month that minimizes a predefined objective function (Adamo et al.
2004), which can be described as an optimal combination between cost and risk of the
public debt service.

Since the main stochastic component of the problem is represented by the evolution of
interest rates, a key point is to determine how various issuance strategies perform under

175
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different scenarios of interest rate evolution. In other words, an optimal strategy for the
management of the public debt requires a suitable modeling of the stochastic nature of the
term structure of interest rates.

Note that hereafter we do not report how to forecast the actual future term structure,
but how to generate a set of realistic possible scenarios. For our purposes, the scenarios
should cover a wide range of possible outcomes of future term structures in order to
provide a reliable estimate of the possible distribution of future debt charges. This
distribution is useful in a risk-management setting to estimate, for instance, a sort of Cost
at Risk (CaR) of the selected issuance policy (Risbjerg and Holmund 2005).

The chapter is organized as follows. Section 8.2 describes the problem. Section 8.3
describes the models employed for generating future interest rate scenarios. Section 8.4
introduces criteria to validate a scenario. Section 8.5 concludes with future perspectives of
this work.

8.2 PROBLEM DESCRIPTION AND BASIC GUIDELINES

It is widely accepted that stock prices, exchange rates and most other interesting
observables in finance and economics cannot be forecast with certainty. Interest rates are
an even more complex issue because it is necessary to consider the term structure, which is
a multi-value observable. Despite this difficulty, there are a number of studies that, from

both the academic and practitioner viewpoint, deal with interest rate modeling (for a
comprehensive survey of interest rate modeling, see James and Webber (2000)).

The most common application of existing term structure models is the evaluation of
interest-rate-contingent claims. However, our purpose is different, since we aim to find an
optimal strategy for the issuance of Italian public debt securities. In a very simplified form
the problem can be described as follows. The Italian Treasury Department issues a number
of different types of securities. Securities differ in the maturity (or expiration date) and in
the rules for the payment of interest. Short-term securities (those having maturity up to
two years) do not have coupons. Medium- and long-term securities (up to 30 years) pay
cash dividends, every 6 months, by means of coupons. The problem is to find a strategy
for the selection of public debt securities that minimizes the expenditure for interest
payment (according to the ESA95 criteria (Jackson 2000)) and satisfies, at the same time,
the constraints on debt management. The cost of future interest payments depends on the
future value of the term structure (roughly speaking, when a security expires or a coupon
is paid, there is the need to issue a new security whose cost depends on the term structure
at expiration time). That is the reason why we need to generate scenarios of future interest
rates. Adamo et al. (2004) show that, for a set of term structure evolutions and Primary
Budget Surplus (PBS) realizations, such an optimization problem can be formulated as a
linear programming problem with linear constraints.

Broadly speaking, this is a typical risk-management problem: once we find an optimal
strategy for a specific realization of the term structure evolution, we need to determine the
expenditure for interest if a different scenario takes place. As a consequence, we need to
simulate the term structure under the objective measure dynamics. This requirement
entails an implicit evaluation of market-price-of-risk dynamics.
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FIGURE 8.1 Evolution of the term structure in the time frame January 1999—September 2005.

The first issue to consider in the model selection process is the time frame. For the
purposes of the Ministry, a reasonable planning period is 3—5 years. Within such a long
period, the term structure may change significantly, as shown in Figure 8.1.

Figure 8.2 reports the monthly evolution of the swap interest rates for the following
maturities: 3, 6, 12, 24, 36, 60, 120, 180, 360 months, along with the value of the European
Central Bank (ECB) official rate and a simple interpolation of such rate in the same period
(January 1999—September 2005). The interpolation is obtained by joining two successive
jumps of the ECB official rate by means of a line. Such an interpolation mimics the
evolution of interest rates, especially for short maturities, and we use it as a simple
approximation of the ECB trend.

This is our basic data set for the analysis and generation of new scenarios of term
structure evolution. We selected swap rates due to their availability for any maturity
regardless of the actual issuance of a corresponding security.

8.3 MODELS FOR THE GENERATION OF INTEREST RATE SCENARIOS

From Figure 8.2 it is apparent that any rate (regardless of its maturity) has a strong
correlation with the ECB rate. This is not surprising and we use this observation to

develop an original approach to the generation of future term-structure scenarios that can
be described as a multi-step process:

i. generation of a scenario for the future ECB official rate;
ii. generation of the fluctuations of each rate with respect to the ECB official rate;
iii. validation of the resulting scenario to determine whether it is acceptable or not.
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FIGURE 8.2 Evolution of interest rates with maturity from three months up to 30 years in the time frame
January 1999—September 2005. The thick line is a linear interpolation of the ECB official rate (represented
by +).

The basic idea is that the ECB official rate represents a ‘reference rate’ and all the other
rates are generated by the composition of this ‘reference rate’ plus a characteristic,
maturity-dependent, fluctuation. In other words, each rate is determined by the sum of
two components: the first component is proportional to the (linearly interpolated) ECB
official rate; the second component is the orthogonal fluctuation of that rate with respect
to the ECB. In mathematical terms, each rate 7 is decomposed as

= oy + ppt, (8.1)

where r¢® is the linear interpolation of the ECB official rate and «y is given by the

t
expression

(7 1) = () - ()

((re0)?) = (rect)®

o, = (8.2)

where () denotes the average value of the enclosed time series. By construction, the time
series pi"* has null correlation with °®. The factors a" are different for each maturity and
a larger value of o” indicates a stronger correlation with the ECB official rate. Table 8.1
reports the value of «” for each maturity considered. As expected, longer maturities are
less correlated with the ECB official rate.
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TABLE 8.1 Value of « for Different Maturities

Maturity oy Maturity oy Maturity oy

3 months 0.9833 2 years 0.7693 10 years 0.3949
6 months 0.9514 3 years 0.6695 15 years 0.3545
12 months 0.9094 5 years 0.5425 30 years 0.3237

8.3.1 Simulation of the ECB Official Rate

For the simulation of the future ECB official rate we do not employ a macroeconomic
model since we assume that the interventions of the ECB can be represented as a
stochastic jump process (we return to this point in Section 8.5). Some features of this
process are readily apparent by looking at the evolution of the ECB official rate since
January 1999 (see Figure 8.2) when the ECB official rate replaced national official rates for
the Euro ‘zone’ countries:

e there are, on average, three ECB interventions per year;

e the ECB rate jumps (with approximately the same probability) by either 25 or 50 basis
points; and

o there is a strong ‘persistence’ in the direction of the jumps. That is, there is a high
probability that a rise will be followed by another rise and that a cut will be followed by
another cut.

We model the ECB interventions as a combination of two processes: (i) a Poisson
process that describes when the ECB changes the official rate; and (ii) a Markov process
that describes the sign of the change. Then we resort to an exponential distribution to
simulate the waiting time between two changes of the ECB official rate, and to a Markov
Chain for simulation of the direction (positive or negative) of the change.

The parameter of the exponential distribution can easily be estimated from available
data (that is from the waiting times, in months, between the jumps occurring in the past)
by means of the Maximum Likelihood Estimation (MLE) method. It turns out to be
approximately equal to three months.

Since there are two possible states (positive and negative) in the Markov chain, the
corresponding transition matrix has four entries (positive—positive, positive—negative,
negative—negative, negative—positive). We estimate the values of each entry by looking at
the historical data and, in particular, at the probability that a change is in the same, or in
the opposite, direction of the previous change. It is interesting to note that the probability
of having a change in the same direction of the previous change is pretty high,
approximately 85%. The width of the jump is selected between two possible values (25 or
50 basis point) with the same probability. In summary, the ECB official rate at time  is
defined as

Nf
ECB, = ECB, + » a,C,_,,, (8.3)

s=1
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FIGURE 8.3 Simulations of the future ECB official rate for a planning period of 48 months (the initial value is
always the September 2005 official rate, that is 2%).

where N is the realization at time t of the Poisson process that represents the total number
of jumps up to time t, a; is the random width of jump s, and C,_; ; represents the sign of
jump s given the sign of jump s—1.

Moreover, in order to prevent the ECB official rate from reaching unrealistic values (e.g.
negative values), we impose a lower bound on the simulated rate. This lower bound is set
equal to a fixed value (currently 1%). Of course, such a value can easily be modified if the
evolution of the real ECB rate shows that it is no longer adequate. Any jump of the ECB
rate that brings it below the lower bound is discarded. Figure 8.3 shows a few simulations
of the future ECB official rate produced using this approach.

8.3.2  Simulation of the Fluctuations

Figure 8.4 shows the result of decomposition (8.1) applied to the data of Figure 8.2 (only
the component having null correlation with the ECB rate is shown in the figure).

First, we highlight that the historical fluctuations are correlated. This is apparent from
the correlation matrix reported in Table 8.2. As a consequence, simulation of their
evolution requires multivariate models in order to represent this correlation. In other
words, it is not possible to model the dynamics of the fluctuations of a single rate without
taking into account the dynamics of the fluctuations of all rates. To this end, we decided to
follow two approaches having different features that complement each other. The first
approach is based on principal component analysis.
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FIGURE 8.4 Evolution of the components of interest rates, pi"l, having null correlation with the linearly
interpolated ECB rate in the time frame January 1999—September 2005.

TABLE 8.2 Correlation Matrix of the Components of Each Rate Having Null Correlation with the (Linearized)
ECB Official Rate

p3, 1 PG, iR plz, 1 P24, iR p36, 1 p60, iR p120, L p180. L P360, L
Pt 1.000 0.822 0.625 0.533 0.505 0.490 0.431 0.384 0.311
P&t 0.822 1.000 0.937 0.867 0.827 0.779 0.682 0.612 0.520
Pt 0.625 0.937 1.000 0.970 0.934 0.877 0.770 0.697 0.610
pht 0.533 0.867 0.970 1.000 0.991 0.956 0.869 0.803 0.717
pot 0.505 0.827 0.934 0.991 1.000 0.986 0.922 0.866 0.786
Pt 0.490 0.779 0.877 0.956 0.986 1.000 0.971 0.931 0.862
pot 0.431 0.682 0.770 0.869 0.922 0.971 1.000 0.990 0.949
p'eot 0.384 0.612 0.697 0.803 0.866 0.931 0.990 1.000 0.981
Pt 0.311 0.520 0.610 0.717 0.786 0.862 0.949 0.981 1.000
8.3.3  Principal Component Analysis

Principal component analysis (PCA) is a well-known technique in time series analysis and
has been in use for a number of years in the study of fixed income markets (Litterman and
Scheinkman 1991). In general, PCA assumes that the underlying process is a diffusion.
The data we employ do not have the jump components produced by the ECB
interventions thanks to the decomposition procedure (8.1) described previously. From
this viewpoint the data appear suitable for PCA. The procedure we follow is the standard

one.
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e For each de-trended rate p;"" we calculate the differences 8" = p/"* —p", (¢is the time
index).

e We apply PCA to the m time series of the differences, which we indicate by o. This
means:
— calculating the empirical covariance matrix (Aij) of §; and
— finding a diagonal matrix of eigenvalues A% and an orthogonal matrix of

eigenvectors E = [ey,...,e,] such that the covariance matrix is factored as
Ad — EAhiStET

The eigenvectors with the largest eigenvalues correspond to the components that have
the strongest correlation in the data set.

For the data set of the monthly yield changes from January 1999 to September 2005, the
first three components represent 98.3% of the total variance in the data. The projections
of the original data onto the first three principal components do not show autocorrelation
phenomena (the covariance matrix is, as expected in the PCA, very close to the A¢
matrix). Usually, the first three components are interpreted respectively as (i) a level shift,
(ii) a slope change, and (iii) a curvature change. Since the PCA is applied, in our case, to
de-trended data (with respect to the ECB official rate) the meaning of the components
could be different. However, the plot of the first three components shown in Figure 8.5
does not seem too different from similar studies that consider yield changes directly
(Baygun et al. 2000).

To create a new scenario for the fluctuations it is necessary to take a linear combination
of the principal components. If N is the number of principal components (N =3 in the
present case), an easy way is to compute d = FIi, where F = [ey,. .. ,ex] is an m x N matrix
composed of the eigenvectors corresponding to the first N eigenvalues, and fi a vector with
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FIGURE 8.5 The three most significant components computed from monthly yield changes, January 1999—
September 2005.
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N elements. In principle, the value of each element of this vector could be selected at will.
However, there are two common choices: the first is to assign a value taking into account
the meaning of the corresponding principal component. For instance, if the purpose is to
test the effect of a level shift with no slope or curvature change, it is possible to assign a
value only to the first element, leaving the other two elements equal to zero. The other
choice is to compute 0=F \//_\H 7, where Z is a vector of N independent, normally
distributed, variables. Therefore, each element of the vector i is drawn from a normal
distribution with variance equal to the eigenvalue corresponding to the principal
component. In the present work, we followed the second approach since we did not
want to make a priori assumptions. Hence, the evolution of p/** is described by the
following equation:

N
Pf’L :P?LLl +2th\//17jzjv (8.4)
=1

where /; is the jth eigenvalue. Note that a linear combination of the principal components
provides a vector of fluctuations for one time period only. Actually, since the planning
period is 3—5 years and the time step is one month, we need, for a single simulation, a
minimum of 36 up to a maximum of 60 vectors of fluctuations. Obviously, it is possible to
repeat the procedure for the generation of the fluctuations, but, as a result of limited
sampling, the covariance matrix of the resulting simulated fluctuations may appear quite
different with respect to the covariance matrix of the historical fluctuations. Although a
different behavior does not necessarily imply that the simulated fluctuations are
meaningless, it is clear that we must keep this difference under control. In Section 8.4
we describe how we dealt with this issue.

Figure 8.6 shows the results of a simulation, based on the PCA, of the evolution of
interest rates for a planning period of 48 months and a few samples of the corresponding
term structures. The results of another simulation reported in Figure 8.7 show how this
technique is able to also produce inverted term structures in which long-term or medium-
term maturities have lower returns with respect to short-term maturities. This is not the
most common situation, of course, but it may happen, as shown in Figure 8.1 (see the
term structure of January 2001).

The second approach for the simulation of the fluctuations aims at maintaining a closer
relationship with the historical fluctuations and assumes that each fluctuation has its own
long-term level to which it tends to return. For this reason, we simulate the fluctuations as
a set of mean-reverting processes.

8.3.4  Multivariate Mean-Reverting Models
8.3.4.1 The basic stochastic process A widely used model for the description of interest rate

evolution is based on the following equation proposed by Cox, Ingersoll and Ross (1985)
(CIR):
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FIGURE 8.6 Simulation of the evolution of interest rates based on the PCA (top panel) and the corresponding
term structures (bottom panel).



SCENARIO-GENERATION METHODS H 185

5 T T T - . ; :
s e sy s m s AR *
B
4.5 | 3
s e opp U
i S— R R e D S T
4 _‘! ."..-0. “'_-_"_‘_______'_________,_.;_'.:'_-'--H
Bx  * IR
35 2»( 1
.
e
N
3t i
-
- ..
e .
s T A |
25 S e e oo T L
12 months ---x---
: 18 months ---%---
2 F 24 months @
A 30 months --m- 7
36 months ---e---
42 months - - -
15 I 48 mlonths g

0 50 100 150 200 250 300 350
Maturity (in months)

FIGURE 8.7 Another set of term structures produced by the PCA-based technique. Note how those
corresponding to 30, 36, 42 and 48 months are inverted.

dr, = k(u — r,)dt + o,/r,dB,, (8.5)

where k, uand ¢ are positive constants and r; is the short-term interest rate. The CIR model
belongs to the class of mean-reverting and exponential-affine models (Duffie and Kan
1996). This means that the short rate is elastically pulled to the constant long-term
value p (mean-reversion) and that the yield to maturity on all bonds can be written as a
linear function of the state variables (affine models have been carefully analysed by Duffie
et al. 2000). With respect to other, more simple, models belonging to the same class, such as
the Vasicek (1977) model, the CIR model guarantees that the interest rates are represented
by continuous paths and remain positive if condition 2ku > ¢? is fulfilled, and r, > 0.
Moreover, the volatility is proportional to the interest rate. A review of some of the
estimation methods for these models is reported in Appendix 8.A.

As already mentioned, if we used the simple one-factor model (8.5), we would neglect a
fundamental point for the generation of scenarios of the future term structure, that is the
correlation among fluctuations corresponding to different maturities. In order to capture
this correlation element, in the following we propose a simple multi-dimensional
extension of model (5) for the generation of the orthogonal fluctuations with respect
to the ECB official rate. We consider the following equation:

M .
dpit =k, (1, — pi) dt + 4/ pt Zah]- dB, forh=1,....M (8.6)
j=1

on the interval [0, T], T being the time horizon for the generation of scenarios. Here
B, = (B!,...,BM) is an M-dimensional Brownian motion representing M sources of
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randomness in the market, and k, > 0, y, >0, and oy; are constants such that the
matrix ¢ is symmetric and the following conditions hold true:

1
det(o) #0, kyu,> E(az)hh, Vh=1,...,M. (8.7)

It is easy to show that the inequality (8.7) is a sufficient condition for the existence of a
unique solution with positive trajectories to the stochastic differential Equation (8.6)
starting at p, € (0,00)"; see, in particular, Duffie and Kan (1996). Since the var—cov
matrix Z(p)Z(p)’, with Z.(p)=y/Dio i,j=1,..., M, is not an affine function of p,
model (8.6) does not belong to the affine yield class (Duffie et al. 2000) unless &
is diagonal, in which case the model reduces to a collection of M uncorrelated CIR
univariate processes. However, model (8.6) preserves some features of the class studied in
Duffie anf Kan (1996) and Duffie et al. (2000), such as analytical tractability and
convenient econometric implementation, while the volatility of each component is
proportional only to the component itself. Below, we focus our attention on the problem
of the estimation of (8.6).

8.3.4.2. The estimation of model (8.6) There is a growing literature on estimation methods for
term structure models; see, in particular, Ait-Sahalia (2002). A vast literature is specifically
devoted to the estimation of affine models (see Balduzzi et al. 1996 and references therein).
Here we shall discuss an ad hoc method to estimate model (8.6), which is based on a
discrete-time maximum likelihood method (MLE). It is now well recognized that
discretization of continuous-time stochastic differential equations introduces a bias in
the estimation procedure. However, such a bias is negligible when the data have daily
frequency (Bergstrom 1988). For this reason we use daily swap data in this case. In discrete
time, the process in Equation (8.6) becomes

M
oL =0l + k(= pOA+PIAD ezl i=1,.. 01, (8.8)
j=1

for h=1,..., M, where t;=iA and A = T/n. Here, Z, = (Z},...,ZM),i=1,... ,n—1, are
independent multivariate normal random variables with zero mean and covariance matrix
Inp Insbeing the identity matrix of order M. We observe that the distributional properties of
the process (8.8) depend only on k, 1z and . Therefore, in order to generate scenarios from
model (8.8), it suffices to know an estimate of this matrix. For this, we introduce the matrix
I' = [¢?]". Estimation involves maximizing the log-likelihood function associated with a
sequence of observations ﬁf >0:

n—1

1 1
log(detT") — = Te., 8.9
og(detT) =~ 3 ¢ Te (89)

i=1

n—

=+
n=C 5

where { = —[(n — 1)Mlog(2n)]/2 and
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el ="k, + Yk, (8.10)

¢, " and ! being constants independent of the parameters of the model, given by

Py, — P! A "
e (s.11)
/pQA b:

for every i=1,... ,n—1 and h=1,..., M. We reduce the number of parameters from
2M+ M to 2M + [M(M+1)/2] by introducing the following new variables:

r=c'c, a=kp, h=1,...,M, 8.12
h hi*h

where C is a lower triangular matrix with strictly positive entries on the main diagonal.

(using the Cholesky factorization of "' = A" A, with A upper triangular, C = [Afl]T). We

associate with this matrix a vector ¢ € RMM+1/2

according to the relation

Cij = Gy YM2i>j>1 (8.13)

Using these variables, we have det I" = [det C]* = IT}. C2,, while (8.9) can be rewritten as
follows:

e k) =C+ (0= 1) > log(Gy) — 3 |Cef’ (8.14)
h=1 i=1

Therefore, the calibration of model (8.6) can be obtained by computing the maximum of
£, for o, k € (0,00)" and ¢ € RMM*D/2_ satisfying Cuniry2 > 0, forany h=1,..., M. We
observe that the computation can be reduced to the maximum of

Ul(a, k) = sup £, (c, o, k) (8.15)

on (0,00)" x (0,00)™. Since 7, is concave compared with ¢, it is easy to show that U is
well defined and, for every (a, k) € (0,00)™", there is a ¢* = ¢*(«, k) such that

U(o k) = £,(c", o0, k) (8.16)

holds true. The optimizer c¢* is related, via relation (8.13), to the lower triangular matrix
(R:/\/R}),;>; defined by
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R
R 0
=V ], i=1,...M, (8.17)
R; n—1
where
(Vi)hlhz = (Vi k))hlhz = [ehl]Tehzv hy,hy=1,...,i (8.18)

For details of this result, see Papi (2004).

Summarizing, it is possible to select an optimal value of C = C(« ,k) and then calculate
the maximum of the function U which depends only on 2M variables, thus reducing the
computational burden. Since we do not know whether the function Uis concave or not, it
is not possible to resort to gradient methods in order to find a global maximum. For this
reason, we employ a stochastic algorithm based on Adaptive Simulated Annealing (ASA)
combined with Newton’s method. Table 8.3 reports representative results of this reduction
method applied to the estimation of the parameters of model (8.6).

Note that Equation (8.6) may be generalized as follows:

M
dpl =Kyl = ) det [P 0Bl forh= LM (819
j=1

where the exponentvbelongs to the interval [0,1.5] (Duffie 1996) (this restriction is
needed for the existence and uniqueness of solutions).

The discrete-time maximum-likelihood method does not involve particular difficulties
with respect to the case we have dealt with (i.e. v=0.5). More precisely, the reduction
method described by (8.12)—(8.18) can be easily adapted to this more general situation.
Table 8.4 reports the results of a comparison (for the sake of simplicity, only two maturities
are considered) between the estimates provided by model (8.6) and a simpler pure-
Gaussian version (i.e. v = 0) corresponding to a multivariate Vasicek model.

Path generation using model (8.6) is carried out by means of the discrete version (8.8).
The generation of a scenario with time frequency A > 0 assigns the last observed data to

TABLE 8.3 MLE of the Multivariate Model. Parameters for Some Representative Maturities Provided by the
Multivariate Model (8.6) of the Orthogonal Components (pi’"L of Equation (8.1)) of Italian
Treasury Rates. The Estimate is Obtained from Daily Data of the 1999—2005 Period by Means of

the Techniques Described in Section 8.3.4.2 using Adaptive Simulated Annealing

Maturity k y7i o6 036 G0 0360

6 months 4.3452 0.4353 0.7356 0.0421 0.0081 —0.0167
36 months 3.4351 2.0429 0.0421 0.2994 0.1871 0.0874
60 months 3.4195 2.8469 0.0081 0.1871 0.2455 0.1010

360 months 4.3450 4.5369 —0.0167 0.0874 0.1010 0.1993
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TABLE 8.4 Comparison of the Parameters of the Multivariate CIR Model (Equation (8.8)) and a Multivariate
Vasicek (i.e. Pure Gaussian) Model, Corresponding to Equation (8.19) with v = 0. For the
Estimation We Resorted to the Discrete Maximum-Likelihood Method Applied to Daily
Observations in the Period January 1999—September 2005 of the p/** Components of Two
Maturities (60 and 120 Months, Indicated, Respectively, as 1 and 2). The Values of the ¢-statistics in
the Multivariate CIR Model and the Larger Log-likelihood Indicate that Model (8.8) provides a

Better Fit of the Original Data with Respect to the Pure-Gaussian Model

Model
Multivariate CIR Multivariate Vasicek

Parameter Estimate t-Stat. Estimate t-Stat.
k; 1.6208 17.1201 1.4542 17.2518
k> 1.4175 15.0218 1.4243 16.4660
Yo 1.6959 0.0917 1.6992 0.0950
U 2.6422 0.5381 2.6557 0.5463
on 0.5545 2.0263 0.6667 34.190
g1 0.2788 2.0269 0.4079 24.419
T 0.3302 1.4483 0.5686 33.843
Log-likelihood —1001.925337 —2206.122226

p{‘ for every h=1,..., M. Then, at each time step i, where 1 <i<n—1, we generate
independent random vectors z; from the multivariate normal distribution N(0, Ij,), and
we set

proa=p + k,(w, — p)A+\/pIA(CT" - ), (8.20)

fori=1,..., n—1, where k, gand C are the MLE estimators.
Figure 8.8 shows the results of a simulation, based on the multivariate CIR model
described in this section, for a planning period of 48 months.

8.4  VALIDATION OF THE SIMULATED SCENARIOS

The stochastic models presented above allow the generation of a ‘realistic’ future term
structure. However, we need to generate a (pretty long) temporal sequence of term
structures starting from the present interest rates curve. As mentioned in Section 8.3, this
requires control of the evolution in time of the simulated term structure in such a way
that, for instance, its behavior is not too different from the behavior observed in the past.

Besides control on the value of the simulated ECB with respect to a predefined lower
bound as described in Section 8.3.1, we resort to two techniques to assess the reliability of
the sequence of simulated term structures. The first method, which we classify as ‘local;
ensures that, at each time step of the planning period, the simulated term structure is
‘compatible’ with the historical term structure. The second (which we classify as ‘global’)
considers the whole term structure evolution, and ensures that the correlation among the
increments of p/~ are close to the correlation of the increments of the historical
fluctuations.
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FIGURE 8.8 Simulation of the evolution of interest rates based on the multivariate CIR model (left panel) and
the corresponding term structures (right panel).

The local test is based upon the observation that the shape of the term structure does
not vary widely over time. Obviously, there is some degree of variability. For instance, it is
known that the term structure is usually an increasing function of the maturity, but, at
times, it can be inverted for a few maturities. This is the fundamental assumption of
Nelson and Siegel’s (1987) parsimonious model of the term structure.

In the present case, since we are not interested in a functional representation of the
term structure but in the interest rates at fixed maturities, we take as the indicator of the
term structure shape the relative increment and the local convexity of the interest rates:

FT R N S S (821)

where 7/ is the value at m" of the linear interpolation between r*!' and r/~':

A positive convexity (¢! >0) means that the rate r" at maturity m" is below the line

h=1 and /"1 h=1 and m", respectively, therefore the

curvature opens upward. The case of ¢! <0 can be interpreted along the same lines, but

joining the rates r at maturities m
the curvature opens downward.

At any time step, we accept the simulated interest rates if the corresponding values
of d and /" are not too different from the historical values. Briefly, we compute the
historical mean and standard deviation (1!, ) and (u”, %) of d/* and ¢, respectively,
and then we check that
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> ! =l < (=),
h:i ‘ (8.22)
e < (v —2)

The meaning of such tests is straightforward. If the simulated interest rates pass the
tests, we are quite confident that their increments and the local convexity have statistical
behaviour similar to the historical rates.

The global test controls the correlation among the increments of p/*, since it can be
quite different from the correlation of the historical data. In order to avoid ‘pathological’
situations like anti-correlated increments or increments that are too correlated with each
other, we compute the ‘one-norm’ of the matrix difference between the correlation matrix
of the increments of the historical fluctuations and the correlation matrix of the simulated
increments. The ‘one-norm’ is defined as follows: for each column, the sum of the
absolute values of the elements in the different rows of that column is calculated. The
‘one-norm’ is the maximum of these sums:

||2h15t 1] — Sllp Z |Zhlst (8.23)

We compare the result of this calculation with a predefined acceptance threshold. If the
‘one-norm’ is below the threshold, the simulated scenario is accepted, otherwise it is
rejected and a new set of fluctuations is generated. Currently, the threshold is set equal to
0.05. Since the correlation is a number within the range [ —1,1], this simple mechanism
guarantees that the covariance among the increments of the interest rates of different
maturities in the simulated scenarios is pretty close to the historical covariance.

Note how the local and global tests are complementary since the first test involves the
shape of the term structure, whereas the second test concerns how the rates’ increments
are correlated in time, that is, how the term structure evolves from one time step of the
simulation to the next.

8.5 ~ CONCLUSIONS AND FUTURE PERSPECTIVES

The management of public debt is of paramount importance for any country. Such an
issue is especially important for European countries after the definition of compulsory
rules by the Maastricht Treaty. Together with the Italian Ministry of Economy and
Finance, we have studied the problem of finding an optimal strategy for the issuance of
public debt securities. This turned out to be a stochastic optimal control problem where
the evolution of the interest rates plays a crucial role.

We have presented the techniques we employ to simulate the future behaviour of
interest rates for a wide range of maturities (from 3 months up to 30 years). Since the
planning period that we consider is pretty long (up to five years), most existing models
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need to be modified in order to provide realistic scenarios. In particular, the evolution of
the ‘leading’ rate (which we assume to be the European Central Bank’s official rate) is
simulated as if it were a stochastic jump process. We are aware that there is a long tradition
of studies that try to explain the links between prices, interest rates, monetary policy,
output and inflation. Webber and Babbs (1997) were among the first to propose yield-
curve models able to capture some aspects of monetary policies. Piazzesi (2001)
introduced a class of linear-quadratic jump-diffusion processes in order to develop an
arbitrage-free time-series model of yields in continuous time that incorporates the central
bank policy and estimates the model with U.S. interest rates and the Federal Reserve’s
target rate.

A general framework for these models has recently been presented by Das and Chacko
(2002), where the authors introduce factors that influence the marginal productivity of
capital, and thus the interest rates, in the economy. Their technique is general, since it
applies to any multi-factor, exponential-affine term structure model with multiple Wiener
and jump processes.

From an empirical point of view, there is some evidence that important central banks,
like the U.S. Federal Reserve, conduct a monetary policy (i.e. set the official rate) that is
well described by the so-called Taylor’s rule (Taylor 1993). Basically, the rule states that the
‘real’ short-term interest rate (that is, the interest rate adjusted for inflation) should be
determined according to three factors: (1) where the actual inflation is relative to the
targeted level that the central bank wishes to achieve, (2) how far economic activity is
above or below its ‘full employment’ level, and (3) what the level of the short-term interest
rate is that would be consistent with full employment. Although Taylor’s rule appears to
be more robust than more-complex rules with many other factors, it requires knowledge
of inflation and the real Gross Domestic Product (GDP). The simulation of future
inflation and GDP is far from easy, so, in some sense, the application of Taylor’s rule
changes, but does not solve, the problem of generating meaningful scenarios for the
evolution of the ECB official rate.

The models proposed in the present chapter are fully integrated into the software
prototype in use at the Ministry. The time required by the simulations (a few seconds on a
personal computer) is such that we can afford on-line generation of the simulated
scenarios even if the validation procedures described in Section 8.4 may require multiple
executions before a scenario is accepted.

Open problems and future analysis directions include the following:

e Modeling of the Primary Budget Surplus, Gross Domestic Product and Inflation in
order to implement Taylor’s rule and possibly other models for the evolution of the
European Central Bank’s official rate.

e Overcoming the assumption that interest rates are independent of the portfolio of
existing securities and independent of the new securities issued every month. To limit
the impact on the optimization problem, we should devise a description of these
interactions that is compatible with the linear formulation of the problem.
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APPENDIX 8.A: ESTIMATION WITH DISCRETE OBSERVATIONS

We deal with the case of a diffusion process X; (i.e. the interest rate r;) that is observed at
discrete times 0 = t,<t; < --- <t,, not necessarily equally spaced.

If the transition density of X, from y at time s to x at time ¢ is p(x,t,y,s; ), where 0 is
a collection of parameters to be estimated, we can resort to the Maximum Likelihood
Estimator (MLE) @n which maximizes the likelihood function

=[[p(x,. 1. X, .t ,.0), (8.A1)
i=1

or, equivalently, the log-likelihood function

£,(0) = log(L Zlog (X, 1 X, 5 151;0))- (8.A2)

In the case of observations equally spaced in time, the consistency and asymptotic
normality of én as n — o0 can be proved (Dacunha-Castelle and Florens-Zmirou 1986). In
general, the transition density of X, is not available. In this case the classical alternative
estimator is obtained by means of an approximation of the log-likelihood function
for O based on continuous observations of X, Unfortunately, this approach has the
undesirable property that the estimators are biased, unless 7 = max; |t, — ¢, ,| is small. To
overcome the difficulties due to the dependence of the parameters on 7, different
solutions have been proposed. One of the most efficient methods resorts to martingale
estimating functions (Bibby and Sorensen 1995). This method is based on the
construction of estimating equations having the following form:

G,(0) =0, (8.A3)

where

Zg, 0)(X, —E(X, | X, ), (8.A4)

gi.1 being continuously differentiable in 6, for i = 1,..., n. Bibby and Sorensen (1995)
proved, under technical conditions on g; ;, that an estimator that solves Equation (8.A3)
exists with probability tending to one as n — oo, and this estimator is consistent and
asymptotically normal.

A simpler approach, which can be used whenmis sufficiently small, is based on the
Euler discretization of the diffusion equation associated with X,. In this case, one can use
the log-likelihood approach since the transition density can be easily computed. We
discuss the application of this method to (8.5). Let
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r,=rt+tku—r)A+o/r,AZ, i=1,....n—1, (8.A5)

be the first-order discretization of Equation (8.5) on time interval [0, T], where A = T/n
and with Z; the increment AB; of the Brownian motion between f; =iA and
t;,; = (i+ 1)A. Since these increments are independent N(0, A) distributed random
variables, the transition density from y > 0 to x during an interval of length A is

p(x|y;0) = \/ﬁ exp (— mﬁ (x — k(u — y)A)2>, (8.A6)

where 0 = (k, y1, 0). Therefore, given a sequence of observations {r;},, an estimator of
(8.32) is obtained by maximizing the log-likelihood function

n—1
max ; log(p(r, [ 1.:0)). (8.A7)

If one expands the function in (8.34) and sets equal to zero its partial derivatives with
respect to (k, i, 6%), it is easy to show that the corresponding equations admit a unique
solution that is a maximum point of the log-likelihood function. The following relations
represent this ML estimator:

_EF-2cD D

=" k=, 8.A8
N = 5EB—FD 2uB—F (8.A8)

1
o = C(a+ K1’ B+ K C — kuD + kE — K*uF), (8.A9)
"o

TABLE 8.A1 Assessment of the Discrete Estimator (1D case). Results for a Simulation Evaluation of the Log-
likelihood Estimator to the Univariate CIR Model. Using the True Values of the Parameters We
Simulated 500 Sample Paths of Length 2610 Daily Observations Each. For Each Sample Path We
Undertook Discrete MLE Estimation Via Euler Discretization. The Table Presents Summary
Statistics of the Simulated Estimations. We Computed the Mean and Standard Error for the
Estimator (k,ji,6), and Computed t-Statistics for the Difference between the Simulated
Parameter Estimate and the True Parameter. The Null Hypothesis Cannot be Rejected at the
5% Significance Level

Parameter
Statistics (N=500) k Y7} o
True parameter 0.8 3.24 0.03
Estimated parameter 0.79928 3.2405 0.030009
Standard error 0.00081491 0.0011 0.00001936

t-Statistics 0.8835 0.4545 0.4649
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TABLE 8.A2 MLE of the Univariate CIR Model. Results for the Estimation of the Univariate CIR Model of p/"*

of Equation (8.1). Estimation was Carried Out Using Discrete Maximum-likelihood (8.34). We
Report the Value of the Log-likelihood (Log (L)), the Norm of its Gradient (IVLog (L)!) and the
Maximum Eigenvalue (I;) of its Hessian Matrix at the Maximum Point

Parameter BOT3 BOTe6 BOT12 CTZ
k 5.4611 4.0217 2.1634 1.1265
U 0.32712 0.43815 0.72852 1.457
o 0.78513 0.76817 0.74801 0.57573
log (L) 1866.541 2174.4863 1920.0013 1791.6797
IVlog (L) 1.2268 x 107" 3.0103 x 107" 6.3497 x 107 2.2739 x 107"
AL —0.54044 —1.1819 —1.5844 —1.7826
BTP36 BTP60 BTP120 BTP180 BTP360
k 1.1488 1.4039 1.7635 1.9973 24133
U 2.0531 2.8686 3.9144 4.2957 4.5355
o 0.50163 0.4293 0.33892 0.31716 0.30738
log (L) 1756.6086 1743.7829 1822.044 1839.9547 1840.362
IVlog (L) 1.4118 x 1074 0 9.0949 x 10" 0 1.504 x 107"
L —1.8906 —1.8071 —1.5539 —1.3116 —0.93247
where
n—1 2 n—1 n—1
T, — 1 1
Azz(m 1)’ B:AZ—, CZAZ%
A
=0 T; i—0 Ti =0 (8.A10)

n—1
p=2""MTh poa( —r), F=2A(n-1).
i=0 Ti

Here, r; is the interest rate at time t;. We report the results of this method in Table 8.A1.
In Table 8.A2 the method is applied to each orthogonal component it



CHAPTER 9

Solving ALM Problems via
Sequential Stochastic
Programming

FLORIAN HERZOG, GABRIEL DONDI, SIMON KEEL,
LORENZ M. SCHUMANN and HANS P. GEERING

CONTENTS
9.1 Introduction. . . ... 198
9.2 Stochastic Programming Approximation of the Continuous
State Dynamic Programming Algorithm. . .. ... ... ... . ... ... 199
9.2.1 Basic Problem and Description of the Algorithm ... ......... .. 199
9.2.2 Scenario Approximations . . .......... . .. oo 201
9.2.3 Approximate of Dymanic Programming ... ................. 202
9.3 Portfolio Optimization. . . ... ... 204
9.3.1 Asset Return Models. . . ...... .. ... . .. 204
9.3.2 Portfolio Dynamics with Transaction Costs . . .. .............. 205
9.3.3 Risk Measure and Objective Function . .................... 206
9.3.4 Multi-Period Portfolio Optimization with Transaction Costs. . . . . . . 208
9.4 Case Study: Asset and Liability Management with
Transaction Costs fora Swiss Fund . . ... ...... ... ... .. ... .. .. 209
9.4.1 Data Sets and Data Analysis . ... ...... .. ... . ... ... .. 209
9.4.2 Implementation . . .. ... ... 211
9.4.3 Factor Selection, Parameter Estimation and
Asset Allocation Strategy. . .. ... ... L o oL 212
9.4.4 Results of the Historical Out-of-Sample Backtest . . .. .......... 214
9.5 Conclusion and Outlook . . . ... ... . .. . 217
Acknowledgements. . .. ... 217
References . . . ... 218
Appendix 9.A: Additional Data for the Case Study . ... ................ 219

Appendix 9.B: Dynamic Programming Recursion for the Sample Approximation..220

197



198 M CHAPTER 9

9.1 INTRODUCTION

N RECENT YEARS, A GROWING NUMBER of real-world applications of asset liability

management (ALM) with discrete-time models have emerged. Insurance companies
and pension funds pioneered these applications, which include the Russell-Yasuada
investment system (Carino and Ziemba 1998), the Towers—Perrin System (Mulvey 1995),
the Siemens Austria Pension Fund (Ziemba 2003; Geyer et al. 2004), and Pioneer
Investment guaranteed funds (Dempster et al. 2006). In each of the applications, the
investment decisions are linked to liability choices, and the funds are maximized over time
using multi-stage stochastic programming methods. Other examples of the use of
stochastic programming to solve dynamic ALM problems are given by Dempster and
Consigli (1998) and Dondi (2005).

All authors propose stochastic programming as the most suitable solution framework
for ALM problems. However, since most of the asset or liability models are dynamic
stochastic models, the ALM problem is one of dynamic optimization which can be solved
by applying the continuous state dynamic programming (DP) algorithm. In this chapter,
we show that the DP algorithm can be approximated locally by stochastic programming
(SP) methods. By using a sufficient number of scenarios, the difference between the exact
solution and the approximation can be made arbitrarily small. The SP optimization is re-
solved for every time-step based on a new set of stochastic scenarios that is computed
according to the latest conditional information. In this way, a feedback from the actual

observed state is introduced which is not from the coarse scenario approximation from
an earlier time-step. This procedure, often called rolling-horizon planning, is frequently
used as heuristic, but we show here that by carefully posing and computing the SP
optimization, the continuous state DP algorithm is being applied approximately.

This DP approximation is applied to the problem of a fund that guarantees a minimal
return on investments and faces transaction costs when investing. The situation resembles
the problem faced by Swiss pension funds or German life insurance policies. The minimal
return guarantee changes the fund problem from a pure asset allocation problem to
an ALM problem, see Dempster et al. (2007). First, models of the asset returns and
portfolio dynamics with transaction costs are introduced. Then we propose that the most
suitable risk measure for such a situation is a shortfall risk measure that penalizes all
possible scenarios for the future in which the minimal return is not achieved. The
optimization problem is solved with the aim of maximizing the return above the guarantee
over the planning horizon, while limiting the shortfall risk. The problem is tested in an
eight year out-of-sample backtest with a quarterly trading frequency from the perspective
of a Swiss Fund that invests domestically and in the EU markets and faces transaction costs.

The chapter is organized as follows: in Section 9.2, the approximation of dynamic
programming is introduced. In Section 9.3, we present the application of the stochastic
programming approximation to a portfolio problem with transaction costs. Additionally,
we introduce a dynamically coherent risk measure for asset liability situations. In Section
9.4, a case study is examined from the perspective of a Swiss fund that invests domestically
in stocks, bonds and cash, as well as in the EU stock and bond markets. Section 9.5
concludes the chapter.
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9.2 STOCHASTIC PROGRAMMING APPROXIMATION OF THE
CONTINUOUS STATE DYNAMIC PROGRAMMING ALGORITHM

We discuss how to use dynamic stochastic programming as one possible approximation of

dynamic programming (DP). It is well known that any dynamic optimization problem
(DOP) in discrete-time may be solved in principle by employing the DP algorithm.
However for situations with realistic assumptions, such as control constraints or non-
Gaussian white noise processes, it is very difficult to obtain closed-form solutions. In these
cases it is necessary to resort to numerical solution methods.

9.2.1  Basic Problem and Description of the Algorithm

In this chapter, we approximate the continuous state dynamic programming method by
discretizing not the state space but the possible outcomes of the white noise process.
Starting from the current state value the DP approximation solves a SP problem over a
finite horizon at each sampling time. The optimization procedure yields an optimal
control sequence over the planning horizon but only the first control decision of the
sequence is applied to the system and the rest are disregarded. At the next time-step, the
calculation is repeated based on the new value of the state variable and over a shifted
horizon, which leads to a receding horizon policy. The receding horizon policy means
that we solve the multi-period decision problem always with the same number of
periods to the horizon. Other authors have investigated the same idea in a portfolio
optimization context, see Brennan et al. (1997), but based on numerical solutions of the
Hamilton—Jacobi—Bellman PDE to solve the optimal control problem. A useful advantage
of the present DP approximation is the capability to solve DP problems using established
methods from stochastic programming and their known properties and algorithms.

Other techniques, such as discrete DP solutions, often lead to computationally
overwhelming tasks which often prevent their application. The technique proposed here
however, solves the problem only for the current state and the approximate trajectory
of the underlying dynamical system and thus avoids the curse of dimensionality. In
Figure 9.1, the approximation algorithm is summarized; in Table 9.1 it is described in
detail.

Scenario Solving Realization
Generation Stochastic of &(t)
Program L.
U{E ()
u(t), u’(t+1), .. y(¢+1) = D(t, y(t))
Lu(t+T)S +S(¢, y(2)) €(2)

Measure State (y(z))

FIGURE 9.1 Graphical description of the approximation algorithm.
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TABLE 9.1 Algorithm to Compute the Stochastic Programming Approximation

1. Based on the information at time ¢, determine y(f). Set an accuracy parameter #, set ] = oo, and define the
number of scenarios per period. Start with a relatively low number of scenarios.

2. Compute the scenario approximation of €(7) for t=tt+ 1,...,T— 1 based on the number of samples
per time period.

3. Solve the multi-stage stochastic program as outlined in Proposition 9.1.

4. In the case that |J*(t, y(t)) — J| <# stop and go to step 5. Otherwise set ] := J*(¢, y(¢)) and increase the
number of scenarios to refine the approximation, see Section 9.4.2.1. Go to step 2.

5. Apply only the first control decision 7(t) and disregard all future control decisions for the next time-step.
Until the optimization has reached its fixed end date (horizon) go to step 1, else stop.

A general DOP can be stated as

f(t,y(t))izran{ [ L(z u(t)) + M(T, y(T))]}

uel
=t

st y(t+1) = D(1, y(7), 5(1)) + S(z, y(2), u(7) (),

(9.1)

a

where 7 =1, t+ 1,...,T — 1, L(-) and M(-) are the strictly concave value functionals,
D(-) and S(-) define the state dynamics and are assumed to be continuously differentiable
functions, %(7) is a bounded control vector constrained to the convex set U and €(7) is a
strictly covariance stationary white noise process. It is assumed that all functionals L(-),
M(-), D(-) and S(-) are Lipschitz continuous and fulfil the necessary conditions for this
dynamic optimization problem to be well defined and possesses a unique solution. For
details refer to Bertsekas and Shreve (1978). Note that the white noise process is
stationary, but the dynamics of y(r) are both state and time dependent since the
functional S(t, y(7), (7)) depends on both y(7) and .

In order to obtain a feedback solution to the DOP problem (9.1), the dynamic
programming (DP) algorithm is given by

J(T, y(T)) = M(T,y(T)),
J(t,y(7)) = max {[E[L(T,J/(T)) +J(t+ 1, D(z, y(7), u(1)) + S(W(T)ﬂ(f))’é(f))}}-

u(t)eu
(9.2)

This condition for optimality can be found in Bertsekas (1995, Chapter 1). Instead of
solving the DP algorithm for | to yield the true stochastic dynamics, we locally
approximate the stochastic dynamics by a finite number of scenarios at the current
decision time and solve the problem repeatedly at each decision time-step.

The standard DP procedure discretizes the state space for each dimension of y(f) and
each time-step until the horizon T. Then, beginning at time T, the optimization problem
of (9.2) is solved for each discretized state of y(¢). Based on the optimal solution for each
state discretization of y(f) the optimal value of J(T, y(T)) is known. The optimal control
decision for time T — 1 is solved by maximizing the backward recursion in (9.2). This
procedure is repeated until we reach the current time t. In this way, the DP algorithm
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solves (T — t + 1)p* optimization problems, where p is the number of states, k is the
number of discretizations for each state and T — t + 1 is the number of remaining time-
steps. For example, for a problem with five states, 10 discretizations and five remaining
time-steps, the DP procedure involves 48 millon optimizations, which is already an
enormous amount for this rather coarse discretization. This fact is often called the ‘curse
of dimensionality’ since the number of computations increases exponentially with the
number of states.

9.2.2  Scenario Approximations

If a regular grid is used to discretize the state space of (1), the optimization is computed at
many points in the state space which are reached with low probability. A standard
approach to overcome these drawbacks is to use a scenario approach and a sampling
approximation of the true expectation. The difficulty with solving the DP problem directly
is the computation of the recursion under realistic assumptions. Instead of computing
the exact optimal control policy, we solve an approximate problem where we replace
the expectation by the sample mean and the true dynamics by a finite number of
representative scenarios. To calculate the scenario and sample mean, a number of samples
has to be drawn from the underlying path probability distribution. This procedure is
repeated at each time-step so that a new control decision is based on the current time and
state. Instead of solving the DP problem for all possible states and time, the DP problem is
approximated at the current state and time by an SP problem. At each time-step f, we
replace the probability distribution of €(z) by k(7) scenarios, denoted by €°(7). We denote
byt = t+1,...,T — 1 time in the scenario tree and thus in the SP problem. The
‘physical’ time is denoted by t. At time 7 4 1 conditional on the scenario €'(7), we
generate k(7 + 1) scenarios for each previous scenario of €’(7) as shown in Figure 9.2.
Since we assume that the white noise process is stationary, at each node €(7) is replaced by
the same scenario values. The system dynamics however are different at each node, since
both D(-) and S(-) are time and state dependent. The scenarios are defined as the set S

Number Branches

. Time Steps
for Each Node Scenario Tree P
94 Time 1
5 5 Time 2
Time 3
2
Time 4

FIGURE 9.2 Graphical description of a scenario tree.
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that represents a reasonable description of the future uncertainties. A scenario s € S
describes a unique path through consecutive nodes of the scenario tree, as depicted in
Figure 9.2. In this way, we generate a tree of scenarios that grows exponentially with the
time horizon and the number of scenarios is given by N = []._, x(i). By this procedure we
generate an irregular grid of the state space along a highly probable evolution of the
system. The optimization is then computed for the approximate dynamics in terms of
the sample expectation. For the approximate problem we still effectively execute the DP
algorithm, but only for the approximate paths of the state dynamics and the current state
and time.

9.2.3  Approximate of Dymanic Programming

When we replace the ‘true’ stochastic dynamics of the state equation by its sample
approximation, we need to compute the sample mean of the objective function instead of
its expectation. The objective function at time 7 on one scenario s with feedback mapping
(policy) IT¥(7) := [7°(7), 7’ (t + 1),...,7°(T — 1)] is given by

Vi, y (1), IF(x)) = Z L(, (i), m°(7)) + M(T, y*(T)). (9:3)

The control decisions IT°(7) define a feedback mapping, since for each scenario s and time
7 a predetermined control decision based on a feedback rule 7*(7): = u(z, (7)) is used.
The sample mean of the objective function is given by

B[V (L)) =5 30 V(e (e T ), (9.4

where E[-] = (1/S) 3% ,[] denotes the sample mean. Using (9.4) we define the sample
approximation of the dynamic optimization problem as

~

Pey(@) = max {E[v:(s.y (). ()] |

(et (9.5)
st. y'(t 4+ 1) = D(1,y°(7), 7°(7)) + S(z, y’(7), 7° (7)) €’ (1),

where J*(z, y(t)) is the value of the objective function at time ¢ under scenario s and we
must impose non-anticipativity constraints, i.e. ¥(7)° = y(r)s’ when s and s” have the same
past until time 7. At the root of the scenario tree J*(-) and n°(t) are the same for all
scenarios (s = 1,...,N’).

Theorem 9.1: The sample approximation of the optimization problem given in (9.5) can be
recursively computed by the following dynamic program:
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Ji(z.y'() = max {E[L(z,»(2), u'(2)) + J'(z + 1.D(z, y'(x),

) (9.6)
(1) + (e, (0), w()e()| |

with terminal condition J*(T y*(T)) = M(T, y*(T)).
The proof of Theorem 9.1 is given in Appendix 9.B. Note that using (9.6) to solve (9.5),

we use a backward recursion that automatically takes into account the non-anticipative
constraints which prevent exact knowledge of future scenarios.

Proposition 9.1: The dynamic programming formulation of the approximated dynamic
optimization problem can be written as a multi-stage stochastic program.

This proposition follows directly from Louveaux and Birge (1997, Chapter 3, p. 128). In
Table 9.1 we state the algorithm to compute the stochastic programming approximation
of the dynamic programming approach. By starting with a low number of scenarios, we
ensure that the multi-stage stochastic program is solved rather quickly. The algorithm
cycles between step 2 and step 4 until the desired accuracy has been reached. The relation
of the approximation algorithm and the true problem defined in (9.1) is given in
Proposition 9.2.

Proposition 9.2: Under the assumptions of Section 9.2.1, the sample approximation of the
objective function J*(t, y(t)) defined in (9.5) converges with probability 1 to the true objective
function J(t, y(t)) as defined in (9.1) for N — oo. Especially J*(t,y(t)) converges with
probability 9.1 to J(t, y(t)) for N — oo.

Proof: Given a predetermined feedback mapping IT(z) as defined above and using the
Tchebychev inequality (Casella and Berger 2002) the following holds:

lim P(‘E[V(r,ys(r),l—ls(r))] — E[V(r,y(r),I(7))]] <17) =1, V>0, (9.7)

N—oo

where 7 = t,t+ 1,..., T — 1. We know that exchanging the expectation with the sample
mean has a negligible effect with arbitrarily large probability, since E[V (, y*(t), IT*(1))]
converges to E[V(t, y(t),I1(t))] with probability 1 and using

J(ey) = mas, {B[V(e. . m)]

IT*(v) et

it follows under suitable assumptions that

lim P(’E[f(r,ys(r))] — EJ(z, y(7))]] <;7) -1,  Wp>o. (9.8)

N—oo
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The proof of Proposition 9.2 holds only under the restrictive assumptions for the
problem stated in Section 9.2.1. The more general case is discussed in detail in Romisch
(2003) and Dempster (2004). The result of Proposition 9.2 states that the approximate
objective function converges in probability to the true value of the objective function.
However this does not imply that the control law computed by the approximation
converges in probability to the true control law. The approximation by stochastic
programming techniques determines only the control law for the scenarios used. For other
values of the state variables, which are not covered by the scenario approximation, the
control law is not defined. Since we only apply the first control decision for the fixed
(measured) state y(f) the issue of feedback for uncovered state variables may not
constitute a problem in the absence of nonlinearities. By using the approximation
procedure at every time-step, however, the control decisions are always based on current
information, but remain scenario dependent. A similar analysis for linear stochastic
systems with quadratic performance criteria can be found in Batina et al. (2002), however
without the explicit connection to stochastic programming.

The scenario approximation does not depend on the dimension of the state variables
but on the number of scenarios used. The algorithm’s complexity is thus independent of
the state space dimension. However, to obtain results with a desired accuracy we need a
sufficiently large number of scenarios. By solving the stochastic programming problem at
every time-step we introduce feedback into our system. This method requires the solution
of T —t+ 1 stochastic programming problems. The approach is very suitable for
historical backtesting, but is less suitable for simulation studies, since for each time-step in
the simulation a stochastic program must be solved. Furthermore, this approach is limited
by the exponential growth of the scenario tree. If a very large number of scenarios is
needed, it becomes very slow and computationally intractable.

The convergence speed of the proposed method relies on the convergence speed of the
stochastic program and the scenario generation. As shown in Koivu (2005), the scenario
generation method determines the convergence speed and the accuracy of the solution.
For this reason we use the method proposed in Koivu (2005) for scenario generation, since
it outperforms standard Monte Carlo techniques (see Section 9.4.2.1).

9.3 PORTFOLIO OPTIMIZATION

In this section, the general asset return statistical model and the portfolio model with
transaction costs are given. Further, the objective function and the problem of portfolio

optimization under transaction costs is stated.

9.3.1  Asset Return Models

The returns of assets (or asset classes) in which we are able to invest are described by
r(t+1) = Gx(t) + g+ (1), (9.9)

()" € R" is the vector of asset returns, €'(t) € R" is a
white noise process with E[¢’(f)] = 0 and E[¢"(¢)e’" (¢)] := Z(t) € R™" is the covariance

where r(t) = (r,(¢),r,(t),... 7
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matrix, Gx(t) + g € R” is the local expected return, x(f) € R™ is the vector of factors,
G € R™"™ is the factor loading matrix, and g € R" is a constant vector. We assume that
the conditional expectation is time-varying and stochastic, since G x(f) + g is a function
of the factor levels x(#) which themselves are governed by a stochastic process. The white
noise process €'(#) is assumed to be strictly covariance stationary. The prices of the risky
assets evolve according to

P(t+1)=P(t)(1+r(t)), P,(0)=p,>0, (9.10)

where P(f) = (Py(t), Py(1),...,P,(t)) denotes the prices of the risky assets. A locally risk-
free bank account with interest rate ry(f, x(#)) is given as

Py(t+1) = Py(t)(1 + Fox(t) + f;), Py(0) = pyy > 0, (9.11)

where Py(t) denotes the bank account. The interest rate of the bank account, described by
(9.11), is modelled by

ro(t) = Fox(t) + fo, (9.12)

where F, € R and f, € R.

The factor process affecting the expected return of the risky assets and the interest rate
of the bank account is described by the following linear stochastic process difference
equation

x(t + 1) = Ax(t) + a + vé (1), (9.13)

where A € R™", a € R", v € R™™ and ¢*(t) € R" is a strictly covariance stationary
white noise process. The white noise process of the risky asset dynamics €'(#) is not
restricted to have a Gaussian distribution. We also assume that €'(f) and €*(¢) are
correlated. The stochastic process of the asset returns has a Markov structure and therefore
we can apply DP techniques to solve the corresponding portfolio optimization problem.

9.3.2  Portfolio Dynamics with Transaction Costs

For the case of transaction costs, we limit our description of the wealth dynamics to linear
transaction costs and use the scenario approach to describe multi-period asset prices.
Many different formulations of multi-period investment problems can be found in the
literature. Here, we adopt the basic model formulation presented in Mulvey and Shetty
(2004). The portfolio optimization horizon consists of T time-steps represented by
t ={1,2,..., T}. At every time-step t, the investors are able to make a decision regarding
their investments and face inflows and outflows from and to their portfolio. The
investment classes belong to the set I = {1,2,...,n}.

Let z;(t) be the amount of wealth invested in instrument i at the beginning of the time-
step t under scenario s. The units we use are the investor’s home currency (e.g. Swiss
francs). Foreign assets, hedged or un-hedged against exchange rate fluctuations, are also
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denoted in the portfolio’s home currency. At time ¢ the total wealth of the portfolio is

W) =) z(r)  VseS, (9.14)

i=1

where W?(t) denotes the total wealth under scenario s. Given the returns of each
investment class, the asset values at the end of the time period are

2O+ () =2()  VseS, Viel, (9.15)

1

where r;(t) is the return of investment class i at time ¢ under scenario s. The returns are

Z;(t) is the ith asset value at

obtained from the scenario generation system. Therefore, Zz;

the end of the time period t under scenario s. The sales or purchases of assets occur at the
beginning of the time period, where d;(t) > 0 denotes the amount of asset i sold at time ¢
under scenario s, and p(¢) > 0 denotes the purchase of asset i at time ¢ under scenario s.
The asset balance equation for each asset is

Z(t)=z(t—1)+pi(t)(1 —0,) —di(t) VseS, Viell({l}, (9.16)

where 9; is the proportional (linear) transaction cost of asset i. We make the assumption
that the transaction costs are not a function of time, but depend only on the investment
class involved.

We treat the cash component of our investments as a special asset. The balance equation
for cash is

z(t)=2z(t—-1)+ i a;(t)(1 — sz +4'(t) Vse€S, (9.17)

where z;(t) is the cash account at time ¢ under scenario s and q(¢) is the inflow or outflow
of funds at time ¢ under scenario s, respectively.

All of the variables in Equations (9.14)—(9.17) are dependent on the actual scenario s.
These equations could be decomposed into subproblems for each scenario in which we
anticipate that this scenario will evolve. To model reality, we must, however, impose non-
anticipativity constraints. All scenarios which inherit the same past up to a certain time
period must evoke the same decisions in that time period, otherwise the non-
anticipativity requirement would be violated. So z(t) = z (t) when s and s have same
past until time t.

9.3.3  Risk Measure and Objective Function

We introduce a linear risk measure that is well suited for problems with assets and
liabilities. Liabilities can be explicit payments promised at future dates, as well as capital
guarantees (promises) to investors or investment goals.

We define our risk measure as a penalty function for net-wealth, i.e. wealth minus
liabilities. We want to penalize small ‘non-achievement’ of the goal differently from large
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‘non-achievement.” Therefore, the penalty function should have an increasing slope
with increasing ‘non-achievement. The risk of the portfolio is measured as one-sided
downside risk based on non-achievement of the goals. As penalty function Pr(-) we
choose the expectation of a piecewise linear function of the net wealth as shown in Figure
9.3. The penalty function is convex, but not a coherent risk measure in the sense of
Artzner et al. (1999) However, it fulfills the modified properties for coherent risk measures
defined by Ziemba and Rockafellar (2000). Furthermore, we can formulate a backward
recursion to compute the risk measure and, thus, it is dynamically coherent in the sense of
Riedel (2004). The same approach is discussed in detail by Dondi et al. (2007) where this
method is applied to the management of a Swiss pension fund. Furthermore, for the case
of multi-period capital guarantees, a suitable risk measure that is linear is given by

r=> 1) P (W()-G()|, (9.18)

where Prdenotes the piecewise linear penalty function, G(7) denotes the capital guarantee
at time 7 and W(t) the portfolio value at time 7. By multi-period capital guarantee we
mean a capital guarantee not only for the final period but for all intermediate periods.
This risk measure is convex and fulfills the properties of a dynamic risk measure.
Standard coherent risk measures (CVaR, maximum loss) or traditional risk measures
(utility functions, variance, VaR) can be used in ALM situations, when applied to the
fund’s net wealth, e.g. the sum of the assets minus all the present value of the remaining
liabilities. For example, CVaR penalizes linearly all events which are below the VaR limit
for a given confidence level. The inherent VaR limit is a result of the CVaR optimization,
see Rockafellar and Uryasev (2000, 2002). The VaR limit therefore depends on the
confidence level chosen and the shape of the distribution. The VaR limit (quantile) may be
a negative number, i.e. a negative net wealth may result. For a pension fund we do not
only want to penalize scenarios that are smaller than a given quantile, but all scenarios

| Positive ‘Negative

Penality Function

Net Wealth

FIGURE 9.3 Depiction of the penalty function.
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where the net wealth is non-positive. Similarly, traditional risk measures do not measure
the shortfall, but the inherent ‘randomness’ of the investment policy. We have therefore
chosen the approach described in the previous paragraph.

The objective of our ALM problem is to maximize the expected wealth at the end of the
planning horizon, while keeping the penalty function under a certain level. Therefore, we
propose the following objective function

N T

max{z [Ws(T) +2) P, Wi(x) — G(v)) (f(t)] } (9.19)
s=1 =t

where 7 = t,t+ 1,..., T, and 4 < 0 denotes the coefficient of risk aversion.

9.3.4  Multi-Period Portfolio Optimization with Transaction Costs

For the case of portfolio optimization problems with long-term goals and transaction
costs we use the approach presented in Section 9.2. The optimization problem for the
minimal guaranteed return fund is

p{g}%{z [WS(T) F2Y Py (e W)~ G(1) (f(t)] }

Wi(t) = Z z (1) Vs e S,

: (1) Vse S, Viel,
Z(1) =z =) +p(0)(1 =0) —di(r)  VseS, Viel\{l},

z(t) =z -1+ Z d;(v)(1 - 9;) - ZP?(T) +q(t) VseS§,

(9.20)

where 1 =tt+1,...,T, 4 <0, denotes coefficient of risk aversion, and initial
conditions z(t), i = 1,...,n are given. The optimization problem is given directly as
the SP problem that needs to be solved at every time-step. Furthermore, we may impose
constraints for short positions or leveraging and we may limit the position in a specific
asset (or asset class) by imposing the constraints

S ﬁSmax)

)

(mi
i

of wealth invested in asset i respectively. Similar constraints can be introduced to enforce
minimum and maximum investments into certain sets of assets, e.g. international

investments, or stocks. This kind of constraint can be formulated as linear and thus, the

where 7™ is the minimum allowed fraction and %™ is the maximum allowed fraction
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optimization given in (9.20) is still a large-scale LP. Many specialized algorithms exist to
solve this special form of an LP, such as the L-shaped algorithm, see e.g. Birge et al. (1994).

The portfolio optimization problem is solved by employing the algorithm outlined in
Section 9.2. At every time-step, we generate the scenario approximation of the return
dynamics used for the specific investment universe based on the current information at
time 7. Then, we solve the optimization problem given by (9.20) with all of the
corresponding constraints. Next we then check the accuracy and refine the scenario tree.
When we reach the predetermined accuracy, we terminate the tree generation and
optimization and apply the investment decisions p;(7) and p,(7). The procedure then
moves one time-step ahead.

9.4  CASE STUDY: ASSET AND LIABILITY MANAGEMENT WITH
TRANSACTION COSTS FOR A SWISS FUND

In this case study, we take the view of an investment fund that resides in Switzerland

which invests domestically and abroad. The fund is assumed to be large and we therefore
cannot neglect the market impacts of its trading activities which result in trading costs.
The problem of portfolio optimization is solved with the framework presented in Section
9.3.2. Moreover, we assume that the fund gives a capital (performance) guarantee which
introduces a liability. The situation resembles the situation of a Swiss pension fund and,
thus, we impose similar restrictions on the case study. Designing funds with performance
guarantees is also discussed in Dempster et al. (2006, 2007).

The critical connection between the assets and liabilities is modelled through the capital
guarantee G(t). In the case of fixed discount rates, such as in the Swiss or German case,
the capital guarantee increases with the discount rate. For the case in which the capital
guarantee is linked to the current term structure of interest rates, the capital guarantee
would increase along the term structure. The guarantee is not necessarily deterministic, it
could be stochastic, e.g. the guarantee could increase with a LIBOR rate that changes in
the future. Then the guarantee must be part of the stochastic scenario generation. In this
case study, we assume that the discount rate is fixed to 4% and the nominal liabilities
increases accordingly. Therefore, we do not include the capital guarantee in the scenario
generation. Other approaches that feature a two-step method to calculate the optimal
ALM are described in Mulvey et al. (2000), where the liabilities are described by a detailed
interest rate model. A three factor yield curve model is also used in Dempster et al. (2006,
2007). Classical techniques are the immunization of liabilities by bonds, as described in
Fabozzi (2005). A detailed overview of different approaches to ALM modelling is given in
Dondi et al. (2007) and Zenios and Ziemba (2007).

9.4.1 Data Sets and Data Analysis

The data sets consists of the Datastream (DS) Swiss total stock market index, the DS Swiss
government benchmark bond index, the DS European Union (EU) total stock market, and
the DS EU government benchmark bond index. For the money market account, we use
the 3-month LIBOR (SNB) interest rate. The data set starts on 1 January 1988 and finishes
on 1 January 2005 with quarterly frequency. The two international indices are used in two
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different ways in our case study. In the first the indices are simply recalculated in Swiss
francs (CHF) and the in other the currency risk is eliminated by completely hedging the
currency risk. The risk-return profile is changed in the latter case since hedging introduces
costs that reduce the performance but eliminate the currency risk. The hedging costs are
computed on the basis of the difference of the 3-month forward rates between the Swiss
franc and euro. Before 1999, we use the difference between forward rates of the Swiss franc
and German mark as an approximation for the Euro—Swiss France hedging costs. Also,
before 1999 the EU stock and bond indices are calculated in German marks. We simply
substitute the euro by German mark (with euro reference conversion of 1.95583), since the
German mark was the major currency of the euro predecessor the ECU (the German mark
and linked currencies such as the Dutch gilder made up more than 50% of the ECU). The
correlation of the ECU and the German mark were extremely high, especially after 1996
where the out-of-sample backtesting starts. This substitution is of course a simplification,
but does not change the return distributions significantly. In Figure 9.4, the return
histograms for the Swiss stock market, the Swiss bond market, the EU stock market in
CHE and the EU stock market hedged are shown. The figure shows the histograms and
the best fits of a normal distribution. Except for the bond market index, we can clearly
reject the assumption that the stock market data are normally distributed. When we fit a
multivariate student-t¢ distribution on a rolling basis to the stock market data, we get
degrees of freedom between 6.7 and 9.6, which indicate a very clear deviation from
normality. These results are supported by two tests for normality which reject the
assumption of normality at 5% confidence level. The two tests are the Jarque—Bera test
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FIGURE 9.4 Histogram of the quarterly returns for different assets of the Swiss case study.
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(J-B) and the Lilliefors test (LF) (Alexander 2001, Chapter 10). For these reasons, we
model the returns of the stock market data by a non-normal distribution. The results of
the normality tests for the out-of-sample period are given in Table 9.4, Section 9.4.4. We
obtain similar results for the in-sample time period from 1 January 1988 to 1 June 1996.

9.4.2 Implementation

The implementation of the out-of-sample test for the portfolio allocation method consists
of three main steps: the scenario generation, the parameter estimation and the
computation of the asset allocation. By using the methods discussed in Section 9.3.2
one crucial step of the implementation is the generation of scenarios. The scenarios
describe the future stochastic evolution of the asset returns and must reasonably well
approximate the underlying stochastic model.

9.4.2.1. Scenario generation The most common techniques to generate scenarios for
multistage stochastic programs are discussed in Dupacova et al. (2000). Among the
most important methods of scenario generation are moment matching (Hoyland et al.
2003), importance sampling (Dempster and Thompson 1999, Dempster 2004) or
discretizations via integration quadratures (Pennanen 2005, Pennanen and Koivu 2005).

We use the method of discretization via integration quadratures, because we believe that
this method is superior to Monte Carlo methods, especially for high dimensional problems.
Furthermore, numerical tests validate the stability of the optimization results, as shown in
Pennanen and Koivu (2005). The method is used by approximating the white noise process
at every stage of the dynamic model. Since we have assumed that the white noise process is
stationary and identically distributed, we can use the same scenario generation method for
€'(1) and €*(1) for each time-step and scenario. The resulting scenarios of the dynamic
stochastic evolution of the system are different for each scenario, since the asset return
evolution depends on the evolution of the factors and the correlation of asset return
dynamics and factors. The scenarios for the asset and portfolio evolution therefore become
stochastic and dynamic. For the generation of the low discrepancy sequences, which are
essential for the discretization we use the Sobol sequence, see Bratley and Fox (1988).

We discuss the implementation of scenario generation for the student-t distribution
which we assume for the white noise process of the asset returns. The multivariate
student-¢ distribution possesses the following parameters: mean vector i, degrees of
freedom v and diffusion matrix 2. The algorithm to compute an s-sample from a
multivariate student-¢ distribution is based on the following result (Glasserman 2004,
Chapter 9, p. 510):

v

X
X~ NWX), z~yp Y =yv—~t",
(1, %) % ‘[\/z g

where N denotes the normal distribution in R", y?

Ly

with v degrees of freedom, and ¢ the student-t distribution in R" with v degrees of
freedom. The covariance of the student-t distribution is given by v/(v — 2)X and exists

the standard chi-square distribution
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TABLE 9.2 Scenario Generation for a Multivariate Student-¢ Distribution

1. Use the Sobol sequence to generate an s-sample from the marginally independent uniform distribution in
the unit cube [0,1]"*! distributions, denoted by § € [0,1]"" T 1 <,
2. Use the tables of the inverse standard normal distribution to transform the uniformly distributed

realizations (S; i = 1,...,n) to standard normal distributed random variables (£;i=1,...,n), i.e.
=@ '(S8(j),i=1,...,mj=1,...,s The realizations of the n normal distribution are summarized
in the vector &(j) = [£,(f),...,¢,(j),j=1,...,s Use tables of the inverse of the chi-square distribution to

transform S, ; (j) to chi-square distributed reahzatlons which we denote by ¢(j), j+ 1,

3. Compute the covariance matrix Y= cov(éj) the covariance matrix of the realizations of the norrgal~
distribution of step 2, and calculate the normalized sequence of standard random variables &( j) = Z7"¢( ),
j=1,...,s In this way, we ensure that E(s) possesses unit variance

4. Calculate the realizations of the white noise by ¢( j) = v/v(iu + 6&(7))//#(j)j = 1,...,swhere = = aa”,
4 and v are the parameters of the multivariate student- tdlstrlbutlon

only for v > 2. The scenario generation algorithm for the student-¢ distribution is given
in Table 9.2. With similar algorithms for scenario generation, any kind of normal
(variance) mixture distributions as defined in McNeil et al. (2005, Chapter 3, p. 78) can be
approximated, as long as the method of inverses (Glasserman 2004, Chapter 2, p. 54) can
be applied. Distributions such as the generalized hyperbolic distribution which belong to
the family of normal (variance) mixture distributions can be expressed as a function of the
multivariate normal distribution and a mixing univariate distribution. The normal
distribution can again be simulated by generating #n independent realizations of the
uniform [0, 1] distribution and using the tables of the inverse univariate standard normal
distribution. This is possible since we can generate the multivariate normal distribution
from its univariate marginal distributions and the Cholesky factorization of its covariance
matrix. For the univariate mixing distribution also realizations of the uniform [0, 1]
distribution are generated and realizations of the mixing distribution are calculated from
tables of the inverse. The resulting realizations of the non-normal distributions are
generated by using the functional relationship of the normal (variance) mixture
distributions.

9.4.3  Factor Selection, Parameter Estimation and Asset Allocation Strategy

The factor selection determines which of the factors best explain the expected returns of
the risky assets. Factor selection is used for the regression problem between the
expectation of the risky asset returns Gx(f) + g and the factors x(¢). Often, this selection
is predetermined using literature recommendations or economic logic. However, when we
use a very large set of factors, it is difficult to decide which factors explain the expected
returns best. Moreover, by using a predefined set of factors a bias is introduced into the
out-of-sample test, since from knowing the history we include factors where it is known
that they have worked as predictors. In order to solve this problem, we employ a heuristic
as described in Givens and Hoeting (2005, p. 55) known as stepwise regression. When we
want to choose the best possible subset of factors, we face a combinatorial number of
possible subsets. For this reason we use a ‘greedy’ strategy that reduces the number
of factors by the factor with the lowest impact. Given m factors, the heuristic creates
only m subsets and we choose the best subset by a so-called information criterion.
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The information criterion is a trade-off between the number of regressors and the
regression quality. For factor selection we either use the modified Akaike criterion or the
Schwartz—Bayesian criterion. The information criterion here is used to select the best
regression model for the expected return, but is not applied to select the best distribution.
This factor selection procedure is used for all risky assets independently. Different
expected returns of the risky assets are regressed on different sets of factors. The factor
selection is recomputed every 12 months, i.e. the factors are selected at the beginning of
every year. In this way, we remove of the factor selection bias and the model selects only
the factors that have worked in the past without any information about the future. This
heuristic and the two information criteria are discussed in detail in Illien (2005).

The estimation of parameters for the risky return is computed on a rolling basis with
the last 8 years of data used. See Table 9.A1 in Appendix 9.A for a list of potential factors.
The factor selection determines which time series of factors are used to predict the
expected returns of the four risky assets.

We assume that the fund faces different transaction costs for domestic and international
assets. The costs (due to market impact and international brokerage cost) for the domestic
market are 1% for stocks and 0.5% for bonds. For the European stock market, the
transaction costs are assumed to be 2% and for the bond market 1%. The transaction
costs for European assets are independent of the hedging, since we calculate the hedging
cost as part of the realized returns in Swiss francs.

The asset allocation decisions are calculated with the optimization algorithm proposed
in (9.20). We assume that the fund possess a two-year moving investment horizon and we
use a tree structure with 50, 20 and 5 branches which results in 5000 scenarios which we
denote by 5000 (50,20,5). For the first branching, we use a one quarter time-step, for
the second branching we use two quarters, and for the third branching we use five
quarters. The algorithm to approximate (locally) the DP algorithm given in Section 9.2 is
implemented by first computing 500 (10,10,5), 1000 (20,10,5), 3000 (20,15,10), 4000
(40,20,5) and 5000 (50,20,5) scenarios. The relative error between using 4000 and 5000
scenarios was smaller than 1% (measured by the objective function value obtained with
5000 scenarios). This test was done at the first time-step of the out-of-sample test and
repeated every 12 quarters. In all tests, the difference was smaller than the 1%.

The constraints for the optimization are similar to the constraints which Swiss pension
funds face. In Table 9.3 the maximum limits for investments in the different asset classes
are given.

TABLE 9.3 Investment Constraints

Swiss stock market 50%
Swiss bond market 100%
EU stock market 25%
EU bond market 70%
EU stock market in CHF (hedged) 40%
EU bond market in CHF (hedged) 70%
All international assets 70%

All stock market investments 50%
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As mentioned before, we assume that the fund gives the same capital guarantee of 4% as
a Swiss pension fund (until 2002). Since 2002, the minimum guarantee has been reduced
to the region of 2.5% and, therefore, we calculate a second portfolio with minimal
guarantee of 2.5%. The capital guarantee function is given as G(q) =100(1 + r/4)? where
r is either 4% or 2.5% and g is the number of quarters in the backtesting.

When we solve the optimization problem at every time-step, the current asset allocation
is taken as the initial asset allocation. In this way, the transaction costs for every
rebalancing of the portfolios are correctly considered.

The risk measure used for this case study is an expected shortfall measure, computed as
the expected shortfall of the portfolio wealth minus the capital guarantees. Therefore we
use the piecewise linear risk measure given in (9.18) but with only one linear function and
a slope of 5. The expected shortfall is not only used at the terminal date of the
optimization but at all time-steps in between. In our strategy we compute the expected
shortfall for one quarter, three quarters and eight quarters in advance.

9.4.4  Results of the Historical Out-of-Sample Backtest

The out-of-sample test starts on 1 June 1996 and ends on 1 January 2005 with a quarterly
frequency. The results are simulated results with all the inherent weaknesses and deviations
from actual policies of large financial institutions. The statistics of the out-of-sample test
for the portfolios and the assets are shown in Table 9.4. The asset and the portfolio
evolutions throughout the historical out-of-sample test are shown in Figure 9.5. The
graph shows that both portfolios would have a relatively steady evolution throughout
the historical backtest with only one longer drawdown period between the third quarter in
2000 until the third quarter in 2002. The largest loss occurs in the third quarter of 1998,
where the portfolio (9.1) loss is 16.3%. The initial investments are mostly into the EU
bond market and the subsequent portfolio gain allows the system to invest more into the
stock market between 1996 and 1998. In the bull market phase, the portfolio with lower
return guarantee would have had a higher return, since it could invest more into the risky
assets. This higher allocation into the stock and bond market arises from the higher

TABLE 9.4 Summary Statistics of the 4 Indices from 1 June 1996 to 1 January 2005 and Results of the
Normality Tests for the Standard Residuals. A 0 Indicates that We Cannot Reject the Normality
Assumption and a 1 Indicates the Rejection of Normality

Time series (%) (%) SR krt skw J-B (5%) LF (5%)
Swiss stock market 7.0 24.6 0.22 1.5 —0.9 1 1
Swiss bond market 5.5 4.5 0.88 —0.9 —0.3 0 0
EU stock market in CHF 9.1 26.2 0.28 0.5 —0.8 1 1
EU bond market in CHF 9.2 7.4 1.04 —0.7 0.0 0 0
EU stock market hedged 10.0 221 0.39 0.0 —0.5 1 1
EU bond market hedged 9.4 6.1 1.29 —0.3 —0.3 0 0
3-month LIBOR (SNB) 1.41 - - - - 0 0
Portfolio (1) (4% guarantee) 7.2 9.5 0.6 34 —1.4 1 1
Portfolio (2) (2.5% guarantee) 5.7 11.3 0.4 4.5 —0.9 1 1
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FIGURE 9.5 Results of the out-of-sample test for the Swiss case study and comparison to the asset classes.

distance to the minimum guarantee barrier and thus constrains the allocation less in this
market phase. The evolution of the asset allocations of portfolio (1) are shown in Figure 9.6
as percentages of portfolio value. The large loss in the third quarter of 1998 leads to a
dramatic increase of the money market investments and a sharp decrease of the investments
into the Swiss stock market. The capacity to incur losses is reduced at this moment and the
risky investments are consequently reduced. A similar behaviour can be seen during the
drawdown from 2000 to early 2003, where the fund invests mostly into Swiss bonds and
non-hedged EU bonds. Large changes in the asset allocation happen usually after
significant changes in the portfolio value or after significant changes in the risk-return
perception of the assets. In this phase (2000—2003) the portfolio (2) has a longer and
stronger drawdown than portfolio (1), since portfolio (1) is more constrained by the
distance to the minimal return guarantee. Also, the higher return guarantee forces
the allocation to be more conservative and, therefore, limits the losses in this phase. When
the stock markets are rising again (mid 2003—2005), portfolio (1) increases but not as
strongly as portfolio (2). Therefore, we can conclude that the return guarantee acts as a
security measure that limits losses in unfavourable times but has significant opportunity
costs in rising markets. The dynamic changes in the asset allocation hold the wealth above
the guarantee barrier, but would be impossible to be implemented in reality by a large
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FIGURE 9.6 Asset allocation of portfolio (1) in percentage of wealth.

financial institution. This behaviour is induced by the type of risk measure and the factor
model. Institutions stick much closer to their strategic allocation and change their
allocation less dramatically. This method could, however, provide a guide for tactical asset
allocation.

Most of the stock investments are hedged as shown in Figure 9.6. The risk-return trade-
off for stocks seems to be more acceptable with hedging than without hedging. Moreover,
most of the investment in stocks occurs before 2001 and in this period the Swiss franc is
constantly gaining in value and thus reducing returns from the international investments.
The Swiss franc loses value after mid-2002 when most of the international bond
investment occurs. Therefore, most of the bond investment takes place without hedging.
By introducing the international assets twice as either hedged or not hedged, we use the
standard portfolio optimization to make the hedging decision in parallel with the
portfolio construction.

However, a historical backtest starting after 2000 would have much more difficulties to
remain above the barriers, since the two least risky assets (Swiss money market and bond
market) did not yield returns above 4%. For this reason, many Swiss pension funds came
into a situation of severe financial stress. This was one of the reasons why the capital
guarantee has been strongly reduced and is adjusted biennially according to market
expectations.

Despite the relatively high transaction costs, the performance of portfolio (1) is
satisfactory with an average return of 7.1%. The performance is similar to the Swiss stock
market but markedly higher than that of the Swiss bond market or money market accounts.
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The standard deviation is moderate, but much smaller than any of the stock market
investment possibilities. Hence, the Sharpe ratio lies between the one for the stock and the
bond markets. The performance and the risk numbers for portfolio (2) are not as good, but
a backtest that would have started earlier, e.g. 1990, would have shown better results.

Both portfolios show the strengths and weaknesses of performance guarantees for funds.
Often guarantees are only judged with respect to the opportunity costs they carry. In this
case study, since it includes a strong bull and bear market, the positive sides are also
highlighted. However, the very dynamic changes in the allocation would be very difficult to
follow by a large financial institution which limits this backtest to be only a demonstration
of the proposed method.

9.5 CONCLUSION AND OUTLOOK

The first part of the chapter shows that we can approximately solve dynamic pro-

gramming problems for dynamic portfolio management problems. We prove that by
approximating the true dynamics by a set of scenarios and re-solving the problem at every
time-step, we solve the dynamic programming problem with an arbitrarily objective
function error. Future work should address the question of computational efficiency
versus other established method.

In the second part of the chapter, we describe asset return and portfolio dynamics. We
argue that the most suitable risk measures for ALM situations or guaranteed return funds
are shortfall risk measures. A penalty function classifies the shortfall of the assets with
respect to the liabilities where large ‘non-achievements’ are more severely penalized than
small ‘non-achievements’ on future scenarios where the minimal return is not achieved.
The optimization problem is solved with the aim of maximizing the return above the
guarantee over the planning horizon, while keeping the shortfall risk below a predeter-
mined limit.

In this case study, the risk aversion varies throughout the historical backtest and
depends on the distance to the barrier. The optimization always reduces the risk exposure
when the portfolio wealth moves closer to the barrier and increases the risk exposure when
the portfolio moves away from the barrier. In this way, we introduce a feedback from the
portfolio results to the current portfolio decisions and adapt the risk aversion to the loss
incurring capacity.

The backtesting results will be compared in future research to other well known ALM
techniques such as immunization or fixed-mix allocations. These comparisons could
further illustrate the strength and weakness of this approach.
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APPENDIX 9.A: ADDITIONAL DATA FOR THE CASE STUDY

In Table 9.A1 we give the factors of the case study reported. Factors that were never
selected, such as the dividend yield or macroeconomic variables (GNP), are omitted from
the table.

Table 9.A1 All Factors for Case Study 3 with Swiss and EU Data

Factor no. Factor name
1 10-year Swiss Government bond interest rate
2 10-year EU Benchmark Government bond (GB) interest rate
3 log (EP ratio) — log (10-year GB int. rate) Switzerland
4 log (EP ratio) — log (10-year GB int. rate) EU
5 10-year GB rate — 3-month LIBOR Switzerland
6 10-year GB rate — 3-month LIBOR EU
7 FX sopt rate CHF/Euro (DM)
8 3 months momentum. Swiss stock market
9 3 months momentum. EU stock market
10 3 months momentum. Swiss bond market
11 3 months momentum. EU bond market
12 FX 3-monthforward rate CHF/Euro (DM)
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APPENDIX 9.B: DYNAMIC PROGRAMMING RECURSION FOR THE SAMPLE
APPROXIMATION

Proof of Theorem 9.1: Let IT°(z) := [n°(t), n*(t + 1),...,7n°(T — 1)] and insert (9.3) into
(9.5) which yields

(9.B1)
and nonanticipativity. Since L(t,y'(7),n’(t)) is independent of the future decisions

IT°(t + 1) and the scenarios for €'(i), i >t are independent of 7m°(zr), move the
maximization operator over IT°(¢ + 1) inside the bracket to obtain

J(z, (1)) = max {E [L(TJ/S(T% (7))

(1)
+ Hg(lg){ﬁ [Z L(i, y* (i), n*(i)) + M(T, n*(T ))] H }

= max £ [1(e,y (070 + P+ 1y )]}

(T

subject to the dynamical constraints and nonanticipativity. From the first of the dynamical
constraints ¥'(t + 1) = D(7,y’,7°) + S(7,y’,7’)e’(r) and the basic idea of Bellman’s
principle

t+1

Jlr+1,p(t+1)) —max{ [ZLzy )+M(Tn(T))]},
subject to the remaining dynamical constraints and nonanticipativity, to give

J(x,y(2) = max {E [L(r.y'(0), 7 (2)) + J'( + 1, Dz, ', ) + S(x. ' 7) €(2) |

74(2)
= max {E [L(r,ys(r), w (1)) + JF(t 4 1,D(1, ¥, o) + S(z, ¥, ) es(r))} },

w(t)el

subject to the appropriate dynamical constraints and nonanticipativity, where we convert
the maximization over m(7) to a maximization over u°(7), using the fact that for any
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function f of x and u it is true that

max{ f(x, n(x))} = max{f(x, u)},

neQ

where Q is the set of all functions 7(x) such that 7(x) € U Vx. This statement can be found
in Bertsekas (1995, Chapter 2). O
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10.1 INTRODUCTION

I N RECENT YEARS THERE HAS BEEN A SIGNIFICANT GROWTH of investment products aimed at
attracting investors who are worried about the downside potential of the financial

markets for pension investments. The main feature of these products is a minimum
guaranteed return together with exposure to the upside movements of the market.
There are several different guarantees available in the market. The most common one is
the nominal guarantee which guarantees a fixed percentage of the initial investment.
However there also exist funds with a guarantee in real terms which is linked to an inflation
index. Another distinction can be made between fixed and flexible guarantees, with the

223
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fixed guarantee linked to a particular rate and the flexible to, for instance, a capital market
index. Real guarantees are a special case of flexible guarantees. Sometimes the guarantee of
a minimum rate of return is even set relative to the performance of other pension funds.

Return guarantees typically involve hedging or insuring. Hedging involves eliminating
the risk by sacrificing some or all of the potential for gain, whereas insuring involves
paying an insurance premium to eliminate the risk of losing a large amount.

Many government and private pension schemes consist of defined benefit plans. The
task of the pension fund is to guarantee benefit payments to retiring clients by investing
part of their current wealth in the financial markets. The responsibility of the pension
fund is to hedge the client’s risk, while meeting the solvency requirements in such a way
that all benefit payments are met. However at present there are significant gaps between
fund values, contributions made by employees and pension obligations to retirees.

One way in which a guarantee can be achieved is by investing in zero-coupon Treasury
bonds with a maturity equal to the time horizon of the investment product in question.
However using this option foregoes all upside potential. Even though the aim is protect
the investor from the downside, a reasonable expectation of returns higher than
guaranteed needs to remain.

In this chapter we will consider long-term nominal minimum guaranteed return plans
with a fixed time horizon. They will be closed end guarantee funds; after the initial
contribution there is no possibility of making any contributions during the lifetime of the
product. The main focus will be on how to optimally hedge the risks involved in order to
avoid having to buy costly insurance.

However, this task is not straightforward, as it requires long-term forecasting for all
investment classes and dealing with a stochastic liability. Dynamic stochastic programming
is the technique of choice to solve this kind of problem as such a model will automatically
hedge current portfolio allocations against the future uncertainties in asset returns and
liabilities over a long horizon (see e.g. Consigli and Dempster 1998; Dempster et al. 2000,
2003). This will lead to more robust decisions and previews of possible future benefits and
problems contrary to, for instance, static portfolio optimization models such as the
Markowitz (1959) mean-variance allocation model.

Consiglio et al. (2007) have studied fund guarantees over single investment periods and
Hertzog et al. (2007) treat dynamic problems with a deterministic risk barrier. However, a
practical method should have the flexibility to take into account multiple time periods,
portfolio constraints such as prohibition of short selling and varying degrees of risk
aversion. In addition, it should be based on a realistic representation of the dynamics of
the relevant factors such as asset prices or returns and should model the changing market
dynamics of risk management. All these factors have been carefully addressed here and are
explained further in the sequel.

The rest of the chapter is organized as follows. In Section 10.2 we describe the stochastic
optimization framework, which includes the problem set up, model constraints and
possible objective functions. Section 10.3 presents a three-factor term structure model and
its application to pricing the bond portfolio and the liability side of the fund on individual
scenarios. As our portfolio will mainly consist of bonds, this area has been extensively
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researched. Section 10.4 presents several historical backtests to show how the framework
would have performed had it been implemented in practice, paying particular attention to
the effects of using different objective functions and varying tree structures. Section 10.5
repeats the backtest when the stock index is modelled as a jumping diffusion so that the
corresponding returns exhibit fat tails and Section 10.6 concludes. Throughout this
chapter boldface is used to denote random entities.

10.2 STOCHASTIC OPTIMIZATION FRAMEWORK

In this section we describe the framework for optimizing minimum guaranteed return

funds using stochastic optimization. We will focus on risk management as well as strategic
asset allocation concerned with allocation across broad asset classes, although we will
allow specific maturity bond allocations.

10.2.1  Set Up

This section looks at several methods to optimally allocate assets for a minimum
guaranteed return fund using expected average and expected maximum shortfall risk
measures relative to the current value of the guarantee. The models will be applied to eight
different assets: coupon bonds with maturity equal to 1, 2, 3, 4, 5, 10 and 30 years and an
equity index, and the home currency is the euro. Extensions incorporated into these
models are the presence of coupon rates directly dependent on the term structure of bond
returns and the annual rolling over of the coupon-bearing bonds.

We consider a discrete time and space setting. The time interval considered is given by
{0,(1/12),(2/12),..., T}, where the times indexed by t+=0,1, ..., T—1 correspond to
decision times at which the fund will trade and T to the planning horizon at which no
decision is made (see Figure 10.1). We will be looking at a five-year horizon.

Uncertainty Q is represented by a scenario tree, in which each path through the tree
corresponds to a scenario @ in Q and each node in the tree corresponds to a time along
one or more scenarios. An example scenario tree is given in Figure 10.2. The probability
p(w) of scenario w in Q is the reciprocal of the total number of scenarios as the scenarios
are generated by Monte Carlo simulation and are hence equiprobable.

The stock price process S is assumed to follow a geometric Brownian motion, i.e.

ds
S—f = usdt + o dW3, (10.1)

t

s=1 s=2

| | | | | | | | | | | | | | | | =
I I I I | I I | I I 1 1 I | I I il

t=0  t=1/12 t=2/12 t=3/12 t=4/12 t=5/12 t=1/2 t=7/12 t=8/12 t=9/12 t=10/12 t=11/12 t=1 t=13/12 t=14/12 t=15/12

Time

FIGURE 10.1 Time and stage setting.
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t=0 t=1/4 t=1/2 t=3/4 t=1 t=5/4 t=3/2 t=7/4 t=2

s=1 s

FIGURE 10.2 Graphical representation of scenarios.

where dW? is correlated with the dW, terms driving the three term structure factors
discussed in Section 10.3.

10.2.2  Model Constraints
Let (see Table 10.1)

e hy(w) denote the shortfall at time ¢ and scenario o, i.e.
h,(w) := max(0, L,(w) — W,(w)) Yo eQ teT" (10.2)

e H(w) := max,.ua h,(®) denote the maximum shortfall over time for scenario w.
The constraints considered for the minimum guaranteed return problem are:

e Cash balance constraints. These constraints ensure that the net cash flow at each time
and at each scenario is equal to zero

D P (@), (@) =W, weQ (10.3)
acA
z 5“ ( Z Psell )
acA\{S} acA
=Y (), (), o teT\{o0}. (10.4)
acA

In (10.4) the left-hand side represents the cash freed up to be reinvested at time
t € T\{0} and consists of two distinct components. The first term represents the
semi-annual coupons received on the coupon-bearing Treasury bonds held between
time t— I and t, the second term represents the cash obtained from selling part of the
portfolio. This must equal the value of the new assets bought given by the right-hand
side of (10.4).
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TABLE 10.1 Variables and Parameters of the Model

Time sets

T = {0,5,....}
T4=1{0,1,...,T -1}
Ti — Tmtal\Td
RS
Instruments

Si(w)

B/ ()

3/ (w)

'

Z(w)

Risk management barrier
yer(®)

G

LY ()

Portfolio evolution
A

P ()/ P ()

fg

Xa(®)

X (@)/% (@)
Wo

W, (w)

w, ()

Set of all times considered in the stochastic program

Set of decision times

Set of intermediate times

Times when a coupon is paid out in-between decision times

Dow Jones Eurostoxx 50 index level at time t in scenario @

EU Treasury bond with maturity T at time ¢ in scenario

coupon rate of EU Treasury bond with maturity Tat time
t in scenario w

face value of EU Treasury bond with maturity T

EU zero-coupon Treasury bond price at time t in scenario @

EU zero-coupon Treasury yield with maturity T at time ¢
in scenario @

Annual guaranteed return

Nominal barrier at time t in scenario @

Set of all assets

Buy/sell price of asset a € A at time ¢ in scenario @

Transaction costs for buying/selling

Quantity held of asset a € A between time t and t + 1/12
in scenario w

Quantity bought/sold of asset a € A at time ¢ in scenario ®

Initial portfolio wealth

Portfolio wealth before rebalancing at time ¢ € T in scenario @

Portfolio wealth after rebalancing at time t € T<U T\{T}
in scenario @

h,(®) := max(0, L,(w) — W,(w)) Shortfall at time t in scenario ®

e Short sale constraints. In our model we assume no short selling of any stocks or bonds

X,(®) >0, acA 0eQ teT"°, (10.5)
x(w) >0, YacA, VoeQ, VieT"\{T}, (10.6)
X, (@) >0, VacA, VoeQ VieT*\{0}. (10.7)

e Information constraints. These constraints ensure that the portfolio allocation cannot
be changed during the period from one decision time to the next and hence that no
decisions with perfect foresight can be made

x(0)=x,(0)=0, acA 0eQ teT\T" (10.8)

ta
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e Wealth constraint. These constraints determine the portfolio wealth at each point in
time prior to and after rebalancing

=> PV (o), (0), weQ teT"\{(T} (10.9)
acA
= PN0)% 1jma0), weQ teT\{o}, (10.10)
acA
Nd 1 a a
ZgPTli —(1/12), (o) + Z —07,(0)F xT7(1/12),a(w)v w € Q.
acA acA\{S}
(10.11)

o Accounting balance constraints. These constraints give the quantity invested in each
asset at each time and for each scenario

X (@) = x(;fa(w), acA weQ, (10.12)
xt,a(w) = xz—l/lz,a(w) =+ x:,ra(w) - x;a(a))7 acA we, te Ttoml\{()}.
(10.13)

The total quantity invested in asset a € A between time fand ¢ + (1/12) is equal to the
total quantity invested in asset a € A between time t — (1/12) and ¢ plus the quantity of
asset a € A bought at time t minus the quantity of asset a € A sold at time ¢

o Annual rolling constraint. This constraint ensures that at each decision time all the
coupon-bearing Treasury bond holdings are sold

X, () = xt_<1/12)7a(a)), ac A\{S}, weQ, tecT\{0}. (10.14)

e Coupon re-investment constraints. We assume that the coupon paid every six months
will be re-invested in the same coupon-bearing Treasury bond

(1/2)0} () F “x,_ (1/12),a (w)

) =
()

;X ,(0) =0, xtfs(a)) = x;s(co) =0,

acA\{S}, weQ, teT" (10.15)
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e Barrier constraints. These constraints determine the shortfall of the portfolio at each
time and scenario as defined in Table 10.1

h(w)+ W,(0) > L(w), ©cQ, tc T (10.16)

h(w) >0, weQ, te T (10.17)

As the objective of the stochastic program will put a penalty on any shortfall,
optimizing will ensure that h;(w) will be zero if possible and as small as possible
otherwise, i.e.

h(w) = max(0, L,(0) — W,(w)), o €Q, te T (10.18)

which is exactly how we defined h, (o) in (10.2).
To obtain the maximum shortfall for each scenario, we need to add one of the following
two sets of constraints:

H(w) > h(w), 0ecQ, tc T'U{T} (10.19)

H(w) > h(w), oecQ, te T (10.20)
Constraint (10.19) needs to be added if the max shortfall is to be taken into account on a
yearly basis and constraint (10.20) if max shortfall is calculated on a monthly basis.

10.2.3 Obijective Functions: Expected Average Shortfall and Expected

Maximum Shortfall

Starting with an initial wealth W, and an annual nominal guarantee of G, the liability at
the planning horizon at time T is given by

w,(1+G)". (10.21)

To price the liability at time ¢ < T consider a zero-coupon Treasury bond which pays 1
at time T, i.e. Zr (w) = 1, for all scenarios @ € Q. The zero-coupon Treasury bond price at
time ¢ in scenario @ assuming continuous compounding is given by

V4

t

(@) = e Hr@)T=) (10.22)

where y, r (w) is the zero-coupon Treasury yield with maturity T at time ¢ in scenario .
This gives a formula for the value of the nominal (fixed) guarantee barrier at time t in
scenario @ as
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L¥(w) == W, (14 G)'Z,(w) = Wy(1 + G) e 7wr(@T=0), (10.23)

In a minimum guaranteed return fund the objective of the fund manager is twofold;
firstly to manage the investment strategies of the fund and secondly to take into account
the guarantees given to all investors. Investment strategies must ensure that the guarantee
for all participants of the fund is met with a high probability.

In practice the guarantor (the parent bank of the fund manager) will ensure the investor
guarantee is met by forcing the purchase of the zero coupon bond of (10.22) when the
fund is sufficiently near the barrier defined by (10.23). Since all upside potential to
investors is thus foregone, the aim of the fund manager is to fall below the barrier with
acceptably small if not zero probability.

Ideally we would add a constraint limiting the probability of falling below the barrier in
a VaR-type minimum guarantee constraint, i.e.

P(maxl h[(w)>0> <o (10.24)
teT!O(E\

for o small. However, such scenario-based probabilistic constraints are extremely difficult
to implement, as they may without further assumptions convert the convex large-scale
optimization problem into a non-convex one. We therefore use the following two convex
approximations in which we trade off the risk of falling below the barrier against the
return in the form of the expected sum of wealth.

Firstly, we look at the expected average shortfall (EAS) model in which the objective
function is given by

h(o)
max }{Z Z p(w)((l—ﬂ)Wt(w)_ﬁm)}

{xrﬂ(m).x:a(w),x:a (w): weQ teTIUT

_ max }{(1ﬁ)<zp((o) > Wt(co)>—ﬁ<zp(w) > %)}

xta()xf ()2 () weQ teTIUT weQ teTaUT
acAweQ teT duT

(10.25)

In this case we maximize the expected sum of wealth over time while penalizing each time
the wealth falls below the barrier. For each scenario @ € Q we can calculate the average
shortfall over time and then take expectations over all scenarios.

In this case only shortfalls at decision times are taken into account and any serious loss
in portfolio wealth in-between decision times is ignored. However, from the fund
manager’s and guarantor’s perspective the position of the portfolio wealth relative to the
fund’s barrier is significant on a continuous basis and serious or repeated drops below this
barrier might force the purchase of expensive insurance. To capture this feature specific to
minimum guaranteed return funds, we also consider an objective function in which the
shortfall of the portfolio is considered on a monthly basis.
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For the expected average shortfall with monthly checking (EAS MC) model the objective
function is given by

max {(1—ﬁ> (2p<w> > wt<w>> —ﬁ(ZP(w) > hﬂ)} (1026)

Hta(@) ! (@) () »eQ teTIUT weQ e Trowl
acAweQ teTduT

Note that although we still only rebalance once a year shortfall is now being measured on a
monthly basis in the objective and hence the annual decisions must also take into account
the possible effects they will have on the monthly shortfall.

The value of 0 < <1 can be chosen freely and sets the level of risk aversion. The
higher the value of f, the higher the importance given to shortfall and the less to the
expected sum of wealth, and hence the more risk-averse the optimal portfolio allocation
will be. The two extreme cases are represented by f =0, corresponding to the
‘unconstrained’ situation, which is indifferent to the probability of falling below
the barrier, and f =1, corresponding to the situation in which the shortfall is penalized
and the expected sum of wealth ignored.

In general short horizon funds are likely to attract more risk-averse participants than
long horizon funds, whose participants can afford to tolerate more risk in the short run.
This natural division between short and long-horizon funds is automatically incorporated
in the problem set up, as the barrier will initially be lower for long-term funds than for
short-term funds as exhibited in Figure 10.3. However, the importance of closeness to the
barrier can be adjusted by the choice of f in the objective.

The second model we consider is the expected maximum shortfall (EMS) model given by

max }{(lﬁ)(ZP(w) 5 wt<w>)—ﬁ(zp<w>ﬂ<w>)} (1027)

Xta ((U>'r'x[‘.a (w)=xr.u (w): weQ tETdU{T} w€EQ
a€A,weQteTU{T}

using the constraints (10.19) to define H(w).
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FIGURE 10.3 Barrier for one-year and five-year 2% guaranteed return fund.
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For the expected maximum shortfall with monthly checking (EMS MC) model the
objective function remains the same but H(w) is now defined by (10.20).

In both variants of this model we penalize the expected maximum shortfall, which
ensures that H(w) is as small as possible for each scenario w € Q. Combining this with
constraints (10.19)/(10.20) it follows that H(w) is exactly equal to the maximum shortfall.

The constraints given in Section 10.2.2 apply to both the expected average shortfall and
expected maximum shortfall models.

The EAS model incurs a penalty every time portfolio wealth falls below the barrier, but
it does not differentiate between a substantial shortfall at one point in time and a series of
small shortfalls over time. The EMS model on the other hand, focuses on limiting the
maximum shortfall and therefore does not penalize portfolio wealth falling just slightly
below the barrier several times. So one model limits the number of times portfolio wealth
falls below the barrier while the other limits any substantial shortfall.

10.3 BOND PRICING

In this section we present a three-factor term structure model which we will use to price
both our bond portfolio and the fund’s liability. Many interest-rate models, like the classic
one-factor Vasicek (1977) and Cox et al. (1985) class of models and even more recent
multi-factor models like Anderson and Lund (1997), concentrate on modelling just the
short-term rate.

However, for minimum guaranteed return funds we have to deal with a long-term
liability and bonds of varying maturities. We therefore must capture the dynamics of the
whole term structure. This has been achieved by using the economic factor model described
below in Section 10.3.1. In Section 10.3.2 we describe the pricing of coupon-bearing bonds
and Section 10.3.3 investigates the consequences of rolling the bonds on an annual basis.

10.3.1  Yield Curve Model

To capture the dynamics of the whole term structure, we will use a Gaussian economic factor
model (EFM) (see Campbell 2000 and also Nelson and Siegel 1987) whose evolution under
the risk-neutral measure Q is determined by the stochastic differential equations

dX, = (uy — A X,)dt 4+ 0, dWY, (10.28)
dY, = (uy — 4, Y,)dt + 0, dW], (10.29)
dR, = k(X, + Y, — R)dt + 6,dWE, (10.30)

where the dW terms are correlated. The three unobservable Gaussian factors R, X and Y
represent respectively a short rate, a long rate and the slope between an instantaneous short
rate and the long rate. Solving these equations the following formula for the yield at time ¢
with time to maturity equal to T — ¢ is obtained (for a derivation, see Medova et al. 2005)

A(t,T)R, + B(t, T)X, + C(t, T)Y, + D(t, T
)/t’T: ( ) t ( ) tT ( ) t ( )’ (1031)
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where

1
A(t,T) = p (1—e 1), (10.32)

1
D(t,T) = (T—t——(l—e"<“>)> Px vy Bxpy oy BreeT)
k Ay ) Ay Ly

1 < | my ny, , n’
S i —22x(T—1) +—(1 = e~y (T-1) + (1 — e 2K(T-1) 4+ pX (T — ¢t
2 4= {MX( ) 2,1Y( ) 2k( ) + i )
I 2my my (1 ef(/lXJnly)(Tft)) n 2my (1- ef(ax+k)(T7r)) n 2my p; (1- esz(Tft))
Ay + Ay Ay +k Ay
m (1 _ e*(i»'+k)(T*f)) + @ (1 _ e*/’»y(T*f)) + % (1 _ ek(Tf))} (10'35)
Ay +k Ly k
and
ko
my = — - ,
B k= ay)
ko
m = - : )
k= 1dy)
o Oy N oy, Oy
Yok=Ay k—2y Kk’
P, = —<le +my + ni). (10.36)

Bond pricing must be effected under the risk-neutral measure Q. However, for the
model to be used for forward simulation the set of stochastic differential equations must
be adjusted to capture the model dynamics under the real-world or market measure P. We
therefore have to model the market prices of risk which take us from the risk-neutral
measure Q to the real-world measure P
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Under the market measure P we adjust the drift term by adding the risk premium given
by the market price of risk y in terms of the quantity of risk. The effect of this is a change in
the long-term mean, e.g. for the factor X the long-term mean now equals
(Ux + 7x0x)/Ax. Tt is generally assumed in a Gaussian world that the quantity of risk is
given by the volatility of each factor.

This gives us the following set of processes under the market measure

dX, = (ux — AxX, + px0y)dt + 0 dWT, (10.37)
dY, = (uy — AyY, + pyoy)dt + g, dW/, (10.38)
dR, = {k(X, + Y, = R,) + 7z }dt + 0 dW}, (10.39)

where all three factors contain a market price of risk y in volatility units.

The yields derived in the economic factor model are continuously compounded while
most yield data are annually compounded. So for appropriate comparison when
estimating the parameters of the model we will have to convert the annually compounded
yields into continuously compounded yields using the transformation

ycontinuous — ln(l + yannual)‘ (1040)

In the limit as T tends to infinity it can be shown that expression (10.31) derived for the
yield does not tend to the ‘long rate’ factor X, but to a constant. This suggests that the
three factors introduced in this term structure model may really be unobservable. To
handle the unobservable state variables we formulate the model in state space form, a
detailed description of which can be found in Harvey (1993) and use the Kalman filter to
estimate the parameters (see e.g. Dempster et al. 1999 or Medova et al. 2005).

10.3.2  Pricing Coupon-Bearing Bonds

As sufficient historical data on Euro coupon-bearing Treasury bonds is difficult to obtain
we use the zero-coupon yield curve to construct the relevant bonds. Coupons on newly-
issued bonds are generally closely related to the ccorresponding spot rate at the time, so
the current zero-coupon yield with maturity T is used as a proxy for the coupon rate of a
coupon-bearing Treasury bond with maturity T. For example, on scenario @ the coupon
rate 67 1O(co) on a newly issued 10-year Treasury bond at time t =2 will be set equal to the
projected 10-year spot rate y, 1o (@) at time t=2.
Generally

3 () = yp(w), VieT! VoeQ, (10.41)
58 (@) = 0" (), Vie T, VoeQ, (10.42)
where | - | denotes integral part. This ensures that as the yield curve falls, coupons on

newly-issued bonds will go down correspondingly and each coupon cash flow will be
discounted at the appropriate zero-coupon yield.
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The bonds are assumed to pay coupons semi-annually. Since we roll the bonds on an
annual basis, a coupon will be received after six months and again after a year just before
the bond is sold. This forces us to distinguish between the price at which the bond is sold
at rebalancing times and the price at which the new bond is purchased.

Let PESEI(IT)) denote the selling price of the bond B(") at time ¢, assuming two coupons
have now been paid out and the time to maturity is equal to T— I, and let Pg;?)) denote
the price of a newly issued coupon-bearing Treasury bond with a maturity equal to T.

The ‘buy’ bond price at time ¢ is given by

BtT(a)) — FB e (T =011 o(@)
53T(w) _ )
" 2 e e e Q, re T, (10.43)

s=2 L By e+ T

where the principal F*' of the bond is discounted in the first term and the stream of
coupon payments in the second.
At rebalancing times ¢ the sell price of the bond is given by

B () = F¥' e (T-Dhra(©)
() d
! —, e e oe te {TN{0}}U{T} (10.44)
T-1

__1
s=31,..,

with coupon rate 5?;(60). The coupon rate is then reset for the newly-issued Treasury
bond of the same maturity. We assume that the coupons paid at six months are re-invested
in the on-the-run bonds. This gives the following adjustment to the amount held in bond
B” at time t.

. .
%5f (w)FBl Xe_L BT (o)
X, T (Ct)) = X;_1 pr (CO

12 ) buy ) te Tca w e Q (1045)
fPt,BT(w)

10.4 HISTORICAL BACKTESTS

We will look at an historical backtest in which statistical models are fitted to data up to a
trading time f and scenario trees are generated to some chosen horizon t + T. The optimal

root node decisions are then implemented at time t and compared to the historical returns
at time ¢ + 1. Afterwards the whole procedure is rolled forward for T trading times. Our
backtest will involve a telescoping horizon as depicted in Figure 10.4.

At each decision time f the parameters of the stochastic processes driving the stock
return and the three factors of the term structure model are re-calibrated using historical
data up to and including time f and the initial values of the simulated scenarios are given
by the actual historical values of the variables at these times. Re-calibrating the simulator
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5-Year Scenario Tree

4-Year Scenario Tree

3-Year Scenario Tree

2-Year Scenario Tree

1-Year Scenario Tree
Jan 1999 Jan 2000 Jan 2001 Jan 2002 Jan 2003 Jan 2004

FIGURE 10.4 Telescoping horizon backtest schema.

TABLE 10.2 Tree Structures for Different Horizon Backtests

Jan 1999 6.6.6.6.6 = 7776 32.4.4.4.4 = 8192 512.2.2.2.2 = 8192
Jan 2000 9.9.9.9 = 6561 48.6.6.6 = 10368 512.2.2.2 = 4096
Jan 2001 20.20.20 = 8000 80.10.10 = 8000 768.3.3 = 6912
Jan 2002 88.88 = 7744 256.32 = 8192 1024.8 = 8192
Jan 2003 7776 8192 8192

parameters at each successive initial decision time ¢ captures information in the history of
the variables up to that point.

Although the optimal second and later-stage decisions of a given problem may be of
‘what-if ’ interest, manager and decision maker focus is on the implementable first-stage
decisions which are hedged against the simulated future uncertainties. The reasons for
implementing stochastic optimization programs in this way are twofold. Firstly, after one
year has passed the actual values of the variables realized may not coincide with any of the
values of the variables in the simulated scenarios. In this case the optimal investment
policy would be undefined, as the model only has optimal decisions defined for the nodes
on the simulated scenarios. Secondly, as one more year has passed new information has
become available to re-calibrate the simulator’s parameters. Relying on the original
optimal investment strategies will ignore this information. For more on backtesting
procedures for stochastic optimization models see Dempster et al. (2003).

For our backtests we will use three different tree structures with approximately the
same number of scenarios, but with an increasing initial branching factor. We first solve
the five-year problem using a 6.6.6.6.6 tree, which gives 7776 scenarios. Then we use
32.4.4.4.4 = 8192 scenarios and finally the extreme case of 512.2.2.2.2 = 8192 scenarios.

For the subsequent stages of the telescoping horizon backtest we adjust the branching
factors in such a way that the total number of scenarios stays as close as possible to the
original number of scenarios and the same ratio is maintained. This gives us the tree
structures set out in Table 10.2.

Historical backtests show how specific models would have performed had they been
implemented in practice. The reader is referred to Rietbergen (2005) for the calibrated
parameter values employed in these tests. Figures 10.5 to 10.10 show how the various
optimal portfolios” wealth would have evolved historically relative to the barrier. It is also



170 A

DESIGNING MINIMUM GUARANTEED RETURN FUNDS

Backtest 99-04: 6.6.6.6.6 = 7776 Scenarios
Expected Average Shortfall
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FIGURE 10.5 Backtest 1999—2004 using expected average shortfall for the 6.6.6.6.6 tree.
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Backtest 99-04: 6.6.6.6.6 = 7776 Scenarios
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FIGURE 10.6 Backtest 1999—2004 using expected maximum shortfall for the 6.6.6.6.6 tree.
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Backtest 99-04: 32.4.4.4.4 = 8192 Scenarios
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FIGURE 10.7 Backtest 1999—2004 using expected average shortfall for the 32.4.4.4.4 tree.
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Backtest 99-04: 32.4.4.4.4 = 8192 Scenarios
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FIGURE 10.8 Backtest 1999—2004 using expected maximum shortfall for the 32.4.4.4.4 tree.

Backtest 99-04: 512.2.2.2.2 = 8192 Scenarios
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FIGURE 10.9 Backtest 1999—-2004 using expected average shortfall for the 512.2.2.2.2 tree.

Backtest 99-04: 512.2.2.2.2 = 8192 Scenarios
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FIGURE 10.10 Backtest 1999—-2004 using expected maximum shortfall for the 512.2.2.2.2 tree.

important to determine how the models performed in-sample on the generated scenario
trees and whether or not they had realistic forecasts with regard to future historical
returns. To this end one-year-ahead in-sample expectations of portfolio wealth are shown
as points in the backtest performance graphs. Implementing the first-stage decisions in-
sample, the portfolio’s wealth is calculated one year later for each scenario in the simulated
tree after which an expectation is taken over the scenarios.
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From these graphs a first observation is that the risk management monitoring
incorporated into the model appears to work well. In all cases the only time portfolio
wealth dips below the barrier, if at all, is on 11 September 2001. The initial in-sample
wealth overestimation of the models is likely to be due mainly to the short time series
available for initial parameter estimation which led to hugely inflated stock return
expectations during the equity bubble. However as time progresses and more data points
to re-calibrate the model are obtained, the models’ expectations and real-life realizations
very closely approximate each other.

For reference we have included the performance of the Eurostoxx 50 in Figure 10.11 to
indicate the performance of the stock market over the backtesting period. Even though
this was a difficult period for the optimal portfolios to generate high historical returns, it
provides an excellent demonstration that the risk management incorporated into the
models operates effectively. It is in periods of economic downturn that one wants the
portfolio returns to survive.

Tables 10.3 and 10.4 give the optimal portfolio allocations for the 32.4.4.4.4 tree using
the two maximum shortfall objective functions. In both cases we can observe a for the
portfolio to move to the safer, shorter-term assets as time progresses. This is naturally
built into the model as depicted in Figure 10.3.

For the decisions made in January 2002/2003, the portfolio wealth is significantly closer
to the barrier for the EMS model than it is for the EMS MC model. This increased risk for
the fund is taken into account by the EMS model and results in an investment in safer
short-term bonds and a negligible equity component. Whereas the EMS model stays in the
one to three year range the EMS MC model invests mainly in bonds with a maturity in
the range of three to five years and for both models the portfolio wealth manages to stay
above the barrier.

From Figures 10.5 to 10.10 it can be observed that in all cases the method with monthly
checking outperforms the equivalent method with just annual shortfall checks. Similarly
as the initial branching factor is increased, the models’ out-of-sample performance is
generally improved. For the 512.2.2.2.2 =8192 scenario tree, all four objective functions
give optimal portfolio allocations which keep the portfolio wealth above the barrier at all
times, but the models with the monthly checking still outperform the others. The more
important difference however seems to lie in the deviation of the expected in-sample
portfolio’s wealth from the actual historical realization of the portfolio value. Table 10.5
displays this annual deviation averaged over the five rebalances and shows a clear
reduction in this deviation for three of the four models as the initial branching factor is
increased. Again the model that uses the expected maximum shortfall with monthly
checking as its objective function outperforms the rest.

Opverall the historical backtests have shown that the described stochastic optimization
framework carefully considers the risks created by the guarantee. The EMS MC model
produces well-diversified portfolios that do not change drastically from one year to the
next and results in optimal portfolios which even through a period of economic downturn
and uncertainty remained above the barrier.
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Backtest 99-04: 512.2.2.2.2 = 8192 Scenarios
Expected Maximum Shortfall
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FIGURE 10.11 Comparison of the fund’s portfolio performance to the Eurostoxx 50.

TABLE 10.3 Portfolio Allocation Expected Maximum Shortfall Using the 32.4.4.4.4 Tree

ly 2y 3y 4y 5y 10y 30y Stock
Jan 99 0 0 0 0 0 0.23 0.45 0.32
Jan 00 0 0 0 0 0 0 0.37 0.63
Jan 01 0.04 0 0 0 0 0.39 0.53 0.40
Jan 02 0.08 0.16 0.74 0 0 0 0 0.01
Jan 03 0.92 0 0 0 0 0.07 0 0.01

TABLE 10.4 Portfolio Allocation Expected Maximum Shortfall with Monthly Checking Using the
32.4.4.4.4 Tree

ly 2y 3y 4y 5y 10y 30y Stock
Jan 99 0 0 0 0 0.49 0.27 0 0.24
Jan 00 0 0 0 0 0.25 0.38 0 0.36
Jan 01 0 0 0 0 0.49 0.15 0 0.36
Jan 02 0 0 0 0.47 0.44 0 0 0.10
Jan 03 0 0 0.78 0.22 0 0 0 0.01

TABLE 10.5 Average Annual Deviation

EAS EAS MC EMS EMS MC
6.6.6.6.6 9.87% 13.21% 9.86% 10.77%
32.4.4.4.4 10.06% 9.41% 9.84% 7.78%
512.2.2.2.2 10.22% 8.78% 7.78% 6.86%

10.5 ROBUSTNESS OF BACKTEST RESULTS

Empirical equity returns are now well known not to be normally distributed but rather to
exhibit complex behaviour including fat 