

Lawrence J. Peters has a B.S. in Physics, an M.S. in Engineering and in 2002 a Ph.D. in Engineering
Management and a CSDP (Certified Software Development Professional). He has applied software
engineering technology for more than 50 years in the aerospace, defense, financial, manufacturing
and software engineering fields. He authored the first software engineering curriculum published
by the ACM and has since developed and implemented software engineering curricula at three
universities as well as the syllabus for software project management at three other universities.
Throughout his career, he has been a thought leader in the field of software project management
and has successfully managed and consulted on dozens of projects as large as $20 million. He cur-
rently teaches Software Project Management in English remotely at Universidad Politecnica de
Madrid from his office near Seattle, Washington, and has taught that subject at other schools. He
has published several papers on the subject.

The management of a software project has been shown to be the number one factor in determining
a software development project’s success. It has been found that most software projects fail because
of poor management. Not surprisingly, most software development managers have not been trained
in project management. Software Project Management: Methods and Techniques aims to remedy this
situation in two ways: familiarizing software developers with the elements of the project manage-
ment discipline and providing fact- based resources on practicing software project management.

Much like the checklist pilots go through prior to a flight, this book provides a pre- project
checklist which enables the software engineering team to review and evaluate an extensive set of
technical and sociopolitical risks which will help the software project manager and the team deter-
mine the project team’s chances of success. This same list and the individual question responses
can be used later as part of the project’s closeout process helping team members to improve their
individual and collective abilities to assess risk.

Intended for both students and software project managers, the book is organized along the
lines of the five major functions of a software project manager: planning; scheduling and costing;
controlling; staffing; and motivating. The basics of each of these functions are presented in a single
chapter. These are followed by a series of narrow topic presentations in the form of appendices that
are intended to help solve specific problems that may occur during the conduct of a software proj-
ect. As in the main portion of the text, the appendices include references that provide an avenue
into further detail on the topic. Designed to promote project success, this approach has been taken
because software projects are each unique undertakings such that providing a “one size fits all”
approach will fail most of the time.

Software Project Management

https://taylorandfrancis.com

Software Project Management
Methods and Techniques

Lawrence J. Peters

First edition published 2024
2385 NW Executive Center Drive, Suite 320, Boca Raton FL 33431

and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2024 Lawrence J. Peters

Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copy-
right holders if permission to publish in this form has not been obtained. If any copyright material has not been
acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted,
or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, includ-
ing photocopying, microfilming, and recording, or in any information storage or retrieval system, without written
permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com or contact
the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For
works that are not available on CCC please contact mpkbookspermissions@tandf.co.uk

Content copyrighted by Software Consultants International, Ltd., Lawrence J. Peters, Owner, appears throughout
this book and is reprinted with permission of the copyright holder.

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for
identification and explanation without intent to infringe.

ISBN: 978-1-032-77413-8 (hbk)
ISBN: 978-1-032-43057-7 (pbk)
ISBN: 978-1-003-48428-8 (ebk)

DOI: 10.1201/9781003484288

Typeset in Garamond
by SPi Technologies India Pvt Ltd (Straive)

http://www.copyright.com
http://dx.doi.org/10.1201/9781003484288

This book is dedicated to the software project managers I have worked for or consulted with
whose patience, insights and concerns for the well-being of their team members showed me

how success can be achieved in software project management.

https://taylorandfrancis.com

vii

Contents

Overview ...xii

 1 Introduction to Software Project Management ...1
 1.1 Chapter Overview .. 1
 1.2 Making the Transition from Software Engineer to Software Project Manager 2
 1.3 A Change in Perception ... 3
 1.4 Management Styles That Work .. 4
 1.5 Why Training in Software Project Management Is Important 4
 1.6 Why Teams Don’t Learn .. 5
 1.7 Is Training Needed? ... 6
 1.8 Developing Software Is a “Wicked Problem” .. 7
 1.9 Software Project Management as a Process – From Concept to Testing and

Release ... 7
 1.10 The Nature of Software Engineers .. 8
 1.11 The Experience at Google™ .. 10
 1.12 The Primary Functions of Software Project Management 10

 1.12.1 Planning .. 11
 1.12.2 Scheduling (and Costing) .. 11
 1.12.3 Controlling ... 11
 1.12.4 Staffing .. 11
 1.12.5 Motivating .. 12

 1.13 Summary ... 12
 1.14 Additional Resources ... 12
Chapter 1 Review Questions .. 15
References .. 16

 2 Planning Software Projects ...17
 2.1 Chapter Overview .. 17
 2.2 The Nature of Planning ... 17
 2.3 Blaming and Software Development Life Cycles .. 18
 2.4 A Typical Software Development Life Cycle ... 18
 2.5 The Planning Fallacy .. 19
 2.6 Estimating Tools and Methods ... 20
 2.7 Some Alternative Software Development Life Cycles ... 20

 2.7.1 The “Waterfall” Life Cycle ... 21
 2.7.2 The Agile Life Cycle .. 22

viii ◾ Contents

 2.7.3 The Spiral Life Cycle ... 23
 2.7.4 The Synchronization and Stabilization Model 23
 2.7.5 The Stage-Gate Life Cycle ... 23

 2.8 Life Cycles – Summary .. 25
 2.9 Strategies for Controlling Project Flow Time .. 25

 2.9.1 The Design Structure Matrix ... 25
 2.9.2 DSM Summary ... 27

 2.10 The Work Breakdown Structure ... 29
 2.11 A Natural Communication Gap – Between Project Manager and Software

Engineer .. 30
 2.12 Developing a Communication Plan ... 32
 2.13 Communication Plan Basics .. 33
 2.14 Example of a Communication Plan ... 33
Chapter 2 Review Questions .. 34
References .. 34

 3 Estimating Cost and Schedule of Software Projects ...36
 3.1 Chapter Overview .. 36
 3.2 Scheduling versus Planning .. 37
 3.3 The Basics of Costing ... 37
 3.4 The Business Case .. 38
 3.5 Computing Project Costs ... 38
 3.6 Cost Estimating Methods .. 39
 3.7 IBM Federal Systems Estimating Method .. 41
 3.8 Function Points ... 41
 3.9 Business Case Example .. 42
 3.10 Success and Differences in Value Systems ... 44
 3.11 Cost Categories .. 45

 3.11.1 Direct Costs .. 47
 3.11.2 Indirect Costs .. 47
 3.11.3 How to Compute Overhead .. 47
 3.11.4 How to Compute General and Administrative Expense 48
 3.11.5 The Chart of Accounts .. 48
 3.11.6 Example of a Simple Chart of Accounts Listing OH & G&A 48
 3.11.7 Explanation of Items on the Chart of Accounts 50
 3.11.8 Computing the Project’s Estimated Total Cost 50
 3.11.9 Project Cost Computation Example .. 52
 3.11.10 Total Cost Computation ... 53
 3.11.11 Risk Reduction via Bias Removal .. 53
 3.11.12 Estimating the Cost of Change(s) during the Project 54

 3.12 Outsourcing ... 56
 3.13 Summary ... 56
Chapter 3 Review Questions .. 57
References .. 57

 4 Controlling ...58
 4.1 Chapter Overview .. 58
 4.2 Background of Earned Value Management (EVM) .. 59

Contents ◾ ix

 4.3 Using EVM ... 59
 4.4 What Is Needed to Use EVM .. 60
 4.5 Cost-Related EVM Variables .. 60

 4.5.1 ACWP – Actual Cost of Work Performed ... 61
 4.5.2 BAC – Budget at Completion ... 61
 4.5.3 BCWP – Budgeted Cost of Work Performed... 61
 4.5.4 BCWS – Budgeted Cost of Work Scheduled ... 61
 4.5.5 CPI – Cost Performance Index .. 61
 4.5.6 CV – Cost Variance ... 61
 4.5.7 EAC – Estimate at Completion ... 61
 4.5.8 ETC – Estimate to Complete .. 62

 4.6 Schedule Performance factors ... 62
 4.6.1 SPI – Schedule Performance Index .. 62
 4.6.2 SV – Schedule Variance ... 62
 4.6.3 TSPI – To Complete Schedule Performance Index 63

 4.7 Work and Content-Related Parameters .. 63
 4.7.1 TCPIB – To Complete Performance Index within Budget 63
 4.7.2 TCPIP – Another, a Work to Money Ratio ... 63

 4.8 An Example of the Application of Earned Value Management 63
Chapter 4 Review Questions .. 66
References .. 66

 5 Staffing ..67
 5.1 Chapter Overview .. 67
 5.2 Acquiring and Developing the Software Development Team 67
 5.3 Software Engineering Is a People Activity ... 68
 5.4 What Does a Successful Software Project Team Look Like? 68
 5.5 Psychological Compatibility ... 69
 5.6 Teams Need Compatibility .. 70
 5.7 An Advisory about the Compatibility Index ... 72
 5.8 Software Engineer Task Preferences and the MBTI .. 72
Chapter 5 Review Questions .. 74
References .. 74

 6 Motivating ..75
 6.1 Chapter Overview .. 75
 6.2 The Problem .. 75
 6.3 What Motivates Software Engineers ... 77
 6.4 What Demotivates Software Engineers .. 78
 6.5 Motivating Test and Maintenance Teams – Their Jobs Are (Almost)

Thankless ... 78
 6.6 The Role of Antipatterns .. 78
 6.7 Peters’ Paradox ... 79
 6.8 The Nature of Work ... 79
 6.9 Keeping Successful Teams Together for Higher Productivity 82
 6.10 Generational Differences .. 82
 6.11 Generational Issues – Summary ... 84
 6.12 Cultural and Language Differences .. 84

x ◾ Contents

 6.13 Managing Teams Composed of Different Cultures ... 85
 6.14 Effects of the Work Environment on Productivity .. 87
 6.15 Outsourcing ... 88
 6.16 Picking a Team Just Like You ... 89
Chapter 6 Review Questions .. 89
References .. 89

 7 Project Closeout ..91
 7.1 Chapter Overview .. 91
 7.2 Project Closeout Review and Learning ... 91
 7.3 The Advantage of Keeping Extemporaneous Notes .. 92
 7.4 Identifying/Archiving Lessons Learned .. 92
 7.5 Sample List of Variables to Record for a Project Closeout Document 93
 7.6 Reviewing the Pre-Project Checklist ... 93
References .. 93

APPENDICES ADDITIONAL SOFTWARE PROJECT MANAGEMENT
RESOURCES

 Appendix 1 A Word from Our Sponsor – The Brain ...97

 Appendix 2 Basics of Negotiation...101

 Appendix 3 Brainstorming ...103

 Appendix 4 Characteristics of Successful High-Technology Teams106

 Appendix 5 Computing the Cost of a Change ..111

 Appendix 6 Developing a Business Case...113

 Appendix 7 Developing the Project Closeout Plan ...117

 Appendix 8 The Effect of Cultural Differences (on Software
Development Teams) ...119

 Appendix 9 Emotional Intelligence ..123

 Appendix 10 Environmental Factors Affecting Productivity ..125

 Appendix 11 How Software Project Managers Are Evaluated ...128

 Appendix 12 How to Run Effective Meetings ...135

 Appendix 13 Ishikawa (Fishbone) Diagrams ..137

 Appendix 14 Knowing When It Is Time to Cancel a Project ..139

 Appendix 15 Lying and Software Projects ..141

 Appendix 16 Managing Multiple Generations ...144

 Appendix 17 Outsourcing (Offshoring) ...147

Contents ◾ xi

 Appendix 18 PERT [Program Evaluation Review Technique] ..149

 Appendix 19 Planning using Integrated Cost and Schedule
Work Packages ..150

 Appendix 20 A Pre-Project Launch Checklist ..159

 Appendix 21 Putting Pressure on the Team Can Reduce Productivity166

 Appendix 22 Reducing Affinity Bias ...168

 Appendix 23 Risk Management Methods ...170

 Appendix 24 Software Project Management Antipatterns ..182

 Appendix 25 Software Project Managers ..187

 Appendix 26 Software Engineering Ethics ..188

 Appendix 27 Technical Debt – The Ultimate Productivity Killer191

 Appendix 28 Transitioning from Software Engineer to Software
Project Manager ..195

 Appendix 29 Why Smart People Make Dumb Decisions ...198

 Appendix 30 Why Software Engineering Teams Should Be Kept Intact201

 Appendix 31 Why We Don’t Learn from Success ..202

 Appendix 32 Stoplight Charts ..205

 Appendix 33 The Theory of Constraints...207

 Appendix 34 Documenting the Undocumented ...209

 Appendix 35 Making Documentation Transparent ..211

 Appendix 36 Capability Maturity Model (CMM) ..213

 Appendix 37 Motivation Basics ..216

Closing Comments ..218

Chapter Questions and Suggested Answers ..219

Index ..227

xii

Overview

This book has been developed by incorporating effective project management practices applicable
to software engineering without regard to their source. It provides dozens of references through-
out. Points made are supported by references in order to provide the reader with a resource with
which to do further research. Much like the checklist pilots go through prior to a flight, this book
provides a pre- project checklist which enables the software engineering team to review and evaluate
an extensive set of technical and sociopolitical risks which will help the software project manager
and the team determine the project team’s chances of success. This same list and the individual
question responses can be used later as part of the project’s closeout process helping team members
to improve their individual and collective abilities to assess risk. By comparing the responses made
before the project began with those made after the project was completed or even cancelled, soft-
ware engineers and the software project manager can identify risk topics they need to treat more
or less critically. This book does not delve into the intricacies of generating source code but instead
provides a broad view and many tools to solve specific project management problems rather than a
“one size fits all” approach to managing software projects. The title of this text makes a distinction
between methods and techniques. A method is a recommended practice based on data, evidence
that it is beneficial to the conduct of a software engineering project. A technique is a recommended
practice which is beneficial but is not based on data and research. Each method or technique
should be viewed as a tool which can be used to address a particular issue(s) rather than a universal
solution. Several different types of notations are presented which have been published and have
referenced work(s) which can be used to obtain further, more detailed information on their use.
A special thank you goes out to those who over the years have contributed in a myriad of ways to
the practice of software engineering1.

Organization of this text
This book is divided into two major sections. The first section is organized according to the five
primary functions of software project management (planning; scheduling and costing; controlling;
staffing; and motivating) preceded by a risk assessment pre- project checklist.

The final section contains a broad range of methods and techniques associated with the actual
conduct and eventual closeout of a software engineering project, maintenance of your software
engineering team and other matters related to successfully managing a software engineering effort.

Overview ◾ xiii

Note
 1 Margaret Hamilton, renowned mathematician and computer science pioneer, is credited with having

coined the term “software engineering” while developing the guidance and navigation system for the
Apollo spacecraft as head of the Software Engineering Division of the MIT Instrumentation Laboratory.

https://taylorandfrancis.com

1DOI: 10.1201/9781003484288-1

“Change is the only constant.”
–Heraclitus of Ephesus

535 BC–475 BC

1.1 Chapter Overview
The quote that begins this chapter reminds us that as much as software project managers may wish
it wasn’t true, we have to deal with a continually changing project environment in which nearly
everything seems to change in unpredictable, often surprising ways that are not always negative.
Software engineering has been in existence for more than 50 years. In that time, there have been
incredible developments in computing hardware and a series of software design, programming
languages, development methods and environments that, in general, have improved our ability to
produce higher quality code and more of it in less time solving ever more complex, challenging
problems. One aspect of software development activity that has been seemingly ignored is soft-
ware project management. For example, there are currently no conferences sponsored by the IEEE
Software Engineering Society devoted to the practice of software project management. In fact,
the IEEE Software Engineering Society-sponsored annual International Conference on Software
Engineering (ICSE) has tracks devoted to many specific topics related to software engineering but
not to software project management. This and a lack of available software project management edu-
cation at the university level have resulted in software project managers having to utilize their own
creativity to develop methods and practices which they believe are going to be effective at solving
specific problems without the benefit of data to support or refute their assumptions. These practices
most often do not benefit from careful measurement of their effectiveness but are utilized anyway.
While many software engineers do not recognize the value and benefits of effective software project
management, the experience of Google™ [1], studies from IBM [1, 2] and other published material
[3] make a compelling case for the recognition and prioritization of the practice of software project
management. For example, in the highly acclaimed text “Software Engineering Economics,” [4]

Chapter 1

Introduction to Software
Project Management

http://dx.doi.org/10.1201/9781003484288-1

2 ◾ Software Project Management

Barry Boehm consciously chose to ignore software project management issues because he assumed
“a cadre of competent project managers existed” but later, he found they didn’t. Later analysis of
Boehm’s factors found that those deemed to be related to project management outnumbered all
others combined [3] as depicted in Figure 1.1.

This chapter begins by describing the basics of transitioning from software engineer to software
project manager. This is a bigger change than many might think. It means moving from a “hard”
technology to one that has been described as “soft.” This chapter then proceeds to examine software
project management starting with a discussion of the nature of software engineers, proceeding to
the basic functions of software project management consistent with other models of the practice
of project management, a discussion of the role of software development methods and ends with
a brief discussion of the reporting that should be done throughout the life of the project and its
eventual closeout. Throughout this book, points made are supported by published papers, statistics
and/or textbooks both as a reference and a source of further research into the topic for the reader.
Conjecture and unsupported statements or advisories are avoided as much as possible.

1.2 Making the Transition from Software Engineer to Software
Project Manager

Compared with managing a software project, actually writing the software is relatively straightfor-
ward in that there are requirements to be met, programming language syntax and semantics to be
observed, tests to pass and so forth. Throughout the development effort, the activities of the soft-
ware engineer are, in a sense, guided by the stages the software development effort passes through
and the software development environment. Software project management activity, except for legal
and corporate restrictions, does not have those clear guidelines but relates to a myriad of real and
potential issues as evidenced by the large number of single-topic issues listed in the appendices.
This can be unsettling for some and can be thought of as being part of the “soft” nature of project
management. It is viewed as being “soft” partly because there is no objective measure of whether
or not the project manager got anything right until it is too late to correct the misguidance. The
remainder of the softness has to do with what most software project managers consider the most
difficult and frustrating aspect of their job – personnel issues [5]. Unlike the software engineering

Figure 1.1 Breakdown of factors comprising COCOMO (Constructive Cost Model).

0

10

20

30

40

50

60

70

TOOLS (3) PEOPLE (11) SYSTEM (17) MANAGEMENT
(64)

Introduction to Software Project Management ◾ 3

role, software project managers are rarely properly prepared for working in this alternative role [6].
This is the result of two factors:

 ◾ Software project management is not a well-defined discipline. The role, activities and senior
management’s expectations of the software project manager vary from one popular methodol-
ogy to the next, project to project and company to company and, in most companies, the path
from software engineer to software project manager is not clearly spelled out [5]. That may be
one of the reasons for the general lack of training in project management among software proj-
ect managers [5]. Another possible explanation is the widespread lack of knowledge regarding
just what it is that software project managers do. For example, advertisements for software proj-
ect managers often require that the person in this position will be required to contribute to the
programming effort. Using the professional sports analogy, it is rare that the manager of a sports
team is also a player on that team and the team is successful. Management involves focusing on
the five basic functions of project management – Planning, Scheduling, Controlling, Staffing
and Motivating [7]. How these are done is an open question in most companies since various
authors have proposed a variety of schemes to achieve success in one or more of these areas.

 ◾ If a university software engineering program is offered, training in software project manage-
ment is most often optional in most graduate and undergraduate programs. A brief survey
using repeated Google searches spanning 2016 through 2019 found that worldwide, there
are more than 400 software engineering programs at the graduate and undergraduate levels
[8]. Of these, less than 10% list software project management as a required course in order
to obtain a degree in software engineering while approximately a third do not even offer a
course in software project management. This may explain why there is so little understanding
among software engineers as to just what software project managers do or should be doing
resulting in a broad range of views regarding the value software project managers bring to
software projects. Google’s experience stands as an impressive, highly successful exception.
When the company was founded, the perception on the part of its founders was that manag-
ers inhibit innovation so the company started without any managers. Within a short time,
the founders realized that management was needed if they were to achieve their goals. They
instituted a process for vetting prospective managers, training, performance evaluations and
a structure that helped ensure project managers would not micromanage [1].

The fact remains that throughout their career, software engineers are going to be asked management-
related questions such as how long an effort will take, how many people may be required and so
forth. Without even minimal training in management, they are doomed to failure by relying on
what seems reasonable to them with no basis in fact.

1.3 A Change in Perception
“Those who never change their minds never change anything.”

–Winston Churchill

There is an adage that “we learn from our mistakes.” If that were true, over the last 50 years, soft-
ware projects should have gotten more and more successful with respect to better cost and schedule
predictions, results and quality of deliverables. There have been improvements but not to the extent
one would expect through more than a half century of learning. As children and young adults,

4 ◾ Software Project Management

we recognize that taking an action that results in some form of failure (e.g. not studying for a test)
should cause that action or inaction to be called into question and altered. This happens largely
because we conclude we are responsible for what happened. But in software project management,
a project which fails due to running over budget, delivered late and/or of poor quality can be
attributed to many factors (e.g. the schedule was too short, we had to use the Waterfall life cycle,
the requirements kept changing and the client was difficult to work with) which enable us to shirk
responsibility for failure thereby avoiding learning from the experience [9]. By reviewing the pre-
project checklist presented here (Appendix 20), the software project manager and those developing
the code get a preview of the kinds of impediments to success that will have to be overcome. The
commitment at that point to go forward with the project means that the team is essentially negat-
ing the possibility of shirking responsibility for failure because they knew what they were getting
into but went ahead with the project anyway.

1.4 Management Styles That Work
Two common hallmarks of management methods that are effective are 1) participation/commit-
ment of the team and 2) the manager is not expected to be the most technologically astute person
in the group but, instead, is a remover of obstacles to productivity and success. Examples of these
successful styles include [10].

 ◾ Manager as “Servant Leader” – a remover of obstacles role, working for the development
team as well as leading them.

 ◾ Manager as Negotiator – communicating between the client and the development team to
establish mutually acceptable schedules, task lists and acceptance criteria.

 ◾ Manager as Manager – The manager is not expected to be the technology expert but does have
some knowledge of the domain.

Sometimes, you will inherit a team which contains one or more members whose attitude is “My
way or the highway.” In other words, they will not compromise or deviate from their own opinion
of just what should or should not be done. The most extreme case of this in my consulting practice
resulted in the other team members threatening to resign en masse if this person was not removed
from the project. Fortunately, an independent research position existed in another organization
within the firm, a transfer was agreed to by this person and disaster was avoided. When selecting
team members, it is advisable to explore their willingness to compromise on technical and proce-
dural issues to avoid situations like this.

1.5 Why Training in Software Project Management Is Important
The lack of training in software project management has resulted in software project managers
not seeing the need to review whether or not all the needed elements for a project to be successful
are in place prior to project initiation. Again, the pilot analogy comes to mind in that pilots are
trained to consider the operational status of all key systems of the aircraft prior to taking flight via
a checklist which is executed with the copilot prior to takeoff. The goal of employing such a list
is to prevent obvious problems or oversights (e.g. not having the flaps in the takeoff position at
takeoff) and to ensure that an unsafe status is not found for a flight critical system. Some of the
more obvious undesirable situations that the software project manager should be concerned about

Introduction to Software Project Management ◾ 5

include having the development team believe that the project will not be successful, not having the
support of senior management [11], having the client prefer a different project manager to conduct
this project and others. The point here is that the software project manager is focused on having
the project be successful which can result in overlooking one or more important issues which may
jeopardize project success.

1.6 Why Teams Don’t Learn
Nearly any article or textbook we read these days makes a point that teams need to learn. But they
often do not learn very much. We will look at why shortly but first we need to understand the fac-
tors that can and do prevent learning. Highly successful companies have striven to become learning
organizations and it has rewarded them handsomely. They have also found that learning not only
can occur from failure but from success as well. A study of the dynamics of learning in organiza-
tions [12] identified four impediments or challenges to organizational learning:

 1. Fear of Failure – To some extent, we all fear failure. As a result, we try to avoid situations
which we perceive may have a high probability of failure. This fear is often amplified in situa-
tions which are highly exposed to colleagues and the upper echelons of the firm. This fear was
the cause of a firm I did training at in structured design. A year later, I was hired to do that
course again by that firm. I noticed a few of the students had taken the earlier course and I was
concerned that I had not done a good job in the previous course. These students told me that
their previous manager would not let them use this newer technology. They had since trans-
ferred to another group whose manager insisted everyone get trained and use this method.
The reason for the suppression of adopting this new method by the first manager was fear of
failure. Presumably, that firm had an environment in which failure would penalize a manager
but the second manager believed this would work and felt the benefits were worth the risk.

 2. A Fixed Mindset – Researchers have found that people’s brains react differently to failure.
What they found was that the reaction depends on the mindset of a person. They found that
there basically are two mindsets which they named “Fixed” and “Growth.” People with a
fixed mindset believe that intelligence and skills are the result of genetics. You are either born
with them or not. People with a growth mindset seek challenges and learning opportunities.
They believe that no matter how good one is at performing some tasks, there is always the
opportunity to improve.

 3. Overreliance on Past Performance – This is a challenge because when hiring, software project
managers often put too much emphasis on past performance and not enough on the individ-
ual’s potential to learn. This often results in performance on the job being less than expected.

 4. Attribution Bias – A common phenomenon is for leaders to attribute success to their knowl-
edge, skill and other personal abilities but blame failure on a plethora of factors indicating
it wasn’t their fault. They fail to recognize that their success may be due to factors that were
mere happenstance – luck.

So, how can we best cope with the preceding challenges? Here are some suggested approaches:

 ◾ Destigmatize Failure – Remember, no one seeks to fail. People want to succeed and strive
to do so. By making failure what potentially amounts to a career-limiting event, innovation,
experimentation and thinking “outside the box” suffer. The environment should be such that
failure can be a learning experience which does not penalize the person or the team.

6 ◾ Software Project Management

 ◾ Adopt and Teach a Growth Mindset – Researchers have found that software project managers
who practice a growth mindset have improved performance in their teams, while the teams
led with a fixed mindset do not exhibit this improved performance.

 ◾ Consider Potential when Hiring and Promoting and Making It Known to the Team – A part
of the effect of this is to reduce the incidence of the software manager hiring people just like
themselves. Experience found that when this is done, greater diversity in terms of race and
gender results.

 ◾ Utilize a Data-Driven Approach when Analyzing the Cause(s) of Success or Failure – This is
one effective means of combatting the attribution bias cited above [13].

 ◾ Take Time to Think – Plan to take time each day to think about how things went that day or
at the start of the day, consider what will be done when and how.

 ◾ Encourage your Team to Reflect upon How Things Went – Whether good, bad or indiffer-
ent, encourage the team to freely discuss what could have been done better, what went really
well and what changes seem appropriate.

1.7 Is Training Needed?
It is unlikely that persons are born with the skills needed to manage software projects. Hence,
training is needed to acquire those skills. The content of that training is discussed throughout this
book. However, we do have some data indicating the training that is needed. A study of 2,306
advertisements for project managers [14] provides some insight into what skills companies in vari-
ous industries are seeking in project managers as well as how desired software project manager skills
compare with other industries. Simplified, the results had three relevant findings for software proj-
ect management:

 1. Industry-Specific and Generic Skills – This was the number one requirement. This included
knowledge of the technology being used by the prospective project, knowledge of the domain
(e.g. computer graphics, gaming and so forth) and knowledge of costing and accounting. It
is significant that the software industry was the only one citing a requirement of this type of
expertise. This is analogous in the home-building industry to requiring the project manager
to be a journeyman carpenter.

 2. Communication Skills – This was a close second to industry-specific knowledge. Implying
that being able to communicate with stakeholders and others in writing, in person and in
meetings was seen as almost as valuable as knowing something about the type of business
being engaged in.

 3. The Ability to Manage Teams – This one followed numbers 1 and 2 closely indicating recog-
nition by prospective employers that their projects would be complex enough so as to require
one or more teams of people to execute them.

People are not born with these skills but, as stated earlier, need to be trained in order to acquire
them. Without training, software project managers would be left to their own devices which is
were we, as an industry are today. To be fair, other fields such as home construction have existed
centuries longer than software engineering. The experience of that industry and others has led to
the creation of standardized management practices which, through use over the years, have been
continually refined and updated.

Introduction to Software Project Management ◾ 7

1.8 Developing Software Is a “Wicked Problem”
Several decades ago, city planners noted how perplexing it was to try to lay out a new city or reorga-
nize parts of an existing one. Each time they made a change in one area, another area was negatively
impacted. On a smaller scale, planners noted that even a single-family home presented the same kind
of dilemma. For example, if we are constructing a new home on a fixed budget, we may want to
change the plans to accommodate a large window in the living room to take advantage of the view of
the surrounding area. This will increase the construction cost requiring us to make one or more other
rooms smaller, perhaps to the point where they are not useful. In addition, the cost of heating and/or
cooling the home will increase due to the additional heat loss or gain from the window. This may
cause us to have to install a larger furnace and air conditioning, at an additional cost. And so, it goes.
Each modification causes some other change to accommodate it, resulting in more changes. The class
of problems exhibiting this phenomenon has been referred to as, “Wicked” [15]. Software develop-
ment can also be characterized as a “Wicked” problem. The properties of “Wicked” problems include:

 ◾ They cannot be stated definitively.
 ◾ There is no rule about when one has been solved.
 ◾ They have only good or bad solutions – not “right” or “wrong” ones.
 ◾ They cannot be definitively tested.
 ◾ Solutions to “Wicked” problems are too significant to be experimented with.
 ◾ There is no limit to the number of possible solutions or the means of distinguishing

among them.
 ◾ “Wicked” problems are often symptoms of higher-level problems.

Managing the solution to a “Wicked” problem:

 ◾ Changes from one project to the next
 ◾ Requires innovation and patience
 ◾ Can be exasperating at times
 ◾ Often results in “scapegoating” (i.e. blaming others for our inability to solve the problem)

Do any of the preceding sound familiar? Most software project managers have experienced all of the
above and more. Yes, software projects are “Wicked” problems! I mention this because I believe it is
important for software project managers to realize these seemingly intractable problems encountered
in the course of a software project are normal and that the manager is not encountering them because
they have failed. A commitment to completing the project as best we can under these circumstances
is all we can do but as described above, solving a wicked problem remains beyond our reach.

1.9 Software Project Management as a Process – From Concept
to Testing and Release
“If you don’t see everything you do as a process, you don’t know what you are doing.”

– W. Edwards Deming

While the preceding statement may seem harsh to some, it is never the less true. And that statement
is particularly true in the practice of software project management. In Appendix 20 we will present

8 ◾ Software Project Management

a list of statements that constitute a checklist of potential risks to be considered before the software
project begins and used as part of the project closeout when it ends with the goal of comparing
what we foresaw at the start with what we actually experienced during the project. That practice
executed on each software project should result in improvement in the software engineering team’s
risk-assessment capabilities over time. But before we get to that list, we will examine the nature of
the people, the software engineers, who will actually be doing the software development. It should
be noted that the software project manager will not be doing any of the actual source code develop-
ment but will be collaborating with the software engineers to plan and schedule what will be coded.
As you will see throughout this book, the software project manager has too much to do to be able
to devote any significant time to coding. Besides, managing the software engineering effort is a very
different mindset from writing code. A high-level overview of the process of managing a software
project is presented in Figure 1.1.

The notation used in Figure 1.2 will be used elsewhere in this text and requires some explana-
tion. Moving from left to right, the major stages in the project management process go from the
start of the project to its end or closeout. The left edge of the figure lists the primary participants
in the project with lanes (sometimes referred to as “swim lanes”) containing the activity the partici-
pant is responsible for. For example, in the Requirements Definition phase, the team members and
analysts are responsible for generating the measurable objectives, use cases, and so forth. It should
be noted that the figure may not correlate well with the software development life cycle you or your
firm currently use as a standard as well as the participant list and content of each phase. The figure
is presented to provide an example of what you can do to portray just one software development
process leaving you free to portray some other as you may wish.

1.10 The Nature of Software Engineers
More than 50 years ago, most software engineers were people who had started their collegiate
and/or professional studies in fields other than software development. Many came from fields not
related to science, technology, engineering or mathematics. This apparent anomaly attracted the
attention of two psychologists [16] who wondered just what was it that caused people from so
many diverse career paths to switch to software development. In my career alone, I have worked
with software developers who started their careers in musicology, library science, engineering, psy-
chology, theoretical nuclear physics and others as well as some who taught themselves how to pro-
gram. In fact, one of these self-taught individuals is one of the best five software engineers I have
ever worked with in more than 50 years. In order to identify what it was about software develop-
ment that attracted so many different professionals, the psychologists put together a study which
examined 60 different professions. What they found was that software people were unique among
the professions studied. They had two characteristics which distinguished them:

 ◾ High Growth Needs Strength (GNS) – The need to solve difficult or challenging problems
 ◾ Low Social Needs Strength (SNS) – The preference to work to solve these problems alone

These characteristics hardly seem to describe someone who would be easy to manage since many
software engineering projects require multiple software engineers to work as a mutually supportive
team to bring it to a successful conclusion. As we shall see later in this text, there are ways we can
overcome this reluctance to work in a collegial manner to ensure an effective team effort and how
some well-meaning management practices intended to mold a group of software engineers into a

In
tro

d
u

ctio
n

 to
 So

ftw
are Pro

ject M
an

agem
en

t
◾

9

Figure 1.2 A simplified model of software project management.

Requirements
Definition

10 ◾ Software Project Management

team can have the opposite effect. There are other characteristics possessed by software engineers
which add to the challenge of successfully managing software projects. In an interview on National
Public Radio station KUOW in 2011 in Seattle, Washington, co-author [17] John Ratey had just
visited the Microsoft campus and remarked that more than 70% of the software engineers there
exhibited symptoms of attention deficit disorder. Two of these can be particularly troubling for
software project managers:

 ◾ They continually change their code to improve it.
 ◾ Not being satisfied with their code even if it passed all required tests and performance

requirements.

Yes, software engineers can be a lot of fun to manage provided we are aware of the idiosyncrasies
they possess.

1.11 The Experience at Google™
Some years ago, when Google was founded, its founders were convinced that managers would stifle
innovation and productivity [1]. This is why they began the company without managers. It didn’t
take very long before they began to realize the role of managers had value and actually helped the
company to prosper by carrying out company policies, planning and steering projects. They not
only installed a management structure but developed what may be unique in the industry. For
example, in most major corporations, the path to management is not explicitly available to non-
management employees [1]. What Google did was to define that path, create a training program
for people wanting to get into management, a screening process to identify people who had the
qualifications to be a manager and establish a policy that those who went through the process and
into management but then decided it wasn’t for them would not be penalized. This process and
system may be unique in the industry and so far has served them well.

1.12 The Primary Functions of Software Project Management
Software project managers perform a broad spectrum of tasks from hiring and evaluating software
engineers to presenting project status to clients and much, much more. Throughout the course of
the project, they identify risks and strategize to avoid or eliminate them altogether. Many of these
risks go well beyond the obvious ones such as the project’s allotted time flow, the needed technical
skills, technical issues, budget constraints and so forth. But there are less-obvious issues they must
consider. If the team does not believe the project can be successful, that represents a risk. Finding
out why the team feels that way and resolving the issue(s) is an important task for the software
project manager to address. Fortunately, a generic list of these issues has been published [18] and
is being reused here with minor changes with the permission of its authors. The version presented
here has been tailored to the specifics of software project management. It is presented in Appendix
20 with a brief description of each line item in the list. The basis of that approach is to ensure
there are no serious differences in opinion or viewpoints among the development team members.
If there are, they need to be mitigated in some way in order to reduce the risk(s) to the project.
One big advantage of such a list is that all members of the development team have an opportunity

Introduction to Software Project Management ◾ 11

to contribute what they see as a risk. Those multiple viewpoints will most certainly identify more
issues than the single viewpoint of the software project manager. If we look at what software project
managers do, we can break their responsibilities and actions down into five broad categories, as
described below.

1.12.1 Planning

This occurs once we have agreed to a set of requirements. In fact, it often occurs while the require-
ments are still evolving because requirements’ definition is truly a discovery process because we
“discover” what a statement means while our understanding of it evolves over the course of the
project. The plan lists what needs to be done. That is, the tasks and subtasks that must be success-
fully completed in order for the project to be completed. This is done in collaboration with the
client and the team. Some have claimed that planning and scheduling are the same [19] – they are
not. Planning delineates what will be done while scheduling details how it will be done. Although
it is closely related to the scheduling of the project, planning and scheduling are not the same
activity [7].

1.12.2 Scheduling (and Costing)

This activity estimates the amount of time each task and subtask will take to complete, when it
should start and when it needs to be finished. It is also done in collaboration with the team since
they will be doing the work. It includes identifying the critical path. It is referred to as the critical
path because any delay in the start or completion of tasks on the critical path will cause the project
to finish late. If you are using project management software (e.g. Microsoft Project™), then that
software will identify the critical path for you. The associated cost of each task is estimated to arrive
at a total.

1.12.3 Controlling

A tracking method is used to determine project status. Whatever method is used must be objec-
tive since we are often biased to believe the project is in a better state than it really is. Earned
Value Management (EVM) is employed in this text as it enables us to objectively compare what
we planned to do with what we actually did and are doing at any point in time [20]. It also has an
additional benefit whereby, based on our rate of spending and completing tasks, it projects forward
in time estimating our final costs and completion date.

1.12.4 Staffing

It may not always be the case that we can select our team. Often, the team already exists and
we are tasked with managing it for a specific project. Building a team from nothing or revising
an existing one is a challenging task. What we are looking to create is a group of people who
can work together as a mutually supportive group. Together, they effectively constitute a virtual
“super software engineer” capable of solving software issues a single software engineer is unlikely
to resolve. Throughout the staffing activity, it is vital to keep in mind that the quality of results
is free [21]. Yes, free. This is because psychologically high-technology people want to produce
results they can be proud of. This is a particularly strong motivation among software engineering

12 ◾ Software Project Management

professionals because the results of their work may be more closely related to them as an extension
of themselves than any other profession [22]. That relationship is particularly strong because the
software engineer is, essentially, the sole creator of the content and quality of the software they are
responsible for. Psychologically, if the code is flawed, since it is an extension of the software engi-
neer, then the software engineer is flawed [23]. This may also explain the difficulty many software
engineers have in finding and correcting their own programming errors. They subconsciously
believe they and what they produce are unflawed. When a software bug occurs, they can have
difficulty seeing the problem. A symptom of this is when a colleague looks at the troublesome
code, they spot the problem quickly. Why? Because the code is not theirs and does not represent
evidence that the colleague is flawed. In the early days of computing, the software engineer was
lucky to get one submission and result per day. As a result, they carefully examined their code
before submitting it to prevent delays in getting their assigned work done. Today’s high-speed
remote entry means the software engineer can get several submissions in a day and, in a sense,
let the computer do the debugging. Whether this is an improvement over the previous program
entry scheme depends on the care with which the code is examined before it is submitted – a case
of self-discipline.

1.12.5 Motivating

Anecdotally, I have observed that unmotivated software teams tend not to be as proficient as moti-
vated ones. The problem for the software project manager is that not everyone is motivated by the
same management actions. However, we now know enough about software engineers that a small
set of actions by the software project manager will work for everyone on the team [11].

1.13 Summary
Much of what is presented throughout this book may challenge many of your beliefs, what you may
have heard from others and conclusions about software engineering and software project manage-
ment. That is why points made have references to published studies by others and are explored in
much more detail in the chapters that follow. This provides you with an opportunity to research
a topic further to confirm if the researchers involved did their work correctly and if their findings
are applicable to your situation. Read on – new and fact-based information on software project
management awaits you.

1.14 Additional Resources
The appendices listed in Table 1.1 provide additional, narrow-focus, single-topic material you
may need in managing a software project. For the most part, the topics are discussed briefly but
each appendix provides references where more detailed discussions can be accessed. There are a
broad range of topics because unlike coding, software project management issues are somewhat
unbounded with a wide range of topics from how software engineer’s brains react to various situ-
ations to managing risk. A list of these appendices with a brief description of what each contains
from a software project management viewpoint is presented in Table 1.1.

Introduction to Software Project Management ◾ 13

Table 1.1 Additional Resources

Appendix Title Content

1 A Word from Our Sponsor –
The Brain

Discussion of studies on how the brain
impacts the quality and productivity of
software engineers’ work

2 Basics of Negotiation Nearly every aspect of a software project
must be negotiated – here are some pointers
on how to

3 Brainstorming How to get the best results when the team
tries to use their collective knowledge to
solve a problem

4 Characteristics of Successful
High-Technology Teams

A study of successful high-technology
teams provides data on forming them to be
successful

5 Computing the Cost of a
Change

Changes are inevitable but estimating
their cost may make a huge difference in
budgeting & success

6 Developing a Business Case Almost nothing happens in the industry
without a business case to justify it – the
basics are here

7 Developing a Project Closeout
Plan

Planning how to close down a project can
have long term multiple benefits for the firm

8 The Effect of Cultural
Differences (on Software
Development Teams)

Today’s software teams are composed of
multiple cultures offering unique challenges
and benefits

9 Emotional Intelligence The effectiveness of management can be
eroded by immature behavior

10 Environmental Factors
Affecting Productivity

Studies found the workspace in which
code is developed impacts the quality and
quantity of results

11 How Software Project
Managers Are Evaluated

Knowing the balancing act needed to be
successful is one key to surviving as a
software project manager

12 How to Run Effective Meetings Meetings are conducted all the time during
the project – how to keep them from being
wasteful

13 Ishikawa (Fishbone) Diagrams This highly effective diagramming technique
helps to pinpoint the source of errors

14 Knowing When it Is Time to
Cancel a Project

Not all projects remain viable from start
to finish and can reach a point where
continuing is impossible

(Continued)

14 ◾ Software Project Management

Appendix Title Content

15 Lying and Software Projects For many reasons, some managers assumed
lying would save the day but it doesn’t

16 Managing Multiple
Generations

Perhaps for the first time in modern history,
multiple generations working together
creates issues/benefits

17 Outsourcing (Offshoring) Originally, this practice provided both
promise and savings but it should be
engaged in carefully

18 PERT [Program Evaluation
Review Technique]

PERT is a method developed for the first
nuclear submarine program with great
success

19 Planning using Integrated Cost
and Schedule Work Packages

This method integrates cost and schedule
into a notation making project status clearer

20 Pre-Project Launch Checklist Much like a pilot’s pre-flight checklist, this
list elicits feedback from team members to
ensure readiness

21 Putting Pressure on the Team
Can Reduce Productivity

Some managers believe that pressuring
the team will increase productivity but the
opposite occurs

22 Reducing Affinity Bias Although it is natural to hire team members
who are just like us, it does not result in a
productive team

23 Risk Management Methods Managing risk must be a high priority.
Multiple methods to do this are explored

24 Software Project Management
Antipatterns

Some actions taken by the manager are
intended to help matters but don’t – they are
antipatterns

25 Software Project Managers The nature and characteristics of software
project managers are examined with their
effectiveness

26 Software Engineering Ethics Unknown to many in the software
profession, a code of ethical behavior was
developed decades ago

27 Technical Debt – The Ultimate
Productivity Killer

This may be the ultimate productivity killer
and a prime example of an antipattern

28 Transitioning from Software
Engineer to Software Project
Manager

Moving from software engineer to software
project manager involves much more than a
new job title

Table 1.1 (Continued) Additional Resources

(Continued)

Introduction to Software Project Management ◾ 15

Chapter 1 Review Questions
 1 Is the subject and practice of software project management, and its development actively sup-

ported by the IEEE Software Engineering Society? Explain your answer.
 2 Name at least two of the cost-factor categories which comprise the COCOMO methodology.
 3 How does the management of software projects differ from that of writing code?
 4 In what way does one’s viewpoint in moving from being a software engineer to a software

project manager?
 5 When Barry Boehm developed COCOMO and later its successor, he assumed he did not

have to consider software project management because he assumed a cadre of competent
software project managers existed. What did a later analysis of COCOMO variables show?

 6 How could the transition from software engineer to software project manager be best
conveyed?

 7 What is the most effective leadership style and how does it work?

Appendix Title Content

29 Why Smart People Make
Dumb Decisions

The reasons for this phenomenon vary but
one key pattern is consistent which you can
overcome

30 Why Software Engineering
Teams Should Be Kept Intact

Only if a software team is kept intact do
they form what amounts to a collective
knowledge base

31 Why We Don’t Learn from
Success

While we should learn from success –
we don’t. Here is how to avoid that
phenomenon

32 Stoplight Charts Developed by one of the most successful
managers in the world, this method helps
control issues

33 The Theory of Constraints This method is based on the notion that
there exists one or more impediments to
maximizing productivity

34 Documenting the
Undocumented

Many legacy systems are undocumented
and being maintained by people who will be
retiring soon

35 Making Documentation
Transparent

Documenting code has always been an issue.
This discussion shows how it can be made
part of coding

36 Capability Maturity Model
(CMM)

While beneficial, what level of CMM
represents the most cost effective?

37 Motivation Basics Unmotivated teams perform 40% below
motivated ones – here is how to motivate
your team

Table 1.1 (Continued) Additional Resources

16 ◾ Software Project Management

 8 Do software project managers need to be trained for their leadership role?
 9 What keeps teams from learning if they have been successful?
 10 In what way can software development and its management be characterized as “wicked?”
 11 Name two personality characteristics that make software engineers unique among profession-

als and a challenge to manage.
 12 What was unique about the experience at Google? What can we learn from it?
 13 Name the five primary functions of software project management.

References
 [1] Garvin, D.A., “How Google Sold Its Engineers on Management,” Harvard Business Review, December, 2013.
 [2] Gulla, J., “Seven Reasons Why IT Projects Fail,” IBM Systems Magazine, February, 2012.
 [3] Weinberg, G., Quality Software Management, Volume 3: Congruent Action, Dorset House Publishing, New

York, 1984, pp. 15–16.
 [4] Boehm, B., Software Engineering Economics, Prentice-Hall, Englewood Cliffs, NJ, 1984, pp. 486–487.
 [5] Katz, R., “Motivating Technical Professionals Today,” IEEE Engineering Management Review, Vol. 41, No. 1,

March, 2013, pp. 28–37.
 [6] Tarim, T., “Making a Transition from Technical Professional to …,” IEEE Engineering Management Review,

Vol. 10, No. 3, September, 2012, pp. 3–4.
 [7] Peters, L. and Moreno, A., “Enriching Traditional Software Engineering Curricula with Software Project

Management Knowledge,” co-author, International Conference on Software Engineering, Conference on
Software Engineering Education and Training (CSEET), May, 2016, Austin, TX.

 [8] Peters, L., unpublished results of Google searches worldwide of universities offering software engineering
degrees, 2020–2022.

 [9] Myers, C.G., Staats, B.R. and Gino, F., “My Bad! How Internal Attribution and Ambiguity of Responsibility
Affect Learning from Failure,” Harvard Business School Working Paper 14-104, April 18, 2014.

 [10] Linger, K.R., “Job Satisfaction among Software Developers,” Doctoral Dissertation, Walden University,
May, 1999.

 [11] Thamhain, H., “Team Leadership Effectiveness in Technology-Based Project Environments,” IEEE
Engineering Management Review, Vol. 36, No. 1, 2008, pp. 165–180. College, Cambridge, UK.

 [12] Gino, F. and Staats, B., “Why Organizations Don’t Learn,” Harvard Business Review, November, 2015.
 [13] Catmull, E., “How Pixar Fosters Collective Creativity,” Harvard Business Review, September, 2008.
 [14] Chipulu, M., Neoh, J.G., Udechukwu, O. and Williams, T., “A Multidimensional Analysis of Project Manager

Competencies,” IEEE Transactions on Engineering Management, Vol. 60, No. 3, August, 2013, pp. 496–505.
 [15] Rittel, H.W.J. and Weber, M.M., “Dilemmas in a General Theory of Planning,” Institute of Urban and

Regional Development, Working Paper No. 194, Berkeley, CA, University of California, November 1972.
 [16] Couger, D.J. and Zawacki, R.A., Motivating and Managing Computer Personnel, Wiley-Interscience, New

York, NY, 1980.
 [17] Hallowell, E. and Ratey, J., Driven to Distraction: Recognizing and Coping with Attention Deficit Disorder,

Anchor Publishing, 2011.
 [18] Maylor, H.R., Turner, N.W. and Murray-Webster, R., “How Hard Can It Be? – Actively Managing Complexity

in Technology Projects” Research-Technology Management, July-August, 2013, pp. 45–50. [Used here with
the permission of the authors].

 [19] McConnell, S., “The Software Manager’s Toolkit,” IEEE Software, July/August, 2000.
 [20] Fleming, Q.W. and Koppelman, J.M., Earned Value Project Management, 4th edition, Project Management

Institute, Newtown Square, Pennsylvania, 2010.
 [21] Cosby, P., Quality Is Free – The Art of Making Quality Certain, Mentor Books, New York, NY, 1980.
 [22] Weinberg, G.M., The Psychology of Computer Programming, Van Nostrand Reinhold, New York, NY, 1971.

17DOI: 10.1201/9781003484288-2

“People don’t like to plan – planning is unnatural – it is far more fun to just do. And the
nice thing about just doing is that failure comes as a complete surprise. Whereas, if you
have planned, the failure is preceded by a long period of despair and worry.”

–Sir John Harvey Jones

“Plans are nothing, planning is everything.”
–Dwight D. Eisenhower

2.1 Chapter Overview
Planning is needed in any significant activity in order to better ensure success. This chapter presents
several life cycle models which have been used as part of the planning process. It also presents the
means by which your plan can be refined to minimize flow time and reduce unanticipated negative
side effects. Some software tools which can provide automated assistance with the many changes
that will occur over the course of the project are also discussed. The planning activity involves much
more than planning the programming effort. It includes laying out how we plan to establish and
maintain effective communication between ourselves and our clients. This aspect is also presented.

2.2 The Nature of Planning
From the very start of the planning process, the initial plan and subsequent revisions must be done
as a team – the software engineering manager together with the software engineers. In this way, it
becomes the team’s plan and not just yours resulting in a commitment to see that it works. This is
vitally important to the success of the project as changes will be ongoing throughout the lifespan
of the project. The quote by Eisenhower that begins this chapter needs some explanation. General
Eisenhower is not suggesting that we do not plan. What he is stating emphatically is that plan-
ning is an ongoing, continual activity. During software projects, there will be events which occur
that were not planned for, but which impact the project negatively or positively. This requires

Chapter 2

Planning Software Projects

http://dx.doi.org/10.1201/9781003484288-2

18 ◾ Software Project Management

replanning in order to meet the project’s schedule, satisfy new or modified requirements, adjust the
delivery schedule due to a particularly troublesome bug that took an inordinate amount of time
to track down and correct as well as other events. In a very real way, the project plan is a work in
progress throughout the life of the project. This is why it is vital that open, honest and effective
communication be established and maintained throughout the life of the project. This includes
keeping and maintaining an extemporaneous log during the project for later review and to identify
lessons learned for use in future projects. This chapter discusses project planning for the tasks that
the project entails, the communication plan and the best management style with which to manage
software projects in that order.

2.3 Blaming and Software Development Life Cycles
If the aphorism, “We learn from our failures” was true, the software engineering community should
be quite knowledgeable regarding how to be successful but failures continue. In order to learn from
a failure, two conditions must be present:

 ◾ We accept that it is a failure and do not deny that a failure has occurred.
 ◾ We accept responsibility for the failure.

Unfortunately, some software project managers have blamed the failure of their projects on a broad
range of factors [1] including:

 ◾ The client was difficult to work with.
 ◾ The requirements kept changing.
 ◾ We did not have enough people on the team.
 ◾ We did not have the skills on the team to be successful.
 ◾ We were required to use the Waterfall life cycle.

And on and on it goes. There is a litany of reasons for failure none of which included mismanaging
the effort [1]. It should be noted that a study by IBM [2] of failed projects found that 53% failed
due to “poor management” while 3% failed due to “technical challenges.” None of the failures were
attributed to using the wrong life cycle – specifically, the Waterfall life cycle. As far as I have been
able to determine, the role of the software development life cycle (SDLC) in the success or failure
of a software project has not been subjected to scientific scrutiny. There are as many SDLCs as there
have been software projects because there is no “standard” life cycle used in software projects. This
lack of standardization is not, necessarily, a negative because of the frequent uniqueness of each
software development effort. The most common aspect of all SDLCs is that they begin with figur-
ing out what needs to be done (e.g. requirements definition) and end with code development and
project closeout. It might be appropriate for us to briefly discuss what an SDLC is before reviewing
some of those available.

2.4 A Typical Software Development Life Cycle
As noted above, there is no one “standard” SDLC but several have been published. There are
many reasons for this. One major one is the differences that exist between software projects com-
bined with the independent nature of software engineers. The software projects that will employ a

Planning Software Projects ◾ 19

life cycle range from brand new ventures to major upgrades to existing, working systems, simple to
complex and so forth. In spite of the broad spectrum of project types, they all have some features
in common. They all start with an idea of what the software project will produce that gets refined
into some functionality which then gets turned into source code is tested and finally gets put into
use. A search on the internet will yield many different SDLC models each of which is purported to
be the best. One thing many of the life cycle models agree on is the number of stages or phases –
each consists of four to seven. Although the names of these phases differ from author to author, the
typical phase list looks like:

 ◾ Planning – Laying out a high-level view of the tasks and subtasks required to bring the
system into existence. Excellent guidance on this has been published free by the National
Aeronautics and Space Administration (NASA) [3].

 ◾ Scheduling (and Costing) – Detailing how long each task and subtask will take and its esti-
mated cost in terms of labor and other resources.

 ◾ Designing – Developing a detailed blueprint of the system to be built.
 ◾ Implementing – Turning the design into code.
 ◾ Testing – Applying software testing principles to detect and remove coding errors.
 ◾ Deploying – Releasing the software for use.
 ◾ And over the longer term, support and maintenance.

Beyond the preceding, there may be many upgrades to accommodate unforeseen usage issues as
well as to correct errors that were not found during testing. Some changes that need to be made are
due to changes in user behavior patterns, laws and other circumstances which we cannot predict.

2.5 The Planning Fallacy
Most software project managers are well aware of the poor record of software projects with respect
to projects’ overrunning schedules and budgets. The estimates on projects of all kinds reflect over
optimism resulting in flow time estimates being overly optimistic. Similar comments apply to cost
estimates. The reasons for this were not well understood until research work by two psychologists,
Kahneman and Tversky [4], over a 20-year period revealed the forces at work. The question they
sought to answer was, “Mankind has been building roads and bridges for more than 2,000 years,
why can’t we estimate their cost and development time more accurately?” What they found is that
humans are not able to predict accurately. This is discussed in more detail in the work of Kahneman
and Tversky [4]. Being aware of Brooks’ observation that adding people to a late project makes
it later, some software project managers increase their allocation of personnel beyond what they
reasonably expect they will need in order to decrease their chances of the project running late.
This seems reasonable but as it often happens, reality is not what seems reasonable. The fact is that
there is a law of diminishing returns when it comes to building an overly large project team on a
high-technology project in order to shorten execution time [5]. The advantage of keeping the team
size down to what is reasonable reduces cost. This can be particularly true if the people compris-
ing the team are people you have worked with before so the team members are confident they can
work with each other and get the job done in the time allocated. But this still may not result in an
on-time delivery. Much of this failure to deliver on time within budget lies not in the technology
employed but in the software project manager’s relationship with the team. We know that open,
honest communication and a collegial atmosphere work toward success [6] but given the belief
held by many software engineers that the software project manager must be the most technically

20 ◾ Software Project Management

astute person on the team, establishing such an environment can be a monumental task. Solving
this problem requires that software engineers be educated in at least the basics of what software
project managers do and their importance to a project’s success. For example, how many software
engineers and software engineering educators are aware that a study of failed software projects by
IBM found that 53% of the failures could be attributed to “poor management” while 3% could
be attributed to “technical issues?” The fact is developing software is a human endeavor requiring
“soft” (i.e. nontechnical) skills to guide the work to success. Few firms have recognized this and
acted on it but those that have (e.g. Google) have benefitted greatly [7].

2.6 Estimating Tools and Methods
Over the history of software engineering, dozens of methods for estimating software projects have
been developed and published. Their authors seem to presume that their method works better than
others or why publish it in the first place? The ironic part of all of this is that nearly two decades of
research has shown that human beings are incapable of estimating accurately [4]. The research was
prompted by the curiosity of two psychologists as to why major projects like rail lines, tunnels and
highways overran their estimates by significant amounts when mankind has been building roads,
bridges and tunnels for millennia. Their research took place over nearly 20 years and resulted in a
Nobel Prize in Economics in 2002.

What they found was that two factors are at work when humans make estimates on complex
efforts:

 ◾ Overconfidence – When we estimate, we project our skills or our team’s skills with respect to
solving the problems we are likely to encounter. Inevitably, we perceive our abilities to be bet-
ter than they really are to the extent that we will be able to successfully complete the task(s)
at hand in a reasonable amount of time.

 ◾ Overoptimism – While estimating, we foresee the benefits of the completed project to be so
great that we are blinded to the risks involved which may jeopardize the project. While this
positive attitude is necessary, its effects set us up for failure.

Apparently, these findings, as surprising as they may seem, have been ignored by many in the soft-
ware engineering community as books and papers continue to be published regarding how to do a
better, more accurate job of estimating the cost and duration of software projects. However, there
is a method for correcting these erroneous estimates. It is called Reference Class Forecasting [8]
and is presented in Chapter 3. I present other estimating methods as well in this text because you
may not have collected the data needed to use Reference Class Forecasting and need that data to
arrive at an estimate for a project. These additional estimating methods are presented in Chapter 3.

2.7 Some Alternative Software Development Life Cycles
Since there is no “standard” SDLC, this has led to a plethora of life cycle models being published
with each implying it is the best. In a very real sense, each software development project is unique
in significant ways resulting in a life cycle that is unique. Here are five examples which are neither
the best nor worst but are in use in various sectors of the software engineering industry.

Planning Software Projects ◾ 21

2.7.1 The “Waterfall” Life Cycle

It was somewhere between 1910 and 1915 that Henry Gantt created the first bar charts to show a
project schedule. It was the beginning of Gantt charts, but it definitely wasn’t the end. The first precur-
sor to these charts actually occurred back in 1896, with Karol Adamiecki, who called them harmono-
grams. The Gantt chart has been used on a broad range of project applications, including Agile [10]
and methodologies. Keep in mind that the intent of the Gantt chart is to visualize the tasks, timing
and hierarchy that comprise our project, it is not a methodology. It is listed here because it is so widely
used and because it has proven itself to be a means of documenting our project plans at whatever level
of detail we wish to convey. Here are some useful guidelines for generating Gantt charts keeping in
mind the project plan will undergo nearly continuous change over the course of the project:

 ◾ Breakdown the project into major phases or stages at a high level in coordination with the
contractual obligations of the project utilizing the decomposition guidelines described in [3].
This includes both the overall project schedules and the planned release schedule.

 ◾ Identify critical points which could impact the overall project schedule. These are referred
to as the “critical path” and incorporate how these will be tracked and communicated to the
various stakeholders. If you are using project management software (e.g. Microsoft Project),
these systems will identify and report on the critical path for you.

 ◾ At least initially, provide date ranges rather than fixed dates because the various dates will
change not only as the project proceeds but as our understanding of the amount of work
involved becomes more accurate.

An example of a Gantt chart generated using Microsoft Project™ is presented in Figure 2.1.
Figure 2.1 was created using Microsoft Project with some enhanced features. These include

the status or “stoplights” in the left-hand column indicating red, yellow or green corresponding to
behind schedule, in danger of falling behind or on time, respectively. Unlike some simple Gantt
drawing tools, Project provides an extensive suite of features enabling you to build in automatic
increases in various costs, automatic computation of Earned Value management parameters and
many other features which enable your plan to more accurately reflect project status.

Figure 2.1 Example of a Gantt chart.

22 ◾ Software Project Management

2.7.2 The Agile Life Cycle

The concept upon which Agile is based [9] was predated by an experiment conducted at IBM’s
Thomas J. Watson Research Center in the early 1980s [10]. The experiment involved applying
a simple concept, “code a little, test a little.” In that experiment, some features were developed,
users were invited to use the partially developed system and provide feedback regarding errors
and needed refinements. The development team proceeded to make the indicated corrections and
added more features going through this process repeatedly. The team found that this early, continu-
ous testing resulted in a final result that was quite stable, contained few bugs and reflected user
preferences better than their previous approaches. Today, the Agile approach to software develop-
ment has been refined as original concept and, to some extent, codified it. Classes, papers, text-
books and workshops exist which promote the use of this method. In it, the development team
commits to implementing specific “stories” (features) over the next period (typically 2 weeks).
Two weeks is typical because that is the longest period that people can confidently know what it
is they will be doing. This is much more reliable than predictions involving months or years into
the future. The team reviews what they did achieve and if they did not complete all the stories
originally planned try to identify why and reschedule them. Table 2.1 shows a simplified chart of
projected story counts. This can be an effective means of reducing the overestimation of capabilities
Kahneman and Tversky [4] cited because team members begin to learn how to prevent overestimat-
ing their possible achievements. Regardless, by having testing throughout the development effort
the number of errors delivered in the final product is reduced and since the users were involved
from the start, they psychologically identify with the system as theirs contributing to the acceptance
of the final system. There are some precautions that should be taken when using this life cycle and
accompanying methodology:

 ◾ It requires a mature development team. Otherwise, it can result in early-on (runaway) coding.
 ◾ There is a learning curve involved as people discover how to more accurately they can commit

to versus what they can actually accomplish.
 ◾ Independent verification of the benefits of this methodology by those not involved in its

promotion may not have occurred.

Table 2.1 A Simplified Agile Stories Completion Table

Analysis

Design

Implementation

Time Period 1 2 3 4 5 6 7 8 9 10 11 12

No. of Stories Proposed 50 40 40 60 70 45 65 50

Number of Stories Done 50 35 30 43 54 39 65 50

Number of Stories
Remaining

0 5 10 17 16 6 0 0

End Date in Period

Planning Software Projects ◾ 23

A simplified version of a chart of stories described and scheduled is presented in Table 2.1.
I have left the dates of the periods out in order to focus attention on the stories. This is a very

simplified example. Dates have been left out as well as the identification of each of the stories. In
actual practice, the order in which the stories would be addressed would be an important part of
the overall project plan so that the features are developed in an order such that the functionality
that is needed is present when it is needed instead of an uncoordinated development of stories in a
chaotic manner. In speaking to those who have or are currently using Agile, it appears the way of
estimating it in terms of cost and flow time is to break the system down into manageable pieces,
estimate each piece and combine these estimates to get a total cost and flowtime. The estimates of
each portion become de facto budgets.

2.7.3 The Spiral Life Cycle

This life cycle was developed in response to the failures and issues in the United States Department
of Defense software projects. It has been refined and promoted by Barry Boehm and is the result
of research done at the University of Southern California Information Sciences Institute. Their
website has additional details on its use [11]. It is called spiral because the phases or stages that the
project goes through are arranged in a spiral rather than a linear arrangement.

2.7.4 The Synchronization and Stabilization Model

This is the strategy used by a major software production company in preparing their systems
for release. Although the exact details are company proprietary, this is an approximation of their
process:

 ◾ Build a skeletal system.
 ◾ Add features on a regular schedule with testing via a cadre of test suites/reviews.
 ◾ Schedule intermediate release candidates.
 ◾ Reduce changes with each successive candidate based on the severity of fixes/importance of

features to release.

A graphic representation of this strategy is shown in Figure 2.2.

2.7.5 The Stage-Gate Life Cycle

This life cycle [12] has been applied to a broad range of systems from construction to the energy
grid and more. The concept is to employ a series of time-ordered stages with the requirement that
the project can only move from one stage to the next when all the requirements for the subsequent
stage to proceed have been met. In manufacturing of aircraft, for example, this concept has been
successfully applied and is really a necessity since some parts of the aircraft will no longer be acces-
sible at certain points. So, it is important that the complete installation of parts, fasteners and so

Figure 2.2 A simple generic stage-gate process flow.

Stage 1 Stage 2 Stage 3 Stage 4
Gate 1 Gate 3Gate 2

24 ◾ Software Project Management

forth be complete before proceeding to close off that part of the airframe permanently. In a situa-
tion where we had previously experienced runaway coding wherein the software engineers gener-
ated a lot of code in an unsynchronized manner in order to meet the schedule with the predictable
disastrous results involving reworking much of the code and overrunning the schedule. We weren’t
trying to discourage the software engineers from developing code. What we were encouraging was
that at each defined stage, the required tests were conducted, the code quality requirements met
and so forth. This was the first time we had used this method and used it because we were, in a
sense, desperate to get control of this highly talented but not very disciplined software engineering
team. This team had earned a reputation for poor quality, late finish and extensive rework. This
first experience was an overwhelming success. The project was delivered nearly on time with little
rework. Compared with previous projects, it was considered a success. It was first used at least in
one case to dissuade runaway programming wherein software engineers had pushed forward in
developing one part of the system when other parts that were needed for everything to work had
not been developed. The key to controlling runaway development cannot proceed through a gate
unless all the requirements to proceed through that gate (e.g. until a checklist of all items needed
by the next stage have been completed). Graphically, a simple stage-gate might look like Figure 2.2.

In Figure 2.2, the stages or software projects, phases, are separated by gates. Since each gate
would specify a different set of criteria, each has a unique identifier. Table 2.2 presents this informa-
tion in table format.

Some things to keep in mind about the stage-gate approach:

 ◾ The stages can be decomposed or represented in more detail at another, more detailed level and
some of those stages decomposed further to whatever level of detail is deemed appropriate.

 ◾ A stage-gate model for a real project will be quite a bit more complex than the trivial model
presented above.

 ◾ You need to establish who will have the authority to declare that the needed items to clear the
gate have been achieved. Will this be a single person or a team?

 ◾ A different person or team may be used for different gates depending on the circumstances.
 ◾ How will the checklist of needed items for each gate be developed?
 ◾ What process is applied when the software engineering team thinks it is ready to proceed to

the next stage but they are declined?
 ◾ Can unfulfilled items in a gate be deferred to a later time (i.e. gate)? What would be an allow-

able justification for that?

Stage gating has the effect of keeping the software engineering team focused on makeable short-
term accomplishments which has been shown to increase productivity due to an increase in oxy-
tocin [13].

Table 2.2 Stage-Gate Description

Stage Gate

 1. Define requirements Obtain client approval

 2. Create design Ensure design conforms to requirements

 3. Implement design & test Ensure code consistent with client feedback

 4. Deliver system

Planning Software Projects ◾ 25

2.8 Life Cycles – Summary
Each software engineering project will have its own life cycle either by design or by serendipity.
The life cycles presented here for the most part really represent categories of life cycles. None of
them may suit your project perfectly but at least one should be close enough to be used perhaps
with some alterations. When subscribing to a life cycle or a methodology, it is best to remember an
aphorism attributed to the Swiss Army, “When the map and the terrain disagree, trust the terrain.”
In a very real sense, your project is the terrain while the methodology is the map. Postmortems of
failed projects have shown some common flaws:

 ◾ A significant lack of planning on the part of management, especially for contingencies.
 ◾ Management’s reluctance to accept realistic but negative observations.
 ◾ Management was motivated by something other than what was good for the company.

2.9 Strategies for Controlling Project Flow Time
Due to many factors, at some point, you may need to reduce the flow time of your project. There
are several strategies for doing this, but we will look at just a few. The one that may be best for your
project is a judgment call on your part and you may have to use more than one:

 ◾ Reduce Features – Delaying or eliminating certain features can reduce the flow time to com-
pletion but there are some important issues to be considered. This needs to be closely coordi-
nated with the client so that we don’t eliminate a feature the client must have, perhaps due to
some legal regulation. Also, this can be demoralizing to the team member(s) who were devel-
oping the feature being eliminated. If several features are involved, the morale of the team
could be impacted. This sometimes results in people transferring or quitting the company.

 ◾ Rough-in for Future Implementation – In this case, we are only delaying certain features and
building the structures needed to support them at a later time.

 ◾ Task “Chunking” and Restructuring – The term “chunking” refers to the grouping of related
tasks and subtasks together and rearranging the order in which these “chunks” are imple-
mented. This technique saved one automobile company millions of dollars annually by
merely changing the order in which some subassemblies were installed. The design structure
matrix (DSM) [14] is an excellent tool for identifying “chunks” that can be reordered. This
method is described in the Section 2.9.1.

 ◾ Parallelism – Scrutinize the Gantt chart to identify tasks that can be done in parallel (at the
same time) rather than sequentially.

2.9.1 The Design Structure Matrix

The DSM has been applied to a broad range of engineering system problems, often with surpris-
ingly positive results [14]. It is a two-dimensional view of requirements, policy and other factors.
The DSM is a rigorous method of analyzing, sequencing and sorting out dependency(s) among
project elements but simple enough to be used on simple projects while powerful enough to be
used on a large scale. Major corporations (e.g. Ford Motor Company) have saved millions of dollars
by using it to revise the order in which tasks are done. The two dimensions the DSM employs are
labeled “Provides” and “Depends” (see Figure 2.3).

26 ◾ Software Project Management

To interpret the matrix, we need to make some observations and apply a few simple rules:

 ◾ Off diagonal elements indicate a dependency between two elements (one row, one column
element).

 ◾ Reading across a row identifies elements that element provides to.
 ◾ Reading down a column reveals what elements that element depends upon.
 ◾ Alternatively, reading down a column reveals input sources and reading across a row identifies

output sinks.

Using the preceding rules, we can interpret the earlier matrix (i.e. Figure 2.3)

 ◾ Item B provides something to elements A, D and E.
 ◾ Item B depends on something from item D and item E.

Now let’s reexamine our shoes and socks process in DSM form (Table 2.3).
Some observations regarding Table 2.3:

 ◾ Inspecting the shoes at the end creates the possibility for recycling.
 ◾ “Inspect shoes” is not a “provider.”
 ◾ Therefore, “Inspect shoes” could be moved to a point earlier in the process resulting in the

matrix shown in Table 2.4.

2.9.1.1 A Software Project Application of DSM

A software project to replace an existing system, upgrade it to faster hardware and improve the
quality of the code had a challenging schedule (impossible) using DSM as shown on the following

Figure 2.3 A generic model of a DSM.

Item A Item B Item C Item D Item E

Item A

Item B

Item C

Item D

Item E

P R O V I D E

D

E

P

E

N

D

Planning Software Projects ◾ 27

slides I was able to foreshorten the process flow time – it sensitized me to the fact that test case
development could occur in parallel with other work so that as new code was developed, the test
cases were ready and waiting (the new system was intended to do everything the old one did only
better, faster and more reliably and with some new features). Initially, we had a seven-phase life
cycle as shown in Table 2.5. It was modified to identify the task “Generate Test Cases” resulting in
Table 2.6. An analysis of Table 2.6 showed that the “Generate Test Cases” task could be moved to
occur in parallel with other tasks. Doing that resulted in Table 2.7. Making that change resulted in
flow time savings which helped the project finish within the allotted schedule.

2.9.2 DSM Summary

The concept is a simple one – Identify parts of the project that are independent and move them
earlier in the project’s timeline as practical. The role of the matrix tool is to make the independence
characteristic more easily identified. I have used the DSM to communicate to a client the ramifica-
tions of a change they wanted to make to a requirement(s) since the DSM graphically shows what
the proposed change will impact causing rework, increased cost and delays. Sometimes the client
will want to go forward with the change anyway due to business and/or competitive reasons. Keep
in mind that due to the size and complexity of many software systems, a fair amount of abstraction
may be necessary to keep the size and complexity of the DSM from overwhelming our ability to
comprehend just what is going on with respect to the relationships and how they impact each other.
The text cited in the references to this Appendix provides many examples of the application of the
DSM to various industries plus a large number of published papers from which you can obtain
additional insights into the application of this valuable method.

Table 2.3 Our Socks and Shoes Model

Get Socks Get Shoes Put on Socks Put on Shoes Inspect Shoes

Get Socks

Get Shoes ●

Put on Socks ●

Put on Shoes ● ●

Inspect Shoes ●

Table 2.4 Our Revised DSM for the Shoe Process

Get Socks Get Shoes Inspect Shoes Put on Shoes Put on Shoes

Get Socks

Get Shoes ●

Inspect Shoes ●

Put on Socks ● ●

Put on Shoes ●

28 ◾ Software Project Management

Table 2.5 Initial Seven-Phase Life Cycle

Define
Reqts.

Reqts.
Analysis

Prelim
Design

Detail
Design Coding

Conduct
Tests Install

Define
Reqts.

Reqts.
Analysis

●

Prelim.
Design

● ●

Detail
Design

● ●

Coding ● ●

Conduct
Tests

● ● ● ●

Install ●

Table 2.6 Revised Seven-Phase Life Cycle to Eight Phases

Define
Reqts.

Reqts.
Analysis

Prelim
Design

Detail
Design Coding

Generate
Test

Cases
Conduct

Tests Install

Define
Reqts.

Reqts.
Analysis

●

Prelim.
Design

● ●

Detail
Design

● ●

Coding ● ●

Generate
Test Cases

● ● ●

Conduct
Tests

● ● ●

Install ●

Planning Software Projects ◾ 29

To see how this works, we will use a trivial example. Most mornings we engage in a simple
activity (process):

 ◾ Get socks
 ◾ Get shoes
 ◾ Put on socks
 ◾ Put on shoes
 ◾ Inspect shoes

What if the shoes are a mess? If so, we will have to redo (cycle) some steps. In an industrial setting,
a redo costs time and money.

2.10 The Work Breakdown Structure
A strategy attributed to the Roman army in ancient times is “Divide et Vince” or “Divide and
Conquer.” That strategy forms the basis for the Work Breakdown Structure (WBS). As its name
indicates, what we are trying to do is break the problem of building a system down into manage-
able pieces small enough that we can estimate the resources needed to successfully complete them,
estimate how long each piece will take to complete and schedule the order in which the pieces need
to be completed as well as which ones could be accomplished in parallel. As one might expect,
relatively simple projects are much easier to build a WBS for, while more complex ones, such as

Table 2.7 Revised Order of Generating Test Cases per DSM Analysis

Define
Reqts.

Reqts.
Analysis

Prelim
Design

Detail
Design

Generate
Test

Cases Coding
Conduct

Tests Install

Define
Reqts.

Reqts.
Analysis

●

Prelim.
Design

● ●

Detail
Design

● ●

Generate
Test Cases

● ● ●

Coding ● ●

Conduct
Tests

● ● ●

Install ●

30 ◾ Software Project Management

the development of a new passenger aircraft, present significant challenges. What this strategy does
is develop a decomposition of the project. The Project Management Institute (PMI) recommends
that we stop decomposing a task when its pieces are small enough that they could be completed
in eight hours or whatever the standard day length is in your country. According to the PMI,
decomposing any further amounts to micromanaging which is ill advised [15]. Let’s look at how
to generate a WBS using a “what-how” approach. In this approach to developing a WBS, we create
a series of statements describing what we are trying to do and how we are going to do it. Then, in
the next cycle, letting the previous statement of “how” become the “what” of the next cycle, and
so forth. A simple example is presented in Table 2.8. Only the first few items are shown but the
method should be obvious.

As you may have guessed, the WBS is only the beginning. It is only a high-level description
which must undergo the development of many details to eventually arrive at enough detail that
we can begin designing and eventually developing the actual code. To do this, we have to estab-
lish high-quality communication with our client. In some cases, particularly government projects,
the client (the governmental agency involved) has included a statement of requirements with the
published request for proposal. Even so, we will need to communicate with the client in order to
confirm our understanding of the requirements they provided. That is going to require a plan to
establish and maintain communication with the client from the beginning of the project through
project closeout – that is referred to as a communication plan.

2.11 A Natural Communication Gap – Between Project
Manager and Software Engineer

There exists what amounts to a natural communication gap between managers and the people
they manage [16]. This is due to the way each sees the world, the project situation and their value
system(s). While this may not seem important to some, it can result in managers and software
engineers each inadvertently acting in ways which demotivate the members of their team(s) result-
ing in reduced productivity, missed delivery dates and higher costs due to turnover in personnel.
This last item (turnover) has been shown to increase development costs by as much as 60% [17].
Table 2.9 lists the parameters which constitute this communication gap demonstrating once again
that money is not the highest, most important factor in non-managers’ work relationship.

Table 2.8 Work Breakdown Structure for Preparing the Yard for Sale of a Home

What How Notes

Prepare yard for home sale Pick up toys, etc. in yard

Mow lawn

Trim trees and shrubs

Replace dead plants with living ones Get flowering plants

Pick up toys, etc. in yard Offer kids a reward for cleaning up
the yard

Planning Software Projects ◾ 31

A quick review of Table 2.9 will probably produce some disagreements with some published
results. Just about everyone will disagree with one or more of these findings but once again, we have
facts and data challenging what we may believe. Let’s look at some examples:

 ◾ Salary – One thing we can probably all agree on is that we need money to purchase the goods
and services we need to just survive. As indicated in Table 2.9, managers rank its value at
the top of their list. There can be many reasons for this including status among their peers.
Regardless of the reason(s), with salary being their highest value, they see increasing a software
engineer’s salary by a meaningful amount as the most effective form of motivation improve-
ment. Unfortunately, while the engineer may welcome the increased pay, it is not as important
to them as the software project manager assumes it is. Note that salary is not as high on the
software engineer’s list as it is on the software project manager’s list. So, the increase in salary
is not nearly as effective as an item further up the list – appreciation for work done. This dif-
ference can lead to some puzzling situations for software project managers in that they go out
of their way to get a salary increase for one of their engineers only to have that person resign
from the company or voluntarily transfer to another project. If this has happened to you, ask
yourself when was the last time you thanked that person for their work? Conversely, when was
the last time your manager thanked you for your efforts? How did that make you feel?

 ◾ Working conditions – As DeMarco and Lister found [19], working conditions (e.g. office
space, noise level) can provide an environment where people can perform at their highest or
keep them from doing their best. Their findings are summarized in Table 2.10.

Looking at the environmental factors listed in Table 2.10, we can see why the highest performing
software engineers perform better than the lowest performers. Interruptions, crowded work space
and other factors all contribute to preventing a software engineer from focusing on the problem at

Table 2.9 Value System Rankings (from [18], 10 = highest)

Value System Factor
Manager’s

Importance Rank
Non-Manager’s

Importance Rank

Salary 1 5

Job Security 2 4

Promotion/Growth Opportunities 3 7

Working Conditions 4 9

Interesting/Challenging Work 5 6

Personal Loyalty to Workers 6 8

Tactful Discipline 7 10

Appreciation for Work Done 8 1

Help with Personnel Problems 9 3

Being in on Things 10 2

32 ◾ Software Project Management

hand and finding a solution. Some firms still have not taken the results of [19] to heart failing to
recognize that the cost(s) of improving the work environment will be realized by improved produc-
tivity. Instead, some are still engaging the World War II model of having hundreds of engineers in
open bays with high noise levels and little or no private space.

2.12 Developing a Communication Plan
One of the most important aspects of successfully managing a software engineering project is
establishing and maintaining effective communication with everyone involved in the project [20].
Why? Because there will be events during the project which were not planned for which could
jeopardize the success of the effort. If everyone involved (i.e. the software team, the clients team
and management in both organizations) is aware of how the project has proceeded to date, there is
less likelihood that delays will be mistakenly attributed to incompetence on the part of your team.
Establishing effective communication involves more than just emails and meetings but a relation-
ship in which open and honest communication occur throughout the project. Lying is really worth-
less [21] because the truth will come out eventually and that could make matters worse over the
long term. One glaring example of this occurred a few years ago in a United States Department
of Defense project. For legal reasons, the company involved cannot be named. The project was
scheduled to be 24 months long. The software development company was required to report the
status, including the various Earned Value parameters each month. They reported everything as
nominal until the 22nd month when they reported the project would be six months late. Under
these circumstances, it is highly unlikely that the contract monitors in the Department of Defense
would award another contract to that firm let alone believe anything they reported regarding status.
Without effective open communication, even if you fulfill all requirements in a timely manner,
your client may view the effort as a failure. Here is how this can happen:

 ◾ The client does not view the system as being theirs – More recently the Agile method has
helped remedy this by involving the client throughout the development process. The feed-
back the client provides results in changes to the user interface and other system properties
resulting in identification of the resulting system as psychologically being theirs. This can
result in some forgiveness on the part of the client when things don’t go exactly as planned.

Table 2.10 Impact of Environmental Factors on Productivity [19]

Environmental Factor Highest Performers [% Yes] Lowest Performers [% Yes]

Amount of dedicated
workspace

78 square feet
(7.2 square meters)

46 square feet
(4.3 square meters)

Work area is acceptably quiet 57% 29%

Work area is acceptably private 62% 19%

Phone can be silenced 52% 10%

Phone can be diverted 76% 19%

People interrupt you
needlessly

38% 76%

Planning Software Projects ◾ 33

 ◾ The client does not feel that your team was being open and honest with them particularly
when things did not go well. Keeping the client in the dark about problems that could delay
final delivery is not a good idea. They will find out later anyway. Besides, knowing early that
the software is going to be late enables the client to prepare for this. Also, finding out late
that the project is going to be late means they may have already made commitments that
will now be broken thereby damaging their credibility within their company and/or their
clients.

 ◾ A key element in dealing with late delivery is finding out which functionality is most impor-
tant to the client. That way, if the full system can’t be delivered in a timely manner, at least
these most important features will be. These could be high priority due to some legal or
regulatory requirement. Put these at the top of the priority list and work with the client to
develop a schedule to incorporate lower priority features.

2.13 Communication Plan Basics
The communication plan is a document intended to ensure that the relationship between the client
and the contractor is a good one in that it ensures that both parties maintain an open and hon-
est information flow beneficial to both. Some software project managers prefer to keep the client
unaware of problems encountered assuming that they will be overcome and the client does not
need to know about them. In my experience, this is simply wrong headed. If we specify date and
so forth, we can avoid serious negative consequences. For example, if the client plans to launch
an advertising campaign regarding the new services they will provide their customers by a certain
date, those services depend on the successful completion of this project and they are unaware of
the potential for a delay, there will be serious consequences such that the client may cease doing
business with your firm. Based on experience in exactly this situation, a strategy we employed was
to have the client identify the most important features that would be needed on time while depri-
oritizing the rest. As it turned out, they were able to run their advertisements, gain competitive
advantage and introduce the lower priority features over time.

2.14 Example of a Communication Plan
As a matter of personal preference, I prefer a chart or table rather than a multipage document. As
stated elsewhere, the communication plan should include all participants who have a vested interest
in the project either as a beneficiary of its results, a member of the team creating it or the manage-
ment team of either group. The value systems and goals of the various members of the groups differ
greatly. For example, the software engineers want to create a system that is technically advanced,
something they can be proud of and relate to their colleagues [22] while the users of the system
don’t really care about technical superiority but want something that is easy to use, makes their job
easier and is stable. The management of the company receiving the system wants a system their
software engineers can maintain and adapt to new and unforeseen business and security issues.
A typical communication plan must include:

 ◾ Name of Meeting – Depending on the organization that is the client, some of these may
be built into the contract to do the work. For example, the United States Department of
Defense had a progression of meetings starting with the preliminary design review. At each of
these meetings, they had their own personnel and outside consultants who reviewed progress,

34 ◾ Software Project Management

critiqued content and checked to see if the project had proceeded as directed to correct the
situation by a specified date.

 ◾ The Participants for Each Meeting – Who will be invited and expected to be at each meeting
either by name or role.

 ◾ The Purpose of the Meeting – A statement of why this meeting will be held. If we can’t state
why the meeting should be held, then why have it?

 ◾ The Frequency of the Meeting – Some meetings, such as the software bug review, should be
held on a regular basis so as to prevent a build-up or backlog of work which may jeopardize
the schedule. Weekly bug reviews also enable us to prioritize what will be fixed and when.
This prevents the most critical items from being delayed.

 ◾ The Differences between Planning and Scheduling.
 ◾ Risk Management Methods.

Chapter 2 Review Questions
 1. What did Dwight Eisenhower mean by “Plans are nothing, planning is everything?”
 2. Has the software life cycle used ever been documented as the cause of the failure of a software

project?
 3. What is the overwhelming cause of software project failure?
 4. Approximately, how many different software development life cycles are there?
 5. List at least four stages in a software project life cycle.
 6. What is the planning fallacy? Explain.
 7. List the two primary reasons why humans can’t estimate accurately.
 8. What was the primary goal of the Gantt chart?
 9. Is the Agile life cycle unique? If yes, how? If not, why?
 10. Name two concerns about using and managing Agile. Explain/describe each.
 11. What are “gates” in the stage-gate life cycle? Detail/describe.
 12. List and describe the pros and cons of each of the three ways to shorten a software project’s

flow time.
 13. What is the design structure matrix? What can it be used for?
 14. What is a work breakdown structure?
 15. What are the primary causes of a communication gap between software engineers and soft-

ware project managers?
 16. Why should we develop a communication plan to foster communications between our team

and our client?

References
 [1] Myers, C.G., Staats, B.R. and Gino, F., “‘My Bad!’ How Internal Attribution and Ambiguity of Responsibility

Affect Learning from Failure,” Harvard Business School Working Paper 14-104, April 18, 2014.
 [2] Gulla, J., “Seven Reasons Why IT Projects Fail,” IBM Systems Magazine, February, 2012.
 [3] National Aeronautics and Space Administration (NASA), Work Breakdown Structure (WBS) Handbook,

NASA/SP-2016-3404/REV1, January, 2018.
 [4] Kahneman, D. and Tversky, A. “Judgment under Uncertainty: Heuristics and Biases,” Science, New Series,

Vol. 185, No. 4157, September 27, 1974, pp. 1124–1131.

Planning Software Projects ◾ 35

 [5] Staats, B.R., Milkman, K.L. and Fox, C.R., “The Team Scaling Fallacy: Underestimating the Declining
Efficiency of Larger Teams,” Organizational Behavior and Human Decision Processes, Vol. 118, No. 2, 2012,
pp. 132–142.

 [6] Chen, J. and Lin, L., “Modeling Team Member Characteristics for the Formation of a Multifunctional
Team in Concurrent Engineering,” IEEE Transactions on Engineering Management, Vol. 15, No. 2, 2004,
pp. 111–124.

 [7] Garvin, D.A., “How Google Sold Its Engineers on Management,” Harvard Business Review, December, 2013.
 [8] Flyvberg, B., “From Nobel Prize to Project Management: Getting Risks Right,” Project Management Journal,

August 2006, Vol. 37, No. 3, pp. 5–15.
 [9] Dyba, T. and Dingsoyr, T., “Empirical Studies of Agile Software Development: A Systematic Review,”

Information and Software Technology, Vol. 50, No. 9, pp. 833–859, 2008.
 [10] Private communications with Laszlo Belady regarding software development strategies, May 1983.
 [11] Boehm, B., “A Spiral Model of Software Development and Enhancement,” Computer, V. 21, No. 5, May

pp. 61–72, 1988.
 [12] U.S. Department of Energy, Industrial Technologies Program, “Stage-Gate Innovation Guidelines: Managing

Risk through Structured Project Decision-Making,” February 2007.
 [13] Zak, P.J., “The Neuroscience of Trust,” from “Management Behaviors That Foster Employee Engagement”,

Harvard Business Review, January-February, 2017.
 [14] Eppinger, S.D. and Browning, T.R., Design Structure Matrix Methods and Applications (Engineering Systems),

MIT Press, February 12, 2016.
 [15] Project Management Institute, Guide to the Project Management Body of Knowledge, 5th Edition, 2013.
 [16] Lindahl, L., “What Makes a Good Job,” Personnel, January 25, 1949.
 [17] Cone, E., “Managing that Churning Sensation,” Information Week, May 1998, No. 680, pp. 50–67.
 [18] Thamhain, H., “Team Leadership Effectiveness in Technology-Based Project Environments,” IEEE

Engineering Management Review, Vol. 36, No. 1, 2008, pp. 165–180. College, Cambridge, UK.
 [19] DeMarco, T. and Lister, T., Peopleware, Dorset House, New York, NY, 1999.
 [20] Dow, W. and Taylor, B., Project Management Communications Bible, Wiley Publishing, 2008.
 [21] Glass, R.L. Rost, J. and Matook, M.S., “Lying on Software Projects,” IEEE Software, Vol. 25, No. 6, Nov.–

Dec. 2008, pp. 90–95. doi: 10.1109/MS.2008.150
 [22] Katz, R., “Motivating Technical Professionals Today,” IEEE Engineering Management Review, Vol. 41, No. 1,

March 2013, pp. 28–38.

http://dx.doi.org/10.1109/MS.2008.150

36 DOI: 10.1201/9781003484288-3

3.1 Chapter Overview
Scheduling is an activity where our everyday experience can mislead us. As in the planning activ-
ity, what seems reasonable does not work because our everyday experience is mostly not appli-
cable. For example, throughout our lives, we frequently have to deal with situations where adding
people to a task will make completion occur sooner. By now you should realize that developing
software does not work like that. Why? Because it is not a deterministic (outcome determined by
cause and effect) process and controlling it until it is complete is an evolving activity. But sched-
ule we must. There have been dozens of papers and books on the topic of project planning and
scheduling. The two activities are related but not the same [1]. Our project plan lays out what we
are going to do while the schedule spells out how (and when) we are going to do it. It prescribes
what activities will occur, in what order as well as which tasks can occur in parallel. Since we are
estimating how many person- hours and how much flow time will be required to do each task,
we can compute the cost of labor related to the project plus any other costs such as hardware
purchases, the use of professional services (e.g. lawyer, accountant), cost to access the internet,
other costs and our profit. The planning and scheduling of even relatively simple software projects
have rarely been successful. By that I mean the estimated flow time and person- hours at the start
of the project were most often exceeded. In hindsight, our estimates were overly optimistic. That
optimism resulted in a project that was late and over budget. Although some see this as unique to
software projects, it is not. Complex construction projects and even some relatively simple ones
have also run late and over budget often in spectacular fashion. As we shall see in this chapter, a
20- year study [2] that resulted in a Nobel Prize in Economics in 2003 showed that human beings
are incapable of accurately estimating. But other published work [3] showed how we can correct
for this as we shall describe.

Chapter 3

Estimating Cost and Schedule
of Software Projects

http://dx.doi.org/10.1201/9781003484288-3

Estimating Cost and Schedule of Software Projects ◾ 37

3.2 Scheduling versus Planning
Why are we discussing planning and scheduling together? Contrary to what you may have read [1],
they are not the same. They are closely related but not the same activity. Some software profession-
als believe that planning and scheduling are the same activity, but they are not. A schedule is just
a list of events together with the dates on which they are expected to start and end. For example,
the schedule for a commuter train lists the arrival and departure times for each train and station.
It provides no insight into how this schedule will be accomplished on time. On the other hand, a
plan details how the events listed in the schedule will be accomplished. For example, the schedule
may call for “Project Kickoff Meeting” to occur on March 1 and “Status Review 01” to occur on
April 15 while the plan lists the tasks and subtasks that must be accomplished to prepare for and
deliver the status review. In most cases, it will also identify the person(s) responsible for each task
and subtask. Yes, by name and not just by labor category. As Brooks [4] pointed out, assigning a
task to a labor category (e.g. senior software engineer(s)) leads to misestimates because we are, in
fact, thinking of a specific person, including their expertise and our experience with them, not a
“generic” person.

Planning depends heavily on dividing the work that needs to be done into small enough pieces
that they are manageable and comprehensible. In other words, into small enough tasks that those
who will be doing the work feel confident that they can predict how long it will take using the
human and other resources at hand. Although the history of software engineering has shown we
are not very skilled at making these estimates, other engineering activities have also experienced dif-
ficulties of this type. We will come back to this seemingly common inability for people to estimate
accurately, present one of its primary causes and demonstrate how that factor can be corrected [3].

3.3 The Basics of Costing
Whether we are refining an existing project schedule or creating a new one, the elements of the
engineering model of a project [5] will need to be satisfied. The format and content for project plans
vary from one company and industry to another. For example, in the United States, the HIPAA
(The Health Insurance Portability and Accountability Act) requires the privacy of patient health
information be maintained and not distributed without the patient’s permission. This requirement
makes security, control and limited access to such information a prominent element of any software
project plan in the health industry in the United States. Other industries (e.g. Financial Services)
have their own unique requirements and these also vary from country to country. The most com-
mon elements of a project plan and its justification (the justification is often called a “business
case”), regardless of location (note that titles for these elements may vary internationally but the
content remains the same), include:

 ◾ The Business Case – This is the economic justification for doing the project. In general, if you
cannot make a business case for an effort, it isn’t going to go forward. In simple terms, the
business case states the problem this project intends to solve, if the project is successful, what
the savings will be, what the return on investment (ROI) will be (this describes how long it
will take the firm or customer to recover the funds expended, the assumptions made in this
analysis and so forth), an overall strategy that will be applied (frequently, this is one that has
worked before), the staff to be used, equipment needed and so forth.

38 ◾ Software Project Management

 ◾ Risk Analysis – The concept of risk is discussed in more detail in Appendix 20. But a simple
definition is a statement of the likelihood of the success of the project where the measurable
goals of the project are clearly stated and of the highest priority.

3.4 The Business Case
There are many different definitions of just what constitutes a business case. According to the
United States General Accounting Office (USGAO) [6], a business case is:

A structured method for organizing and presenting a business improvement proposal.

In this text, we use the term “business case” to be broader than the preceding definition. We use
it to include what might best be termed a proposal. That is, the justification for an altogether
new product or service. In keeping with the definition provided by the USGAO, organizational
decision- makers typically compare business cases when deciding to expend resources. A business
case typically includes an analysis of business process performance and associated needs or problems,
proposed alternative solutions, assumptions, constraints and a risk- adjusted cost/benefit analysis.

There is no fixed format for business cases, so they vary from organization to organization. They
are a vital part of go–no go decisions on projects and assist greatly in helping to prevent the project
from expanding into a different project than originally envisioned (scope creep, again).

The four key elements that a business case should contain?
It should include:

 ◾ The problem and business need – why you are putting forward your Business Case.
 ◾ Benefits and risks of the options – solutions to the problem.
 ◾ Return on investment – what the overall gain will be to the business.
 ◾ Final recommendation – based on the information presented.

Generally, there are five categories of issues that need to be considered:

 ◾ The problem to be solved or (business) opportunity.
 ◾ Changes that must be made.
 ◾ Benefits of the changes.
 ◾ Costs and risks associated with the changes.
 ◾ Measure(s) of success.

Although profitability is the most common criterion used in evaluating a business case, it is not the
only one. Social responsibility, corporate image, community welfare and other criteria not related to
profit may be the driving factors. There are many other business case models presented in the literature,
but we have enough here to demonstrate the application of the concept from a project I consulted on.

3.5 Computing Project Costs
What many entrepreneurs do not understand is how to compute the pricing of their labor, services
and products. The basic principle to keep in mind is that in setting a price, that price must help

Estimating Cost and Schedule of Software Projects ◾ 39

reimburse us for our costs as well as make a profit. Stated another way, our client who may be pay-
ing us hourly to develop some software should be paying us enough to cover our costs plus a profit.
If we are paying a software engineer $50 per hour, that is not our true cost. That is because, in the
United States and other countries, there are payroll taxes part of which the employer must pay.
As a company, we have several business taxes; if we have a facility, even if we are operating out of
our garage, we have heating and cooling, electricity, the cost of internet hookup, plus rent, office
furniture, a server, licenses to various software systems we are using, legal fees and more. If we do
not know what all of our costs are and build their recovery into our pricing structure, we are likely
to be out of business quickly. All of this is elaborated on in this chapter. These so- called indirect
costs are why that $50- per- hour software engineer actually costs us $75 or even more per hour.
Not accounting for the indirect costs in our pricing structure deteriorates our profit margin and
amounts to subsidizing our clients.

3.6 Cost Estimating Methods
Over the years, there have been literally hundreds of different methods for estimating the cost of
a software project. At this point in time, none of them have proven themselves to be consistently
accurate. Part of the problem is that, in estimating, we are trying to predict the future and that
is always a risky business. But estimate we must in order to both inform our client and to set a
target for ourselves. The basic approach for most software cost estimating methods is to utilize the
strategy of the Roman army from ancient times and divide and conquer. That is, to break the entire
software system down into pieces small enough that we can estimate their cost and flow time and
then put everything together to get a total cost. The resources we have to help us create an estimate
are more than a bit “sloppy.” Some make no distinction between the number of lines of source
code that end up being in the build and the number of lines of source code including those that
are thrown away. In addition to this conundrum, there are widely varying assumptions about how
many lines of code a software engineer can create in an hour or some other time unit. For example,
the Dzone Agile Zone website estimates that the average software engineer generates about 50
source lines per day while other sites estimate the number lies somewhere between 300 and 1,000
lines per day. Again, some sites do not clearly distinguish between what gets shipped and what gets
tossed out. To get an estimate of the size of the “typical” software project, we can turn to data pub-
lished by the biggest purchaser of software in the world, the United States Department of Defense
[7]. Some facts they have published regarding software productivity and costs are presented in
Tables 3.1 and 3.2.

Table 3.1 Productivity Rates by System Type

System Type Production Rate (KLOC = 1,000 Lines of Code)

Real-Time Software 1.5 months per KLOC

Engineering Software 1.3 months per KLOC

Mission Support Software 1.3 months per KLOC

Automated Information Systems 1.1 months per KLOC

40 ◾ Software Project Management

The above is based on an average size of 25 KLOC and Burdened Labor at $150,000 per staff
member per year or $12,500 per month – burdened figures include wages, payroll taxes, workman’s
compensation insurance, vacation, sick leave and other benefits or ~50% more than wages alone.

They found that the average size of a software project was about 25,000 lines of source code
for the projects they studied. Typically, the estimating formulae which have been published take
the form:

∗=COST SLOC Cost per Line

where

COST = the total cost.
SLOC = the number of source lines of code.
Cost per Line = the average cost of a source line of code.

There have been a lot of criticisms of this style of estimating. One I have is that, in my experience,
when I have asked a software engineer how long a software change will take, no one ever replied with
a flow time based on the number of lines of code but after they have studied the problem sufficiently,
they reply in terms of a number of days or hours. The number of lines of code will vary due to the
fact that some efforts may involve the reuse of existing code and other factors. Boehm [8, 9] has
suggested the concept of “Equivalent Source Lines of Code” (ESLOC), which is the homogeneous
sum of the different code sources that may be involved in the effort. The components of ESLOC are:

() () ()× + × + ×AAF 0.4 %DM 0.3 %CM 0.3 %IM

where

%DM = % Design Modified
%CM = % Code & Unit Test Modified
%IM = % Integration & Test Modified

Therefore, our total ESLOC is given by:

= + +
+ −

DM R

AG

ESLOC New SLOC AAF X Modified SLOC AAF X Reused SLOC
AAF X Auto Generated SLOC

Table 3.2 Burdened Costs

System Type # of Software Engineers & Monthly Cost

Real-Time Software 8.1 people = $101,250

Engineering Software 6.7 people = $83,750

Mission Support Software 3.9 people = $48,750

Automated Information Systems 2.5 people = $31,250

Estimating Cost and Schedule of Software Projects ◾ 41

Here is just a small sample of the estimating methods available today. They are provided in order to
let you decide what does or may work best in your circumstance:

 ◾ COCOMO and COCOMOII (as described above)
 ◾ IBM Federal Systems Method
 ◾ Function Points

3.7 IBM Federal Systems Estimating Method
This method of estimating was developed by IBM based on a study of 60 software projects [10].
It estimates the amount of effort based on the number of source lines of code and a productivity
factor. The following formula is used to make the computed estimate:

 = 0.91Effort 5.2L

where

L = size in KLOC
KLOC = thousand lines of code
5.2 is a scaling factor related to productivity

The pros of using this method include that it is simple to use and based on real- world data.
The cons of using this method include the inverse relationship between the size of a project and

the economy of scale [8] which this method does not address.

3.8 Function Points
This may be the most well- thought- out and refined approach available [9]. The concept is to esti-
mate the complexity of the future software system and use that together with some established
weighting factors to obtain the required estimate. The details of this method together with exam-
ples and user experiences are available in books and published papers as well as via searches on the
internet. Also, this method is used worldwide and is supported by a society devoted to its use and
refinement. At its heart is the estimation of the complexity of each function point as being simple,
average or complex. This is based on the opinion of the estimator(s) who must rely on their experi-
ence, opinions and guidelines provided in published materials. Table 3.3 depicts a simplified view
of an automated patient drug administration and monitoring system. The details of the system are
not necessary for this discussion.

There are free software applications which will use information like those in Table 3.3 to
apply programming language adjustments (e.g. the “Center for Systems and Software”) and
arrive at a coding estimate. What is done is to use the contents of something like those listed in
Table 3.3 for your project with simple, average and complex as weighting factors to obtain the
resulting coding estimate. There are several sites which have the computational functionality
you will need. What is done to estimate the number of application elements of each complexity
level is to multiply the value of the weighting level of that complexity level by the number of

42 ◾ Software Project Management

applications classified at that level and then compute the sum of all of the computed values to
arrive at the total number of function points. Next, multiply the number of function points by
the number of hours estimated per function point (e.g. 8 hours per function point) to obtain
the total number of hours estimated. It should be noted that this method adjusts the estimate
to take into account the simplicity or complexity of the code to be developed. The underlying
assumption of this method is the more complex the code to be developed, the longer it will take
and conversely.

3.9 Business Case Example
A few years ago, a kindergarten through high school educational facility was being built by a
Native American tribe. Their goal was to provide their children and young adults with a state-
of- the- art educational facility while at the same time demonstrating the tribe’s commitment to
core values that included respect for the environment. The school would be utilizing more than
400 personal computers. The era in which this development occurred was such that personal
computers (PCs) consumed much more electricity than they do today, generating heat which
caused the HVAC (heating, ventilation and air conditioning) systems to remove heat during
warm weather. A second factor associated with the use of these PCs was the fact that electric
rates from the company serving the area where the school was located were going up. The simple,
obvious solution was to have teachers and students turn off their PCs before leaving for the
day. This could not be guaranteed in all cases. Besides, teachers and students complained about
boot- up times since many of them were rushing to complete an assignment late. A vendor was
identified that sold software that would put a PC central processor into a state which drew very
little current from which it could be awakened quickly into an operational state. It could install
itself via push technology and allow each user to set a schedule for their PC to “go to sleep” or
defer to the default. Without getting into all the cost and savings details, Table 3.4 shows the
results of our analysis.

Some of the elements comprising the table are listed below. Also, projects may not always be
justified based on profit. Many projects are justified based on their benefit to society or the com-
munity in general or a segment of the population (e.g. those with disabilities, reducing our impact
on the environment).

Table 3.3 Example of a Simple Function Points Table

Characterized As

Function Point Type S – Simple A – Average C – Complex

External Inputs 3 4 6

External Outputs 4 6 7

Queries 3 4 6

External Files 5 7 10

Internal Files 7 10 15

Estimating Cost and Schedule of Software Projects ◾ 43

Explanation of notation

 ◾ Amounts are in Euros.
 ◾ An amount surrounded by parentheses is a negative amount.
 ◾ A period is used instead of a coma consistent with European conventions.
 ◾ ROI represents Return On Investment if the original purchase price was invested at 5% or

10% compounded.

In the preceding example, the total positive cash flow of €17.217 being greater than what would
have been received via a simple investment at 5% or 10% means the business case is a viable one
both from a financial and an environmental standpoint.

Project Charter – The Project Charter legitimizes the project in that it authorizes the expen-
diture of company funds to specific ends. It bounds the project and attempts to reduce
“scope creep.” It states what the project will and will not do. It is necessitated by the fact that
software often touches so many other aspects of the enterprise. Not bounding the project
in some way almost guarantees that the scope of the project will expand to include some of
the systems it interfaces with perhaps resulting in the budget and/or schedule exceeding the
plan. Most importantly, the project’s charter gets everyone related to this effort to think about
what will and will not be addressed by this project. There have been many formats published
for project charters. Most software companies will have their own, possibly unique, format.
Regardless, the project charter should contain at least the following elements:

Project Name – This is how this project will be referenced.
Owner(s) – Who, in the organization, is responsible for maintaining this document (it will be

under change control).
Executive Summary – This section lists the measurable objectives of this project, proposed start

and end dates, estimated costs, assumptions, risks, project overview, scope and any other
factors senior management may need to know in order to make an informed decision about
approving this effort.

Approvals List – This is a list of the people, by job title, who are approving this effort as signi-
fied by their signature. Typically, this list would include the Project Manager (who usually
prepares this document), Project Sponsor, Senior Manager (the Executive) who is sponsoring
this effort and the Client Representative.

Table 3.4 Data Developed for Our Business Case

Year 0 Year 1 Year 2 Year 3 Year 4 Total

Energy Savings € 3.968 € 4.167 € 4.375 € 4.593 € 4.823 € 21.926

HVAC Savings € 595 € 625 € 656 € 689 € 726 € 3.291

Product Cost (€ 8.000) € 0 € 0 € 0 € 0 (€ 8.000)

To Date Totals (€ 3.437) € 1.355 € 6.386 € 11.668 € 17.217 € 17.217

ROI @ 5% € 8.000 € 8.400 € 8.820 € 9.261 € 9.724 € 9.724

ROI @ 10% € 8.000 € 8.800 € 9.680 €10.648 € 11.713 € 11.713

44 ◾ Software Project Management

Stated another way, the Project Charter is a high- level view of the proposed project – the project
described without all the details

 ◾ Measures of Success – This item is one of great importance and often overlooked. It states
clearly and (hopefully) simply what the resulting system must do in order for the project to
be deemed successful. These must be stated in a measurable way, including the current base-
line from which we may be measuring improvement. For example, “With all hardware and
operating system software in working order, the system shall prompt the user for a password
within 60 seconds after a ‘Power On’ event has been detected.” Certainly, there is a lot more
to that one, but the essence of this item is there. The conditions under which this accept-
ability requirement must be met are stated together with acceptable performance under those
conditions.

 ◾ Risk Analysis – What are the risks associated with developing this system, its use and so
forth? How are or will these risks be mitigated? For example, if we are developing a system to
automatically park an automobile, how will the driver regain control in the event of a failure
of the software? How will the driver know the system has failed? How many different ways
could the system fail and how can we prevent them from occurring?

 ◾ A Multidimensional View – The best policy to have regarding business case development is to
consider all the various dimensions a new or revised system can impact. The best system for
this right now is “The Balanced Scorecard.” [10]. It considers the entire spectrum of impacts
organized into four dimensions or viewpoints:
Financial: What will this cost versus what will it save the company? What confidence level

can we attribute to this estimate?
Customer: How will this impact the customer? Is it likely to be well received by our custom-

ers? What are the acceptance criteria?
Internal: Are we organized or structured in such a way that will support this change? If not,

what changes will we need to put in place?
Learning: Will we have to train some of our people in this new technique(s)? If so, who will

be trained and what will this cost?

Anyone who has called a company’s technical support team with a problem that needs some expla-
nation only to encounter an automated answering system that requests you to press a number for
this type of problem or that then requests another selection and so forth none of which seem to
match your issue has experienced what can happen when a company only considers profit and loss
issues. These systems can be frustrating, particularly if they do not have the option of pressing zero
in order to speak to a human being to explain the nature of the problem you are calling about. To
summarize, the point of the Balanced Scorecard method [11] is when making a decision, we con-
sider all four dimensions of that decision, not just profit or some other single factor.

3.10 Success and Differences in Value Systems
“Success is the ability to go from one failure to another with no loss of enthusiasm.”

–Winston Churchill

In the early days of software development, a project manager’s goals were threefold: Bring the proj-
ect in on time, on budget, and meeting requirements. Since then, we have become aware that today,

Estimating Cost and Schedule of Software Projects ◾ 45

these are the absolute minimum and not the complete requirements needed in order to be success-
ful. For example, meeting those three criteria but delivering a system the users find difficult to use
is unreliable or cannot be modified to meet changing needs is just the start of an extended list of
what makes a system a success. Our more up- to- date view is that success is a multifaceted phenom-
enon. The development team wants to develop something technically elegant but the client does
not care if the resulting system is technically superior, only that it meets users’ needs in a responsive,
reliable and secure way. Thus, our development team may deliver results that they consider great
only to have the client see them as inadequate. This dichotomy became apparent to me some years
ago while working on software for an international telephone company. The operating company
used measurements (counts) of various types of calls as a means of balancing the phone network
in real time. The development team saw collecting, storing and reporting these counts as drudgery
which would needlessly slow call processing. So, the developers set the priority for data collection
to the lowest level. What that meant was that when the phone switching center was the busiest, the
data would not be collected but when it was not very busy it would be. It turned out that it was of
utmost importance to the client to obtain this data when the phone office was the busiest in order
to ensure the network could continue providing service to the company’s subscribers. When these
facts became known to the operating company, there were angry exchanges, directives for imme-
diate modification, hurried rework and considerable expense over and above the original budget.
All of this resulted from the development team putting their need for “technical excellence” ahead
of what the sponsor needed. To the sponsor, the initial version of this system was not a success.
Over the years, I have seen this scenario repeat itself like some kind of syndrome or habit which
is difficult if not impossible to break. This is paradoxical in that job satisfaction is a key element
in achieving high productivity and to software developers, contributing to a technically superior
product is equated to job satisfaction.

The challenge for you as the software project manager is to maintain a balance between deliver-
ing what the sponsor sees as a successful product while maintaining a sense of technical excellence
within the software development team.

3.11 Cost Categories
In computing the cost of our project, we need to keep in mind the goal of establishing our pric-
ing. What we are trying to do is recover the costs that we incur by building them into our pricing
system. Without maintaining that viewpoint, we end up subsidizing our client, not profiting suf-
ficiently and going out of business. How can we achieve a survivable pricing structure? Without
being trained in the basics of cost allocation and recovery, a software project manager may only be
sensitive to the direct costs associated with the project. For example, if we estimate a client requested
change to require 100 hours of labor by a software engineer whom we are paying $50 per hour, we
see the cost as $5,000 ($50 per hour times 100 hours), plus profit. But $50 per hour is not the total
hourly cost of the software engineer. In the United States as well as many other countries, there are
payroll taxes similar to Social Security and Medicare which the employer must pay which increases
the hourly cost of the software engineer. In addition to those costs, there may be other taxes which
vary from country to country – office space, heating and cooling, connection to the internet, vari-
ous types of insurance, fringe benefits and others. So, some small businesses try to avoid many of
these costs by hiring people as contractors who will provide their own workspace, internet con-
nection and so forth but the small business still incurs expenses just to stay in business such as
a business license, errors and omissions insurance, legal fees for creating contracts, advertising

46
◾

So
ftw

are Pro
ject M

an
agem

en
t

Estimating Cost and Schedule of Software Projects ◾ 47

and promotion, telephone service, internet access and on and on it goes. In each country, there
exists accounting standards setup by some central authority which establish what are valid business
expenses. In addition, governmental agencies also have rules they set forth for companies doing
business with that agency. In the United States, the federal government agencies require businesses
that provide material and/or services to comply with the Federal Acquisition Regulations (FAR).
These amount to “hidden” costs which, if not incorporated into our pricing, eat away at our profit-
ability invisibly. Overall, there are three cost categories. Each cost that the company incurs can be
allocated to one of these categories. Remember, the main reason for categorizing and tracking all
three cost categories is to better incorporate our operating costs into what we charge our client(s)
for our services. If we do not capture our operating costs in this way, they will be paid for out of
our apparent profits resulting in our company going out of business. Two broad categories of cost
are direct costs and indirect costs as detailed below.

3.11.1 Direct Costs

Direct costs can best be described as expenses we can “see.” Examples include the cost of our com-
puters, electricity, heating and cooling of our office area, rent for our office space, business license
fees and many others.

3.11.2 Indirect Costs

In many respects, these costs are not obvious. Some would say these costs are hidden. They can be
broken down into two categories as described below.

3.11.2.1 Overhead Costs

These costs are the costs that the business incurs just to keep its doors open. They are incurred even
if we have no customers. Different companies compute overhead (OH) in their own way. No mat-
ter how they are computed, keeping OH cost low is one of the ways by which managers in large
corporations are evaluated. Since OH cost comes directly out of profit (remember, these costs occur
even if we have no business), keeping OH low is desirable because there will be times when we have
little or no business.

3.11.2.2 General and Administrative Costs

These are costs that are incurred only as a result of conducting business (i.e. we are developing code
under contract for a client). Examples of general and administrative (G&A) costs include telephone
service, shipping costs, export licenses, reproduction fees, fees to services (e.g. CD copying services,
fees paid to consultants, accountants, lawyer fees) and others.

3.11.3 How to Compute Overhead

The way OH is computed is to add up all the costs associated with this category, divide it by the
number of working hours in the year (nominally 2,000 hours in the United States and some other
countries) and that gives you your hourly rate for OH. If you have ever wondered why it is so
difficult to get a job as a consultant, you can see why right here. Consulting costs are most often

48 ◾ Software Project Management

allocated to the OH category. Paying a consultant or contractor to do some work thereby increases
OH across the board. In most companies and government agencies, management’s goal is to reduce
or minimize OH and managers are evaluated in large part on how well they keep OH cost under
control (i.e. low).

3.11.4 How to Compute General and Administrative Expense

This is computed in a slightly different manner. Here, the total cost for the year is added up and the
percentage of the total operating cost of the company is computed using the formula

 [] []∗+GA / OH GA 100%.

where

GA = General and Administrative Expense
OH = Overhead Expense

3.11.5 The Chart of Accounts

The chart of accounts is a categorized list of all the company’s expenses and income. For the pur-
poses of this discussion, we will only be listing the expenses. An example of a simple chart of
accounts is presented in Table 3.5. Remember, if you do not know what your costs are, you won’t
be able to correctly price your services. This creates a bit of a quandary. You may know that a com-
petitor charges less for their services and you are tempted to lower your fees to be more competitive.
This is not advisable unless you can find a way to reduce your costs and still make a profit. Although
the chart of accounts shown in the example only lists expenses, a typical chart of accounts would
also list income categories, assets and other nonexpense items. The advice of an accountant in your
locale would be well worth the cost. However, in the United States, the SCORE program provides
such advisory services free. Some other countries have similar programs all intended to help small
businesses and start- up businesses survive and grow.

3.11.6 Example of a Simple Chart of Accounts Listing OH & G&A

Some of you may be wondering what is a Chart of Accounts? In simple terms, it is a list of all the
expenses in a given accounting period (often a calendar year) that the company has incurred orga-
nized by categories. For example, the money spent on computing hardware may constitute a cost
category. Most of the terms in the table are self- explanatory but a few may need further explanation:

 ◾ Depreciation – Devices do wear out. The number of years that we can expect them to work
properly is commonly referred to as its “useful life.” There are standards for what the useful
life of an object or system is as well as criteria for whether or not an object can be depreci-
ated or expensed. These are established by a governing accounting body in each country. For
example, if a $5,000 computer is listed as having a five- year useful life, then we can claim a
$1,000 per year depreciation expense for five years. Alternatively, if that $5,000 expense is less
than the expense limit (e.g. $10,000), we can claim the entire $5,000 expense in the year the
purchase was made provided it was made at the start of the year. Otherwise, we must prorate
it based on when the purchase was made. In such a circumstance, it is often better to expense

Estimating Cost and Schedule of Software Projects ◾ 49

Table 3.5 Example of a Simple Chart of Accounts

Overhead Expenses Amount Budget Variance

Depreciation on equipment 8,421 2,200 6,221

Insurance expense 6,306 3,055 3,250

Rentals 10,258 4,500 5,758

Salary expense 50,675 18,900 31,775

Taxes — payroll 7,025 3,350 3,675

TOTAL OVERHEAD EXPENSES 82,685 32,005 50,680

GENERAL AND ADMINISTRATIVE EXPENSES

Answering service 559 180 379

Auto mileage reimbursement 1,433 0 1,433

Bank Charges 218 50 168

Communications (e.g. cell phone, landline) 2,530 1,200 1,330

Directors fees 4,000 4,000 0

Dues and subscriptions 199 50 149

Depreciation 666 500 166

Insurance expense 4,577 0 4,577

Miscellaneous 101 20 81

Professional activities 375 150 225

Professional services 1,900 500 1,400

Royalties 0 0 0

Repairs 105 0 105

Reproduction expenses 5,110 1,200 3,910

Salary for bids and proposals 12,192 0 12,192

Shipping expenses 4,978 800 4,178

Supplies expense 2,399 2,400 -1

Taxes payroll 0 0 0

Taxes business 3,400 1,200 2,200

TOTAL GENERAL AND ADMINISTRATIVE
EXPENSE

45,037 12,275 32,762

Note: Companies who have been doing business for some time will budget values for various costs and
then track how much the actual cost has deviated from the budgeted amount (the “Variance”)
to help them make more accurate estimates in the future. Some costs (e.g. airfare) may vary
between the time a proposal is submitted and the contract award occurs due to circumstances
beyond our control. For example, in the table above, the Depreciation category has a large vari-
ance due to an unexpected change in accounting rules.

50 ◾ Software Project Management

the entire purchase rather than to depreciate it provided the amount does not exceed the
limits imposed within the jurisdiction but issues like this should be referred to an accounting
professional.

3.11.7 Explanation of Items on the Chart of Accounts

Again, it is advisable to consult with an accounting professional in your area who is cognizant of
the accounting rules and practices used in your locale. To do so otherwise risks being in violation of
some rule or law. Be sure that your chart of accounts contains only direct costs and not burdened
ones because the burdened cost factor(s) are computed from these direct cost amounts. Some of the
items on the preceding chart of accounts may not be self- explanatory. They are listed here together
with a brief explanation:

 ◾ Depreciation on equipment – This accounting concept involves the observation that after
a period of time, a hardware item becomes out of date. The Oxford Dictionary defines the
accounting concept of depreciation as, “a reduction in the value of an asset with the passage
of time, due in particular to wear and tear.” Although the concept is based on experience with
hardware (e.g. factory equipment), it is just as applicable to computing hardware since it can
be unable to operate at the new high- speed communications, employ the latest operating
system and so forth. Although accounting standards vary from country to country, deprecia-
tion can be computed according to accounting standards agreed to within a country. For
example, in the United States, the useful life of a laptop computer may be five years. There
are different formulae for computing its depreciation, but “straight line” is a common one.
This means that if that laptop had a direct cost of $2,000, its depreciation per year would be
$400 (i.e. $2,000/5). There are also rules about what must be depreciated versus charging off
the total amount. As you may have observed, if you spent $2,000 it would be better if you
could charge the full amount off in the tax year in which the purchase was made to reduce
your taxes versus spreading it out over five years.

 ◾ Insurance expense – your business owns computers, desks and other physical objects which
could be lost due to a fire, flood, earthquake, theft and other disasters. Insuring them is more
than just advisable, it is absolutely necessary. In addition, you will need to take out insurance
for what are referred to as “errors and omissions.” This protects your firm from liability from
claims that you advised your client, they took the advice and it caused them to lose money. It
is generally not overly expensive.

 ◾ Rentals – you may find it necessary to rent rather than buy office furniture, rent office space
and so forth. Remember, even if you are running your business out of your home, you need
to charge yourself office rent at the rate that is common in your geographic area. Otherwise,
you will be creating a false sense of profitability.

 ◾ Salary expense – This is the direct cost of what you pay employees including yourself.
 ◾ Taxes – These vary from country to country and locale to locale within countries.

3.11.8 Computing the Project’s Estimated Total Cost

Let’s use an example to put all the costs together and find out what the contract is really going to
cost the client. The effort we will be involved in is estimated to take 1,000 person- hours. Assume
the hourly rate is $50 per hour. Our G&A expense rate is 25% (some government auditors will balk
at this but even higher rates occur in small businesses – a general rule – the smaller the business,

Estimating Cost and Schedule of Software Projects ◾ 51

the higher the G&A rate), our OH is $20 per hour and we want a profit margin of 8% (again
the government will try to drive this one down). Also, there will be three trips involved. One trip
will kick off the project, another will occur at the mid- term of the project and the third will occur
when the final delivery is made. We have established that our out- of- pocket cost for each trip will
be $1,500. The numbers involved in the computation are presented in Table 3.6. Also, if you are
not dealing with a government agency, you should not have to reveal your OH, G&A expense and
profit. In some countries, these values are considered trade secrets and are not openly available to
clients otherwise larger firms like Airbus, Embraer Air, Boeing and others would bid projects show-
ing lower profit in order to gain greater market share.

Table 3.6 OH versus G&A Expenses

Overhead Expenses
Description [Amounts Are

for the Contract Term]

Depreciation on equipment The amount incurred during the project

Insurance expense Amount paid for fire and theft insurance

Rentals Amount paid for rental of equipment

Salary expense Total salaries of those working on the project

Taxes – payroll Amount paid to the government

TOTAL OVERHEAD EXPENSES The sum of the preceding five items

General and Administrative Expenses

Answering service Amount paid if you have a service

Auto mileage reimbursement Contract- related automobile travel mileage

Bank Charges What the bank charges for your account

Communications Telephone landline and/or mobile phone

Directors fees Amount paid to owners of your firm

Dues and subscriptions Professional memberships and subscriptions

Depreciation Cost due to expending useful life of item

Insurance expense Business insurance

Miscellaneous Business expenses not categorized

Professional activities Attendance at professional conferences

Professional services Lawyer fees, consultant fees, contractor fees

Royalties Amount paid for use of software

Repairs Expense for repairing broken printers, etc.

Reproduction expenses Cost of having documents copied, bound, etc.

Salary for bids and proposals Cost of generating proposals

(Continued)

52 ◾ Software Project Management

3.11.9 Project Cost Computation Example

At this point, we have what we need to compute what the total project, including our profit, will
cost the client. The details are presented in Table 3.7.

What that 1,000- hour project is really going to cost your client is more than $100 per hour.
If it was being done for a group within your company, the cost would be a little less because there

Overhead Expenses
Description [Amounts Are

for the Contract Term]

Shipping expenses Cost of shipping final report, etc.

Supplies expense Printer paper, laser printer cartridges, etc.

Taxes payroll Payments to government

Taxes business Local and regional taxes and business licenses

TOTAL GENERAL AND ADMINISTRATIVE
EXPENSE

Sum of the preceding items

Table 3.6 (Continued) OH versus G&A Expenses

Table 3.7 Computing the Project’s Cost

Cost Element Item Description Amount

Labor:

1,000 hours at $50/hour $ 50,000

Overhead at $20/hour $ 20,000

Travel:

3 trips at $1,500/trip $4,500

Sub Total $74,500

General and Administrative Expense At 25% $ 18,625

Grand Total (our cost) $ 93,125

Profit @ 8% $7,450

Grand Total (Cost to the client) $100,575

Note: The client is only privy to the final project cost. It is important that they do not see the actual cost,
G&A, OH or profit. Throughout the world, these figures are considered trade secrets. The only
exception to this is when working with some government agencies. In those cases, the agency
has a policy of “non- disclosure.” That is, as part of pursuing the lowest cost for work done for the
public, they will try to negotiate the profit percentage lower and will have the right to audit your
accounting records if they suspect some of the costs being claimed are being exaggerated. The
adage that “honesty is the best policy” applies here because falsifying values to increase the fees
you will be paid by the government is, in most countries, a serious crime punishable by a fine
and/or a possible prison sentence.

Estimating Cost and Schedule of Software Projects ◾ 53

would be no profit. Also, in some companies, they have an internal (intra- company) rate which
may lower the OH a bit.

In our example, if we only considered direct costs, we would have thought the cost would be
$50,000 plus the $4,500 out of pocket for travel for a total of $54,500 plus profit. It was just this
kind of misconception and the lack of accounting advice that has led to the demise of many small
start- up software companies.

3.11.10 Total Cost Computation

Again, you will need to confirm what the financial accounting standards are in your locale, but the
following formula is compliant with many if not most countries:

 () () ()∗
 = + + + Total Cost DLC OVH DOC 1 G & A

where
DLC = Direct Labor Cost
OVH = Overhead
DOC = Direct Other Costs
G&A = General and Administrative cost as a decimal
For example, 25% = .25

3.11.11 Risk Reduction via Bias Removal

Mankind has been building roads, tunnels and bridges for thousands of years but getting costs right
still eludes us as shown in Table 3.8 [3]. The reason why we can’t seem to accurately estimate such
projects and, in fact, all projects, was researched resulting in a Nobel Prize in Economics. Those
findings resulted in a method that has worked so well that the American Planning Association has
recommended that its members use it together with traditional planning methods [3]. What the
prize- winning work showed was that “Human judgment” is generally optimistic due to overconfi-
dence and insufficient regard to distributional information. Thus, people will underestimate cost,
completion times and risks of planned actions, whereas they will overestimate the benefits of the
same actions [2]. Even though hundreds of roads, bridges and tunnels have been developed over the
centuries, we still have trouble accurately estimating their costs (Table 3.8).

The method which adjusts estimates to account for our human biases is called Reference
Class Forecasting. In simplified terms, it amounts to basing our estimates of the new project
on how we did estimate previous, similar projects constituting our Reference Class. The more
projects we have recorded information on, the more statically significant and accurate our results.

Table 3.8 Examples of Project Cost Misestimating (from [3])

Type of Project World Wide Average % Overrun Overrun % Range

Railways 45 7 to 83

Bridges and Tunnels 34 −28 to 96

Roads 20 −10 to 50

54 ◾ Software Project Management

Note that this approach does not result in a single cost number but rather, a cost estimate and a con-
tingency amount based on the degree of confidence we desire for finishing within that combined cost
(i.e. cost estimate + contingency). To use this method, for previous, similar software projects, we need:

 ◾ The original cost estimate for each project
 ◾ The actual final cost of each project

Be careful to avoid mixing different types of projects together. Reduce the data to percentiles and
form a plot (in this example, a least squares fit) of Acceptable Chance of Cost Overrun (x- axis) ver-
sus Required Increase in Estimate/Contingency (y- axis). For this example, I was only able to locate
one company with 18 similar projects that had collected the required data. The percentile range and
aggregate percentages are shown in Table 3.9.

Reducing this data to a plot results in Figure 3.1. What the plot tells us is if we want approxi-
mately a 70% confidence level, we need to increase our estimate by approximately 50%. Note that
since this plot is in terms of percentages, it is not dependent on the actual amount of the initial esti-
mate we arrived at by whatever other means we may have used. Furthermore, this inherent bias is
in all humans and hence affects any method we use (e.g. [8–10, 12, 13]). If we were to estimate our
project at €100,000 and want to have a 70% confidence that it will finish at or below that amount,
using this chart as our experience guide, we would have to increase our estimate by €50,000 or
simply hope for the best. The problem for most software companies is that competitive bids tend to
cause firms to keep bids low in hopes of winning the contract by engaging in the overly optimistic
pursuit of new business to the extent that the risks are ignored or significantly downplayed.

3.11.12 Estimating the Cost of Change(s) during the Project

Well before the software profession “discovered” it, project managers had probably known since
before the Roman Empire that changes made to a project increased in cost the later in the project
that they occurred. But throughout the course of software projects, changes will be made. While
some are inevitable (e.g. to correct programming errors – bugs, miscommunication regarding user
interface preferences, changes due to revisions in applicable laws and others), some could best be
described as customer- directed changes. For example, modifications of the user interface requested

Table 3.9 Percentile Range and Aggregate Percentages

Percentile Range Aggregate Percentage

−30% to −20% 06%

−20% to −10% 17%

0% to 10% 33%

10% to 20% 44%

20% to 30% 72%

30% to 40% 89%

90% to 100% 94%

100% to 170% 100%

Estimating Cost and Schedule of Software Projects ◾ 55

by the customer, changes in how taxes or interest rates are computed due to changes in tax law,
privacy and security changes and so on. These changes tend to increase development costs. A study
of several thousand projects in the construction industry [14] provides us with some much- needed
insights into what the total cost of a project will be when we include the cost(s) associated with
making changes. The mathematical relationships developed in that study are not specific to the type
of project and are applicable to software. A side effect of the formulation that the study developed
gives us the opportunity to provide our customers with some semblance of control over the total
cost of the project. This result is formulated along two lines. One is the average cost of a change.
The other is the relative cost of a change with respect to the total cost of the project. For example,
if the burdened cost (this includes all direct and indirect costs) of a software engineer is €50/hour
based on a 2000- hour work year, the cost for an average change which we estimate to be 8 hours
(development, debugging, testing and so forth) gives us an average change cost of € 400. The for-
mula for estimating the impact of the changes that may occur over the life of a project would be:

()= 2 2 2 2
c cCV n f u C

where

n = our estimate of the number of changes which will occur during the project
fc = coefficient of variation of cost change
uc = average cost of a change expressed as a decimal – it is the ratio of the cost of the change to

the estimated total project cost
C = original project cost estimate

Figure 3.1 Confidence level versus set aside or cost estimate increase.

56 ◾ Software Project Management

If we originally estimated the total project cost to be € 100,000 and estimate there will be 100
changes, each costing € 1,000 then

= = = =c cC 100,000, n 1000, f 1,000, u .01substituting into our formula

 = =
2 2 2 2CV 1,000 2000 0.01 100,000 0.04

104,000. Again, the cost estimate is not an exact number but a value or range within the realm
of possibility.

The obvious but incorrect answer would be to simply multiply the 100 changes by the cost per
change and add it to our original estimate. But the research work showed that would be fallacious
because changes occur while development is occurring so some economies can be wrought.

3.12 Outsourcing
Over the last three decades, major corporations have chosen to contract with firms in parts of
the world which have software engineering talent and lower wages than where the corporation is
located. Many of these arrangements appear to be quite beneficial for both parties. They are fre-
quently fixed- price contracts meaning that the work will be done for a certain, unchanging price.
Many of the early off- shore software development efforts turned out quite well. The quality was
high, changes due to errors or alteration of requirements were made in a timely manner and cus-
tomers were pleased with the results. But in more recent years, clients have told me that delivery
dates were missed, response to requested changes (even when accompanied by bonus payments)
was slow and sometimes non- existent and the quality of the deliverables is not what it used to
be. Upon further investigation, it was determined that in some cases key people in the contractor
organization had left it to form their own company and lacked the business knowledge, managerial
skills, experience and organizational skills to deliver on commitments. These factors plus cultural
differences between organizations have greatly reduced the advantages of outsourcing that were
experienced in its early years.

3.13 Summary
The only possible way to avoid all risks is to do nothing. No matter what action(s) we take, there
will be some associated risk(s). Some of these we can predict with a fair amount of certainty while
others will occur without us foreseeing them. Regardless, ignoring risk leaves the project at the
mercy of the whims of fortune. Being open and forthright about the possibility that risks may fire
puts us in a position to ask two very positive questions:

 1. If it does happen, what should we do about it?
 2. What can we do to prevent the risk or make it less likely to fire?
 3. What can we do now to ensure the project can survive a risk if it fires?

Either way, addressing risk is a healthy discussion and it causes us to shift our mentality from,
“Everything is going to go well,” to “Everything might go well but there may be some negative

Estimating Cost and Schedule of Software Projects ◾ 57

events along the way that we should be prepared to deal with.” That change may be difficult for
some teams to accomplish without the software project manager’s leadership to ask the difficult,
unpopular questions challenging the assumptions made by the team but no one said that managing
a software project would be easy and popular.

Chapter 3 Review Questions
 1. What is the difference between planning and scheduling?
 2. What is the problem with using a “generic” software engineer as the basis for estimating?
 3. What is the business case?
 4. What is the role of the business case in the development of a software project?
 5. Name the four viewpoints of the Balanced Scorecard.
 6. What is meant by the term “Burdened Cost?”
 7. What is the purpose of using the Burdened Cost when estimating a software project?
 8. Why aren’t there any accurate software project estimating methods?
 9. Why are software project cost estimates based on lines of code?
 10. What is the difference between Direct and Indirect costs?
 11. What is the difference between Overhead (OH) and General and Administrative (G&A) costs?
 12. When outsourcing, what are some of the forms of “Due Diligence” that are needed?

References
 [1] McConnell, S., “The Software Manager’s Toolkit,” IEEE Software, Vol. 17, No. 4, pp. 5–7, July/August, 2000.
 [2] Kahneman, D., Sibony, O. and Sunstein, D.R., Noise: A Flaw in Human Judgement, Little, Brown and

Company, Boston, Massachusetts, Reprint edition, May 31, 2022.
 [3] Flyvberg, B., “From Nobel Prize to Project Management: Getting Risks Right,” Project Management Journal,

August, 2006, Vol. 37, No. 3, pp. 5–15.
 [4] Brooks, F., The Mythical Man- Month: Essays on Software Engineering, 20th Anniversary edition, Addison-

Wesley, Reading, MA, 1995.
 [5] Peters, L.J., Getting Results from Software Development Teams, Microsoft Press Best Practices Series, Redmond,

WA, May, 2008.
 [6] United States General Accounting Office May, 2000.
 [7] Software Technology Support Center Cost Analysis Group, October 2010, 239 pages, Software Development

Cost Estimating Guidebook download at no cost from this site: http://stsc.hill.af.mil/consulting/
sw_estimation/softwareguidebook2010.pdf

 [8] Boehm, B., et al., “An Overview of the COCOMO 2.0 Software Cost Model,” Software Technology Conference,
Salt Lake City, Utah, April 1995.

 [9] Boehm, B., Software Cost Estimation with COCOMO II, Prentice Hall, Saddle River, New Jersey, August, 2011.
 [10] Walston, C. and Felix, C., “A Method of Programming Measurement Estimation,” IBM Systems Journal,

Vol. 16, No. 1, 1977, pp. 54–73.
 [11] Kaplan, R.S. and Norton, D.P., The Balanced Scorecard, Harvard Business School Press, Boston, MA, 1996.
 [12] Kemerer, C.F., “An Empirical Validation of Software Cost Estimation Models,” Communications of the ACM,

Vol. 36, No. 2, 1993, pp. 416–429.
 [13] Abran, A. and Robillard, P.N., “Function Point Analysis: An Empirical Study of Its Measurement Processes,”

IEEE Transactions on Software Engineering, January Vol. 22, No. 12, 1997, pp. 895–910.
 [14] Touran, A., “Calculation of Contingency in Construction Projects,” IEEE Transactions on Engineering

Management, Vol. 50, No. 2, May 2003, pp. 135–140.

http://stsc.hill.af.mil
http://stsc.hill.af.mil

58 DOI: 10.1201/9781003484288-4

“You can’t control what you don’t measure.”

–Tom DeMarco

4.1 Chapter Overview
Although the quote that starts this chapter seems logical enough, it is only partly true. For example,
we can measure various aspects of the weather, but we can’t control it. Anyone who has been the
manager of anything but the simplest software project will agree that control is something of a
myth. Events take place over which we have no forewarning and no control. As a result, we are not
only constantly replanning but sometimes seem to be scrambling from one scheduled event to the
next while responding to unscheduled events that have occurred. This happens even if our plan and
schedule had what we thought was sufficient extra flow time built in to prevent failure to hit key
milestones. This is a form of chaos within which we are trying to conduct our project. We do not have
to be totally passive about our attempts at control and can incorporate actions to preemptively keep
us from overrunning schedule, budget and so forth. But total control is just not going to happen.

Inherent in the notion of control is the need to measure. If you are driving an automobile and
want to keep your speed at or slightly under the posted speed limit, you have to know how fast you
are going. Similarly, in managing a software project, one needs to know how the project team is
doing with respect to the project plan. Remember, the plan and schedule go together. Completing
the planned tasks in the order set forth in the plan and consistent with the schedule is only part of
the issue of control and measurement. Another equally important part involves our expenditure of
funds and the consumption of other resources (e.g. use of contracted labor also a cost). Since the
project undergoes nearly continual change, we need to measure the project’s status frequently. If we
restrict our evaluation(s) to our expenditure of funds, we can stay at or below our planned “burn
rate” (the rate at which we spend money) possibly at the expense of getting the work done consistent
with the agreed- upon schedule. Conversely, if we ignore the “burn rate,” we can drive the project
to completion, possibly on time, but exceed the budget. What is needed is a means of objectively

Chapter 4

Controlling

http://dx.doi.org/10.1201/9781003484288-4

Controlling ◾ 59

evaluating project status that combines the measurement of both the value we are creating (work
done) and its cost. Faced with a similar dilemma, industrial engineers developed such an evaluation
method more than 100 years ago. That method is called Earned Value Management (EVM).

4.2 Background of Earned Value Management (EVM)
In the late 19th century, industrial engineers were grappling with the problem of computing the
total cost of products produced by a production line. Adding up the total annual cost of the build-
ing, labor, materials, and other costs and then dividing this by the number of parts produced
just did not seem to be sufficient. For example, there were some products that were of such poor
quality that they could not be shipped and others that could be shipped provided some rework
was performed. There were other complications as well. Before long, the concept of “value” was
developed. It involved more than just time and money. It focused on the notion that the work
performed imbued the product with “value.” As an example of value, consider two situations. We
make a purchase at one store and purchase the same item at another store for 25% less. The second
store represents a better value than the first. A beneficial side effect incorporated into the value
concept is the ability to measure the efficiency with which resources were being expended. Project
engineers began seeing the benefits of these measurements as they became aware that just because
half the funds were spent and/or half the schedule elapsed did not mean that the project should
be considered half complete. Over the more than 100 years since EVM came into existence, many
refinements have been added to enhance its benefits to project managers.

4.3 Using EVM
Throughout the description of EVM, keep in mind that its measurements are mostly ratios of what
we planned to do or planned to spend to what we actually occurred. The reason for this approach is
to obtain an objective measure of various aspects of our project plan’s execution. The importance of
the “objective” perspective should be obvious to anyone who has attended a software project status
meeting. During the meeting, software engineers who are members of one team or another report
on the status of their portion of the project. This is where objectivity suffers because one cannot
truly be objective in judging one’s own work. In addition, there is peer pressure that can defeat
objectivity. No one wants to be reporting that their work is not going well – it reflects badly on their
abilities. This lack of objectivity defeats the purpose and value of the status meeting. Remember,
what we are trying to do is get an accurate picture of the status of the project in order to take reme-
dial action if needed. This is one of the most critical activities a software project manager engages in.
EVM can act as an early warning system of sorts enabling the software project manager to be aware
that a problem(s) is developing and take remedial action before it is too late to correct it. Leaving
the determination of the status of individual tasks up to the person(s) responsible for completing
them is not a good idea. Software engineers have often been described as the “most optimistic”
people in the world. I have often seen software engineers report that a task is almost complete at the
weekly status meeting with only a couple of minor issues to clean up only to have the task run late
and not be completed until several weeks later. Part of this is due to peer group pressure. Nobody
wants to admit in front of their colleagues that their work is falling behind schedule which may
impact other parts of the project. Another factor is that the software engineer involved can con-
ceptualize how the issues in his/her code could be resolved but ignoring details that can lengthen
the time to resolve them and complete the task. Remember, no one is intentionally trying to put

60 ◾ Software Project Management

the project behind schedule. However, seriously troublesome software issues can cause delays the
length of which we cannot reliably predict. Some coding errors I have observed took months to
clear, having a serious impact on our schedule. The best way to reduce the impact of over- optimism
is to apply the either/or approach. The code is either ready to incorporate in the next build or it isn’t.

EVM tracks the project from a “Value” standpoint where value is seen as how efficiently time and
money are expended. In a way, it is similar to a measure of efficiency or “value.” It is applicable to any
type of project. Its focus is on tasks completed for money and calendar time spent. There are several
equations involved in using EVM broken down into categories such as time/schedule and cost. The
naming conventions used to refer to these factors were changed a few years ago. In the discussion
below, both naming schemes are used because many textbooks exist which still use the older conven-
tions. Also, keep in mind that these factors are evaluated at a point in time and should be reevaluated
on a regular basis. My preference was for weekly evaluations of these factors. A term you may encoun-
ter regarding value is “Planned Value.” This is a key element of EVM. It is referred to in the literature
as “Budgeted Cost of Work Scheduled” or BCWS. It is the portion of the budget we planned to
spend at this point in the project. It is discussed below together with other EVM components.

All of the factors that comprise EVM have some formulation. The values generated by these
formulae all have the desired or best results and not achieving them can reveal problems in the proj-
ect. Knowing about problems in an objective format like EVM can be invaluable to the software
project manager. This focuses our energy and analysis on finding the source of the problem(s) and
taking action which, hopefully, will remedy the situation before it becomes impossible to correct.

4.4 What Is Needed to Use EVM
The requirements for using EVM are straightforward and are found in most project plans:

 ◾ A Work Breakdown Structure (WBS) listing tasks, subtasks and sub- subtasks.
 ◾ A baseline schedule showing when each task will start, finish and a budget for each.
 ◾ A measurement for the work listing completion criteria for each WBS item.

An EVM factoid:

 ◾ A study of more than 700 projects found that if a project is 15% complete and over budget
and/or behind schedule, its chances of finishing on time and/or within budget are nil – that
is, it won’t happen [1].

The previous statement emphasizes the importance of tracking and staying on plan right from the
start in order to avoid getting so far from the plan that correction is not possible. It is unlikely that
very many software project managers are aware of this.

4.5 Cost-Related EVM Variables
Unless otherwise stated, the term “cost” as used here refers to the burdened cost, not the direct cost
(refer to Chapter 3 for details on computing “burdened costs”). When we refer to cost in this dis-
cussion, we are referring to the true or “burdened” cost because that is what the task actually costs
us. Using just the direct or “unburdened” cost makes the expenses appear deceptively low. Also,
burdened cost does not include profit. EVM’s cost- related factors are described below.

Controlling ◾ 61

4.5.1 ACWP – Actual Cost of Work Performed

This is the sum of the actual costs incurred in performing the work. ACWP is also referred to as
“Actual Cost.”

4.5.2 BAC – Budget at Completion

The sum of all costs approved for the project (the budget) at evaluation time. BAC is also referred
to as the “Performance Measurement Baseline” (PMB).

4.5.3 BCWP – Budgeted Cost of Work Performed

This is the amount budgeted for the work actually performed – now referred to as “Earned Value.”

4.5.4 BCWS – Budgeted Cost of Work Scheduled

This is the sum of the budgeted amounts of work scheduled – now referred to as “Planned Value.”

4.5.5 CPI – Cost Performance Index

A measure of how efficiently money is used on the project – one of the most important metrics
included in EVM. Its formula is:

=CPI BCWP / ACWP

Interpretation:
= 1, the project is right on track.
1, ahead of plan, cost underrun possible.
< 1, behind plan, cost overrun possible.

4.5.6 CV – Cost Variance

This is a measure of the difference between budgeted and actual costs.

() = − × CV BCWP ACWP / BCWP 100%

Interpretation:
= 0%, right on track.
0%, actual is less than budgeted amount.
< 0%, cost is overrunning budgeted amount.

4.5.7 EAC – Estimate at Completion

This is a projection forward in time of the total cost when the project ends. There is nothing
“magic” here since this metric is basically a measure of the efficiency of the project’s use of money
over time – this may be the metric most closely watched by the customer.

=EAC BAC / CPI

62 ◾ Software Project Management

Interpretation:
= BAC (i.e. CPI = 1), on track.
< BAC (i.e. CPI > 1), under budget.
BAC (i.e. CPI < 1), over budget.

4.5.8 ETC – Estimate to Complete

This is an estimate of the cost that will be incurred from this point in the project to complete the
project.

=ETC EAC – ACWP

Interpretation:
= remaining budget, project is on track.
project will overrun the remaining budget.
< project will underrun the remaining budget.

4.6 Schedule Performance factors
These factors all relate to the project schedule. They are.

4.6.1 SPI – Schedule Performance Index

This is a measure of the efficiency with which the project performs to the project’s schedule.

Interpretation:
= 1, project is on track, likely to finish on time.
1, project will likely finish ahead of schedule.
< 1, project will likely finish late.

4.6.2 SV – Schedule Variance

This is a measure of the difference between the value of the work actually performed and the bud-
geted value of the work planned.

() = × SV BCWP – BCWS BCWS 100%

Interpretation:
= 0, exactly on track.
0, % ahead of schedule.
< 0, % behind schedule.

Controlling ◾ 63

4.6.3 TSPI – To Complete Schedule Performance Index

This is an estimate of the efficiency the project must perform in order to finish on time (i.e. con-
sistent with the schedule)

()=TSPI Total Budget – EV / Total Budget – PV)

Interpretation:
= 1, the project team is on track.
1, the project team at high efficiency.
< 1, the project team must increase efficiency.

4.7 Work and Content-Related Parameters
4.7.1 TCPIB – To Complete Performance Index within Budget

This is a measure of the budget- related efficiency with respect to work done. In other words, the
rate at which we are getting useful work for the money spent.

() ()=TCPIB BAC – BCWP / BAC – ACWP

Interpretation:
= 1, money remaining (budget at completion) and work remaining are consistent.
1, the efficiency (in %) needed to complete on budget.
< 1, high efficiency, likely to finish under budget.

4.7.2 TCPIP – Another, a Work to Money Ratio

() ()= − −TCPIP BAC BCWP / EAC ACWP

Interpretation:
= 1, on track to finish within EAC.
1, work left < work current efficiency will finish.
< 1, work left >

4.8 An Example of the Application of Earned Value Management
To demonstrate the use of EVM, I will use an example based on a real software project. The num-
bers and circumstances have been altered to avoid revealing the client or nature of the software
project. The length of the project was 17 months. Due to several ancillary issues, the project was
fixed price and fixed term – that is, it had to be completed within a predetermined flow time and
completed within the budgeted amount ($500,000+).

The flow times by phase are shown in Table 4.1 and burdened labor costs in Table 4.2.
The cash flow by month is shown in Table 4.3.

64 ◾ Software Project Management

According to the project plan, expenses would occur as shown in Figure 4.1. Note that expenses
were computed at fully burdened rates.

In examining Figure 4.1, we note that the actual expenses are consistent with the planned
expenses for the first five months. Then, starting in the sixth month the actual expenses exceed the
plan by a small amount. Applying EVM to the figures in the first seven months, we get Table 4.4.

In examining Table 4.4, we note that early on, overruns appear to be slight. The CPI is perfect
(1.0) until months 6 and 7 when it trends toward trouble. The CV is about −17% meaning we are
going to overrun by about 17%. By month 7, TCPIB needs to be 1.15 in order to hit our cost and
schedule targets. In other words, we need to be 15% more efficient or productive than we have been
to that point which is highly unlikely. So, what are our “target” EVM values that will keep us on
track with our plan? Table 4.5 lists the ideal or “target” values to use as guidelines.

Table 4.1 Project Flow Times by Phase

Phase Duration (Months) Person- Load

Plans and Requirements Definition 2.7 1.9

Product Design 3.6 3.4

Programming 7.2 6.0

Integration and Test 3.5 4.8

Table 4.2 Labor Costs (People Names Withheld)

Category Rate/Hour Hours/Month Hours/Year

Project Manager $45 167 2,000

Sr. Software Engineer $40 167 2,000

Software Engineer $35 167 2,000

Software Tester $30 167 2,000

Table 4.3 Cash Flow by Month

Level of Effort/# Persons
Project

Manager
Sr. Software

Engineer
Software
Engineer

Software
Tester

Total Cost
per Month

Plans and Requirements 0.9/1 1/1 $13,444

Product Design 0.4/1 1/1 ½ $21.376

Programming 0.4/1 1/1 1/4.6 $37,573

Integration and Test 0.4/1 1/1 1/3.4 $26,720

Controlling ◾ 65

0
50000

100000
150000
200000
250000
300000
350000
400000
450000
500000

Dollars

1 3 5 7 9 11 13 15
Month

Plan
Actual

Figure 4.1 Planned expense rate versus actual expenses.

Table 4.4 EVM Variables for the First Seven Months of Example

Month- > 1 2 3 4 5 6 7

ACWP OK OK OK OK $121,903 $190,301 $245,874

BCWP OK OK OK OK $109,713 $155,071 $209,874

CPI 1.00 1.00 1.00 1.00 0.90 0.81 0.85

CV 0.00% 0.00% 0.00% 0.00% -11.11% -22.72% -17.15%

SPI 1 1 1 1 0.9 0.9 1

SV 0.00% 0.00% 0.00% 0.00% -10.00% -10.00% 0.00%

TCPIB 1 1 1 1 1.03 1.12 1.15

TCPIP 1 1 1 1 0.9 0.81 0.85

Table 4.5 Ideal EVM Variable Values by Types

Coefficient Related to Desirable Nominal Undesirable

CPI Cost >1 =1 <1

CV Cost <0% 0% >0%

EAC Cost >1 =1 <1

ETC Cost <Remaining Budget =Remaining Budget >Remaining Budget

SPI Schedule >1 =1 <1

SV Schedule >0% =0% <0%

TCPIB Work <1 =1 >1

TCPIP Work >1 =1 <1

66 ◾ Software Project Management

The term “burdened rate” refers to taking into account all of the costs associated with the
project. Although the language may differ from one country and system of accounting from one
country to another, there are three categories of costs commonly considered:

 ◾ Direct Costs – These are the easiest to account for and as the name implies are what we gener-
ally will see the easiest on a project. For example, the €40 per hour we pay a software engineer
is a direct cost. If we only take direct costs into account, we will be losing money at a rapid
rate. You may have heard that a €40 per hour software engineer earns €80,000 per year but
may actually cost the company €120,000 per year, possibly much more. That bit of hearsay
happens to be true. Here is how. As a company, we need to provide working space for the
software engineer, heating and cooling, pay various social services taxes, business licenses, lia-
bility insurance, health insurance premiums, various other benefits, administrative support,
legal fees for the company and so on. Not accounting for and incorporating those indirect
costs into our estimates for doing work for our clients can and will put us out of business.

 ◾ Indirect Costs – These relate to just keeping the doors of the business open and running our
software engineering firm. These break down into two categories:
 – Overhead Costs
 – General and Administrative Costs

Perhaps the best way to explain the role and content of these various costs is through an explana-
tory example but first a few basics. The term “Chart of Accounts” refers to a listing of the vari-
ous expenses and sources of income of a company. Different countries have different rules about
what must be listed in a chart of accounts and how each item should be categorized so what is
depicted here may be different from what an accounting firm in your locale would consider stan-
dard accounting practice in your country. Table 4.1 presents a generic example from which you
could begin to develop a chart of accounts for your startup firm. If you work for an established
company, they have already created a chart of accounts. In general, the actual numbers are not
publicly available because they reveal the pricing structure of the firm.

Chapter 4 Review Questions
 1. In EVM, what is the concept of “value?”
 2. What information is needed to use EVM?
 3. If a project is 15% complete and over budget and/or behind schedule, without changing

budget, schedule or requirements, what are its chances of eventually getting back on schedule
and/or within budget?

 4. What underlying assumptions comprise EVM?

References
 [1] Fleming, Q.W. and Koppelman, J.M., Earned Value Project Management, 4th edition, Project Management

Institute, Newtown Square, PA, 2010.

67DOI: 10.1201/9781003484288-5

5.1 Chapter Overview
Although the software project manager has been found to be the most important factor in the success
of a software project, having a software engineering team with the knowledge and skills necessary to
be successful is also a vital factor. Picking that team is not a simple task. But even as we are selecting
the team, we are mindful of what role each team member will play. Although people can play differ-
ent roles in software development efforts, there are some they will be better at than others most often
due to their preferences. As we discuss in this chapter, there are many mistakes that can be made in
putting the team together that can jeopardize the team’s chances of success. This chapter presents an
approach which has been used successfully to assemble and maintain a team that performs to its full
potential. It also provides guidance and examples of how to resolve unusual situations.

5.2 Acquiring and Developing the Software Development Team
Putting together a software development team and maintaining it may be the most important
responsibility a software project manager has. It is hard work; it may take a lot of your time and it
never ends. It never ends because the team is continually evolving as its members work together,
learn more about each other and strive to achieve a successful project. As you read this section,
think about a time when you were a member of a software development team that is or was effec-
tive. It did not have to be an ideal situation but it worked. If it didn’t work, the remainder of this
chapter may reveal why and what could be done in a future project effort to prevent problems and
better ensure success by carefully assigning software engineers to tasks for which they are best suited
and prefer to do. This chapter also explores ways to ensure that remote teams work together across
cultural, geographic and time zone differences that often endanger success.

As in sports, having a productive software development team requires much more than simply
selecting talented people. While selecting people with knowledge, experience and some level of tal-
ent is important, selecting people who can work together and support each other is also important
but motivating the team may be the most important factor. If you have been part of more than a
few projects at different companies, you have probably seen some projects with talented people run
into serious difficulties. Some of these situations may have been puzzling in that the people were

Chapter 5

Staffing

http://dx.doi.org/10.1201/9781003484288-5

68 ◾ Software Project Management

talented and experienced, the requirements were well understood and the schedule was not impos-
sible, so what was the problem? In my professional career, consulting practice and elsewhere, I have
seen this many times. Some people simply attribute the difficulties to “The management” but the
source of problems goes much deeper than this.

5.3 Software Engineering Is a People Activity
No matter what kind of software is being developed, or how skilled or challenged a software devel-
opment team is, software is built by people. That fact brings into play all the various foibles and idio-
syncrasies that constitute a person including their psychological makeup, value systems, education
and work preferences – what they prefer to work on. Technology will not solve the “People Problem”
because it is focused on definable issues with what amount to closed- form solutions. The term
“People Problem” refers to the challenges the software project manager is faced with when putting a
project team together, keeping them together and motivating them to get along and be productive.
Just to be clear, the issues involved include the pace at which some folks work, interpersonal skills
(or the lack of them), attention to detail, reliability (i.e. showing up for work every day), on- time
delivery, meeting commitments, mutual respect (or the lack of it), a shared sense of urgency and
others. What a messy challenge. However, there are a variety of ways to meet these challenges as we
shall see in this chapter. A key factor to keep in mind is that there is no formula or defined process
by which you can be successful at team building and management because each situation is differ-
ent based on many factors which are discussed here. Being a people activity, we need to be aware of
the differences in how people deal with the world, how they go about solving problems and more.

5.4 What Does a Successful Software Project Team Look Like?
Many software project managers have wondered just what do they have to do in order to build
a software engineering team most likely to be at least minimally successful. That is, the team
brings the project in on- time, meeting requirements and within budget. Fortunately, we have
some guidance in this regard. A study of successful high- technology projects and multidisciplinary
teams [1] described the fundamental properties a team needs to have in order for them to poten-
tially be successful. All of these “winning” teams were composed of people who shared these three
characteristics:

 1. Tacit Knowledge – They had some knowledge of the technology involved. They were not
experts in this technical field but had some experience with it or knowledge of it.

 2. Team Experience – They had worked as part of a team before – not necessarily with these
team members but had experienced the give and take of negotiating what happens when
teams make decisions. More recent work [2] found that the ideal situation occurs when the
team members have worked together as a team before.

 3. Team Member Compatibility – The team members had psychological profiles which were
compatible. Using the Myers- Briggs Type Inventory (MBTI) or some other personality type/
inventory system, the personalities of the team members were deemed to range from reason-
ably compatible to incompatible. We have all experienced instances in work situations where
some people we worked with seemed easier to work with than others. It turns out that at least
part of the nature of this was the personality profile of the individuals involved.

Staffing ◾ 69

5.5 Psychological Compatibility
No matter what line of work you are in or have been in, there are people you have worked with
easily and others you simply had a difficult time working with but could not always explain why.
One team of researchers studied dozens of successful and failed technology projects in an attempt
to find what made teams work or not work [1]. They found, as stated above, that psychological
compatibility was one of three primary factors present in successful technology projects. As a soft-
ware project manager, you have probably figured out ways to establish whether or not a prospective
team member possesses the training, technical knowledge and experience your team will need on
a given project but what about compatibility with other team members? It turns out that for more
than 2000 years various people have been trying to understand human personality well enough to
do just that. One of the most widely used is MBTI [3]. It views personality as having four dimen-
sions with each dimension having two opposing factors. The dimensions and their opposing factors
in this model of human personality are:

 ◾ Focus of Attention – The two opposing forms this dimension can take are:
 – Extravert (E) – These are people who are at ease talking to and sharing with others. They

gain energy from working with groups.
 – Introvert (I) – These people relate best to their inner self. Their energy is drained from

working with groups.
 ◾ Seeking Information – The two opposing forms this dimension can take are:

 – Sensing (S) – These people rely on facts, reality and are no- nonsense individuals. When
they review documents, they are most likely to find typographical errors and misspellings.

 – Intuitive (N) – These are people who use/rely on their intuition, speculation and imagi-
nation. When they review a document and they are most likely to find problems in how
the document was developed.

 ◾ Decision- Making – The two opposing forms this dimension can take are:
 – Thinking (T) – These people make decisions based primarily on sound principles, laws

and so forth. Thinkers are analytical, logical and objective.
 – Feeling (F) – These people make decisions based on values, devotion, sympathy and

harmony. Feelers will take the emotions and opinions of others into consideration. They
strive to maintain harmony in the group.

 ◾ Relationship with the World – The two opposing forms this dimension can take are:
 – Judging (J) – These people are outcome- oriented, regulated and decisive. They make

decisions quickly, drive toward getting closure of issues and settlement.
 – Perceiving (P) – Process- oriented, flexible, open- minded and make decisions slowly. They

like to get new information or consider other possibilities.

Each person is a combination of one of the two possibilities in each of the four categories (e.g.
INTJ) giving us 16 possibilities. Table 5.1 contains the distributions in percentage of each type
for the population of the United States. It is presented here in order to demonstrate the broad
range of personality types that exist in the United States and likely similarly in other developed
nations.

The reason for presenting Table 5.1 is to demonstrate the wide variety of personality types pres-
ent in the general population and as we shall see, the types that are concentrated in the software
engineering profession. One study [5] found results shown in Table 5.2 with subsequent researchers
finding similar results.

70 ◾ Software Project Management

What the various studies of software engineers’ MBTI profiles conducted over the years have
consistently shown over the years is an evolution with introverts, thinking and judging prevalent
with sensing and intuitive types nearly equal. Part of this shift in MBTI type population in software
engineering is changes in the nature of the work. Initially, highly mathematical and scientific to
today with heavy emphasis on communication, ease of use and human interfaces.

5.6 Teams Need Compatibility
Some possible types work better together or are more compatible with others as shown in Table 5.3.
To use the table, select are type on the vertical that corresponds to one person then move to the
right to the column representing a second person’s type. The higher the compatibility index, the
more compatible the type is with another type. For example, an INTJ type would be very compat-
ible with an ESFJ type (0.83) but not very compatible with an ENTP (0.17).

Some advisories are in order here. Regardless of the model used (MBTI is only one of several
available), personality type should not be the only factor used to select team members. Besides,
work rules in some countries and organizations may preclude the administering of the MBTI or
some other typing instrument, even if it is put forward as a condition of employment. Also, this
information must be retained in the strictest confidence unless the team member explicitly gives
permission to share it. There are other factors as well so it would be wise to check your local laws
and organization’s rules.

Interviewing prospective members of the development team should involve all current
members – if they do not believe they can work with the interviewee, then find someone else
who can.

Table 5.1 Distribution of Personality Types in the United States using the MBTI
Model [4]

ISTJ: 11.6% ISFJ: 13.8% INFJ: 1.5% INTJ: 2.1%

ISTP: 5.4% ISFP: 8.8% INFP: 4.4% INTP: 3.3%

ESTP: 4.3% ESFP: 8.5% ENFP: 8.1% ENTP: 3.2%

ESTJ: 8.7% ESFJ: 12.3% ENFJ: 2.5% ENTJ: 1.8%

Table 5.2 Combined Population of Personality Types among Software Engineers [5]

ISTJ: 25% ISFJ: 13.8% INFJ: 1.5% INTJ: 16%

ISTP: 5.4% ISFP: 0% INFP: 4.4% INTP: 15%

ESTP: 4.3% ESFP: 8.5% ENFP: 8.1% ENTP: 0%

ESTJ: 8.7% ESFJ: 0% ENFJ: 2.5% ENTJ: 1.8%

Staffi
n

g
◾

71

Table 5.3 Normalized Personality Compatibility using the MBTI

ESTJ ESTP ESFJ ESFP ENTJ ENTP ENFJ ENFP ISTJ ISTP ISFJ ISFP INTJ INTP INFJ INFP

ESTJ 0.67

ESTP 0.33 0.67

ESFJ 0.83 0.50 0.67

ESFP 0.50 0.83 0.33 0.67

ENTJ 0.83 0.50 1.00 0.67 0.67

ENTP 0.50 0.83 0.67 1.00 0.33 0.67

ENFJ 1.00 0.67 0.83 0.50 0.83 0.50 0.67

ENFP 0.67 1.00 0.50 0.83 0.50 0.83 0.33 0.67

ISTJ 0.50 0.17 0.67 0.33 0.67 0.33 0.83 0.50 0.33

ISTP 0.17 0.50 0.33 0.67 0.33 0.67 0.50 0.83 0.00 0.33

ISFJ 0.67 0.33 0.50 0.17 0.83 0.50 0.67 0.33 0.50 0.17 0.33

ISFP 0.33 0.67 0.17 0.50 0.50 0.83 0.33 0.67 0.17 0.50 0.00 0.33

INTJ 0.67 0.33 0.83 0.50 0.50 0.17 0.67 0.33 0.50 0.17 0.67 0.33 0.33

INTP 0.33 0.67 0.50 0.83 0.17 0.50 0.33 0.67 0.17 0.50 0.33 0.67 0.00 0.33

INFJ 0.83 0.50 0.67 0.33 0.67 0.33 0.50 0.17 0.67 0.33 0.50 0.17 0.50 0.17 0.33

INFP 0.50 0.83 0.33 0.67 0.33 0.67 0.17 0.50 0.33 0.67 0.17 0.50 0.17 0.50 0.00 0.33

72 ◾ Software Project Management

For a variety of reasons, you may end up having to manage a team with members who are
incompatible. There are several things you can do to mitigate the situation:

Try working with the individuals involved directly, privately and together. The key issue here is
whether or not they are willing to set aside their differences for the good of the project.

Do not single anybody out as a troublemaker. The rest of the team probably already knows who
this person(s) is.

Make sure everyone on the team puts the success of the project ahead of their personal agendas.
A gentle reminder on the merit or annual performance review may help in some circumstances.

If you have tried everything you can think of, enlist the help of a psychology professional who
specializes in team development. I had this exact situation before and the cost was money
well spent.

The most common software types are ISTJ and INTJ. To use the table, go to the intersection
of two types. For example, ESTP and INTJ have a compatibility index of 0.33. Recalling that the
higher the compatibility index the more compatible the personalities, 0.33 is not highly compatible.

Using the compatibility table:

 1. Determine the MBTI personality type for each individual on the team.
 2. Select the appropriate column for one of the individual’s MBTI types.
 3. Find the horizontal row for the second person’s MBTI type.
 4. Find where the column and row selected above intersect. That is the estimated compatibil-

ity index.

5.7 An Advisory about the Compatibility Index
While the compatibility of team members is important, it should not be the only or primary fac-
tor in determining whether or not to extend an invitation to an individual to join the team. Other
factors should be considered as well. These include but are not limited to whether or not the job
candidate possesses the knowledge and skills needed by the team, whether or not the members
of the team believe they can work with this person and how strongly the candidate wants to be a
member of this team working on this particular project.

5.8 Software Engineer Task Preferences and the MBTI
We have seen how compatibility between/among members of the software development team can
impact project success but interpersonal compatibility is only part of the software project manager’s
team formation and deployment problem. Another part is the assignment of each team member
to tasks that are part of the project. Thinking about your own career, there were tasks you were
assigned that you found you preferred over others. It turns out that from a productivity standpoint,
like other people, software engineers are less productive when they are performing tasks which they
dislike versus ones they prefer [6]. Studies have demonstrated a correlation between certain MBTI
types and software engineering tasks [7] as well as the most- and least- represented MBTI types in
software engineering [4]:

Staffing ◾ 73

 ◾ Most- represented MBTI types
 ISTJ
 INTP
 ESTJ

 ◾ Least- represented MBTI Types
 ENFJ
 INFJ

The actual data for all 16 MBTI- type categories are shown in Table 5.4.
It should be kept in mind that your project will need software engineers doing more than writ-

ing code (programming). Analysts, designers and testers will be needed as well as some software
engineer(s) to maintain the code. In smaller projects and company settings, software engineers
might be required to perform in more than one role. This raises the issue of which MBTI types are
better suited to one or more of these roles than others based on their task preferences. The work
has been [5] done to help us make these assignment decisions. Of course, the individual software
engineer must agree to the assignment but at least we have some guidance as to what roles are most
likely to be acceptable or preferred by the software engineer. The findings regarding task preferences
in Carpretz [7] are structured according to MBTI temperament categories (i.e. SP, SJ, NT and NF)
as shown in Table 5.5.

The preferences in Table 5.5 are just that, preferences. It does not mean that software engineers
should only be assigned to their preferred tasks. They could very well be effective at working on
other tasks as well. This largely depends on the individual’s value system and work ethic. Although
MBTI or some other personality type indicator should not be used exclusively to make the decision
to hire or assign a software engineer, the temperament profile of the software engineers that were
hired provides a strong indication of which role(s) each individual would prefer and likely perform
well at.

Table 5.4 Frequency of Occurrence (%) of MBTI Types among Software Engineers [4, 7]

Type> ISTJ ISFJ INFJ INTJ ISTP ISFP INFP INTP ESTP ESFP ENFP ENTP ESTJ ESFJ ENFJ ENTJ

17.3 3.6 2.2 9.0 8.1 1.6 3.9 11.5 4.7 2.0 3.8 9.7 12.7 2.1 2.0 6.0

Table 5.5 Task Preferences of Software Engineers by MBTI Temperament Type [7, 8]

Task Type -> Analyst Designer Programmer Tester Maintainer

SP 85% 59% 74% 11% 22%

SJ 84% 66% 64% 25% 25%

NT 65% 85% 60% 20% 15%

NF 75% 63% 63% 13% 13%

74 ◾ Software Project Management

Chapter 5 Review Questions
 1. Name the three attributes common to successful high- technology project teams.
 2. What does psychological compatibility mean?
 3. What should you do if you have one or more team members who are incompatible with each

other or other team members?
 4. What role should the compatibility index play in the hiring process?
 5. In making team member task assignments, what role should the MBTI or other profiles you

may be using play?

References
 [1] Chen, J. and Lin, L., “Modeling Team Member Characteristics for the Formation of a Multifunctional

Team in Concurrent Engineering,” IEEE Transactions on Engineering Management, Vol. 15, No. 2, 2004,
pp. 111–124.

 [2] Staats, B.R., Gino, F. and Pisano, G.P., “Varied Experience, Team Familiarity, and Learning: The Mediating
Role of Psychological Safety,” Working Paper 10- 016, Harvard Business School, 2010.

 [3] Myers, I.B. and Myers, P.B., Gifts Differing: Understanding Personality Type, 2nd edition, CPP, Palo Alto,
Ca, 1995.

 [4] Capretz, L., “Personality Types in Software Engineering,” International Journal of Human- Computer Studies,
2003, Vol. 58, pp. 207–214.

 [5] Bush, C. and Schkade, L., “In Search of the Perfect Programmer,” Datamation, Vol. 31, No. 6, 1985,
pp. 128–132.

 [6] DeMarco, T. and Lister, T., Peopleware, Dorset House, New York, NY, 1999.
 [7] Capretz, L., Varona, D. and Raza, A., “Influence of Personality Types in Software Tasks Choices,” Computers

in Human Behavior, Vol. 52, 2015, pp. 373–378.
 [8] Schaubhut, N. and Thompson, R., MBTI Type Tables for Occupations, CPP, Mountain View, California, 2008.

75DOI: 10.1201/9781003484288-6

“The best, most effective motivator is a simple ‘Thank you’.”

–Francesca Gino, Harvard University

6.1 Chapter Overview
You have laid out a project plan, put together a team you believe can do the job and now begin
to ponder the question, “How do I get the team committed and motivated to this work?” Part of
the answer lies in the interview process where you explained the work you are hiring them for so
that they should have known what they were going to be doing and what would be expected of
them. Why should we care if they are motivated? We should care because an unmotivated team
will take longer and produce lower quality than a motivated one. As you will see in this chapter, we
need to understand what work appeals to each software engineer and what are the many options
at your disposal for getting them engaged in the project. This chapter explores the dimensions of
this issue(s), providing some options for addressing it together with further resources for exploring
available research further.

6.2 The Problem
For many years, managers in various industries and sports teams have grappled with the problem of
motivating their teams to perform to the best of their ability. Several factors are involved in making
that happen. Without training and science- based information, many software project managers
have concluded that in order to get the team members motivated, offer money as an incentive since
they see money as the primary motivator but it isn’t. Money has been shown to be the primary
motivator for repetitive work like factory work [1] and developing software is anything but repeti-
tive. The software project managers’ incorrect assumption about money as a motivator stems from
their value system which places money as number one in importance [2] as shown in Table 6.1. In
order to better understand what motivates people to work, we need to understand the nature of
work and how people relate to it. What motivates people can vary greatly from person to person

Chapter 6

Motivating

http://dx.doi.org/10.1201/9781003484288-6

76 ◾ Software Project Management

and profession to profession. It all depends on their value system. We will examine some of the
most common factors mentioned earlier. A study of the psychological profiles of 60 professions [3]
found that software engineers are unique in that they have:

 1. High Growth Needs Strength – This is a need to solve challenging problems.
 2. Low Social Needs Strength – This is the desire to solve these problems independently.

There are other studies which characterize software engineers which found less profound results.
One particularly observant one showed that working on projects which are on the leading edge of
the technology is a big motivator as well as working on projects that would impress their colleagues
[4]. It should be noted that these and other studies do not mention money as a motivator and yet,
software project managers still believe that money is a motivator. It turns out that money has been
shown to be a motivator only in repetitive work like factory work but not in challenging, creative
and innovative technical work like software engineering [2]. Granted, not all of us are managing
projects which are state of the art or breaking new ground in the profession, but we can vary the
work so that people will look forward to coming to work and doing a great job. For example, I was
in charge of a team whose job was to debug codes written by others which was of poor quality. Of all
the assignments software engineers probably dislike the most, it is cleaning up somebody else’s poor-
quality code. Also, at this time, there was an advanced research effort to develop three- dimensional
viewing which was going unstaffed due to low priority and limited funding. Even though our group
was tasked with code cleanup duties, literally everybody wanted to work on the experimental three-
dimensional viewing glasses. What I did to remedy the situation was to rotate people from code
cleanup to the three- dimensional effort for fixed periods of time negotiated with the team. That
way, each team member knew they would only be doing the distasteful work for a known limited
time before they would be doing something really interesting, then back again and so forth. This
worked. The code cleanup effort improved, and morale improved measurably. While not every proj-
ect management situation may have such a readily available solution, it is important to recognize

Table 6.1 Value System Differences between Software Engineers and Their Managers [2]

Factor Manager’s
Importance Rank

Nonmanager’s
Importance Rank

Salary 1 5

Job Security 2 4

Promotion/Growth Opportunities 3 7

Working Conditions 4 9

Interesting/Challenging Work 5 6

Personal Loyalty to Workers 6 8

Tactful Discipline 7 10

Appreciation for Work Done 8 1

Help with Personal Problems 9 3

Being in on Things 10 2

Motivating ◾ 77

that the morale of the team and each individual is vital to the success of your effort. You might try
creating a technically challenging project to help give team members an alternative or, better yet,
have each member of the team propose something and have the team vote on which to pursue.

In his speech upon being inducted into the Automotive Hall of Fame in 2006, Alan Mulally,
former CEO of Ford Motor Company pointed out that in the United States at that time only
40% of workers were happy about their jobs and only 25% were engaged in their work. These are
important productivity issues directly related to the role/behavior of management. Some senior
managers believe “I am paying them to do a job. I am not paying them to be happy!” Hopefully,
this group is in the minority since studies have shown that workers who are happy are up to 20%
more productive and engaged in their work [5].

6.3 What Motivates Software Engineers
In general, software project managers see themselves as problem solvers. Motivating the software
engineering team to perform at their best is often challenging and a significant problem whose solu-
tion is part of the key to a successful project. It is among the “soft skills” successful software project
managers utilize [6]. This is where the differences between the manager’s value system and that of
the software engineer come into play with (potentially) negative outcomes [2]. Software project
managers value money more highly than software engineers [2]. This creates a communication bar-
rier between the software project manager and the software engineer (Table 6.2). Succumbing to
a form of affinity bias, without questioning it, the software project manager assumes the software
engineer highly prizes money as well and proceeds to employ it as a means of motivating team
members. Unfortunately, this is not what actually works. What does work is a simple “Thank you”
[7]. This doesn’t need to be some sort of award ceremony but just a private meeting with an indi-
vidual or even the whole team and thanking them for their efforts. This situation is something of a
paradox, wherein the most expensive motivator is the least effective while the least expensive is the
most effective. Let’s just call this Peters’ Paradox. The assumption that money is a motivator is true
only in a limited arena which involves repetitive [1] work (e.g. factory work) but software engineer-
ing is creative, challenging and anything but repetitive.

Table 6.2 Known Demotivators of Software Engineers [8]

During the Development Phase Comments

Technically High- Risk Requirements Not anchored in what is possible

High- Risk Schedule Market generated and not realistic

Inadequate Staffing Not just head count but skill set, proficiency
level and experience

Inadequate Resources Hardware, software and communications

Software Quality Just getting it done is not enough

During the Distribution Phase

Poor Software Quality Reflects badly on the development team

Feature Reduction Reduces the importance of individual efforts

78 ◾ Software Project Management

6.4 What Demotivates Software Engineers
It is important for us to recognize what actions demotivate the software engineering team. The
problem often is that circumstances beyond our control may put us into a situation where there
is nothing we can do but try to get through as best we can because the factors like those shown in
Table 6.2 are thrust upon us. By looking at the table, we can see several of the usual complaints that
software engineers have about the management of their projects. The content of the table should be
considered the short list. If you review your own experiences, you will probably remember others.

The thing to remember about Table 6.2 is that it is only a representative list of actions which
inhibit productivity. As a reminder [3], shipping poor quality just to meet a deadline is a productiv-
ity inhibitor of the first order. According to reviewers on the internet, Microsoft’s Surface Duo was
not really ready for release due to the large number of programming errors present in that product.
Given that, it is unlikely that developers of that product would highlight producing it as a high
point in their career. Also, reducing features is a demotivator because people who were working on
those features have a lot of time and effort investing in them. Postponing them for a later release
or canceling them altogether may be well intended (i.e. to shorten the schedule) but can have a
significant impact on the motivation and productivity of those assigned to their creation.

6.5 Motivating Test and Maintenance Teams – Their Jobs Are
(Almost) Thankless

Cleaning up someone else’s poor- quality code is bad enough but testing it and having to notify the
developer that the code was faulty and failed some test(s) in the mind of some worse. Remember
that code is psychologically an extension of the developer’s self [9] so there is a natural reluctance
for the software engineer to simply accept the tester’s verdict. In some firms, the people who test
software are viewed unfavorably. In fact, they may be shunned socially. The challenge for the soft-
ware project manager is to educate the software engineering team as to the value that finding (and
removing) coding errors before the product ships saves the developing firm a considerable amount
of money over emergency rework and even saves the product from receiving poor reviews which
may ultimately cause the product to be abandoned.

6.6 The Role of Antipatterns
The software project manager is the ultimate problem solver. No matter what is going wrong in
the project, the software project manager is expected to have some solution for it. The problem is,
as we have discussed earlier, the software project manager is not likely to be trained for each and
every eventuality that can occur. But since the problem feels something must be done about the
problem, they make up something that may seem like a solution. Not all of these solutions fail to
solve the problem but enough have that books have been written about them [10]. These ineffective
solutions are referred to as “antipatterns” and, as their name implies, they not only do not work but
generally make things worse. The best way to avoid falling into the “antipattern trap” is education.
That means learning what constitutes an antipattern and refraining from engaging one when it
seems like the action to take. One of the earliest published works in identifying an antipattern was
Brooks’ work titled “The Mythical Man- Month” [11]. In it, Brooks pointed out that adding people
to a late project actually makes it later. It is fair for us to ask, why did we think it would help in the
first place? This is where our humanity works against us. Our everyday experience tells us that if we

Motivating ◾ 79

have a task to do, the more people we have working on it, the less time it will take. The problem
is these everyday tasks are simple and deterministic. For example, if we have to stack a load of fire-
wood, two people working on it will get it done quicker than one and so forth. The important dif-
ference is that developing software is neither simple nor deterministic. That is, it does always have a
definable end. Why? Because as the development process goes on, we begin to discover nuances in
the requirements, the environment the system will run in changes, users’ needs change and more.
All of these factors and more make software engineering challenging for both the engineers and the
project manager. It is a process constantly subject to change.

6.7 Peters’ Paradox
As stated earlier, the most effective means of motivating software engineers is a simple “Thank you.”
This free but the most common means of motivating software engineers is money. But money has
been shown to be ineffective at motivating software engineers over the longer term. So, we have a
paradox of sorts in that the most expensive motivator is the least expensive while the least expensive
motivator is the most effective.

6.8 The Nature of Work
For several decades, psychologists have been studying people’s motivation to work. The obvious
answer is that people work for money but that is only partially true. If you disagree, think of the
worst, most disgusting job you can imagine. Now if someone offered you double the salary you are
currently being paid to do that job for the rest of your career, would you accept the offer? I have
posed that same question to, literally, hundreds of software engineers over the years and have not
had a single taker. It turns out work is a deeply personal activity involving our image of ourselves,
our goals in life, how we relate to colleagues and more. A good example of this money issue took
place on the big screen in a 1954 movie titled “On the Waterfront.” In it, Marlon Brando plays
the part of Terry, a prizefighter who works on the docks in New York unloading ships. His brother
Charlie is a lawyer for the crime syndicate that controls the docks and shipping. Terry and his
brother are having an argument over why Brando was forced to throw (intentionally lose) a fight.
Terry says, “You’re my brother Charlie, you should look out for me” to which Charlie responds,
“We had some bets down for you, you saw some money.” To which Terry responds, “It’s not about
money Charlie, I could have had a shot at the title, I could have been somebody.” All of this and
more demonstrate that self- esteem and other needs are fulfilled by work. The three leading models
of why people work are:

 1. Herzberg [12] proposed a “Two Factor Theory” to explain why people work. These were
hygiene defined as being survival related to having to do with pay, working conditions, respect
and job stability. The other factor, relationship to the job, involves advancement, promotion,
fair treatment and the potential for higher rewards.

 2. Maslow [13] proposed that people have a hierarchy of needs and working satisfies the hierar-
chy. Starting at the top, these are psychological needs, safety and security, social needs, esteem
needs and self- actualizations.

 3. McClelland’s [14] theory proposes that people work to satisfy three needs – achievement (to
do something important), power (to have control over others and/or their own actions) and
affiliation (friendly relationships).

80 ◾ Software Project Management

While all three models involve some issue(s) related to self- esteem in one way or another, Herzberg’s
model may be the most widely accepted model of the three. Software project managers who rely
on these factors (i.e. pay rate, working conditions and so forth) to control and motivate software
engineers have high turnover rates [3]. It should be noted that turnover (i.e. leaving the project or
company) increases development costs by as much as 60% [15]. Since no one wants to be associ-
ated with a failed project or poor quality, taking what amounts to shortcuts reduces productivity.
In addition, more recent work [4] has shown that technology workers have a common value system
which places a high priority on producing work that they can be proud of, that their colleagues
will be impressed by and is at or near the state of the art. Producing work that incurs technical
debt violates these goals and value systems. These factors can be extremely strong in some software
engineers. For example, a software engineer whom I managed was part of a team on a very aggres-
sive schedule. Some of the work involved fixing bugs in what might be most kindly described as
“spaghetti code.” He informed me that since his name was going to be associated with this code, he
would go beyond just fixing the latest bug and restructure and retest the software assigned to him.
Even though he voluntarily worked quite late some nights, he still met the schedule and, due to
some requirements changes, actually saved himself and his successors a great deal of time to respond
to these changes. The successors of his colleagues who just did the minimum bug fixes were not so
fortunate. An environment in which doing the work less than the “correct” way reduces productiv-
ity and incurs “hidden” expenses in several ways:

	◾	 Loss of Productivity – When a person knows that what they are being asked to do is in con-
flict with what they know they should be doing, they are working at their lowest productiv-
ity level [9]. The phenomenon is called cognitive dissonance. Cognitive dissonance reduces
productivity. In the case of software development, productivity is often equated to the pro-
duction of source code. But source code production has only increased by less than one line
of source code per programmer per month per year in the period from 1960 to 2000 [16].
This increase has been linear even though dozens of programming, analysis, design, testing
and other methods and development tools were developed and engaged in over that period.
Cognitive dissonance means that even though the coding practices being used are seen as
justified because they will foreshorten development flow time, they may, in fact, increase it
making this practice something of a self- fulfilling prophecy. Management may be inclined to
speculate that even though shortcuts were taken, we still had trouble meeting the schedule.
When people are able to fulfill their perception of being productive with work that reflects
positively on them, they become highly motivated and are more productive. Therefore, tech-
nical debt may actually increase, not decrease, development time.

	◾	 Reduced commitment to quality practices – Cutting corners and/or abandoning our stan-
dard development process simply sends the wrong messages to the software engineering team.
These negative messages all reduce productivity and motivation while undermining the self-
confidence of the development team. They include:
	–	 The development process you so diligently spent time developing and refining is OK

when things are going smoothly but must be abandoned when we get behind schedule
and/or over budget.

	–	 We are committed to quality only when it is convenient.
	–	 Management does not believe we can do it right and finish on time, within budget.

	◾	 Reduced use of collective team experience – Most project managers try to compose develop-
ment teams in such a way that each member possesses skills and experience that complement
the skills and experience of the other team members. In this way, the team as a whole pos-
sesses the skills and experience needed to be successful. Schedule pressure may be the key

Motivating ◾ 81

driver behind engaging in technical debt [17]. This practice amounts to telling the develop-
ment team we have not got enough to do the job well, just less than well. This is a credibil-
ity problem because the software engineers know that the likelihood that they will ever be
directed to go back to the source code and upgrade is low due to the (potentially) horrendous
cost involved. But to overcome possible resistance to engaging in technical debt, a lot of pres-
sure will have to be brought to bear on the team. We now know that if enough pressure is
put on a team, they cease to work together as a team and revert back to working as a group of
disconnected individuals [17]. Meaning that the collective knowledge and experience within
the team is mostly lost.

	◾	 Increased cost – We know that in most job markets, software engineers can experience a
high degree of mobility. If they do not like working at one firm, there is often another one
seeking to hire them or, in the case of larger firms, they can transfer to another organization.
Experiencing cognitive dissonance, pressure to cut corners and so forth can increase turnover.
As stated earlier, we now know that turnover can account for as much as 60% of the cost of
a software project. So, we have a paradox, the very practice engaged in to reduce flow time
and costs (technical debt) may actually increase both due to lower productivity via reduced
motivation and increased turnover.

	◾	 Putting off correcting/paying technical debt can be really expensive. We have known for
decades that the later in a software system’s life cycle we correct a problem or make a needed
improvement, the more it costs and these costs increase exponentially [18]. Taking shortcuts
now with the intent of correcting the problems they cause until later practically guarantees
increased total system life costs. Besides, software engineers prefer to be creating new code,
not cleaning up somebody else’s mess. Also, the business case usually cannot be made to go
back and change code that is, presumably, working in order to “pay off” the existing technical
debt [19].

	◾	 Undermining a culture of professionalism by setting a tone of just getting the code out when,
in fact, people want to be associated with a culture in which getting quality results is the
norm. We know the long- term benefits of generating quality code in terms of maintenance
but the short- term benefits in terms of improved productivity have only more recently been
identified [4]. Five factors were identified that affected the motivation of high- technology
professionals [2] and are listed in Table 6.3.

Looking at Table 6.3, we can see that engaging in technical debt is the antithesis of several of the
factors that enhance motivation thereby reducing productivity. Most tasks are going to be some
combination (pro and con) of these motivating factors. It will be rare that all factors will be met but
if enough are, the software engineer will likely be motivated.

Table 6.3 Motivating Factors in Software Tasks [2]

Factor Description

Skill Variety The task requires the use of multiple skills

Task Identity The task is something the software engineer would like doing

Task Significance The task is seen as important

Autonomy The software engineer can accomplish the task as they see fit

Feedback Management provides feedback on how well the task has been done

82 ◾ Software Project Management

6.9 Keeping Successful Teams Together for Higher Productivity
More recent work with software organizations found that teams that worked well together should
be kept together [20, 21]. While this may not always be possible due to organizational changes,
product line evolution and other factors, the point is that effective, productive teams do not just
happen. Such teams are the result of hard work on the part of the software project manager and
the senior management team and sometimes just a matter of luck. The point is, once you have
identified a high- performing team, do not just break it up at the end of a project and reassign the
individuals to other projects. Instead, find a way to keep the team intact and assign them to another
project. Keep in mind that sometimes, team members, particularly those who are in the early years
of their careers, develop and mature in ways which may cause them to no longer be compatible
with the other team members. I had this happen when one team member decided he no longer
wanted to develop software. He decided to go back to school and obtained a Master’s degree in
Business Administration specializing in his first love, accounting. Another member decided they
no longer wanted to develop the type of software we were working on at that time. They decided
to go to work for Microsoft instead. All of this occurred after successfully completing a project that
was deemed “impossible.” But the remaining members of this five- person team pushed on, two new
members were acquired and their successes continued.

6.10 Generational Differences
For a broad range of reasons, today software project managers are managing multiple generations.
This can not only impact your project planning but may provide several unexpected challenges.
The challenges are a result of different perceptions of work and the relationship of the employee to
the employer as well as how to perform one’s work assignment. The demographics worldwide are
unique in history.

In the United States, several different categories of workers have been identified and studied
(Table 6.4) based on the period in which they were born. The United States is used here because it
is the easiest to obtain data for at this time.

In the United States, only one new worker will enter the workforce for every two that leave
it via retirement, one in six workers turned 55 in 2008 and 7,916 Boomers turned 60 in 2006.

Table 6.4 Age Classifications in the United States [22]

Classification Birthdate
% of the United

States Population

Matures Before 1945 10%

Boomers Between 1946 and 1964 43%

Generation Xers Between 1965 and 1977 33%

Millennials (Generation Y) Between 1977 and 2000+ 14%

Generation Z Between 1995 and 2010 20%

Generation Alpha 2010–present 13%

Motivating ◾ 83

Given that the nominal retirement age in the United States is 65, the workforce is shrinking, fur-
ther intensifying the mixing of various age groups in the workforce. Similar figures apply to the
countries comprising the European Union.

Each of these six groups displays common tendencies with respect to the values they bring to
the job, their work ethic and company loyalty. These are described below but keep in mind that
these are common tendencies, not absolute behavioral traits for any specific individual and the
degree to which these tendencies manifest themselves will vary from one person to the next:

	◾	 Matures
	–	 Values – Respect for authority, doing a job well is important, usually patient.
	–	 Work Ethic – Efficiency is the standard and believe in quid quo pro. That is, receiving

rewards from the company for working on its behalf. Sees job tenure as playing a role in
receiving raises.

	–	 In the Workplace (pluses/minuses) – Stable, thorough, detailed, works hard, loyal, change
and ambiguity are challenging, tends to not buck the system.

	–	 Motivating Matures – Feedback phrases like “What you have to say is valuable regard-
ing what has or has not worked in the past;” “Your perseverance is valued and will be
rewarded” and “We respect your experience(s).”

	◾	 Boomers
	–	 Values – Competitive, workaholic, optimistic and tries to balance work and family.
	–	 Work Ethic – To them, the hours worked represent a measure of value to the company,

evaluate work ethic with respect to themselves and highly value teamwork, relationships
and loyalty.

	–	 In the Workplace (pluses/minuses) – Service oriented, driven team players, avoid con-
flict, not budget oriented, process may supersede results and sensitive to feedback.

	–	 Motivating Boomers – Feedback phrases like “We need you;” “You are valued” and “Your
contribution is unique/important.”

	◾	 Gen Xers
	–	 Values – Work/life balance, independent, cynical, pessimistic, technically literate, global

thinking and informal.
	–	 Work Ethic – Favor productivity, not tenure, communication, avoids the Boomer work

ethic and is loyal to a person, not necessarily the company.
	–	 In the Workplace (pluses/minuses) – Creative, independent, not intimidated by authority,

technically savvy, very adaptable, cynical, lack people skills, impatient and inexperienced.
	–	 Motivating GenXers – Feedback phrases like “We have a very open company cul-

ture;” “You will be provided the latest technology” and “We tend not to have a lot of
red tape.”

	◾	 Millennials (Gen Y)
	–	 Values – Need stimulating work, rely on authorities, optimistic, confident and ambitious.
	–	 Work Ethic – Need open, high- bandwidth communication with others, want a job that

is personally fulfilling, need almost constant reinforcement from manager and works well
with matures.

	–	 In the Workplace (pluses/minuses) – Multitask, technically literate, heroic style, optimis-
tic and need rules, structure and discipline in the workplace.

	–	 Motivating Gen Y – Feedback phrases like “You (and/or your team) can play a major role
here;” “You will be working with the best and brightest people in this field” and “Your
manager is quite a bit older than you, in their 60s.”

84 ◾ Software Project Management

	◾	 Generation Z
	–	 What partly defines this group is its relationship to technology. They have not experi-

enced a time when most of what we take as commonplace technically did not exist.
	–	 They expect technology to be able to do just about everything.
	–	 They don’t see the need for an office they go to each day because they can do work from

anywhere, even in an aircraft.
	–	 They prefer and, in some cases, will require remote work or at least partly remote (e.g.

hybrid).
	–	 The pandemic highlighted the possibilities of this style of work.

	◾	 Generation Alpha
	–	 The research on this group is relatively new but what we do know is that they value col-

laboration and teamwork.
	–	 Managing them should emphasize group projects rather than single- person efforts.
	–	 Encourage communication among all team members.

6.11 Generational Issues – Summary
Opinions vary among researchers regarding the tendencies or characteristics of each of these groups
and the research is ongoing. What has been presented above is, essentially, an amalgam of the vari-
ous views. Similarly, most people are an amalgam of various characteristics and, depending on their
background and experiences, may sometimes be mislabeled.

6.12 Cultural and Language Differences
Culture may be defined as “The beliefs, customs, arts, etc. of a particular society, group, place, or
time” [23]. Believe it or not, a person’s background, current behaviors and attitudes on the job are
greatly determined by the culture they grew up in. Hence, without even thinking about it, if one
comes out of a culture of discrimination or bigotry, behaviors occur which are not thought out but
some form of nearly automatic response. Apart from psychological profiles and personality, it is
likely that you, the software project manager, will be managing a software development team com-
posed of software engineers from different cultures. This is true even if they all come from the same
country. Add to this the fact that some members of the team do not speak, as their first language
a language other than your own and you are in for some challenging communications and project
control issues. Why the language problem? Because worldwide, countries have recognized the value
of software technology and supported their students who wish to earn a degree in this subject even
if it means they have to study overseas. Often, some then immigrate to a country with greater
opportunities for employment in software engineering. This results in software development teams
more frequently being composed of people from different countries and different cultures with
different language skills.

If your first language is English, you might incorrectly assume that if people from other coun-
tries just worked at it, they could speak English much more understandably. You may be surprised
to learn that some people whose first language was not English literally, do not have the muscular
ability in their facial muscles to pronounce English words as well as those for whom English is a
first language. Similar comments apply to other languages. It is true that no matter how hard they
try or how much they practice, in most cases they will not speak as clearly as first- language speak-
ers. It turns out the converse is true as well. That is, those whose first language is English (or some

Motivating ◾ 85

other national language) may not have the facial muscle control to be able to speak some other
language(s) like a native, regardless of how much they practice. Over many generations, members
of each culture have physiologically adapted to speaking their native language, often to the detri-
ment of being able to speak some other language like a native. This fact alone can lead to com-
munication problems, some so serious that on some projects they had to resort to communicating
only by email. Both parties were able to understand written English and express themselves in
written English, but the spoken word was not as easily comprehended. Other factors can come into
play including attitudes regarding deadlines and costs that were an embedded part of each team
member’s culture that can put their value system into conflict with what was agreed to by the team
regarding cost and deadlines.

6.13 Managing Teams Composed of Different Cultures
As we already know, software engineering training as well as self- taught software developers have
resulted in software engineers from just about every country in the world. This means you are likely
to be managing people from a broad range of cultures no matter what country you are working in.
Data similar to what is presented below is likely available in your country. Let’s look at two situa-
tions for which we have ample data to which we can extrapolate elsewhere [24]:

	◾	 Nearly 40% of software engineers working in Seattle, Washington in the United States were
born outside of the United States. A similar situation exists for other technology centers in
the United States as shown in Table 6.5. The details of where Seattle’s foreign- born workers
come from highlight the diversity in cultures and backgrounds as shown in Table 6.6.

Table 6.5 Percentage of Technology Workers Born Elsewhere by Software Center in the
United States [24]

Rank City/Locale State Percentage

1 San Jose, Sunnyvale, Santa Clara California 71%

2 San Francisco, Oakland–Hayward California 50.3%

3 Seattle–Tacoma–Bellevue Washington 39.8%

4 Washington–Arlington–Alexandria Washington D.C. 33.6%

5 Dallas–Fort Worth–Arlington Texas 31.4%

6 Boston–Cambridge–Newton Massachusetts 30.8%

7 San Diego–Carlsbad California 30.5%

8 Raleigh North Carolina 27.2%

9 Minneapolis–St. Paul–Bloomington Minnesota 24.9%

10 Austin–Round Rock Texas 22%

11 Portland–Vancouver–Hillsboro Oregon 20.9%

12 Denver–Aurora–Lakewood Colorado 15.8%

86 ◾ Software Project Management

As you can see from the table, both the location and the percentage of foreign- born software work-
ers in the United States vary widely. Given that a similar situation exists in your country, it almost
guarantees that the software engineering team you manage will be composed of people from vari-
ous cultures each with their own value systems.

Although the development team may be viewed as working toward the same goal(s), each indi-
vidual on the team comes at this task with a unique combination of skills, values and priorities. The
skills issue is one which is relatively straightforward given the member’s education, training, work
experience and, in some cases, the reputation they have established at the firm or previous firms.
But a team member’s values and priorities are a direct result of the culture they come from. Some
extreme examples I have worked with include:

	◾	 On Time – No Matter What – This individual’s work was always on time but we quickly
learned that the issue of quality was of a lesser value than being on time. The code that was
turned in was frequently less than stable and not properly tested and debugged, often requir-
ing rework by others before the build could proceed.

	◾	 Deliver Only the Best – This individual did not want his name associated with code he con-
sidered to be of poor quality. When assigned to correct a bug in a module which was of poor
quality, he not only fixed the bug but rewrote, restructured and tested the module resulting
in a much more stable and maintainable piece of software. The interesting thing about this
was that his resulting code was delivered on time, bug free (as far as we could tell) and of
remarkably high quality. Again, what drove him to do this was that he did not want his name
associated with what he considered poor- quality code. In the interest of full disclosure, he
often worked late into the night to meet deadlines due to the poor quality of some of the
modules he worked on.

As you can see from the preceding as well as many others in my experience and yours, engineering
software engages many aspects of the human psyche that are not often written about in software

Table 6.6 The Country of Origin of Software Engineers in the United States [24]

Rank Country of Origin Percentage

1 India 40.8%

2 China 13.5%

3 Canada 6.0%

4 Russia 5.9%

5 South Korea 3.5%

6 Vietnam 3.0%

7 Philippines 2.1%

8 Mexico 1.9%

9 England 1.7%

10 Germany 1.5%

Motivating ◾ 87

project management texts. The reasons why it should be studied and written about is the interna-
tionalization of software engineering. It is a fact that more than half the sales of software companies
in the United States occur in other countries [25]. Although that data may seem outdated, the
numbers are probably similar to today’s data. The demand for information systems professionals
continues to grow making it likely that multiple cultures will be increasingly involved in software
engineering for the foreseeable future. This makes the ability to manage multiple cultures ever
more valuable. As stated in [23], “Culture is characterized by a set of unique values that guides the
behavior of people belonging to that culture.” One model of cultural differences [26] posits that
cultures can be categorized into four dimensions:

	◾	 Individualism–Collectivism – Individualism refers to a preference for loosely knit societies in
which people are expected to take care of themselves and their families. Collectivism refers to
the converse – a society in which people can expect others to care for them in exchange for
their loyalty.

	◾	 Masculinity–Femininity – This dimension is an indication of the degree to which a culture
emphasizes achievement over nurturing. Masculinity indicates the degree to which a society
emphasizes distinct gender- based roles. In many countries, the trend has been toward equal-
izing or overlapping the “traditional” roles of male and female.

	◾	 Power Distance – This refers to how people belonging to a certain culture view power rela-
tionships. That is, superior–subordinate and the degree to which people of that culture who
are not in power accept the unequal distribution of power. So, if you are managing some-
one from a culture of low power distance, they will question authority (e.g. your authority)
whereas those from high power distance cultures accept authority.

	◾	 Uncertainty avoidance – This refers to situations (e.g. a software project) where the outcome
of a process is either unknown or not reliably predictable. Hofstede developed an index of
uncertainty avoidance and applied it to the cultures of several countries. Low uncertainty
avoidance indicates a greater propensity for taking risks. Countries with low uncertainty
avoidance scores include the United States, England, India, China and Singapore. Countries
with high uncertainty avoidance (indicating an aversion to risk taking) scores include Italy,
Korea, Mexico, Belgium and Russia.

As you can see from the previous discussion, the elements of all four dimensions are present in all
cultures. The difference for us in managing software projects lies in the degree to which any specific
individual presents these characteristics.

6.14 Effects of the Work Environment on Productivity
If you have ever wondered whether or not the office environment you and your team work in has
an impact on how you and your team perform on the job, look no further. Although it has been
updated since it was first published, companies continue to ignore some or all of these results.
What the researchers set out to do was answer that question. After surveying many companies, their
results are summarized in Table 6.7. What they sought to find out was how environmental factors
helped or hurt people do their jobs. Some of what they measured was obvious. For example, people
doing work like software development would be negatively impacted by a noisy environment,
many interruptions and so forth. Here is what they found.

88 ◾ Software Project Management

6.15 Outsourcing
For more than a decade, major corporations in the United States and elsewhere have tried to reduce
the cost of software development. One popular approach has been to outsource development to firms
in countries which have lower labor and operating costs. For example, the wages for IT professionals
in India were approximately 50% less than a US- based subcontractor [28]. There are risks (some are
also potentially beneficial). One team [29] identified and categorized these into several categories:

 1. Geopolitical – How stable is the country in which the outsourcing is taking place?
 2. Temporal Difference – Depending on where you choose to outsource to, there may be some

serious coordination and communication problems due to time differences. Your firm may
make an important request via email which may not get read by the outsource firm until your
firm has quit for the day or worse, the issue is discussed via a telephone call where it is in the
middle of the night for one of you. This leads to miscommunication and poorly coordinated
responses to requests from both parties.

 3. Human Capital – Do they have the people to do the job as well as a few who can fill in for
those who may leave the firm, become ill or otherwise become unavailable?

 4. IT Competency – Do they have the skills, knowledge, training, infrastructure and experience
needed to be successful on your project? Do they have a reference client(s) for whom they
have done similar work successfully? Can you contact the references?

 5. Economical – How is the pricing and payment(s) to be implemented? What is the cost to be
firm, fixed price, cost plus fixed fee with a not- to- exceed clause? Is there an escrow agreement
in place? The way that works is the fee you plan to pay the outsource firm for the work is held
by a bank which does business in both countries or at least has a presence in one and a corre-
spondent bank in the other country. They hold the funds until you notify them to release the
funds to the outsourced contractor, indicating the work was completed to your satisfaction.
What happens if you do not believe the work was completed satisfactorily but the outsourced
firm disagrees? What organization or mechanism resolves the dispute? In what country will
depositions be taken? Who pays for the expenses associated with all of this? If there is a trial,
in what country, state and city will it take place?

 6. Legal – Who owns the results of this work? Does “work for hire” (or its equivalent) mean
the same thing in the outsourced country as it does in your country? How and where will
disputes be settled if the parties have to go to court? What are the criteria for acceptance/
rejection of the work?

Table 6.7 The Impact of Environmental Factors on Productivity [27]

Environmental Factor Highest Performers [% Yes] Lowest Performers [% Yes]

Amount of dedicated workspace 78 square feet
(7.2 square meters)

46 square feet
(4.3 square meters)

Work area is acceptably quiet 57% 29%

Work area is acceptably private 62% 19%

Phone can be silenced 52% 10%

Phone can be diverted 76% 19%

People interrupt you needlessly 38% 76%

Motivating ◾ 89

 7. IT Infrastructure – How is the contractor organized internally? What precautions and safe-
guards are in place that will prevent a hacker or an employee from gaining access to your
software and selling it to a competitor?

 8. Cultural Risks – Does the term “deadline” mean the same thing in that country as it does in
your country? Additionally, are delivery dates that appear in the contract legally binding in
both countries?

I think you get the idea. There is a lot more to the act of outsourcing software development to
another country than may appear at first glance.

6.16 Picking a Team Just Like You
You may have gotten into management because of your exemplary technical skills. That fact and the
desire by most of us to work with people we are comfortable with and agree with (on most topics)
can often cause software project managers to select team members who strongly resemble the soft-
ware project manager in technical and procedural matters. There is a significant danger in this. It
is that the manager’s “blind spots” (e.g. errors in judgment) will be reflected in the team rather
than having differing backgrounds and experiences which, taken together, form a more complete
and effective set of policies and technical skills. This follows from Ashby’s Law of Requisite Variety
[30]. Although it was originally developed as a means of evaluating systems, its ramifications are
applicable to the task of creating an effective technical team.

Chapter 6 Review Questions
 1. What is the least effective form of motivation for software engineers?
 2. What is the most effective form of motivation for software engineers?
 3. What do software engineers really want to work on?
 4. Why do software project managers continue to rely on money as a motivator?
 5. What are three practices that demotivate software engineers?
 6. Why do test teams need special attention to be motivated?
 7. What is the motivation paradox?
 8. Why do people work?
 9. Why should we keep software engineering teams together?
 10. Do all generations work the same way and have the same value systems?
 11. How likely is it that you will be managing software engineers from different generations?
 12. How does the physical environment the software engineers are working in impact productivity?
 13. Name some aspects of outsourcing often overlooked.
 14. How can you prevent creating a team just like yourself?

References
 [1] Ryan, R.M. and Deci, E.L., “Intrinsic and Extrinsic Motivations: Classic Definitions and New Directions,”

Contemporary Educational Psychology, Vol. 25, 2000, pp. 54–67.
 [2] Thamhain, H., “Team Leadership Effectiveness in Technology- Based Project Environments,” IEEE Engi

neering Management Review, Vol. 36, No. 1, 2008, pp. 165–180. College, Cambridge, UK.

90 ◾ Software Project Management

 [3] Couger, D.J. and Zawacki, R.A., Motivating and Managing Computer Personnel, Wiley- Interscience,
New York, NY, 1980.

 [4] Katz, R., “Motivating Technical Professionals Today,” IEEE Engineering Management Review, Vol. 41, No. 1,
March, 2013, pp. 28–38.

 [5] Forbes Magazine, 17 February, 2023.
 [6] Capretz, L.F. and Ahmed, F., “A Call to Promote Soft Skills in Software Engineering,” Psychology and Cognitive

Sciences, Vol. 4, No. 1, pp. 207–214, 2018.
 [7] Grant, A.M. and Gino, F., “A Little Thanks Goes a Long Way: Explaining Why Gratitude Expressions Motivate

Prosocial Behavior,” Journal of Personality and Social Psychology, Vol. 98, No. 6, June 2010, pp. 946–955.
 [8] Thanhaim, H.J., “Changing Dynamics of Team Leadership in Global Project Environments,” American

Journal of Industrial and Business Management, Vol. 3, 2023, pp. 146–156.
 [9] Weinberg, G. M., The Psychology of Computer Programming, Van Nostrand Reinhold, New York, NY, 1971.
 [10] LaPlante, P., Antipatterns: Identification, Refactoring and Management, Auerbach Publications, New York,

NY, 2005.
 [11] Brooks, F.P. Jr., The Mythical Man Month: Essays on Software Engineering, Addison – Wesley, Reading,

MA, 1995.
 [12] Herzberg, F., Work and the Nature of Man, The World Publishing Company, Cleveland, OH, 1966.
 [13] Maslow, A.H., The Farther Reaches of Human Nature, Viking Press, New York, NY, 1971.
 [14] McClelland, D.C., The Achieving Society, Van Nostrand – Reinhold, Princeton, NJ, 1961.
 [15] Cone, E., “Managing That Churning Sensation,” Information Week, May 1998, No. 680, pp. 50–67.
 [16] Jensen, R., “Don’t Forget about Good Management,” CrossTalk Magazine, August 2000, p. 30.
 [17] Gardner, H.K., “Performance Pressure as a Double Edged Sword: Enhancing Team Motivation while

Undermining the Use of Team Knowledge” Working Paper, 09- 126, Harvard Business School, January, 2012.
 [18] Boehm, B., Software Engineering Economics, Prentice- Hall, Englewood Cliffs, NJ, 1981.
 [19] Peters, L.J., “Technical Debt: The Ultimate Antipattern,” 6th Annual Conference on Managing Technical Debt,

Victoria, BC, Canada, 30 September, 2014.
 [20] Huckman, R. and Staats, B., “The Hidden Benefits of Keeping Teams Intact,” Harvard Business Review,

December, 2013.
 [21] Gardner, H., Gino, F. and Staats, B.R., “Dynamically Integrating Knowledge in Teams: Transforming

Resources into Performance,” Working Paper 11- 009, Harvard Business School, September 7, 2011.
 [22] Knight, R., “Managing People from 5 Generations,” Harvard Business Review, September 25, 2014.
 [23] Merriam- Webster Online Dictionary, March, 2015.
 [24] Balk, E., “More Than Half of Seattle’s Software Developers Were Born Outside U.S.,” Seattle Times, January

19, 2018 based on latest census data.
 [25] Software and Information Industry Association, Building the Net: Trends Report, 2001.
 [26] Hofstede, G., Cultures Consequences: Comparing Values, Behaviors, Institutions and Organizations across

Nations, Sage Publishing, 2nd edition, 2003.
 [27] DeMarco, T. and Lister, T., Peopleware, Dorset House, New York, NY, 1999.
 [28] Igbaria, M. and Shayo, C., Strategies for Managing IS/IT Personnel, Idea Group Publishing, Hershey, PA, 2004.
 [29] Minevich, M. and Richter, F., “The Global Outsourcing Report – Opportunities, Costs and Risks,” The CIO

Insight Whiteboard, 2005.
 [30] Ashby, W. R., Introduction to Cybernetics, Chapman and Hall, London, England, January, 2015.

91DOI: 10.1201/9781003484288-7

“When a project ends, there is a plethora of valuable information that should be
preserved.”

–L. Peters

7.1 Chapter Overview
When a project ends, much of the team proceeds to other assignments, subcontractors seek other
projects to work on and assuming the project resulted in a working system, the project moves into
maintenance and enhancement mode. This chapter describes the actions that should be taken in
order to prevent the project experience from being lost as a learning experience which may help
to avoid some mistakes in the future. One of the key learning mechanisms is a review of the pre-
project checklist created at the start of the project. Having each member review their initial evalua-
tion of the items listed and then contrasting them with what actually occurred can provide valuable
insights into one’s ability to assess the various factors. This chapter also provides guidance on what
project- specific variables are to be collected and conveyed to future projects.

7.2 Project Closeout Review and Learning
If we look at a software project as an opportunity for learning as well as a commercial venture, then
it is incumbent upon us to record what occurs during the project as part of a continuous process
improvement effort. As we saw earlier, the Reference Class Forecasting method has many benefits
but they can only be had if we have recorded our estimates and how they were done on previous
projects constituting a class. Without this referential data, we are left to the typical estimating meth-
ods which have not been proven to be accurate. Looking at this aspect of the project, it is important
for us to document how we arrived at the estimate, what changes to the requirements or at least our
interpretation of them occurred over the course of the project, when they occurred and what adjust-
ments, if any, we made to the project estimate. But there is much more to be recorded such as how
much turnover in personnel occurred (note: as much as 60% of software project costs can be attrib-
uted to personnel turnover [1]). We need to record who the members of the software engineering

Chapter 7

Project Closeout

http://dx.doi.org/10.1201/9781003484288-7

92 ◾ Software Project Management

team were and who the members of the client team were, what role each played, what were their
skill levels, education and so forth. On and on it goes. What we are recording is the history of the
project from start to finish including how it was viewed upon by the client as a success or failure or
something in between. What we are trying to do is identify what worked and what didn’t to improve
the chances of success or at least better results on the next project. In order to ensure that key ele-
ments are recorded, a list of items to record is provided which could act as a starting point to create
one unique to your company for future use. It is given that over time the closeout information that
is collected will evolve as items are added or deleted based on experience and their perceived value.
A review of the results of the pre- project checklist (Appendix 20) results should also be reported in
this project closeout document as part of a learning experience for all members of the team.

7.3 The Advantage of Keeping Extemporaneous Notes
Think of a software project as a journey, a trip of sorts. Creating a journal and maintaining it
throughout the journey will help document what happened and when. In this case, its purpose is
to identify what went well and what didn’t as well as enough information to better ensure that in
future projects, we can avoid some of the problems we encountered. Even failed projects have valu-
able information and “lessons learned” that can be beneficial in the future. Many new management
practices may seem to make sense in theory but may not work out when actually applied. What
we are trying to achieve in generating extemporaneous notes is to capture useful practices which
worked and may be transferable to other projects in the future as well as identify those which did
not so we can avoid making the same mistake(s) in future software projects.

7.4 Identifying/Archiving Lessons Learned
When the software project ends, the most common question asked may be “Was it a success?” That
is certainly a fair question to ask but what exactly is success? The most common interpretation of
that question is whether or not it finished on time, within schedule and meeting the requirements
set forth at the outset. Back at the start of the project, one of the tasks was to set forth in writing
what the success criteria were. The three just mentioned are considered by some to be the minimal
success criteria. Others that may have been included include whether or not the delivered software
system is easy to use, an improvement over previous systems and maintainable by software engi-
neers other than its developers. Granted, we are generally struggling to meet the minimum success
criteria (i.e. on time, on budget and meeting requirements) but delivering a technically superior
system that users dislike and won’t use can’t really be considered a success. This is partly why the
Agile method has been so widely accepted. Right from the start, the users are involved in the
system’s development – its look and feel. Psychologically, during its development, it becomes their
system. Throughout the development, user preferences have been incorporated into the system.
Some people would say “Careful what you wish for” but acceptance of the deliverable depends
largely on how well the user community recognizes its features as what they requested. So, success
or failure needs to be documented in advance but may fall victim to political infighting within the
contracting organization. In addition to success or failure evaluation, an extemporaneous log of
what the contracting firm was directed to be done, what was done and what the software engineer-
ing team advised may be invaluable if a lawsuit ensues.

Project Closeout ◾ 93

7.5 Sample List of Variables to Record for a Project
Closeout Document

The items discussed here constitute what some might refer to as “boilerplate” in that much of this
information could have been derived from the legal, contractual documents associated with the
project. While this is useful, what might be more useful are observations from the manager of this
previous project regarding the client’s propensity for pushing the scope of the effort to include
work not part of the original requirements. Doing this extra work can drive project costs over the
estimated amount no matter what estimating method we used. Why do project managers agree to
such requests? They agree to the extra work because they want to maintain a good relationship with
the client. Also, some project managers see these “extras” as no- cost items but remember, anything
that requires labor costs the project money. This means that “free” extra work isn’t free at all.

7.6 Reviewing the Pre-Project Checklist
Early in the project, the team reviewed the pre- project checklist arriving at a consensus value for
each item. Now that the project has ended, it is time for the team to review that checklist but this
time comparing what they see as having actually occurred versus what they expected to occur. In
this way, each member of the team learns more about their predictive and evaluative skills, their
biases and so forth. Over time, this can result in more accurate assessments of projects in their early
stages through the use of the pre- project checklist.

References
 [1] Cone, E., “Managing that Churning Sensation,” Information Week, Vol. 2, May 1998, No. 680, pp. 50–67.

https://taylorandfrancis.com

95

ADDITIONAL
SOFTWARE PROJECT
MANAGEMENT RESOURCES

Managing software projects differs in significant ways from managing other types of engineering
projects. One important aspect of this is that software project management has not received the
kind of attention from university research and the industry at large to have matured and grown
into a stable, well- defined professional practice. It is this aspect that results in just about any model
of software project management being only temporarily accurate but incomplete. This section
addresses the “incompleteness” issue by providing several narrow- focus discussions on topics that
may be useful to the software project manager at various points in a project. These should best be
viewed as tools which are available for use as the situation calls for their use. Some topics have been
adapted from other fields worldwide but still have applicability to software projects. Many repre-
sent principles and techniques developed outside of software project management, but which are
applicable just the same. The topics are presented as appendices. As a group, they represent the tools
and techniques likely to come into play during the actual conduct of the software project. Since all
software projects are unique in some ways, it is not realistic for me to prescribe which narrow focus
topics will be needed by your project. This is for you to decide. References are provided throughout
to support further research.

https://taylorandfrancis.com

97

Appendix 1

A Word from Our
Sponsor – The Brain

This is a book about managing software projects. Why are we discussing a topic from neurosci-
ence? Successfully managing a team of software engineers is first and foremost about relation-
ships. Our relationships, our motivation to work, our self- esteem, our pride in our work, how
strongly we engage with our work and more are established and maintained by our brains. So,
understanding how our brains do this and why it can help us successfully manage software proj-
ects is at the foundation of nearly everything related to management. In order to achieve great
things or even engage our team members, we need to understand just what it is that works to
engage them and why. Our brains control just about everything about us. They are extremely
complex. So much so, that there is less information on how they work than on the geology
of the moon, and there are more connections in our brains than there are stars in our galaxy
[1]. The brain controls everything including our motivation to work. It generates an important
hormone – oxytocin – which affects many things. If you want your team to become engaged
and achieve quality results in spite of obstacles, then we need to take actions which foster the
production of oxytocin.

A.1.1 Actions Which Can Help Our Cause
As a software project manager, we have a certain amount of control over what the team does but
not over what they think. What we are looking to do is take actions which have been shown to
induce a higher production of oxytocin which, in turn, will produce positive results within the
team. This will result in a higher level of oxytocin which in turn will result in greater engagement
of team members to the project which will result in higher productivity – not just in the volume
of source code but its quality as well. So, what are these actions? As we discussed earlier, increasing
a team member’s pay does not result in the intended increase in loyalty, retention and productivity
that many companies expect [2]. We now know that the number one thing we want to improve
is trust. Although a few software engineers may be dishonest [3], we should be concerned about
establishing trust between ourselves and the team members. From the work in this regard [2],

98 ◾ Appendix 1

compared with people at low- trust companies, people at high- trust companies exhibit several desir-
able characteristics including:

 ◾ 74% less stress
 ◾ 106% more energy at work
 ◾ 50% higher productivity
 ◾ 13% fewer sick days
 ◾ 76% more engagement
 ◾ 29% more satisfaction with their lives and 40% less burnout

Those statistics may be impressive, but they do not happen by accident. They require the creation
and maintenance of an environment of trust. Actions we can take to improve trust include:

 ◾ Recognizing Excellence – This goes beyond what was mentioned earlier in this text. It can
be private recognition but rather public recognition within the development team. It is not
only beneficial to the individual but to the team at large. It also gives the best performers an
opportunity to share their approach(s) that resulted in their success.

 ◾ Inducing “Challenge Stress” – Challenging the team to attempt to meet a challenge they
are unlikely to achieve is detrimental to productivity. Now we know why. What is suggested
here is the imposition of makeable challenges. This results in team members being able to
see progress toward these makeable goals. One study by Harvard professor Teresa Amabile
[2] found that 76% of people reported that their best days involved making progress toward
goals. Regardless of which type of life cycle your project is using, it will contain milestones
(e.g. in the waterfall model), stories (e.g. in Agile) or some other indicator of the attainment
of some predefined hopefully makeable goal. Along the way, there will be points in time at
which certain achievements are planned for. These mark progress but, more importantly, they
impart a sense of accomplishment to team members.

 ◾ Give Team Members the Freedom to Do Their Work the Way They Choose – This is one of
the biggest challenges all project managers are faced with. It is the temptation to not only
assign work but to tell the team members how that work should be done as well. This robs
the software engineer of the autonomy needed to establish and maintain trust. As cited by
Zak [4], in a study at Citigroup, almost half of employees would give up a 20% raise in
exchange for greater control of how they work. That amount of salary is certainly significant
but more importantly it indicates how important it is to employees to have autonomy over
how they perform their job. This is not the result of being stubborn or uncooperative but
rather another indication of how important our work is since it is an extension of ourselves.
This is particularly true in the case of software engineers [5]. The onset of the COVID- 19
pandemic introduced many software engineers to the pros and cons of working from home.
Now that the pandemic has subsided somewhat, many software engineers do not want to go
back to having to work in an office setting. This has setup a conflict of sorts between manage-
ment and the software engineering team(s). Rather than demanding that software engineers
return to the office setting or risk being fired, many companies have worked out a hybrid
model. A negotiated number of days working at home and a number of days in the office
each week. In this way, important large- scale coordination meetings can take place among the
teams face to face while maintaining the personal preference for working from home.

 ◾ Enable Job Crafting – When allowed to pick what projects to work on or a role within a large
project employees tend to pick tasks that interest them, ones they are passionate about and/or

Appendix 1 ◾ 99

believe they can learn from. In such situations, employee performance is measurably higher
and so is retention.

 ◾ Share Information Broadly – Only 40% of employees report that they are familiar with
their company’s goals [6, 7], strategies and tactics. Working in such an environment leads to
chronic stress and other negative outcomes such as taking an action thought to be beneficial
but which is contrary to corporate goals.

 ◾ Intentionally Build Relationships – A Google study found that managers who show an inter-
est in and concern for team members’ success and personal well- being outperform others
in terms of the quantity and quality of the team member’s work. Different software project
managers have found ways to achieve this. One of the most common is social interactions
with the team members such as a group luncheon at company expense, taking in a movie as
a group and other activities that are often away from the office that allow relaxed interactions
among all members of the team.

 ◾ Facilitate Whole- Person Growth – High- trust organizations favor their people growing both
personally and professionally. For example, not standing in the way of a team member taking
a college class in a subject unrelated to software engineering. This is the approach taken by
Accenture, Adobe Systems and others with positive results. There, managers ask questions
like “Am I helping you get your next job?” This can be a touchy subject in that the outside
educational study may be oriented toward starting a different career but is often oriented
toward getting a degree in another subject area or an advanced degree in software engineer-
ing. I once worked for a very effective software project manager who encouraged every mem-
ber of his team to apply for other jobs within or outside of the company at least monthly. In
two years, contrary to what you might think, very few people left his group.

 ◾ Show Vulnerability – The technical aspects of software engineering as well as the complexity of
the problems we are asked to solve are increasingly complex. Leaders in high- trust organizations
ask for help from their team members as opposed to just telling them what to do. This stimu-
lates oxytocin production in others. This, in turn, increases trust and cooperation. Although
some managers believe that asking for help is a sign of weakness, the findings of researchers are
that seeking help is a symptom of a secure leader – one who engages everyone to reach goals.
Jim Whitehurst, the CEO of Red Hat said, “I found that being very open about the things I
did not know actually had the opposite effect than I would have thought. It helped me build
credibility.” Again, trust is damaged if the software project manager tries to make everyone
believe that they know all there is to know about the technology involved in the project when
in reality they don’t. The truth will eventually become known only to have trust suffer.

A.1.2 The Return on Investment in Trust
A survey of the United States as of 2017 showed that the U.S. average for organizational trust was
70%. 47% of respondents worked in organizations where trust was below the average with one firm
scoring 15%. Overall, companies scored lowest on recognizing excellence and sharing information
(67% and 68%, respectively). The bottom line here is that organizations with higher levels of trust
have employees who enjoy their work, are more productive and stay with the firm longer. Perhaps,
the best summary of this issue is a quote from the CEO of the Herman Miller Corporation, “The
first responsibility of a leader is to define reality. The last is to say thank you. In between the two,
the leader must become a servant.”

100 ◾ Appendix 1

References
 [1] Smith, O. Private Communications with Professor Emeritus Orville Smith in Neuro Biology, University of

Washington, Seattle, Washington, 2022 and 2023.
 [2] Grant, A.M. and Gino, F., “A Little Thanks Goes a Long Way: Explaining Why Gratitude Expressions Motivate

Prosocial Behavior,” Journal of Personality and Social Psychology, Vol. 98, No. 6, June 2010, pp. 946–955.
 [3] Gino, F and Ariely, D., “The Dark Side of Creativity: Original Thinkers Can Be More Dishonest,” Journal of

Personality and Social Psychology, Vol. 102, No. 3, 2012, pp. 445–459.
 [4] Zak, P.J., “The Neuroscience of Trust,” from “Management Behaviors That Foster Employee Engagement,”

Harvard Business Review, January- February, 2017.
 [5] Weinberg, G.M. The Psychology of Computer Programming, Van Nostrand Rheinhold, New York, NY, 1971.
 [6] Amabile, T. and Kramer, S., The Progress Principle: Using Small Wins to Ignite Joy, Engagement, and Creativity

at Work, Harvard Business Review Press, Boston, MA, 2011.
 [7] Kaplan, R.S. and Norton, D.P., “Linking the Balanced Scorecard to Strategy,” California Management Review,

Vol. 39, No. 1, pp. 242–253, Fall 1996.

101

Appendix 2

Basics of Negotiation

No matter how well or poorly your project is progressing there will be times when there is an
important difference of opinion regarding some aspect of the project. These differences can occur
between the client and you, between you and your team or a member of it or other combinations.
Often, we don’t see a way out of, essentially, trying to bully our way to get the other party to agree
to what we are asking. Unfortunately, that sets us up for future hard feelings and increased difficul-
ties in getting cooperation. A successful negotiation is one in which both sides come away feeling
they won because they achieved what they wanted to or at least as much of it as they thought they
could. Although it is rare, sometimes the negotiation ends with both sides happy. Over the years,
various researchers have developed recommended actions and advisories for negotiating. A few are
listed below but keep in mind that much like writing code different researchers have developed dif-
ferent lists – all of which are tacitly claimed to work:

 1. Research the issue – Knowing what to expect (instead of guessing or “seeing what you can
get”) will give you more confidence when you open the conversation. For example, before
you try to discuss the cost of rent with a current landlord, find out what it might cost to move
into a comparable building.

 2. Build rapport – The last thing we want to happen is the negotiation turns into an “us versus
them” battle which likely results in hard feelings on both sides. Try to find some common
interests like sports to talk about. The goal here is to learn more about the people we are
negotiating with while sharing with them or while providing them with some insights into
ourselves. Be sure to be an active listener in order to better understand what they are seek-
ing to achieve in the negotiation. Be sure to respect the other person and avoid any form of
disrespect such as treating their viewpoint as foolish or ill-informed.

 3. Listen carefully – There is often a temptation to unwittingly take control of the conversation
by talking too much. This means we are not getting the input we need because we can’t talk
and listen at the same time. Listen to the other party and ask relevant questions in order to
identify and better understand the issues as the other party sees them. Again, we learn more
from listening than speaking.

 4. Make sure you know your priorities – If we are looking for highest quality or shortest
delivery time or whatever, we need to keep this in mind right from the start.

 5. Be prepared to make a decision – If you see what appears to be an acceptable deal, make it.
Putting the decision off could result in that deal being “off the table” when you meet again.

 6. Seek to Arrive at a Win-Win – Instead of seeing this as a battle with a winner and a loser
seek to identify a deal that results in both parties being better off than before.

102 ◾ Appendix 2

 7. Keep your emotions under control – Some negotiators will attempt to get you to lose your
temper or in other ways lose control. Keep your focus on the issue(s) at hand and don’t fall
into the emotional trap.

 8. Be mindful of your timeline and that of the other party – Understand your timeline and
the other party’s timeline. Remember, the longer the negotiations go on, the higher the likeli-
hood that new issues may be identified that could potentially cause the deal to fall through
or progress that was previously made lost.

 9. Be prepared to walk – If the other side has unrealistic demands or is unwilling to make any
compromises, walk away from it as it is not going to result in a positive outcome.

 10. A Time For a Post Reflection – Whether the negotiation works out or not, take some time
to review how things went, what might have been done differently and so forth. This is an
invaluable learning experience.

Whether the negotiation works out or not, take time at the end to reflect on how it went. We’ve
all had successes and failures in our attempts to reach a deal, so try to learn from every negotiation,
because there will always be a next time. There are many books and university courses available with
which to acquire negotiation skills. In addition, the Harvard Business Review has a website from
which you can obtain free resource materials on negotiating.

103

Appendix 3

Brainstorming

It is often the case that the software engineering team needs to generate some ideas quickly in order
to solve a particularly serious and difficult- to- solve problem quickly. This can happen for many and
varied reasons. The problem- solving power of the team can be greatly enhanced or reduced depend-
ing on how the team approaches the activity of “brainstorming” to arrive at a solution. Although
the concept is decades old, it is still used effectively today and can be effective provided a few guide-
lines are employed. But first, let’s take a look at what can hinder the effectiveness of brainstorming
[1]. Factors that can hinder the effectiveness of brainstorming:

 ◾ Evaluation Apprehension – Working in a group makes each person’s contribution visible
to the rest of the group. Despite the admonition not to criticize, people can be reluctant to
participate for fear of being criticized regarding the lack of quality of their ideas.

 ◾ Free Riding – Some members of your team may not participate because others are making
good suggestions. They may not view their own ideas as being as good and don’t want to
embarrass themselves. Also, they may not see any value in the activity.

 ◾ Limited Air Time – Only one person speaks at a time so there is only a limited amount of
time for each team member to speak. This may cause some to not contribute due to the need
to be concise.

 ◾ Production Blocking – At any moment, only one line of ideas is being generated, since they
are reported serially, groups will tend to pursue fewer different kinds of ideas.

 ◾ Cognitive Inertia – While waiting to speak, some people may forget what they were going to
contribute.

 ◾ Time Constraints – Pressure to arrive at a solution quickly [2, 3]

Now that we have seen what to avoid, let’s take a look at what to do.
Microsoft was studied regarding its use of brainstorming. Brainstorming teams were typi-

cally composed of a software project manager or program manager (PM), software development
engineer(s) (SDEs) and software development test engineer(s) (SDET). The “life cycle” of their
sessions was composed of four stages:

 1. Planning
 – The PM and possibly others gather.
 – The entire team meets to achieve a general agreement on specifications.
 – The SDEs define an architecture plan.
 – SDETs describe the features in the test plan.
 – The team reaches an agreement on the specifications.

104 ◾ Appendix 3

 2. Implementation
 – SDEs start implementing features.
 – SDETs implement object models and begin writing test cases.
 – Test cases are run as features are developed.

 3. Stabilization
 – SDEs fix bugs
 – SDETs analyze test failures and retest bug fixes.

 4. Future Planning
 – The team meets to discuss customer(s) feedback, requirements changes, feature support

and bugs.

One issue of interest is how does this approach relate to software development stages and related
matters. Tables A3.1, A3.2 and A3.3 layout time flows as well.

It should be made clear to the team that a brainstorming meeting is not a sign that any indi-
vidual or by inference, the team, is incompetent [2,3]. Rather the message should be that some of
the programming problems that will be encountered are going to be just too complex for any single
individual to solve and will require a team effort to solve them.

Table A3.1 Brainstorming versus Development Phase

Development Phase
Percent of Brainstorming
Sessions Devoted To

1 – Planning 89.5%

2 – Implementation 42.1%

3 – Stabilization 36.8%

4 – Future Planning 23.7%

Table A3.2 Frequency of Brainstorming Meetings

Time Period Percentage

Daily 21.1%

Weekly 34.2%

Monthly 21.1%

Yearly 10.5%

At Every Milestone 23.7

As Needed 13.2%

Appendix 3 ◾ 105

References
 [1] Diehl, M. and Stroebe, W., “Productivity Loss in Brainstorming Groups: Toward the Solution of a Riddle,”

Journal of Personality and Social Psychology, Vol. 53, No. 3, September 1987, pp. 497–509.
 [2] Osborn, A.F., Venolia, G. and Olson, G., “Brainstorming under Constraints: Why Software Developers

Brainstorm in Groups,” Proceedings of the 25th British Columbia Society on Human- Computer Interaction,
January, 2011, pp. 74–83.

 [3] Osborn, A.F., Applied Imagination, Charles Scribner & Sons, New York, NY, 1953.

Table A3.3 Time Spent in Meetings [2]

Activity Planning Implementation Stabilization

Identify Problem 1.8% 7.5% 14.8%

Gather Information 2.6% 4.4% 5.5%

Idea Generation 14.5% 19.4% 12.3%

Evaluation 39.3% 29.7% 44.8%

Logistics 21.5% 11.9% 12.2%

Recap & Scenario Development 17.6% 20.0% 2.7%

Miscellaneous 15.0% 7.1% 7.7%

106

Appendix 4

Characteristics of Successful
High-Technology Teams

One aspect of preparations to begin a software project is the composition of the software engineer-
ing team. Each software project manager has their own opinion on who makes a “good” team
member and by extension, what makes a “good” team. It is fair to say that software project manag-
ers believe that a team composed of the best and brightest software engineers stands the highest
chance of being successful. But a study of the characteristics of successful teams in high- technology
projects produced, for some, surprising results [1]. What they found was that successful teams had
three characteristics in common:

 ◾ Knowledge of the technology involved – Note that to be successful, team members only
had to be “familiar” with the technology involved, not experts. This is consistent with the
notion that team members will support each other. Since each team member will have some
knowledge others may not have, together they have a comprehensive, more complete knowl-
edge set.

 ◾ Experience working as a member of a team – Being part of a software engineering team
means that at times there will be differences of opinion. In order for the differences to be
resolved, some degree of compromise on the part of all team members will be necessary.
Having experience with this process and recognizing its benefits is a necessary attribute.
A member who only worked as an independent developer may have difficulty with the give
and take involved in teamwork.

 ◾ Compatible personalities – If team members cannot get along due to personality differ-
ences, the project will be jeopardized. The Myers- Briggs Type Inventory [2] or some other
personality profiling system can identify compatible and incompatible personality types. The
point is that incompatible personalities on the team can create friction thereby reducing team
effectiveness and jeopardizing success.

A.4.1 What the Data Indicate
A study of projects and multidisciplinary teams [3] described the fundamental properties a team
needs to have in order for them to potentially be successful. These “winning” teams were composed
of people who shared three characteristics:

Appendix 4 ◾ 107

 1. They had knowledge of the technology involved – they did not have to be experts in their
field but had some experience in it.

 2. They had worked as part of a team before – not necessarily with these team members but had
experienced the give and take of negotiating what happens when teams make decisions. More
recent work [4–6] found that the ideal situation occurs when the team members have worked
together as a team before.

 3. The team members had psychological profiles which were compatible – Using Myers- Briggs
or some other personality type/inventory system, the personalities of the team members
were deemed to range from reasonably compatible to incompatible. We have all experienced
instances in work situations where some people we worked with seemed easier to work with
than others. It turns out that, at least part of the nature of this was the personality profile of
the individuals involved.

A.4.2 Psychological Compatibility
No matter what line of work you are in or have been in, there are people you have worked with
easily and others you simply had a difficult time working with but could not explain why in either
case satisfactorily. One team studied thousands of successful and failed high- technology projects
in an attempt to find what made teams work or not work [5]. They found, as stated above, that
psychological compatibility was one of three primary factors present in successful high- technology
projects. As a software project manager, you have probably figured out ways to establish whether
or not a prospective team member possesses the training, technical knowledge and experience your
team will need on a given project but what about compatibility with other team members? It turns
out that for more than 2,000 years, various people have been trying to understand human person-
ality well enough to do just that. One of the most widely used methods is the Myers- Briggs Type
Indicator (MBTI). It views personality as having four dimensions with each dimension having two
opposing factors. The dimensions and their opposing factors are:

 ◾ Focus of Attention – The two opposing forms this dimension takes are:
 – Extravert (E) – These are people who are at ease talking to and sharing with others. They

gain energy from working with groups.
 – Introvert (I) – These people relate best to their inner self. Their energy is drained from

working with groups.
 ◾ Seeking Information – The two opposing forms this dimension can take are:

 – Sensing (S) – These people rely on facts, reality and are no- nonsense individuals. When
they review documents, they are most likely to find typographical errors and misspellings.

 – Intuitive (N) – These are people who use/rely on their intuition, speculation and imagi-
nation. When they review a document, they are most likely to find problems in how the
document was developed.

 ◾ Decision- Making – The two opposing forms this dimension can take are:
 – Thinking (T) – These people make decisions based primarily on sound principles, laws

and so forth. Thinkers are analytical, logical and objective.
 – Feeling (F) – These people make decisions based on values, devotion, sympathy and

harmony. Feelers will take the emotions and opinions of others into consideration. They
strive to maintain harmony in the group.

108 ◾ Appendix 4

 ◾ Relationship with the World – The two opposing forms this dimension can take are:
 – Judging (J) – These people are outcome- oriented, regulated and decisive. They make

decisions quickly and drive toward getting closure of issues and settlement.
 – Perceiving (P) – Process- oriented, flexible, open- minded, make decisions slowly. They

like to get new information or consider other possibilities.

Each person is a combination of one of the two possibilities in each of the four categories (e.g.
INTJ), giving us 16 possibilities. Some possible types work better or are more compatible with
others as shown in Table A4.1. To use the table, select a type on the vertical that corresponds to
one person and then move to the right to the column representing a second person’s type. The
higher the compatibility index, the more compatible the type is with another type. For example,
an INTJ type would be very compatible with an ESFJ type (0.83) but not very compatible with
an ENTP (0.17).

Some advisories are in order here. Regardless of the model used (MBTI is only one of several
available), personality type should not be the only factor used to select team members. Besides,
work rules in some countries and organizations may preclude the administering of the Myers-
Briggs Type Inventory or some other typing instrument, even if it is put forward as a condition of
employment. Also, this information must be retained in the strictest confidence unless the team
member explicitly gives permission to share it. There are other factors as well so it would be wise to
check your local laws and organization’s rules.

Interviewing prospective members of the development team should involve all current
members – if they do not believe they can work with the interviewee, then find someone else
who can.

For a variety of reasons, you may end up having to manage a team with members who are
incompatible. There are several things you can do to mitigate the situation:

Try working with the individuals involved directly, privately and together. The key issue here is
whether or not they are willing to set aside their differences for the good of the project.

Do not single anybody out as a troublemaker. The rest of the team probably already knows who
this person(s) is.

Make sure everyone on the team puts the success of the project ahead of their personal
agendas.

A gentle reminder on the merit or annual performance review may help in some circumstances.

If you have tried everything you can think of, enlist the help of a psychology professional who spe-
cializes in team development. I had this exact situation before, and the cost was money well spent.

The most common software types are ISTJ and INTJ. To use the table, go to the intersection
of two types. For example, ESTP and INTJ have a compatibility index of 0.33. Recalling that the
higher the compatibility index, the more compatible the personalities, 0.33 is not highly compatible.

A.4.3 Keep Successful Teams Together for Higher Productivity
More recent work with software organizations found that teams that worked well together should
be kept together [6]. While this may not always be possible due to organizational changes, product
line evolution and other factors, the point is that effective, productive teams do not just happen.

A
p

p
en

d
ix 4

◾
109

Table A4.1 Normalized Personality Compatibility

ESTJ ESTP ESFJ ESFP ENTJ ENTP ENFJ ENFP ISTJ ISTP ISFJ ISFP INTJ INTP INFJ INFP

ESTJ 0.67

ESTP 0.33 0.67

ESFJ 0.83 0.50 0.67

ESFP 0.50 0.83 0.33 0.67

ENTJ 0.83 0.50 1.00 0.67 0.67

ENTP 0.50 0.83 0.67 1.00 0.33 0.67

ENFJ 1.00 0.67 0.83 0.50 0.83 0.50 0.67

ENFP 0.67 1.00 0.50 0.83 0.50 0.83 0.33 0.67

ISTJ 0.50 0.17 0.67 0.33 0.67 0.33 0.83 0.50 0.33

ISTP 0.17 0.50 0.33 0.67 0.33 0.67 0.50 0.83 0.00 0.33

ISFJ 0.67 0.33 0.50 0.17 0.83 0.50 0.67 0.33 0.50 0.17 0.33

ISFP 0.33 0.67 0.17 0.50 0.50 0.83 0.33 0.67 0.17 0.50 0.00 0.33

INTJ 0.67 0.33 0.83 0.50 0.50 0.17 0.67 0.33 0.50 0.17 0.67 0.33 0.33

INTP 0.33 0.67 0.50 0.83 0.17 0.50 0.33 0.67 0.17 0.50 0.33 0.67 0.00 0.33

INFJ 0.83 0.50 0.67 0.33 0.67 0.33 0.50 0.17 0.67 0.33 0.50 0.17 0.50 0.17 0.33

INFP 0.50 0.83 0.33 0.67 0.33 0.67 0.17 0.50 0.33 0.67 0.17 0.50 0.17 0.50 0.00 0.33

110 ◾ Appendix 4

Such teams are the result of hard work on the part of the software project manager and the senior
management team and sometimes just a matter of luck. The point is, once you have identified a
high- performing team, do not just break it up at the end of a project and reassign the individuals
to other projects. Instead, find a way to keep the team intact and assign them to another project.
Keep in mind that sometimes, team members, particularly those who are in the early years of their
careers, develop and mature in ways which may cause them to no longer be compatible with the
other team members. I had this happen when one team member decided he no longer wanted
to develop software. He decided to go back to school and obtained a Master’s degree in Business
Administration specializing in his first love, accounting. Another member decided they no longer
wanted to develop the type of software we were working on at that time. They decided to go to
work for Microsoft instead. All of this occurred after successfully completing a project that was
deemed “impossible.” But the remaining members of this five- person team pushed on, two new
members were acquired and their successes continued.

References
 [1] Chen, J. and Lin, L., “Modeling Team Member Characteristics for the Formation of a Multifunctional

Team in Concurrent Engineering,” IEEE Transactions on Engineering Management, Vol. 15, No. 2, 2004,
pp. 111–124.

 [2] Briggs- Myers, I., Gifts Differing: Understanding Personality Type, Nicholas Brealey, 2nd edition, Boston,
MA, 2010.

 [3] Gardner, H., Gino, F. and Staats, B.R., “Dynamically Integrating Knowledge in Teams: Transforming
Resources into Performance,” Working Paper 11- 009, Harvard Business School, September 7, 2011.

 [4] Bayne, R. “A New Direction for the Mers- Briggs Type Indicator,” Personnel Management, volume 22, No. 3,
pp. 48–51, 1990.

 [5] Blackwell, G.W. et al, “Multidisciplinary Team Research,” Interdisciplinary Analysis and Research,
D.E. Chubin et al, Eds: Lomond, 1986, pp. 103–114.

 [6] Campion, M.A., Medsker, G.J. and Higgs, A.C., “Relations Between Work Group Characteristics and
Effectiveness: Implications for Designing Effective Work Groups,” Pers. Psychology, Vol. 46, pp. 823–
850, 1993.

111

Appendix 5

Computing the Cost
of a Change

Well before the software profession “discovered” it, project managers in other professions had
known since before the Roman Empire that changes made to a project increased cost and that the
later in the project that they occurred, the greater the cost. The increase in cost with lateness in the
project is due to the fact that some work will have to be undone in order to make the change. But
changes throughout the course of software projects will have to be made. While some are inevitable
(e.g. to correct programming errors – bugs, miscommunication regarding user interface prefer-
ences), others could be best described as changes. For example, modifications of the user interface
requested by the customer, changes in how taxes or interest rates are computed due to changes in
tax law, privacy and security changes and so on. These changes tend to increase development costs
in real time and are often unforeseeable. A study of several thousand projects in the construction
industry [1] provides some much- needed insights into what the total cost of a project will be when
we include the cost(s) associated with making changes. This method requires that we keep records
specific to each project as to the cost of a change on that project. The mathematical relationships
developed in that study are not specific to the type of project and are applicable to software. A side
effect of the formulation that the study developed is that it gives us the opportunity to provide
ourselves and our customer with a realistic estimate of the cost of the change being proposed. This
provides our customer with some semblance of control over the total cost of the project. This result
is formulated along two lines. One is the average cost of a change. The other is the relative cost of a
change with respect to the total cost of the project. For example, if the burdened cost (this includes
all direct and indirect costs) of a software engineer is €50/hour based on a 2,000- hour work year,
the cost for an average change which we estimate to be 8 hours (development, debugging, testing
and so forth) gives us an average change cost of €400. The formula for estimating the impact of the
changes that may occur over the life of a project [1] is:

 ()= 2 2 2 2
c cCV n f u C

where

N = our estimate of the number of changes which will occur during the project.
fc = coefficient of variation of cost change.

112 ◾ Appendix 5

uc = average cost of a change expressed as a decimal – it is the ratio of the cost of the change to
the estimated total project cost.

C = original project cost estimate.
CV = the cost variance.

If we originally estimated the total project cost to be €100,000 and estimate there will be 100
changes, each costing €1,000 then,

= = = =c cC 100,000, n 1000, f 1000, u .01substituting into our formula

 = =
2 2 2 2CV 1.000 2000 0.01 100.000 0.04

CV is .04 or 4% meaning that the projected project cost will be between €100,000 and € 104,000.
Again, cost estimating is not an exact science. This method gives us a value or range of values that
are within the realm of possibility. The obvious but incorrect answer would be to simply multiply
the 100 changes by the cost per change and add it to our original estimate. But the research work
showed that would be fallacious because changes occur while development is occurring so some
economies can be wrought.

References
 [1] Touran, A., “Calculation of Contingency in Construction Projects,” IEEE Transactions on Engineering

Management, Vol. 50, no. 2, May 2003, pp. 135–140.

113

Appendix 6

Developing a Business Case

A.6.1 The Basics
Whether we are refining an existing project plan or creating a new one, the elements of the engineer-
ing model of a project [1] will need to be satisfied. The format and content for project plans vary
from one company and industry to another. For example, in the United States, HIPAA (The Health
Insurance Portability and Accountability Act) requires that the privacy of patient health information
not be distributed without the patient’s permission. This requirement makes security, control and
limited access to such information a prominent element of any software project plan in the health
industry in the United States. Other industries (e.g. Financial Services) have their own unique require-
ments and these also vary from country to country. The most common elements of a project plan and
its justification (the justification is often called a “business case”), regardless of the location (note that
titles for these elements may vary internationally but the content remains the same), include:

 ◾ The Business Case – This is the economic justification for doing the project. In general, if you
cannot make a business case for an effort, it isn’t going to go forward. In simple terms, the
business case states the problem this project intends to solve, if the project is successful, what
the savings will be, what the return on investment (ROI) will be (this describes how long it
will take the firm or customer to recover the funds expended, the assumptions made in this
analysis and so forth), an overall strategy that will be applied (frequently, this is one that has
worked before), the staff to be used and equipment needed and so forth.

A.6.2 Business Case Defined
There are many different definitions of just what constitutes a business case. According to the
United States General Accounting Office (May, 2000), a business case is:

A structured method for organizing and presenting a business improvement proposal.
Organizational decision makers typically compare business cases when deciding to ex-
pend resources. A business case typically includes an analysis of business process perfor-
mance and associated needs or problems, proposed alternative solutions, assumptions,
constraints and a risk adjusted cost/benefit analysis.

114 ◾ Appendix 6

There is no fixed format for business cases so they vary from organization to organization. They are
a vital part of go–no- go decisions on projects and assist greatly in helping to prevent the project
from expanding into a different project than originally envisioned (e.g. scope creep). However, it
can happen in spite of our best efforts.

Generally, there are five categories of issues that need to be considered:

 ◾ The problem to be solved or opportunity (e.g. to create a new product)
 ◾ Changes that must be made to an existing system or product
 ◾ Benefits of the changes
 ◾ Costs and risks associated with the changes
 ◾ Measure(s) of success

Although profitability is the most common criterion used in evaluating a business case, it is not the
only one. Social responsibility, corporate image, community welfare and other criteria not related
to profit may be employed. There are many other business case models presented in the literature
but we have enough here to demonstrate the application of the concept from a project I actually
consulted on.

A.6.3 Business Case Example
A few years ago, a kindergarten through high school educational facility was being built by a Native
American tribe. Their goal was to provide their children and young adults with a state- of- the- art
educational facility while at the same time demonstrating the tribe’s commitment to core values
that included respect for the environment. The school would be utilizing more than 400 personal
computers. The era in which this development occurred was such that personal computers (PCs)
consumed much more electricity than they do today generating heat which required the HVAC
(Heating, Ventilation and Air Conditioning) systems to remove heat from the classroom(s) during
warm weather. A second factor associated with the use of these PCs was the fact that electric rates
from the company serving the area where the school was located were going up. The simple, obvi-
ous solution was to have teachers and students turn off their PCs before leaving for the day. This
could not be guaranteed in all cases. Besides teachers and students complained about boot- up times
since many of them were rushing to complete an assignment late. A vendor was identified that sold
software that would put a PC central processor into a state which drew very little current from
which it could be awakened quickly into an operational state. It could install itself via push tech-
nology and allowed each user to set a schedule for their PC to “go to sleep” or defer to the default.
Without getting into all the cost and savings details, Table A6.1 shows the results of our analysis.

Some of the elements are listed below. Also, projects may not always be justified based on profit.
Many projects are justified based on their benefit to society or the community in general or a seg-
ment of the population (e.g. those with disabilities, reducing our impact on the environment).

Explanation of Notation

 ◾ Amounts are in Euros.
 ◾ An amount surrounded by parentheses is a negative amount.
 ◾ A period is used instead of a comma consistent with European conventions.
 ◾ ROI represents Return On Investment if the original purchase price was invested at 5% or

10% compounded.

Appendix 6 ◾ 115

In the preceding example, the total positive cash flow of €17,217 being greater than what would
have been received via a simple investment at 5% or 10% means the business case is a viable one
both from a financial and an environmental standpoint.

Project Charter – The Project Charter legitimizes the project in that it authorizes the expen-
diture of company funds to specific ends. It bounds the project and attempts to reduce
“scope creep.” It states what the project will and will not do. It is necessitated by the fact that
software often touches so many other aspects of the enterprise. Not bounding the project
in some way almost guarantees that the scope of the project will expand to include some of
the systems it interfaces with perhaps resulting in the budget and/or schedule exceeding the
plan. Most importantly, the project’s charter gets everyone related to this effort to think about
what will and will not be addressed by this project. There have been many formats published
for project charters. Most software companies will have their own, possibly unique, format.
Regardless, the project charter should contain at least the following elements:

Project Name – This is how this project will be referenced.
Owner(s) – Who, in the organization, is responsible for maintaining this document (it will be

under change control)?
Executive Summary – This section lists the measurable objectives of this project, proposed start

and end dates, estimated costs, assumptions, risks, project overview, scope and any other
factors senior management may need to know in order to make an informed decision about
approving this effort.

Approvals List – This is a list of the people, by job title, who are approving this effort as signi-
fied by their signature. Typically, this list would include the Project Manager (who usually
prepares this document), Project Sponsor, Senior Manager (the Executive) who is sponsoring
this effort, Client Representative.

Stated another way, the project charter is a high- level view of the proposed project – the project
described without all the details

 ◾ Measures of Success – This item is one of great importance and often overlooked. It states
clearly and (hopefully) simply what the resulting system must do in order for the project to
be deemed successful. These must be stated in a measurable way, including the current base-
line from which we may be measuring improvement. For example, “With all hardware and

Table A6.1 Data Developed for Our Business Case

Item Year 0 Year 1 Year 2 Year 3 Year 4 Total

Energy Savings €3.968 €4.167 €4.375 €4.593 €4.823 €21.926

HVAC Savings €595 €625 €656 €689 €726 €3.291

Product Cost (€8.000) €0 €0 €0 €0 (€8.000)

To Date Totals (€3.437) €1.355 €6.386 €11.668 €17.217 €17.217

ROI @ 5% €8.000 €8.400 €8.820 €9.261 €9.724 €9.724

ROI @ 10% €8.000 €8.800 €9.680 €10.648 €11.713 €11.713

116 ◾ Appendix 6

operating system software in working order, the system shall prompt the user for a password
within 60 seconds after a ‘Power On’ event has been detected.” Certainly, there is a lot more
to that one but the essence of this item is there. The conditions under which this acceptabil-
ity requirement must be met are stated together with acceptable performance under those
conditions.

 ◾ Risk Analysis – What are the risks associated with developing this system, its use and so
forth? How are or will these risks be mitigated? For example, if we are developing a system to
automatically park an automobile, how will the driver regain control in the event of a failure
of the software? How will the driver know the system has failed? How many different ways
could the system fail and how can we prevent them from occurring?

 ◾ A Multidimensional View – The best policy to have regarding business case development is to
consider all the various dimensions a new or revised system can engage. The best system for
this right now is “The Balanced Scorecard” [2]. It considers the entire spectrum of impacts
organized into four dimensions or viewpoints:
 – Financial – What will this cost versus what will it save the company? What confidence

level do we attribute to this estimate?
 – Customer – How will this impact the customer? Is it likely to be well received by our

customers? What are the acceptance criteria?
 – Internal – Are we organized or structured in a way that will support this change? If not,

what changes will we need to put in place?
 – Learning – Will we have to train some of our people in this new technique(s)? If so, who

and what will this cost?

Anyone who has called a company’s technical support team with a problem that needs some expla-
nation only to encounter an automated answering system that requests you press a number for this
type of problem or that then requests another selection and so forth none of which seem to match
your issue has experienced what can happen when a company only considers profit and loss issues.
These systems can be frustrating, particularly if they do not have the option of pressing zero in order
to speak to a human being to explain the nature of the problem you are calling about.

The Balanced Scorecard [2] is discussed in more detail in Chapter 3.

References
 [1] Peters, L., Getting Results from Software Development Teams, Microsoft Press Best Practices Series, Redmond,

WA, 2008.
 [2] Kaplan, R.S. and Norton, D.P., “Linking the Balanced Scorecard to Strategy,” California Management Review,

Vol. 39, No. 1, pp. 53–79, Fall 1996.

117

Appendix 7

Developing the Project
Closeout Plan

Every software project, successful or not, represents an important learning opportunity. Not all
software engineers and engineering organizations recognize this as such and, as a result, leave
themselves vulnerable to committing the same mistakes and encountering the same difficulties
on the next project while being ignorant of some practices that could have avoided problems.
Documenting what worked and what didn’t work may not eliminate the chance of the next proj-
ect being unsuccessful but it at least provides an opportunity to avoid some of the difficulties we
experienced on our current or previous project. There are many software project closeout templates
published on the internet from which to choose. If your team or your company does not have a
software project template that is in current use, it is suggested that you take a look at a few of the
ones published on the internet and see which one(s) best suits your team and projects. Don’t be
reluctant to change the one(s) you select because none may be ideal for your situation.

A.7.1 What Do We Want to Capture at Project Closeout?
In a very real sense, every software project is a unique undertaking. It is not like building out a 100
home subdivision which has just five floor plans. In that case, there are usually better flow times
and fewer errors with each successive building of the same floor plan including possible alterations
of the plan to reduce waste, decrease construction time and so forth. Software projects tend to be
considerably less repeatable and predictable. What we are trying to do with the closeout document
is officially declare the software to be at a level of development to be released to operations, docu-
ment events, practices and discoveries that could be useful to some other projects in the future and
document lessons learned. For this final developmental phase of this project, we need to capture at
least the following:

 ◾ How does the outcome of the project compare with the pre- project checklist developed prior
to the start of the project? – Comparing what we initially perceived about the project before
it started with what we now believe here, at the end of the project, will reveal our misconcep-
tions as well as other influencers on our judgment such as overoptimism or pessimism. In this
way, the pre- project checklist becomes part of a learning experience.

118 ◾ Appendix 7

 ◾ What were the checklist items with the greatest differences in pre- project versus post- project?
Try to explain the difference.

Whether the project was considered a success or not, each and every software project experience
should result in the team and each member learning more about themselves and the process of
software engineering.

119

Appendix 8

The Effect of Cultural
Differences (on Software
Development Teams)

Why is this important? Due to the worldwide demand for software engineers combined with ease
of travel as the COVID pandemic and other factors subsided, today software engineers are finding
it easier to move from one country to another. A contributing factor is the worldwide availability
of training in software engineering in various forms from university curricula to private training
organizations. This has resulted in software development teams being composed of software engi-
neers from different countries, different backgrounds and different cultures. While such mixed
groups offer the promise of unusually innovative solutions they bring with them, problems stem
from cultural differences. First and foremost among these problems is communication. As has been
noted elsewhere [outsourcing discussion], this has severely impacted offshore IT projects. An early
negative result of this was that at least 40% of offshore projects failed to deliver results [1]. Studies
of global teams in virtual settings show cultural differences affect at least these areas:

 ◾ Work ethic – The principle that hard work is a virtue and should be rewarded.
 ◾ Work hours – The number of hours per day that are required by the employer.
 ◾ Preferred method of communication and how administrative tasks are viewed, the role of the

software project manager and authority are perceived.

More recently, both offshore firms and domestic ones have matured – they have made significant
changes to improve results, lower costs and become more reliable. Studies have shown that pre-
pandemic outsourcing has been increasing at an exponential rate. Companies that are outsourcing
expected productivity in terms of source lines in delivered product, but it actually went down. The
United States approaches software development differently as compared to the Middle East [1] –
United States teams will get to work quickly while Middle East teams will spend time getting to
know each other before beginning work. This discussion applies to co- located teams composed of
people from different cultures, virtual teams that may have never been together in one place as well
as a mixture of these circumstances.

120 ◾ Appendix 8

A.8.1 Culture
Researchers have been studying the effects of cultural backgrounds in the workplace possibly before
software engineering was born. This is a delicate topic to discuss because it is closely related to vari-
ous kinds of discrimination and racism. As much as I can, this discussion will be based on “facts
and data.” A challenge for most software project managers is to avoid viewing all members of a par-
ticular culture as being the same. The studies cited make the point that each person is an individual,
and cultural characteristics represent “tendencies” [2]. An analysis of eight different research studies
found a common core among their definitions of culture:

Culture is learned, culture is associated with values, beliefs and behaviors that are shared by
a group and these values are passed along from generation to generation.

In order to better understand what is meant by culture, a study [3] was conducted of cultures from
the perspective of value systems resulting in five areas or dimensions into which all cultural groups
have in common though they differ in their beliefs. The beliefs and their relative positions are:

 1. Human Nature – People are born good, evil or a mixture of both.
 2. Person versus Nature – People value their subjugation to nature, mastery over nature or har-

mony with nature.
 3. Time Sense – Priority is given to traditional customs, future plans or present events.
 4. Social Relations – Society is organized around a linear hierarchy of authority, collateral inter-

ests or individual goals.
 5. Space – Business and life are conducted publicly, privately or a combination of both.

In the field of high- technology workers, Hofstede [4] might be the most widely quoted. He con-
ducted a large- scale study (approximately 70,000 people) of IBM employees located in more than
40 countries and developed the following cultural dimensions based on these employees:

 1. Individualism/collectivism – This dimension describes how an individual is perceived in a
culture – according to individual characteristics or by the characteristics of the group to
which he or she belongs. An individualistic culture is one where individual interests take
precedence over collective ones and everyone is expected to look after themselves.

 2. Power Distance (PD) – Measures the extent to which a culture embraces social inequality.
High- PD cultures embrace a strong sense of hierarchy whereas low- PD cultures consider
every individual as an equal.

 3. Uncertainty Avoidance – It is the level of risk accepted by a culture.
 4. Masculinity/Femininity – Reflects that either masculine norms such as success and material

orientation or feminine norms like relationships, people orientation and quality of life are
important in a culture.

 5. Long- Term/Short- Term Orientation – This is the level to which a society takes a long- term
versus a short- term orientation in life. A long- term culture prescribes long- term commit-
ments and perseverance towards slow producing results.

A summary of Hofstede’s National Culture Dimensions is presented in Table A8.1.
The European Software Institute (ESI) surveyed best practices adoption throughout Europe,

Asia and the United States. What they found reflects the composition and behavioral tendencies of
the countries listed in Table A8.2.

Appendix 8 ◾ 121

(Continued)

Table A8.1 Hofstede’s National Culture Dimensions [4]

Dimension Low Score Value High Score Value

Power Distance Society deemphasizes
differences between citizens’
power and wealth

Inequalities of power and
wealth within society

Individualism versus
Collectivism

Collectivist nature with close
ties between individuals

Individualism and individual
rights are paramount

Uncertainty Avoidance Tolerance for a variety of
opinions and less concern
about ambiguity and
uncertainty

Low tolerance for
uncertainty and ambiguity

Masculinity versus
Femininity

Value social relevance, quality
of life and welfare of others

Aggressive goal behavior,
high gender differentiation
and males dominate

Long- Term vs Short- Term
Orientation

Place less emphasis on hard
work and perseverance

Embraces long- term
devotion to traditional,
forward- thinking values

Table A8.2 Adoption Rates by European Countries with More than Four Responses [5]

Country N
Organization

Issues
Standards

& Processes Metrics Control Tools

Overall
Average

Adoption %

France 18 72 62 61 76 58 65%

United
Kingdom

52 66 63 52 67 50 60%

Greece 18 63 57 49 65 50 57%

Denmark 17 64 53 46 63 53 55%

Finland 4 63 56 50 54 50 55%

Austria 16 66 50 42 60 46 53%

Norway 6 60 53 44 61 48 53%

Italy 77 57 52 50 61 40 52%

Germany 62 55 48 43 52 47 49%

Netherlands 30 57 49 41 51 48 49%

Australia 205 48 54 35 49 47 48%

Israel 11 57 47 38 55 34 46%

122 ◾ Appendix 8

As you can see from Table A8.2, many countries residing in climatically different parts of the
world are adopting software engineering tools and techniques. While software engineers from these
countries represent an asset to your project, they can constitute a challenge which, if met effectively,
will enhance the effectiveness of the software engineering team and increase the software project’s
chances of success.

References
 [1] Olson, J. and Olson, G., “Culture Surprises in Remote Software Development Teams,” Queue, December

2003, Vol. 1, pp. 52–59.
 [2] Rebello, K., “The Impact of Culture in the Workplace,” Forbes, December, 1, 2021.
 [3] Aberle, D., Culture and Behavior: Collected Essays of Clyde Kluckhohn, Wiley Publishing, Hoboken, New

Jersey, August 1963.
 [4] Hofstede, G., Cultures Consequences: Comparing Values, Behaviors, Institutions and Organizations across

Nations, 2nd edition, Sage Publishing, Thousand Oaks, California, 2003.
 [5] European Software Institute, Software Best Practice Questionnaire, Bilboa, Spain, 1997.

Table A8.2 (Continued) Adoption Rates by European Countries with More than Four
Responses [5]

Country N
Organization

Issues
Standards

& Processes Metrics Control Tools

Overall
Average

Adoption %

Ireland 12 51 43 36 51 45 45%

Spain 34 53 44 36 57 35 44%

Belgium 15 52 41 40 46 40 43%

Sweden 13 38 36 25 33 26 32%

123

Appendix 9

Emotional Intelligence

Emotional intelligence is most often defined as the ability to perceive, use, understand, manage
and handle emotions. It may sound like an oxymoron because most of us have witnessed bursts of
emotion that were anything but intelligent. But understanding and controlling your emotions are
an important part of being an effective leader and definitely required to be an effective software
project manager. In fact, emotional intelligence is seen by many researchers as a key competence
for all project managers [1]. This is particularly true in organizations with several generations [2]
working together. Emotional intelligence is especially important in team collaboration, trust and
satisfaction, conflict management, project manager leadership style and project results/success [1].
It is considered a necessary skill for all project managers to possess. Part of the reason for this
“importance” is that project managers spend a significant portion (60–80%) of their time com-
municating but emotional intelligence abilities are not something we are born with but skills that
must be learned and improved through use [3]. In general, the professional success of the project
manager is related to their knowledge, communication skills and thinking ability. Emotional intel-
ligence may be broadly understood as a person’s ability to understand people’s emotions and the
ability to react to their emotional condition [4]. Research has shown that a high level of emotional
intelligence enables professional development and success overall [5].

A.9.1 Models of Emotional Intelligence
Different researchers have developed their own models of emotional intelligence in order to help
understand the phenomenon and convey why it is important for project managers to understand it
and to develop their emotional intelligence. While each model is unique, they do have some com-
monalities. The five elements of the emotional intelligence model developed by Daniel Goleman,
who helped to popularize the concept of emotional intelligence, are:

 1. Self- awareness
 2. Self- regulation
 3. Motivation
 4. Empathy
 5. Social skills

Note that none of these elements involves technology but deals with interpersonal actions [6].
Consider two incidents I observed watching NFL football one afternoon. Late in the game, one

124 ◾ Appendix 9

team had an opportunity to win the game by kicking a field goal with very little time left in the
game. If the kick was good, there was so little time left in the game they would probably win by
a point but the kicker missed. When he returned to the sideline, the coach told him, “OK, you’ll
make the next one.” Then the unlikely happened, the team recovered a fumble and had another
chance to kick a field goal and win the game. Sure enough, the kicker made it and they won.
I watched another game the previous week with a similar situation. After the miss, the coach was
livid. He was screaming and yelling at the kicker and obviously angry at what happened. So the
question is, which coach displayed more refined emotional intelligence? Obviously, the first one
but more importantly consider the effect his behavior had on the self- confidence of the placekicker.
The message being conveyed was “I have confidence in you” while the message being conveyed by
the second coach was just the opposite. In managing a software team, there will be many situations
which could cause the software project manager to be angry but not giving in to the temptation
to scream and yell but instead calmly convey confidence in the individual and the team can work
wonders for the performance of your team.

References
 [1] Ciutiene, R., Meilene, E., Daunoriene, A. and Surgelyte, I., “Project Managers of Different Generations:

How to Deal with Emotional Intelligence Issues,” Project Management Development – Practice and Perspectives,
8th International Scientific Conference on Project Management in the Baltic Countries, April 25–26, 2019, Riga,
University of Latvia.

 [2] Moss, D., “5 Generations + 7 Values = Endless Opportunities,” Society for Human Resource Management
Newsletters, June 20, 2017.

 [3] Goleman, D., The Brain and Emotional Intelligence, More Than Sound Publishing, Florence, MA, 2011.
 [4] Derevyanko, S.P., “The Role of Emotional Intelligence in the Process of Social- Psychlogical Adaptation of

Students,” Innovative Education Technologies, Vol. 1, 2007, pp. 92–95.
 [5] Meshcheryakova, I.N., “Formation of Emotional Intelligence of Psuchology Students during Their University

Study,” Tambo University Bulletin, Humanities Series, Vol. I, No. 81, 2010, pp. 157–161.
 [6] Thamhain, H. “Critical Success Factors for Managing Technology- Intensive Teams in the Global Enterprise,”

Engineering Management Journal, Vol. 23, No. 3, April 2015, pp. 30–36.

125

Appendix 10

Environmental Factors
Affecting Productivity

Most managers underestimate the power of familiarity. Use it to drive performance.

[1]

Productivity is a topic that has been a consistent topic of discussion in software engineering litera-
ture for many decades. It seems every few years another “new” method or software tool is introduced
with the promise of increasing software engineering productivity equated to code production. The
problem with that type of equivalence is that it is not how many lines of code one produces but
whether or not it meets requirements, is stable, is maintainable, makes it through to the source code
for the released product and so forth. The mental state of the people producing that code is increas-
ingly being seen as an important factor in the search for productivity. There are some senior soft-
ware project managers who believe that software engineers’ happiness isn’t important. The attitude
of some I have worked with is, “Who cares if they are happy – they are being paid to do a job, they
are not being paid to be happy!” This attitude has manifested itself in software engineers rating their
career happiness at 3.2 out of 5.0 which puts them at the bottom 46% of careers [2]. Hopefully,
these senior managers may be a distinct minority but the attitude expressed is more widespread
than you might think. It is present in subtle ways. For example, resistance to improving working
conditions, increasing pay rate, not being included in scheduling decisions and commitments and
more are all areas that software engineers have found to be frustrating. Those frustrations equate to
unhappiness which equates to lower productivity [3] and lower product quality. It may also equate
to higher turnover which can increase development costs by as much as 60% or more [4]. For more
than a century, academics have studied how working conditions and related factors affect worker
productivity. But much of that work is related to factory work – repetitive work often requiring
very little in the way of mentally challenging problem- solving. The relatively recent introduction of
software engineering into the workplace has become a new domain of research since this profession
involves mentally challenging work involving creativity and technical proficiency in the context of
often frequently changing requirements. Software project managers are focused on making their
project effort successful with the people resources they have. New programming languages, analysis
and design methods and other aids all held out the promise of solving “the software engineering

126 ◾ Appendix 10

problem” but it remains unsolved with the productivity improvements being disappointingly mod-
est – one source line per programmer per month per year [5]. One reason is that this is not the
same problem from project to project but the issue that remains the same from project to project
is that software engineers are doing the work. As stated many times in this book, they may be the
most important and least addressed factor in this endeavor. If your software engineers are not work-
ing together as a collaborative team, your project is likely doomed to failure. Worse, many senior
managers believe that successful software engineering teams could benefit the company better if
they were broken up and spread throughout the organization so that what was successful can be
learned by other teams. Once again, nothing could be further from the truth as data refute this
belief [6]. Experience shows that keeping teams together improves performance and increases their
chances of success. Why? For one thing, over time team members learn which members possess
certain kinds of knowledge so that when they have a particularly challenging problem they know
who best to get help from. This works both ways so what is happening is that a team composed
of n members becomes analogous to a single software engineer with the skills and experience of
all n software engineers on that team. What would be far more effective than breaking up a team
would be to have other software project managers emulate what the software project manager of
that successful team did [6]. Besides keeping teams together, the physical environment the team
is working in can and does impact productivity where productivity is not just the number of lines
of code produced but the quality of the code, responsiveness of the team to requested changes
and so forth. Table A10.1 lists the results from a study by DeMarco and Lister [7] on the impact
of the physical environment on software engineering team performance. What they did was to
compare the two extremes of performance – highest and lowest with their physical environments.
The COVID pandemic also highlighted this issue as many workers now prefer to work from home
rather than in an office. What appears to be evolving from this experience is a hybrid work environ-
ment wherein workers work from their home so many days a week and go into the office to link up
with other team members on specific days of the week. It remains to be seen how well this works
out but for now in 2024, some firms are adopting the hybrid model and adjusting the finer details
as problems occur.

Table A10.1 Impact of Environmental Factors on Productivity [7]

Environmental Factor Highest Performers [% Yes] Lowest Performers [% Yes]

Amount of dedicated workspace 78 square feet
(7.2 square meters)

46 square feet
(4.3 square meters)

Work area is acceptably quiet 57% 29%

Work area is acceptably private 62% 19%

Phone can be silenced 52% 10%

Phone can be diverted 76% 19%

People interrupt you needlessly 38% 76%

Appendix 10 ◾ 127

References
 [1] Huckman, R. and Staats, B., “The Hidden Benefits of Keeping Teams Intact,” Harvard Business Review,

December, 2013.
 [2] Business Insider, October 2021.
 [3] Lester, P.B., Diener, E. and Seligman, M., “Happiness Drives Performance,” MIT Sloan Management Review,

February 16, 2022.
 [4] Cone, E., “Managing that Churning Sensation,” Information Week, May 1998, No. 680, pp. 50–67.
 [5] Jensen, R., “Don’t Forget about Good Management,” CrossTalk Magazine, August, 2000, p. 30.
 [6] Staats, B., “Unpacking Team Familiarity: The Effects of Geographic Location and Hierarchical Role,” Production

and Operations Management, Vol. 21, No. 3, 2022, pp. 619–635. doi:10.1111/j.1937- 5956.2011.01254
 [7] DeMarco, T. and Lister, T., Peopleware, Dorset House, New York, NY, 1999.

http://dx.doi.org/10.1111/j.1937-5956.2011.01254

128

Appendix 11

How Software Project
Managers Are Evaluated

Skilled software project managers trained in project management are a key element in a successful
software project. As discussed elsewhere in this text, success involves much more than bringing a
software project in on time and within budget but even so, it is important for the software project
manager to understand how he or she will be evaluated in order to avoid the shock of a significantly
poor evaluation which may lead to a demotion or worse. Several groups that the software project
manager interacts with may be involved in evaluating the manager’s performance [1]. Each of these
groups has their own value systems, preferences and images of what a “good” software project man
ager is like. Since there are no absolute rights or wrongs with regard to evaluating software project
managers, the use of Likert scale evaluation criteria is probably the best mechanism to use. The
Likert scale in this case could range from 1 (Strongly Disagree) to 5 (Strongly Agree) and increase
monotonically. A series of statements would be contributed by each of the following groups and
evaluated by them [1]:

	 ◾	 Senior Managers – These are the people who made the decision to put this person into a
management position. Their evaluation of software project managers may be defined by com
pany policy but their own evaluation often takes the large view regarding the software project
manager’s value to the company.

	 ◾	 The Client (or customer) – This is the person or group that is paying for the software to be
developed. They are the ones who are specifying what the software should do (define require
ments) and interface with the software engineering team during development. The client may
be internal to the company and not an outside entity.

	 ◾	 Software Engineers – As the Google organization found out [2], it is essential that the soft
ware engineers on the team be able to honestly evaluate their manager which is one of the
techniques used by the Google organization to sell their engineers on the value and role of
managers [2].

Appendix 11 ◾ 129

A.11.1 Evaluation Perspectives
Each of the groups that are interacting with the software project manager has their own set of
criteria by which they judge the manager to be capable and to what degree. An overview of these
relationships is presented in the subparagraphs which follow.

A.11.2 The Senior Manager Perspective
Table A11.1 lists the main criteria suggested for the assessment of software project managers from
the senior management perspective. Possibly more than anyone, the senior managers’ perspective
is clearly focused on what is best for the company and in simple terms, the priorities are clear –
complete the project satisfying the client while ensuring a profit on the contract. This is even true
when the work is being done “in house.”

For that reason, an adequate planning and risk management strategy are crucial. These two
issues are also discussed by Thomas [3] as being among the most relevant causes of software project
failures according to senior managers. Therefore, such issues must be assessed. Note that adequate
planning does not mean detailed planning, but a plan with the level of detail needed at the time.

Team management is another critical task of software project managers, reflected by several
criteria in Table A11.1. For some time, personnel turnover has been identified among the main
causes of software project failures, while the software project manager has been identified as the
primary reason for personal turnover [4]. Therefore, adequate team management and motivation
skills are crucial qualities for software project managers. In our experience, some software project
managers tend to be too proud to ask for help when needed. Recognizing our own limitations is
an acquired skill.

Table A11.1 Senior Manager Evaluation

Senior Manager Evaluation Criteria Likert Evaluation (1 = Poor, 5 = Excellent)

The software project manager controlled costs
acceptably

1 2 3 4 5

Maintained “good” relations with client 1 2 3 4 5

The plan was sufficiently detailed 1 2 3 4 5

Mitigated risk in advance of it happening 1 2 3 4 5

Requested help when needed 1 2 3 4 5

Was able to get support from the development
team

1 2 3 4 5

Had relatively low personnel turnover 1 2 3 4 5

Motivated the development team 1 2 3 4 5

Maintained/improved team performance 1 2 3 4 5

Complied with company policy 1 2 3 4 5

130 ◾ Appendix 11

Finally, company policy exists for a reason (e.g. legal, financial), diverging from it would need
to be justified – conversely, if company policy is contributing to failures, it needs to be modified.
So feedback about this issue is also beneficial.

The people who would be filling out this evaluation are the senior managers who might have
sponsored the software project manager to become a project manager. Their perspective may be
biased toward the positive because they do not want to be seen as having put someone into manage
ment who was not really qualified. It is expected that over time, senior managers will come to rec
ognize areas that specific software project managers need to improve upon which will be reflected
in their regularly scheduled evaluation.

A.11.3 The Client Perspective
Whether part of a larger organization which includes the software development team or a separate
entity, the client or customer is the one who is paying for the work being done, and therefore their
satisfaction is directly related to the adequacy of the final product. Additionally, according to our
experience, the attitude and relationship with the software project manager during the develop
ment process are also a very relevant factor. Therefore, as shown in Table A11.2, the client evaluator
is in an excellent position to assess the quality and effectiveness of communication between the
organization and the software project manager. These evaluation criteria are consistent with find
ings elsewhere, particularly with [5]. Even when the project is experiencing difficulties, maintaining
open and honest communications with the client organization can lead to mutual understanding
with few unpleasant “surprises.”

Table A11.2 Client Perspective Evaluation

Client Evaluation Criteria Likert Evaluation (1 = Poor, 5 = Excellent)

The delivered system met/exceeded expectations 1 2 3 4 5

The project delivered value for the cost 1 2 3 4 5

The software project manager kept us informed
regarding progress

1 2 3 4 5

Kept us appraised of difficulties and possible
solutions

1 2 3 4 5

Informed us of scheduling issues 1 2 3 4 5

Explained technical issues understandably 1 2 3 4 5

There were a few surprises during the project 1 2 3 4 5

We will be able to manage the maintainability of
the system

1 2 3 4 5

We want to work with this manager again 1 2 3 4 5

Overall, the project was a positive experience 1 2 3 4 5

Appendix 11 ◾ 131

This communication is not usually easy as there exists a natural communication gap requiring
the project manager to speak in the client’s language to explain complex technical issues in terms
the customer can understand.

Table A11.2 also deals with maintainability; not ensuring the maintainability of the system
by those other than its originators will not contribute to client satisfaction. Finally, Table A11.2
includes a couple of items related to the general impression of the clients with the software project
manager and the project. They don’t have to coincide and, in our experience, represent quite well the
overall satisfaction of the client, and can provide very useful information in the subsequent analysis.

A.11.4 The Software Engineer Perspective
Table A11.3 lists the evaluation criteria of software project managers by software engineers. Like
other high technology and knowledge workers, software engineers seek to work on projects which
are at or advancing the state of the art [6]. Recognizing this need lets practitioners develop their
own technical and professional careers in a supportive working environment. In this context, team
management aspects are also valuable from the software engineering perspective, as shown in
Table A11.3.

Notice that this concern for technical superiority is frequently in direct opposition to the cli
ent view. To a large extent, what they most often want is a system that provides the functionality,
reliability, maintainability, security and ease of use they need. This difference between the goals
of the software engineer and those of the client, and sometimes of the software project manager,

Table A11.3 Software Engineer Evaluation

Software Engineer Evaluator Criteria Likert Evaluation (1 = Poor, 5 = Excellent)

The software project manager empowered the
team and did not micromanage

1 2 3 4 5

Expressed interest in and concern for team
members’ success and personal well- being

1 2 3 4 5

Encouraged quality results and practices 1 2 3 4 5

Was productive and results oriented 1 2 3 4 5

Was a good communicator – listened and shared
information

1 2 3 4 5

Was a good coach 1 2 3 4 5

Had a clear vision and strategy for the team 1 2 3 4 5

Had key technical skills that help him/her to
advise the team

1 2 3 4 5

The project was a positive learning experience 1 2 3 4 5

I want to work with this software project
manager again

1 2 3 4 5

132 ◾ Appendix 11

who finally wants the system to work, can make the software project manager’s intentions and even
their qualifications suspicious in the eyes of the software engineer.

A.11.5 Evaluation as a Learning Mechanism
While some software project managers may fear or resent being evaluated by others, that evalua
tion offers an opportunity to learn just what is or is not working with respect to how the manager
interacts with others.

A.11.6 Software Project Manager’s Perspective
The other three perspectives all involve assessing how others view the software project manager.
However, how the software project manager “sees” himself/herself with respect to the other evalu
ators may be just as important to reveal discrepancies between the manager and the other groups.

So software project managers should assess from their own perspective equivalent criteria to the
ones assessed by the other agents involved in the process. Table A11.4 partially shows the equivalent
criteria to be assessed according to the three previous perspectives; in practice, all equivalent criteria
in Tables A11.1, A11.2 and A11.3 should be considered. Reflecting upon and analyzing this infor
mation will provide useful data for the evaluation.

Table A11.4 Software Project Manager Self-Evaluation

Senior Manager Equivalent Evaluation Likert Evaluation (1 = Poor, 5 = Excellent)

I controlled costs acceptably 1 2 3 4 5

I maintained “good” relations with the client 1 2 3 4 5

The plan was sufficiently detailed 1 2 3 4 5

……. 1 2 3 4 5

Client Equivalent Evaluation Likert Evaluation (1 = Poor, 5 = Excellent)

The delivered system met/exceeded the client’s
expectations

1 2 3 4 5

The project delivered value for the cost 1 2 3 4 5

I kept the client informed regarding progress and
issues

1 2 3 4 5

Software Engineer Equivalent Evaluation Likert Evaluation (1 = Poor, 5 = Excellent)

I empowered the team and did not micromanage 1 2 3 4 5

I expressed interest in and concern for team
members’ success and personal well- being

1 2 3 4 5

I encouraged quality software practices and
discouraged shortcuts……

1 2 3 4 5

Appendix 11 ◾ 133

A key element in the evolution of a software project manager is the narrowing of any gaps
between how the software project manager sees themselves versus how others view them. The larger
the gap, the greater the communication and effectiveness.

A.11.7 Proficiency Levels in Software Project Management
Acquiring knowledge about managing software projects is less than half the challenge but is nec
essary to become proficient. Knowledge includes the facts and data needed but the competency
needed to adequately apply that knowledge is another matter altogether. It often requires a “leap
of faith” meaning that you lead your team using some method or system you have not used before
which you believe will be effective.

One model of software project manager proficiency [3] is summarized in Table A11.5. Eight
characteristics are listed vertically with levels of proficiency characterized from Novice to Master
horizontally. A few of the terms that appear in the table need some explanation:

	 ◾	 Cognitive Intelligence – This is what most of us would agree is what “intelligence” is. It
involves our ability to plan, solve problems including complex problems and so forth.
Just about all software engineers have to have at least a reasonable level of this type of
intelligence.

	 ◾	 Emotional Intelligence – As described by [4] it is, “the ability to monitor one’s own and
others’ feelings and emotions to discriminate among them and to use this information to
guide one’s thinking and actions.” In other words, it involves having empathy with your team
and each individual member to the extent that you know when to inquire as to whether or
not there is a problem, push for better performance and so forth. This level of understanding
of your team and each of its members does not come about easily for most but is necessary
for all software project managers.

	 ◾	 Spiritual Intelligence – The ability to behave with wisdom and compassion while maintain
ing inner and outer peace regardless of the situation [5]. In practical terms, this means that
even when things are going badly, you as the software project manager do not throw a tem
per tantrum. Looking at it another way, watch the coach of a successful sports team. The
most successful tend to rarely scream and yell at the officials even when things are not going
well. In fact, they refrain from yelling at their players when they fail to execute as planned.
After all, the player does not need to be yelled at. They know they made a mistake or failed
to perform at the level required. A good example is the management style of Pete Carroll,
coach of the Seattle Seahawks professional (American style) football team. A few years ago,
in a game crucial to the team getting into the championship playoffs, late in the game, the
placekicker missed a field goal that was well within his range. It was unlikely the team would
get possession again so the game might be lost at that point. What did the coach say to the
placekicker? He said, “That’s OK – you’ll make the next one.” Luckily, the team got the ball
back on a turnover and in the final play of the game, the placekicker made the kick to win
it for the team. Self confidence is very fragile. Berating a team member for failure not only
impacts their self esteem but sends a message to the rest of the team that negatively impacts
their productivity.

Notice how the progression from Novice to Master tends to move away from what might be con
sidered technical expertise and toward a more intuitive functionality while becoming effective in
more complex projects.

134 ◾ Appendix 11

References
 [1] Peters, L. and Moreno, A.M., “Evaluating Software Project Managers: A Multi Dimensional Perspective,”

IEEE Software, Vol. 34, No. 6, November 2017, pp. 104–108.
 [2] Garvin, D.A., “How Google Sold Its Engineers on Management,” Harvard Business Review, December, 2013.
 [3] Thomas, J. and Mengel, T., “Preparing Project Managers to Deal with Complexity – Advanced Project

Management Education,” International Journal of Project Management, Vol. 26, 2008, pp. 304–315.
 [4] Salovey, P. and Mayer, J.D., Emotional Intelligence, Baywood Publishing Company, Amityville, New York, 1990.
 [5] Wigglesworth, C., “Spiritual Intelligence: Living as Your Higher Self,” Huffpost blog, April 03, 2015.
 [6] Katz, R., “Motivating Technical Professionals Today,” IEEE Engineering Management Review, Vol. 41, No. 1,

March 2013, pp. 28–38.

Table A11.5 Proficiency Levels in Managing Projects

Characteristic Novice Journeyman Master

Knowledge Level Novice and Advanced
Beginners

Competent and
Proficient Performer

Emotionally and&
Spiritually intelligent
expert

Nature of
knowledge

Context- independent
rules and situational
elements

Categorizations of
context- dependent
and independent rules
based on experience &
education

Intuitive, holistic,
synchronic and
synthetic

Nature of
intelligence
employed

Cognitive Intelligence Emotional intelligence Spiritual intelligence

Development of Know What Know How, Know
Where, when and who

Know why

Relation to
the external
environment

Reactive to context
environment

Relational and
responsive to context
environment

Orientational,
interpreting and
transforming context

Role and Types
of projects

Team leader Manager of systems
type projects

Leaders of complex
adaptive projects in
uncertain environments

Method of
application

Analytical deliberation Analytical interpretation Intuitive leaps

Method of
movement from
one level to
another

Significant levels of
project experience
under an experienced
practitioner; formal
education in Project
Management
fundamentals

Significant levels of
project management
experience; additional
formal training in
advanced topics of
project management

Maintaining a position
at this level requires
“giving back” to the
occupation through
mentoring, training and
researching practice

Source: Adapted from [1].

135

Appendix 12

How to Run Effective
Meetings

We’ve all been there. The department head or team manager has called a meeting to discuss some
important issue or problem in order to identify possible solutions or at least make the audience
aware of the seriousness of some issue(s). As you look around the room, some attendees are staring
into space, barely able to stay awake, while others are frantically sending emails or text messages and
others are actually trying to contribute to this event. When you compute the cost of such meetings
based on the true hourly cost of the attendees, you have to ask yourself was it worth to the project,
the company and/or the client? Obviously, there must be a better way and there is. Here is a list of
guidelines for ensuring that your meetings are effective and not a waste of time [1]:

 1. Why are we having this meeting? What do you hope to accomplish by calling the attend-
ees together? If you don’t know why your team is meeting other than the fact that you
have a meeting every Monday, maybe you should rethink why this meeting is being called.
Conversely, if you do know why this meeting is necessary, say so in the meeting’s announce-
ment. This is the purpose of the meeting, its reason for happening and the people being
invited need to know that.

 2. Consider who should attend – Inviting everyone in the group might seem like a good idea
but if the meeting is an announcement for all employees but not such a good idea if the meet-
ing has a specific, narrow focus such as a reported serious software bug or response timing
issue or other technical problem. In the case of technical issue discussions, only the people
who could contribute to a solution should be in attendance; otherwise, some people will
literally be wasting their time.

 3. Stick to the Schedule – Create an agenda and stick to it. It frequently happens that some
attendees will take this as an opportunity to introduce off- agenda items that are important
to them but not relevant to the problem at hand. Put the agenda up on a screen and follow
it. Extraneous items could be addressed once everything else has been discussed. This keeps
the focus on the topics at hand. The extraneous issues raised may provide agenda items for a
future meeting.

 4. Be ruthless when it comes to the amount of time someone takes to go on and on – If this
happens, you might suggest that this topic is important but we need to hear from everyone
within the time allocated for this event. I once worked with a manager who made it clear
each person had a maximum of 10 minutes to make their point. He would signal when

136 ◾ Appendix 12

you were at 8 minutes and at 10 minutes cut you off with, “Thank you for your insightful
contribution but we need to hear from others regarding this issue.” It didn’t take long before
everyone in the group began to revise their comments to just the essential points.

 5. Be punctual – Start and end your meetings on time. A maximum of 60 minutes is recom-
mended. If topics come up during the meeting that will require the meeting to be extended
beyond that, have those interested in the topic take their discussion offline (after the meeting).

 6. Ban the use of mobile phones and other technology – Nothing can sabotage a meeting more
effectively than having phones going off during the meeting and or people texting during it.
Make it clear that phones are to be turned off, texting is not to be done and so forth. One
exception I recall was a fellow who asked to keep his phone on because his wife was about to
have a baby any day now. Sure enough, his phone went off during the meeting telling him
his wife was taken to the hospital by a neighbor and he left the meeting announcing he was
the father of a baby boy.

 7. Follow up on the outcome of the meeting – Often, there will be action items or tasks
assigned, decisions made and so forth. Put these into an email to the group in order to reduce
misunderstandings as to who was supposed to do what and by what date. This statement of
outcomes should be distributed within 24 hours of the meeting.

Finally, meeting just to update status may be a poor use of people’s time but this is a judgment call
on your part. The question you should ask yourself is “Is this a necessary expenditure of project
funds?” A second question is, “Who absolutely needs to attend.”

References
 [1] Hartman, N., “Seven Steps to Running the Most Effective Meeting Possible,” Forbes Leadership Forum, Forbes

Magazine, February 5, 2014.

137

Appendix 13

Ishikawa (Fishbone) Diagrams

So- called “Fishbone diagrams” were developed by Kaoru Ishikawa in 1969. They are also often
referred to as “Cause and Effect” diagrams. They have been used effectively to identify the source(s)
of problems in a broad range of processes from office paperwork to the manufacturing of automo-
biles and other products. To create a Fishbone diagram:

 1. Put the main problem in a box on the right.
 2. Identify potential sources of the problem.
 3. Sort out the process variables.
 4. Place them on the Ishikawa diagram.
 5. Ensure that each “bone” is measurable, controllable and specific.

As an example, consider a software project that has fallen behind schedule. Using the preceding five
steps, a simple Fishbone diagram might look like this.

Although Ishikawa diagrams [1] can get much more complex than the one shown in Figure A13.1,
even simpler ones can provide much- needed insights into our project. We generated the figure because

Project behind schedule

Business Environment

Management

Staff

Equipment

Low bid Lack Training

Inexperienced Faulty/failures

Figure A13.1 Example of a simple fishbone diagram.

138 ◾ Appendix 13

we are trying to get to the root cause(s) of the project being behind schedule. The major ones we have
identified as:

 ◾ Equipment
 ◾ Management
 ◾ Staff
 ◾ Business Environment

Then, we take each of these and document what it is about that item that could be a contribut-
ing factor to the problem. For example, in the figure Lack of Training is conjectured as being
a contributing factor. Regardless of how extensive or detailed these diagrams become, the most
important thing to note is that they get us to focus on solving the stated problem by identifying
what is causing it. This is something the software engineering team members can all participate in
and contribute to.

References
 [1] Reqillard, M., How to Create an Ishikawa Diagram, Maine et Loire, France, 2020.

139

Appendix 14

Knowing When It Is Time
to Cancel a Project

Putting a software engineering team together and developing the project plan and other documents
and deliverables involve a commitment to the project on the part of all parties. In so doing, the
project becomes more than a work product but becomes a part of the team. In many cases, it is
affectionately viewed upon by the team members. Remember, even the partial results achieved are
seen psychologically by the team members as extensions of themselves [1]. That is partly why it is so
difficult for the software project manager to face reality and come to the realization that the project
must be cancelled. Fortunately, some guidelines have been published which provide us with advice
on how to reach the cancellation decision if it is an appropriate one [2]. Here are some reasons from
that paper for not cancelling a project:

 ◾ The manager does not pay attention.
 ◾ The manager cannot decide.
 ◾ The manager is in denial.
 ◾ The manager does not know how to communicate with the project team.
 ◾ The manager thinks that if the project is canceled, her/his resources will be taken away.
 ◾ The manager thinks canceling would look bad to senior management.
 ◾ The manager lacks the courage to make difficult decisions.

Conversely, Tarim [2] lists some reasons for canceling a project:

 ◾ Cancellation by the customer.
 ◾ The project is no longer on the priority list.
 ◾ Customers are moving en masse to a new product concept or technology.
 ◾ Strategic changes have occurred in the marketplace.
 ◾ Competitors have produced a better product.
 ◾ The original Return on Investment (ROI) which originally justified the project no lon-

ger exists.

Either way, continuing or canceling a project involves risk at least in part because the decision will
be reviewed by others, sometimes to slant facts in order to further their own agenda.

140 ◾ Appendix 14

References
 [1] Weinberg, G.M. The Psychology of Computer Programming, Van Nostrand Rheinhold, New York,

NY, 1971.
 [2] Tarim, T.B., “Managing Technical Professionals: Knowing When It Is Time to Cancel a Project,” IEEE

Engineering Management Review, Vol. 41, No. 3, Third Quarter, September 2013, pp. 3–4.

141

Appendix 15

Lying and Software Projects

Software engineers have been described by some as being the most optimistic people on the planet.
A symptom of this optimism often occurs in the project status review. When asked the status of
their portion of the system under development, the team lead will often state that there are just a
few bugs to clear but they should be done on time. In fact, no one really knows how long it will
take to clear any given bug. I have seen one which had no reliable reproducible scenario. It caused
a “blue screen of death” (rolling hexadecimal output across a blue background screen) and took
several months to find and clear. At least the optimistic approach is honest. That is, to the best of
the team lead’s knowledge and belief, this is the situation. What is much more problematic is a
situation in which the software engineer lies about the status, usually to claim the situation is bet-
ter than it really is. This may be due to a desire to avoid the wrath of senior management or some
other reason but it is hardly justified. The goal of a review at any level is to establish the state of
health of the project or some portion of it. Lying about it is a lot like going to your doctor and lying
about some symptoms you are experiencing; it is not going to help your condition. To understand
this phenomenon better, we first need a reasonable definition of lying. The one we will use is “To
knowingly misrepresent what we know to be true.” The problem of course is that we often believe
that we can clear those few remaining bugs but the fact remains that the code is not functional at
the time of the review and should be characterized as such.

A15.1 The Study
A study published in IEEE Software in 2008 [1] showed the prevalence of lying in software projects
as well as the motivation for lying. It also described several of the circumstances in which lying
occurred. The problem with lying is that the truth will eventually come out which damages your
creditability. One project I learned about was done for the United States Department of Defense.
It was a two- year effort and required a monthly status report. Each month’s report showed that
milestones were being met, costs were exactly as planned and the project was proceeding according
to plan with respect to completion of tasks and expenditures. Six weeks before final delivery, the
contracting firm notified their client that it would be another six to 12 months before the software
would be delivered. Obviously, that project had not proceeded as smoothly as represented by the
contracting firm. The difficulty with determining the status of a software project as compared to
a construction project is there is little in the way of tangible evidence as to what progress has been
made. In construction, the client can visit the site and see what is being done but in the case of
software, that is difficult to determine. Agile has helped to keep vendors honest partly because the

142 ◾ Appendix 15

client can use some very early version of the software right from the start of the project and with
each milestone or update experience the progress that is being made. The study referred to above
[1] involved responses from Europe, the United States and Australia. What they found reveals the
extent to which software engineers may lie but also how the software project manager may inadver-
tently cause software engineers to see lying as the best way to keep from being admonished due to
unexpectedly slow progress. Let’s take a look at their findings.

Some of the motivations for lying:

 ◾ Increasing sales in order to obtain larger market share.
 ◾ Lying being more advantageous than telling the truth to maintain optimism.
 ◾ Appearing competent in the eyes of colleagues, senior management and/or customer.
 ◾ Overconfidence that obstacles can be overcome.
 ◾ Hiding mistakes.
 ◾ Trying to get the workload decreased.

In examining the preceding list, note how the issue of management’s perception comes into the
picture. If you want to reduce lying, demonstrate the emotional intelligence needed to ensure that
if things are not going according to plan, you, as the project manager, focus on fixing the problem,
not fixing the blame. My standing rule with the teams I managed was that I wanted to be the first,
not the last, to know if there is a problem and there will be no repercussions to the messenger (i.e.
I will not “shoot the messenger”). Another part of the study addressed what areas of software engi-
neering accounted for most of the lying (Table A15.1).

The importance of establishing an environment which encourages honesty and does not penal-
ize software engineers for being honest supports self- esteem and self- worth and promotes a reward-
ing work environment. All of these benefits and more improve productivity, code quality and cost
reduction (Table A15.2).

The research being cited here also asked respondents to describe how lying could be reduced
or eliminated in software engineering efforts. The responses were telling with respect to the
practice of managing software engineers and software projects. 22% of the responses were about
management. They noted that managers should focus on solving the problems that were causing
the difficulties rather than placing blame. In other words, “fix the problem, not the blame.” Also,
making reporting verifiable would help. About 10% were pessimistic because we are dealing with
human nature and nobody wants to be the bearer of bad news even if there are no consequences
personally.

Table A15.1 Lying Frequency [1]

Category
Respondents Who

Experienced Lying (%)
Number of Projects on

Which Lying Occurred (%)

Cost or schedule estimation 66 50

Status reporting 65 50

Political maneuvering 58 10

Hyperbole 32 30

Appendix 15 ◾ 143

References
 [1] Glass, R.L. Rost, J. and Matook, M.S., “Lying on Software Projects,” IEEE Software, Vol. 25, No. 6, Nov.–

Dec. 2008, pp. 90–95. doi: 10.1109/MS.2008.150

Table A15.2 Who Lied and Who Knew [1]

Category Management Project Lead Developer Marketing Customer

Cost/Schedule
Estimate

Who lied 53% 48% 45% 40% 11%

Who knew 47% 60% 66% 36% 13%

Status Reporting

Who lied 49% 54% 30% 20% 12%

Who knew 43% 59% 59% 23% 16%

Political
Maneuvering

Who lied 44% 34% 19% 26% 13%

Who knew 42% 45% 48% 29% 16%

Hypeperbole

Who lied 31% 32% 29% 36% 16%

Who knew 31% 36% 44% 34% 19%

http://dx.doi.org/10.1109/MS.2008.150

144

Appendix 16

Managing Multiple
Generations

Starting in the late twentieth century, possibly for the first time in history, multiple generations of
software professionals began working side by side. The reasons for this cultural and employment
shift include the fact that people are living longer (prior to the pandemic), are staying active lon-
ger and engineering software does not take an obvious physical toll on our bodies. This presents
software project managers with both challenges and opportunities [1]. Challenges because different
generations view technology and its use in different ways, the value systems differ between/among
generations and technical skills vary from one generation to the next. This means that nearly every
decision made by the software project manager will be challenged by members of one or more
generational groups. It needs to be kept in mind that while all members may have similar value
systems, these values are present to varying degrees further complicating this issue. Managing mul-
tiple generations presents us with opportunities in that the multiple experiences and viewpoints
represent a tremendous problem- solving capability. In order to meet the challenge of managing
different generations working together:

 ◾ Be cognizant of the different value systems held by each group.
 ◾ Observe your various team members to determine what their values are.
 ◾ Be aware of the degree of collaboration each member may commit to.
 ◾ Work to keep the team unified.

A.16.1 How Many Generational Groups Are There?
Different authors have broken today’s workforce down into four, five or even six generations. We
will focus our attention on the groups in the United States since this is the country for which we
have the best data. Furthermore, we will break the generational groups down into four groups
which have been studied (Table A16.1) [1]:

Appendix 16 ◾ 145

A16.2 Generational Characteristics
It should be noted that not everyone in a given generation exhibits the same set of characteristics
strongly. What is presented here is a set of generalizations that hold true for each generational group:

Characteristics of Matures
 ◾ Values

 – Respects authority, usually patient.
 – Doing a job well is important.

 ◾ Work ethic
 – Efficient, believes in quid quo pro.

 ◾ In the Workplace
 – Stable, detailed, works hard, loyal and ambiguity is challenging.

 ◾ Motivating Matures
 – Generally, feedback is important.
 – Phrases like “What you have to say regarding what has or has not worked in the past is

valuable to our project?”

Characteristics of Boomers
 ◾ Values

 – Competitive and workaholic.
 – Optimistic and tries to balance work and family.

 ◾ Work Ethic
 – The hours worked represent value to the company.
 – Highly values teamwork, relationships and loyalty.

 ◾ In the Workplace
 – Service oriented and driven team player.
 – Avoids conflict and not budget oriented.
 – Process supersedes results.
 – Sensitive to feedback.

 ◾ Motivating Boomers
 – Positive feedback like “We need you” are effective motivating actions.

Characteristics of Generation Xers
 ◾ Values

 – Work–life balance is important.
 – Technically literate.

Table A16.1 Generation Birthdate Ranges and Approximate Percent Occurrence

Generational Classification Birthdate Range
% of the United

States Population

Matures Born before 1945 10%

Boomers Born Between 1946 and 1964 43%

Generation X Born Between 1965 and 1977 33%

Millennials (Generation Y) Born Between 1978 and 2000+ 14%

146 ◾ Appendix 16

 – Thinks globally.
 – Is informal.

 ◾ Work Ethic
 – Favors productivity over tenure.
 – Communicates well.
 – Avoids Boomer work ethic.

 ◾ In the Workplace
 – Creative and independent.
 – Not intimidated by authority.
 – Technically savvy and very adaptable.
 – Lack people skills, impatient and inexperienced.

 ◾ Motivating Generation Xers
 – Provide the latest technology.
 – “We don’t have a lot of red tape.”

Characteristics of Millennials (Generation Y)
 ◾ Values

 – Must have stimulating work.
 – Optimistic, confident and ambitious.

 ◾ Work Ethic
 – Wants a job that is personally fulfilling.
 – Needs high- bandwidth communication with others.
 – Needs almost constant reinforcement from manager.
 – Works well with matures.

 ◾ In the Workplace
 – Multitasking heroic style.
 – Needs rules, structures and discipline in the workplace.

 ◾ Motivating Generation Y
 – Phrases like “You and your team can play a major role here.”
 – “You will be working with some of the best and brightest people in this field.”

A complicating factor to managing multiple generations in a single team is that you may also have
multiple cultures represented in your team. These cultural differences and their implications are
discussed elsewhere in this text. In other words, it is not prudent to consider just one factor apart
from others because they all impact each other.

Reference
 [1] Knight, R., “Managing People from 5 Generations,” Harvard Business Review, September, 25, 2014.

147

Appendix 17

Outsourcing (Offshoring)

With the advent of software engineering education worldwide and the availability of lower- cost
personal computers and various programming languages, many companies have sought to reduce
their software development costs by having some software development done in another country
that has lower labor costs. Anecdotal results more than two decades ago indicated that the results
were good as the responsiveness to changes and fixes for bugs were better than expected. But as
time went on, code quality, responsiveness to change requests and other factors began to make
outsourcing less and less attractive [1, 2]. Some of the factors that have led to the reduction in the
use of outsourcing include:

 ◾ Cultural
Differences in value systems between people from different countries are a fact of life. While
you may see delivering the contracted elements of the system on time, not everyone from
every culture you may outsource to will see it that way [3]. In some cultures, delivering, even
if late, is the goal. In other cultures, it doesn’t get delivered until it has been established that
the quality is high. In others, the cost is paramount. And on and on it goes in various com-
binations of the preceding. Also, in some cultures, the aggressive, hard driving style of some
software project managers is seen as insulting. Remember, when one becomes a software
engineer, they bring their culture with them – there is no way to escape it. So keep this in
mind if/when you seek to offshore some part of your project.

 ◾ Legal
Depending on the country the outsourcing is being done in, the most common protections
under copyright law in the home country may be missing, poorly enforced or otherwise
put your intellectual property at risk. When code development is outsourced, that consti-
tutes “work for hire.” This means that the company that lets the contract owns the rights to
the developed code. Intellectual property rights attorneys have indicated that some coun-
tries have impressive laws covering this topic but they are poorly enforced and/or the judges
charged with enforcing them are eminently bribable. The other extreme also exists wherein
the laws do not appear very stringent but enforcement is stellar. The best strategy here is to
engage the services of a law firm with offices in both the home country and the outsourced
country which deals with intellectual property rights such as software.

 ◾ Risk(s)
The outsourced software not only represents an investment but also may contain some com-
pany proprietary information. This information may constitute a competitive edge. Placing
it in the hands of another firm whose security and reliability may be unknown represents a

148 ◾ Appendix 17

real risk to the contracting firm. However, there are firms that are trustworthy and capable.
An experienced law firm may have some recommendations.

Summaries of the motivation to outsource have been developed. The results from one of these stud-
ies [4] are presented in Table A17.1.

Over the last two decades, major corporations have chosen to contract with firms in parts of
the world which have software engineering talent and lower wages than where the corporation is
located. Many of these arrangements appear to be quite beneficial for both parties. They are fre-
quently fixed- price contracts meaning that the work will be done for a certain, unchanging price.
Many of the early offshore software development efforts turned out quite well. The quality was
high, changes due to errors or alteration of requirements were made in a timely manner and cus-
tomers pleased with the results. But in more recent years, clients have told me that delivery dates
were missed, response to requested changes (even when accompanied by bonus payments) was slow
and sometimes nonexistent and the quality of the deliverables is not what it used to be. Upon fur-
ther investigation, it was determined that in some cases key people in the contractor organization
had left it to form their own company and lacked the business knowledge, managerial skills, expe-
rience and organizational skills to deliver on commitments. These factors plus cultural differences
between organizations have greatly reduced the advantages of outsourcing that were experienced
in its early years.

References
 [1] Laplante, P.A., Costello, T., Singh, P., Bindiganavile, S. and Landon, M., “The Who, What, Why, Where, and

When of IT Outsourcing,” IT Pro, Published by the IEEE, January|February 2004, pp. 19–23.
 [2] Casey, V., “Developing Trust in Virtual Software Development Teams,” Journal of Theoretical and Applied

Electronic Commerce Research, Vol. 5, No. 2, August 2010, pp. 41–58.
 [3] Kankanhalli, A., Tan, B.C.Y., Wei, K and Holmes, M.C., “Cross- Cultural Difference and Information

Systems Developer Values,” Decision Support Systems, Vol. 38, 2004, pp. 183–195.
 [4] Pai, A.K. and Basu, S., “Offshore Technology Outsourcing: Overview of Management and Legal Issues,”

Business Process Management Journal, Vol. 13, No. 1, 2007, pp. 21–46.

Table A17.1 Outsource Motivations

Determining Factor/Motivation to Outsource Percentage Due to This Factor

Upgrading current service levels 14%

Inability to staff appropriately 12%

Focusing on core business 27%

Avoiding needed investments 15%

Reducing operating costs 28%

149

Appendix 18

PERT [Program Evaluation
Review Technique]

The Program Evaluation Review Technique [PERT] is a tool for project planning developed in the
1950s. It was originally developed by the United States Navy as part of the effort to develop the first
nuclear- powered submarine – Nautilus. Contrary to the experience with many first- time technical
projects, it finished on time and within budget. At that point, many management organizations
began to believe that the problems associated with managing projects would be solved if PERT was
used. As history has shown, the rejoicing was premature. However, some new ideas were the result
of this project [1]. One was an estimating approach. In it, three estimated values were considered
and blended into one. The three values associated with the cost or flow time were:

 ◾ O = the optimistic estimated value.
 ◾ M = the most likely estimated value.
 ◾ P = the most pessimistic estimated value.
 ◾ E = the estimate was computed as E = (O + 4M + P)/6.

As you can see from the formula, it is weighted toward the most likely value (M). Most software
project management software systems support PERT represented as a network as well as Gantt
chart depictions of a project plan.

References
 1 Evdokimov, I.V., et al., “Using PERT and Gantt Charts for Planning Software Projects on the Basis of

Distributed Digital Ecosystems,” Journal of Physics: Conference Series, Vol. 1074, 2018, 012127.

150

Appendix 19

Planning using Integrated
Cost and Schedule Work
Packages

We all use some means of breaking a project down into smaller tasks so that we can “see” what
needs to be done, what should be done first and so forth. One issue we all face is the larger the
number of tasks we have to deal with, the greater the chances are that we will leave out some tasks,
get the order of task initiation/completion wrong or otherwise make some mistakes due to the sheer
volume of tasks we identify. One effective way to reduce the volume of tasks and to increase our
chances of success is to consolidate tasks into groups by breaking the project into work packages. To
do this, we try to break the project down into the largest tasks we can, layout the order in which they
should occur, estimate their duration and their interdependencies. Some tasks must be completed
sequentially, while others can be performed in parallel. That may sound like a lot but, as we shall
see, it isn’t. These tasks constitute the project. They can be viewed from a high level or macro level
down to something approaching a micro view as long as we do not go beyond the recommended
eight- hour (or whatever constitutes a full working day in your locale) limit as recommended by the
Project Management Institute [1]. Many of these steps constitute mini projects consuming flow
time, labor and other resources. One serious difficulty that all planning efforts experience is linking
cost and schedule. That is, we think we know how long a task will take and when it should take
place but its relationship to the other tasks in our plan and overall costs are often seen as separate
issues. Also, the Gantt chart may show us that a task is late but it is not obvious how other tasks
and those on the critical path may be impacted. Fortunately, there is a method complete with nota-
tion that aids both our planning and our management of the project. It involves the utilization
of the concept of a “work package.” A work package may be defined in different ways but for our
purposes, a work package will be defined as “A cohesive set of subtasks defining a step in the process
of completing the project.” Regardless of the definition you may choose to use, a unique notation
and some valuable insights demonstrate how to document the relationship among work packages
as part of actively managing a software project [2]. The reference cited integrates cost and schedule
into a project planning and management notation. It offers us a new and different perspective of
our project dwelling heavily on the relationships between work packages and emphasizing ranges
of time spans to complete a work package. Before we get into the details of using this notation,

Appendix 19 ◾ 151

it is important to set forth some definitions which we can use regardless of the planning method
we utilize. These are more precise than those we commonly read about or may currently believe:

 ◾ Float – This is frequently also referred to as total float, slack or total slack. It is calculated
for each work package individually. It is incorrect to state how much float a project has. It is
calculated using either of the following equations and adopting whichever value is less:

 =Total Float Late Start – Early Start

or

 = −Total Float Late Finish Early Finish

From a management standpoint, doing this for each work package can help us identify which
packages could be assigned to less- skilled members of the team, which packages are the most criti-
cal in terms of on time delivery and so forth.

 ◾ The Critical Path – This is an important piece of information every successful software proj-
ect manager tracks continuously. The work packages that are on the critical path are vital to
the success of a project. This method views a software project as a network of work packages.
Some of these packages are in such a location within the network that if they are delayed, the
final project deliverable(s) will be delivered late. Knowing the packages that lie on the critical
path also provides us with added insight as to which packages should be assigned to our best
software engineers and/or team. The critical path consists of all of the following [2]:
 – The longest path through our network schedule
 – The shortest time to complete the project as planned
 – The path(s) with tasks that have zero float
 – Not the only path of work requiring management control

 ◾ Calculating Free Float – Free float is also known as free slack. It is the amount of time a work
package can be delayed before that delay impacts any other work package in the network. The
notation and an example of its use are presented in Figure A19.1.

 ◾ The Notation – The Integrated Cost and Schedule Control method utilizes a network of
rectangles representing work packages each of which is annotated as shown below. Each rep-
resents a work package and is composed of six parts:
 – Work package title
 – Work package scheduled time to complete, usually in days
 – Early start in days since project start
 – Early finish in days since project start
 – Late start in days since project start
 – Late finish in days since project start
It should be noted that in creating a network of these work packages, the focus is not on
simply relying on everything happening on time but allowing for not just early finishes but
late starts and so forth. Here is an example of a single work package using a generic label:

One aspect of this method that should not be overlooked is the fact that it only requires us to esti-
mate the most optimistic and the most pessimistic flow times to complete a task. Also, you should
be sure to establish whether or not you are specifying work days and not including weekends or
other days on which work will not be performed.

152 ◾ Appendix 19

A19.1 Applying the Forward Pass Method
The Forward Pass Method gets its name from the fact that the network of work packages is orga-
nized starting at the beginning of the project and working toward the end of the project (i.e. work-
ing “Forward”). It consists of executing four steps:

 1. Start with t = 0 as the “Early Start” at the beginning of the project.
 2. Add the task’s duration to get the early finish of the task.
 3. Recognize that the early start of each successor task will be the latest early finish of each of its

predecessor’s tasks.
 4. Repeat steps 2 and 3 until you find the early finish of the last work package or the end mile-

stone of the project.

A generic example of applying this method is shown in Figure A19.2.
Let’s look at how Figure A19.2 was developed:

 ◾ We have determined that this work package is composed of 10 tasks (Task A through Task J)
plus the END of the Project task to which we have not assigned.

 ◾ Using the Forward Pass Process, we start with Task A which starts at zero and completes in
10 days.

 ◾ Tasks B, C, D and E can all be done in parallel but cannot start until Task A is completed
on day 10.

 ◾ Recalling that a subsequent task cannot start until the latest finish for its predecessor(s) n
identifier means Task F must have an early start of 19 days.

 ◾ In a similar manner, Task G must have an early start of 17 days.

Calculated Free Float [n,m] where n = Float; m = Free Float

0 – - - - - - - -10
Task A

10 Days (0,0)
0 10

10– -- - - - - -15
Task E

5 Days (7,2)
17 - - - - - -22

10 - - - - - -19
Task B

9 Days (0,0)
10 - - - - - -19

10– - - -- - - -14
Task C

4 Days (5,5)
15 - - - - - -19

17 - - - - - - -18
Task H

3 Days (7,2)
22 - - - - - -25

19– - - - - - - 24
Task F

5 Days (0,0)
19 - - - - - - 24

17 - - - - - - -21
Task G

4 Days (1,3)
20 - - - - - -24

20 - - - - - - -22
Task J

2 Days (5,5)
25 - - - - - - -27

24 - - - - - - -27
Task I

3 Days (0,0)
24 - - - - - - -27

27
END

of
Project

10 – - - - - - -17
Task D

7 Days (5,0)
15 - - - - - -22

Figure A19.1 Example of free float.

Appendix 19 ◾ 153

 ◾ Also, Task H will have an early start of 17 days.
 ◾ Task I will have an early start of 24 days and Task J will have an early start of 20 days.

Upon examining Figure A19.3, if we wanted to shorten the total flow time for this effort, we will
have to focus on tasks much earlier than tasks I and J. This is one advantage of developing the net-
work view of the overall effort.

The Backward Pass Method works in the opposite direction from the Forward Pass Method. It
identifies the latest a work package can start and finish. It also uses a four- step process:

Early Start Early Finish

Late Finish

Late Start

Task Duration, Float
and Estimated Cost [n]

Task or Work
Package Label

Figure A19.2 Single work package notation.

Forward Pass Example

0 – - - - - - - -10
Task A

10 Days

10– -- - - - - -15
Task E
5 Days

10 - - - - - -19
Task B
9 Days

10– - - -- - - -14
Task C
4 Days

17 - - - - - - -20
Task H
3 Days

19– - - - - - - 24
Task F
5 Days

17 - - - - - - -21
Task G
4 Days

20 - - - - - - -22
Task J
2 Days

24 - - - - - - -27
Task I
3 Days

27
END

of
Project

10 – - - - - - -17
Task D
7 Days

Figure A19.3 A generic example using the forward pass method.

154 ◾ Appendix 19

 1. Identify the latest early finish found during the forward pass of the end of the network (i.e.
reverse forward pass approach).

 2. Subtract the duration to find the late start of each task.
 3. Recognize that the late finish of the predecessor task will be the earliest of the late starts of

each of the successor tasks.
 4. Repeat steps 2 and 3 until you have zero as the late finish of the start milestone or the late.

Some rules regarding the development of the Backward Pass Method (Figure A19.4):

 1. Start with the end date and set that as the late finish of each task that has the “End” task as
its successor.

 2. Subtract the task duration from the late finish to determine when the task “must” start.
 3. When a task is a predecessor to more than one successor, it must be finished in time for the

earliest late start of all its successors.

Note that both the Forward and Backward Pass Methods may bear some bad news regarding the
project. Specifically, it cannot be completed in the timeframe originally envisioned or we should
have started on this effort way before the planned start. But the news is not always bad.

This method gives us the choice of modeling the project from start to finish (the “Forward Pass
Model” or from the end of the project back toward the start (the “Backward Pass Model”). In some
cases, the Forward Pass network may result in a project end date beyond what we had planned. In
that case, adjustments need to be made to our plan such as deferring some features. Similar com-
ments apply to the Backward Pass network if it ends up showing that the project needed to be
started prior to the originally planned start date.

Backward Pass Example

0 – - - - - - - -10
Task A

10 Days
0 10

10– -- - - - - -15
Task E
5 Days

17 - - - - - -22

10 - - - - - -19
Task B
9 Days

10 - - - - - -19

10– - - -- - - -14
Task C
4 Days

15 - - - - - -19

17 - - - - - - -20
Task H
3 Days

22 - - - - - -25

19– - - - - - - 24
Task F
5 Days

19 - - - - - - 24

17 - - - - - - -21
Task G
4 Days

20 - - - - - -24

20 - - - - - - -22
Task J
2 Days

25 - - - - - - -27

24 - - - - - - -27
Task I
3 Days

24 - - - - - - -27

27
END

of
Project

10 – - - - - - -17
Task D
7 Days

15 - - - - - -22

Figure A19.4 Generic example of applying the backward pass process.

Appendix 19 ◾ 155

A19.2 Some Definitions and Observations
The work packages that comprise the network(s) of our project can be detailed at another level
down. In other words, decomposed and represented by another network of work packages detailing
what is going on in the upper level or parent work package.

A19.3 Definitions with Examples
Float – This is also referred to as Slack. It is the amount of time that a task can be delayed without
causing a delay to subsequent tasks. Building some Float into our network enables us to build in
some flow time in our project plan to accommodate the unforeseen such as delay(s) in completing
a work package due to a particularly difficult software error which could take additional time to
correct. Total Float is calculated as follows:

= −Total Float Late Start Early Start

Or alternately,

= −Total Float Late Finish Early Finish

A generic example of Total Float computation is presented in Figure A19.5.

Backward Pass Example

0 10
Task A

10 Days
0 10

10

–
--

--
--

-

15
Task E
5 Days

17

-
--

--
-

22

10

-
--

--
-

19
Task B
9 Days

10

-
--

--
-

19

10

–
--

--
--

-

14
Task C
4 Days

15

-
--

--
-

19

--

-

17

--
--

--
-2

0

Task H
3 Days

22

-
--

--
-

25

19

–
--

--
--

24
Task F
5 Days

19

-
--

--
-

24

17

--
--

--
-

21
Task G
4 Days

20

-
--

--
-2

4

20
 -

--
--

--
22

Ta
sk

J
2

D
ay

s
25

 -
--

--
--

27

202

24

--
--

--
-

27
Task I
3 Days

24

--
--

--
-

27

27
END

of
Project

10

–
--

--
--

17
Task D
7 Days

15

-
--

--
-2

2

Figure A19.5 Network used for calculating total float.

156 ◾ Appendix 19

A19.4 Calculating Free Float
Free Float is more useful than “Float” because it is the amount of time a work package can be
delayed before it impacts any other work package in the schedule. It is computed as follows:

= −j iFree Float Early Start Early Finish

where

=jEarly Start the successor task/work package

=iEarly Finish the task being analyzed

If there is more than one successor, the minimum difference will equal the Free Float for the task.

A19.5 Calculating Free Float

 ◾ If there is more than one successor, the minimum difference will equal the Free Float for
the task.

 ◾ A generic model of Free Float Computation is presented in Figure A19.6.

Calculated Float [n] Example

0 – - - - - - - -10
Task A

10 Days (0)
0 10

10– -- - - - - -15
Task E

5 Days (7)
17 - - - - - -22

10 - - - - - -19
Task B

9 Days (0)
10 - - - - - -19

10– - - -- - - -14
Task C

4 Days (5)
15 - - - - - -19

15 - - - - - - -18
Task H

3 Days (7)
22 - - - - - -25

19– - - - - - - 24
Task F

5 Days (0)
19 - - - - - - 24

19 - - - - - - -21
Task G

4 Days (1)
20 - - - - - -24

20 - - - - - - -22
Task J

2 Days (5)
25 - - - - - - -27

24 - - - - - - -27
Task I

3 Days (0)
24 - - - - - - -27

27
END

of
Project

10 – - - - - - -17
Task D

7 Days (5)
15 - - - - - -22

Figure A19.6 Generic free float computation model.

Appendix 19 ◾ 157

Critical Path – This is the path of work packages such that any delay could cause the project to miss
its completion date. An example of how to detect work packages that lie on the critical path from
Figure A19.7 involves the use of Table A19.1. In reviewing the table, note the amount of Total
Float. Work packages with zero Total Float are the obvious candidates for lying on the Critical Path
because they have to execute exactly as planned.

Calculated Free Float [n,m] where n = Float; m = Free Float

0 – - - - - - - -10
Task A

10 Days (0,0)
0 10

10– -- - - - - -15
Task E

5 Days (7,2)
17 - - - - - -22

10 - - - - - -19
Task B

9 Days (0,0)
10 - - - - - -19

10– - - -- - - -14
Task C

4 Days (5,5)
15 - - - - - -19

17 - - - - - - -18
Task H

3 Days (7,2)
22 - - - - - -25

19– - - - - - - 24
Task F

5 Days (0,0)
19 - - - - - - 24

17 - - - - - - -21
Task G

4 Days (1,3)
20 - - - - - -24

20 - - - - - - -22
Task J

2 Days (5,5)
25 - - - - - - -27

24 - - - - - - -27
Task I

3 Days (0,0)
24 - - - - - - -27

27
END

of
Project

10 – - - - - - -17
Task D

7 Days (5,0)
15 - - - - - -22

Figure A19.7 Generic example of a network used to compute free float.

Table A19.1 Identifying the Critical Path

Task Total Float On the Critical Path?

A 0 Yes

B 0 Yes

C 5 No

D 3 No

E 7 No

F 0 Yes

G 1 No

H 7 No

I 0 Yes

J 5 No

158 ◾ Appendix 19

Summary
Planning using the integrated cost and schedule notation and underlying conceptual basis repre-
sents an efficient, disciplined and information- rich scheme for planning software projects.

References
 [1] Project Management Institute, Guide to the Project Management Body of Knowledge, 7th Edition, Project

Management Institute, Newtown Square, PA, 2021.
 [2] Kuehn, U., Integrated Cost and Schedule Control in Project Management, Management Concepts, Vienna,

VA, 2006.

159

Appendix 20

A Pre-Project Launch
Checklist

“Nearly every aspect of software project management involves some form of risk.”

–Michael Deutsch

Running a software project can be as complex and demanding as flying an aircraft. In a very real
sense, complexity equates to risk. The basic definition of complexity we will use here is:

“Complexity is a subjective notion, reflecting the lived experience of the people
involved.”

[1]

Unlike the pilots’ checklist, software project managers do not have a comprehensive list of the factors
that could affect the success of their project to review before the project starts. Just like the aircraft
analogy, the purpose of a checklist of factors is to ensure that success is at least possible and known
issues are noted and corrected, a workaround is planned for or a decision is made to delay or even
cancel the project. A significant difference between the aircraft analogy and the use of a checklist
before a software project launches is that many of the software project- related items involve judg-
ment and opinions whereas the aircraft inspection is generally binary. For example, if a pilot spots
a hydraulic fluid leak, they usually can’t ignore it by forming an opinion that it won’t endanger the
aircraft’s flight. As in the case of the aircraft, such a list does not guarantee a successful software proj-
ect but it at least enables the software project manager and the development team to conscientiously
decide to go forward in spite of the potential risks or to decide the risks are too great to overcome and
resign from the project or seek relief from the most serious risks. This appendix presents a checklist
based upon many of the published risk factors software project managers have cited as potentially
jeopardizing their projects. The checklist is intended to be evaluated by both the software project
manager and each member of the software development team. Just as in the case of the aircraft
checklist, wide discrepancies between team members’ evaluation(s) and the software project man-
ager’s evaluations highlight issues that represent significant potential risks, requiring special atten-
tion, discussion and resolution. The value of this list lies in the fact that it may cause team members
(especially the software project manager) and senior management to raise questions regarding the
status of one or more of the listed items and its impact on the project under consideration.

160 ◾ Appendix 20

A.20.1 The Concept
When a project is first considered, the software project manager and the development team all have
their own perceptions of the challenges that lie ahead. For example, the software engineers concern
themselves with the technical issues that will have to be resolved while the software project manager
is focused on whether or not the funding, flow time and skilled personnel are sufficient to complete
the project successfully. These differences in perceptions, individual priorities and value systems
can lead to friction among the team members with each trying to convince others that their own
concept(s) and most important issue (in their opinion) is the most important. This leads to team
members becoming somewhat alienated from each other resulting in not working together as a
team and not taking advantage of their complementary skills. While changing the value systems of
team members is unlikely, previewing where problems may occur is well within the realm of pos-
sibility. For example, a simple statement “this project is extremely complex” may produce differing
responses from team members depending on their training, experience and to what extent they
want to be seen as having a superior intellect as compared to their colleagues. Probing why some
see the project’s complexity very differently from others is vitally important with respect to creating
and maintaining an effective team. Stated another way, the project manager should seek to deter-
mine what one software engineer sees or misses that shapes their conclusion regarding complexity.
A goal of a pre- project checklist is to engage the software project manager and software engineers
in evaluating a list of common project variables and risks to discuss the ones with wide differences
of opinion among the team members. This exercise would help to unify the team regarding how to
address the pending issues. Another goal of this exercise is to adhere to the adage “Forewarned is
forearmed.” This enables the software project manager to prepare for events which could endanger
the project’s successful completion and be sensitive to issues on which there is a wide difference of
opinion as to their importance.

“Perhaps the biggest challenge facing executives today is how to define success (or failure) on
projects.” – Harold Kerzner, author of “Project Management: A Systems Approach to Planning,
Scheduling, and Controlling [2].”

The issue of success in software project management is like any other project management
endeavor: it is ethereal. That is, it is subject to change without advanced notice and it is what we
and/or others say it is at a specific point in time. During my consulting engagements, I have seen
projects that the teams thought were successful be deemed disasters and conversely. So what hap-
pened? In general, the political winds of fortune shifted. In one particularly memorable project,
a high- level executive was briefed on a significant change in how software was to be developed in
a forthcoming project. The software engineering group had a particularly poor record of deliver-
ing on time, let alone on budget. After the briefing, this executive went on record as stating that
there was no way the software group could successfully complete this project (i.e. on time and on
budget). When they actually pulled off this seemingly impossible feat, the embarrassed executive
was so angry that he saw to it that the head of software engineering was fired together with the
project manager in charge of the project. Success really can be dangerous!

When you ask software project managers what the most difficult part of their job is, right after
saying “personnel issues,” they usually say “complexity.” We will refine this further but for now,
what complexity is varies from one software project manager to the next. These viewpoints revolve
around the number of activities taking place all at once, the various changes occurring in the
requirements without warning, the shifting political situation both within their own organization
and the customer’s organization (even when they both work for the same company), and many
others. What disturbs most software project managers is the unexpected level of (apparent) chaos

Appendix 20 ◾ 161

embodied in their projects. In a real way, they did not know what they were getting into when
they agreed to manage this effort. Fortunately, several researchers [1] have refined what complex-
ity is all about and developed a questionnaire that will help you, the prospective software project
manager, to assess the level of complexity you will be expected to deal with effectively. It is called,
the Complexity Assessment Tool (CAT). But before we describe its contents and how to use it, we
need to understand how it helps us to manage complexity by organizing various complexity factors
into three categories. Each category is described briefly below [1]:

A.20.2 Structural Complexity
This type of complexity involves dealing with the sheer volume of tasks, processes, events, mile-
stones, interactions and coordination comprising the project. Planning tools like Gantt charts are
especially effective at helping to cope with this type of complexity. It may be the most written about
and most discussed type of complexity in textbooks and management training.

A.20.3 Sociopolitical Complexity
This is the area most project managers find to be the most difficult to deal with 68% of respondents
[1]. This type of complexity is most apparent in projects of significant importance to the client in
involving people, power and company politics both within the project team and the client’s team.
Each of these groups and even individuals may have their own agendas. Unfortunately, 86% of
project manager training and available resources (e.g. textbooks) are focused on structural com-
plexity [1].

A.20.4 Emergent Complexity
As the name of this type of complexity implies, it occurs without predictability during the project.
A very common source of this type of complexity in software projects is the fact that the require-
ments will change either due to an actual change order or clarification of what was contained in
the original requirements statement. This makes requirements definition and comprehension a
discovery process.

A.20.5 Complexity Assessment Tool (CAT)
Maylor et al. [1] developed a questionnaire which they referred to as the Complexity Assessment
Tool to help us focus attention on project factors which can make a project complex. As one might
guess, there is no single formulation which could work for all projects. However, this questionnaire
will help us to focus on those elements which we may be able to deal with right from the start or
at least be prepared for them as we begin the project or proceed with it. This questionnaire should
be reviewed on a regular basis during the course of the project. One item which software project
managers often cite as the reason for project problems is that requirements changed after the project
began. However, this is practically given in any project of any significance whether it be construc-
tion, road building or software. In effect requirements change partly because our understanding

162 ◾ Appendix 20

of them changes during the project, the client did not understand the ramifications of some of
the statements, what was being built met the requirements but not the intent or goal of the new
feature(s) or system under development.

The goal of the CAT is not to make complexity disappear but to identify factors which may
lend themselves to some form of preemptive action thereby reducing complexity. Here is how:

 1. Before project start, have each team member complete the survey. This includes the project
manager.

 2. Get the team together and develop a master or consensus version of the CAT.
 3. Identify the most common items on the CAT that seem particularly worrisome. In general,

these will be items to which one or more team members answered “No” to. For example, item
14 regarding key personnel. If key personnel will be splitting their time between projects, this
represents a serious risk to the project increasing the complexity the team has to deal with.

 4. Discuss with the team how to deal with, eliminate or reduce the impact of the “No” items
and implement the plan. A key strategy here is to keep the number of items to be addressed
to a minimum. Keep in mind that there will be some factors that are beyond our control.

 5. Repeat items 1 through 4 at regularly scheduled points in the project and include a review of
how well the complexity mitigation strategy(s) worked, revising them as necessary.

A.20.6 Discussion
Some of the statements in Table A20.1 may need some explanation while others should be obvi-
ous. To make sure, let’s take a brief look at some of these statements and the issues they raise. Each
statement number precedes the brief discussion:

3- If the development team is not familiar with the technology that will be employed, a learning
curve must be overcome. In addition, once the team has become familiar with the technol-
ogy, errors are more likely during its application than would occur if they were experts in
it right from the start. This issue becomes even more serious if the technology is likely to
undergo change during the course of the project.

5- One of the more popular excuses for software project failure is often referred to as, “scope
creep.” This usually refers to the project expanding beyond what was originally planned and
scheduled for causing budget and schedule overruns. If we do not know the scope from the
start and/or it is likely to change, complexity will definitely increase.

13- If the software project manager cannot prevent people from being reassigned or shared with
other projects, complexity increases but so do the chances that the project will fail.

14- Key personnel really should not be shared with one or more other projects. Why? Because
sharing a human resource in knowledge work results in lower productivity. This goes against
our experience with machines but people are not machines. The studies vary in their estima-
tion, but sharing someone among three projects really results in their total output being
reduced by 40% of what would occur if they were dedicated to a single project [3]. The rea-
son lies in the effect of context switching. Estimates vary for three projects and two projects
but the effects of splitting time may be even worse than these estimates. For example, the
software engineer involved may be needed in a meeting to make some important architec-
tural or procedural decision. If they are splitting their time between just two projects, the
chances are 50–50 that they will not be available to participate. When they return to the

Appendix 20 ◾ 163

(Continued)

Table A20.1 Pre-Project Assessment Checklist

Category/Statement
Agree with This

Statement? (Y/N)
Is This Expected to
Not Change? (Y/N)

Structural Complexity Assessment

1- The vision and benefits of the project have
been clearly stated

2- Success criteria have been agreed upon with
the client

3- The development team is familiar with the
technology

4- The commercial arrangements are familiar to us

5- The scope of the project is well defined

6- Acceptance criteria for quality and regulatory
requirements can be well defined

7- A schedule and resource plan can be well
defined

8- The supply chain is in place

9- Lines of responsibility for tasks and
deliverables can be defined

10- Accurate, timely and comprehensive data
reporting is possible

11- Existing management tools can support the
project

12- Sufficient people with appropriate skills are
available

13- The project manager has direct control of
the needed human resources (i.e. they report
directly to her/him)

14- Key personnel are assigned 100% to the
project

15- Integration across multiple technical
disciplines is not required

16- The project budget is sufficient

17- The budget can be used flexibly (i.e.
reallocated among cost categories, as necessary)

164 ◾ Appendix 20

Category/Statement
Agree with This

Statement? (Y/N)
Is This Expected to
Not Change? (Y/N)

18- The project will be carried out in a single
country/time zone

19- The project is independent of other projects
and established business operations

20- The schedule is makeable

21- Resources (e.g. test facilities, equipment,
high- speed network access) will be available

Sociopolitical Complexity

Sociopolitical Complexity Assessment

22- The project has sponsorship consistent with
its importance

23- The project has a clearly stated business case

24- The project’s goals align with the
organization’s strategic vision

25- Senior management supports the project

26- The project team is motivated and works well
together

27- The project manager(s) have experience with
this type of project

28- The project does not involve significant
organizational and/or cultural change

29- The project will be unaffected by significant
organizational and/or cultural change

30- The project’s external stakeholders (i.e. those
who are not members of the project team) are
aligned, supportive and committed to the project
and have sufficient time for the work

31- External stakeholders have a realistic, shared
understanding of the implications of the project

32- The project team has the authority to make
decisions

Source: Adapted from [1] with the permission of its authors.

Table A20.1 (Continued) Pre- Project Assessment Checklist

Appendix 20 ◾ 165

project, the decision made by the rest of the team may have to be reversed or revised due to
some issue it creates. In addition, the efforts of this software engineer on all projects that share
their attention will display a lack of cohesiveness. Sharing people between projects seriously
impacts flow time estimates for all projects involved. Once you adjust estimates for this loss
of productivity, you may reconsider whether or not this was a good idea.

18- Conducting a project over multiple time zones can vary from minor inconvenience to a
major issue. For example, in the United States, as many as three time zones could be involved
but conducting a project over nine time zones can raise serious coordination and perfor-
mance issues. Conducting a project with teams on the West Coast of the United States and
teams in Western Europe means coordination calls made in the morning on the West Coast
occur in the late afternoon in Europe. So we have one team just starting their day, presumably
fresh and ready to go, while their counterparts are nearing the end of their day and are likely
tired and ready to go home. Conducting a project over multiple countries is compounded
by cultural differences as well. For example, in Spain, it is the custom to take Monday as a
“Puente (bridge)” day if a holiday falls on a Tuesday. Simply looking up the national or local
holidays for various countries would not reveal such practices.

Some may look at the list of structural or sociopolitical complexity statements and conclude that
a “Yes” to all items in the left- hand column and a “No” to all the items in the right- hand column
practically guarantees success. But it doesn’t. That is the point isn’t it? The resolution of those issues
reduces complexity leaving this simpler, more easily managed project to be successfully executed.
Also, in reviewing this list, note how dependent the possible “Yes” answer is on the actions of the
software project manager.

The key benefit of the pre- project checklist is the fact that it presents a list of issues which can
raise or lower the chances of success of a project due to its inherent complexity. As most experienced
software project managers will attest, there is no magic formula or method which will transform a
complex project with a low probability of success into a simple project with a high probability of
success. The complexity assessment tool helps in identifying the issues which are likely to increase
complexity and implying what needs to be done to make them less difficult to deal with. It is like
an early warning system which encourages strategic initiatives focused on what matters most.

A.20.7 Building Your Own Checklist
The checklist presented earlier is intended as a generic example. Your project situation may differ
significantly from the generic example and so you are encouraged to create your own checklist,
tailored to the specifics of your situation. Remember, what we are attempting to do with such a list
is to create a form of an early warning system to help us preemptively address factors which could
jeopardize the project.

References
 [1] Maylor, H.R., Turner, N.W. and Murray- Webster, R., “How Hard Can It Be? – Actively Managing Complexity

in Technology Projects,” Research- Technology Management, July- August, 2013, pp. 45–50. [Used here with
the permission of the authors]

 [2] Kerzner, H., Project Planning, Scheduling and Controlling, Wiley, Hoboken, New Jersey, 12th edition, 2017.
 [3] Weinberg, G.M., Quality Software Management, Volume 1: Systems Thinking, Dorset House Publishing,

New York, NY, 1992.

166

Appendix 21

Putting Pressure on the Team
Can Reduce Productivity

There exists an almost unquestioned belief among software project managers that if a team is not
performing up to expectations or previously demonstrated ability, bringing this to their attention in
an unpleasant way (e.g. a show of anger or disappointment by the manager, threats of firing, cutting
hours and so forth) will act as a “wake up call” resulting in better performance. In fact, the opposite
effect has been documented and is more likely [1]. What happens is the team members who may
have been working together as a complementary team amounting to a “super software engineer”
alter their behavior. Prior to pressure being applied by the manager, team members sought and
got help from other team members when needed but when pressure has been applied, they begin
to rely on their own knowledge and experience ignoring the knowledge and experience available
from other team members. What this means is that instead of the team working together in a col-
legial manner to form a “super” performing group, each person does their own thing resulting in
the team just being a group of people each working independently. So how much pressure is the
right amount? Making sure that everyone is aware of the importance of the project to the company
and encouraging all team members to seek and accept the assistance of their colleagues is an excel-
lent start. Tracking how the team is progressing will document whether the team is responding
positively or falling further behind. Remember, when using Earned Value Management to track
progress, if the project is 15% complete and over budget and/or behind schedule, your chances of
getting back on schedule or budget without changing requirements, schedule or budget are nil [2].
While we do not know the exact reason for this, we might speculate that the 700 projects studied
were so poorly planned and estimated that they were, in a sense, doomed from the start. Regardless
of the cause, the fact remains that knowing this outcome makes keeping your project on track right
from the start is even more important. In most cases, if you have maintained open communications
with your team, they already know that the effort is falling behind schedule and/or over budget and
are applying their own pressure on themselves to improve the situation. Negotiating with the team
and seeking to identify and resolve factors which may be impeding performance is preferred to any
form of threats or other pressure.

Appendix 21 ◾ 167

References
 [1] Gardner, H.K., “Performance Pressure as a Double Edged Sword: Enhancing Team Motivation while

Undermining the Use of Team Knowledge” Working Paper, 09- 126, Harvard Business School, January,
2012.

 [2] Fleming, Q.W. and Koppelman, J.M., Earned Value Project Management, Project Management Institute,
Newtown Square, PA, 2010.

168

Appendix 22

Reducing Affinity Bias

Whether you are hiring, making job assignments, making friends or ordering food at a restaurant,
our personal preferences come into play. For example, when hiring, we consciously tell ourselves
to focus on the skills and achievements of the job candidate and how they could contribute to our
project but often we select people who are very similar to ourselves. In rare cases, this may be a
good match for achieving the work at hand, but as noted by some [1], it more often results in our
discarding qualified candidates in favor of those less qualified due to our often subconscious biases.
This “affinity bias” (favoring that which is similar to us) is quite natural but as noted it may result
in not hiring the most qualified candidates. Fortunately, there are some steps we can take that can
mitigate this tendency [2]:

 ◾ Seek to Understand – Standardizing the process and (possibly) getting training is a way to
achieve an organizational- level awareness of the need to reduce affinity bias as well as how
reducing it benefits the organization.

 ◾ Revise job descriptions – Review the wording of job descriptions to make them as “neutral”
as possible by reducing the use of pronouns like “he” and “she” and incorporating terms like
“cooperative” and “collaborative” while reducing terms like “determined” and “competitive”
which attract more men.

 ◾ Do Blind Resume Reviews – There are software programs available which will “sanitize” a
resume to remove or revise names and terms with cultural significance. The process for this
must be set into motion a priori.

 ◾ Use a Work Sample Test – This provides a consistent evaluation criterion by which to rank
candidates.

 ◾ Standardize Interviews – Using a standard set of questions and scoring helps to create what
amounts to a third party in the interviewing process.

 ◾ Consider Likability Issues – All most interviewees want is a fair chance of landing the job
they are applying for. They all expect and deserve equal treatment. One issue that often comes
up is the fact that some applicants seem to establish an instant rapport with the interview
team – they have that kind of personality. This can lead to hiring someone who is less quali-
fied than other applicants which could lead to a lawsuit. This is why it is so important to focus
on skills, suitability for the work and so forth in writing during the interview.

 ◾ Set Diversity Goals – Many successful software companies started out as a bunch of people
who are all very similar culturally and so forth forming a company. Without taking the time

Appendix 22 ◾ 169

to consider the value that diversity brings to companies in creative, innovative solutions they
grow using members of traditionally advantaged groups. This ignores the fact that research
shows that diversity in the workforce results in “significant business advantages” [2].

An approach I used that resulted in a very effective software engineering team involved a four- step
process:

 1. Candidates whose resumes looked promising were given a proficiency test to determine their
ability to solve programming problems in the C language. They were given a set of 10 code
snippets. Each showed the source code together with a statement as to what the code was
supposed to do as well as what that piece of code did do. The candidate was instructed to
verbally state what they observed and what they were thinking about what went wrong. Our
senior software engineer and I watched. What we were interested in most was how they went
about solving problems.

 2. They were interviewed individually by each member of the team for 20 minutes.
 3. We all went out to lunch together.
 4. We got together as a team after the candidate left to discuss each person’s impressions. The

goals of the meeting were to determine if they could do the work, and more importantly, if
each member felt they could work with this person.

Variations of the above process are certainly possible but the key point is that I, the software proj-
ect manager, was not the only person making this decision. In fact, I did that once and it was an
unmitigated disaster – lesson learned!

References
 [1] Tulshyan, R., “How to Reduce Personal Bias When Hiring,” Harvard Business Review, June 28, 2019.
 [2] Knight, R., “7 Practical Ways to Reduce Bias in Your Hiring Process,” Harvard Business Review, June 2017.

170

Appendix 23

Risk Management Methods

“Nearly every aspect of software project management involves some form of risk.”

–Michael Deutch

The risks that must be overcome or avoided altogether in order for a project to be successful consti-
tute a topic many software project managers and software engineers would rather avoid. The pro-
cess is described generically in Figure A23.1. It is an uncomfortable topic involving how our project
could be negatively impacted or even fail due to some event or condition which we usually have no
control over. Thus, risk management suffers from at least one fundamental problem: The desire to
be successful. In many arenas, it is socially unacceptable to focus on or even mention how things
could go wrong resulting in project failure. Curiously enough, this attitude actually increases our
vulnerability to failure if a risk “fires” (i.e. it actually occurs) since we might not have planned for it
and how to mitigate its effects. The home construction industry has adopted a standard way of deal-
ing with the risk of a project overrunning its budget. They set aside a fixed percentage (most often
10%) of the project budget to cope with unforeseen expenses or cost increases. Various companies
have developed variations of this approach and have their own percentage formulations. Generally,
risk management as a process looks something like Figure A23.2.

Keep in mind that most risk management approaches have been developed in response to an
unanticipated situation that occurred during a project. Some of them may not be applicable to any
other project. However, a few can be applied beyond their original context. The methods presented
here fall into this second category. In some cases, they can be used exactly as presented here. In oth-
ers, it might be necessary to alter them to accommodate your special circumstances. Regardless, it is
advisable to utilize more than one risk management method, if you can. This will give you alterna-
tive results from which to make decisions. Note that the most common form of risk involves cost
overrun(s). So, most risk management methods focus on determining how much money should be
set aside right from the start to accommodate a possible overrun.

The five approaches presented here are all based on experience and have been published.
References are provided should you need more detail.

A
p

p
en

d
ix 23

◾
171Figure A23.1 Generic risk management phases (Used With Permission).

172
◾

A
p

p
en

d
ix 23

Figure A23.2 Generic risk management process (Used With Permission).

Appendix 23 ◾ 173

A.23.1 Identify, Rank, Evaluate (IRE) Method
Action/Goal:

Deploy resources to reduce Risk [1].
The Development Scenario: A product is to be developed, based on a significant extension of

an existing simulation technology. The new product will support a derived proprietary methodol-
ogy. The new methodology is still evolving. A Classic Waterfall model was used and the risk was
evaluated on a phase- by- phase basis. A scoring range was set at 1–7 to correspond to the seven
life cycle phases. The risk and the probability of occurrence were considered separately. At various
points during development, risk was evaluated and discussed with the project sponsor as part of the
regularly scheduled project status review series. The findings of the development team regarding
risk are presented later in Table A23.2. The project sponsor concurred and was receptive to the fact
that we had considered events that could have jeopardized their investment and had ways to cope
with or prevent them.

Table A23.1 documents the relative probability of each risk firing as well as a judgment call
as to its relative negative impact on the effect – its severity. Since these two factors should not be
considered separately, they were multiplied to get a composite score and ranked as shown in Table
A23.2. Note that the higher the composite score, the less impactful that risk is if it fires.

From the table, we can see that testing constitutes the highest risk level. This was deemed the
most complex part of the effort due to the nature of the system being tested.

Table A23.1 Raw Data for IRE Estimate

Relative Severity
Relative

Probability Project Phase Description Mitigation

5 7 Requirements Well- defined and
stable

Monitor

3 6 Design Proof of concept
done

Ensure design
and as- built are
synchronized

2 2 Coding Not done before Acquire
advanced skills

1 1 Testing Stochastic system Use analytic
and brute force
methods

6 3 Installation Damage during
shipment is
possible

Take hard drive
as carry on

4 4 Training User knowledge
level unknown

Survey users and
create a relevant
course

7 5 Support Cost not known Minimize error
content

174 ◾ Appendix 23

A.23.2 Simple Risk/Breakeven Estimate of Risk Mitigation
This approach [2] is based on answering the following questions: “How much risk mitigation is
too much?” and “How much mitigation is enough?” In other words, at what point are we spending
more money to avoid a risk than we would spend if that risk fired (it actually happened)? The basis
for this method lies partly in the Standish Group Chaos Report from 2004 [3] but is still applicable
today. That report classified software projects as belonging to one of three categories:

 ◾ Type 1 – Completely Successful – 29% of projects reported on fell into this category.
 ◾ Type 2 – Experienced Significant Delays or Overruns – 53% of projects reported fell into this

category.
 ◾ Type 3 – Cancelled – 18% of projects fell into this category.

Utilizing the statistics developed in the Standish Report, a formulation was developed to help us
determine what the budget of our project should be if we were to account for risk. The variables are:

 ◾ Pf = Probability that our project turns out to be a Type 2 or Type 3 = 71% (this is the sum of
18% and 53%).

 ◾ R0 = The ratio of the projects overrun to the original budget (approximately 56%).
 ◾ Rf = The ratio of the cost of the projects to their original budget (approximately 156%).

To demonstrate, the application of this published approach, let’s compute the breakeven effective-
ness, Ee, for a €10 million software project,

 ()= + −e f f fE P BR 1 P B solving for B,

()= +e f 0B E P R 1 or approximately, €17 million

where
Ee is the breakeven point.
B is the set- aside amount plus the estimated project cost.

Table A23.2 Computation of Relative Ranking of Risk using IRE

Relative
Severity (R)

Relative
Probability (p) Project Phase

Relative Severity
X Probability

[R*p]

Relative Ranking
Based on

Computation

5 7 Requirements 35 5

3 6 Design 18 4

2 2 Coding 4 2

1 1 Testing 1 1

6 3 Installation 18 4

4 4 Training 16 3

7 5 Support 35 5

Appendix 23 ◾ 175

Some issues this “set aside” of €7 million raises include whether or not we can afford this large
set- aside budget to cover potential cost overruns. According to Section A23.3, if a risk mitigation
action costs 5% of the total project cost, it only needs to have an 8.9% positive effect to be justi-
fied. What if we or our client cannot afford the previous amount or the 5%? In that case, we have a
couple of options. One is to set aside what we can, begin the project and hope for the best. Another
is to just start work and again, hope for the best. In any case, this method has done its job. It has
demonstrated to us the size of the (potential) risk leaving the go- ahead decision to us and our client.

A.23.3 Risk-Based Contingency Budgeting
This approach is based on the assumption that the greater the number of risk contingencies we can
identify, the larger the amount of set aside needed to overcome risk firings. Of course, there are
some projects that even an enormous amount of money could not save but we will put that issue
aside. As mentioned earlier, some project managers set aside a fixed percentage of the total budget.
Where this percentage comes from in some firms is a closely guarded secret. But we might assume
that experience on previous projects has something to do with it. In this case [4], several thousand
projects were studied and a mathematical model was developed, validated and revised based on
real- world data.

A simplified overview of the process:

 1. Identify potential risks.
 2. Estimate the probability of each firing.
 3. Associate a cost with each risk firing.
 4. Identify how many of the most expensive risks must be accounted for based on project con-

fidence level.
 5. Set a contingency budget based on the population of selected risks.

Some of the key features of this method include:

 ◾ It encourages finding as many of the risks to project success as we can think of simultaneously
raising the question of how it can be prevented or overcome if it occurs.

 ◾ The research that produced this method showed that even if the number of identified risks is
low, the results are still valid.

 ◾ It enables us to effectively budget for a subset of risks as it is unlikely that all the identified
risks will fire.

 ◾ It works on single projects or programs composed of many projects.

The formula used by this method is:

 = × × +a 1.2 n p 3.5

where
a = the number of risks (in order of descending cost) to provide for.
n = the total number of risks considered.
p = the average of the firing probabilities.

176 ◾ Appendix 23

To demonstrate the use of this method, let’s look at a hypothetical example as shown in
Table A23.3 (the values are for demonstration purposes only):

Granted, some of these probabilities and even some of the costs are based on our best informa-
tion or “guesstimates” at the time but the accuracy is less important than the fact that we identified
each of the risks, ranked them and estimated their relative impact. That awareness could prove
invaluable.

Following the steps outlined above, we have
The average probability is approximately 0.00235.
Computing item “a” from the equation above, we get a value of 3.6, rounding to the nearest

whole number, we get 4. So, it appears we need to fund the top four most expensive risks. This
gives us a set aside amount of €380,000. Note that this set aside is just that. It may never be used.

How do we apply this method to a program composed of several projects? We find the average
probability for all of the identified risks. Then compute “a” as though this set of projects was actu-
ally a single project as shown above.

Although this method is beneficial even with a small number of identified risks, the confidence
level increases as we increase the number of risks as shown in Table A23.4.

If we cannot afford to set aside the amount indicated by this method, we at least can see what
our exposure will be by only financing what we can afford. Also, these probabilities and costs do not
remain static, changing over time as equipment ages, policies change and liability laws and court
decisions alter our liabilities in the event of a firing. Where it has been used, this method has been
reported to have had a high success rate [4].

Table A23.3 Example of Data Needed

Firing Event Probability
Cost (in

thousands)

Server Failure 0.0010 10

Power Loss > 2 hours 0.0020 20

Weather prevents shift change 0.0100 5

Hacker/Malware intrusion 0.0010 250

Law changes without notice 0.0001 100

Table A23.4 Effect on Confidence Level as Identified Risk
Count Increases

Risk Count

Confidence Level ->

90% 95% 99%

5 – – –

10 2 3 3

20 4 4 5

(Continued)

Appendix 23 ◾ 177

A.23.4 Risk Reduction via Bias Removal
Civilization has been building roads, tunnels and bridges for thousands of years but getting costs
right still eludes us as shown in Table A23.5. The reason why we can’t seem to accurately estimate
such projects and, in fact, all projects was researched over a 20- year period resulting in a Nobel
prize in Economics. Those findings resulted in a method that has worked so well, that the American
Planning Association has recommended that its members use it and not use traditional planning
methods alone (Table A23.5). What the prize- winning work showed was that “Human judgment
is generally optimistic due to overconfidence and insufficient regard to distributional information.
Thus, people will underestimate cost, completion times and risks of planned actions, whereas they
will overestimate the benefits of the same actions” [6]. As evidence of this inability to accurately
estimate, consider this. Even though hundreds of roads, bridges and tunnels have been developed
over the centuries, we still have trouble accurately estimating their costs (Table A23.5).

The method which adjusts estimates to account for our human biases is called Reference Class
Forecasting. In simplified terms, it amounts to basing our estimates of the new project on how we
estimated previous, similar projects constituting our Reference Class. The more projects we have
recorded information on, the more statically significant and accurate our results. Note that this
approach does not result in a single cost number but rather, a cost estimate and a contingency
amount based on the degree of confidence we desire for finishing within that combined cost (i.e. cost
estimate + contingency). To use this method, for previous, similar software projects, we need:

 ◾ The original cost estimate for each project
 ◾ The actual final cost of each project

Risk Count

Confidence Level ->

90% 95% 99%

30 5 6 7

40 6 7 9

50 8 9 10

100 14 15 17

200 25 27 30

500 58 61 65

Table A23.4 (Continued) Effect on Confidence Level as
Identified Risk Count Increases

Table A23.5 Overrun Data from Industries Other than Software

Type of Project World Wide Average % Overrun Overrun % Range

Railways 45 7 to 83

Bridges and Tunnels 34 −28 to 96

Roads 20 −10 to 50

Source: Adapted from [6].

178 ◾ Appendix 23

Be careful to avoid mixing different types of projects together. Reduce the data to percentiles and
form a plot (in this example, a least squares fit) of the Acceptable Chance of Cost Overrun (x- axis)
versus the Required Increase in Estimate/Contingency (y- axis). For this example, I was only able to
locate a company with 18 similar projects that had collected the required data. The percentile range
and aggregate percentages are shown in Table A23.6.

Reducing this data to a plot results in Figure A23.3. What the plot tells us is, if we want approx-
imately a 70% confidence level, we need to increase our estimate by approximately 50%. Note

Table A23.6 Collected Data Reduced to Percentiles

Percentile Range Aggregate Percentage

−30% to −20% 06%

−20% to −10% 17%

0% to 10% 33%

10% to 20% 44%

20% to 30% 72%

30% to 40% 89%

90% to 100% 94%

100% to 170% 100%

Figure A23.3 Example of Project Estimate versus Confidence Level.

Appendix 23 ◾ 179

that since this plot is in terms of percentages, it is not dependent on the actual amount of the ini-
tial estimate we arrived at by whatever other means we may have used. Furthermore, this inherent
bias is in all humans and hence affects any method we use (e.g. Function Points, COCOMO II).
So, if we were to estimate our project at €100,000 and want to have a 70% confidence that it will
finish at or below that amount, using this chart as our experience guide, we would have to increase
our estimate by €50,000 or simply hope for the best. The problem for most software companies
is that competitive bids tend to cause firms to keep bids low in hopes of winning the contract by
engaging in the overly optimistic pursuit of new business to the extent that the risks are ignored or
significantly downplayed.

A.23.5 Northrup Grumman Risk Management System
I decided to refer to this approach [7] as a system because it goes far beyond the other approaches
in the risk management category. This more comprehensive view includes definitions of risk, defi-
nitions of levels or severity of risk(s), and a categorization scheme involving more than a simple
“winner takes all” voting scheme [8].

A23.5.1 Definition of Risk Levels in the Northrup-Grumman Scheme

This method separates risks into five categories (Table A23.7). Note how each category has a rank-
ing level from 5 to 1. The fact that not all team members may agree on the level to be associated with
a given event or firing is addressed via the Borda voting scheme which we will explain subsequently.

A23.5.2 Probability of Occurrence

As mentioned earlier, the severity of the firing of a risk is only part of the issue of risk. Another is
its likelihood or probability of occurrence. This method also categorizes risks by their probability
(Table A23.8).

A23.5.4 The Borda Voting System

All members of the team, the project sponsors and others are likely to disagree about just about
every aspect of risk evaluation. This method does not subscribe to “the tyranny of the majority.”

Table A23.7 Risk Levels in the Northrup Grumman System

Impact Category (Level) Description

Critical (5) System or program failure – may not meet primary requirements

Serious (4) Significant cost and/or schedule overrun(s) – may not meet
secondary requirements

Moderate (3) Minor cost and/or schedule overrun(s) – requirements still met

Minor (2) Small cost and/or schedule overrun(s) – requirements still met

Negligible (1) No effect on effort

180 ◾ Appendix 23

Instead, it uses the Borda voting scheme. The Borda voting scheme involves each voter ranking
candidates rather than picking just one. For example, if there are five candidates, a voter will select
their favorite, awarding it 5 points, their second favorite awarding it 4 points and so on. In this way,
this method attempts to capture the consensus among those making decisions regarding risks. This
method employs a modification of the Borda method involving a 2- factor points system:

 ◾ Impact (of the risk)
 ◾ Probability of occurrence

B23.5.4 Obtaining the Composite Score

Each firing event is assigned a composite score, ScoreT, where ScoreT = points for severity + prob-
ability of occurrence. In the case of a two- way tie, ScoreT = (1/2)*(1 + Score1 + Score2) then
Score1 and Score2 are replaced with the new ScoreT in the rankings.

Using our earlier example, we can form Table A23.9 using this method.
Applying our point assignment scheme, we get Table A23.10.

Table A23.8 Probability of Occurrence Example

Probability Range (%) Description/Occurrence

1–10 Very unlikely

11–40 Unlikely

41–60 Occurs about half the time

61–90 Likely

91–99 Very likely

Table A23.9 Firing Events and Costs Example

Firing Event Probability Cost Impact Rank

Server failure 0.0010 10,000 4

Power loss > 2 hours 0.0020 20,000 3

Weather prevents
shift change

0.0100 5,000 5

Hacker/malware
intrusion

0.0010 250,000 1

Change in law
without prior notice

0.0001 100,000 2

Appendix 23 ◾ 181

References
 [1] Peters, L.J., Getting Results from Software Development Teams, Microsoft Press Best Practices Series, May, 2008.
 [2] Masticola, S., “A Simple Estimate of the Cost of Software Project Failures and the Break Even Effectiveness

of Project Risk Management,” 29th International Conference on Software Engineering Workshops, 2007,
Minneapolis, Minnesota.

 [3] The Standish Group, The CHAOS Report, West Yarmouth, MA, 2004.
 [4] Kamooshi, H. and Cioffi, D.F., “Program Risk Contingency Budget Planning,” IEEE Transactions on

Engineering Management, Vol. 56, No. 1, pp. 171–179, March, 2005.
 [5] Ghazi, P., Moreno, M. and Peters, L.J., “Looking for the Holy Grail of Software Development,” IEEE

Software, Vol. 32, Jan/Feb 2014, pp. 92–96.
 [6] Flyvberg, B., “From Nobel Prize to Project Management: Getting Risks Right,” Project Management Journal,

Vol. 37, No. 3, August 2006, pp. 5–15.
 [7] Northrup Grumman Corporation, “Risk Management Plan for the H- 60 Airborne Mine Countermeasures

Integrated Product Team,” Version 0.21, December, 1998.
 [8] Straffin, P., Topics in the Theory of Voting, Birkhäuser, Boston, MA, 1980.

Table A23.10 Example Point Assignment

Firing Event Probability Points Impact Points Points Rank

Server failure 3.5 2 5.5

Power loss > 2 hours 4 3 7

Weather prevents
shift change

5 1 6

Hacker/malware
intrusion

3.5 5 8.5

Change in law
without prior notice

1 4 5

Note how different a result we would have obtained if we considered the risk(s) based on impact or
probability of occurrence alone. Also, agreement or disagreement with this method but at least it pro-
vides a consistent means of addressing risk.

182

Appendix 24

Software Project
Management Antipatterns

You may not be familiar with the term, antipattern. Although it is often spelled without an embed-
ded hyphen (e.g. antipattern), there are many definitions which can be summarized as “an apparent
solution to a problem which makes matters worse.” In other words, an antipattern is an idea which
seemed like a good one at the time but when it was tried it turned out to have a decidedly negative
effect. It was, in reality, a bad idea. More than 90 of these bad ideas as they pertain to software proj-
ect management have been catalogued and published [1]. But, as you might guess, the list of seem-
ingly good solutions to software project management problems grows with each new project run by
an untrained software project manager. The repeated scenario goes something like this. A problem
occurs during the project, the software project manager (or a member of the development team)
comes up with a creative solution for it and if the solution works, he or she is a hero otherwise a new
antipattern is created. Notice that the solution creation cycle is extemporaneous. That is, it is not
part of a process but is a response to an unanticipated situation. But there is hope for antipatterns.
It is called, refactoring. Refactoring refers to the reengineering or revising of the antipattern so that
it actually benefits the project and solves the problem the antipattern was intended to solve. At least
one author [1] has proposed that to qualify as a true antipattern, it must be observed a minimum
of three times. That should not be hard to do in software engineering. For example, software proj-
ect managers still continue to add people to projects that are behind schedule with the expectation
that this will help. As Brooks [2] pointed out, it makes matters worse. Also, the entire software
engineering profession continues to pursue technological solutions to the problems encountered
during software projects qualifying that approach as a high- level anti- pattern of sorts since the
data do not indicate that it is effective at improving our ability to deliver projects [3]. As you may
have guessed, there are many other antipatterns some of which we will discuss presently. One of
the goals of this book is to provide you with the information you need to avoid antipatterns. An
overwhelmingly popular assumption among software project managers is that technology will solve
project problems. I propose that this presumption be classified as a “super anti- pattern” because the
data do not support it and it is a pervasive belief. Here is why, a study by IBM of failed software
projects [3] found that 53% failed due to “poor management while 3% failed due to “technical
challenges.” The implication here is that if we did a better job of managing software projects, we
would be more successful. A few antipatterns are listed in Table A24.1 as examples of what has been
documented in the referenced works. In reviewing the contents of Table A24.1, most of us will find

Appendix 24 ◾ 183

Table A24.1 Some Examples of Antipatterns

Name Description Reference

Absentee Manager A manager who engages in avoidance behavior or
is invisible for long periods

I- 2

All You Have is a Hammer One- dimensional management that uses the same
techniques on all subordinates in all situations

I- 2

Appointed Team The false assumption that a management- selected
group of people will immediately become a team

I- 3

The Brawl A project manager with no leadership or
management experience

I- 4

Detailitis Plan Excessive planning leading to complex schedules
with a high level of detail, giving the false
perception that the project is fully under control

I- 5

The Domino Effect Moving critical resources between projects and
blurring project boundaries

I- 4

Dry Waterhole Specifying stringent requirements for a job when
this isn’t really necessary, resulting in a limited
pool of available talent

I- 3

Fire Drill Months of boredom followed by demands for
immediate delivery

I- 5

Glass Case Plan Lack of tracking and updating of initial plans,
assuming the plan is enough

I- 5

Inflexible Plan Lack of flexible plans and processes I- 4

Irrational Management Irrational management decisions, habitual
indecisiveness and other negative management
practices

I- 2, I- 5

Leader Not Manager A manager with a vision (leader) but no plan or
management methodology

I- 2

Micromanagement Excessive management involvement in tasks
beyond their responsibility

I- 4

Mushroom Management Isolating developers from users, under the
mistaken assumption that the requirements are
stable and well understood by both the software
engineering team and end users at project
inception

I- 2, I- 5

Myopic Delivery Management insisting on the original delivery
date even when there has been a reduction in staff
or funding

I- 4

(Continued)

184 ◾ Appendix 24

some ill- advised practices that we have fallen prey to. If you didn’t, remember there are many more
not listed there that have been catalogued. Again, the point of all this is that there exist a plethora
of software project management practices which, when first engaged in, seemed like a good idea but
later proved themselves to be just the opposite.

In reviewing the preceding list of antipatterns, keep in mind that there are a lot more where
those came from and the number is increasing all the time. The key to stemming the growth of this
population is educating software engineers and software project managers so they will not have to
make up solutions on their own.

Another goal of this book is to put the concept of software project success into perspective.
In the early days of software engineering, bringing a project in on time, on budget and meeting
requirements was the “gold” standard. Today, the complexities and risks of the user environment,
rapidly changing requirements and system user preferences make achieving those early goals a nec-
essary but not sufficient starting point. For a myriad of reasons, what may be seen as a successful
project by one stakeholder may be seen as a failure by another [4–6]. So, success is something of
an ethereal phenomenon in that it not only is subject to change from one venue to the next but
changes during the project as well.

A24.1 Should We Be Concerned?
For years, university business schools have done studies regarding the role of project managers in
all types of projects, including software. The bottom line from their findings is that without well-
trained, competent software project managers, even the best- funded and adequately staffed software
projects can fail. Similar studies done by others in our industry have come to the same conclusion.

Name Description Reference

Process Disintegration Failing processes due to a decline in overall
cooperation and morale

I- 4

Project Mismanagement Lack of proper software project monitoring and
control

I- 5

Proletariat Hero The false assumption that coercion is an efficient
way to increase productivity

I- 2

Rising Upstart Superstars who can’t wait their time and want to
skip learning phases

I- 2

Road to Nowhere Lack of planning I- 2

Size Isn’t Everything Assuming developers are interchangeable and that
the number of people working on a problem is
inversely proportional to the development time

I- 5, I- 4, I- 2

Ultimate Weapon Relying heavily on a superstar on the team I- 2

Adapted from [1].

Table A24.1 (Continued) Some Examples of Antipatterns

Appendix 24 ◾ 185

How could this be? There are many reasons why an incompetent software project manager’s actions
may inadvertently sabotage a software project. Some of the more obvious ones include:

 1. Not comprehending the level of complexity inherent in the software project.
 2. Making commitments for the software engineering team without first consulting with the

team and determining what they can commit to.
 3. Chastising a member of the team in front of other team members.
 4. Putting too much pressure on the team to perform at a higher level.
 5. Using an ineffective reward system (Hint – money is an ineffective reward for knowledge

workers).
 6. Overruling the technical decisions the team has made.
 7. Increasing team size, even from the start, believing that a larger team is more likely to be suc-

cessful (the law of diminishing returns).
 8. Conducting an individual’s performance review in a way that reduces their productivity.

There are others but the point is that the software project manager’s role is a vital one. Some of
the actions of the software project manager may be a spur- of- the- moment reaction, taken without
thinking, resulting in demotivating the team. Remember, a motivated team will likely outperform a
demotivated one every time. To be clear, the role of the software project manager is not a dual role
such as software developer and project manager. Why? Project management and software develop-
ment involve two very different mindsets. The development role is focused on complying with the
syntax and semantics of the programming language, satisfying functional and performance require-
ments and ensuring that interface conventions with other parts of the system are adhered to, com-
plying with the build process and so forth. Conversely, the project management role is alternatively
focused on the “big” picture (i.e. where the project is and where it should be with respect to cost,
schedule, functionality, reliability, ease of use and so forth) and the “small” (i.e. identifying and
alleviating factors that are causing the project to fall behind schedule and/or over budget). One, the
development side, is tactical while the other, the management side, is strategic.

Over the years, the practice of software engineering has made tremendous strides on the tactical
side. Analysis, design, programming, testing, user interfaces, code libraries, development methods,
development environments and more have all contributed to our progress. But based on SWEBOK,
IEEE Software Society publications, software conferences (most of these do not mention project
management as a topical category for submission) and other resources for our profession, those
who manage software projects are getting little or no help. For example, software project managers
have assumed that money is the best motivator for software engineers. As will be discussed in more
detail later in this text, it is not. In fact, it really is not a motivator for software engineers. What is
the best is free – it is simply saying thank you.

References
 [1] LaPlante, P.A., Antipatterns: Identification, Refactoring and Management, Auerbach Publications, New York,

NY, 2005.
 [2] Brooks, F.P. Jr., The Mythical Man Month: Essays on Software Engineering, Addison – Wesley, Reading,

MA, 1995.
 [3] Gulla, J., “Seven Reasons Why IT Projects Fail,” IBM Systems Magazine, February, 2012.

186 ◾ Appendix 24

 [4] Portland Pattern Repository, “Management Anti Pattern Roadmap,” 2014. http://c2.com/cgi/wiki?
ManagementAntiPatternRoadMap

 [5] Brown, W.J., McCormick, H.W. and Thomas, S.W., Anti- patterns in Project Management, John Wiley &
Sons, Hoboken, New Jersey, 2000.

 [6] Brown, W.J., McCormick, H.W. and Thomas, S.W., AntiPatterns: Refactoring Software, Architecture, and
Projects in Crisis, John Wiley & Sons, Hoboken, New Jersey, 1998.

http://c2.com
http://c2.com

187

Appendix 25

Software Project Managers

Software project managers are largely untrained [1] for their new role prior to making the transi-
tion from software engineer to software project manager. Worse, they rarely know the nature of
the activity they are embarking upon [2]. The differences between coding and management could
not be more pronounced [2]. For example, in the software development domain, code either com-
piles error free or it doesn’t, it passes a test or it doesn’t and so forth. This “either or” world is often
labeled as dealing with “hard” issues while management has been described as having to deal with
“soft” issues such as developing a project plan, a communication plan, a business case and others
[3, 4]. In the management domain, it is not known whether or not the software project manager
and the development team got it “right” until it is too late to take corrective action. For example,
using whatever means at your disposal, if you significantly underestimated the cost of the project,
this may not become apparent until the project plan is being executed and the cost overruns and/or
schedule delays become insurmountable. For example, there is ample evidence [5] that if your proj-
ect is 15% complete and over budget or behind schedule, your chances of ending within budget
or on schedule are nil. Because of the uniqueness of software projects, it is unlikely that one could
know in advance what a similar project ended up costing and use that to gauge whether or not the
estimate for this new project is within the realm of possibility. This leaves the software project man-
ager on her/his own with respect to most of the “soft” issues. Of course, the business manager of
the company developing the software might not agree that estimating is a “soft” issue since overruns
on a fixed price contract will negatively impact the company’s bottom line by reducing its profit.

References
 [1] Garvin, David A. “How Google Sold Its Engineers on Management.” Harvard Business Review, Vol. 91,

No. 12, Dec. 2013, pp. 74–82.
 [2] Ghazi, P., Moreno, A. and Peters, L.J., “Looking for the Holy Grail of Software Development,” IEEE Software,

Vol. 31, Jan/Feb 2014, pp. 92–96.
 [3] Peters, L. and Moreno, “Enriching TraditionalSoftware Engineering Curricula with Software Project

Management Knowledge,” International Conference on Software Engineering, Special Track on Software
Engineering Education and Training (CSEET), May, 2016, Austin, Texas.

 [4] LaPlante, P., Antipatterns: Identification, Refactoring and Management, Auerbach Publications, New York,
NY, 2005.

 [5] Fleming, Q.W. and Koppelman, J.M., Earned Value Project Management, 4th Edition, Project Management
Institute, Newtown Square, Pennsylvania, 2010.

188

Appendix 26

Software Engineering Ethics

Why are we discussing ethics in a book on managing software projects? The simple answer is that in
developing software, at nearly every turn, the software engineer is faced with ethical questions. Some
of these questions are obvious while others are more subtle and those questions impact productiv-
ity. For example, software engineers often use the term “hack” in referring to software that works
but was thrown together quickly and is not likely to survive use by others unless revised and/or
replaced. It is just something thrown together quickly to check out a problem or for some other
reason, but it is definitely not intended to be released as part of a working product. Unfortunately,
sometimes in the rush to release a product, some of these “hacks” make it through testing and
unknowingly end up in a released product with serious negative consequences. Depending on the
company and the software project manager, some of these hacks are knowingly released in order to
meet a deadline. The question that seems to have eluded some people is, “Is this the right thing to
do?” Why does this make any difference? It is important because everyone wants to be associated
with quality results because they reflect on the person’s self- image, their self- esteem and so forth.
Hacking out a piece of a product is a definite productivity killer because the software we produce is
an extension of ourselves and if it is flawed, we are flawed [1]. Fortunately, a set of ethical principles
was set forth for the software engineering profession some decades ago [2]. These are the canons
that comprise software engineering ethics (Table A26.1).

The preceding is a compact or abbreviated version of the software engineering code of ethics.
The latest full version is available from the IEEE at http://computer.org/tab/swecc/code.htm#full.
The preceding may sound like a list of commandments and in some ways it is. Like principles in
religion, abiding by them can only have a positive effect on your team and its performance. Try
reflecting on them and how they were or were not followed in your current or most recent project –
it might just be revealing. Software engineers have been exposed to a practice called technical debt.
In it, the conscious decision is made by management to defer employing a technically superior
approach in favor of an inferior one, and documenting the decision usually with the intent of
returning to this issue at a later date and using the superior method. The problem with this scheme
is it is a productivity killer [4] because people want to be associated with quality results [1]. Being
forced to knowingly employ substandard techniques reduces productivity and, worst of all, sends
the wrong message to the team. That wrong message is “our number priority is to deliver something
even if it is not of the highest quality.” Besides, there is no economic incentive for the company to
go back at a later date and institute the deferred changes.

http://computer.org

Appendix 26 ◾ 189

A26.1 Teaching Software Engineering Ethics
While the principles of software engineering ethics are important, almost as important is how
they may be taught. This is because ethics and values systems are not the usual concerns at the
forefront of the software engineer’s thinking during development. Teaching ethical principles and
their applications has been researched and refined [5, 6]. They defined three goals that students
must understand:

 1. “The power of ethics in creating products and interventions.”
 2. “That value choices are not automatic, they are linked to decisions made by designers.”
 3. “That ethical decision making is not abstract, but is incorporated into each design step and

algorithm.”

The training has to start with the basics of what ethics are as well as why they are important.
Remember, people naturally want to do what is good and they want to do it well. The reference
[5] lays out what has been developed as well as how to apply it in the classroom and beyond. The
bottom line here is that software should be designed and built on ethical principles.

References
 [1] Weinberg, G., The Psychology of Computer Programming, Van Nostrand Reinhold, New York, NY, 1985.
 [2] Gotterbarn, D., Miller, K., and Rogerson, S., “Software Engineering Code of Ethics,” Coomunications of the

ACM, Vol. 40, No. 11, November 1997, pp. 110–118.

Table A26.1 A Short Version of the Software Engineering Code of Ethics Principles [3]

Principle Title Abbreviated Description

Public Software engineers shall act consistently with the public interest

Client and Employer Software engineers shall act in a manner that is in the best interests
of their client and employer consistent with the public interest

Product Software engineers shall ensure that their products and related
modifications meet the highest professional standards possible

Judgment Software engineers shall maintain integrity and independence in
their professional judgment

Management Software engineering managers and leaders shall subscribe to
and promote an ethical approach to the management of software
development and maintenance

Profession Software engineers shall advance the integrity and reputation of
the profession consistent with the public interest

Colleagues Software engineers shall be fair to and supportive of their
colleagues

Self Software engineers shall participate in lifelong learning regarding
the practice of their profession and shall promote an ethical
approach to the practice of the profession

190 ◾ Appendix 26

 [3] Gotterbarn, D., Miller, K., and Rogerson, S. “Software Engineering Code of Ethics,” Communications of the
ACM, Vol. 40, No. 11, November 1997, 110–118. DOI: 10.1145/265684.265699

 [4] Peters, L., Technical Debt – The Ultimate Antipattern, Managing Technical Debt Workshop, Victoria, BC,
Canada, September 2014.

 [5] Gotterbarn, D., “How the New Software Engineering Code of Ethics Affects You,” IEEE Software, November/
December 1999, Vol. 16, No. 6, pp. 58–64.

 [6] Haliburton, L., Heimerl, A., Bohme, S., Andre, E. and Schmidt, A., “Teaching Ethics as a Creative Subject:
Ideas From an Interdisciplinary Workshop,” IEEE Computing Edge, Vol. 20, No. 3, August 2023, pp. 52–55.

http://dx.doi.org/10.1145/265684.265699

191

Appendix 27

Technical Debt – The Ultimate
Productivity Killer

The concept of technical debt was first proposed by Ward Cunningham in 1992 [1]. The concept
seems innocent enough. It often happens that a better way to implement some part of the system
is discovered well into the development schedule but implementing it late in the project would
involve rework costing us flow time and money. It is a difficult decision but it is decided that the
best solution would be a compromise. We note this improved approach but keep the one we already
have in place with the intention of returning to this issue at a later date and implementing it.
Perhaps, it could be part of an update to the product. Even with the best of intentions, because of a
poor business case or other constraints, that return and implementation is unlikely to happen. The
practice of technical debt is, in part, an attempt to remedy the usual budget and schedule overruns
so common in software projects. It recognizes that software projects often involve making decisions
that are expedient in that they may not select the best way to resolve an issue or architect the code
but, even though we know there is a better way, there is just not enough flow time or labor resource
to do it. What makes it problematic is that employing it demonstrates a failure to understand the
nature of work in general and the nature of software engineers and software engineering in particu-
lar. Let’s take a look at both issues as they relate to technical debt.

The first step in exploring the hidden effects of engaging in technical debt is to understand
its impact on software engineers. This closely relates to people’s motivation to work. For several
decades, psychologists have been trying to figure out just why people work. The obvious answer is
that people work in order to make money so they can acquire the stuff they need to survive. But it
goes much deeper than that. In the 1954 movie “On the Waterfront,” Marlon Brando’s character
is having an argument with his brother about having been forced to intentionally lose a boxing
match. His brother Charley reminds him he received a lot of money to which Brando’s character
replies, “it’s not about money, Charley, I could have been somebody.” That quote summarizes one
of the most powerful driving forces behind work- self- fulfillment. Three models about why people
work have been developed and accepted by the larger psychology community. The three most
widely accepted are listed below by author:

	 ◾	 Herzberg [2] proposed a “Two Factor Theory” to explain why people work. These were
“hygiene” defined as being survival related having to do with pay, working conditions, respect
and job stability. The other factor “Relationship to the job” involves advancement, promo-
tion, fair treatment and potential for higher rewards.

192 ◾ Appendix 27

	 ◾	 Maslow [3] proposed that people have a hierarchy of needs and working satisfies the hierar-
chy. Starting at the top, these are psychological needs, safety and security, social needs, esteem
needs and self- actualization.

	 ◾	 McClelland [4] proposed that people work to satisfy three needs – achievement (to do some-
thing important), power (to have control over others and/or their own actions) and affiliation
(friendly relationships).

While all three models involve some issue(s) related to self- esteem in one way or another, Herzberg’s
model may be the most widely accepted model of the three. Software project managers who rely on
these factors (i.e. pay rate, working conditions and so forth) to control and motivate software engi-
neers have high turnover rates [5], and turnover increases development costs by as much as 60% [6].
Since no one wants to be associated with a failed project or poor quality, taking shortcuts reduces
productivity. In addition, more recent work [5] has shown that technology workers have a common
value system which places a high priority on producing work that they can be proud of, that their
colleagues will be impressed by and is at or near the state of the art. Producing work that incurs
technical debt violates these goals. These goals can be extremely strong in some software engineers.
For example, a software engineer who I managed was part of a team on a very aggressive schedule.
Some of the work involved fixing bugs in what might be most kindly described as “spaghetti code.”
He informed me that since his name was going to be associated with this stuff, he would go beyond
just fixing the latest bug and reconstruct and retest the routines assigned to him. Even though he
voluntarily worked quite late some nights, he still met the schedule and, due to some requirements
changes, actually saved himself and his successor a great deal of time to respond to these changes.
His colleagues who simply did the minimum were not so fortunate. An environment in which doing
the work less than the “correct” way reduces productivity making it more expensive in several ways
than doing it right in the first place. The ways in which these “hidden” expenses are incurred include:

	 ◾	 Loss of Productivity – When a person knows that what they are being asked to do is in conflict
with what they know they should be doing, they are working at their lowest productivity level
[5]. The phenomenon is called cognitive dissonance [7]. Cognitive dissonance reduces pro-
ductivity. In the case of software development, productivity is often equated to the production
of source code. But source code production has only increased by less than one line of source
code per programmer per month per year in the period from 1960 to 2000 [8]. This increase
has been linear even though dozens of programming, analysis, design, testing and other meth-
ods were developed and engaged in over that period [9]. Cognitive dissonance means that
even though the coding practices being used are seen as justified because they will foreshorten
development flow time, they may, in fact, increase it making this practice something of a self-
fulfilling prophecy. Management may be inclined to speculate that even though shortcuts were
taken, we still had trouble meeting the schedule. When people are able to fulfill their perception
of being productive with work that reflects positively on them, they become highly motivated
and are more productive. Therefore, technical debt may actually increase, not decrease, devel-
opment time.

	 ◾	 Reduced commitment to quality practices – Cutting corners and/or abandoning our stan-
dard development process simply sends the wrong messages to the software engineering team.
These negative messages all reduce productivity and motivation, while undermining the self-
confidence of the development team. They include:
	– The development process you so diligently spent time developing and refining is OK

when things are going smoothly but must be abandoned when we get behind.

Appendix 27 ◾ 193

	– We are committed to quality only when it is convenient.
	– Management does not believe we can do it right and finish on time, within budget.

	 ◾	 Reduced use of collective team experience – Most project managers try to compose develop-
ment teams in such a way that each member possesses skills and experience that complement
the skills and experience of the other team members. In this way, the team as a whole pos-
sesses the skills and experience needed to be successful. Schedule pressure may be the key
driver behind engaging in technical debt [10]. But to overcome possible resistance to engag-
ing in technical debt, a lot of pressure will have to be brought to bear on the team. We now
know that if enough pressure is put on a team, they cease to work together as a team and
revert back to working as a group of disconnected individuals [11]. Meaning that the collec -
tive knowledge and experience within the team is lost.

	 ◾	 Increased cost – We know that in most job markets, software engineers can experience a high
degree of mobility. If they do not like working at one firm, there is often another one seeking
to hire or, in the case of larger firms, they can transfer to another organization. Experiencing
cognitive dissonance, pressure to cut corners and so forth can increase turnover. As stated
earlier, we now know that turnover can account for as much as 60% of the cost of a software
project [6]. So we have a paradox, the very practice engaged in to reduce flow time and costs
(technical debt) may actually increase both due to lower productivity via reduced motivation
and increased turnover.

	 ◾	 Putting off correcting/paying technical debt can be really expensive. We have known for
decades that the later in a software system’s life cycle we correct a problem the more it costs
and that these costs increase exponentially [12]. Taking shortcuts now with the intent of cor-
recting the problems they cause until later practically guarantees increased total system life
costs. Besides, software engineers prefer to be creating new code, not cleaning up somebody
else’s mess.

	 ◾	 Undermining a culture of professionalism by setting a tone of just getting the code out when,
in fact, people want to be associated with a culture in which getting quality results is the
norm. We know the long- term benefits of generating quality code in terms of maintenance
[12] but the short- term benefits in terms of improved productivity have only more recently
been identified [5]. Five factors were identified that effected the motivation of high technol-
ogy professionals [13, 14] (Table A27.1).

Looking at Table A27.1 we can see that engaging in technical debt is the antithesis of several of the
factors that enhance motivation thereby reducing productivity.

Table A27.1 Motivating Factors in Software Tasks [13, 14]

Factor Description

Skill Variety The task requires the use of multiple skills

Task Identity The task is something the software engineer would like doing

Task Significance The task is seen as important

Autonomy The software engineer can accomplish the task as they see fit

Feedback Management provides feedback on how well the task has been done

194 ◾ Appendix 27

A27.1 Summary
As a minimum, the subject of technical debt has brought with it discussions regarding what soft-
ware development practices are advisable and which should be avoided. Missing from these discus-
sions is the subject of the human toll involved due to cognitive dissonance, personnel turnover
and the potential for an attitude in the organization that doing things the “right” way only occurs
when the project is on schedule and within budget. As we have seen, the intended effect of engag-
ing in technical debt is illusory. That is, in some cases it may appear to have helped the software
project manager’s cause but closer inspection reveals it has likely made matters worse – frequently
in hidden ways. Hopefully, this will not become a de facto standard practice within software project
management.

References
 [1] Cunningham, W., “The WyCash Portfolio Management System,” OOPSLA’ 92 Experience Report, Vancouver,

BC, Canada, 1992.
 [2] Herzberg, F., Work and the Nature of Man, The World Publishing Company, Cleveland, OH, 1966.
 [3] Maslow, A.H., The Farther Reaches of Human Nature, The Viking Press, New York, NY, 1971.
 [4] McClelland, D.C., The Achieving Society, Van Nostrand Rheinhold, Princeton, NJ, 1971.
 [5] Katz, R., “Motivating Technical Professionals Today,” IEEE Engineering Management Review, Vol. 41, No. 1,

March 2013, pp. 28–38.
 [6] Cone, E., “Managing That Churning Sensation,” Information Week, May, 1998, No. 680, pp. 50–67.
 [7] Weinberg, G.M. The Psychology of Computer Programming, Van Nostrand Rheinhold, New York, NY, 1971.
 [8] Jensen, R.W., “Don’t Forget about Good Management,” CrossTalk, August, 2000, p. 30.
 [9] Rico, D.F., “Short History of Software Methods,” downloaded from web, August, 2010 – referenced with

author’s permission.
 [10] Kruchten, P., Nord, R.L. and Ozkaya, I., “Technical Debt: From Metaphor to Theory and Practice,” IEEE

Software, November/December 2012, Vol. 29, No. 6, pp. 18–21.
 [11] Gardner, H.K., “Performance Pressure as a Double Edged Sword: Enhancing Team Motivation While

Undermining the Use of Team Knowledge,” Working Paper 09- 126, Harvard Business School, January 2012.
 [12] Boehm, B., Software Engineering Economics, Prentice- Hall, Englewood Cliffs, NJ, 1981.
 [13] Peters, L. “Motivating Software Professionals,” The Software Practitioner, May, 2013.
 [14] Peters, L., “Technical Debt – The Ultimate Antipattern,” Managing Technical Debt Workshop, Victoria, BC,

Canada, September 2014.

195

Appendix 28

Transitioning from Software
Engineer to Software
Project Manager

Some software engineers will eventually decide to become software project managers. Their moti-
vations may vary but as we have discussed, if their primary motivation is increased salary, they are
unlikely to be successful in their new role. Due to a lack of training, most software engineers do
not know what software project managers do. To complicate matters, most companies do not have
a clear path from software engineer to software project manager [4]. Compared to managing a
software project, actually writing the software is relatively straightforward in that there are require-
ments to be met, programming language syntax and semantics to be observed, tests to pass and so
forth. Throughout the development effort, the activities of the software engineer are, in a sense,
guided or dictated by the stages the software development effort passes through and the software
development environment. Software project management activity, except for legal and corporate
restrictions, does not have those clear lines of demarcation. Making the transition from the coding
environment to the management environment can be unsettling for some. The management envi-
ronment is viewed by many as a “soft” one in that there are few hard and fast rules analogous to the
syntax and semantics of the programming language and other issues. It is also viewed as being “soft”
partly because there is no objective measure of whether or not the project manager got anything
right usually until it is too late. The remainder of the softness has to do with what most software
project managers consider the most difficult and frustrating aspect of their job – personnel issues
[1]. Unlike the software engineering role, software project managers are rarely properly prepared for
working in this alternative role [2, 3]. Unlike code development, at this point in time, there is no
definitive test that reveals whether or not a candidate for a software project manager job is qualified.
This is the result of two factors:

	 ◾	 Software project management is not a well- defined discipline. The role, activities and expec-
tations of the software project manager vary from one popular methodology to the next,
project to project and company to company and in most companies, the path from software
engineer to software project manager is not clearly spelled out [4]. That may be one of the
reasons for the general lack of training in project management among software project man-
agers [2, 4]. Another possible explanation is the widespread lack of knowledge regarding
just what it is that software project managers do. For example, advertisements for software

196 ◾ Appendix 28

project managers often require that the person in this position will be required to contribute
to the programming effort. Using the professional sports analogy, it is rare that the man-
ager of a sports team is also a player on that team and the team is successful. Management
involves focusing on the five basic functions of project management – Planning, Scheduling,
Controlling, Staffing and Motivating [4, 5]. How these are done is an open question in most
companies since various authors propose a variety of schemes to achieve success in one or
more of these areas.

	 ◾	 Training in project management is optional in most graduate and undergraduate software engi-
neering degree programs [6]. Worldwide, there are more than 400 software engineering pro-
grams at the graduate and undergraduate level. Of these, less than 10% list software project
management as a required course in order to obtain a degree in software engineering while
approximately a third do not even offer a course in software project management. This may
explain why there is so little understanding among software engineers as to just what software
project managers do or should be doing resulting in a broad range of views regarding the value
software project managers bring to software projects. Google’s experience stands as an impressive,
highly successful exception. When the company was founded, the perception on the part of its
founders was that managers inhibit innovation, so the company started without any managers.
Within a short time, the founders realized that management was needed if they were to achieve
their goals. They instituted a process for vetting prospective managers, training, performance
evaluations and a structure that helped ensure project managers would not micromanage [2].

But the fact remains that throughout their career, software engineers are going to be asked
management- related questions such as how long an effort will take, what will it cost, how many
people may be required and so forth. Without even minimal training in management, they may
be predisposed to failure by relying on what seems reasonable to them with no basis in fact. An
example of this may be found in a study of thousands of advertisements worldwide for project
managers. Significantly, the only category of project managers that required competence in com-
munications and managing project finances was in the area of software project management [7].
It is significant because project managers in other disciplines are assumed to have had the training
needed to communicate well and control costs. Not training software project managers leaves them
at a disadvantage with respect to these topics and more [8].

A28.1 A Change in Attitude
There is an adage that “we learn from our mistakes.” If that were true, over the last 50 years,
software projects should have gotten more and more successful with respect to better cost and
schedule predictions, on- time within- budget results and quality of deliverables. There have been
improvements but not to the extent one would expect through more than a half century of learn-
ing. As children and young adults, we recognize that taking an action that results in some form of
failure (e.g. not studying for a test) should cause that action or inaction to be called into question
and altered. This happens largely because we conclude we are responsible for what happened. But in
software project management, a project which fails due to running over budget, delivered late and/or
of poor quality can be attributed to many factors (e.g. the schedule was too short, we had to use the
Waterfall life cycle, the requirements kept changing and the client was difficult to work with) which
enable us to shirk responsibility for failure thereby avoiding learning from the experience [8]. By
reviewing the pre- project checklist presented in Appendix 20, the software project manager and

Appendix 28 ◾ 197

those developing the code get a preview of the kinds of impediments to success that will have to
be overcome. The commitment at that point to go forward with the project means that the team
is essentially negating the possibility of shirking responsibility for failure because they knew what
they were getting into but went ahead with the project anyway.

A28.2 Why Is Needed Training Missing?
The software engineering community appears to treat software project management as a “soft”
subject as opposed to writing code as a “hard” topic. Perhaps as a result, there has been a lack of
training in software project management resulting in software project managers being ill- equipped
to perform satisfactorily. This has resulted in software project managers who do not see the need to
review whether or not the needed elements for a project to be successful are in place prior to project
initiation. The pilot analogy comes to mind in that pilots are trained to consider the operational
status of all key systems of the aircraft prior to taking flight via a checklist which is executed with
the copilot prior to takeoff. The strategic goal [9] of employing such a list is to prevent obvious
problems or oversights (e.g. not having the flaps in the takeoff position before beginning their
takeoff roll) and to ensure that an unsafe status is not found for a flight critical system. Some of the
more obvious undesirable situations that the software project manager should be concerned about
include having the development team believe that the project will not be successful, not having
the support of senior management [10, 11], having the client prefer a different project manager
to conduct this project and others. The point here is that the software project manager is focused
on having the project be successful which can result in overlooking one or more important issues
which may jeopardize project success.

References
 [1] Tarim, T., “Making a Transition from Technical Professional to …,” IEEE Engineering Management Review,

Vol. 10, No. 3, September 2012, pp. 3–4.
 [2] Garvin, D.A., “How Google Sold Its Engineers on Management,” Harvard Business Review, December, 2013.
 [3] Myers, C.G., Staats, B.R. and Gino, F., “My Bad! How Internal Attribution and Ambiguity of Responsibility

Affect Learning from Failure,” Harvard Business School Working Paper 14- 104, April 18, 2014.
 [4] Katz, R., “Motivating Technical Professionals Today,” IEEE Engineering Management Review, Vol. 41, No. 1,

March 2013, pp. 28–37.
 [5] Dyba, T., Kitchenham, B.A. and Jorgensen, M., “Evidenced Based Software Engineering for Practitioners,”

IEEE Software, Vol. 22, No. 1, Jan- Feb 2005, pp. 58–65.
 [6] unpublished Google searches 2016- 2019 done by L. Peters.
 [7] Chipulu, M., Neoh, J.G., Udechukwu, O. and Williams, T., “A Multidimensional Analysis of Project

Manager Competencies,” IEEE Transactions on Engineering Management, Vol. 60, No. 3, August 2013, pp.
496–505.

 [8] Ghazi, P., Moreno, A.M. and Peters, L.J., “Looking for the Holy Grail of Software Development,” IEEE
Software, Vol. 31, No. 1, 2014, pp. 92–96.

 [9] Kaplan, R.S. and Norton, D.P., “Linking the Balanced Scorecard to Strategy,” California Management Review,
Vol. 39, No. 1, pp. 53–79, Fall 1996.

 [10] Busch, J., “Senior Management Support: What Is It and Why You Need It,” Spend Matters website, July
29, 2009.

 [11] Thamhain, H., “Team Leadership Effectiveness in Technology- Based Project Environments,” IEEE
Engineering Management Review, Vol. 36, No. 1, 2008, pp. 165–180. College, Cambridge, UK.

198

Appendix 29

Why Smart People Make
Dumb Decisions

Nearly every day, we learn of some person in a leadership role who has made a dumb decision. Closer
to home in the software engineering field, a similar phenomenon happens whereby a project man-
ager or senior manager makes a decision many of us question because it is seen as seriously in error.
In many cases, these people are unusually bright but yet, often ignoring the data, they go ahead and
decide to take “the wrong path.” Often, we have wondered how did this happen? Fortunately, some
researchers at the Harvard Business School have found the answer. What they found was that when
people are at the lower echelons of the power structure in an organization, they base their decisions
on facts and data. As they are promoted and progress through the ranks, they acquire more power
and influence and begin to rely on their intuition more and more. The higher they go in the power
structure, the less they rely on facts and data until their decision- making is totally based on intu-
ition. Sometimes, this turns out well but that may be a comparatively rare occurrence. The message
here for software project managers is to be aware of this phenomenon and to pay attention to the
facts and data in order to avoid what may be a serious mistake. But do they? The problem here
lies with our brains and society. We tend to think, “If I am smart enough to have achieved being
promoted to this position, do I need to pay attention to contrary opinions from those less accom-
plished than me and data contrary to my judgement?” That leads us down a potentially dangerous
line of thought leading to a decision which may be based on inaccurate information or intuition
alone. Either way, input from an opposing view could have prevented a disaster.

One researcher [1] identified six reasons why people in leadership positions make “really dumb
decisions:”

 1. Loss Avoidance – This reason relates to the desire of people to prefer to avoid a loss than to
acquire a gain. Research by psychologist David Kahneman [2] showed that losses are twice
as powerful as gains. This seems reasonable since a loss is giving up something you already
have whereas a gain is potentially acquiring something you as yet do not have. The difficulty
with loss avoidance is that it usually means that the decision- maker defaults to the status quo.
The way to overcome this bias is to put the potential loss in perspective. That is, to consider
whether or not the potential loss is as valuable or is less valuable than the potential gain.
Alternatively, consider that you can recover from the potential loss but can you recover from
not achieving the potential gain?

Appendix 29 ◾ 199

 2. Recall Bias – This is often referred to as the “availability heuristic.” It is based upon the under-
lying psychological presumption that if I can remember it, it must be important or at least as
important as something I do not recall. This results in our giving heavier weight to recently
acquired information as opposed to previous, older information. This biases our decision-
making toward recently acquired information. One problem with this phenomenon is that
the more spectacular the event, the more likely we are to remember it. What “Recall Bias” is
saying is, I recall it so it must be true. The way to put this bias into a proper perspective is to
do additional research to ensure the data the decision is based on isn’t just recent but is, in
fact, pointing the decision in the best direction.

 3. Survivor Bias – This bias focuses on events or people that “survived” from among those who
didn’t. For example, we hear a lot about people who pursued a career as a professional golfer
right out of college but very little about those who, though skilled, failed to make the grade
in the Professional Golfers Association qualifying school. The real problem with this bias is
that the scheme used by the singular exception is unlikely to work for others. Spending 8
hours a day at the driving range is unlikely to make you as good a golfer as Tiger Woods,
dropping out of college to pursue a career in software engineering is unlikely to produce the
results Bill Gates has seen and so forth. The advisory here is to base your strategy on your
strengths and avoid your weaknesses.

 4. Anchor Bias – This bias refers to the basics of negotiation. In negotiation, the final value
of an offer is highly influenced by the first relevant number (referred to as the anchor) that
begins the negotiation process. It is well known that this initial value is very influential in the
remainder of the negotiation process. The influence of the anchor value is hard to overcome.
So whether negotiating a salary or other value, have in mind a value you believe is the value
you are willing to pay or settle for before negotiations begin.

 5. Confirmation Bias – This bias is based on our desire to confirm how smart we are – so smart
that we want to show others how smart. This causes us to filter the information presented to
us. For example, course evaluations for a class I teach will contain both positive and negative
comments about the class and my delivery of the information it contained. Confirmation
bias causes me to favor the positive comments and place little value on the negative ones
because the negative ones tend to refute my underlying belief embraced by this bias. The
problem this creates whether teaching a class or managing a software engineering team is that
the negative comments may contain valuable information that could help to improve our
teaching or our management skills which this bias may cause us to ignore.

 6. Idea Origination Bias – This bias is often referred to as the “Not Invented Here” syndrome.
The premise for this bias is that if we didn’t think of this, it cannot be of much value. It
actually may go deeper than that and be based on a tribal or club- like viewpoint. The key
to overcoming this bias is to ignore the source and focus on the idea or suggestion itself.
An example of overcoming this bias occurred many years ago during the design and devel-
opment of Boeing 747. Engineers were working to reduce the weight of the aircraft any
way they safely could. A technician overheard a discussion about this and suggested they
remove the vertical part of each step leading to the upper deck and strengthen the hori-
zontal portion as necessary. Under other circumstances, the engineers might have ignored
this idea but they were desperate and it helped to enable them to bring that portion of the
cabin within the weight budget. They focused on the validity of the idea, not its source.
Obviously, we can get so entrenched in the way we currently view things, we might fail to
see valuable alternatives.

200 ◾ Appendix 29

Some additional advisories that may be useful include:

 1. Don’t Restrict your search to the software industry – Often, methods developed in other
industries prove quite useful when adopted by software engineering. After all software engi-
neering is not so unique that only methods developed within this field are applicable.

 2. Be open to suggestions from anyone in your group – Some members of your team may have
some great ideas. Just because you are in charge doesn’t mean you are the only one with great
ideas. Besides, this may open up the floodgates to other ideas from everyone.

 3. Be open but reasonable – While suggestions are fine, given your experience with the team in
previous situations, you may want to restrict suggestions to schemes the team has seen work
elsewhere on similar projects.

Remember, the goal here is to be an equal opportunity idea channel by finding what works no mat-
ter where it comes from. Finally, the pattern which has been studied [3, 4] is that the more success
and influence one has, the more they rely on their own intuition and the less on facts and data.
Finally, when they have reached what amounts to the pinnacle of success within the firm, they rely
totally on their own intuition which can and does lead to some puzzling, stupid decisions.

References
 [1] Haden, J., “6 Reasons Really Smart People Make Really Dumb Decisions, According to Science,” INC. news-

letters, December, 2017.
 [2] Kahneman, D., Thinking Fast and Slow, Farrar, Straus and Giroux, New York, NY, October, 2011.
 [3] Bonabeau, E., “Don’t Trust Your Gut,” Harvard Business Review, May, 2003.
 [4] Locke, C.C., “When It’s Safe to Rely on Intuition (and When It’s Not),” Harvard Business Review, April

30, 2015.

201

Appendix 30

Why Software Engineering
Teams Should Be Kept Intact

“Success in Software Engineering is the result of a system – not a secret.”

–L. Peters

Every senior manager is pleased with software engineering teams that are successful. This has led
many senior managers to conclude that to increase the number of teams that are successful within
the company, the members of these successful teams should be distributed throughout the software
engineering department so that their knowledge and experience can be shared resulting in an overall
improvement in the department’s performance. This is another example of an anecdotal presump-
tion that has no factual basis [1, 2]. It turns out that data indicate keeping successful teams together
(i.e. intact) is advised and breaking them up is counterproductive. Much like sports teams, simply
acquiring a highly talented player won’t necessarily cause a poorly performing team to become a
championship contender. This is because members of the successful software engineering team are
familiar with each other to the extent that they know the knowledge strengths and weaknesses of
each member and can rely on them for help with specific problems in the topics they are proficient
in. They also learn what other team members’ propensity for certain kinds of errors and help them
to avoid them. If senior managers want to improve matters on a department- wide scale, what they
should do is identify what it is the software project manager of the successful team does that con-
tributed to their success and encourage other software project managers to adopt similar behaviors.
Once again, what seems reasonable without supporting data ends up being an antipattern, where
an antipattern is an action that is thought to be beneficial but has the opposite effect.

References
 [1] Huckman, R. and Staats, B., “The Hidden Benefits of Keeping Teams Intact,” Harvard Business Review,

December, 2013.
 [2] Staats, B. and Upton, D., “Lean at WIPRO Technologies,” Harvard Business Review, October 16, 2006.

202

Appendix 31

Why We Don’t Learn
from Success

In comparison to learning from success, learning from failure is relatively straightforward. We try
some new approach or engage in a type of software development we had never tried before and the
project fails. In many cases, we have an easily identifiable culprit. Sometimes it is not so obvious
but a postmortem of the failed project should be successful at identifying the cause of the failure.
However, success presents us with a much more complex cause- and- effect scenario. In fact, success
can breed failure by hindering learning at both the individual and organizational levels, in inter-
related ways:

 1. When we succeed, we tend to give too much credit to our talents, our method or strategy and
too little to external factors including luck.

 2. The common belief among software project managers is that we learn from failure. If that
belief was true, software project management would be a relatively easy task with all we have
learned from all the failed software projects that have occurred over the years. Obviously,
that is not the case. But what is the situation when we are successful? Work has been done
to study the effects of success on learning and management [1]. The results may surprise
some people. Success can change an organization’s perspective. When they are successful,
they attribute their success to their superior talent at doing whatever it is they do. They tend
to rule out the possibility their success is due to luck and or circumstances beyond their
control. Given the assumption that they have superior skills, it implies that they do not need
to change anything; after all, they are successful. This is consistent with the adage “If it ain’t
broke, don’t fix it!” The problem with that adage is it results in a static approach to managing
when a dynamic approach is needed [2]. That dynamic approach means we will constantly
seek to improve regardless of our success rate. In interviews with successful sports coaches
after a victory, it is common to hear them comment that the team played well but they have
a few things to work on. Why should they work on other things – they won didn’t they? The
successful coach realizes that some of the deficiencies the team displayed were not preyed
upon by their opponent that day but some other, better coached team could take advantage
of them resulting in a loss.

Many of us have been there – the department meeting during which some software team is honored
for having brought a project in on time and within budget or finishing a project that was universally

Appendix 31 ◾ 203

considered impossible. Senior management sees this as an opportunity for all software engineering
teams to adopt the same techniques and methods that were used in anticipation of more successful
projects in the future. Of course, senior management is ignoring the fact that this may be a one-
of- a- kind event since not all software engineering teams are the same and not all software projects
are the same. This ignores what successful projects can teach us. As a matter of company policy,
everything about the successful project is treated as company proprietary information and not to
be published to the industry. Senior management should learn the error of their ways when other
software engineering teams fail to achieve the success the original team had but they often do not.
Why? Is there something special about this team that enabled them to achieve these feats? Actually,
their success is not due to a relatively small number of factors but something much larger. Senior
managers and just about all of the management team are seeking to be successful. When a software
team is deemed to have been successful based on the success criteria in vogue in that organization,
others want to emulate the practices they embraced in the hope that they too will be successful. But
this rarely happens. One of the reasons for this is fear of change. But there are other factors in play
here as well. These include the fact that many people in the organization thought there was little
chance this project would succeed. That is actually an important asset. This leaves the development
team free to be innovative perhaps trying something new. They have nothing to lose because trying
something new and unconventional is likely to be overlooked if it fails since it was expected to fail.
If it succeeds, others will want to emulate the methods that overcame near- certain disaster. Let’s
look at what a software development team in that situation is focused on. They are trying some-
thing new so they focus on learning how to use the new method or making one up on their own.
They are not nearly as focused on successfully bringing the project in on time and budget. There is
an important principle involved here that is often overlooked by management [1]. The experience
of the Ducati Corse Motorcycle Company may help shed some light on how we can learn from
success [1]. The company is based in Bologna, Italy. In 2003, they entered the MotoGP for the first
time with low expectations. They viewed this first season as a learning experience. They fitted their
bikes with sensors to measure every variable they could. To their surprise, they finished in the top
three in nine races and were ranked second overall with the fastest bike overall. At that point, the
team began to focus on winning rather than on learning why they did so well. They noted that “You
look at the data when you are losing, not when you are winning.” At that point, things started to
go badly for their team. The next season they went with a bike with 60% of the 915 bike compo-
nents new. They finished third which was considered a failure causing a reexamination of the team’s
approach to developing motorcycles. They began the development of their next bike much earlier
than ever before, tested and measured everything. They improved in 2005 and 2006 and then took
the title in 2007. Researchers have found a similar pattern in many industries including software
– that is, success–failure–success (if the company survived). The advisory here is it is dangerous to
not determine what it is that makes your team successful. Incorrectly attributing our success to the
following can be also dangerous:

 ◾ Only to our expertise and our own insights.
 ◾ Ignoring factors beyond our control that resulted in the success.
 ◾ Taking credit for the team’s positive numbers when this could just be due to luck.

Psychologists have proved the preceding are normal but normal or not, the problem remains. How
we respond to success can also present us with what seems to be a rational approach but which will
get us into trouble. The approach is to let our experience outside of software engineering dictate
that in the next project, we do everything the same way as on this successful project. To quote one

204 ◾ Appendix 31

study, if we do that, the whole exercise is a failure [1]. Why a failure? Even if the next project is
very similar to the successful one, the people have (hopefully) learned something and are differ-
ent. So what should we do? Remembering Heraclitus’ [Greek philosopher in Ephesus (present- day
Turkey) ~535–475 B.C.] admonition that change is the only constant, look at how we could have
done even better than we did. Try to determine what the major contributors to our success were
and continue to promote a learning environment. Again, we need to attempt to avoid attributing
our success to our (assumed) superior skills. Tinkering with success in this way may cause us to do
a little less well but we will be more consistent and at least we will know which project elements
should not be fooled with.

References
 [1] Gino, F. and Pisano, G., “Why Leaders Don’t Learn from Success,” Harvard Business Review, April 2011.
 [2] Weick, K., “Organizational Culture as a Source of High Reliability,” California Management Review, Vol. 29,

No. 2, Winter 1987, pp. 112–127.

205

Appendix 32

Stoplight Charts

An important part of successfully managing a software project is to know the status of each part of
the project continuously. For a number of reasons, verbal statements can be unreliable. Conversely,
some software engineers are reluctant to put a status in writing if the status is a negative one. So the
first step in obtaining and maintaining project status is to establish an environment within which
open, honest communications are encouraged regardless of whether or not they are negative about
status or other matters. This approach was popularized by Allan Mulally at the Boeing Company
and later at the Ford Corporation. It is commonly referred to as “Stoplight Charts” or “Four Square
Status Charts.” In his acceptance speech on being inducted into the Automotive Hall of Fame in
2006, Mulally related the part these charts played when he first started in his role as Chief Executive
Officer (CEO) at Ford. He held a meeting with the heads of all the various project and product
efforts. Each manager was to present the status of their effort on a stoplight chart. The status was
communicated via one of three colors:

 1. Green – Indicating that everything is OK, on plan and so forth.
 2. Yellow – There is a problem (s) but we have a solution we are implementing.
 3. Red – There is a serious problem(s) for which we have no solution(s) at this time. We could

use some help.

After a few presentations, Mulally stopped the proceedings. He noted that all the charts were green
and that Ford was projected to lose $17 billion that fiscal year and could potentially be forced into
bankruptcy. The attendees were instructed to revise their charts to reflect reality and meet again the
next day. The environment at Ford prior to Mulally’s arrival was that to report the equivalent of a
red status was the first step to losing your job or being demoted. In that second meeting, one of the
first presenters was a manager who reported a red status. It had to do with the tailgate on a particu-
lar Ford model. The concept was that the driver could push a button and the tailgate would open or
close but there was a problem. It wasn’t working and the people working on it could not figure out
why. Another manager indicated his team had something like that happen in the past and maybe he
could send a couple of engineers who had worked on it over to help out. The problem stayed red for
a short time, then yellow and finally green. What happened was what Mulally had been espousing,
“One Ford.” That is everyone working together for the good of the company. This environment of
honesty without repercussions helped turn Ford around making them profitable within two years.
The preceding experience description has helped confirm my standard operating policy of telling
every software engineering team I have managed that if there is a problem, I want to be the first,
not the last to know about it. There will be no repercussions to the messenger. This is because my

206 ◾ Appendix 32

job is to solve problems and help others on the team solve theirs. That is why I believe the patron
“saint” of all software project managers should be Ganesha – the Hindu god who is the remover
of obstacles. Four square charts are one effective means of getting that early warning that there is a
problem and something needs to be done about it before it sabotages the project.

Four square charts have four sections:

 1. Goals – A high level summary of the project; it does not change unless the project charter
changes.

 2. Current Issues – These are the problems currently facing the project – these should change at
each review as old ones are resolved and new ones occur.

 3. Schedule – A high- level view of the schedule. This may not change much unless a slide in
schedule is occurring which should have been mentioned in “Current Issues.”

 4. Planned Actions – This is a high- level description of what the project team will be doing until
the next review – early in the list are actions directed at resolving the listed issues.

A32.1 Example of a Four-Square Chart
This chart (Figure A32.1) is related to developing some property.

As it turned out, the fire department ruling killed the project. They required a 70- foot diameter
circle to turn an engine around which left the remaining too small for the needed building sites.
In looking at Figure A32.1, we see there is more than a status being documented but the actions,
schedules and goals of this part of the effort as well. This simple summary conveys the basics of the
task for all to see while inviting possible suggestions for help.

Goals Current Issues

> Develop half acre property > Wetlands determination means
by building a single story home redesign of site
 > Bids for topographical and survey

> Sell existing home coming in at double earlier bids

Schedule as of 01 Sep 2023 Planned Actions

Get permits & bids X--------X > Have vendors re-bid effort

Constructed home X---------X > Revise site plan

Sell current home X-----X > Petition city for variance

Final Insp./Move-in X—X > Appeal fire department ruling

Figure A32.1 Example of a four-square chart.

207

Appendix 33

The Theory of Constraints

There are many definitions of this theory. The one we will use is based on a seemingly harsh
statement:

In every system (e.g. software engineering team) there are one or more resources which
constrain the system to producing less than it could – to maximize productivity (or at
least improve it) find that “bottleneck” and neutralize it.

That certainly sounds simple enough but it can yield some surprising results [1, 2]. Let’s look at an
example. You are running a seaport which has five piers and five teams to unload cargo container
ships. It takes five days for one team to unload one ship. If five ships arrive at the same time, the
conventional approach would be to assign one team to each ship. But the theory of constraints sug-
gests we put all five teams to work on one ship at a time because our “bottleneck” is the number of
teams we have. Is this any better? Table A33.1 compares the conventional approach with the theory
of constraints.

When explained verbally, applying constraint theory to this problem produces an unexpected,
counterintuitive even surprising result. But like other topics in this book, the data proves otherwise.

Table A33.1 Comparing Theory of Constraints with Conventional Approach Example

Ship Number
Days in Port using

Conventional Approach
Days in Port using Constraint

Theory Scheme

1 25 5

2 25 10

3 25 15

4 25 20

5 25 25

Totals 125 75

208 ◾ Appendix 33

References
 [1] Orouji, M., Theory of Constraints: A State of Art Review, Growing Science Ltd., 2016.
 [2] Goldratt, E.M., Theory of Constraints, Croton- on- Hudson, North River, NY, 1990.

209

Appendix 34

Documenting the
Undocumented

Worldwide, there must be billions of lines of source code that are either undocumented, poorly
documented or whose documentation has been lost or so out of date as to be of no value. However,
this code continues to be used. It is often maintained by one or more of its original authors. Given
that in the United States alone, 10,000 people a week are turning 65 years of age which is the most
common retirement age, many of these original authors of much of this code are retiring or oth-
erwise becoming unavailable. Many companies are facing the prospect of transferring the mainte-
nance of code that may be a vital part of their business to one or more software engineers with little
or no documentation to guide their actions. In one of my consulting engagements, the company
was faced with this situation. The last originator of a vital part of their operation who was a life-
long cigarette smoker had to retire due to failing health. The company’s concern was that over the
years, he had been so busy with legally mandated changes and upgrades that he had not been able
to adequately instruct one or more colleagues on how that system was structured, details of why it
was organized the way it was and many other important details needed to adequately maintain that
code. The company felt obligated to comply with the employee’s (we will call him Fred- not his real
name) wishes as he had stayed on at the firm well beyond when he had originally intended to retire.
Fred’s deteriorating health made creating a solution in a timely manner even more urgent. What
we did was to make use of some very simple tools which with the cooperation of Fred we were able
to create a documentation of the system in a survivable form that could be used by others familiar
with the programming language involved. What we did was to video Fred walking us through the
various parts of the system. But we did not just video it, we put together a process focused on creat-
ing a video that captured the very essence of the system, its idiosyncrasies, how it had evolved, the
various programming methods that had been used over the years and more. Here is what we did:

First, we put together a group consisting of a few senior software engineers most of whom were
not familiar with the system we were trying to document and the one software engineer who knew
the undocumented system well and had been maintaining it for decades. It was decided to reduce
cost that we would use in- house personnel to put together the production which included operat-
ing a video camera, assisting with flip charts and so forth. We met and decided on some guidelines:

 ◾ The system was too large to convey an understanding of it all in one sitting.
 ◾ There would be five video sessions corresponding to an overview followed by four separate

videos corresponding to the four major parts of the system.

210 ◾ Appendix 34

 ◾ Fred would be in front of the camera doing the explaining to a few software engineers who
would be permitted to ask questions in real time, on- camera about any item in the explana-
tions they needed clarified.

 ◾ There would be a 2 foot by 4 foot list of points on a large flip chart off- camera that Fred could
use during the video to ensure that important points were incorporated.

 ◾ If there were a lot of questions about some portion, it would be reshot with a revised script
directed at the clarifications.

 ◾ A printout of the code would be provided to each attendee at each of the sessions to enable
them to make notes on the source code listing to refer to later.

 ◾ There would be a few practice sessions to get Fred comfortable with being videoed and test
out the process.

Since the code and videos contained company proprietary information, a restricted list of software
engineers would have access via a personal password. The results were validated by having software
engineers explain to Fred how the various parts of the system worked and what changes were likely.
Fred then advised as to what they omitted or got wrong and the reference video(s) and comments
in the source file were changed, as necessary.

211

Appendix 35

Making Documentation
Transparent

The problem with documenting source code after it has been written is that what we document
is what the code does, not necessarily why. The “why” is certainly difficult to capture but even the
“what” often seems beyond our reach. Besides, documenting out- of- date or legacy code is a long-
term investment which is difficult to develop a compelling business case for. I ran into this very
problem some years ago. I was engaged as a software project manager to manage a project whose
goal was to replace an existing system which had been written 20 years earlier using a proprietary
programming language. The company that wrote the code was engaged every year to make changes
for which they charged exorbitant fees. The contracting firm sought to replace the system with one
written in an available programming language and maintain it themselves. Obviously, this would
not only save them money but any needed changes could be made in a timely manner. One stipula-
tion the firm made to me was that the replacement system be well documented. I was well aware
of how hard it is to get software engineers to document their code. In addition, I knew that all too
often, the documentation only tells me what the code does – not why it was decided to do it that
way. To add to the challenge, they were short of staff and the staff they did have had little (less than
a year) or no experience developing software in an industrial setting. As I saw it, whatever approach
I did come up with had to satisfy four requirements:

 1. It had to be an inherent part of the development process – By this, I mean that documenta-
tion should not be seen as a separate task but an integral part of the design and develop-
ment effort.

 2. It should be easy to use and keep up- to- date – Documentation is practically worthless if it is
so difficult to update that it quickly becomes outdated.

 3. It supports the development of test cases – All too often test cases are based on what the code
does, not what it was intended to do. If the documentation is in a form that was usable by
the subcontracting team tasked with testing the code, it would reduce project flow time. Of
course, the key here is the code must correlate to the documentation or we will have created a
real mess.

 4. The documentation is in a form that is meaningful to software engineers – From experience
with textual documentation, it does not communicate well with software engineers. What
is needed is something between the stark logic of source code and a textual portrayal of the
source code.

212 ◾ Appendix 35

In addition to working to meet the preceding requirements, we developed some coding practices
and standards, instituted a development process that incorporated walkthroughs so that more than
one person was familiar with various parts of the code besides the portion they had volunteered
to do and more. At that time, the target language did not support structured programming con-
structs like IF- THEN- ELSE, DO WHILE, UNTIL DO and others. Working with the develop-
ment team, we came up with the following scheme:

 1. We developed a pseudocode that supported all the structured programming constructs. It
was not our intention that this actually execute.

 2. We instituted a process in which each functional section of the code was walked through
with the rest of the team for approval, interface verification and improvement.

 3. Once approved by the team, the pseudocode would become comments for the source code
which would be developed by the owner of that portion of the system.

 4. The source code would also be walked through by the team to ensure correctness, compliance
with our coding standards, ownership documentation, change history and other required
information was present as development progressed.

 5. Test cases were developed by another team based on the pseudocode. This saved flow time as
described in Chapter 2, section 2.8.

Overall, this scheme worked providing embedded documentation together with a learning experi-
ence for the team. The most serious problem we had to overcome was that one team member chal-
lenged any critique or suggestion to the coding while viciously attacking everyone else’s results. The
team came to me and announced they would resign from the project unless this person was fired or
reassigned off the project. Fortunately, we found an independent research position for this person
elsewhere in the firm which they agreed to. Overall, this approach worked by providing in situ
documentation, learning for the team members and, most importantly, the team took ownership
of this development system at least partly because they participated in its creation rather than hav-
ing it thrust upon them. This is an important point in that all too often a software project manager
will read about some new method that promises high quality and increased source code production
and try to impose it on the software engineering team only to meet strong resistance. Encouraging
the team rather than demanding they use a predefined development system will reduce resistance
to change(s).

213

Appendix 36

Capability Maturity
Model (CMM)

The Capability Maturity Model (1) was originally published 30 years ago by the Software
Engineering Institute (SEI) and has been refined several times since. It is based on an ISO concept
that is more than 30 years old. ISO’s contention is that if you wish to improve the quality of your
product(s), you should carefully document the processes used to produce them. That way, if a prod-
uct is released which has a defect, you can track down where the defect occurred through analysis
of the process(s), alter the process to prevent the defect and try again. What the SEI research team
found during the development and refinement of CMM was that most software development took
place in environments which could most kindly be described as chaotic. That is, there was little or
no documentation of the software production process making repeatability and correction of the
software production effort impossible. SEI defined five levels ranging from Level 1 – Chaos to Level
5 – Systematic, repeatable and controlled development. The details and the intermediate levels and
their characteristics are described in [1].

On the surface, managing a software project sounds relatively simple. Working with your team,
you put together a plan and schedule, estimate the cost, get agreement from the client and execute
the plan consistent with the schedule. But delve a bit deeper or better yet, talk to someone who has
actually managed a software project, and you will discover it is not nearly that simple. Things hap-
pen that are totally unpredictable – both positive and negative events. For example, the following
happened during some software projects I managed or consulted on:

 ◾ A key member of our team was married with two children, had a wife who was working and
they barely made ends meet. He inherited a small fortune and moved himself and his family
to another part of the country.

 ◾ A divorce caused a member of our team to leave the area in order to avoid being reminded of
this failed past relationship.

 ◾ The woman a team member was engaged to ran off with someone else causing his productiv-
ity to plummet.

 ◾ A truly brilliant member of our team got hooked on drugs and went in and out of rehabilita-
tion making their present and future contributions problematic.

 ◾ The client resolved some budgetary and logistic issues giving us additional funding and flow
time to complete the project.

214 ◾ Appendix 36

 ◾ Due to a sudden, unforeseen negative change in their business, the client canceled the project
without notice at about the halfway mark in the schedule.

 ◾ A technology breakthrough by another firm who then marketed what we were building mar-
keted it as off- the- shelf software causing our effort to be cancelled.

 ◾ Technical breakthroughs enabled us to replan and recost the project reducing the project
schedule and cost.

Some of you may have experienced one or more of the above but the point here is that software
projects are generally anything but smooth running and under control. This is why the term chaos
appears in the title of this book. What we are attempting to do is control what is controllable and
adapt as best we can to those events which occur beyond our control. This ability to adapt to the
ever- changing landscape of a software project is what really determines success [2]. Some may think
that this is unique to software projects but other projects experience the same phenomenon. For
example, I assisted the project engineer on a kindergarten through high school construction project
for nearly a year. Literally, we had to replan parts of the effort every week. The causes for replanning
varied but included weather delays (under certain conditions you cannot pour and finish concrete),
subcontractors finishing their work late or early, materials being delivered late due to labor strife,
changes in building layout due to lack of compliance with safety regulations, school board directed
changes that occurred after construction was underway, delays in getting inspections done and
approved and others. This nearly constant state of change may be seen by some as chaotic but the
project did finish well but with about a 10–12% budget overrun.

A36.1 How Much CMM Is Enough?
This question is a serious one and it relates to the return on investment made to advance from
one CMM level to the next. Based on a survey of 50 companies, the return on investment seems
to be the highest early on [2]. That is, making the transition from CMM level 1 to level 2 as
shown in Figure A36.1. This seems reasonable since the organization is moving from a poor use
of human resources (CMM level 1 – Chaos) to a more efficient one (CMM level 2 – some degree
of organization and accountability). It turns out that there is nothing “magic” about any CMM
but there is something very powerful. It is that as a team, we examine how we do things and ask,

Figure A36.1 CMM transition level with highest return on investment [3].

Appendix 36 ◾ 215

“Is there a better way?” That encourages participation by everyone almost guaranteeing that they
will support the resulting changes. Obviously, this stands a better chance of success than having
the changes dictated by management.

References
 [1] Paulk, M., Curtis, B., Chrissis, M. and Weber, “Capability Maturity Model for Software, Version 1.1.”

Technical Report CMU/SEI- 93- TR- 024, ESC- TR- 93- 177, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, PA, February, 1993.

 [2] Thomas, J. and Mengel, T., “Preparing Project Managers to Deal with Complexity – Advanced Project
Management Education,” International Journal of Project Management, Vol. 26, 2008, pp. 304–315.

 [3] McConnell, S., 10 Myths of Rapid Development, Lecture Presented at Construx, Inc., Bellevue, WA,
January, 2003.

216

Appendix 37

Motivation Basics

Anecdotally, many software project managers have observed that software engineers who are moti-
vated are more productive in terms of volume and quality of source code than software engineers
who are not motivated. The term “motivation” has been used in many ways reflecting many differ-
ent viewpoints. To help focus our discussion, we will use the following definition.

Motivation is the willingness to get the job done by starting rather than procrastinating, persist-
ing in the face of distractions and investing enough mental effort to succeed [1].

It is estimated that motivation accounts for 40% of the success in team efforts [1]. So, if we
want to improve our chances of success in software projects, we need to figure out how to motivate
our team or at least not demotivate them. Fortunately, demotivators have been organized into four
primary categories:

 1. Values Mismatch – When a task does not align with what a worker sees as valuable, they are
unlikely to be motivated to do it. In the case of software engineers, their value system favors
tasks involving the state of the art and/or something they can point out to their colleagues as
being important [2]. The way to cope with this is to point out the value of the task and its
positive impact on the project.

 2. Lack of Self- Efficacy – If a task is such that a worker sees it as being beyond their capability,
this reduces their motivation to attempt it [2]. The remedy for this is to assure the software
engineer that help will be provided plus working on this will expand their skill set and value
to the firm or even other firms.

 3. Disruptive Emotions – Software engineers are people and as such can be affected by what is
going on in their lives. The remedy for this is to provide a listening resource to reassure them
that things will work out. Scheduling a time to meet, providing some time off and other
supportive measures can help. The key point here is that the person needs to feel their situa-
tion has been understood and their manager is willing to work with them to get through this
stressful time.

 4. Attribution Errors – This one may be the most common among software engineers. The
engineer has worked out how to get this code working but it keeps failing. This calls into
question their self- image of competency which drives them to avoid dealing with it. To help
remedy this, try working with the individual going through the steps they have taken and
offer the assistance of other team members.

Appendix 37 ◾ 217

The specifics of the preceding categories of motivation inhibitors will vary but the keys to overcom-
ing them mostly involve observing what is going on and performing in the role of servant leader by
removing obstacles to high performance by team members.

References
 [1] Clark, R. and Saxberg, B., “4 Reasons Good Employees Lose Their Motivation,” Harvard Business Review,

March 13, 2019.
 [2] Katz, R., “Motivating Technical Professionals Today,” IEEE Engineering Management Review, Vol. 41, No. 1,

March 2013, pp. 28–37.

218

Closing Comments

Throughout this book, I have stressed the importance of software project management as well as the
need for software project managers to adapt their approach(s) to software project management to
the specifics of the project and the people they are managing rather than applying a “one size fits all”
formula. That is why a broad spectrum of methods and techniques have been incorporated into this
book. When deciding if and when to use one of these methods, it is advisable to ignore its source
and focus on whether or not it is likely to help you solve some problem that prompted you to select
one or more of these methods in the first place. If you are new to software project management or
are already a software project manager, remember, in order to make a change, you must want to
change. As Heraclitus was quoted as saying, “Change is the only constant.”

I wish you the best of luck in life and your software project management career.
Lawrence J. Peters

219

Chapter Questions and
Suggested Answers

Chapter 1 Review Questions/Answers
 1. Is the subject and practice of software project management, and its development actively sup-

ported by the IEEE Software Engineering Society? Explain your answer.
Suggested Answer: The IEEE Software Engineering Society is almost exclusively focused on
the technology involved in creating software. Software project management has yet to play a
major role in IEEE Software Engineering Society publications and annual conferences.

 2. In what way does one’s viewpoint in moving from being a software engineer to a software
project manager?
Suggested Answer: Software engineering involves following a relatively well- defined path
from concept to working code. The viewpoint is the code, the syntax and semantics and the
desired functionality. The software project manager’s viewpoint is somewhat analogous to
that of the conductor of an orchestra in the focus is on synchronizing and coordinating the
activities of the members of the software engineering team in order to arrive at a successful
outcome. The path to achieve this varies from project to project and software engineering
team to team. Another way to see this is the software project manager is focused on the
project- wide picture, not the details of the source code.

 3. When Barry Boehm developed COCOMO and later its successor, he assumed he did not
have to consider software project management because he assumed a cadre of competent
software project managers existed. What did a later analysis of COCOMO variables show?
Suggested Answer: It showed that the variables that made up COCOMO were actually
management related. So much so that they outnumbered members of all other categories
combined.

 4. How could the transition from software engineer to software project manager be best
conveyed?
Suggested Answer: Software project management is not a profession one can acquire skills
in through “on the job” learning. That is where we are today with managers picking up tips
from other self- taught managers leading to more and more antipatterns. The best way to
prevent this would be training classes to convey the basic principles of successful software
project management.

 5. What is the most effective leadership style and how does it work?
Suggested Answer: Studies have shown that the “servant- leader” style is the most effective.
That leadership style involves the manager being a servant of sorts in that the manager’s role is

220 ◾ Chapter Questions and Suggested Answers

to work to remove any obstacles that are preventing individuals or the team from performing
at their highest level.

 6. Do software project managers need to be trained for their leadership role?
Suggested Answer: Software project managers are not born, they are trained. That training
would cover the five basic functions of software project management – Planning, Scheduling,
Controlling, Staffing and Motivating.

 7. What keeps teams from learning if they have been successful?
Suggested Answer: The adage “We learn from failure” implies that we don’t learn from suc-
cess. Why don’t some teams learn from success? Studies have shown that a major part of the
reason why we don’t learn from success is that we give too much credit to our own skills and
downplay the fact that our success may just be due to luck. This includes attributing part of
our success to the use of some new software tool or method.

 8. In what way can software development and its management be characterized as “wicked?”
Suggested Answer: Software projects do not, generally, have right or wrong answers to deci-
sions. As a problem set, they change with time and they have multiple facets which are all
linked together.

 9. Name two personality characteristics that make software engineers unique among profession-
als and a challenge to manage?
Suggested Answer: The characteristics are: (1) High Growth Needs Strength (the need to
solve challenging problems) and (2) Low Social Needs Strength (the preference to solve prob-
lems by themselves).

 10. What was unique about the experience at Google? What can we learn from it?
Suggested Answer: They started without managers and later they discovered they needed
them. They have instituted a system which has a clear path to become a manager – training
and evaluation.

 11. Name the five primary functions of software project management.
Suggested Answer: The primary functions of software project management are planning,
scheduling (including costing), controlling, staffing and motivating.

Chapter 2 Review Questions/Answers
 1. What did General Dwight Eisenhower mean by “Plans are nothing, planning is everything?”

Suggested Answer: He certainly did not mean we should not plan. What he was advising
us was that planning is a continuous, ongoing activity because unforeseen, unplanned events
will happen which will require us to replan the effort and this will happen throughout the
course of the project.

 2. Has it ever been documented and verified that the life cycle of a software project used caused
the project to fail?
Suggested Answer: To the best of my knowledge and many varied Google searches, the life
cycle used has not been found to have caused a software project to fail.

 3. What is the overwhelming cause of software project failure?
Suggested Answer: Based on a study of failed software projects by IBM, the overwhelming
cause for software project failure (53%) has been “poor management.”

 4. Approximately how many different software development life cycles are there?
Suggested Answer: That number is likely unknown because the life cycle declared for a proj-
ect is often an altered, perhaps unique life cycle tailored to that software project.

Chapter Questions and Suggested Answers ◾ 221

 5. List at least four stages in a software project life cycle.
Suggested Answer: Any four of the following software project life cycle stages will do:

Planning
Scheduling (and Costing)
Designing
Implementing
Testing
Deploying
And over the long term, support and maintenance.

 6. What is the planning fallacy? Explain.
Suggested Answer: Some project managers believe that starting with a software engineering
team larger than what is actually needed will serve to prevent the project from overrunning its
allocated schedule. This is a fallacy because studies have shown that when it comes to the size
of a development team, there is a law of diminishing returns. That is the effect of each person
added beyond what is reasonably seen as what is needed provides less and less positive effect.

 7. List the two primary reasons why humans can’t estimate accurately.
Suggested Answer: A 20- year study resulting in a Nobel prize found that the two factors are:
1) Overestimation of our skills and 2) seeing the benefits of the project to be so great as to
cause us to miss the risks involved.

 8. What was the primary goal of the Gantt chart?
Suggested Answer: Gantt sought to visually combine flow time for the project and its tasks
with costs.

 9. Is the Agile life cycle unique? If yes, how? If not, why?
Suggested Answer: The underlying principle of Agile actually dates back to the early 1980s
and is not unique.

 10. Name two concerns about using and managing Agile. Explain/describe each.
Suggested Answer: Although Agile represents an advance of the state of the art, it comes with a
couple of issues. One is that it needs to be employed by a disciplined team of software engineers
or it could result in runaway coding. The other is that our clients still need to know at the out-
set what the estimated cost of the project will be and Agile does not solve this problem. Teams
using Agile are still left to their own devices to estimate the project’s total cost at the start.

 11. What are “gates” in the stage- gate life cycle? Detail/describe.
Suggested Answer: In the manufacture of large systems (e.g. aircraft), subsystems such as
the wings are created only after all of the required preceding engineering, parts, personnel
and tools are in place to do the job. Once that is the case, the manufacturer can proceed
through that “gate” to the next stage. Similarly, in software, the confirmation that all is in
place to move forward in a coordinated manner is a stage- gate scheme. The goal and desired
effect are to prevent runaway development and ensure software subsystems are developed in
a synchronized manner.

 12. List and describe the pros and cons of three ways to shorten a software project’s flow time.
Suggested Answer:
 – Where possible have more tasks occur in parallel – This takes careful attention to detail so

that we do not have some tasks occur earlier or later than they should.
 – Eliminate or delay features, particularly the ones most likely to run late and/or require

the most labor – However, this can be demotivating to the team members who worked to
design and build the feature(s) being eliminated or delayed.

 – Reduce the scope of the effort.

222 ◾ Chapter Questions and Suggested Answers

 13. What is the Design Structure Matrix? What is it used for?
Suggested Answer: The design structure matrix is a means of documenting the relationships
between/among system elements. It has been used to optimize flow times and optimize the
order in which tasks are performed in a broad range of applications.

 14. What is a work breakdown structure?
Suggested Answer: It is a graphic decomposition of a project into tasks, subtasks and sub-
subtasks down to a subtask requiring eight hours or more but not broken down into smaller
pieces upon the advice of the project management society in the PMBOK.

 15. What are the primary causes of a communication gap between software engineers and soft-
ware project managers?
Suggested Answer: The primary causes are differences in the value systems between the
two groups.

 16. Why should we develop a communication plan to foster communication between our team
and our client?
Suggested Answer: Not all clients have the same communication preferences. Putting a com-
munication plan together ensures we have developed a model of how the client wants to be
communicated with rather than applying a “one size fits all” approach.

Chapter 3 Review Questions/Answers
 1. What is the difference between planning and scheduling?

Suggested Answer: A plan is, in simplest terms, a list of tasks to be performed whereas a
schedule details when they will be performed and in what order.

 2. What is the problem with using a “generic” software engineer as the basis for estimating?
Suggested Answer: As Brooks pointed out, even though we may be stating that a competent
software engineer should be able to do this task in the estimated flow time, we are actu-
ally thinking of a specific individual. Naming the person who will do this task avoids this.
Also, the estimating activity can be a learning experience if we ask the individual what their
estimate is.

 3. What is the business case?
Suggested Answer: The business case is the justification for the project. It describes the pur-
pose, cost, risks and potential revenue associated with the project. If it is being proposed as a
community service, the profit issue is not addressed.

 4. What is the role of the business case in the development of a software project?
Suggested Answer: The business case not only justifies the project but defines its scope, con-
cept, costs, risks and (if it is to be a commercial venture) potential sales and profit.

 5. Name the four viewpoints of the Balanced Scorecard?
The four dimensions of the balanced scorecard are:
 – Customer – How it will affect the people who use it?
 – Financial – The profit/loss tradeoff involved once this system is released.
 – Organizational – The structural or other changes that must be made to implement

this system.
 – Educational – The amount of training our team will need to implement as well (poten-

tially) as training of the users of the system.

Chapter Questions and Suggested Answers ◾ 223

 6. What is meant by the term “Burdened Cost?”
Suggested Answer: The “burdened” cost of an item or service represents what it actually
costs the company consisting of the direct cost, general and administrative cost and, where
applicable, the overhead plus profit.

 7. What is the purpose of using the Burdened Cost when estimating a software project?
Suggested Answer: If we only estimated using direct costs, we would, in effect, be subsidizing
our client since we would not be recovering our operating expenses via our pricing structure.

 8. Why aren’t there any accurate software project estimating methods?
Suggested Answer: Although some estimating methods are more accurate than others, as
shown via a Nobel Prize study in 2002, human beings are not capable of estimating accu-
rately. However, there is a way to correct for this.

 9. Why do we base software project cost estimates based on lines of code?
Suggested Answer: This has been the convention used for decades but has some serious
shortcomings. When asked about coding changes or new efforts, most software engineers
give estimates in flow time, not lines of source code.

 10. What is the difference between Direct and Indirect costs?
Suggested Answer: Direct cost is what we actually pay for an item or service. Indirect cost is
the cost incurred in order to make that payment.

 11. What is the difference between Overhead (OH) and General and Administrative (G&A) costs?
Suggested Answer: G&A is the cost we incur whether we have any business (contracts) or
not. It is the cost of just keeping the doors of our business open. We incur OH when we have
a business (e.g. a contract) to perform on.

 12. When outsourcing, what are some of the forms of “Due Diligence” that are needed?
Suggested Answer: An alternate way to view due diligence is to see it as what we need to
check out before agreeing to a legally binding contract. The potential issues that should be
resolved in advance include:
 – Has the firm you will use done this type of software development before? Who did they

do it for? Can we contact that client to see if they were satisfied with the results?
 – If there is a dispute requiring legal proceedings, will they be conducted in your country,

near your location?
 – Do they agree to an escrow arrangement?

There are others as well.

Chapter 4 Review Questions/Answers
 1. In Earned Value Management (EVM), what is the concept of “value?”

Suggested Answer: The entire concept of EVM is based on ratios of what was planned or
expected to what actually occurred. The notion of value stems from the ratio or percent
obtained versus a value representing 100%. For example, if we spent $100 in one store to
purchase an item which we could have purchased in another store for $80, which store rep-
resented a better value – obviously the second store.

 2. What information is needed to use EVM?
Suggested Answer: We need to have a project plan complete with costs, schedule and status
of tasks to date. The various EVM parameters can be computed for use if we are using one
of the project management software products such as Primavera, Microsoft Project or others.

224 ◾ Chapter Questions and Suggested Answers

 3. In Earned Value Management (EVM), what is the concept of “value?”
Suggested Answer: In a sense, EVM is all about ratios. The notion of value mathematically is
about the ratio of what we planned versus what we actually got. For example, if we purchase
a product at one store for $100 which we could have gotten at another for $80, we received
only an 80% value. In a project analogy, if we expected a task to take 80 hours and it took
100 hours, again we achieved less than our expected full efficiency – it was only 80%.

 4. If a project is 15% complete and over budget and/or behind schedule, without changing
budget, schedule or requirements, what are its chances of eventually getting back on schedule
and/or within budget?
Suggested Answer: A study of more than 700 projects ranging from high technology to low
technology found its chances of recovering are nil. That is right, it has not been recorded as
ever having happened.

 5. What underlying assumptions comprise EVM?
Suggested Answer: The major underlying assumption within EVM is that our project plan
(i.e. costs, flowtime task completions, etc.) is makeable.

Chapter 5 Review Questions/Answers
 1. Name the three attributes common to successful high- technology project teams.

Suggested Answer: These traits were found to be common:
 – Each member of the team had some knowledge of the technology involved. None of

them were considered to be “experts” in that technical area.
 – Members had experience working on a team, not necessarily with each other.
 – The members had compatible personalities as measured with the Myers–Briggs Type

Indicator (MBTI) or some other personality type and compatibility measurement system.
 2. What does psychological compatibility mean?

Suggested Answer: Regardless of which personality profiling model is used, there will be some
personalities which do not work well with others and other personalities which work well together.
This is compatibility and it can help or hinder the performance of the software engineering team.

 3. What should you do if you have one or more team members who are incompatible with each
other or other team members?
Suggested Answer: It is not always possible to have a team of people whose personality profiles
are compatible. In some cases, group counseling will help soothe the effects of the incompatibili-
ties while in others a change in work assignments may be indicated if counseling does not work.

 4. What role should the compatibility index play in the hiring process?
Suggested Answer: The personality profile is only one element involved in the hiring deci-
sion and should not be the primary one. Some brilliant people are hard to work with but can
contribute significantly to an effort if managed carefully.

 5. In making team member task assignments, what role should the MBTI or other profiles you
may be using play?
Suggested Answer: A software engineer’s personality profile has been shown to be a significant
factor in one’s performance because there are some tasks which their personality causes them to
prefer and others that they do not desire. Working on what they prefer results in better perfor-
mance. Since it may not always be possible to provide work an individual would prefer, mitigating
the undesirable assignment in some way (e.g. making it temporary) would be an alternative action.

Chapter Questions and Suggested Answers ◾ 225

Chapter 6 Review Questions/Answers
 1. What is the least effective form of motivation for software engineers?

Suggested answer: Though the common belief among software project managers is to the
contrary, the least effective motivating action is to reward with money. Studies have shown
money is an effective motivator only in repetitive work like factory work and developing
software is anything but repetitive.

 2. What is the most effective form of motivation for software engineers?
Suggested answer: Surprisingly to some, studies have shown the most effective motivator to
be to thank the software engineer(s) for their efforts. Though it is free, it means more to the
software engineers probably because it comes from the software project manager personally.
The contrarian notion is that since we are paying the engineers to do the work, we don’t have
to thank is out of step with reality.

 3. What do software engineers really want to work on?
Suggested answer: Software engineers want to work on state- of- the- art technical systems –
ones they can brag about to their colleagues. The challenge for the software project manager
is that not all projects are going to be pushing the state of the art forward.

 4. Why do software project managers continue to rely on money as a motivator?
Suggested answer: The value system of the software project manager places money as the
highest priority. That combined with a lack of knowledge of what the studies regarding moti-
vating software engineers tell us predetermines many software project managers to continue
to rely on money to motivate.

 5. What are three practices that demotivate software engineers?
Suggested answer: Any three of these will do
 – Technically high- risk requirements
 – High- risk schedule
 – Inadequate staffing
 – Inadequate resources
 – Software quality (lacking)
 – Reduction of features

 6. Why do test teams need special attention to be motivated?
Suggested answer: The people who test software are often viewed negatively by software
engineers. This is because the test team is finding their mistakes and no one really likes to
have their mistakes pointed out. To provide the test team with support, we need to educate
the development team and management as to the fact that the test team is actually saving
the company large amounts of money since fixing software after it has been released has been
shown to be very expensive.

 7. What is the motivation paradox?
Suggested answer: The motivation paradox states that the most expensive means often used
to motivate software engineers (money) is the least effective (saying thank you) and is the
most effective.

 8. Why do people work?
Suggested answer: People work for more than just survival. They work for self- esteem,
self- fulfillment and other factors related to how they see themselves in relation to
the world.

226 ◾ Chapter Questions and Suggested Answers

 9. Why should we keep software engineering teams together?
Suggested answer: When software engineers work together, they learn what knowledge areas
each person is strongest in and conversely. What happens is, in a manner of speaking the team
becomes something akin to a super software engineer. If we break up the team, we lose that
knowledge and its benefits resulting in members of the team becoming individual contribu-
tors with their unique strengths and weaknesses.

 10. Do all generations work the same way and have the same value systems?
Suggested answer: The simple answer is no. The more accurate answer is that each genera-
tion views the employee–employer relationship differently as reflected in their value systems
and their relationship with management and their response to management directives.

 11. How likely is it that you will be managing software engineers from different generations?
Suggested answer: No matter what country you are working in, it is highly likely you will be
managing a team composed of software engineers from different cultures. Therefore, it is vital
that we become familiar with the idiosyncrasies of each culture involved in order to improve
our chances of success.

 12. How does the physical environment the software engineers are working in impact productivity?
Suggested answer: Developing software often requires intense mental focus on the task at
hand. Noise, interruptions, cramped space and other physical factors can inhibit the software
engineer from performing at the highest level they are capable of.

 13. Name some aspects of outsourcing often overlooked.
Suggested answer: Software engineering is being taught in colleges and universities all
around the world. While the relative quality of the instruction varies, the goal of outsourcing
is often to reduce cost. However, more recent experiences with outsourcing has shown there
are many factors often overlooked which complicate the relationship. These include:
 – Geopolitical issues that may make dealing with the country involved impossible or illegal.
 – Time differences between your location and the outsourced firm’s.
 – Costs and requirements for escrowing.
 – The reliability of the outsourced firm as well as their viability.
 – The strength of the protection(s) for intellectual property in both countries.
 – Where legal disputes will be pursued.

 14. How can you prevent creating a team just like yourself?
Suggested answer: When selecting team members, there is a tendency to select people who
are similar to ourselves. This creates a dilemma since we need a team composed of comple-
mentary skills with different strengths and weaknesses personnel hiring firms can be engaged
to help with this.

227

Index

Pages in italics refer to figures and pages in bold refer to tables.

A

Ability to Manage Teams, 6
Acquiring and Developing the Software Development

Team, 67
Actions which improve brain performance, 97
ACWP–Actual Cost of Work Performed, 61
affinity bias, reducing, 168
Age Classifications, in the United States, 82
Agile Life Cycle, 22
Alternative Software Development Life Cycles, 20
anchor bias, 199
antipatterns examples, 183
antipatterns, importance, 185
antipatterns, software project management, 182
attribution bias, 5

B

BAC–Budget at Completion, 61
Basic functions of software project management, 3
BCWP–Budgeted Cost of Work Performed, 61
BCWS–Budgeted Cost of Work Scheduled, 61
Boomers, 83

characteristics, 145
Borda voting system, 179
Brainstorming, 103
Brainstorming meetings frequency, 104
Brainstorming versus development phase, 104
building relationships intentionally, 99
building your own pre- project checklist, 165
Burdened Costs, 40
business case, 38
business case data, 115
business case defined, 113
business case example, 42, 114

C

Calculating Free Float, 151
cancelling a project, 139

Capability Maturity Model (CMM), 213
changes, cost of, 111
chart of accounts, 48
chart of accounts example, 49
Client Perspective evaluating software project

manager, 130
CMM- How much is enough?, 214
COCOMO, 1
Communication Gap- Project Manager and Software

Engineer, 30
communication plan basics, 33
communication plan example, 33
compatibility among personality types, 70
complexity assessment tool, 161
confirmation bias, 199
controlling, 11
Controlling Project Flow Time, 25
cost categories, 45
cost increase, 81
Costing Basics, 37
costing methods, 39
Cost of Changes during the Project, 54
Cost Related Earned Value Management Variables, 60
Cost Variance, 61
Country of Origin of Software Engineers in the United

States, 86
CPI–Cost Performance Index, 61
critical path, 151
Cultural and Language Differences, 84
cultural risks in outsourcing, 89
culture defined, 120

D

decision biases, 198
Deming, W. Edwards, 7
design structure matrix, 25
Destigmatizing Failure, 5
Deutsch, Michael, on risk, 159
Developing a Communication Plan, 32
Direct Costs, 47

228 ◾ Index

documentation, making it transparent, 211
documenting the undocumented, 209

E

EAC- Estimate at Completion, 61
Earned Value Management (EVM), 59
economic factors in outsourcing, 88
effect of cultural differences, 119
Effects of Work Environment on Productivity, 88
Emergent complexity, 161
emotional intelligence models, 123
Enabling Job Crafting, 98
Environmental factors impact, 126
Environmental Factors Impact on Productivity, 32
Estimating Cost and Schedule, 36
Estimating Tools and Methods, 20
ETC–Estimate to Complete, 62
Example of Applying Earned Value Management, 63
Example of Work breakdown Structure, 30
Executive Summary for Project, 43
Experience at Google with Software Project Management, 10

F

Facilitating whole- person growth, 99
fear of failure, 5
fixed mindset, 5
float, 151
Forward pass method, 152, 153
Four square chart, 206, 206
Francesca Gino, 75
function points, 41

G

Gantt chart, 21
General and Administrative Cost- How to Compute, 48
General and Administrative Costs, 47
Generational Differences, 82
Generation Alpha, 84
Generation birthdate ranges, 145
Generation Z, 84
Gen Xers, 83

characteristics, 145
Gen Y, 83

characteristics, 146
Geopolitical issues in outsourcing, 88
Giving team freedom to work as they see fit, 98
Google, 1
growth mindset, 6

H

Herzberg, 79
Herzberg, Two Factor Theory, 191

Highly successful high- technology teams, 106
Hiring Potential, 6
Hofstede’s national culture dimensions, 121
Human capital in outsourcing, 88

I

IBM, 1
IBM Federal Systems Estimating Method, 41
Idea Origination bias, 199
identify, rank, evaluate risk management method, 173
IEEE Software Engineering Society, 1
Indirect Costs, 47
inducing challenge stress, 98
industry specific versus generic skills, 6
information sharing, 99
integrated cost and schedule work packages, 150
International Conference on Software Engineering, 1
Ishikawa diagrams, 137
IT competency in outsourcing, 88
IT infrastructure in outsourcing, 89

K

keeping extemporaneous notes, 92
Keeping Successful Teams Together for Higher

Productivity, 82
keeping teams together for high productivity, 108
Known Demotivators of Software Engineers, 77

L

legal issues in outsourcing, 88
lessons learned, 92
Life Cycles- Summary, 25
lying and software projects, 141

M

management styles, 4
managing multiple generations, 144
Managing solution to Wicked Problems, 7
Managing Teams Composed of Different Cultures, 85
Maslow, 79, 192
Matures, 83

characteristics, 145
MBTI–Myers Briggs Type Index, 69
McClelland, 79, 192
Measures of Success, 44
Meetings, running effectively, 135
Meetings, time spent in, 105
Millennials, 83

characteristics, 146
model of software project management, 9
motivating, 12
Motivating Factors in Software Tasks, 81, 193

Index ◾ 229

Motivating Test and Maintenance Teams, 78
Motivation Basics, 216
Motivation for outsourcing, 148
Motivator- the best, 75
Mulally, Allan, 205

N

The Nature of Planning, 17
Nature of Software Engineers, 8
The Nature of Work, 79
Negotiation basics, 101
Northrup Grumman Risk Management system,

179, 179
notation for work packages, 151

O

outsourcing, 56, 88, 147
Overhead Cost- How to Compute, 47
Overhead Costs, 47
Overhead versus General and Administrative Expenses, 51
Overreliance on Past Performance, 5

P

Percentage of Technology Workers Born Elsewhere by
Software Center, 85

Personality Compatibility, Normalized, 109
Personality Types among Software Engineers, 70
Personality Types versus Task Preference, 72
PERT- Program Evaluation Review Technique, 149
Peters’ Paradox, 79
Picking a team just like you, 89
planning, 11
Planning Fallacy, 19
Planning Software Projects, 17
Pre- Project Checklist, 159, 163
Pre- Project Checklist, concept, 160
Primary Functions of Software Project Management, 10
Productivity affected by environmental factors, 125
Productivity and team pressure, 166
Productivity Loss, 80
Productivity Rates by System Type, 39
Proficiency levels in Software Project Management,

133
Project Charter, 43, 105
project checklist review, 93
project closeout plan, 117
project closeout review and learning, 91
Project Cost Computation, 38
Project Cost Computation Example, 52
Project Planning Process, 46
Project Total Cost, 50
Properties of Wicked Problems, 7
Psychological Compatibility of Team Members, 69

R

rate of adoption of new methods by country, 121
Recall Bias, 199
recognizing excellence, 98
reduced commitment to quality practices, 80
reduced use of team experience, 80
Reference Class Forecasting, 20
return on investment in trust, 99
Risk Analysis, 44
risk assessment process, 172
risk based contingency budgeting, 175
risk management methods, 170
risk management process, 171
risk mitigation breakeven estimate, 174
risk reduction via bias removal, 153, 177
The Role of Antipatterns, 78

S

Schedule Performance factors, 62
scheduling and costing, 11
scheduling versus planning, 37
Senior Manager Evaluation perspective, 128
showing vulnerability, 99
sociopolitical complexity, 161
Software Development Life Cycle and Blaming, 18
Software Engineering Economics, 1
Software Engineering is a People Activity, 68
Software engineer perspective evaluating software project

manager, 131
Software Project Management as a Process, 7
Software Project Manager Evaluation, 128
Software Project Manager Evaluation perspective, 132, 132
Software Project Managers, nature of, 187
Spiral Life Cycle, 23
SPI–Schedule Performance Index, 62
staffing, 11
Stage- Gate Life Cycle, 23
Stoplight charts, 205
structural complexity, 161
Success and Differences in Value Systems, 44
Successful Software Project Teams, 68
Survivor Bias, 199
SV–Schedule Variance, 62
Synchronization and Stabilization Model, 23

T

TCPIB–To Complete Performance Index within
Budget, 63

TCPIP–To Complete Performance Index within Cost, 63
Team psychological compatibility, 107
Technical Debt and Productivity, 191
technical debt expense, 81
Temporal differences in outsourcing, 88

230 ◾ Index

theory of constraints, 207, 207
Transitioning from Software Engineer to Software Project

Manager, 2, 195
TSPI–To Complete Schedule Performance Index, 63
Two Factor Theory, 79
Typical Software Development Life Cycle, 18

U

undermining culture of professionalism, 81
Using Earned Value Management, 59

V

Value System Differences between Software Engineers and
their Managers, 76

Value Systems of Managers versus Non- Managers, 31
variables to record at project closeout, 93

W

Waterfall Life Cycle, 21
What Motivates Software Engineers, 77
When Training is needed, 6
Why smart people make dumb decisions, 198
Why Software Engineering Teams should be kept intact, 201
Why we don’t learn from success, 202
Wicked Problems, 7
Winston Churchill, 3, 44
Work and Content- Related Parameters, 63
Work Breakdown Structure, 29
work packages, 150

	Cover
	Half Title
	Title Page
	Copyright Page
	Dedication
	Table of Contents
	Overview
	Organization of this text
	Note

	Chapter 1: Introduction to Software Project Management
	1.1 Chapter Overview
	1.2 Making the Transition from Software Engineer to Software Project Manager
	1.3 A Change in Perception
	1.4 Management Styles That Work
	1.5 Why Training in Software Project Management Is Important
	1.6 Why Teams Don’t Learn
	1.7 Is Training Needed?
	1.8 Developing Software Is a “Wicked Problem”
	1.9 Software Project Management as a Process – From Concept to Testing and Release
	1.10 The Nature of Software Engineers
	1.11 The Experience at Google™
	1.12 The Primary Functions of Software Project Management
	1.12.1 Planning
	1.12.2 Scheduling (and Costing)
	1.12.3 Controlling
	1.12.4 Staffing
	1.12.5 Motivating

	1.13 Summary
	1.14 Additional Resources
	Chapter 1 Review Questions
	References

	Chapter 2: Planning Software Projects
	2.1 Chapter Overview
	2.2 The Nature of Planning
	2.3 Blaming and Software Development Life Cycles
	2.4 A Typical Software Development Life Cycle
	2.5 The Planning Fallacy
	2.6 Estimating Tools and Methods
	2.7 Some Alternative Software Development Life Cycles
	2.7.1 The “Waterfall” Life Cycle
	2.7.2 The Agile Life Cycle
	2.7.3 The Spiral Life Cycle
	2.7.4 The Synchronization and Stabilization Model
	2.7.5 The Stage-Gate Life Cycle

	2.8 Life Cycles – Summary
	2.9 Strategies for Controlling Project Flow Time
	2.9.1 The Design Structure Matrix
	2.9.1.1 A Software Project Application of DSM

	2.9.2 DSM Summary

	2.10 The Work Breakdown Structure
	2.11 A Natural Communication Gap – Between Project Manager and Software Engineer
	2.12 Developing a Communication Plan
	2.13 Communication Plan Basics
	2.14 Example of a Communication Plan
	Chapter 2 Review Questions
	References

	Chapter 3: Estimating Cost and Schedule of Software Projects
	3.1 Chapter Overview
	3.2 Scheduling versus Planning
	3.3 The Basics of Costing
	3.4 The Business Case
	3.5 Computing Project Costs
	3.6 Cost Estimating Methods
	3.7 IBM Federal Systems Estimating Method
	3.8 Function Points
	3.9 Business Case Example
	3.10 Success and Differences in Value Systems
	3.11 Cost Categories
	3.11.1 Direct Costs
	3.11.2 Indirect Costs
	3.11.2.1 Overhead Costs
	3.11.2.2 General and Administrative Costs

	3.11.3 How to Compute Overhead
	3.11.4 How to Compute General and Administrative Expense
	3.11.5 The Chart of Accounts
	3.11.6 Example of a Simple Chart of Accounts Listing OH & G&A
	3.11.7 Explanation of Items on the Chart of Accounts
	3.11.8 Computing the Project’s Estimated Total Cost
	3.11.9 Project Cost Computation Example
	3.11.10 Total Cost Computation
	3.11.11 Risk Reduction via Bias Removal
	3.11.12 Estimating the Cost of Change(s) during the Project

	3.12 Outsourcing
	3.13 Summary
	Chapter 3 Review Questions
	References

	Chapter 4: Controlling
	4.1 Chapter Overview
	4.2 Background of Earned Value Management (EVM)
	4.3 Using EVM
	4.4 What Is Needed to Use EVM
	4.5 Cost-Related EVM Variables
	4.5.1 ACWP – Actual Cost of Work Performed
	4.5.2 BAC – Budget at Completion
	4.5.3 BCWP – Budgeted Cost of Work Performed
	4.5.4 BCWS – Budgeted Cost of Work Scheduled
	4.5.5 CPI – Cost Performance Index
	4.5.6 CV – Cost Variance
	4.5.7 EAC – Estimate at Completion
	4.5.8 ETC – Estimate to Complete

	4.6 Schedule Performance factors
	4.6.1 SPI – Schedule Performance Index
	4.6.2 SV – Schedule Variance
	4.6.3 TSPI – To Complete Schedule Performance Index

	4.7 Work and Content-Related Parameters
	4.7.1 TCPIB – To Complete Performance Index within Budget
	4.7.2 TCPIP – Another, a Work to Money Ratio

	4.8 An Example of the Application of Earned Value Management
	Chapter 4 Review Questions
	References

	Chapter 5: Staffing
	5.1 Chapter Overview
	5.2 Acquiring and Developing the Software Development Team
	5.3 Software Engineering Is a People Activity
	5.4 What Does a Successful Software Project Team Look Like?
	5.5 Psychological Compatibility
	5.6 Teams Need Compatibility
	5.7 An Advisory about the Compatibility Index
	5.8 Software Engineer Task Preferences and the MBTI
	Chapter 5 Review Questions
	References

	Chapter 6: Motivating
	6.1 Chapter Overview
	6.2 The Problem
	6.3 What Motivates Software Engineers
	6.4 What Demotivates Software Engineers
	6.5 Motivating Test and Maintenance Teams – Their Jobs Are (Almost) Thankless
	6.6 The Role of Antipatterns
	6.7 Peters’ Paradox
	6.8 The Nature of Work
	6.9 Keeping Successful Teams Together for Higher Productivity
	6.10 Generational Differences
	6.11 Generational Issues – Summary
	6.12 Cultural and Language Differences
	6.13 Managing Teams Composed of Different Cultures
	6.14 Effects of the Work Environment on Productivity
	6.15 Outsourcing
	6.16 Picking a Team Just Like You
	Chapter 6 Review Questions
	References

	Chapter 7: Project Closeout
	7.1 Chapter Overview
	7.2 Project Closeout Review and Learning
	7.3 The Advantage of Keeping Extemporaneous Notes
	7.4 Identifying/Archiving Lessons Learned
	7.5 Sample List of Variables to Record for a Project Closeout Document
	7.6 Reviewing the Pre-Project Checklist
	References

	Additional Software Project Management Resources
	Appendix 1: A Word from Our Sponsor – The Brain
	A.1.1 Actions Which Can Help Our Cause
	A.1.2 The Return on Investment in Trust
	References

	Appendix 2: Basics of Negotiation
	Appendix 3: Brainstorming
	References

	Appendix 4: Characteristics of Successful High-Technology Teams
	A.4.1 What the Data Indicate
	A.4.2 Psychological Compatibility
	A.4.3 Keep Successful Teams Together for Higher Productivity
	References

	Appendix 5: Computing the Cost of a Change
	References

	Appendix 6: Developing a Business Case
	A.6.1 The Basics
	A.6.2 Business Case Defined
	A.6.3 Business Case Example
	References

	Appendix 7: Developing the Project Closeout Plan
	A.7.1 What Do We Want to Capture at Project Closeout?

	Appendix 8 : The Effect of Cultural Differences (on Software Development Teams)
	A.8.1 Culture
	References

	Appendix 9: Emotional Intelligence
	A.9.1 Models of Emotional Intelligence
	References

	Appendix 10: Environmental Factors Affecting Productivity
	References

	Appendix 11: How Software Project Managers Are Evaluated
	A.11.1 Evaluation Perspectives
	A.11.2 The Senior Manager Perspective
	A.11.3 The Client Perspective
	A.11.4 The Software Engineer Perspective
	A.11.5 Evaluation as a Learning Mechanism
	A.11.6 Software Project Manager’s Perspective
	A.11.7 Proficiency Levels in Software Project Management
	References

	Appendix 12: How to Run Effective Meetings
	References

	Appendix 13: Ishikawa (Fishbone) Diagrams
	References

	Appendix 14: Knowing When It Is Time to Cancel a Project
	References

	Appendix 15: Lying and Software Projects
	A15.1 The Study
	References

	Appendix 16: Managing Multiple Generations
	A.16.1 How Many Generational Groups Are There?
	A16.2 Generational Characteristics
	Reference

	Appendix 17: Outsourcing (Offshoring)
	References

	Appendix 18: PERT [Program Evaluation Review Technique]
	References

	Appendix 19: Planning using Integrated Cost and Schedule Work Packages
	A19.1 Applying the Forward Pass Method
	A19.2 Some Definitions and Observations
	A19.3 Definitions with Examples
	A19.4 Calculating Free Float
	A19.5 Calculating Free Float
	Summary
	References

	Appendix 20: A Pre-Project Launch Checklist
	A.20.1 The Concept
	A.20.2 Structural Complexity
	A.20.3 Sociopolitical Complexity
	A.20.4 Emergent Complexity
	A.20.5 Complexity Assessment Tool (CAT)
	A.20.6 Discussion
	A.20.7 Building Your Own Checklist
	References

	Appendix 21: Putting Pressure on the Team Can Reduce Productivity
	References

	Appendix 22: Reducing Affinity Bias
	References

	Appendix 23: Risk Management Methods
	A.23.1 Identify, Rank, Evaluate (IRE) Method
	A.23.2 Simple Risk/Breakeven Estimate of Risk Mitigation
	A.23.3 Risk-Based Contingency Budgeting
	A.23.4 Risk Reduction via Bias Removal
	A.23.5 Northrup Grumman Risk Management System
	A23.5.1 Definition of Risk Levels in the Northrup-Grumman Scheme
	A23.5.2 Probability of Occurrence
	A23.5.4 The Borda Voting System
	B23.5.4 Obtaining the Composite Score

	References

	Appendix 24: Software Project Management Antipatterns
	A24.1 Should We Be Concerned?
	References

	Appendix 25: Software Project Managers
	References

	Appendix 26: Software Engineering Ethics
	A26.1 Teaching Software Engineering Ethics
	References

	Appendix 27: Technical Debt – The Ultimate Productivity Killer
	A27.1 Summary
	References

	Appendix 28: Transitioning from Software Engineer to Software Project Manager
	A28.1 A Change in Attitude
	A28.2 Why Is Needed Training Missing?
	References

	Appendix 29: Why Smart People Make Dumb Decisions
	References

	Appendix 30: Why Software Engineering Teams Should Be Kept Intact
	References

	Appendix 31: Why We Don’t Learn from Success
	References

	Appendix 32: Stoplight Charts
	A32.1 Example of a Four-Square Chart

	Appendix 33: The Theory of Constraints
	References

	Appendix 34: Documenting the Undocumented
	Appendix 35: Making Documentation Transparent
	Appendix 36: Capability Maturity Model (CMM)
	A36.1 How Much CMM Is Enough?
	References

	Appendix 37: Motivation Basics
	References

	Closing Comments
	Chapter Questions and Suggested Answers
	Chapter 1 Review Questions/Answers
	Chapter 2 Review Questions/Answers
	Chapter 3 Review Questions/Answers
	Chapter 4 Review Questions/Answers
	Chapter 5 Review Questions/Answers
	Chapter 6 Review Questions/Answers

	Index

