

OceanofPDF.com

https://oceanofpdf.com/

MASTERING GRID
COMPUTING

Scheduling and Resource Management
OceanofPDF.com

https://oceanofpdf.com/

MASTERING GRID
COMPUTING

Scheduling and Resource Management

Ankita, PhD
Sudip Kumar Sahana, PhD

OceanofPDF.com

https://oceanofpdf.com/

First edition published 2025
Apple Academic Press Inc.
 1265 Goldenrod Circle, NE,
Palm Bay, FL 32905 USA
 760 Laurentian Drive, Unit 19,
Burlington, ON L7N 0A4, CANADA
CRC Press
 2385 NW Executive Center Drive,
Suite 320, Boca Raton FL 33431
 4 Park Square, Milton Park,
Abingdon, Oxon, OX14 4RN UK
© 2025 by Apple Academic Press, Inc.
Apple Academic Press exclusively co-publishes with CRC Press, an imprint of Taylor & Francis
Group, LLC
Reasonable efforts have been made to publish reliable data and information, but the authors, editors,
and publisher cannot assume responsibility for the validity of all materials or the consequences of
their use. The authors, editors, and publishers have attempted to trace the copyright holders of all
material reproduced in this publication and apologize to copyright holders if permission to publish in
this form has not been obtained. If any copyright material has not been acknowledged, please write
and let us know so we may rectify in any future reprint.
Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.
For permission to photocopy or use material electronically from this work, access
www.copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive,
Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please contact
mpkbookspermissions@tandf.co.uk
Trademark notice: Product or corporate names may be trademarks or registered trademarks and are
used only for identification and explanation without intent to infringe.
Library and Archives Canada Cataloguing in Publication
CIP data on file with Canada Library and Archives
Library of Congress Cataloging-in-Publication Data
CIP data on file with US Library of Congress
ISBN: 978-1-77491-875-3 (hbk)
ISBN: 978-1-77491-874-6 (pbk)
ISBN: 978-1-00359-840-4 (ebk)
DOI: 10.1201/9781003598404

http://www.copyright.com/
mailto:mpkbookspermissions@tandf.co.uk
https://dx.doi.org/10.1201/9781003598404

OceanofPDF.com

https://oceanofpdf.com/

About the Authors
Ankita, PhD
MTech Computer Science, Pranveer Singh Institute of Technology, Kanpur,
Uttar Pradesh, India
Ankita, PhD, is currently working as an Assistant Professor at the Pranveer
Singh Institute of Technology (PSIT), Kanpur, India, in the Department of
Computer Science and Engineering. Her fields of interest are grid
computing, artificial intelligence, and computational intelligence. She has
authored research papers on computer science and has been assigned as a
reviewer for several SCI-indexed journals and IEEE conferences. She
received her bachelor’s degree (BE) in Computer Science and Engineering
from Nagpur University and her MTech and PhD degrees from Birla
Institute of Technology, Mesra, Ranchi, India.

Sudip Kumar Sahana, PhD
Department of Computer Science and Engineering, Birla Institute of
Technology, Mesra, Jharkhand, India
Sudip Kumar Sahana, PhD, is currently working as an Associate Professor
in the Department of Computer Science and Engineering at the Birla
Institute of Technology, Mesra, India. His major field of study is in
computer science. His research and teaching interests include soft
computing, computational intelligence, distributed computing, and artificial
intelligence. He has authored numerous articles, research papers, and books
in the field of computer science and has been assigned as an editorial team
member and reviewer for several reputed journals. He also holds several
patents. He is a lifetime member of the Indian Society for Technical

Education (ISTE) and fellow of the Institution of Electronics and
Telecommunication Engineers (IETE), India. He received his BE degree in
Computer Technology from Nagpur University, India, and MTech degree in
Computer Science from the Birla Institute of Technology, Mesra, Ranchi,
India, where he was awarded his PhD (Engineering) as well.

OceanofPDF.com

https://oceanofpdf.com/

Contents
Abbreviations
Acknowledgements
Preface
Introduction

PART I: FOUNDATIONS
1. Introduction to Grid Computing
2. Scheduling: Conventional and BioInspired Algorithms
3. Work Done Using Conventional and Bio-Inspired Algorithms
4. Scheduling Algorithms: Modified and Hybrid Algorithms

PART II: IMPLEMENTATION OF SCHEDULING
ALGORITHMS

5. Research-Based Case Study to Solve Grid Scheduling
Problem Using FCFS, SJF, ACO, PSO, and GA

6. Research-Based Case Study to Solve Grid Scheduling
Problem Using Modified and Hybrid Algorithms: ACOthresh,
SJF-ACOthresh, and SJF-GA

PART III: PERFORMANCE COMPARISON OF ALGORITHMS
7. Comparison of Conventional, Bio-Inspired, and Hybrid

Algorithms: A Review
8. New Computing Platforms for Solving Convoluted

Engineering Problems: A Review
Bibliography
Glossary
Index

OceanofPDF.com

https://oceanofpdf.com/

Abbreviations
ABC

Artificial Bee Colony
ACO

Ant Colony Optimization
ACOthresh

Threshold-Constrained Ant Colony Optimization
AI

Artificial Intelligence
AMU

Average Machine Utilization
APGrid

Asia Pacific Grid
API

Application Programming Interface
ARPANET

Advanced Research Projects Agency Network
AS

Ant System
AST

Actual Start Time
ATC

Apparent Tardiness Cost
BGS

Best Gap Search
BIRN

Bioinformatics Research Network
C-DAC

Centre for Development of Advanced Computing
CPU

Central Processing Unit
CR

Cluster Resource
CRU

Cluster Resource Utilization
CSO

Cat Swarm Optimization
CSOA

Chicken Swarm Optimization Algorithm
DAG

Direct Acyclic Graph
EGEE

Enabling Grids for e-Science Projects
EGI

European Grid Infrastructure
ESA

Elephant Search Algorithm
ETC

Expected Time to Compute
FCFS

First Come First Serve
FSA

Fish Swarm Algorithm
GA

Genetic Algorithm
GBC

Genetic Bee Colony
Gfarm

Grid Datafarm
GMA

Grid Monitoring Architecture
GRACE

Grid Architecture for Computational Economy
GRAMP

Grid Resource Access and Management Protocol
GRM

Grid Resource Management
GSSIM

Grid Scheduling Simulator
GWO

Grey Wolf Optimization

IaaS
Infrastructure as a Service

ICT
Information and Communication Technology

IoT
Internet of Things

LAN
Local Area Network

LHC
Large Hadron Collider

MCT
Minimum Completion Time

MET
Minimum Execution Time

MSG
Message Passing

NAREGI
National Research Grid Initiative

NDFS
Nearest Deadline First Scheduled

NetSolve
Network Solver

NGI
National Grid Infrastructure

NP
Non-deterministic Polynomial

OGSA-DAI
Open Grid Service Architecture Data Access and Integration

PaaS
Platform as a Service

PB
Petabytes

PSO
Particle Swarm Optimization

QoS
Quality of Service

REST

Representational State Transfer
RPC

Remote Procedure Call
RU

Resource Utilization
SaaS

Software as a Service
SD

Standard Deviation
SJF

Shortest Job First
SJF-ACO

thresh Shortest Job First combined with ACOthresh
SJF-GA

Shortest Job First combined with Genetic Algorithm
SLA

Service Level Agreement
SOA

Service-Oriented Architecture
SOAP

Simple Object Access Protocol
SWF

Standard Workload Format
TCT

Total Completion Time
WOA

Whale Optimization Algorithm

OceanofPDF.com

https://oceanofpdf.com/

Acknowledgments
The book incorporates different scheduling algorithms, including traditional
and non-traditional (bio-inspired) methods, to solve grid scheduling
problems. Our special thanks to MetaCentrum, the Czech National Grid
Infrastructure (NGI), for providing the workload traces to test new
algorithms and compare their performance with other reference algorithms.
We sincerely thank all our colleagues for positively supporting our research
and directly or indirectly contributing to the case studies presented in the
book.

The primary driving force behind the creation of this book has been the
consistent support and unwavering motivation provided by Punam Sharma,
my mother. We appreciate and acknowledge the encouragement of our
family members, including Ravi Kumar Gautam, Kumar Pratyush, and
Arun Sharma.

We would like to extend our gratitude to the members of Apple Academic
Press for their ardent support and guidance throughout the course of book
preparation and for assisting us at different times during the book
preparation and for bringing the process of publication into motion.

OceanofPDF.com

https://oceanofpdf.com/

Preface
The last two decades have seen grid computing as one of the major
computing platforms that has contributed to the development of various
computer science domains by ensuring resource availability to a wide
community of users and bridging geographical gaps. The widespread usage
of the internet and the availability of pervasive devices are rapidly
transforming the way we connect, handle our lives, do business, and access
and deliver services.

The focus of computing has shifted from personal to data-centric because
of the reduced communication and computation costs. Different grid
computing infrastructures have been utilizing computational resources all
around the globe while exploring new dimensions of parallelism. The idea
of serving computing in the form of a model consisting of commoditized
services has revolutionized the entire concept of service delivery. This type
of model allows the user to access services irrespective of their
geographical location. Not only grid computing, but there are various
computing platforms assuring the vision of utility computing.

Though there are several computing technologies such as cloud
computing and the use of dedicated high-performance (HPC) infrastructures
for parallel computation, grid computing continues to be the prevalent
technology well used for scientific computations by the research
community in Europe. Job scheduling is an important task in a grid
computing environment. The primary objective of grid scheduling is to
create an optimal mapping of jobs on the available resources in a network.
A large number of scheduling algorithms are available, but choosing an
optimal algorithm is important. In this book, we have studied several
scheduling algorithms such as First Come First Serve (FCFS), Shortest Job

First (SJF), Ant Colony Optimization (ACO), Particle Swarm Optimization
(PSO), Genetic Algorithm (GA), and a few hybrid algorithms. The
efficiency of these algorithms has been calculated using a standard
workload, and a comparative analysis has been carried out to study the
behavior of all these algorithms under different job counts. There are
several simulation toolkits available for setting up (designing) a grid
computing environment to evaluate real-world complex computational
problems. Some of the notable grid simulators are GridSim, MicroGrid,
Alea, and SimGrid toolkits.

In this book, the scheduling algorithms have been implemented in a
simulation environment using the Alea simulator. A wide range of grid
computing applications is available in different fields such as life sciences,
engineering, the gaming industry, health, education, business, and
entertainment. Grid computing technology enables every computer to act as
a supercomputer by allowing them to access enormous storage and
processing power through various resources. The book contains all the
major grid applications in different domains and their future prospects. In
order to utilize the full potential of grid computing, it is required to ensure
that the target users are well-educated, and they must understand the
advantages of grid computing. It is the responsibility of grid practitioners
and researchers to make the potential users aware of the benefits of grid
computing technology.

OceanofPDF.com

https://oceanofpdf.com/

Introduction
This book begins with the introduction to grid computing, covering the
basic idea, definition, characteristics, and other associated paradigms. This
book features grid computing and its history in the computing world. The
need to switch to grid computing and how it serves the modern needs of
computing in today’s world is discussed. The book presents a classical
evolution of grid computing, starting from distributed computing to service-
oriented computing. The book contains chapters describing the architectural
models of grid computing and various elements present in a grid
infrastructure. It discusses various classifications of grids and major grid
developments all around the world.

Scheduling of jobs and resource management are two major concerns of
grid computing. Job scheduling has become a non-trivial issue in grid
computing due to the increased number of users and their job requests. It is
important to complete the execution of these jobs in minimum time and
manage the grid resources at the same time. The book incorporates different
scheduling algorithms, including traditional and non-traditional (bio-
inspired), to solve grid scheduling problems. Various research-based case
studies to solve grid scheduling problems have been included in this book
to analyze the efficiency of scheduling algorithms. These case studies will
help the users figure out the system of grid computing and various
scheduling algorithms so that they can utilize them in their personal
endeavors. Also, the book covers major grid applications and upcoming
new computing technologies in the field of computer science.

The book consists of eight chapters which are arranged into three
different parts:

Part 1: Foundations
Chapter 1: Introduction to Grid Computing
Chapter 2: Scheduling: Conventional and Bio-Inspired
Algorithms
Chapter 3: Work Done Using Conventional and Bio-Inspired
Algorithms
Chapter 4: Scheduling Algorithms: Modified and Hybrid
Algorithms

Part 2: Implementation of Scheduling Algorithms in grid environment
using ALEA and performance comparison of algorithms

Chapter 5: Research-Based Case Study to Solve Grid Scheduling
Problem Using FCFS, SJF, ACO, PSO, and GA
Chapter 6: Research-Based Case Study to Solve Grid Scheduling
Problem Using Modified and Hybrid Algorithms: ACOthresh,
SJF-ACOthresh, and SJF-GA

Part 2: Performance Comparison of Algorithms and Emerging
Computing Technologies in the Field of Computer Science

Chapter 7: Comparison of Conventional, Bio-Inspired, and
Hybrid Algorithms: A Review
Chapter 8: New Computing Platforms for Solving Convoluted
Engineering Problems: A Review

Grid scheduling is an intrinsic component of grid computing infra-structure.
The problem of grid scheduling is NP-complete and therefore requires an
intelligent algorithm to solve this problem. This book addresses the grid
scheduling problem and provides promising solutions using modern and
powerful metaheuristics. The use of metaheuristics (bio-inspired) improves
the performance results of grid scheduling and paves the way to solve other
NP-complete problems in the future. The basics of grid computing, different

bottlenecks, formulation of solution strategies, implementation, and case
studies are the appealing and unique features of this book. The book will
guide new researchers and learners to understand the concept of grid
computing from a broader perspective. Starting from the basic definition of
the grid and its architecture to the complex hybridized model of scheduling,
this book is a comprehensive resource on grid computing, grid scheduling,
and grid resource management. This book explores basic understanding, in-
depth exploration, and future research directions on grid computing.

OceanofPDF.com

https://oceanofpdf.com/

PART I
FOUNDATIONS

OceanofPDF.com

https://oceanofpdf.com/

CHAPTER 1
Introduction to Grid Computing
1.1 GRID COMPUTING
In a world of high-speed internet, modern devices, an increased number of
users, and voluminous data, there is a need to manage, handle, and provide
hassle-free services to the users. The advent of parallel and distributed
computing has changed the whole dimension of computing. Due to low
computational as well as communication costs, a new computing paradigm
called grid computing has brought about a radical change in the computing
industry. The transformation of computing into a commercial model of
delivering services is quite equivalent to delivering basic utilities such as
water, gas, and electricity to the users. Therefore, the services provided by
information technology (IT) are being charged and delivered to the users as
computing utilities. This chapter highlights the salient features of grid
computing. A grid is defined as a collection of resources such as servers,
databases, processors, and networks. These resources (homogeneous or
heterogeneous) are scattered over different geographical regions.

It covers the basics of the grid computing environment. This chapter
describes the layered architecture of the grid computing environment. It
also describes the requirements that any computing infrastructure must
possess in order to build a grid environment. It deals with the categories of
grids (classifications) available based on their applications (academic,
commercial, scientific, and hybrid) and functionalities (data, computational,
utility, and real-time). Academic grids can be useful in sharing information
among educational institutions spanning different geographical locations. It

also provides insight into the introduction of grid computing and its
classical evolution in the computing world. Several types of grids based on
their functionalities and applications have been developed, and researchers
are still developing hybrid grids that can serve disparate user requests.
Notable grid developments in different parts of the world are discussed and
studied in this chapter. The notion of distributed computing and other
computing paradigms is also discussed. Various advantages as well as
limitations of the grid computing platform in comparison to other
computing environments are also discussed in this chapter.

Mastering Grid Computing: Scheduling and Resource Management.

Ankita & Sudip Kumar Sahana (Authors)
© 2025 Apple Academic Press, Inc. Co-published with CRC Press (Taylor & Francis)

The concept of the grid in the computational network (Foster and
Kesselman, 2003 b; Foster et al., 2001) has been presented by Foster,
Tuecke, and Kesselman. The primary aim is to create the illusion of an
extremely large and powerful virtual supercomputer that contains
heterogeneous and homogeneous systems with a wide variety of shareable
resources.

There are various applications handled by grid computing systems, such
as partitioning of applications, scheduling of jobs, result management, and
sharing experimental results among a number of researchers across the
world, as well as ascetic properties, for example, self-optimization,
selfconfiguration, and self-management. The model of grid computing also
facilitates on-demand computing, which benefits enterprises by helping
them meet their fluctuating demands efficiently.

One of the most challenging issues of grid systems is job scheduling
because of the distributed and dynamic nature of the grid, as well as the
heterogeneity of the computing components. Improving efficiency and

reducing job completion time are the major goals of any scheduling policy
in a grid environment.

1.1.1 IDEA OF GRID COMPUTING
During the 1990s, the computational needs of the users forced researchers
to develop a computing network that could provide easy and transparent
access to resources. Additionally, the researchers needed a computing
network through which they could coordinate and share the results of their
experiments with other collaborators almost instantaneously. These reasons
facilitated the development of a new computing infrastructure called grid
computing infrastructure (Buyya and Venugopal, 2005), which enables the
cooperative and pervasive use of computing resources for users to solve
their complex problems.

Resources in an organization are often underutilized or overutilized at
some locations, which leads to poor utilization. These resources can be
connected in a grid network that will prioritize the underutilized resources
and make them available for future use by the end users in a grid computing
network.

The status of these resources is always changing, which exemplifies the
non-trivial need for resource management in a grid computing environment.
The network size increases with the escalating user requests. New resources
are added to the existing grid infrastructure to meet the growing needs of
the users. Hence, proper resource management is necessary to ensure
minimum waiting time for jobs and enhance resource utilization (RU).

Resource management is concerned with the selection and allocation of
suitable resources for the required job. The resources are assigned to
different jobs based on some scheduling techniques, which can be
conventional or non-conventional. The stand-alone conventional algorithms
are no longer sufficient to solve complex NP-complete problems. They can

be combined with other non-conventional algorithms to form a strong
scheduling algorithm. The process of merging two or more algorithms is
called hybridization. The current research trend shows that the hybridized
approach to scheduling is gaining popularity in solving complex
optimization problems.

1.1.2 DEFINING GRID
In simple words, a grid is defined as a collection of resources such as
servers, databases, processors, and networks. These resources
(homogeneous or heterogeneous) are scattered over different geographical
regions. There are multiple administrative domains that own and share these
resources to provide a ubiquitous and transparent computing service for a
variety of applications (Figure 1.1).

FIGURE 1.1 Structure of a grid.

1.1.3 CHARACTERISTICS OF GRID COMPUTING
Grid Computing is designed to meet the dynamic demands of users by
providing common access to computational resources that are networked
together and act as a virtual supercomputer. The resources are broadly
classified into three categories:

1. Communication Resources: These resources specify the network
bandwidth of the grid, that is, the data transfer rate of the machines and
other communication paths of the grid.

2. Computation Resources: These resources specify the processing
capacity of the resources or the machines of the grid. They are also
known as processing resources. Processing resources can be renewable
or nonrenewable, depending upon their usage. If the resource is
exhausted after a job uses it and cannot be used again by other jobs,
then it is a nonrenewable resource. A resource is said to be renewable
if the usage of the resource is limited to one job at a time but becomes
available for other jobs after it is released by the job using it.

3. Storage Resources: These resources specify the amount of storage
provided by the machines of the grid storage manager whose
integrated view is given by the grid with an aim to increase the
capacity and sharing of data.

The management of these resources is a key functional requirement of any
grid system. Some of the important features in grid resource management
(GRM) are discussed below:

A grid network may contain homogeneous as well as heterogeneous
resources. Also, the applications or the demands of the end users are of
varied types, and therefore it is required to allocate suitable resources

for a particular job. Hence, the task of resource management becomes
a critical issue.
The members of the grid must be trustworthy for secure
communication, and hence the users are validated before they can
submit jobs to the grid system.
An interface is provided to the users so that they can submit as well as
track the status of their previously submitted jobs. Also, it provides a
medium for the resource administrators to check the current status of
the resources.
The resources are registered in a central server, which consists of a list
of available resources and their current status.
The resources are selected and allocated to the job based on the chosen
scheduling policy.
The execution of the job takes place over the selected resource. The
job scheduler manages the waiting jobs in the queue based on the
selected scheduling technique.

1.1.4 CLASSIFICATION OF GRIDS
The grid computing platform is a popular platform among users due to its
capacity to handle large and complex jobs without compromising the
performance of the grid environment. The performance metrics, such as
response time, wait time, completion time, and load distribution, determine
the behavior of the overall grid environment. Grids can be classified based
on their applications and functionalities.

1.1.4.1 CLASSIFICATIONS BASED ON APPLICATIONS
Types of grids available according to their applications are listed below:

1. Commercial Grids: Grid computing has gained the attraction of
different communities all over the world due to its low cost and high-

performance computing results. For example, in the business world,
the demands of customers are increasing rapidly, which requires
instant and fast responses to serve the customers and understand the
market dynamics to stay competitive in this area.

2. Scientific Grids: Grid computing has made a remarkable contribution
to the field of science and technology, and it is creating new
advancements and developments to this day. Standard scientific
projects related to astronomy, quantum physics, and nuclear science
have their grid systems exclusively for their needs.

3. Academic Grids: The grids can be useful in sharing information
among educational institutions spanning across different geographical
locations. Students from different places might get involved in a
common project and can collaborate and exchange information while
working in a grid environment. This will eventually bring two
academic or research communities together, irrespective of their
geographical locations.

4. Public Grids: These are the non-commercial grids offering services to
general public issues. The concept of public grids depends on the
availability of unused CPU cycles and data storage to solve public
problems.

5. Health Science Grids: The role of grid computing in health science is
significant in terms of finding new, accurate, and fast methods of
diagnosis. Doctors have a huge amount of data, and their analysis will
greatly help in finding cures and treatments for patients, irrespective of
their geographical locations.

6. Hybrid Grids: There are several grids that are not dedicated to a
single application. Instead of providing services to specific
applications, some grids are diverse and provide services in multiple

domains. TeraGrid is a kind of grid that is used in academic, health
science, and research activities.

1.1.4.2 CLASSIFICATIONS BASED ON FUNCTIONALITIES
Types of grids available according to their functionalities are listed below:

1. Computational Grids: These are the compute-intensive grids that
serve the computational needs of the clients. The CPU cycles are the
main resources provided by computational grids. These grids provide
combined CPU cycles from various resources located at different sites
to satisfy user requirements. Applications such as weather forecasting,
nuclear simulation, and complex business analysis use computational
grids for implementation.

2. Data Grids: The data-intensive grids are useful in performing
operations on massive amounts of distributed data. Different types of
data around the globe are placed in data repositories, digital libraries,
and data warehouses, which are scattered over multiple administrative
sites located in different geographical regions. Data grids are intended
to provide a safe and reliable mechanism for data transfer, data
filtering, and an overall data management system. CERN is a widely
known data grid that deals with the development of huge data
organizations.

3. Utility Grids: The job of utility grids is to pool the dynamically
accessible resources to meet the needs of the given application. This
helps in combining resources from multiple machines dynamically and
providing services that are not possible with a single machine.

4. Real-Time Grids: Real-time applications have various requirements
that are not supported by traditional computational or data grids. These
real-time grids provide a virtual workspace to enable interactions

between the clients and applications. Real-time applications such as
disaster management are handled by real-time grids.

1.2 CLASSICAL EVOLUTION OF GRID COMPUTING
The period of the 1990s witnessed the expansion of grid computing
networks, a concept that had already been manifested long before by
notable researchers like John (1961) and Leonard (1969) in their works.
They believed that in the coming time, computing utilities would be
provided to users in a seamless manner, similar to other essential services of
mankind. High-speed networks such as US Gigabit testbeds have made it
possible to combine resources located at different sites. Smarr and Catlett
(1992) referred to this method of combining resources as metacomputing.

The results of the experiments (Messina, 1998) indicated that a new type
of computational resource with unique abilities could be created by
bringing together compute resources such as parallel and vector
supercomputers for a designated application. However, this technology was
designed for research-oriented applications, but it succeeded in generating
interest in creating a platform for distributed applications of different types.

In Europe, a scientific group working on the large hadron collider (LHC)
launched the EU DataGrid project. This project was developed because they
realized that it was needed to distribute computing resources at multiple
sites in order to evaluate petabytes (PB) of data generated by LHC
experiments. Likewise, two projects were developed in the United States,
forming the Open Science Grid and the European Grid Infrastructure (EGI)
in Europe.

1.2.1 DISTRIBUTED COMPUTING AND ITS
CHARACTERISTICS
Distributed Computing, as the name suggests, is a kind of computing that
enables users to access the required services without disclosing the
existence of several autonomous computers. The mode of interaction
between the communicating entities in a network is known as message
passing, based on standard protocols. Clusters, Clouds, Grids, and P2P
networks (peer-to-peer) are popular distributed systems. The cluster
computing system consists of closely connected computers, appearing as a
single high-performance supercomputer to the users. Cluster computing is
mainly used in scientific and engineering applications.

It also supports large-scale business applications. The grid computing
system enables the collaborative sharing of diverse resources (such as data,
files, computing entities, and different devices) located at different
geographical locations to solve complicated problems in the science and
business domains. Peer-to-peer networks are a special distributed system
that supports online multiplayer gaming, fast messaging, and file sharing.

1.2.1.1 CHARACTERISTICS OF DISTRIBUTED COMPUTING SYSTEM

1. Resource Sharing: This is an intrinsic characteristic of all distributed
systems, which enables users to access and cooperatively share remote
resources in a regulated manner.

2. Transparency: The goal of distributed computing is to hide the
complexities and the existence of associated computing devices and
provide a hassle-free computing experience to users. Transparency
comes in different forms, such as access, location, migration,
concurrency, and failure.

3. Acceptance (Openness): The services provided by open distributed
systems are standardized services that reflect the syntax, semantics,

and definition of sent and received messages. These standards contain
the necessary rules for the transmission of messages between
computing entities. All these rules are interpreted in protocols.

4. Extensibility: The property of extensibility, generally called
scalability, enables the distributed system to increase its computing
power by deploying more systems and providing seamless services to
users without fail.

5. Reliability: This in distributed computing ensures that the breakdown
of some machines will not affect the working of the whole distributed
computing system, and there will be systems available that can
compensate for the failure of other machines.

1.2.2 SERVICE-ORIENTED COMPUTING
Service-oriented computing forms the backbone of a popular distributed
computing system, that is, cloud computing. The underlying principle is to
embrace the notion of services for application and system development. The
service itself is an abstraction that has the capability to perform basic to
complex tasks based on requirements, regardless of the programming
language or computing platform. The platform’s independence increases the
service accessibility for a better reach for users. Hence, a large number of
clients or users can be served in different situations. These services are
merged in a single Service-Oriented Architecture (SOA). The SOA is a
logical approach to organizing software systems and providing services to
users through observable interfaces.

The two main services included in service-oriented computing are quality
of service (QoS) and software-as-a-service (SaaS), which also form the base
of cloud computing systems.

1. Quality of Service (QoS): It consists of functional and non-functional
properties that measure the nature of service from several viewpoints.
These properties are different performance metrics like scalability,
response time, reliability, and availability. The service level agreement
(SLA) sets an accord between the service provider and service user
over minimum values for QoS performance attributes which are
required to be met once a service is called.

2. Software-as-a-Service (SaaS): The SaaS method enables the
distribution of complicated business processes in the form of service to
the user which can be accessed from every location.

1.2.3 NOTABLE GRID DEVELOPMENTS WORLDWIDE
With the onset of grid computing, it has always been a subject of curiosity
among scientists and researchers around the globe. Overall, the grid
projects are broadly divided into two categories:

1. The first category includes the setting up of hardware and various
software installations and making administrative policies and
mechanisms to facilitate scientists and researchers in carrying out their
work. This category is known as Grid Infrastructure Development.

2. The second category focuses on investigating the evolution of software
and policy plans that aid in recognizing the true potential of the grid
computing environment. This category is called Grid Middleware
Research.

Based on these categories, some of the prominent grid infrastructure and
middleware projects are discussed below:

1. TeraGrid: The United States National Science Foundation has funded
a grid infrastructure called TeraGrid that provides computing power of

40 teraflops and a storage capacity of 2 PB across eight grid sites in
the United States. Grid3 is a major testbed covering 25 geographical
sites in the US and Korea that are being used for operational areas such
as astronomy, computational biology, and high-energy physics.

2. Bioinformatics Research Network (BIRN): It is a kind of testbed in
biomedical science that facilitates data sharing stored in several
repositories around America.

3. NEESGrid: This grid is meant to assist the scientists and researchers
working in the earthquake engineering community to demonstrate and
perform experiments in diverse locations and investigate data through
a common terminal.

4. The Globus Toolkit: The Globus Toolkit is a very popular grid
middleware project developed by the Global Alliance conducted by the
Argonne National Laboratory.

5. Storage Resource Broker (SRB): The SRB, led by the
Supercomputing Center in San Diego, is a renowned grid middleware
project that organizes dissimilar data repositories and handles data
storage, access management, and data replication.

6. Condor: It is a grid middleware project developed at the University of
Wisconsin, Madison, which supports high efficiency and throughput
computing methods. This project supports the conversion of a
collection of workstations and dedicated clusters into a distributed
supercomputing facility.

7. AppleS (Application Scheduling): It is a grid middleware project
developed at the University of California, San Diego, to support
application scheduling.

8. NetSolve: Or GridSolve is a grid middleware project developed at the
University of Tennessee, Knoxville, which aims to bring together

different resources interconnected by a computing network. This
middleware is an RPC-based client/server structure that facilitates user
access to software as well as hardware components remotely.

9. Grid Application Development Software: This project, popularly
known as GrAds, intends to create a framework to use grid resources
in a much simpler manner.

10. Enabling Grids for e-Science Projects (EGEE): This, popularly
known as the EGEE project, is one of the major grid initiatives in the
development of grid computing infrastructure in current times. The
European Union has funded this major data grid project, which
associates more than 250 computing (resource) centers from 48
different countries to generate a reliable source of computing for
European and global research groups.

11. GridLab: The European Union has funded the GridLab project that
aims at developing a Grid Computing Software Infrastructure to serve
the application communities. This project has collaborated efforts of
system scientists, astrophysicists, and other researchers from different
domains to enhance the effective usage of resources in the grid
environment.

12. GridSphere: This is one of the eminent grid initiatives funded by the
European Union, which aims at the creation of a web portal
environment to facilitate the grid users.

13. Cactus: The design of the Cactus framework makes it an excellent
choice as a testbed for the grid computing environment. It is another
project funded by the European Union. This testbed mainly supports
scientific programming.

14. Open Grid Service Architecture Data Access and Integration
(OGSA-DAI): This, popularly known as OGSA-DAI, is a middleware

solution that facilitates application developers by providing easy
access to distributed data at multiple sites along with various local
access mechanisms. Data integration can also take place at the server
site, and output can be delivered with the help of several protocols and
policies within OGSA-DAI. This middleware can accommodate data
resources, such as relational databases, files, or XML databases, and
can handle multiple operations, such as changing to disparate formats,
with the help of a highly malleable and extensible framework.

15. National Research Grid Initiative (NAREGI): It is a popular grid
program developed by the Japanese scientific and research community,
which aims at building an R&D center of high performance to escalate
scientific and engineering applications.

16. Asia Pacific Grid (APGrid): This, popularly known as APGrid, is an
international collaboration that has initiated the testbed development in
the Asia Pacific region. The aim of APGrid is to allow the sharing of
resources, technologies, and knowledge, as well as to develop new grid
techniques and technologies.

17. Ninf: It is a Japanese programming middleware solution based on the
GridRPC (remote procedure call (RPC)) programming structure. This
middleware provides a user-friendly interface to access various
software, hardware, and data resources, such as scientific data.

18. Nimrod: It is an Australian grid initiative project developed at Monash
University. This project is designed to handle the complexities related
to parametric computing on groups of distributed systems. Nimrod
provides an elementary declarative language to express a parametric
experiment. The plans for parametric computing can be created by
domain experts, and the Nimrod runtime system can be used to

execute different applications, such as bioinformatics, business process
simulations, and operational research.

19. Grid Datafarm (Gfarm): The Japanese research and scientific
community has developed the Gfarm project to support petascale data-
intensive computing, enabling distributed resources in a vast area. The
salient features of this framework are to (i) dedicate a Grid file system
for integrating local disks of computing systems in the computational
grid; and (ii) facilitate distributed and parallel computing by linking
the Data Grid and Computational Grid.

20. GARUDA: It is an Indian National Grid Computing initiative
launched by the Centre for Development of Advanced Computing (C-
DAC) with the aim of providing solutions to different scientific and
engineering problems. GARUDA is a collaborative effort of engineers,
computer scientists, and researchers to develop a nationwide grid
consisting of a large number of computational nodes, data storage
resources, and other scientific instruments.

1.2.4 GRID APPLICATIONS
During the early computing days, sharing computational resources among
different organizations was a troublesome task. Researchers all around the
globe were seeking means to find a promising solution to facilitate the
sharing of resources among different computing bodies. This solution came
in the form of grid computing, which facilitated increased processing power
to handle both simple and complex computational problems. Later, many
scientific initiatives were projected to analyze grid computing in detail and
understand different aspects to enhance scientific research. The whole idea
of grid computing is based on dividing large, complex jobs into smaller jobs
that can run on different machines connected to a common network in a
grid. After the job has completed its execution, the results from different

machines are combined as a final output. This output is delivered to the
user, which finally completes the process of job execution. With the
growing acclaim, grid computing has evolved as an eminent computing
technology and is widely used in different areas of business, engineering,
and biomedicine. In this chapter, we will see several grid applications in
different areas of science and technology. There are several advantages of
grid computing, including improved job performance and cost reduction.
The performance of the grid can be visualized in terms of the total time
taken by the job to complete its execution, waiting time, and RU. Presently,
a good number of industries (finance, banking, science and engineering,
biomedicine, and entertainment) are utilizing grid computing technology to
solve complex engineering problems.

In this section, we will highlight the major grid applications and their
utilities in the current scenario:

1. Life Science and Engineering: The area of life science is related to
the study of living organisms such as human beings, plants, animals,
and microorganisms. Computational biology in life science deals with
the study of bioinformatics, genomes, and neuroscience, which has
started to utilize grid computing. Medical practitioners often perform
large-scale simulations to analyze the connection of remote devices to
medical frameworks or infrastructure using grid computing. The data
collected from different sources is assessed by a team of experts in the
relevant field.
Engineering applications are quite resource – and cost-intensive when
performing a single unit of work. With the advent of grid computing,
the cost of carrying out engineering applications has significantly
reduced. The fact that the grid infrastructure is scalable and dynamic
allows for the addition of any computing resource at any time

according to the job requirements of the users. In this way, the cost of
building a new infrastructure is saved, and the grid owner can use and
update the existing computing infrastructure to accommodate
increased job requests. This will eventually lower the overall costs of
carrying out a complex engineering application and serve as an
economical approach for grid organizations.
Engineering applications such as the automotive and aerospace
industries essentially require testing facilities to carry out significant
simulations. These industries have focused their attention on the
evolving grid computing technology, which can serve their
requirements and expedite time-intensive engineering tasks.

2. Data-Oriented Applications: A tremendous amount of data is being
produced from several devices such as sensors, smart accessories,
scientific equipment, and IoT devices. Grid computing plays an
important role in collecting this data and performing necessary
assessments to filter valuable information. Once the data is stored, grid
computing can be used to interpret the data to analyze patterns in order
to incorporate knowledge.

3. Scientific Research and High-Performance Computing: The
modern approach to computing has brought scientists and researchers
closer than ever, irrespective of their geographical locations. They can
share data and solve computationally complex engineering problems
using grid resources. For example, the data produced by the LHC at
CERN is exceptionally large, and grid computing aids in analyzing this
bulk of data. Grid computing is often used in bioinformatics for
different applications, such as modeling genome behavior. It also helps
in simulating the performance of massive nuclear explosions. As a
result, huge amounts of data are generated that need to be stored and

analyzed. Grid computing serves as an ideal choice for researchers to
process and store data for future use. The computational resources
provided by grid computing help carry out high data-intensive
processing in a legitimate time frame. Grid computing also provides a
secure means of transferring and accessing data, building a protected
computing environment.

4. Entertainment and Gaming: Commercial applications in the
entertainment and gaming fields rely on high computational resources
and storage networks. Grid resources are chosen based on the
computing demand of the grid computing framework. Resource
selection is often driven by the number of participants in the game and
the amount of traffic volume being generated. Grid computing plays a
crucial role in processing and distributing huge amounts of digital data,
such as games, movies, and other special effects in motion films. It
also helps store and manage digital rights management information.

5. Trade Intelligence and Data Analytics: Trade intelligence or
business intelligence is a software-based approach to perform data
mining and data visualization in order to make improved data-driven
decisions. Grid computing can be used to process and evaluate large
amounts of business data in real time. Later, it can be used to store the
processed data and find useful patterns in the stored data that will
eventually help the organization in making future decisions. An
enterprise might utilize the grid computing framework to monitor its
sales, client behavior, or changing market trends to make better and
more informed decisions.

6. Healthcare: It is an emerging application of the grid computing
environment. The medical industry is utilizing grid computing to store
and process large amounts of patient data. As we know, a patient’s

medical record is sensitive data, so it requires a strong security
mechanism to maintain its integrity and privacy. Grid computing
provides an enhanced security mechanism so that the privacy of the
patient’s data is not compromised. The stored data is useful in many
ways, such as developing personalized or customized medicines,
carrying out medical research, and analyzing diseases in a thorough
manner. This will eventually help in learning and finding new ways to
detect and manage disease outbreaks.

7. Weather Forecasting: Weather or climate forecasting is an important
application of grid computing. Weather sensors and satellites generate
a large amount of data that requires real-time processing to make quick
and accurate weather forecasts. Grid computing can process and
analyze useful patterns in the data generated from the sensors and
satellites in real-time to model weather patterns accurately.

8. Government and Defense: The growing digitalization has brought
significant changes in different areas such as education, government,
defense, business, and so on. Electronic government (e-government) is
a growing field that uses information technologies to carry out its
activities and handle administration. In government offices, large paper
files are now replaced by software files. Digital data is now abundant
and needs to be stored and analyzed in an appropriate manner. Grid
computing helps in handling and processing this data using its
computational and data-intensive resources. Though security poses a
big challenge in e-governance, the grid computing environment
provides necessary user authentication and data protection
mechanisms. Similarly, defense organizations generate huge amounts
of data from satellites and other sensors, which require accurate and
real-time analysis. It is not feasible to purchase a supercomputer, and

leasing supercomputer resources incurs huge costs. In such cases, the
grid computing platform serves as an excellent platform to carry out
advanced modeling and simulation operations, data mining, and
visualization.

1.2.5 SCOPE OF GRID COMPUTING
Grid computing offers enterprises and organizations immense computing
power. The applications mentioned in the above section highlight the role of
grid computing in different industries such as education, governance,
finance, entertainment, life sciences, medicine, and scientific research and
development (R&D). Grid computing helps organizations accelerate their
overall growth and complete assigned jobs faster by distributing the jobs
across different grid nodes, irrespective of their locations. With the growing
popularity and evolution of grid computing, a large number of industries
will adopt this technology to attain business growth.

1.3 DESIGNING GRID COMPUTING ENVIRONMENT
The core concept of grid computing is to build a distributed computing
system that enables the sharing of resources in order to execute one or more
applications. The underlying difference between grid and cluster computing
lies in the nature and distribution of resources in the computing
environment. The grid computing resources are geographically distributed
and may be heterogeneous. The cluster computing resources are mostly
homogeneous and localized, providing an efficient computing platform.

The grid resources are distributed and owned by multiple organizations.
Therefore, a cordial relationship is strongly required among the grid
resource owners for smooth application execution without compromising
performance. It may happen that an application requires data resources
available at different grid sites. The site owners must provide necessary

resources within acceptable standard management policies to assure the
performance of the grid environment.

A computing infrastructure is required to have certain properties in order
to form and run a grid environment. These properties are listed below:

Security in terms of user access authorization and standard
authentication;
Systematic access to available resources;
Data storage and duplication of data sets;
Service broadcasting and its access costs;
Exploration of required computational resources;
Exploration of applicable data sets using their standard global names;
Job scheduling and assignment to proper resources;
Job submission, examination, and handling job execution; •
Monitoring resource usage and availability of resources;
Ensuring QoS requirements.

Any grid computing infrastructure must possess these properties to run
scientific, engineering, and large-scale business applications. These
components are formulated into layers where each layer has distinct
functionality.

1.3.1 INTRODUCTION TO GRID COMPUTING
ARCHITECTURE
The software and hardware infrastructure of Grid Computing has been the
spotlight of research groups and scientific communities in the field of
education and industry.

The Grid computing architecture consists of several layers where the
lower layer provides services to the upper layer in the model, and the

components lying at the same level interact with each other. The grid
computing architecture (Figure 1.2) consists of five layers:

FIGURE 1.2 Layered grid architecture.

1. Fabric Layer: This layer is composed of resources such as networks,
storage devices, and processors distributed across different grid sites.
The computational resources, such as servers and supercomputers, are
required for running various operating systems. Other scientific
devices, such as sensor networks, are helpful in providing real-time
data for direct transmission to the intended computational sites.

2. Connectivity Layer: The authentication and communication protocols
are provided by the connectivity layer for secure network transactions.
It provides secure mechanisms to identify users and resources of the
grid. Other services, such as access to storage resources, remote
process management, and QoS constraints, are handled at this layer.

3. Resource Layer: This layer consists of resource-specific protocols,
such as the grid resource access and management protocol (GRAMP),
for allocation and monitoring of resources. It also contains some
information and management protocols.

The information protocol helps to inquire about the state of the resources
(by making a call to the fabric layer), and the management protocol helps in
managing access to shared resources in the grid.

1. Collective Layer: This layer consists of protocols such as the Grid
Resource Information Protocol, which enables information sharing
across a group of resources. This layer includes resource brokers for
resource management and scheduling jobs (applications) on the global
computational resources.

2. Application Layer: The lower layer provides interfaces and a
programming environment to build grid applications and portals. The
grid portals support web-enabled application services, which enable a

user to submit and get results for their submitted jobs on remote
resources.

1.3.2 ELEMENTS IN GRID COMPUTING MODEL
The grid computing model is composed of several elements discussed
below:

1. Job: A job submitted by the grid user to the grid system has a specific
requirement for resources. The resource requirement can include
storage, processing, software libraries, and so forth.

2. Resource: It is a scheduling entity where a job is scheduled and
processed according to its requirements. There are several properties of
a resource, such as its processing speed and memory. Resources in the
grid are distributed across multiple sites, where each site has its own
access rights and usage policies.

3. A Scheduling Problem: It consists of a set of jobs, resources,
optimality conditions, working environments, and other constraints
specified by the user and the resource provider.

4. Specification: The job requirements are written in a high-level
language.

5. Scheduler: The job of a scheduler is to place the job over the resource
based on the requirements of the job and track the status of the job and
resource until it finishes its execution.

1.3.3 LIMITATIONS AND ADVANTAGES
In spite of the popularity of the grid computing network, there are certain
limitations or challenges that need attention for the stable and efficient
working of the grid environment. The availability of resources in the grid
network is changing due to the dynamic nature of the grid environment.

Resources may not work properly, or new resources may be added to the
grid system at any time. These difficulties or challenges in resource
management need to be addressed by the resource provider in a grid
computing environment. The scheduling problem in the grid has been a
common optimization problem studied by research groups.

The limitations or the challenges of a grid computing network are stated
below:

1. Autonomy: The resources of the grid are spread across multiple
locations for organizational use and are owned by different resource
owners. It is very important to maintain a cordial relationship between
the resource owners and the organizational bodies using the resources
for continuous and effective usage of resources.

2. Expansion of Grid: The size of the grid may change over time,
scaling from a few nodes or resources to thousands of resources.
Therefore, it is required for the applications to be scalable; otherwise,
it will lead to performance deterioration of the grid network.

3. Diversity of Resources: The resources in the grid network are of
different types and hence can be used to serve a variety of applications.
The management of different types of resources is a trivial task for the
grid resource manager.

4. Diversity of Jobs: The jobs submitted in the grid system are of a
diverse nature and have different resource requirements. Some jobs
require processing resources, while others might require storage
resources.

5. Dynamicity of Grid: It becomes very important for the grid resource
manager to keep track of the available resources in the grid because
the resources may fail, or some new resources can join the current grid
network at any point in time.

6. Security: There are two components of security in the grid network.
The first component concerns job security over the node, ensuring that
the node will not look into the data used by the job. The second
component of security ensures that the user who submitted the job over
a node is not looking at or accessing other data in that node. The grid
environment must be able to overcome these limitations so that grid
users will have continuous access to the available resources and jobs
are executed over appropriate resources in a legitimate time, which
will eventually uplift the performance of the grid environment.

Some of the prominent advantages of grid computing are listed below:

1. Cost-Effective: Buying a number of large servers for complex
applications is no longer needed because the applications can be
divided and distributed to small-sized servers. Further, the results can
be combined and provided to the user after the job completion.

2. Utilization of Idle Resources: The site administrator can make
policies to direct jobs to lightly loaded or free resources in the grid
environment. It balances the load among all the computing resources
in the grid environment.

3. Modular Computing: Grid computing supports a model of modular
computing. A computing paradigm with no single point of failure is
considered modular, where multiple resources are available and can
handle a job in the case of a single resource failure in the grid
environment.

4. Grid Policies: There are some policies that govern the functionality of
the grid. For instance, a client residing in each server sends
information to the master regarding the availability and nature of
resources to execute the incoming job.

5. Scalability: The design of the grid system enables the addition of new
resources at any instant of time for more computing power. Also, it
allows uninstalling or removing some resources from the grid as per
requirement.

1.4 SUMMARY
Grid computing is a popular computing platform all around the globe. It is a
new distributed computing paradigm with immense potential to solve
complex optimization problems. Based on the type of problem, there are
different classes of grids that can be used to serve user requests. Several
classifications of grids have been studied to meet user requirements. The
development of grid computing infrastructure such as NetSolve, TeraGrid,
Condor, and many more shows the prevalence of grid computing platforms
in the computing world. The fundamentals of distributed computing, its
characteristics, and its evolution in the modern computing world have been
covered in this chapter. The need to switch to grid computing and how it
serves the modern needs of computing in today’s world has been discussed
here. With grid computing, the utilization of idle resources is possible, and
scalability allows adding new resources at any point in time or cutting out
any resource from the grid according to requirements. A grid computing
model is a five-layered architecture, having the application layer at the top
and the fabric layer at the bottom of the computing model. The grid
computing model has several key elements, such as job, resource,
specifications, scheduling problems, and scheduler.

Current research trends show that grid computing has managed to draw
the attention of the science and research community around the world.
Researchers and scientists are working on it to minimize its limitations and
expand its capabilities.

KEYWORDS

dynamicity
grid computing
modular computing
NetSolve
resource utilization
TeraGrid.

OceanofPDF.com

https://oceanofpdf.com/

CHAPTER 2
Scheduling: Conventional and
BioInspired Algorithms
2.1 RESOURCE ALLOCATION SCHEMES
Scheduling of jobs and resource management are two major concerns of
grid computing. Job scheduling has become a non-trivial issue in grid
computing due to the increased number of users and their job requests. It is
important to complete the execution of these jobs in minimum time and
manage the grid resources at the same time. The distribution of jobs among
the processors has been a major concern in the grid environment, with a
seemingly increased number of job requests.

In order to meet the ongoing demands of computing users, an intelligent
algorithm must be developed to perform scheduling and resource
management. The algorithm will not only meet the users’ job requirements
but also finish the job execution in minimum time. Two conventional
algorithms and their implementation in a grid computing environment have
been discussed in this chapter. Conventional algorithms are well suited to
static problems, but they often fail to give the desired performance due to
the dynamic nature of the grid environment, resource, and job
heterogeneity. Due to the weak performance of conventional algorithms,
researchers came up with a solution to handle job scheduling and resource
management. The proposed solution belongs to a class of swarm-based and
evolutionary algorithms. Two swarm-based algorithms, ant colony
optimization (ACO) and particle swarm optimization (PSO), and one
evolutionary algorithm, that is, genetic algorithm (GA), and their

implementation in a grid computing environment have been discussed in
this chapter. The performance evaluation of these algorithms will be
covered in later chapters.

Mastering Grid Computing: Scheduling and Resource Management.

Ankita & Sudip Kumar Sahana (Authors)
© 2025 Apple Academic Press, Inc. Co-published with CRC Press (Taylor & Francis)

The management of resources in a distributed computing environment
(Peleg, 2000) like a grid is a complex issue because of the size of the grid
and the increasing number of user requests. The changing state of the grid
has elevated the complexities since a machine (resource) can be added or
may stop working at any point in time in the grid environment. Moreover, it
is important to maintain a balance between the needs and requirements of a
resource provider and a resource user because of the changing availability
of the resources. Therefore, proper resource management and uniform
scheduling policies are required for the regular and successful functioning
of the grid environment. The resource allocation schemes are divided into
three categories:

1. Approach: The user requests are directed to a single, centralized
scheduler, which schedules the submitted jobs over the available
resources. Though the resources are scattered across several regions,
the information regarding the state of the resources as well as the jobs
is contained within a single position, that is, the centralized scheduler.
Hence, the decisions of this scheduling model are optimal. However,
they are prone to a single point of failure and are limited to small-sized
grids.

2. Approach: In a decentralized model of resource allocation, the user
requests are scheduled at different sites by individual schedulers

independently. The local schedulers maintain their table of information
regarding the state of resources and jobs. Any update in the state of the
resource has to be maintained across each site at every local scheduler
to avoid any discrepancy among the schedulers while making
scheduling decisions. The decisions of this scheduling model may or
may not be optimal. It is difficult to attain efficient grid schedulers
because of the independent grid sites. Though the decentralized
approach is scalable and works well in the grid environment, it is less
efficient than a centralized approach to resource allocation.

3. Approach: It is a combination of a centralized and decentralized
approach to resource allocation. A hierarchy is maintained among the
schedulers. The schedulers in a hierarchy can communicate directly
with the other schedulers above or below them. The information
regarding the state of the resource is present at the lowest level.

2.2 JOB SCHEDULING
The process of assigning appropriate resources to jobs is called job
scheduling. Job scheduling (Figure 2.1) is a non-trivial issue because it
affects the performance of any computing system or organization.

FIGURE 2.1 Process of scheduling.

2.2.1 JOB SCHEDULING IN GRID ENVIRONMENT
The proper assignment of the grid resources over jobs is a primary aspect of
grid scheduling (Figure 2.2). Grid scheduling (Lu et al., 2010) involves
making scheduling decisions for allocating the jobs over the grid resources.

FIGURE 2.2 Grid scheduling.
Source: https://journals.plos.org/plosone/article?
id=10.1371/journal.pone.0207596;
https://doi.org/10.1371/journal.pone.0207596.g002.

The user submits the job to the grid scheduler through an interface or job
portal. The Grid Information Server provides information to the grid
scheduler. The Grid Resource Manager manages and monitors the status of
the resources in the grid environment. The grid computing centers provide
the necessary resources for job execution.

2.3 CONVENTIONAL ALGORITHMS
Conventional algorithms have been successful in finding solutions to simple
and small sets of problems. These algorithms are incapable of dealing with
large problem spaces and complex data sets. The next section discusses two
conventional algorithms and their implementation for solving the grid
scheduling problem. These algorithms are given in subsections.

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0207596
https://doi.org/10.1371/journal.pone.0207596.g002

2.3.1 FIRST COME FIRST SERVE (FCFS)
First come, first serve (FCFS) is one of the simplest and most conventional
scheduling approaches, and scheduling decisions are made on the basis of
the arrival time of jobs. FCFS is non-preemptive, such that a job, once
assigned 4, will never be preempted (leave the resource) until it finishes its
execution. The sequence of arrival of jobs decides the running sequence of
jobs, which means the job that arrives first (first come) will be scheduled
first (first serve). The algorithm for FCFS in the grid computing
environment is given in Algorithm 1.

Algorithm 1: FCFS in Grid Computing Environment
Input: Number of jobs and available resources. Output: Allocation of each job to available

resources. begin
Initialize grid environment Initialize scheduler components gi = next job in the job queue ri =

next resource in the resource queue
while the queue of unscheduled jobs is not empty do

Step 1: Add a new incoming job to the job queue of unscheduled jobs.
Step 2: Select a job gi from the job queue in the order of their arrival.
Step 3: Select a resource ri randomly from the resource queue.
Step 4: if ri is suitable and available to execute job gi then

Set job gi to be scheduled on resource ri
end if end while
Step 5: Repeat the above steps till all the jobs are scheduled over available resources.
end

A resource ri is said to be suitable for executing a job gi if ri fulfills the
processing requirement of gi. The availability of resources indicates that the
resource is ready to execute a job.

2.3.2 SHORTEST JOB FIRST (SJF)
Shortest job first (SJF) belongs to the conventional family of scheduling
algorithms, which can be preemptive or non-preemptive. The jobs, in this
case, are scheduled over the available resources based on their processing
requirements. Jobs with low processing requirements are favored over jobs
with high processing requirements.

The algorithm for SJF in the grid computing environment is given in
Algorithm 2.

Algorithm 2: SJF in Grid Computing Environment
Input: Number of jobs and available resources.
Output: Allocation of each job to available resources.
begin
Initialize grid environment
Initialize scheduler components
gi = next job in the job queue
ri = next resource in the resource queue
while the queue of unscheduled jobs is not empty do

Add a new incoming job to the job queue of unscheduled jobs.
Select a job from the job queue in the ascending order of their job requirements.
3: if ri is suitable and available to execute job gi then Set job gi to be scheduled on
resource ri

end if
end while
Repeat the above steps till all the jobs are scheduled over available resources.
end

2.3.2.1 SHORTCOMINGS OF CONVENTIONAL METHODS OF JOB
SCHEDULING
Conventional methods like FCFS, SJF, Min-Min, and Max-Min algorithms
are no longer suitable in modern times because of the increased
complexities associated with jobs and resources. For example, FCFS is not

a good approach for solving complex problems in modern times because it
leads to poor resource utilization (RU; convoy effect) and high execution
time. FCFS is non-preemptive, meaning that a job, once assigned a
resource, will never be preempted (leave the resource) until it finishes its
execution.

Conventional methods require complete information regarding the state
of the system, which is not possible in a dynamic grid environment. These
approaches provide an exact solution to the problem, which takes a
considerable amount of time. There are cases when many mathematical
programming methods have been incompetent in finding a good (optimal or
near-optimal) solution to multi-objective optimization problems.

The conventional methods are not suitable for non-differentiable
problems. It is notable that the problem of grid scheduling is NP-complete.
The reason behind the shift from conventional to non-conventional modes
of scheduling (Dave and Choudhary, 2016) has been witnessed because an
approximate solution in less time to an NP-complete problem is sufficient
in the current scheduling paradigm. The modern approaches are application-
independent and can be applied to any kind of problem without having
detailed information about the type of the problem or the state of the
working environment.

A category of metaheuristics comprises population-based methods. These
methods are inspired by nature and its phenomena, which have drawn the
attention of researchers around the world. These methods are being used in
different fields to solve multi-objective optimization problems. They are
also known as bio-inspired methods and can be applied in a dynamic
environment like a grid. In the context of finding solutions to the grid
scheduling problem, the built-in structure of these methods can be used to
adjust the convergence speed to reach an optimal solution.

2.4 BIO-INSPIRED ALGORITHMS
The shortcomings or disadvantages of conventional approaches have
inspired the application of bio-inspired algorithms to solve multi-objective
optimization problems. Though there are many complexities present in the
diverse nature, natural phenomena or processes are balanced and follow an
optimal plan. Non-conventional algorithms are recent advancements that
have given researchers a new way of solving complex problems in science
and engineering, especially NP-complete problems. These algorithms are
based on the principles of nature as well as evolutionary theory and have
been applied in different fields. The beautiful and competent design of
nature has inspired researchers to mimic natural theory in technology. A
mapping between these two, that is, nature and technology, can be easily
done to understand the connection between them and solve the complex
problems of computer science.

Bio-inspired algorithms are extensively used in the field of machine
learning to solve complex problems in computer science and engineering.
The nature of these problems is non-linear and has several non-linear
constraints, which create various issues such as high dimensionality and
time constraints to attain optimal solutions. Current research trends show
that bio-inspired algorithms can provide potential means to handle such
issues of traditional optimization algorithms and provide solutions to
convoluted optimization problems. Bio-inspired algorithms have been used
in many areas, including robotics, networking, gaming, data mining, and
many more. Swarm algorithms and evolutionary algorithms together form a
set of bio-inspired algorithms.

2.4.1 SWARM ALGORITHMS
Swarm intelligence (Blum and Merkle, 2008; Kennedy, 2006) is a subset of
artificial intelligence (AI). It is generated in a decentralized and distributed

environment with the help of the intelligence of the members of the swarm
by replicating their behavior. This intelligence helps in designing more
efficient algorithms that can find solutions to complicated real-world
applications. These algorithms are popular because they are fast, robust, and
cost-effective. The swarm algorithms discussed in this thesis are given in
subsections.

2.4.1.1 ANT COLONY OPTIMIZATION (ACO)
Dorigo and Blum (2005) and his colleagues developed ant colony
optimization (ACO) as a powerful metaheuristic to solve NP-complete
problems at the beginning of the 1990s. Inspired by the indirect
communication capability of ants, ACO is treated as a subgroup of the
system of social insect approaches. The pheromone deposition of ants forms
a pheromone trail, which is sensed by other ants in the search space to find
food sources. It is notable here that the pheromone evaporates as time
passes. Therefore, it can be said that ACO is a probabilistic approach
because the path that leads the ants to the food source is highly dependent
on the quantity of pheromones. The probability of the ants choosing a route
is directly proportional to the quantity of pheromones deposited on that
path. It has been applied in many application areas, such as routing,
scheduling, assignment, and load balancing. We have chosen ACO, a
powerful global optimizer, as our candidate solution to solve the job
scheduling problem because of its suitability for solving NP-complete
problems and its dynamic problem-solving nature.

The kth ant moves from state x to state y (Dorigo et al., 1996; Blum,
2005) using a probability value calculated from Equation 2.1:

(2.1)

(2.2)

P k
xy =

(τ a
xy)(η

β
xy)

∑
z∈ allowed y

(τ a
xz) ⋅ (ηβxz)

The pheromone update rule is given in Equation 2.2:

τxy ← (1 − ρ)τxy +∑
k

Δτ k
xy

where; pxy
k is the probability value that helps the ant to change its state;

τxy is the measure of pheromone deposition of ants when it changes its
location from one position to another. The basic theory of ACO states that
the higher the pheromone deposition on a path, the higher the probability of
that path being selected by the other ants; ƞxy is the attractiveness of the
move indicates the desirability of the ants to follow that path; α and β are
the controlling parameters in ACO which regulate the value of other
parameters. α controls the concentration of pheromones deposited by the
ants (τxy) on the path it traverses. The value α is normally less than 1. β
controls the attractiveness of the route. Length of the route is inversely
proportional to the attractiveness of the route; ρ is the pheromone
evaporation coefficient; τxz indicates the amount of pheromone deposited,
that is, trail level for all other feasible state transitions; and ƞxy indicates the
attractiveness for all other feasible state transitions.

2.4.1.2 MAPPING OF ACO TO A GRID SCHEDULING PROBLEM
The mapping of ACO algorithms to a grid scheduling problem is given in
Figure 2.3. In this figure, the ants are mapped to jobs, and the food sources
are treated as resources. The scheduling policy (ACO conditions) decides
the allocation of a job to a resource in the grid computing network. An ant
is created as soon as a job is submitted to the grid. Initially, the job (ant)

randomly selects a resource (food) from the resource queue. The quality of
the resource (food) is evaluated using its suitability and availability for an
incoming job. The suitability of a resource indicates its computational
capacity to execute a job. The resource with a higher pheromone value
implies better computing capabilities. The pheromone value is calculated
using Equation 2.2. The availability of a resource checks the current status
of the resource (idle, busy, or not working).

FIGURE 2.3 Mapping of ACO to a grid scheduling problem.

The simple ACO algorithm in the grid computing environment is given in
Algorithm 3.

Algorithm 3: ACO in Grid Computing Environment
Input: Number of jobs and available resources.
Output: Allocation of each job to available resources.
begin
Initialize grid environment

Initialize scheduler components (pxy
k τxy ƞραβ)

Initialize global best solution = s
Job list = add new job(), resource list= select resource()
while the queue of unscheduled jobs is not empty do

Add a new incoming job (ant) to the job queue of unscheduled jobs.
Generate the initial population of solutions in a random manner.
Calculate the probability value using Equation 2.1.
Check the availability and suitability of the resource (quality of food source).
5
if the resource is suitable for the job and available to execute
then
Update the pheromone values using Equation 2.2.
else
go to Step 1
end if
The job is scheduled over the selected resource.
7: if the value obtained in the current iteration is better than the global best solution then
Set s = current solution
end if end while
Repeat the above steps till all the jobs are scheduled over available resources.
End

2.4.1.3 PARTICLE SWARM OPTIMIZATION (PSO)
Kennedy and Eberhart (1995) developed particle swarm optimization (PSO)
by simulating the social (collective) behavior of living organisms, such as
flocks of birds or schools of fish. Later, after much simplification of the
algorithm, it was found that PSO works well for optimization problems and
can be applied to large and complex data sets. There is no prior prerequisite

(2.3)

(2.4)

for applying PSO to a problem, and hence it is a popular swarm-based
metaheuristic for solving NP-complete problems. Initially, the particles in
PSO are initialized with a set of possible solutions in a random manner.
These solutions are called positions in PSO, and each particle has its
velocity and position. They move through the search space to discover new
solutions (positions) based on the fitness function.

The velocity and position update equation (Kennedy and Eberhart, 1995)
of particles is given below (Equations 2.3 and 2.4):

present = present + v

where; v denotes the particle velocity; and present denotes the current
position of the particle.

For every particle, the present “value” is initially set by the algorithm,
which is updated after Equations 2.3 and 2.4. pbest denotes “particle best”
which denotes the best position acquired by an individual particle in the
population space. gbest stands for “global best” which is the best position,
that is, the best fitness value achieved by any particle in the population.
rand () introduces diversity in the search space, used to generate random
numbers. ωis the inertia factor. c1 and c2 are learning factors. The inertia
factor helps in controlling the effect of previous velocities over current
velocity. The learning factors denote the social and cognitive components
that inflect the movement of a particle towards its pbest and gbest positions.

2.4.1.4 MAPPING OF PSO TO GRID SCHEDULING PROBLEM
A simple representation of a PSO particle is given in Figure 2.4. The proper
encoding of a problem solution to a PSO particle is the first requisite for the
successful application of the PSO algorithm. Initially, all the particles (jobs)

v = ωv + cl ∗ rand() ∗ (pbest − present)+

c2 ∗ rand () ∗ (gbest − present)

are randomly placed at different positions (resources). The velocity of the
particle is updated using Equation 2.3, and the position of the particle is
updated using Equation 2.4.

Figure 2.4 Mapping of PSO to a grid scheduling problem.

PSO Particle
J1 J2 J3 J4 J5 J6 J7

R1 R2 R3 R4 R5 R6 R7

The PSO algorithm implemented in a grid environment to solve the job
scheduling problem is given in Algorithm 4.

Algorithm 4: PSO in Grid Environment
Input: Number of jobs and available resources.
Output: Allocation of each job to available resources.
begin
Initialize grid environment
Initialize scheduler components
n = population size
G is the population of solutions.
joblist = add new job(), resourcelist = select resource()
while the queue of unscheduled jobs is not empty do

Add a new incoming job to the job queue of unscheduled jobs.
for i = 1 to n do
Initialize G[i] randomly; particle(job) velocity = v[i]=0; particle(job) best = pbest[i]=
G[i]; global best = gbest;
Find the fitness value of each particle.
Update the particle velocity v[i] using Equation 2.3.
Update the particle position (present) using Equation 2.4.

end for

if the fitness value of the particle, that is, fitness(present) > fitness(pbest) then update
pbest = present
end if
if the fitness value of the particle, that is, fitness(present) > fitness(gbest) then update
gbest = present

end if
return gbest;
end while
end

 Fitness Function: It is a parameter used to evaluate the fitness of the
particles in the PSO. It determines the closeness of a given design
solution in achieving certain objectives. In this case, the objective is to

(2.5)

minimize the total completion time (TCT) of jobs and enhance RU.
The fitness value in this case is expressed in Equation 2.5:

 fitness = min

N

∑
n=1

(TCTjobs) + max

R

∑
r=1

(RUresources)

where N is a set of jobs and n ϵ N; TCT is the total completion time of
the jobs; R is a set of resources and r ϵ R; and RU is the resource utilization.

2.4.2 EVOLUTIONARY ALGORITHMS
In the 1960s, Rechenberg introduced the notion of evolutionary computing
for the very first time in the field of computer science and engineering.
Evolutionary algorithms (Rechenberg, 1973) are a subset of non-
conventional algorithms that are based on the principles of Darwinian
theory of evolution. Like swarm algorithms, these algorithms are also
problem-independent and do not require any prior information about the
problem being solved. They involve several control parameters that affect
the nature of the search process and their effectiveness. The evolutionary
algorithm discussed in the thesis is given in subsections.

2.4.2.1 GENETIC ALGORITHM (GA)
The invention of GA is attributed to John Holland in Michigan in the 1960s.
Later, he authored a book called “Adaptation in Natural and Artificial
Systems,” where he described natural evolution (inspired by Darwinian
theory) and a foundation for transformation using GA. A candidate solution
in a GA is represented by a chromosome. The GA operates on a group of
solutions called a population rather than a single solution. Selection,
crossover, and mutation are the three important parameters of GA.

The efficiency of GA depends on the following three aspects:

function (also known as fitness function);
representation of the problem; and
operators and their implementation.

2.4.2.1.1 Fitness function
The objective function in GA is called the fitness function. The fitness
function evaluates the fitness of the candidate solutions for a problem. It
helps in determining the chromosome that produces new children and
continues into the next generation. A higher fitness value indicates a higher
chance of survival for the chromosome. A fitness function is decided by the
scheduler according to the requirements of the application.

2.4.2.1.2 Genetic representation of the problem and its implementation
The method of representing individual entities of the problem in GA is
defined as genetic representation. A good genetic representation is
important for formulating the problem and reaching better solutions. A
representation of chromosomes is necessary to illustrate every entity in the
population of GA. The two most popular chromosome representation
schemes in GA, which are used for solving scheduling problems, are given
below:

1. Direct Representation: It represents each solution as a list where the
size of the list corresponds to the total number of jobs. The element [b]
indicates the resource where job b will be allocated. The list contains
integer values where the range of integers lies between [0, r – 1],
where r is the number of resources.

2. Permutation-based Representation: The permutation-based
representation also represents each solution as a list, but the size of the
list is equal to the number of resources. In this case, the individual [b]
indicates the resource which contains a list of jobs allocated to it. The

list contains integer values where the range of integers lies between [0,
n – 1], where n is the number of jobs.

2.4.2.1.3 Genetic operators and their implementation
There are three operators in a standard GA which include selection,
crossover, and mutation.

Selection: The process of selection chooses solutions (parents) from
the original population of solutions. The idea is to select good parent
solutions that can survive into the next generation and reproduce new
offspring. Some of the popular selection mechanisms are given below:

i. Roulette Wheel Selection: This is a simple method of selecting
an individual from the population of solutions. The chances of
selection of an individual depend on their fitness. The probability
of selection of an individual is high for fitter individuals. The
slots in the wheel indicate the fitness value of the individuals.

ii. Rank Selection: In this method, the individual solutions are
arranged in the order of their fitness values. Later, a rank is
assigned to the individuals where the most fit individual has rank
N (N is the highest rank) and rank 1 is assigned to the least fit
individual.

iii. Tournament Selection: It is a popular selection method because
it is easy to implement and gives better solutions to problems
(Goldberg, 1989). This method involves the selection of
individuals from the population of solutions that are set to
compete against each other. The steps of the tournament selection
are given below:

a. Tournament size is set such that m ≥ 2.

b. A random permutation of chromosomes is generated in the
population of solutions.

c. The fitness values of the first m chromosomes are calculated
and compared with each other. The best values are copied
into the next generation, and the rest of the string is
discarded completely.

d. Another permutation is generated if the current permutation
is completely exhausted.

e. The step from (c) to (e) is repeated till all the selections are
done for the next generation.

iv. Boltzmann Selection: The selection rate is handled by a
continuously changing temperature.

Figure 2.5 Crossover: The genetic information of the selected
individuals is combined to form a new offspring. It enables exploration
of the search space and finds unexplored regions to provide better
quality solutions that can survive to the next generation. The selection
of the crossover technique depends on the type of genetic represen-
tation chosen for representing the solutions in GA. The popular
crossover methods are given below:

i. One-Point Crossover: A random position is selected in the two
parent solutions, which serves as the swap point and divides the
parents into two parts. The two-child solutions are generated by
swapping the two parts of the parents (Figure 2.5).

FIGURE 2.5 One-point crossover.
Mutation: The last operator, mutation, is optional and randomly
modifies the offspring (child) generated in the crossover step of the
GA (Figure 2.6). Mutation brings diversity in the GA which is required
for the exploration of the search space.

FIGURE 2.6 Mutation.

2.4.2.1.4 Mapping of GA to grid scheduling problem
During job scheduling in the grid environment, the GA allocates the job to
the available processors in a random manner. It creates a population of
solutions. The representation of the chromosome for the grid scheduling
problem is shown in Figure 2.7. The chromosome contains the jobs (J1, J2,

…, J7) which are positioned to the resources (R1, R2, …, R7) where these
jobs will be executed. Here, the gene pool is a resource pool that consists of
scheduling resources. The GA implemented in the grid environment to
solve the problem of grid scheduling is given in Algorithm 5.

FIGURE 2.7 Mapping of GA to a grid scheduling problem.

Algorithm 4: GA in Grid Environment
Input: Number of jobs and available resources.
Output: Allocation of each job to available resources. begin
Initialize grid environment
Initialize scheduler components
Probability of Crossover = pc
Probability of Mutation = pm
Number of generations = m

Step 1: Add a workload containing a number of jobs
Step 2: Initialize population of solutions Ry : Generation of the initial population of
solutions in a random manner.

repeat

Step 3: Selection operator ()
Step 4: Crossover operator ()
Step 5: Mutation operator ()
Step 6: Ry’ is created containing chromosomes (job-resource assignment) with best
fitness values
Step 7: The jobs are scheduled over the first best-selected resource from R$_{y’}$
according to the fitness function.
Step 8: Repeat until all the jobs are scheduled over the avail- able resources.
Step 9: Print the scheduling result.
Step 10: Repeat until the number of generations

return the best solution end

2.4.3 OTHER BIO-INSPIRED ALGORITHMS
Apart from the above-discussed swarm algorithms (Blum and Merkle 2008)
and evolutionary algorithms (Coello et al. 2007), there are other prominent
bio-inspired algorithms that offer promising solutions to a wide range of
NP-complete or complex optimization problems. A review of the literature
reveals a substantial number of bio-inspired algorithms developed in the
last decade that imitate the biological behavior of living organisms to solve

various optimization problems (Darwish 2018). Optimization is the process
of finding the best possible solutions to a given problem. The next section
summarizes some of the recent bio-inspired algorithms.

2.4.3.1 GENETIC BEE COLONY (GBC) ALGORITHM
GBC algorithm (Zhao et al., 2010) is a nature-inspired evolutionary
algorithm that is capable of solving machine learning problems such as
classification and selection problems. It is a combination of the traditional
genetic algorithm (GA) and a new swarm algorithm, that is, the artificial
bee colony algorithm (ABC). This algorithm (Ozturk et al., 2015) employs
the qualities of both algorithms. The GA suffers from the problems of
prematurity and local optima in the search space. The bee colony algo-
rithm eliminates the problem of local convergence of the GA and helps in
increasing the search speed and reducing the overall searching time. The
ABC algorithm (Nseef et al., 2016) consists of three types of artificial bees:
the onlooker bees, the employed bees, and the scout bees. The steps of the
ABC algorithm are as follows:

1. Parameters of ABC: At first, the parameters of the ABC algorithm,
such as population size (PS), the limit parameter, and total numbers,
are initialized.

2. Size Initialization: The solutions are generated randomly after the
initialization of parameters.

3. of Population Solutions: The population of solutions is assessed using
objective functions.

4. Bee: The employed bees are a type of bee that is assigned a particular
job to discover a new food source in its surrounding environment.
After the discovery of the food source, the employed bee gradually
moves into the category of candidate neighbor solutions with its

discovered food source in the neigh- boring environment. The
employed bees carry the nectar amount from the discovered food
sources, which is then evaluated by the algorithm. If the nectar amount
collected by the employed bee from the newly discovered food source
is greater than the nectar amounts available at the current food source,
then the newly detected food source will be memorized.

5. Bee: In this phase, the onlooker bees use the information provided by
the employed bees to start their search process. They begin their food
source search in the vicinity of the previously discovered food source
by the employed bees and also cover other competent areas in the
exploration process of the food source. Both types of bees (onlooker
and employed) work on the betterment of their current solutions by
exploring their nearby areas.

6. Bee: After the successful detection of a food source, the employee bee
converts into scout bees, and they again start the discovery of a new
food source in the solution space. The increased number of scout bees
can be controlled by setting a limit parameter to indicate the number of
trials. When the current solution can no longer be improved, a random
search may be applied to discover a new food source.

7. Parameters: The fundamental GA operators, such as crossover and
mutation, provide a better option to solve binary optimization
problems in comparison to the ABC algorithm. The combination of the
ABC algorithm and GA can be performed in the given four steps:

In the vicinity of the currently available food source, two other
new food sources can be selected randomly to identify a proposed
solution.
The first operator and the two-point crossover operator are
applied between the two current neighbors to develop food

sources for children.
In the next step, the swap or mutation operator can be applied to
the food sources of children to generate grandchildren’s food
sources.
Out of the children’s food sources and grandchildren’s food
sources, the best food source will be selected as a neighbor- hood
food source of the computed solution.

In this manner, the ABC algorithm’s performance can easily be enhanced in
binary optimization problems.

2.4.3.2 FISH SWARM ALGORITHM (FSA)
The fish swarm algorithm (FSA) algorithm (Neshat et al., 2012) is one of
the intelligent swarm optimization algorithms that have important attributes
such as quick convergence speed as well as deep and efficient search
mechanisms. This algorithm imitates the nature of fish, and each fish can
conduct its search for food sources in different manners. The fish can
exchange information with each other to reach global optimization. There
are several phases of the FSA algorithm, which are briefly described below:

1. or Predacious Behavior Phase: In the preying phase, if Ni represents
the present position of the fish and the artificial fish performs a
random selection and selects Nj from its visual range, then there are
two possible cases: in the first case, if f(Ni) < f(Nj), the artificial fish
will proceed in the direction of (Nj–Ni) or from Ni to Ni. In the second
situation, the artificial fish can continue random selection to choose the
next state Nj.

2. Behavior Phase: In the next phase, the artificial fish will explore the
central position of its present neighborhood fish.

3. Behavior Phase: The artificial fish, say Ni, will move towards the best
fish found in its local neighborhood.

4. Behavior Phase: The artificial fish in this phase apply a random
selection approach to select a position in its observable range and
gradually drift towards that selected position.

5. Behavior Phase: In this phase, the finest behavior will be chosen to
update the present state of the artificial fish. This is the last phase,
which indicates the successful completion of the previous phases.

2.4.3.3 ELEPHANT SEARCH ALGORITHM (ESA)
The elephant search algorithm (ESA) (Deb et al., 2016) is a member of
heuristic optimization algorithms (Deb et al., 2015), and it imitates the
behavior and traits of elephants. It follows a dual search procedure where
the search agents are partitioned into two groups. Usually, elephants tend to
live in groups, where each group is segregated into one or more subgroups
under the supervision of the oldest elephant in the main group. Socially,
female elephants prefer to live in groups, while male elephants choose to
live in isolation. The male members perform the task of exploration, while
the female elephants are responsible for spatial enhancement. There are
three important features of ESA as an efficient search optimization
algorithm:

In order to obtain an optimal solution, the search process repeat- edly
improves the current solution.
The main female elephant carries out a comprehensive search locally
at some places where the chances of getting the best solution are high.
The male is assigned the responsibility of performing explorations out
of local optima.

2.4.3.4 MOTH FLAME OPTIMIZATION (MFO)
The MFO (Mirjalili, 2015; Shehab et al., 2020) is a recent search
optimization algorithm. Moths are identical to butterflies in their behavior.
The moths follow their way of navigation and fly towards moonlight during
nighttime. The technique followed by the moths to navigate during night-
time is called transverse orientation. Mathematically, moths indicate the
candidate solutions, and the position of moths in solution space indicates
the variables of the problem.

2.4.3.5 GREY WOLF OPTIMIZATION (GWO)
The grey wolf optimization (GWO) algorithm (Mirjalili et al., 2014)
belongs to a group of the latest meta-heuristic algorithms (Faris et al., 2018)
and has been motivated by the hunting and leadership attributes of grey
wolves. These wolves are related to the Canidae family. The grey wolves
tend to live in groups, which are led by the alpha wolf of the group. The
alpha wolf is the leader of a particular group and is liable to make critical
decisions such as hunting and sleeping areas. The beta wolf belongs to the
second category of grey wolves, whose job is to assist the alpha wolf in
making important decisions. The third category is omega wolves, whose job
is to provide information to the other wolves. The rest of the wolves are
called delta wolves and are pledged to dominate the omega wolves. The
phases of the GWO algorithm can be formulated in three steps:

Locate, quest, and reach the prey;
Seek, encircle, and intimidate the prey; and
Strike towards the prey.

Among all the solutions, the fittest solution is considered as alpha wolf. The
second-best solution is known as beta and the third best solution is known

as delta wolves. The remaining omega wolves belong to the other candidate
solutions.

2.4.3.6 CHICKEN SWARM OPTIMIZATION ALGORITHM (CSOA)
The chicken swarm optimization algorithm (CSOA) (Meng et al., 2014) is a
new swarm optimization algorithm that imitates the nature of chicken
swarms and their ranking order. Lately, the literature study suggests that
these algorithms have proven their potential in solving multi-objective
optimization problems (Zouache et al., 2019). Different groups depict the
swarm of chickens, where each group contains only one rooster and several
chicks and hens. Competition takes place among different chickens with a
given hierarchical order. The ranking order holds an important place in the
swarm because it affects the social lives of chickens, hens, chicks, and
mother hens. The nature of the chicken swarm changes with the presence of
male or female chickens in the swarm. The leader rooster is responsible for
searching for food and actively fights with other chickens in the vicinity of
its search area, that is, around the group. The chickens that search for food
will be persistent with the leader roosters, and some submissive chickens
will be standing in the identical place of the group to find their food. The
competition exists between the chickens, but the baby chicks find food
around their mother hen. Mathematically, the CSOA can be formulated as
follows: the swarm of chickens is composed of many groups, and each
group comprises hens, chicks, and one rooster. The chickens with the best
fitness values will be regarded as roosters, whereas the chickens with the
worst values are considered chicks. The remaining chickens are considered
hens, who are free to decide which group they want to live in.

2.4.3.7 CAT SWARM OPTIMIZATION (CSO)
The cat swarm optimization (CSO) algorithm (Chu et al., 2006) is a new
optimization algorithm that impersonates the behavior of cats. In the last

few years, CSO (Ihsan et al., 2021) has been used to solve optimization
problems. There are different modes of cats in the CSO algorithm. The
seeking mode signifies that the cats are resting, but they are still alert. In the
tracing mode, the cats perform a local search to find the good (optimal)
solution to the given optimization problem.

2.4.3.7.1 Seeking mode
The seeking behavior of cats in the CSO algorithm has four major factors:

1. Memory Pool (SMP): It indicates the size of the pool of seeking
memory.

2. Range of Selected Dimension (SRD): It determines the value of
maxima and minima of the seeking range.

3. of Dimensions to Change (CDC): It defines the number of
dimensions that are possible to show variation in the seeking mode of
the CSO algorithm.

4. Self-Position Consideration (SPC): It is a Boolean-valued variable. A
mixture ratio (MR) is defined as a population fraction having a smaller
value, which assures that most of the time, cats are in two states,
namely observing and resting. The seeking process of the CSO
algorithm has been briefly discussed below:

1. The MR value is selected randomly as a part of the population
fraction np for the seeking cats in the algorithm.

2. In the next step, SMP copies are prepared for the ith cat.
3. The position of each copy is updated randomly in the form of a

plus or minus SRD fraction of the value of the current position
and replaced accordingly.

4. The evaluation of the fitness value of all the copies is completed.

5. The probability values of individual candidates from all the
available copies are computed, and the copy with the best
probability value is placed at the position of the seeking cat.

6. Step 2 – tracing mode is repeated to include all the seeking cats in
the algorithm.

2.4.3.7.2 Tracing mode
In an optimization process, tracing mode is treated as an exploration
technique where the cats chase the desired target with strong energy. The
fast chase of a cat can easily be modeled in a mathematical equation by
changing the cat’s position.

2.4.3.8 WHALE OPTIMIZATION ALGORITHM (WOA)
The whale optimization algorithm (WOA) (Mirjalili and Lewis, 2016;
Gharehchopogh and Gholizadeh, 2019) is another metaheuristic that
provides solutions for complex engineering problems. Out of all the
mammals, whales are the largest, and they are an extraordinary species.
Some of the significant members of this class are killer, humpback, blue,
and finback whales. Whales spend most of their time breathing in seas and
oceans, which deprives them of getting sleep. They are a type of mammal
whose only half of the brain can sleep. They may live in a group or can
sustain themselves alone. Killer whales prefer to reside with their family,
while humpback whales are known as the largest whales, and their main
targets are small fish and krill species. The brains of whales contain distinct
cells in precise regions. These cells govern different feelings, emotions, and
aspects of human nature. Whales are smarter than humans because they
have twice the number of cells as humans do, which contrib- utes to their
intelligence. Whales are capable of thinking, communicating, learning, and
developing their dialects. A type of hunting technique used by humpback
whales, known as bubble-net feeding, is a special feature of these whales.

2.4.3.9 ARTIFICIAL ALGAE ALGORITHM (AAA)
As the name suggests, the artificial algae algorithm (AAA) (Uymaz et al.,
2015) is inspired by the living habits and nature of microalgae. It is a new
bio-inspired algorithm that draws its inspiration from the lifestyles of algae,
such as reproduction, algal habits, and adaptation to the neighboring
environment to modify the main species. Hence, there are three important
processes of algae, namely the process of evolution, helical movement, and
adaptation. The population of algae is called algal colonies, and the cells in
these colonies will develop to a larger size if they receive an adequate
amount of sunlight. If the algae cells grow, it will lead to the growth of algal
colonies. However, the process of growth of algal colonies may be affected
due to insufficient light. In the next movement, that is, the helical
movement, the individual algal colonies will be moving towards the best
algal colony.

2.5 SUMMARY
This chapter provides methodologies for solving the job scheduling
problem in the grid environment. It describes the shortcomings of
conventional methods for solving a grid scheduling problem. Popular
conventional techniques and some prominent bio-inspired approaches, as
well as their mapping in the grid environment to solve the job scheduling
problem and perform resource management, are devised in this chapter.
This chapter consists of the research methodologies proposed and
implemented to solve the problem of grid scheduling. The reason for
choosing a metaheuristic over conventional scheduling algorithms is
studied in this chapter. Stan- dard metaheuristics such as ACO, PSO, and
genetic algorithm (GA), along with their mapping to the grid scheduling
problem, are discussed.

KEYWORDS

Ant colony optimization
artificial algae algorithm
cat swarm optimization
chicken swarm optimization algorithm
genetic algorithm
metaheuristics
particle swarm optimization
resource management
whale optimization algorithm
wolf optimization algorithm.

OceanofPDF.com

https://oceanofpdf.com/

CHAPTER 3
Work Done Using Conventional and
Bio-Inspired Algorithms
3.1 INTRODUCTION
Grid scheduling is an intrinsic component of grid computing infrastructure.
This chapter collectively brings out work done using different scheduling
approaches applied in the grid environment. Different works on scheduling
and resource management have been discussed in this chapter. These
problems are called multiobjective optimization problems because they
involve more than one objective function to be optimized simultaneously.
This is the case when an optimal decision is required to be made between
two or more mutually dependent objective functions. In order to deal with
the conflicting objectives and satisfy other constraints, an efficient
algorithm is needed to find an optimal solution. The last decade has seen
substantial contributions of bio-inspired algorithms in solving
multiobjective optimization problems. These algorithms have attracted
researchers from all over the world to solve static as well as dynamic
optimization problems. They have been motivated by natural phenomena
and biological evolution. In the very beginning, we had stand-alone
algorithms, but later, hybrid algorithms were developed to produce more
efficient results. Though hybrid algorithms are a little more complex
compared to individual algorithms, they are more powerful and have the
advantages of one or more candidate (hybridized) algorithms. In this
chapter, we have studied different bioinspired as well as conventional
algorithms implemented in the grid envi- ronment to schedule jobs and

manage resources efficiently. Additionally, several research works have
been included that incorporate conventional as well as non-conventional
(bioinspired) approaches to solve the grid scheduling problem and manage
resources in the grid environment.

Mastering Grid Computing: Scheduling and Resource Management.

Ankita & Sudip Kumar Sahana (Authors)
© 2025 Apple Academic Press, Inc. Co-published with CRC Press (Taylor & Francis)

Scheduling, in simplest terms, is defined as the assignment of jobs over the
resources in a computing environment. There are different forms of
scheduling discussed below:

1. and Decentralized Scheduling: The process of centralized scheduling
consists of a single scheduler that manages a set of resources
belonging to a single organization. In decen- tralized scheduling, there
are several entities, such as GridWay, Grid Resource Broker, and
Metaschedulers, that manage a set of resources that may belong to
several organizations. Decentralized scheduling follows part of a
hierarchical model where scheduling decisions are made separately at
different levels and require coor- dination among the levels for an
effective solution.

2. and Suboptimal Scheduling: Optimal scheduling is achieved when
the resource requirements of a job and the grid system state are known
in advance under certain optimal conditions. The feasibility of such
scheduling is not possible in a dynamic environment like the grid. A
suboptimal type of sched- uling is feasible in a grid environment, and
hence suboptimal solutions are obtained because there is no possible
method to draw information about the actual state of the grid.

3. and Dynamic Scheduling: A scheduling method that requires detailed
information about the state of the grid is called static scheduling. A
grid computing framework does not support static scheduling because
it requires the state of the grid to remain unchanged before and after
the completion of the scheduling process. Dynamic scheduling, or
online scheduling, is a better option as it can handle jobs and resources
that appear and disap- pear at any time in a dynamic grid environment.

4. Mode Scheduling: This is a simple scheduling approach where jobs
are allocated to resources immediately as soon as the jobs arrive in the
grid system.

5. and Non-Preemptive Scheduling: The scheduling mode is said to be
non-preemptive if the job completes its execution on the resource and
never leaves it before its completion. The scheduling mode is said to
be preemptive if the execution of the current job is suspended from the
resource and transferred to another resource when a higher-priority job
enters the grid system.

6. Scheduling: The scheduling methods must be adapted to incorporate
the changing behavior of the grid environment. This method of
scheduling stores information about the current resource status and
also makes predictions about the future resource status in order to
nullify the chances of performance degradation of the grid
environment.

7. Mode Scheduling: The jobs are organized into several groups called
batches. These batches are sent to the appropriate resources by the
scheduler, and the result of the execution of the entire batch comes
after some time interval. The next batch of jobs is sent as soon as the
processing result of the previous batch comes to the user.

3.1.1 SCHEDULER
A scheduler places a job over a resource based on the job’s requirements
and tracks the job and resource status until it finishes its execution. There
are different types of schedulers listed below:

1. Grid Scheduler: It is the most important entity in a grid system. It is
responsible for selecting and allocating a resource from a set of
resources for a particular job under given constraints.

2. Schedulers: These, sometimes called cluster schedulers, are
responsible for assigning jobs to the resources in the same regional or
local network.

3. Meta-Schedulers: The meta-brokers are used for the management of
jobs/applications that are scheduled at multiple resources across
various grid systems. These schedulers also help maintain a uniform
load across different systems.

4. Super-Schedulers: These perform a centralized scheduling approach
where the scheduler manages the selection of resources and the
execution of jobs over the chosen resources. The jobs are assigned to a
single computing resource during their execution.

5. Schedulers: These schedulers are viable in an enterprise that depends
on local schedulers of the enterprise for job-resource management.

6. Resource-Oriented Schedulers: The goal of these schedulers is to
escalate resource utilization (RU) in a computing network.

7. High-Efficiency Schedulers: These aim to achieve maximum
efficiency of the system, and hence they are focused on elevating job
performance, which eventually enhances the efficiency of the grid
environment.

3.1.2 STAGES OF GRID SCHEDULING
The scheduling process of the grid primarily consists of four steps:

1. A Collection of Information: This is the first step of grid scheduling,
sometimes called resource discovery. Complete and updated
information about the status of available resources and jobs is made
available to the grid scheduler for crucial decisions regarding job
scheduling in the grid environment.

2. of Appropriate Resources: The process of resource selection is based
on the needs of the job and the characteristics of the resource. The
scheduling algorithm decides the selection of resources based on some
optimization criteria.

3. of Job: The job is allocated to the selected resource for execution.
4. Execution and Monitoring of Performance: The execution of the job

is tracked by the grid scheduler. Additionally, the scheduler keeps
monitoring the status of the resource for possible failures.

3.2 RESOURCE MANAGEMENT
In general, resource management is the efficient utilization of resources in
the best possible manner. It involves deep planning and analysis of the job
requirements as well as resource availability to make appropriate job-
resource assignments in any working environment. Resource management
consists of several approaches that can be used for handling resources.

A resource can be anything—human skills, information technology (IT),
time, inventory, and many more depending on the type of organization.
Resource management is focused on the optimization and perfor- mance of
the resources.

3.2.1 STAGES IN RESOURCE MANAGEMENT
Resource management is accomplished through several stages stated below:

1. Estimation: This is the first stage where the resource management
team decides the necessary resources required for the success of a
project and the cost of running the project. The team members of the
project communicate with the client side to discuss the requirements
before the beginning of the project.

2. Planning: As soon as the requirements are stated from the client side,
the project manager starts looking into the available resource pool. If
the available resources are sufficient for fulfilling the project
requirements, the project execution can begin in the next moment, or
other measures are taken to set constraints on the available resource
pool.

3. Execution: This is the phase when resources are scheduled over
different jobs by analyzing the job requirements. The jobs are
scheduled over the available resources, followed by the job execution.

4. Analysis: This phase allows the project manager to set measures to
analyze the performance of the project once it is completed.

5. Optimization: In this phase, the project manager makes effective
decisions in real-time to modify the approaches in order to mini- mize
costs and optimize other resources. Proper resource management is
necessary to optimize resources and improve efficiency.

There are some techniques that can be used to perform effective resource
management:

1. Resource Allocation: It makes use of the available resources in the
resource repository in the most efficient manner. The resource manager

must have a complete report of available resources to make effective
resource allocation.

2. Leveling: This technique helps to uncover the under- used resources
whose potential has not been fully realized in the organization.

3. Forecasting: This technique allows the resource manager to predict
future resource requirements before the actual start of the project. It
also unveils the potential risks and unexpected costs that may be
incurred after the completion of the project.

Resource management has been a critical issue for the research community
in different domains. Natural resources, computing resources, and human
resources all require efficient and effective management tech- niques to
utilize the true potential of these resources.

3.3 GRID RESOURCE MANAGEMENT (GRM)
Grid computing is becoming a popular platform for user applications that
require more computing power than a single resource can provide to solve
scheduling problems at a reasonable cost and time. The resources of the
grid, for example, clusters, supercomputers, sensors, and storage devices,
are scattered around various regions across the territories. The availability
of the internet and grid computing technology has made substantial
advancements in the modern way of computing.

The goal of grid resource management (GRM) is to allocate jobs over
different grid resources with the objective of:

Reduce execution time of job;
Minimize waiting time for the job;
Optimize resource utilization;
Distribute workload among the resources uniformly.

The GRM involves job scheduling and focuses on all aspects of a resource
such as its allocation, utilization, and load, and also monitors the status of
the resource. There are several elements or components of GRM (Figure
3.1).

FIGURE 3.1 Elements of grid resource management (GRM).

1. Resource Allocation: It is accompanied by resource discovery and
resource selection. The resources are stored in a central server, which
contains complete information about the processing capabilities and
current status of the resources. The resources are selected from the
repository based on their current availability and suitability for a
particular job. Once a resource is selected, it is allocated to the job for
its execution.

2. Utilization (RU): It is an important factor that affects the performance
of the grid environment. Resource management enables the resources
to the users, which considers both user and resource provider
satisfaction. Optimal RU helps in achieving improved system
performance.

3. Balancing: The workload distribution among the resources of the grid
must be done in a uniform manner so that neither of the resources in
the grid becomes overutilized nor underutilized. The utilization of all
the resources in the grid should be uniform for effective RU.

4. Monitoring: It is important to keep track of the status of the resources
in a dynamic grid environment. It is possible that a new resource can
be added to an existing grid infrastructure, or an existing resource may
become unavailable at any point in time.

5. Scheduling: Scheduling is a central part of a grid computing
environment. The jobs of the grid are scheduled over appropriate
resources according to the priority of the job and resource. A
scheduling technique is adopted that finds the right matching of job to
resource with the objective of reducing the TCT of jobs, which
eventually elevates the performance of the job and the grid.

A number of scheduling algorithms have been developed to schedule jobs
over the resources in the grid environment. The conventional algorithms are
deterministic approaches that have been applied to grid scheduling
problems for many years. In a grid computing environment, resource
management is an application that controls the way resources are used to
enhance RU and job performance. The taxonomy of GRM shows a
literature report on different scheduling algorithms applied in the grid
computing environment (Table 3.1).

Table 3.1 Taxonomy on Grid Resource Management (GRM)

Menasce
and
Casalicchio
(2004)

A framework
for resource
allocation in
grid computing.

In this chapter, the
resource allocation
problem is
formalized for an
enterprise
application which
consists of a set of

Optimal resource
allocation with
minimum cost and
time.

Author Topic Concept Findings

SLA (service level
agreement)
constraints and has
different requisites
for resources and
services in a grid
environment.

Buyya and
Abramson
(2000)

Grid resource
management,
scheduling, and
computational
economy.

This chapter
presents various
problems
encountered in
scheduling and
resource
management and
highlights a few
scheduling
techniques using the
concepts of
computational
economy.

In the future, a
generic structure
called GRACE (grid
architecture for
computational
economy) can be
developed for grid
computational
economy.

Balaton and
Gombas
(2003)

Resource and
job monitoring
in the grid.

This chapter studies
the problems in
resource monitoring
and introduces a
monitoring system
based on GMA

The monitoring
system has been
implemented and is
currently being
operated in the
GridLab project.

Author Topic Concept Findings

(grid monitoring
architecture), which
is flexible and
efficient in
providing the status
of resources and
running jobs.

Buyya and
Chapin
(2000)

Architectural
models for
resource
management in
the grid.

This chapter
discusses three
architectural models
(hierarchical,
abstract owner, and
computational) for
grid resource
management.

All three models are
presented here in
high-level form and
can be used to
implement future
grid systems.

Buyya et al.
(2002)

Economic
models for
resource
management
and scheduling
in grid
computing.

The author proposes
a framework based
on the
computational
economy
(Nimrod/G) for the
assignment of
resources. The
scheduling controls
the resource request

Optimal and
effective resource
utilization. It
provides different
ways to trade-off
between cost and
deadline of an
application which
makes Grid a basis
for standard
computing.

Author Topic Concept Findings

and delivery in the
grid environment.

Kandagatla
(2003)

Survey and
taxonomy of
grid resource
management
systems.

This chapter
presents a survey
report on existing
grid resource
management
architectures and
classification
schemes for
resource
management
architectures.

Different issues in
resource
management
systems (RMS) and
a survey report
containing RMS
architecture in
different grid
systems are
discussed.

Qureshi et
al. (2014)

Survey on grid
resource
allocation
mechanisms.

This chapter
provides a
comprehensive
survey report on
various resource
allocation
techniques used in
different grid
architectures.

Comparison of
resource allocation
schemes based on
their complexity,
optimality, objective
function, and
searching technique.
It helps in selecting
the most relevant
allocation
mechanism for a
particular grid
system.

Author Topic Concept Findings

Sahana and
Ankita
(2019)

A
comprehensive
survey on
computational
grid resource
management.

The author has
classified resource
allocation strategies
into four categories
- analytical,
progressive, local
search, and swarm-
based.

The algorithms and
their
implementation in
solving real-world
problems are
discussed in detail.

Czajkowski
et al. (1999)

Resource co-
allocation in
computational
grids.

In this chapter, the
problems of co-
allocation are
discussed, and
mechanisms that
facilitate the co-
allocation of
resources in the grid
environment are
provided.

The author has
introduced two
different techniques
- the atomic
transaction
approach and the
innovative
interactive
approach, to solve
the problem
resource of co-
allocation.

Cao et al.
(2002)

Agent-based
resource
management for
grid computing.

The author has
discussed about the
issues in resource
management and
introduces an agent-
based mechanism

A4 methodology is
modeled, and
simulation is carried
out using PMA
(performance

Author Topic Concept Findings

called A4 (agile
architecture and
autonomous agents)
for grid resource
management.

monitor and
advisor).

Yousif et al.
(2015)

Job scheduling
algorithms on
grid computing:
state-of-the-art.

In this chapter, the
author has presented
an extensive survey
report on scheduling
and various
scheduling
approaches in a grid
computing
environment.

The survey covers
the basic
approaches, such as
max-min and min-
min, as well as the
swarm intelligence
techniques.

Fatos Xhafa
and
Abraham
(2008)

Meta-heuristics
for grid
scheduling
problems.

In this chapter, the
author presents an
analysis of grid
scheduling and also
states the
importance of
heuristic and meta-
heuristic approaches
for solving grid
scheduling
problems.

The author deeply
investigates the
complexities of
scheduling in
computational grids
and justifies the use
of heuristic and
meta-heuristic
approaches for
scheduling.

Author Topic Concept Findings

Prajapati
and Shah
(2014)

Scheduling in a
grid computing
environment.

This chapter
presents a detailed
overview of grid
computing systems
and scheduling
(resource and
application
scheduling) in a
grid environment.

It provides a
classification of
scheduling
algorithms applied
in the grid
environment.

Mishra et
al. (2014)

A survey on
scheduling
heuristics in a
grid computing
environment.

The chapter
presents a
comprehensive
study of grid
computing and
scheduling
mechanisms. It also
proposes a new
classification
approach for
classifying
scheduling
algorithms.

A detailed
assessment of the
scheduling
techniques has been
done on the basis of
the parameters used
in scheduling.

Flórez et al.
(2015)

Methods for job
scheduling on
computational

This chapter uses an
ETC model
(expected time to
compute) to present

This chapter
provides a deep
analysis and
comparison of

Author Topic Concept Findings

grids: review
and comparison.

a study report on
heuristics and meta-
heuristics for
solving grid
scheduling
problems.

scheduling
algorithms that can
assist aspiring
researchers in
studying the
available scheduling
techniques for
performing future
research.

3.3.1 GRID RESOURCE MANAGEMENT (GRM):
CONVENTIONAL ALGORITHMS
In the early period, scheduling techniques like FCFS, max-min, min-min,
round robin, and SJF were used to schedule jobs over resources in a distrib-
uted environment. These techniques are no longer suitable for scheduling
jobs because of the changing grid environment and the increased number of
jobs. The job size and its heterogeneity, as well as resource heterogeneity,
add more complexities to the grid scheduling problem. The number of jobs
and resources changes continuously in the grid environment over time. This
requires an efficient scheduling mechanism to allocate resources to jobs and
handle the challenges of the grid environment. There are many well-known
works in the area of grid scheduling and resource management using
conventional algorithms at both national and international levels.

3.3.1.1 NATIONAL WORK ON GRID RESOURCE MANAGEMENT (GRM)
USING CONVENTIONAL ALGORITHMS
Many researchers have applied different scheduling algorithms to the Grid
Scheduling Problem to find an optimal solution. The efficiency of grid

Author Topic Concept Findings

computing depends heavily on the way its resources are scheduled.
Kokilavani and Amalarethinam (2010) provided a report on the application
of conventional techniques to the grid scheduling problem. Mishra et al.
(2014) have presented several challenges of scheduling in the grid
environment. They have introduced a new way of classifying the scheduling
algorithms and the performance metrics to determine their efficiency.
Prajapati and Shah (2014) have discussed important concepts of resource
and application scheduling in the grid environment. It also includes
different scheduling systems, algorithms, and methodologies to measure the
efficiency of these algorithms.

Panda et al. (2013) have given semi-interquartile scheduling based on
Min-Min and Max-Min heuristics for allocating resources to jobs. The
experimental results have shown that their method has better scheduling
results in terms of makespan and RU in comparison to other conventional
methods. Kfatheen and Marimuthu (2017) have developed an efficient task-
scheduling algorithm using the ETC matrix (expected time to compute) to
solve the scheduling problem in the grid environment. The experimental
analysis has been carried out using the GridSim simulation toolkit. The
results show that the algorithm is able to manage workload among the
resources and minimize the makespan of jobs. Kokilavani and
Amalarethinam (2011) have proposed a modification to the conventional
Min-Min algorithm. The conventional Min-Min algorithm fails to balance
the load among the resources. The proposed algorithm schedules the jobs,
minimizes makespan, and also balances the load among the resources in the
grid environment. Ghosh et al. (2012) have proposed a load-balanced Max-
Min scheduling heuristic, which initially schedules the jobs using the
conventional Max-Min and then reschedules the tasks to utilize the idle
resources. The experimental results show improved RU and a loadbalanced

schedule. Kfatheen and Banu (2015) have proposed a scheduling approach
that is a combination of two conventional scheduling techniques, namely
Min-Min and Max-Min. The results show that the proposed algorithm
reduces the makespan in comparison to the parent algorithms.

Shanthini et al. (2015) have proposed a scheduling approach that
combines features of two algorithms – the best gap search (BGS) and
apparent tardiness cost (ATC) algorithm. The said algorithm reduces the
total weighted tardiness of the jobs. Goswami and Das (2015) have
modified the nearest deadline first scheduled (NDFS) algorithm. The
authors have added the average load to the active load of the resource to
find a solution for load distribution among the resources of the grid. The
experimental results show that the efficiency of their algorithm has been
improved by incorporating more parallelism in the computation.

3.3.1.2 INTERNATIONAL WORK ON GRID RESOURCE MANAGEMENT
(GRM) USING CONVENTIONAL ALGORITHMS
In a grid network, there can be thousands of systems, and hence it is not
possible to manually assign jobs to these systems. An effective scheduling
algorithm is extremely needed to fully utilize the services provided by the
grid environment. The classification helped in unveiling mechanisms that
are being followed in the application of resource management systems
(RMS) for computational grids. Fibich et al. (2005) have presented a model
that contains important definitions, constraints, and terminologies regarding
the grid scheduling problem.

The authors have also studied the properties of jobs and the resources in
the grid network. Dong and Akl (2006) have analyzed the scheduling
problem in the grid network and discussed the major challenges of the grid
environment. Jiang et al. (2007) have given a report on various aspects of
job scheduling and simulation strategies in the grid environment. It includes

fault tolerance, and security, and also covers the limitations of scheduling in
the grid environment. Gharehchopogh et al. (2013) have discussed several
conventional algorithms such as min-min, minimum completion time
(MCT), max-min, and XSuffrage. Amiri et al. (2014) have explained the
resource allocation mechanism in the grid environment, as well as
prominent algorithms for resource allocation in the grid environment.
(Maipan-Uku et al. (2016) have introduced a scheduling approach called
Max-Average, based on a popular conventional technique, that is, Max-
Min, to solve the problem of scheduling in the grid environment. The
experimental results show that the said algorithm gives better results in
terms of RU and completion time of jobs in comparison to other scheduling
algorithms such as MCT, minimum execution time (MET), max-min, and
min-min algorithms.

Hamscher et al. (2000) have discussed structures of scheduling that can
be found in the computational grid environment. The performance of the
scheduling algorithms is dependent on these structures. For example, in the
case of a central job pool, FCFS gives better results than the Backfill
algorithm. Menasce and Casalicchio (2004) have presented a framework for
allocation in the grid computing environment. This framework aims at
minimizing the execution time at the minimum cost of the resources.

Jiang and Ni (2009) have presented a scheduling algorithm that contains
the features of FCFS and Backfill scheduling algorithms. The scheduling
results show improvements in the throughput of the grid system and also an
efficient RU rate. Although conventional algorithms have been successful in
obtaining solutions to a small set of problems, they are ineffective in
finding solutions to complex problems and dealing with the constantly
changing grid environment. This has led to the need for new scheduling
algorithms that can deal with the dynamic grid environment as well as

complex data sets. Research groups have found that algorithms inspired by
nature and natural phenomena are potentially efficient in dealing with real-
time complex problems in science and engineering. A lot of notable work
has been done in this field by the research community at both national and
international levels.

3.3.2 GRID RESOURCE MANAGEMENT (GRM): BIO-
INSPIRED ALGORITHMS
The grid computing infrastructure consists of numerous homogeneous or
heterogeneous resources, which require proper resource management
(Sahana and Ankita, 2019) for efficient and effective RU. The conventional
algorithms are unsuitable for larger problem sets and cannot meet the
demands of a dynamically changing environment like Grid. In modern
times, there are many applications in different streams of science and
engineering where complexities arise due to various conflicting objective
functions that require optimization simultaneously under certain constraints.
These complex problems are termed multiobjective optimization problems.
A good number of scheduling methods have evolved in the last decade,
which have shown exemplary scheduling results. Metaheuristics are
considered a good means of solving multiobjective problems under many
constraints. Some of the potential reasons for applying a metaheuristic to
Grid scheduling problems are listed below:

1. Metaheuristics: Until now, researchers have applied metaheuristics to
many multiobjective and complex problems. Therefore, it becomes
quite easy to develop new metaheuristics for solving grid scheduling
problems using past data and facts about the metaheuristics.

2. Obligation for an Exact Solution: An exact solution is not required
for an NP-complete problem. It is even difficult to reach an optimum

solution in a dynamic grid environment, and hence a proper outlining
of jobs over the resources will be quite sufficient.

3. Results in Less Time: Metaheuristics take less time compared to other
conventional approaches. This is one of the biggest reasons for opting
for metaheuristics to solve multiobjective problems. These methods
provide features to adjust the convergence speed and obtain solutions
in relatively less time.

4. for Multiobjective Problems: The research trend shows that
metaheuristics have provided potential solutions when applied to both
single-objective and multiobjective problems.

5. for Periodic Scheduling: Sometimes, user requests are submitted to
the grid system in a periodic manner. Metaheuristics support resource
provisioning in the grid environment and hence can run for higher
completion times, which will enhance the planning of resource
allocation to jobs.

6. for a Decentralized Model of Resource Allocation: The growing size
of the grid system has led to the popularity of decentralized methods of
resource allocation. Metaheuristics can easily work in such an
environment where one scheduler is regulated by another scheduler.

7. for Hybridization: Metaheuristics can easily combine with other
heuristic and metaheuristic approaches to provide feasible solutions for
more concrete Grid applications. The research trend shows that the
hybridized approaches have demonstrated better results compared to
single approaches in solving complex multiobjective problems.

8. Robustness: A dynamic environment like a grid keeps changing over
time in terms of its resources, networks, and job heterogeneity. Hence,
a robust scheduler is an extreme need to maintain the performance of

the grid environment. The literature study of metaheuristics shows that
they are robust.

Those metaheuristics inspired by nature are called nature-inspired or
swarm-based metaheuristics (Abraham et al., 2000; Krause et al., 2013;
Yang, 2010). The metaheuristics inspired by natural processes or biological
processes are called evolutionary-based metaheuristics (Phelps and
Köksalan, 2003; Yu and Gen, 2010). These algorithms are fast and provide
satisfactory results in a reasonable time. Bio-inspired mechanisms are
divided into two groups: swarm-based mechanisms and evolutionarybased
mechanisms.

The field of computer science that is driven by the behavior of swarms of
living organisms is known as swarm intelligence. Swarm-based algorithms
such as ACO (Blum, 2005), artificial bee colony (ABC) (Karaboga et al.,
2014), PSO (Marini and Walczak, 2015), Cuckoo Search algorithm (Mareli
and Twala, 2018), and many more draw their inspiration from nature. ACO
and PSO are the prominent members of the swarm family. The underlying
principle behind the working of ACO is influenced by the behavior of ants
in the real world. The distinct way of exploring and exploiting food sources
by the ants has provided several ideas for finding solutions to complex real-
life problems. The behavior of bird flocking has motivated the design of the
PSO algorithm. Apart from swarm-based algorithms, evolutionary
algorithms like the genetic algorithm (GA) have also been very popular, as
they are inspired by the biological phenomenon of evolution described by
Charles Darwin.

3.3.2.1 NATIONAL WORK ON GRID RESOURCE MANAGEMENT (GRM)
USING BIO-INSPIRED ALGORITHMS
A grid can be defined as an infrastructure that constitutes a large number of
resources such as compute resources, storage devices, and network devices

distributed at different locations. Grid computing aims at widescale
resource sharing and utilization of idle resources for distributed
applications. A good scheduling mechanism (Prajapati and Shah, 2014) is
required, which can spontaneously adjust its policies with incoming jobs
and the dynamic grid environment. Singh et al. (2014) have studied the grid
scheduling problem and resource management in the grid. It also surveys
different scheduling algorithms along with their applications in the grid
system. There have been many notable works in the field of developing bio-
inspired optimization algorithms (Binitha and Sathya, 2012; Grover and
Chabbra, 2016; Pazhaniraja et al., 2017) for managing resources and
scheduling jobs over appropriate resources in a legitimate time.

The striking features of ACO, such as parallelism, scalability, and
dynamic behavior, make it a convincing approach for solving NP-complete
problems like grid scheduling in the grid environment. Kant et al. (2010)
have introduced the theory of red ants and black ants in ACO. They have
applied a two-level optimization to improve RU in the grid environment.
Mathiyalagan et al. (2010a) have modified the conventional ACO by
changing the pheromone update rule. The simulation results show
improvement in RU and system efficiency.

Tiwari and Vidyarthi (2016) have introduced the notion of lazy ants for
exploring the search space around the best ant for solving the grid
scheduling problem. The algorithm is an auto-controlled technique that
dynamically adapts to changes in the grid environment. The simulation
results show that their algorithm is efficient in terms of computational time
and produces better scheduling results when compared to other bio-inspired
algorithms such as ACO, PSO, and GA for solving the grid scheduling
problem. Mathiyalagan et al. (2010b) have used PSO in the grid
environment for scheduling and resource management. They modified the

inertia parameter of PSO to improve its convergence rate. Singh et al.
(2013) have provided a resource management technique based on a popular
evolutionary algorithm, that is, GA. They have defined a new algorithm for
the selection of the initial population and mutation operator to comply with
the resource broker framework. The simulation results show that the TCT of
jobs is minimized in the grid environment. Patel (2014) has applied GA to
create multiobjective schedulers. They have considered several objectives
like RU rate, makespan, and flow time. The simulation results show that the
said algorithm enhances RU and minimizes makespan. Panwar et al. (2016)
have represented the scheduling problem using direct acyclic graphs
(DAG). The results show that the said algorithm minimizes the completion
time of the jobs.

3.3.2.2 INTERNATIONAL WORK ON GRID RESOURCE MANAGEMENT
(GRM) USING BIO-INSPIRED ALGORITHMS
Finding an optimal solution for NP-complete problems has always been an
interesting field of research and development (R&D) for researchers all
over the world. The problem of job scheduling in the computational grid
environment is one such problem. Bio-inspired mechanisms are popular in
solving NP category problems. The use of bio-inspired principles in
computing has led to the development of many interesting and useful
multiobjective optimization algorithms. Chen et al. (2006) have encoded the
scheduling problem of the grid into a task-resource assignment graph
problem. They have developed a PSO-based scheduling method to solve the
grid scheduling problem and consider the longest path in the graph as the
fitness value. The experimental results show that the said algorithm is
effective in reducing the makespan of the jobs. Zhang et al. (2008) and
Izakian et al. (2009) have developed a discrete PSO that minimizes the
makespan and flow time of the jobs. PSO (Ambursa and Latip, 2013) is a

randomized, global optimization algorithm that represents a swarm of
particles as candidate solutions. Alyaseri and Ku-Mahamud (2013) have
used foraging behavior techniques of bees for solving the grid scheduling
problem. Karaboga et al. (2014) have presented a comprehensive survey on
the ABC algorithm, which is driven by the foraging behavior of real bees
for solving complex optimization problems.

Dorigo et al. (1996) have come up with a new population-based and
robust approach called the ant system (AS), which can solve a set of NP-
complete combinatorial optimization problems. Merkle et al. (2002) have
used ACO for solving resource-constrained problems of scheduling. The
experimental results show that the said algorithm is flexible and able to
change the intensity of heuristic influence. It also changes the pheromone
evaporation rate over the ant constructions. Fidanova and Durchova (2005)
have used an ACO algorithm with the objective of minimizing the number
of idle processors and decreasing makespan time during the execution of
the jobs. Yan et al. (2005) have given a new scheduling method based on
ACO. The algorithm schedules the jobs and performs load distribution.
Chang et al. (2009) have applied the pheromone update rule for appropriate
resource selection and uniform load distribution.

Wei et al. (2012) have modified the basic ACO by adding a new
pheromone type and a rule for node (resource) redistribution in the case of
node failure. The simulation results have shown that the introduced
modification shortens the completion time of jobs and improves the
robustness of the algorithm. Molaiy and Effatparvar (2014) have used ACO
for scheduling jobs in the grid environment with the aim of increasing RU
and optimizing total execution time. Yu and Buyya (2006) have proposed a
GA-based scheduling approach that takes the budget constraints of users
into account and reduces the job completion time. Xhafa et al. (2007) have

developed schedulers based on GA for job-resource assignment in the grid
system. The experimental analysis has shown that the developed schedulers
have improved efficiency compared to other GA implementations in the
grid environment. The flow time and makespan are minimized using the
aforementioned GA-based schedulers. Younis and Yang (2017) have
modified the mutation step of GA and applied it to the scheduling problem
in the grid environment. The algorithm minimizes makespan and provides
better scheduling results when compared to other algorithms.

We have proposed hybrid bio-inspired algorithms that differ from
previous works in several ways:

We have used a standard data set to test the effectiveness of our
proposed scheduling algorithms. In most of the aforementioned papers,
the data set is not a standard one. We have used real workload traces
provided by a grid computing center, MetaCentrum.
We have worked with important performance parameters such as total
completion and wait time of jobs, RU, load balancing, and scalability
to evaluate the efficiency of the proposed scheduling algorithms in the
simulation environment. Most of the papers mentioned above have
focused on a single or a few objectives.
Previously, the authors have used task-resource assignment graphs that
are unable to visualize the CPU state in real-time. Our results output a
CPU state graph to show various states of the CPU, providing clear
insight into the varying CPU states in real-time.

3.4 SUMMARY
The growing world of the internet, high-speed networks, and
supercomputers has paved the way for the development of large-scale
computing infrastructures called grid computing. The performance of a grid

computing environment depends on several criteria, such as the least
completion time of jobs, high RU, the least waiting time of jobs, and load
balancing among the resources. A good and efficient scheduling algorithm
is able to schedule jobs on appropriate resources while simultaneously
satisfying all the above-mentioned criteria.

This chapter collectively presents different scheduling approaches that
can be applied in the grid computing environment. Various works on
scheduling and resource management have been discussed in this chapter.
The last decade has seen substantial contributions from bio-inspired
algorithms in solving multiobjective optimization problems. Grid
scheduling belongs to the class of multiobjective optimization problems
where multiple factors drive the performance of the grid environment.
These algorithms have attracted researchers from all over the world to solve
both static and dynamic optimization problems. This chapter briefly
discusses the potential reasons for switching to metaheuristics from
conventional scheduling algorithms. Some of the bioinspired as well as
conventional algorithms and their implementation in the grid environment
to schedule jobs and manage resources efficiently have been discussed.
Additionally, several research works have been included that incorporate
both conventional and non-conventional (bio-inspired) approaches to solve
the grid scheduling problem and manage resources in the grid environment.
These works showcase the performance of the grid computing environment
when different (conventional and bio-inspired) scheduling algorithms have
been implemented in the grid environment.

KEYWORDS

Ant colony optimization
bio-inspired algorithms
genetic algorithm
grid computing
metaheuristics
multiobjective optimization
particle swarm optimization
resource management.

OceanofPDF.com

https://oceanofpdf.com/

CHAPTER 4
Scheduling Algorithms: Modified and
Hybrid Algorithms
4.1 INTRODUCTION
In the previous chapters, some of the conventional and bio-inspired
algorithms, along with their mapping in the grid environment, have been
discussed. In this chapter, a few modifications have been incorporated into
the bio-inspired algorithm in order to improve the performance of the grid
environment. Hybridization is another way of improving performance by
merging two or more algorithms. Hybridization provides a way of
combining the advantages of two or more algorithms to develop a strong
algorithm that can be used in solving grid scheduling problems. In the
upcoming chapters, an analysis will be carried out to compare the
performance of the grid environment using hybridized and non-hybridized
scheduling algorithms in terms of total completion time (TCT) of jobs,
resource utilization (RU), load distribution, and scalability.

4.2 MODIFICATION TO THE BASIC ACO
(THRESHOLDCONSTRAINED ACO, ACOTHRESH)

ACO is a strong metaheuristic that solves the scheduling problem in the
grid environment (Fidanova and Durchova, 2005). To enhance the
performance of grid scheduling, some modifications have been applied to
the conventional ACO in the grid environment.

The modifications in the basic ACO are listed below:

1. Inclusion of a New Parameter Called Threshold Probability for
Better Selection of Resources: The basic ACO algorithm in grid
computing simply assigns the job to the resource using Equations 4.1
and 4.2. The probability of moving a job from one resource to another
must be a good (high) value to process the incoming job request
because a poor (low) value of transition probability indicates the
selection of a resource with less processing capabilities. In such cases,
the job may not be able to finish its execution if the jobs are
independent and cannot be preempted by some other resource. So, the
value of transition probability needs to be high enough for the
appropriate selection of resources.

2. Threshold Probability (p0): It is a minimum probability value set by
the scheduler. Initially, the conventional ACO is run several times, and
the value of transition probability is calculated using Equation 4.1 for
every iteration. The value of threshold probability is randomly selected
from a set of transition probability values using conventional ACO. In
the modified ACO algorithm, this value acts as a constraint in the
selection of a resource such that the transition probability value must
be greater than the value of the threshold probability. It will ensure that
a resource is not selected below a minimal probability value. A high
probability value helps in the selection of a resource with a high
pheromone value (high processing capabilities), which minimizes the
completion time of a job over the resource and eventually improves
RU.

3. Use of Hybridization for Better Scheduling Sequence, Which Also
Eliminates the Initialization Problem of ACO: The working of ACO
starts with the random initialization of a population of solutions. These
solutions are further improved iteratively to achieve a better solution.

Therefore, it can be said that the performance of the ACO algorithm is
affected by the population initialization (Chen and Liu, 2018). Out of
the conventional scheduling techniques, shortest job first (SJF) is
popular for its remarkable performance. The improved ACO is
hybridized with the SJF algorithm, which removes the initialization
problem of ACO and improves the performance of grid scheduling.
ACO is an effective metaheuristic for finding good solutions in less
time. Although the convergence rate of ACO is not certain, there is less
chance of ACO falling into local optima in high-dimensional space. A
new parameter, threshold probability, is added to the basic ACO
algorithm to improve the grid scheduling results. Thresholdconstrained
ACO is represented by ant colony optimization with threshold
(ACOthresh), and its flowchart is shown in Figure 4.1.

FIGURE 4.1 Flowchart of ACOthresh algorithm.

Mastering Grid Computing: Scheduling and Resource Management.

Ankita & Sudip Kumar Sahana (Authors)
© 2025 Apple Academic Press, Inc. Co-published with CRC Press (Taylor & Francis)

The description of the proposed threshold-constrained ACO algorithm,
ACOthresh (Algorithm 1), to solve the grid scheduling problem is given
below:

Algorithm 1: ACOthresh in Grid Environment
Input: Number of jobs and available resources.
Output: Allocation of each job to available resources. begin
Initialize grid environment

Initialize scheduler components (pxy
k Δτxy ƞραβ)

Initialize global best solution = s
while the jobs of the workload are not scheduled do

Step 1: Add a workload containing a number of jobs.
Step 2: Generate the initial population of solutions in a random manner.
Step 3: Calculate the probability value using Equation 4.1.
Step 4: Set the value of the threshold probability ρ0 from the list of calculated transition

probability ρk
xy values.

Step 5: Check the availability and suitability of the resource (quality of food source).
Step 6: if the resource is suitable for the job and available to execute and the value of

ρk
xy < ρ0 then update the pheromone values using Equation 4.2.

else go to Step 1 end if

Step 7: Job is scheduled over the selected resource.
Step 8:

if the value obtained in the current iteration is better than the global best solution then
Set s = current solution
end if
end while

Step 9: Repeat the above steps till all the jobs are scheduled over available resources.

end

The description of the proposed threshold-constrained ACO algorithm,
ACOthresh (Algorithm 1) to solve the grid scheduling problem is given
below:

For each resource, a ResourceInfo object is created, which keeps the
updated information about the current status of the resource.

A Resource list containing available resources, a job list of
unscheduled jobs of the Zewura workload, and a global best solution is
initialized.
The initial population of solutions is generated randomly.
The conventional ACO is modified by adding a new parameter called
threshold probability ρ_0, which ensures that a resource is not selected
below a minimal probability value.
The transition probability value ρ_xy^k, with which an ant moves
from one position to another, is calculated using Equation 4.1.
An ant moves from one position to another only when the value of
transition probability ρ_xy^k is greater than the value of threshold
probability ρ_0, and the selected resource is available and suitable for
the job.
The value of pheromone is updated using Equation 4.2.
The value obtained in the current iteration is compared with the global
best solution(s).
The value of the global best solution(s) is updated with the value
obtained in the current iteration if the obtained value is better than the
value of the previous global best solution.
The steps are repeated until all the jobs are scheduled.

4.3 HYBRIDIZATION OF SJF WITH ACOTHRESH
Hybridization offers a method to combine the strengths of two or more
algorithms, creating a robust solution for addressing grid scheduling
problems. The modified ACO, that is, ACOthresh is combined with SJF for
better performance of grid scheduling. The flow diagram of the proposed
hybrid SJF-ACOthresh (shortest job first with ant colony optimization and
threshold) algorithm is given in Figure 4.2.

FIGURE 4.2 Flowchart of hybrid SJF-ACOthresh algorithm.

The algorithm for SJF-ACOthresh is given in Algorithm 2.

Algorithm 2: Swarm-based Hybrid SJF-ACOthresh Algorithm in Grid Environment
Input: Number of jobs and available resources.
Output: Allocation of each job to available resources. begin
Initialize grid environment

Initialize scheduler components (pxy
k ∆τxyηρβ)

Initialize global best solution = s
while the queue of unscheduled jobs is not empty do

Step 1: Add a workload containing a number of jobs.
Step 2: Generate the initial population of solutions using shortest job first (SJF).
Step 3: Calculate the probability value using Equation 4.1.
Step 4: Set the value of threshold probability ρ0 from the list of calculated transition

probability ρk
xy values.

Step 5: Check the availability and suitability of the resource (quality of food source).
Step 6: if the resource is suitable for the job and available to execute and the value of

ρk
xy < ρ0 then

update the pheromone values using Equation 4.2.
else
go to Step 1
end if

Step 7: Job is scheduled over the selected resource.
Step 8:

if the value obtained in the current iteration is better than the global best solution then
Set s = current solution
end if
end while

Step 9: Repeat the above steps till all the jobs are scheduled over available resources.

end

The scheduling parameters of ACO are given inTable 4.1. The values of and
are taken from (Chang et al., 2009). A promising range of parameter values
of ACO has been tested and tuned using an automated parameter tuning

approach (Sahana and Ankita, 2019). It is observed that the value of
deposited pheromone 〖∆τ〗_xy ranges from 0.1465 to 0.1473, and the value
of threshold probability ρ_0 ranges from 0.00155 to 0.00161 (Sahana and
Ankita, 2019), providing a better schedule in less time for job scheduling in
the grid environment.

Table 4.1 Scheduling Parameters of ACO

α 0.5
β 0.5
∆τxy 0.1467
ρu 0.0016
ρ 0.99

The description of the proposed swarm-based hybrid algorithm
(Algorithm 2) to solve the grid scheduling problem is given below:

1. For each resource, a Resource Info object is created, which keeps
updated information about the current status of the resource.

2. A resource list containing available resources, a job list of unscheduled
jobs of the Zewura workload, and a global best solution is initialized.

3. The initial population of solutions is generated using a conventional
algorithm, that is, SJF.

4. The conventional ACO is modified by adding a new parameter called
threshold probability ρ_0, which ensures that a resource is not selected
below a minimal probability value.

5. The transition probability value ρ_xy^k, with which an ant moves
from one position to another, is calculated using Equation 4.1.

6. An ant moves from one position to another only when the value of
transition probability ρ_xy^k is greater than the value of threshold

Parameters Values

probability ρ_0, and the selected resource is available and suitable for
the job.

7. The value of pheromone is updated using Equation 4.2.
8. The value obtained in the current iteration is compared with the global

best solution(s).
9. The value of the global best solution(s) is updated with the value

obtained in the current iteration if the obtained value is better than the
value of the previous global best solution.

10. The steps are repeated until all the jobs are scheduled.

4.4 HYBRIDIZATION OF SJF WITH GA
GA is the most popular evolutionary optimization algorithm. The success
rate of GA greatly depends on the selection of the fitness function of the
problem to be solved. During the generation of the initial population of
solutions, the conventional GA assigns the resources to the jobs in a random
manner. This random selection may form an inadequate search space.
However, the proposed hybrid GA makes significant changes in the
initialization step of GA, which improves the grid scheduling results. One
solution in the population of solutions is generated using SJF, and other
solutions are generated randomly, which helps in finding optimum solutions
in a reasonable time.

The flow diagram of the proposed hybrid GA-SJF algorithm is given in
Figure 4.3. In general, the initial population of solutions in GA is
constructed randomly. However, various studies in the literature (Younis et
al., 2017) have shown that the construction of the initial population of
solutions using some conventional or non-conventional methods can lead to
better solutions. The hybridization of a strong conventional scheduling
approach with a popular evolutionary technique is performed to utilize the
benefits of both algorithms. The hybridization of SJF with GA improves the

performance of grid scheduling. Instead of random initialization, the SJF
algorithm is used for generating the initial population of solutions. The
working of GA starts with the generation of the initial population of
solutions. Hence, the performance of GA greatly depends on the initial
population of solutions.

FIGURE 4.3 Flowchart of SJF-GA algorithm.

The initial population is treated by three operators – selection, crossover,
and mutation to find an optimal solution for the problem. The parameters of
GA are discussed inTable 4.2.

Table 4.2 Scheduling Parameters of GA

Probability of crossover 0.8
Probability of mutation 0.2
Size of the initial population of solutions 4
Size of the population 17,256
Number of generations 100
Selection operator Binary tournament selection
Crossover operator One point crossover

The hybrid algorithm (SJF-GA (shortest job first-genetic algorithm)) to
solve the job scheduling problem in GA is given in Algorithm 3.

Parameters Values

Algorithm 3: Evolutionary-based Hybrid (SJF-GA) in Grid Environment
Input: Number of jobs and available resources.
Output: Allocation of each job to available resources.
begin

Initialize grid environment
Initialize scheduler components
Probability of Crossover = pc
Probability of Mutation = pm
Number of generations = m

Step 1: Add a workload containing a number of jobs.
Step 2: Initialize the population of solutions); one solution will be generated from SJF
and other solutions will be randomly generated.

repeat

Step 3: Selection operator ()
Step 4: Crossover operator ()
Step 5: Mutation operator ()
Step 6: Ry, is created containing chromosomes (job-resource assignment) with the best
fitness values.
Step 7: The jobs are scheduled over the first best-selected resource from Ry, according to
the fitness function.
Step 8: Repeat until all the jobs are scheduled over the available resources.
Step 9: Print the scheduling result.
Step 10: Repeat until the number of generations

Return the best solution
end

The description of the proposed evolutionary-based hybrid algorithm
(Algorithm 3) to solve the grid scheduling problem is given below:

1. For each resource, a Resource Info object is created, which keeps
updated information about the current status of the resource.

(4.1)

2. A resource list containing available resources, a job list of unscheduled
jobs of the workload, and a global best solution is initialized.

3. The solution representation: A permutation-based representation is
used for representing chromosomes in GA for the grid scheduling
problem. It is a list representation where the size of the list is equal to
the number of resources.

4. A population of solutions is generated using SJF.
5. The initial generation: The initial population of solutions Ry is

initialized with one solution generated from SJF, and other solutions
are generated randomly. There are seven cluster resources (CRs), so an
optimum solution pool of four resources is taken, as shown inTable
4.2.

6. The fitness function: The fitness function of the proposed SJF-GA is
defined below:

 fitness = min∑
N

n=1
(TCTjobs) + max∑

R

r=1
(RUresources)

where; N is a set of jobs and n ϵ N; TCT is the total completion time of
the jobs; R is a set of resources and r ϵ R; and RU is the RU.

7. In this step a new generation is created by using three GA operators
given below:

i. Selection: The binary tournament selection approach has been
applied to selecting two individuals from the initial population of
solutions. It randomly selects two individuals and calculates their
fitness scores. The individual with a high fitness score gets
selected for the next step of the GA.

ii. Crossover: The one-point crossover method is used to generate a
new solution. The crossover probability is randomly selected

between [0.5 and 1].
iii. Mutation: It is performed by randomly changing the assignment

of one job from one resource to another. The mutation probability
is randomly selected between [0.5 and 1].

8. The steps are repeated until all the jobs are scheduled to the available
resources.

9. The steps are repeated for a specified number of generations.

4.5 COMPLEXITY ANALYSIS OF ALGORITHMS
In a grid environment, the number of iterations required to allocate a job to
a resource will be 0(uv). If u number of jobs are scheduled over v resources,
then the number of required iterations in the case of the ACO algorithm will
be 0(uv2). In our implementation, the population size (PS) is fixed, hence
the time complexity of ACO is given as (uv2x generations x population
size). For PSO, the time complexity of the fitness function evaluation will
be 0(v). Hence, the time complexity will be given as (uv2 x generations x
population size).

In the case of GA, the time complexity of selection, crossover, and
mutation function for each iteration will be 0(v2). Hence, the time
complexity of the genetic algorithm (GA) for allocating a job to a resource
will be 0(uv2x generations x f), where f is the time complexity of fitness
function evaluation.

The complexity of the proposed ACOeSh will be similar to that of the
ACO algorithm. The time complexity of the SJF algorithm is 0(ulogu),
where u is the number of jobs in the grid system. Hence, the time
complexity of the proposed SJF-ACOthresh scheduling algorithm will be
O(ulogu) + O(uv2x generations x population size). In the case of SJF-GA,
the time complexity will be O(ulogu) + O(uv2x generations x.1).

4.6 SIMULATION TOOLKIT FOR GRID RESOURCE
MANAGEMENT (GRM)
A grid is a dynamic environment with a varying number of jobs and
resources. Therefore, it becomes essential to illustrate the efficiencies of the
scheduling algorithms under different constraints, such as varying job
requests and varying job requirements of users. It is very hard and not
feasible to perform these tests in real-time in a real grid environment under
different constraints because of factors such as the cost of setting up a grid,
the changing load on the resources, and the reliability of the resources.

There are several other simulation toolkits and technologies that have
been developed over the years to provide simulation functionalities for
clusters and grid environments. Some of them are discussed below:

1. Microgrid: It is an emulator designed using the Globus toolkit. It uses
the API (application programming interface) of Globus for the
execution of its applications. Since microgrid (Liu et al., 2004) is an
emulator, it takes more time to run applications on emulated resources.
Though the output of the emulator is explicit, the design of the
application and scheduling environment is also time-consuming. It can
be used as a verification tool for checking the simulation results with
other real applications.

2. Bricks Simulation Systemml: It is designed to facilitate the
simulation of the client-server computing model, where remote access
is provided to libraries and packages executing on supercomputers
(Takefusa et al., 1999). It has a centralized scheduling mechanism,
developed at the Tokyo Institute of Technology in Japan.

3. GridSimml: It is a Java-based and platform-independent simulation
toolkit that provides support for designing and simulating various
scheduling models in the grid environment (Buyya and Murshed,

2002). This toolkit was developed by Rajkumar Buyya and his team at
the Grid Computing and Distributed Systems (GRIDS) lab. New
scheduling methods can be easily integrated into GridSim. The
framework of GridSim facilitates reservation and includes multiple
functionalities such as Data Grid functionalities and network traffic
functionalities. This simulator has the capability to test scheduling
algorithms by reading workload traces from large systems and
supercomputers to simulate a real Grid environment.

4. SimGrid: It is designed for modeling distributed applications and
testing them in a distributed environment with real-life scenarios
(Legrand et al., 2003). It is a C-based simulator that consists of various
tools such as MSG, GRAS, and SMPI. The MSG tool of SimGrid
supports the testing of scheduling algorithms in the simulation
environment. The other two tools, GRAS and SMPI, are used in the
development and analysis of real applications.

5. BeoSimml: It is designed for analyzing job scheduling algorithms
running in parallel at different scheduling sites for a multi-cluster
computational grid (Jones et al., 2005). It can work with synthetic or
real workload traces. It also provides visualization tools based on Java.

6. Simbatch: It is designed for batch schedulers and provides simulation
for scheduling (Caniou and Gay, 2009). The design of Simbatch is
based on the MSG tool of SimGrid.

7. SiniBOINC: The design of SimBOINC (Berkeley Open Infrastructure
for Network Computing) is also based on the SimGrid simulator.
SimBOINC (Kondo, 2007) supports the simulation of heterogeneous
and volatile computing systems. It follows a clientserver model where
many clients make requests to the central server. The client request
contains simulation inputs such as speed and workload availability.

8. Monarc 2: It aims to provide a modeling as well as optimization tool
for large, distributed computing systems (Dobre et al., 2008). It is
mainly designed to support data processing architectures and provide a
flexible environment for evaluating their performance. Monarc 2 is an
extension of the Monarc Simulator. Monarc 2 is developed by
enhancing the flexibility and performance of Monarc.

9. GSSIM: Grid scheduling simulator (GSSIM) is a GridSim-based
simulator that came into operation in 2009. GSSIM (Kurowski et al.,
2007) aims to provide a simple scheduling framework for simulating
and testing scheduling algorithms in the Grid environment. The slow
rate of execution and poor visualization outputs are the problems
encountered in GSSIM.

4.6.1 OVERVIEW OFALEA
The simulation is a good alternative to perform the test of the scheduling
algorithms in a controllable manner under different constraints (or
scenarios). Alea (Kluskek and Rudova, 2010) is a GSSIM developed by
Dalibor Kluskek and Hana Rudova to evaluate different scheduling
algorithms in the grid environment. This software is the result of the
research intent no. 0021622419 (Ministry of Education, Youth and Sports of
the Czech Republic) and the grant no. 201/07/0205 (Grant Agency of the
Czech Republic).

The Alea simulator used here is Alea 3.0, which is an improved version
of Alea 2.1, based on a popular grid simulation toolkit called the GridSim
toolkit (Buyya and Murshed, 2002; Murshed and Buyya, 2002). This
simulator is able to handle common problems of scheduling in the grid
environment, like resource and job heterogeneity, resource failure, and
dynamic job arrival. The simulator uses two interfaces called Scheduling
Policy and Optimization Algorithm in order to add a new scheduling

algorithm into the simulator. The first interface handles job arrival and job
selection for execution. The latter interface is implemented when the users
create their method.

4.6.2 ELEMENTS OFALEA
Alea is an event-based standard simulator, which is made up of several
independent elements having their simulation functionalities. The entities of
the simulator with their respective functionalities are discussed below:

1. The Centralized Scheduler: The central scheduler is the most non-
trivial element of Alea 3.0. It makes scheduling decisions based on the
selected scheduling algorithm. Communication between the scheduler
and the other entities is carried out using events and corresponding
messages. It communicates with three entities of the simulator: Job
Loader, Grid Resources, and Result Collector. The first part of the
scheduler keeps dynamic information about the resources and
maintains updated information about the current state of the resources.
The Job Loader sends new jobs to the scheduler. The scheduler
processes the incoming jobs based on the selected scheduling
algorithm. The simulation is completed when all the jobs have finished
their execution, and no new job appears for the scheduler. The output
files are used to store the results.

2. The Job Loader: It is responsible for reading the file that contains the
description of the job, and job instances are created dynamically over
time. Different workload formats are supported by the Job Loader,
such as standard workload format (SWF) and Grid Workload Format
(GWF). Only one job can be read by the Job Loader at a time.

3. The Failure Loader: This, as the name suggests, reads the file that
contains the description of the failed machines or systems.

4. The Machine Loader: It is responsible for initializing the
components of the simulation environment. It reads a file that contains
the description of the machines and creates the resources of the Grid
accordingly.

5. Allocation Policy: The simulation system supports the Advanced
SpaceShared policy, which is based on the SpaceShared policy of
GridSim. It supports several features, such as the execution ofparallel
as well as sequential jobs. This policy has improved the speed of
simulation and also provides simulation for the failed machines.

6. Visualization and Simulator Output Generation: A graphical output
of the simulator is generated using the Visualizator class. Different
types of objectives are supported and can be visualized through these
graphs. The Result Collector stores the output during simulation.

7. Additional Classes: There are classes that help the simulator in setting
up the scheduling environment. Some of these classes are discussed
below:

i. ExperimentSetup.java: The new scheduling algorithm is added
to the ExperimentSetup.java class for proper loading during
simulation.

ii. Gridletlnfo.java: It contains job-related information that is ready
for processing in the simulation environment.

iii. JobLoader.j ava: It is responsible for translating the workload.
The workload is in SWF, which is parsed by SWFLoader.java.

iv. Scheduler.java: It manages the events associated with the
scheduling, arrival, and completion of jobs.

v. Resourcelnfo.java: It stores updated information about the
resources in the instances of the class.

vi. ComplexGridResource.java: This class manages the distribution
of jobs to the resources after being selected by the appropriate
scheduling algorithm. The simulator follows the
AdvancedSpaceSharing policy, where a job is assured to get the
required resources.

4.6.3 STANDARD WORKLOAD
The workload plays a crucial part in evaluating the performance of new
scheduling algorithms A standard workload is considered for the
implementation of the proposed algorithms in order to set up a benchmark
result for future research directions.

4.6.3.1 ZEWURA WORKLOAD
MetaCentrum, the Czech national grid infrastructure (NGI), has provided
the workload called Zewura Workload for testing new algorithms and
comparing their performance with other reference algorithms. The
workload traces are produced from TORQUE traces, which contain 17,256
jobs. These jobs were gathered together between January and May 2012.
The workload is in SWF. The workload requires two files, namely, a Job
Description File and a Machine Description File.

1. Job Description File: The job description file has 18 data fields which
are given below:

i. Job Number: It is a counter field that starts from 0 or 1.
ii. Submit Time (In Seconds): It is the time at which the job is

submitted to the system. It is arranged in increasing order in the
workload log.

iii. Wait Time (In Seconds): The difference between the submission
time of the job and the actual start of the job execution is called
wait time.

iv. Run Time (In Seconds): The difference between the finish time
and actual start time (AST) of the jobs is called run time.

v. Number of Allocated Processors: It is an integer value that
indicates the number of processors utilized by the job.

vi. Average CPU Time Used (in Seconds): The average CPU time
can be calculated by taking the average of the CPU time taken by
all the processors.

vii. Used Memory (In Kilobytes): It is the average memory used by
all the processors.

viii. Requested Number of Processors: It is the total number of
processors requested by the job.

ix. Requested Time (In Seconds): This field can be either a runtime
estimates for the user or an average CPU time for each processor.

x. Requested Memory (In Kilobytes): It is the memory requested
per processor.

xi. Status: It is an integer value which can be 0, 1, or 5. The status
value is 1 if the job is completed, and the status value is 0 if the
job fails to complete its execution. The canceled jobs are
indicated by 5.

xii. User ID: It is a natural number that lies between one and the total
number of users.

xiii. Group ID: It is a natural number that lies between one and the
total number of different groups.

xiv. Executable Number: It is a natural number that lies between one
and the total number of applications arriving in the workload.

xv. Queue Number: It is a natural number that lies between one and
the total number of queues in the computing system.

xvi. Partition Number: It is a natural number that lies between one
and the total number of different partitions in the computing
system. Partition numbers can be used to locate a utilized
processor within a CR.

xvii. Preceding Job Number: It is a number that indicates the
previous job in the computing system such that a new job can
only start its execution if the preceding job has been terminated.

xviii. Think Time from Preceding Job (In Seconds): It is a number
that indicates the time elapsed between the submission of a new
job and completion of the previous job.

2. Machine Description File: There are seven clusters of resources
called Zewura clusters. Each Zewura cluster consists of 20 shared
memory machines. Each machine has 80 CPUs and 512 GB of RAM.

4.6.3.2 CONSTRAINTS
We have considered the various constraints under the job scheduling model:

The jobs are independent and belong to a standard data set.
The jobs are non-preemptive.
A unique job ID is assigned to each job of the workload. There are
17,256 jobs in the Zewura workload.
A job can have single (sequential) or multiple (parallel) processor
requirements.
One CR is composed of various machines
The processors within a cluster follow the Advanced Space Sharing
processor allocation policy. This policy facilitates the parallel
execution of jobs at the cluster when the requested number of
processors is equal to or less than the processors of the cluster.

PART II
IMPLEMENTATION OF

SCHEDULING ALGORITHMS
OceanofPDF.com

https://oceanofpdf.com/

CHAPTER 5
Research-Based Case Study to Solve
Grid Scheduling Problem Using
FCFS, SJF, ACO, PSO, and GA
5.1 INTRODUCTION
In this chapter, the implementation of FCFS, SJF, ACO, PSO, and GA is
carried out in a grid environment. In order to perform this implementation,
a grid simulator called Alea is used to virtually set up the grid environment
and execute the above-mentioned algorithms. An overview of the Alea
simulator used for scheduling jobs and managing resources in a large,
distributed computing environment like a grid has been discussed. Alea
presents a setup of the simulation environment for scheduling jobs in the
grid environment. The description of the workload used for testing the
performances of the conventional as well as bio-inspired algorithms in the
grid environment has been included in this chapter. The workload used for
scheduling the algorithms in the grid environment is called the Zewura
workload. It is a standard workload for testing the performance of
scheduling algorithms provided by a Czech national grid infrastructure
(NGI) called MetaCentrum. The workload traces are produced from
TORQUE traces, which contain 17,256 jobs. The workload is in standard
workload format (SWF). The workload requires two files, namely, the job
description file and the machine description file. The criteria for the
performance evaluation of scheduling algorithms are four-fold: Total
completion time (TCT), resource utilization (RU), load balancing, and

(5.2)

scalability. These parameters are evaluated for each scheduling algorithm in
the grid environment.

Mastering Grid Computing: Scheduling and Resource Management.

Ankita & Sudip Kumar Sahana (Authors)
© 2025 Apple Academic Press, Inc. Co-published with CRC Press (Taylor & Francis)

5.2 PARAMETERS FOR PERFORMANCE EVALUATION
OF SCHEDULING ALGORITHMS
In order to evaluate the performance of traditional and bio-inspired
scheduling algorithms, four parameters have been taken into consideration.
These parameters are explained below:

1. 5.1 Total Completion Time (TCT): The TCT of the jobs is defined
as the total of the time taken by all the jobs in the grid environment.
Minimization of the TCT of the jobs is one of the central objectives of
a good scheduling algorithm. In order to assign the jobs to cluster
resources (CRs), the actual start time (AST) of the processors in a CR
is calculated using Equation 5.1 (Xu et al., 2014).

AST (Ji, CRk) = max (EST (Ji, CRk), Avail (CRk))

where; EST is the earliest start time (EST) of the processor of a CR,
and Avail(CRk) is the earliest time at which the processor of a CR is
available and ready to execute a job.
The EST of the processors is calculated using Equation 5.2:

EST (Ji, CRk) = 0, ifJi = Jentry

= max (Jk, AFT (Jk, CRr), ifPk = Pl)

= max (Jk, AFT (Jk, CR1) + C (Jk, Ji))ifPk ≠ P1

(5.3)

(5.4)

where; AFT is the actual finish time.
The AFT of a job on the processor is the time at which the job finishes
its execution on that processor and can be calculated using Equation
5.3:

AFT (Ji, CRk) = AST (Ji, CRk) + C (Ji, CRk)

where; C(Ji, CRk) is the average computation cost of a job on the
processor (CR).
The TCT of jobs can be calculated using Equation 5.4:

Total CompletionTime =
n

∑
i=1

AFT (Ji, Pk)

2. 5.5 Cluster Resource Utilization (CRU): The CRU of the clusters
denotes the utilization of individual clusters in the grid environment.
The utilization of CRs should be high for better performance of grid
scheduling. The utilization of a CR can be calculated using Equation
5.5:

CUrate (CRk) =
t

∑
i=1

AFT (Ji, CRk) = AST (Ji, CRk)

min (EST (Ji, CRk) − Avail (CRk))

If t number of jobs are scheduled using the cluster resource CRk.
3. 5.6 Load Distribution: The level of the workload over a CR is

dependent on two factors:
The assignment of the jobs to the nodes or CRs by the scheduler.
The processing capabilities of the CR (number of processing
elements on a CR).

(5.7)

It is notable here that a scheduling algorithm aims at minimizing the
deviations in the workloads on all the resources. A small value of the
standard deviation (SD) indicates that the scheduling algorithm is more
efficient. The formula for SD is given in Equations 5.6 and 5.7,
respectively.

SD = √variance

σ2 = ∑
(xi − μ)2

n

where; 62 = Variance; xi is the element; n is the sample size; p is the
mean of the sample.

4. Scalability: It is used to investigate the performance of the algorithms
with an increasing number of jobs in the grid environment. The
algorithm should be able to find solutions for both small and large data
sets. We have tested the performance of the scheduling algorithms with
a smaller number of jobs as well as a larger number of jobs to evaluate
the variation in the behavior of the scheduling algorithms with
changing job counts.

5.3 CASE STUDY REPORT: A COMPARISON OF
PERFORMANCE RESULTS OF FCFS, SJF, ACO, PSO, AND
GA

5.3.1 TOTAL COMPLETION TIME (TCT) OF JOBS
The TCT of jobs is defined as the time taken by all the jobs of the workload
to complete their execution. The Zewura workload has been randomly

divided into several groups (3000, 6000, 11,000, 17,256) to study the
change in the behavior of the scheduling algorithms

5.3.1.1 FCFS
The TCT of jobs in the case of FCFS for different sets of workloads is given
below:

1. For 3000 Jobs and 6000 Jobs: The red line indicates the total number
of CPUs, that is, 560. The green curve indicates the number of used
CPUs, while the blue curve shows the number of requested CPUs. The
TCT of 3000 jobs and 6000 jobs of the Zewura workload using FCFS
is 68 days and 110 days, respectively (Figures 5.1 and 5.2).

FIGURE 5.1 TCT3000jobs using FCFS.

FIGURE 5.2 TCT6000jobs using FCFS.

2. For 11,000 Jobs and 17,256 Jobs: The TCT of 11,000 jobs and
17,256 jobs of Zewura workload using FCFS is 142 days and 245
days, respectively (Figures 5.3 and 5.4).

FIGURE 5.3 TCT11000jobs using FCFS.

FIGURE 5.4 TCT17256jobs using FCFS.

5.3.1.2 SJF
The TCT of jobs in the case of SJF for different sets of workloads is given
below:

1. For 3000 Jobs 6000 Jobs: The TCT of 3000 jobs and 6000 jobs of
zewura workload using SJF is 71 days and 104 days, respectively
(Figures 5.5 and 5.6).

FIGURE 5.5 TCT3000jobs using SJF.

FIGURE 5.6 TCT jobs using SJF.
2. For 11,000 Jobs and 17,256 Jobs: The TCT of 11,000 jobs and

17,256 jobs of zewura workload using SJF is 122 days and 204 days,
respectively (Figures 5.7 and 5.8).

FIGURE 5.7 TCT11000jobs using SJF.

FIGURE 5.8 TCT17256jobs using SJF.

5.3.1.3 ACO
The TCT of jobs in the case of ACO for different sets of workloads is given
below:

1. For 3000 Jobs and 6000 Jobs: The TCT of 3000 jobs and 6000 jobs
of zewura workload using ACO is 69 days and 92 days, respectively
(Figures 5.9 and 5.10).

FIGURE 5.9 TCT3000jobs using ACO.

FIGURE 5.10 TCT6000jobs using ACO.
2. For 11,000 Jobs and 17,256 Jobs: The TCT of 11,000 jobs and

17,256 jobs of zewura workload using ACO is 114 days and 196 days,
respectively (Figures 5.11 and 5.12).

FIGURE 5.11 TCT11000jobs using ACO.

FIGURE 5.12 TCT17256jobs using ACO.

5.3.1.4 PSO
The TCT of jobs in the case of PSO for different sets of workloads is given
below:

i. For 3000 Jobs and 6000 Jobs: The TCT of 3000 jobs and 6000 jobs
of zewura workload using PSO is 67 days and 93 days, respectively
(Figures 5.13 and 5.14).

FIGURE 5.13 TCT3000jobs using PSO.

FIGURE 5.14 TCT6000jobs using PSO.

ii. For 11,000 Jobs and 17,256 Jobs: The TCT of 11,000 jobs and
17,256 jobs of zewura workload using PSO is 120 days and 197 days,
respectively (Figures 5.15 and 5.16).

FIGURE 5.15 TCT11000jobs using PSO.

FIGURE 5.16 TCT17256jobs using PSO.

5.3.1.5 GA

i. For 3000 Jobs and 6000 Jobs: The TCT of 3000 jobs and 6000 jobs
of zewura workload using GA is 67 days and 90 days, respectively
(Figures 5.17 and 5.18).

FIGURE 5.17 TCT3000jobs using GA.

FIGURE 5.18 TCT6000jobs using GA.
ii. For 11,000 Jobs and 17,256 Jobs: The TCT of 11,000 jobs and

17,256 jobs of Zewura workload using GA is 111 days and 193 days,
respectively (Figures 5.19 and 5.20).

FIGURE 5.19 TCT11000jobs using GA.

FIGURE 5.20 TCT17256jobs using GA.

5.3.1.6 COMPARATIVE ANALYSIS OF ALGORITHMS (FCFS, SJF, ACO,
PSO, AND GA) ON THE BASIS OF TCT
In the case of a low job count (say 3000), FCFS shows good performance
compared to SJF and ACO. With the increase in job counts, the
performance graph of FCFS started to decline, and the TCT of jobs
increased compared to other algorithms. SJF, being a conventional
algorithm, has better performance than FCFS in terms of TCT for the same
workload. Out of the bio-inspired algorithms, it is evident (Figures 5.9,
Figures 5.10, Figures 5.11, Figures 5.12, Figures 5.13, Figures 5.14, Figures
5.15, Figures 5.16, Figures 5.17, Figures 5.18, Figures 5.19 and Figures
5.20) that GA has outperformed ACO and PSO for both small and large sets
of jobs (Table 5.1).

Table 5.1 TCT of Zewura Workload for FCFS, SJF, ACO, PSO, and GA

FCFS 68 110 142 240
SJF 71 104 122 204
ACO 69 92 114 196
PSO 67 93 120 197
GA 67 90 111 193

5.3.2 CLUSTER RESOURCE UTILIZATION (CRU)
The utilization of all seven cluster resources (CRs) (zewura1, zewura2,
zewura3, zewura4, zewura5, zewura6, and zewura7) for different job counts
(3000, 6000, 11,000, 17,256) of the zewura workload is given in
subsections using individual algorithms.

Scheduling Algorithms TCT of Zewura Workload (In Days)

3000 6000 11,000 17,256

5.3.2.1 FCFS: FOR 3000, 6000, 11,000, AND 17,256 JOBS
The red color indicates a high rate of cluster utilization. The rate of CR
utilization should be high for better performance of grid scheduling and
resource management. The green color indicates the least utilization or
idleness of the CPU during that time period (Figures 5.21, Figures 5.22,
Figures 5.23 and Figures 5.24). The individual utilization of all seven CRs
for a given workload using the FCFS scheduling algorithm has been
calculated (Table 5.2).

Table 5.2 CRU of Zewura Clusters (in Percentage) Using FCFS Scheduling
Algorithm

Zewura 1 55.15 61.18 60.38 57.40
Zewura 2 51.76 72.41 54.82 49.94
Zewura 3 51.65 56.23 55.93 52.45
Zewura 4 58.62 62.21 54.04 53.03
Zewura 5 50.82 62.94 59.83 52.11
Zewura 6 54.76 60.21 57.76 52.62
Zewura 7 45.74 57.13 66.66 63.50
Average
utilization

 54.64 61.75 58.48 54.35

Zewura
Clusters

Cluster Resource Utilization of Zewura Clusters for
Given Set of Jobs (in Percentage)

3000 Jobs 6000 Jobs 11,000 Jobs 17,256 Jobs

FIGURE 5.21 CRU3000jobs using FCFS.

FIGURE 5.22 CRU6000jobs using FCFS.

FIGURE 5.23 CRU11000jobs using FCFS.

FIGURE 5.24 CRU17256jobs using FCFS.

5.3.2.2 SJF: FOR 3000, 6000, 11,000, AND 17,256 JOBS
The rate of utilization of seven clusters using SJF for different sets of jobs is
given (Figures 5.25, Figures 5.26, Figures 5.27 and , 5.28). The individual
utilization of all seven CRs for a given workload using the SJF scheduling
algorithm has been calculated (Table 5.3).

Table 5.3 CRU of Zewura Clusters (in Percentage) Using SJF Scheduling
Algorithm

Zewura 1 52.74 59.60 62.49 66.49
Zewura 2 53.56 61.63 59.76 66.76
Zewura 3 51.10 55.58 60.82 66.82
Zewura 4 60.22 65.53 61.23 65.23
Zewura 5 56.76 59.98 63.76 62.07
Zewura 6 52.63 62.80 62.23 64.87
Zewura 7 51.11 63.55 60.98 66.32
Average
utilization

 54.02 61.29 61.61 65.51

FIGURE 5.25 CRU3000jobs using SJF.

Zewura
Clusters

Cluster Resource Utilization of Zewura Clusters for
Given Set of Jobs (in Percentage)

3000 Jobs 6000 Jobs 11000 Jobs 17256 Jobs

FIGURE 5.26 CRU6000jobs using SJF.

FIGURE 5.27 CRU11000jobs using SJF.

FIGURE 5.28 CRU17256jobs using SJF.

5.3.2.3 ACO: FOR 3000, 6000, 11,000, AND 17,256 JOBS
The rate of utilization of seven clusters using ACO for different sets of jobs
is given (Figures 5.29, Figures 5.31 , Figures 5.30 and 5.32). The individual
utilization of all seven CRs for a given workload using the ACO scheduling
algorithm has been calculated (Table 5.4).

Table 5.4 CRU of Zewura Clusters (in Percentage) Using ACO Scheduling
Algorithm

Zewura 1 59.03 60.03 70.05 67.84
Zewura 2 51.87 65.66 69.94 68.92
Zewura 3 49.63 58.34 64.01 70.34
Zewura 4 51.55 66.46 66.14 70.33
Zewura 5 57.22 60.17 67.81 67.84
Zewura 6 54.23 63.89 68.82 62.80
Zewura 7 54.83 67.58 64.54 68.36
Average
utilization

 54.05 63.16 67.33 68.06

FIGURE 5.29 CRU3000jobs using ACO.

Zewura
Clusters

Cluster Resource Utilization of Zewura Clusters for
Given Set of Jobs (in Percentage)

3000 Jobs 6000 Jobs 11,000 Jobs 17,256 Jobs

FIGURE 5.30 CRU6000jobs using ACO.

FIGURE 5.31 CRU11000jobs using ACO.

FIGURE 5.32 CRU17256jobs using ACO.

5.3.2.4 PSO: FOR 3000, 6000, 11,000, AND 17,256 JOBS
The rate of utilization of seven clusters using PSO for different sets of jobs
is given (Figures 5.33, Figures 5.34, Figures 5.35 and 5.36). The individual
utilization of all seven CRs for a given workload using the PSO scheduling
algorithm has been calculated (Table 5.5).

Table 5.5 CRU of Zewura Clusters (in Percentage) Using PSO Scheduling
Algorithm

Zewura 1 51.56 62.45 61.15 68.99
Zewura 2 54.40 64.19 63.29 67.76
Zewura 3 48.85 61.66 60.18 68.62
Zewura 4 51.19 61.77 62.85 65.76
Zewura 5 58.17 62.99 63.39 67.41
Zewura 6 59.65 59.42 61.42 67.84
Zewura 7 52.43 70.80 61.80 67.93
Average
CRU

 53.75 63.32 62.01 67.75

FIGURE 5.33 CRU3000jobs using PSO.

Zewura
Cluster

Resource Utilization of Zewura Clusters for Clusters
Given Set of Jobs (in Percentage)

3000 Jobs 6000 Jobs 11,000 Jobs 17,256 Jobs

FIGURE 5.34 CRU6000jobs using PSO.

FIGURE 5.35 CRU11000jobs using PSO.

FIGURE 5.36 CRU17256jobs using PSO.

5.3.2.5 GA: FOR 3000, 6000, 11,000, AND 17,256 JOBS
The rate of utilization of seven clusters using GA for different sets of jobs is
given (Figures 5.37, Figures 5.38, Figures 5.39 and 5.40). The individual
utilization of all seven CRs for a given workload using the GA scheduling
algorithm has been calculated (Table 5.6).

Table 5.6 CRU of Zewura Clusters (in Percentage) Using GA Scheduling
Algorithm

Zewura 1 51.80 63.54 65.78 65.07
Zewura 2 51.73 64.08 69.52 68.88
Zewura 3 58.36 63.76 65.97 67.33
Zewura 4 54.89 65.67 67.82 70.79
Zewura 5 52.36 65.44 66.54 71.40
Zewura 6 57.05 63.82 67.87 68.52
Zewura 7 53.53 62.67 62.71 72.87
Average
CRU

 54.24 64.14 66.60 69.26

FIGURE 5.37 CRU3000jobs using GA.

Zewura
Clusters

Cluster Resource Utilization of Zewura Clusters for
Given Set of Jobs (in Percentage)

3000 Jobs 6000 Jobs 11,000 Jobs 17,256 Jobs

FIGURE 5.38 CRU6000jobs using GA.

FIGURE 5.39 CRU11000jobs using GA.

FIGURE 5.40 CRU17256jobs using GA.

5.3.3 AVERAGE MACHINE UTILIZATION (AMU)
The average machine utilization (AMU) (zewura1, zewura2, zewura3,
zewura4, zewura5, zewura6 and zewura7) for different job counts (3000,
6000, 11,000, 17,256) of zewura workload are given in subsections using
individual algorithms.

5.3.3.1 FCFS
The peak in the graphs indicates a high rate of machine utilization on a
particular day. With the increase in the number of jobs, the graph becomes
denser (Figures 5.41, Figures 5.42, Figures 5.43and 5.44) due to the
increase in machine utilization.

FIGURE 5.41 AMU for 3000 jobs using FCFS.

FIGURE 5.42 AMU for 6000 jobs using FCFS.

FIGURE 5.43 AMU for 11,000 jobs using FCFS.

FIGURE 5.44 AMU for 17,256 jobs using FCFS.

5.3.3.2 SJF
The graphs (Figures 5.45, Figures 5.46, Figures 5.47 and 5.48) show the
AMU in the case of the SJF scheduling algorithm for different sets of
Zewura workloads.

FIGURE 5.45 AMU for 3000 jobs using SJF.

FIGURE 5.46 AMU for 6000 jobs using SJF.

FIGURE 5.47 AMU for 11,000 jobs using SJF.

FIGURE 5.48 AMU for 17,256 jobs using SJF.

5.3.3.3 ACO
The graphs (Figures 5.49, Figures 5.50, Figures 5.51 and 5.52) show the
AMU in the case of the ACO scheduling algorithm for different sets of
Zewura workloads.

FIGURE 5.49 AMU for 3000 jobs using ACO.

FIGURE 5.50 AMU for 6000 jobs using ACO.

FIGURE 5.51 AMU for 11,000 jobs using ACO.

FIGURE 5.52 AMU for 17,256 jobs using ACO.

5.3.3.4 PSO
The graphs (Figures 5.53, Figures 5.54, Figures 5.55 and 5.56) show the
AMU in the case of the PSO scheduling algorithm for different sets of
Zewura workloads.

FIGURE 5.53 AMU for 3000 jobs using PSO.

FIGURE 5.54 AMU for 6000 jobs using PSO.

FIGURE 5.55 AMU for 11,000 jobs using PSO.

FIGURE 5.56 AMU for 17,256 jobs using PSO.

5.3.3.5 GA
The graphs (Figures 5.57, Figures 5.58, Figures 5.59 and 5.60) show the
AMU in the case of the GA scheduling algorithm for different sets of
Zewura workloads.

FIGURE 5.57 AMU for 3000 jobs using GA.

FIGURE 5.58 AMU for 6000 jobs using GA.

FIGURE 5.59 AMU for 11,000 jobs using GA.

FIGURE 5.60 AMU for 17,256 jobs using GA.

5.3.4 LOAD DISTRIBUTION
Standard deviation (SD) has been used to measure the uniformity in the
distribution of load among the CRs. A low value of SD indicates less
variation in the load distribution. Using the data (Tables 5.2–5.6), the value
of SD for FCFS, SJF, ACO, PSO, and GA using the Zewura workload is
calculated (Table 5.7). The value of SD is lowest in PSO for a smaller set of
jobs, while it is highest for a larger set of jobs. The value of SD is low in
GA in both cases of job sets, which shows the diversity of GA to work with
both smaller and larger workloads. The value of SD in the utilization of
CRs for FCFS using 3000 jobs is calculated below:

Table 5.7 Standard Deviation for FCFS, SJF, ACO, PSO, and GA

FCFS 4.07 4.92 4.00 4.32
SJF 3.33 2.99 1.21 1.56
ACO 3.07 3.36 2.29 2.35
PSO 3.62 3.33 1.11 0.95
GA 2.43 0.98 1.99 2.44

Average utilization of FCFS for 3000 jobs = 54.64 (Table 5.2)

The value of SD in the utilization of CRs for SJF using 3000 jobs is
calculated below:

Average utilization of SJF for 3000 jobs = 54.02 (usingTable 5.3)

Similarly, the value of SD in the utilization of CRs for FCFS, SJF, ACO,
PSO, and GA is calculated for different sets of jobs of the Zewura workload
(Table 5.7). The value of SD is lowest in PSO for smaller sets of jobs, while
it is highest for larger sets of jobs. The value of SD is low in GA in both
cases of job sets, which shows the diversity of GA to work with both
smaller and larger workloads.

Scheduling
Algorithms

SD in the Utilization of Cluster Resources of Zewura
Clusters for a Given Set of Jobs (in Percentage)

3000 Jobs 6000 Jobs 11,000 Jobs 17,256 Jobs

V ariance = 16.54

SD = √variance = 4.07

V ariance = 11.12

‵SD = √11.12 = 3.33

5.4 SUMMARY
In this chapter, we have taken five parameters to calculate the efficiency of
scheduling algorithms. These parameters are TCT, cluster resource
utilization (CRU), average utilization (AU), load distribution, and
scalability. All these parameters have been evaluated for traditional as well
as bio-inspired algorithms using a standard workload, that is, the Zewura
workload. The diversified workload helps in evaluating the algorithm’s
performance on both small and large sets of jobs. Out of all scheduling
algorithms, it is evident from the evaluated results that the genetic
algorithm (GA) has better performance in terms of the above-stated
parameters for both small and large sets of jobs. GA is a powerful
metaheuristic that belongs to the set of evolutionary algorithms. These
algorithms are well-suited to NP-complete and optimization problems such
as the Grid Scheduling Problem.

KEYWORDS

Ant colony optimization
average machine utilization
cluster resource utilization
genetic algorithm
particle swarm optimization
shortest job first
standard deviation
total completion time

OceanofPDF.com

https://oceanofpdf.com/

CHAPTER 6
Research-Based Case Study to Solve
Grid Scheduling Problem Using
Modified and Hybrid Algorithms:
ACOTHRESH, SJF-ACOTHRESH,
and SJF-GA
6.1 PARAMETERS FOR PERFORMANCE EVALUATION
ACO has emerged as a powerful metaheuristic in solving different problems
in computer science and related areas. The literature survey report shows
the popularity of the ACO algorithm in solving various NP-complete
problems. In this chapter, the author has introduced an enhancement to the
basic ACO algorithm by including a new parameter in the conventional
ACO algorithm. The new parameter introduced to the basic ACO is called
threshold probability and the developed algorithm is called ACOthresh. A
detailed explanation of the ACOthresh algorithm has been given in Chapter
4. This chapter covers the implementation of the ACOthresh algorithm in a
simulation environment using a standard workload. The performance
parameters such as completion time of jobs, workload distribution, cluster
resource (CR) utilization, average machine utilization (AMU), and standard
deviation (SD) of ACOthresh, SJF-ACOthresh, and SJF-GA are calculated
using a standard workload.

Alea simulator (Alea 3.0) creates a setup of a simulation environment for
scheduling jobs in the grid environment. ACOthresh has been implemented in

a simulation environment using the Zewura workload. In this chapter, in
order to evaluate the performance of ACOthresh, SJF-ACOthresh, and SJF-
GA, four parameters have been taken into consideration. A detailed
description of all these parameters has already been covered in Chapter 5.
The behavior of ACOthresh, SJF-ACOthresh, and SJF-GA have been observed
and studied in the case of varying workloads using the parameters given in
subsections.

Mastering Grid Computing: Scheduling and Resource Management. Ankita & Sudip Kumar Sahana
(Authors)

© 2025 Apple Academic Press, Inc. Co-published with CRC Press (Taylor & Francis)

6.1.1 TOTAL COMPLETION TIME (TCT)
The Zewura workload contains 17,256 jobs, which are divided into four
sets: 3000, 6000, 11,000, and 17,256 jobs. The random distribution of the
zewura workload helps in studying the change in the behavior of the
scheduling algorithms.

6.1.1.1 ACOTHRESH

The TCT of jobs in the case of ACOthresh for different sets of workloads is
given below:

i. For 3000 and 6000 Jobs: The red line indicates the total number of
CPUs, that is, 560. The green curve indicates the number of used
CPUs, while the blue curve shows the number of requested CPUs. The
TCT of 3000 jobs and 6000 jobs of the zewura workload using
ACOthresh is 67 days and 89 days, respectively (Figures 6.1 and 6.2).

FIGURE 6.1 TCT6000jobs using ACOthresh.

FIGURE 6.2 TCT6000jobs using ACOthresh.
ii. For 11,000 and 17,256 Jobs: The TCT of 11,000 jobs and 17,256 jobs

of zewura workload using ACOthresh is 67 days and 89 days,
respectively (Figures 6.3 and 6.4).

FIGURE 6.3 TCT11000jobs using ACOthresh.

FIGURE 6.4 TCT6000jobs using ACOthresh.

6.1.1.2 SJF-ACOTHRESH

The TCT of jobs in the case of SJF-ACOthresh for different sets of
workloads is given below:

i. For 3000 and 6000 Jobs: The TCT of 11,000 jobs and 17,256 jobs of
zewura workload using SJF-ACOthresh is 66 days and 88 days,
respectively (Figures 6.5 and 6.6).

FIGURE 6.5 TCT3000jobs using SJF-ACOthresh.

FIGURE 6.6 TCT6000jobs using SJF-ACOthresh.
ii. For 11,000 and 17,256 Jobs: The TCT of 11,000 jobs and 17,256 jobs

of zewura workload using SJF-ACOthresh is 109 days and 191 days,
respectively (Figures 6.7 and 6.8).

FIGURE 6.7 TCT11000jobs using SJF-ACOthresh.

FIGURE 6.8 TCT17256jobs using SJF-ACOthresh.

6.1.1.3 SJF-GA
The TCT of jobs in the case of SJF-GA for different sets of workloads is
given below:

i. For 3000 and 6000 Jobs: The TCT of 11,000 jobs and 17,256 jobs of
zewura workload using SJF-GA is 66 days and 86 days, respectively
(Figures 6.9 and 6.10).

FIGURE 6.9 TCT3000jobs using SJF-GA.

FIGURE 6.10 TCT6000jobs using SJF-GA.
ii. iii For 11,000 and 17,256 Jobs: The TCT of 11,000 jobs and 17,256

jobs of zewura workload using SJF-GA is 106 days and 190 days,
respectively (Figures 6.11 and 6.12).

FIGURE 6.11 TCT11000jobs using SJF-GA.

FIGURE 6.12 TCT17256jobs using SJF-GA.

6.1.1.4 COMPARATIVE ANALYSIS OF ALGORITHMS (ACOTHRESH,

SJFACOTHRESH, SJF-GA) ON THE BASIS OF TCT

Out of all the hybrid algorithms, it is evident (Figures 6.1–6.12), that SJF-
GA has outperformed ACOthresh and SJF-ACOthresh for small as well as
large sets of jobs (Table 6.1).

Table 6.1 TCT of Zewura Workload for ACOthresh, SJF-ACOthresh, and
SJF-GA

ACOthresh 67 89 113 195

SJF-ACOthresh 66 88 109 191

SJF-GA 66 86 106 190

6.1.2 CLUSTER RESOURCE UTILIZATION (CRU)
The utilization of all seven cluster resources (CRs) (zewura1, zewura2,
zewura3, zewura4, zewura5, zewura6, and zewura7) for different job counts
(3000, 6000, 11,000, 17,256) of the zewura workload is given in
subsections using different modified and hybrid algorithms.

6.1.2.1 ACOTHRESH

For 3000, 6000, 11,000, and 17,256 Jobs: The red color indicates a high
rate of cluster utilization. The rate of CR utilization should be high for
better performance in grid scheduling and resource management. The green
color indicates the least utilization or idleness of the CPU during that time
period. The rate of utilization of seven clusters using ACOthresh for different
sets of jobs is given (Figures 6.13, 6.14, 6.15 and , 6.16). The individual

Scheduling Algorithms TCT of Zewura Workload (In Days)

3000 6000 11,000 17,256

utilization of all seven CRs for a given workload using the ACOthresh

scheduling algorithm has been calculated (Table 6.2).

Table 6.2 CRU of Zewura Clusters (in Percentage) Using ACOthresh
Scheduling Algorithm

Zewura 1 50.51 58.51 63.81 67.63
Zewura 2 54.80 53.89 64.82 68.18
Zewura 3 58.05 61.05 61.34 68.15
Zewura 4 51.01 59.11 63.29 68.08
Zewura 5 51.82 56.92 64.36 67.10
Zewura 6 52.82 61.02 59.18 69.71
Zewura 7 55.87 69.54 65.76 69.92
Average
utilization

53.55 60.01 63.22 68.39

Zewura
Clusters

Cluster Resource Utilization of Zewura Clusters for
Given Set of Jobs (in Percentage)

3000 Jobs 6000 Jobs 11,000 Jobs 17,256 Jobs

FIGURE 6.13 CRU3000jobs using ACOthresh.

FIGURE 6.14 CRU6000jobs using ACOthresh.

FIGURE 6.15 CRU11000jobs using ACOthresh.

FIGURE 6.16 CRU17256jobs using ACOthresh.

6.1.2.2 SJF-ACOTHRESH

For 3000, 6000, 11,000, and 17,256 Jobs: The rate of utilization of seven
clusters using SJF-ACOthresh for different sets of jobs is given (Figures
6.17, 6.18, 6.19 and 6.20). The individual utilization of all seven CRs for a
given workload using the SJF-ACOthresh scheduling algorithm has been
calculated (Table 6.3).

Table 6.3 CRU of Zewura Clusters (in Percentage) Using SJF-ACOthresh
Scheduling Algorithm

Zewura 1 52.11 64.36 65.29 68.94
Zewura 2 52.55 66.96 64.11 68.93
Zewura 3 53.18 66.44 64.15 71.35
Zewura 4 60.82 61.17 63.11 66.84
Zewura 5 50.86 63.23 67.47 75.53
Zewura 6 52.59 60.02 62.83 69.00
Zewura 7 57.91 65.28 63.92 68.70
Average
utilization

54.33 63.92 64.41 69.89

FIGURE 6.17 CRU3000jobs using SJF-ACOthresh.

Zewura
Clusters

Cluster Resource Utilization of Zewura Clusters for
Given Set of Jobs (in Percentage)

3000 Jobs 6000 Jobs 11,000 Jobs 17,256 Jobs

FIGURE 6.18 CRU6000jobs using SJF-ACOthresh.

FIGURE 6.19 CRU11000jobs using SJF-ACOthresh.

FIGURE 6.20 CRU6000jobs using SJF-ACOthresh.

6.1.2.3 SJF-GA
For 3000, 6000, 11,000, and 17,256 Jobs: The rate of utilization of seven
clusters using SJF-GA for different sets of jobs is given (Figures 6.21, 6.22,
6.23 and 6.24). The individual utilization of all seven CRs for a given
workload using the SJF-ACOthresh scheduling algorithm has been calculated
(Table 6.4).

Table 6.4 CRU of Zewura Clusters (in Percentage) Using SJF-GA
Scheduling Algorithm

Zewura 1 58.16 60.82 67.42 71.71
Zewura 2 54.13 58.07 65.24 71.22
Zewura 3 48.76 69.65 67.43 69.13
Zewura 4 50.74 65.76 68.83 69.63
Zewura 5 54.41 62.58 70.63 71.62
Zewura 6 59.13 63.74 64.23 70.15
Zewura 7 54.92 71.21 69.93 67.44
Average
utilization

54.32 64.54 67.67 70.12

FIGURE 6.21 CRU3000jobs using SJF-GA.

Zewura
Clusters

Cluster Resource Utilization of Zewura Clusters for
Given Set of Jobs (in Percentage)

3000 Jobs 6000 Jobs 11,000 Jobs 17,256 Jobs

FIGURE 6.22 CRU6000jobs using SJF-GA.

FIGURE 6.23 CRU11000jobs using SJF-GA.

FIGURE 6.24 CRU17256jobs using SJF-GA.

6.1.3 AVERAGE MACHINE UTILIZATION (AMU)
The average machine utilization (AMU) (zewura1, zewura2, zewura3,
zewura4, zewura5, zewura6, and zewura7) for different job counts (3000,
6000, 11,000, 17,256) of the zewura workload is given in subsections using
individual algorithms.

6.1.3.1 ACOTHRESH

The peak in the graphs indicates a high rate of machine utilization on a
particular day. With the increase in the number of jobs, the graph becomes
denser (Figures 6.25, 6.26, 6.27 and 6.28) because of the increase in
machine utilization. The graphs (Figures 6.25–6.28) show the AMU in the
case of the ACOthresh scheduling algorithm for different sets of Zewura
workloads.

FIGURE 6.25 AMU for 3000 jobs using ACOthresh.

FIGURE 6.26 AMU for 3000 jobs using ACOthresh.

FIGURE 6.27 AMU for 11,000 jobs using ACOthresh.

FIGURE 6.28 AMU for 17,256 jobs using ACOthresh.

6.1.3.2 SJF-ACOTHRESH

The graphs (Figures 6.29, 6.30, 6.31 and 6.32) show the AMU in the case of
the SJFACOthresh scheduling algorithm for different sets of Zewura
workloads.

FIGURE 6.29 AMU for 3000 jobs using SJF-ACOthresh.

FIGURE 6.30 AMU for 6000 jobs using SJF-ACOthresh.

FIGURE 6.31 AMU for 11,000 jobs using SJF-ACOthresh.

FIGURE 6.32 AMU for 17,256 jobs using SJF-ACOthresh.

6.1.3.3 SJF-GA
The graphs (Figures 6.33, 6.34, 6.35 and 6.36) show the AMU in the case of
the SJF-GA scheduling algorithm for different sets of Zewura workloads.

FIGURE 6.33 AMU for 3000 jobs using SJF-GA.

FIGURE 6.34 AMU for 6000 jobs using SJF-GA.

FIGURE 6.35 AMU for 11,000 jobs using SJF-GA.

FIGURE 6.36 AMU for 17,256 jobs using SJF-GA.

6.1.4 LOAD DISTRIBUTION
As discussed in the previous chapter, we have used SD as the parameter to
measure the evenness in workload distribution among different CRs. A low
value of SD indicates less variation in the load distribution. The value of SD
in the utilization of CRs for ACOthresh, SJF-ACOthresh, and SJF-GA is
calculated for different sets of jobs of zewura workload (Table 6.5).

Table 6.5 Standard Deviation for ACOthresh, SJF-ACOthresh, and SJF-GA

ACOthresh 2.57 4.51 2.08 0.96

SJF-ACOthresh 3.34 2.39 1.45 2.59

SJF-GA 3.42 4.34 2.17 1.43

6.2 SUMMARY
This chapter covers the execution of the proposed modified bio-inspired
algorithm and a hybrid algorithm in a grid simulation environment for
different numbers of jobs. Various parameters have been taken into
consideration to analyze the behavior of the proposed scheduling algorithm.
The grid environment is dynamic, and hence, it becomes a non-trivial task
to schedule the jobs effectively with the least completion time and
maximum resource utilization (RU). In the next chapter, we will perform a
performance comparison of the execution results of the proposed modified
and hybrid algorithms, as well as other reference algorithms.

Scheduling
Algorithms

SD in the Utilization of Cluster Resources of Zewura
Clusters for a Given Set of Jobs (in Percentage)

3000 Jobs 6000 Jobs 11,000 Jobs 17,256 Jobs

KEYWORDS

algorithms
average machine utilization
cluster resource utilization
grid simulation environment
performance metrics standard deviation
total completion time

OceanofPDF.com

https://oceanofpdf.com/

PART III
PERFORMANCE COMPARISON

OF ALGORITHMS
OceanofPDF.com

https://oceanofpdf.com/

CHAPTER 7
Comparison of Conventional, Bio-
Inspired, and Hybrid Algorithms: A
Review
7.1 INTRODUCTION
In the last two chapters, we have witnessed several research-based case
studies to solve the grid scheduling problem using conventional, bio-
inspired, and hybrid algorithms This chapter presents a review report on the
performance of different scheduling algorithms based on some performance
parameters such as total completion time (TCT) of jobs, cluster resource
utilization (CRU), load distribution, average machine utilization (AMU),
and scalability. The computations of scheduling algorithms have been
carried out in a grid simulation environment using a standard workload. The
workload contains 17,256 jobs and seven cluster resources (CRs) called
Zewura clusters. The analysis report will help the readers understand the
behavior of conventional (FCFS and SJF), bio-inspired (ACO, PSO), and
hybrid (ACOthresh, SJF-ACO, SJF-GA) algorithms under different
scheduling conditions. It will eventually help the readers understand and
apply these algorithms to complex problems.

7.2 ANALYSIS OF TOTAL COMPLETION TIME (TCT) OF
JOBS
In the previous chapters, we have already seen various performance
parameters to measure the effectiveness of scheduling algorithms The TCT

of jobs for conventional, bio-inspired, and hybrid scheduling algorithms has
been calculated (Table 7.1). FCFS is a conventional scheduling algorithm
that takes 68 days to complete 3000 jobs of the zewura workload.
Compared to SJF, it is better since SJF takes 71 days to complete the same
set of jobs. The bio-inspired and hybrid algorithms take less time compared
to conventional scheduling algorithms for 3000 jobs of the zewura
workload. As the job count increases, the number of days to complete the
execution of jobs increases gradually. In the case of traditional algorithms,
the performance of FCFS starts to decline as the job count increases, and
SJF begins to show better performance than FCFS. Out of the bio-inspired
algorithms, PSO and GA take 93 days and 90 days, respectively. The
performance of hybrid algorithms is better than that of bio-inspired and
conventional algorithms for both small and large sets of jobs. Out of the two
hybrid algorithms, the performance of SJF-GA is more satisfying compared
to SJF-ACOthresh for both small and large sets of jobs.

Mastering Grid Computing: Scheduling and Resource Management.

Ankita & Sudip Kumar Sahana (Authors)
© 2025 Apple Academic Press, Inc. Co-published with CRC Press (Taylor & Francis)

Table 7.1 TCT of Zewura Workload for FCFS, SJF, ACOthresh, SJF-
ACOthresh, and SJF-GA

FCFS 68 1.0 1.2 2.0
SJF 71 1.4 1.2 2.4
ACO 69 92 1.4 1.6
PSO 67 93 1.0 1.7
GA 67 90 1.1 1.3
ACOthresh 67 89 1.3 1.5
SJF-ACOh 66 88 1.9 1.1
SJF-GA 66 86 1.6 1.0

7.3 ANALYSIS OF CLUSTER RESOURCE UTILIZATION
(CRU)
The utilization of clusters (in percentage) and their utilization graphs have
been discussed in previous chapters. The average utilization of Zewura
clusters for different scheduling algorithms has been calculated (Table 7.2).
Among all the scheduling algorithms, the average CRU for 3000 jobs in the
case of FCFS is the highest. However, the utilization decreases with an
increase in the number of jobs. From Table 7.2, it is evident that SJF-GA
has the best cluster utilization in comparison to other conventional, bio-
inspired, and hybrid algorithms Resource utilization (RU) is one of the non-
trivial parameters used to measure the efficiency of a scheduling algorithm.
High RU indicates that the resources have been allocated in an appropriate
manner while maintaining fairness among the resources in terms of load
distribution.

Scheduling
Algorithms

TCT of Zewura Workload (In Days)

3000
Jobs

6000
Jobs

11,000
Jobs

17,256
Jobs

Table 7.2 Average Utilization of Zewura Clusters (in Percentage) for
Different Workloads Using FCFS, SJF, ACOthresh, SJF-ACOthresh, and
SJF-GA

FCFS 54.64 61.75 58.48 54.35
SJF 54.02 61.29 61.61 65.51
ACO 54.05 63.16 67.33 68.06
PSO 53.75 63.32 62.01 67.75
GA 54.24 64.14 66.60 69.26
ACOthre, 53.55 60.01 63.22 68.39
SJF-ACOS, 54.33 63.92 64.41 69.89
SJF-GA 54.32 64.54 67.67 70.12

7.4 LOAD DISTRIBUTION
Standard deviation (SD) indicates the amount of deviation in the
distribution of workload among the CRs. A low value of SD indicates that
the deviation is less, and hence, the distribution of load is uniform among
the resources. A high value of SD shows that the deviation in the
distribution of workload among the CRs is high. Therefore, a good
scheduling algorithm must have a low value of SD, indicating minimum
deviation of workload among the CRs. The SD of different scheduling
algorithms using the Zewura workload has been calculated (Table 7.3), and
it shows that the value of SD is highest for FCFS, which proves that the
distribution of workload among the resources in FCFS has not been an
optimal case. Among all the scheduling algorithms, GA has the lowest value

Average Utilization
of 7 Zewura Clusters

Cluster Resource Utilization of Zewura
Clusters for Given Set of Jobs (in Percentage)

3000 Jobs 6000 Jobs 11,000 Jobs 17,256 Jobs

of SD, indicating fairness in the distribution of workload among all the
CRs.

Table 7.3 Standard Deviation for ACO,„, SJF-ACOthresh, and SJF-GA

FCFS 4.07 4.92 4.00 4.32 4.32
SJF 3.33 2.99 1.21 1.56 2.27
ACO 3.07 3.36 2.29 2.35 2.76
PSO 3.62 3.33 1.11 0.95 2.25
GA 2.43 0.98 1.99 2.44 1.96
ACOthresh 2.57 4.51 2.08 0.96 2.53
SJF-ACOthresh 3.34 2.39 1.45 2.59 2.44
SJF-GA 3.42 4.34 2.17 1.43 2.84

7.5 SUMMARY
This chapter presents a comparative report of different conventional, bio-
inspired, and hybrid algorithms to solve the problem of job scheduling in
the grid environment. The performance comparison report showcases that
the hybrid bio-inspired algorithms have better scheduling results in
comparison to other reference algorithms in terms of TCT of jobs, RU, and
load distribution. The analysis shows that the proposed hybrid SJF-GA
scheduling algorithm has shown promising results compared to other
reference algorithms in terms of various parameters taken into consideration
to evaluate the performance of scheduling algorithms

Scheduling
Algorithms

SD in the Utilization of Cluster Resources of
Zewura Clusters for a Given Set of Jobs (in

Percentage)

Average
SD

3000
Jobs

6000
Jobs

11,000
Jobs

17,256
Jobs

KEYWORDS

average machine utilization
cluster resource utilization
conventional algorithmsgrid scheduling problem
hybrid algorithms
load distribution uniformity
resource utilization
total completion time

OceanofPDF.com

https://oceanofpdf.com/

CHAPTER 8
New Computing Platforms for
Solving Convoluted Engineering
Problems: A Review
8.1 INTRODUCTION
In today’s world of high-speed Internet, modern devices, and a growing
number of users generating vast amounts of data, effective management and
seamless service delivery are essential. The emergence of parallel and
distributed computing has transformed the landscape of computing. A good
number of computing platforms are available for users on a demand basis,
and their service needs are being taken care of by the developers and the
service providers. There is no need to buy technology or set up a computing
environment to fulfill one’s need for computing resources. One can easily
request the desired resources and gain access in real-time at any location,
hence breaking all the barriers and bringing the computing world closer
than ever. The grid computing platform is one such platform that has
changed the ideology of computing and enabled resource sharing among
computational resources to meet the computing demands of its users,
thereby providing immense computing power equivalent to supercomputers
at a reasonable cost. In this chapter, we will study some of the latest trends
in computing platforms that can serve users’ requests according to their
requirements. Also, we will identify issues or limitations of these
computing models and possible solutions to those problems.

The commercialization of primitive services such as gas and water and
their delivery to the doorstep of a customer is a very good example of
service delivery. In this case, the customer utilizes the services provided by
the gas owner or the electricity provider without being concerned about
how and where the services are being generated. This is analogous to the
computing world, where computing services will be provided to the users
according to their requirements and the availability of computing resources.
The location of users or computing resources does not affect the service
delivery to the users.

Mastering Grid Computing: Scheduling and Resource Management.

Ankita & Sudip Kumar Sahana (Authors)
© 2025 Apple Academic Press, Inc. Co-published with CRC Press (Taylor & Francis)

The computing needs of the users have substantially increased in the past
few years. Leonard Kleinrock (2005) was a great scientist in advanced
research projects agency network (ARPANET) who forecasted the present
computing scenario in one of his powerful writings. He said, “As of now,
computer networks are still in their infancy, but as they grow up and
become sophisticated, we will probably see the spread of “computer
utilities” which, like present electric and telephone utilities, will service
individual homes and offices across the country.” Kleinrock’s computing
vision came into existence in the 21st century and revolutionized the
computing industry.

The notable progress in the field of information and communication
technology (ICT) escalated the need for a computing technology that can
satisfy the requirements of the users. A good number of computing
paradigms are available for users, such as cluster computing, grid
computing, edge computing, fog computing, and cloud computing, which
can be applied to complex science and engineering problems.

8.2 FORMS OF COMPUTING PLATFORMS
Computing can be defined as a systematic approach to learning algorithmic
processes used to display and convert information. Nowadays, several
computing platforms are widely used for a range of applications across the
globe. In the next section, we will study some traditional computing
platforms as well as the latest computing trends in the computational world.

8.2.1 DISTRIBUTED COMPUTING
Distributed computing (Attiya and Welch, 2004) involves the study of
algorithms for the proper management of distributed systems. It refers to a
mechanism where data processing and storage are distributed among
several nodes or systems and not controlled by a single pivotal system. The
nodes in a distributed computing network have their own computing or data
processing capabilities and are capable of storing and managing their data.
These nodes are entitled to work together to execute tasks and share
resources without being controlled by a single central device.

Multiple programs run across several computing nodes over one network
and fulfill the requirements for better performance in the scientific domain
as well as general applications. Performance, fault tolerance, resource
sharing, and resource availability are the important characteristics of
distributed computing that have led to its success. It allows multiple nodes
to combine and increase the computational power, memory, and bandwidth
of the network. A number of approaches are available that can help to
implement distributed computing in a network. An interconnection of
desktop computers can be created using a high-speed network, which can
provide computing power equivalent to supercomputers.

Autonomous computers (van Steen and Tanenbaum, 2016) are combined,
creating a view of one intelligible system for its users in a distributed
network. Distributed computing has been running in the computing world

for more than five decades now. The aggregation of distributed computing
resources and their consolidated usage (Belfiore et al., 2006) is an important
characteristic of a distributed system. Communication is an important
property because data and information exchange are highly required for
computing nodes to interact and work together in a distributed computing
network. Message passing is the mode of communication among the
connected nodes in a distributed network.

There are several benefits of using a distributed computing environment.
Some of them are given below:

1. Resource Availability: There are multiple systems or nodes running
in a distributed computing framework; hence, an organization is not
reliant on a single server. The distributed computing platform has
greatly reduced the dependency on a central server because the failure
of one server will not affect the functioning of the organization. It
provides a property called fault tolerance, which enables the
distributed network to deal with single or multiple system failures in
the network.

2. Availability of Data: Multiple nodes or systems provide multiple
storage points in the distributed network. The distributed network is
not affected by the failure of one storage device, and data remains
protected and stored at different locations.

3. Least System Overloading: This is one of the important
characteristics of distributed computing. Instead of hitting a single
machine, user requests can easily be redirected to various servers in a
distributed computing platform.

4. Scalable: The distributed network is scalable in nature, such that its
design can easily be updated by including new machines in the
network.

5. Parallel Computing: The property of parallel computation allows
complex simulations to break into various sub-parts and run them in
parallel during scientific computation. This yields faster results in
comparison to the entire computation performed in series mode.
Limitations of distributed computing network:

i. Since the data is stored in multiple places in a distributed
computing network, a strong security mechanism is required to
ensure the privacy and integrity of the data.

ii. Synchronization becomes difficult and often results in possible
errors when multiple systems simultaneously try to read or write
the same data.

8.2.2 CLUSTER COMPUTING
In cluster computing, various machines are combined to execute an
application or individual job. A typical illusion of one virtual machine
(server) is presented before the user in such a manner that the user believes
that they are interacting with a single system. A high-performance cluster
(Buyya, 1999) contains a good number of computing machines called
nodes. These nodes are further classified as general computing nodes and a
master node.

Cluster models are classified into two categories: The high-availability
cluster model (Gadir et al., 2005) and load balancing cluster model. The
high availability cluster model utilizes implicit repetition to provide the
availability of services and resources in a steady manner. The failure of one
cluster node will not affect the functioning of the cluster computing
network because other nodes are available to provide the required services
to the users. In this way, the application is mitigated from one machine to
another to continue the ongoing application. This process is called the

failover of an application to another machine in a clustered computing
network.

The binding of important missions, files, and servers is one of the
prominent application areas of cluster computing networks. In this network,
continual services are provided by high-availability clusters through
extreme restructuring of hardware and software. Cluster load balancing
(Werstein et al., 2006; Overeinder et al., 1996) is another model where
computing nodes are combined to handle client requests in a balanced
fashion. The scheduler and scheduling algorithm plays an important role in
redirecting client requests to appropriate cluster nodes. This type of network
is primarily used in real-time applications, such as handling cargo
discrepancies from numerous input requests.

The advantages of working in a cluster computing environment are listed
below:

Like distributed computing, the cluster computing model is also
scalable, allowing any new node (machine) to be added to the network
in order to widen the network size.
Fault tolerance is also provided in the case of single or multiple node
failures in the clustered network. It has the capability to handle a
sudden increase in job count and accordingly balances the load in the
clustered network.

The drawbacks of the cluster computing model are given below:

The cost of installation of workstations and other machines is quite
high.
The cluster computing network requires an appropriate monitoring and
maintenance system to observe any possible malfunctioning of

systems within the network. Also, proper checks are required before
adding any new system to the existing network infrastructure.

8.2.3 GRID COMPUTING
Grid computing (Berman et al., 2003) has greatly transformed the
computing approach of scientists and researchers around the world. The
latest high-tech advancements in the field of computing and technology
have allowed for the interlinking of a considerable number of computing
and storage resources such as servers, mainframes, storage devices, and
many more. The interconnected devices build a unified resource framework
that can be regarded as a single resource to users. These resources are
accessible to users in a coherent manner and enable the cooperative and
pervasive use of computing resources for users to solve their complex
problems.

The field of distributed computing networks has been widened with the
growth of grid computing. The concept of grid computing (Buyya and
Venugopal, 2005) came into existence in the early 1990s and emerged as a
strong computing platform with phenomenal capabilities. Though grid
computing is similar to cluster computing, both computing platforms have
fundamental differences. The nodes in a cluster computing network are
always homogeneous, but a grid computing network is not restricted to
homogeneous nodes. It allows both homogeneous and heterogeneous nodes
to form a grid computing network. The cluster computing nodes are closely
placed to each other, whereas the grid computing nodes may be positioned
at far locations from each other. The resources are managed centrally in a
clustered network environment, whereas the grid resources have distributed
resource management.

The enormous development of computing and communication
technologies has led to the current modernization in the present age. The

concept of ubiquitous computing (Lyytinen and Yoo, 2002) platform uses
standardized protocols that allow universal access to resources and manage
resource sharing. The global grid forum (GGF) provides the necessary
protocols that allow accessing and discovering resources and also provides
the necessary mechanisms for carrying out communication among the
resources.

Grid computing is still evolving and can help scientists and engineers to
implement real-time complex problems of science and engineering in the
coming time. Some of the benefits of the grid computing platform are listed
below:

1. The deployment cost of a number of parallel machines has always
been a matter of concern for infrastructure developers. Grid computing
(Foster et al., 2001) is a collection of heterogeneous or homogeneous
machines with enormous computational power at a very low cost in
comparison to parallel machines.

2. Security in the grids is provided by the intergrids, which are similar to
the type of security provided by the LAN (local area network).

3. Grid computing is a fault-tolerant computing platform (Foster, 2003;
Foster and Kesselman, 2003a) where the grid system quickly identifies
a single machine failure and immediately redirects the job to an
operational (working) machine where the job finishes its execution.
Thus, the grid computing platform provides a flexible and invulnerable
computing framework.

There are a few imitations while working in a grid computing environment.

i. It is difficult to maintain synchronization among all the servers in a big
and dynamic computing environment like a grid. A good number of

small servers are distributed across several administrative sites.
ii. Political indifferences between countries may create hindrances or

restrict resource sharing across geographical boundaries.
iii. The grid computing network is a huge network that encompasses a

large number of machines connected, forming a ubiquitous computing
network. A proper safety mechanism is required to ensure the integrity
and privacy of users’ data.

8.2.4 CLOUD COMPUTING
A cloud computing platform (Buyya et al., 2009; Weiss, 2007) is an
amalgam of cluster and grid computing but also has inherent attributes that
add to its popularity and utility. Cloud computing (Zhang et al., 2010;
Varghese and Buyya, 2018) can be considered a next-generation computing
technology whose nodes are virtualized through “hypervisor” technologies
to meet explicit service-level agreements. The cloud environment can be
accessed using web service technologies such as simple object access
protocol (SOAP) and representational state transfer (REST). The service
model’s setup relies on user requirements that can be public, private,
community, or hybrid. The cloud computing model provides three types of
service models (Kavis, 2014). The first model is SaaS (Cusumano, 2010),
which stands for software-as-a-service (SaaS). SaaS is an on-demand
software delivery model where the applications are hosted by a third party
for the available users over the Internet. Network-dependent access to a
copy of an application is given to the customer. This is generated by the
supplier for SaaS distribution.

The second model is PaaS (Pahl, 2015), which stands for the platform as
a service (PaaS), where the third party is responsible for providing APIs to
the developers in order to run the application in the given computing
environment. PaaS is based on the theory of virtualization, where resources

can easily be added or removed according to variations in business. The
PaaS applications are low-cost applications and sometimes freely available,
allowing the utilization of the previously developed cloud organization in
order to transfer or move the current application. With PaaS, the
applications generated are bound to that platform, and developers may
create new applications according to their requirements on the platform.
The PaaS model allows working with the programming languages and
functions provided by the selected platform.

The last one is IaaS (Laniepce et al., 2013), which stands for infra-
structure as a service (IaaS). IaaS is a self-service model made up of
expandable computing resources. This model provides various utilities,
such as handling computers, networking, and repository services. The IaaS
client is responsible for handling applications, middleware, and data,
whereas the IaaS server handles repository, networking, and virtualization.
The IaaS model is the most flexible in comparison to the SAAS and PaaS
models. The hardware equipment is purchased according to their
requirements and utilities, considering the size of the business organization.
Small companies and startups follow the IaaS model because these
companies lack monetary resources and cannot spend large amounts on
purchasing hardware and software.

Cloud computing has proved its utilization in the computing industry and
has been widely adopted by many organizations. The recent survey report
shows that the revenue rate of companies has rapidly increased after
investing in evolving technologies such as cloud and big data in comparison
to other companies. The benefits of using a cloud computing platform are
given below:

1. Scalability: The cloud environment supports scalability such that an
organization or business may scale up or down according to its

requirements. This causes changes in the operational and repository
needs of the organization. These changes are handled by the cloud
computing environment, and the user is not burdened with installing or
updating the required resources (provided by the cloud provider). The
user is only concerned with using their time to run and carry out
business operations effectively.

2. Collaboration: This feature facilitates association among employees
and creates a work culture in a typical organization. This is particularly
helpful for those employees who are actively working on one project
across different locations, allowing them to use the same file for a
particular project.

3. Work From Home: Cloud computing supports a “work from home”
culture, where the only requirement is to have a proper internet
connection.

4. Latest Technologies: Cloud computing follows the latest trends in the
computing world and keeps its users informed about recent upgrades
in the market.

5. Consistency: The cloud computing environment is responsible for
providing consistent data because the same data is used at different
locations by different employees working on a single project in an
organization. The cloud environment provides consistent data,
ensuring that data integrity is maintained and human errors are
minimized.

6. Recovery: The cloud also provides important services for recovery
during disaster situations (Ujjwal et al., 2019), such as power outages
or even natural disasters.

7. Prevention of Data Loss: Data loss is a serious issue in the computing
environment. This can be prevented with the help of a cloud-based

server. The locally stored information on a particular system is
vulnerable; therefore, it is a safe practice to upload the information to a
cloud server, which is safer than local storage. The uploaded
information in the cloud can be accessed from anywhere, provided
there is a working computing device and a stable internet connection.

8. Environment-Friendly: In the present situation, the world is making
all efforts to lessen pollution in all forms and create a healthy Earth for
generations to come. The cloud environment follows this goal with
less usage of carbon imprints.

The cloud computing platform has some key issues (Branco Jr. et al., 2017)
discussed below:

The service provider has the job of allocating and de-allocating
resources from the cloud once the user finishes its execution. The
service provider is bound to keep low operational costs, and the
resource provisioning decisions are required to be made dynamically
to satisfy the quick demand variations.
All the infrastructure developers are concerned about improving
energy efficiency in the cloud computing environment.
The cloud environment requires efficient management and analysis of
network traffic so that network operators can make quick planning
decisions by analyzing the varying network flow.
Security (Subramanian and Jeyaraj, 2018; Zissis and Lekkas, 2012) is
an impending topic in the cloud computing platform. The service
providers rely on the infrastructure providers to attain data security.
Confidentiality and data integrity are the major issues in the cloud
computing environment.

The virtual network is vulnerable to threats (Brohi et al., 2012);
therefore, it is important to form a safe and secure network among all
the elements of the cloud.
Some factors, such as power failure, poor internet connectivity, and
lack of maintenance at the data computing center, can lead to a
situation called temporary downtime in the cloud environment.
Security breaches are one of the primary concerns of cloud computing
developers because the stored data available on the cloud is online and
can be compromised if proper security mechanisms are not imposed.

8.2.5 FOG COMPUTING
In the computing industry, data has been increasing unexpectedly, and the
world will see billions of connected machines by the end of this decade
(Evans, 2011). The network designers have a tough job managing the
magnitude and movement of data because there has been an enormous
amount of work. The constraints in network bandwidth often pose problems
in moving bulk data from IoT machines to the cloud effectively. Sometimes,
privacy (security) constraints restrict sending data to the cloud environment.
The problems of bandwidth and security constraints of cloud computing
platforms can be overcome by a new computing paradigm known as fog
computing (Hu et al., 2017; Upadhyay, 2018). In fog computing, computing
services, data management, and storage services are allowed over the
network nodes within proximity to IoT devices. The computation is not
carried out solely in the cloud; rather, the computation happens on the route
of data movement from IoT to the cloud.

In a fog model, two platforms are available: horizontal and vertical
(Mouradian et al., 2017). The horizontal function enables the circulation of
computing services among various platforms and industries. The vertical
platform is designated for a specialized application, but there is zero

interaction between different platforms. The vertical function is aimed at
providing a flexible platform to meet the data-driven demands of fog
computing developers and users.

Though fog computing (Yousefpour et al., n.d.) has several resemblances
to cloud computing, there are notable differences addressed below:

The security mechanism of fog computing is completely different from
that of cloud computing. The security structure of cloud computing is
centralized and located in designated buildings for data centers,
whereas security in the fog computing environment must be provided
at the edge or in the designated areas of fog nodes.
The cloud’s data centers are centralized in nature, whereas the fog
nodes are organized in less centralized areas. Because of the
decentralization in the fog computing environment, the nodes in fog
can serve as fog computing nodes and fog resources can serve as fog
clients.
In terms of power utilization and resource availability, cloud
computing is quite ahead of fog computing (Mukherjee et al., 2018). •
The operating environments of both computing technologies are
different from each other. The cloud environment has massive data
computing centers, while fog computing works on small-scale
gateways, switches, and routers.
Internet connectivity is a prime requisite to operate in the cloud
environment, whereas fog computing does not have such requirements.
No continuous or stable internet connection is required to work in the
fog computing environment.

Some of the benefits of fog computing are listed below:

In fog computing, the nodes are heavily populated at the edge because
the fog nodes at the network edge are ready to acquire the data
generated by the machines and sensors. This helps in lessening the
transit of data across the Internet and provides quality services.
The bandwidth is saved because the computation of data and storage is
performed between the cloud and the edge nodes.
The fog computing model supports the mobility of several devices
such as smartwatches and phones, whereas devices like traffic cameras
located at the network end remain static in their position. A fog node
might operate as a static resource or a mobile resource. The
communication between mobile devices does not require data
transmission to the cloud or any other base station.
The multiple node distribution across geographical regions has the
ability to document and determine the position of nodes to facilitate
support for mobility. It eventually helps in making realtime decisions,
fast data analysis, and achieving better locationoriented services.
Node heterogeneity is supported in the fog computing model. A good
variety of fog nodes are present, such as switches, gateways, servers,
routers, and base stations. Virtualization has also been favored by the
fog computing model in such a manner that virtual nodes and
computational nodes are operational here and can be considered as fog
nodes.
Effective data encryption, integrity checks, and isolation measures
have been undertaken to avoid security breaches.

The Fog Computing platform is modeled to support the Internet of Things
(IoT). The IoT devices often help in reducing the gap between the cloud and
the end devices. The major shortcomings of the fog model are written
below:

Trust and authentication are the two alarming issues in the fog
computing environment. A fog node is the central element of the fog
computing model. The fog node guarantees secrecy and obscurity for
the users. End users are required to be aware of the authorization
because the fog node carries out the global concealing process and
non-diabolical actions. Hence, the fog nodes must maintain a level of
trust in each other.
It is really crucial to identify unauthorized access in order to prevent
real data from being hacked (Mandlekar et al., 2014). Security issues,
such as cooperation among nodes, need to be addressed.
A fog node is vulnerable to malicious attacks (Mahmud et al., 2018)
because fog nodes are located in different regions, with some regions
having weak security arrangements. One such example is that a
malicious node user can misuse and alter readings or may cause IP
spoofing. Security issues (Zhang et al., 2018), such as IP address
spoofmg and eavesdropping, need to be addressed in the fog
computing platform.
Data consistency has been achievable using possible efforts. Everyone
in the network is concerned about the confidentiality of their data (Koo
et al., 2016). Hence, the preservation of privacy is an important aspect
of the fog computing environment.
Two types of communication channels have been used in transmitting
data: (i) between IoT devices and fog nodes; and (ii) among fog nodes.
The communication channel in either of the two cases is required to be
secure. An intruder might send fake messages that get circulated in the
network during communication (Soleymani et al., 2017).
Task scheduling is complex in the fog computing model.

Currently, service level agreements (SLAB) are designed for cloud
computing platforms and not for the fog computing model.
The design of the fog computing model is concerned with a few
objectives, such as offloading and load balancing of the fog network.

8.2.6 EDGE COMPUTING
Edge computing (Tu et al., 2019) is one of the latest computing
technologies that has acquired huge popularity in the last five years. This
computing technology has served as a computing model for advanced
technologies such as the IoT and vehicle-to-vehicle communication, and it
provides a number of services to the user community. The last decade has
seen a substantial increase in the number of communicating devices with
the growth of IoT applications. The rise of IoT applications has led to the
introduction of a number of communicative devices. The data generated by
IoT devices are enormous, and therefore processing such data requires
running several IoT services.

The edge computing (Ahmed and Rehmani, 2017) model is designed to
produce data computation at the network edge rather than sending
unprocessed data to data centers. This leads to bandwidth reduction and a
decrease in computational complexity required by clouds. The edge
computing model cleans, preprocesses, and collects IoT data using cloud
services and builds a combination of IoT devices and the cloud.

Opportunistic edge computing (Olaniyan et al., 2018) creates a scalable
foundation using resources supplied by the end users.

The benefits of edge computing are stated below:

i. Important networking issues like latency and confidentiality are easily
handled using edge computing. A great reduction has been observed in

cyber-attacks, and data security has also improved to a good extent due
to the decentralized structure of the edge model.

ii. Connected devices are not required to wait for a centralized platform
to provide a service, and the service availability is also relatively
higher than in cloud computing.

iii. There is a reduction in operational costs because the preprocessing of
data takes place at the network edge rather than transferring it to cloud
data centers. This will lead to a reduction in infrastructure costs.

iv. The edge computing paradigm is scalable in nature and can create
hybrid structures with the cloud computing model.

The section presented below deals with the open issues or challenges (Cao
et al., 2018; Varghese et al., 2016) in edge computing.

An efficient resource discovery mechanism is required to locate the
resources and services at the edges of the network because of the large
number of devices present on the network edge.
The data being processed at the network edge only forms a subset of
data and not the complete data. Therefore, it becomes necessary for
enterprises to decide on a tolerable level of information loss.
The hardware specifications of the edge computing model are high.
An effective fault recovery mechanism is required to deal with
imprudent faults on the edge node.
Though job partitioning is not new in a distributed computing
environment, however, it becomes troublesome in edge computing
platforms because a scheduler is needed to assign partitioned jobs over
nodes present at network edges.
The risk factor must be comprehensively related to service providers
and enterprises owning these devices. A cost-effective computational

model must be constructed in such a way that edge nodes will be
accessed by the expected user community.
The traditional authentication protocols are not relevant for emerging
computing platforms because of the heterogeneity of computational
nodes.

An edge computing framework that is capable of making automated
complex decisions in real-time directly on edge devices using AI-based
techniques is called edge intelligence. The integration of edge computing
and AI has given birth to the notion of edge intelligence in the computing
world.

The physical closeness between the processing and data-generation
sources provides various advantages compared to the traditional cloud-
based computing framework, including minimum latency, energy
efficiency, improved security, less bandwidth consumption, on-premises
capabilities, and situational awareness.

8.2.7 UTILITY COMPUTING
Computing (Fortino and Palau, 2012) has become an integral part of
implementing basic activities such as using computers or mobile phones to
interact with one another, reading newspapers online, managing financial
activities, and many more. The ever-growing demand for computing has
presented questions to computer scientists and service providers to ensure
service availability and provide secure services to all intended users.
Computing, however, is required in the same manner that other basic
utilities, such as water and electricity, are required because of its current
demand in daily life activities. It is a kind of computing where complexity,
as well as maintenance costs, can be easily divided equally among all its
users. The intent of utility computing (Adhikari et al., 2016; Mondal and

Sarddar, 2015) is to provide a technology that allows enterprises to provide
and retain resources and different functionalities according to the
requirements.

It aims to support a kind of infrastructure that can provide information
technology (IT) services according to the demands of customers. Utility
computing (Canali et al., 2005) differs from outsourcing because
outsourcing focuses on location and resource management, whereas utility
computing is related to resource management, resource consumption, and
its utilization. The utility model is suitable for both corporate and
outsourcing data centers. It intends to break down the huge IT foundations
into several independent segments. A classification has been made in
accordance with the business processes that are readily supported by the
independent segments. The utility model strives to help the idle resources
that are not currently being used and are non-functional. These resources
can easily be supplied to other business processes as per requirement.
Additionally, it is possible to turn these resources on or off according to
requirements.

Utility computing has several advantages, which are listed below:

This model is cost-effective because it allows the mutual sharing of
resources among the users in an organization.
There is no need to buy a resource because of the improved ability to
match the resource specifications with varying space specifications
over time.
There is less complexity due to improvements in the management and
maintenance of the system.

Some of the limitations of the utility computing model are given below:

The machines or computers in the utility model are vulnerable to
hacking. A hacker might attempt to access the private files of the
clients, which poses a potential threat to their privacy.
Reliability is also an issue in the utility model because an organization
might curtail its services due to a financial crisis. Although the
customers have been paying for the services, they may be deprived of
the requisite services.

8.3 SUMMARY
Everyone wants a hassle-free computing experience, which brings various
types of challenges for software developers and owners. Though there are
many challenges, there are some possible solutions and recommendations
that can certainly help in handling such challenges and problems, as
described below:

In a fog computing network, it is necessary to state appropriate SLAs
and SLA management techniques.
In a multi-objective fog model, several objectives, such as latency,
security, availability, bandwidth, and energy, can be incorporated
together to utilize the potential of a multi-objective fog network.
Developing fast protocols and machine learning algorithms could help
facilitate high-speed users.
A proper scheduler is needed to schedule the partitioned jobs over the
edge nodes in the network. Also, a support mechanism is required to
verify the accuracy of the partitioned tasks by the receivers.
A new set of authentication and trust protocols is required to handle
the heterogeneity of the resources in a computing model.

The emerging computing platforms have transformed the notion of IT and
presented a view of utility computing as a reality. The growing rate of the
Internet and IoT has boosted the development of emerging computing
models, which we have discussed in this chapter. We have also discussed
the potential challenges and some promising solutions for these computing
models. These computing platforms have been recognized worldwide and
are widely used in the areas of e-governance, disaster management,
education, and business organizations. These computing paradigms are still
in the exploration phase, and it has been estimated that billions of
computing users and devices will be connected to the Internet. The idea of
market-based global clouds is to facilitate trading services by connecting
the clouds and forming market clouds. In the future, a secure, unified, and
interoperable platform can be developed by assembling all the computing
platforms to provide seamless services to the user community and
organizations.

KEYWORDS

Average machine utilization
cluster resource utilization
conventional algorithmsgrid scheduling problem
hybrid algorithms
load distribution uniformity
resource utilization
total completion time

OceanofPDF.com

https://oceanofpdf.com/

Bibliography
Abraham, A., Buyya, R., & Nath, B. (2000). Nature’s heuristics for
scheduling jobs on computational grids. In Proceedings of the 8 th
IEEE International Conference on Advanced Computing and
Communications (ADCOM 2000) (pp. 45–52).
Adhikari, M., Das, A., & Mukherjee, A. (2016). Utility computing and
its utilization. In Emerging Research Surrounding Power Consumption
and Performance Issues in Utility Computing (pp. 1–21). IGI Global.
Ahmed, E., & Rehmani, M. H. (2017). Mobile edge computing:
Opportunities, solutions, and challenges. Future Generation Computer
Systems, 70, 350–361. Elsevier.
Ali, K. E., Mazen, S. A., & Hassanein, E. E. (2018). A proposed hybrid
model for adopting cloud computing in e-government. Future
Computing and Informatics Journal, 3(2), 286–295.
Alyaseri, S., & Ku-Mahamud, K. R. (2013). Bee foraging behavior
techniques for grid scheduling problems. International Refereed
Journal of Engineering and Science (IRJES), 2(4), 39–45.
Ambursa, F. U., & Latip, R. (2013). A survey: Particle swarm
optimization-based algorithms for grid computing scheduling systems.
Journal of Computer Science, 9(12), 1669–1677.
Amiri, E., Keshavarz, H., Ohshima, N., & Komaki, S. (2014).
Resource allocation in the grid: A review. Procedia-Social and
Behavioral Sciences, 129, 436–440.
Attiya, H., & Welch, J. (2004). Distributed Computing: Fundamentals,
Simulations, and Advanced Topics (Vol. 19). John Wiley & Sons.

Balaton, Z., & Gombás, G. (2003). Resource and job monitoring in the
grid. In Proceedings of the European Conference on Parallel
Processing (pp. 404–411).
Belfiore, J., Campbell, D., Capps, S., Cellini, S., Fitzgerald, C.,
Gundotra, V., Lucovsky, M., Maritz, P., Mital, A., & Rudder, E. (2006).
Distributed computing services platform. Google Patents. U.S. Patent
No. 20060031020.
Berman, F., Fox, G., Hey, T., & Hey, A. J. (2003). Grid Computing:
Making the Global Infrastructure A Reality (Vol. 2). John Wiley &
Sons.
Binitha, S., & Sathya, S. S. (2012). A survey of bio-inspired
optimization algorithms. International Journal of Soft Computing and
Engineering (IJSCE), 2(2), 137–151.
Blum, C. (2005). Ant colony optimization: Introduction and recent
trends. Physics of Life Reviews, 2(4), 353–373.
Blum, C., & Merkle, D. (2008). Swarm Intelligence: Introduction and
Applications. Springer Science & Business Media.
Branco Jr, T., de Sá-Soares, F., & Rivero, A. L. (2017). Key issues for
the successful adoption of cloud computing. Procedia Computer
Science, 121, 115–122.
Brohi, S. N., Bamiah, M. A., Brohi, M. N., & Kamran, R. (2012).
Identifying and analyzing security threats to virtualized cloud
computing infrastructures. In Proceedings of the 2012 International
Conference on Cloud Computing Technologies, Applications and
Management (ICCCTAM) (pp. 151–155).
Buyya, R. (1999). High-Performance Cluster Computing:
Architectures and Systems (Vol. 1). Prentice Hall.

Buyya, R., & Murshed, M. (2002). Gridsim: A toolkit for the modeling
and simulation of distributed resource management and scheduling for
grid computing. Concurrency and Computation: Practice and
Experience, 14(13–15), 1175–1220.
Buyya, R., & Venugopal, S. (2005). A gentle introduction to grid
computing and technologies. Database, 2, R3.
Buyya, R., Abramson, D., & Giddy, J. (2000). Grid resource
management, scheduling, and computational economy. In Proceedings
of the International Workshop on Global and Cluster Computing (pp.
2002–2040).
Buyya, R., Abramson, D., Giddy, J., & Stockinger, H. (2002).
Economic models for resource management and scheduling in grid
computing. Concurrency and Computation: Practice and Experience,
14(13–15), 1507–1542.
Buyya, R., Chapin, S., & DiNucci, D. (2000). Architectural models for
resource management in the grid. In Proceedings of the International
Workshop on Grid Computing (pp. 18–35).
Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., & Brandic, I. (2009).
Cloud computing and emerging IT platforms: Vision, hype, and reality
for delivering computing as the 5th utility. Future Generation
Computer Systems, 25(6), 599–616.
Canali, C., Rabinovich, M., & Xiao, Z. (2005). Utility computing for
internet applications. In Web Content Delivery (pp. 131–151).
Springer.
Caniou, Y., & Gay, J. S. (2009). Simbatch: An API for simulating and
predicting the performance of parallel resources managed by batch
systems. In Proceedings of the Euro-Par 2008 Workshops on Parallel
Processing (pp. 223–234). Springer.

Cao, J., Spooner, D., Turner, J. D., Jarvis, S., Kerbyson, D. J., Saini, S.,
& Nudd, G. (2002). Agent-based resource management for grid
computing. In Proceedings of the 2 nd IEEE/ACM International
Symposium on Cluster Computing and the Grid (CCGRID’02) (pp.
350–350).
Cao, J., Zhang, Q., & Shi, W. (2018). Challenges and opportunities in
edge computing. In Edge Computing: A Primer (pp. 59–70). Springer.
Chang, R. S., Chang, J. S., & Lin, P. S. (2009). An ant algorithm for
balanced job scheduling in grids. Future Generation Computer
Systems, 25(1), 20–27.
Chen, C. C., & Liu, Y. T. (2018). Enhanced ant colony optimization
with dynamic mutation and ad hoc initialization for improving the
design of a TSK-type fuzzy system. Computational Intelligence and
Neuroscience, 2018, 1–16. https://doi.org/10.1155/2018/4981035.
Chen, T., Zhang, B., Hao, X., & Dai, Y. (2006). Task scheduling in grid
based on particle swarm optimization. In Proceedings of the 2006 Fifth
International Symposium on Parallel and Distributed Computing (pp.
238–245). IEEE. https://doi.org/10.1109/ISPDC.2006.36.
Chu, S. C., Tsai, P. W., & Pan, J. S. (2006). Cat swarm optimization. In
PRICAI 2006: Trends in Artificial Intelligence: 9 th Pacific Rim
International Conference on Artificial Intelligence (pp. 854–858).
Springer. https://doi.org/10.1007/11801603_98.
Coello, C. A. C., Lamont, G. B., & Van Veldhuizen, D. A. (2007).
Evolutionary Algorithms for Solving Multi-Objective Problems (Vol.
5). Springer.
Cusumano, M. A. (2010). Cloud computing and SaaS as new
computing platforms. Communications of the ACM, 53(4), 27–29.
https://doi.org/10.1145/1721654.1721667.

http://dx.doi.org/10.1155/2018/4981035
http://dx.doi.org/https://doi.org/10.1109/ISPDC.2006.36
http://dx.doi.org/https://doi.org/10.1007/11801603_98
http://dx.doi.org/10.1145/1721654.1721667

Czajkowski, K., Foster, I., & Kesselman, C. (1999). Resource co-
allocation in computational grids. In Proceedings of the Eighth
International Symposium on High Performance Distributed
Computing (pp. 219–228). IEEE.
https://doi.org/10.1109/HPDC.1999.805291.
Darwish, A. (2018). Bio-inspired computing: Algorithms review, deep
analysis, and the scope of applications. Future Computing and
Informatics Journal, 3(2), 231–246.
https://doi.org/10.1016/j.fcij.2018.06.001.
Dave, M., & Choudhary, K. (2016). Job shop scheduling algorithms—
A shift from traditional techniques to non-traditional techniques. In
Proceedings of the 2016 3 rd International Conference on Computing
for Sustainable Global Development (INDIACom) (pp. 169–173).
IEEE.
Deb, S., Fong, S., & Tian, Z. (2015). Elephant search algorithm for
optimization problems. In Proceedings of the 2015 Tenth International
Conference on Digital Information Management (ICDIM) (pp. 249–
255). IEEE. https://doi.org/10.1109/ICDIM.2015.7381882.
Deb, S., Fong, S., Tian, Z., Wong, R. K., Mohammed, S., & Fiaidhi, J.
(2016). Finding approximate solutions of NP-hard optimization and
TSP problems using the elephant search algorithm. The Journal of
Supercomputing, 72, 3960–3992. https://doi.org/10.1007/s11227-016-
1778-1.
Dobre, C., Pop, F., & Cristea, V. (2008). A simulation framework for
dependable distributed systems. In Proceedings of the 2008
International Conference on Parallel Processing-Workshops (pp. 181–
187). IEEE. https://doi.org/10.1109/ICPP-W.2008.63.

http://dx.doi.org/https://doi.org/10.1109/HPDC.1999.805291
http://dx.doi.org/10.1016/j.fcij.2018.06.001
http://dx.doi.org/https://doi.org/10.1109/ICDIM.2015.7381882
http://dx.doi.org/10.1007/s11227-016-1778-1
http://dx.doi.org/https://doi.org/10.1109/ICPP-W.2008.63

Dong, F., & Akl, S. G. (2006). Scheduling algorithms for grid
computing: State of the art and open problems. Technical Report No.
2006–504. School of Computing, Queen’s University.
Dorigo, M., & Blum, C. (2005). Ant colony optimization theory: A
survey. Theoretical Computer Science, 344(2–3), 243–278.
https://doi.org/10.1016/j.tcs.2005.05.020.
Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system:
Optimization by a colony of cooperating agents. IEEE Transactions on
Systems, Man, and Cybernetics, Part B: Cybernetics, 26(1), 29–41.
https://doi.org/10.1109/3477.484436.
Evans, D. (2011). The Internet of Things: How the next evolution of
the Internet is changing everything. Cisco White Paper, 1(2011), 1–11.
Faris, H., Aljarah, I., Al-Betar, M. A., & Mirjalili, S. (2018). Grey wolf
optimizer: A review of recent variants and applications. Neural
Computing and Applications, 30, 413–435.
https://doi.org/10.1007/s00521-017-3272-5.
Fibich, P., Matyska, L., & Rudová, H. (2005). Model of the grid
scheduling problem. In Exploring Planning and Scheduling for Web
Services, Grid and Autonomic Computing (pp. 17–24). Springer.
Fidanova, S., & Durchova, M. (2005). Ant algorithm for grid
scheduling problem. In Proceedings of the International Conference
on Large-Scale Scientific Computing (pp. 405–412). Springer.
https://doi.org/10.1007/11408877_45.
Flórez, E., Barrios, C. J., & Pecero, J. E. (2015). Methods for job
scheduling on computational grids: Review and comparison. In
Proceedings of the Latin American High Performance Computing
Conference (pp. 19–33). Springer. https://doi.org/10.1007/978-3-319-
14690-5_2.

http://dx.doi.org/10.1016/j.tcs.2005.05.020
http://dx.doi.org/10.1109/3477.484436
http://dx.doi.org/10.1007/s00521-017-3272-5
http://dx.doi.org/https://doi.org/10.1007/11408877_45
http://dx.doi.org/https://doi.org/10.1007/978-3-319-14690-5_2

Foster, I. (2003). The grid: Computing without bounds. Scientific
American, 288(4), 78–85.
https://doi.org/10.1038/scientificamerican0403-78.
Foster, I., & Kesselman, C. (2003a). The Grid 2. Morgan Kaufmann.
Foster, I., & Kesselman, C. (2003b). The Grid 2: Blueprint for a New
Computing Infrastructure. Elsevier.
Foster, I., Kesselman, C., & Tuecke, S. (2001). The anatomy of the
grid: Enabling scalable virtual organizations. The International
Journal of High-Performance Computing Applications, 15(3), 200–
222. https://doi.org/10.1177/109434200101500302.
Gadir, O. M., Subbanna, K., Vayyala, A. R., Shanmugam, H., Bodas,
A. P., Tripathy, T. K., Indurkar, R. S., & Rao, K. H. (2005). High-
availability cluster virtual server system. U.S. Patent No. 6,895,457.
U.S. Patent and Trademark Office.
Gharehchopogh, F. S., & Gholizadeh, H. (2019). A comprehensive
survey: Whale optimization algorithm and its applications. Swarm and
Evolutionary Computation, 48, 1–24.
https://doi.org/10.1016/j.swevo.2019.03.004.
Gharehchopogh, F. S., Ahadi, M., Maleki, I., Habibpour, R., &
Kamalinia, A. (2013). Analysis of scheduling algorithms in a grid
computing environment. International Journal of Innovation and
Applied Studies, 4(3), 560–567.
Ghosh, T. K., Goswami, R., Bera, S., & Barman, S. (2012). Load
balanced static grid scheduling using the Max-Min heuristic. In
Proceedings of the 2012 2 nd IEEE International Conference on
Parallel, Distributed and Grid Computing (pp. 419–423). IEEE.
https://doi.org/10.1109/PDGC.2012.6449856.

https://doi.org/10.1038/scientificamerican0403-78
https://doi.org/10.1177/109434200101500302
https://doi.org/10.1016/j.swevo.2019.03.004
https://doi.org/10.1109/PDGC.2012.6449856

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization,
and Machine Learning. Addison-Wesley.
Goswami, S., & Das, A. (2015). Deadline stringency-based job
scheduling in a computational grid environment. 2015 2 nd

International Conference on Computing for Sustainable Global
Development (INDIACom), 531–536.
Grover, R., & Chabbra, A. (2016). Bio-inspired optimization
techniques for job scheduling in grid computing. 2016 IEEE
International Conference on Recent Trends in Electronics, Information
& Communication Technology (RTEICT), 1902–1906.
Hamscher, V., Schwiegelshohn, U., Streit, A., & Yahyapour, R. (2000).
Evaluation of job-scheduling strategies for grid computing. In
International Workshop on Grid Computing (pp. 191–202).
Hu, P., Dhelim, S., Ning, H., & Qiu, T. (2017). Survey on fog
computing: Architecture, key technologies, applications, and open
issues. Journal of Network and Computer Applications, 98, 27–42.
Ihsan, R. R., Almufti, S. M., Ormani, B., Asaad, R. R., & Marqas, R.
B. (2021). A survey on Cat Swarm Optimization algorithm. Asian
Journal of Research in Computer Science, 10(2), 22–32.
Izakian, H., Ladani, B. T., Zamanifar, K., & Abraham, A. (2009). A
novel particle swarm optimization approach for grid job scheduling. In
International Conference on Information Systems, Technology and
Management (pp. 100–109).
Jiang, C., Wang, C., Liu, X., & Zhao, Y. (2007). A survey of job
scheduling in grids. In Advances in Data and Web Management (pp.
419–427). Springer.
Jiang, H., & Ni, T. (2009). PB-FCFS-a task scheduling algorithm
based on FCFS and backfilling strategy for grid computing. 2009 Joint

Conferences on Pervasive Computing (JCPC), 507–510.
Jones, W. M., Ligon, W. B., Pang, L. W., & Stanzione, D. (2005).
Characterization of bandwidth-aware meta-schedulers for co-allocating
jobs across multiple clusters. The Journal of Supercomputing, 34, 135–
163.
Kandagatla, C. (2003). Survey and taxonomy of grid resource
management systems. University of Texas, Austin.
Kant, A., Sharma, A., Agarwal, S., & Chandra, S. (2010). An ACO
approach to job scheduling in a grid environment. In International
Conference on Swarm, Evolutionary, and Memetic Computing (pp.
286–295).
Karaboga, D., Gorkemli, B., Ozturk, C., & Karaboga, N. (2014). A
comprehensive survey: Artificial bee colony (ABC) algorithm and
applications. Artificial Intelligence Review, 42(1), 21–57.
Kavis, M. J. (2014). Architecting the Cloud: Design Decisions for
Cloud Computing Service Models (SaaS, PaaS, and IaaS). John Wiley
& Sons.
Kennedy, J. (2006). Swarm Intelligence. Springer.
Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization.
Proceedings of ICNN’95-International Conference on Neural
Networks, 4, 1942–1948.
Kfatheen, S. V., & Banu, M. N. (2015). MiM-MaM: A new task
scheduling algorithm for grid environment. 2015 International
Conference on Advances in Computer Engineering and Applications,
695–699.
Kfatheen, S. V., & Marimuthu, A. (2017). ETS: An efficient task
scheduling algorithm for grid computing. Advances in Computational
Sciences and Technology, 10(10), 2911–2925.

Kleinrock, L. (2005). A vision for the Internet. ST Journal of Research,
2(1), 4–5.
Klusáček, D., & Rudová, H. (2010). Alea 2: Job scheduling simulator.
Proceedings of the 3 rd International ICST Conference on Simulation
Tools and Techniques, 61.
Kokilavani, T., & Amalarethinam, D. D. G. (2011). Load balanced
min-min algorithm for static meta-task scheduling in grid computing.
International Journal of Computer Applications, 20(2), 43–49.
Kokilavani, T., & Amalarethinam, D. G. (2010). Applying Non-
Traditional Optimization Techniques to Task Scheduling in Grid
Computing: An Overview. International Journal of Research and
Reviews in Computer Science, 1(4), 33.
Kondo, D. (2007). SimBOINC: A simulator for desktop grids and
volunteer computing systems.
Koo, D., Shin, Y., Yun, J., & Hur, J. (2016). A Hybrid Deduplication
for Secure and Efficient Data Outsourcing in Fog Computing. 2016
IEEE International Conference on Cloud Computing Technology and
Science (CloudCom), 285–293.
Krause, J., Cordeiro, J., Parpinelli, R. S., & Lopes, H. S. (2013). A
survey of swarm algorithms applied to discrete optimization problems.
In Swarm Intelligence and Bio-Inspired Computation (pp. 169–191).
Elsevier.
Kurowski, K., Nabrzyski, J., Oleksiak, A., & Weglarz, J. (2007). Grid
scheduling simulations with GSSIM. 2007 International Conference
on Parallel and Distributed Systems, 1–8.
Laniepce, S., Lacoste, M., Kassi-Lahlou, M., Bignon, F., Lazri, K., &
Wailly, A. (2013). Engineering intrusion prevention services for IaaS

clouds: The way of the hypervisor. 2013 IEEE Seventh International
Symposium on Service-Oriented System Engineering, 25–36.
Legrand, A., Marchal, L., & Casanova, H. (2003). Scheduling
distributed applications: The sim grid simulation framework. CCGrid
2003. 3 rd IEEE/ACM International Symposium on Cluster Computing
and the Grid, 2003. Proceedings., 138–145.
Liu, X., Xia, H., & Chien, A. A. (2004). Validating and scaling the
microgrid: A scientific instrument for grid dynamics. Journal of Grid
Computing, 2(2), 141–161.
Lu, B., Zhong, J., & Lam, J. (2010). Job-centric scheduling in a grid
environment. Google Patents.
Lyytinen, K., & Yoo, Y. (2002). Ubiquitous computing.
Communications of the ACM, 45(12), 63–96.
Mahmud, R., Kotagiri, R., & Buyya, R. (2018). Fog computing: A
taxonomy, survey and future directions. In Internet of Everything (pp.
103–130). Springer.
Maipan-uku, J. Y., Muhammed, A., Abdullah, A., & Hussin, M. (2016).
Max-Average: An extended Max-Min scheduling algorithm for the
grid computing environment. Journal of Telecommunication,
Electronic and Computer Engineering (JTEC), 8(6), 43–47.
Mandlekar, V. G., Mahale, V., Sancheti, S. S., & Rais, M. S. (2014).
Survey on fog computing mitigating data theft attacks in the cloud.
International Journal of Innovative Research in Computer Science &
Technology, 2, 13–16.
Mareli, M., & Twala, B. (2018). An adaptive Cuckoo search algorithm
for optimization. Applied Computing and Informatics, 14(2), 107–115.
Marini, F., & Walczak, B. (2015). Particle swarm optimization (PSO):
A tutorial. Chemometrics and Intelligent Laboratory Systems, 149,

153–165.
Mathiyalagan, P., Dhepthie, U. R., & Sivanandam, S. N. (2010a). Grid
scheduling using enhanced ant colony algorithm. ICTACT Journal on
Soft Computing, 2, 85–87.
Mathiyalagan, P., Dhepthie, U. R., & Sivanandam, S. N. (2010b). Grid
scheduling using enhanced PSO algorithm. International Journal of
Computer Science and Engineering, 2(2), 140–145.
Menasce, D. A., & Casalicchio, E. (2004). A framework for resource
allocation in grid computing. MASCOTS 2004: 12 th International
Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems, 12th.
Meng, X., Liu, Y., Gao, X., & Zhang, H. (2014). A new bio-inspired
algorithm: Chicken swarm optimization. In Advances in Swarm
Intelligence: 5 th International Conference, ICSI 2014, Hefei, China,
October 17–20, 2014, Proceedings, Part I (pp. 86–94).
Merkle, D., Middendorf, M., & Schmeck, H. (2002). Ant colony
optimization for resource-constrained project scheduling. IEEE
Transactions on Evolutionary Computation, 6(4), 333–346.
Messina, P. (1998). Distributed supercomputing applications. In The
Grid: Blueprint for a New Computing Infrastructure (pp. 55–73).
Mirjalili, S. (2015). Moth-flame optimization algorithm: A novel
nature-inspired heuristic paradigm. Knowledge-Based Systems, 89,
228–249.
Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm.
Advances in Engineering Software, 95, 51–67.
Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer.
Advances in Engineering Software, 69, 46–61.

Mishra, M. K., Patel, Y. S., Rout, Y., & Mund, G. B. (2014). A survey
on scheduling heuristics in a grid computing environment.
International Journal of Modern Education and Computer Science,
6(10), 57.
Molaiy, S., & Effatparvar, M. (2014). Scheduling in grid systems using
ant colony algorithm. International Journal of Computer Network and
Information Security, 6(2), 19.
Mondal, R. K., & Sarddar, D. (2015). Utility computing. International
Journal of Grid and Distributed Computing, 8(4), 115–122.
Mouradian, C., Naboulsi, D., Yangui, S., Glitho, R. H., Morrow, M. J.,
& Polakos, P. A. (2017). A comprehensive survey on fog computing:
State-of-the-art and research challenges. IEEE Communications
Surveys & Tutorials, 20(1), 416–464.
Mukherjee, M., Shu, L., & Wang, D. (2018). Survey of fog computing:
Fundamental, network applications, and research challenges. IEEE
Communications Surveys & Tutorials, 20(3), 1826–1857.
Murshed, M., & Buyya, R. (2002). Using the GridSim toolkit for
enabling grid computing education. International Conference on
Communication Networks and Distributed Systems Modeling and
Simulation, 27–31.
Neshat, M., Adeli, A., Sepidnam, G., Sargolzaei, M., & Toosi, A. N.
(2012). A review of artificial fish swarm optimization methods and
applications. International Journal on Smart Sensing and Intelligent
Systems, 5(1), 107–148.
Nseef, S. K., Abdullah, S., Turky, A., & Kendall, G. (2016). An
adaptive multi-population artificial bee colony algorithm for dynamic
optimization problems. Knowledge-Based Systems, 104, 14–23.

Olaniyan, R., Fadahunsi, O., Maheswaran, M., & Zhani, M. F. (2018).
Opportunistic edge computing: Concepts, opportunities, and research
challenges. Future Generation Computer Systems, 89, 633–645.
Overeinder, B. J., Sloot, P. M., Heederik, R. N., & Hertzberger, L. O.
(1996). A dynamic load balancing system for parallel cluster
computing. Future Generation Computer Systems, 12(1), 101–115.
Ozturk, C., Hancer, E., & Karaboga, D. (2015). A novel binary
artificial bee colony algorithm based on genetic operators. Information
Sciences, 297, 154–170.
Pahl, C. (2015). Containerization and the PaaS cloud. IEEE Cloud
Computing, 2(3), 24–31.
Panda, S. K., Bhoi, S. K., & Khilar, P. M. (2013). A semi-interquartile
min-min max-min (SIM2) approach for grid task scheduling. In
Proceedings of International Conference on Advances in Computing
(pp. 415–421).
Panwar, P., Sachdeva, S., & Rana, S. (2016). A genetic algorithm-
based scheduling algorithm for grid computing environments. In
Proceedings of Fifth International Conference on Soft Computing for
Problem Solving (pp. 165–173).
Patel, P. S. (2014). Multi-objective job scheduler using genetic
algorithm in grid computing. International Journal of Computer
Applications, 92(14).
Pazhaniraja, N., Paul, P. V., Roja, G., Shanmugapriya, K., & Sonali, B.
(2017). A study on recent bio-inspired optimization algorithms. In
2017 Fourth International Conference on Signal Processing,
Communication and Networking (ICSCN) (pp. 1–6).
Peleg, D. (2000). Distributed Computing: A Locality-Sensitive
Approach. SIAM.

Phelps, S., & Köksalan, M. (2003). An interactive evolutionary
metaheuristic for multiobjective combinatorial optimization.
Management Science, 49(12), 1726–1738.
Prajapati, H. B., & Shah, V. A. (2014). Scheduling in a grid computing
environment. In 2014 Fourth International Conference on Advanced
Computing & Communication Technologies (pp. 315–324).
Qureshi, M. B., Dehnavi, M. M., Min-Allah, N., Qureshi, M. S.,
Hussain, H., Rentifis, I., Tziritas, N., Loukopoulos, T., Khan, S. U., &
Xu, C. Z. (2014). Survey on grid resource allocation mechanisms.
Journal of Grid Computing, 12(2), 399–441.
Rechenberg, I. (1973). Evolution Strategy: Optimization of Technical
Systems by Means of Biological Evolution. Fromman-Holzboog.
Sahana, S. K., & Ankita (2019). A comprehensive survey on
computational grid resource management. Proceedings of the Second
International Conference on Microelectronics, Computing &
Communication Systems (MCCS 2017) (pp. 97–108).
Sahana, S. K., & Ankita (2019). An automated parameter tuning
method for ant colony optimization for scheduling jobs in a grid
environment. International Journal of Intelligent Systems and
Applications, 11(3), 11.
Shanthini, J., Kalaikumaran, T., & Karthik, S. (2015). Hybrid
scheduling model for independent grid tasks. The Scientific World
Journal, 2015, 1–9.
Shehab, M., Abualigah, L., Al Hamad, H., Alabool, H., Alshinwan, M.,
& Khasawneh, A. M. (2020). Moth-flame optimization algorithm:
Variants and applications. Neural Computing and Applications, 32,
9859–9884.

Singh, M., Sholiya, S., & Gupta, P. (2014). Scheduling in grid
computing—A review. International Journal of Computer &
Mathematical Sciences, 2(1), 1–8.
Singh, S., Sarkar, M., Roy, S., & Mukherjee, N. (2013). Genetic
algorithm-based resource broker for the computational grid. Procedia
Technology, 10, 572–580.
Smarr, L., & Catlett, C. E. (1992). Meta computing. Communications
of the ACM, 35(6), 44–52.
Soleymani, S. A., Abdullah, A. H., Zareei, M., Anisi, M. H., Vargas-
Rosales, C., Khan, M. K., & Goudarzi, S. (2017). A secure trust model
based on fuzzy logic in vehicular ad hoc networks with fog computing.
IEEE Access, 5, 15619–15629.
Subramanian, N., & Jeyaraj, A. (2018). Recent security challenges in
cloud computing. Computers & Electrical Engineering, 71, 28–42.
Takefusa, A., Matsuoka, S., Nakada, H., Aida, K., & Nagashima, U.
(1999). Overview of a performance evaluation system for global
computing scheduling algorithms. Proceedings of the Eighth
International Symposium on High-Performance Distributed
Computing (Cat No. 99TH8469) (pp. 97–104).
Tiwari, P. K., & Vidyarthi, D. P. (2016). Improved auto control ant
colony optimization using lazy ant approach for grid scheduling
problem. Future Generation Computer Systems, 60, 78–89.
Tu, W., Pop, F., Jia, W., Wu, J., & Iacono, M. (2019). High-
Performance Computing in Edge Computing Networks. Elsevier.
Ujjwal, K. C., Garg, S., Hilton, J., Aryal, J., & Forbes-Smith, N.
(2019). Cloud computing in natural hazard modeling systems: Current
research trends and future directions. International Journal of Disaster
Risk Reduction, 101188.

Upadhyay, N. (2018). Fogology: What is (not) fog computing?
Procedia Computer Science, 139, 199–203.
Uymaz, S. A., Tezel, G., & Yel, E. (2015). Artificial algae algorithm
(AAA) for nonlinear global optimization. Applied Soft Computing, 31,
153–171.
van Steen, M., & Tanenbaum, A. S. (2016). A brief introduction to
distributed systems. Computing, 98(10), 967–1009.
Varghese, B., & Buyya, R. (2018). Next generation cloud computing:
New trends and research directions. Future Generation Computer
Systems, 79, 849–861.
Varghese, B., Wang, N., Barbhuiya, S., Kilpatrick, P., & Nikolopoulos,
D. S. (2016). Challenges and opportunities in edge computing. 2016
IEEE International Conference on Smart Cloud (SmartCloud) (pp. 20–
26).
Wei, L., Zhang, X., Li, Y., & Li, Y. (2012). An improved ant algorithm
for grid task scheduling strategy. Physics Procedia, 24, 1974–1981.
Weiss, A. (2007). Computing in the clouds. Networker, 11(4), 16–25.
Werstein, P., Situ, H., & Huang, Z. (2006). Load balancing in a cluster
computer. 2006 Seventh International Conference on Parallel and
Distributed Computing, Applications, and Technologies (PDCAT’06)
(pp. 569–577).
Xhafa, F., & Abraham, A. (2008). Meta-heuristics for grid scheduling
problems. In Metaheuristics for Scheduling in Distributed Computing
Environments (pp. 1–37). Springer. https://doi.org/10.1007/978-3-540-
69260-7_1.
Xhafa, F., Carretero Casado, J. S., & Abraham, A. (2007). Genetic
algorithm-based schedulers for grid computing systems. International

https://doi.org/10.1007/978-3-540-69260-7_1

Journal of Innovative Computing, Information and Control, 3(5),
1053–1071.
Xu, Y., Li, K., Hu, J., & Li, K. (2014). A genetic algorithm for task
scheduling on heterogeneous computing systems using multiple
priority queues. Information Sciences, 270, 255–287.
Yan, H., Shen, X. Q., Li, X., & Wu, M. H. (2005). An improved ant
algorithm for job scheduling in grid computing. In 2005 International
Conference on Machine Learning and Cybernetics (Vol. 5, pp. 2957–
2961).
Yang, X. S. (2010). Nature-Inspired Metaheuristic Algorithms. Luniver
Press.
Younis, M. T., & Yang, S. (2017). Genetic algorithm for independent
job scheduling in grid computing. MENDEL, 23, 65–72.
Younis, M. T., Yang, S., & Passow, B. (2017). Meta-heuristically
seeded genetic algorithm for independent job scheduling in grid
computing. Applications of Evolutionary Computation: 20th European
Conference, EvoApplications 2017, Amsterdam, The Netherlands,
April 19–21, 2017, Proceedings, Part I, 20, 177–189.
Yousefpour, A., Fung, C., Nguyen, T., Kadiyala, K., Jalali, F.,
Niakanlahiji, A., Kong, J., & Jue, J. P. (2019). All One Needs to Know
About Fog Computing and Related Edge Computing Paradigms.
Yousif, A., Nor, S. M., Abdualla, A. H., & Bashir, M. B. (2015). Job
scheduling algorithms on grid computing: State-of-the-art.
International Journal of Grid and Distributed Computing, 8(6), 125–
140.
Yu, J., & Buyya, R. (2006). A budget-constrained scheduling of
workflow applications on utility grids using genetic algorithms. In

2006 Workshop on Workflows in Support of Large-Scale Science (pp.
1–10).
Yu, X., & Gen, M. (2010). Introduction to evolutionary algorithms.
Springer Science & Business Media.
Zhang, L., Chen, Y., Sun, R., Jing, S., & Yang, B. (2008). A task
scheduling algorithm based on PSO for grid computing. International
Journal of Computational Intelligence Research, 4(1), 37–43.
Zhang, P., Zhou, M., & Fortino, G. (2018). Security and trust issues in
fog computing: A survey. Future Generation Computer Systems, 88,
16–27.
Zhang, Q., Cheng, L., & Boutaba, R. (2010). Cloud computing: State-
of-the-art and research challenges. Journal of Internet Services and
Applications, 1(1), 7–18.
Zhao, H., Pei, Z., Jiang, J., Guan, R., Wang, C., & Shi, X. (2010). A
hybrid swarm intelligent method based on genetic algorithm and
artificial bee colony. In Advances in Swarm Intelligence: First
International Conference, ICSI 2010, Beijing, China, Proceedings, Part
I, 1 (pp. 558–565).
Zissis, D., & Lekkas, D. (2012). Addressing cloud computing security
issues. Future Generation Computer Systems, 28(3), 583–592.
Zouache, D., Arby, Y. O., Nouioua, F., & Abdelaziz, F. B. (2019).
Multi-objective chicken swarm optimization: A novel algorithm for
solving multi-objective optimization problems. Computers &
Industrial Engineering, 129, 377–391.

OceanofPDF.com

https://oceanofpdf.com/

Glossary
Academic Grids

Grids can be useful for sharing information among educational
institutions in different geographical locations. Students from different
places might get involved in a common project and can collaborate and
exchange information while working in a grid environment.

Alea
Alea is a grid scheduling simulator developed by Dalibor Klusacek
and Hana Rudova to evaluate different scheduling algorithms in the
grid environment. The Alea simulator used here is Alea 3.0, which is
an improved version of Alea 2.1, based on a popular grid simulation
toolkit called GridSim toolkit. This simulator is able to handle
common scheduling problems in the grid environment, such as
resource and job heterogeneity, resource failure, and dynamic job
arrival. The simulator uses two interfaces called Scheduling Policy and
Optimization Algorithm to add a new scheduling algorithm to the
simulator. The first interface handles the job arrival and job selection
for execution. The latter interface is implemented when the users
create their own method.

Ant Colony Optimization (ACO)
Marco Dorigo and his colleagues developed Ant Colony Optimization
(ACO) as a powerful metaheuristic to solve NP-complete problems at
the beginning of the 1990s. Inspired by the indirect communication
capability of ants, ACO is treated as the subgroup of system of social
insect approaches. The pheromone deposition of ants forms a
pheromone trail, which is sensed by the other ants in the search space
to find food sources. ACO is a probabilistic approach because the path
that leads the ants to the food source is highly dependent on the
quantity of pheromones.

AppleS
The AppleS (Application Scheduling) is a grid middleware project
developed at University of California, San Diego to support
application scheduling.

Application Layer

The lower layer provides interfaces and programming environment to
build grid applications and portals. The grid portals support web-
enabled application services which enables a user to submit and get
results for their submitted jobs on the remote resources.

Artificial Algae Algorithm (AAA)
As the name suggest, the AAA is inspired from living habits and nature
of microalgae. It is a new bio-inspired algorithm which draws its
inspiration from lifestyles of algae such as reproduction, algae habits
and adaptation to neighboring environment to modify the main
species.

A Scheduling Problem
A scheduling problem consists of a set of jobs, resources, optimality
condition, working environment and other constraints specified by the
user and the resource provider.

Asia Pacific Grid
The Asia Pacific Grid popularly known as APGrid, is an international
collaboration, has initiated the testbed development in the Asia Pacific
region. The aim of APGrid is to allow sharing of resources,
technologies and knowledge as well as developing new grid techniques
and technologies.

Autonomy
The resources of the grid are spread across multiple locations for
organizational use and are owned by different resource owners. It is
very important to maintain a cordial relationship between the resource
owners and the organizational bodies using the resources for
continuous and effective usage of resources.

BeoSim
The BeoSim designed for analyzing job scheduling algorithms running
in parallel at different scheduling sites for a multi-cluster
computational grid. It can work with synthetic or real workload traces.
It also gives visualization tools based on Java.

Bioinformatics Research Network (BIRN)
BIRN is a kind of testbed in biomedical science which facilitates data
sharing stored in several repositories around America.

Boltzmann Selection
The selection rate is handled by a continuously changing temperature.

Bricks Simulation System

The Bricks simulation system is designed to facilitate simulation of
client-server computing model where remote access is provided to
libraries and packages executing on supercomputers. It has a
centralized scheduling mechanism developed at the Tokyo Institute of
Technology in Japan.

Cactus
The design of Cactus framework makes it an excellent choice as a
testbed for a grid computing environment. It is another project funded
by the European Union. This testbed mainly supports scientific
programming.

Cat Swarm Optimization (CSO)
The CSO algorithm is a new optimization algorithm that impersonates
the behavior of cats. In the last few years, CSO has been used to solve
optimization problems. There are different modes of cats in the CSO
algorithm. The seeking mode signifies that the cats are resting but they
are still alert. In the tracing mode, the cats performs local search to
find the good (optimal) solution of given optimization problem.

Chicken Swarm Optimization Algorithm (CSOA)
CSOA is a new swarm optimization algorithm that imitates the nature
of chicken swarms and their ranking order. Lately, the literature study
suggests that these algorithms have proven their potential in solving
multi-objective optimization problems.

Cluster Computing
In cluster computing, various machines are combined together to
execute an application or individual job. A typical illusion of one
virtual machine (server) is presented before the user in such a manner
that the user believes that it is interacting to a single system. A high-
performance cluster contains a good number of computing machines
called nodes. These nodes are further classified as general computing
nodes and master nodes.

Cloud Computing
Cloud computing can be considered as a next-generation computing
technology whose nodes are virtualized through “hypervisor”
technologies to meet explicit service-level agreements. The cloud
environment can be accessed using web service technologies such as
SOAP (Simple Object Access Protocol) and REST (Representational

State Transfer). The service model’s setup relies on user requirements
that can be public, private, community, or hybrid.

Collective Layer
This layer consists of protocols such as Grid Resource Information
Protocol, which enables information across a group of resources. This
layer includes resource brokers for resource management and
scheduling jobs (applications) on the global computational resources.

Commercial Grids
In business world, the demands of the customers are increasing rapidly
which requires instant and fast response serve the customers and
understand the market dynamics to stay competent in this area.

Communication Resources
Resources that specify the network bandwidth of the grid, that is, the
data transfer rate of the machines and other communication paths of
the grid, are called communication resources.

Computation Resources
Resources that specify its processing capacity in a grid network are
called computation resources. They are also known as processing
resources.

Computational Grids
These are the compute-intensive grids which serves the computational
needs of the clients. The CPU cycles are the main resources provided
by computational grids. These grids provide combined CPU cycles of
various resources located at different sites to satisfy user requirements.
Applications such as weather forecasting, nuclear simulation, complex
business analysis uses computational grids for implementation.

Condor
Condor is a grid middleware project developed at University of
Wisconsin, Madison that supports high efficiency and throughput
computing methods. This supports conversion of collection of
workstations and dedicated clusters into a distributed super-computing
facility.

Connectivity Layer
The authentication and communication protocols are provided by the
connectivity layer for secure network transactions. It provides secure
mechanisms to identify users and resources of the grid. Other services

such as access to storage resources, remote process management and
QoS constraints are handled at this layer.

Crossover
The genetic information of the selected individuals are combined
together to form a new offspring. It enables exploration of the search
space and finds unexplored regions to give better quality of solutions
that can survive to the next generation. The selection of the crossover
technique depends on the type of genetic representation chosen to
represent the solutions in GA.

Data Grids
The data-intensive grids are useful in performing operations on
massive amounts of distributed data. Different types of data around the
globe are placed in data repositories, digital libraries, and data
warehouses and are scattered over multiple administrative sites located
in different geographical regions. Data grids are intended to provide a
safe and reliable mechanism for data transfer, data filtering, and
overall data management systems. CERN is a widely known data grid
that deals with the development of huge data organizations.

Distributed Computing
It is a kind of computing that enables the users to access the required
services without disclosing the existence of several autonomous
computers. The mode of interaction between the communicating
entities in a network is known as message passing based on standard
protocols.

Edge Computing
The edge computing model is designed to produce data computation at
the network edge rather than sending unprocessed data to data centers.
This leads to bandwidth reduction and computational complexity
requirements by clouds. The edge computing model cleans,
preprocesses, and collects IoT data using cloud services and builds a
combination of IoT devices and cloud. This computing technology has
served as a computing model for advanced technologies such as the
Internet of Things (IoT) and vehicle-to-vehicle communication and
provides a number of services to the user community.

Elephant Search Algorithm (ESA)
The ESA is a member of heuristic optimization algorithms, and it
imitates the behavior and traits of elephants.

Enabling Grids for e-Science Projects
Enabling Grids for e-science projects popularly known as the EGEE
project is one of the major grid initiatives in the development of grid
computing infrastructure in current times. The European Union has
funded this major data grid project which associates more than 250
computing (resource) centers of 48 different countries to generate a
reliable source of computing for European and global research groups.

Enterprise Schedulers
These schedulers are viable in an enterprise which depends on local
schedulers of the enterprise for job-resource management.

Evolutionary Algorithms
Evolutionary algorithms are a subset of non-conventional algorithms
which are based on the principles of Darwinian theory of evolution.
Like swarm algorithms, these algorithms are also problem independent
and do not require any prior information about the problem being
solved. They involve several control parameters which affect the
nature of the search process and their effectiveness.

Fabric Layer
This layer is composed of resources such as networks, storage devices
and processors distributed across different grid sites. The
computational resources such as servers and supercomputers are
required for running various operating systems. Other scientific
devices such as sensor networks are helpful in providing real-time data
for direct transmission to the intended computational sites.

First Come, First Serve (FCFS)
FCFS is one of the simplest and most conventional scheduling
approaches, and scheduling decisions are made on the basis of the
arrival time of jobs. FCFS is non-preemptive in nature, such that a job,
once assigned a resource, will never be preempted (leave the resource)
until it finishes its execution. The sequence of arrival of jobs decides
the running sequence of jobs, which means the job that arrives first
(first come) will be scheduled first (first serve).

Fish Swarm Algorithm (FSA)
The FSA algorithm is one of the intelligent swarm optimization
algorithms that have important attributes such as quick convergence
speed as well as deep and efficient search mechanisms.

Fitness Function

The objective function is also called the fitness function. The fitness
function evaluates the fitness of the candidate solutions for a problem.
It determines the closeness of a given design solution in achieving
certain objectives. In this case, the objective is to minimize the total
completion time of jobs and enhance resource utilization. A fitness
function is decided by the scheduler according to the requirements of
the application.

Fog Computing
In fog computing, the computing services, data management, storage
services are allowed over the network nodes within close proximity to
IoT devices. The computation is not carried out alone in cloud; rather
the computation happens on route of data movement from IoT to
cloud. The Fog Computing platform is modeled to support Internet of
Things. The IoT devices often help in reducing the gap between cloud
and the end devices.

GARUDA
GARUDA is an Indian National Grid Computing initiative launched
by Centre for Development of Advanced Computing (C-DAC) with an
aim to provide solutions to different scientific and engineering
problems. GARUDA is a collaborative effort of engineers, compute
scientists and researchers to develop a nation-wide grid consisting of
large number of computational nodes, data storage resources and other
scientific instruments.

Genetic Algorithm
The invention of GA is attributed to John Holland in Michigan in the
1960s. A candidate solution in a GA is represented by chromosome.
The GA operates on a group of solutions called population rather than
a single solution. Selection, Crossover and Mutation are the three
important parameters of GA.

Genetic Bee Colony (GBC) Algorithm
GBC algorithm is a nature inspired evolutionary algorithm which is
capable of solving machine learning problems such as classification
and selection problems.

Grid
A grid is defined as a collection of resources such as servers,
databases, processors, and networks. These resources (homogeneous or
heterogeneous) are scattered over different geographical regions.

Grey Wolf Optimization (GWO)
The GWO algorithm belongs to group of latest metaheuristic
algorithms and has been motivated by the hunting and leadership
attributes of grey wolves. These wolves are related to the Canidae
family. The grey wolves tend to live in group which is led by the alpha
wolf of the group.

Grid Application Development Software
The Grid Application Development Software project popularly known
as GrAds, intents to create a framework to use grid resources in a
much simpler manner.

Grid Computing
The Grid Computing is defined as a computing paradigm designed to
meet the dynamic demands of users by providing common access to
computational resources which are networked together and act as a
virtual supercomputer.

Grid Datafarm
The Japanese research and scientific community has developed the
Grid Datafarm (Gfarm) project to support Petascale data-intensive
computing, enabling distributed resources in a vast area. The salient
features of this framework are to (1) dedicate a Grid file system for
integrating local disks of computing systems in the computational grid.
(2) facilitate distributed and parallel computing linking Data Grid and
Computational Grid.

GridLab
The European Union has funded the GridLab project that aims at
developing a Grid Computing Software Infrastructure to serve the
application communities. This project has collaborated efforts of
system scientists, astrophysicists and other researchers from different
domains to enhance effective usage of resources in the grid
environment.

Grid Scheduling
Scheduling is a central part of a grid computing environment. The jobs
of the grid are scheduled over appropriate resources according to the
propriety of job and resource. A scheduling technique is adopted which
finds right matching of job to resource with an objective to reduce the
total completion time of jobs that eventually elevates the performance
of the job and the grid.

GridSim
GridSim is a Java-based and platform independent simulation toolkit
which provides support for designing and simulating various
scheduling models in the grid environment. This toolkit is developed
by Rajkumar Buyya and his team at Grid Computing and Distributed
Systems (GRIDS) lab. New scheduling methods can be easily
integrated into GridSim.

GridSphere
GridSphere is one of the eminent grid initiatives funded by the
European Union which aims at creation of web portal environment to
facilitate the grid users.

GSSIM
The GSSIM (Grid Scheduling Simulator)is a GridSim-based simulator
that was put into operation in 2009. GSSIM aims to provide a simple
scheduling framework for simulating and testing scheduling
algorithms in the Grid environment. The slow rate of execution and
bad visualization outputs are the problems encountered in GSSIM.

Health Science Grids
The role of grid computing in health science is significant in terms of
finding new, accurate and fast methods of diagnosis. The doctors are
having huge amount of data and their analysis will greatly help in
finding cure and treatment to the patients irrespective of their
geographical locations.

High-Efficiency Schedulers
The high efficiency schedulers aim to achieve maximum efficiency of
the system and hence they are focused on elevating the job
performance which eventually enhances the efficiency of the grid
environment.

Hybrid Grids
There are several grids which are not dedicated to single application.
Instead of providing services to specific applications, some grids are
diverse in nature and provide services in multiple domains. TeraGrid is
a kind of grid which is used in academic, health-science and research
activities.

Job
A job submitted by the grid user to the grid system has a specific
requirement of resources. The resource requirement can be storage,

processing, software libraries etc.
Load Balancing

The workload distribution among the resources of the grid must be
done in a uniform manner so that neither of the resources in the grid
becomes overutilized nor underutilized. The utilization of all the
resources in the grid should be uniform for effective resource
utilization.

Local Schedulers
The local schedulers, sometimes called cluster schedulers is
responsible for assigning jobs to the resources in the same regional or
local network.

Meta-Schedulers
The meta-schedulers or the meta-brokers are used for the management
of jobs/applications which is scheduled at multiple resources across
various grid systems. These schedulers also help in maintaining
uniform load across different systems.

Microgrid
It is an emulator designed using the Globus toolkit. It uses the Globus
API to execute its applications. Since a microgrid is an emulator, it
takes more time to run applications on emulated resources. Though the
output of the emulator is explicit, the design of the application and
scheduling environment is also time-consuming. It can be used as a
verification tool to check the simulation results with other real
applications.

Modular Computing
Grid computing supports a model of modular computing. A computing
paradigm with no single point of failure is considered modular where
multiple resources are available and can handle a job in the case of
single resource failure in grid environment.

Monarc 2
The Monarc 2 aims at providing a modeling as well as optimization
tool for large distributed computing systems. It is mainly designed to
support data processing architectures and provide a flexible
environment for evaluating their performance. The Monarc 2 is an
extension of Monarc Simulator. Monarc 2 is developed by enhancing
the flexibility and performance of Monarc.

Moth Flame Optimization (MFO)

The MFO is a recent search optimization algorithm. Moths are
identical to butterflies in their behavior. The moths follow their own
way of navigation and fly towards moonlight during nighttime.

Mutation
The last operator, mutation, is optional which randomly modifies the
offspring (child) generated in the crossover step of the GA. Mutation
brings diversity in the GA which is required for the exploration of the
search space.

National Research Grid Initiative
The National Research Grid Initiative (NAREGI) is a popular grid
program developed by the Japanese scientific and research community
that aims at building an R&D center of high performance to escalate
scientific and engineering applications

NEESGrid
This grid is meant to assist the scientists and researchers working in
earthquake engineering society to demonstrate and perform
experiments in diverse locations and investigate data through a
common terminal.

NetSolve
The NetSolve or GridSolve is a grid middleware project developed at
University of Tennessee, Knoxville aims at bringing together the
different resources interconnected by computing network. This
middleware is a RPC based client/server structure that facilitates a user
to access the software as well as hardware components remotely.

Nimrod
Nimrod is an Australian grid initiative project developed at Monash
University. This project is designed to handle the complexities related
to parametric computing on groups of distributed systems. Nimrod
gives an elementary declarative language to express a parametric
experiment. The plans of parametric computing can be created by
domain experts, and the Nimrod run time system can be used to
execute different applications such as bio-informatics, business process
simulations, and operational research.

Ninf
Ninf is a Japanese programming middleware solution based on
GridRPC (Remote Procedure Call) programming structure. This

middleware provides a user friendly interface to access various
software, hardware and data resources such as scientific data.

One point crossover
A random position is selected in the two parent solutions which serves
as the swap point and divides the parents into two parts. The two-child
solutions are generated by swapping the two parts of the parents.

Open Grid Service Architecture Data Access and Integration
The Open Grid Service Architecture Data Access and Integration,
popularly known as OGSA-DAI, is a middleware solution that
facilitates the application developers by providing easy access to
distributed data at multiple sites along with various local access
mechanisms. Integration of data can also take place at server site and
deliver the output with the help of several protocols and policies within
OGSA-DAI. This middleware is able to accommodate data resources,
such as relational databases, files, or XML databases, and can handle
multiple operations, such as changing to disparate formats with the
help of a highly malleable and extensile framework.

Particle Swarm Optimization
Keneddy and Eberhart has developed Particle Swarm Optimization
(PSO) by simulating the social (collective) behavior of living
organisms such as flocks of birds or fish school. Later, after much
simplification of the algorithm, it is found that PSO works well for the
optimization problems and can be applied to large and complex data
sets.

Parallel Computing
The property of parallel computation allows complex simulations to
break into various sub-parts and run them in parallel during scientific
computation. This yields faster results in comparison to the entire
computation performed in the series mode

Public Grids
These are the non-commercial grids offering services to general public
issues. The concept of public grids depends on the availability of
unused CPU cycles and data storage to solve public problems.

Quality of Service (QoS)
It consists of functional and non-functional properties that measure the
nature of service from several viewpoints. These properties are
different performance metrics like scalability, response time,

reliability, and availability. The Service Level Agreement (SLA) sets
an accord between the service provider and the service user over
minimum values for QoS performance attributes, which are required to
be met once a service is called.

Rank Selection
In this method, the individual solutions are arranged in the order of
their fitness values. Later, a rank is assigned to the individuals where
the most fit individual has rank N (N is the highest rank) and the rank
1 is assigned to the least fit individual.

Real-Time Grids
The real-time applications have various requirements which are not
supported by traditional computational or data grid. These real-time
grids provide virtual workspace to enable the interactions between the
clients and applications. Real-time applications such as disaster
management are handled by real-time grids.

Resource
A resource is a scheduling entity where a job is scheduled and
processed according to its requirements. There are several properties of
a resource such as its processing speed and memory. Resources in grid
are distributed across multiple sites where each site has its own access
rights and usage policies.

Resource Allocation
Resource allocation makes use of available resources of the resource
repository in the most efficient manner. The resource manager must
have a complete report of available resources to make effective
resource allocation.

Resource Forecasting
This technique allows the resource manager to make a prediction of
future resource requirement before the actual start of the project. It
also unveils the potential risks and unexpected costs that may incur
after the completion of the project.

Resource Layer
This layer consists of resource-specific protocols such as Grid
Resource Access and Management Protocol (GRAMP) for allocation
and monitoring of resources. It also contains some information and
management protocols. The information protocol helps to inquire the
state of the resources (by making a call to fabric layer) and the

management protocol helps in managing the access to shared resources
in the grid.

Resource Leveling
This technique helps to uncover the underused resources whose
potential has not been realized completely in the organization.

Resource Management
Resource management is the efficient utilization of resources in the
best possible manner. It involves deep planning and analysis of the job
requirement as well as resource availability to make appropriate job-
resource assignments in any working environment. Resource
management consists of several approaches that can be used to handle
resources.

Resource Monitoring
It is important to keep track of the status of the resources in a dynamic
grid environment. It is possible that a new resource can be added to an
existing grid infrastructure or an existing resource may become
unavailable at any point of time.

Resource-Oriented Schedulers
The goal of these schedulers is to escalate the resource utilization in a
computing network.

Resource Utilization
Resource utilization is an important factor which affects the
performance of the grid environment. Resource management enables
the resources to the users, which considers both user and resource
provider satisfaction. Optimal resource utilization helps in achieving
improved system performance.

Robustness
A dynamic environment like grid keeps on changing with time, in
terms of its resources, networks and job heterogeneity. Hence a robust
scheduler is an extreme need to maintain the performance of the grid
environment. The literature study of the metaheuristics shows that they
are robust in nature.

Roulette Wheel Selection
This is a simple method of selecting an individual from the population
of solutions. The chances of selection of an individual depend on its
fitness. The probability of selection of an individual is high for fitter

individuals. The slots in the wheel indicate the fitness value of the
individuals.

Scheduler
The job of a scheduler is to place the job over the resource based on
the requirement of a job and track the status of the job and resource
until it finishes its execution.

Scientific Grids
Grid computing has made remarkable contribution in the field of
science and technology and it is creating new advancements and
developments till date. Standard scientific projects related to
astronomy, quantum physics and nuclear science are having their grid
systems exclusively for their needs.

Selection
The process of selection selects solutions (parents) from the original
population of solutions. The idea is to select good parent solutions that
can survive into the next generation and reproduce new offspring

Service-Oriented Computing
It forms the backbone of a popular distributed computing system, i.e.,
Cloud computing. The underlying principle is to embrace the notion of
services for application and system development. Service itself is an
abstraction that has the capability to perform basic to complex tasks
based on requirements and irrespective of the programming language
or computing platform. Service-oriented (SOA) is a logical approach
to organizing software systems and providing services to users through
observable interfaces.

Shortest Job First (SJF)
SJF belongs to conventional family of scheduling algorithms which
can be preemptive or non-preemptive. The jobs, in this case, are
scheduled over the available resources on the basis of their processing
requirements. The jobs with low processing requirement are favored
over jobs with high processing requirements.

SimGrid
The SimGrid is designed for modeling the distributed applications and
testing them in a distributed environment with real life scenarios. It is
C based simulator which consists of various tools such as MSG,
GRAS and SMPI. The MSG tool of SimGrid supports testing of
scheduling algorithms in the simulation environment. The other two

tools, GRAS and SMPI, are used in the development and analysis of
real applications.

Simbatch
The Simbatch is designed for the batch schedulers and provides
simulation for scheduling. The design of Simbatch is based on MSG
tool of SimGrid.

SimBOINC
The design of SimBOINC (Berkley Open Infrastructure for Network
Computing) is also based on SimGrid simulator. SimBOINC supports
simulation of heterogeneous and volatile computing systems. It
follows a client server model where many clients make a request to the
central server. The client request contains simulation inputs such as
speed and workload availability.

Software-as-a-Service (SaaS)
The SaaS method enables the distribution of complicated business
processes in the form of service to the user which can be accessed
from every location.

Specification
The job requirements are written in a high-level language.

Storage Resource Broker (SRB)
The SRB, led by the Supercomputing center in San Diego, is a
renowned grid middleware project that organizes dissimilar data
repositories and handles data storage, access management, and data
replication

Super-Schedulers
The super-schedulers performs centralized scheduling approach where
the scheduler manages the selection of resource and execution of job
over the chosen resource. The jobs are assigned to a single computing
resource during their execution.

Swarm Intelligence
The field of computer science which is driven by the behavior of
swarm of living organisms is known as swarm intelligence. It is a
subset of artificial intelligence. It is generated in a decentralized and
distributed environment with the help of the intelligence of the
members of the swarm by replicating their behavior. This intelligence
helps in designing more efficient algorithms that can find solutions to
complicated real-world applications.

TeraGrid
The United States’ National Science Foundation has funded a grid
infrastructure called TeraGrid that gives computing power of 40
teraflops and storage capacity of 2 PB across eight grid sites in the
United States. Grid3 is a major testbed covering 25 geographical sites
in US and Korea that are being used for operational areas such as
Astronomy, Computational Biology and High Energy Physics.

Threshold Probability (p0)
It is a minimum probability value set by the scheduler. Initially, the
conventional ACO is run several times and the value of transition
probability is calculated using Equation 1 for every iteration. The
value of threshold probability is randomly selected from set of
transition probability values using conventional ACO.

Total Completion Time (TCT) of Jobs
The TCT of jobs is defined as the time taken by all the jobs of the
workload to complete their execution

The Globus Toolkit
The Globus toolkit is a very popular grid middleware project
developed by the Global Alliance conducted by the Argonne National
Laboratory.

The Grid Scheduler
The grid scheduler is the most important entity in a grid system. It is
responsible for selecting and allocating a resource from a set of
resources for particular job under given constraints.

Tournament Selection
The tournament selection is a popular selection method because it is
easy to implement and gives better solutions to the problems. This
method involves selection of individual from the population of
solutions which are set to compete against each other.

Utility Computing
It aims at supporting a kind of infrastructure which can provide
information technology services according to the demand of customer.
Utility computing differs from outsourcing because outsourcing
focuses on location and resource manager whereas utility computing is
related to resource management, resource consumption and its
utilization. The utility model is suitable to corporate as well as the

outsourcing data centers. It intends to break down the huge IT
foundations into several independent segments.

Utility Grids
The job of utility grids is to pool the dynamically accessible resources
to meet the needs of the given application. This helps in combining
resources from multiple machines dynamically and providing services
which is not possible by a single machine.

Whale Optimization Algorithm (WOA)
The WOA is another metaheuristic providing solutions for complex
engineering problems. Whales are smarter than humans because
whales have twice the amount of cells that humans have, which
contributes to their smartness. Whales are capable of thinking,
communicating, learning, and developing their own dialects. A type of
hunting technique by humpback whales known as the bubble-net
feeding technique is a special feature of these whales.

Zewura Workload
MetaCentrum, the Czech National Grid Infrastructure (NGI), has
provided the workload called zewura workload for testing new
algorithms and comparing its performance with the other reference
algorithms. The workload traces are produced from TORQUE traces,
which contain 17256 jobs. These jobs were gathered between January
and May 2012. The workload is in Standard Workload Format (SWF).
The workload requires two files, namely, the job description file and
the machine description file.

OceanofPDF.com

https://oceanofpdf.com/

Index
A

Actual start time (AST), 90, 96, 97
Advanced research projects agency

network (ARPANET), 154
Alea, 87, 92, 95

simulator, 87, 92, 95, 127
Algae, 51, 52
Algal

colony, 51, 52
habits, 51

Algorithm, 5, 27, 30–36, 38, 40, 43, 45, 47–49, 52, 53, 60, 64–69, 71–
73, 75, 77, 80–83, 85–87, 89, 92, 95–98, 106, 108, 110, 112, 114, 116,
124, 125, 127, 128, 133, 135, 137, 139, 140, 144, 145, 149–152, 154,
169, 170

complexity analysis, 84
Allocation policy, 88, 91, 92
Alpha wolf, 48, 49
Ant

colony optimization (ACO), 27, 34–36, 52, 68–70, 72–75, 77, 79,
80, 84, 95, 98, 101, 102, 106, 110–112, 119, 120, 123–125, 127,
149–152
algorithm, 36, 70, 73–75, 77, 84, 127
conditions, 35
mapping, 35
scheduling algorithm, 110, 119

threshold (ACOthresh), 73, 75, 77, 78, 84, 127–131, 133–138,
140–142, 144, 149–152
system (AS), 70

Apparent tardiness cost (ATC), 64
Application

layer, 22, 25
programming interface (API), 85
scheduling (AppleS), 13, 60

Argonne National Laboratory, 13
Artificial

algae algorithm (AAA), 51, 52
bee colony (ABC), 45–47, 68, 70

algorithm, 45–47, 70
fish, 47
intelligence (AI), 34, 167

Ascetic properties, 4
Asia pacific

grid (APGrid), 14
region, 14

Astronomy, 8, 12
Astrophysicists, 14
Authentication, 19–21, 164, 167, 169

protocols, 167
trust protocols, 169

Autonomous computers, 10, 155
Autonomy, 23
Average

machine utilization (AMU), 116–123, 125, 127, 140–145, 149,
152, 170
utilization (AU), 124, 150

B

Bandwidth, 5, 155, 163, 164, 166, 167, 169
Bee colony algorithm, 45
BeoSim, 86
Best gap search (BGS), 64
Beta wolf, 48
Binary

optimization, 46, 47
tournament selection, 82, 84

Bioinformatics, 12, 15–17
Research Network (BIRN), 12

Bio-inspired
ACO, 149
algorithm, 33, 34, 45, 51, 53, 66, 69, 71–73, 92, 95, 106, 124,
144, 150, 152
mechanisms, 67, 69
methods, 33
PSO, 149

Biological evolution, 53
Biomedical science, 12
Biomedicine, 16
Blue curve, 51, 98, 128
Boltzmann selection, 42
Boolean-valued variable, 50

Bricks simulation system, 85
Bubble-net feeding, 51
Budget constraints, 70
Business

domains, 10
growth, 19
intelligence, 18
organization, 160, 169
process, 12, 168

simulations, 15

C

Cactus, 14
framework, 14

Candidate solutions, 40, 48, 49, 70
Canidae family, 48
Cat swarm optimization (CSO), 50, 52
Central

job pool, 65
processing unit (CPU), 8, 71, 90, 91, 98, 106, 128, 133

cycles, 8
state graph, 71

server, 7, 59, 86, 155
Centralized

approach, 28
scheduler, 28, 87, 92
scheduling mechanism, 54, 55, 85

Centre for Development of Advanced Computing (C-DAC), 15

Chicken swarm optimization algorithm (CSOA), 49, 52
Chromosome, 40, 41, 43
representation, 41
Classical evolution, 3
Client/server structure, 13
Climate forecasting, 18
Cloud

computing, 11, 154, 159–163, 165, 166
platform, 159
systems, 11

data centers, 166
environment, 159–163
organization, 160

Cluster, 10, 13, 58, 85, 91, 97, 108, 110, 112, 114, 116, 124, 134–139,
144, 149–152, 157

computing resources, 10, 19, 154, 156–158
load balancing, 157
resource (CR), 83, 91, 92, 96, 97, 106, 108, 110, 112, 114, 116,
123–125, 127, 133–139, 144, 145, 149, 151, 152, 170
utilization (CRU), 97, 106, 108, 110, 112, 114, 116, 124, 125,
133, 135, 137, 139, 145, 149–152, 170

Collaboration, 14, 161
Commercial

applications, 17
grids, 7, 8
model, 3

Communication
channels, 165

costs, 3
paths, 5
resources, 5

Complex
business analysis, 9
computational problems, 15, 92
grid resource.java, 89

Computation resources, 6
Computational

biology, 12, 16
capacity, 36
complexity, 166
grid, 8, 9, 15, 65
needs, 4, 8
nodes, 15, 164, 167
power, 155, 158
problems, 15, 92
resource, 9
resources, 5, 15, 17, 20, 22, 153
time, 69
world, 154

Computer science, 33, 40, 68, 127
Computing, 86, 153, 154, 167

components, 4
demand, 17, 153
entities, 10, 11
environment, 3, 4, 17, 19, 27, 28, 54, 60, 95, 153, 157, 159–165,
167

industry, 3, 154, 160, 162
infrastructure, 3, 4, 13, 16, 20, 25, 53, 66, 71
methods, 13
network, 4, 5, 13, 23, 36, 56, 154–159, 169
paradigm, 3, 4, 24, 25, 154, 163, 166, 169
platform, 11, 19, 25, 153–156, 158–160, 162, 163, 165, 167, 169
power, 11, 12, 19, 24, 58, 153, 155
resource, 4, 10, 16, 19, 24, 56, 58, 153–155, 158, 160
service, 5
system, 4, 10, 11, 15, 29, 86, 90, 91
utilities, 3, 9
world, 3, 25, 153–155, 161, 167

Concurrency, 10
Condor, 13, 25
Connectivity layer, 21
Conventional

algorithms, 5, 27, 30–33, 40, 52–54, 60, 64–66, 68, 72–74, 77, 80,
81, 92, 95, 106, 127, 149–152, 170
approaches, 33, 66
methods, 32, 52, 64, 81
scheduling algorithm, 52, 72, 150

Convergence
rate, 69, 74
speed, 33, 47, 67

Convoy effect, 32
Cost

effective computational model, 24, 34, 167, 168
reduction, 16

Count of dimensions to change (CDC), 50
Crossover, 40, 42, 43, 46, 82, 84

operator, 46, 82
probability, 84

Cuckoo search algorithm, 68
Cyber-attacks, 166

D

Darwinian theory, 40
Data

analysis, 164
analytics, 18
centers, 163, 166, 168
consistency, 165
encryption, 164
grid, 9, 15, 86
integration, 14
integrity, 161, 162
loss, 161
management system, 9, 163
mining, 18, 19, 33
organizations, 9
oriented applications, 17
processing, 86, 154, 155
protection mechanisms, 19
replication, 13
repositories, 9, 13
resources, 15, 20

security, 162, 166
storage, 8, 13, 15, 20
transfer, 5, 9

Databases, 3, 5, 14
Decentralization, 163
Decentralized

approach, 28
model, 28, 67
structure, 166

Defense, 18, 19
Delta wolves, 49
Denser, 117, 140
Deterministic approaches, 60
Diagnosis, 8
Digital
data, 18, 19
rights management, 18
Digitalization, 18
Direct acyclic graph (DAG), 69
Disaster management, 9, 169
Distributed

applications, 10, 68, 86
computing environment & system, 3, 4, 10, 11, 19, 25, 28, 86, 95,
153–158, 167

benefits, 155, 156
characteristics, 10, 11

network, 155, 156
resource management, 158

systems, 10, 11, 15, 85, 154
Diversity, 23, 38, 43, 123, 124
Dual search procedure, 48
Dynamic

behavior, 68
demands, 5
environment, 33, 54, 67, 85
grid environment, 32, 54, 59, 65, 66, 68
information, 87
job arrival, 87, 92
nature, 4, 23, 27
optimization, 53, 72

Dynamicity, 23, 25

E

Earliest start time (EST), 96, 97
Earthquake engineering community, 12
Eavesdropping, 165
Edge

computing, 154, 165–167
devices, 167
intelligence, 167
nodes, 164, 167, 169

Education, 18–20, 87, 169
Educational institutions, 3, 8
Electronic government (e-government), 18, 19, 169
Elephant

search algorithm (ESA), 48

tend, 48
Employee bee, 45, 46
Enabling grids for e-science projects (EGEE), 13
Engineering, 10, 12, 14–17, 20, 33, 40, 51, 66, 153, 154, 158

applications, 10, 14, 16, 17
Entertainment, 16, 17, 19
Environment-friendly, 161
European

Grid Infrastructure (EGI), 10
Union (EU), 13, 14

DataGrid project, 10
Evolution, 3, 9, 12, 19, 25, 40, 51, 53, 68
Evolutionary

algorithm, 27, 34, 40, 45, 68, 69, 125
hybrid algorithm, 83
metaheuristics, 67
optimization algorithm, 80
theory, 33

Execution, 7, 16, 20, 22, 27, 30, 32, 55–59, 65, 70, 74, 85, 87, 88, 90–
92, 96, 98, 144, 145, 150, 159, 162

results, 145
time, 32, 58, 65, 70

Expected time to compute (ETC), 64
Experimental analysis, 64, 70
ExperimentSetup.java, 88
Exploration, 42, 43, 46, 48, 51, 169

technique, 51

F

Fabric layer, 20, 22, 25
Fault

recovery, 167
tolerance, 65, 155, 157

Female elephant, 48
Financial crisis, 168
Finback whales, 51
First come first serve (FCFS), 30, 32, 60, 65, 95, 98, 99, 106–108, 117,
118, 123, 124, 149–152
Fish swarm algorithm (FSA), 47
Fitness function, 37, 39, 40, 80, 83, 84

evaluation, 84
Fitness

score, 84
value, 38–42, 49, 50, 70

Five-layered architecture, 25
Flow time, 69, 70
Fog

computing, 154, 163–165, 169
model, 164, 165
platform, 164
model, 163, 164, 169
node, 163–165

Food source, 34, 35, 45–47, 68
Foraging behavior, 70
Framework, 13–15, 17, 18, 54, 65, 69, 85, 87, 155, 158, 159, 167

G

Gaming, 10, 17, 33
Gateways, 163, 164
Gbest, 37, 38
Gene pool, 43
General computing nodes, 156
Genetic algorithm (GA), 27, 40–46, 52, 68–70, 72, 80–85, 95, 98,
104–106, 114–116, 122–125, 127, 128, 131–133, 138, 139, 143, 144,
149–152

mapping, 43
parameters, 46
scheduling algorithm, 114, 122, 143, 152
bee colony (GBC), 45
operators, 40, 41
representation, 40–42

Geographical
locations, 3, 8, 10, 17
regions, 3, 5, 9, 164

Gfarm, 15
Gigabit testbeds, 9
Global

alliance, 13
clouds, 169
computational resources, 22
grid forum (GGF), 158
optimization, 47, 70
research, 13

Globe, 9, 12, 15, 25, 154

Globus toolkit, 13, 85
Government, 18, 19, 169
Graphical output, 88
Graphs, 69, 71, 88, 117–119, 121, 122, 140, 141, 143, 150
Grey wolf, 48, 49

optimization (GWO), 48, 49
Grid, 3–10, 12–25, 27–33, 35, 36, 38, 43, 44, 52–56, 58–60, 64–69,
70–75, 77, 79–81, 83–87, 89, 92, 95–97, 106, 127, 133, 144, 145, 149,
152–154, 158, 159

classification, 7
computing
architecture layers, 20–22
characteristics, 5
classical evolution, 9
environment, 3, 5, 12, 14, 18, 19, 23, 27, 30, 31, 36, 59, 60, 65,
71, 72
model elements, 22, 23, 25
platform, 4, 7, 19, 153, 158, 159
scope, 19
technology, 16, 17, 58
environment, 3, 4, 7, 8, 14, 20, 23, 24, 27–30, 32, 38, 43, 52–56,
59, 60, 64–73, 79, 84–87, 92, 95–97, 127, 144, 152
file system, 15
idea, 4
information server, 29, 16, 59, 89, 95
infrastructure development, 5, 10, 12,
middleware project & research, 12, 13
network, 4, 7, 23, 24, 64, 65

nodes, 19
portals, 22
projects, 12
resource, 6, 13, 17, 20, 23, 27, 29, 58, 59, 87, 158

access and management protocol (GRAMP), 21
management (GRM), 6, 58–60, 64, 66, 68, 69, 85
manager, 23, 29
owners, 20

scheduler, 28, 29, 55, 56
scheduling

problem, 29, 30, 32, 33, 35, 38, 43, 44, 52, 53, 56, 59, 60,
65, 66, 68–75, 77, 80, 81, 83, 86, 95, 97, 106, 125, 127, 133,
149, 152, 170
simulator (GSSIM), 86, 87

simulation
environment, 144, 145, 149
toolkit, 87

simulator, 95
storage manager, 6
system, 4, 6–8, 22–24, 54, 55, 65, 67, 68, 70, 84, 159
techniques, 14
technologies, 14
types, 3, 7–9
users, 14, 24

GridLab project, 14
Gridletinfo.java, 89
GridSim, 64, 85–88
simulation, 64

GridSolve, 13
GridSphere, 14
GridWay, 54
Group ID, 90

H

Hardware, 12, 13, 15, 20, 157, 160, 167
Hassle-free services, 3
Health science, 8
Healthcare, 18
Helical movement, 51, 52
Heterogeneity, 4, 27, 60, 67, 87, 92, 164, 167, 169
Heterogeneous, 3–5, 7, 19, 66, 86, 158

nodes, 158
resources, 7, 66

Heuristic, 64
influence, 70
optimization algorithms, 48

Hierarchical
approach, 28
order, 49

High
availability cluster model, 156
dimensional space, 74
efficiency schedulers, 56
energy physics, 12
performance, 7, 10, 156

cluster, 156

computing, 7, 17
speed

internet, 3
networks, 9, 71

Homogeneous, 3–5, 7, 19, 66, 158
nodes, 158

Human
beings, 16
nature, 51
skills, 57

Humpback, 51
whales, 51

Hybrid, 3, 4, 53, 71, 77, 78, 80–83, 92, 133, 144, 145, 149–152, 159,
166, 170

algorithm, 53, 73, 80, 82, 83, 127, 133, 144, 145, 149–152, 170
bio-inspired algorithms, 71, 152
grids, 4, 8
scheduling algorithms, 92, 149
structures, 166

Hybridization, 5, 67, 73, 74, 77, 81, 92
use, 74

Hybridized scheduling algorithms, 5, 53, 67, 73, 74, 92
Hypervisor, 159

I

Idle resources, 24, 25, 64, 68, 168
Illusion, 4, 156
Indian National Grid Computing, 15

Individual
algorithms, 53, 92, 106, 116, 140
utilization, 106, 108, 110, 112, 114, 134, 136, 138

Inertia
factor, 38
parameter, 69

Information
communication technology (ICT), 154
loss, 166
protocols, 21
technology (IT), 3, 57, 168, 169

Infrastructure, 4, 16, 20, 68, 157, 158, 162, 166, 168
as a service (IaaS), 160
client, 160
model, 160
costs, 166

Initial population, 69, 77, 80–84
Interface, 7, 15, 29, 85, 87
Intergrids, 159
Internet

connectivity, 162, 163
of Things (IoT), 17, 163–166, 169

Isolation, 48, 164
measures, 164

J

Japanese
programming middleware solution, 14

research and scientific community, 14, 15
Java, 85, 86
Job, 4–7, 16, 19, 22–24, 27–32, 35, 38–41, 43, 53–60, 64–74, 77, 80,
81, 83–85, 88–91, 95–101, 103–106, 108, 110, 112, 114, 117–125,
127–134, 136, 138, 140–144, 149, 150, 152, 167, 169
allocation, 56
applications, 22
arrival, 87, 92
completion time, 4, 24, 70
count, 97, 106, 116, 133, 140, 150, 157
description file, 89, 95
diversity, 23
execution, 16, 20, 27, 30, 56, 57, 90, 91, 150
heterogeneity, 27, 67, 87, 92
ID, 91
instances, 88
list, 77, 80, 83
loader, 87–89
number, 89, 91
partitioning, 167
performance, 16, 56, 60
pool, 65
portal, 29
related information, 89
request, 16, 27, 74, 85
requirements, 16, 22, 27, 57, 85
resource

assignment, 57, 70

management, 56
scheduler, 7
scheduling, 4, 20, 27, 29, 32, 34, 43, 52, 56, 58, 65, 69, 82, 86, 91, 152

problem, 34, 52, 82
security, 24
selection, 87
sets, 123, 124
size, 60
submission, 20
total completion time, 59, 65, 70, 71, 98, 127
uses, 6

K

Key
elements, 25
functional requirement, 6
issues, 162

Killer, 51
whales, 51

Kilobytes, 90
Knowledge, 14, 17
Knoxville, 13
Korea, 12
Krill species, 51

L

Large
hadron collider (LHC), 10, 17

scale
business applications, 10, 20
simulations, 16

Latency, 166, 167, 169
Layered architecture, 3, 25
Lazy ants, 69
Leader rooster, 49
Learning

algorithmic processes, 154
factors, 38

Least utilization, 106, 133
Life science, 16, 19
Lifestyles, 51
Limit parameter, 45, 46
Living habits, 51
Load

balancing, 34, 59, 71, 95, 156, 157, 165
distribution, 7, 64, 70, 73, 97, 123, 124, 144, 149, 151, 152, 170

uniformity, 152, 170
Local

area network (LAN), 159
optima, 45, 48, 74
schedulers, 28, 55, 56

Location, 10, 12, 35, 153, 154, 168
Low-cost applications, 160

M

Machine

description file, 89, 91, 95
learning algorithms, 33, 45, 169
loader, 88
utilization, 116, 117, 125, 127, 140, 145, 149, 152, 170

Makespan, 64, 69–71
Male elephants, 48
Malicious attacks, 165
Mammal, 51
Management protocols, 21
Market dynamics, 7
Master node, 156
Mathematical equation, 51
Max-min, 32, 60, 64, 65

algorithms, 32
Medical

frameworks, 16
practitioners, 16
research, 18

Message passing (MSG), 86
MetaCentrum, 71, 89, 95
Metacomputing, 9
Metaheuristic, 33, 34, 37, 51, 52, 66, 67, 72–74, 125, 127

algorithms, 48
Meta-schedulers, 54, 55
Methodologies, 52, 60
Microalgae, 51
Microgrid, 85
Microorganisms, 16

Middleware, 12–15, 160
solution, 14

Migration, 10
Mimic natural theory, 33
Minimum

completion time (MCT), 65
execution time (MET), 65

Min-min, 32, 60, 64, 65
algorithm, 32, 65

Mixture ratio (MR), 50
Mobile devices, 164
Modern devices, 3, 153
Modular computing, 24, 25
Monarc 2, 86
Monitoring resource, 20
Moth flame optimization (MFO), 48
Moths, 48
Motion films, 18
Multi-cluster computational grid, 86
Multi-objective optimization, 32, 33, 49, 53, 66, 69, 71, 72
Multiobjective problems, 66, 67
Multiple domains, 8
Mutation, 40, 41, 43, 46, 69, 70, 82, 84

operator, 46, 69
probability, 84

N

National

grid infrastructure (NGI), 89, 95
research grid initiative (NAREGI), 14

Natural phenomena, 33, 53, 66
Navigation, 48
Nearest deadline first scheduled (NDFS), 64
Near-optimal solution, 32
Nectar amount, 46
NEESGrid, 12
Neighboring environment, 46, 51
NetSolve, 13, 25
Network, 3, 5, 9, 10, 17, 20, 21, 67, 71, 154, 157, 158

bandwidth, 5, 163
traffic functionalities, 86

Nimrod, 15
runtime system, 15

Ninf, 14
Node

distribution, 164
failure, 70, 157
heterogeneity, 164

Non-conventional
algorithms, 5, 33, 40
methods, 81
modes, 32

Non-deterministic polynomial (NP), 5, 32–34, 37, 45, 66, 68–70, 125,
127

complete problems, 5, 33, 34, 37, 68, 69, 127
Non-differentiable problems, 32

Non-linear constraints, 33
Non-preemptive scheduling, 30–32, 54, 91
Nonrenewable resource, 6
Non-trivial

issue, 27, 29
parameters, 151

Nuclear
explosions, 17
science, 8
simulation, 9

O

Obscurity, 165
Offloading, 165
Offspring, 41–43
Omega wolves, 49
One-point crossover, 43, 84
Online multiplayer, 10
Onlooker, 45, 46

bee, 45, 46
Open grid service architecture data access and integration (OGSA-
DAI), 14
Open science Grid, 10
Operational

costs, 162, 166
research, 15

Opportunistic edge computing, 166
Optimal

scheduling, 54
solution, 32, 33, 45, 48, 53, 60, 69, 82

Optimization, 4, 5, 23, 25, 27, 32–34, 37, 45–53, 56, 57, 66, 68–72, 75,
77, 80, 86, 87, 125

algorithm, 33, 47–52, 68–70, 80
problems, 5, 25, 32, 33, 37, 45–47–50, 53, 66, 70–72, 125

Outsourcing, 168

P

Parallel
computing, 15, 156
jobs, 91
supercomputers, 9

Parallelism, 64, 68
Parameter, 35, 40, 45, 79, 82, 95, 96, 124, 128, 144, 152

tuning, 79
Parametric

computing, 15
experiment, 15

Particle
swarm optimization (PSO), 27, 37–39, 52, 68–70, 72, 84, 95, 98,
103, 104, 106, 112–114, 121–125, 149–152

mapping, 38
scheduling algorithm, 112, 121

velocity, 37
Patient data, 18
Pbest, 37, 38
Peer-to-peer networks (P2P networks), 10

Performance
comparison, 145, 152
evaluation, 27, 95
metrics, 7, 11, 60, 145
parameters, 71, 127, 149

Periodic scheduling, 67
Permutation, 41, 83
Petabytes (PB), 10, 12
Petascale data-intensive computing, 15
Pheromone

trail, 34
update rule, 34, 69, 70
value, 36, 74

Physical closeness, 167
Platform

as a service (PaaS), 160
applications, 160
model, 160

independent simulation, 85
Pledged, 49
Popular swarm-based metaheuristic, 37
Population, 33, 38, 40–43, 45, 50, 51, 69, 70, 74, 77, 80–85

initialization, 74
methods, 33
size (PS), 45, 84, 85
solutions, 45

Power utilization, 163
Preceding job number, 91

Predacious behavior phase, 47
Preemptive scheduling, 54
Prematurity, 45
Preying, 47
Probabilistic approach, 34
Processor, 3, 5, 20, 27, 43, 70, 90, 91, 96

allocation policy, 91
Project manager, 57
Promising results, 152
Protocols, 10, 11, 14, 21, 22, 158, 167, 169
Public grids, 8

Q

Quality, 11, 36, 42, 164
of service (QoS), 11, 12, 20, 2

Quantum physics, 8
Queue, 7, 36

number, 90

R

Radical, 3
Random

behavior, 47
distribution, 128
initialization, 74, 81

Real
time

applications, 9, 157

grids, 9
processing, 18

workload traces, 71, 86
Reference algorithms, 89, 92, 145, 152
Reliability, 11, 85, 168
Remote procedure call (RPC), 13, 14
Renewable resources, 6
Representational state transfer (REST), 159
Reproduction, 51
Requested

memory, 90
time, 90

Research
development (R&D), 14, 19, 69
methodologies, 52
oriented applications, 10

Resource, 3–10, 13–17, 19–25, 27–32, 35, 36, 38, 40, 41, 43, 52–60,
64–74, 77, 80–85, 87–89, 91, 92, 95–97, 106, 108, 110, 112, 114, 116,
124, 125, 127, 133, 135, 137, 139, 144, 145, 149, 151–156, 158–164,
166–170

administrators, 7
allocation, 28, 58, 59, 65, 67

schemes, 28
availability, 57, 155, 163
brokers, 22
consumption, 168
discovery, 56, 59, 166
failure, 24, 87, 92

forecasting, 58
heterogeneity, 60
job heterogeneity, 87, 92
leveling, 58
management systems (RMS), 3, 5–7, 22, 23, 27, 28, 52, 53, 56–
60, 65, 66, 68, 69, 71–73, 95, 106, 127, 133, 149, 153, 158, 168

stages, 57
monitoring, 59
oriented schedulers, 56
queue, 36
repository, 58
selection, 17, 56, 59, 70
sharing, 10, 68, 153, 155, 158, 159
specifications, 168
utilization (RU), 5, 16, 25, 32, 39, 40, 56, 58–60, 64–66, 68–71,
73, 74, 83, 95, 97, 108, 110, 112, 114, 116, 124, 125, 135, 137,
139, 145, 149, 151, 152, 170

Resourceinfo.java, 89
Response time, 7, 11
Robotics, 33
Robustness, 67, 70
Roulette wheel selection, 41
Round robin, 60
Routers, 163, 164

S

Salient features, 3, 15
Satellites, 18, 19

Scalability, 11, 24, 25, 68, 71, 73, 95, 97, 124, 149, 160
Scheduling

algorithm, 3–5, 7, 13, 20, 22, 23, 25, 27–35, 38, 41, 43, 44, 52–
56, 58–60, 64–75, 77, 79–89, 91, 92, 95–98, 106, 108, 110, 112,
114, 116, 118, 119, 121, 122, 124, 125, 127, 128, 133–141, 143,
144, 149–153, 157, 165, 170
conditions, 149
decisions, 28–30, 54, 87
framework, 87
paradigm, 33
policies, 28
problem, 22, 23, 25, 30, 33–35, 38, 41, 43, 44, 52, 54, 58, 60, 64–
66, 68–70, 72, 73, 75, 77, 80, 82, 83, 95, 125, 127, 149, 152, 170
result, 64–66, 69, 71, 75, 81, 152
systems, 60

Scientific
applications, 10
communities, 20
computation, 156
data, 15
instruments, 15
programming, 14
research, 16, 17, 19

Scout bee, 45, 46
Search

agents, 48
optimization algorithm, 48
space, 34, 37, 38, 42, 43, 45, 69, 81

speed, 45
Secrecy, 164
Security

breaches, 18–20, 24, 65, 156, 159, 162–167, 169
constraints, 163
mechanism, 18, 156, 162, 163

Seeking
memory pool (SMP), 50
mode, 50
process, 50
range of selected dimension (SRD), 50

Selection operator, 5, 17, 40–42, 45, 47, 55, 56, 59, 69, 70, 73, 74, 80–
82, 84, 87
Selfconfiguration, 4
Self-management, 4
Self-optimization, 4
Self-position consideration (SPC), 50
Sensors, 17–19, 58, 164
Sequential jobs, 88
Servers, 3, 5, 20, 24, 156–159, 164
Service

availability, 166, 167
delivery, 153, 154
level agreement (SLA), 11, 165, 169
models, 159
oriented

architecture (SOA), 11
computing, 11

Shareable resources, 4
Shortest job first (SJF), 31, 32, 60, 74, 77, 78, 80–85, 95, 98–101, 106,
108–110, 118, 119, 123–125, 127, 128, 130–133, 136–139, 141–144,
149–152

algorithm, 74, 81, 84
ant colony optimization, 77, 78, 84, 127, 128, 130, 131, 133, 136–
138, 141, 142, 144, 149–152
combined with

ACOthresh (SJF-ACOthresh), 77, 78, 84, 127, 128, 130,
131, 133, 136–138, 142, 144, 150–152
genetic algorithm (SJF-GA), 81–83, 85, 127, 128, 131–133,
138, 139, 143, 144, 149–152

hybridization, 77, 80
scheduling algorithm, 108, 118

Simbatch, 86
SimBOINC, 86
SimGrid, 86
Simple object access protocol (SOAP), 159
Simulation, 9, 15–17, 19, 64, 65, 69–71, 85–89, 95, 127, 144, 145,
149, 156

environment, 71, 86, 88, 89, 95, 127, 144, 145, 149
results, 69, 70, 85
toolkits, 85

Simulator output generation, 88
Single organization, 54
Software, 11–13, 15, 18–20, 22, 87, 157, 159, 160, 169

as-a-service (SaaS), 11, 12, 159, 160
method, 12

installations, 12
Solution space, 46, 48
Spatial enhancement, 48
Species, 51
Stand-alone algorithms, 53
Standard

deviation (SD), 97, 123–125, 127, 144, 145, 151, 152
protocols, 10
workload format (SWF), 88, 89, 92, 95, 124, 127, 149

Static scheduling, 54
Storage

device, 20, 58, 68, 155, 158
networks, 17
resource, 6, 15, 21, 23, 158

broker (SRB), 13
Submit time, 89
Suboptimal scheduling, 54
Supercomputer resources, 9, 10, 19, 21, 58, 71, 85, 86, 153, 155
Super-schedulers, 55
Swarm

algorithms, 27, 34, 37, 40, 45, 47, 49, 50, 52, 67, 68, 70, 72, 80,
125
behavior phase, 47
hybrid algorithm, 80
intelligence, 34, 68
metaheuristics, 67

Switches, 163, 164
Synchronization, 156

System
overloading, 156
performance, 59

T

Task
resource assignment graph, 69, 71
scheduling, 165

Techniques, 5, 14, 52, 57, 58, 60, 64, 70, 74, 167, 169
Temporary downtime, 162
TeraGrid, 8, 12, 25
Threshold, 73–75, 77, 79, 80, 127

probability, 73, 74, 77, 79, 80, 127
Time complexity, 84, 85
Total completion time (TCT), 4, 7, 39, 40, 59, 65, 67, 69–71, 73, 74,
83, 95, 96, 98–101, 103–106, 124, 125, 127–133, 144, 145, 149, 150,
152, 170

jobs analysis, 149
Tournament selection, 42, 82, 84
Tracing mode, 50, 51
Trade intelligence, 18
Traditional algorithms, 150
Transition probability, 74, 77, 80
Transparency, 10
Transverse orientation, 48
Troublesome task, 15
Two-point crossover, 46

U

Ubiquitous, 5, 158, 159
computing, 158, 159

Unauthorized access, 165
Underlying principle, 11, 68
Underused resources, 58
Unexpected costs, 58
Unexplored regions, 42
Unified resource framework, 158
Uniform, 28, 55, 59, 70, 151

load, 55, 70
scheduling policies, 28

Uniformity, 123, 152, 170
Unique

abilities, 9
job ID, 91

United States (US), 9, 10, 12
gigabit testbeds, 9
National Science Foundation, 12

Unscheduled jobs, 77, 80, 83
Unveiling mechanisms, 65
Unveils, 58
Updated, 38, 50, 56, 77, 80, 83, 88, 89, 156

information, 56, 77, 80, 83, 88, 89
Uplift, 24
Upper layer, 20
Usage policies, 22
User

access authorization, 13, 20
applications, 58
authentication, 19
friendly interface, 15
ID, 90
requests, 4, 5, 25, 28, 67, 156
requirements, 8, 25, 159

Utility, 3, 9, 16, 154, 159, 160, 167–169
computing, 167–169
grids, 9

Utilization, 4, 5, 24, 25, 32, 40, 56, 58, 59, 68, 73, 95, 97, 106, 108,
110, 112, 114, 116, 117, 123–125, 127, 133–140, 144, 145, 149–152,
160, 163, 168, 170

graphs, 150

V

Variance, 97, 124
Variations, 160, 162
Vast area, 15
Vector supercomputers, 9
Vehicle-to-vehicle communication, 165
Velocity, 37, 38
Verification tool, 85
Vertical

function, 163
platform, 163

Vicinity, 46, 49
Viewpoints, 11

Virtual
machine, 156
network, 162
nodes, 164
supercomputer, 4, 5
workspace, 9

Virtualization, 160, 164
Visual range, 47
Visualization, 18, 19, 86–88, 92

tools, 86
Visualizator class, 88
Volatile computing systems, 86
Voluminous data, 3

W

Waiting time, 5, 7, 16, 58, 71, 90
Warehouses, 9
Water, 3, 153, 167
Weak

performance, 27
security, 165

Weather, 18
forecasts, 9, 18
patterns, 18
sensors, 18

Web, 14, 22
enabled application services, 22
portal environment, 14

service technologies, 159
Weighted tardiness, 64
Whale optimization algorithm (WOA), 51, 52
Wheel selection, 41
Wide

range, 45
variety, 4

Widescale resource, 68
Wisconsin University, 13
Wolf optimization algorithm, 52
Work

culture, 161
from home, 161

Working environment, 22, 33, 57
Workload, 58, 59, 64, 71, 77, 80, 83, 86, 88–92, 95, 97–101, 103–106,
108, 110, 112, 114, 116, 118, 119, 121–124, 127–134, 136, 138, 140,
141, 143, 144, 149–151

availability, 86
distribution, 59, 127, 144
formats, 88
log, 89
traces, 71, 86, 89, 95

Workspace, 9
Workstations, 13, 157
Worst values, 49

X

XML databases, 14

XSuffrage, 65

Y

Yields, 156
Youth, 87

Z

Zero interaction, 163
Zewura, 106, 116, 133, 140

cluster, 91, 108, 110, 112, 114, 116, 135, 137, 139, 149–151
workload, 77, 80, 89, 91, 92, 95, 98, 100, 101, 103–106, 116, 118,
119, 121–124, 127–133, 140, 141, 143, 144, 150, 151

OceanofPDF.com

https://oceanofpdf.com/

	Cover Page
	Half Title Page
	Title Page
	Copyright Page
	About the Authors
	Contents
	Abbreviations
	Acknowledgments
	Preface
	Introduction
	Part I Foundations
	1. Introduction to Grid Computing
	1.1 Grid Computing
	1.1.1 Idea of Grid Computing
	1.1.2 Defining Grid
	1.1.3 Characteristics of Grid Computing
	1.1.4 Classification of Grids

	1.2 Classical Evolution of Grid Computing
	1.2.1 Distributed Computing And Its Characteristics
	1.2.2 Service-Oriented Computing
	1.2.3 Notable Grid Developments Worldwide
	1.2.4 Grid Applications
	1.2.5 Scope of Grid Computing

	1.3 Designing Grid Computing Environment
	1.3.1 Introduction To Grid Computing Architecture
	1.3.2 Elements in Grid Computing Model
	1.3.3 Limitations and Advantages

	1.4 Summary

	2. Scheduling: Conventional and BioInspired Algorithms
	2.1 Resource Allocation Schemes
	2.2 Job Scheduling
	2.2.1 Job Scheduling In Grid Environment

	2.3 Conventional Algorithms
	2.3.1 First Come First Serve (Fcfs)
	2.3.2 Shortest Job First (Sjf)

	2.4 Bio-Inspired Algorithms
	2.4.1 Swarm Algorithms
	2.4.2 Evolutionary Algorithms
	2.4.3 Other Bio-Inspired Algorithms

	2.5 Summary

	3. Work Done Using Conventional and Bio-Inspired Algorithms
	3.1 Introduction
	3.1.1 Scheduler
	3.1.2 Stages Of Grid Scheduling

	3.2 Resource Management
	3.2.1 Stages In Resource Management

	3.3 Grid Resource Management (Grm)
	3.3.1 Grid Resource Management (Grm): Conventional Algorithms
	3.3.2 Grid Resource Management (GRM): Bio-Inspired Algorithms

	3.4 Summary

	4. Scheduling Algorithms: Modified and Hybrid Algorithms
	4.1 Introduction
	4.2 Modification to the Basic Aco (Thresholdconstrained Aco, Acothresh)
	4.3 Hybridization Of Sjf With ACOthresh
	4.4 Hybridization Of Sjf With Ga
	4.5 Complexity Analysis of Algorithms
	4.6 Simulation Toolkit for Grid Resource Management (GRM)
	4.6.1 Overview Ofalea
	4.6.2 Elements Ofalea
	4.6.3 Standard Workload

	4.7 Summary

	Part II Implementation of Scheduling Algorithms
	5. Research-Based Case Study to Solve Grid Scheduling Problem Using FCFS, SJF, ACO, PSO, and GA
	5.1 Introduction
	5.2 Parameters for Performance Evaluation of Scheduling Algorithms
	5.3 Case Study Report: A Comparison of Performance Results of Fcfs, Sjf, Aco, Pso, and Ga
	5.3.1 Total Completion Time (Tct) Of Jobs
	5.3.2 Cluster Resource Utilization (Cru)
	5.3.3 Average Machine Utilization (Amu)
	5.3.4 Load Distribution

	5.4 Summary

	6. Research-Based Case Study to Solve Grid Scheduling Problem Using Modified and Hybrid Algorithms: ACOthresh, SJF-ACOthresh, and SJF-GA
	6.1 Parameters For Performance Evaluation
	6.1.1 Total Completion Time (Tct)
	6.1.2 Cluster Resource Utilization (Cru)
	6.1.3 Average Machine Utilization (Amu)
	6.1.4 Load Distribution

	6.2 Summary

	Part III Performance Comparison of Algorithms
	7. Comparison of Conventional, Bio-Inspired, and Hybrid Algorithms: A Review
	7.1 Introduction
	7.2 Analysis Of Total Completion Time (Tct) Of Jobs
	7.3 Analysis Of Cluster Resource Utilization (Cru)
	7.4 Load Distribution
	7.5 Summary

	8. New Computing Platforms for Solving Convoluted Engineering Problems: A Review
	8.1 Introduction
	8.2 Forms of Computing Platforms
	8.2.1 Distributed Computing
	8.2.2 Cluster Computing
	8.2.3 Grid Computing
	8.2.4 Cloud Computing
	8.2.5 Fog Computing
	8.2.6 Edge Computing
	8.2.7 Utility Computing

	8.3 Summary

	Bibliography
	Glossary
	Index

