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QUANTITATIVE RISK ASSESSMENT

Quantitative risk assessments cannot eliminate risk, nor can they resolve trade-

offs. They can, however, guide principled risk management and reduction –

if the quality of assessment is high and decision-makers understand how to

use it.

This book builds a unifying scientific framework for discussing and evalu-

ating the quality of risk assessments and whether they are fit for purpose.

Uncertainty is a central topic. In practice, uncertainties about inputs are

rarely reflected in assessments, with the result that many safety measures

are considered unjustified. Other topics include the meaning of a probability,

the use of probability models, model uncertainty, how to understand and

describe risk, the use of Bayesian ideas and techniques and the use of risk

assessment in a practical decision-making context.

Written for professionals, as well as graduate students and researchers, the

book assumes basic probability, statistics and risk assessment methods.

Examples make concepts concrete, and three extended case studies show the

scientific framework in action.

terje aven is Professor in Risk Analysis and Risk Management at the

University of Stavanger, Norway, and a Principal Researcher at the Inter-
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Preface

Risk assessment is in many respects acknowledged as a scientific discipline

per se: there are many master and PhD programmes worldwide covering this

field, and many scientific journals and conferences highlighting the area.

However, there are few books addressing the scientific basis of this discipline,

which is unfortunate as the area of risk assessment is growing rapidly and

there is an enormous drive and enthusiasm to implement risk assessment

methods in organisations. Without a proper basis, risk assessment would fail

as a scientific method or activity. Consider the following example, a statement

from an experienced risk assessment team about uncertainty in quantitative

risk assessments (Aven, 2008a):

The assessments are based on the “best estimates” obtained by using the company’s
standards for models and data. It is acknowledged that there are uncertainties
associated with all elements in the assessment, from the hazard identification to
the models and probability calculations. It is concluded that the precision of the
assessment is limited, and that one must take this into consideration when comparing
the results with the risk acceptance criteria and tolerability limits.

Based on such a statement, one may question what the scientific basis of the

risk assessment is. Everything is uncertain, but is not risk assessment per-

formed to assess the uncertainties? From the cited statement it looks like the risk

assessment generates uncertainty. In any event, does this acknowledgment – that

a considerable amount of uncertainty exists – affect the analyses and the

conclusions? Only very rarely! My impression is that one writes such state-

ments just to meet a requirement, and then they are put aside. This says a lot

about the scientific quality of the assessments.

I strongly believe that the scientific platform of risk assessment – and

quantitative risk assessment in particular – needs to be strengthened. The

aim of this book is to contribute to this end. For many years I have been
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engaged in research trying to improve the scientific basis of risk assessment;

I have written many books and papers related to the topic, and believe that

the time has come to publish a fundamental exposition on the topic quantita-

tive risk assessment – the scientific platform. The basic idea is to provide a

framework for analysing and discussing the quality of the assessments using

the scientific requirements of reliability and validity. The reliability require-

ment is concerned with the consistency of the “measuring instrument” (ana-

lysts, experts, methods, procedures), whereas validity is concerned with the

assessment’s success at “measuring” what one set out to “measure”. This

gives a new and original approach to the analysis and discussion.

The quality of risk assessment relates to the scientific building blocks of the

assessments but also to the role of the assessments in the decision-making

process. On an overall level one can say that the purpose of risk assessment is to

support the decision-making � to adequately inform the decision-makers � but

what type of decision support (knowledge, judgements) should the assess-

ments provide? Are the objectives (expectations) accurate risk estimates and/

or uncertainty characterisations (representations/expressions of the know-

ledge and lack of knowledge available)? The scientific quality of the assess-

ments obviously needs to be seen in relation to these objectives. Also the

requirements of reliability and validity depend on these objectives. Using

these criteria, we can evaluate the quality of the assessments for different

objectives of the assessments.

Uncertainty is a key topic when discussing the scientific platform of risk

assessment. Other important issues are the meaning of a probability, the use

of Bayesian ideas and concepts, the meaning of risk, how risk should be

described, the meaning and use of models, model uncertainty, the meaning

and use of probability models and parameters, and the value of information.

The book is general and is relevant for all types of applications, but safety

engineering has the main focus.

For many years there has been a lively discussion about the scientific

platform of statistical analysis in general: the Bayesian/non-Bayesian contro-

versy; see e.g. Lindley (2000). However, there has not been much work on

establishing a proper scientific basis for risk assessments. A number of papers

address foundational issues of risk assessment; see e.g. Apostolakis (1988,

1990), Kaplan and Garrick (1981), Singpurwalla (1988, 2006) and Cooke

(1991), but I am not aware of much work where fundamental scientific

quality requirements such as reliability and validity are discussed in the

context of a risk assessment (Aven and Heide, 2009).

Of the few contributions found in the literature I would like to draw

attention to the first issue of the international scientific journal Risk Analysis
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in 1981, and in particular Weinberg (1981) and Cumming (1981). These

authors describe some of the problems of risk assessments, and express a large

degree of scepticism about the scientific reliability and validity of risk assess-

ments. Weinberg notes that “one of the most powerful methods of science –

experimental observations – is inapplicable to the estimation of overall risk”.

Graham (1995) writes that the discipline “should (and will) always entail an

element of craft-like judgment that is not definable by the norms of verifiable

scientific fact”, and that “any determination that a risk has been ‘verified’ is

itself a judgment that is made on the basis of standards of proof that are to

some extent arbitrary, disputable, and subjective” (Aven and Heide, 2009).

I share many of the same views on the scientific basis of risk assessment.

However, in order to gain more insight into this subject and be able to make

guidance on how to ensure and strengthen the scientific quality of risk

assessments, we need to clarify the scientific pillars of the risk assessment

and tailor the assessments to the decision-making context. As mentioned

above, this is exactly what the present book does.

Small illustrating examples are included in the book for making concepts

concrete and to illustrate ideas and principles. Three extended examples (case

studies) will be presented early in the book (Chapter 4) and are pursued

through the rest of the book. The first of these examples is related to the

analysis of accident data, the second relates to the siting of a Liquefied

Natural Gas (LNG) plant and the third discusses the design of a safety

system. The idea is not that every concept or step of a risk assessment would

be illustrated in each case study, but that these cases would recur often

enough that the readers get a feel for the overall scope and shape of a real

risk assessment and its use and are able to relate the scientific requirements to

these concepts and steps. The cases are simplified so that the intellectual

lessons are clarified, but they are nevertheless realistic.

The three cases illustrate different types of risk assessments. The first case

covers a statistical data analysis, whereas the second shows an example of a

system analysis which is strongly based on modelling of the phenomena

studied. In Case 2 a large number of unknown quantities (model parameters)

on the subsystem/component level need to be assessed. The third case pre-

sents an example of a reliability analysis of a specific system. The results of

such analyses constitute important input to risk assessments.

Before we present and analyse the three main cases, we first review basic

concepts and perspectives on how to define, understand and describe risk

(Section 2). The aim is to give the reader an overview of the many different

ways one can look at risk and to provide a structure for the coming analysis.

We also discuss some fundamental issues related to science in a risk
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assessment context (Chapter 3): what are the basic features of risk assessment

as a scientific method and how is risk assessment related to other scientific

disciplines? This chapter also summarises the reliability and validity require-

ments mentioned above. Then in Chapters 5 and 6 we examine the three cases

with respect to these scientific requirements: Chapter 5 looks at the situation

when the objective of the risk assessment is accurate risk estimation, whereas

Chapter 6 restricts attention to situations where the objective of the risk

assessment is uncertainty characterisations. In Chapter 7 we discuss the

implications of the findings in Chapters 5 and 6 for risk management and

communication. Key issues addressed are the use of risk acceptance criteria,

risk reduction processes, and the cautionary and precautionary principles.

From this analysis we are led to Chapter 8 which discusses and provides

guidance on how risk should be approached, i.e. how we should define,

understand and describe risk, as well as use risk assessments in a decision-

making context. Chapter 9 provides some conclusions from the previous

chapters.

The book allows for scientific analysis of different types of risk assessments,

in particular assessments which in a detailed way reflect human and organisa-

tional factors. The book includes examples of assessments which reflect such

factors, but it is beyond the scope of the book to provide a detailed account of

these types of assessments. Well-selected references are presented for readers

who do want to delve deeper in this area. See Section 1.1.

The book is for professionals in the field, as well as for graduate students

and researchers. It should also be of interest to many policy makers and

business people. The book would make it possible for them to better under-

stand the boundaries of risk assessments and how they should be used for

decision-making. The book is advanced (conceptually) but at the same time

rather simple and easy to read. It has been a goal to avoid too many

technicalities, but without diminishing the requirement for precision and

accuracy. The main ideas and principles are highlighted. Readers would

benefit from a basic knowledge in probability calculus and statistics as well

as in risk assessment methods. It has, however, been a goal to reduce the

dependency on extensive prior knowledge. The key statistical and risk con-

cepts will be introduced and discussed thoroughly in the book. Thus the

readers do not need to be experts on, for example, regression analysis. The

focus will be on the basic ideas – “advanced statistical analysis” is not

required. Appendix A provides a summary of basic theory (e.g. probability,

Bayesian analysis). Appendix B includes a listing of some key definitions.
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1

Introduction to risk management and risk
assessments. Challenges

This chapter provides a broad introduction to risk management and risk

asssessment, as a basis for the analyses and dicussions in the coming chapters.

The presentation highlights general features but also challenges related to the

definitions and use of these tools. Key references for the chapters are Bedford

and Cooke (2001), Vose (2008) and Aven and Vinnem (2007). The termin-

ology is to a large extent in line with ISO (2009a). See summary of key

definitions in Appendix B.

1.1 General features of risk management and risk assessments

Risk management is all coordinated activities to direct and control an

organisation with regard to risk. Two main purposes of the risk manage-

ment are to ensure that adequate measures are taken to protect people, the

environment and assets from undesirable consequences of the activities

being undertaken, and to balance different concerns, for example safety

and costs. Risk management covers both measures to avoid the occurrence

of hazards/threats and measures to reduce their potential consequences. In

industries like nuclear and oil & gas, risk management was traditionally

based on a prescriptive regulating regime, in which detailed requirements for

the design and operation of the plant were specified (Kumamoto, 2007;

Aven and Vinnem, 2007). This regime has gradually been replaced by more

goal-oriented regimes, putting emphasis on what to achieve rather than on

the means of doing so. Goal orientation and risk characterisations are two

major components of these new regimes that have been enthusiastically

endorsed by international organisations and various industries (see e.g.

IAEA Guidelines (1995), HSE (2001), Kröger (2006); the IPCS and WHO

risk terminology document (2004) and the risk management guidelines of

the EU Commission (European Commission, 2000, 2003; IEC, 1993)). Such
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an approach to risk management is believed to provide higher levels of

performance both in terms of productivity and risk reduction (Aven and

Renn, 2009b).

Quantitative risk assessment

Quantitative Risk Assessment (QRA) (also referred to as Probabilistic Risk

Assessment � PRA) is a key tool used in these new approaches. A QRA

systemises the present state of knowledge including the uncertainties about

the phenomena, processes, activities and systems being analysed. It identifies

possible hazards/threats (such as a gas leakage or a fire), analyses their causes

and consequences, and describes risk. A QRA provides a basis for character-

ising the likely impacts of the activity studied, for evaluating whether risk is

tolerable or acceptable and for choosing the most effective and efficient risk

policy, for example with respect to risk-reducing measures. It allows for the

calculation of expected values so that different risks can be directly compared.

Common practice in probabilistic risk assessment avoids, however, the aggre-

gation of the two components and leaves it to the risk evaluation or manage-

ment team to draw the necessary conclusions from the juxtaposition of loss

and probabilities (Aven, 2003; Kröger, 2005). In addition, second-order

uncertainties are introduced via different types of uncertainty intervals to

make the confidence of probability judgements more explicit (Apostolakis

and Pickett, 1998; Aven, 2003), see also Sections 2.7 and 8.3. For some

extensive reviews of the use of QRA/PRA in a historical perspective, see

Rechard (1999, 2000).

Some of the basic tools used for analysing the probabilities and risk are

statistical estimation theory, fault tree analysis (FTA) and event tree analysis

(ETA). These tools belong to the following main categories of basic analysis

methods:

(a) Statistical methods: Data are available to predict the future performance

of the activity or system analysed. These methods can be based on data

extrapolation or probabilistic modelling.

(b) Systems analysis methods: These methods (which include FTA and ETA)

are used to analyse systems where there is a lack of data to accurately

predict the future performance of the system. Insights are obtained by

decomposing the system into subsystems/components for which more

information is available. Overall probabilities and risk are a function of

the system’s architecture and of the probabilities on the subsystems/

component level (Paté-Cornell and Dillon, 2001).
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Quantitative risk assessment (QRA) is often associated with system analysis

methods (see e.g. Bedford and Cooke, 2001), but in this book we interpret

QRA (PRA) as any risk assessment which is based on quantification of risk

using probabilities.

A number of new and improved methods have been developed in recent

years to better meet the needs of the analysis, in light of the increasing

complexity of the systems and to respond to the introduction of new techno-

logical systems (Aven and Zio, 2011). Many of the methods introduced allow

for increased levels of detail and precision in the modelling of phenomena

and processes within an integrated framework of analysis covering physical

phenomena, human and organisational factors as well as software dynamics

(e.g. Mohaghegh et al., 2009; Luxhoj et al., 2001; Ale et al., 2009; Røed et al.,

2009). Other methods are devoted to the improved representation and analy-

sis of the risk and related uncertainties, in view of the decision-making

tasks that the outcomes of the analysis are intended to support. Examples

of relatively newly introduced methods are Bayesian Belief Networks (BBNs),

Binary Digit Diagrams (BDDs), multi-state reliability analysis, Petri Nets

and advanced Monte Carlo simulation tools. For a summary and discussion

of some of these models and techniques, see Bedford and Cooke (2001) and

Zio (2009).

The traditional risk assessment approach used in QRAs can be viewed as a

special case of system engineering (Haimes, 2004). This approach, which to a

large extent is based on causal chains and event modelling, has been subject to

strong criticism (e.g. Rasmussen, 1997; Hollnagel, 2004; Leveson, 2004). It is

argued that some of the key methods used in risk assessments are not able to

capture “systemic accidents”. Hollnagel (2004), for example, argues that to

model systemic accidents it is necessary to go beyond the causal chains – we

must describe system performance as a whole, where the steps and stages on

the way to an accident are seen as parts of a whole rather than as distinct

events. It is not only interesting to model the events that lead to the occur-

rence of an accident, which is done for example in event and fault trees, but

also to capture the array of factors at different system levels that contribute to

the occurrence of these events. Leveson (2007) makes her points very clear:

Traditional methods and tools for risk analysis and management have not been
terribly successful in the new types of high-tech systems with distributed human
and automated decision-making we are attempting to build today. The traditional
approaches, mostly based on viewing causality in terms of chains of events with
relatively simple cause-effect links, are based on assumptions that do not fit these
new types of systems: These approaches to safety engineering were created in the
world of primarily mechanical systems and then adapted for electro-mechanical

1.1 Risk management and risk assessments 3



systems, none of which begin to approach the level of complexity, non-linear dynamic
interactions, and technological innovation in today’s socio-technical systems. At the
same time, today’s complex engineered systems have become increasingly essential
to our lives. In addition to traditional infrastructures (such as water, electrical, and
ground transportation systems), there are increasingly complex communication
systems, information systems, air transportation systems, new product/process
development systems, production systems, distribution systems, and others.

Leveson (2004) argues for a paradigm-changing approach to safety engineer-

ing and risk management. She refers to a new alternative accident model,

called STAMP (System-Theoretic Accident Modeling and Processes).

Nonetheless, the causal chains and event modelling approach has shown to

work for a number of industries and settings. It is not difficult to point at

limitations of this approach, but the suitability of a model always has to be

judged with reference to not only its ability to represent the real world, but

also its ability to simplify the world. All models are wrong, but they can still

be useful to use a well-known phrase. Furthermore, the causal chains and

event modelling approach is continuously improved, incorporating human,

operational and organisational factors, as was mentioned above. Mohaghegh

et al. (2009), for example, present a “hybrid” approach for analysing dynamic

effects of organisational factors on risk for complex socio-technical systems.

The approach links system dynamics, Bayesian belief networks, event

sequence diagrams and fault trees.

For the purpose of the present book, it suffices to consider the basic

analysis tools such as fault tree and event tree models, probability models

and statistical inference based on these models.

Risk assessment covers risk analysis and risk evaluation; see Figure 1.1.

Risk analysis is a methodology designed to determine the nature and extent of

risk. It comprises the following three main steps:

1. Identification of hazards/threats/opportunities (sources)

2. Cause and consequence analysis, including analysis of vulnerabilities

3. Risk description, using probabilities and expected values.

This definition of risk analysis seems to be the most common, but there are

others (refer to IRGC, 2005). One of these considers risk analysis as an

overall concept, comprising risk assessment, risk perception, risk manage-

ment, risk communication, and their interactions. This interpretation has

been often used among members of the Society of Risk Analysis.

Expressing risk also means to perform sensitivity analyses. The purpose of

these analyses is to show how sensitive the output risk indices are with respect

to changes in basic input quantities, assumptions and suppositions.
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The sensitivity analyses can be used to identify critical systems, and thus

provide a basis for selecting appropriate measures. To illustrate this, let R be

a risk index, for example expressing the expected number of fatalities or the

probability of a system failure, and let Ri be the risk index when subsystem i is

in the functioning state. Then a common way of ranking the different subsys-

tems is to compute the risk improvement potential (also referred to as the risk

achievement worth) Ii ¼ Ri – R, i.e. the maximum potential risk improvement

that can be obtained by improving system i. The potential Ii is referred to as a

risk importance measure. See Aven and Nøkland (2010) for a recent review of

such measures.

Having established a risk description (risk picture), its significance is then

evaluated (risk evaluation). Is the risk high compared to relevant reference

values or decision criteria? How does alternative A compare with alternative

B? etc. Risk analysis is often used in combination with risk acceptance

criteria, as inputs to risk evaluation. Sometimes the term “risk tolerability

limits” is used instead of risk acceptance criteria. The criteria state what is

deemed as an unacceptable risk level. The need for risk-reducing measures is

assessed with reference to these criteria. In some industries and countries,

it is a requirement in regulations that such criteria should be defined in

advance of performing the analyses.

Risk evaluation

Risk treatment
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Figure 1.1 The risk assessment process (based on ISO, 2009b). Note that
the ISO (2009a,b) does not include source identification as a part of risk
analysis.
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The risk assessment process (planning, execution and use

of risk assessments)

Risk assessment is followed by risk treatment, which is a process involving the

development and implementation of measures to modify risk, including

measures designed to avoid, reduce (“optimise”), transfer or retain risk. Risk

transfer means sharing with another party the benefit or loss associated with

the risk. It is typically effected through insurance.

“Planning” defines the basic frame conditions within which the risks must

be managed and sets the scope for the rest of the risk assessment process.

It means definition of suitable decision criteria as well as structures for how to

carry out the risk assessment.

It is possible to detail the process in Figure 1.1 in many different ways to

illustrate the planning, execution and use of risk analyses. Figure 1.2 shows

an example based on Aven (2008a).

The results of the assessments need to be evaluated in the light of the

premises, assumptions and limitations of these assessments. We refer to this

stage of the process as the managerial review and judgement (Hertz and

Problem definition, information gathering and
organisation

Selection of analysis method

Identification of initiating events
(hazards, threats, opportunities)

Consequence
analysis

Risk picture

Compare alternatives, identification and
assessment of measures

Managerial review and judgement
Decision

Planning

Risk assessment

Risk treatment

Cause analysis

Figure 1.2 The main steps of the risk assessment process, covering the
planning, the risk assessment and its use (based on Aven, 2008a).
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Thomas, 1983; Aven, 2003). The assessments are based on some background

knowledge that must be reviewed together with the results of the assessments.

Consideration should be given to factors such as (Aven, 2003):

� which decision alternatives have been analysed
� which performance measures have been assessed
� the fact that the results of the analyses represent judgements (expert

judgements)
� difficulties in assigning probabilities in the case of large uncertainties
� the fact that the assessments’ results apply to models that are simplifica-

tions of the real world and real world phenomena.

The decision-making basis will seldom be in a format that provides all the

answers that are important to the decision-maker. There will always be limita-

tions in the information basis and the review and judgement described means

that one views the basis in a larger context. Perhaps the analysis did not take

into consideration what the various measures mean for the reputation of the

enterprise, but this is obviously a condition that is of critical importance for the

enterprise. The review and judgement must also cover this aspect.

The weight the decision-maker gives to the basis information provided

depends on the confidence he/she has in those who developed this infor-

mation. However, even if the decision-maker has maximum confidence in

those doing this work, the decision still does not come about on its own. It is

often difficult to make decisions when the risk is high. The decisions encom-

pass difficult considerations and weighting with respect to uncertainties and

values, and this cannot be delegated to those who create the basis infor-

mation. It is the responsibility of the decision-maker to undertake such

considerations and weighting, and to make a decision that balances the

various concerns.

Apostolakis (2004, p. 518) makes this clear:

I wish to make one thing very clear: QRA results are never the sole basis for decision-
making by responsible groups. In other words, safety-related decision-making is risk-
informed, not risk-based.

Figure 1.3 illustrates the use of risk assessment in the decision-making. Risk

assessment is carried out to support the decision-making, for example a

choice between various concepts, design configurations, risk-reducing meas-

ures etc. Other types of assessment are also needed, such as cost-effectiveness

analyses and cost–benefit analyses.

The same types of ideas are reflected in many other decision analysis

frameworks and contexts, for example the analytic-deliberative process

1.1 Risk management and risk assessments 7



recommended by the US National Research Council (1996) in environmental

restoration decisions involving multiple stakeholders. According to this pro-

cess, analysis “uses rigorous, replicable methods, evaluated under the agreed

protocols of an expert community – such as those of disciplines in the natural,

social, or decision sciences, as well as mathematics, logic, and law – to arrive

at answers to factual questions”; while “deliberation is any formal or infor-

mal process for communication and collective consideration of issues. . . .

Participants in deliberation discuss, ponder, exchange observations and

views, reflect upon information and judgements concerning matters of

mutual interest and attempt to persuade each other.” Such a process is

particularly adapted to and relevant to decisions of great public interest.

Various decision-making strategies can form the basis for the decision. By

“decision-making strategy” we mean the underlying thinking that goes on,

and the principles that are to be followed with respect to how the decision is

to be made, and how the process prior to the decision should be. Central to

this is the question of who will be involved, how to use the various forms of

analyses, and how the actual process is to be carried out.

ALARP principle

An example of such a strategy is to use risk acceptance (tolerability) criteria

as inputs to risk evaluation. Another strategy is to adopt the ALARP

principle, which means that risk should be reduced to a level that is as low

as reasonably practicable. According to the ALARP principle, a risk-

reducing measure should be implemented provided it cannot be demonstrated

that the costs are grossly disproportionate relative to the gains obtained

(the burden of proof is reversed). The standard approach when applying

the ALARP principle, as for example used in the UK, is to consider three

regions:

1. the risk is so low that it is considered negligible

2. the risk is so high that it is intolerable

3. an intermediate level where the ALARP principle applies.

Decision problem
Alternatives  

Risk
Assessment

Other
assessments

Managerial
review

and judgement
Decision

Figure 1.3 Model of the use of risk assessment to support decision-making.
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In most cases in practice risk is found to be in region 3 and the ALARP

principle is adopted. This will include a dedicated search for possible risk-

reducing measures and a subsequent assessment of these in order to determine

which to be implemented.

To verify ALARP, procedures mainly based on engineering judgements

and codes are used, but also traditional cost–benefit analyses and cost-

effectiveness analyses. When using such analyses, guidance values as above

are often used to specify what values define “gross disproportion”.

Conclusions are often self-evident when computing indices such as the

expected cost per expected number of lives saved. For example, a strategy

may be that measures will be implemented if the expected cost per expected

number of lives saved (Implied Cost of Averting a Fatality � ICAF) is less

than €2 million. Figure 1.4 sketches the main ideas of a procedure for how

to implement ALARP and the gross disproportionate criterion in practice

presented in Aven and Vinnem (2007).

The procedure can be summarised as follows:

� Perform a crude qualitative analysis of the benefits and burdens of the risk-

reducing measure. If the costs are not judged to be large, implement the

measure. Gross disproportion has not been demonstrated.
� If the costs are considered large, quantify the risk reduction and perform an

economic analysis as indicated above (computing for example ICAF or the

Crude analysis Implement measure  

Low costs

High costs  

More detailed  
analysis (risk, cost–benefit) ENPV > 0 

Implement measure  
ICAF < x 

Assessment of  
other issues,  

including uncertainties … 

Check list  

Implement measure  

Not implement 

Figure 1.4 Procedure for implementing ALARP and the gross dispropor-
tionate criterion (Aven and Vinnem, 2007).
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expected net present value, i.e. E[NPV]). If E[NPV] > 0 or ICAF is low

(typically less than some few € millions), implement the measure. Gross

disproportion has not been demonstrated.

If these criteria are not met, assess uncertainty factors and other issues of

relevance not covered by the previous analyses. A checklist is used for this

purpose. Aspects that could be covered by this list are:

� Is there considerable uncertainty (related to phenomena, consequences,

conditions) and will the measure reduce these uncertainties?
� Does the measure significantly increase manageability? High competence

among the personnel can give increased assurance that satisfactory out-

comes will be reached.
� Is the measure contributing to obtaining a more robust solution?
� Is the measure based on best available technology (BAT)?
� Are there unsolved problem areas: personnel safety-related and/or work

environment-related?
� Are there possible areas where there is conflict between these two aspects?
� Is there a need for strategic considerations?

If the risk-reducing measure scores high on these factors (many yes answers),

gross disproportion has not been demonstrated.

� Otherwise, the costs are in gross disproportion to the benefits gained, and

the measures should not be implemented.

Cautionary and precautionary principles

The ALARP principle can be considered as a special case of the cautionary

principle which states that in the face of uncertainty and risk, caution should

be a ruling principle, for example by not starting an activity, or by imple-

menting measures to reduce risks and uncertainties (HSE, 2001; Aven and

Vinnem, 2007, p. 34). This principle is being implemented in all industries

through safety regulations and requirements. For example, in the Norwegian

petroleum industry it is a regulatory requirement that the living quarters on

an installation should be protected by fireproof panels of a certain quality, for

walls facing process and drilling areas. This is a standard adopted to obtain

a minimum safety level. It is based on established practice of many years of

operation of process plants. A fire may occur; it represents a hazard for the

personnel and in the case of such an event, the personnel in the living quarters

should be protected. The assigned probability for the living quarter on a

specific installation being exposed to fire may be judged as low, but we know
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that fires occur from time to time in such plants. It does not matter whether

we calculate a fire probability of x or y, as long as we consider the risks to be

significant; and this type of risk has been judged to be significant by the

authorities. The justification is experience from similar plants and sound

judgements. A fire may occur, it is not an unlikely event, and we should then

be prepared. We need no references to cost–benefit analysis. The requirement

is based on cautionary thinking.

Risk analyses, cost–benefit analyses and similar types of analyses are tools

providing insights into risks and the trade-offs involved. But they are just

tools – with limitations. Their results are conditioned on a number of

assumptions and suppositions. Being cautious also means reflecting this fact.

We should not put more emphasis on the predictions and assessments of the

analyses than that which can be justified by the methods being used.

The cautionary principle is implemented by for example:

� implementing robust design solutions, such that deviations from normal

conditions are not leading to hazardous situations and accidents;
� designing for flexibility, meaning that it is possible to utilise a new situation

and adapt to changes in the frame conditions;
� implementing safety barriers, to reduce the negative consequences of haz-

ardous situations if they should occur, for example a fire;
� improving the performance of barriers by using redundancy, maintenance/

testing, etc.;
� applying quality control/quality assurance;
� adopting the precautionary principle, saying that if the consequences of

an activity could be serious and subject to scientific uncertainties, then

precautionary measures should be taken or the activity should not be

carried out;
� implementing the ALARP principle.

The level of caution adopted will of course have to be balanced against other

concerns such as costs. However, all industries would introduce some min-

imum requirements to protect people and the environment, and these require-

ments can be considered justified by reference to the cautionary principle.

We consider the precautionary principle a special case of the cautionary

principle, as it is applicable in cases of scientific uncertainties about the

possible consequences of the activity being considered. The distinction

between the cautionary principle and the precautionary principle is adopted

by the Health and Safety Executive in UK (HSE 2001) but is not so common

in the literature. However, we find it useful for separating what are attitudes

and actions in the case of risks and uncertainties, and what are attitudes and
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actions in the special case of scientific uncertainties. Many researchers and

also lay people seem to use the term “precautionary principle” for both cases.

Defence-in-depth, robustness and resilience

In nuclear engineering and nuclear safety it is referred to a defence-in-depth

philosophy meaning more or less the same as the cautionary principle.

According to NRC (2010) the defence-in-depth is “an approach to designing

and operating nuclear facilities that prevents and mitigates accidents that

release radiation or hazardous materials. The key is creating multiple inde-

pendent and redundant layers of defence to compensate for potential human

and mechanical failures so that no single layer, no matter how robust, is

exclusively relied upon. Defence-in-depth includes the use of access controls,

physical barriers, redundant and diverse key safety functions, and emergency

response measures.”

It is prudent to distinguish between management strategies for handling

the risk agent (such as a chemical or a technology) from those needed for the

risk-absorbing system (such as a building, an organism or an ecosystem)

(IRGC, 2005); see also Aven and Renn (2009b). With respect to risk-

absorbing systems, robustness and resilience are two main categories of

strategies/principles in the case of large uncertainties. Both strategies can be

viewed as cautionary principles. Robustness (antonym: vulnerability) refers

to the insensitivity of performance to deviations from normal conditions.

Measures to improve robustness include inserting conservatisms or safety

factors as an assurance against individual variation, introducing redundant

and diverse safety devices to improve structures against multiple stress situ-

ations, reducing the susceptibility of the target organism (example: iodine

tablets for radiation protection), establishing building codes and zoning

laws to protect against natural hazards as well as improving the organisa-

tional capability to initiate, enforce, monitor and revise management actions

(high reliability, learning organisations).

With respect to risk-absorbing systems, an important objective is to make

these systems resilient so they can withstand or even tolerate surprises. In

contrast to robustness, where potential threats are known in advance and the

absorbing system needs to be prepared to face these threats, resilience is a

protective strategy against unknown or highly uncertain events. Instruments

for resilience include the strengthening of the immune system, diversification

of the means for approaching identical or similar ends, reduction of the

overall catastrophic potential even in the absence of a concrete threat, design

of systems with flexible response options and the improvement of conditions
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for emergency management and system adaptation. Robustness and resili-

ence are closely linked but they are not identical and require partially differ-

ent types of actions and instruments. See also Chapter 2.

The decision-making strategy is dependent on the decision-making situ-

ation. The differences are large, from routine operations where codes and

standards are used to a large extent, to situations with high risks, where there

is a need for comprehensive risk-based information.

1.2 Challenges

In this book we are concerned with assessments and quantitative risk assess-

ments in particular. Many researchers and analysts have questioned the

scientific quality of these assessments (Aven, 2010a,h,i). For example,

O’Brien (2000) argues that risk assessments generally serve the interests of

business (i), as well as government agencies (ii) and many risk analysts (iii).

She writes:

(i) The risk assessment gives the industry the aura of being scientific. The

risk assessments show that the activities are safe, and most of us would

agree that it is rational to base our decision-making on science. The

complexity of a risk assessment makes it difficult to understand its

premises and assumptions if you are not an expert in the field. In a risk

assessment there is plenty of room for adjustments of the assumptions

and methods to meet the risk acceptance criteria.

In the case of large uncertainties in the phenomena and processes

studied, the industry takes advantage of the fact that in our society

safety and environment-affecting activities and substances are con-

sidered innocent until “proven guilty”. It takes several years to test for

example whether a certain chemical causes cancer, and the uncertainties

and choice of appropriate risk assessment premises and assumptions

allow interminable haggling.

(ii) Risk assessment processes allow governments to hide behind “rational-

ity” and “objectivity” as they permit and allow hazardous activities that

may harm people and the environment (O’Brien, 2000, p. 106). The

focus of the agencies is then more on whether a risk assessment has been

carried out according to the rules, than on whether it provides meaning-

ful decision support.

(iii) Risk analysts know that the assessments are often based on selective infor-

mation, arbitrary assumptions and enormous uncertainties. Nonetheless

they accept that the assessments are used to conclude on risk acceptability.
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This critique of risk assessment is supported by many other researchers, see

e.g. Reid (1992), Stirling (1998, 2007), Renn (1998), Tickner and Kriebel

(2006) and Michaels (2008). Reid (1992) argues that the claims of objectivity

in risk assessments are simplistic and unrealistic. Risk estimates are subject-

ive, and there is a common tendency of underestimation of the uncertainties.

The disguised subjectivity of risk assessments is potentially dangerous and

open to abuse if it is not recognised. According to Stirling (2007), using risk

assessment when strong knowledge about the probabilities and outcomes

does not exist, is irrational, unscientific and potentially misleading. Renn

(1998) summarises the critique drawn from the social sciences over many

years and concludes that technical risk analyses represent a narrow frame-

work that should not be the single criterion for risk identification, evaluation

and management. Tickner and Kriebel (2006, pp. 53–55) and Michaels (2008)

argue along the same lines as O’Brien (2000). Tickner and Kriebel (2006)

particularly stress the tendency of decision-makers and agencies not to talk

about uncertainties underlying the risk numbers. Acknowledging uncertainty

can weaken the authority of the decision-maker and agency, by creating

an image of being unknowledgeable. Precise numbers are used as a facade

to cover up what are often political decisions. Michaels (2008) argues that

mercenary scientists, including risk analysts, have increasingly shaped and

skewed the technical literature, manufactured and magnified scientific uncer-

tainty, and influenced government policy to the advantage of polluters and

the manufacturers of dangerous products.

The answer to this critique is, according to O’Brien (2000), to look for an

alternative to risk assessments. But in our view there is no alternative to risk

assessments: to support the decision-making we need to assess risk. The right

way forward is not to reject risk assessment, but to improve the tool and its

use. This seems also to be the conclusion made by most researchers in the

field. The challenge is how decision-making on risk can be informed by the

best available technical and scientific knowledge (e.g. Stirling, 1998, p. 100;

Apostolakis, 2004). We need to strengthen the quality of the risk assessments

and the associated risk assessment process, to meet the above critique. How-

ever, to be able to do this we need to be precise on the fundamentals of the

risk assessments and we need to establish a suitable framework for being able

to make judgements about the scientific quality of the risk assessments. The

aim of this book is to contribute to this end. By addressing the basic building

blocks of the risk assessments, for example related to how to understand and

describe risk and uncertainties, we are able to study the two fundamental

scientific requirements: reliability and validity of the risk assessments. The

reliability requirement is concerned with the consistency of the “measuring

14 Introduction



instrument” (analysts, methods, procedures), whereas validity is concerned

with the assessment’s success at “measuring” what one set out to “measure”.

This analysis also provides insights on how to manage risk and in particular

how to define and use managerial review and judgement in a practical deci-

sion-making context.

We may all acknowledge that safety-related decision-making should be

risk-informed, but practice shows that it is common to apply risk-based

approaches. This may be a result of a more or less conscious management

strategy but as we will see from the analysis in the coming chapters, it is

strongly influenced by the adopted scientific approach to risk.
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Concepts and perspectives on risk

In this chapter we first review and discuss common definitions of risk

(Section 2.1–2.6). From this review and discussion we define the concepts

and perspectives of probability and risk that will be used as the basis for the

risk assessments studied in Chapters 5–7 (Sections 2.7–2.8). These perspec-

tives specify not only how risk is defined, but also how to express risk. We

also include an illustrative example (Section 2.9). Basically we will distinguish

between two main lines of thinking, one where risk is considered an “object-

ive” property of the activity studied and the aim of the risk assessment is to

accurately estimate this risk, and one where uncertainty is a main component

of risk and the aim of the risk assessment is to describe the uncertainties. The

final Section 2.10 provides a summary of key concepts and perspectives.

Some basic references for this chapter are Aven (2009a,b, 2010a,e).

2.1 Risk equals expected value

The concept of risk is defined in many ways. In engineering contexts, risk is

often linked to the expected loss; see e.g. Lirer et al. (2001), Mandel (2007),

Verma and Verter (2007) and Willis (2007). However, such an understanding

of risk means that there is no distinction made between situations involving

potential large consequences and associated small probabilities, and frequently

occurring events with rather small consequences, as long as the sums of the

products of the possible outcomes and the associated probabilities are equal.

For risk management these two types of situations normally would require

different approaches. In general expected value decision-making is misleading

for rare and extreme events (Haimes, 2004; Aven, 2010a). The expected value

does not adequately capture events with low probabilities and high conse-

quences. Take as examples nuclear accidents and terrorism risk, where the

possible consequences could be extreme and the probabilities are relatively low.
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The expected value can be small, say 0.01 fatalities, but extreme events with

millions of fatalities may occur, and this needs special attention.

GrangerMorgan andHenrion (1990) provide a detailed account of the need

for seeing beyond expected values in risk management. They point to common

decision analysis frameworks, and in particular the expected utility theory (see

Section 2.4). These frameworks reflect the need for seeing beyond expected

values in risk management by incorporating the decision-maker’s risk aversion

or risk-seeking attitude in the utility (loss) function used. Risk aversion means

that the decision-maker’s certainty equivalent is less than the expected value;

the certainty equivalent is the amount of payoff (e.g. money or utility) that the

decision maker has to receive to be indifferent between that payoff and the

actual “gamble”. A risk-seeking attitude means that the decision-maker’s

certainty equivalent is higher than the expected value (Levy and Sarnat,

1994). Only in the case that the decision-maker is risk neutral, can expected

values replace the information provided by thewhole probability distributions.

This does not mean however that the decision-maker in such a case would

consider the riskmanagement response only based on the subjectively assigned

expected values. Cautionary measures may be considered justified also in this

case to meet aspects (surprises) not covered by the expected utility analysis.

This analysis points to the difference between believing that a probability

distribution can be safely summarised via its expected value and believing

that the expected value is all that matters. The former conception is linked

to the decision-maker’s risk neutrality, whereas the latter conception often

is a result of traditional statistical thinking where the law of large numbers

provide support for using expected values, and uncertainties beyond these

values are considered to be randomness of less importance for the decision-

making (Aven, 2010i).

We conclude that we need to see beyond expected values when addressing

risk. This is also reflected in the ways risk is most commonly defined in

standards and in the scientific literature as discussed in the next section.

2.2 Risk is defined through probabilities

Some of the most typical definitions of risk in engineering contexts are:

1. Risk is a measure of the probability and severity of adverse effects

(Lowrance, 1976).

2. Risk is the combination of probability and extent of consequences (Ale, 2002).

3. Risk is equal to the triplet (si, pi, ci), where si is the ith scenario, pi is the

probability of that scenario, and ci is the consequence of the ith scenario,

i ¼ 1,2, . . . N (Kaplan and Garrick, 1981; Kaplan, 1991).
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What is common for all these definitions is that the concept of risk comprises

events (initiating events, scenarios), consequences (outcomes) and probabil-

ities. Uncertainties are expressed through probabilities. Severity is a way of

characterising the consequences. It refers to intensity, size, extension, scope

and other potential measures of magnitude, and affects something that

humans value (lives, the environment, money, etc.). Losses and gains, for

example expressed by money or the number of fatalities, are ways of

defining the severity of the consequences. We formalise these definitions

by writing

Risk ¼ A;C;Pð Þ;
where A represents the events (initiating events, scenarios), C the conse-

quences of A, and P the associated probabilities. Examples of events A are:

gas leakage occurring in a process plant, and the occurrence of a terrorist

attack. Examples of C are the number of casualties due to leakages, terrorist

attacks, etc.

This definition of risk is, however, not meaningful without an interpret-

ation of the probability P. Basically there are two ways of interpreting a

probability (Bedford and Cooke, 2001; Aven, 2003; Appendix A):

(a) A probability is interpreted as a relative frequency Pf: the relative fraction

of times the event occurs if the situation analysed were hypothetically

“repeated” an infinite number of times; Pf is referred to as a frequentist

probability. It can be understood as a parameter of a probability model,

see Appendix A.

(b) Probability P is a subjective measure of uncertainty about future events

and consequences, seen through the eyes of the assessor and based on

some background information and knowledge (the Bayesian perspective).

The probability is referred to as a subjective or knowledge-based

probability.

A probability can also be given other interpretations (Singpurwalla, 2006;

Section 2.3), but for practical use in a risk context we see no alternatives

to (a) and (b).

Following definition (a) we produce estimates of the underlying “true”

risk. This estimate is uncertain, as there could be large differences between the

estimates and the correct risk values.

Kaplan and Garrick (1981) (see also Abramson (1981) and Apostolakis

(1990)) meet this challenge by introducing subjective probabilities P, express-

ing the analysts’ (experts’) epistemic uncertainty about the relative frequen-

cies Pf. The approach is referred to as the probability of frequency approach.
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The variation in the outcomes of the “experiment” that for example gener-

ates the true value of Pf, is often referred to as aleatory (stochastic) uncertainty.

Following the Bayesian approach (b), we assign a probability by perform-

ing uncertainty assessments, and there is no reference to a correct probability.

A probability is always conditional on a background knowledge, and given

this background knowledge there are no uncertainties related to the assigned

probability, as it is an expression of uncertainty.

If we assign a probability of 0.4 (say) for an event A, we compare our

uncertainty (degree of belief) of A occurring with a standard event, for

example drawing a red ball from an urn having 10 balls where 4 are red.

The uncertainty (degree of belief) about A and the standard event is the

same. The assignments are judgements based on the assessors’ background

knowledge, which we denote by K. To show the dependency on K, we write

P(A |K), where A is the event of interest. The background knowledge could

be based on hard data and/or expert judgements. Assumptions are also

included, for example related to the use of specific models. The background

knowledge needs to be reported along with the assigned probabilities.

A betting interpretation of subjective probabilities also exists (Singpurwalla,

2006), but is not used in the present analysis. We refer to the discussion in

Section 8.2 for some comments concerning this betting interpretation.

The term “subjective probability” is often problematic to use in real-life

applications, as the word “subjective” is considered non-scientific and arbi-

trary, as noted by for example Lindley (2000) and North (2010). Another

term is required. This need is also motivated by the fact that the term

“subjective probability” is commonly linked to the betting interpretation

which is problematic to use in a risk and uncertainty analysis context (refer

to Section 8.2). Instead of subjective probabilities it is common to use terms

such as “judgmental probability” (North 2010) and “knowledge-based prob-

ability” (Aven, 2010b). In this book we use both the terms “subjective

probability” and “knowledge-based probability”.

Note that the definitions 1–3 above can be applied for both interpretations

of a probability, i.e. (a) and (b).

Probabilities are used as a tool to express uncertainties, but how good is this

tool? Consider the probability P(attack), where the event “attack” is related to

a specific period of time and location. Say that the assigned probability equals

0.01. Does this number provide an informative description of the uncertainties

related to the event “attack”? No, would be the clear answer from many risk

researchers and analysts. Uncertainties beyond the probabilities should be

taken into account. Several definitions of risk have been suggested which are

in line with this thinking, as shown in the following section.
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2.3 Risk is defined through uncertainties

Examples of definitions of risk where uncertainty is an explicit component or

an essential feature of the concept of risk are:

4. Risk refers to uncertainty of outcome, of actions and events (Cabinet

Office, 2002).

5. Risk is a situation or event where something of human value (including

humans themselves) is at stake and where the outcome is uncertain (Rosa,

1998, 2003).

6. Risk is an uncertain consequence of an event or an activity with respect to

something that humans value (IRGC, 2005).

7. Risk is equal to the two-dimensional combination of events/consequences

and associated uncertainties (Aven, 2007a, 2010e).

8. Risk is uncertainty about and severity of the consequences (or outcomes)

of an activity with respect to something that humans value (Aven and

Renn, 2009a).

A quick look at 4–8 may give the impression that they are not that different

from 1–3. However, there are important principal differences, as will be clear

from the coming analysis. Probability is just a tool used to represent or express

the uncertainties. The thesis of all the perspectives and definitions 4–8 is that

risk should not be limited to (A,C,P). The uncertainties should be highlighted.

But what does this mean? Below (Sections 2.5–2.9) we will discuss this issue

and provide a formal structure (framework) for the perspectives and defin-

itions 1–8. The structure distinguishes between the risk concept on the one

hand and risk descriptions on the other, and clarifies the meaning of funda-

mental concepts such as second-order probabilities and uncertainties. Analo-

gous to the (A,C,P) perspective, we define an (A,C,U) risk perspective where

uncertainty U replaces probability P. The perspectives 7 and 8 are expressing

more or less the same and are in line with this (A,C,U) definition. How defin-

itions 4–6 relate to the (A,C,U) perspective will be explained in Section 2.5.

2.4 Other definitions of risk

There are also other ways of understanding risk. We would like to mention

two definitions which are often referred to in the economic risk and decision

analysis field. The first defines risk by the expected disutility, i.e – Eu(C),

where C is the outcomes (consequences) and u(C) the utility function

(Campbell, 2005). Among classical decision theorists the expected (dis)utility

provides the basis for rational choices. According to this definition, the

20 Concepts and perspectives on risk



preferences of the decision-maker are a part of the risk concept. The result is

a mixture of scientific assessments of uncertainties about C and the decision-

maker’s preferences and values concerning different values of C and the

associated probabilities. In our view, and this view is shared by many risk

experts, the preferences and values should not be a part of the risk concept

and the risk assessments (Paté-Cornell, 1996). There will be a strong degree of

arbitrariness in the choice of the utility function, and some decision-makers

would also be reluctant to specify the utility function as it reduces their

flexibility to weight different concerns in specific cases. Risk should be

possible to describe also in case the decision-maker is not able or willing to

define his/her utility function.

In the second definition, risk refers to situations with objective probabil-

ities for the randomness the decision-maker is faced with (Douglas, 1983). In

economic applications a distinction has traditionally been made between risk

and uncertainty: under risk the probability distribution of the performance

measures can be assigned objectively, whereas under uncertainty these prob-

abilities must be assigned or estimated on a subjective basis. This perspective

goes back to Knight (1921). The risk concept then expresses variation in

populations and is referred to as aleatory uncertainty; cf. Section 2.2 (Paté-

Cornell, 1996). Although this definition is often referred to, it is not so often

used in practice. The problem is of course that we seldom have known,

objective distributions, and then we cannot refer to the risk concept. The

Knightian definition violates the intuitive interpretation of risk (Vercelli,

1995; Holton, 2004), which is related to situations of uncertainty and lack

of predictability, and is in general inconsistent with all the definitions 1–8.

We will not look closer at these two definitions in this book.

2.5 Comparison of some common risk definitions

and the (A,C,U) perspective

In this section we examine how the definitions 4–8 relate to the risk definition

(A,C,U) and its corresponding risk description. According to 4, risk refers to

uncertainty of outcome, of actions and events (Cabinet Office, 2002). Hence

strictly speaking risk is not (A,C,U) but only U.

As an example, consider the number of fatalities in traffic next year in a

specific country. Then the uncertainty is rather small, as the number of

fatalities shows rather small variations from year to year. Hence, according

to this definition of risk, we must conclude that the risk is small, even though

the number of fatalities is many thousands each year. Clearly, this definition

of risk fails to capture an essential aspect, the consequence dimension.
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Uncertainty cannot be isolated from the intensity, size, extension etc. of the

consequences. Take an extreme case where only two outcomes are possible,

0 and 1, corresponding to 0 and 1 fatalities, and the decision alternatives are

r and s, having uncertainty (probability) distributions (0.5, 0.5), and (0.0001,

0.9999), respectively. Hence for alternative r there is a higher degree

of uncertainty than for alternative s, meaning that risk according to defin-

ition 4 is higher for alternative r than for s. However, considering both

dimensions, both uncertainty and the consequences, we would of course

judge alternatives to have the highest risk as the negative outcome 1 is nearly

certain to occur.

According to definition 5, risk is a situation or event where something of

human value (including humans themselves) is at stake and where the out-

come is uncertain (Rosa, 1998, 2003). Hence strictly speaking risk is A, and

not as in our definition (A,C,U). However, Rosa expresses risk using the

description (A,C,U), and refers to probability as a tool to describe the

uncertainties. The Rosa (1998, 2003) definition is thoroughly discussed by

Aven and Renn (2009a). The conclusion is that compared to common ter-

minology, the Rosa definition leads to conceptual difficulties that are incom-

patible with the everyday use of risk in most applications. By considering risk

as an event (A), we cannot conclude, for example, about the risk being high or

low, or compare different options with respect to risk. The same conclusion is

made for definition 6, which says that risk is an uncertain consequence of

an event or an activity with respect to something that humans value (IRGC,

2005). This definition is similar to Rosa (1998, 2003)’s definition but the event

A is replaced by the consequence C.

Definitions 7 and 8 are consistent with the (A,C,U) definition, although

8 introduces the term “severity” which refers to intensity, size, extension,

scope and other potential measures of magnitude, and affects something

that humans value (lives, the environment, money, etc.), as mentioned

in Section 2.2. It is important to note that the uncertainties relate to the

consequences (which include the events) – the severity is just a way of

characterising the consequences.

2.6 The ontological status of the various risk concepts

The ontological status of the various definitions can be summarised as

follows (Aven et al., 2010). Risk defined by 4–8 exists “objectively”, in the

sense of “broad inter-subjectivity”, as explained by the following arguments:

The meaning of A or C we normally agree on, and no one (with normal

senses) would dispute that future events and consequences are unknown.
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“Being unknown” is not dependent on your knowledge about these events, it

simply reflects that the future cannot be accurately foreseen.

A knowledge-based (subjective) probability is by definition subjective

and dependent on the assigner. Inter-subjectivity could be obtained in some

cases when the database is strong. But one cannot claim that risk definitions

that are based on subjective probabilities are objective or broadly inter-

subjective.

Modelling is also subjective, but in many cases natural model choices exist

and inter-subjectivity is achieved. However, the established consensus model

could be challenged by new knowledge. What was considered a truth is

rejected in the light of new insights and evidence. Consequently the risk

definitions which are based on relative frequencies are classified at best as

inter-subjective.

2.7 A risk assessment perspective based on the (A,C,Pf) definition

This section introduces one of the two risk perspectives that we will look

closer at in the coming chapters, the (A,C,Pf)-based perspective.

We consider an activity and make the following definitions of risk associ-

ated with this activity:

Risk¼ (A,C,Pf), where Pf is a relative frequency-interpreted probability (or

a related probability model parameter such as the expected number of occur-

rences of the event A per unit of time, where expectation is with respect to a

relative frequency-interpreted probability).

As an example, consider the operation of a plant and the risk associated

with accidents that could lead to fatalities. Then we can define events (such as

gas leakages), associated consequences (losses), and probabilities, expressing

for example the probability Pf of at least 10 fatalities next year. The Pf is

interpreted as a property of the plant or, more precisely, the infinitely large

population of similar plants that this particular plant belongs to. The fre-

quentist probability Pf equals the fraction of plants in this population where

an event occurs resulting in at least 10 fatalities.

Definitions 1–3 are covered by this risk perspective if the probabilities are

relative frequency-interpreted.

In this case the risk is unknown as Pf is unknown. Risk assessment is

introduced to describe (estimate) the risk. The description covers an estimate

Pf* of Pf, as well as assessments of uncertainties about Pf* and Pf. Thus, if this

perspective to risk is the starting point, we are led to a risk description:

Risk description in the A;C;Pfð Þ case ¼ A;C;Pf
�;U Pf

�ð Þ;Kð Þ;
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where U(Pf*) refers to an uncertainty description of Pf* relative to the true

value Pf, and K is the background knowledge that the estimate and uncer-

tainty description is based on. We refer to U(Pf*) as a second-order uncer-

tainty description. If we use subjective probabilities P to express our

uncertainties about Pf, in line with the probability of frequency approach,

the risk description takes the form:

Risk description according to the probability of frequency

approach ¼ (A,C,Pf*,P(Pf),K),

where K now is the background knowledge that the estimate Pf* and the

probability distribution P is based on. Kaplan and Garrick (1981) refer to this

description as the second-level definition of risk – it is combined with the first-

level (A,C,P) definition (3) (see Section 2.2).

The probability P is a second-order probability. Möller et al. (2006) claim

that the attitude of philosophers and statisticians towards second-order prob-

abilities has been mostly negative, due to fears of an infinite regress of higher

and higher orders of probability. This is hard to understand, as noted also

by Sahlin (1993, p. 26). As stressed in Section 2.2, it has no meaning to talk

about uncertainties of a subjective probability.

This issue has been strongly debated in the literature; see e.g. Gärdenfors and

Sahlin (1988) and Sahlin (1993). According to Sahlin (1993), no one would

seriously dispute that we have beliefs about our beliefs. We question this

assertion. As a professional risk assessor, one is trained in the process of

transforming uncertainty into probabilities. If the assessor assigns a probability

of an event B equal to 0.3 based on a specific background knowledge, there is no

reason why he/she should dispute his/her own assignment as it expresses his/her

uncertainties (degree of belief). He/she may experience a precision problem, in

particular when assessing events on the lower part of the probability scale. It

could for example be difficult to distinguish between numbers such as 10�5 and

10�6. However, the second-order probability issue is in our view not so much

about having beliefs about beliefs, but the limitations of the probabilities in

capturing the relevant uncertainty aspects. The second-order probabilities,

i.e. the subjective probabilities, are based on some background knowledge and

this knowledge could be wrong or poor inmany respects. How shouldwe reflect

this in our risk description? Should we add an uncertainty component U in the

risk description (A,C,Pf*,P(Pf),K), so that it becomes (A,C,Pf*,P(Pf),U,K)?Yes,

is the answer if we adopt the (A,C,U) perspective (as will be discussed in the next

section). Then we need to see beyond the subjective probabilities P.

Although not mentioned so far, sensitivities constitute an integral part

of the risk description. The sensitivities show how the output risk indices,
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for example Pf* and P(Pf), are influenced by changes in the background

knowledge, in particular assumptions and suppositions.

The starting point for this analysis of the second-order probabilities was

the risk concept (A,C,Pf) and following the probability of frequency approach

we are led to the Bayesian framework. In cases of observations X, Bayesian

updating of the subjective probabilities P are carried out using the standard

Bayesian machinery going from a prior distribution to the posterior distribu-

tion. Bayesian theorists would not, however, refer to the Pf values as prob-

abilities, but chances or propensities. The Bayesian framework is introduced

in Appendix A.2.2 and explained in more detail in Chapter 6.

A pure traditional statistical approach would not allow for subjective

probabilities P. The uncertainty U(Pf*) in the risk description would only

reflect statistical variation, and could be expressed using a confidence inter-

val. The degree of relevancy of the data would then not be taken into account.

For this approach we obtain a risk description:

Risk description according to the pure traditional statistical

approach ¼ (A,C,Pf*,d(Pf),K),

where d is a traditional confidence interval for Pf.

Vulnerability and resilience

Consistent with this risk perspective we may define the concept vulnerability

(Aven, 2008a):

Vulnerability (antonym robustness) ¼ (C, Pf | A),

in other words, the vulnerability is the two-dimensional combination of

consequences C and associated relative frequency-interpreted probabilities,

given the occurrence of an initiating event A. For example, the vulnerability

of a person with respect to a specific virus is the potential consequences of this

virus and associated frequentist probabilities. The vulnerability description

follows the same logic as that of risk:

Vulnerability description in the (C,Pf | A) case ¼ (C,Pf*,U(Pf*),K |A).

When we say that a system is vulnerable, we mean that the vulnerability is

considered high. The point is that we assess the combination of consequences

and probability to be high should the initiating event A occur. If we know

that the person is already in a weakened state of health prior to the virus

attack, we can say that the vulnerability is high. There is a high probability

that the patient will die.
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Vulnerability is an aspect of risk. Because of this, the vulnerability analysis

is a part of the risk analysis. If vulnerability is highlighted in the analysis,

we often talk about risk and vulnerability analyses.

Resilience is closely related to the concept of robustness. The key difference

is the initiating event A. Robustness and vulnerability relate to the conse-

quences and probabilities given a fixed A, whereas resilience is open for any

type of A, including surprising events. We may get ill due to different types of

virus attacks; also new types of viruses may be created. From this idea we

define resilience as (Steen and Aven, 2011):

Resilience: (C,Pf |any A, including new types of A)

and the resilience description:

(C,Pf*,U(Pf*),K| any A, including new types of A).

Hence the resilience is considered high if the person has a low frequentist

probability of dying due to any type of virus attack, also including new types

of viruses. Resilience is about the consequences in the case of any “attack”

(virus attack) and associated probabilities. We say that the system is resilient

if the resilience is considered high. Of course, in practice we always have to

define some boundaries for which A events to allow for.

For all these definitions, the consequences C depend on the performance of

barriers (denoted B) (Flage and Aven, 2009), and to explicitly show this we

write C ¼ (B,C), resulting in a vulnerability definition (B,C,Pf | A), etc.

The performance of the barrier can be expressed through the capacity of

the barrier (and associated probability), for example the strength of a wall.

The barriers and the system performance in general are affected by a number

of performance-influencing factors (PIFs), for example resources, level of

competence, management attitude, etc.

Analogous to risk assessment and risk management we define vulnerability

assessment, vulnerability management, resilience assessment and resilience

management (engineering), for example:

Resilience engineering is all measures and activities carried out to manage

resilience (normally increase resilience).

The above set-up is motivated from the belief that it provides a logically

defined structure for risk, vulnerability and resilience. But do we need all

these concepts and terms? It is appropriate to question whether too many

definitions could be a hindrance to professional practice and/or intellectual

discourse, as discussed in Aven (2011). One suggestion for simplifying the

terminology is to completely remove the concept of resilience as indicated
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by Aven (2011). Vulnerability (antonym robustness) is then the term used for

reflecting “risk” conditional on the occurrence of one or a set of events A.

It is not distinguished between whether the events are known or unknown.

The point is that we always have to define the set of events that the “risk” is

conditional on when talking about robustness/vulnerability. A number of

indices can be defined to measure vulnerability/robustness but we do not

need names for all types of such indices. Resilience is then captured by the

concept of vulnerability/robustness. This comment also applies to the set-up

in the next section. For the analysis in this book, the distinction between

vulnerability/robustness and resilience is, however, not so important as these

terms will not often be used.

2.8 A risk assessment perspective based on the (A,C,U) definition

Then we come to the second risk perspective that we will look closer at in the

coming chapters, the (A,C,U)-based perspective.

By replacing the relative frequency-interpreted probability Pf by uncer-

tainty U, we obtain the (A,C,U) risk perspective, where risk is the two

dimensional combination of

(i) events A and their consequences C, and

(ii) the associated uncertainties U about A and C (will A occur and what will

the consequences C be?), including uncertainty about underlying phe-

nomena influencing A and C.

Often the A events are specified, for example as gas leakages in a process

plant or as terrorist attacks in a country, but we may also allow for new types

of such events, a new type of virus for instance. We speak then often about

“unknown uncertainties” (“unknown unknowns”, ignorance or non-

knowledge) – we do not know what we do not know, in contrast to “known

uncertainties” (“known unknowns”) – we know what we do not know (Aven

and Renn, 2009b).

A risk description based on this definition would cover the following

components:

Risk description ¼ A;C;U;P;Kð Þ ; ð2:1Þ
that is, risk is described by events A and consequences C, knowledge-based

probabilities P, uncertainties U not captured by P, and K the background

knowledge that U and P are based on. This description covers probability

distributions of A and C, as well as predictions of A and C, for example a
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predictor C* given by the expected value of C, unconditionally or conditional

on the occurrence of A, i.e. C* ¼ EC or C* ¼ E[C|A]. The U in (2.1) may

for example be a qualitative assessment of uncertainty factors (assumptions

on which the probabilities are based); see the coming section (and Chapter 6).

It partly relates to the unknown unknowns.

As subjective probabilities are used, this perspective is also Bayesian,

although it has a different focus and is based on other building blocks than

the probability of frequency approach studied in Section 2.4.

Also in this perspective we may introduce probability models (with param-

eters) – chance models – expressing aleatory uncertainty, i.e. variation in

populations of similar units. However, such models need to be justified, and

if introduced they are to be considered as tools for assessing the uncertainties

about A and C. The assessment of the parameters of the models is not the

end product of the analysis as in the (A,C,Pf) approach. The parameters of

the model are in this case treated as unknown quantities, as C.

Vulnerability and resilience

As in the previous section we may introduce the concepts vulnerability and

resilience (Aven, 2008a; Steen and Aven, 2011):

Vulnerability (antonym robustness) ¼ (C,U | A),

in other words, the vulnerability is the two-dimensional combination of

consequences C and associated uncertainties U, given the occurrence of an

initiating event A. The related description of vulnerability thus covers the

following elements:

(C,U,P,K | A)

i.e. the possible consequences C, uncertainty U, probability P and the back-

ground knowledge K, given that the initiating event A takes place. In line

with Aven and Renn (2009a), we may interpret vulnerability in relation to the

event A as uncertainty about and severity of the consequences of an activity

given the occurrence of A.

Similarly we define resilience and resilience description:

Resilience: (C,U | any A, including new types of A)

Resilience description: (C,U,P,K | any A, including new types of A).

The performance of barriers B can be included explicitly as explained in

the previous section, for example leading to a vulnerability description

(B,C,U,P,K |A).
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2.9 Example: Offshore diving activities

Let us go back to the 1970s and consider the risk related to future health

problems for divers working on offshore petroleum projects at that time. We

distinguish between the two risk definitions and descriptions introduced

in Sections 2.7 and 2.8, i.e. the (A,C,Pf)-based perspective and the (A,C,U)-

based perspective. Let us first look at the probability of frequency approach.

A relative frequency-interpreted probability Pf is defined expressing the prob-

ability that a random chosen diver would experience health problems

(properly defined) during the coming 30 years due to diving activities. The

probability Pf is unknown and needs to be estimated. Based on the available

knowledge at that time, an estimate Pf* ¼ 0.01 of Pf is established. Uncertain-

ties are expressed using subjective probabilities according to the probability

of frequency approach. A 90 per cent credibility interval [0.001, 0.1] is com-

puted, expressing that the posterior probability that Pf lies in this interval is

90 per cent given the available data and knowledge about the phenomena in

general. There are not strong indications that the divers will experience health

problems. This would be a risk description (A,C,Pf*,P(Pf),K) according to the

probability of frequency approach. It is a standard risk assessment descrip-

tion which includes second-order probabilities, in line with the Bayesian

approach. Refer to Appendix A.2.2 for explanations of the Bayesian termin-

ology used (credibility interval, posterior probability).

These probabilities indicate that one would not expect severe health

problems for the divers in the future. However, we know today that these

probabilities led to poor predictions. A large number of the divers have

experienced severe health problems (Aven and Vinnem, 2007, p. 7). Also at

the time of the assessment there were uncertainties about the future health

conditions, but the uncertainties were not revealed by the probabilistic

analysis.

To improve the assessment, a change of the main risk index is suggested:

instead of Pf, focus is on the probability distribution Ff of the proportion D of

divers that will experience health problems. Note that Pf equals the expected

value of D. To see this let n be the number of divers in the population, and

let I(B) denote this indicator function for the event B, which is equal to 1 if

B occurs and 0 otherwise. Then we see that

Pf ¼ �j P ðperson j experiences health problemsÞ=n
¼ E�j I ðperson j experiences health problemsÞ=n ¼ ED;

which proves the assertion.
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The assessment produces for example an estimate p*(0.1) of the probability

p(0.1) that more than 10 per cent of the divers would get health problems.

We may also express second-order probabilities for example using credibility

intervals as shown above for Pf. Suppose that p*(0.1) ¼ 0.05 and a 90 per cent

credibility interval equals [0.001, 0.20].

Certainly, this change of risk parameter, seeing beyond the expected value-

based parameter Pf, has given a more informative risk description, but still

the conclusion would be that we do not expect severe health problems for the

divers in the future; the probabilities are low.

Next we consider the problem following the (A,C,U) risk perspective.

Relative frequency-interpreted probabilities are not introduced. The risk

description covers (A,C,U,P,K) using the above notation. The assessment

covers a probabilistic analysis producing for example an assigned probability

distribution of D, a 90 per cent prediction interval [a,b] of D (such that P(a �
D � b) ¼ 0.90), as well as an assignment of the probability that a random

chosen diver would experience health problems. In addition, assessment of

uncertainties beyond probabilities is required.

This uncertainty assessment could for example take the following form.

First a set of uncertainty factors are identified. These factors relate to the

underlying understanding of relevant physiological and psychological phe-

nomena, as well as assumptions and suppositions made in the probabilistic

analysis. An example of such a factor is the diving operation’s effect on the

brain, in particular related to long-term effects on forgetfulness. The data

used as a basis for the analysis do not show a significant difference between

divers and non-divers. However, the data material is not extensive and is

limited to a rather short-time interval compared to the 30 years addressed in

the risk assessment.

Each factor’s importance is measured using a sensitivity analysis. Is

changing the factor important for the risk indices considered, for example

the distribution of D? If this is the case, we next address the uncertainty of

this factor. Are there large uncertainties about this factor? If the uncertainties

are assessed as high, the factor is given a high risk score. Hence, to obtain a

high score in this system, the factor must be judged as important for the risk

indices considered and the factor must be subject to large uncertainties.

One may question whether it is not possible to include the uncertainty

factor explicitly in the probabilistic calculations. For some factors that could

be possible, in some cases. Consider for example the above factor related to

long-term effects on forgetfulness. Suppose the probabilistic assessment was

first based on the assumption that the diving had no effect on the forgetful-

ness. Then we can perform a reassessment where this assumption is left out.
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The result would be small changes in the probabilities, as the assessment

would be dominated by the view that there is no information supporting the

rejection of the assumption. The importance of the uncertainty is marginal

measured by the probabilities.

By addressing the issue as an uncertainty factor its importance is increased.

For the decision-makers who need to balance different concerns and deter-

mine to what extent principles of caution and precaution should be applied,

such information is required.

In this particular case, it is obvious that weight given to the cautionary

and precautionary principles would have significantly reduced or even ended

the diving operations at that time. However, the task of balancing different

concerns and giving weight to the uncertainties is a management (here polit-

ical) responsibility, and the decision made was to perform such diving oper-

ations. We may just speculate whether a risk perspective highlighting the

uncertainties would have changed the decision. It could have, but probably

not as the economic incentives for performing the activities were so strong.

2.10 Summary of concepts and perspectives

We have described two main categories of risk perspectives, the (A,C,Pf) and

(A,C,U)-based perspectives, with associated risk descriptions:

Risk description in the (A,C,Pf) case ¼ (A,C,Pf*,U(Pf*),K),

Risk description in the (A,C,U) case ¼ (A,C,U,P,K).

For the (A,C,Pf) case we have considered two ways of expressing the uncer-

tainties U(Pf*), using knowledge-based (subjective) probabilities which leads

to the probability of frequency approach, and using confidence intervals

based on relative frequency-interpreted probabilities and hard data only

(pure statistical approach).

The aim of the probability of frequency approach is to describe the uncer-

tainties of the underlying frequencies Pf and we may consider it a special case

of the (A,C,U,P,K) description. Consequently we can restrict attention to two

main categories of perspectives for the risk assessments (QRAs): the pure

statistical approach where we seek accurate estimates of the underlying true

risk (relative frequency-interpreted probabilities) and an approach where the

aim of the risk assessment is to describe the uncertainties about the unknown

quantities of interest (represent/express the knowledge and lack of knowledge

available). These two perspectives will be studied in Chapters 5 and 6, linked

to the three cases introduced in Chapter 4.
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3

Science and scientific requirements

In this chapter we present the announced requirements of reliability and

validity that will be used to verify that a risk assessment is scientific

(Section 3.3). But first in Section 3.1 we give some reflections about risk

assessment being a scientific method motivated by two interesting editorials

of the first issue of the journal Risk Analysis (Cumming, 1981; Weinberg,

1981), in relation to the establishment of the Society of Risk Analysis. We

also provide a brief review of the traditional sciences (Section 3.2), such as

the natural sciences, social sciences, mathematics and probability theory, to

place risk assessment into a broader scientific context. A key issue is to what

extent risk assessment should be judged by reference to these traditional

science paradigms, or is a science per se.

3.1 Reflections on risk assessment being a scientific method

Cumming (1981) concludes that the process of analysing or assessing risks

involves science, and consequently is a scientific activity. However, according

to Cumming, risk assessment is not a scientific method per se. He writes:

Risk assessment cannot demand the certainty and completeness of science. It must
produce answers because decisions will be made, with or without its input. The quality
of societal decisions will be influenced by the quality of the risk information which
goes into them, and the long term success of a society is influenced by the quality of
its decisions. Thus, risk assessment is an important activity. It depends on science
and has an important stake in receiving the input of good science.

Cumming sees some useful functions of the society and the new journal, but

also some dangers:

The formation of the Society may imply to some that risk assessment is indeed a
“science” and lead them to expect a degree of precision which is not now possible.
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Professionalization may tend to hide or disguise the nature, the end uses, and the
trans-scientific elements of risk assessment, and to confer upon it the image of power
and sophistication it does not have.

By the trans-scientific elements of risk assessments he refers to predictions of

rare events where the uncertainties are very large, for example the number

of deleterious biological effects resulting from exposure to environmental

insults at dose levels far below the levels at which effect can be seen

(Weinberg, 1972).

Weinberg in his editorial states some similar comments:

I welcome the new journal, Risk Analysis, where practitioners of the art of risk
assessment can exchange their views and results. I use the word “art” intentionally:
I can hardly conceive of large parts of risk assessment becoming a science. This is not
to say that careful analysis of underlying assumptions that go into risk assessment is
fruitless; or that careful observation of damage caused by large insults is not a part of
science. But there are, and will always be, strong trans-scientific elements in risk
assessment. We should be prepared to recognize these, and accept them.

Weinberg (1981) stresses that the most powerful method of science – experi-

mental observation – is inapplicable to the estimation of overall risk in the

case of rare events, which are those instances where public policy most often

demands assessment of risk. He refers to the intrinsic uncertainty reflected in

the bitter controversy that rages over the safety of nuclear reactors.

We observe that both editorials conclude that risk assessment comprises

scientific elements but is not a scientific method per se. The main problem

seems to be the lack of predictability in the case of large uncertainties. Their

reference is obviously the “traditional scientific method” which is the pillar

for the natural sciences. The method is based on the collection of data

through observation and experimentation, and the formulation and testing

of hypotheses. More specifically it is common to distinguish between four

steps of the method (Wolfs, 2009):

1. observations and descriptions of a phenomenon

2. formulation of a hypothesis to explain the phenomena, for example

expressed by a mathematical formula

3. use of the hypothesis to predict the results of new observations

4. performance of experimental tests to verify or falsify the hypotheses.

If the experiments bear out the hypothesis it may come to be regarded as a

theory or law of nature. If the experiments do not bear out the hypothesis, it

must be rejected or modified. What is key in the description of the scientific

method just given is the predictive power (the ability to get more out of the

theory than you put in) of the hypothesis or theory, as tested by experiment.

3.1 Risk assessment as a scientific method 33



In practice the scientific method does not always follow these steps. For

example, the process may not start with observations. A new hypothesis may

be inspired by reading what others have done and by discussions with

colleagues. Many scientific investigations use a set of methods, including

experimentation, comparison and modelling. The results from one research

study may lead in directions not originally anticipated, or even in multiple

directions as different scientists pursue areas of interest to them (Carpi and

Egger, 2003).

But regardless of how the scientific method is carried out, its aim is

accurate predictions. Cumming (1981) and Weinberg (1981) quickly conclude

that risk assessments are not able to meet this ambition: accurate predictions

cannot be made in case of rare events and large uncertainties. However, in

many cases the scientific method as defined above would be applicable and it

will be useful to clarify the boundaries of risk assessment as a tool for this

purpose. This is a main objective of Chapter 5. More important though is the

question whether this is an appropriate aim of risk assessment. Seeing risk

assessment as a tool for expressing or measuring uncertainties about

unknown quantities would obviously not be in line with the scientific method

as defined above, but could it still be seen as science? This issue we will discuss

in Chapter 6. As a background for this discussion we need to rethink what

science means and what are reasonable requirements to be set to a scientific

method. But first we give a review of some of the traditional sciences, starting

with the natural sciences which are based on the scientific method outlined

above. Some people may consider only the natural sciences as “true sciences”,

but in our view such a perspective is meaningless. Yes, the scientific method

as described above has been very successful in natural sciences, but are not

mathematics and probability theory science? Of course they are. There exist

a number of scientific journals covering these disciplines and there exist

many recognised scientists in these fields. Are these journals and these scien-

tists second-class representatives for science? No, these disciplines are not

comparable with the scientific method and the natural sciences, they could be

used in these sciences and when applying the scientific method, but the

reference for making a judegment about being scientific is not the natural

sciences and the scientific method alone. We will explain this in more detail in

the coming section.

In this book we are concerned about risk assessment as a scientific

method (in a broad sense, not only according to the traditional scientificmethod

outlined above). Risk assessment as a scientific method is not the same as

risk assessment as a scientific discipline. We may view the science of risk

assessment as
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the development of concepts, principles, methods and models to analyse and evaluate
(assess) risk, in a decision-making context (Aven, 2004).

This science, which is founded on the international scientific journals in the

field, provides the basis for the scientific method of risk assessment, provided

that such a method can be justified.

When interpreting Cumming (1981) and Weinberg (1981), one has to be

aware that risk analysis is often defined in different ways as was noted in

Chapter 1. Our definition (refer to Section 1.1) states that risk analysis is a

methodology designed to determine the nature and extent of risk, comprising

the following three main steps:

� identification of hazards/threats/opportunities (sources)
� cause and consequence analysis, including analysis of vulnerabilities
� risk description, using probabilities and expected values.

The most common alternative definition, often used among members of the

Society of Risk Analysis, sees risk analysis as an overall concept, comprising

risk assessment, risk perception, risk management, risk communication

and their interaction (refer to IRGC 2005). However, Cumming (1981) and

Weinberg (1981) in their reflections are precise in referring to the use of risk

assessments and not risk analysis, so these different uses of the term risk

analysis should not be a problem.

3.2 Review of some traditional sciences important for risk

assessment and risk management

Natural sciences

The natural sciences provide theories and laws describing the physical world.

A theory is often defined as a set of statements or principles devised to

explain a group of facts or phenomena, especially one that has been repeat-

edly tested or is widely accepted and can be used to make predictions about

natural phenomena, whereas a law in this context is often defined as a

property of a physical phenomenon, or a relationship between the various

quantities or qualities which may be used to describe the phenomenon,

that applies to all members of a broad class of such phenomena, without

exception. An example of a physical law is Newton’s second law of motion,

F¼ma.

These theories and laws are established primarily based on theoretical

reasoning, and statistical data analysis is used to refine or reject the laws

and theories. Developing theories and laws is a creative process that is
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difficult to formalise and document. Theories and laws cannot be proved true.

Observations may to varying degrees support the theories and laws, and this

results in new assumptions and revision of the theories and laws. Rejection of

the theories and laws may also be the result in some cases, but, normally, only

if alternatives exist.

Theories and laws can be used to define models of the world, i.e. simplified

representations of the world for specific situations. A model could be more

or less good at describing the world (it is always wrong, otherwise it would

not be a model – a simplification of the world) but still it could be useful for

its purpose.

An example of a physical model is the expression for speed v of an object

dropped from a height h, derived by assuming that the kinetic energy of the

object at the reference point equals the potential energy at h:

v ¼
ffiffiffiffiffiffiffiffi
2gh

p
; ð3:1Þ

where g is the acceleration due to gravity (Nilsen and Aven, 2003). This is a

good model for describing the world in many cases. But it is a model, a

simplified representation of the world, as it disregards the air resistance, and

that g varies through the fall. Consider an application of the model given by

Equation (3.1) in order to predict the velocity of an object dropped from a

crane located on a floating structure. It can be argued that the vertical motion

of the structure due to ocean waves would cause the model to be inaccurate.

Such motion would affect the height of fall h, cause an initial speed v0 6¼ 0,

and a relative vertical motion of the object hit by the dropped object, i.e. three

effects that are not taken into account by the model. Despite these inaccur-

acies, we could find this simple model to be a good model for describing the

world in a specific case.

Mathematics and probability theory

The science of mathematics and probability theory is based on some axioms,

and deduction from these using the rules of logic. For example, probability

theory is normally based on three axioms: a probability is a non-negative

number, the probability of a certain event is 1, and the probability of a union

of mutually exclusive events is equal to the sum of the probabilities of each

event. In addition we need to define a conditional probability. From these

axioms, we derive the many well-known probability rules. Accepting the rules

of logic, mathematics and probability theory provide 100 per cent certain

knowledge, but no information about the world per se.
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Traditional statistical inference

Traditional statistical inference is based on the following thinking: obser-

vations are sampled from a large population of units. Variations within the

population and sample are described using a stochastic model; and combining

the data and the model, conclusions are made on performance measures

related to the whole population, or specific units of the population.

Bayesian theory

Traditional Bayesian theory is based on the use of subjective probabilities to

express uncertainties about unknown quantities, both observable quantities

of the world and parameters of models of the world. Probability theory is

used to manipulate the probabilities. The probabilities are updated when new

information becomes available in a coherent way using Bayes’ formula.

Bayesian decision analysis includes, in addition to this, specification of

utilities for possible outcomes of decision alternatives, and the use of the

maximum expected utility as a decision criterion.

Social sciences

A main line of scientific reasoning within the social sciences is based on the

application of traditional statistical inference, as described above. More

specifically, the method covers the formulation of a hypothesis, theoretical

definition of this hypothesis (using probabilistic terms, like parameters of a

distribution function), operational definition (using observables), statistical

testing and then conclusions and discussions.

Theories involving human beings and society are different from theories in

natural sciences as the former theories become a part of the human beings

and society and influence their behaviour and development. When analysing

human beings and society there is a need for a double reflection, to explain

how the theory would affect human beings and society. This leads to a theory

of the theory, and this can be continued infinitely.

Other sciences

There are a number of other sciences that are relevant for risk analysis,

such as technology, medicine, psychology, etc., but these will not be further

discussed in this book. For the purpose of the present analysis the above

sciences provide a sufficiently broad spectrum of reference sciences to discuss

the foundation of the science of risk assessment and risk management.
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All these sciences can be seen as sciences per se, but also as tools for the

scientific method defined above. To analyse risk we use physical models

and models for describing human and organisational aspects, for example

the model (3.1). Mathematics and probability, traditional statistical infer-

ence and Bayesian analysis are key tools for implementing the scientific

method. There are different views on which tools should be preferred,

for example Bayesian analysts would favour a completely different

approach than proponents of the traditional statistical inference. For

example, Lindley (2006) argues that the Bayesian perspective provides an

overall suitable framework for the scientific method, as this perspective

allows for descriptions of uncertainties and systematically incorporates new

knowledge. Others would reject the Bayesian perspective as it fails to

produce “objective results”. This discussion is also relevant for risk assess-

ment and will be thoroughly analysed in the coming section and chapters

of the book.

Next we will discuss what general requirements should be set to risk

assessment in order for it to be a scientific method.

3.3 Risk assessment as a scientific method. The reliability

and validity requirements

For risk assessment to be a scientific method the following requirements

should be met (Aven and Heide, 2009):

1. The scientific work shall be in compliance with all rules, assumptions,

limitations or constraints introduced, and the basis for all choices, judge-

ments etc. given shall be clear, and finally the principles, methods and

models shall be subjected to order and system, to ensure that critique can

be raised and that it is comprehensible.

2. The analysis is relevant and useful � it contributes to a development within

the disciplines it concerns, and it is useful with a view to solving the

“problem(s)” it concerns or with a view to further development in order

to solve the “problem(s)” it concerns.

3. The analysis and results are reliable and valid.

Requirements 1–2 are based on standard requirements for scientific work

(RCN, 2000). The purpose of risk assessment is to provide decision support

by systematisation of knowledge to describe/express risk. This is a unique

objective for risk assessment. Terminologies have been developed, as well as

principles and methods for assessing risks. However, there is no broad
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consensus in the risk assessment community about the terminology and the

principles and methods to be used. For example, risk is defined and

expressed in many different ways. The full discussion of these issues is

beyond the scope of this book, but important aspects are covered by our

analysis in Chapter 2 and in the rest of this book, in particular in relation to

our discussion of requirement 3, the reliability and validity criteria. These

relate in particular to how to understand and express risk, as well as the use

of the risk assessments.

The definitions of the terms “reliability” and “validity” in a risk assessment

context are not obvious, but a logic and structure for interpreting these

concepts have been established by Aven and Heide (2009) and this will be

used in this book.

While reliability is concerned with the consistency of the “measuring

instrument” (analysts, experts, methods, procedures), validity is concerned

with the success at “measuring” what one sets out to “measure” in the

analysis. More precisely we make the following definitions:

Reliability: The extent to which the risk analysis yields the same results

when repeating the analysis (R).

Validity: The degree to which the risk analysis describes the specific con-

cepts that one is attempting to describe (V).

Depending on the objectives of the analyses, more specific and detailed

interpretations (sub-criteria) of the above general definitions of reliability

and validity can be formulated (Aven and Heide, 2009):

Reliability

The degree to which the risk analysis methods produce the same results at

reruns of these methods (R1).

The degree to which the risk analysis produces identical results when

conducted by different analysis teams, but using the same methods and

data (R2).

The degree to which the risk analysis produces identical results when

conducted by different analysis teams with the same analysis scope

and objectives, but no restrictions on methods and data (R3).

Validity

The degree to which the produced risk numbers are accurate compared to

the underlying true risk (V1).
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The degree to which the assigned probabilities adequately describe the

assessor’s uncertainties of the unknown quantities considered (V2).

The degree to which the epistemic uncertainty assessments are

complete (V3).

The degree to which the analysis addresses the right quantities (V4).

In the following two chapters we will discuss to what extent these require-

ments are met, by using the three cases as illustrating examples.

40 Science and scientific requirements



4

Introduction to case studies

In this chapter we introduce the three case studies which will be pursued

through the rest of the book to illustrate concepts, principles and methods.

The first of these studies is related to the analysis of working accident data

whereas the second relates to the risk assessment of a Liquefied Natural Gas

(LNG) plant and the third relates to a design of a safety system. Our starting

point for the LNG case is the risk assessment process as carried out recently

for the plant (Vinnem, 2010). We have, however, made some adjustments,

to be in line with the principles studied in this book. For the purpose of this

book we consider different approaches for how to carry out the assessments.

The presentation only shows excerpts from the assessment; it is simplified,

and many numbers have been changed.

4.1 Working accidents

In 1999 the Petroleum Safety Authority Norway (PSA) took the initiative to

develop a method in order to assess status and trends for the risk levels in the

Norwegian offshore petroleum industry (Vinnem et al., 2006). A method was

developed which is based on recording occurrences of near misses and rele-

vant incidents, performance of barriers and results from risk assessments,

as well as evaluation of safety culture, motivation, communication and

perceived risk. In this book we focus on the analysis related to occupational

accidents. Accident statistics are provided for serious injuries, which are

defined by PSA (2007) as:

� head injuries involving concussion, loss of consciousness or other serious

consequences,
� loss of consciousness as a result of working environment factors,
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� skeletal injuries, with the exception of simple hairline fractures or fractures

of fingers or toes,
� injuries to internal organs,
� whole or partial amputation of parts of the body,
� poisoning with danger of permanent health injury, such as H2S poisoning,
� burns, frost or corrosive injuries with full thickness skin injury (third

degree) or partial thickness skin injury (second degree) to the face, hands,

feet or abdomen, as well as all partial thickness skin injury that covers more

than five per cent of the surface of the body,
� general cooling (hypothermia),
� permanent, or for a long period of time, inability to work.

The number of serious injuries per million working hours for the previous

11 years is presented in Figure 4.1. The numbers are based on about

30–40 million working hours per year, and the number of injuries ranging

from about 70 to 30. The total number of installations is close to 100.

The data are split into production units and mobile units, as well as key

functions: administration and production, drilling and well operations,

catering, and construction and maintenance. Figures 4.2 and 4.3 show the

injury frequencies for fixed installations and mobile units, and the data for

the construction and maintenance function separately.

Figure 4.2 shows that the injury frequency has a falling trend from year 3

to year 11. From year 10 to 11 there was a change in frequency from 0.9 in

year 10 to 0.7 in year 11. On the production (fixed) installations there were

19 cases of serious injury in year 11. The injury data for the construction and
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Figure 4.1 Number of serious injuries per million manhours.
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maintenance function shows a similar form. The frequency for mobile units

follows the same type of pattern, but the data for construction and mainten-

ance show more variation. In year 11 there was an increase in the total injury

frequency compared to the previous year, from 1.3 in year 10 to 1.4 in year 11.

Year

Number of serious injuries per million 
manhours. Production installations 
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Figure 4.2 Number of serious injuries per million manhours. Production
(fixed) installations. For the function construction and maintenance, and the
total for all functions.
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Figure 4.3 Number of serious injuries per million manhours. Mobile units.
For function construction and maintenance, and the total for all functions.
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PSA Norway and the Health and Safety Executive (HSE) in the UK

publish a half-yearly joint report containing a comparison of statistics for

injuries to personnel on offshore installations (PSA, 2009). The average

frequency of cases resulting in death and serious injury for the period year

4 up to and including the first half of year 11 shows that there have been

0.96 injuries per million manhours on the Norwegian side and 1.03 on the UK

Continental Shelf.

On the other hand there is a greater difference in the frequency of fatal

accidents in the same period. The average frequency of fatalities on the UK

Continental Shelf is 2.9 per 100 million manhours against 1.2 on the Norwe-

gian Continental Shelf. On the UK Continental Shelf there were 11 fatalities

in the period in question against 3 on the Norwegian Continental Shelf.

The Norwegian petroleum industry has gradually gone from a develop-

ment phase encompassing many major fields to one in which operation of

facilities dominates. Measuring the effect of the total safety work in these

activities is considered a key challenge for the authorities, and the aim of the

developed method for analysing the risk level has been to contribute to this

end. In this book we address the following question:

Based on the statistics available on serious injuries, we perform a quanti-

tative risk assessment with the aim of expressing serious injury risk for the

coming year. We distinguish between production installations and mobile

units, and use the data for construction and maintenance to illustrate the risk

for specific functions. The assessment will be based on statistical methods but

there are many types of such methods. How do we ensure scientific quality

of the assessments?

By expressing the risks, a basis is established for making judgements about

risk acceptability and the need for further risk-reducing measures.

4.2 An LNG plant in an urban area

This case study concerns the risk related to a new Liquefied Natural Gas

(LNG) plant to be located on the west coast of Norway, in an urban area

(Tananger) outside the city of Stavanger, about 4 km from Stavanger

Airport. Despite the formal approval according to the SEVESO II Directive,

there is considerable resistance to the plant from the neighbours living less

than one kilometre from the plant. The LNG plant is located only a few

hundred metres from a ferry terminal and this also creates concern.

The LNG plant is now under construction by the energy supplier Lyse. The

necessary approval from local and central authorities has been obtained.

The plan is that natural gas from the North Sea is transported through
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pipelines to shore, and then liquefied at the plant before being stored in a

huge tank. The LNG is then distributed from the plant to local consumers

by LNG tankers and LNG lorries (Vatn, 2010). The annual production is

300 000 tons of LNG, but the capacity may be increased to 600 000 tons if

market conditions allow such an increase.

The LNG plant has the following main components (Vinnem, 2010):

Pipeline landfall, Gas reception facilities, Pre treatment, LNG production,

LNG tank and Export facilities.

The following risk studies have been carried out during the planning and

engineering process:

1. Several Preliminary Hazard Analyses (PHA)

2. Initial QRA study (Lyse, 2007)

3. QRA study in detailed engineering (Lyse, 2008).

The PHA studies were essentially conducted by a Norwegian consultancy,

whereas the initial QRA study was conducted by a UK consultancy. The QRA

during detailed engineering was conducted by the engineering contractor.

The operator Lyse has adopted a traditional risk assessment approach

based on steps as in Figure 1.2. Figure 4.4 shows the steps adopted for

the QRA.

The risk assessments produce probabilities and these are compared to a set

of risk acceptance criteria. These apply to first, second and third parties,

defined as:

� The first party risk is defined as a fatality risk for the Lyse LNG base load

plant personnel.
� A fatality risk for the LNG Carrier personnel (truck, ship loading and

external contractors) is defined as second party risk.
� Third party risk covers people living, working or staying outside the Lyse

LNG base load plant.

In this case we focus on the third party risk.

Two categories of risk acceptance criteria are defined for third party risks:

individual risk (IR) based criterion and a frequency-number (f-n)-curve based

criterion. Both criteria define an upper unacceptable (intolerable) risk level

and a lower level of acceptable risk. Between these limits the ALARP prin-

ciple applies. The IR is defined as the probability that a specific person

(arbitrarily chosen) shall be killed due to the activity during a period of one

year. The f-n curve represents the frequency f (i.e. the expected number) of

accidents that lead to n or more fatalities, which is approximately equal to the

probability of an accident with at least n fatalities.
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The following limits were defined for IR; see Figure 4.5:

IR > 1 � 10�5 Unacceptable (intolerable)

IR < 1 � 10�7 Acceptable risk

In the region (10�7–10�5) the ALARP principle is applied.

Data collection and
description of system

Collection and analysis of
complementary data

Hazard identification
(development of

scenarios)

Frequency analysis Consequence analysis

Risk determination

Risk assessmentRisk criteria

Finally accepted
situation

Proposal of risk
mitigation measures

Re-evaluation

Figure 4.4 The QRA process adopted in Lyse (2008).

IR > 10–5 Unacceptable risk

10–5< IR < 10–7 ALARP

IR < 10–7 Acceptable risk

Figure 4.5 The risk acceptance criteria adopted in the case based on IR
and 3rd party risk.
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The limits for the f-n curve are shown in Figure 4.6, together with the

calculated results in the Lyse (2007) report.

Based on Figure 4.6, Lyse concluded that the risk level was negligible. Also

an independent research team which was hired by the plant developer in order

to improve risk communication commented that the risk was considered to be

negligible (Vatn et al., 2008). Also the IR numbers were below the unaccept-

able risk level.

The risk assessment process has given rise to a substantial amount of

professional discussion (Vinnem, 2010). The main issues have been the

quality of the risk assessments, and in particular the use of pre-defined

risk acceptance criteria and how to treat uncertainties. These issues will be

thoroughly studied in this book. The main question we ask is to what extent

the risk assessment approach adopted meets the standards that we can

expect from a scientifically based assessment. Specifically we address the

following points:

� The rationale for defining risk acceptance criteria, reflecting that risk in

general needs to be balanced against benefits, and the lack of precision
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Figure 4.6 Risk acceptance criteria (unacceptable risk level, acceptable risk
level and ALARP region) and calculated f-n curve (Lyse, 2007).
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of risk assessment to perform direct comparisons between risk results

and the criteria.
� How to determine the specific levels for unacceptability and acceptability.

The risk assessments performed were based on a number of assumptions, and

these strongly affect the results of the assessments. How can we then rely on

the results of the assessments? In the assessments we use a number of models

and procedures for calculating the risk. How should we understand the con-

cepts of model inaccuracy and model uncertainty? A model, like for example

an event tree as shown in Figure 4.7, is obviously a simplification of the real

world, and it could produce inaccurate predictions. The event tree shows for

example that if a hydrocarbon release occurs, the outcome could be a fire,

bleve, explosion, etc. depending on the result of the branching events. The

real world is more complicated. But to what extent should the inaccuracies be

reflected in the assessments? Should we quantify the inaccuracies? In the case

study this issue was not addressed at all. Model inaccuracy (uncertainty) was

not discussed in the risk assessments report. In fact uncertainty as a concept

was not mentioned at all in the reports. How is that possible in a QRA which

to a large extent is about uncertainties and quantification of uncertainties?

The scientific quality of the assessment certainly needs to be discussed.

Release  

Immediate 
ignition 

Not 
immediate 
ignition  

Short release
fraction  

Vertical

Horizontal Jet fire, pool fire, 
no effect 

Jet fire, pool fire,  
no effect  

Bleve, pool fire, flash
fire, explosion, no 
effect  

Flash fire, pool 
fire, explosion, 
no effect 

Delayed ignition

No ignition  

Dispersion

Residual pool fire  

No effect  

Figure 4.7 An example of an event tree used in the QRA (based on Lyse,
2008).
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4.3 The design of a safety system

A safety system is to be designed in a process plant. Two alternatives are

considered: I and II as shown in Figure 4.8.

Alternative I comprises only one unit whereas alternative II is a redundant

system with two units in parallel. Hence, for alternative II a system failure

occurs only if both units fail. Alternative II is expected to have a higher

reliability than alternative I; however, an assessment is required to “measure”

the difference. The decision-maker is not convinced that the increased safety

obtained by implementing alternative II can be justified given the additional

costs that are associated with this alternative.

The analysts performing the assessment develop models of the two

system configurations. The models are based on the assumption that the

units are periodically tested after time intervals of length t. If it is discovered
that a unit has failed, it is repaired (replaced) and it is then assumed to be

as good as new, and the process repeats. The state of the units can only

be revealed by testing. The times that the units are being tested and repaired

are ignored.

Some data on the failure frequency exist. The analysts estimate that the

units have a failure rate l equal to 0.2 per year, and based on this figure they

compute a mean fractional dead time (MFDT) by the formulae (Aven, 1986;

see also Section 5.4):

Alternative I: lt/2
Alternative II: (lt)2/3.

We interpret the MFDT as the fraction of time the system is not functioning

in the long run.

For t¼ 1 this gives a MFDT equal to 0.1 (10%) for alternative I and 0.013

(1.3%) for alternative II.

The difference is large but somewhat reduced when considering the influ-

ence on the risk for the total plant. For example the individual risk (the

Alternative I
Alternative II 

Figure 4.8 The two system alternatives considered for the design of a safety
system.
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probability that a worker will be killed due to an accident in a period of

one year) is reduced from 4 � 10�4 to 2 � 10�4 by replacing alternative I

by alternative II.

The decision-maker compares this difference with the extra costs of imple-

menting alternative II. A key question is the reliability and validity of the

assessment made. To what extent do the results produced give the “true

picture” of the risk-reducing effect of replacing alternative I with alternative

II? Furthermore, the assessment is based on models and a set of assumptions.

How should the possible model inaccuracy be taken into account? Is the

model sufficiently accurate for its purpose? There is a need to discuss the

scientific quality of the assessment.
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5

Risk assessment when the objective
is accurate risk estimation

In this chapter we study the scientific platform of risk assessments when

the objective of these assessments is accurate risk estimation. We first sum-

marise the key concepts, probability and risk, using the set-up introduced

in Chapter 2. We then conduct the assessments for the three cases, and

from this basis we study the scientific quality of the risk assessments.

Focus is on the scientific requirements of reliability and validity defined in

Chapter 3.

The risk assessments presented in Sections 5.2–5.4 are rather comprehen-

sive and detailed, although many simplifications have been made. If the

reader is mainly concerned about the discussion of the scientific requirements

of reliability and validity, a quick reading of these sections would suffice

provided the reader is familiar with the statistical nomenclature and methods

used. However, to fully appreciate the discussion in Section 5.5 it is necessary

to go into the details of the assessments in Sections 5.2–5.4. For example,

we cannot evaluate what the main quantities of interest are in the study or see

the importance of key assumptions made in the assessments, without looking

into the contexts of the analyses and precisely describing how the analyses

are carried out.

5.1 Scientific basis

We consider an activity and make the following definition of risk associated

with this activity:

Risk ¼ (A,C,Pf), where Pf is a relative frequency-interpreted probability

(or a related parameter such as the expected number of occurrences of the

event A per unit of time, where expectation is with respect to a relative

frequency-interpreted probability).
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As an example consider the operation of a plant and the risk associated with

accidents that could lead to fatalities. Then we can define events (such as gas

leakages), associated consequences (losses) and probabilities expressing for

example the probability Pf of at least 10 fatalities next year. The Pf is interpreted

as the fraction of years where this event occurs in an infinitely large population

of similar plant years, as will be discussed in more detail in the coming section.

According to this definition, risk is unknown as Pf is unknown. Risk

assessment is introduced to estimate the risk. We refer to Pf* as the estimate

(estimator) of Pf. By proper analysis, using data and modelling, the ambition

is to determine the true value of Pf and hence the risk. This means that the

error term Pf* – Pf must be sufficiently small so that it can be ignored.

Statistical theory is the tool to be used to demonstrate the precision of the

estimates. Confidence intervals are used as a measure of the uncertainty of

the estimators relative to true value of the parameters. In this setting prob-

abilities only exist as relative frequencies.

5.2 Case 1: Statistical inference of accident data

We refer to Section 4.1. Based on the statistics available on injuries, we will in

this section perform a quantitative risk assessment with the aim of expressing

injury risk for the coming year(s).

To define risk in this setting we introduce two indices,

F xð Þ ¼ Pf X � xð Þ
l ¼ Ef X½ �;

where X is the number of serious injuries during year 12. Hence F(x) is the

relative frequency-interpreted probability that the number of injuries in year

12 does not exceed x, and l is the expected number of serious injuries in the

same year when interpreting the expectation as the average in an infinite

population of similar years.

To be able to make meaningful comparisons for different time periods and

activities we have to normalise the distribution and parameter with respect

to manhours. Let c denote the number of million manhours in year 12. This

number is assumed known. Let Y denote the number of serious injuries per

million manhours, i.e.

Y ¼ X/c.

Then we can define adjusted indices:

G yð Þ ¼ Pf Y � yð Þ ¼ Pf X=c � yð Þ ¼ Pf X � ycð Þ ¼ F ycð Þ
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and

m ¼ Ef Y½ � ¼ l=c:

Hence G(y) is the probability distribution of the number of serious injuries

per million manhours and m is the expected number of such injuries.

This set-up is based on the assumption that there exist underlying true

values of F(x), G(y), l and m. The aim of the risk assessment is to accurately

estimate these distributions and parameters. To this end we need to have a

clear understanding of the meaning of the true values. It is meaningless to try

to accurately estimate these values if we cannot define them in a precise way.

We focus on F(x) and l.
The true value of l is the average number of serious injuries and F(x) is the

distribution of years with not more than x serious injuries as defined in the

following model world:

Consider year 12. We construct in our mind an infinite population of “simi-

lar” years. For these years some aspects are allowed to vary whereas others must

be viewed as fixed. We may specify the installations, the equipment type used,

the operational procedures, the type of personnel positions, the type of training

programmes, the organisational philosophy, the influence of exogenous factors,

etc., but somethingmust be different, because otherwisewewould get exactly the

same output result for each year: a fixed number of serious injuries. There must

be some variation on a micro level to produce the variation from one year to the

other. So we should allow for variations in the equipment quality, human

behaviour, etc. But the question is, to what extent should we allow for such

variation? For example, in human behaviour, do we specify the safety culture

or the standard of the private lives of the personnel, or are these factors to be

regarded as factors creating the variations from one year to another? If we

consider the years 1–11 to be similar to year 12, this could indicate the type of

populationwe consider. For these years there has obviously been some variation

with respect to equipment quality, culture, management, influence of exogenous

factors, etc. However, this population comprises just 12 years. To define the

parameters we need to extend this population to a very large population (in

theory, an infinite population). If some of these years are characterised by a

somewhat differentmanagement climate than the rest of the observation period,

we have to clarify to what extent the whole population should have the same

balance with respect to years with a climate as we have in the period 1–12.

Obviously if we allow for some time trend this balance is not maintained.We see

that this discussion leads to different models depending on the understanding of

the population of years to be considered. Below we will consider two types of

models, one where we assume no trend and one where we assume a linear trend.
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5.2.1 No trend

Let X1, X2, . . . . , X12 be random variables representing the number of serious

injuries for the years 1, 2, . . ., 12, respectively. Hence X¼ X12. The distribu-

tion of Xi is denoted Fi(x). As a model of Fi(x) we use the Poisson distribution

with parameter li. We assume that li ¼ mci, where ci is the number of

manhours (in millions) in year i and m is the expected number of serious

injuries per million manhours.

A Poisson distribution is often used for describing the number of events

occurring during a specified period of time. The motivation is as follows:

If Z has a binomial distribution with parameters n and p, with n large and p

small, the binomial distribution can be accurately approximated by the

Poisson distribution with mean np; cf. Appendix A.1.3. Consider the number

of events Z in a time interval [0,t], and let us divide the interval into a number

of small subintervals. Then we may ignore the probability of two or more

events occurring in each subinterval, and the total number of events in [0,t]

can be written as a sum of “successes” in a number of Bernoulli trials (in each

trial the outcome is either success or failure, the probability of success is p in

all trials and the trials are independent). It follows that Z has a binomial

distribution with large n and small p, and can consequently be approximated

by a Poisson distribution.

We assume that the random variables X1, X2, . . . ., X12 are independent

and then it follows that the total number of serious injuries during the first

11 years is a Poisson random variable with parameter

� li ¼ m� ci; ð5:1Þ

where the sum is over i¼ 1, 2, . . ., 11. This follows by extending the

above motivating arguments for the Poisson distribution by considering a

period of time equal to all the years 1–11. From formula (5.1) we are led to an

estimator m* of m by replacing the total expected number of serious injuries in

this period of time by the total number of serious injuries, which we denote by

X1–11. Hence

m� ¼ X1�11=� ci: ð5:2Þ
We see that the expected value of m* equals m, as

Em� ¼ EX1�11=� ci ¼ �mci=ci ¼ m:

Figure 4.1 shows the total number of serious injuries for the period of

11 years. The underlying data are shown in Table 5.1
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Using formula (5.2) this gives

m� ¼ X1�11=� ci ¼ 508=366 ¼ 1:39:

Based on this estimate we can compute an estimate of the probability distri-

bution of a random variable representing the number of serious injuries for a

period of one million manhours in the coming years; see Figure 5.1.

We see from the figure that the probability that the number of serious

injuries is 0 is estimated to be about 25 per cent. Furthermore, the probability

that the number of serious injuries is four or higher is estimated to be about

5 per cent.

Table 5.1 The underlying data of Figure 4.1.

Year 1 2 3 4 5 6 7 8 9 10 11

Manhours ci
(in millions)

30.8 29.4 31.1 32.1 31.8 32.2 32.3 33.6 35.4 37.8 39.7

Number of serious
injuries Xi

40 51 70 70 52 45 30 42 38 36 34

Normalised number
of serious injuries
Yi ¼ Xi/ ci

1.30 1.74 2.25 2.18 1.64 1.40 0.93 1.25 1.07 0.95 0.86

Estimated 
probabilities  

Number of serious
injuries for a period of
one million manhours0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 1 2 3 4 5 6 7

Figure 5.1 Estimated probability distribution for the number of serious
injuries for a period of one million manhours, i.e. an estimate of Pf(X=x) if
c=1 using the Poisson distribution with parameter 1.39.
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Based on the above data analysis we have established m*¼ 1.39 and we can

compute the distribution of Y; see Figure 5.2. We assume c¼ 40. This

distribution is established by noting that Y ¼ X/c and X has a Poisson

distribution with parameter cm, and estimated cm* ¼ 40� 1.39 ¼ 55.6.

As seen from Figure 5.2, the distribution of Y is approximately a normal

distribution, with mean 1.39 and variance 1.39/40¼ 0.035 as

VarY ¼ Var X=c½ � ¼ Var X½ �=c2 ¼ cm=c2 ¼ m=c:
Note that Y is the average of 40 variables each having a distribution as

in Figure 5.1. Hence the approximately normal distribution is expected due

to the central limit theorem (refer to Appendix A.1.3).

Next we need to address the accuracies of these estimators compared to the

true underlying parameters.

Firstly we compute the variance of the estimator m* given by (5.2).We obtain

Var m�½ � ¼ Var½X1�11=�ci� ¼ ð1=�ciÞ2Var X1�11½ �
¼ ð1=�ciÞ2½�mci� ¼ m=�ci ¼ m=366;

0.00

0.05

0.10

0.15

0.20

0.25

0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1

Normalised number of
serious injuries next 
year  

Estimated
probabilities

Figure 5.2 Estimated probability distribution for Y=X/c, i.e. the number
of serious injuries per million manhours the next year (year 12) assuming
c = 40. A point in the figure represents the estimated probability of Y taking
a value in intervals (0.8, 0.9], (0.9, 1.0], etc. On the x-axis the values 0.85, 0.95
etc. have been used for the various points.
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noting that X1–11 is a Poisson variable with parameter Smci.
By the so-called Chebyshev’s inequality (Ross, 1993), we have

Pðjm� � mj � dÞ � Var m�½ �=d2 ¼ m=366ð Þ=d2 ¼ m= 366d2
� �

:

Thus the probability that the estimation error jm� � mj is greater than a

(small) number d, say 0.30, is less than m/(366d2)¼ m/33. The parameter m is

unknown, but the data strongly indicate that m � 3, and hence

Pðjm� � mj � 0:3Þ � 3=33 ¼ 0:09;

i.e. the probability that the estimation error exceeds 0.3 is less than 10 per cent.

In other words, we are confident that the estimator we use in this case produces

estimates within a 0.3 error relative to the true underlying serious injury rate.

The accuracy can, however, be improved by using confidence intervals as

explained in the following.

The aim is to compute a 90 per cent confidence interval for the unknown

parameter m. For this purpose we use the approximation to the normal

distribution. We know that m* has an approximate normal distribution

with mean m and variance m/366 (standard deviation m1/2/19.1) Hence

Pð�1:65 � 19:1ðm� � mÞ=m1=2 � 1:65Þ � 0:90;

which gives an approximate 90 per cent confidence interval for m equal to

(1.29, 1.49).

Hence, assuming no trend we have estimated a serious injury rate per

million manhours to be 1.39 and calculated an approximate 90 per cent

confidence interval for this rate equal to (1.29, 1.49).

Next we would like to give a similar risk description for the fixed instal-

lations and the mobile units separately.

The resulting data are summarised in Table 5.2.

The data indicate that the risk level expressed by the serious injury rate

is much lower for production installations than for mobile units. This can be

confirmed by statistical hypothesis testing as shown in the following.

Let mM and mF be the normalised serious injury rates for the mobile units

and fixed installations, respectively, defined analogously to m. Furthermore

let (mM)* and (mF)* be the estimators of mM and mF defined in line with

formula (5.2). We see from Table 5.2 that (mM)* ¼ 1.93 and (mF)*¼ 1.23.

We will test the hypothesis that the risk level for mobile units is higher than

for fixed installations, based on the risk parameters mM and mF. The null

hypothesis is that the parameters are equal, i.e.

H0 : mM ¼ mF:
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The alternative hypothesis is that the serious injury rate for mobile units is

higher than for fixed installations, i.e.

H1 : mM > mF:

We assert that H1 is true if (mM)* � (mF)* is “large”. From Table 5.2 we note

that (mM)* � (mF)* ¼ 0.6, and we can easily compute the significance prob-

ability by using that (mM)* – (mF)* has an approximate normal distribution.

The variance of (mM)* � (mF)* is given by the sum of the variances of the two

estimators (assuming independence), i.e. (mM/82) þ (mF/284). Replacing the m
parameters by their estimators we obtain an estimator of the variance, and we

can compute the significance probability

Pð mMð Þ�� mFð Þ�� 0:6jH0Þ ¼
Pð½ mMð Þ�� mFð Þ� =SD�� � � 0:6=0:17 ¼ 3:5jH0Þ;

where SD* is the estimated standard deviation of (mM)* � (mF)*, which in this

case is equal to the square root of (1.93/82) þ (1.23/284).

From statistical tables we find the probability that a standard normal

distributed random variable exceeds 3.5, namely 0.0002. Hence the signifi-

cance probability is not larger than 0.02 per cent and the data provide strong

evidence for concluding that H1 is true.

5.2.2 Linear trend. Regression analysis

In this section we will use a linear trend analysis to predict the serious injury

rate for the coming years. Firstly we perform the analysis for fixed instal-

lations. Table 5.3 shows the data corresponding to Figure 4.2.

Table 5.2 Serious injury data for fixed installations and mobile units, with estimates
and confidence intervals for �.

Fixed
Installations Mobile units All units

Number of serious injuries S Xi 359 159 508
Manhours S ci (in millions) 283.6 82.4 366.0
Normalised number of serious
injuries m*

1.23 1.93 1.39

Var[m*] m/284 m/82 m/366
Approx. confidence interval for m,
the serious injury rate per million
manhours

(1.12, 1.34) (1.68, 2.18) (1.29, 1.49)
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As in the previous section we let X1, X2, . . . . , X12 be random variables

representing the number of serious injuries for the years 1, 2, . . . , 12, respect-

ively. The distribution of Xi is denoted Fi(x). As a model of Fi(x) we use the

Poisson distribution with parameter li. We assume that li¼ mi ci, where ci is the
number of manhours (in millions) in year i and mi is the expected number of

serious injuries per million manhours in year i. The normalised number of

serious injuries in year i, Xi/ci, is denotedYi.We assume that mi has a linear form

mi ¼ aþ bi;

where a and b are unknown parameters. To estimate these parameters we use

standard regression analysis (see Appendix A.2.1). Using the method of least

squares, i.e. we identify the values that minimise the sum of squared errors in

the sample, we obtain the following estimators for a and b:

a� ¼ Y� b�;

b� ¼ �iðYi �YÞðUi �UÞ=�iðUi �UÞ2;
where Ui ¼ i, and U and Y are the means of the Ui and Yi, respectively, i¼ 1,

2, . . ., n (n ¼ 11). To predict Y we use the line

Y ¼ a� þ b�i:

Figure 5.3 shows the serious injury rate data for fixed installations and the

estimated regression line. Based on the line, an estimated expected serious

injury rate for year 12 is 0.63. This number may also be seen as a prediction of

the actual rate at year 12. We remember the rate based on the analysis in the

previous section, which produced an estimate of 1.23 serious injuries per

million manhours. Thus the trend analysis gives a much lower estimate, which

is evident from the estimated linear curve in Figure 5.3.

Confidence intervals can be established for the parameters a, b and mi.
The slope of the line, b, is of special interest as it is a measure of the trend

Table 5.3 The underlying data of Figure 4.2 (fixed installations).

Year 1 2 3 4 5 6 7 8 9 10 11

Manhours ci
(in millions)

23.7 22.0 23.6 23.8 24.7 26.9 26.6 26.2 27.9 29.0 29.1

Number of serious
injuries Xi

28 35 49 45 38 36 21 29 24 25 19

Normalised number
of serious injuries
Yi ¼ Xi/ ci

1.18 1.59 2.07 1.89 1.54 1.34 0.79 1.1 0.86 0.86 0.65
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of the data. If b¼ 0 there is no trend and often the analysis is concerned about

the extent to which the data prove that there is a trend present. Could the

observed decrease in the slope just be a result of “randomness”? As an

approximation we assume that Yi has a normal distribution. This gives a good

approximation as Yi ¼ Xi/ci and Xi is close to a normal distribution when the

parameter of the Poisson distribution is large as in this case. A 90 per cent

confidence interval for b is then given by (Appendix A.2.1).

b� þ =� tn�2 	 Sb;

where tn�2 is the 95 per cent quantile of the Student (t) distribution with n�2

degrees of freedom, and Sb is an estimator of the standard deviation of b*
given by

Sb
� �2 ¼ �i Yi � a� � ib�ð Þ2= n� 2ð Þ

h i
=�iðXi �XÞ2:

When computed, we obtain the following interval: �0.10 þ/� 1.81 · 0.032 ¼
(�0.16, �0.04). Hence, the data provide strong evidence that the true b is

negative.

Similarly, a confidence interval for mi ¼ a þ ib can be formulated. It takes

the following form (Berenson et al., 1988, p. 399):

a� þ ib� þ =� tn�2 	 �j Yj � a� � jb�
� �2

= n� 2ð Þ
h i1=2

f 1=nð Þ þ ðXi �XÞ=�iðXi �XÞ2g1=2:

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10 12 14

Serious injury rate 

Year

Figure 5.3 Serious injury rate for fixed installation and the estimated
regression line.
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Numerically this gives for the coming year i¼ 12:

0:63þ =� 1:81� 0:13 ¼ 0:39; 0:87ð Þ:
We can conclude that the data provide a rather narrow uncertainty band for

the expected serious injury rate for year 12.

One may also attempt to develop a prediction interval for the actual

serious injury rate next year, as in Berenson et al. (1988, p. 401), but this

interval would be a prediction interval estimate, as the probabilities generat-

ing the interval are unknown and must be estimated.

5.3 Case 2: QRA of the LNG plant

We refer to Section 4.2 where we introduced Case 2, addressing the risk related

to a new Liquefied Natural Gas (LNG) plant located in an urban area. Our

focus is the third-party risk, i.e. risk for the people living, working or staying

outside the Lyse LNG base load plant. Two risk indices are defined:


 Individual risk (IR), defined as the probability that a specific person (arbi-

trarily chosen) shall be killed due to the activity during a period of one year.

 The f-n curve, expressing the frequency (i.e. the expected number) f of

accidents that leads to minimum n number of fatalities, which can also be

interpreted as the probability of an accident with at least n fatalities.

The probabilities are frequentist probabilities and are interpreted as the

fraction of times the event studied occurs if the situation could be repeated

infinitely under similar conditions. The f-n curve is interpreted as the average

number of accidents leading to minimum n fatalities, when considering an

infinite number of similar situations. The average is approximately equal to

the fraction of situations with at least n fatalities.

In the risk analysis, estimates of these indices are computed, and these

estimates are compared to the risk acceptance (tolerability) limits defined;

see Section 4.2.

Let

p ¼ IR for a specific person in the group having the highest risk

Furthermore let Y(n) denote the number of accidents with at least n fatalities

during a specific period of time (for example one year). Then the f-n curve is

defined by Ef[Y(n)] and Ef[Y(n)] � Pf(Y(n) � 1). If Z is the actual number of

fatalities in the same period and we can exclude the probability of two or

more accidents, we have
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Pf Y nð Þ � 1ð Þ � Pf Z � nð Þ:
Let

G nð Þ ¼ Ef Y nð Þ½ �:
The aim of the risk assessment is to accurately estimate p and G(n).

5.3.1 Outline of the main features of the risk assessment

The risk assessment covers four main steps (see Figure 1.2):

1. Hazard identification (e.g. a gas leak)

2. Cause analysis (including a hazard frequency analysis)

3. Consequence analysis

4. Risk picture.

In the following we will sketch the assessment for these four steps, first the

hazard identification.

Hazard identification

The first step of the execution part of a risk assessment is the identifica-

tion of initiating events. If the focus is on hazards (threats), as in our case,

then we are talking about a hazard identification (threat identification). It

is often said that “what you have not identified, you cannot deal with”.

It is difficult to avoid or to protect oneself against hazards and threats

that one has not identified. For this reason, this part of the analysis is a

critical task of the assessment. However, care has to be shown to avoid

this task becoming routine. When one performs similar types of analyses,

it is common to copy the list of hazards and threats from the previous

assessments. By doing this, one may overlook special aspects and features

of the system being considered. It is therefore important that the identifi-

cation of initiating events be carried out in a structured and systematic

manner, and that it involves persons having the necessary competence

(Aven, 2008a).

The development of the list of initiating events is based on different types

of input, including similar types of analyses as mentioned above, general

experience, databases, inspections and assumptions. Special techniques are

often used, for example Hazard and Operability studies (HAZOP) (Aven,

2008a). A common feature in all the methods is that they are based on a type

of structured brainstorming in which one uses checklists, guide words, etc.,

adapted to the problem situation being studied.
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For the LNG case study, the analysts first identified the major inventories

of flammable and explosive materials in the LNG plant units, together with

the major lines connecting the inventories. From this a set of hydrocarbon

leaks, including pipeline ruptures, of different sizes at various locations were

identified. These have a potential for fire or explosion. “Non-hydrocarbon

leakage hazards”, such as occupational accidents, were not addressed in the

QRA. These hazards were analysed through other techniques, such as the

HAZOP study.

In the case study a crude qualitative risk analysis was carried out,

identifying the hazards, the causes, consequences and safeguards. As an

example consider the hazard “LNG leakage from process equipment or

piping”. Causes identified were corrosion, erosion and gasket failure, and

possible consequences were flashing and evaporation of LNG, atmospheric

dispersion of gas, potential explosion, flash fire, jet fire and pool fire. The

safeguards listed were regular maintenance, fire and gas detection, emer-

gency shutdown system, emergency blowdown system, and active/passive

fire protection.

Cause analysis (including a hazard frequency analysis)

In the cause analysis, we study what is needed for the initiating events to

occur. What are the causal factors? Several techniques exist for this purpose,

from brainstorming sessions to the use of fault tree analyses and Bayesian

networks (Aven, 2008a). Experts on the systems and activities are usually

necessary for carrying out the analysis. Having established an understanding

of the causal factors, the frequencies or probabilities of the hazards (for

example, the hydrocarbon leakages) can be estimated. Often the analyses

have a main focus on this estimation. This was the case in the LNG case.

Leakage causes were identified, such as corrosion and erosion, as mentioned

above, but a detailed analysis of the causes was not performed.

For each initiating event (hydrocarbon leakage) a frequency was estimated.

This was done by using the so-called parts count method. The main ideas of

this method will be sketched in the following.

A potential leakage could come from several sources, e.g. valves, flanges,

vessels, compressors, etc. As an example, consider leakages from valves. The

first step will be to count the number of each type and size of the valves in the

area of consideration, and to multiply this number with the leakage frequency

for each valve type. This leakage frequency is estimated from a statistical

database (data bank). Then we do the same for all other equipment categor-

ies, and finally we add them together to obtain the total leakage frequency in

the area.
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In the LNG case, four leak size categories were introduced:

Leaks with diameter below 1 mm and rate below 0.1 kg/s were not studied as

they were not considered to contribute substantially to the overall risk.

The frequency of leakages for these categories was estimated based on

a leak frequency database, the UK HSE Offshore Hydrocarbon Release

Statistic 1992–2006 or HCRD (HSE, 2000). For example the following fre-

quencies were estimated for a specific system (LNG refrigerant system):

To reflect specific aspects of the LNG plant, which is considered a clean

service and an onshore facility, leak frequencies for pipelines, vessels and the

LNG Storage Tank are applied as given in the Purple Book (2008). Accord-

ingly, failures of flanges are assumed to be included in the failure frequency

of the pipeline. This reduces the leak frequency by deleting the flanges on

pipelines and vessels (tanks). For example the frequency estimate for process

pipe (1m) of 6� 10�5 is changed to 5� 10�6.

Consequence analysis

In the consequence analysis we study the effects the initiating events A may

have on human beings, the environment and financial assets (or something

else that humans value). Scenarios are developed showing how the initiating

events could lead to specific consequences, for example with respect to loss

of lives. The typical analysis, as in our case, is to first analyse the physical

consequences of the initiating events, for example the flow from liquids and

gases. To determine the physical effect of an event, for example related to gas

Leak range category (mm) Representative size (mm)

small 1–10 3.3
medium 10–50 23
large 50–100 53
very large, full bore rupture >100 124

Gas leak category Estimated Frequency

small 2.3 � 10�3

medium 3.1 � 10�4

large 7.9 � 10�5

very large, full bore rupture 1.0 � 10�4

Total 2.5 � 10�3
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dispersion, explosion pressure, etc., special techniques and computer codes

are normally used.

The immediate effects of an event can be determined in a coarse risk

analysis as was mentioned above under the heading “hazard identification”,

but other techniques are required to develop the scenarios. In the actual case,

event trees were used; see Figure 4.7 for an example. Event tree analysis is the

most common method for consequence analysis in risk assessments, but other

methods such as Bayesian belief networks are also used.

The number of stages in an identified scenario depends on the complexity

of the safety and control-systems (barriers). In a process plant with a high

level of monitoring and control/alarm systems, the number of stages in the

series of events can be relatively high, before the effects “leave the system”.

In the case study a software for the physical analysis was used to assess the

consequences of the hazards. The following categories were used:


 Dispersing of Hydrocarbon Vapour Cloud

 Explosion

 Fireball

 BLEVE

 Flash Fire

 Jet Fire

 Pool Fire.

The actual outcome depends on source conditions like the type of fluid,

temperature, pressure etc. and release phenomena. To illustrate some of the

features and assumptions made in the consequences analysis in the LNG case

study, we give below a summary of some key aspects of the analysis carried

out (Lyse, 2008).

For modelling purposes, the releases were categorised as either instantan-

eous or continuous.

If a catastrophic failure of the shell of a vessel occurs the contents would be

released very quickly (instantaneously). This type of failure has been mod-

elled as a hemispherical cloud centred on the release location.

Releases from pipelines, flanges, pumps, etc. are modelled as liquid, gas, or

two-phase releases. Where an inventory comprises significant liquid and gas

sections, e.g. in a vessel, then both are modelled and analysed. The represen-

tative release height for all cases is taken as 1 m, except for the LNG Tank,

where 30 m is applied, since the leak sources (flanges) by the LNG Tank are

likely to be on the tank top.

Release rates are assumed to be constant throughout the release duration

time and calculated with isolation (ESD System), and with blowdown.
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According to specific standards the isolated sections shall be depressurised to

50 per cent of design pressure in 15 minutes or to 7 barg in 30 minutes. Based

on this, a reaction time from the first fire & gas alarm until the operator

initiates the ESD and blowdown system is assumed to be 600 seconds. An

average blowdown time of 900 seconds is used in the calculation.

For each leak category an initial release rate (assuming continuous release)

can be calculated by standard release formulae (see e.g. Aven, 1992, p. 212).

For a specific hole size (area of release plane), the initial release rate is

expressed as a function of pressure and temperature.

When a vapour cloud is generated, either instantaneously or continuously,

theremay be a substantial degree ofmixing of air with the releasedmaterial. To

allow for destruction of momentum due to impingement of releases or upwind

and downwind releases, 50 per cent of releases were modelled as free-field

horizontal releases and 50 per cent were modelled as “impinged” releases.

The dimensions of impinged releases were determined assuming that the clouds

were cylindrical in shape, but with the same volume as a horizontal release.

In the event of a release from containment which is not ignited immedi-

ately, a hydrocarbon vapour/air mixture is formed. The concentration of

hydrocarbon in the cloud, as progressive dilution with air takes place, is

estimated using a dispersion model. The direction and extent of drift of the

cloud is influenced by the prevailing weather conditions. The cloud remains

capable of ignition providing the concentration is above the lower flammable

limit (LFL). On ignition, a flame front passes at slow speed throughout

the flammable cloud and a flame stabilises near to the point of release as

either a jet or pool fire. Jet fires are usually the consequence of a momentum-

dominated release resulting from an immediately ignited release or from a

flash fire that burns back to the point of release.

Release of flammable fluidmayhavemanyoutcomes, dependingon the timing

and type of ignition. For example, a releasemay ignite immediately at the point of

release, or it may ignite after the cloud has been dispersing for two minutes, or

after the cloud has been dispersing for fiveminutes, or it may not ignite at all. If it

ignites, it may give either explosion effects or different types of fire effects

depending on the type of release (e.g. jet fire, fireball, pool fire or flash fire).

The different outcomes are presented in the form of event trees, as in

Figure 4.7. The immediate ignition probability is directly specified.

A default value of 0.3 is used. The delayed ignition probability for any failure

case is based on the defined ignition sources on site, with a unique value for

each release case and release direction. The calculation is based on the

strength, location and presence factor of all ignition sources specified, and

the size and duration of the dispersing flammable vapour cloud.
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To study the effect of a release, weather data, in particular the wind rose

data, provide useful information. These data show the fraction of time that

the wind has a specific direction and speed.

To calculate the number of fatalities a population distribution is deter-

mined. For the various areas the number of people exposed is specified, for

days and nights. For example at the ferry terminal, about 1500 people are

indicated for the daytime and 0 during nights.

For each scenario a fraction of fatalities are determined. For example for

heavy explosion scenarios a fraction of 1 was used whereas for many types of

fires a fraction of 0.2 was used. For some detailed calculations, see Section 6.3.

Risk picture

The calculations produce estimates p* and G*(n) of

p ¼ IR for a specific person in the group having the highest risk

and the f-n curve G(n) ¼ Ef[Y(n)], where Y(n) denotes the number of

accidents with at least n fatalities during a specific period of time (for example

one year). Figure 4.6 shows the f-n curve estimate G*(n). We see that for

small n values the estimate G*(n) lies in the ALARP region, whereas for large

values of n the risk is acceptable.

The aim of the risk assessment is to accurately estimate p and G(n).

The estimate p* is equal to 5� 10�7, i.e. the estimated risk is in the ALARP

region, as the following limits were defined (refer to Figure 4.5):

IR > 1� 10�5 Not acceptable (intolerable)

1� 10�5 < IR < 1� 10�7 ALARP

IR < 1� 10�7 Acceptable risk

Hence, the risk is not considered unacceptable or intolerable. In applications

the risk estimates typically fall in the ALARP region, close to acceptable.

Several risk-reducing measures were considered, for example welded pipes

in feed gas and LNG services. The measures reduced the estimated risk to a

level very close to the acceptable region. The assessments were carried out in

parallel with sensitivity analyses of some assumptions, including the person-

nel distribution and the fraction of fatalities in different types of scenarios.

5.4 Case 3: Design of a safety system

We refer to Section 4.3 where we introduced Case 3, the design of a safety

system. The reliability and risk indices introduced are:
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l: the failure rate of the unit, the number of failures per unit of time when

considering a sequence of a very large (in theory infinite) number of similar

units replaced at failures.

MFDT (mean fractional dead time) for the two systems, interpreted as the

fraction of time the system is not functioning in the long run.

q ¼ IR for a specific person in the group having the highest risk, for the

two systems.

The aim of the assessment is to accurately estimate these quantities.

For the unit we suppose that the following failure data are available:

Source a: 10 failures with a total exposure time of about 500

Source b: 5 failures with a total exposure time of about 25.

The data source b is considered to have the most relevant data for the

systems analysed, but there are different views on this among the analysts

performing the analysis. Using the data from source b, we obtain an

estimate l* of l equal to 5/25 ¼ 0.2, as was indicated in Section 4.3. Using

source a, we obtain an estimate of l equal to 10/500 ¼ 0.02, a factor 10 times

lower than l*.
Using the standard formulae for MFDT, lt/2 (alternative I) and (lt)2/3

(alternative II) and that the time between tests is t¼ 1, we obtain MFDT

estimates equal to 0.1 (10%) for alternative I and 0.013 (1.3%) for alternative

II when l is replaced by the estimate l* ¼ 0.2. If the estimate 0.02 is used

for l, the corresponding estimates of MFDT are 0.01 and 0.00013.

The safety system influences the risk, and a risk assessment similar to the

one described in Section 5.3 is conducted and estimates q* of q are obtained.

Using l* ¼ 0.2 the q estimates are 4� 10�4 and 2� 10�4, respectively for

alternative I and alternative II. The difference is moderately large, a factor of

two, as the failure of the safety system could affect the escalation of the

accident. If the estimate of 0.02 of l is used, the corresponding estimates

of q are 1� 10�4 and 2� 10�5, i.e. the risk index for alternative II is a factor

of 5 lower than the one for alternative I.

The decision-maker compares this difference with the extra costs of imple-

menting alternative II.

5.5 Discussion

In this section we will discuss the scientific quality of the assessment using the

reliability and validity requirements (refer to Section 3.3). The three examples

above will be used to illustrate the analysis. Of the validity criteria, only V1

and V4 are applicable.
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5.5.1 Validity criterion V1: Accurate risk estimations

Firstly let us look into the validity criterion V1: the degree to which the

produced risk numbers are accurate compared to the underlying true risk.

This is obviously an appropriate criterion in this case as the aim of the

analysis is to accurately estimate risk. Relative frequency-based probabilities

p¼ Pf or related parameters are assumed to exist, generating a “true” risk

(A,C,Pf), as defined in Section 5.1.

If we have available a substantial amount of data and these are considered

relevant for the estimation of p, i.e. the observations are considered similar

to those of the population generating p, statistical theory shows that the

estimation error becomes negligible. Hence the results are valid according

to the criterion V1.

It is not possible to define precisely what we mean by terms such as

“accurate estimation” and “negligible estimation error” without being expli-

cit about the context. However, often we may indicate an order of magnitude.

For example, if we estimate a p equal to 0.10 and the upper and lower

confidence bounds are 0.11 and 0.09 respectively, the estimation error would

be considered negligible for most applications.

Consider Case 1: Statistical inference of accident data. In this case the

confidence intervals are quite narrow; see for instance Table 5.2. For example

the approximate 90 per cent confidence interval of m, the serious injury rate

per million manhours, equals (1.12, 1.34) and (1.68, 2.18) for fixed instal-

lations and mobile units, respectively. There is a considerable amount of data

to conclude on the true risk numbers.

If the time period had been smaller, the intervals would of course have been

wider. For example, if we had only one year as the basis for our analysis, the

intervals for all units would be approximate estimatesþ/� 0.35. Then it would

for example bemore difficult to show significant differences between two rates.

Also in the case of linear regression, the analysis produces quite

narrow uncertainty bands. For example, the 90 per cent confidence interval

for mi ¼ a þ ib for year 12 is equal to (0.39, 0.87).

However, in many practical risk analysis settings data are often scarce. If

the statistical analysis is based on few data, the estimation accuracy would be

poor as the confidence intervals would be wide. Thus accurate estimation,

and a high validity according to V1, cannot be obtained.

Consider Case 2: QRA of the LNG plant. In this case estimates of the true

underlying risk have been produced, but no attempt has been made to

describe the uncertainties in the estimates. Intuitively, it seems clear that the

estimates would be subject to large uncertainties, and the validity criterion

V1 cannot be met.
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It would be impossible to use confidence intervals to reveal these uncertain-

ties as the estimates are not produced by data of the form X1, X2, . . . as in

case 1. For some parameters we may have used data of this form, but for most

parameters the estimates are based on the analysts’ (experts’) best judgements

given their knowledge at the time of the assessment. In the next chapter we

will study the probability of frequency approach (see Section 2.7) which

allows for uncertainty descriptions of the risk parameters, using knowledge-

based (subjective) probabilities. The aim then is to describe the uncertainties,

not to accurately estimate the risk, but we do not need detailed analysis to

conclude that the criterion V1 cannot be satisfied if the aim is accurate risk

estimation in a case like this. There are too little relevant data available, and

the models used introduce an additional uncertainty element.

Case 3:Design of a safety system, is similar to case 2, but it would be easier to

express uncertainties about the risk parameters, l, MFDT and q. Based on the

data from source a and b, we can produce confidence intervals for the failure

rate l, and this would in turn lead to confidence intervals for MFDT and q,

reflecting the failure data of the unit. Suppose that the data from source b, five

failures with an exposure time of about 25, is generated by observing five

failures in a time period 25 with only one unit of exposure at any time. Then

the number of failures has a Poisson distribution with parameter 25l, and a

90 per cent confidence interval is given by (see Appendix A.2.1):

z1=50; z2=50ð Þ ¼ 3:94=50; 21:03=50ð Þ ¼ 0:08; 0:42ð Þ;
where z1 equals the 0.05 quantile in the chi-square distribution with 2� 5¼ 10

degrees of freedom, and z2 equals the 0.95 quantile in the chi-square distri-

bution with 2� 6 ¼12 degrees of freedom. The values of z are found from

statistical tables for the chi-square distribution. This gives the following

90 per cent confidence intervals for MFDT for the two alternatives:

Alternative I: (0.08/2, 0.42/2) ¼ (0.04, 0.21)

Alternative II: (0.082/3, 0.422/3) ¼ (0.0021, 0.059).

We have used the fact that MFDT is given by lt/2 and (lt)2/3 for these alterna-
tives and the time between tests is t ¼ 1. The MFDT estimate computed above

was 0.1 and 0.013 respectively. We may also compute approximate confidence

intervals for q ¼ IR, using the calculations in the risk assessments. The intervals

would then cover the estimates 4� 10�4 and 2� 10�4, for the twoalternatives.As

the risk calculations are not presented here, we just report the figures

Alternative I: (3� 10�4, 5� 10�4)

Alternative II: (1� 10�4, 3� 10�4).

70 Accurate risk estimation



We see that the intervals are quite wide for l and MFDT. For q ¼ IR the

intervals are however rather narrow. The reason is that the IR value is

governed by many other factors than the reliability of the safety system,

and the interval only relates to variation in the data for this system.

We may discuss to what extent the estimation is accurate for l and MFDT,

but it is clear that with more observations the confidence intervals become

narrower. If we include all data, we ignore the problem of relevancy of the

data (refer to discussion of criterion V4 below); the corresponding 90 per cent

confidence interval for l is

z1=1050; z2=1050ð Þ ¼ 18:5=1050; 46=1050ð Þ ¼ 0:017; 0:04ð Þ;
i.e. a much more narrow interval than for source b.

To increase the amount of data, to produce more narrow confidence

intervals, we have extended the relevant population of observations to cover

situations that to a varying degree are similar to the one being studied. This

reduces the quality, i.e. the relevancy of the data, but this aspect would not be

possible to describe by the statistical analysis. If the data are not considered

relevant, the statistical analysis cannot be used to check the validity according

to criterion V1.

The same type of problem arises in the case of modelling, although the

amount of data is often larger on the detailed system level. However, in this

case we should also take into account the inaccuracy (uncertainty) intro-

duced by using the model, for example that MFDT ¼ (lt)2/3 in alternative

II in Case 3. This model is based on independence which may be a rough

assumption. However, the statistical analysis is not able to describe this

uncertainty. The analysis is conditional on the model used. In the assessment

we use a specific model and this introduces a possible error in the risk

estimation. Hence validity V1 is ensured only if the model inaccuracy is

negligible.

We conclude that the risk assessment when founded on traditional statis-

tical methods meets the validity requirement according to V1 only if a large

amount of relevant data is available. In other cases, when such data are not

available, the V1 criterion is in general not satisfied.

Next we look into criterion V4. The criteria V2 and V3 are not relevant for

this case, as already mentioned.

5.5.2 Validity criterion V4: Addressing the right quantities

Next we address the criterion V4: the degree to which the analysis addresses

the right quantities. Are m, p, G(n), l, q etc. really the quantities of interest?
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Our goal is to express the risk of an activity, but in this set-up we are

concerned about the average performance of a thought-constructed popula-

tion of similar situations. Are these quantities meaningful representations of

the system or activity being studied?

Let us investigate in more detail a parameter in the first case, the serious

injury rate m. We interpret this rate as the average number of serious

injuries per million manhours when considering an infinite number of

similar situations to the one studied. This interpretation we discussed in

Section 5.2 for the analogous rate at year 12, l12. We had problems in

explaining the meaning of this parameter. It expresses in a way some

average number of serious injuries, but what the average covers is difficult

to define and communicate. The idea is that the parameter reflects some

underlying property of the activity studied. It is acknowledged that the

meaning of this property is not fully understood but conducting the assess-

ment just as if this property exists has proved to give a useful tool for

practical analysis. However, this type of pragmatism cannot be accepted if

we require that our assessment should be built on a scientific basis. Then all

quantities introduced should be properly defined and allow for meaningful

interpretations.

But even if we accept the existence of these parameters one may question

the focus on these quantities in the risk assessment. Why should we focus

on the average performance, and not the performance of the specific

activity analysed? Would it not be more interesting to address the observ-

able quantities, for example the number of serious injuries in the coming

year?

No, is the answer when adopting the traditional statistical paradigm which

constitutes the basis for the analysis in this chapter. Observations are subject

to randomness, and we should search for the underlying parameters describ-

ing the condition of the system or activity analysed. This underlying condi-

tion is what we look for. Risk is related to this condition, not to the values of

the random variables. Without such parameters, the assessments cannot be

performed.

The strength of this argumentation relies on the ability to define models

with parameters that are meaningful for characterising the specific unit

studied. Only if the parameters have meaningful interpretations can we make

a judgement about their appropriateness for describing risk. For all the three

cases studied above the interpretation was difficult. The easiest case was the

failure rate of the units studied in Case 3. But also in this case it is hard to

define precisely the relevant population of units. Hence, we conclude that the

validity requirement V4 is not in general met.
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5.5.3 The reliability criteria R – the same results with repetition

The amount of relevant data also affects the reliability criterion R, the extent

to which the risk analysis yields the same results when repeating the analysis.

In the case of a large amount of relevant data, the statistical analyses would

show insignificant variations from analysis to analysis for all three interpret-

ations R1–R3:

The degree to which the risk analysis methods produce the same results at

reruns of these methods (R1).

The degree to which the risk analysis produces identical results when

conducted by different analysis teams, but using the same methods

and data (R2).

The degree to which the risk analysis produces identical results when

conducted by different analysis teams with the same analysis scope

and objectives, but no restrictions on methods and data (R3).

The statistical methods for such applications are largely universal. In other

cases, when such data are not available, the R criterion is in general not

satisfied. It is, however, not difficult to identify examples where the criteria

R (and R1–R3) are also met when rather few data exist. If we have success –

failure observations, for example two successes out of ten – the analysis teams

are led to a binomial probability model and this would give the same estimate

and confidence interval. For other situations there may be no obvious analy-

sis methods and different analysis teams are likely to produce different

results. If repeating the analysis means making a new data sample, this may

lead to large variations in the results in the case that the sample is small

(relevant for R1 and R3). For example, in the binomial case with 10 trials the

success estimate could show large differences from sample to sample.

In view of V1, the reliability criteria are all considered appropriate for

the traditional statistical methods. The aim is to produce risk numbers close

to the true risk and then we should require that the analysis results are not

dependent on the analysis team and/or the methods and data used.

For Case 1 we may thus conclude that the reliability criteria are met. We

could repeat the analysis and get more or less the same results. This could

also happen for Case 3 as there is a rather common approach to the

problem. The MFDT models are well established. However, there exist

many adjustments of the basic models, and different analysts could obvi-

ously make different choices with respect to the data to be used in the

analysis. Criterion R2 – that the risk assessment produces identical results

when conducted by different analysis teams but using the same methods and
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data – should thus be met in these cases (Cases 1 and 3 up to MFDT level).

We get the same conclusion for criterion R1, that the risk assessment

methods produce the same results at reruns of these methods, provided the

same data are used. However, criterion R3, that the risk assessment pro-

duces identical results when conducted by different analysis teams with the

same analysis scope and objectives but no restrictions on methods and data,

does not hold for Case 3, only for Case 1 where there are no discussions on

which data to apply.

For Case 2 (and the IR part of Case 3) we can conclude that the criteria are

not in general met. Criterion R3 is obvious. It is obvious that the risk analysis

does not produce identical results when conducted by different analysis teams

with the same analysis scope and objectives, but no restrictions on methods

and data (R3). This has also been documented by several benchmarking

exercises; see e.g. Lauridsen et al. (2001). We have to conclude negatively

also for criterion R2. The risk analyses do not produce identical results when

conducted by different analysis teams, but using the same methods and data

(R2). The point is that the methods used need to be based on assumptions,

and these assumptions would be different for different analysis teams.

For criterion R1, that risk analysis methods produce the same results at

reruns of the methods used, the conclusion would depend on what is allowed

to vary at reruns. If the assumptions are not fixed, the criterion is obviously

not met. If, however, the assumptions are fixed, the variation may reflect only

the reliability of the computation procedures for producing the risk numbers.

We all know that computer codes and hand-calculations can fail, but proper

quality assurance procedures should be able to solve this problem. For

complex models, computational issues could easily lead to unreliability of

the results if not taken seriously.

5.5.4 Summary of assessments and final remarks

Table 5.4 summarises the conclusions from the previous section.

The traditional statistical methods meet the reliability and validity criteria

only if a large amount of relevant data is available. If such data do not exist,

the criteria are not in general met. Only in specific cases would some of these

criteria be met, as discussed above.

The validity criterion V4, that the analysis addresses the right quantities, is

met to the degree that the model parameters are adequately characterising the

units studied, see Section 5.5.2.

In this chapter we have restricted the analysis to relative frequency-

interpreted probabilities and standard statistical analysis. It would also be
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possible to use Bayesian methods and subjective (knowledge-based) probabil-

ities to assess uncertainties about the presumed underlying risk and relative

frequencies. However, such methods and perspectives are more commonly

adopted when the objective of risk assessment is to describe uncertainties,

and not to accurately estimate risk. We refer to the next chapter.

Table 5.4 Summary of reliability and validity analysis. Y indicates that the
criterion is met, N that it is not met, and Y/N that it is met under certain conditions.
The boxes are empty in cases where the criterion is not relevant.

Approach
Criterion

R R1 R2 R3 V V1 V2 V3 V4

Traditional statistical
analysis, large amount of
relevant data available

Y Y Y Y Y/N Y Y/N

Traditional statistical
analysis in other cases

N N N N Y/N N Y/N
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6

Risk assessment when the objective
is uncertainty descriptions

Next we will study the scientific platform of risk assessments when the

objective of these assessments is to describe uncertainties. We follow the same

structure as in the previous chapter. We first summarise the framework

introduced in Chapter 2 for assessing risk in such a setting, and clarify key

concepts like probability and risk. We then conduct the assessments for the

three cases, and from this basis we study the scientific quality of the risk

assessments. Focus is again on the scientific requirements reliability and

validity defined in Chapter 3. We distinguish between an (A,C,Pf)-based risk

perspective (referred to as the probability of frequency approach) and an

(A,C,U)-based risk perspective; in the former risk is defined through chances

(which is the Bayesian term for frequentist probabilities, i.e. fractions of

“successes” in the long run; refer to Chapter 2) and in the latter risk is defined

through uncertainties.

6.1 Scientific basis

We consider an activity and distinguish between the following two ways of

looking at risk:

I: Risk is defined through chances (frequentist probabilities)

Risk ¼ (A,C,Pf), where Pf is a chance (relative frequency-interpreted prob-

ability) or a related parameter such as the expected number of occurrences of

the event A per unit of time, where expectation is with respect to the chance

distribution (relative frequency-interpreted probability distribution).

Risk is described according to the probability of frequency approach as

presented in Chapter 2, i.e.
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Risk description ¼ A;C;Pf�;P Pfð Þ;Kð Þ;
where K is the background knowledge that the estimate Pf* and the subjective

(knowledge-based) probability distribution P is based on.

II: Risk is defined through uncertainties

Risk ¼ (A,C,U), where U is uncertainties about A and C (will A occur and

what will the consequences C be?).

The corresponding risk description based on this definition is

Risk description ¼ A;C;U;P;Kð Þ;
where P is a knowledge-based (subjective) probability expressing the uncer-

tainties based on the background knowledge K. This description covers

probability distributions of A and C, as well as predictions of A and C, for

example a predictor C* given by the expected value of C, unconditionally

or conditional on the occurrence of A, i.e. C* ¼ EC or C* ¼ E[C|A]. The

U represents some type of uncertainty analysis that “extends beyond P”, for

example a special identification and assessment of uncertainty factors as was

discussed in Section 2.9.

In the following we study the three cases 1–3 for these two perspectives

on risk.

6.2 Case 1: Statistical inference of accident data

6.2.1 Risk is defined through chances (frequentist probabilities)

We refer to Sections 4.1 and 5.2. In Section 5.2 we used the statistics available

on injuries to estimate unknown risk parameters, for example the serious

injury rate m. To express uncertainties, confidence intervals were used. The

aim was to accurately assess the risk, i.e. the parameters of the risk model.

Now we change focus. The objective of the risk assessment is to describe the

uncertainties about the parameters, and the tool used for this purpose is

knowledge-based (subjective) probabilities P. These probabilities are condi-

tional on a background knowledge K.

The analysis then becomes a standard Bayesian analysis, which is based on

the following steps:

1. Establish a probabilistic model.

2. Assign a prior distribution on the parameters of interest.

3. Use Bayes’ theorem to establish the posterior distribution of the

parameters.
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Two different probabilistic models were introduced in Section 5.2. For both

models it is assumed that the number of serious injuries follows a Poisson

distribution, but for the first model the rate is independent of time, whereas

for the second the rate is a linear function of time (linear regression model).

Consider first the time-independent model. The aim is then to assess the

uncertainties about the true underlying serious injury rate m.
As a prior distribution on m we may use a gamma distribution f with

parameters a and b:

fðm jKÞ ¼ bðbmÞa�1e�bm=�ðaÞ m > 0;

where K denotes the background knowledge that the assessment is based on.

This knowledge might come from various sources, e.g. observations from

previous years, similar data from other countries, expert judgements, etc. The

gamma distribution is a mathematically convenient choice for prior distribu-

tion in this case as it a so-called conjugate distribution. A prior distribution is

called conjugate if it leads to a posterior distribution in the same distribution

class (in this case gamma) (Singpurwalla, 2006).

Given that the total number of serious injuries in the previous 11 years

X1–11 equals x, the posterior density is given by

fðm j x;KÞ ¼ d LðmÞfðm jKÞ;
where d is a normalising constant such that the density has integral 1 and L(m)
is the likelihood function (which equals the probability density p(x|m) of X1–11

when m is known, seen as a function of m):

LðmÞ ¼ pðx j mÞ ¼ cxðmx=x!Þe�mc;

and c ¼ S ci.

We find that

fðm j x;KÞ ¼ dmxþa�1e�ðbþcÞm;

i.e. the posterior density is a gamma distribution now with parameters aþ x

and bþ S ci.

Suppose the analyst’s (expert’s) prior knowledge indicates that it is not

likely that we experience more than three serious injuries per million exposed

hours. The probability that the parameter m exceeds three should be about

10 per cent. The expected value is set to 1.5. This gives a ¼ 2 and b ¼ 4/3.

Note that the expected value equals a/b ¼ 1.5. The distribution (density)

is shown in Figure 6.1, together with the posterior distribution (density)

when the number of serious injuries x¼ 508 and the manhours equals 366

(remember Table 5.2). The posterior distribution is an approximate normal
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distribution, with the mass concentrated on (1.29, 1.49), which is a 95 per cent

credibility interval for m. The mean of this distribution is (a þ x)/(b þ Sci) ¼
1.39 and the variance equals (aþ x)/(bþSci)

2 ¼ 0.00378 (standard deviation

0.061). Hence the analyst (expert) is 95 per cent sure that m lies in this interval

given the data observed for the 11 years. We see that the data observed

dominate the posterior distribution. The posterior distribution is not very

much dependent on the prior distribution in this case since the amount of

data is so large. The credibility interval is approximately equal to the confi-

dence interval calculated in Section 5.2. The meanings of these intervals are,

however, different. We refer to the discussion in Section 6.5.

Also the credibility intervals for fixed installations and mobile units are

approximately equal to the computed confidence intervals (see Table 5.2) for

“reasonable” choices of the prior distributions.

The posterior analysis can also be used to determine the probability

that the serious injury rate for mobile units (mM) is larger than for fixed

installations (mF), i.e. P(mM > mF | x, K). Using independent prior gamma
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Figure 6.1 Prior (flat curve) and posterior (peaked curve) densities of the
serious injury rate m.
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distributions for mM and mF, we are led to independent gamma posterior

distributions. The problem is thus to determine the distribution of the differ-

ence mD – mF where mD and mF are independent with expectations (variance)

approximately equal to 1.93 and 1.23 (1.93/82 and 1.23/283), respectively.

Using approximation to the normal distribution, we find that

P mM � mF > 0 j x;Kð Þ ¼ P mD � mF � 0:7ð Þ=0:167 > �0:7=0:167 j x;Kð Þ
� PðNormal 0; 1ð Þ > �4:2Þ ¼ 0:9999:

Hence the analyst is confident that the serious injury rate for mobile units is

higher than for fixed installations, given the data and the model used.

The linear regression analysis can be performed similarly, but it is more

technical. Again we follow the three steps:

1. Establish a probabilistic model.

2. Assign a prior distribution on the parameters of interest.

3. Use Bayes’ theorem to establish the posterior distribution of the parameters.

As above, we use Poisson distributions for the number of events, but now

we assume that the rate is dependent on the year and has the linear form

mi ¼ a þ bi. By assigning prior distributions on a and b, we can derive a

posterior distribution for a and b, and in particular the distribution of the

rate for year 12: m12 ¼ a þ 12b. Figure 6.2 shows the posterior distribution of
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Figure 6.2 The posterior distribution density of m12 for fixed installations
when assuming that the priori distributions of a and b are normal with mean
0 and variance 106.
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m12 for fixed installations when assuming that the priori distributions of a and

b are normal with mean 0 and variance 106 (hence we assign more or less the

same prior probability for these parameters to be included in any interval of

the same length). To compute the posterior density, the so-called MCMC

(Markov Chain Monte Carlo) method based on the Metropolis–Hastings

algorithm (Hamada et al., 2008) is used, with 100 000 simulations. From the

density, we obtain a 90 per cent credibility interval for m12: [0.40, 0.79]. The
mean of the distribution is 0.59. The observational data completely dominate

the posterior distribution.

6.2.2 Risk is defined through uncertainties

The aim of the risk assessment is now to describe the uncertainties about

unknown quantities, so the first task is to identify these quantities.

The data for the years 1–11 are historical data; what we are concerned

about are the future number of serious injuries and the normalised version per

million manhours, and in particular these quantities (denoted X and Y) for

year 12. To simplify our analysis we restrict attention to year 12.

The aim of the risk assessment is to predict these quantities and to describe

uncertainties.

Table 6.1 shows the basic data from Table 5.2. From these data we

predict 1.23, 1.93 and 1.39 serious injuries per million manhours for produc-

tion (fixed) installations, mobile units and total, respectively, assuming

no trends.

Next we need to address uncertainties, which is a key component of risk.

Consider the total number of serious injuries in year 12, X, and divide the

year into 365 days. For the sake of simplicity, assume that the number of

manhours during day i is a fixed number d not depending on the day of the

year. Hence d365 ¼ c12. What is the knowledge-based probability that a

serious injury occurs (we denote this event A) on day 1? Based on the data

observed for the previous 11 years, and assuming no trend, the assessor

assigns a probability of A, P(A), equal to d1.39/106. For day two, the assessor

Table 6.1 Serious injury data for fixed installations and mobile units.

Production (fixed)
installations

Mobile
units

All
units

Number of serious injuries S Xi 359 159 508
Manhours S ci (in millions) 283.6 82.4 366.0
Normalised number of serious injuries m* 1.23 1.93 1.39
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would make the same assignment, although the information basis is slightly

improved. At day two the assessor can add occurrence or non-occurrence of

an event on day 1. However, this additional information is negligible com-

pared to that gained from the previous 11 years. Hence the knowledge-based

probability is not changed. This argument can be repeated and we are led

to an approximate binominal distribution for X, with parameters 365 and

d1.39/106, which in its turn can be approximated by a Poisson distribution

with mean 365d1.39/106 ¼ c12 1.39.

Thus if c12 ¼ 40, we predict 55.6 � 56 events and obtain the following

90 per cent prediction interval for X using the Poisson distribution: [44, 68].

For the normalised number of serious injuries per million manhours (Y), the

interval becomes: [1.1, 1.7]. The analogous rate results for fixed installations

and mobile units are [27, 47] (normalised [0.90, 1.57]) and [12, 27] (normalised

[1.2, 2.7]), respectively, assuming that the manhours are 30 and 10.

Next we incorporate trends, and let us again use the data for fixed instal-

lations as an illustration. Using the regression line in Figure 5.3, we obtain a

prediction of the number of serious injuries rate per million manhours equal

to 0.63. Then arguing as above, the uncertainty is expressed by a Poisson

distribution with parameter 0.63. A 90 per cent prediction interval for the

number of serious injuries then becomes (assuming 30 million manhours):

[12, 26], which normalised gives the interval [0.40, 0.87]. The results differ

strongly from the non-trend case, as shown in Table 6.2. For example, the

prediction intervals are disjunct, [0.90, 1.57] and [0.40, 0.87], which clearly

demonstrates the importance of the assumptions made.

A probabilistic analysis is always based on a set of assumptions, for

example “no trend”. But the assumptions could be wrong (leading to poor

predictions). If there is a trend in the injury numbers it would be more

reasonable to predict a rate of 0.63 than 1.23 next year. Only hindsight

can show which one is the best prediction, but the above analysis makes it

clear that a simple transformation of the historical figures (as reported in

Table 6.1) can lead to very poor predictions.

Table 6.2 Serious injury data for fixed installations, for the no-trend and trend cases.

No trend Trend

Predicted number of serious injuries (normalised) 37 (1.23) 19 (0.63)
90% prediction interval for number of serious injuries
(normalised)

[27, 47] [12, 26]

90% prediction interval for the normalised number of
serious injuries

[0.90, 1.57] [0.40, 0.87]
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By attempting to understand the data, by assuming a trend and carrying

out a regression analysis, we may be able to improve the predictions. But we

may also end up “over-interpreting” the data in the sense that we look for all

sorts of explanations for why the historical figures are as they are. Perhaps

injury rates are falling; perhaps the trend arrow will be reversed next year. We

can analyse possible underlying conditions that can affect the injury rates,

but it is not easy to reflect what the important factors are, and what is “noise”

or arbitrariness.

An analysis based on the historical numbers could easily become too

narrow and imply that extreme outcomes are ignored. Surprises occur from

time to time, and suddenly an event could occur that dramatically changes the

development, with the consequence that the rates jump up or down. In a risk

analysis such events should ideally be identified. However, the problem is that

we do not always have the knowledge and insights to be able to identify such

events, because they are extremely unexpected.

The risk perspective adopted motivates assessment of uncertainties beyond

the probabilities assigned. The practical tool used may be a list of uncertainty

factors that could strongly influence the number of injuries to occur in the

future. For this case, a number of such factors were identified, including:

(a) Continuous safety improvement: efforts are made to avoid accidents, in

line with overall policy documents both on a company and governmental

level.

(b) Economic climate: if the oil price drops we may experience a stronger

focus on production and a reduced willingness to use money on safety

measures.

(c) Major accidents: a large accident in the industry may give increased focus

on safety and a further reduction in the number of injuries, or the result

could be a shift in attention with more attention being paid to large-scale

accidents and less on typical working accidents.

(d) Ageing of installations: many of the installations are old, and deterior-

ation and ageing are increasing problems. These phenomena could lead

to operational changes and possibly an increased rate of failures and

incidents.

These factors may not be dramatic for the first year (year 12), but if we extend

the period of analysis to several years, they could cause dramatic changes in

the injury rates.

To assess the importance of these factors a qualitative crude assessment

can be carried out along the following lines, as mentioned in Section 2.8

(Aven, 2008b; Flage and Aven, 2009).
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Each factor’s importance is measured using a sensitivity analysis. Is

changing the factor important for the risk indices considered, for example

the probability that the serious injury rate exceeds a specific number? If this is

the case, we next address the uncertainty of this factor. Are there large

uncertainties about this factor? If the uncertainties are assessed as large, the

factor is given a high risk score. Hence to obtain a high score in this system,

the factor must be judged as important for the risk indices considered and the

factor must be subject to large uncertainties. This uncertainty assessment goes

beyond the probabilistic analysis. Aspects to be considered to judge the

uncertainties to be high are

� The phenomena involved are not well understood; models are non-existent

or known/believed to give poor predictions.
� The assumptions made represent strong simplifications.
� Data are not available, or are unreliable.
� There is lack of agreement/consensus among experts.

For our case, let us consider the analysis when there is no trend. Then

certainly this assumption (“no trend”) (which is closely related to (a) repre-

sents a major uncertainty factor. It obviously scores highly on sensitivity and

uncertainty and is thus an important factor. The predicted results could be

poor compared to the real observations in coming years.

Next let us consider one of the other factors, the economic climate. If the

economic climate changes, this may strongly affect the safety level. This was

demonstrated in the late 90s when the industry faced an increased pressure to

reduce costs. The industry is not likely tomake the same “mistake” again but still

we would judge the economic climate as important for the safety level. However,

in a short-term perspective (year 12) we do not assign a high score to this

uncertainty factor: we are quite confident that the economic climate will not

give large changes in the injury rates, although wemay experience a much lower

oil price. Of course in a longer time perspective, the situation will be different.

Finally in this section we would like to discuss the appropriateness of

introducing relative frequencies, or chances as we would call them in this

context (see Section 2.5).

In the analysis in this section we have not introduced a stochastic model – a

chance model – expressing aleatory uncertainty, i.e. variation in populations

of similar units. The reason is twofold:

1. As was noted in Section 5.2 the meaning of the parameters (m) is not clear
(we need to define the average number of serious injuries when considering

an infinite number of similar periods of exposure times).
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2. It is not easy to see the additional insights gained in this case by introdu-

cing these models compared to the more direct and simple approach

presented in this section.

However, if the analysts prefer to introduce these models, and they are

justified, they can be seen also as tools for assessing the uncertainties about

A and C. The assessment of the parameters of the models is then not the end

product of the analysis as in the (A,C,Pf) case. Having established the

posterior distribution of the parameters (m), we use the law of total probabil-

ity to establish the so-called predictive distributions of the observable quan-

tities, for example the number of serious injuries X in one-million exposed

hours (thus c¼ 1). The formula used is

P X ¼ xð Þ ¼
ð
P X ¼ xjmð Þf mjKð Þdm;

where f(m | K) is the posterior distribution of m and P(X ¼ x | m) is the Poisson
distribution with parameter m. It can be shown that X has a so-called Poisson

gamma distribution (also referred to as the negative binomial distribution),

i.e. (Vose, 2008):

PðX¼ xÞ ¼ ½�ða0 þ xÞ=ð�ða0Þ�ðxÞÞ� b0=ðb0 þ 1Þ�a0 ½1=ðb0 þ 1Þ�x; x¼ 0; 1; 2; . . . ;½
where G is the gamma function and a0 ¼ a þ numbers of observed injuries,

and b0 ¼ b þ S ci. For large a0 this distribution is close to a Poisson

distribution.

6.3 Case 2: QRA of LNG plant

6.3.1 Risk is defined through frequentist probabilities (chances)

We refer to Sections 4.2 and 5.3. In Section 5.3 we used models, hard data and

expert judgements to estimate the parameters of interest, i.e.

p ¼ individual risk for a specific person in the group having the highest

risk, i.e. the probability that a specific person (arbitrarily chosen) shall be

killed due to the activity during a period of one year, and

the f–n curve G(n) expressing the frequency f (i.e. the expected) number of

accidents that lead to minimum n number of fatalities, which can also be

interpreted as the probability of an accident with at least n fatalities, i.e.

G nð Þ ¼ Ef Y nð Þ½ �;
where Y(n) denotes the number of accidents with at least n fatalities during a

period of one year.
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These parameters (p and G(n)) are unknown and need to be estimated

and associated uncertainties assessed. We studied the point estimates in

Section 5.2. Now we address the problem of assessing the uncertainties about

the true value of these parameters. The tool for this purpose is knowledge-

based (subjective) probabilities. The approach is referred to as the probability

of frequency approach (refer to Section 6.1).

The analysis is then again an application of the Bayesian framework, which

comprises the following steps:

1. Establish a probabilistic model.

2. Assign a prior distribution on the parameters of interest.

3. Use Bayes’ theorem to establish the posterior distribution of the parameters.

The analysis is, however, quite different from the one presented in Section 6.2,

as the analysis is based on models with many parameters and the data

are rather scarce. To illustrate the analysis we will use a simplified version

of the event tree presented in Figure 4.7; see Figure 6.3. We see that if a

release occurs, it can either result in a pool fire, an explosion or no effect,

depending on the results of the branching events, immediate ignition, and

delayed ignition. The following parameters have been introduced:

q0 ¼ Ef[X]

q1 ¼ Pf(A)

X = # releases

Immediate 
ignition A 

Not
immediate
ignition

Pool fire

        

q3 Pool fireDelayed ignition B 

q2

No ignition

Explosion

No effect

q1

q0 = Ef [X] 

Figure 6.3 Event tree for the LNG plant case (based on Figure 4.7).

86 Uncertainty descriptions



q2 ¼ Pf(B | not A)

q3 ¼ Pf(pool fire | not A,B)

For q1, q2 and q3 it is tacitly assumed that the probabilities are conditional on

the occurrence of a release.

The model provides four scenarios:

S1: release – A – pool fire

S2: release – not A – B – flash (pool) fire

S3: release – not A – B – explosion

S4: release – not A and – not B – no effect.

Assume that the number of people exposed to scenario Si is vi, where v1 ¼ 0,

v2 ¼ 50 and v3 ¼ 100. Furthermore, assume that the fraction of fatalities is di,

where d2 ¼ d3¼ 0.1.

Let N denote the number of fatalities. Then these assumptions mean that

N equals 5 in the case of scenario S2 and N equals 10 in the case of scenario

S3, and zero otherwise.

The stochastic model used is thus described. To interpret the parameters

we need to construct infinite populations of similar situations to the one

studied. For example, q1 represents the fraction of times immediate ignition

occurs in the case of a release and the situation is similar to the one studied.

If we know all the parameter values we can calculate the contributions to p

and G(n). Suppose as an example that

q0 ¼ Ef[X] ¼ 0.005 (� Pf(one release occurs in the period considered))

q1 ¼ Pf (A) ¼ 0.3

q2 ¼ Pf (B | not A) ¼ 0.2

q3 ¼ Pf (pool fire | not A,B) ¼ 0.4.

This gives the following probabilities for the scenarios:

Pf(S1 | release)¼ Pf(A)¼ q1 ¼ 0.3

Pf(S2 | release)¼ Pf(notA,B, pool fire)¼ (1�q1) q2 q3¼0.7� 0.2� 0.4¼ 0.056

Pf(S3 | release)¼ Pf(not A, B, explosion) ¼ (1�q1) q2 (1�q3) ¼ 0.7 � 0.2 �
0.6 ¼ 0.084

Pf(S4 | release)¼ Pf(not A, not B)¼ (1�q1) (1�q2) ¼ 0.7� 0.8¼ 0.56.

By multiplying these numbers with q0 ¼ Ef[X] ¼ 0.005, we obtain the

unconditional probabilities P(Si). Hence there is a probability of 0.00042 that

a release occurs and this release leads to an explosion.

It remains to include the fatality figures, 5 in the case of S2, 10 in the case of

scenario S3, and 0 otherwise. Table 6.3 summarises the results.
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From these figures we see that Pf(N > 0) ¼ 7 � 10�4, i.e. the probability of a

fatal accident is 0.07 per cent, and that

EfN ¼ 0:0056;

i.e. the expected number of fatalities due to this risk contribution is 0.0056.

From Table 6.3 we have the numbers necessary to calculate the f–n curve

contribution: the probability that an accident occurs with at least n fatalities.

To compute an individual risk index we make a simplified assumption: 100

persons are exposed, and the IR is the same for all persons. Then

p ¼ IR ¼ Ef X½ �=100 ¼ 0:000056 ¼ 6� 10�5:

This term represents the average individual risk.

In practice we do not know the values of the parameters, and we have to

replace the parameters by estimates (qi)*, (Pf)*, (Ef)*, etc. The above figures

thus have to be interpreted as estimates of the underlying parameters. Thus

we have for example (EfN)* ¼ 0.0056.

The aim of the risk assessments in this case is to describe uncertainties, and

the tool used is knowledge-based probabilities P. Next we will show how the

uncertainty analysis is carried out for this case, using the event tree model.

The quantity of interest for this analysis is G(n) and p. Let us concentrate

our focus on G(1), the relative frequency probability of at least one fatality,

and to simplify the notation we refer to this quantity as r. From the above

analysis we have established a relationship (model) between this quantity and

the underlying model parameters: q0, q1, q2 and q3:

G 1ð Þ ¼ r ¼ P S1ð Þ þ P S2ð Þ ¼ q0½ð1� q1Þq2q3 þ ð1� q1Þq2ð1� q3Þ�
¼ q0ð1� q1Þq2:

The aim of the analysis is now to establish uncertainty distributions on the

qi parameters and use the event tree model to propagate these uncertainties

to an uncertainty distribution for r. A numerical example will explain

the ideas.

Table 6.3 Probability distribution for the number of fatalities associated with the event
tree of Figure 6.2.

N: number of fatalities associated with
release as defined by event tree in Figure 6.2 Pf Ef contribution

0 0.99930 0
5 0.00028 0.0014
10 0.00042 0.0042
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Let us first consider q0, the expected number of releases. As an estimate of q0
we used 0.005. To reflect uncertainties we use a subjective probability distribu-

tion. This distribution may for example be a beta-distribution, a triangular

distribution or a uniform distribution. For this case we will simply assume that

the analysts (experts) specify a uniform distribution on the interval [0.003,

0.007], which means that the analysts (experts) are confident that the true q0
lies in this interval, and that their degree of belief that q0 lies in the interval

[0.003, 0.005] is the same as that of [0.005, 0.007], namely 50 per cent.Wemake

similar assumptions for the other parameters. See overview in Table 6.4.

Using these distributions and assuming “independent” distributions for the

qi parameters we can calculate the knowledge-based distributions for r.

Independence here means that if for example we know that q2 is equal

to 0.12 (say), this would not affect our uncertainty assessment of q3 (say).

To establish the output distributions using analytical formulae is difficult.

It is easier to use Monte Carlo simulation, and this is the common approach

for performing this type of uncertainty assessment. In this case the analysis

was carried out using Matlab 2007. Random numbers for each parameter are

drawn and using the formula r ¼ q0 (1 � q1) q2 we obtain the associated

uncertainty distribution of r, shown in Table 6.5 and Figure 6.4. Note that

these values are estimates of the probabilities given by the input of the Monte

Carlo simulations: the uniform distributions and the formula r ¼ q0 (1� q1)

q2. The estimation error is small as the number of replications is large (107).

Hence there is a knowledge-based probability of 43% that the chance of at

least one fatality is in the interval (0.04%, 0.07%].

From this simple example it should be clear how to perform a similar

analysis with a large number of parameters.

6.3.2 Risk is defined through uncertainties

The aim of the risk assessment is now to describe the uncertainties about

unknown quantities, so we need to identify these quantities. We focus on

“observable quantities”, such as

Table 6.4 Knowledge-based probabilities for the
parameters q0, q1, q2 and q3.

Parameter Distribution type Interval

q0 Uniform [0.003, 0.007]
q1 Uniform [0.2, 0.4]
q2 Uniform [0.1, 0.3]
q3 Uniform [0.1, 0.7]
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N: the number of fatalities (third parties)

D: the occurrence of an accident leading to a fatality of person z (arbitrar-

ily chosen).

The aim of the risk assessment is to predict these quantities and to describe

uncertainties. In this case the predictions would be straightforward, no fatal-

ities and that the event D would not occur. However, there are uncertainties

and accidents could occur leading to deaths. To describe these uncertainties

we use the event tree models and knowledge-based probabilities. We may

introduce chances (relative frequencies), but in this case let as assume that the

Table 6.5 Knowledge-based probabilities P for r ¼ G(1).

Interval for r
Interval for r. Reformulated
intervals (%) (� 10�2)

Simulated
probability

�0.0002 � 0.02 0.00
(0.0002, 0.0004] (0.02, 0.04] 0.13
(0.0004, 0.0007] (0.04, 0.07] 0.43
(0.0007, 0.0010] (0.07, 0.10] 0.29
(0.0010, 0.0013] (0.10, 0.13] 0.13
(0.0013, 0.0016] (0.13, 0.16] 0.02
> 0.0016 > 0.16 0.00

(0.0002, 0.0004) (0.0004, 0.0007) (0.0007, 0.00010) (0.0010, 0.00013) (0.0013, 0.00016)

Simulated probability
distribution of r = G(1)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

r

Figure 6.4 Knowledge-based probabilities P for r=G(1) based on Table 6.5.

90 Uncertainty descriptions



analysts decide not to do so. They find that (refer to similar comments in

Section 6.2 and discussion in Section 6.5):

� it is difficult to give meaningful interpretations of the chances
� the introduction of the chances makes the analysis more complex, and no

added value is identified.

We note that if such an analysis were to be carried out it would take the form

studied in the previous section (Section 6.3.1). However, the end product

would be unconditional uncertainty distributions (predictive distributions)

of N and D obtained by using the law of total probability, as was indicated

also in Section 6.2.2 for the injury case. The formula used is

P N ¼ nð Þ ¼
ð
P N ¼ n jqð Þf qð Þdq; ð6:1Þ

where q is the vector of parameters and f(q) is the assigned uncertainty

distribution of q (in the above case independent uniform distributions over

each parameter).

In the following we analyse the system without introducing chances, and we

restrict attention to N. To ease the assignment of knowledge-based probabil-

ities of N we introduce a model g, an event tree model; see Figure 6.5. Here

X ¼ Number of releases (which is equal to 1 if a release occurs and 0

otherwise as we ignore the probability of two releases in the period studied)

X = # releases

Immediate 
ignition A 

Not 
immediate 
ignition  

Pool fire

Z3 = 1 Pool fireDelayed ignition B 

Z2 = 1 

No ignition

Explosion

No effect

Z1 = 1

Figure 6.5 Event tree for the LNG plant case (based on Figure 4.7).
No chances introduced.
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Z1 ¼ I(A)

Z2 ¼ I(B)

Z3 ¼ I(pool fire).

Z ¼ (Z1, Z2, Z3)

Here I is the indicator function which is equal to 1 if the argument is true

and 0 otherwise.

The model expresses that

N ¼ g X;Zð Þ ¼ 5X 1� Z1ð ÞZ2Z3 þ 10X 1� Z1ð ÞZ2 1� Z3ð Þ;
as the number of fatalities is 5 in the case of scenario 2 and this scenario

occurs if X(1�Z1) Z2 Z3 ¼ 1, and the number of fatalities is 10 in the case of

scenario 3 and this scenario occurs if X(1�Z1) Z2 (1�Z3) ¼ 1.

The quantities X and Z are unknown, and knowledge-based probabilities

are used to express the uncertainties (degree of belief). Suppose the following

assignments have been made given the background knowledge K of the

analysts (experts):

P(X ¼ 1) ¼ EX ¼ 0.005

P(Z1 ¼ 1) ¼ P(A) ¼ 0.3

P(Z2 ¼1 | Z1 ¼ 0) ¼ P(B | not A) ¼ 0.2

P(Z3 ¼1 | Z1 ¼ 0, Z2 ¼ 1) ¼ P(pool fire | not A, B) ¼ 0.4.

We have used the same numbers as the estimates of the relative frequency-

interpreted probabilities in Section 6.3.1. However, the meaning of the num-

bers is completely different. For example, P(Z1 ¼ 1) ¼ P(A) ¼ P(A |K) ¼ 0.3

means that the analysts (experts) consider the uncertainty of immediate

ignition occurring (given a release) as the same as drawing a red ball out of

an urn which comprises ten balls and three are red.

To compute the distribution of N given this input we follow the rules of

probability as in the previous section. The results are shown in Table 6.6. We see

that the numbers are the same as in Figure 6.5, as the input probabilities are the

same.As stressed in the previous paragraph the interpretation is, however, different.

Table 6.6 Knowledge-based probability distribution for the number of fatalities
associated with the event tree of Figure 6.5.

N: number of fatalities associated with release
as defined by the event tree in Figure 6.5 P E contribution

0 0.99930 0
5 0.00028 0.0014
10 0.00042 0.0042
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The probabilities assigned are based on a background knowledge K, which

includes a number of assumptions. Here are some few examples, evident from

the above analysis

� the event tree model
� a specific number of exposed people
� a specific fraction of fatalities in different scenarios.

As examples of other assumptions made in this case, not revealed, however,

by the above analysis, we mention:

� The probabilities and frequencies of leakages were based on a database for

offshore hydrocarbon releases.
� All vessels and piping are protected by water application like monitors,

hydrants.
� Release rates are constant throughout the release duration time.

The understanding of the physical phenomena and the computer codes used

also strongly affects the results.

Vinnem (2010) illustrates the dependencies of the assumptions made by

pointing out that the frequency of accidents with at least 100 fatalities

increased by a factor of 56 when compared to the results from the initial risk

assessment performed for the operator of the plant. The initial assessment

was performed before engineering studies had started, whereas the updated

study made by the engineering contractor reflected all the engineering details.

Vinnem (2010) also points to the assumption made in this case that, in the

event of impact of a passing vessel on anLNG tanker loading at the quay, the gas

release would be ignited immediately, presumably by sparks generated by the

collision itself. However, according to Vinnem (2010), no explanation was pro-

vided of how such ignition of a very heavy and cold gas could occur physically.

He concludes that it is very hard to foresee how it could be caused in this way.

The implications of the assumption are important for the further analysis:

However, the implication of this assumption was that it was unnecessary to consider
in the studies any spreading of the gas cloud due to wind and heating of the liquefied
gas, with obvious consequences for the scenarios the public might be exposed to.
Such a very critical assumption should at least have been subjected to a sensitivity
study in order to illustrate how changes in the assumption would affect the results,
and the robustness of the assumption discussed. None of this, however, has been
provided in any of the studies (Vinnem 2010).

A long list of uncertainty factors could be generated by looking at the many

assumptions made in the risk assessment. However, for the purpose of the

present analysis, the above points are sufficient.
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6.4 Case 3: Design of a safety system

The assessment in this case would be quite similar to those presented for the

two previous cases, and to avoid tedious repetitions we will focus on some

specific issues only:

the use of the models for computing the MFDT:

lt/2 (alternative I) and (lt)2/3 (alternative II).

The standard analysis to describe the uncertainties is to use the Bayesian

framework, which we know consists of the following basic steps:

1. Establish a probabilistic model.

2. Assign a prior distribution on the parameters of interest.

3. Use Bayes’ theorem to establish the posterior distribution of the parameters.

The model in this case was introduced in Section 5.4. Our focus now is the

parameters l and MFDT. As a prior distribution on l we may use a gamma

distribution f with parameters a and b and we can proceed as in Section 6.2 to

obtain the posterior distribution f(l| data). From this distribution we can

derive the posterior distribution for MFDT. We introduce g ¼ MFDT and

obtain

P(g < x) ¼ P(lt/2 < x) ¼ P(l < 2x/t) for alternative I, and

P(g < x) ¼ P((lt)2/3 < x) ¼ P(l < (3x)1/2/t) for alternative II.

Instead of assessing uncertainties about the parameters l and g, we may

instead focus on observable quantities such as Yt defined as the downtime of

the system in the interval [0, t]. Provided that l is known, we know from

renewal reward theory (see e.g. Aven and Jensen (1999), p. 250) that Yt/t is

approximately normally distributed with mean equal to MFDT and vari-

ance equal to Var(Y)/(tt) where Y is the time the system is down in the first

cycle, i.e. [0, t]. However, this normal distribution just reflects aleatory

uncertainties (random variation), not epistemic uncertainties. To include

the latter types of uncertainties, a distribution also has to be specified for

l. Combining these distributions, we obtain the predictive distribution for

Yt similar to (6.1).

6.5 Discussion

In this section we will discuss the scientific quality of the risk assessment

when the objective is uncertainty description, again using the reliability

and validity requirements (refer to Section 3.3). The three examples above

will be used to illustrate the analysis. The validity criterion V1 (that the
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produced risk numbers are accurate compared to the underlying true

risk) is not relevant in this case.

6.5.1 Validity criteria V2–V4

The validity criteria relate to the degree to which the risk assessment describes

the specific concepts that one is attempting to describe. The specific criteria

V2–V4 state:

� The degree to which the assigned probabilities adequately describe the

assessor’s uncertainties of the unknown quantities considered (V2).
� The degree to which the epistemic uncertainty assessments are complete

(V3).
� The degree to which the analysis addresses the right quantities (V4).

Concerning criterion V4, the degree to which the analysis addresses the right

quantities, we refer to Section 5.5.2.

It is not straightforward to verify that the validity requirement V2 is met,

and there is an ongoing research and discussion in the literature addressing

this issue. It is outside the scope of this discussion to give a full account of this

research and discussion, but we will highlight some important principles and

procedures (refer Aven, 2003, 2004; Cooke, 1991; Lindley et al., 1979):

(i) Coherent uncertainty assessments are achieved by using the rules of

probability, including Bayes’ theorem for updating of assessments in

the case of new information. See Appendix A.

(ii) Comparisons are made with relevant observed relative frequencies if

available. For example, if history shows that out of a population of

1000 units, two have failed, we can compare our probability to the rate

2/1000.

(iii) Training in probability assignments is required to make assessors aware

of heuristics as well as other problems of quantifying probabilities such

as superficiality and imprecision (which relate to the assessor’s possible

lack of feeling for numerical values). Heuristics for assigning probabilities

are easy and intuitive ways to deal with uncertain situations. The result of

using such heuristics is often that the assessor unconsciously tends to put

“too much” weight on insignificant factors. An example of a heuristic is

the so-called availability heuristic (Kahneman and Tversky, 1974):

The assessor tends to base his probability assignment on the ease with

which similar events can be retrieved from memory. The occurrence of

events where the assessor can easily retrieve similar events from memory
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is likely to be given higher probabilities than the occurrence of events

that are less vivid and/or completely unknown to the expert. A classic

example is a person who argues that cigarette smoking is not unhealthy

because his grandfather smoked three packs of cigarettes a day and lived

to be 95.

Heuristics also need to be given attention when professional analysts

and experts assign probabilities, but this is mainly a problem when lay

people assign probabilities.

(iv) Using models, including probability models, to simplify the assignment

process.

(v) Using procedures for incorporating expert judgements.

(vi) Accountability: the basis for all probability assignments must be

identified.

All of these areas are important but with the exception of (iv), we just briefly

address them here. Item (iv) is in fact thoroughly covered throughout this

book; see for example discussions in Section 5.5 and below concerning model

uncertainties.

One more issue should be mentioned: a risk analyst (an expert) may assign

a probability that completely or partially reflects inappropriate motives

rather than his deeply felt belief regarding a specific event’s outcome. As an

example, it is hard to believe that a sales representative on commission would

make a completely unprejudiced judgement of two safety valves, one of which

belongs to a competitor’s firm. Another example is an engineer that has been

involved in the design process and later is asked to judge the probability of

failure of an item he personally recommended to be installed. The engineer

claims that the item is “absolutely safe” and assigns a very low failure

probability. The management may reject the sales representative’s judgement

without much consideration since they believe that inappropriate motives

have influenced his judgement. The engineer’s judgement might not be

rejected just as easily since he obviously is a company expert in this area.

On the other hand, incentives are present that might affect his probability

specification.

Motivational aspects will always be an important part of evaluating prob-

abilities. In general we should be aware of the existence of incentives that in

some cases could significantly affect the assignments. However, we will

conclude that motivational aspects are not a problem when professionals

perform risk assessments. On the contrary, in general professional analysts

(experts) would not, by intention, perform a biased assessment, influenced by

motivational factors. Their jobs would not last long if their reputation were
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questioned. However, their approach to the assessment and the methods

used could be strongly in favour of one specific party. For example, when

performing a standard risk analysis of a process plant, one may argue that

important uncertainty factors are camouflaged, and hence V3 is not met. See

discussion below. Do the analysts do anything about this? Do they report on

this? Probably not, as it is not in the interest of the client (plant operator).

Thus indirectly, motivational aspects are an important issue when assessing

the results of risk assessments.

These principles and procedures provide a basis for establishing a standard

for the probability assignments; the aim being to extract (elicit) and summar-

ise knowledge about the unknown quantities (parameters), using models,

observed data and expert opinions. It seems reasonable to say that the

requirement V2 is met provided that this standard is followed.

Next we address V3 and let us first focus on the probability of frequency

approach. Following this approach, the analysts (experts) are to express the

epistemic uncertainties about the parameters of the probability models using

knowledge-based probabilities. In practice it is difficult to perform a complete

uncertainty analysis within this setting, i.e. fulfil requirement V3. In theory an

uncertainty distribution on the total model and parameter space should be

established, which is impossible to do. So in applications only a few marginal

distributions on some selected parameters are normally specified, and there-

fore the uncertainty distributions on the output probabilities are just reflect-

ing some aspects of the uncertainty. This makes it difficult to interpret the

produced uncertainties. This problem was most relevant for the LNG

example where the assessment is based on complex models with hundreds

of parameters. The challenges of meeting the V3 criterion also applies to the

(A,C,U) perspective, although they are considered smaller due to the inclu-

sion of uncertainty factors. The reduced use of probability models and

parameters also means that V3 is not so difficult to meet as for the probability

of frequency approach.

All approaches are based on the use of knowledge-based probabilities, and

these reflect the uncertainties (degree of belief) of the assessors conditional on

the background knowledge K. As shown by the examples in Section 6.2.2 and

6.3.2, these probabilities may in some cases camouflage uncertainties if not

addressed. The assigned probabilities are conditioned on a number of

assumptions and suppositions. Uncertainties are often hidden in the back-

ground knowledge, and we may consequently question whether the assigned

probabilities are able to adequately describe the uncertainties (V3, partly V2).

As an example, think of the assumption made in the LNG case that, in the

event of impact of a passing vessel on an LNG tanker loading at the quay, the
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gas release would be ignited immediately, presumably by sparks generated by

the collision itself. This assumption could be wrong. Uncertainties are not

revealed when not assessing the uncertainties about this assumption.

This issue is discussed by for example Mosleh and Bier (1996). They refer

to a subjective probability P(A|X) which expresses the probability of the

event A given a set of conditions X. As X is uncertain (it is a random

variable), a probability distribution for the quantity h(X) ¼ P(A |X) can

be constructed. Thus there is uncertainty about the random probability

P(A |X). However, we will stress that the probability is not an unknown

quantity (random variable) for the analyst (expert). To make this clear, let

us summarise the setting of subjective probabilities. A subjective probability

P(A |K) is conditional on the background knowledge K, and some aspects

of this K can be related to X as described by Mosleh and Bier (1996). The

analyst (expert) assigns his/her probability based on K. If he/she finds that

the uncertainty about X should be reflected, he/she would adjust the

assigned probability using the law of total probability. This does not mean,

however, that P(A |K) is uncertain, as such a statement would presume that

a true probability value exists. The assessor needs to clarify what is uncer-

tain and subject to the uncertainty assessment, and what constitutes the

background knowledge. This is a key point to meeting the criterion V2, but

also V3. From a theoretical point of view one may think that it is possible

(and desirable) to remove all such Xs from K, but in a practical risk

assessment context that is impossible. We will always base our probabilities

on some type of background knowledge, and often this knowledge would

not be possible to specify using quantities such as X.

We conclude that the assessment fails to meet V3 in this case. However, for

the two other cases the assessments meet the criterion when restricting atten-

tion to the parameter uncertainties. Model inaccuracies (uncertainties) are

not incorporated. Let us look more closely into this latter type of uncertain-

ties. We will argue that the epistemic uncertainty analysis cannot and should

not aim at quantifying the model inaccuracies, i.e. to meet the criterion V3

these uncertainties are not relevant.

Model uncertainties

We use the safety design system alternative II as an illustrating example.

Let G denote the model used for the MFDT, i.e. G(l) ¼ (lt)2/3. This model

is based on independence between the two components when l is known.

The model inaccuracy is defined by the difference between the “true” MFDT

and the model output, i.e. MFDT – G(l). This difference is also referred to

as model uncertainty; see e.g. Östergaard et al. (1996), Kaminski et al. (2008)
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and Nilsen and Aven (2003). It obviously needs to be addressed as the

uncertainty assessments are conditional on the use of this model. But how

should we deal with this “error” – should we quantify it?

No, is our clear answer (Aven 2010b). It is not meaningful to quantify the

model inaccuracy. The point we make is that if the model is not considered

good enough for its purpose, it should be improved. The uncertainty assess-

ments are based on the model used. Of course, when observations of MFDT

(i.e. of Yt/t for large t) are available, we would compare the assessments of

MFDT which are conditional on the use of the model G, with these observa-

tions. The result of such a comparison provides a basis for improving the

model and accepting it for use. But at a certain stage we accept the model and

apply it for comparing options and making judgements about, for example,

risk acceptance (tolerability). Then it has no meaning in quantifying the

model inaccuracy. The results are conditional on the model used. Instead of

specifying P(MFDT � x) directly, we compute P(G(l) � x | K) and G is a

part of the background knowledge K.

An important task for the scientific communities in different areas is to

develop good models. The models are justified by reference to established

theories and laws explaining the phenomena studied, and the results of

extensive testing. The performance of a model must, however, always be

seen in light of the purpose of the analysis. A crude model can be

preferred instead of a more accurate model in some situations if the model

is simpler and it is able to capture the essential features of the system

performance.

In the literature, attempts have been made to explicitly incorporate the

model inaccuracies (an example is given in Aven (2003) taken from the field

of structural reliability analysis (SRA)). The use of G(l) ¼ (lt)2/3 means a

simplification, and the idea is then to introduce an error term a, say, such

that we obtain a new model G0(l) ¼ a(lt)2/3, where a is a correction term.

Clearly, this may give a better model, a more accurate description of the

world. However, it would probably not be chosen in a practical case as it

may complicate the assessments. It may be much more difficult to specify

a probability distribution for (a, l) than for l. There might be lack of

relevant data to support the uncertainty analysis of a, and there could be

dependencies between a and l. We have to balance the need for accuracy

and simplicity.

TheMFDT is also based on the use of the exponential lifetime distribution.

This distribution G(t | l) is a model of the true distribution F, where l is the

parameter of the distribution, the failure rate. Model inaccuracy expresses the

difference between this model relative to the true distribution. The parameter
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l we interpret as the inverse of the average lifetime for an infinite population

of similar units. Epistemic uncertainties about l are incorporated into the

uncertainty analysis as shown in Section 6.4, but model inaccuracy related

to the choice of probability distribution is not. We have introduced the

exponential distribution to simplify the problem. If we had considered the

space of all distribution functions, the assignment process would not be

feasible in practice. If we are not satisfied with the exponential distribution

class, we should change this, by for example using a Weibull distribution. But

when running the analysis and computing the distribution of MFDT, we

accept the use of a specific model which constitutes a part of the background

knowledge that the assessments are based on.

The assumptions supporting a model can give rise to uncertainty factors

as discussed above. For example in the case G(l) ¼ (lt)2/3 these factors

could relate to independence and deterioration over time.

In the literature, various methods have been suggested to reflect model

uncertainties (see e.g. Apostolakis, 1990; Nilsen and Aven, 2003; Devooght,

1998; Zio and Apostolakis, 1996). Above we briefly looked into one typical

approach (the standard SRA approach). As another typical approach we

refer to Apostolakis (1990) which addresses the issue of weighing different

models: let M1 and M2 be two alternative models to be used for assigning

the probability of the event A. Conditional on Mi, we have an assignment

P(A | Ki). Unconditionally, this gives

P A jKð Þ ¼ P A jK1ð Þp1 þ P A jK2ð Þp2; ð6:2Þ
where pi is the analyst’s (expert’s) subjective probability that the ith model,

i.e. the set of associated assumptions, is true (here p1 þ p2 ¼ 1). In a

practical decision-making context the analysts would most likely present

separate assignments for the different models – P(A |Ki), in addition to the

weighted probability assignment (6.2). To specify the knowledge-based

probability P(A |K), the analysts may also choose to apply the assignment

procedure given by (6.2) when pi cannot be interpreted as a probability that

a specific assumption is true. In such a case pi must be interpreted as a

weight reflecting the confidence in the model i for making accurate

predictions.

Hence model uncertainty quantification in the sense of model weighing can

be covered by the uncertainty assessment. Model weighing is a completely

different issue from quantification of model inaccuracy. As stressed above,

when computing P(MFDT � x) etc., we may accept the use of specific models

and procedures for weighing the models. The models and procedures are part

of the background knowledge K.
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6.5.2 Reliability criteria

Now let us look at the reliability criterion R: the extent to which the risk

analysis yields the same results when repeating the analysis. One may expect

that following the standard for probability assignments (i.e. meeting V2),

would ensure that the reliability requirement R is met. However, the back-

ground knowledge that the assignments are based on need not be exactly the

same from analysis to analysis. Hence we would experience differences in the

probability assignments, but the differences are not likely to be large if V2 is

met. This applies to R1 and R2. The criterion R3 (the degree to which the risk

analysis produces identical (similar) results when conducted by different

analysis teams with the same analysis scope and objectives, but no restrictions

on methods and data) would in general not be met, as the background

information would be different from analysis to analysis, and often this

difference could be very large due to different levels of competence, research

schools, tools available etc. The problem relates to the LNG case in particular

as the assessments are based on many subjective judgements and assump-

tions. See the benchmarking exercise reported in Lauridsen et al. (2001) which

illustrates this problem of lack of reliability (R3). For the Cases 1 and 3 we

would not expect large differences from analysis to analysis as the problems

are less complex and more established methods for these situations exist.

We may question the appropriateness of the reliability criteria in this setting.

Obviously we would require the results not to depend on the person running the

computer calculations etc., but it should not be anobjective to strive for identical

results for different analysis teams. According to V2, the aim is to assess uncer-

tainties using knowledge-based probabilities. The background information

for these assignments could be different from analysis to analysis, and often this

difference could be very large as mentioned in the previous paragraph. Reflect-

ing these differences may be considered an important aim of the analysis.

6.5.3 Summary of assessments and final remarks

Table 6.7 summarises the conclusions from the previous section.

Thus the reliability and validity criteria are to a large extent met, when the

assessments are properly conducted. However, several problems have been

identified.

For the probability of frequency approach, the validity requirement V1 is

not in general satisfied, and V2–V4 are questioned:

� important uncertainty factors may be hidden in the background knowledge

(V2,V3)
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� the uncertainty assessments may not be complete (V3)
� the analysis focus is on fictional quantities (V4).

When we ignore the hidden uncertainties in the background knowledge, the

probability of frequency approach in general may meet the validity require-

ment V2 if the analysis is based on a set of standards established for such

assignments.

For the reliability criteria, a main problem (again within the context of

the probability of frequency approach), is the fact that the background

knowledge that the assignments are based on would not be exactly the same

from analysis to analysis. However, if the methods and data are fixed, the

differences from one analysis to another are not likely to be large if V2 is met.

As for the probability of frequency approach, the validity requirements V2

and V3 are also questioned for the (A,C,U) approach:

� important uncertainty factors may be hidden in the background knowledge

(V2,V3)
� the uncertainty assessments may not be complete (V3).

The (A,C,U) approach faces the same types of reliability problems as the

probability of frequency approach.

The above analysis has restricted attention to the probability of frequency

approach when the risk perspective is (A,C,Pf). Alternatively we could have

looked at the pure statistical approach with the use of confidence intervals.

However, it is clear that this approach in general fails to meet the validity

criterion as uncertainties are not described beyond the data variation

expressed by the confidence intervals (provided such intervals can be estab-

lished). For an analysis of the reliability criteria, we refer to Section 5.5.3.

Table 6.7 Summary of reliability and validity analysis. Y indicates that the
criterion is met, N that it is not met and Y/N that it is met under certain conditions.
The boxes are empty in cases where the criterion is not relevant.

Approach Criterion

R R1 R2 R3 V V1 V2 V3 V4

Probability of
frequency
approach
(A,C,P(Pf),K)

Y/N Y/N Y/N N Y/N � Y/N Y/N Y/N

(A,C,U,P,K)
approach

Y/N Y/N Y/N N Y/N � Y/N Y/N Y
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7

Risk management and communication issues

As stressed in Chapter 2, risk assessments provide decision support on the

choice of measures and arrangements. Such decisions are risk-informed, not

risk-based. There is always a need for seeing beyond the results of the risk

assessments. There are two main reasons for this:

1. the limitations and boundaries of the risk assessments

2. the need for taking into account other concerns than risk when making

such decisions.

The analysis in the two last chapters has addressed the first point, and in this

chapter we will discuss the implications of the findings for risk management

and communication where point 2 is a key issue. More specifically we focus

on the following topics in this chapter:

� the use of predefined risk criteria
� the use of the ALARP principle and cost–benefit type of analyses
� the role of the cautionary and precautionary principles
� risk communication
� the content and purpose of managerial review and judgement.

7.1 The use of predefined risk criteria

It is a common approach to risk management to use predefined risk criteria of

the form “risk is unacceptable (intolerable) if P > p0”, where P is a risk-

related probability index and p0 is a fixed number. Several examples were

defined in the LNG case:

IR (probability that a fixed arbitrary third person is killed due to an

accident in one year)> 1� 10�5

f-n curve G(n)> g(n), for some n, where g is defined in Figure 3.7

(log g(n) ¼ �2 þ log n).
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We will look more closely into this practice in view of the different

perspectives analysed in Chapters 5 and 6, and the findings related to

scientific quality.

If the scientific basis of the risk assessment is the (A,C,Pf) perspective, these

criteria are all based on unknown frequentist probabilities which need to be

estimated. In the examples mentioned we obtain estimates IR* and G(n)*

which are to be compared to the specified criteria. However, as was noted in

Section 5.5, the scientific quality requirements of validity and reliability are

not in general met if the aim is accurate risk estimations, unless large amounts

of relevant data exist, and for typical quantitative risk assessment such data

are not available. Hence we cannot obtain confidence that the estimates

are close to the “true” Pf values and the approach collapses. It is of course

possible to use the criteria based on the estimates, but a strong element of

arbitrariness has then been introduced, and from a scientific point of view it

cannot be justified.

A conservative policy could be to replace the risk estimates by some upper

values which the analysts are confident that the true risk indices are not

exceeding. Hence if these upper values are below the criteria, risk is not

considered unacceptable or intolerable. Such a policy would, however, also

lead to unacceptability for risk estimates not falling in the intolerable region.

The policy could consequently be very expensive and not attractive from a

cost–benefit point of view.

In the case of the working accidents, a substantial amount of relevant data

exists. Although no risk criteria were defined for this case, we may easily

construct some, for example that the total serious injury rate in the coming

three years (m for years 12–14) should be less than, say 1.0. From the historical

data we may then conclude that this criterion is met if we assume a trend.

For the non-trend situation the criterion is not met. The estimation precision

(as expressed by the confidence intervals) is reflected in these conclusions.

We see that such a risk criterion can be justified in this case. In practice it is

not so common to use such criteria in situations like this. It is more common

to define targets and goals, expressing for example that the observable rate

should be below 0.5 in the coming years, i.e. the number of serious injuries

per million manhours should be below 0.5. These targets and goals are not

risk criteria like IR and the f-n curve. The target/goal of 0.5 is checked by

observing the actual number of serious injuries. The rates become known and

we can verify whether the targets are met or not. Then we can decide if there

is a need for action and measures. This is a reactive strategy in the sense that

measures are taken following the serious injuries. The problem of expressing

risk is, however, avoided.
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It is also common to refer to the zero-vision: the long-term goal is to

completely avoid these types of injuries. Such a vision could be useful for

keeping a constant focus on safety improvement in operations; however, it

does not provide much help in guiding the decision-makers on the use of

resources to reduce risk.

If the scientific basis is the (A,C,U) perspective, the above criteria (IR and

f-n curve) are directly related to the analysts’ (experts’) knowledge-based

probabilities. For example, the IR is considered too high if the assigned

probability that a third person is killed due to an accident in one year is

greater than 1� 10�5. Methods and procedures are established for the calcu-

lations and if the output probability exceeds 1� 10�5 risk-reducing measures

are required. However, it is acknowledged that the computed probability

is conditional on many assumptions and these could hide uncertainties.

A mechanical procedure for unacceptability or not cannot be justified.

Consequently, if risk criteria of the form of IR and the f-n curve are

introduced, they have to be used as nothing more than reference levels to

inform the decision-maker, not to provide a mechanical procedure for what is

an acceptable or not acceptable risk.

These conclusions would also apply to the more detailed system level,

for example in Case 3 where we study the performance of a safety system.

However, many analysts would argue that there is a need for such rules in

practice at this level to ease the engineering work in a development project.

In an early design phase it is not feasible to specify all possible arrangements

and measures in detail and perform optimisation of all attributes (feasibility,

risk, cost, etc.). We must use some sort of performance characterisation.

Typically, these will be industry standards, established practice and descrip-

tions of the performance of the system, given by features such as reliability,

effectiveness (capacity) and robustness. In other words, instead of specifying

in an accurate way, what system we need, we specify the performance of the

system. As an example consider the requirement that

The MFDT of the safety system in Case 3 must be below 0.05.

The starting point for choosing a specific requirement could be historical

data, standards, or the desire to achieve a specific risk level or improvement.

The engineering process will produce a system layout that should meet this

requirement. Just looking at the findings of the risk assessment would exclude

alternative I. Only alternative II will meet this criterion.

However, for the 5% requirement to be meaningful it must not be seen as a

sharp line; we should always look for alternatives and then evaluate their

performance. Whether the analysis team calculates a reliability of 3%, 7% or
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4% is not so important – depending on the situation we may accept all these

levels. The interesting question is how the alternatives perform relatively,

concerning reliability, costs and other factors. The figure of 5% must be seen

as a starting point for further optimisation.

Instead of a sharp level, ranges may also be used, such as the categorisation

used for Safety Integrity Level (SIL) requirements, in accordance with IEC

61511, for example a failure probability in the range 10%–1%.

This reasoning is supported by the lack of precision in the risk assessment

as discussed in previous chapters. But equally important is the need for taking

into account other concerns than risk in the decision-making (point 2 men-

tioned in the introduction of this chapter). We may require that the MFDT is

below 0.05, but a level of 0.1 could be more than enough if other measures

are implemented. The result could be improved safety and reduced costs.

This is what risk management is all about. Risk criteria need to be used

with care, to avoid sub optimisation. A too strong requirement regime

may limit the creativity and drive for identifying the best overall arrange-

ments and measures.

Nonetheless, many safety regulators have found the use of such criteria

important for ensuring a minimum safety level. The idea is to state a min-

imum standard, irrespective of economy and other conditions, below which

nobody is allowed to operate. An example is the approach taken to the design

of platforms for environmental loads. If we go back to around 1960, the

common design approach for offshore Gulf of Mexico was to design for

waves with 25 year return periods. One year in the early 1960s, there were

many severe storms, leading to more than a dozen platforms being toppled

over due to wave overload. It was then decided that dimensioning wave

load should be increased to 100 year return period in order to increase the

minimum standard. One hundred year return periods are still used in

the North Sea and other Norwegian waters as the minimum design wave

load, without significant damage to the structure. In the last 15–20 years, it

has also been required in the Norwegian operations that the installations shall

withstand waves with 10 000 year return period, but then substantial damage

to the structure is acceptable (Aven et al., 2006).

There is not much discussion about the usefulness of such criteria. How-

ever, to implement such criteria in practice we need to understand the scien-

tific constraints and limitations of the tool used to verify the criteria, i.e. the

risk assessments. The analysis in the previous chapters has shown that we

need to use the criteria as guidelines more than strict limits.

For some reflections on the ethical justification of risk acceptance criteria,

see Aven (2007b) and Ersdal and Aven (2008).
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7.2 The use of the ALARP principle and cost–benefit type of analyses

The ALARP principle expresses that risk should be reduced to a level that

is as low as reasonably practicable. A risk-reducing measure should be

implemented provided it cannot be demonstrated that the costs are grossly

disproportionate relative to the gains obtained. The key point is that risk

should be reduced; but as we have seen in earlier chapters, there are many

perspectives on risk and this would also mean different perspectives on how

to understand and implement the ALARP principle.

If the (A,C,Pf) risk perspective is adopted risk reduction means reduction

of the probabilities (chances) Pf of undesirable events and consequences,

whereas if the (A,C,U) perspective is adopted risk reduction also means

uncertainty reductions. We first look more closely into the former type of

perspective, and let us again use the LNG case as an example.

A measure is suggested to reduce the risk expressed by IR and the f-n curve.

The estimated differences in risk reduction are calculated and by comparing these

estimates with the cost of implementing the measure a basis has been established

formaking a judgement about gross disproportion. If the costs are large the issue

quickly becomes a management issue. The need then arises for some guidelines

formaking judgements about gross disproportion. Cost-effectiveness indices and

cost–benefit type of analyses represent the most common methods used. Of the

cost-effectiveness indices the implied cost of averting a fatality (ICAF) is most

relevant in this case. The index is based on a computation of the expected number

of saved lives by implementation of the risk-reducingmeasure. Then this number

is compared with the expected cost to produce the index:

ICAF ¼ E[cost]/E[number of lives saved].

As the risk perspective is (A,C,Pf) we have to read this as

ICAF ¼ Ef[cost]/Ef[number of lives saved],

i.e. the expected values are the means of frequentist probability distributions.

These distributions and expected values are unknown, leading to estimates

ICAF* ¼ Ef*[cost]/Ef*[number of lives saved].

The uncertainties in the costs are often small, but the uncertainties related to

the estimates of the expected number of saved lives could be large. To reflect

the uncertainties we could replace the best estimate Ef*[number of lives saved]

by a somewhat more optimistic estimate, for example the 75 per cent quantile

of the epistemic distribution of Ef[number of lives saved]. To illustrate this

numerically, suppose that Ef*[cost] ¼ €1.0 (million) and Ef*[number of lives
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saved] ¼ 0.1. Then ICAF* ¼ €1.0/0.1 ¼ €10 and costs are typically con-

sidered in gross disproportion to the benefits gained. The costs are simply

too high compared with the risk reduction. To reflect uncertainties we

replace Ef*[number of lives saved] by the more optimistic estimate 0.5, which

is judged to be the 75 per cent quantile of the epistemic distribution of

Ef[number of lives saved]. This changes the computed ICAF to €2 and in

most cases gross disproportion would not have been demonstrated.

Alternatively, and this is more common, we may change the criterion for

what is grossly disproportional. If a limit is set to€2 (million), one may argue

that the criterion should be increased to say five to take into account uncer-

tainties. This argument is used by the HSE in the UK to motivate an

increased limit in the oil and gas industry.

HSE (2001) defines an ICAF limit equal to £1 million. However, for the

offshore industry an ICAF of £6 million is considered to be the minimum

level, i.e. a proportion factor of six (HSE, 2006). This value is used in an

ALARP context, and defines what is judged as “grossly disproportionate”.

Use of the proportion factor six is said to account for the potential for

multiple fatalities as well as uncertainties.

However, the ICAF is still based on expected values. This strategy of using a

specific adjustment factor (here six) should therefore be usedwith care (Aven and

Abrahamsen, 2007). Think of two risk-reducingmeasures (a) and (b), which both

cost 10 and reduce the expected number of fatalities by one (thus the ICAF is 10):

(a) Small uncertainties: The expected number of fatalities is a good predic-

tion of the actual number of fatalities saved.

(b) Large uncertainties: The actual number of fatalities could deviate

strongly from 1.

In this case with a criterion of six, none of the measures would be justified. The

uncertainties in case (b) could be extreme but the level of uncertainties is not

explicitly reflected in the strategy. If the expected number of saved lives is not

changed, the ICAF is not changed, and gross disproportion has been demon-

strated. The use of expected values as in the ICAF fails to capture important

aspects of risk, in particular the probability of a large-scale event.

If C is the number of fatalities, an expected value would be an informative

measure if this value is approximately equal to C, i.e. EC � C. But since C is

unknown at the time of the assessment, how can we be sure that this approxi-

mation would be accurate? Can the law of large numbers be applied, express-

ing that the mean of independent identically distributed random variables

converges into the expected value when the number of variable increases to

infinity? (Aven, 2009a). See also Appendix A.1.3.
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Yes, it is likely that if C is the sum of a number of projects, or some average

number, our expected value could be a good prediction of C. Take for

example the number of fatalities in traffic in a specific country in one year.

From previous years we have data that can be used to accurately predict the

number of fatalities next year (C). However, in many cases the variations are

much larger. Looking at the number of fatalities in Norway caused by

terrorist attacks in the next year, the historical data would give a poor basis.

We may assign an EC but obviously EC could be far away from C. The

accuracy increases when we extend the population of interest. If we look at

one unit (e.g. country) in isolation, the C numbers are in general more

uncertain than if we consider many units (e.g. countries). Yet, there will

always be variation/uncertainties, and in the case of extreme events, we will

need to see beyond the expected value.

The literature includes a number of attempts to modify the expected value-

based approaches to reflect risk aversion (which means that we dislike nega-

tive consequences so much that these are given more weight than is justified

by reference to the expected value) (Levy and Sarnat, 1994). It is acknow-

ledged that we need to take into account risks and uncertainties, and see

beyond the computed expected values. However, there are “a million ways”

of extending the traditional approach based on the expected net present value

or the ICAF. How should we determine what is the correct or best modifica-

tion? There needs to be a rationale supporting the approach.

But such a rationale is difficult to find; see Aven and Flage (2009) who

review and discuss alternative approaches. Many of the extended approaches

have a strong element of arbitrariness in the way they are defined, so care

has to be shown when using these approaches. The problem is that the

approaches fail to acknowledge that caution and precaution in cases of

uncertainty cannot be captured by a probabilistic approach alone. We refer

to the discussions in Sections 7.3 and 7.5.

Now let us consider the (A,C,U) risk perspective. Risk here includes

uncertainty as a main component and risk reduction thus has to also cover

uncertainty reduction. Consequently a policy based on ICAF and other

expected value-based approaches cannot be used alone to determine ALARP.

Processes that extend beyond the expected value-based and the probability-

based approaches are required. Case (b) in the example above could be

justified due to large uncertainties. The analysis in Chapters 5 and 6 clearly

demonstrates the need for seeing beyond the computed probabilities and

expected values for verifying ALARP and gross disproportion. For example

in the LNG case the many uncertainty factors could justify risk-reducing

measures even with rather high ICAF values. We need to implement
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“non-mechanical” policies that have a strong involvement of management

processes as will be discussed further in coming sections. See also the

approach summarised in Figure 1.4 which is developed to meet this challenge.

In the following we will also justify this approach from a theoretical welfare

economic point of view.

7.2.1 Welfare economic theory

Viewed from the perspective of conventional welfare economic theory one

might be inclined to argue – and many have already done so – that to

undertake any project involving a cost that exceeds its expected benefit would

involve a suboptimal use of society’s scarce resources – see for example House

of Lords (2006), paras 62, 63 and Jones-Lee and Aven (2010). From this it

would seem to follow as a matter of logical necessity that since costs can

naturally be viewed as being “disproportionate” to benefits whenever they

exceed the latter, then the stipulation that a safety improvement should be

undertaken provided its costs are not grossly disproportionate to expected

benefits is effectively to require that safety expenditure should be under-

taken to a point well in excess of that which would be justified if the aim

were to ensure an efficient use of scarce resources.

But of course this conclusion will be justified only if costs and benefits are

appropriately defined and estimated (Jones-Lee and Aven, 2010). While in

principle the costs of implementing a safety improvement are relatively

straightforward to specify, defining and estimating the benefits of a safety

improvement is altogether more problematic from both a conceptual and

empirical point of view.

In previous chapters we have seen how the risk-reduction benefit is

assessed. To combine the cost and benefits the approach of willingness-to-

pay (WTP) is often used. The idea is that the benefits of a safety improvement

should be defined in such a way as to reflect the preferences – and more

particularly the strength of preference – of those members of society who will

be affected by the safety improvement concerned (Jones-Lee and Aven, 2010).

According to the WTP approach to the valuation of safety, the aim is to

determine the amounts that affected individuals would be willing to pay

for the (typically small) reductions in the risk of death or injury afforded by

a particular safety improvement, given that the individuals concerned have

been fully informed about the nature of the risk reductions. These amounts

are then aggregated (possibly with distributional weights applied to reflect

considerations of equity and fairness) across the affected group to arrive at

an overall monetary value for the safety improvement concerned.
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In order to standardise values of safety derived under this approach, the

concept of the prevention of a “statistical” fatality or injury is employed

(Jones-Lee and Aven, 2009). Thus, suppose that a group of 100 000 people

enjoy a safety improvement that reduces the probability of premature death

during a forthcoming period by, on average, one in 100 000 for each individ-

ual in the group. While the safety improvement could turn out to prevent no

deaths, or one death (in fact, the most likely outcome) or two deaths (with a

lower probability) and so on, the arithmetic mean (statistical expectation) of

the number of deaths prevented is precisely one and the safety improvement

is therefore described as involving the prevention of one “statistical” fatality.

Now suppose that individuals within this group are, on average, each

willing to pay €x for the one in 100 000 reduction in the probability of death

afforded by the safety improvement. Aggregate willingness to pay will then be

given by €x times 100 000. This figure is naturally referred to as the WTP-

based “value of preventing one statistical fatality” (VPF). An alternative term

often used is the “value of statistical life” (VSL). Thus, if on average, the

members of the population were willing to pay €15 per year to reduce their

risks of death to this extent, the VPF (or VSL) would be €1.5m.

The VPF is closely linked to the ICAF. If the computed ICAF for a specific

risk-reducing measure is larger than the VPF, i.e. ICAF>VPF, then this

measure is not justified, and vice versa, if ICAF < VPF, the measure is

justified. In a company context the WTP reflects the decision-maker’s

willingness to pay.

In order to avoid possible confusion it is very important to appreciate that,

as defined above, the VPF is not a “value or (price) of life” in the sense of a

sum that any individual would accept in compensation for the certainty of his

or her own death – for most of us no sum, however large, would suffice

for this purpose so that in this sense life is literally priceless. Rather, the VPF

is in fact aggregate willingness to pay for typically very small reductions in

individual risk of death (which, realistically, is what most safety improve-

ments actually offer at the individual level).

For situations in which a proposed project can be expected to increase,

rather than reduce, risk for some section of the public, the ethical precepts

underpinning social cost–benefit analysis clearly entail that the cost of the

increased risk should be defined on the basis of the minimum amount that

those adversely affected would be willing to accept as compensation for the

deterioration in their personal safety. By now there is ample empirical evi-

dence that “willingness to accept” (WTA)-based costs of risk will exceed

their WTP-based counterpart values of safety by a factor of between three

and five (Jones-Lee and Aven, 2009).
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Consider the LNG case and the possible measure of removing the LNG

plant (at an early stage of the development). A quick analysis of this measure

would, however, quickly reveal that that the expected number of saved lives

(ICAF) would be small compared to the costs and gross disproportion would

clearly be documented when comparing to standard values of ICAF. An

alternative approach would be to derive WTP/WTA figures directly from

people on this measure (relocate the plant). The implementation of the

measure is judged worthwhile provided the total WTP/WTA exceeds the cost

of the safety measure.

Such an approach assumes that people have the ability and the adequate

information needed to judge uncertainties and declare their preferences

accurately. However, this presupposition can be questioned (Jones-Lee and

Aven, 2009):

Non-Revelation of Preferences: if we ask respondents about the WTP/WTA

for implementing the measure, many would say that such a measure should

be paid for by the authorities as they have the responsibility of providing a

safe environment for all people in the community. Through the tax system

people have already paid for a safe environment. Many people would have

stated extreme compensation numbers for accepting a new risk, as it would

favour their view.

Limited Information: The WTP approach presupposes well-informed and

carefully thought-out preferences, and given the rather high degree of uncer-

tainty associated with the plant operation many would argue that the survey

would be a number crunching exercise without a rationale.

Hence the best we can do seems to be to use indices such as ICAF, and the

risk assessment provides input to this use. The VSL is a reference for deciding

which measures to implement. However, as discussed above, this approach is

based on expected values and does not adequately reflect uncertainties. Jones-

Lee and Aven (2010) discuss this issue from a WTP perspective. They argue

that the gross disproportion principle can be justified due to the uncertainties,

but also because the societal concerns are not fully reflected in WTP-based

values (as normally defined). Societal concerns relate to the wider adverse

impact, on society as a whole, that might result from the occurrence of a

large-scale accident or hazardous event and which one could reasonably

expect might be largely ignored by the typical individual operating in the

narrowly focused rôle of “private citizen”. It is referred to in HSE (2001)

which defines societal concerns as follows:

Societal concerns [are] the risks or threats from hazards which impact on society and
which, if realised, could have adverse repercussions for the institutions responsible
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for putting in place the provisions and arrangements for protecting people, e.g.
Parliament or the government of the day. This type of concern is often associated
with hazards that give rise to risks which, were they to materialise, could provoke a
socio-political response, e.g. risk of events causing widespread or large scale
detriment or the occurrence of multiple fatalities in a single event. Typical
examples relate to nuclear power generation, railway travel, or genetic modification
of organisms.

Again we refer to the approach summarised in Figure 1.4 which is developed

to meet these challenges (this approach uses VSL as a reference but also gives

weight to uncertainties and other concerns).

Finally in this section we show how the ALARP principle can be used in a

terrorist risk management context.

7.2.2 Applying the ALARP principle to terrorist risk management

ALARP is a commonly used framework for managing risk due to non-

intelligent threats, but terrorism introduces difficult issues, both technically

and socially. Guikema and Aven (2010) discuss these issues and their impli-

cations for risk management. They argue that despite the challenges posed by

adaptive threats, ALARP is still a useful and well-defined framework for risk

management for adaptive threats, provided that the costs and benefits are

defined in a broad enough manner and that the displacement of risk to other

types of attacks is explicitly accounted for. An approach for verifying

ALARP inspired by Figure 1.4 is presented in the following (Guikema and

Aven, 2010):

The main ideas are summarised in these points:

1. Perform an initial crude qualitative analysis:

(a) Perform a crude qualitative analysis of the local benefits and burdens

of the risk-reducing measure.

(b) Perform a crude qualitative assessment of the potential for additional

risk to be imposed on others due to attacker substitution in response

to the risk-reducing measure.

(c) Perform a qualitative assessment of the loss of civil liberties associated

with the risk-reduction measure.

If the local costs are not judged to be large relative to the local risk-reduction

benefits, if there are no risks imposed on others that are judged to be above

the broadly acceptable threshold for individuals, and if there is judged not

to be a significant loss of personal liberties, implement the risk-reduction

measure. Gross disproportion has not been demonstrated.
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2. If the costs are considered large, quantify:

(a) The conditional risk reduction where the analysis is conditioned on the

attack occurring. Perform an economic analysis as indicated above,

computing for example E[NPV] or ICAF given an attack.

(b) The additional risk imposed on others due to attacker substitution in

response to risk-reduction measures.

If E[NPV]> 0, or ICAF is low for the case of unconditional assessments

(provided that such calculations have been carried out),

or

if E[NPV | attack] is judged to be high or ICAF | attack is judged to be low

and the attack probability is judged to be non-negligible, implement the

measure provided that there is judged to be no significant loss of personal

liberties. Gross disproportion has not been demonstrated.

3. If these criteria are not met or if a conditional approach has been used in

the second step, assess uncertainty factors and other issues of relevance not

covered by the previous analyses. A checklist is used for this purpose.

Aspects that could be covered by this list are:

(a) Is there considerable uncertainty (related to phenomena, conse-

quences, conditions, and background knowledge that the attack likeli-

hoods are based on) and will the measure reduce these uncertainties?

(b) Does the measure significantly increase manageability?

(c) Is the measure contributing to obtaining a more robust solution?

(d) Is the measure based on best available technology (BAT)?

(e) Are there unsolved problem areas: personnel safety-related and/or

work environment-related?

(f) Are there possible areas where there is conflict between these two

aspects?

If the risk-reducing measure scores high on these factors (many yes answers),

gross disproportion has not been demonstrated provided that the civil liber-

ties assessment of step 4 below is passed.

4. If gross disproportion has not be demonstrated by steps 1–3, assess

whether or not the burden from any loss of civil liberties imposed by the

risk-reduction measure is grossly disproportionate to the risk reduction

achieved by the measure. This is an inherently political judgement and

cannot be based on purely technical risk considerations. If potential loss of

civil liberties is not grossly disproportionate to the risk reduction, gross

disproportion of overall costs and benefits has not been demonstrated.

5. If gross disproportion has not been demonstrated, implement the measure.
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This approach imbeds traditional, quantitative ALARP assessment based

on cost–benefit analysis within a larger qualitative framework that aims to

address the many difficult-to-quantify aspects of risk reduction for inten-

tional threats. Some of these other factors are inherently political and well

beyond the realm of quantitative risk analysts’ expertise. This points to the

need for broad stakeholder engagement in this process of ALARP assessment

(Guikema and Aven, 2010).

This framework can be based on the (A,C,U) risk perspective. All prob-

abilities used are knowledge-based probabilities, and expectation is with

respect to these probabilities. Chances (frequentist probabilities) cannot be

meaningfully defined in this case (Aven and Renn, 2009b, see also comments

on this issue in the coming section). Hence the (A,C,Pf) perspectives cannot be

used as a platform for this example.

7.3 The role of the cautionary and precautionary principles

The analysis in Chapters 5 and 6 has clearly shown the need for dealing with

uncertainties – in estimates and in the background knowledge that the prob-

abilities are conditional on. We cannot just refer to the probabilities com-

puted, and base our decision on these numbers. We need to give weight to the

uncertainties, in other words give weight to the cautionary principle. As

mentioned in Section 1.2, the precautionary principle is considered a special

case of the cautionary principle, as it is applicable in cases of scientific

uncertainties about the possible consequences of the activity being considered

(Aven, 2006).

In this section we will discuss how these principles are affected by the

findings in Chapters 5 and 6. To this end we will make use of a risk-

uncertainty classification system presented in Stirling and Gee (2002); see

Figure 7.1. Based on this system, Stirling and Gee (2002) provide an interest-

ing discussion of the precautionary principle, and the uncertainty dimension

in particular, by seeing the uncertainty dimension (referred to as incertitude)

in relation to the strengths and weaknesses of risk assessments, as well as

to the fundamental dimensions of incertitude (risk, uncertainty, ambiguity

and ignorance). The precautionary principle applies when we have poor

knowledge about the likelihoods, and the outcomes are poorly defined, i.e.

category IV in Figure 7.1 (refer also to Stirling, 1998, 2007). Precaution is also

relevant to some degree for categories II and III.

In the following discussion we refer to the four categories in Figure 7.1 as

I, II, III and IV – we would like to avoid the reference to risk and uncertainty

in categories I and II as such a terminology is in conflict with the common
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interpretation of risk (Holton, 2004; Aven, 2003). The risk–uncertainty dis-

tinction in Figure 7.1 is inspired by or based on the ideas of Knight (1921)

which was mentioned in Section 2.4: under risk the probability distribution of

the performance measures can be assigned objectively, whereas under uncer-

tainty these probabilities must be assigned or estimated on a subjective basis.

However, adopting this terminology, we cannot speak about risk in most

practical applications, as objective probability distributions cannot be deter-

mined. For example, terrorism risk as a term would make no sense in this

conceptual framework. And the precautionary principle would not be a part

of risk management as this principle extends far beyond the narrow term risk

used in the Stirling and Gee (2002) classification.

Stirling and Gee (2002) adopt a modification of the Knightian framework

by restricting risk to situations with well-defined outcomes and some basis for

the probabilities, i.e. not a requirement of objective probabilities. Nonethe-

less, such a convention would be in conflict with risk assessment being a tool

to express uncertainties, and the reference to the four dimensions of incerti-

tude (risk, uncertainty, ambiguity and ignorance) is, therefore, not used in the

following analysis.

We interpret Figure 7.1 as shown in Figure 7.2 and explained in the

following.

7.3.1 The objective of risk assessment is uncertainty description

The knowledge dimension being poor (strong) means that the basis for

assigning the knowledge-based probabilities is poor (strong), i.e. the back-

ground knowledge K is poor (strong). For category III, only the probabilities

related to A are relevant as the outcome space for C is poorly defined.

Knowledge
about likelihoods

Some basis
for

probabilities 

No basis for
probabilities

Knowledge about outcomes

Outcomes Outcomes
well defined poorly defined

Risk (I)
Ambiguity 

(III)

Uncertainty 
(II)

Ignorance
(IV)

Incertitude

Figure 7.1 A classification system for incertitude (Stirling and Gee, 2002).
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The outcome space dimension relates to scenarios and not only the final

outcome. For example, if the activity is exposure to electromagnetic radi-

ation, we may easily define some overall injury/fatality categories, but it

would be difficult to define a complete set of effects and scenarios as the

underlying phenomena are not fully understood. The consequences of elec-

tromagnetic radiation are an example of category III uncertainties. The

outcome space is poorly defined, but the probabilities (related to A – i.e.

exposures) could have a strong basis. The discussion in Chapter 6 is relevant

for situations of all categories, but only the (A,C,U) risk approach is relevant

for categories III and IV as, if the outcome space is poorly defined, adequate

chance distributions would be difficult to establish.

7.3.2 The objective of the risk assessment is to accurately

estimate the risk (probabilities)

When the objective of the risk assessment is to accurately estimate the risk

(probabilities), the knowledge dimension relates to the accuracy of the prob-

ability estimates. For category I (and III with respect to A) the estimates are

relatively accurate (small epistemic uncertainties), whereas for category II

(and IV for specific As) the estimates are subject to large epistemic uncertain-

ties relative to the true underlying probabilities. Figure 7.2 is still relevant

with “knowledge basis for the probabilities of A and C” replaced by “know-

ledge about the probabilities of A and C”. The discussion in Chapter 5 is

relevant only for situations of the categories I and II.

The case analyses in Chapters 5 and 6 are best described as belonging to the

categories I and II. The LNG case is the one with highest uncertainties,

Knowledge basis
for the probabilities

of A and C

Strong

Poor

Knowledge about outcome space

Outcomes
well defined

Outcomes
poorly defined

(I) (III)

(II) (IV)

Uncertainty

Figure 7.2 Implementation of the Stirling and Gee (2002) classification
structure under the risk perspective (A,C,U) when the objective of the risk
assessment is uncertainty descriptions.
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but it can be discussed whether it should be classified as I or II. There are

no sharp lines between the categories, and we should not be too concerned

about finding the “correct” classification. The key point is that increased

level of uncertainty (ignorance) requires a stronger weight on the cautionary

and precautionary principles. The cautionary principle applies in all four

categories, also including category I. Think of Case 1, the working accidents.

The knowledge basis is strong, but we still implement a number of cautionary

measures to reduce the number of injuries; for example, we may use a con-

siderable amount of resources to strengthen the culture in the organisation.

In the following we focus on the understanding and use of the precaution-

ary principle. This principle has been subject to strong debate and its link to

risk assessment is not straightforward. Precaution means that actions are

taken in situations of scientific uncertainties about the consequences of an

activity. Hence, it is essential for regulators and the industry to define the

concept of scientific uncertainties. The many definitions of the precautionary

principle provide different suggestions for how to understand this concept,

and the topic has been given due attention in the literature. It is, however,

difficult to conclude when looking at all these definitions and reading the

literature.

Here are some common interpretations of “scientific uncertainties” (Aven,

2010g):

1. Large uncertainties exist in outcomes relative to the expected values.

2. There is a poor knowledge basis for the assigned probabilities.

3. There are large uncertainties about frequentist probabilities (chances) p.

4. It is difficult to specify a set of possible consequences (state space).

5. There is a lack of understanding of how the consequences (outcomes) are

influenced by underlying factors. It is difficult to establish an accurate

prediction model (a cause-effect relationship).

In addition, it is possible to define combinations of these interpretations, as in

the Stirling and Gee (2002) case where 2 and 4 are used as the criterion.

The essential feature of the precautionary principle when looking at the

many definitions of the principle is that it should apply when the conse-

quences of an activity could be serious but we do not fully understand what

could happen. Thus, there must be a potential for surprises. These ideas

provide the basis for the coming discussion when we make judgements

about the above interpretations being adequate. The discussion is based on

Aven (2010g).

Adopting this criterion we can quickly conclude that large uncertainties in

outcomes relative to expected values are not sufficient for applying the

118 Risk management and communication issues



precautionary principle. Most real-life situations are characterised by vari-

ation leading to large differences between the potential outcomes and the

expected values, but the underlying phenomena and processes may still be

well-understood. Consider the working accident, case 1. The risk assessment

has computed a probability distribution for the number of serious injuries for

a period of one million manhours (Figure 5.1) and a related expected value.

The distribution has a relatively large variance, reflecting the fact that the

number of injuries could be large. In this case there are large uncertainties

about the actual number of injuries, and consequently also in relation to the

expected value. But we would not classify these uncertainties as scientific as

the potential for surprises is considered minor. The situation is characterised

as one in category I, using the Stirling and Gee (2002) classification (see

Figures 7.1 and 7.2).

Let us consider the other interpretations, and let us think about the LNG

case. Suppose the knowledge basis for assigning the leakage probabilities is

considered relatively poor, in the sense that few relevant data are available

and the adopted model of the underlying phenomena is rather crude. Are the

uncertainties then scientific uncertainties?

In this case the understanding of the underlying phenomena and processes

is strong in the sense that a cause–effect relationship can be established: we

understand how the consequences (outcomes) are influenced by underlying

factors. In theory we can construct a prediction model for the occurrence of

leakages and the consequences, which would give accurate predictions when

we know the input parameters. To formalise this, let Z be the output quantity

of interest and X a vector of model input quantities (parameters). Then a

model G can be defined such that G(X) produces accurate predictions of

Z. Assuming that such a prediction model can be established, would we

classify the uncertainties as scientific uncertainties?

What matters should not be the background knowledge used for assigning

the probabilities, but the total knowledge basis about the phenomena and

processes considered. If an accurate prediction model can be established, the

knowledge basis is strong and we cannot refer to scientific uncertainties.

There is not a potential for surprises. Establishing such a model also means

that it is possible to define the state space for the outcomes. On the other

hand, if such a model cannot be established, it is reasonable to refer to the

uncertainties as scientific uncertainties.

The Stirling and Gee (2002) classification links scientific uncertainties

mainly to category IV (refer to Stirling, 1998): no basis for the probabilities,

and outcomes poorly defined (difficult to define a state space for the out-

comes). Using IV as the basis for comparison, a stronger definition is
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obtained than interpretation 5 (an accurate prediction model cannot be

established) since poorly defined outcomes mean that an accurate prediction

model cannot be established. The definitions are not equivalent as we can

construct cases where interpretation 5 applies, but not category IV. For

instance, if an accurate prediction model cannot be established, the uncertain-

ties may be in category II: the outcomes are well-defined but there is a poor

knowledge basis for A and C. Specific examples include floods under climate

change, and shareholder value (refer to Stirling et al., 2006).

The definition of frequentist probabilities (chances) p means a modelling

of the analysed phenomena, as p is a fraction of successes in a constructed

population of similar units to the one (those) studied. Hence, if such prob-

abilities (chances) have been defined, the uncertainties cannot be scientific

uncertainties according to interpretation 5. The introduction of such prob-

abilities (chances) means that we have some knowledge about the phenomena

studied. There is not a potential for surprises.

Think of the following situation: you are offered a game where you do not

know the probabilities (chances) of the lottery machine producing the prize/

loss money. In this case frequentist probabilities (chances) p can be defined

and hence the uncertainties are not scientific uncertainties according to

interpretation 5 (but according to criteria 1–3 they are). In the Stirling and

Gee (2002) classification, the uncertainties are of type II. The state space is

well-defined: the real line (�1,1), and there is no basis for the probabilities.

If the type of prize/loss is not known, the uncertainties become scientific

uncertainties, according both to interpretations 4 and 5 and to the Stirling

and Gee (2002) classification. A chance distribution cannot be established

and the outcomes are poorly defined.

As another example, let us look at the frequentist probability (chance) of a

terrorist attack. Such a probability (chance) does not exist, as a large (infinite)

population of similar situations cannot be meaningfully defined (Aven and

Renn, 2009b). Knowledge-based probabilities can, however, be specified.

Based on the available knowledge at a particular point in time the analyst

(expert) may assign a knowledge-based probability of an attack equal to 0.1

(say), meaning that he/she considers the uncertainty (degree of belief) to be

comparable to randomly drawing one specific ball out of an urn comprising

ten balls. When making such an assignment it is essential to be precise

on what the basis for the assignment (the background knowledge) is. For

example, we may assume that the possible attackers do not have access to

information about the uncertainty assessments and risk assignments, or the

measures taken to follow up these assessments and assignments. If such

access is available, this may influence the possible attackers and requires
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new and updated uncertainty assessments (Aven, 2007a, refer also to Lindley

2006, pp. 75–76).

The knowledge basis for such knowledge-based probabilities would often

be poor. We may for example have little information available of when and

how an attack could occur. Hence, criterion 2 applies. Yet the consequences

of an attack could be rather accurately predicted. The uncertainties are

therefore not scientific uncertainties according to criteria 4 and 5. In the

Stirling and Gee (2002) classification, the uncertainties are again of type II.

It is of course possible to think of potential attacks involving phenomena

where the consequences are not easily predicted and the outcome space is not

well-defined; then the uncertainties become scientific uncertainties, according

both to interpretations 4 and 5 and to the Stirling and Gee (2002) classifica-

tion. However, the most common situations are “surprising attacks”, not

“surprising consequences”.

In Table 7.1 we have summarised the main findings of the above analysis.

7.3.3 An alternative classification system

An alternative to the Stirling and Gee (2002) classification system is presented

in Figure 7.3, based on the idea that scientific uncertainty is related to the

difficulty of establishing a prediction model for the consequences. The classi-

fication system presented relates the scientific uncertainties to the cause–effect

relationship, which is a basis for many of the existing definitions of the

precautionary principle. By introducing different categories of the strength

of the cause–effect relationship, we are able to distinguish between different

levels of scientific uncertainties. In this set-up, Z denotes the quantity of

Table 7.1 Main findings of the analysis of the five interpretations 1–5 of scientific
uncertainties.

Interpretation

Sufficient for situation to
be classified as scientific
uncertainties

1. Large uncertainties in outcomes relative to the
expected values

No

2. A poor knowledge basis for the assigned probabilities No
3. Large uncertainties about relative frequency-

interpreted probabilities (chances) p
No

4. It is difficult to specify a set of possible consequences
(state space)

Yes (4 implies 5)

5. It is difficult to establish an accurate prediction model Yes
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interest and X¼ (X1, X2. . .) are the underlying factors influencing Z, and G is

the model linking X and Z. Note that scientific certainty in this sense does

not mean that Z can be predicted with accuracy when not conditioned on

X. Unconditionally, the consequences Z are uncertain, and this uncertainty is

defined by the uncertainties of the factors X. To make a judgement about the

uncertainties of X being small, different approaches can be used, for example:

– an accurate prediction model for X can be established

– a chance distribution of X can be established showing the variation

of X if the situation considered can be repeated over and over again.

To explain this set-up and these approaches in more detail we will consider

the safety design case 3, alternative II, the parallel system comprising two

components.

Let Z be the relative downtime of the system in a test interval of length t.
To analysis Z we introduce the model G(X) ¼ max{t – max{X1,X2}, 0}/t,
where X1 represents the time to the failure of the component, i.e. G is equal

to the relative time from when the second unit fails until t. Thus we put

Z ¼ G(X). Now suppose that we have a lot of relevant data about the

performance of the components. These data provide the basis for determining

chance distributions F1 and F2 for X1 and X2, respectively. The components

are judged to be independent.

We conclude that the situation is characterised by scientific certainty.

An accurate prediction model can be established. There are uncertainties

about X1 and X2, but the variations in lifetimes are known.

Now suppose that the amount of relevant data (information) is rather

limited. Chance distributions F1 and F2 are established but their justification

An accurate prediction model G(X) for Z can be established
and the uncertainties about X are “small”  (I*)

An accurate prediction model G(X) for Z can be established
and the uncertainties about X are “large” (II*)  

An accurate prediction model cannot be established (III*)

Scientific
certainty

Increasing
scientific
uncertainties

Figure 7.3 Different categories of uncertainties, reflecting various degrees
of scientific uncertainties. Z is the output and X ¼ (X1, X2. . .) are the
underlying factors influencing Z.
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is not so strong. Parameters y1 and y2 are introduced, and we write F(x | y1)
and F(x | y2) to show that the distributions depend on the parameters y1 and
y2. The available knowledge provides wide uncertainty bands (confidence

intervals or credibility intervals if the Bayesian perspective is adopted)

for the parameters. Under these conditions, the uncertainties about X are

much larger than in the previous example, and the situation is classified as

category II*.

Next suppose that it is difficult to establish a specific family of chance

distributions for X. Then the uncertainties about X are even larger but still

categorised as “large”. The scientific uncertainties are also larger, but are not

categorised as level III* as the model G(X) provides insights on how

X influences Z.

Now let us look at a slightly more complex situation (Aven and Vinnem,

2007): the consequences of a blowout in Norwegian oil and gas production in

the Barents Sea. Consider the consequences of an oil spill on fish species, and

let Z denote the recovery time for the population of concern, with Z being

infinity if the population is not recovered. Then there is scientific certainty

according to I* if we can establish a function (model) G such that Z equals

G(X) with high confidence, where X ¼ (X1, X2. . .) are some underlying

factors influencing Z, and the uncertainties about X are “small”. Such factors

could relate to the possible occurrence of a blowout, the amount and distri-

bution of the oil spilled on the sea surface, the mechanisms of dispersion

and degradation of oil components, and the exposure and effect on the fish

species. For values of X, we can use G to predict the consequences Z.

In this case there are considerable uncertainties about some components

of X and the model G is disputed among experts. Many biologists conclude

that there is a lack of fundamental understanding of the underlying phenom-

ena concerning the effect on the fish species – an accurate prediction model

G cannot be established. However, others argue that such a model can be

constructed. Potential surprises can be ignored. The fact that many experts in

the field conclude that an accurate prediction model cannot be constructed

leads to a classification of the situation in category III*. The highest insti-

tution in the Norwegian Church referred to the precautionary principle when

they requested the Norwegian government not to start year-round petroleum

operations in the Barents Sea some years ago. The Norwegian government

gave strong weight to the principle in their decision-making, and not all fields

were opened for year-round operations.

A classification system, such as the Stirling and Gee (2002) framework

(Figures 7.1 and 7.2) and the above system (I*–III*), characterises and

structures different types of uncertainties. In this way the system may
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improve our understanding of the concept of “scientific uncertainties”, and

next, guide us in determining what should be the key features defining

“scientific uncertainties” in applications. It could also serve as a communi-

cation tool between different stakeholders, in particular between analysts,

people with policy and legal backgrounds, and the decision-makers. For these

systems to work, key concepts, such as probability, need to be precisely

defined. Such precision is in place for both classification systems studied

above. The classification system suggested explicitly incorporates the basic

building blocks of risk assessment: models and probabilities. It distinguishes

between aleatory uncertainties represented by probability models and

chances, and epistemic uncertainties expressed by knowledge-based probabil-

ities. In this way, this classification system represents a rise in the level of

detail and precision compared to the Stirling and Gee (2002) system. In our

view the suggested system not only provides insights important for the proper

invocation of the precautionary principle, but also practical guidance for

what to look for when determining what scientific uncertainties mean. The

classification is not based on precise limits for when the situation should be

categorised as I*, II* and III*. Judgements have to be made in each case.

7.4 Risk communication

The form and content of the risk assessments, and in particular the

“associated uncertainties”, influence the risk communication, which could

be defined as

an interactive process of exchange of information and opinion among individuals,
groups and institutions. It involves multiple messages about the nature of risk and
other messages, not strictly about risk, that express concerns, opinions or reactions to
risk messages or to legal and institutional arrangements for risk management.

(US National Research Council 1989, p. 21)

In short, we could say that risk communication means the exchange of risk-

related knowledge and information between the stakeholders.

The ultimate goal of risk communication is to assist stakeholders and the

public at large in understanding the rationale of risk-informed decisions, and

to arrive at a balanced judegment that reflects the factual evidence about the

matter at hand in relation to their own interests and values (Aven and Renn,

2011). In other words, good practices in risk communication are meant to

help all affected parties to make informed choices about matters of concern

to them. The purpose of risk communication should not be seen as an attempt

to convince people, such as the consumers of a risk-bearing product, that the

communicator (e.g., a government agency that has issued advice concerning
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the product) has done the right thing. It is rather the purpose of risk commu-

nication to provide people with all the insights they need in order to make

decisions or judgements that reflect the best available knowledge and their

own preferences (Aven and Renn, 2011).

This way of looking at risk communication is supported by the (A,C,U)

type of risk perspective. Uncertainties, the knowledge and lack of knowledge,

need to be revealed and communicated. It can also be supported by the (A,C,

Pf) perspectives when the aim is accurate risk estimation, but this perspective

often leads to a use where uncertainties are camouflaged or hidden, and the

risk assessment is used for risk-based decision-making. Again we could think

about the LNG case. By reference to the calculated probabilities, the operator

concluded in the actual situation that the risk was acceptable and this was

communicated to all other parties, including the neighbours. Uncertainties

were not reported. In fact the term “uncertainty” is not referred to at all in the

main risk analyses report. The basic philosophy seems to be that the risk is

very low and the neighbours would acknowledge this if informed by the

experts used by the operator. The situation reminds us about the time when

experts informed people about the risk of nuclear accidents. The message

was that the probability of a serious accident (meltdown) is so small that it

does not represent a problem. The calculated probability of a serious incident

is 1/1 000 000 (say), it is so low so we need not be concerned. More knowledge

would lead lay people to draw the same conclusion.

However, the judgement about acceptability is a value judgement, and it

is based on evaluations of both potential consequence and probabilities/

uncertainties. What is important here is not just the likelihood. Rejection of

nuclear power plants can be justified based on the fact that potential conse-

quences are extremely large and that even a small probability makes the risk

unacceptable.

It is a common conception, in particular among analysts, that it is difficult

to communicate probabilities and uncertainties: lay people do not understand

these concepts, nor do managers and politicians. This view can, however, be

challenged. Our perception is that people can appreciate these concepts if

they are properly introduced. Unfortunately that is often not the case. If

the analysts preparing the risk and uncertainty picture do not have a solid

understanding of the key concepts, they will fail in transforming any message

to a broader audience. The scientific platform of risk assessment as described

in this book could help in communicating the results, as precision is required

on what are the uncertain quantities and what the tools are to express the

uncertainties. In the actual LNG case, the presentation and communication
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of the risk results lacked a foundation. If you introduce a probability to

express uncertainties, you must explain what that means. The analysts

(experts) have assigned a probability equal to 0.2 (say), but what does this

mean? The assessments produce formulae and numbers but hardly any com-

ments and reflections on the tool used to describe the risk.

Many analysts seem to think that information provided to managers and

politicians needs to be very simple and not include discussions of uncertain-

ties. This is, however, a misconception. Managers and politicians are able to

relate to and deal with uncertainties and risk, yes, these tasks are largely what

their jobs are all about � to make decisions under uncertainty and risks.

Managers are usually well-equipped people who will quickly understand

what is at stake and what the key issues are if the professionals can do their

job. The problem is rather that the analysts have not been able to report the

uncertainties and present them in an adequate way. A lack of competence on

the scientific platform of risk assessment among analysts and other profes-

sionals often results in inadequate uncertainty assessments.

To inform the decision-makers and other stakeholders about risk, different

visualising tools could be used. An example of such a tool is bubble diagrams

(Abrahamsen and Aven, 2011; Abrahamsen et al., 2010). In a traditional

bubble diagram, risk is shown through three dimensions: (1) consequence,

(2) probability and (3) manageability, but it is also possible to include

(4) uncertainties that extend beyond the assigned probabilities/expected

values as shown in the example in Figure 7.4. The diagram reflects the four

dimensions by showing the probability on the x-axis (normally using a

logarithmic scale), the consequences on the y-axis, the manageability is

visualised through the bubble size, and the uncertainty dimension using a
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Figure 7.4 Bubble diagram for event ship collision next year (based on
Abrahamsen and Aven, 2010).
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letter reflecting the assigned uncertainty category. The criticality of the risks

is determined based on an assessment of all dimensions, and is represented

by a colour. The classification of the risks in the bubble diagram is just a

snapshot of the situation and is continuously updated. The various dimen-

sions are defined as follows:

Probability

The probability included in the diagram is a knowledge-based probability of

an event A conditional on a background knowledge K.

Consequence

The “consequence” dimension is to be interpreted as the expected negative

impact given the occurrence of the event A.

Manageability

The easiness with which risk can be reduced and desirable outcomes ensured.

The “easiness” relates to the organisation’s capability to reduce risk and

obtain desirable outcomes seen in relation to other concerns, in particular

cost. We say that the manageability is high if it is considered feasible to

implement measures over time which can reduce risk and give increased

confidence in obtaining desirable outcomes. Similarly we understand a low

manageability.

Uncertainty

Uncertainty reflects the expected values’ predictability of the real outcomes.

High uncertainty in the bubble diagram may for example express that the

assigned expected number of fatalities can give a poor prediction of the actual

number of fatalities given the occurrence of A.

In the example three uncertainty categories are used, defined as follows

(Flage and Aven, 2009):

Low uncertainty

All of the following conditions are met:

– the phenomena involved are well understood; the models used are known

to give predictions with sufficient accuracy

– the assumptions made are seen as very reasonable

– much reliable data are available

– there is broad agreement among experts

– low variation in populations (low stochastic uncertainty)
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High uncertainty

One or more of the following conditions are met:

– the phenomena involved are not well understood; models are non-

existent or known/believed to give poor predictions

– the assumptions made represent strong simplifications

– data are not available, or are unreliable

– there is lack of agreement/consensus among experts

– high variation in populations (high stochastic uncertainty)

Medium uncertainty

Conditions between those characterising high and low uncertainty, e.g.:

– the phenomena involved are well understood, but the models used are

considered simple/crude

– some reliable data are available

Note that the degree of uncertainty must be seen in relation to the effect/

influence the uncertainty has on the predicted consequences. For example,

a high degree of uncertainty combined with high effect/influence on the

predicted values will lead to the conclusion that the uncertainty factor is

important. However, if the degree of uncertainty is high but the predicted

values are relatively insensitive to changes in the uncertain quantities, then the

uncertainty classified in the diagram could be low or medium.

The bubble diagram is closely related to a risk matrix. In the bubble

diagram there will be a unique classification of the risk since attention is

given to expected consequences. For “ship collision next year” the risk will be

classified in the bubble diagram as the point (P(A), E[C | A]). This way of

classifying risks can also be adopted for a risk matrix, but it is also common

to use consequence categories in risk matrices. For example, if a ship collision

occurs we may consider the consequence categories C1 (0 fatalities), C2 (1–5

fatalities), C3 (6–20 fatalities) and C4 (more than 20 fatalities).

We may start the criticality classification by first ranking the risks

according to the three standard dimensions consequence, probability and

manageability. Then we may adjust these up or down in case the uncertainties

are considered high or low.

The risk-related information visualised in bubble diagrams could be a

useful communication tool in safety management. The diagrams summarise

important features of the knowledge and lack of knowledge available and are

continuously updated. The accuracy of the method is in line with the preci-

sion of the assessment tool.
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Many other similar diagrams can be established, for example showing

the expected number of lives saved and expected costs, in addition to

uncertainties; see Abrahamsen et al. (2010). This diagram could facilitate

communication between analysts and other stakeholders of safety measures’

cost-effectiveness.

7.5 The content and purpose of managerial review and judgement

The results of risk assessments are used to support decision-making as

discussed in Section 1.1; see Figures 1.1–1.3. The decision emerges from a

managerial review and judgement phase during which the management/

decision-makers consider

(i) the formal results of risk assessments and other probability based

assessments

(ii) the premises, assumptions and limitations of these assessments

(iii) other issues not captured by the assessments (e.g. strategic issues).

Figure 7.5 illustrates these three categories of input to the managerial review

and judgement.

The weight given to the uncertainties, i.e. the cautionary and precautionary

principles, is often decisive for the decision that is made.

Concerning item (ii), consideration should be given as to which decision

alternatives have been analysed and the fact that the results of the analyses

represent judgements (expert judgements), etc. (refer to the list in Section 1.1).

In a risk management/governance context, the managerial review and

judgement phase is closely linked to the risk evaluation process (Aven and

Decision

Managerial review and 
judgement   

PRA,  … 

U

Other concerns

Assumptions, etc.

Figure 7.5 An illustration of the three categories of input to the managerial
review and judgement. “PRA, . . .” refers to the formal probabilistic risk
assessment and other probability-based methods (for example cost–benefit
analyses founded on expected net present value calculations), the U refers to
the uncertainties not fully captured by the assessments.
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Renn, 2010). As risk evaluation is also used in a more narrow way as “a

process of comparing risk to decision criteria to determine whether the risk

and/or its magnitude is acceptable or tolerable” (ISO, 2009a,b; Aven, 2003),

we talk about “broad risk evaluation” processes when using this term as an

alternative to managerial review and judgement. The “other issues” cover

important considerations on wider social and economic factors to be included

in the balancing evaluation process. The main elements of this process are

(Aven and Renn, 2010):

� Summarising the results of the risk assessment process in terms of a risk

description, also including characterisations of uncertainties.
� Deliberation over these results in consideration of wider social and eco-

nomic factors (e.g. benefits, societal needs, quality of life factors, sustain-

ability, distribution of risks and benefits, social mobilisation and conflict

potential), legal requirements and policy imperatives).
� Weighing of pros and cons and trading-off of different (sometimes com-

peting or even conflicting) preferences, interests and values.

The broad risk evaluation assesses “high-level” value-based issues, such as

the choice of technology, societal needs requiring a given risk agent to be

present and the potential for substitution as well as for compensation, and

reaches beyond the risk itself and into the realm of policy-making and societal

balancing of risks and benefits.

While risk assessment deals with knowledge claims (around what are the

causes and what are the effects), evaluation deals with value claims (around

what is good, acceptable and tolerable). This concept has been criticised as

being too simplistic and inadequate for complex risk problems. Indeed, the

distinction between non-tolerable, tolerable and acceptable is quite simple but

it reflects the actual need for a judegment in many situations. The LNG case

is an illustrating example. This final closure on the risk allows for only three

alternatives: either to do nothing, to ban the risk or to initiate risk-modifying

actions. There is no other alternative at this point. This important judgement

should be made as transparent as possible to all interested individuals and

parties and the organisations responsible for this judgement need to have the

skills, the assets, the background knowledge and the sensitivity with respect

to the corresponding values and socio-cultural preferences to arrive at an

informed, balanced and fair judgement (Aven and Renn, 2010).

As stressed throughout this book decision-making under risk and uncer-

tainties should be risk-informed, not risk-based, i.e. the managerial review

and judgement has a role to play. Nonetheless, risk-based approaches are

common in practice and the literature includes a vast number of theories
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and methods, as well as applications based on this thinking. Risk assessment

consultants and the formal decision-making on the regulation of risk remain

relatively unaffected by this recognition (Stirling, 1998).

There are many reasons for this, but a main factor is obviously lack of

understanding of the fundamentals of risk assessments and risk management.

The limitations of the risk assessments need to be taken into account as well

as other concerns, see Figure 7.5.

Closely related to this lack of understanding of the fundamentals of risk

management and risk assessments there is an issue about the risk managers’

and the risk analysts’ mind set concerning the use of risk assessments in the

decision-making process (Aven 2010i):

Too many risk managers want to be absolved of the responsibility for

having to make decisions – they want a “risk-based” approach in which their

actions are dictated by risk assessments. Then, if their actions turn out to be

wrong (poor), they can claim absolution on the basis that “We did what

the numbers told us to do. If the numbers were wrong, it’s the analysts’

fault.” Risk analysts, for their part, too often lack sufficient analytic humility

and fall into the trap of trying to give answers with far greater certainty

than can be justified. This is the real issue in the risk-based versus risk-

informed dichotomy.

7.5.1 How the risk perspective affects the managerial

review and judgement

In the rest of this section we will look more closely into the managerial review

and judgement and the related components (i)–(iii) introduced above, based

on the analysis of the scientific criteria in Chapters 5 and 6. The key issue is

how the risk assessment perspectives, with their strengths and weaknesses,

influence the managerial review and judegment.

Let us first study the (A,C,Pf) risk perspective where the aim of the risk

assessment is accurate risk estimation, i.e. of Pf. Suppose that a substantial

amount of relevant data is available and accurate estimates of the parameters

have been computed. Think of the working accident data of Case 1 and a

decision problem related to possible implementation of risk-reducing meas-

ures. In this case (i) is covered by the assessments in Chapter 5, and to a large

extent (ii) is also covered. In addition, considerations have to be given to

costs, as well as other concerns such as political aspects. To fully appreciate

the third item (iii) we need to understand the detailed decision situation

considered and its framing. As an illustration, consider again the Case 1

example. Two “other concerns” in this case include (Aven et al., 2010):
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Political signals: In the Norwegian context the Storting (the Norwegian parliament)
and Cabinet give guidance to the Norwegian Petroleum Safety Authority and the
industry in white papers. Here some issues are frequently repeated and highlighted.
Firstly the petroleum industry is described as a leading industry which continuously
invests in knowledge and improvement by learning from best practice. “A levelling or
decline in Health Safety and Environment (HSE) performance is not in line with such
objectives” the papers state. Secondly, the introduction of the “Zero-Philosophy” is
seen as a milestone regarding attitude and behaviour in the industry. Thirdly the
obligation of implementing international rules and regulations is stated. Such
guidance contributes to priorities and focus areas for the regulating authorities,
both in revising and developing the regulations, the inspection and instructing or
guiding the industry.
The “Nordic Model” of a healthy working life (Kettunen, 1998) presupposes an

active participation of the workers in job design, running operation and risk
assessment. It is also embedded in the Working Life Act and safety regulation.
A major concern from the authorities in the development of new regulations is to
have a continuous focus on the role of workers and their unions as an educated and
motivated resource to improve safety work. Arenas have been established in the
industry where groups of representatives from the various interested parties discuss
and review important safety issues, and in particular the results from risk assessments
and other expert judgments.

Thus for the decision-maker to decide on implementation or not of a specific

measure, it is not sufficient just to look at the risk and cost assessments with

evaluations of their premises, assumptions and limitations. The other con-

cerns may strongly influence the conclusion. The situation considered may be

one where the industry has experienced some events (near misses) which had a

potential for severe consequences and the safety climate is strongly affected

by these events. Then this climate could mean a stronger willingness to use

resources on safety than is normal. Many other such factors (e.g. the eco-

nomic climate) are relevant for the managerial review and judgement.

Even in Case 1 where the amount of relevant data was extensive, the results

are strongly dependent on the assumptions made. We remember for example

from Chapter 5 how the serious injury rate was influenced by the assumption

of a trend. Seeing the risk assessment as a tool for informing the decision-

maker it is essential that the risk assessments seek to provide broad risk

characterisations reflecting different sets of assumptions. In view of the

uncertainties of the risk estimates produced, this type of sensitivity analysis

is required and management (decision-makers) should always ask for such

analyses to be carried out for key assumptions. It is a common attitude

among many analysts and experts that they should provide clear recommen-

dations on what the decision-maker should do. However, the analysts and

experts should appreciate their role in the decision-making process as
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informers, nothing more. The managerial review and judgement normally

extend far beyond the context of the analysts and experts.

Now let us look at the situation where the aim of the risk assessment is

uncertainty characterisations. What we have said above also applies to this

situation. In many ways, it is easier to meet the requirements of sensitivity

analysis showing the dependencies of key assumptions, as this perspective is

based on uncertainty descriptions rather than telling the “truth” about risk.

As there is no “truth” it is easier for the analysts and experts to see their roles

as risk informers. For the LNG case, the actual execution of the risk assess-

ments was based on a perspective where the risk assessments seek to present

the “real” risk picture, although as we noticed from the analysis in Chapters 5

and 6, this is a misuse of the risk assessments. Such a perspective cannot be

justified. The neighbours and many independent experts did not find the risk

characterisation sufficiently informative to support the decision-making on

the location and design of the LNG plant. Sensitivity analyses were lacking,

as well as reflections on uncertainties (a sensitivity analysis is not the same as

an uncertainty analysis, see discussion in Aven, 2010a). The risk figures

produced are based on a number of critical assumptions, but these assump-

tions are not integrated in the risk characterisation presented nor communi-

cated by the operator (Aven, 2009c).

The managerial review and judgement was reduced to (i) – a more or less

mechanical transformation of the results of the assessments to conclusions

about risk acceptability. Emphasis on (ii) would have provided a broader

basis for the decision-making, as shown by the analysis in Chapter 6 where

risk perspectives are applied, revealing and describing uncertainties. Follo-

wing the (A,C,U) perspective, where uncertainty factors are presented and

discussed, in addition to probability-based indices and sensitivity analyses,

the managerial review and judgement would cover all three items (i) –(iii). The

risk description would give more weight to the uncertainties. This does not

necessarily mean a different decision, but it could.

From this it is obvious that the choice of risk perspective is important

for the decision-making and risk management, as was also discussed in

Section 1.2. It may serve the interests of the operator to present a risk picture

that concludes that the real risk is small and acceptable. Focusing on uncer-

tainties would easily create an image of the operator being unknowledgeable.

Such a thinking is common although there is broad recognition among risk

experts that typical risk assessments provide a narrow picture on risk and it is

important to see beyond the assessments when managing risk; see Chapter 1.

There are many reasons for the often narrow perspective adopted, but a main

factor is certainly the risk assessment tool in itself – the scientific quality of
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risk assessment as discussed in previous chapters. However, equally import-

ant is the role of the assessment in the decision-making context. It simply

serves the interests of many actors to maintain narrow risk descriptions as

these will provide a stronger support for their desired decision alternatives.

We have mentioned the LNG case, but the literature includes many others.

Perhaps the most common type of examples relate to the nuclear industry. In

the early stage of the development of this industry, the experts’ description of

risk was narrow and uncertainties were not properly reported, as was men-

tioned also in Section 7.4.

Also a broad risk perspective highlighting uncertainties can be misused. If

intolerable risk is sought, a possible strategy is to put more emphasis on the

uncertainties than justified. A constant and strong focus on the uncertainties

from many actors would easily lead to a higher risk perception among

managers and politicians, as risk is dependent on the uncertainties. To avoid

such misuse it is essential that the risk and uncertainty assessments are carried

out according to some sound standards as for example outlined in this book.

Failures to do this could have serious implications for the decision-making

processes, as we have discussed in previous sections and chapters, and further

discuss in the following.

In the LNG case, the neighbours of the plant as well as many experts

have constantly stressed the uncertainties. And some politicians have been

concerned about the risk level. The issue is to what extent weight is given to

the cautionary principle. The precautionary principle is not an issue as the

uncertainties are not so much about scientific uncertainties. However, the

argumentation and rationale supporting the judgements have not been

strong enough to cause the politicians to reverse their decision on accepting

the operation of the plant. Perhaps this is not so surprising given the fact

that the national safety agency had no objections to the operator’s risk

assessment approach. There are also strong economic incentives for not

interrupting the planned activities. The role of the safety agency is critical.

Often the agencies have a focus more on whether a risk assessment has

been carried out than on its quality and whether it provides meaningful

decision support.

Vinnem (2010) states that the approach taken by the agency may be

interpreted as lack of competence or lack of professional maturity. In the

case of the LNG plant the risk analysis was used to “prove” that it was safe

enough not to follow the US practice for safety zones for LNG plants.

However, such a practice is strongly criticised by others, including the safety

agency for the petroleum industry in Norway. In November 2007 this agency

issued a letter to the industry warning about the malpractice of using risk
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analysis to demonstrate the acceptability of deviations from accepted practice

and regulatory requirements (Vinnem, 2010).

7.5.2 Climate Change example

Now let us consider a case on a “higher societal level”, the implications of

global climate change. The international expert group Intergovernmental

Panel on Climate Change (IPCC) has gone through considerable effort to

articulate a common characterisation of climatic risks and uncertainties.

Given the remaining uncertainties and the complexities of the causal relation-

ships between greenhouse gases and climate change, it is then a question of

values as to whether governments place their priorities on prevention or on

mitigation (Keeney and McDaniels, 2001).

From the risk characterisation of the IPCC Fourth Assessment Report,

Climate Change 2007, we give some examples of typical statements:

� Warming of the climate system is unequivocal, as is now evident from

observations of increases in global average air and ocean temperatures,

widespread melting of snow and ice, and rising global average sea level.
� Rising sea level is consistent with warming. Global average sea level has

risen since 1961 at an average rate of 1.8 [1.3 to 2.3] mm/yr and since 1993

at 3.1 [2.4 to 3.8] mm/yr, with contributions from thermal expansion,

melting glaciers and ice caps, and the polar ice sheets. Whether the faster

rate for 1993 to 2003 reflects decadal variation or an increase in the longer-

term trend is unclear.
� Observational evidence from all continents and most oceans shows that

many natural systems are being affected by regional climate changes,

particularly temperature increases.
� There is medium confidence that other effects of regional climate change on

natural and human environments are emerging, although many are diffi-

cult to discern due to adaptation and non-climatic drivers.
� Global GHG (greenhouse gases) emissions due to human activities have

grown since pre-industrial times, with an increase of 70% between 1970

and 2004.
� Global atmospheric concentrations of CO2, methane (CH4) and nitrous

oxide (N2O) have increased markedly as a result of human activities since

1750 and now far exceed pre-industrial values determined from ice cores

spanning many thousands of years.
� There is very high confidence that the net effect of human activities since

1750 has been one of warming.
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� Most of the observed increase in globally-averaged temperatures since the

mid-20th century is very likely due to the observed increase in anthropo-

genic GHG concentrations. It is likely there has been significant anthropo-

genic warming over the past 50 years averaged over each continent (except

Antarctica).
� Human influences have:
� very likely contributed to sea level rise during the latter half of the 20th

century
� likely contributed to changes in wind patterns, affecting extra-tropical

storm tracks and temperature patterns
� likely increased temperatures of extreme hot nights, cold nights and cold

days
� more likely than not increased risk of heat waves, area affected by

drought since the 1970s and frequency of heavy precipitation events.
� Continued GHG emissions at or above current rates would cause further

warming and induce many changes in the global climate system during the

21st century that would very likely be larger than those observed during

the 20th century.

These statements represent the panel’s risk description or characterisation.

There are large uncertainties and these are reflected by the likelihood judge-

ments. This risk characterisation provides a basis for broad risk evaluations

carried out by political parties and governments in different countries, as well

as international organisations. Most parties judge the present level of GHG

emissions to be intolerable, and formulate targets of x per cent cut from

current levels by year y, to obtain a tolerable level (Aven and Renn, 2010).

7.5.3 Different decision settings

Decisions involving uncertainty and risk are made at different organisational

levels and in a number of settings. Process plant managers encounter situ-

ations which force them to make decisions that will seriously affect produc-

tion goals and accident risk in a conflicting manner. To make satisfactory

decisions, they are dependent on decisions by senior management, e.g. in the

form of policy statements, about priorities of accident risk versus production

goals. Regulatory agencies can be seen to make decisions when imposing new

requirements, e.g. to perform risk analysis and deal with risk in specified

ways. It is obvious that the context and nature of the decision processes

mentioned vary significantly. Often, decision-makers are constrained in a

way which does not allow them to assess risk in detail. For example, in a

crisis the time constraints do not allow for detailed risk assessments.
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These constraints are closely related to the decision settings. Many classifi-

cation systems for such settings have been developed. In Rosness (2009) (see

also Kørte et al. (2002) and Aven (2003)), a system is presented based on a

taxonomy of decision-makers. The classification is based on two dimensions:

closeness to hazard and level of authority. See Figure 7.6. Decision settings

typical for certain groups of actors are identified and the constraints for these

are discussed. The implications these constraints have on decision-makers or

actors with respect to risk analysis and management are considered and the

necessity for interaction among actors in different decision settings is shown.

The form and content of the managerial review and judgement depend on

the decision setting. The risk assessments as well as “other concerns” could

vary considerably. As an example, contrast the LNG case and the climate

change case. However, the overall principles and ideas are the same. The risk

assessments provides decision support, and due considerations have to be

given to the framing of the assessments, their assumptions and limitations,

and the other concerns that are important for the decision-making. We have

to acknowledge that there is no simple and mechanistic method or procedure

for balancing different concerns.
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Figure 7.6 Classification of decision settings (Kørte et al., 2002).
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8

Towards a holistic scientific approach
to risk assessment

In Chapters 5–7 we have seen how risk assessments and risk management are

influenced by the risk perspectives. Now we would like to go one step further,

to provide guidance on what should be the preferred approach to risk. The

basis for the guidance is the discussions in the previous chapters. Firstly we

need to clarify what we mean by risk. A number of definitions and interpret-

ations of the risk concept exist as discussed in Chapter 2. Many of these are

probability-based. Below (Section 8.1) we present and discuss a structure for

characterising the definitions, which is founded on a clear distinction between

(Aven, 2010f)

(a) risk as a concept based on events, consequences and uncertainties;

(b) risk as a modelled, quantitative concept; and

(c) risk descriptions.

The discussion leads to an approach for conceptualising and assessing risk,

which is based on risk defined by (a), i.e. is founded on the (A,C,U) risk

perspective, and the probability-based definitions of risk can be viewed as

model parameters and/or risk descriptions. The approach provides clear

guidance on how to think when conceptualising and assessing risk in practice.

Next in this chapter (Section 8.2) we present and discuss a general model-

based framework for risk assessments. Starting from an industry guide to

quantitative uncertainty analysis and management, clarifications and simpli-

fications are made to ensure consistency with the (A,C,U) risk perspective.

Some simple examples are included to motivate and explain the basic ideas

of the framework.

In risk assessments, probability is the common tool used to describe

the epistemic uncertainties about unknown quantities. However, the purely

probability-based approaches to risk and uncertainty analysis can be challenged

as we have discussed throughout this book. A key point is that the support of
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the probabilities is not reflected by the numbers produced. This concern has

sparked a number of investigations in the field of uncertainty representation

and analysis, which has led to the development of several alternative

approaches, including possibility theory and evidence theory. These theories

and methods represent strong research areas and in the last section of this

chapter (Section 8.3) we question to what extent the raised challenges of the

probability-based methods can be solved by these approaches.

8.1 What is risk? A structure for conceptualising and describing risk

Risk is a fundamental concept for most scientific disciplines, but no consen-

sus exists on how to define and interpret risk. Some definitions are based on

probabilities, some on expected values, and others on uncertainty. Some

consider risk as subjective and epistemic, dependent on the available know-

ledge, whereas others grant risk an ontological status independent of the

assessors. The situation is chaotic and leads to poor communication. We

are also afraid that it hampers effective risk management as well as the

development of the risk field, as many of these definitions and interpretations

lack proper scientific support and justification.

Of course, business needs a different set of risk methods, procedures and

models from, for example, medicine and engineering. But there is no reason

why these areas should have completely different perspectives on how to

think when approaching risk and uncertainty, when the basic challenge is

the same – to conceptualise that the future performance of a system or an

activity could lead to outcomes different from those expected, desired,

planned, or not in line with stated objectives.

Think of an activity in the future, say the operation of an offshore instal-

lation for oil and gas processing. We all agree that there is some risk associ-

ated with this operation. For example, fires and explosions could occur

leading to fatalities, oil spills, economic loss, etc. But it is not straightforward

to explain what we mean by this risk if we require a precise definition and

would like to use the concept in scientific studies. Risk analysts would

introduce a set-up which directly or indirectly defines how risk is understood

and assessed; refer to Chapters 5 and 6. The set-up would typically be

probability-based, with probabilities interpreted either as relative frequencies

or as subjective probabilities. All such set-ups can be challenged as not being

able to reflect risk in a proper way. Important risk aspects could be camou-

flaged or hidden by the set-up. Discussions of the set-up are therefore import-

ant, not only from a theoretical point of view but also from a practical risk

management perspective.
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We have identified several definitions of risk that can be used as an overall,

common definition. They all belong to the category (a). Many attempts have

been made to establish a unified risk perspective, but none of these have

obtained broad acceptance in practice. There could be many reasons for this.

Firstly, the scientific work on risk may not have reached a sufficiently mature

level for establishing such a definition. The exploring phase is not completed.

Secondly, the scientific literature has a focus on the generation of new ideas

and suggestions, and on a critique of other contributions. By its nature, it is

hard to obtain broad consensus on scientific issues in general and risk

definitions in particular. And thirdly, the standardisation organisations have

not been able to produce sufficient broad and precise definitions which could

be accepted by the scientific expertise on risk.

Consider for example the latest definition from the International Stand-

ardisation Organisation (ISO, 2009a,b): risk is the effect of uncertainty on

objectives. What does this mean? Risk has to do with uncertainty, but is it the

effect of uncertainty? And risk is related to objectives, but what if objectives

are not defined? Then we have no risk? Asking experts on risk, there is no

doubt that this definition would lead to numerous different interpretations.

The definition is not sufficiently precise, and one may certainly also question

its rationale as indicated.

In Chapter 2 we presented and discussed a set of common definitions of

risk, including (the numbers 1–8 are the same as those used in Chapter 2)

0. Risk equals the expected loss (Verma and Verter, 2007; Willis, 2007).

1. Risk is a measure of the probability and severity of adverse effects

(Lowrance, 1976).

2. Risk is the combination of probability and extent of consequences

(Ale, 2002).

3. Risk is equal to the triplet (si, pi, ci), where si is the ith scenario, pi is the

probability of that scenario, and ci is the consequence of the ith scenario,

i¼ 1,2, . . . N (Kaplan and Garrick, 1981).

4. Risk refers to uncertainty of outcome, of actions and events (Cabinet

Office, 2002).

5. Risk is a situation or event where something of human value (including

humans themselves) is at stake and where the outcome is uncertain

(Rosa, 1998, 2003).

6. Risk is an uncertain consequence of an event or an activity with respect to

something that humans value (IRGC, 2005).

7. Risk is equal to the two-dimensional combination of events/consequences

and associated uncertainties (Aven, 2007a, 2010e).
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8. Risk is uncertainty about and severity of the consequences (or outcomes)

of an activity with respect to something that humans value (Aven and

Renn, 2009a).

For the measures that are based on probabilities and expected values, we may

generate two versions, one where the probabilities are interpreted as relative

frequencies (and the expected values as averages), and one where the prob-

abilities are subjective (knowledge-based) probabilities (and the expected

value is interpreted as the centre of gravity of the probability distribution).

We write definitions xf and xs, respectively, to separate the two categories,

x ¼ 0, 1, 2, 3. Consider as an example category 0, risk defined as the expected

loss. According to definition 0f, risk is understood as the average loss when

considering an infinite number of similar situations, whereas 0s means that

risk is the centre of gravity of the subjective probability distribution of the

loss. Following the suggested structure for characterising the various risk

definitions we have to place these definitions in one of the categories (a), (b)

(c), defined above.

The result is that definition 0f is in category (b) and 0s is in category (c), as

risk in the former case is based on the model of an infinite number of similar

situations and risk in the latter case is a way for the assessor to describe or

characterise risk. The expected loss Es when using subjective probabilities is a

risk index based on the background knowledge (K) of the assessor. A similar

analysis is carried out for the other eight definitions. The result is shown in

Table 8.1.

We refer to Chapter 2 for a discussion of these and other risk definitions.

Table 8.1 Categorisation of the nine risk
definitions according to the structure (a)–(c)

Risk definition Category

0f b
0s c
1f b
1s c
2f b
2s c
3f b
3s c
4 a
5 a
6 a
7 a
8 a
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If relative frequency-interpreted probabilities Pf constitute the basis (defin-

itions 0f, 1f, 2f, and 3f) risk is a modelled, quantitative concept (category b)

and we may formalise the definitions by writing

Risk ¼ ðA;C;PfÞ;
where A represents the events (initiating events, scenarios) and C the

consequences of A, as in Section 2.2.

If, on the other hand, subjective (knowledge-based) probabilities constitute

the basis (definitions 0s, 1s, 2s, and 3s), the definitions must be viewed as risk

descriptions as they express the analysts’ (experts’) degree of belief concerning

A and C. Also the background knowledge K that the probabilities are based

on should be considered a part of the risk description.

If we search for a widespread agreement on one definition of risk we have to

look among the categories (a). The others have to be excluded as they are based

on either a model or an assignment of uncertainty using the tool, subjective

(knowledge-based) probability. Risk should also exist as a concept without mod-

elling and subjective probability assignments.We face risk whenwe drive a car or

run abusiness, alsowhenprobabilities are not introduced. For risk assessmentwe

need the probabilities, but not as a general concept of risk. In thiswaywe obtain a

sharp distinction between risk as a concept and risk descriptions (assessments).

As discussed in Section 2.5, definition 4 (which basically says that “risk ¼
uncertainty”) cannot be used as it fails to include the consequence dimension.

Hence we are led to two candidates among the a-definitions: the (A,C,U)

definitions (7–8) and the (A,C) definitions (4–6). The latter group means that

the common risk terminology has to be revamped (refer to discussion in

Section 2.5) and we therefore prefer to use the (A,C,U) definition.

Risk is thus defined. The next stage would then be to specify how to describe

risk.We seek a general structure andwe cannot base it on the use of frequentist

probabilities (chances) as these cannot be meaningfully defined in all cases.

However, knowledge-based probabilities can always be defined, and they are

introduced as the recommended tool for describing the uncertainties.

This leads to a risk description as was first noted in Section 2.8:

Risk description ¼ ðA;C;U;P;KÞ;
that is, risk is described by events A and consequences C, subjective

(knowledge-based) probabilities P, uncertainties U not captured by P, and

K the background knowledge that U and P are based on. The U component

may for example be a qualitative assessment of uncertainty factors (assump-

tions that the probabilities are based). A subjective probability P(A) ¼
P(A |K) is interpreted as a knowledge-based probability with reference to
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an uncertainty standard expressing the assessor’s uncertainty about the

occurrence of the event A given the background knowledge K. Following

this interpretation the assessor compares his/her uncertainty (degree of

belief) about the occurrence of the event A with the standard of drawing

at random a favourable ball from an urn that contains P(A) · 100%

favourable balls (Lindley, 2000).

However, also in this setting we may establish relative frequencies, but they

are referred to as chances and not probabilities. A chance is the limit of a

frequency of similar (formally exchangeable) random events. More generally

we introduce probability models with unknown parameters. A chance is an

example of such a parameter. By the Bayesian updating machinery, know-

ledge about the parameters is described first by the prior distribution, then

updated to produce the posterior distribution to reflect observations. Finally,

this distribution is used to generate the predictive distribution of the events

A and consequences C. These predictive distributions then incorporate the

variation reflected by the probability model (and the chances) and the epi-

stemic uncertainties about the true value of the parameters. The main features

of the thinking are shown in Figure 8.1. Models will be further discussed in

the coming section.

Note that chances and probability models are tools used to describe risk.

They are not identified as risk per se. This is in contrast to the “Risk¼ (A,C,Pf)”

types of approaches, including the probability of frequency approach

(see Section 2.5), where the relative frequency-interpreted probabilities

(chances) Pf always need to be defined. They constitute the foundation of

the approach. In the (A,C,U) types of approaches, chances are only defined

when exchangeable sequences can be justified. Chances need some sort of

Activity  Risk  
(A,C,U) 

Risk description (A,C,U,P,K), based on 

– Knowledge about phenomena  
– Models (including probability models, chances) 
– …  

Figure 8.1 The main elements of the recommended risk approach.
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model stability (Bergman, 2009): populations of similar units need to be

constructed (formally an infinite set of exchangeable random variables). We

will, for example, not define a chance p of a terrorist attack (Aven and

Renn, 2009b); it has no meaning, as also mentioned in Section 7.3.

It may be a challenge to reveal and describe all the uncertainties. Qualita-

tive approaches can be used as indicated in Chapter 6. See also the discussion

in Section 8.3.

8.2 A model-based framework for risk assessments

A guide to uncertainty analysis and management in industry has recently

been issued (de Rocquigny et al., 2008). The guide is written by a project

group of the European Safety, Reliability and Data Association (ESReDA).

The book project was motivated by the fact that no authoritative standard

exists for how to analyse and quantify uncertainty. The guide presents a

numbers of practical cases, all based on the same uncertainty analysis frame-

work; see Figure 8.2. As uncertainty is a main component of risk as defined in

the previous section, this framework for uncertainty assessment is highly

relevant to risk assessments. The discussion in this section is to a large extent

based on Aven (2009c, 2010b).

The key variables of interest are denoted Z (which could be a vector). To

assess Z a model G(X,d) is introduced which links a set of input variables

X and some fixed quantities d to Z (also X and d could be vectors). To

describe the uncertainties, probabilistic and non-probabilistic methods (for

G(X,d)
Model input

X
d

Variables
of interest

Z 

Measure of
uncertainty:

P(Z ≤ z)

Quantities of
Interest,

e.g. EZ, VarZ 

Measure of
uncertainty

P(X ≤ x) 

Parameters
µ 

Sensitivity analysis and importance ranking  

Decision criteria
P < p0

Feedback
process

Uncertainty propagation

Figure 8.2 The overall framework adopted by the uncertainty analysis
guide (de Rocquigny et al., 2008).
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example possibility theory and evidence theory, see Section 8.3) can be used.

A common approach is to use a parametric probability distribution (where m
is the parameter) to establish a probability distribution for X. Using the

model G, an uncertainty description is obtained for Z. The tool used for this

purpose could be an analytical approach or Monte Carlo simulation. Some

quantities of interest, for example expected values and variances, are specified

and computed from the measure of uncertainty derived, i.e. the probability

distribution of Z. These quantities provide input to a decision process, which

could be based on some decision criteria expressing for example that a

probability should not exceed a specified level. Sensitivity analysis provides

insights about how the input quantities affect the output quantities, and

importance ranking identifies what factors, subsystems etc. are most import-

ant based on some defined criteria, for example the contribution to the

variance. The result of the analysis may lead to some action (feedback

process), for example that there is a need for design changes to meet the

criteria. The actions need to be seen in relation to the goals of the analysis

which usually fall into the following categories (de Rocquigny et al., 2008):

Understand: To understand the influence or rank the importance of uncer-

tainties, and thereby to guide any additional measurement, modelling or

research and development efforts.

Accredit: To give credit to a model or a method of measurement, i.e. to

reach an acceptable quality level for its use. This may involve calibrating

sensors, estimating the parameters of the model inputs, simplifying the system

model physics or structure, fixing some model inputs, and finally validating

according to a context-dependent level.

Select: To compare relative performance and optimise the choice of main-

tenance policy, operation or design of the system.

Comply: To demonstrate compliance of the system with an explicit criter-

ion or regulatory threshold.

Most analysts and researchers would probably consider this framework a

logical and useful structure for performing uncertainty analysis in practice.

There is not much that is controversial or problematic about the framework

described at this overall level. However, when we go into the details, the

meaning and use of the different concepts are not so straightforward as we

will see from the coming analysis.

Risk analysis may be considered more restricted than uncertainty analysis

as risk analysis focuses on future events, whereas uncertainty analysis is

concerned with uncertain quantities, whether they relate to the future or

not. However, the frameworks and tools used for analysing risk are to a large

extent general and in most cases they are applicable also for “non-future”
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type of situations. Anyhow, uncertainty is the key concept to be addressed

and we need to clarify:

(i) What are the uncertain quantities?

(ii) Who is uncertain?

(iii) How should we represent the uncertainties?

In the framework illustrated by Figure 8.1 the uncertain quantities are

X and Z, but in practice it may not be straightforward to choose the appro-

priate X and Z as we have seen from the discussions in Chapters 5 and 6. Are

X and Z observable quantities like time to failures and costs, or parameters of

probability models? Uncertainty about the quantities X and Z raises the

question: who is uncertain? Is it the decision-maker, the analyst or some

experts used in the assessment? We will argue that the uncertainty is normally

that of the analyst. Experts and others can produce input to the analyst but

the analyst has the ownership of the final distributions and quantities of

interest. Of course, in some cases the aim of the analysis is simply to report

the knowledge expressed by some experts, but as the analysts are responsible

for how to elicit this knowledge and analyse it, care should be shown in

presenting the results as independent of the analysts. Being precise on the

ownership is essential for obtaining a clear understanding of the framework

and how to communicate its results. For a further discussion of this issue, see

Aven and Guikema (2010).

To express the uncertainties an adequate representation is required, and

probability is the natural choice as it meets some basic requirements for such

a representation (Bedford and Cooke, 2001, p. 20):

� Axioms: Specifying the formal properties of the uncertainty representation.
� Interpretations: Connecting the primitive terms in the axioms with observ-

able phenomena.
� Measurement procedures: Providing, together with supplementary assump-

tions, practical methods for interpreting the axiom system.

Many types of uncertainty representations exist, but many fail when it

comes to interpretation. We should reject a representation which has no clear

interpretation. It is not sufficient to say that a measure expresses for example

a degree of belief. We need to know what it means that the measure is 0.2

instead of 0.4.

The present analysis has a focus on the use of probability to measure

uncertainty, although the de Rocquigny et al. (2008) framework allows for

both probabilistic and “non-probabilistic” representations of uncertainty. We

refer to the discussion in Section 8.3.
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8.2.1 A modified framework

It is possible to simplify ideas and clarify key concepts in the de Rocquigny

et al. (2008) framework when restricting attention to probabilities as a meas-

ure of uncertainty. See Figure 8.3. The basic features of the modified frame-

work are described in the following.

The quantities X and Z are well-defined

The quantities X and Z must express states of the “world”, i.e. quantities of a

physical reality or nature, that is unknown at the time of the analysis but will,

if the system being analysed is actually implemented, acquire some value in

the future, and possibly become known (Aven, 2003). The quantities X and

Z must have some true, objective values. No ambiguity can be present. In our

view, uncertainty assessment of quantities for which true and precisely

defined values do not exist, cannot be a basis for a scientific risk assessment.

This is a key assumption of the framework, and supported by for example

Bedford and Cooke (2001).

If chances (relative frequency-interpreted probabilities) are introduced they

must be considered unknown properties of the world and be treated as X and

Z in the framework. If chances are introduced, meaningful interpretations

must be possible.

G(X) 
Model input 

X 

Quantities
of interest 

Z 

Uncertainty  
expressed by

P(Z ≤ z) 
EZ, VarZ

etc. 

Sensitivity
analysis and
importance

ranking

  

Measure of
uncertainty

P(X ≤ x)

Uncertainty evaluationManagerial
review and judgement   

Uncertainty
assessment

of
uncertainty

factors

Uncertainty propagation

Background knowledge K 

Decision

Figure 8.3 Structure of a modified framework (based on Aven 2009c,
2010b).
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Models G

A model is a representation of the world. It is introduced to obtain insights

about the phenomena being studied and to quantify the uncertainties. The

model should describe the world sufficiently accurately, but also simplify

complicated features and conditions. There is always a balance to be made

between these concerns, as was discussed in Section 6.4.1.

The key quantities of interest are denoted Z (which could be a vector). The

quantity Z is unknown and to assess Z, a model G(X) is introduced which

links a set of unknown input quantities X to Z. Using the model G, an

uncertainty description is obtained for Z. The tool used for this purpose

could be an analytical approach or Monte Carlo simulation.

Two simple examples of models G are:

(i) G(X) ¼ X1�X2, where X1 represents a strength measurement and X2

represents a load measurement, used to represent the true capacity of a

system in a structural reliability analysis (Aven, 2003).

(ii) The exponential distribution G(t| l), used to represent the lifetime distri-

bution F(t) of a mass produced unit (i.e. the proportion of units with

lifetime equal to or less than t). The parameter l is interpreted as the

inverse of the average lifetime in the infinite population of the units. In

this example X¼ l and Z¼F(t).

Many other models are presented in Chapters 5 and 6.

For situations as in example (ii), the standard procedures for Bayesian

analysis and Bayesian updating (Singpurwalla, 2006; Bedford and Cooke,

2001; Aven, 2003) are implemented as shown in Chapter 6

How to deal with model uncertainty is discussed in Section 6.4.1.

Probabilities are knowledge-based probabilities

with reference to an uncertainty standard

All probabilities P introduced in the framework are knowledge-based (sub-

jective) probabilities with reference to an uncertainty standard expressing

the assessor’s uncertainty about unknown quantities X and Z. Following this

interpretation the assessor compares his/her uncertainty about the occurrence

of the event A with the standard of drawing at random a favourable ball from

an urn that contains P(A) · 100% favourable balls (Lindley, 2000).

The probabilities P(Z�z) etc. cannot be relative frequency-interpreted

probabilities (chances) Pf as such probabilities are in fact not somebody’s

measure of uncertainty, but a way of expressing variation within a real or

thought-constructed infinite (or very large) population of similar units to those
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studied. As an example, let Pf be the chance that a technical component fails

during a specific periodof time. This “probability” is understoodas the fraction

of components that fail in this period when considering an infinitely large

population of similar components (we assume that such a population can be

defined). In general Pf is an unknown population fraction, and as noted above

has to be treated asX andZ in the framework. Consequently, P(Z�z) etc. of the

framework need to be interpreted as knowledge-based (subjective) probabilities.

These probabilities express epistemic uncertainties. The variation in the

populations of similar units to the one studied, that for example generates

the true value of Pf, is referred to as aleatory (stochastic) uncertainty.

But a knowledge-based (subjective) probability can be given different

interpretations. Among economists and decision analysts, and the earlier

probability theorists, a subjective probability is linked to betting. According

to this perspective, the probability of the event A, P(A), equals the amount of

money that the assigner would be willing to put on the table if he/she would

receive a single unit of payment in the case that the event A were to occur, and

nothing otherwise. The opposite bet must also hold, i.e. the assessor must be

willing to pay the amount 1�P(A) if a single unit of payment would be given

in return in the case that A were not to occur, and nothing otherwise. In other

words, the probability of an event is the price at which the person assigning

the probability is neutral between buying and selling a ticket that is worth one

unit of payment if the event occurs, and worthless if not (Singpurwalla, 2006).

We argue that such an interpretation should not be used in a quantitative

risk assessment context, as it extends beyond the realm of uncertainty assess-

ments – it reflects the assessor’s attitude to money and the gambling situation

which means that analysis (evidence) is mixed with values. The scientific basis

for risk assessment is based on the idea that professional analysts describe

risk separated from how we (the assessor, the decision-maker or other stake-

holders) value the consequences and the risk.

Assessments of uncertainty factors

Different probability-based measures are used to describe risk, such as the

expected value, the variance and quantiles. But a full risk description needs to

see beyond these P measures as has been discussed throughout this book, see

for example Section 2.2. All probabilities are conditional on a background

knowledge K, which includes assumptions and suppositions, and in particular

the model G. This background knowledge is an integral part of the results of

the analysis and all probabilities need to be considered in relation to K. The

framework requires a separate identification and assessment of potential

uncertainty factors hidden in K.
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A qualitative assessment of these factors can be carried out as shown in

Section 2.8 and in Chapters 5 and 6, addressing both sensitivity and uncer-

tainty. A factor is given a high score according to this assessment if the risk

indices are sensitive to changes in the factor, and the factor is subject to

considerable uncertainties. To assess the degree of uncertainty the criteria

mentioned in Section 7.4 can be used.

In the uncertainty evaluation, a broad uncertainty description is provided,

covering probabilities and related background knowledge, as well as the

results of sensitivity analyses. The evaluation provides input to a broader

managerial review and judgement (corresponding to the feedback process in

the framework of de Rocquigny et al. (2008)), which concludes on the

implications of the analysis and balances different concerns. The result is

for example an acceptance of the uncertainties related to an activity, the need

for design changes, the choice of an alternative etc.

The decision-making context

In the de Rocquigny et al. (2008) framework, the quantities of interest are

compared to relevant decision criteria, such as requirements of the formP < p0,

where p0 is a fixed number. These requirements could for example express

that the unreliability level of a piece of equipment should not exceed a

specified level.

Now, given that P is a knowledge-based probability, can we justify

basing our decision on a direct comparison of the form P < p0? No, there

is a need for a process that extends beyond the probabilistic analysis as was

pointed out in Section 7.1. The probabilities are dependent on the back-

ground knowledge, the assumptions and suppositions made, including the

model G. There is a need for a broader process (referred to as a managerial

review and judgement) which sees the results of the assessment in a larger

context, taking into account the limitations of the model, the difficulties in

specifying probabilities for some quantities etc. It is a process extending

beyond the domain of the uncertainty analysis. The sensitivity analyses

constitute an important input to such a broad review and judgement

process.

De Rocquigny et al. (2008) also acknowledge the need for broader evalu-

ation processes – refer to the feedback process of Figure 8.2 – but stress that

their framework focuses primarily on industrial situations in which there is

enough modelling expertise, knowledge and/or data to support the use of

quantitative modelling of risk and uncertainty, with probabilistic or mixed

probabilistic/non-probabilistic tools. However, what is “enough” can always

be discussed and even in cases with strong modelling expertise and much data
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it is essential to avoid mechanical procedures for decision-making based on

probabilistic (or other) criteria in isolation.

8.2.2 Examples of applications of the framework

Chapter 6 has in fact presented and discussed several applications of this

uncertainty analysis framework. In Chapter 6 a distinction was made between

risk defined through chances and risk defined through uncertainties. Both

cases can be included in the set-up of the above framework. In the former case

the chances Pf need to be treated as X and Z in the framework. Below we

include another example, to summarise the basic ideas of the framework.

Reliability example

We consider a parallel system of two components, as shown in Figure 8.4.

The state of the system is denoted Z, and is equal to 1 if the system is

functioning and 0 otherwise. The system is functioning if at least one of the

components is functioning. The parallel system defines a model G by

G Xð Þ ¼ 1� 1�X1ð Þ 1�X2ð Þ;
where Xi is the state of component i, i¼ 1,2, defined as 1 if component i is

functioning and 0 otherwise.

Assuming independence between the component states we obtain

P Z ¼ 1 jKð Þ ¼ E Z jKð Þ ¼ 1� 1� p1ð Þ 1� p2ð Þ;
where K is the background knowledge and pi ¼ P(Xi ¼ 1 |K), i.e. pi equals the

probability that component i is functioning.

This is a simple example of an application of the framework. It shows a

standard reliability analysis where the probabilistic analysis adopts know-

ledge-based probabilities to express uncertainties about the states of the

components and using the reliability block diagram (Figure 8.4) as a

model.

1

2

Figure 8.4 A parallel system comprising two components.
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Now let us consider an example closely related to the one above. Let us

define the model by

G pð Þ ¼ 1� 1� p1ð Þ 1� p2ð Þ;
where pi is a chance understood as the proportion of functioning components

when considering an infinite number of similar components to component i.

The chances pi are to be interpreted as the Xs in the framework. The quantity

of interest in this case is another chance, the system reliability h, defined as

the proportion of systems functioning when considering an infinite number of

such systems. Hence Z¼ h and by expressing knowledge-based probabilities

P about the chances pi we obtain an uncertainty distribution of Z. The

analysis may be carried out using Monte Carlo simulation. The analysis is

an example of a typical uncertainty analysis in a reliability and risk context, a

probability of frequency analysis; refer to Sections 2.7 and 6.3.1.

A model may be introduced to express pi, for example the exponential

model, leading to

pi ¼ exp �lit
� �

;

where li is the failure rate and t is a fixed point in time. Based on a probability

distribution for li we obtain distributions for pi and h. Following a standard

Bayesian statistical analysis, we first specify a prior distribution for li and
then use the Bayesian updating procedure to obtain the posterior distribution

when data become available.

If Z is the quantity of interest, we may first establish a distribution of (X1,

X2) by expressions like

P X1 ¼ 0 and X2 ¼ 0ð Þ ¼
ð

1� expf�l1tgð Þ 1� expf�l2tgð Þ dHðlÞ;
where H is the probability distribution of l ¼ (l1, l2). Then using the model

G(X) ¼ 1�(1�X1)(1�X2) we can compute P(Z¼ 1). We thus run the frame-

work twice, first for establishing the distribution of (X1,X2). In this case the

exponential distribution is the model of the set-up and l is the input quantity.

In the second run, G(X) ¼ 1�(1�X1)(1�X2) is the model and X is the input.

We end this section with some reflections important for the decision-

making: what is gained by reducing the uncertainties before a decision is

made? The question is related to the value of information.

8.2.3 Value of information

A decision is made at a specific point in time, but in many cases the decision-

maker could defer the decision to gain more information and knowledge. The
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issue is then whether it is worth it. The answer would depend on many

factors, including the cost of deriving the new information and knowledge,

the costs of deferring the decision, and the consequences of making “the

wrong” decisions. An assessment can be made of these factors to produce a

basis for a decision on such a deferral. A risk assessment constitutes a main

input in this process as it points to possible consequences of the deferral and

provides judgements of the uncertainties. Then the various concerns need to

be balanced and a decision made. In this sense the problem is similar to any

decision problem under uncertainty and risk.

As a simple example, consider the reliability p (interpreted as the chance)

of a production unit A. Suppose the chance p is subject to large uncertainties

and a test programme is planned to reduce the uncertainties. To simplify, we

assume that the testing will produce an accurate estimate of the “true”

chance. The costs of the test programme are €1 million. The production

income in the case where the reliability is p is specified by a function g(p). In

the case that the testing reveals that p < p0, a modification of the unit will be

performed at a cost c and will increase p to p0. We seek the value of the

perfect information about p.

If p is such that p ⩾ p0, no deferral is the best decision and the gain is g(p).

If p is such that p < p0, the deferral means a gain g(p0)� c whereas the no

deferral means a gain g(p), hence deferral is the best decision if g(p0)� c> g(p)

and no deferral is the best decision in the opposite case.

Unfortunately, p is not known so we cannot use these statements as

criteria. Instead it is common to use the expected value, leading to the

following criterion (the value of perfect information):

The expected value in the case of no deferral equals E[g(p)]. The expected

gain by perfect information is

E I p � p0ð Þ g pð Þ½ � þ E I p< p0ð Þ g p0ð Þ � cð ÞI g p0ð Þðf½
� c> g pð ÞÞ þ g pð Þ I g p0ð Þ � c � g pð Þð Þg�

where I(∙) is the indicator function which equals 1 if the argument is true

and 0 otherwise. This formula is based on the best decision for any p value.

By comparing this term with E[g(p)], the decision-maker is guided on

what to do.

This example fits into general decision analysis theory; see e.g. Lindley

(1985) and Bedford and Cooke (2001). The basic pillars of this theory are the

specification of utilities expressing the preferences of the decision-maker and

subjective probabilities expressing her/his uncertainties. For a simple case like

this the theory works nicely, but it is more difficult to implement in more
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complex situations as we have studied in this book. Specifying utilities is not

straightforward. There will be a strong degree of arbitrariness in the choice of

the utility function, and some decision-makers would also be reluctant to

specify the utility function as it reduces their flexibility to weight different

concerns in specific cases (Aven, 2010a).

For the cases considered in Chapter 3 we will have to approach the

problem as indicated above, by running the decision process just as another

risk decision problem, by assessing risk and other concerns, taking into

account the limitations and constraints of these assessments and applying a

managerial review and judgement before reaching a decision.

8.3 Probability and alternative approaches for representing

(expressing) epistemic uncertainties

Using knowledge-based (subjective) probabilities to quantify uncertainties

means that the analysts (experts) must express their degree of belief about

unknown quantities using probability distributions. If it is known that a

physical quantity has a value between 0 and 1, the assessor may for example

specify a uniform distribution of [0,1] to express their uncertainties. The

assessor then has assigned the same probability (1/2) for the quantity to be in

the interval [0, 1/2] as [1/2, 1]. Following a probability-based approach such

assignments are required. However, this perspective can be challenged; see e.g.

Ferson and Ginzburg (1996) and de Rocquigny et al. (2008). It is argued that

the assessments are based on unjustified assumptions. The information avail-

able for the probabilities does not provide a sufficiently strong basis for a

specific probability assignment. In a risk analysis context, there are oftenmany

stakeholders and theymay not be satisfiedwith a probability-based assessment

providing subjective judgementsmade by one analysis group. In this sectionwe

will discuss this issue in more detail. Two main issues are addressed: (i) how to

faithfully represent and express the knowledge available to best support the

decision-making and (ii) how to best inform the decision-maker. The key

references are Aven (2010c,d) and Aven and Zio (2011). We will relate this

discussion to the reliability and validity criteria introduced in Section 3.3.

We face the issue of using probabilities to express lack of knowledge, i.e.

epistemic uncertainties, in a risk assessment context. Many risk analysts con-

sider probability to be the appropriate tool to represent such uncertainties, but

there are different views. In recent years many books and papers have been

published arguing that probability theory generates too precise results when

the background knowledge of the probabilities is poor, and several alternative

approaches have been presented (cf. Dubois, 2010; Aven and Zio, 2011):
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(a) probability-bound analysis, combining probability analysis and interval

analysis (Ferson and Ginzburg, 1996)

(b) imprecise probability, after Walley (1991) and the robust statistics area

(Berger, 1994)

(c) random sets, in the two forms proposed by Dempster (1967) and Shafer

(1976)

(d) possibility theory (Dubois and Prade, 1988; Dubois, 2006), which is for-

mally a special case of the imprecise probability and random set theories.

As an illustration of the arguments put forward, consider an example similar

to the one introduced by Ferson and Ginzburg (1996): a parameter y1 is an
integer number between 1 and 5. How should the analyst describe this

knowledge? Two different approaches are summarised:

Interval analysis: y1 is in the interval [1, 5], i.e. y1 ∈ {1, 2, . . ., 5}.

Probabilistic analysis: A uniform distribution is assumed for y1 over the

set {1, 2, . . ., 5}. Hence P(y1 ¼ x) ¼ 0.2, for x ¼ 1, 2, . . ., 5.

We consider two such parameters: y1 and y2, where y2 is also an integer

number between 1 and 5. There exist true underlying values of y1 and y2. The
issue is how to describe the uncertainties of the product y ¼ y1y2. The interval
analysis produces an interval [1, 25] for y and the probabilistic analysis

produces a specific probability distribution P(y ¼ x) as illustrated by the

distribution shown in Figure 8.5, assuming that y1 and y2 are independent.
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Figure 8.5 Probability distribution of y= y1y2 when y1 and y2 are
independent.
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Ferson and Ginzburg (1996) argue that the probabilistic distributions are

incorrect, because they assume more information than was given in the

original question. They write:

In this sense, they are the result of wishful thinking, rather than a careful analysis of
what is actually known. This example illustrates what may be a widespread problem
with applying classical probability theory in risk analyses where the relevant
empirical information is sorely incomplete (as is usually the case).

(Ferson and Ginzburg, 1996)

They conclude by stating that probability theory provides the methods

appropriate for assessing and propagating random variability, but not for

assessing and propagating epistemic uncertainties and ignorance.

Such arguments are often being put forward and there is a need for a

discussion of their strengths. To this end it is essential to clarify what the

objective of the risk assessment is:

1. to obtain an “inter-subjective” knowledge description of the unknown

quantities

2. to obtain a faithful representation of the uncertainties reflecting the infor-

mation and knowledge available, or

3. to obtain judgements about the unknown quantities from a qualified group of

people (the analysts/experts).

These objectives are considered the most adequate ones in a practical risk

assessment context. Other objectives could also be formulated but for the aim

of this discussion it is sufficient to address these three. Without clearly defined

purposes we cannot discuss to what extent the scientific criteria reliability and

validity are met.

Ferson and Ginzburg (1996) seem to base their work on objectives 1 and 2,

as will be clear from the discussion below. The key point being made is that

the output of the risk assessment should correspond to the information and

knowledge available (“the evidence”). The analysts should not base their

assessment on additional assumptions and judgements.

The aim of the assessments in Chapter 5 represents a special case of

objective 1, as will be noted in Section 8.3.2.

Inter-subjectivity is the important requirement in 1. We may have situ-

ations with experts providing specific probability distributions (reflecting

their knowledge), but the assessments would not be inter-subjective.

For example, it is common to conduct risk assessments by eliciting input

epistemic probabilities from appointed experts (the analysts are not assigning

probabilities themselves). Through this process a faithful representation
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of the information of the experts may be obtained, but it will not in general

be inter-subjective. The produced probabilities are subjective knowledge

descriptions of the unknown quantities expressing the degrees of beliefs of

the experts, in addition to a number of analysts’ modelling assumptions. The

objective of the assessment is then in line with 2 or 3 (which in this case

coincides), but not 1.

The perspective 3 means that the results of the assessments are analysts’

(experts’) uncertainty descriptions. Through the uncertainty assessments a

picture of what is known or not known about a particular issue is created by a

group of analysts/experts. Subjective probabilities reflecting degrees of beliefs

(judgements) is the most common tool used to describe the uncertainties. The

assessments in Chapter 6 are in line with this perspective.

Perspective 2 is also based on subjective assessments, but the basis is

“evidence” rather than judgements. The motivation is that the assessment

should correspond to the information at hand: specific probability distribu-

tions presume the existence of information that is typically not available. The

theories (a)–(d) mentioned above are to a large extent motivated by this

objective.

In the following we will study these objectives in more detail. Firstly we

consider purpose 3: the objective of the risk assessment is to obtain judgements

about unknown quantities from a qualified group of people (the analysts/

experts). Subjective probabilities are used to describe the uncertainties.

8.3.1 Objective 3 (subjective analyst/expert judgements)

The analysts (and the experts they use in their assesments) are consulted as

experts in the field studied and the decision-maker expects them to give their

faithful report of the epistemic uncertainties about the unknown parameters

y1, y2 and y. Firstly, it is known that y1 is an integer number between 1 and 5.

Hence the assessor can conclude that y1 ∈ {1, 2, . . ., 5}. But how likely is it

that y1 ¼ 1 compared to y1 ¼ 5 (say)? Is it more likely that y1 ¼ 2 than y1 ¼ 4?

And so on. Such questions the analysts are expected to answer, as such

judgement would support the decision-making. The decision-maker knows

that these judgements are based on some knowledge and some assumptions,

and are subjective in the sense that others could conclude differently, but

these judgements are still considered valuable as the analysts (and the experts

they use in the analysis) have strong competence in the field being studied.

The analysts are trained in probability assignments and have no problem in

transforming their knowledge into probability figures. Suppose that they

conclude by assigning numbers as in Table 8.2.
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The probabilities are to be understood as knowledge-based (subjective)

probabilities with reference to a standard such as drawing a ball from an urn

(refer to Section 2.2). If we assign a probability of 0.4 (say) for an event

A (as for y1 ¼ 3), the uncertainty (degree of belief) of A to occur is

comparable with drawing a red ball from an urn having 10 balls where 4

are red. Hence the assessors state that it is much more likely that y1 ¼ 3

compared to y1 ¼ 1, a factor of 4. The assignments are judgements based on

the assessors’ background knowledge, which we denote by K. To show the

dependency on K we write P(A |K), where A is the event of interest. The

background knowledge could be based on hard data and/or expert judge-

ments. Assumptions are also included, for example related to the use of

specific models. The background knowledge should be reported along with

the assigned probabilities.

Now consider a case with “no or little knowledge” about y1. What number

then should the assessors assign?

They should also assign numbers in this case, as the decision-maker has

consulted them to do so (remember that the objective of the assessment is 3).

The decision-maker would like them to make a judgement about the par-

ameter. Given the background knowledge, the assessors may assign the

same probability to all values 1, 2, 3, 4 and 5. The judgement is that it is

as likely that y1 ¼ x as y1 ¼ y. The result is a uniform distribution over the set

{1, 2, . . ., 5}, i.e. P(y1 ¼ x) ¼ 0.2, x ¼ 1, 2, . . ., 5.

The uniform distribution is often referred to as a non-informative distribu-

tion, but this is a misleading word as the distribution provides information –

the distribution indicates that the assessors consider for example the value

y1 ¼ 1 to be as likely as y1 ¼ 2.

The non-informative distribution is in line with the principle of insufficient

reason (Bernoulli, 1713; de Laplace, 1814; Sinn, 1980). The principle says that

if there is no reason to believe that out of a set of possible, mutually exclusive

events any event is more likely to occur than any other, then one should

assign the same probability to all events.

Table 8.2 Assigned probabilities for �1

x P(y1 ¼ x)

1 0.1
2 0.2
3 0.4
4 0.2
5 0.1
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Non-informative distributions are more of a theoretical than practical

interest. If the analysts have no information about a quantity, they should

re-examine the system: look for relevant data, interview experts, and perhaps

perform modelling of the phenomena underlying the value of y1.
The parameter y1 could represent a physical quantity, for example related

to temperature or pressure, but it could also be a chance (frequentist prob-

ability); refer to Section 2.2. A chance of an event A, pA, is an expression of

variability in a large population of similar situations. It is defined as the

fraction of A events occurring when considering an infinite number of similar

situations to the one (those) studied. The variation in the populations that

generates the true value of the chance (or the frequentist probability) is

referred to as aleatory (stochastic) uncertainty; refer to Section 8.2. This

uncertainty is, however, not an uncertainty for the analysts (experts), and is

better referred to as a variation, as noted in Section 2.2.

This conclusion is in line with Winkler (1996) and Lindley (2000) among

others, who view all uncertainties in this context as epistemic uncertainties, a

result of lack of knowledge. However, for the purpose of analysing uncertain-

ties and risk it may be useful to introduce models – and variation represents a

way of modelling the phenomena studied. In the case of a coin, the model is

defined as follows: if we throw the coin over and over again, the fraction of

heads will be p. When throwing a die we would establish a model expressing

that the distribution of outcomes is given by (p1, p2, . . ., p6), where pi is the

fraction of outcomes showing i. These fractions are parameters of the models,

and they are referred to as frequentist probabilities in a traditional classical

statistical setting and as chances in the Bayesian setting, as noted above.

Such models are called probability models or stochastic models. They

constitute the basis for statistical analysis, and are considered essential

for assessing the uncertainties and drawing useful insights (Winkler, 1996;

Helton, 1994). The probability models coherently and mechanically facilitate

the updating of probabilities. All analysts and researchers acknowledge the

need for decomposing the problem in a reasonable way, but many would

avoid the reference to different types of uncertainties as they consider all

uncertainties to be epistemic.

Chances (frequentist probabilities) are unknown quantities (fractions in

infinite populations) that can be assessed using subjective representations of

uncertainty. Probability theory applies to chances (frequentist probabilities)

but also to subjective probabilities. Ferson and Ginzburg (1996) acknowledge

the importance of probability theory for chances (frequentist probabilities)

but seem to discredit subjective probabilities for assessing epistemic uncer-

tainties. Such a stand makes sense, however, if their premise is that
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probabilities should be objective. Subjective probabilities are not objective,

but in line with objective (3) they provide a report on the epistemic uncertain-

ties from a group of people that is supposed to have a strong knowledge

about the phenomena and processes being studied.

Propagating the uncertainties through the model

Next we look into the problem of propagating uncertainties about the param-

eters y1 and y2 to uncertainties about y. We may have considerable or scarce

information about the parameters. Figure 8.5 presents the subjective probabil-

ity distribution of the analysts (experts) about y founded on the subjective

probability distributions for y1 and y2, assuming independence. If we accept

the premises for the analysis, the knowledge-based distributions for y1 and y2,
and the independence assumption, most analysts would accept the resulting

distribution of y as a faithful report of the uncertainties about y1 and y2 since it
derived from the rules of probability theory. The marginal distributions of y1
and y2 we have discussed above; hence it remains to look into the independence

assumption. If the analysts (experts) know that y2¼ 5 (say), would this change

the assessors’ assignment of y1 ¼1 (say)? In some cases it would, but in others,

it would not. It depends on the situation. The analysts are professional in

uncertainty assessments and need to make a judgement about dependence/

independence. If the two parameters y1 and y2 are associated with completely

separate systems or activities, independence may be appropriate.

The same conclusion would also normally be made when considering two

similar units when the background knowledge is strong. Say that the distri-

bution in Table 8.2 is based on a considerable amount of relevant data and

reflects the variation in some characteristic of this type of unit. Then as an

approximation we may use independence as we would not learn much about

y1 by observing y2 ¼ 5 (say).

If, on the other hand, the background knowledge is weak, knowing the

value of y2 could strongly influence the analyst’s judgement about y1.
A common analysis approach for this type of problem in risk assessment is

to assume that y1 ¼ y2 ¼ y0, where y0 is a common characteristic of the unit,

for example a chance representing the fraction of units having a specific

property among an infinite population of similar units. Then y ¼ (y0)
2 and

the dependency has been incorporated into the analysis. A subjective prob-

ability is used to express the epistemic uncertainties about y0 and this leads to

a subjective probability about y. Alternatively, we may assign a number to the

conditional probability P(y1 ¼ x | y2 ¼ y) or P(y2 ¼ x | y1 ¼ y), to produce the

simultaneous distribution of y1 and y2, and from this derive the distribution

of y. The challenge is to find a rationale for determining the conditional
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probabilities. In addition to modelling, expert judgements are often used to

support the probability assignments.

Thus from a theoretical point of view, one may argue that probability

theory does provide methods appropriate for propagating epistemic uncer-

tainties. The produced distribution in Figure 8.5 expresses the assessors’

uncertainty distribution, given the background knowledge K of the assign-

ments. This background knowledge includes assumptions and suppositions

made, models used, etc. Based on this background knowledge, we are led to

the distribution of Figure 8.5. This distribution reflects the judgements made

by the analysts (experts), conditional on K.

In complex situations, when the propagation is based on many parameters,

strong assumptions may be required to be able to carry out the analysis. The

analysts may acknowledge a degree of dependencies, but the analysis, which

typically is conducted using Monte Carlo simulation, may not be able to

describe these in an adequate way. Hence the assessment P(y¼x |K) must be

understood and communicated as probabilities conditional on this con-

straint. The use of subjective probabilities provides a logical consistent basis

for assessing and reporting the epistemic uncertainties, but there are “meas-

urement problems” associated with the probability specifications. Nonethe-

less, the analysis could provide useful decision support: A group of analysts

(experts) have reported their qualified judgements about a set of parameters

and propagated this through the model (here y1y2) to obtain a judgement

about the overall system or activity performance. The boundaries and limita-

tions of the assessment are acknowledged, and sensitivity analyses are con-

ducted to reveal the effect of varying critical assumptions.

The uncertainty report is also conditional on the choice of model (here

y1y2). The model is included in the background knowledge. A model is always

wrong as it is a simplified representation of the real world, but it could still be

useful for its purpose. The model is introduced to study the performance of

the system, to see how parameters affect the overall system or activity

performance. Despite the fact that the model is not 100 per cent accurate �
there could be a difference between y and the model output given by y1y2
(which is referred to as model inaccuracy or model uncertainty) � the risk

assessment could provide useful insights, refer to discussions in Section 6.5.1.

Again we have to acknowledge the need for seeing the probabilities in relation

to the background knowledge.

The reliability and validity requirements

To relate this discussion to the scientific criteria of reliability and validity we

remember from Section 4.3 that reliability is concerned with the consistency
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of the “measuring instrument” (analysts, experts, methods, procedures)

whereas validity is concerned with the success at “measuring” what one sets

out to “measure” in the analysis. More precisely we defined

Reliability: The extent to which the risk analysis yields the same results

when repeating the analysis (R).

Validity: The degree to which the risk analysis describes the specific con-

cepts that one is attempting to describe (V).

Depending on the objectives of the analyses, more specific and detailed

interpretations (sub-criteria) of the above general definitions of reliability and

validity can be formulated:

Reliability

� The degree to which the risk analysis methods produce the same results at

reruns of these methods (R1).
� The degree to which the risk analysis produces identical results when con-

ducted by different analysis teams, but using the samemethods and data (R2).
� The degree to which the risk analysis produces identical results when

conducted by different analysis teams with the same analysis scope and

objectives, but no restrictions on methods and data (R3).

Validity

� The degree to which the assigned probabilities adequately describe the

assessor’s uncertainties of the unknown quantities considered (V2).
� The degree to which the epistemic uncertainty assessments are complete (V3).
� The degree to which the analysis addresses the right quantities (V4).

The criterion V1: the degree to which the produced risk numbers are accurate

compared to the underlying true risk is not relevant in the context discussed

here (there is no true risk).

As argued in Chapter 6, and summarised in Section 6.5.3, the reliability

and validity criteria are to a large extent met when the assessments are

adequately conducted. However, several difficulties are identified. For the

reliability criteria a main problem is the fact that the background knowledge

that the assignments are based on would not be exactly the same from

analysis to analysis. However, if the methods and data are fixed, the differ-

ences from one analysis to another are not likely to be large if V2 is met.

The validity requirements could also be questioned:

� important uncertainty factors may be hidden in the background knowledge

(V2,V3)
� the uncertainty assessments may not be complete (V3).
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Hence, for the analysis to meet the validity criteria, it is essential that the

background knowledge is reported along with the assigned probabilities. We

refer to Chapter 6.

8.3.2 Objectives 1 (inter-subjective descriptions) and 2

(faithful uncertainty representation)

Assume now objective 1; the aim of the risk assessment is to obtain an “inter-

subjective” description of the unknown quantities. Suppose that chance

distributions (frequentist distributions) exist and are known (can be accur-

ately estimated). These distributions we denote by p1, p2 and p. For example,

p1(2) equals Pf(y1 ¼ 2), where Pf is a chance (frequentist) probability. The

distribution p(x) reflects the aleatory uncertainties. Then provided that y1 and
y2 are independent, we can calculate the true distribution of y, i.e. p. The
assessment is in line with objective 1.

Next we consider situations where the information basis is smaller and we

cannot establish accurate chance distributions. What should we do then?

Assume that we know that y1 ∈ {1, 2, . . ., 5}, but we have little informa-

tion about the chance distribution p1(x), x¼ 1, 2, . . ., 5. A chance distribution

could also be hard to define. We can make the same type of characterisation

for y2, and consequently the basis for assessing y is poor. How should we

then faithfully report the uncertainties?

The answer by Ferson and Ginzburg (1996) is to use interval analysis: as

yi ∈ {1, 2, . . ., 5} we can conclude that the product y¼ y1y2 lies in the interval

[1, 25], i.e. y ∈ {1, 2, . . ., 25}. More precisely, we can conclude that y ∈ {1, 2,

3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 20, 25} as it is clear that y cannot take any of

the values 7, 11, 13, 14, 17, 18, 19, 21, 22, 23, 24. This analysis is trivial �
it produces objective results in the sense that we all agree that y is in this

interval under the given assumptions.

This approach meets objective 1, to obtain an “objective” (“inter-

subjective”) description of the unknown quantities. It follows from the analy-

sis that y ∈ {1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 20, 25}, but any probability

number for these values of y has no rigorous basis and should therefore not

be reported. The assessment should not be based on subjective assessments

not supported by the available information.

But such a perspective can be challenged. The decision-maker may not be

satisfied with such an analysis only. He/she would expect the analysts

(experts) to be able to make some statements about likelihoods: is it as

probable that y is as high as it is low? Are there values of y that are considered
quite unlikely compared to other values? And so on. However, this would

mean a shift from objective 1 to 3.
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We may also see a shift to objective 2. The analysts (experts) may not be

willing or able to assign subjective probabilities that are more precise than this:

P 1 � y1 � 5ð Þ ¼ 1;

1=2 � Pðy1 ¼ 3Þ � 1:

Similar assignments are given for y2. From this we can obtain bounds for

P(y1 ¼ 3, y2 ¼ 3). However, non-trivial bounds are not that easily derived

without making additional assumptions concerning the knowledge about the

dependencies between y1 and y2. For example, if bounds have been estab-

lished for P(y2 ¼ 3 | y1 ¼ 3), say

1=2 � Pðy2 ¼ 3 j y1 ¼ 3Þ � 1;

it follows that

1=4 � Pðy1 ¼ 3; y2 ¼ 3Þ � 1;

This would be an assessment in line with objective 2): a faithful representa-

tion of the uncertainties reflecting the information and knowledge available.

Let us consider a somewhat more realistic example. A unit is considered for

possible use in a process plant. The unit is based on new technology and a risk

assessment is conductedat an early stageof the planningprocesswhere test results

are lacking. A key uncertainty factor is how the technologywouldwork.We then

have lack of support for a specific distribution for the performance of the system.

In the risk assessment we could, however, make an assumption, for example that

theunitwouldnotworkasplanned inamaximumof10per centof the situations–

the unreliability does not exceed 10 per cent. The rationale for this assumption is

that the technology would not be used if a performance level below 10 per cent is

achieved in testingof theunit.A reference ismade toother similar units (notbased

on the same technology but performing a similar function).

A system is defined comprising two such units. The system is viewed as

a parallel system of the units, i.e. the system is functioning if at least one of the

units is functioning. Let y0 be the unreliability of a unit, i.e. the chance

(frequentist probability) that the unit is not functioning. As a model of the

unreliability y of the system, we use the model y ¼ (y0)
2, which is based on

the assumption of independence. Based on this model and the assumption

that y0 � 0.10, we obtain an upper level of the system unreliability: y � 0.01.

However, the model y¼ (y0)
2 can be disputed. If no assumption is made on

the dependencies of the units, this leads to a high upper bound on the system

unreliability as will be explained in the following. Let Xi be the state of unit i,

defined as 1 if it is not functioning and 0 otherwise, and let Y denote the

state of the system defined analogously. We assume Y ¼ X1 · X2. We have
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Pf (Xi ¼ 0) ¼ y0 and Pf (Y¼0) ¼ y, where the Pf s are chances (frequentist

probabilities).Hence, in the caseof independencebetweenX1andX2,weobtain

y ¼ Pf X1 ¼ 0ð Þ Pf X2 ¼ 0ð Þ ¼ y0ð Þ2:
In the general case,

y ¼ Pf X1 ¼ 0ð Þ Pf X2 ¼ 0 j X1 ¼ 0ð Þ � 0:1 � Pf X2 ¼ 0 j X1 ¼ 0ð Þ:
It is difficult, in practice impossible without making assumptions, to find an

upper bound on Pf (X2¼ 0 | X1¼ 0) that is lower than 1. The frequencies of

dependent events are difficult to accurately predict. The conclusion is that the

bound 1 has to be used; the result being that we arrive at the system unreli-

ability bound y � 0.1.

In many cases this upper limit is, however, considered rather non-

informative. A system unreliability level of 10 per cent is often not accepted,

and the decision-maker would ask for a more refined assessment. It is

expected that the analysts are able to give some qualified judgements about

the unit dependencies, so that an overall more precise assessment of the

system performance can be reported. The result could be more detailed

modelling of the system and the dependencies, and/or input from experts.

Again we are led to an objective of the assessment closer to 3.

Ferson and Ginzburg (1996) suggest a combined probability analysis and

interval analysis (a probability-bound analysis). For the components where

the aleatory uncertainties cannot be accurately estimated, interval analysis is

used. In this way uncertainty propagation is carried out in the traditional

probabilistic way for some components, and intervals are used for others.

A framework is established for treatment of both types of uncertainties. To

understand the set-up analysed it is essential that we clarify the types of

probabilities and analyses conducted:

(a) For parameters yi where the aleatory uncertainties cannot be accurately

estimated, use interval analysis expressing that ai � yi � bi for constants ai
and bi.

(b) For parameters yi where the aleatory uncertainties can be accurately

assessed, use probabilities (frequentist probabilities) to describe the dis-

tribution over yi.
(c) Combine (a) and (b) to generate a probability distribution over y, for the

different interval limits. For example, assume that for i¼ 1; interval

analysis is used with bounds a1 and b1, whereas for i¼ 2, a probabilistic

analysis is used. Then we obtain a probability distribution over y when

y1 ¼ a1 and a probability distribution over y when y1 ¼ b1.
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Depending on the basis for the intervals, the analysis is in line with objective

1 or 2. The approach does not provide the decision-maker with specific

analyst and expert judgements about epistemic uncertainties. In many cases

we do not have situations as in (b), where the aleatory uncertainties can be

accurately assessed, and then the analysis reduces to an interval analysis. On

the other hand, if accurate estimates of the aleatory distributions can be

obtained, the analysis is purely probability-based.

The critical issue is the use of knowledge-based (subjective) probabilities to

assess the epistemic uncertainties. Some researchers and analysts argue that

the subjective probabilities cannot be used to treat situations where there is

less information than a single probability distribution requires (Dubois,

2010). But such a statement is not acknowledging what a subjective probabil-

ity means: expressing the assessors’ degree of belief. A subjective probability

can always be assigned, regardless of the information available. The problem

is rather that these researchers and analysts would like to see a stronger

rationale for the probabilities. We are again led to a discussion about the

objective of the assessment.

Example: Two prospects with different chance distributions

Consider the example introduced by Huber (2010) (see also Aven, 2010d): a

decision-maker has asked a risk analyst for advice. She has two prospects to

choose from, both risky. Each offers an opportunity to gain €6.

For prospect A there is a 1/6 chance of success.

For prospect B the decision-maker is informed that the chance of success p

(winning €6) is somewhere between 0 and 2/3. These bounds are based on

theoretical limits, not on any data or experience. According to a standard

Bayesian analysis, using a uniform distribution over [0, 2/3], this implies that

the (predictive) subjective probability of wining €6 is

P �6ð Þ ¼
ð

0;2=3½ �P �6jpð Þ 3=2 dp ¼
ð

0;2=3½ � p3=2 dp ¼ 1=3:

Hence, the probability of winning is a factor two higher than for prospect A,

where the chance of winning €6 is 1/6. Just by comparing the probabilities of

winning, the decision-maker is led to prospect B.

If we have not one opportunity for prospect B, but three, then the prob-

ability of winning at least once becomes 1� (1�p)3 if p were known. How-

ever, p is unknown and again, using the uniform distribution for the chance p,

we obtain the (predictive) subjective probability:

P winning at least onceð Þ ¼ 1� P not winningð Þ
¼ 1�

ð

0;2=3½ �
1� pð Þ3 3=2 dp ¼ 1� 10=27 ¼ 17=27 � 0:63:
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For three opportunities for prospect A, the corresponding probability

becomes 1 – (5/6)3 ¼ 91/216 � 0.42. It seems that the analysts judge prospect

B to be better than prospect A, as B has the highest probability of winning.

According to Huber (2010), it appears that the decision-maker’s interests

are not well served by the probabilistic analysis offered by the risk analyst.

The decision-maker would acknowledge a probability of winning equal to

0.63, but the actual chance could be close to nil.

However, the above rationale makes sense if you agree with the prior

distribution. As noted above, the uniform distribution is not, in fact, a non-

informative distribution. The analyst expresses, for example, that it is as likely

that the chance is below 1/9 as it is in the interval [5/9, 6/9]. If the assessment

is according to objective 3, the analysts should make their judgement about

the chance and then compute the predictive probability as indicated by the

calculations above. However, the decision-maker may not be satisfied with

this subjective risk description. The analysts’ judgements may lead to poor

predictions if they have poor background knowledge about the prospects.

And this is a key point in the discussion. Most risk experts would agree, that a

complete risk description should inform about the chance interval for pro-

spect B: [0, 2/3], which means that the chance interval for say three oppor-

tunities is [0, 0.70] (note that 1 – (2/3)3 � 0.70). However, as stressed above,

we also need risk assessments according to objective 3 to support the decision-

making. The decision-maker consults experts in the field to be informed

by their likelihoods (degrees of belief) and the resulting risk picture based on

their knowledge. This picture has to be appreciated for what it is, a knowledge-

based judgement about unknown quantities, not an objective risk description.

Sensitivity analysis is needed to show how the output probabilities depend on

key assumptions and the assigned input probabilities. Special focus should be

on the possible small chance values.

If chances and chance distributions can be established (justified), a full risk

description needs to assess uncertainties about these quantities. To meet the

validity criterion, it would not be sufficient to provide predictive distributions

alone, as important aspects of the risk then would not be revealed. The

predictive distributions would not distinguish between the variation and the

epistemic uncertainties. Focus is not on the right quantities. Dubois (2010)

expresses the problem in this way: if the ill-known inputs or parameters to a

mathematical model are all represented by single probability distributions,

either objective when available or subjective when less information is avail-

able, then the resulting distribution on the output can hardly be properly

interpreted: “the part of the resulting variance due to epistemic uncertainty

(that could be reduced) is unclear”. However, as this discussion makes clear,
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this indicated inadequacy of the subjective probabilities for reflecting uncer-

tainties is more an issue of addressing the right quantities: if chances can be

established (justified) the subjective probabilities should be used to reflect the

uncertainties about these chances.

Huber (2010) seems to indicate that it is possible to assign wrong prior

distributions (Section 2.2). He writes: “When a prior distribution is wrong

and few data are available, decisions are likely to be bad.” This way of

speaking is not in line with the subjective Bayesian perspective. A subjective

probability expresses the assigner’s uncertainty (degree of belief) given his/her

knowledge – there exists no true probability distribution. Of course, the

choice of a prior distribution can, to varying degrees, support accurate

predictions of observables, but that is not the same as saying that the prior

is wrong or right. The problem raised by Huber is a more general one, the

estimation (prediction) accuracy of risk assessments. But is such accuracy a

requirement to ensure quality of a risk assessment? Think of the analysis of

rare events. How can one “guarantee” accurate estimates? The question again

relates to the aim of the risk assessment. In line with objectives 2) and 3), risk

assessment is more about uncertainty descriptions than accurate estimation.

As mentioned above, several alternative theories to probability have been

established, including the theories of possibility and evidence. Below we

outline the main ideas of the former theory (Dubois, 2006; Aven and Zio,

2011). These theories can be seen in line with objective 2). Their motivation is

that the intervals produced correspond better to the information available.

Possibility theory

In possibility theory uncertainty is represented by using a possibility function

r(x). For each x in a set O, r(x) expresses the degree of possibility of x. When

r(x) ¼ 0 for some x, it means that the outcome x is considered an impossible

situation. When r(x) ¼ 1 for some x, it means that the outcome x is possible,

i.e. is just unsurprising, normal, usual (Dubois, 2006). This is a much weaker

statement than when probability is 1.

The possibility function r gives rise to probability bounds, upper and lower

probabilities, referred to as the necessity and possibility measures (Nec, Pos).

They are defined as follows:

The possibility (plausibility) of an event A, Pos(A), is defined by

PosðAÞ ¼ sup
fx2Ag

rðxÞ; ð8:1Þ

and the necessity measure Nec(A) is defined by Nec(A) ¼ 1 – Pos(not A).

Let  (r) be a family of probability distributions such that for all events A,
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NecðAÞ � PðAÞ � PosðAÞ:
Then

NecðAÞ ¼ inf PðAÞ and PosðAÞ ¼ sup PðAÞ ð8:2Þ
where inf and sup are with respect to all probability measures in . Hence the

necessity measure is interpreted as a lower level for the probability and

the possibility measure is interpreted as an upper limit. Using subjective

probabilities, the bounds reflect that the analyst (expert) is not able or willing

to precisely assign his/her probability. He or she can only describe a subset of

 which contains his/her probability (Dubois and Prade, 1989).

A typical example of possibilistic representation is the following (Anoop

and Rao, 2008; Baraldi and Zio, 2008): we consider an uncertain parameter x.

Based on its definition we know that the parameter can take values in the

range [1, 3] and the most likely value is 2. To represent this information, a

triangular possibility distribution on the interval [1, 3] is used, with maximum

value at 2; see Figure 8.6.

From the possibility function we define a cut sets Fa ¼ {x: r(x) � a}, for
0 � a � 1. For example F0.5 ¼ [1.5, 2.5] is the set of x values for which the

possibility function is greater than or equal to 0.5. From the triangular

possibility distribution in Figure 8.6, we can conclude that if A expresses that

the parameter lies in the interval [1.5, 2.5], then 0.5 � P(A) � 1.

From (8.1) and (8.2) we can deduce the associate cumulative necessity/

possibility measures Nec(�1, x] and Pos(�1, x] as shown in Figure 8.7.

These measures are interpreted as the lower and upper limiting cumulative

probability distributions for the uncertain parameter x. Hence the bounds for

the interval [1, 2] are 0 � P(A) � 1.

These bounds can be interpreted as for the interval probabilities: the

interval bounds are those obtained by the analyst (expert) as he/she is not

able or willing to precisely assign his/her probability – the interval is the best

he/she can do given the information available.

The scientific criteria reliability and validity

The motivation for objective 2 is to obtain a faithful representation of the

information and knowledge available. In this sense an analysis in line with

this objective would to a large extent meet the reliability and validity criteria.

For example, the criterion R2: “the degree to which the risk analysis produces

identical results when conducted by different analysis teams, but using the

same methods and data” would be easier to meet than using subjective

probabilities to express uncertainties. However, one may question to what

8.3 Uncertainty representations 169



extent the validity criterion is satisfied: “the degree to which the risk analysis

describes the specific concepts that one is attempting to describe” (V).

Producing an interval ([0.2, 0.6], say) for the subjective probability P(A),

the analysts (experts) are not able or willing to precisely assign their prob-

ability P(A). The decision-maker may, however, request that the analysts

(experts) make such assignments – the decision-maker would like to be

informed by the analysts’ (experts’) degree of belief as discussed in Section

8.3.1 (Aven, 2010b).

8.3.3 Discussion

Seeing risk assessment as an aid for decision-making, alternative approaches

for the representation and treatment of uncertainties in risk assessment are

required. Different approaches provide a broader and more informative

decision basis than one approach alone. A Bayesian analysis without

thorough considerations of the background knowledge and associated

1 2 3 x 

1 

Possibility function

Figure 8.6 Possibility function for a parameter on the interval [1, 3], with
maximum value at 2.

1 2 3 x 

1 

Possibility function

Pos(–∞, x] 

Nec(–∞, x] 

Figure 8.7 Bounds for the probability measures based on the possibility
function in Figure 8.6.
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assumptions would normally fail to reveal important uncertainty factors.

Such considerations (qualitative assessments) are essential for ensuring that

the decision-makers are not seriously misled by the risk assessment results.

It is a huge step from such assessments to methods that quantitatively

express, and bound, the imprecision in the probability assignments. These

methods are also based on a set of premises and assumptions, but not to the

same degree as the pure probability-based analyses. Their motivation is that

the intervals produced correspond better to the information available. How-

ever, as discussed in the previous section, the decision-maker may request that

the analysts (experts) make more specific assignments reflecting their degrees

of belief.

Following this view, we should continue to conduct probability–based

analysis reflecting the analysts’ degrees of belief about unknown quantities,

but we should also encourage additional assessments. These include sensitiv-

ity analyses to see how sensitive the risk indices are with respect to changes in

basic input quantities, for example assumptions and suppositions (Saltelli

et al., 2008; Helton et al., 2006), but also crude qualitative assessments of

uncertainty factors as discussed in previous chapters. The use of imprecision

intervals would further point at the importance of key assumptions made.

It is raised as a research goal to establish a unifying framework for

representation and treatment of uncertainties in risk assessment (Aven and

Zio, 2011). Such a framework can be based on the ideas outlined in the

previous sections. Imprecision intervals would constitute an integral part of

such a framework. To make these intervals meaningful in a practical decision-

making context, proper interpretations are required.

The underlying theories are not reported in detail here, as they are tech-

nical and not important for the proper understanding of the results. We

believe that to make the alternative approaches operational in a practical

decision-making context, we should leave out the technical terminology used

in these theories. If one looks at various attempts that have been made to use

alternative representations of uncertainty in risk assessment contexts, the

general impression is that they are extremely difficult to understand and

appreciate. We believe that in a practical decision-making context they would

typically be rejected as they add more confusion than insights.

Many researchers and analysts are sceptical about the use of “non-

probabilistic” approaches (such as those of the four categories (a) – (d) listed

at the beginning of Section 8.3) for the representation and treatment of

uncertainty in risk assessment for decision-making. An imprecise probability

result is considered to provide a more complicated representation of uncer-

tainty (Lindley, 2000). By arguing that the simple should be favoured over the
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complicated, Lindley (2000) takes the position that the complication of

imprecise probabilities seems unnecessary. In a more rejecting statement,

Lindley (2006) argues that the use of interval probabilities goes against the

idea of simplicity, as well as confuses the concept of interpretation with the

practice of measurement procedures. The standard, Lindley (2006) empha-

sises (for example the use of an urn for randomly drawing balls), is a

conceptual comparison. It provides a norm, and measurement problems

may make the assessor unable to behave according to it. Bernardo and Smith

(1994, p. 32) call the idea of a formal incorporation of imprecision into the

axiom system “an unnecessary confusion of the prescriptive and the descrip-

tive” for many applications, and point out that measurement imprecision

occurs in any scientific discourse in which measurements are taken. They

make a parallel with the inherent limits of a physical measuring instrument,

where it may only be possible to conclude that a reading is in the range 3.126

to 3.135, say. Then, we would typically report the value 3.13 and proceed as if

this were the precise number:

We formulate the theory on the prescriptive assumption that we aspire to exact
measurement . . ., whilst acknowledging that, in practice, we have to make do with
the best level of precision currently available (or devote some resources to improving
our measuring instruments!)

(Bernardo and Smith, 1994, p. 32)

Many analysts argue fiercely for a strict Bayesian analysis. A typical state-

ment is (North, 2010):

For me, the introduction of alternatives such as interval analysis to standard
probability theory seems a step in the wrong direction, and I am not yet persuaded
it is a useful area even for theoretical research. I believe risk analysts will be better off
using standard probability theory than trying out alternatives that are harder to
understand, and which will not be logically consistent if they are not equivalent to
standard probability theory.

However, as argued in this paper, this approach does not solve the problems

raised. The decision basis cannot be restricted to subjective probabilities:

there is a need to go beyond the Bayesian approach.

In the end, any method of uncertainty representation and analysis in risk

assessment must address a number of very practical questions before being

applicable in support of decision-making:

� How completely and faithfully does it represent the knowledge and infor-

mation available?
� How costly is the analysis?
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� How much confidence does the decision-maker gain from the analysis and

the presentation of the results? (This opens up the issue of how one can

measure such confidence.)
� What value does it bring to the dynamics of the deliberation process (the

managerial review and judgement process)?

More so, any method which intends to complement, or in some justified cases

supplement, the commonly adopted probabilistic approach to risk assessment

should demonstrate that the efforts needed for the implementation and

familiarisation, by the analysts and decision-makers, are feasible and accept-

able in view of the benefits gained, in terms of the above questions and,

eventually, of the confidence in the decision made (Aven and Zio, 2011).

In this book we have highlighted probability as a measure of uncertainty

and the recommended risk description (A,C,U,P,K) reflects this. However,

the (A,C,U) risk perspective is general and applicable also for alternative

approaches and theories for representing and expressing uncertainties in a

risk assessment context. Risk exists as (A,C,U) independent of the perspec-

tives adopted. To describe the risk, different tools could be used: probability,

possibility measures, etc. The risk description then takes the form (A,C,Q,K),

where Q expresses the measure used to represent the uncertainties U, and K is

the information and knowledge that Q is based on. In this perspective

probability models may be introduced whenever considered appropriate, to

structure and ease the uncertainty assignments. It is, however, beyond the

scope of this book to further discuss these alternative risk descriptions.
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9

Conclusions

In this book we have investigated to what extent risk assessments and in

particular quantitative risk assessments, meet the scientific quality require-

ments of reliability and validity. While reliability is concerned with the

consistency of the “measuring instrument” (analysts, experts, methods, pro-

cedures), validity is concerned with the success at “measuring” what one set

out to “measure” in the analysis. For each of these main criteria a set of sub-

criteria are defined.

To be able to perform these investigations we have to study the scientific

building blocks of the assessments (related to probability, risk, uncertainty,

models, etc.), but also the role of the assessments in the decision-making

process. What type of decision support should the assessments provide?

Are the objectives (expectations) accurate risk estimates and/or uncertainty

characterisations? The scientific quality of the assessments obviously needs to

be seen in relation to the objectives. Also the requirements of reliability and

validity depend on these objectives. Using these criteria, we evaluate the

quality of the assessments for different objectives of the assessments. Three

case studies are used to illustrate the analysis. The first of these examples is

related to the analysis of accident data, the second relates to the siting of an

LNG plant and the third discusses the design of a safety system.

The investigation shows that the reliability and validity criteria are not in

general satisfied. Under certain conditions the criteria are met, and to a

varying degree depending on the risk perspective and aim of the risk

assessment.

The traditional statistical methods meet the reliability and validity criteria

only if a large amount of relevant data is available. If the objective of the risk

assessment is to express uncertainties, the reliability and validity criteria are

to a large extent met provided that the assessments are properly conducted.

However, several problems have been identified, including:
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The background knowledge that the assignments are based on need not be

exactly the same from analysis to analysis (R1–R3).

Important uncertainty factors may be hidden in the background know-

ledge (V2,V3).

The uncertainty assessments may not be complete (V3).

In addition, the V4 criterion is questioned when the risk assessment has a

focus on the estimation of fictional parameters of probability models. The

idea is that the parameter reflects some underlying property of the activity

studied, but often this parameter cannot be given a meaningful interpretation.

Nonetheless the assessment is conducted, as experience shows that it can be a

useful tool for practical analysis. However, this type of pragmatism cannot be

accepted if we require that our assessment should be built on a scientific basis.

Then all quantities introduced should be properly defined and allow for

meaningful interpretations.

The V4 criterion is also problematic if “non-probabilistic” approaches are

used to express uncertainties. These approaches are based on bounds for the

epistemic-based probabilities. Specific probability assignments are not in

general used as they cannot be given a rigorous basis. These approaches

may improve on the reliability criteria compared to the Bayesian approaches,

but commonly fail when it comes to the validity criterion as they do not

adequately inform the decision-maker, as discussed in Section 8.3. Expressing

epistemic uncertainties means subjective assignments but decision-making

normally needs to be supported by qualified judgements. Sensitivity analysis

is considered an important tool to show how the results are dependent on the

assumptions made.

We argue that risk assessment is a science in its own right. Risk assessment

cannot and should not be judged by reference to the traditional science

paradigms alone, such as the natural sciences, social sciences, mathematics

and probability theory. We may view the science of risk assessment as

the development of concepts, principles, methods and models to identify, analyse and
evaluate (assess) risk, in a decision-making context (Aven, 2004).

This science, which is founded on the international scientific journals in the

field, provides the basis for the scientific method of risk assessment. In the

book we show that such a method can be established, in some cases and under

some conditions. The best framework for this method is in our view the (A,C,

U) risk perspective, as it the most general perspective and not dependent on

the construction of fictional model parameters. The scientific method of risk

assessment based on this perspective can be summarised as follows:
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1. We define risk by the two-dimensional combination of

(i) events, A, and the consequences of these events, C, and

(ii) the associated uncertainties, U (will A occur and what value will

C take?).

Often the A events are specified, for example as gas leakages in a process

plant or as terrorist attacks in a country, but we may also allow for new

types of such events, a new type of virus for instance. We speak then often

about “unknown uncertainties” (“unknown unknowns”, ignorance or non-

knowledge) –we do not know what we do not know, in contrast to “known

uncertainties” (“known unknowns”) – we know what we do not know.

2. To describe the uncertainties, we use subjective (knowledge-based) prob-

abilities. If the probability equals 0.1 (say), this means that the assessor

compares his/her uncertainty (degree of belief) about the occurrence of the

event with the standard of drawing at random a specific ball from an urn

that contains 10 balls.

3. A risk description based on this perspective includes the following

elements: (A,C,U,P,K), that is, risk is described by events and conse-

quences, knowledge-based probabilities P, assessment of uncertainties U,

and K the background knowledge that U and P are based on. The assessed

uncertainties and probability assignments are based on hard data, expert

judgements and models. The U component may for example be a qualita-

tive assessment of uncertainty factors (assumptions that the probabilities

are based on). It partly relates to the unknown unknowns.

4. This perspective acknowledges that risk extends beyond probabilities.

Probability is just a tool used to express the uncertainties, but it is not a

“perfect” tool.

5. Stochastic models (with parameters) expressing aleatory uncertainty, i.e.

variation in populations of similar units, are used to ease the probability

assignment. The probabilitymodelsmake it possible to coherently andmech-

anically facilitate the updating of probabilities in line with the Bayesian

paradigm. However, such models need to be justified, and if introduced

they are to be considered as tools for assessing the uncertainties about

A and C. The estimation of the parameters of the models needs not be the

end product of the analysis as in a traditional parametric risk analysis.

6. If a probability model is justified, the uncertainties are not scientific

although the epistemic uncertainties about the parameters of the model

could be large. The precautionary principle applies when the uncertainties

are scientific which means that it is difficult to establish an accurate

prediction model for the consequences.
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7. A distinction is made between model inaccuracies (the differences

between Z and G(X), see Section 6.5.1), and model uncertainties due to

alternative plausible hypotheses on the phenomena involved. Model

inaccuracy is not reflected in the resulting knowledge-based (subjective)

probabilities: the models are included in the background knowledge of

the assigned probabilities. The assumptions supporting a model can give

rise to uncertainty factors.

8. A risk assessment is a methodology designed to determine the nature

and extent of risk, i.e. assess the risk (A,C,U). It comprises the following

main steps:

(a) identification of hazards/threats/opportunities (sources)

(b) cause and consequence analysis, including analysis of vulnerabilities

(c) risk description, using probabilities and expected values

(d) identification and assessments of uncertainty factors

(e) risk evaluations, i.e. comparisons with possible risk tolerability

(acceptance criteria).

9. The results of risk assessments are used to support decision-making.

The risk assessment results inform the decision-makers. The decision

emerges from a managerial review and judgement phase during which

the management/decision-makers consider

(i) the formal results of risk assessments and other type of assessments

(ii) the premises, assumptions and limitations of these assessments

(iii) other issues not captured by the assessments.

10. The decision-making encompasses considerations and weighting with

respect to uncertainty (the weight given to the cautionary and precaution-

ary principles) and values. It is the responsibility of the decision-maker to

undertake such considerations and weighting, and to make a decision

that balances the various concerns.

11. The decision-makers reduce risk by implementing cautious policies

(including traditional engineering approaches of “defence-in-depth” to

bound the uncertainties).

12. If risk criteria in the form of risk acceptance limits (such as IR < 0.001)

are introduced, they have to be used as nothing more than reference levels

to inform the decision-maker, not to provide a mechanical procedure for

what is an acceptable or unacceptable risk.
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Appendix A

Introduction to probability theory
and statistical analysis

This appendix reviews some elementary probability theory and statistical

analysis. The presentation is based on Aven (2003, 2008a).

A.1 Probability theory

A.1.1 The meaning of a probability

The probability of an event A, P(A), can be defined in different ways. It is

common to distinguish between three types of probabilities, or more pre-

cisely, three types of interpretations:

� classical probabilities
� frequentist probabilities (relative frequency-interpreted probabilities)
� subjective (knowledge-based) probabilities.

The classical interpretation applies only in situations with a finite number of

outcomes which are equally likely to occur. According to the classical inter-

pretation the probability of A is equal to the ratio between the number of

outcomes resulting in A and the total number of outcomes, i.e.

P(A)¼ Number of outcomes resulting in A/Total number of outcomes.

As an example consider the tossing of a die. Here P(the die shows one) ¼ 1/6

since there are six possible outcomes which are equally likely to appear and

only one that gives the outcome 1.

Following the relative frequency interpretation, probability is defined as

the fraction of times the event A occurs if the situation considered were

repeated (for real or hypothetically) an infinite number of times. Thus, if an

experiment is performed n times and the event A occurs nA times, the P(A) is

equal to the limit of nA/n as n goes to infinity, i.e. the probability of the
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event A is the limit of the fraction of the number of times event A occurs when

the number of experiments increases to infinity. Note that a classical inter-

preted probability is equal to a relative frequency-interpreted probability.

For example in the die example above, the proportion of times the die show

one is 1/6 in the long run and hence the relative frequency-interpreted

probability is 1/6.

In most real-life situations, the relative frequency-interpreted probability is

unknown and has to be estimated from experience data. To illustrate, let us

look at an example.

We consider a fire detector of a type D. The function of the detector is to

raise the alarm at a fire. Let A denote the event “the detector does not raise

the alarm at a fire”. To find P(A), assume that tests of n detectors of

type D have been carried out and the number of detectors that are not

functioning, nA, is registered. As n increases, the fraction nA/n will be

approximately constant and approach a certain value (this fact is called the

strong law of large numbers). This limiting value is called the probability of

A, P(A). Thus if for example n¼ 10000 and we have observed nA¼ 50, then

P(A)� 50/10000¼ 5/1000¼ 0.005 (0.5%). Note that a probability is by defini-

tion a number between 0 and 1, but is also often expressed in percentages.

Following the subjective interpretation, P(A) is a subjective measure of

uncertainty. This means that we (who assign the probability) compare the

uncertainty of event A occurring with drawing a favourable ball from an urn

with P(A)� 100% favourable balls under standard experimental conditions.

This means that we have the same degree of belief in the event A occurring as

drawing a favourable ball from an urn with P(A)� 100% favourable balls.

All subjective probabilities are conditioned on some background know-

ledge K, say. Thus a more precise way of writing the probability P(A) is

P(AjK), which is the common way of expressing a conditional probability.

To simplify the writing we normally omit the K. This should not cause any

problem as long as the background knowledge is fixed throughout the

argumentation.

To understand the concept of a subjective probability let us look at an

example. Let A represent the event that a patient develops an illness S over

the next year, when the patient shows symptoms V. We do not know if A will

occur or not – there is uncertainty associated with the outcome. However, we

can have an opinion on how likely it is that the patient will develop the illness.

Statistics show that about 5 out of 100 patients develop this illness over the

course of one year, if they show the symptoms V. Is it then reasonable to say

that the probability that A will occur is equal to 5 per cent? Yes, if this is all

the knowledge that we have available, then it is reasonable to say that the
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probability that the patient will become ill next year is 0.05 if the symptoms V

are present. If we have other information relevant about the patient, our

probability can be entirely different. Imagine, for example, that the particular

patient also has an illness B, and that his/her general condition is somewhat

weakened. Then it would be far more likely that the patient develops

illness S. The physician who assesses the patient may, perhaps, set a prob-

ability of 75 per cent for this case: for four such cases that are relatively

similar, he/she predicts that three out of these will develop the illness.

Based on this line of thought, a correct or true probability does not exist.

Even if one throws a die, there is no correct probability. Thismay seem strange,

but one must differentiate between proportions, observed or imaginary, as in

relative frequencies and a subjective probability as considered here. Imagine

throwing a die a great many times – say, 6000 times. We would then obtain

(if the die is “normal”) about 1000 showing a “1”, about 1000 showing “2”, and

so on. In the population of 6000 throws, the distribution will be rather similar

to 1/6 for the various numbers. But, imagine that we did an infinite number of

attempts. Then the theory says that we would obtain exactly 1/6. However,

these are proportions, observed and resulting from imaginary experiments.

They are not subjective probabilities. A subjective probability applies to a

defined event which we do not know will occur or not, and which is normally

associatedwith the future.Wewill throw a die. The die can showa “4”, or it can

show a different number. Prior to casting the die, one can express one’s belief

that the die will show a “4”. As a rule, this probability is set at 1/6, because it

will yield the best prediction of the number of “fours” if wemakemany throws.

However, there is nothing automatic in our assignment of the probability

1/6. We have to make a choice. We are the ones who must express how likely

it is to obtain a “6”, given our background knowledge. If we know that the die

is fair, then 1/6 is the natural choice. However, it is possible that one is

convinced that the die is not fair, and that it will give many more “fours”

than usual. Then P(“fours”) ¼ 0.2 may perhaps be set. No one can say that

this is wrong, even though, afterwards one checks the proportion of “fours”

for this die and finds it to be fair. When one originally assigned the probabi-

lity, the background knowledge was different. Probability must always be

seen in relation to the background knowledge.

A.1.2 Probability calculus

The rules for probabilities are widely known. We will not repeat them

all here, but will only summarise briefly some of the most important ones,
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understanding P as a subjective probability. The reader is referred to text-

books on probability theory.

Probabilities are numbers between 0 and 1. If the event A cannot occur,

then P(A) ¼ 0, and if A is considered certain, then P(A) ¼ 1. If we have two

events A and B, then the following formulae hold:

P A or Bð Þ ¼ P Að Þ þ P Bð Þ � P A and Bð Þ
P A and Bð Þ ¼ P Að Þ P BjAð Þ: ðA:1Þ

Here P(BjA) represents our probability for B when it is known that A has

occurred. If A and B are independent, then P(B j A) ¼ P(B); in other words,

the fact that we know that A has occurred does not affect our probability that

B will occur.

Imagine that we want to express the probability that two systems will both

fail. In other words, we will determine P(A1 and A2 jK) where A1 represents

the event that system 1 fails, and A2 represents the event that system 2 fails.

We base our analysis on the assignments

P A1jKð Þ ¼ P A2jKð Þ ¼ 0:05:

Is then

P A1 and A2 KÞ ¼ PðA1j jKð Þ P A2jKð Þ ¼ 0:052 ¼ 0:25%?

The answer is “yes” if A1 and A2 are independent. But are they? If it was

known to us that system 1 has failed, would it not alter our probability that

system 2 would fail? Not necessarily, it depends on what our background

knowledge is,

� what is known to us initially,
� whether there is a “coupling” between these systems in some way or another,

for example the failure of one system increases the stress on the other.

If the systems are of the same type and our background knowledge is very

small, knowledge that system 1 has failed provides information to us about

system 2. In practice, however, we may have so much knowledge about this

type of system that we can ignore the information that is associated with A1.

We then obtain independence since

P A2jK;A1ð Þ ¼ P A2jKð Þ:
If there is coupling between the systems, as illustrated above, then P(A2 j K,

A1) will be different from P(A2 j K), and thus we have a dependence between

the events A1 and A2.
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A conditional probability, P(AjB), is defined by the formula

P AjBð Þ ¼ P A and Bð Þ=P Bð Þ:
We see that this formula is simply a rewriting of formula (A.1). By substitut-

ing P(A and B) with P(A) P(BjA) (again we use formula (A.1)), the well-

known Bayes formula is established:

P AjBð Þ ¼ P Að Þ P BjAð Þ=P Bð Þ:
We will show an application of this formula in Section A.2.2.

A.1.3 Random variables (quantities) and probability distributions

In applications we often focus on one or more summarising performance

measures, in contrast to all possible outcomes. As an example, let us consider

k gas detectors in a process plant. We are primarily interested in the number of

detectors that are not functioning, i.e. not raising the alarm. Let X denote this

number. The value of X is uniquely given when the outcome of the “experi-

ment” is registered. If, for example k¼ 2 and it is observed that detector 1 is

functioning but not detector 2, then X¼ 1. Thus we may view X as a function

from the sample space to the real numbers. We call such variables random

variables or stochastic variables. If the subjective probability interpretation is

adopted, it is common to refer to X as a random quantity, or simply an

unknown or uncertain quantity. The word “variable” is usually avoided as it

gives the wrong impression that X varies. In the following we will use the term

“random quantity” as the generic term, and refer to random variables only

when interpreting probability in a classical or relative frequency way.

Let X denote a random quantity and assume that X is discrete, i.e. it can

only take a finite number of values or a countable infinite number of values.

Let P(X¼ x) denote the probability of the event “X¼ x”, where x is one of the

values X can take. We call the function f(x)¼P(X¼ x) the probability distri-

bution of X, or simply the distribution of X. The cumulative probability

distribution F(x) is defined by F(x)¼P(X� x). It is also referred to as the

probability distribution of X.

In many applications we prefer to work with random quantities having

continuous distributions, i.e. distributions which are characterised by a prob-

ability density f(x) such that

P a<X � bð Þ ¼
ð

a;bð �
f xð Þ dx:

Thus if b� a is small, P(a<X � b) � f(x)(b� a).

The probability distribution F(x) is defined by F(x) ¼ P(X� x).
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Expected value and variance

Let X denote the number of failed systems in the course of one year for a

group of four systems. Assume that you have established the following

probabilities that X will take the value i, i ¼ 0, 1, 2, 3, 4:

The expectation EX is defined by:

EX ¼ 0 � 0:05þ 1 � 0:40þ 2 � 0:40þ 3 � 0:10þ 4 � 0:05 ¼ 1:7:

The expected value is the centre of gravity of the distribution of X. If a lever is

set up over the point 1.7, then the masses 0.05, 0.40, . . . , 0.05 over the points

0, 1, . . . . , 4 will be perfectly balanced.

If X can assume one of the following values, x1, x2, . . . , one can find the EX

value by multiplying x1 with the corresponding probability P1, and likewise

multiply value x2 with probability P2, etc., and sum up all values xi, i.e.

EX ¼ x1 � P1 þ x2 � P2 þ � � �
If X indicates the number of events of a specific type, and this number is

either zero or one, the associated probability P(X¼ 1) equals the expected

value. This is evident from the formula for expected value as in this case EX is

equal to 1 ∙ P(the event will occur). In many situations, we are concerned

about rare events in which we, for all practical purposes, can disregard the

possibility of two or more of such events occurring during the time interval

under consideration. The expected number of events will then be approxi-

mately equal to the probability that the event will occur once.

In applications, we often use the term “frequency” for the expected value with

respect to the number of events. We speak of the frequency of gas leakages, for

example, and we actually mean the expected value. We can also regard the

frequency as an observation, or prediction, of the number of events during the

course of a specific period of time. If we, for example, say that the frequency is

two per year, we have observed, or we predict, two events per year on average.

The expectation constitutes the centre of gravity of the distribution,

as mentioned above, and we see from the example distribution that

the actual outcome can be far from the expected value. To describe the

uncertainties, a prediction interval is often used. A 90% prediction interval

for X is an interval [a, b], where a and b are constants, which are such that

i 0 1 2 3 4
P(X¼ i) 0.05 0.40 0.40 0.10 0.05
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P(a � X � b) ¼ 0.90. In cases where the probabilities cannot be determined

such that the interval has probability 0.90, the interval boundaries are speci-

fied such that the probability is larger than, and as close as possible to, 0.90.

In our example, we see that [1, 3] is a 90% prediction interval. We are 90%

certain that X will assume one of the values 1, 2 or 3.

The variance and standard deviation are used to express the spread around

the expected value. The variance of X, Var X, is defined as the expectation of

(X – EX)2, i.e. VarX ¼ E[(X – EX)2], while the standard deviation is defined

as the square root of the variance.

Independence

Let X1, X2,. . ., Xn denote n arbitrary random quantities. We say that these

quantities are independent if

P X1 � x1;X2 � x2; : : :;Xn � xnð Þ ¼ P X1 � x1ð Þ P X2 � x2ð Þ � � � � � P Xn � xnð Þ
for all choice of x1, x2,. . ., xn. In a subjective probability context independence

means judged independence.

Exchangeability

Consider two discrete random quantities X1 and X2. Then X1 and X2 are said

to be exchangeable if for all values x1 and x2 that X1 and X2 can take, we have

P X1 ¼ x1 and X2 ¼ x2ð Þ ¼ P X1 ¼ x2 and X2 ¼ x1ð Þ;
that is, the assessed probabilities are unchanged (invariant) by switching

(permuting) the indices.

More generally, random quantities X1, X2, . . ., Xn are exchangeable if their

joint distribution is invariant under permutations of coordinates, i.e.

F x1; x2; : : :; xnð Þ ¼ F xr1; xr2; : : :; xrnð Þ;
where F is a generic joint cumulative distribution for X1, X2, . . ., Xn and

equality holds for all permutation vectors (r1,r2, . . .,rn).

Exchangeability is weaker than independence, because in general

exchangeable random quantities are dependent. Independent random quan-

tities having identical probability distributions are exchangeable (but not vice

versa). In a subjective probability context, exchangeability means judged

exchangeability.

The strong law of large numbers

The following theorem, known as the strong law of large numbers, is one of

the most well-known results in probability theory. It states that the average of
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a sequence of independent random quantities having the same distribution

will, with probability 1, converge to the mean of that distribution.

Let X1, X2, . . . be a sequence of independent random quantities having a

common distribution, and let EXi¼ m. Then with probability one,

X1 þX2 þ � � � þXnð Þ=n ! m

as n ! 1:

Binomial and Poisson distributions

Let us imagine that we have a large population, I, of similar systems, and we

are studying the proportion q of them that will fail over the course of the next

year. Let us imagine further that we have another similar population II that is

composed of n systems. Let X represent the number that fail in this popula-

tion. What then is our probability that all of those in population II will fail,

i.e. P(X ¼ n)?

To answer this question, first assume that q is known. You know that the

proportion q within the larger population I is 0.10 say. Then the problem

boils down to determining P(X ¼ n j q). If we do not have any other infor-

mation it would be natural to say that

P X ¼ njqð Þ ¼ qn:

We have n independent trials and our probability for “success” (failure) is q

in each of these trials. We see that when q is known, then X has a so-called

binomial probability distribution, i.e.

PðX ¼ i qj Þ ¼ n!= i!ðn� iÞ!Þ� qið1� qÞn�i i ¼ 0; 1; 2; . . . n;
h

where i! ¼ 1 ∙ 2 ∙ 3 . . . ∙ i. The reader is referred to a textbook on probability

calculus if understanding this is difficult. The mean and variance of the

binomial distribution are equal to nq and nq(1� q), respectively.

When q is small and n is large, we can approximate the binomial probabi-

lity distribution by using the Poisson distribution:

PðX ¼ i rj Þ ¼ ri e�r= i!; i ¼ 0; 1; 2; . . . ; ðA:2Þ
where r ¼ nq. We know, for example, that (1� q)n is approximated equal

to e�r. Check this using a pocket calculator.

We refer to q and r as parameters in the probability distributions. By

varying the parameters, we obtain a class of distributions. The mean and

variance in a Poisson distribution are both equal to the parameter r.
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What do we do if q is unknown? Let us imagine that q can be 0.1, 0.2, 0.3,

0.4, or 0.5. We then use the law of total probability to obtain that

P X ¼ ið Þ ¼ P X ¼ ijq ¼ 0:1ð Þ P q ¼ 0:1ð Þ þ P X ¼ ijq ¼ 0:2ð Þ P q ¼ 0:2ð Þ þ � � � þ
P X ¼ ijq ¼ 0:5ð Þ P q ¼ 0:5ð Þ:

By setting values for P(q ¼ 0.1), P(q ¼ 0.2), etc., we obtain the probability

distribution for X, i.e. P(X ¼ i) for various values of i.

Uniform distribution

A random quantity X is uniformly distributed on the interval [a, b] if it has a

probability density given by

f(x)¼ 1/(b� a), for a < x < b, and f(x) ¼ 0 otherwise. The mean and

variance of X are equal to (b� a)/2 and (b� a)2/12, respectively.

Exponential distribution

A random quantity X is said to be exponentially distributed with parameter l if

PðX � xÞ ¼ 1� e�lx; for x > 0:

Often an exponential lifetime distribution is used for describing the lifetime

of a unit. For this distribution we have P(X>uþv j X>u) ¼ P(X>v), which

means that the probability of survival of the additional v units of time is not

dependent on how long the unit has functioned. The exponential distribution

is the only distribution with this property. This lack of memory simplifies the

mathematical analysis.

An important quantity in studying lifetime distributions is the so-called

failure rate z(x), defined by

z xð Þ ¼ f xð Þ= 1� F xð Þð Þ; ðA:3Þ
where F(x)¼P(X� x) and f(x) is the corresponding probability density

function. For the exponential distribution, the failure rate is equal to l, i.e.
independent of time. To see the physical interpretation of the failure

rate, consider a small time interval (x, xþh) and assume that the unit has

survived x. Then we find that

1=hð Þ P X � xþ hjX>xð Þ ¼ 1=hð Þ P x<X � xþ hð Þ=P X>xð Þ ¼
F xþ hð Þ � F xð Þ½ �=h� 1= 1� F xð Þð Þ ! f xð Þ= 1� F xð Þð Þ ¼ z xð Þ as h ! 0:

Thus

P X � xþ hjX>xð Þ � z xð Þ h
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for small values of h. We see that the failure rate expresses the proneness of

the unit to fail at time (age) x. A high failure rate means that there is a high

probability that the unit will fail “soon”, whereas a small failure rate means

that there is a small probability that the unit will fail in a short time. The

cumulative failure rate
R
[0,x] z(t)dt is known as the hazard and is denoted Z(x).

The mean and variance in the exponential distribution are given by

EX ¼ 1=l and VarX ¼ 1=l2:

Weibull distribution

A random quantity X is said to be Weibull distributed with parameters l and

b if the distribution is given by

P X � xð Þ ¼ 1� exp � lxð Þb
n o

for x>0:

We call l and b the scale and form parameter, respectively. If b¼ 1, the failure

rate becomes a constant. Hence the exponential distribution is a special case

of the Weibull distribution. When b > 1, the failure rate is increasing, and

when b < 1, it is decreasing. Note that

1� F 1=lð Þ ¼ exp �1f g ¼ 0:3679:

The quantity 1/l is often called the characteristic lifetime. The mean

(expected) lifetime of the Weibull distribution is given by

EX ¼ ð1=lÞ�ð1þ 1=bÞ;
where G is the gamma function defined by

� xð Þ ¼
ð

0;1½ Þ
tx�1e�tdt:

In particular, we have G(nþ1) ¼ n! for n¼ 0, 1, 2, . . .

The variance of X equals

VarX ¼ ð1=l2Þ½�ð1þ 2=bÞ � �2ð1þ 1=bÞ�:

Gamma distribution

If X1, X2, . . ., Xn are independent and exponentially distributed random

quantities with parameter l, then
X1 ¼ X2 þ � � � þXn is gamma distributed with parameters l and n, i.e.

fðxÞ ¼lðlxÞn�1e�lx=�ðnÞ x > 0: ðA:4Þ
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Assume for example that n units of a certain type have exponentially distrib-

uted lifetimes X1, X2, . . ., Xn with failure rate l and that the units are put into

operation one by one as a unit fails. Then the total lifetime equals the sum of

the random quantities Xi.

The parameter n in (A.4) does not need to be restricted to the positive

integers. If it is a positive integer, we can write the survivor function in the

following form:

1� FðxÞ ¼�fi¼0; : : : ;n�1gðlxÞi e�lx=i!:

The mean and variance of the gamma distribution are given by

EX ¼ n=l

VarX ¼ n=l2:

Chi-square distribution

A random quantity X is chi-square distributed with parameter v if it has a

density given by

fðxÞ ¼ xðv=2Þ�1e�x=2=f2v=2�ðv=2Þg x > 0:

The mean of the distribution equals v and the variance 2v. The chi-square

distribution is closely linked to the Gamma distribution. If X has a Gamma

distribution with parameters (n, l), then 2lX is chi-square distributed with

parameter 2n.

Beta distribution

A random quantity X is said to be beta distributed with parameters a and b if

it has a density given by

f xð Þ ¼ � aþ bð Þ= � að Þ � bð Þð Þ½ �xa�1 1� xð Þb�1; for x>0; a>0; b>0:

The mean and variance are equal to a/(aþ b) and ab/[(aþ b)2(aþ bþ 1)],

respectively.

Beta-binomial distribution

A random quantity X is said to be beta-binomial distributed with parameters

(n,a,b) if it has a density given by

f xð Þ ¼ n!= n� xð Þ! x!ð Þ½ � aþ xð Þ � nþ b� xð Þ� aþ bð Þ= � nþ aþ bð Þ � að Þ � bð Þf gð �;
for x¼ 0, 1, 2, . . ., n, a> 0, b> 0 and n¼ 0, 1, 2, . . .. The mean and variance

are equal to na/(aþ b) and nb(nþ aþ b)/[(aþ b)2(aþ bþ 1)], respectively.

188 Appendix A: Probability theory and statistical analysis



Triangular distribution

A random quantity X is triangle distributed with parameters a,b and c if it has

a density given by

f(x) ¼ 2(x�a)/[(b�a)(c�a)] if a� x� b, and

f(x) ¼ 2(c�x)/[(c�a)(c�b)] if b < x� c.

The density increases linearly from a to b, and then decreases linearly from b

to c. The mean and variance are equal to (aþ bþ c)/3 and (a2þ b2þ c2� ab�
ac� bc)/18, respectively.

Normal distribution

The random quantity X is said to be normally distributed with parameters m
and s if it has a density given by

f xð Þ ¼ 1=2pð Þ1=2exp � x� mð Þ=sð Þ2
n o

:

It can be shown that EX¼ m and Var X¼s2. If m¼ 0 and s¼ 1, the distribu-

tion is referred to as a standard normal distribution. The normal distribution

is probably the most widely used distribution in the entire field of statistics

and probability. It turns out that the mean of a number of quantities X is

normally distributed. The central limit theorem gives a precise mathematical

formulation of this fact:

Central limit theorem

Let X1, X2, . . . be a sequence of independent random quantities having

a common distribution, and let EXi ¼ m and VarXi¼s2. Then the distribu-

tion of

n1=2 X1 þX2 þ � � � þXnð Þ=n� m½ �=s
converges to the standard normal distribution with mean 0 and variance 1.

Student (t) distribution

A random quantity X is Student (t) distributed with parameter v (degrees of

freedom) if it has a density given by

f xð Þ ¼ ð1þ x2=vÞ� vþ1ð Þ=2� vþ 1ð Þ=2ð Þ=f�ðv=2ÞðpvÞ1=2g:
If W and Z are independent, W with a standard normal distribution and

Z has a chi-square distribution with parameter v, then T ¼ W/(Z/v)1/2 has a

Student (t) distribution with parameter v.
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A.2 Statistical analysis

A.2.1 Traditional statistical analysis

Non-parametric estimation

Consider a random variable X, having probability distribution F(x)¼P(X� x).

The task is to estimate this distribution given observations X1, X2, . . ., Xn. The

random variable Xi has a distribution function F. All the random variables are

assumed independent.

Often the data are censored, i.e. we do not observe Xi, but minimum{Xi,

Ci}, where Ci is the censoring time. We will, however, not discuss this case any

further here.

As an estimator for F(x) we may use the empirical distribution function

F*(x) defined by

F	 xð Þ ¼ 1=nð Þ �I Xi � xð Þ;
where I is the indicator function which equals 1 if the argument is true and 0

otherwise. If n ! 1, then F*(x) ! F(x) with probability one.

For non-negative observations the Nelson–Aalen estimator Z* is often

used. This is an estimator of the cumulative failure rate Z xð Þ ¼ Ð
0;x½ � z tð Þdt,

cf. (A.3), and is given by

Z	 tð Þ ¼ �fi:;xi�tg1= n� iþ 1ð Þ:

Based on estimators as above we can make plots and fit the distribution to a

parametric class of distributions, like the exponential distribution.

If we compute the Nelson–Aalen estimator and the plot is close to a

straight line starting in origo, this would indicate that an exponential distri-

bution may be appropriate as the hazard of this distribution is such a straight

line.

In this framework, we may also use so-called “goodness of fit” tests.

The idea is to use a measure of distance between the empirical distribu-

tion and the underlying theoretical distribution. We refer to textbooks in

statistics.

Estimation of distribution parameters

We assume that the distribution F(x) belongs to a known parametric class of

distributions, for example the exponential or the normal distribution. The

problem is to estimate the parameters of the distribution. As above we assume

that we have observations X1, X2,. . ., Xn.
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Maximum likelihood estimation As a first illustrating example, we consider

the Poisson distribution. Let

f xjlð Þ ¼ lxe�l=x!:

The probability density related to the observed data Xi ¼ xi then becomes

fðx1jlÞfðx2jlÞ � . . . � fðxnjlÞ ¼ c lx1þx2þ���þx1e�l;

where c is a quantity that does not depend on l. As a function of the

parameter l, this expression is called the likelihood function and is denoted

L(l). The likelihood function is not a probability distribution. It is interpreted

as a scale of comparative support lent by the known xi values to the various

possible values of the unknown l (Singpurwalla 2006).

The maximum likelihood estimate (MLE) of l, l*, maximises L(l). In
other words, MLE is the value of l that makes the observed result most

likely. In practice the MLE is determined by differentiating the likelihood

function and setting the derivative equal to zero. By doing so, we obtain for

the example

l	 ¼ x1 þ x2 þ � � � þ xn=n;

i.e. the average number of the observations.

Confidence interval

As a measure of data variation, a confidence interval for the parameter is

often presented in addition to the estimate of the parameter. As an example

consider the binomial distribution with parameters (n,p) with n known and

p unknown. It is assumed that n is large (>30). The MLE estimator of p is p*

given by p*¼ X/n, i.e. the success rate. The expected value and variance of

this estimator are equal to

Ep	 ¼ p

Var p	ð Þ ¼ p 1� pð Þ=n:
By the central limit theorem, p* has an approximate normal distribution as X is

the sumof n independent random quantities which are either zero or one. Hence

(p* – p)/[p(1� p)/n]½ has an approximate standard normal distribution,

and as p* is close to p by the strong law of large numbers, also

(p* – p)/[p*(1� p*)/n]½ has an approximate standard normal distribution.

Let d denote the estimated standard deviation term [p*(1� p*)/n]½.

Then by using statistical tables for the standard normal distribution

we obtain
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P(�1.645� (p*� p)/d� 1.645) � 0.90, i.e.

P(p* �1.645d� p� p* þ 1.645d) � 0.90.

The interval [p* �1.645d, p* þ 1.645d] is an approximate 90% confidence

interval for p. There is a probability of about 90% that this interval contains

the underlying correct p value. Note that when the confidence interval is

calculated, i.e. we observe X, the resulting interval either contains the true value

of p or it does not, but in the long run if the experiment were repeated many

times, the confidence interval would include p in about 90% of the times.

In the exponential model with parameter l, and observations xi,

i¼ 1, 2, . . ., n, a (1� a)100% confidence interval is given by

ðlL;lHÞ ¼ z1=2y; z2=2yð Þ; ðA:5Þ
where y is the sum of the n observations, z1 equals the a/2 quantile in the chi-

square distribution with 2n degrees of freedom and z2 equals the 1� a/2
quantile in the chi-square distribution with 2n degrees of freedom. The

a quantile of the distribution of a random variable X is the value x such that

P(X� x) ¼ a.
For the Poisson process model with rate l and observed in an interval t, we

can use the same interval (A.5) with z1 equal to the a/2 quantile in the chi-

square distribution with 2N degrees of freedom and z2 equal to the 1� a/2
quantile in the chi-square distribution with 2(Nþ 1) degrees of freedom,

where N is the number of events observed in the interval [0, t].

Testing hypothesis

The set-up is as above. We assume that the distribution F(x) belongs to a

known parametric class of distributions and that we have available observa-

tions X1, X2, . . ., Xn. We use the binomial model with parameters n and p to

illustrate ideas. The observation Xi here refer to “success” in the ith experi-

ment, such that the sum of the Xis is the total number of observed “suc-

cesses”. This sum is prior observation seen as a random variable, and we

denote it by Y.

The problem is now to formulate a statistical test. We do this by formulat-

ing statements about the parameter of the probability model, in this case the

success probability p. The starting point is the null-hypothesis H0, which we

may think of as “p¼ 0.25”, say. The test questions the truth of this statement

in relation to an alternative hypothesis H1, say p > 0.25. If the data provide

sufficient support, we assert that H0 is false and H1 is correct. We conclude in

this way if we have a high confidence about the correctness of H1. As a

concrete example, consider a medical treatment that is known to have a
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“success” rate of 25 per cent. An adjustment of this treatment is considered,

and the question is whether this adjustment would increase the “success” rate.

It is reasonable to assert that p> 0.25 if the number of successes is large,

i.e. Y 
 k, for a suitable choice of k. Let a be the probability that Y 
 k if H0

is true, i.e. p¼ 0.25. These probabilities for various k are found from statis-

tical tables for the binomial distribution, or use of approximations to the

normal distribution. We search for a k such that a becomes rather small, say

0.05 or 0.10. For example, if n¼ 20 and a ¼ 0.10, we find that k¼ 8, which

corresponds to a fraction of successes of 40 per cent. If we observe eight or

more successes, the result is so “extreme” relative to H0, that we reject H0. We

refer to a as the significance level of the test. It is the probability of an error of

type I, i.e. of rejecting H0 when, in fact, it is true. It should be rather low as it

represents a probability of making a wrong conclusion: asserting H1 if H0 is

true. On the other hand, specifying a very low value of a means that the

probability of not concluding that H1 is true if it is, in fact, true, becomes

high. So a balance has to be achieved. The probability of this latter type of

error is denoted b, and is a function of the parameter value. This type of error

is referred to as an error of type II. In our example, if p¼ 0.30, the probability

that we do not reject H0, the type II error probability P(Y< 8jp¼0.3) is about

77 per cent. We see that to reject H0 a rather extreme observation is required

using the above principles. The point is that type I errors are considered more

serious than type II errors. In the medical treatment example, the starting

point is that there is no improvement. Only if the data give a very strong

support for the alternative hypothesis, should we reject H0; the probability of

a failure of type I should be small. Note that when not rejecting H0, we do not

say that H0 is true; the conclusion is that we do not have statistical evidence to

reject the null hypothesis.

Regression analysis

Regression analysis is mainly used for the purpose of prediction. By develop-

ing a statistical model, the values of a dependent or response variable Y are

predicted based upon the values of an independent variable X. As an

example, an economist might want to develop a statistical model that predicts

how much money a population of people would spend (Y) based on how

much money they earn (X). The simplest type of regression analysis is based

on a linear regression model. To develop the model, we assume that a sample

of n independent observations (X1,Y1), (X2,Y2), . . ., (Xn,Yn) is obtained,

where Xi represents the ith value of the independent variable X and where

Yi represents the corresponding response – that is, the ith value of the

dependent variable Y. The linear regression model specifies that there is an
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underlying true relationship between EY and EX, expressed by a linear

function. In practice this linear function is not realised because of random-

ness. Mathematically, these ideas are formulated as

Yi ¼ aþ bXi þ ei;

where εi is the random error in Y for observation i, and a and b are param-

eters to be estimated. We see that b represents the slope of the line Y¼ a þ
bX, and a represents the intercept of the line with the Y axis. We may think of

this underlying straight line as a model of the true relationship between EY

and EX for a large (infinite) population to which the sample of n belongs. The

random variables εi represent the error terms. A common model for these

error terms is the normal distribution with mean zero and variance s2. This

distribution reflects the variations of the observations Y around their

expected values.

Now, to estimate the parameters a and b the standard technique is to apply

the method of least squares, i.e. to identify the values that minimise the sum

of squared errors in the sample. The estimators then derived, we denote by a*
and b*, and they are

a	 ¼ Y� b	;

b	 ¼ �iðYi �YÞðXi �XÞ=�iðXi �XÞ2;

where X and Y are the means of the Xi and Yi, respectively, i¼ 1, 2, . . ., n. To

predict Y based on X we use the line

Y ¼ a	 þ b	X:

To estimate the variance s2, the common estimator is

S2 ¼ �i Yi � a	 � b	Xið Þ2= n� 2ð Þ:
Confidence intervals and statistical tests can now be derived for the param-

eters a, b and s2. The slope of the line, b, is of special interest as it is a

measure of the trend of the data. If b ¼ 0 there is no trend and often the

analysis is concerned about the extent to which the data prove that there is a

trend present. Could the observed increase in the slope just be a result of

“randomness”? To perform this analysis we need to assume a specific prob-

ability distribution for the error term εi, and the common choice is the normal

distribution with mean 0 and variance s2. Then Yi is also normally distrib-

uted, with mean a þ b Xi and variance s2. A 90% confidence interval for b is

then given by
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b	 þ =� tn�2 � Sb;
where tn�2 is the 95% quantile of the Student (t) distribution with n� 2

degrees of freedom, and Sb is an estimator of the standard deviation of b*
given by

Sb
� �2¼ �i Yi � a	 � ib	ð Þ2= n� 2ð Þ

h i
=�iðXi �XÞ2:

Similarly, a confidence interval for mi ¼ a þ bXi can be formulated. It takes

the following form:

a	 þXib
	 þ =� tn�2 � �j Yj � a	 �Xjb

	� �2
= n� 2ð Þ

h i1=2

1=nð Þ þ ðXi �XÞ=�jðXi �XÞ2g1=2:
We refer to textbooks in statistics, such as Berenson et al. (1988).

A.2.2 Bayesian statistics

Consider the proportion q of failed systems in population I, introduced in

Section A.1.3. The problem considered now is how to express our knowledge

of q based on the available data X, i.e. to establish a probability distribution

for q when we observe X, in a context where all probabilities are knowledge-

based (subjective). We call this distribution the posterior distribution of q.

We begin with the so-called a priori distribution, before we perform the

measurements X. Let us assume that we only allow q to assume one of the

following five values; 0.1, 0.2, 0.3, 0.4 or 0.5. We understand these values such

that, for the example 0.5, this means that q lies in the interval [0.45, 0.55).

Based on the available knowledge, we assign a prior probability distribu-

tion of the proportion q:

This means that we have the greatest confidence that the proportion q is 0.3

(50%), then 0.2 and 0.4 (20% each) and least likely 0.1 and 0.5 (5% each).

Suppose now that we observe 10 systems and that among these systems

there is only one that has failed. How will we then express our uncertainty

regarding q?

q0 0.1 0.2 0.3 0.4 0.5
P(q¼q0) 0.05 0.20 0.50 0.20 0.05
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We then use Bayes’ formula and establish the posteriori distribution of q.

The Bayes’ formula states that P(AjB) ¼ P(BjA)P(A)/P(B) for the events

A and B. If we apply this formula, we see that the probability that the

proportion will be equal to q0 when we have observed that one out of 10

has failed, is given by:

P q ¼ q0jX ¼ 1ð Þ ¼ cf 1jq0ð ÞP q ¼ q0ð Þ; ðA:6Þ
where c is a constant such that the sum over different values of q0 is equal to 1,

and f is given by

f ijq0ð Þ ¼ P X ¼ ijq ¼ q0ð Þ:
Here X is binomially distributed with parameters 10 and q0 when q ¼ q0 is
given.

By formula (A.6) we find the following updated posterior distribution of q:

We see that the probability mass has shifted to the left towards smaller values.

This was as expected since we observed that only one out of 10 systems has

failed, while we, at the start, expected the proportion q to be closer to 30%.

If we had had a larger observation set, then this data set would have

dominated the distribution to an even larger degree.

q0 0.1 0.2 0.3 0.4 0.5
P(q¼q0) 0.14 0.38 0.43 0.05 0.004
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Appendix B

Terminology

This appendix summarises some risk analysis and management terminology

used in the book. Unless stated otherwise, the terminology is in line with the

international guideline ISO (2009a).

� aleatory (stochastic) uncertainty: variation of quantities in a population.

This definition is not given in the ISO guideline.
� epistemic uncertainty: lack of knowledge about unknown quantities.

This definition is not given in the ISO guideline.
� event: occurrence or change of a particular set of circumstances.
� frequency: number of events per unit of time or another reference.

Often frequency is also used for the expected number of events per unit

of time.
� managerial review and judgement: process of summarising, interpreting and

deliberating over the results of risk assessments and other assessments, as

well as of other relevant issues (not covered by the assessments), in order to

make a decision.

This definition is not given in the ISO guideline.
� probability: either a knowledge-based (subjective) measure of uncertainty

of an event conditional on the background knowledge or a relative

frequency (chance). If a knowledge-based probability is equal to 0.10, it

means that the uncertainty (degree of belief) is the same as randomly

drawing a specific ball out of an urn. A relative frequency-interpreted

probability (chance) is the fraction of events A occurring when the situ-

ation considered can be repeated over and over again infinitely.

This definition is not given in the ISO guideline.
� risk: the book refers to different definitions. The most general and the one

recommended says that risk is the two-dimensional combination of

(i) events A and associated consequences C
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(ii) uncertainties about A and C (will A occur, what will the consequences

C be?).

This definition is referred to as the (A,C,U) definition.

This definition is not given in the ISO guideline.

� risk acceptance: a decision to accept risk.

This definition represents an adjustment of the definition used by the ISO

guideline: informed decision to take a particular risk.
� risk acceptance criterion: a reference by which risk is assessed to be accept-

able or unacceptable.

This definition is not included in the ISO guideline. It is an example of a

risk criterion.
� risk analysis: systematic use of information to identify risk sources, causes

and consequences of these sources, and describe risk.

The ISO guideline does not include source identification as a part of risk

analysis. It states that a risk analysis is the process to comprehend the

nature of risk and to determine the level of risk.
� risk appetite: amount and type of risk an organisation is prepared to pursue

or retain.
� risk assessment: the overall process of risk analysis and risk evaluation.
� risk communication: exchange or sharing of risk-related information

between stakeholders.

This definition is not given in the ISO (2009a) guideline, but in the ISO

(2002) guideline.
� risk criteria: terms of reference against which the significance of the risk is

evaluated.
� risk description: a qualitative and/or quantitative picture of the risk.

This definition represents an adjustment of the one given in the ISO

guideline.
� risk evaluation: process of comparing the result of risk analysis against risk

criteria to determine the significance of the risk.

This definition represents an adjustment of the definition used by the ISO

guideline.

See also managerial review and judgement.
� risk management: coordinated activities to direct and control an organisa-

tion with respect to risk.
� risk perception: stakeholder’s subjective judgement or appraisal of risk.

This definition represents an adjustment of the definition used by the ISO

guideline.
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� risk quantification: process used to assign values to the probabilities and

risk indices used.

This definition is not given in the ISO guideline.
� risk source: element which alone or in combination has the intrinsic poten-

tial to give rise to an event with a consequence.

This definition represents an adjustment of the definition used by the ISO

guideline.
� risk tolerability level: level of risk which an organisation will tolerate.

This definition is not given in the ISO guideline.
� risk retention: acceptance of the potential benefit of gain, or burden of loss,

from the risk.
� risk treatment: process to modify risk.
� stakeholder: person or organisation that can affect, be affected by, or

perceive themselves to be affected by a decision or activity.
� uncertainty: lack of knowledge about unknown quantities.

This definition is not included in the ISO guideline.
� vulnerability: In line with the (A,C,U) risk definition vulnerability is the

two-dimensional combination of

(i) consequences C

(ii) uncertainties about C (what values will C take)

given the occurrence of A. We write (C,U|A).

This definition is not included in the ISO guideline.
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