
Analysis and Design
of Information Systems

Third Edition

www.dbebooks.com - Free Books & magazines

Arthur M. Langer

Analysis and Design
of Information
Systems

Third Edition

Arthur M. Langer, EdD

Fu Foundation School of Engineering & Applied Science

School of Continuing Education

Graduate School of Education

Columbia University

New York, NY 10027

USA

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2007928317

ISBN 978-1-84628-654-4 e-ISBN 978-1-84628-655-1

Printed on acid-free paper

© Springer-Verlag London Limited 2008

Apart from any fair dealing for the purposes of research or private study, or criticism or review,
as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be
reproduced, stored or transmitted, in any form or by any means, with the prior permission in
writing of the publishers, or in the case of reprographic reproduction in accordance with the terms
of licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside
those terms should be sent to the publishers.

The use of registered names, trademarks, etc., in this publication does not imply, even in the
absence of a specific statement, that such names are exempt from the relevant laws and regulations
and therefore free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the
information contained in this book and cannot accept any legal responsibility or liability for any
errors or omissions that may be made.

9 8 7 6 5 4 3 2 1

Springer Science+Business Media
springer.com

Preface

Throughout the last 40 years the impact and importance of information

technology (IT) continues to transform the world. Indeed, we are very much

at the beginning stages of what I believe will be known as the technology

revolution—a revolution that will change every aspect of business and life in

general. While technology, both hardware and software, continues to evolve,

the one remaining constant is the challenge of understanding what the users of

applications really need, what they think they want, and what they will want as

their uses of systems mature.

Still, the process of mastering the analysis and design phase of the Software

Development Life Cycle (SDLC) continues to perplex the most sophisticated IT

organizations and software development companies. And to make matters even

more complex, the IT industry has transitioned to a heavily outsourced model of

software development, making the requirements of what is necessary even more

important because of the risks of having applications developed abroad that do

not meet user expectations.

Perhaps the most significant development in applications has been the

Internet, with all the corresponding pieces: branding, Web development, and

interactive user interfaces have established many more substantial challenges

to how applications evolve. The most critical change, however, is the partici-

pation of a more sophisticated and unknown user: the consumer. The consumer

is a most unusual individual: he/she does not participate as part of an internal

organization, or external client, rather a transactional force that comes in and

out of the application with an enormous amount of uncertainty and constant

change in behaviors and needs. Furthermore, this “consumer” represents a broad

population, of culture, age, gender, and ethnicity differences.

With the significant challenges described above, it is imperative that we

expand analysis and design to provide developers from inside and outside the

business to clearly understand what is needed. Furthermore, applications need

to change more often, so that object-based design is no longer an alternative,

rather a necessity to allow organizations to continually evolve and mature their

abilities to serve their clientele. This book then focuses on providing direction

on the many alternatives to dealing with all types of systems, from large legacy

applications to on-line transactional systems that interface with a myriad of

internal and external systems.

Many of these failures of systems developed have occurred because they have

not been built on strong foundations. In particular, there is a lack of understanding

of the engineering processes through which applications must be built. This book

vi Preface

seeks to remedy this problem by focusing on the applied aspects of analysis to

create systems that meet the needs of their users, consumers, and businesses.

The analyst/designer encounters many obstacles on the road to designing appli-

cations. Many of these obstacles have nothing to do with technical challenges at

all—they are problems that come from outside the realm of IT: politics, budget

and time constraints, and marketing pressures. All of these can challenge the

structured approach to analysis and design. This book addresses these obstacles

and recommends ways to overcome them. I have always warned my students by

telling them: “Follow the Yellow Brick Road.” That is, start out on the right path

and you will end up in the place you want to be—in spite of all the obstacles

you may encounter on the way. I hope this book shows many IT professionals

that the analyst/designer is the most important component of the SDLC.

This new edition aims to enhance the set of techniques and tools that the

analyst/designer requires for success. It also addresses some of the “softer” but

critical other skills such as creativity and the ability to understand the market

needs of the business. Furthermore, the successful analyst/designer must be

able to understand consumer needs; ensure integration with legacy systems;

provide user interface requirements; establish standards, security, and network

architecture; and finally to provide the necessary project management to ensure

implementation.

New to the Third Edition

This third edition provides more examples and case studies; however, it contains

two major upgrades from its predecessor: first, responding to feedback, I have

framed the modeling tools within an SDLC framework so that readers can have

a step-by-step understanding of when and how to use each of the modeling

tools of analysis. To accomplish this, I provide a popular SDLC approach called

“the Barker Method” which was developed by Richard Barker from Oracle

Corporation. Second, the scope of analysis and design has been expanded to

include more specific information on Logic Data Modeling, specifically refer-

ential integrity, naming conventions, logical-to-physical design steps, XML, data

values, and denormalization. I have also added new chapters on Web interface

tools, security and change control and data warehouse system design.

The Aim of This Book

The risks involved in performing analysis are significant: Those projects that

involve reengineering activities have a failure rate over 70 percent. With the

expansion of the Internet as a vehicle for electronic commerce, the stakes are

even higher than before, and identifying the sources of failure can be invaluable.

In general, failures can be attributed to two kinds of risks: those associated

with the process of change and those relating to the technology itself. I am

Preface vii

confident that the success rate can be dramatically improved if we focus less on
the methodology and more on the ability of the analyst to perform the work. This
book is therefore meant as a “practitioner’s guide” to doing analysis through
every facet of developing software solutions.

The book defines the word “analyst” to include any individual involved
in establishing the requirements and design of a system. For this reason, the
book includes subjects like joint application development (JAD) and prototyping,
which may not always be performed by analysts but which nevertheless fall
within the confines of the definition.

My enthusiasm for writing this book was supported by many of my students
who found that existing books on analysis are:

• very theoretical. Although they explain the methodologies, they do not
provide enough examples of their actual application.

• too procedural. They do not deal with the “human” aspects of devel-
oping requirements and thus do not provide a complete understanding
of how to be successful. After all, the whole point of analysis is to
service human enterprises, not just to create systems for their own sake.
The human side of analysis is as important as the technical side.

• lacking simple but effective case examples. The examples do not demon-
strate the concepts effectively or are too complex for practice study.

• too one-sided in their views. It is important to establish all available
methodologies, even those that conflict with each other. Putting opinions
into perspective and leaving many of the ultimate decisions to the
practitioner is a significant part of the analyst’s education.

The Intended Audience for This Book

This book assumes a reasonable understanding of computer concepts and termi-
nology. The material is presented to be used in a first-level analysis course
or university program. In addition, it can be used by practicing information
systems professionals or executives who are managing information technology
and need an in-depth understanding of the principles of the analysis and design
process, particularly as it relates to Web-based development. Furthermore, many
programmers who are also performing analysis may find this book a way of
developing a useful approach to structured and object methodologies.

Acknowledgments

I want to thank my colleague Melanie Caffrey for her contributions to the Third
Edition, namely, her expertise in both the System Development Life Cycle and
the Barker Model was extremely valuable. Ms. Caffrey also contributed her
exercises and case study used in our courses at Columbia University.

viii Preface

I also want to thank the students in the Service Learning in the Community

Environment (SLICE) at Columbia University’s Fu Foundation School of

Engineering and Applied Science (SEAS) for their feedback on the Second

Edition. This Third Edition will continue to be used to train underserved inner-

city adults in the hopes of building their careers as tomorrow’s analysts and

designers. Many thanks to Dr. Jack McGourty, the Associate Dean of Under-

graduate Students, for allowing us to implement the program at SEAS.

New City, New York, USA Arthur M. Langer

September 2007

Contents

Preface v

1. Introduction 1

What Is, Is... 1

Just What Is a Complex Project? ... 3

The Tiers of Software Development .. 6

User Interface.. 6

Tools.. 6

Productivity Through Automation.. 7

Object Orientation... 7

Client/Server ... 7

Internet/Intranet... 8

Problems and Exercises .. 9

2. System Development Life Cycle (SDLC) 10

System Development Life Cycle—Steps in Analysis

and Design.. 10

The Barker Case Method.. 15

3. The User Interface 21

Establishing User Interfaces ... 21

Forming an Interview Approach .. 21

Dealing with Political Factions .. 24

Categories and Levels of Users.. 25

Joint Application Development (JAD)... 28

Problems and Exercises .. 34

Mini-Project .. 35

Assignment.. 35

4. Overview of Analysis Tools 36

The Concept of the Logical Equivalent ... 36

Tools of Structured Analysis .. 41

x Contents

Making Changes and Modifications... 41

Specification Formats ... 47

Problems and Exercises .. 50

5. Process-Based Tools 51

Data Flow Diagrams... 51

Process Flow Diagrams .. 58

Data Dictionary... 63

SQL Data Types ... 67

Process Specifications... 70

State Transition Diagrams .. 77

Entity Relational Diagrams .. 81

Problems and Exercises .. 83

Mini-Project #1 ... 84

Assignment.. 84

Mini-Project #2 ... 84

Assignment.. 85

Mini-Project #3 ... 85

Assignment.. 86

Mini-Project #4 ... 86

Assignment.. 86

6. Logic Data Modeling Tools 87

Normalization Defined ... 87

Normalization Approaches ... 88

The Supertype/Subtype Model ... 97

Combining User Views .. 101

Integration with Existing Models:

Linking Databases.. 105

Referential Integrity .. 107

Database Naming Conventions .. 108

View Naming Conventions .. 110

Field Length and Character Conventions... 112

Null Values ... 113

Denormalization.. 114

Logic to Physical Databases... 116

Data Types Usage and Conventions .. 119

Business Rules .. 119

Triggering Operations... 121

Problems and Exercises .. 122

Mini-Project #1 ... 122

Mini-Project #2 ... 123

Mini-Project #3 ... 124

Contents xi

7. Web User Interface Tools 127

Introduction ... 127

Components of Web Design... 128

Content .. 129

The Web Branding Process .. 130

Customer Service .. 136

Text ... 139

Content Templates .. 142

Navigation Placement ... 150

Site Architecture ... 153

Non-Web-Based Interfaces... 156

GUI and Styles of Manipulation .. 157

Advantages of GUI Systems .. 158

Disadvantages of GUI Systems.. 159

Conclusion .. 160

Where to Begin... 160

Database Design ... 167

E-Commerce Application Requirements.. 169

Problems and Exercises .. 174

8. XML in Analysis and Design 176

Introduction to XML .. 176

XML Structure .. 177

XML Parsing... 177

What XML Is Not... 178

Other XML Interfaces .. 179

Document Object Model .. 180

XML as a Common Data Format... 182

XML Applications with Database Systems ... 184

Analysis and Design of XML Documents ... 187

Step 1: Determining XML Documents .. 188

Step 2: XML Data Schemas... 193

Step 3: XML Reuse .. 195

Storing XML Documents in a Database .. 197

XML as a Centralized Data Search Engine ... 200

XML Query Usage ... 201

XML versus the Database .. 202

XML and SVG.. 203

9. Design Specification Tools 206

Business Specifications... 206

Programming and Technical Specifications... 210

xii Contents

Screen Specifications .. 212

Screens and Derived Elements ... 213

Problems and Exercises .. 214

Mini-Project .. 218

10. CASE and Automated Techniques 229

CASE Defined .. 229

Why Does CASE Fail?... 237

Why CASE Should Succeed .. 238

Open Systems Requirements and Client/Server 239

Problems and Exercises .. 242

11. Object-Oriented Techniques 243

What Is Object-Oriented Analysis?.. 243

Identifying Objects and Classes ... 248

Object Modeling ... 252

Relationship to Structured Analysis ... 254

Problems and Exercises .. 259

12. Documentation and Acceptance-M Testing 260

Documentation .. 260

Acceptance Test Plans .. 261

Quality During Analysis ... 261

How Much Can Be Tested? ... 261

Budget Process.. 264

Problems and Exercises .. 267

13. Business Process Reengineering 268

Analyzing Legacy Systems .. 269

Combining Structured and Object Techniques .. 270

Dealing with End Users.. 273

Information Systems Issues .. 274

System Development Life Cycle (SDLC).. 276

Downsizing System Components ... 277

Problems and Exercises .. 280

14. Security 281

Introduction ... 281

Database Security and Change Control.. 308

Version Control... 312

Contents xiii

15. Data Warehousing 314

Introduction ... 314

Data Warehousing Concepts Revisited .. 315

Performance Benefits of Data Warehouses.. 316

Concept of Multidimensional Data .. 318

Data Warehouse Conceptual Design.. 321

Extracting Data from a Database Source ... 322

Staging and Formatting Extracted Data ... 323

Alternative Types of Data Warehouse Structures.................................... 324

A Decision Support Life Cycle .. 327

16. Website Design and Architecture 349

Introduction ... 349

Dynamic Web Pages... 351

Content Management as a Web Site Builder... 351

Automated Security .. 360

Personalization .. 360

Automated Reporting.. 363

Summary ... 367

17. Concepts of ISO 9000 370

Developing a System of Procedures .. 370

Why ISO 9000? .. 371

How to Incorporate ISO 9000 into Existing Software

Life Cycles ... 372

Interfacing IT Personnel ... 374

Committing to ISO 9000 .. 377

Problems and Exercises .. 379

Appendix A Case Study: The Rainforest Book

Company Problem 380

Appendix B Case Study: The CGT Rental Service Problem 383

Appendix C Case Study: The Collection Agency Problem 385

Appendix D Case Study: The Mobile Telephone

Company Problem 391

Appendix E Case Study: Northwest General

Practitioner’s Office 392

xiv Contents

Appendix F Case Study: University Student

Enrollment Database 394

Glossary 395

References 404

Bibliography –Additions 408

Index 409

1
Introduction

What Is, Is

Over Forty years of developing requirements for systems have taught us that

the only successful approach to analysis is to accept what exists in the user’s

environment, however far from ideal those conditions may be, and work within

those limitations. It may be very tempting to use analysis time to try to refocus

how the user does business. Yet efforts to re-design or reengineer, unless specif-

ically requested by the user, will typically be a waste. Although your assessment

may be correct and your suggestions potentially useful, being correct is less

important in this situation than being wise and understanding the ability of your

users to successfully implement and utilize what they need. Analysts tend to

ignore this simple wisdom, much to their own distress and that of their clients.

Looking at a typical example of an analysis situation will help to illustrate

this point. Let us assume that an enterprise needs a relational database model to

gather information about a subject area of the business. There are 200 offices

that will need to connect into a nationally provided service. Users disagree on

the mission of the applications and cannot determine what reports or query

information they want. Some offices are automated, but they do not have the

same software and hardware. There is little expertise in the user community to

determine the data requirements and file layouts (identifying elements in each

file). Management has requested that the analyst establish a specification which

identifies the requirements of the system as well as the necessary hardware and

software.

Faced with so unwieldy a task, many analysts will adopt the following

approach in an attempt to impose order on a disorderly situation:

1. Force users to define all requirements. Since they are unable to do

so, this insistence will probably result in their guessing or providing

incomplete information.

2. Determine the hardware and software configuration, despite having

inaccurate or incomplete requirements.

3. Ignore the political environment.

4. Establish a project plan that everyone knows will fail, but push ahead

with it anyway.

2 Analysis and Design of Information Systems

It should be clear that this approach is the wrong one, on a number of different

counts. Yet such an approach is all too typical for analysts confronted with a

less-than-ideal working-environment. Happily, there is a better approach for all

concerned, one that recognizes and responds to the conditions actually present at

the users’ site. In this case it is evident that the users are not positioned to provide

the requirements for a system, largely because they do not fully understand

their own needs and because they do not agree on what those needs are. What

the analyst must understand in such a situation is that because of this lack of

knowledge and organization, user needs will tend to change during the process

of product analysis and design. Such changes are to be expected; they are simply

part of the life cycle for this particular implementation. To ignore the situation

and try to implement a system is to invite failure. Put simply then, what is, is.

The task of the analyst is to work with what is rather than trying to change it or—

even worse—simply denying it. Once you as an analyst understand that reality,

you understand that your solution must accommodate what will inevitably occur.

Here is a more sensible approach to the situation described above:

1. Focus on designing a model that can provide the users with the

capability they want. Create a project plan that assumes that the database

will be incomplete during phase I because of the users’ inability to

define the correct information. The process will therefore be iterative

and thus will be finalized during the later parts of the development life

cycle.

2. Do not try to identify hardware before it is clear what the usage require-

ments are, such as peak-time processing, number of users, and so on.

It will be more beneficial to establish the operating system or architec-

tural environment that you want to support, pending the results of the

analysis.

3. Utilize a software system or CASE tool that will allow users to generate

new scenarios such that they can see how these scenarios relate to the

entire system.

4. Set up a pilot program. This will require that certain offices agree to be

test sites for the early versions of the software. The function of the pilot

is to provide feedback on the effectiveness and shortfalls of the product.

It is important to state clearly the objectives of the pilot and the format

of the feedback in order to ensure the success of the exercise.

5. Formulate a plan that depicts a schedule for getting the entire enterprise

implemented and live on the new system. Be sensitive to the politics of

the situation, and use a realistic approach that will not require a cultural

change in order to implement software in the existing environment.

The essence of this approach is to develop a strategy that fits the reality of the

environment rather than force the environment to change. Throughout this book,

we will explore this simple but crucial concept. No two system development

projects are identical, and the more familiar the analyst is with the environment,

the more successful the project will be. This book will also argue against the

1. Introduction 3

conventional wisdom that suggests using an approach based on only a single

methodology (e.g., Yourdon, Martin, Booch, etc.). The mixing of methodologies

allows the analyst a wider range of tools. Hands-on experience shows that this

kind of mixing of methodologies can be done quite successfully and that it is

appropriate in a large number of analysis situations.

Just What Is a Complex Project?

Most analysts, project team members and users worry about the complexity of

their projects. Their requirements seem entirely unique to them, and therefore a

very special approach seems to be required. How many times have you heard:

“the tools and approaches used elsewhere just won’t work in this environment”?

The truth, however, is very different: the only truly complex projects are those

that people make so! It is important for the analyst to recognize that the proce-

dures utilized, regardless of the size of the project, should remain fundamentally

the same. As we have discussed above, the analyst’s approach to the implemen-

tation of each project should be tailored individually; however, the procedures

for this implementation should remain constant. Very often the organization of

interviews, the utilization of techniques such as Joint Application Development

(or JAD), discussed later in this chapter) or the simple addition of more analysts

to the project can solve what appear to be insurmountable problems.

In fact, most of the myriad problems that arise in product development can

be traced to two fundamental issues:

1. People are trying to solve the wrong problem, i.e., the identified problem

is not really what is wrong.

2. The solution to the real problem is often much simpler than it first

appears to be.

Because we have failed to recognize these issues, the industry’s frustration

with developing appropriate software solutions has been chronic, and this

situation has not really improved over the last twenty-five years! The question

is why?

To put it bluntly, analysts often fail to do their jobs properly! We tend to

put together plans and schedules that are doomed from the start to fail, an issue

treated in more detail later. The ultimate goal of the analyst must take into account

the reality of the environment in which the work is occurring. Remember, work

within the environment. Let users decide what degree of change is appropriate

for their own operation; do not take it upon yourself to demand that they change.

For example, how many times have you seen a Gantt Chart1 for a project

schedule that resembles Figure 1.1 below?

1
A Gantt Chart is a tool that depicts progress of tasks against time. It was developed by

Henry L. Gantt in 1917.

4 Analysis and Design of Information Systems

Figure 1.1 Sample Gantt Chart.

It looks nice, but in reality the plan it depicts could never happen. Focus

in particular on the intersection of Development and Quality Assurance (QA)

activities. The plan shows that once Development is finished, the materials

are forwarded to QA for testing. The sequence assumes, however, that QA

will never find an error and that therefore the materials will never be returned

to Development! Any analyst knows that this scenario is very unlikely to

occur. Such poor planning results in deficient allocation of resources to the

project. Should the development schedule be met, programming resources most

probably will be allocated to other projects. Thus, if QA finds errors (which they

undoubtedly will), reallocating these programming resources becomes difficult

and problematic. And remember: programmers do not like returning to an “old”

program to do maintenance or error fixing.

Figure 1.2 reflects a more realistic view of the life cycle of the project:

The difference in approach is striking. The question is, as sensible as this

plan appears to be, why don’t we always do it this way? Quite frankly, this plan

does not look as nice—as neat and tidy—as the previous plan. But of course

simply denying the pain of reality—the inevitable inconveniences and delays—

does not make that reality go away. In defense of the previous configuration,

Figure 1.2 Modified Gantt chart reflecting realistic project activity behavior.

1. Introduction 5

some developers might suggest that the iterations of efforts between testing and

fixing the software are assumed to be included in the QA time. Maybe, but don’t

count on it! Just look at the second schedule and you will see how the results

of this proper allocation added to the delivery time of the project. It is clear that

the original plan was simply incorrect.

There is absolutely no reason that a schedule should not reflect the reality of

what will most probably occur. The results are clear: Realistic planning provides

a more reliable schedule. Among the many benefits of such a schedule are the

confidence and respect gained by both the users and the development staff. There

is nothing like producing a schedule that reflects what everyone is confident will

occur.

At this point, experienced analysts are no doubt wondering what happens

when management dictates how much time we have and shows no flexibility

about running behind schedule. This problem is unfortunately not uncommon,

and typically fits into one of three scenarios:

1. Management is ignorant of the analysis and construction of systems

and simply has no idea how much time is required to complete the

project. In this case the analyst will need to develop a convincing

presentation for management about how systems are designed and

developed. The presentation should be carefully documented to refer

to the industry statistics for similar projects in similar companies. This

kind of documentation adds much credibility to the discussion. You

can also consider having an independent source, such as a respected

consulting firm, support your position.

2. Management has little confidence in Development. They feel that

picking a date and sticking to it is the best method of getting the project

finished. Yes, this is the bully technique! It usually results from bad

experiences, probably from looking at those unrealistic Gantt Charts.

In this situation, the analyst must take steps to gain the management’s

confidence. Using the suggestions above would be a good start. In

addition, you will need to research and to understand the history of

what your predecessors did to encourage this type of distrusting and

dictatorial attitude from management, and you will need to find a tactful

way to address those issues.

3. Unfortunately, bad management does exist. If you cannot win any

concessions or understanding from management, you may have reached

what is known as the “no-win scenario.” Management is simply

unwilling to allot adequate time for the completion of the project and

to be persuaded otherwise. When this situation exists in the workplace,

the advice is straightforward: You can leave, or you can find some

way to deal with this constraint. In either case, be aware that under the

no-win scenario there is little hope that the project will result in the

development of quality software. This perspective is not cynical, but

6 Analysis and Design of Information Systems

instead realistic: some projects are doomed to fail before they begin.

What is important is that the analyst recognize as early in the life cycle

as possible that the project cannot be successful.

The Tiers of Software Development

The lifecycle of software development continues to evolve, particularly with

the advent of the object paradigm (discussed in Chapter 11). The lifecycle of

development inevitably affects the way analysis and design are accomplished.

Indeed, it seems only natural that the rapid changes in software methodologies

would be accompanied by parallel development in analysis and design. Unfortu-

nately, such is not the case, and the advances in software development continue

to overshadow the importance of analysis and design.

As the software industry focuses on electronic commerce (e-commerce)

through robust Web-based development, it becomes vitally important for the

analyst to use the appropriate sequence of tiers to arrive at requirements. Devel-

opers cannot expect good results from taking shortcuts, tempting as it may be to

do so. The recommended sequence of tiers is outlined below.

User Interface

Regardless of the type of software applications being developed, systems cannot

be effectively designed without an appropriate user interface. The user interface

tier acts as the foundation for the project: Without a solid foundation at this

level, the project is at risk of collapsing at some point during development.

Despite its importance, the user-interface tier is often overlooked: Many software

projects today move too quickly into development without the effort having been

spent to determine what is really needed from the user community. Successful

analysts are aware of the critical importance of the user interface phase of any

project. Chapter 3 focuses on methods of formulating user interfaces that can

significantly improve software development.

Tools

Software systems require that analysts have the appropriate tools to do their

job. Furthermore, an even more significant challenge is understanding which

of the many available tools to use at any given point. Software development

tools are often designed for specialized use rather than for general application,

and using the wrong tool can potentially cause significant damage. Finally, the

sequence of use for each specialized tool is also critical to success. Indeed, the

order of operation, as well as the relationship among specialized analysis tools,

1. Introduction 7

must be mastered to ensure success. Chapters 4 and 5 focus on which tools are

needed to accomplish which tasks. The chapters also outline the advantages and

disadvantages of each tool.

Productivity Through Automation

Having the appropriate tools and knowing how and when to use them is only part

of the formula for success. Analysts must also be productive—and productivity

can be accomplished only through the use of automation. Automation is imple-

mented using integrated computer aided software engineering (CASE) products.

These products provide the analyst with an automated and integrated toolbox of

features that are centralized through a core data dictionary and repository.

Object Orientation

Successful projects employ the concepts of object orientation (OO). Whether

or not software systems are OO compliant, analyzing systems using the object

method builds better systems that are more cohesive, reusable, and maintainable

(see Chapter 11). More cohesive code is “tighter” code, and is more easily fixed

and maintained. It is also the foundation of the reusable components that can

be incorporated into other applications later. Without the OO construct, systems

tend to have pieces that are recoded and hard to maintain. With the advent of the

enterprise solutions and e-commerce transactions that will be vital to business

strategies, building object-based systems has become more a requirement than

an option. However, as this book will show, businesses and organizations cannot

just jump into OO, but rather they must create the foundations first through

the previous tiers of development. Put another way, it is more important to

understand the concepts of OO during analysis and design than it is to have the

OO scheme actually programmed. This idea is discussed further in Chapter 11.

Client/Server

Today’s software is still governed by client/server processes. While client/server

has become more widespread, it has not necessarily become better understood.

As with the OO paradigm, client/server software development is often confused

with network hardware strategy. While client/server hardware topology is an

important issue in itself, it has little to do with the process of deciding how

software modules should interact across the network and where such modules

should be placed. Such decisions will be driven by issues that arise during the

process of analysis. Client/server software processing, in its true implementation,

involves the interaction of objects and defining the way in which they will

8 Analysis and Design of Information Systems

communicate with each other. Thus, analysts must first be versed in the laws

governing OO if they are to pursue the client/server model. Incidentally, almost

all Web-based applications that use JAVA, Active-X and other controls are

designed essentially under the guidelines of interaction objects in a client/server

environment.

Internet/Intranet

The advent of Web-based technology, sometimes known as Internet/Intranet

processing, has led the industry to the use of a new breed of software applications.

This new breed requires more robust processing and involves careful design

and placement of pictures that provide users with a true “cafeteria” style of

operation. These new applications bring new challenges to analysts and designers.

Increasingly, it is not programmers who are designing the interface; rather,

analysts themselves are beginning to work with commercial advertisers and

marketing departments to create a “look and feel” that will be critical to the

survival of many businesses. E-commerce, a result of the Internet/Intranet boom,

represents another level of analysis. I believe that in the future, e-commerce will

exert the strongest shaping influence on the analyst’s profession–a profession

destined to become tomorrow’s integrators of systems development. Indeed,

programming tools will continue to become easier to develop and more abundant

in precoded forms. There will, undoubtedly, be less distribution of development

teams, that is, companies will find more and more outsourced solutions to fill

their needs. Notwithstanding the “automation” of code, the need for integrators

who can communicate with executives and with line management and operations

personnel will ultimately be the most significant forces in the development of

strategic-based systems over the Internet.

Internet/Intranet processing requires that analysts have mastered the

client/server paradigm. Indeed, many professionals have dubbed Internet devel-

opment as “client/server grown up.” While this may or may not be the best

definition of Internet/Intranet development, it is another statement that supports

the tier concept, the concept that underlies the approach of this book.

• • •

This introduction is focused on presenting the steps necessary to success as a

professional analyst. I call each of these steps tiers because of their building

block nature and their dependencies on each other. I believe, therefore, that to

learn to become an effective analyst, one must master the specifics within each

of these tiers and must pass critical information to the next level. Rather than

look at analysis sequentially, I would present the steps as levels as depicted in

Figure 1.3.

The table graphically shows how each tier must be dependent on the other.

There is a profound message in this diagram that suggests that no tier can be

1. Introduction 9

Figure 1.3 Tiers of analysis and software application development.

developed or exist without the previous one. To ensure success on a project,

everyone involved in the design and development of application software must

fully understand the interdependent nature of these tiers. Analysts must be able to

convey to their colleagues that to do Internet/Intranet development, organizations

must first have excellent user interfaces, mastery of a structured toolset, a vehicle

for automation so that the process will be productive, an understanding of

the concept of objects, and a way to deploy these objects in a client/server

environment. It all sounds so simple, and in many ways it is. The question

answered by this new edition is how?

Problems and Exercises

1. Professionals often refer to software projects as being very complex.

Explain why this complexity might be overstated and misunderstood.

2. What is a Gantt chart? How are Gantt charts used and why is it important

that they be realistic estimates of how the project will proceed?

3. Explain what is meant by “tiers of software development.”

4. The user interface represents the first critical step to obtaining the proper

needs of users. Provide five examples of different user positions that

might be critical to interview.

5. Discuss the importance of using the appropriate analysis tool when

interviewing users and building specifications.

6. How is productivity obtained in analysis? What tool is best used?

7. Explain why object orientation is beneficial to software developers.

8. What is the use of client/server with respect to software development?

9. Why is Internet/Intranet processing so important to today’s Web

development?

2
System Development Life Cycle
(SDLC)

System Development Life Cycle—Steps in Analysis
and Design

The purpose of this chapter is to build on the Tiers of Software Development

and to provide a framework for the life cycle of most software development

projects. This is important prior to explaining the details of the user interface

and analysis tools that are needed to bring software to fruition. Another way

of viewing this chapter then is to get a sense of how the tiers of development

actually interface with each other and what specific events and tools are used

to successfully complete each step. This chapter consists of two sections: the

first explains the notion that software goes through three basic phases or cycles,

that is, Development, Testing, and Production. The second section provides

an example using a seven-stage method called “The Barker Method,” which

represents one approach to defining the details of each of the three cycles.

No matter which methodology might be used when designing a system

including its related database, the key elements involved in the methodology

usually include, at a minimum, business process reengineering and the life

cycle for design and implementation. Business process reengineering (BPR),

simply defined, is the process used for either reworking an existing application

or database to make improvements, or to account for new business require-

ments. BPR will be discussed in more detail in Chapter 13. The life cycle of

the database includes all steps (and environments) necessary to assist in the

database’s design and final implementation and its integration with application

programs. Irrespective of which design methodology is used, analysts/designers

will find that system development projects will usually include the following

generic steps:

1. Determine the need for a system to assist a business process

2. Define that system’s goals

3. Gather business requirements

4. Convert business requirements to system requirements

5. Design the database and accompanying applications

6. Build, test, and implement the database and applications

2. System Development Life Cycle (SDLC) 11

This traditional method is the most commonly used design approach and includes

at least three primary phases:

1. Requirements analysis

2. Data modeling

3. Normalization

During the first phase, requirements analysis, the development and design team

conduct interviews in order to capture all the business needs as related to the

proposed system. The data modeling phase consists of the creation of the logical

data model that will later be used to define the physical data model, or database

structures. After the database has been modeled and designed, the normalization

phase is implemented to help eliminate or reduce asmuch as possible any redundant

data. All of the specifics of how this is accomplished will be detailed in the

tools of analysis chapters. Below is a more specific description of what activities

are included in the Development, Testing, and Production cycles of the SDLC.

Development

The Development life cycle includes four overall components. Using this

perspective, “development” would consist of all the necessary steps to accom-

plish the creation of the application. This includes feasibility, analysis, design,

and the actual coding. Feasibility represents the tasks necessary to determine

whether the software project makes business sense. Most organizations would

integrate the process of Return-On-Investment (ROI) during this step. ROI

consists of the financial steps that determine mathematically whether the project

will provide the necessary monetary returns to the business. Focusing solely on

monetary returns can be a serious pitfall, since there are many benefits that can

be realized via non-monetary returns (Langer, 2005). Feasibility often contains

what is known as a high-level forecast or budget. The “high” would represent

the “worst case” scenario on cost and the “low,” the best case or lowest cost.

The hope of course is that the actual cost and timetable would fall somewhere

in between the high and the low. But feasibility goes beyond just the budget;

it also represents whether the business feels that the project is attainable within

a specific timetable as well. So, feasibility is a statement of both financial and

business objectives, and an overall belief that the cost is worth the payback.

Analysis is the ultimate step of creating the detailed logical requirements, or

as I will define in Chapter 4, the architecture of the applications and database.

As we will see in this book, there are numerous analysis tools that are used along

each phase of analysis. Ultimately, the analyst creates a requirements document

that outlines all of the needs for the coders to work from, without going back

to the users directly for clarification. Analysis, as an architectural responsibility

is very much based on a mathematical progression of predictable steps. These

steps are quite iterative in nature, which requires practitioners to understand the

gradual nature of completion of this vital step in Development. Another aspect

12 Analysis and Design of Information Systems

of the mathematics of analysis is decomposition. Decomposition as we will see

establishes the creation of the smaller components that make up the whole. It is

like the bones, blood, and muscles of the human body that ultimately make up

what we physically see in a person. Once a system is decomposed, the analyst

can be confident that the “parts” that comprise the whole are identified and can

be reused throughout the system as necessary. These decomposed parts are called

“objects” and comprise the study and application of object-oriented analysis and

design. Thus, the basis of working with users ultimately leads to the creation of

parts known as objects that act as interchangeable components that can be used

whenever needed. One should think of objects like interchangeable parts of a

car. They sometimes are called “standard” parts that can be reused in multiple

models. The benefits are obvious. Such is the same objective with software: the

more reusable the more efficient and cost effective.

Design is far less logical than analysis but a far more creative step. Design

is the phase that requires the physical decisions about the system, from what

programming language to use, which vendor database to select (Oracle, Sybase,

DB2 for example), to how screens and reports will be identified. The design phase

can also include decisions about hardware and network communications or the

topology. Unlike analysis, design requires less of a mathematical and engineering

focus, to one that actually serves the user view. The design process is perhaps

the most iterative, which could require multiple sessions with users using a trial

and error approach until the correct user interface and product selection has

been completed. Design often requires “experts” in database design, screen archi-

tecture experts as well as those professionals who understand the performance

needs of network servers, and other hardware components required by the system.

Coding represents another architectural as well as mathematical approach.

However, I would suggest that mathematics is not the most accurate description

of a coding structure, rather it is about understanding how logic operates. This

component of mathematics is known as “Boolean” Algebra, or the mathematics

of logic. Boolean algebra is the basis of how software communicates with the

real machine. Software is the physical abstraction that allows us to talk with

the hardware machine. Coding then is the best way to actually develop the

structure of the program. Much has been written about coding styles and formats.

The best known is called “structured” programming. Structured programming

was originally developed so that programmers would create code that would be

cohesive, that is, would be self-reliant. Self-reliance in coding means that the

program is self-contained because all of the logic relating to its tasks is within the

program. The opposite of cohesion is coupling. Coupling is the logic of programs

that are reliant on each other, meaning that a change to one program necessitates

a change in another program. Coupling is viewed as being dangerous from a

maintenance and quality perspective simply because changes cause problems in

other reliant or “coupled” systems. More details on the practice of cohesion and

coupling are covered in Chapter 11. The relationship to coding to analysis can

be critical given that the decision on what code will comprise a module may be

determined during analysis as opposed to coding.

2. System Development Life Cycle (SDLC) 13

Testing

Testing can have a number of components. The first form of testing is called

program debugging. Debugging is the process of a programmer ensuring that

his/her code in a program executes as designed. Debugging, therefore, should

be carried out by the programmer, as opposed to a separate quality assurance

group. However, it is important to recognize that debugging does not ensure

that the program is performing as required by end users, rather only confirms

that the code executes and does not abort during program execution. What

does this mean? Simply that a programmer should never pass a program to

quality assurance that does not execute, at least showing that it does perform

under all conditions. Once again, this process does not ensure that the results

produced by the program are correct or meets the original requirements set forth

by users.

Once a program has been “debugged” it should then be sent through the

quality assurance process. Today, most large organizations recognize that quality

assurance needs to be performed by non-programming individuals. As a result,

organizations create separate quality assurance organizations that do nothing

but test the correctness and accuracy of programs. Quality assurance organiza-

tions typically accomplish this by designing what is known as Acceptance Test

Planning. Acceptance Test Plans are designed from the original requirements,

which allow quality assurance personnel to develop assurance testing based on

the users’ original requirements as opposed to what might have been interpreted.

For this reason Acceptance Test Planning is typically implemented during the

analysis and design phases of the life cycle but executed during the Testing

phase. Acceptance Test Planning also includes system type testing activities

such as stress and load checking (ensuring that the application can handle larger

demands or users) or integration testing (whether the application communicates

and operates appropriately with other programs in the system), as well as compat-

ibility testing, such as ensuring that applications operate on types of browsers

or computer systems. Testing, by its very nature is an iterative process that can

often create “loops” of redesign and programming. It is important to recognize

that acceptance testing has two distinct components: first, the design of the test

plans, and second, the execution of those acceptance plans.

Production

Production is synonymous with the “going-live” phases. Ultimately, Production

must ensure the successful execution of all aspects of a system’s performance.

During Production, there is the need to establish how problems will be serviced,

what support staff will be available and when and how inquiries will be responded

to and scheduled for fixing. This component of Production may initiate new

Development and Testing cycles because of redesign needs (or misinterpreted

user needs). This means that the original requirements were not properly trans-

lated into system realities.

14 Analysis and Design of Information Systems

On the other hand, Production as a Life Cycle includes other complex issues:

1. Backup, recovery, and archival

2. Change control

3. Performance fine-tuning and statistics

4. Audit and new requirements

Backup, Recovery, and Archiving

Operational backup should be defined during the Development phases; however,

there are inevitably backup requirements that need to be modified during

Production. This occurs because the time it takes to complete data backup is

difficult to predict. The speed at which data can be placed on another media

is not an exact science and is based on the complexity of how data is selected

and the method of placement to another location and/or media. The speed also

heavily relies on factors such as disk input/output speed, network throughput

(speed of communication network), database backup algorithms, and the actual

intervals between backup cycles. Why does this matter? It matters because

backups require systems to be “off-line” until they complete, meaning that the

system is in effect not operational. Thus, the longer the backup process, the

longer the system is off-line. A most popular example of the potential backup

dilemma is overnight processes that must complete by the beginning of the next

morning. If the process of backup will take longer than the allowed time, then

analysts/designers need to determine a way that can condense the time-line. The

alternatives might typically include limiting the actual data used to back up, or

multiple devices to increase throughput, etc.

Recovery, on the other hand, is more about testing the quality of the backed

up data, and determining whether the data stored can be recovered in the opera-

tional system. So, the first aspect is to see whether the necessary data needed

to bring the system “back” can be accomplished. One hopes that recovery will

never be necessary, but the most glaring exposure on quality assurance is to not

really know whether the data we think we have, can actually be restored back to

operational forms. For example, it is one thing to back up a complex database;

it is another to restore that data so that the key fields and indexes are working

appropriately after restoration. The only assurance for this is to actually perform a

restore in a simulation. Simulations take analysis and design talent and need to be

conducted on some intervals that ensure that backup data integrity is preserved.

Restoration and backup become even more comprehensive when portions

are what is called “archived.” Archived data is data that is deemed no longer

necessary in the “live” system, but data that may be required under some circum-

stances. So, data that is determined to be ready for archival, needs to be backed

up in such a way that it can be restored, not to the live system, but rather a

special system that will allow for the data to be queried and accessed as if it was

live. The most relevant example that I can provide here, is accounting data from

past periods that is no longer needed in the operations system, but may need to

be accessed for audit purposes. In this example it might be necessary to restore

2. System Development Life Cycle (SDLC) 15

a prior year’s accounting data to a special system that simulates a prior year in

question, but that has no effect on the current system.

The Barker Case Method

Now that we have covered the essential tools that can be used to do analysis

and design, it is worthwhile to look at a strategy or CASE method. One of the

most popular approaches is known as the Barker Seven Phase Case method.

The seven phases provides a step-by-step approach to where an analyst/designer

uses the tools we have discussed. The phases are as follows: Strategy, Analysis,

Design, Build, Documentation, Transition, and Production. The sections below

provide an in-depth description of each of these phases.

Strategy

Strategy tends to include two major components: basic process and data flow

models that can be used to confirm an understanding of the business objectives,

processes, and needs. The deliverables Barker calls a “Strategy Document,”

which can be correlated to what I have previously defined as a business specifi-

cation. However, unlike just a pure business specification, the Strategy Document

also includes an estimated budget, delivery schedule, project personnel, and any

constraints and development standards that are required. Therefore, the Strategy

Document contains all of the high-level issues and allows management to under-

stand the objectives, timeframe, and budget limits of the project. It also is

consistent with decomposition and sets the path to develop a more detailed speci-

fication. Below is an example of the Barker Strategy Document components:

Barker Document Related Langer Tool and Approach

Business objectives, priorities, constraints, and

critical success factors. This is essentially a

section that outlines the user’s expectations and

the basis for successful completion.

The User Interface, Business

Specifications Format

Strategy Entity Relational Diagram. This is a

high-level diagram that shows the relationship

among entities without detailed attribute

information. The strategy ERD provides an

overall map of how the data will be related

Logic Data Modeling

across various systems.

Functional Hierarchy. This shows how the

various functions of the business relate to each

other in a functional way.

Process-Based Tools, specifically

Process Flow Diagrams

16 Analysis and Design of Information Systems

System Boundaries. This provides the limits of

the project, that is, where the system begins and

where it ends or meets with other systems.

Process-Based Tools, specifically

Data Flow Diagrams, and State

Transition Diagrams

Possible Architecture Issues. This part addresses

what hardware or network design issues may

need to be considered to deliver the solution.

This could include new hardware needs such as

performance upgrades, more disk space,

Network Analysis

or printers, etc

Phased Development Plan. This section

typically includes a Gantt chart depicting the

Project Complexity

project plan showing each deliverable.

Personal Resource Statement and Organizational

Needs. This part focuses on the effects of the

project on the organization and roles and

responsibilities of staff.

Business Process and Reengineering

Delivering the Strategy Document

Barker’s method provides a number of detailed steps to complete the Strategy

Phase:

Project Administration and Management. This is defined as an ongoing

process that occurs throughout the project. It can be related to a form of

project management including reporting, control, quality assurance and

various administrative tasks. The deliverable is typically in the form of

progress reports, plans, and minutes of project meetings.

Scope the Study and Agree on Terms of Reference. This step is the first

phase to agreeing on the actual objectives, constraints, and deliverables.

It also includes the estimated number of interviews and how they will

be completed (individual, JAD, for example), as well as specific staff

assignments.

Plan for Strategy Study. This is a detailed plan for identifying specific staff

resources and schedules for meetings.

Results of Briefings, Interviews, and Other Information Gatherings. This

step engages a number of outcomes, including a functional hierarchy

(ObjectDiagram) and roughEntityRelationalDiagram. It becomes the first

high-level modeling depicting the form of the architecture of the system.

Model the Business. This step includes a more detailed model of the business

flows including process flows, data flows, and a more functional ERD.

It also includes a glossary of terms and business units that are involved

with the system flow.

Preparation and Feedback Sessions and Completion of the Business Model.

These are actually two steps: the initial planning for the feedback sessions,

and the actual feedback sessions themselves. The first step requires

2. System Development Life Cycle (SDLC) 17

preparation for outstanding issues to be resolved from strategy sessions and

to determine how the feedback sessions will be conducted with key users

and stakeholders. The feedback sessions usually result in changes to the

models and a movement to the more detailed analysis phase of the project.

Recommended System Architecture. This task summarizes the finding of the

strategy and recommends a system architecture based on the assumptions

and directions from stakeholders. This includes available technologies,

interfaces with existing systems, and alternative platforms that can

be used.

Analysis

Analysis expands the Strategy Stage into details that ensure business consistency

and accuracy. The Barker analysis stage is designed to capture all of the business

processes that need to be incorporated into the project. Barker divides Analysis

into two components: Information Gathering and Requirements Analysis.

Information Gathering: includes the building of more detailed ERD called

an Analysis ERD (equivalent to what I called a logical model), process

and data flows, a requirements document, and an analysis evaluation.

This step also includes an analysis of the existing legacy systems. Much

of the information gathering is accomplished via interviews with users.

As discussed in the next chapter this is accomplished by understanding

the user interface and determining whether to do individual and/or group

analysis techniques.

Requirements Analysis: Once the information gathering is complete a

detailed requirements analysis or specification documents must be

produced. It contains the relevant tools as outlined in my analysis

document, namely, the detailed PFDs, DFDs, ERDs and Process Speci-

fications. In the Barker approach the requirements document may also

include audit and control needs, backup and recovery procedures, and

first-level database sizing (space needs).

Design

The Design Stage consists of the incorporation of physical appearances and

other requirements that are specific to actual products, for example, coding and

naming conventions. The typical design needs are screen layouts, navigation tools

(menus, buttons, etc.) and help systems. The Design Stage must also ultimately

achieve the agreed upon performance or service levels.

The ERD will be transformed to a physical database design. Detail specifica-

tions will be translated into program modules, and manual procedures to operate

the system should be documented. In terms of screens, reports, and “bridges” that

connectmodules, various prototype designs can be incorporated to show users how

the navigation and physical “look and feel” will occur during the user interface.

18 Analysis and Design of Information Systems

As previously discussed, Design is not a step that occurs without iteration.

The Design Stage often iterates with analysis, where questions and suggestions

from designers can raise issues about alternatives not considered during the

analysis stage. The iterative cycle is best depicted by Barker’s diagram as shown

in Figure 2.1.

What is critical about this design method is its interactive yet interdependence

with non-application components such as network design, audit and control,

backup and recovery design, data conversion, and system test planning.

Build Stage

The Barker Build Stage is defined as the coding and testing of programs.

Much of this stage depends on the technical environment and the attributes of

the programming environment, that is, Web, mainframe, mid-range, etc. The

Build Stage involves the typical planning, design of the program structure,

Requirement

Application
Design

Database
Design

Network
 Design

Outline
 System
Design

Audit
 & Control

Design

Back-up
 & Recovery

Design

Transition
Design

System
Test
Plan

Final
System
Design

Build

Figure 2.1 Barker’s iterative design process.

2. System Development Life Cycle (SDLC) 19

actual coding, program methodology (top-down, structured coding, etc.), version

control, testing approaches, and test releases.

The most convoluted component of the Build Stage is what represents

program debugging versus what represents testing. Testing can also be done by

programmers, but it is typically segregated into a separate function and group

called Quality Assurance. Debugging can be defined as a programmer’s ability to

ensure that his/her code executes, that is, does not fail during execution. Quality

Assurance, on the other hand, tests the ability and accuracy of the program

to perform as required. In other words, does the program, although executing,

produce the intended results? Current trends separate QA departments and have

programmers focus on coding. Much of the QA objective is to establish Accep-

tance Test Plans as I outline in Chapter 12 and this concept is more aligned with

the Barker Build Stage.

User Documentation

This Stage in the Barker approach creates user manuals and operations documen-

tation. Barker (1992) defines this as “sufficient to support the system testing

task in the concurrent build stage, and documentation must be completed before

acceptance testing in the transition stage” (p. 7–1).

The Barker User Documentation Stage is very consistent with my definition:

significant parts of documentation must be accomplished during the strategy

and analysis stages, when the principal aspects of the system architecture are

agreed upon with users and stakeholders. The format of user and operations

documentation is always debatable. What is most important is its content as

opposed to its format. Barker’s method suggests that documenters design this

Stage with the user or “reader” in mind. Thus, understanding how such users

and readers think and operate the system within their domains is likely to be a

key approach to providing the most attractive format of the document.

The user documentation should contain a full-reference manual for every

type of user. Tutorials and on-line help text are always an important component

in today’s Web-based systems. Another aspect of user documentation is to

include information on error messages, cross-reference to related issues, as well

as helpful hints. The operations documentation needs to cover day-to-day and

periodic operations procedures. The operations guide includes execution proce-

dures, backup and various maintenance processes that are necessary to sustain

the system.

Transaction Stage

Barker describes the Transition Stage as a pre-live process that ensures that

acceptance testing is completed, hardware and software installation is done, and

critical reviews or “walkthroughs” have been finished. Another aspect of the

20 Analysis and Design of Information Systems

Transition Stage is to understand data conversion and its effects on whether the

system is ready to go into production.

Since the original publication of Barker’s work, users today are much more

experienced with the Transition Stage—simply because they have experienced

it more often. As such, much of the resistance and ignorance to the importance

of acceptance testing and validation do not occur at the frequency that they used

to. Still, the transition process is complex. The steps necessary to go live in

any new system requires an important integration with users and existing legacy

applications.

Production

The Production Stage can be seen as synonymous with “go live.” It is the smooth

running of the new system and all of its integrated components including manual

and legacy interfaces. During this Stage, IT operations and support personnel

should be responsible for providing the necessary service levels to users as well

as bug fixing for programmers. Thus, the development staff acts as a backup to

the production issues that occur.

3
The User Interface

Establishing User Interfaces

The success factors in analysis start with the established interfaces from day

one. What does this mean? You must start the process by meeting with the right

people in the organization. In the best projects, the process is as follows:

1. Executive interface: There needs to be an executive-level supporter of

the project. Without such a supporter, you risk not being able to keep the

project on schedule.Most important, you need a supporter for the political

issues that you may need to handle during the project (discussed in detail

later). The executive supporter, sometimes known as a sponsor (JAD

reference), should provide a preliminary schedule advising the organi-

zation of what is expected and the objectives of the project. The executive

supporter should attach a letter to the preliminary schedule and send

it to the project team members. The letter must put the importance of

the project into perspective. Therefore, it is strongly recommended that

you draft this letter yourself or at least have influence over its content,

since doing so can ensure that the message is delivered appropriately.

The executive supporter should also establish regular reviews with the

analyst and the user community to ensure that objectives are being met.

2. Department head or line manager interface: If appropriate, the

department head should provide guidance about which individuals

should represent the department needs. If several people are involved,

the analyst should consider a JAD-like approach. Depending on the size

of the organization, the department head might also establish review

sessions to ensure compliance.

3. Functional user interface: Perhaps the most important people are the

ones who can provide the step-by-step needs of the system. Figure 3.1

shows a typical organization interface structure.

Forming an Interview Approach

Your primary mission as an analyst or systems designer is to extract the physical

requirements of the users and convert each to its logical equivalent (see Chapter 4

for a full discussion of the concept of the logical equivalent). The most critical

22 Analysis and Design of Information Systems

Figure 3.1 Established interface layers.

step in this mission is the actual interview, in which you must establish a rapport

with the user(s) that will facilitate your obtaining the information you need.

Your approach will dramatically change based on the level and category of

the individual being interviewed. Therefore, prior to meeting with any user, it

is critical to understand the culture of the company, its past experiences with

automation, and most important its organizational structure.

The following five-step procedure will help guide you more smoothly through

the interview process.

Step 1: Get The Organization Chart

Few things are more useful in understanding the chain of command and areas of

responsibility than the organization chart. Depending on the size of the enterprise

and the scope of the project, the organization chart should start at the executive

supporter level and work down to the operational users.

Step 2: Understand Everyone’s Role in the Organization Chart

If there are any individuals not involved in the project who should be, given

their position in the organization, first ask why and then make a notation for

yourself that they are not to be included. Management may assume an individual

or role should not be included and may often overlook their importance. Do not

be afraid to ask why a person is not deemed necessary for the analysis of the

system, and determine if you are satisfied with the reasons for their exclusion.

Remember, you can still control and change the approach at this point, and

management will probably respect you for doing so.

Step 3: Assume the Situation Is Political

Be sure you understand the personalities with which you will have to deal. In

almost any implementation, politics among people becomes part of the process.

To ignore its existence—and the constraints it is likely to impose—is to invite

3. The User Interface 23

failure. The question is how to obtain information about internal politics. The

best approach is to start as high up in the organization as possible, typically at the

executive supporter level. You might be surprised at the amount of information

they have. Of course, you should not explicitly ask about the politics but rather

phrase your question as follows: “Can you give me some perspective on potential

department and personnel conflicts that may occur during the interview cycle

and that I should be aware of?” You may not always get the answer you need,

but if you keep asking the question during every interview, you will discover a

great deal about the way the organization functions. And remember, only people

make projects complex!

Step 4: Obtain Information About User Skill Sets

Starting an interview without knowledge of the user’s technical skills puts

the analyst at a huge disadvantage. Having this information will allow you to

formulate a plan of questions and to determine the best approach to the interview.

If the user has no knowledge, the questions should be tailored to include a

minimum of technical content. The following guidelines for preparing for inter-

views reflect a common sense approach, yet it is amazing how many analysts

fail even to consider such strategies!

1. Gather information before the session to allow the user—as well as

yourself—to be prepared and to give you both a much clearer under-

standing of what will be covered during the interview.

2. Develop a questionnaire. Technical questions should be phrased differ-

ently depending on the level of knowledge the user possesses.

3. Determine whether the interview will provide enough input to obtain the

necessary information. This is not always the case; however, it happens

more often than you might think. Understanding user capabilities before

the interview may not only change the scope of the meeting but also

suggest who, in addition to the user, should attend the interview.

Step 5: Arrange for a Pre-Meeting with the User

A pre-meeting may not always be possible. In any case it must be a short

meeting, perhaps half an hour. The session should be designed to be high-level

and provide a general idea of what will be covered during the actual interview.

But more important, it will allow you to get a snapshot of the user. You might

say you are obtaining a “comfort level” (or “discomfort level”) for that user,

and such meetings can provide you with an idea of what to expect and how to

finalize your approach. What do you look for? Here is some direction.

1. The pre-meeting should give you enough feedback to place or confirm

the user’s technical level.

24 Analysis and Design of Information Systems

2. Look at everything in the user’s office or his or her environment. Is it

sloppy? Is it tidy and organized? The state of the user’s environment

will often be consistent with the way he or she provides information.

The insight you gain from observing the environment should give you

guidance about the types of questions to ask this individual.

3. Look for signs of attitude. The user’s level of interest should be evident.

Does he or she view the upcoming session as a waste of time, or is he

or she excited about the meeting?

The information gleaned in the pre-meeting can provide you with helpful hints

about what to expect from the interview and from the user in general.

Dealing with Political Factions

The importance of internal politics at the user’s site should never be underes-

timated. Perhaps the most common question raised by both professionals and

student analysts is how to provide quality analysis when office politics get in

the way. Here are some guidelines.

1. First, assess whether you are in the no-win scenario. Many of us hate to

admit that the no-win scenario does indeed exist in many environments,

but you should be on the lookout for the signs. If your manager will not

support you, if the company is underpaying you, if the users hate you, if

there are no automated tools to do the analysis, and if upper management

doesn’t care, then you are in a difficult position. If you cannot change

the situation, you must inform management that the results of your

analysis will be significantly impaired by the lack of support and tools

to complete the project properly. The techniques offered in this book

assume that all parties are interested in providing the best solution

possible, not in providing a system that is barely adequate.

2. On the other hand, do not be too quick to assume that you are in the

no-win scenario. Most politically hampered projects need some strategy

to get them on course, and most problems can be overcome if you know

how to approach them. Here is a typical example of such a problem

and some ideas you can apply to solve it.

Problem

The users who currently operate the system won’t talk to me. They are afraid

either that the new system might replace them or that their jobs will significantly

change. In short, they fear change.

Recommended Solution

Most operational users are managed by a supervisor or “in-charge.” Sometimes,

even a line manager can be directly responsible for production workers. In any

3. The User Interface 25

event, you must determine who is responsible and meet with that person. The

purpose of the meeting is to gain their support. This support is significant, since

you might find that the supervisor was once in operations and will be able

to understand the problems you may encounter. If the meeting is successful,

the supervisor may be able to offer a strategy. This strategy can vary from a

general meeting with the users, to individual discipline, to escalation to upper

management. Whatever you do, do not allow such a situation to continue and

do not accept abuse; to do so will ultimately reflect on you and your abilities.

Obviously, if the supervisor is also a problem, then you have no choice but

to go to upper management. However, this option is not a desirable one from the

analyst’s viewpoint. Upper management’s reaction may not be helpful, and it

could be damaging. For example, they might be indifferent to your problem and

instruct you to deal with it yourself, or they might simply send the supervisor a

letter. In some cases you may be fortunate and the supervisor’s responsibilities

regarding the system will be given to another manager. Consider, though, how

unpleasant the consequences may be if you appeal to upper management and get

no support: You may be left working with an already unhelpful supervisor who

has been made even more so by your complaint. It is important to remember

that once you go to upper management, the line has been drawn. Supervisors

typically are responsible for the day-to-day operation. They usually know more

about the entire operation than anyone else, and therefore you are well advised to

find a way to get them on your side. A supportive supervisor can be invaluable

in helping you overcome problems, as long as you are not shy about suggesting

ways to get the users comfortable.

Categories and Levels of Users

Establishing user interfaces represents the vehicle to formulate much of the

interview approach. It is necessary, however, to go further into the characteristics

of the people particularly with respect to the category and level they have

within the organization. Figure 3.1 established the three general categories, called

executive, department head or line manager, and functional. It is important to

explore their characteristics. In order that we better understand each category,

I have always asked the following question: What would be their interest in

the success of the project, that is, what would make them happy with the new

system? Let’s apply this question for each user category.

1. Executive users: Individuals at this layer are most interested in the

concept of return on investment (ROI). ROI basically focuses on

whether an investment will provide a financial return that makes the

effort worthwhile to the organization. While there are many compre-

hensive formulas that are often applied to the study of ROI, our context

pertains to the short- and long-term benefits of investing in building

new software. There are generally five reasons why executives agree

26 Analysis and Design of Information Systems

to fund software development. They are listed in order of significance

to the investor.

a. Monetary return: Simply put, this means that the software

will generate dollar revenue. An example might be the

Internet software that supports on-line ordering systems such

as Amazon has for book shipments. Their system not only

provides the functionality to handle shipments, but provides

a Web interface that can be directly associated with revenues

provided by book orders through the Internet.

b. Increased productivity: Many software systems are unable to

demonstrate direct monetary benefits. However, many of them

are developed to increase productivity. This means that the

system will allow organizations to actually produce and deliver

more. Thus, the system allows the organization to derive higher

revenues through increased productivity of its resources.

c. Reducing costs: Software projects are approved so that organi-

zations can reduce their existing overhead costs. This typically

relates to the replacement of manual activities with computer

ones. While reducing costs appears to be similar in nature

to increasing productivity, they are often implemented for

different reasons. Increased productivity usually relates to

organizations that are growing and are looking for ways to

improve output because of very high demand. Reducing costs,

on the other hand, can represent a defensive measure, where

an organization is seeking to find ways to cut costs because of

a shrinking market.

d. Competition: Software systems are created because the compe-

tition has done so. Therefore, producing software for compet-

itive reasons is a defensive measure against someone else

who has demonstrated its value. An example of this is in

the banking sector. Citibank was one of the first banks to

introduce automated teller machines (ATM). Other banks soon

followed because of the success that Citibank had with prolif-

erating ATMs throughout New York State. This does not

imply, however, that competitive systems are always defense

mechanisms. Indeed, many commercial Web sites are being

introduced based simply on market forecasts for their potential

to increase business.

e. For the sake of technology: While not the most popular reason,

some organizations will invest in new systems because they

think that it is time to do so or they are concerned that their

technology is getting old. This way of supporting new systems

development is rare, as it suggests the spending of money

without a clear understanding of its benefits.

3. The User Interface 27

Therefore, the executive category of users is one that is interested in the value

of the investment. These users have a global view of needs as opposed to the

details. In fact, they may know little of how things are really done. The value

of the executive interface is to provide the scope and objectives of the project

against the perceived value they intend to get from the software. Another popular

phrase for this is the domain of the system. Domain often refers to boundaries.

Ultimately, what makes them happy is a system that delivers what was promised

or the expected ROI.

2. Department head or line manager users: These users represent two

main areas of user input. First, they are responsible for the day-to-day

productivity of their respective departments. Thus, they understand the

importance of meeting the objectives of the organization as set forth

by the executives. Indeed, they often report to the executives. On the

other hand, department heads and line managers are responsible to their

staff. They must deal with the functional users and prescribe ways to

improve both their output and their job satisfaction. These users perhaps

provide what I call the best bang for the buck, a phrase that usually

means for the time invested, you get the most payback. One can see

that the department heads and line managers are responsible for most of

what happens every day in an organization. Another phrase that can be

used to describe them is your most valuable players (MVPs). However,

beware: MVPs are the hardest to find and get for the interviews. What

makes department heads and line managers happy is the most complex.

They want a system that produces the output that they are expected

to provide and they need a system that keeps their staff happy and

productive.

3. Functional users: Also known as the users in the trenches, these people

essentially do the operational activities. While they know a lot about

their processes, they usually care little about the productivity and

expected ROI. I often see these users as people who want little pain,

and just want to work the hours they need to. Thus, fancy systems are

of little interest to them unless they provide no pain—and no pain to

these users means having a system that makes their job easier.

The next area to understand about users is their level. By level, I mean their

understanding of computers. There are three levels of users:

1. Knowledgeable: The determination of knowledge can be tricky and is

certainly based on someone’s opinion. I define knowledge in reference

to experience. An experienced user can be defined as a person who “has

been through it before.” A user who has been through the development

of a new system can therefore be defined as “knowledgeable” within

this context.

2. Amateur: The definition of an amateur is based not so much on

experience, but rather on the type of experience the user has. Amateurs

can be thought of as hobbyists who enjoy working with computers at

28 Analysis and Design of Information Systems

home, but have no professional experience in developing software in an

organization. In this perspective, I believe that the meaning of amateur

is globally defined as one who does not get paid for the work they

perform.

3. Novice: These users have no experience with computers. While there

are fewer such users than there were ten years ago, they still exist. A

better way of perceiving a novice user is to consider my definition of

knowledgeable. In this context, a novice user is one who has never

been part of the implementation of a new system in a professional

environment.

Perhaps the most problematic of the above levels is the amateur. I have found

that users who are knowledgeable provide benefit to projects. They in many

ways act as a checkpoint for the analyst in that they can ask good questions and

particularly remember historical problems that actually can help the development

process. Novice users add little value and also add few problems. They tend to

do what you ask of them. Amateurs, on the other hand, tend to know enough to

be dangerous. They also tend to have such a profound interest in the topic that

they often go off on tangents about the technology instead of concentrating on

the particulars of the project.

What is most important is the mapping of these categories and levels. An

analyst might interview a knowledgeable executive, or a novice functional user.

Each permutation can affect the way interviews are conducted. For example, an

interview with a group of amateurs would focus the analyst on ensuring that

the agenda is very specific. Otherwise, discussions could easily get off track.

Therefore, the understanding about user levels and categories can only assist in

the development of effective interview approaches.

Joint Application Development (JAD)

JAD is a process that was originally developed for designing computer-based

systems. JAD centers on a three-to five-day workshop that brings together

business area people (users) and IS (Information Systems) professionals. Under

the direction of a facilitator, these people define anything from high-level

strategic plans to detailed system specifications. The products of the workshop

can include definitions of business processes, prototypes, data models, and so on.

Simply put, JAD is a method for holding group sessions with users, instead

of individual sessions. You may have no choice but to use JAD when there are

simply too many users to interview. JAD is also an excellent tool for use in

highly political situations where obtaining consensus among users is difficult.

JAD significantly differs from standard analysis in that it requires an up-front

commitment from the user community. Specifically, the users must ultimately

run the sessions themselves and make commitments to provide the requirements

of the system. Finally, if prototypes are used, JAD is an excellent means of

3. The User Interface 29

applying rapid application development (RAD). Both prototyping and RAD will

be discussed in greater detail later.

The most important part of implementing JAD is the management of the

process and the determination of the appropriate individuals to be involved. The

standard roles used in JAD are as follows:

• executive sponsor: This individual effectively plays the same role as

the executive supporter introduced earlier in this chapter. This person is

typically at the vice-president level and ultimately has the responsibility

for the business area. The ideal person for this role is someone to whom

users will have to report if they plan to miss a session and who can

reprimand them if they do. This thinking may seem harsh or cynical,

but the risk is high that users may find more important things to do

when the sessions begin. Such absenteeism can entirely undermine the

process, and IS should not be called upon to police users.
• facilitator: In the best situations, the facilitator should not come from

either the user community or IS, but rather from an independent area or

consulting firm. This arrangement allows the session to be independent.

That is, the facilitator of the JAD must be impartial and have overall

responsibility for controlling the flow of the sessions. In the ideal

scenario, the facilitator should report to the executive sponsor.
• scribe: This person is designated to record minutes and decisions and

in many cases actually produces the models using a computer-aided

software engineering (CASE) tool (see Chapter 7). A good scribe has

knowledge of the business area, good analytical skills, and knowledge

of CASE software. For these reasons, scribes often come from IS.
• IS representatives: IS personnel should be in the meetings not to provide

requirements but rather to answer questions about the existing hardware

and software. This information can be critical when discussing physical

constraints of the existing systems and what data are currently available.
• participant: These are the users who have been selected to represent

their respective areas. They attend the JAD sessions and are expected

to come prepared to voice their opinions about what the system must do

to accommodate the needs of their business unit. Participants are thus

part of the “agree-to-agree” process and are empowered to vote on the

actual specifications incorporated into the final software specification.
• session leader: This user is a participant who has been selected to lead

the discussion on a particular subject. Such users must be prepared to

provide specific topic issues so that the participants can openly discuss

their opinions about what the session leader presents. The session leader

may be asked to lead the discussion in a particular direction, or in some

instances may have some preliminary work and may advocate a position

on what the system should do. In these instances, the session leader

may come to the meeting to ask for ratification from his/her peers.
• observer: These are users who attend the session to observe what is

occurring, or in some cases to answer specific questions that may arise

30 Analysis and Design of Information Systems

during the course of discussion. Observers are not empowered to talk

unless they are asked. IS personnel, executives, and other interested

parties typically attend JAD sessions to understand the process and learn

from it. A special role exists when an observer serves as a “tiebreaker.”

In this capacity, the observer can be called upon, either by the facilitator

or the session leader, to make a final judgment on a deadlocked issue.

While this role is effective in getting decisions made, it can damage the

democratic process under which JAD sessions are suppose to operate.

Below is an example of an 11-phase implementation outline for a JAD session

with approximately 60 users in 10 different business areas.

Phase I: Define JAD Project Goals

The purpose of these sessions will be to meet with senior management and other

key organization people in order to:

• get a clear understanding of the history of the project;
• finalize the scope and time frame requirements of the existing plan;
• understand the current organization and whether political or other

constraints exist;
• jointly determine the number and size of the JAD sessions to be held;
• determine the best role of Information Systems in the JAD;
• define which key users and other managers should be interviewed

individually prior to the JAD.

Produce a management guide after Phase I. Its purpose will be to define

management’s purpose, scope and objectives of the project. That is, it commu-

nicates management’s direction and commitment. The management guide will

be approved and issued by upper management to the participating users and

information system personnel.

Phase II: Meet with Key Users and Managers

Estimate that you may need to interview about 20 people from key organizations

prior to the JAD. These key users and managers should typically represent three

levels of the organization. The purpose of these meetings will be to:

• get familiar with the existing systems;
• validate the number of sessions and specific participants needed;
• assess the technical expertise of the participating users;
• determine what specific information can be gathered by the users prior

to the JAD sessions;

3. The User Interface 31

• gather previous analysis and design materials and documents that may

exist and explain user requirements;
• discuss types of agendas and length of sessions;
• focus on specific requirements of certain users.

Schedule interviews to last about 60 to 90 minutes and prepare an agenda

that will put the purpose and scope of the interview into perspective.

Phase III: Meet with Information Systems

Get a technical overview of the existing analysis performed and state of all

working documents. Gather information on:

• project history;
• potential problems envisioned in implementing the new system;
• proposed hardware to support the new system (if relevant);
• IS representatives to participate in the JAD sessions;
• models and information that can be used in the JAD sessions.

Phase IV: Prepare JAD Approach

Prepare a complete JAD program that will outline recommendations for the

number and types of sessions to be held. The JAD approach will also consider

the modeling tools to be used and the methods for getting user sign-off. You

should focus on the following specific issues:

• the number and type of preparation sessions necessary to get users

familiar with the modeling terminology;
• what business processes have already been previously modeled and

can be reviewed during the sessions. This is done to avoid discussing

processes that users feel have already been defined from previous

analysis sessions;
• the number and types of sessions along with specific users in attendance

at each session;
• a Work Document of the proposed agendas for each type of session;
• overview of materials to be used such as overheads, flip charts and

room requirements;
• proposed format of the user sign-off documents.

You should meet with upper management to review the proposed approach

for implementation.

32 Analysis and Design of Information Systems

Phase V: Finalize JAD Organization Structure

Assign JAD Facilitators to specific sessions along with information systems

support personnel (scribes, etc.). Determine the number of JAD facilitators

required. You may need one JAD project leader to take overall responsibility for

the entire engagement. A detailed timeline of specific deliverables and reviews

should be produced for the entire project, including reports to upper management

on the JAD session progress.

Phase VI: Hold Overview Training Sessions

Depending on the results of Phase IV, hold any necessary sessions to get users

familiar with the methods that will be used during the JAD. This is typically

a one-day course on analysis and includes an overview of modeling lingo and

tools such as:

• business area analysis,
• process flow diagrams (data flows),
• entity relational diagrams and normalized data modeling,
• process specifications,
• activity matrices,
• state transition diagrams,
• decomposition models,
• object-oriented techniques,
• prototyping.

Phase VII: Hold JAD Workshop Sessions

Prior to these sessions, participants will be asked to come prepared with certain

information they will need to assist in the process. This information may typically

include sample forms and reports that they use or need. The workshop sessions

will be held with a set time frame and an agenda of items typically including:

• examine assumptions: These will be reviewed with the users and opened

for discussion. An assumption will either:

• stay as it is,
• be revised,
• become an open issue (if consensus cannot be reached).

• design business processes: Review the collection of activities relating

to the business and the system.
• define data requirements: Data are defined to support the business

process. Data models are used, developed, and reviewed as necessary.

3. The User Interface 33

• design screens: The screens will typically use a series of menus or other

branching techniques to define how users need to access the various

functions. This is usually accomplished by identifying main menu and

submenu selections.
• design reports: Report names are collected and completed with detailed

report descriptions. These normally include

• report name,
• description,
• frequency,
• number of copies,
• distribution list,
• selection criteria,
• sort criteria,
• data elements.

• identify open issues: These issues are added throughout the sessions.

Open issues are those that are not resolved after a period of discussion.

These are kept on a separate chart.

Throughout the above processes, the scribe will be tracking minutes of the

meeting as well as the open issues and new diagramming requirements.

Phase VIII: Resolve Open Issues

Prior to subsequent sessions, all open issues must be resolved, either by smaller

work groups or if necessary by upper management. In any event, it is critical that

this is managed by both the facilitator and upper management prior to moving

to the next level sessions.

Phase IX: Prepare Materials for Workshop Review Sessions

The facilitator should produce a sign-off level document for review. Process and

data models and process specifications will be reviewed and finalized. These

sessions can also include prototype screens and reports.

Phase X: Hold Sign-Off Workshops

These workshops will be designed to review the results of the initial JAD

sessions. The process and data models will be reviewed. If prototypes are used,

the sessions will utilize screen walkthroughs as a method of gaining user accep-

tance. The exact number of review sessions will depend on the complexity of

the system as well as the number of screens and reports to be prototyped.

34 Analysis and Design of Information Systems

During these sessions, user acceptance test plans may also be discussed and

outlined for eventual submission to the responsible QA organization. This will

typically involve a discussion of the minimum acceptance testing to be validated

against the product and the mechanism for testing in the field.

Phase XI: Finalize Specification Document

After review sessions are completed, the Facilitator will prepare the final

document to be submitted for approval and eventual implementation. If proto-

types are used, the screens and reports can be moved into the software devel-

opment (construction) phase. There should also be post-JAD reviews with the

development teams to clarify information supplied in the final system specifi-

cation document.

JAD is introduced and discussed in this chapter because of its generic

inclusion in the user-interface phase of analysis. However, it should be noted

that the above outline can be integrated with many of the subjects contained in

later chapters of this text. The analyst may, therefore, wish to review this outline

again after completing the book in order to determine how the other concepts of

analysis can be used in a JAD session.

Problems and Exercises

1. Why is it so critical for the analyst to understand the “culture” of the

organization?

2. Management support is a key component of the success of any project.

Sometimes management may unfairly dictate the terms and deadlines of

projects. Provide examples of different possible management opinions

and how analysts can prepare effective responses to them.

3. What are the benefits of obtaining an Organization Chart prior to

conducting interviews with users?

4. How does politics affect the role of the analyst and his/her approach to

the information-gathering function of the interviews?

5. Why does understanding user skills provide the analyst with an

advantage during interviews?

6. Explain how meeting a user in their office or place of work can assist

the analyst in developing a better approach prior to the interview.

7. What is the purpose of JAD sessions? How do they compare to

individual interviewing? Discuss the advantages and disadvantages

of JAD.

8. Define each of the roles necessary for effective JAD sessions.

9. What is the purpose of a Management Guide?

10. Develop a proforma JAD outline for a project of 20 users in 3 business

locations.

3. The User Interface 35

11. Name and explain what is meant by user categories.

12. How do user levels assist the analyst when preparing for user inter-

views?

Mini-Project

You have been assigned by your boss to interview Mr. Smith. Mr. Smith runs

a department within Human Resources that essentially provides two tasks: (1)

assigning employee identification numbers to new employees, and (2) sending

applications for individual insurance to the firm’s insurance provider.

The following is a list of processes that were learned about Mr. Smith’s

department procedures. It is dated January 1, 2005:

• The hiring department sends a copy of the hire letter to the department

to notify them about a new hire.
• New employees must report to the department on their first day. The

employee must bring the original hire letter.
• New employees are validated and asked to fill out a new hire employee

form. The form contains the necessary information needed by the

department.
• After the form is filled out, employees receive an identification card.

Every identification card has a unique ID number.
• The insurance form information (on the new employee) is sent to the

insurance company.
• The insurance company must accept all applications.
• The insurance company has 30, 60, or 90 days to respond to an appli-

cation. The number of days depends on the employee’s level.
• The department will follow up on late acceptance verifications.

Insurance confirmations are returned to the department, but the actual

insurance package is sent to the individual.

All information on the employee collected by the department is filed in an

employee folder.

Mr. Smith has been running this operation manually for over 25 years.

Assignment

Prepare 15 questions that you would ask Mr. Smith during the interview.

4
Overview of Analysis Tools

The Concept of the Logical Equivalent

The primary mission of an analyst or systems designer is to extract the physical

requirements of the users and convert them to software. All software can trace its

roots to a physical act or a physical requirement. A physical act can be defined as

something that occurs in the interaction of people, that is, people create the root

requirements of most systems, especially those in business. For example, when

Mary tells us that she receives invoices from vendors and pays them thirty days

later, she is explaining her physical activities during the process of receiving

and paying invoices. When the analyst creates a technical specification which

represents Mary’s physical requirements, the specification is designed to allow

for the translation of her physical needs into an automated environment. We

know that software must operate within the confines of a computer, and such

systems must function on the basis of logic. The logical solution does not always

treat the process using the same procedures employed in the physical world. In

other words, the software system implemented to provide the functions which

Mary does physically will probably work differently and more efficiently than

Mary herself. Software, therefore, can be thought of as a logical equivalent of the

physical world. This abstraction, which I call the concept of the logical equivalent

(LE), is a process that analysts must use to create effective requirements of the

needs of a system. The LE can be compared to a schematic of a plan or a diagram

of how a technical device works.

Your success in creating a concise and accurate schematic of the software

that needs to be developed by a programmer will be directly proportional to how

well you master the concept of the Logical Equivalent. Very often requirements

are developed by analysts using various methods that do not always contain

a basis for consistency, reconciliation and maintenance. There is usually far

too much prose used as opposed to specific diagramming standards that are

employed by engineers. After all, we are engineering a system through the

development of software applications. The most critical step in obtaining the

LE is the understanding of the process of Functional Decomposition. Functional

Decomposition is the process for finding the most basic parts of a system, like

defining all the parts of a car so that it can be built. It would be possible not from

4. Overview of Analysis Tools 37

looking at a picture of the car, but rather at a schematic of all the functionally

decomposed parts. Developing and engineering software is no different.

Below is an example of an analogous process using functional decomposition,

with its application to the LE:

In obtaining the physical information from the user, there are a number of

modeling tools that can be used. Each tool provides a specific function to derive

the LE. The word “derive” has special meaning here. It relates to the process of

Long Division, or the process or formula we apply when dividing one number

by another. Consider the following example:

256 remainder 4 } Result or Answer
5 | 1284 } Problem to Solve

|
10

284

25 } Formula applied to produce result or answer

34

30

4

The above example shows the formula that is applied to a division problem.

We call this formula long division. It provides the answer, and if we change

any portion of the problem, we simply re-apply the formula and generate a

new result. Most important, once we have obtained the answer, the value of the

formula steps is only one of documentation. That is, if someone questioned the

validity of the result, we could show them the formula to prove that the answer

was correct (based on the input).

Now let us apply long division to obtaining the LE via functional decompo-

sition. The following is a result of an interview with Joe, a bookkeeper, about

his physical procedure for handling bounced checks.

Joe the bookkeeper receives bounced checks from the bank. He fills

out a Balance Correction Form and forwards it to the Correction

Department so that the outstanding balance can be corrected.

Joe sends a bounced check letter to the customer requesting a

replacement check plus a $15.00 penalty (this is now included

as part of the outstanding balance). Bounced checks are never

re-deposited.

The appropriate modeling tool to use in this situation is a Data Flow Diagram

(DFD). A DFD is a tool that shows how data enters and leaves a particular

process. The process we are looking at with Joe is the handling of the bounced

check. A DFD has four possible components:

38 Analysis and Design of Information Systems

Now let us draw the LE of Joe’s procedure using DFD tools:

Figure 4.1 Data flow diagram for handling bounced checks.

The above DFD in Figure 4.1 shows that bounced checks arrive from the
bank, the Account Master file is updated, the Correction Department is informed
and Customers receive a letter. The Bank, Correction Department and Customers
are considered “outside” the system and are therefore represented logically as

4. Overview of Analysis Tools 39

Figure 4.2 Level 2 data flow diagram for handling bounced checks.

Externals. This diagram is considered to be at the first level or “Level 1” of

functional decomposition. You will find that all modeling tools employ a method

to functionally decompose. DFDs use a method called “Leveling.”

The question is whether we have reached the most basic parts of this process

or should we level further. Many analysts suggest that a fully decomposed DFD

should have only one data flow input and one data flow output. Our diagram

currently has many inputs and outputs and therefore it can be leveled further.

The result of functionally decomposing to the second level (Level 2) is as shown

in Figure 4.2.

Notice that the functional decomposition shows us that Process 1: Handling

Bounced Checks is really made up of two sub-processes called 1.1 Update

Balance and 1.2 Send Letter. The box surrounding the two processes within

the Externals reflects them as components of the previous or parent level. The

double sided arrow in Level 1 is now broken down to two separate arrows going

in different directions because it is used to connect Processes 1.1 and 1.2. The

new level is more functionally decomposed and a better representation of the LE.

Once again we must ask ourselves whether Level 2 can be further decom-

posed. The answer is yes. Process 1.1 has two outputs to one input. On the

other hand, Process 1.2 has one input and one output and is therefore complete.

Process 1.2 is said to be at the Functional Primitive, a DFD that cannot be

decomposed further. Therefore, only 1.1 will be decomposed.

Let us decompose 1.1 in Figure 4.3 as follows:

Process 1.1 is now broken down into two sub processes: 1.1.1 Update Account

Master and 1.1.2 Inform Correction Department. Process 1.1.2 is a Functional

Primitive since it has one input and one output. Process 1.1.1 is also considered

a Functional Primitive because the “Bounced Check Packet” flow is between the

40 Analysis and Design of Information Systems

Figure 4.3 Level 3 data flow diagram for handling bounced checks.

two processes and is used to show connectivity only. Functional decomposition
is at Level-3 and is now complete.

The result of functional decomposition is the following DFD in Figure 4.4:

Figure 4.4 Functionally decomposed level-3 data flow diagram for handling bounced

checks.

As in long division, only the complete result, represented above, is used as
the answer. The preceding steps are formulas that we use to get to the lowest,
simplest representation of the logical equivalent. Levels 1, 2 and 3 are used only
for documentation of how the final DFD was determined.

The logical equivalent is an excellent method that allows analysts and systems
designers to organize information obtained from users and to systematically
derive the most fundamental representation of their process. It also alleviates
unnecessary pressure to immediately understand the detailed flows and provides
documentation of how the final schematic was developed.

4. Overview of Analysis Tools 41

Tools of Structured Analysis

Now that we have established the importance and goals of the logical equivalent,
we can turn to a discussion of the methods available to assist the analyst. These
methods serve as the tools to create the best models in any given situation, and
thus the most exact logical equivalent. The tools of the analyst are something like
those of a surgeon, who uses only the most appropriate instruments during an
operation. It is important to understand that the surgeon is sometimes faced with
choices about which surgical instruments to use; particularly with new proce-
dures, there is sometimes disagreement among surgeons about which instruments
are the most effective. The choice of tools for analysis and data processing
is no different; indeed, it can vary more and be more confusing. The medical
profession, like many others, is governed by its own ruling bodies. The American
Medical Association and the American College of Physicians and Surgeons, as
well as state and federal regulators, represent a source of standards for surgeons.
Such a controlling body does not exist in the data processing industry, nor does
it appear likely that one will arise in the near future. Thus, the industry has tried
to standardize among its own leaders. The result of such efforts has usually been
that the most dominant companies and organizations create standards to which
others are forced to comply. For example, Microsoft has established itself as an
industry leader by virtue of its software domination. Here, Might is Right!

Since there are no real formal standards in the industry, the analysis tools
discussed here will be presented on the basis of both their advantages and
their shortcomings. It is important then to recognize that no analysis tool (or
methodology for that matter) can do the entire job, nor is any perfect at what
it does. To determine the appropriate tool, analysts must fully understand the
environment, the technical expertise of users and the time constraints imposed
on the project. By “environment” we mean the existing system and technology,
computer operations, and the logistics—both technically and geographically—of
the new system. The treatment of the user interface should remain consistent
with the guidelines discussed in Chapter 3.

The problem of time constraints is perhaps the most critical of all. The tools
you would ideally like to apply to a project may not fit the time frame allotted.
What happens, then, if there is not enough time? The analyst is now faced
with selecting a second-choice tool that undoubtedly will not be as effective
as the first one would have been. There is also the question of how tools are
implemented, that is, can a hybrid of a tool be used when time constraints prevent
full implementation of the desired tool?

Making Changes and Modifications

Within the subject of analysis tools is the component of maintenance modeling,
or how to apply modeling tools when making changes or enhancements to an
existing product. Maintenance modeling falls into two categories:

42 Analysis and Design of Information Systems

1. Pre-Modeled: where the existing system already has models that can

be used to effect the new changes to the software.

2. Legacy System: where the existing system has never been modeled;

any new modeling will therefore be incorporating analysis tools for the

first time.

Pre-Modeled

Simply put, a Pre-Modeled product is already in a structured format. A structured

format is one that employs a specific format and methodology such as the data

flow diagram.

The most challenging aspects of changing Pre-Modeled tools are:

1. keeping them consistent with their prior versions, and

2. implementing a version control system that provides an audit-trail of the

analysis changes and how they differ from the previous versions. Many

professionals in the industry call this Version Control; however, care

should be taken in specifying whether the version control is used for the

maintenance of analysis tools. Unfortunately, Version Control can be

used in other contexts, most notably in the tracking of program versions

and software documentation. For these cases, special products exist in

the market which provide special automated “version control” features.

We are not concerned here with these products but rather with the

procedures and processes that allow us to incorporate changes without

losing the prior analysis documentation. This kind of procedure can

be considered consistent with the long division example in which each

time the values change, we simply re-apply the formula (methodology)

to calculate the new answer. Analysis version control must therefore

have the ability to take the modifications made to the software and

integrate them with all the existing models as necessary.

Being Consistent

It is difficult to change modeling methods and/or CASE tools in the middle of

the life cycle of a software product. One of our main objectives then is to try

avoid doing so. How? Of course, the simple answer is to select the right tools

and CASE software the first time. However, we all make mistakes, and more

importantly, there are new developments in systems architecture that may make

a new CASE product attractive. You would be wise to foresee this possibility

and prepare for inconsistent tools implementation. The best offense here is to:

• ensure that your CASE product has the ability to transport models

through an ASCII file or cut/paste method. Many have interfaces via an

“export” function. Here, at least, the analyst can possibly convert the

diagrams and data elements to another product.

4. Overview of Analysis Tools 43

• keep a set of diagrams and elements that can be used to establish a link
going forward, that is, a set of manual information that can be reinput
to another tool. This may be accomplished by simply having printed
documentation of the diagrams; however, experience has shown that it
is difficult to keep such information up to date. Therefore, the analyst
should ensure that there is a procedure for printing the most current
diagrams and data elements.

Should the organization decide to use different tools, e.g., process-
dependency diagrams instead of data flow diagrams, or a different methodology
such as crows’-foot method in Entity Relational Diagramming, then the analyst
must implement a certain amount of reengineering. This means mapping the new
modeling tools to the existing ones to ensure consistency and accuracy. This is
no easy task, and it is strongly suggested that you document the diagrams so
you can reconcile them.

Version Control

This book is not intended to focus on the generic aspects of version control;
however, structured methods must have an audit trail. When a new process is
changed, a directory should be created for the previous version. The directory
name typically consists of the version and date such as: xyz1.21295, where xyz is
the name of the product or program, 1.2 the version and 1295 the version date. In
this way previous versions can be easily re-created or viewed. Of course, saving
a complete set of each version may not be feasible or may be too expensive
(in terms of disk space, etc.). In these situations, it is advisable to back up the
previous version in such a manner as to allow for easy restoration. In any case,
a process must exist, and it is crucial that there be a procedure to do backups
periodically.

Legacy Systems

Legacy systems usually reside on mainframe computers and were developed
using 3GL2 software applications, the most typical being COBOL. Unfortunately,
few of these systems were developed using structured tools. Without question,
these are the systems most commonly undergoing change today in many organi-
zations. All software is comprised of two fundamental components: processes
and data. Processes are the actual logic and algorithms required by the system.
Data, on the other hand, represent the information that the processes store and
use. The question for the analyst is how to obtain the equivalent processes and

2
3GL stands for “Third Generation Language.” These programming languages belong

to a family of design that typically uses compilers to transform a higher-level language

into assembly code for the target computer.

44 Analysis and Design of Information Systems

data from the legacy system. Short of considering a complete rewrite, there are
two basic approaches: the data approach and the process approach.

The Data Approach

Conversion of legacy systems for purposes of structured changes requires the
modeling of the existing programs to allow for the use of analysis tools. The
first step in this endeavor is the modeling of the existing files and their related
data structures. Many 3GL applications may not exist in a relational or other
database format. In either case, it is necessary to collect all of the data elements
that exist in the system. To accomplish this, the analyst will typically need a
conversion program that will collect the elements and import them into a CASE
tool. If the data are stored in a relational or database system, this can be handled
through many CASE products via a process known as reverse engineering. Here,
the CASE product will allow the analyst to select the incoming database, and
the product will then automatically import the data elements. It is important to
note that these reverse-engineering features require that the incoming database
is SQL (Structured Query Language) compatible. Should the incoming data file
be of a non-database format (i.e., a flat file3), then a conversion program will
need to be used. Once again, most CASE tools will have features that will list
the required input data format.

Figure 4.5 is a sample of the reengineering capabilities of the System
Architect product by Popkin Software and Systems.

Once the data has been loaded into the CASE product, the various data
models can be constructed. This process will be discussed further in Chapter 8.

Although we have shown above a tool for loading the data, the question still
remains: How do we find all the data elements? Using COBOL as an example,
one could take the following steps:

1. Identify all of the File Description (FD) tables in the COBOL appli-
cation programs. Should they exist in an external software product like
Librarian, the analyst can import the tables from that source. Otherwise
the actual file tables will need to be extracted and converted from the
COBOL application program source. This procedure is not difficult; it
is simply another step that typically requires conversion utilities.

2. Scan all Working Storage Sections (see Figure 4.6) for data elements
that are not defined in the File Description Section. This occurs very
often when COBOL programmers do not define the actual elements
until they are read into a Working Storage Section of the program. This
situation, of course, requires further research, but it can be detected by
scanning the code.

3
A file consisting of records of a single record type, in which there is no embedded

structure information governing relationships between records. Microsoft Press, Computer

Dictionary, 2nd ed., p. 169.

4. Overview of Analysis Tools 45

Figure 4.5 Reverse engineering using System Architect.

3. Look for other data elements that have been defined in Working Storage

that should be stored as permanent data. Although this can be a difficult

task, the worst case scenario would involve the storing of redundant

data. Redundant data is discussed further in Chapter 5.

4. Once the candidate elements have been discovered, ensure that appro-

priate descriptions are added. This process allows the Analyst to actually

start defining elements so that decisions can be made during logic data

modeling (Chapter 6).

Figure 4.6 Working Storage Section of a COBOL program.

46 Analysis and Design of Information Systems

The Process Approach

The most effective way to model existing programs is the most direct way,
that is, the old-fashioned way: start reading and analyzing the code. Although
this approach may seem very crude, it is actually tremendously effective and
productive. Almost all programming languages contain enough structure to allow
for identification of input and output of files and reports. By identifying the data
and reports, the analyst can establish a good data flow diagram as shown in
Figure 4.7.

The above example shows two File Description (FD) tables defined in a
COBOL program. The first table defines the input file layout of a payroll record,
and the second is the layout of the output payroll report. This is translated into
a DFD as shown in Figure 4.8.

In addition, depending on the program language, many input and output data
and reports must be defined in the application code in specific sections of the
program. Such is true in COBOL and many other 3GL products. Furthermore,

Figure 4.7 Input data and report layouts of a COBOL program.

4. Overview of Analysis Tools 47

Figure 4.8 Translated COBOL file descriptions into a data flow diagram.

many 4GL products force input and output verbs to be used when databases are
manipulated. This is very relevant to any products that use embedded SQL to
do input and output. The main point here is that you can produce various utility
programs (“quick & dirty,” as they call them) to enhance the accuracy and speed
of identifying an existing program’s input and output processing.

Once the flows in the data flow diagram are complete, the next step is
to define the actual program logic, or what is typically called the process

specifications (discussed later in this chapter). Once again there is no shortcut
to save your going through the code program by program. There are some
third-party software tools on the market that can provide assistance, but these
tend to be very programming-language specific. Although the manual method
may seem overwhelming, it can be accomplished successfully and will often
provide great long-term benefits. Many companies will bring in part-time college
interns and other clerical assistance to get this done. It should be noted that
a CASE tool is almost always required to provide a place to document logic.
This is especially important if the CASE tool will be used to generate actual
program code.

Specification Formats

An ongoing challenge for many IS and software firms is determining what a good
specification is. Many books written about analysis tools tend to avoid answering
this question directly. When addressing the quality of a process specification,
we must ultimately accept the inevitable prognosis that we can no longer be
exclusively graphical. Although Yourdon and DeMarco4 argue that structured

4
Ed Yourdon, Modern Structured Analysis, Yourdon Press, and Tom DeMarco, Struc-

tured Analysis and System Specification, Yourdon Press, focus on the importance of using

graphic diagrams wherever possible.

48 Analysis and Design of Information Systems

Figure 4.9 Types of process specifications based on user computer literacy.

Figure 4.10 Sample Business Specification.

4. Overview of Analysis Tools 49

tools need to be graphical, the essence of a specification is in its ability to define
the algorithms of the application program itself. It is therefore impossible to avoid
writing a form of pseudocode. Pseudocode is essentially a generic representation
of how the real code must execute. Ultimately, the analyst must be capable of
developing clear and technically correct algorithms. The methods and styles of
process specifications are outlined on the following pages. The level of technical
complexity of these specifications varies based on a number of issues:

1. the technical competence of the analyst. Ultimately, the analyst must
have the ability to write algorithms to be most effective.

2. the complexity of the specification itself. The size and scope of speci-
fications will vary, and as a result so will the organization of the
requirements.

3. the type of the specifications required. There are really two levels of
specifications: business and programming. The business specification
is very prose-oriented and is targeted for review by a non-technical
user. Its main purpose is to gain confirmation from the user community
prior to investment in the more specific and technical programming

Figure 4.11 Sample Programming Specification.

50 Analysis and Design of Information Systems

specification. The programming specification, on the other hand, needs

to contain the technical definition of the algorithms and is targeted for

technical designers and programmers.

4. the competence of the programming staff as well as the confidence that

the analyst has in that staff. The size and capabilities of the programming

resources will usually be directly proportional to the emphasis that the

analyst will need to place on the specifics and quality needed for a

process specification.

Although the alternative techniques for developing a Process Specification

are further discussed in Chapters 5 and 14, the chart below should put into

perspective the approach to deciding the best format and style of communication.

It is important to understand that overlooking the process specification and its

significance to the success of the project can have catastrophic effects on the

entire development effort. Figure 4.9 reflects the type of specification suggested

based on the technical skills of the users:

Figures 4.10 and 4.11 are sample business and programming specifications,

respectively, that depict the flow from a user specification to the detailed program

logic.

Problems and Exercises

1. Describe the concept of the logical equivalent as it relates to defining

the requirements of a system.

2. What is the purpose of functional decomposition? How is the leveling

of a DFD consistent with this concept?

3. How does Long Division depict the procedures of decomposition ?

Explain.

4. What is a legacy system ?

5. Processes and data represent the two components of any software appli-

cation. Explain the alternative approaches to obtaining process and data

information from a legacy system.

6. What is reverse engineering? How can it be used to build a new system?

7. Why is analysis version control important?

8. Explain the procedures for developing a DFD from an existing program.

9. What is the purpose of a process specification? Explain.

10. Outline the differences between a business specification and a

programming specification. What is their relationship, if any?

5
Process-Based Tools

Data Flow Diagrams

Chapter 4 discussed the concept of the logical equivalent, justifying and defining

it by showing a functional decomposition example using data flow diagrams

(DFD). In this section, we will expand upon the capabilities of the DFD by

explaining its purpose, advantages and disadvantages (described later as the

Good, the Bad and the Ugly) and most important: how to draw and use it.

Purpose

Yourdon’s original concept of the DFD was that it was a way to represent a

process graphically. A process can be defined as a vehicle that changes or trans-

forms data. The DFD therefore becomes a method of showing users strictly from

a logical perspective how data travels through their function and is transformed.

The DFD should be used in lieu of a descriptive prose representation of a user’s

process. Indeed, many analysts are familiar with the frustrations of the meeting

where users attend to provide feedback on a specification prepared in prose.

These specifications are often long descriptions of the processes. We ask users

to review it, but most will not have had the chance to do so before the meeting,

and those who have, may not recollect all the issues. The result? Users and

analysts are not in a position to properly address the needs of the system, and the

meeting is less productive than planned. This typically leads to more meetings

and delays. More important, the analyst has never provided an environment in

which the user can be walked through the processes. Conventional wisdom says

that people remember 100% of what they see, but only 50% of what they

read. The graphical representation of the DFD can provide users with an easily

understood view of the system.5

The DFD also establishes the boundary of a process. This is accomplished

with two symbols: the terminator (external) and the data store. As we will see,

both represent data that originate or end at a particular point.

5
Ed Yourdon, Modern Structured Analysis, pp. 134–35.

52 Analysis and Design of Information Systems

The DFD also serves as the first step toward the design of the system

blueprint. What do we mean by a blueprint? Let us consider the steps taken

to build a house. The first step is to contact a professional who knows how

to do design. We call this individual an architect. The architect is respon-

sible for listening to the homebuilder and drawing a conceptual view of the

house that the homebuilder wants. The result is typically two drawings. The

first is a prototype drawing of the house, representing how the house will

appear to the homebuilder. The second is the blueprint, which represents the

engineering requirements. Although the homebuilder may look at the blueprint,

it is meant primarily for the builder or contractor who will actually construct

the house. What has the architect accomplished? The homebuilder has a view

of the house to verify the design, and the builder has the specifications for

construction.

Let us now translate this process to that of designing software. In this scenario,

the analyst is the architect and the user is the homebuyer. The meeting between

the architect and the homebuyer translates into the requirements session, which

will render two types of output: a business requirements outline and prototype

of the way the system will function, and a schematic represented by modeling

tools for programmers. The former represents the picture of the house and

the latter the blueprint for the builder. Designing and building systems, then,

is no different conceptually from building a house. The DFD is one of the

first—if not the first—tools that the analyst will use for drawing graphical

representations of the user’s requirements. It is typically used very early in

the design process when the user requirements are not clearly and logically

defined.

Figures 5.1 and 5.2 show the similarities between the functions of an architect

and those of an analyst.

Figure 5.1 The interfaces required to design and build a house.

5. Process-Based Tools 53

Figure 5.2 The interfaces required to design and build a system.

How do we begin to construct the DFD for a given process? The following

five steps serve as a guideline:

1. Draw a bubble to represent the process you are about to define.

2. Ask yourself what thing(s) initiate the process: what is coming in?

You will find it advantageous to be consistent in where you show

process inputs. Try to model them to the left of the process. You will

later be able to immediately define your process inputs when looking

back at your DFD, especially when using them for system enhance-

ments.

3. Determine the process outputs, or what things are coming out, and

model them to the right of the process as best you can.

4. Establish all files, forms or other components that the process needs

to complete its transformation. These are usually data stores that are

utilized during processing. Model these items either above or below the

process

5. Name and number the process by its result. For example, if a process

produces invoices, label it “Create Invoices.” If the process accom-

plishes more than one event, label it by using the “and” conjunction.

This method will allow you to determine whether the process is

a functional primitive. Ultimately, the name of the process should

be one that most closely associates the DFD with what the user

does. Therefore, name it what the user calls it! The number of the

process simply allows the analyst to identify it to the system and most

important to establish the link to its children levels during functional de-

composition.

54 Analysis and Design of Information Systems

Let us now apply this procedure to the example below:

Vendors send Mary invoices for payment. Mary stamps on the

invoice the date received and matches the invoice with the original

purchase order request. Invoices are placed in the Accounts Payable

folder. Invoices that exceed thirty days are paid by check in two-

week intervals.

Step 1: Draw the bubble (Figure 5.3)

Figure 5.3 A process bubble.

Step 2: Determine the inputs

In this example we are receiving an invoice from a Vendor. The Vendor is
considered a Terminator since it is a boundary of the input and the user cannot
control when and how the invoice will arrive. The invoice itself is represented
as a data flow coming from the Vendor terminator into the process as shown in
Figure 5.4:

Figure 5.4 Terminator sending invoice to the process.

5. Process-Based Tools 55

Step 3: Determine the outputs of the process

In this case the result of the process is that the Vendor receives a check for

payment as shown in Figure 5.5:

Figure 5.5 DFD with output of check sent to vendor.

Step 4: Determine the “processing” items required to complete

the process

In this example, the user needs to:

• match the invoice to the original purchase order;
• create a new account payable for the invoice in a file; and
• eventually retrieve the invoice from the Accounts Payable file for pay-

ment.

Note that in Figure 5.6 the Purchase Order file is accessed for input

(or retrieval) and therefore is modeled with the arrow coming into the process.

The Accounts Payable file, on the other hand, shows a two-sided arrow because

entries are created (inserted) and retrieved (read). In addition, arrows to and from

data stores may or may not contain data flow names. For reasons that will be

explained later in the chapter, the inclusion of such names is not recommended.

56 Analysis and Design of Information Systems

Figure 5.6 DFD with interfacing data stores.

Step 5: Name and number the process based on its output or its

user definition.

Figure 5.7 Final named DFD.

The process in Figure 5.7 is now a complete DFD that describes the event

of the user. You may notice that the procedures for stamping the invoice with

5. Process-Based Tools 57

the receipt date and the specifics of retrieving purchase orders and accounts
payable information are not explained. These other components will be defined
using other modeling tools. Once again, the DFD reflects only data flow and
boundary information of a process.

The DFD in Figure 5.7 can be leveled further to its functional primitive. The
conjunction in the name of the process can sometimes help analysts to discover
that there is actually more than one process within the event they are modeling.
Based on the procedure outlined in Chapter 4, the event really consists of two
processes: Recording Vendor Invoices and Paying Vendor Invoices. Therefore,
P1 can be leveled as shown in Figure 5.8.

Figure 5.8 Leveled DFD for Record and Pay Invoices process.

Advantages of the DFD

Many opponents of the DFD argue that this procedure takes too long. You must
ask yourself: What’s the alternative? The DFD offers the analyst several distinct
advantages. Most fundamentally, it depicts flow and boundary. The essence
of knowing boundary is first to understand the extent of the process prior to
beginning to define something that may not be complete or accurate. The concept
is typically known as top-down, but the effort can also be conceived as step-by-
step. The analyst must first understand the boundary and flows prior to doing
anything else. The steps following this will procedurally gather more detailed
information until the specification is complete.

Another important aspect of the DFD is that it represents a graphical dis-
play of the process and is therefore a usable document that can be shown to

58 Analysis and Design of Information Systems

both users and programmers, serving the former as a process verification and
the latter as the schematic (blueprint) of the system from a technical perspective.
It can be used in JAD sessions and as part of the business specification
documentation. Most important, it can be used for maintaining and enhancing
a process.

Disadvantages of the DFD

The biggest drawback of the DFD is that it simply takes a long time to create:
so long that the analyst may not receive support from management to complete
it. This can be especially true when there is a lot of leveling to be performed.
Therefore, many firms shy away from the DFD on the basis that it is not
practical. The other disadvantage of the DFD is that it does not model time-
dependent behavior well, that is, the DFD is based on very finite processes that
typically have a very definable start and finish. This, of course, is not true of
all processes, especially those that are event driven. Event-driven systems will
be treated more thoroughly when we discuss State Transition Diagrams later in
this chapter.

The best solution to the time-consuming leveling dilemma is to avoid it as
much as possible. That is, you should avoid starting at too high a summary level
and try to get to the functional primitive as soon as you can. If in our example,
for instance, the analyst had initially seen that the DFD had two processes
instead of one, then the parent process could have been eliminated altogether.
This would have resulted in an initial functional primitive DFD at Level 1. The
only way to achieve this efficiency on a consistent basis is through practice.
Practice will eventually result in the development of your own analysis style or
approach. The one-in, one-out principle of the logical equivalent is an excellent
way of setting up each process. Using this method, every event description that
satisfies one-in, one-out will become a separate functional primitive process.
Using this procedure virtually eliminates leveling. Sometimes users will request
to see a summary-level DFD. In these cases the functional primitives can be
easily combined or “leveled-up.”

Process Flow Diagrams

While the data flow diagram provides the analyst with the LE of a process, it
does not depict the sequential steps of the process, which can be an important
piece of information in analyzing the completeness of a system. Understanding
the sequence of steps is especially important in situations where the information
gathered from users is suspect or possibly inaccurate. A process flow diagram
(PFD) can reveal processes and steps that may have been missed, because it
requires users to go through each phase of their system as it occurs in its
actual sequence. Having users go through their process step by step can help
them remember details that they might otherwise have overlooked. Therefore,

5. Process-Based Tools 59

using process flows provides another tool that can test the completeness of the

interview and LE.

Because of this advantage of the PFD, many methodologies, such as the

James Martin technique,6 suggest that analysts should always use PFDs instead

of DFDs. However, it is my opinion that these two models not only can coexist

but may actually complement each other. This section will focus on how a

process model is implemented and balanced against a DFD.

What Is a PFD?

PFDs were derived originally from flowcharts. Flowcharts, however, while they

are still valuable for certain diagramming tasks, are too clumsy and detailed

to be an effective and structured modeling tool. The PFD represents a more

streamlined and flexible version of a flowchart. Like a DFD, the PFD suggested

here contains processes, externals, and data flows. However, PFDs focus on how

externals, flows, and processes occur in relation to sequence and time, while

DFDs focus only on the net inputs and outputs of flows and the disposition of

data at rest.

The diagram on the following page is an example of a process flow.

6
The James Martin technique is a methodology that replaces data flow with process flows

as its vehicle to depict events as opposed to Yourdon’s method of data flow diagrams.

60 Analysis and Design of Information Systems

Figure 5.9 Sample process flow diagram.

5. Process-Based Tools 61

The above figure shows how a PFD depicts flows from one task to another. As

with a DFD, externals are shown by a rectangle. Flows are labeled and represent

information in transition. Unlike DFDs, process flows do not necessarily require

labeling of the flow arrows, and the processes themselves reflect descriptively

what the step in the system is attempting to accomplish, as opposed to necessarily

defining an algorithm.

Perhaps the most significant difference between a DFD and a process flow

is in its integration as a structured tool within the data repository. For example,

a labeled data flow from a DFD must create an entry into the data dictionary or

repository. Flow arrows from PFDs do not. Furthermore, a functional primitive

data flow points to a process specification; no such requirement exists in a

process flow. Figure 5.10 represents a DFD depiction of the same process shown

in Figure 5.9 above.

Figure 5.10 PFD in DFD format.

Note that the PFD and the DFD share the same boundaries of externals

(i.e., Marketing and Management). The DFD flows, however, must be defined

in the data dictionary or repository and therefore contain integrated formulas.

The other notable difference lies in the interface of the data store “Design

Information,” which will eventually be defined as an entity and decomposed

using logic data modeling techniques.

62 Analysis and Design of Information Systems

What are the relative benefits of using a PFD and a DFD? The answer lies in

the correspondence between the process rectangle and the DFD process bubble.

Process rectangles actually represent sequential steps within the DFD. They can

be compared to an IF statement in pseudocode or a simple statement to produce

a report or write information to a file. The PFD, in a sense, can provide a visual

depiction of how the process specification needs to be detailed. One functional

primitive DFD can thus be related to many process rectangles.

Based on the above analysis, therefore, a PFD can be justified as a tool in

support of validating process specifications from within a DFD. In addition, the

PFD might reveal a missing link in logic that could result in the creation of a

new DFD. Based on this argument, the process flow can be balanced against a

DFD and its functional primitives. Finally, the PFD has the potential to provide

a graphic display of certain levels of logic code. The corresponding PFD for the

DFD shown in Figure 5.8 is illustrated in Figure 5.11.

Figure 5.11 PFD and DFD cross-referenced.

5. Process-Based Tools 63

Sequence of Implementation

If both a DFD and a PFD are to be created, which should be done first? While
the decision can be left to the preference of the analyst, it is often sensible to start
with the DFD. A DFD can be created very efficiently, and it is useful to be able
to compare the DFD children against the sequential flow of the PFD. Creating
the DFD first also supports the concept of decomposition, since the PFD will
inevitably relate to the process specification of a functional primitive DFD. While
this approach seems to be easier in most cases, there is also justification for
creating a PFD first, especially if an overview flow diagram provides a means
of scoping the boundaries of an engineering process.

Data Dictionary

The data dictionary (DD) is quite simply a dictionary that defines data. We have
seen that the data flow diagram represents a picture of how information flows to
and from a process. As we pick up data elements during the modeling design,
we effectively “throw” them into the data dictionary. Remember, all systems are
comprised of two components: Data and Processes. The DD represents the data
portion.

There is a generic format followed by analysts, called DD notation. The
conventional notations are listed below:

= Equivalence

+ Concatenation

� � Either/Or Boundary

/ Either/Or separator

� � Optional

{ } Iterations of

∗∗ Comment

Equivalence (=):

The notion of equivalence does not express mathematical equality but rather
indicates that the values on the right side of the equal sign represent all the
possible components of the element on the left.

Concatenation (+):

This should not be confused with or compared to “plus”; it is rather the joining
of two or more components. For example: Last_Name + First_Name means that
these two data elements are being pieced together sequentially.

64 Analysis and Design of Information Systems

Either/Or with Option Separator ([/]):

Means “one of the following” and therefore represents a finite list of

possible values. An example would include the definition of Country =

[USA/Canada/United Kingdom/etc.].

Optional ():

The value is not required in the definition. A very common example is middle

initial: Name = Last_Name + First_Name + (Middle_Init).

Iterations of { }:

The value between the separators occurs a specific or infinite number of times.

Examples include:

1{ X }5 The element “X” occurs from one to five times

1{ X } The element “X” occurs from one to infinity

3{ X }3 The element “X” must occur three times.

Comments (∗∗)

Comments are used to describe the element or point the definition to the appro-

priate process specification should the data element not be definable in the DD.

We will explain this case later in this section.

Now that we have defined the components of the DD, it is important to

expand on its interface with other modeling tools, especially the DFD. If we

recall the example used earlier to describe drawing a DFD, the input data flow

was labeled “Vendor_Invoice” (see Figure 5.4). The first DD rule to establish is

that all labeled data flow names must be defined in the DD. Therefore, the DFD

interfaces with the DD by establishing data element definitions from its labeled

flows. To define Vendor_Invoice, we look at the physical invoices and ascertain

from the user the information the system requires. It might typically be defined

as follows:

Vendor_Invoice =Vendor_Invoice+ Invoice_Number+Vendor_Invoice_Date+

Vendor_Invoice_Name + Vendor_Invoice_Address_Line_1 +

Vendor_Invoice_Address_Line_2 +

Vendor_Invoice_Address_Line_3 + Vendor_State + Vendor_City +

Vendor_Zip_Code + Vendor_Salesperson + PO_Number +

Vendor_Date_Shipped + Vendor_Shipped_Via +

Vendor_Required_Date + Vendor_Terms + 1 {Item-Quantity +

Item_Description + Item_Unit_Price + Item_Amount} + Subtotal

Sales_Tax + Shipping/Handling + Invoice_Total_Due

5. Process-Based Tools 65

The above example illustrates what a vendor invoice would usually contain
and what is needed to be captured by the system. Note that Vendor_Invoice
is made up of component data elements that in turn need to be defined in
the DD. In addition, there is a repeating group of elements { Item-Quantity
+ Item_Description + Item_Unit_Price + Item_Amount } that represents each
line item that is a component of the total invoice. Since there is no limit to the
number of items that could make up one invoice, the upper limit of the iterations
clause is left blank and therefore represents infinity. Figure 4.12 is a sample of
how the physical invoice would appear.

It should be noted that many of the DD names have a qualifier of “Vendor”
before the field name. This is done to ensure uniqueness in the DD as well as
to document where the data element emanated from the DFD. To ensure that
all data elements have been captured into the DD, we again apply functional
decomposition, only this time we are searching for the functional primitive of the
DD entry. We will call this functionally decomposed data element an Elementary
Data Element. An Elementary Data Element is therefore an element that cannot
be broken down any further. Let us functionally decompose Vendor_Invoice by
looking to the right of the definition and picking up the data elements that have
not already been defined in the DD. These elements are:

Vendor_Invoice_Number = 1 { Numeric } 5

Vendor_Invoice_Date = 8 { Numeric }8

Vendor_Invoice_Name = 1 { Alphanumeric } 35

Vendor_Invoice_Address_Line_1 = 1 { Alphanumeric } 25

Vendor_Invoice_Address_Line_1 = 1 { Alphanumeric } 25

Vendor_Invoice_Address_Line_1 = 1 { Alphanumeric } 25

Vendor_State =
∗∗ All States in USA, Self Defining

Vendor_City = 1 { Alphanumeric } 30

Vendor_Zip = 5 { Numeric } 5 + (4 {Numeric} 4)

Vendor_Salesperson = 1 { Alphanumeric } 20

PO_Number = 4 { Alphanumeric } 4

Vendor_Date_Shipped = 8 { Numeric } 8

Vendor_Shipped_Via = 1 { Alphanumeric } 10

Vendor_Required_Date = 8 { Numeric } 8

Vendor_Terms = 1 { Numeric } 3

Item_Quantity = 1 { Numeric } 3

Item_Description = 1 { Alphanumeric } 30

Item_Unit_Price =
∗∗ Dollars Self-Defining

Item_Amount =
∗∗ See Process Spec xxx

Subtotal =
∗∗ See Process Spec yyy

Sales_Tax = 1 { Numeric } 3 ∗∗ Assumed Percentage

Shipping/Handling =
∗∗ Dollars Self-Defining

Invoice_Total_Due =
∗∗ See Process Spec zzz

The following rules and notations apply:

1. A self-defining definition is allowed if the data definition is obvious to
the firm or if it is defined in some general documentation (e.g., Standards

66 Analysis and Design of Information Systems

and Reference Manual). In the case of Vendor_State, an alternative

would be: Vendor_State= [AL/NY/NJ/CA� � �, etc.] for each state value.

2. Data elements that are derived as a result of a calculation cannot bedefined

in the DD but rather point to a process specification where they can be

properly identified. This also provides consistency in that all calculations

and algorithms can be found in the Process Specification section.

3. Typically values such as Numeric, Alphanumeric, and Alphabetic do not

require further breakdown unless the firm allows for special characters.

In that case, having the exact values defined is appropriate.

4. An iteration definition, where the minimum and maximum limit are the

same (e.g., 8 { Numeric } 8), means that the data element is fixed (that

is, must be 8 characters in length).

The significance of this example is that the DD itself, through a form of

functional decomposition, creates new entries into the DD while finding the

elementary data element. A good rule to follow is that any data element used in

defining another data element must also be defined in the DD. The DD serves as

the center for storing these entries and will eventually provide the data necessary

to produce the stored data model. This model will be produced using logic data

modeling (discussed in Chapter 6).

5. Process-Based Tools 67

Figure 5.12 Sample invoice form.

SQL Data Types

Relational database products define data elements using a construct called struc-

tured query language (SQL). SQL was originally created by IBM as a standard

programming language to query databases. SQL quickly became the de facto

standard in the computer industry, and while the generic data types used above

are useful in understanding the pure definition of data elements, database analysts

use SQL data types to define data elements. The principal SQL data types are

as follows:

68 Analysis and Design of Information Systems

Alphanumeric or Character Data Elements

These elements can be defined in two ways: (1) as a fixed-length string; or (2)

as a variable-length string. The word “string” means that there is a succession

of alphanumeric values that are concatenated to form a value. For example, the

string “LANGER” is really equivalent to five iterations of different alphanumeric

characters that are connected, or concatenated, together. A fixed-length alphanu-

meric data type is denoted by CHAR(n), where n is the size, or qualifier, of the

element. Fixed length means that the size of the data element must always be

n. This correlates to the generic definition of n { alphanumeric } n, which states

that the lower and upper limits of the iteration are the same. For example, if the

data element INVOICE was defined as a fixed-length string of seven characters,

its SQL definition is defined as CHAR(7).

Variable alphanumeric fields, on the other hand, relate to strings that can vary

in size within a predefined string limit. This means that the size of the string can

fall anywhere between one character and its maximum size. The SQL data type

definition of a variable-length field is VARCHAR2 (n),7 where n represents the

maximum length of the string. If the data element “LAST_NAME” was defined

as having up to 35 characters, its SQL data definition would be VARCHAR2(35).

This SQL data definition is equivalent to 1{alphanumeric}35.

Numbers or Numeric Data Elements

These elements can be defined in various ways. Let’s first look at the

representation of a whole number in SQL. Whole numbers are known mathemat-

ically as integers. SQL supports integers using the INTEGER(n) format, where

n is the number of digits in the whole number. However, as is so often available

with SQL definitions, there is an alternative way of specifying an integer using

the NUMBER clause. Thus NUMBER(n) will also store a whole number value

up to n positions in length. The equivalent representation using the generic

format is n{number}n.

Real numbers, or those that contain decimal positions, cannot be defined

using the INTEGER clause but can be defined using NUMBER. For example,

a number that contains up to 5 whole numbers and 2 decimal places would be

defined as NUMBER(7,2). Note that the first digit represents the total size of the

field, that is, 5 whole digits plus 2 decimal positions, which equals 7 positions

in total. The number “2” after the comma represents the number of decimal

places after the integer portion of the number. The second position preceding the

comma represents the number of places from the total digits that are assumed to

be decimal positions. The word assumption is important here in that it means that

7
There is an SQL data definition called VARCHAR, but most database products use the

revised definition of VARCHAR2.

5. Process-Based Tools 69

an actual decimal point (.) is not stored in the data type. An alternative notation

is NUMERIC. NUMERIC, as opposed to NUMBER, can be used only to define

real numbers. However, it uses the same format as the NUMBER datatype to

define a real number: NUMERIC (7,2). Depicting real numbers using the generic

format is possible but tricky. The generic specification would be (1{number}5)+

2{number}2. Note that the first part of the definition, the whole number portion,

is defined within optional brackets. This is done to allow for the situation where

the number has only a decimal value, such as “.25.”

Special Data Types

SQL offers special notation that makes it easy to depict specialized data

definitions, like date and time. Below are just some examples of the common

special notation used:

DATE: denotes a valid date by assigning a 4-digit year. This kind of

notation is compliant with year-2000 standards. The validity of

the value is handled internally by SQL.

TIME: denotes a valid time using the format hh/mm/ssss, where hh is

two digits of the hour; mm is two digits of the minute, and ssss

are four digits of the second. This format can vary by SQL

product.

TIMESTAMP: denotes the concatenation of the Date and the Time SQL

clauses. The combination of the two values provides a unique

specification of the exact time, day, and year that something has

occured.

FLOAT: denotes the storage of a value as a floating point number. The

format is usually FLOAT (n), where n represents the size in

digits.

The data element list below shows the definitions from Figure 5.12 in both

the generic and SQL formats:

70 Analysis and Design of Information Systems

Process Specifications

Many analysts define a process specification as everything else about the

process not already included in the other modeling tools. Indeed, it must

contain the remaining information that normally consists of business rules

8
The contents of the data element would be enforced by using a database constraint. A

database constraint is provided by the database product and is used to enforce the contents

of a particular data element or attribute.
9
The contents of a nine-digit ZIP code can be handled in SQL by adding a constraint

as explained in Footnote 8, or by breaking the element into two separate parts, or as two

data elements.

5. Process-Based Tools 71

and application logic. DeMarco suggested that every functional primitive DFD
point to a “Minispec” which would contain that process’s application logic.8 We
will follow this rule and expand on the importance of writing good application
logic. There are, of course, different styles, and few textbooks that explain the
importance to the analyst of understanding how these need to be developed
and presented. Like other modeling tools, each process specification style has
its good, bad and ugly. In Chapter 3, we briefly described reasons for devel-
oping good specifications and the challenges that can confront the analyst. In
a later chapter, the art of designing and writing both business and technical
specifications will be discussed in detail; here we are concerned simply with the
acceptable formats that may be used for this purpose.

Pseudocode

The most detailed and regimented process specification is pseudocode or struc-
tured English. Its format requires the analysts to have a solid understanding of
how to write algorithms. The format is very “COBOL-like” and was initially
designed as a way of writing functional COBOL programming specifications.
The rules governing pseudocode are as follows:

• use the Do While with an Enddo to show iteration;
• use If-Then-Else to show conditions and ensure each If has an End-If;
• be specific about initializing variables and other detail processing

requirements.

Pseudocode is designed to give the analyst tremendous control over the design
of the code. Take the following example:

There is a requirement to calculate a 5% bonus for employees who

work on the 1st shift and a 10% bonus for workers on the 2nd or

3rd shift. Management is interested in a report listing the number

of employees who receive a 10% bonus. The process also produces

the bonus checks.

The pseudocode would be

Initialize 10% counter = 0
Open Employee Master File
Do While more records

If Shift = “1” then
Bonus = Gross_Pay ∗.05

Else
If Shift = “2” or “3” then

8
Tom DeMarco, Structured Analysis and System Specification, Yourdon Press,

pp. 85–86.

72 Analysis and Design of Information Systems

Bonus = Gross_Pay ∗.10
Add 1 to Counter

Else
Error Condition

Endif
Endif

Enddo
Print Report of 10% Bonus Employees
Print Bonus Checks
End

The above algorithm gives the analyst great control over how the program
should be designed. For example, note that the pseudocode requires that the
programmer have an error condition should a situation occur where a record does
not contain a 1st, 2nd or 3rd shift employee. This might occur should there be a
new shift which was not communicated to the information systems department.
Many programmers might have omitted the last “If” check as follows:

Initialize 10% counter = 0
Open Employee Master File
Do While more records

If Shift = “1” then
Bonus = Gross_Pay ∗.05

Else
Bonus = Gross_Pay ∗.10
Add 1 to Counter

Endif
Enddo
Print Report of 10% Bonus Employees
Print Bonus Checks
End

The above algorithm simply assumes that if the employee is not on the 1st
shift then they must be either a 2nd or 3rd shift employee. Without this being
specified by the analyst, the programmer may have omitted this critical logic
which could have resulted in a 4th shift worker receiving a 10% bonus! As
mentioned earlier, each style of process specification has its advantages and
disadvantages, in other words, the good, the bad, and the ugly.

The Good

The analystwhouses this approachhas practicallywritten the program, and thus the
programmer will have very little to do with regards to figuring out the logic design.

The Bad

The algorithm is very detailed and could take a long time for the analyst to
develop. Many professionals raise an interesting point: do we need analysts
to be writing process specifications to this level of detail? In addition, many
programmers may be insulted and feel that an analyst does not possess the skill
set to design such logic.

5. Process-Based Tools 73

The Ugly

The analyst spends the time, the programmers are not supportive, and the logic is
incorrect. The result here will be the “I told you so” remarks from programmers,
and hostilities may grow over time.

Case

Case9 is another method of communicating application logic. Although the
technique does not require as much technical format as pseudocode, it still requires
the analyst to provide a detailed structure to the algorithm. Using the same
example as in the pseudocode discussion, we can see the differences in format:

Case 1st Shift

Bonus = Gross_Pay ∗ .05

Case 2nd or 3rd Shift

Bonus = Gross_Pay ∗ .10

Add 1 to 10% Bonus Employees

Case Neither 1st, 2nd or 3rd Shift

Error Routine

EndCase

Print Report of 10% Bonus Employees

Print Bonus Checks

End

The above format provides control, as it still allows the analyst to specify
the need for error checking; however, the exact format and order of the logic are
more in the hands of the programmer. Let’s now see the good, the bad, and the
ugly of this approach.

The Good

The analyst has provided a detailed description of the algorithm without having
to know the format of logic in programming. Because of this advantage, Case
takes less time than pseudocode.

The Bad

Although this may be difficult to imagine, the analyst may miss some of the
possible conditions in the algorithm, such as forgetting a shift! This happens
because the analyst is just listing conditions as opposed to writing a specifi-
cation. Without formulating the logic as we did in pseudocode, the likelihood of
forgetting or overlooking a condition check is increased.

9
The Case method should not be confused with CASE (computer-aided software

engineering) products, software used to automate and implement modeling tools and data

repositories.

74 Analysis and Design of Information Systems

The Ugly

Case logic can be designed without concern for the sequence of the logic, that is,
the actual progression of the logic as opposed to just the possibilities. Thus the
logic can become more confusing because it lacks actual progressive structure.
As stated previously, the possibility of missing a condition is greater because the
analyst is not actually following the progression of the testing of each condition.
There is thus a higher risk of the specification being incomplete.

Pre-Post Conditions

Pre-post is based on the belief that analysts should not be responsible for the details
of the logic, but rather for the overall highlights of what is needed. Therefore, the
pre-post method lacks detail and expects that the programmers will provide the
necessary details when developing the application software. The method has two
components: Pre-Conditions and Post-Conditions. Pre-conditions represent things
that are assumed true or that must exist for the algorithm to work. For example, a
pre-condition might specify that the user must input the value of the variable X.
On the other hand, the post-condition must define the required outputs as well as
the relationships between calculated output values and their mathematical compo-
nents. Suppose the algorithm calculated an output value called Total_Amount.
The post-condition would state that Total_Amount is produced by multiplying
Quantity times Price. Below is the pre-post equivalent of the Bonus algorithm:

Pre-Condition 1:

Access Employee Master file and where 1st shift = “1”

Post-Condition 1:

Bonus is set to Gross_Pay ∗ .05.

Produce Bonus check.

Pre-Condition 2:

Access Employee Master file and where 2nd shift = “2” or

3rd shift =“3”

Post-Condition 2:

Bonus is set to Gross_Pay ∗ .10

Add 1 to 10% Bonus count.

Produce Bonus check and Report of all employees who receive

10% bonuses.

Pre-Condition 3:

Employee records does not contain a shift code equal

to “1”, “2”, or “3”

Post-Condition 3:

Error Message for employees without shifts = “1”, “2”, or “3”

As we can see, this specification does not show how the actual algorithm
should be designed or written. It requires the programmer or development team
to find these details and implement the appropriate logic to represent them.
Therefore, the analyst has no real input into the way the application will be
designed or the way it functions.

5. Process-Based Tools 75

The Good

The analyst need not have technical knowledge to write an algorithm and need not

spend an inordinate amount of time to develop what is deemed a programming

responsibility. Therefore, less technically oriented analysts can be involved in

specification development.

The Bad

There is no control over the design of the logic, and thus the potential for

misunderstandings and errors is much greater. The analyst and the project are

much more dependent on the talent of the development staff.

The Ugly

Perhaps we misunderstand the specification. Since the format of pre–post condi-

tions is less specific, there is more room for ambiguity.

Matrix

A matrix or table approach shows the application logic in tabular form. Each row

reflects a result of a condition, with each column representing the components

of the condition to be tested. The best way to explain a matrix specification is

to show an example (see Figure 5.13).

Figure 5.13 Sample matrix specification.

Although this is a simple example that uses the same algorithm as the other

specification styles, it does show how a matrix can describe the requirements of

an application without the use of sentences and pseudocode.

The Good

The analyst can use a matrix to show complex conditions in a tabular format.

Many programmers prefer the tabular format because it is organized, easy to

read, and often easy to maintain. Very often the matrix resembles the array and

table formats used by many programming languages.

76 Analysis and Design of Information Systems

The Bad

It is difficult, if not impossible, to show a complete specification in matrices.

The example in Figure 5.13 supports this, in that the remaining logic of the

bonus application is not shown. Therefore, the analyst must incorporate one of

the other specification styles to complete the specification.

The Ugly

Matrices are used to describe complex condition levels, where there are many

“If” conditions to be tested. These complex conditions often require much more

detailed analysis than shown in a matrix. The problem occurs when the analyst,

feeling the matrix may suffice, does not provide enough detail. The result: the

programmer may misunderstand conditions during development.

Conclusion

The same question must be asked again: what is a good specification? We

will continue to explore this question. In this chapter we have examined the

logic alternatives. Which logic method is best? It depends! We have seen from

the examples that each method has its advantages and shortcomings. The best

approach is to be able to use them all and to select the most appropriate one for

the task at hand. To do this effectively means clearly recognizing both where

each style provides a benefit for the part of the system you are working with,

and who will be doing the development work. The table in Figure 5.14 attempts

to put the advantages and shortcomings into perspective.

5. Process-Based Tools 77

Figure 5.14 Process specification comparisons.

State Transition Diagrams

State transition diagrams (STD) were designed to model events that are time-

dependent in behavior. Another definition of the STD is that it models the

application alternatives for event-driven activities. An event-driven activity is

any activity that depends directly on the behavior of a pre-condition that makes

that event either possible or attractive. Before going any further, let’s use an

example to explain this definition further:

Mary leaves her office to go home for the day. Mary lives 20

minutes’ walking distance from the office. When departing from the

office building, she realizes that it is raining very hard. Typically,

Mary would walk home; however, due to the rain, she needs to make

a decision at that moment about how she will go home. Therefore,

an event has occurred during the application of Mary walking home

which may change her decision and thus change the execution of

this application.

As shown above, we have defined an event that, depending on the conditions

during its execution, may have different results. To complete the example, we

must examine or define what Mary’s alternatives for getting home.

The matrix in Figure 5.15 shows us the alternative activities that Mary can

choose. Two of them require a certain amount of money. All of the alternatives

have positive and negative potentials that cannot be determined until executed;

therefore, the decision to go with an alternative may depend on a calculation of

78 Analysis and Design of Information Systems

probability. We sometimes call this a calculated risk or our “gut” feeling. Is it
not true that Mary will not know whether she will be able to find a taxi until
she tries? However, if Mary sees a lot of traffic in the street and not many taxis,
she may determine that it is not such a good idea to take a taxi.

Figure 5.15 Mary’s event alternatives.

Much of the duplication of the scenario above falls into the study of Artificial
Intelligence (AI) software. Therefore, AI modeling may require the use of STDs.
The word “state” in STD means that an event must be in a given pre-condition
before we can consider moving to another condition. In our example, Mary is in
a state called “Going Home From the Office.” Walking, taking a train or taking
a taxi are alternative ways of getting home. Once Mary is home she has entered
into a new state called “Home.” We can now derive that walking, taking a train
or taking a taxi are conditions that can effect a change in state, in this example
leaving the office and getting home. Figure 5.16 shows the STD for going home.

Figure 5.16 State transition diagram for going home.

This STD simply reflects that two states exist and that there is a condition
that causes the application to move to the “Home” state. When using STDs, the
analyst should:

1. identify all states that exist in the system (in other words, all possible
permutations of events must be defined),

5. Process-Based Tools 79

2. ensure that there is at least one condition to enter every state,

3. ensure that there is at least one condition to leave every state.

The reasons for using STD differ greatly from those for a DFD. A DFD

should be used when modeling finite, sequential processes that have a definitive

beginning and end. We saw this situation in the previous examples in this

chapter. The STD, on the other hand, is needed when the system effectively

never ends, that is, when it simply moves from one state to another. Therefore,

the question is never whether we are at the beginning or end of the process, but

rather the current state of the system. Another example, one similar to that used

by Yourdon in Modern Structured Analysis, is the Bank Teller state diagram

shown in Figure 5.17.

Although you may assume that “Enter Valid Card” is the start state, an

experienced analyst would know better. At any time, the automated teller is in

a particular state of operation (unless it has abnormally terminated). The “Enter

Valid Card” state is in the “sleep” state. It will remain in this mode until someone

creates the condition to cause a change, which is actually to input a valid card.

Notice that every state can be reached and every state can be left. This rule

establishes perhaps the most significant difference between the DFD and STD.

Therefore, a DFD should be used for finite processes, and an STD should be

used when there is ongoing processing, moving from one status to another.

Figure 5.17 Bank Teller state transition diagram.

80 Analysis and Design of Information Systems

Let us now show a more complex example which emphasizes how the STD

can uncover conditions that are not obvious or were never experienced by the

user. Take the matrix of states for a thermostat shown in Figure 5.18.

Figure 5.18 Thermostat states.

Figure 5.19 depicts the STD for the above states and conditions.

Figure 5.19 State transition diagram based on the user-defined states.

Upon review, we notice that there are really two systems and that they do

not interface with each other. Why? Suppose, for example, that the temperature

went above 70 and that the system therefore went into the Furnace Off state,

but that the temperature nevertheless continued to increase unexpectedly. Users

expect that whenever the Furnace Off state is reached, it must be winter. In the

event of a winter heat wave, everyone would get very hot. We have therefore

discovered that we must have a condition to put the air on even if a heat wave

had never occurred before in winter. The same situation exists for the Air Off

where we expect the temperature to rise instead of falling. We will thus add two

new conditions (see Figure 5.20).

Current State Condition to cause a change in State New State

Furnace Off Temperature exceeds 75 degrees Air On

Air Off Temperature drops below 65 degrees Furnace On

Figure 5.20 Additional possible states of the thermostat.

5. Process-Based Tools 81

The STD is then modified to show how the Furnace and Air subsystems

interface (see Figure 5.21).

Figure 5.21 Modified state transition diagram based on modified events.

Using STDs to discover missing processes (that would otherwise be omitted

or added later) is very important. This advantage is why STDs are considered

very effective in Artificial Intelligence and Object Oriented analysis, where the

analyst is constantly modeling event-driven, never ending processes. We will

see further application of STDs in Chapter 11: Object-Oriented Techniques.

Entity Relational Diagrams

The model that depicts the relationships among the stored data is known as

an entity relational diagram (ERD). The ERD is the most widely used of all

modeling tools and is really the only method to reflect the system’s stored data.

An entity in database design is an object of interest about which data can

be collected. In a retail database application, customers, products, and suppliers

might be entities. An entity can subsume a number of attributes: product attributes

might be color, size, and price; customer attributes might include name, address,

and credit rating.10

The first step to understanding an entity is to establish its roots. Since

DFDs have been used to model the processes, their data stores (which may

represent data files) will act as the initial entities prior to implementing logic

data modeling. Logic data modeling and its interface with the DFD will be

10 Microsoft Press, Computer Dictionary, 2nd ed, p. 149.

82 Analysis and Design of Information Systems

discussed in Chapter 6, thus the scope of this section will be limited to the

attributes and functions of the ERD itself.

It is believed, for purposes of data modeling, that an entity can be simply

defined as a logical file which will reflect the data elements or fields that are

components of each occurrence or record in the entity. The ERD, therefore,

shows how multiple entities will interact with each other. We call this interaction

the “relationship.” In most instances, a relationship between two or more entities

can exist only if they have at least one common data element among them.

Sometimes we must force a relationship by placing a common data element

between entities, just so they can communicate with each other. An ERD typically

shows each entity and its connections as shown in Figure 5.22:

Figure 5.22 Entity relational diagram showing the relationship between the Orders and

Customers entities.

The above example shows two entities: Orders and Customers. They have

a relationship because both entities contain a common data element called

Customer#. Customer# is depicted as “Key Data” in the Customers entity because

it must be unique for every occurrence of a customer record. It is notated as

“PK1” because it is defined as a Primary Key, meaning that Customer# uniquely

identifies a particular customer. In Orders, we see that Customer# is a primary

key but it is concatenated with Order#. By concatenation we mean that the two

elements are combined to form a primary key. Nevertheless, Customer# still has

its separate identity. The line that joins the entities is known as the relationship

5. Process-Based Tools 83

identifier. It is modeled using the “Crow’s Foot” method, meaning that the many
relationship is shown as a crow’s foot, depicted in Figure 5.22 going to the Order
entity. The double vertical lines near the Customer entity signify “One and only
One.” What does this really mean? The proper relationship is stated:

“One and only one customer can have one to many orders.”

It means that customers must have placed at least one order, but can also have
placed more than one. “One and only One” really indicates that when a Customer
is found in the Order entity, the Customer must also exist in the Customer entity.
In addition, although a Customer may exist multiple times in the Order entity,
it can exist in the Customer master entity only once. This relationship is also
know as the association between entities and effectively identifies the common
data elements and the constraints associated with their relationship. This kind of
relationship between entities can be difficult to grasp, especially without benefit
of a practical application. Chapter 6 will provide a step-by-step approach to
developing an ERD using the process of logical data modeling.

Problems and Exercises

1. What is a functional primitive?
2. What are the advantages and disadvantages of a data flow diagram?

What is meant by “leveling up”?
3. What is a PFD? Describe its relationship to a DFD.
4. What is the purpose of the data dictionary?
5. Define each of the following data dictionary notation symbols: =, +, [],

/, (), { }, ∗∗

6. What is an elementary data element? How does it compare with a
functional primitive?

7. Define the functions of a process specification. How does the process
specification interface with the DFD and the DD?

8. Compare the advantages and disadvantages of each of the following
process specification formats:

• Pseudocode
• Case
• Pre–Post Condition
• Matrix

9. What is an event-driven system? How does the Program Manager in
Windows applications represent the behavior of an event driven system?

10. When using an STD, what three basic things must be defined?
11. What is an Entity? How does it relate to a Data Store of a DFD?
12. Explain the concept of an Entity Relational Diagram.
13. What establishes a relationship between two entities?
14. Define the term “association.”

84 Analysis and Design of Information Systems

Mini-Project #1

An application is required that will calculate employee bonuses as follows:

1. There are three (3) working shifts. The bonuses are based on shift:

• 1st Shift: 5% bonus
• 2nd Shift: 10% bonus
• 3rd Shift: 10% bonus

2. The bonus is calculated by multiplying the percentage by the annual
gross pay of the employee.

3. The employee records are resident on the employee master file, which
resides on a hard disk.

4. Bonus checks are produced for all employees.
5. There is a report produced that lists the number of employees who

received a 10% bonus.

Assignment

Draw the PFD.

Mini-Project #2

You have been asked to automate the Accounts Payable process. During your
interviews with users you identify four major events as follows:

I. Purchase Order Flow

1. The Marketing Department sends a purchase order (P.O.) form for
books to the Accounts Payable System (APS).

2. APS assigns a P.O. # and sends the P.O.-White copy to the Vendor and
files the P.O.-Pink copy in a file cabinet in P.O.#.sequence.

II. Invoice Receipt

1. A vendor sends an invoice for payment for books purchased by APS.
2. APS sends invoice to Marketing Department for authorization.
3. Marketing either returns invoice to APS approved or back to the vendor

if not
4. authorized.
5. If the invoice is returned to APS it is matched up against the original

P.O.-Pink. The PO and vendor invoice are then combined into a packet
and prepared for the voucher process.

5. Process-Based Tools 85

III. Voucher Initiation

1. APS receives the packet for vouchering. It begins this process by
assigning a voucher number.

2. The Chief Accountant must approve vouchers > $5,000.
3. APS prepares another packet from the approved vouchers. This packet

includes the P.O.-Pink, authorized invoice and approved voucher..

IV. Check Preparation

1. Typist receives the approved voucher packet and retrieves a numbered
blank

2. check to pay the vendor.
3. Typist types a two-part check (blue,green) using data from the approved

voucher and enters invoice number on the check stub.
4. APS files the approved packet with the Check-green in the permanent

paid file.
5. The check is either picked up or mailed directly to the vendor.

Assignment

1. Provide the DFDs for the four events. Each event should be shown as
a single DFD on a separate piece of paper.

2. Level each event to its functional primitives.
3. Develop the Process Specifications for each functional primitive DFD.
4. Create a PFD.

Mini-Project #3

Based on the mini-project from Chapter 3, the following information was
obtained from Mr. Smith during the actual interview:

1. The hiring department forwards a copy of a new hire’s employment letter.
2. The copy of the hire letter is manually placed in a pending file, which

has a date folder for every day of the month. Therefore, Mr. Smith’s
department puts the letter in the folder for the actual day the new
employee is supposed to report for work.

3. When the employee shows up, he/she must have the original hire letter.
4. The original and copy are matched. If there is no letter in the file, the

hiring department is contacted for a copy.
5. The new employee is given a “New Employee Application” form.

The form has two sides. The first side requires information about the
individual; the second side requests insurance-related information.

86 Analysis and Design of Information Systems

6. The employee is given an employee ID card and is sent to work.

7. The application form and letter are filed in the employee master cabinet.

8. A copy of side two of the application form is forwarded to the insurance

company. The copy of the form is filed in an insurance pending file,

using the same concept for follow-up as the new-hire pending file system.

9. The insurance company sends a confirmation of coverage to the

department. At that time, the pending file copy is destroyed.

10. Based on the employee level, insurance applications are followed up

with a call to the insurance company.

Assignment

Based on the above facts, create the DFDs that depict the system. Level the

DFDs until they are at a functional primitive level.

Mini-Project #4

The following is the information obtained during an interview with the ABC

Agency:

People or potential renters call the ABC Agency and ask them if apartments

are available for rent. All callers have their information recorded and stored

in an information folder. The agency examines the file and determines whether

their database has any potential matches on the properties requested. People

also call the agency to inform them that they have an apartment for rent. Fifteen

days before rent is due, the agency sends invoices to renters. Sixty days before

the lease is up, the agency sends a notice for renewal to the renter.

Assignment

1. Draw the DFDs.

2. Level DFDs to functional primitive.

3. Provide process specifications for each functional primitive DFD. Use

at least three different process specification “styles.”

6
Logic Data Modeling Tools

Logic data modeling is a set of procedures that examines an entity to ensure

that its component attributes (data elements) should reside in that entity, rather

than being stored in another or new entity. Therefore, LDM focuses solely on

the stored data model. The LDM process is somewhat controversial and subject

to various opinions; however, listed below are the common steps used by many

professionals in the industry:

1. identify major entities

2. select primary and alternate keys

3. determine key business rules

4. apply normalization to 3rd normal form

5. combine user views

6. integrate with existing models (legacy interfaces)

7. determine domains and triggering operations

8. de-normalize carefully

Normalization Defined

Perhaps the most important aspect of logical data modeling is Normalization.

Normalization, at a high level, is generally defined as the elimination of redun-

dancies from an entity. Although this is an accurate definition, it does not fully

convey the true impact of what normalization is trying to accomplish, and more

important, what it means not to apply it to your model.

We can see from the above list that normalization is only one step in the

LDM process, albeit the most critical. I have found, however, that there is an

advantage to understanding normalization first, before trying to understand the

entire LDM process.

Before we explain this any further it is necessary to define the three forms of

normalization.11 These forms are known as 1st normal form, 2nd normal form

11 Although there are 5 published normal forms, most industry leaders have accepted that

normal forms 4 and 5 are difficult to implement and typically unnecessary. Therefore,

this book omits forms 4 and 5.

88 Analysis and Design of Information Systems

and 3rd normal form. Normal form is typically abbreviated “NF.” Each normal

form should be dependent on the completion of the previous form, therefore,

normalization should be applied in order. Below are the rules that satisfy each

normal form:

1st NF: No repeating elements or repeating groups

2nd NF: No partial dependencies on a concatenated key

3rd NF: No dependencies on non-key attributes

Normalization Approaches

If DFDs have been completed, all data stores that represent data files become the

initial major entities or the first step in the LDM. Therefore, if process models

are done first, the selection of major entities is easier. If process models are

not used then the analyst must hope that a legacy system exists from which

the data can be converted and then tested for compliance with normalization. If

no legacy system exists, you will need to examine forms and try to determine

what constitutes an entity.12 The following example assumes that a DFD exists

and shows that the process creates a data store called “Orders.” This data store

represents the storage of all orders sent by customers for the various items that

the company sells. Figure 6.1 is a sample of a customer order and the data

elements that exist on the form.

We begin this normalization example assuming that steps 1, 2 and 3 of

the LDM are complete (Identifying Major Entities, Selecting the Primary and

Alternate Keys, and Identifying Key Business Rules, respectively). Our major

entity is the data store “Orders” and its Primary Key is “Order#.” There are

no Alternate Keys (a concept discussed later). The first aspect to point out is

that the data store from the DFD becomes an entity in the LDM process (see

Figure 6.2).

To show how normalization works, Figure 6.3 depicts the Orders entity with

its primary key Order# inside the box. The non-keyed attributes (data elements

are often called attributes of an entity when performing LDM) are shown as

dependent cells. These cells or attributes basically belong to or “depend on” the

entity and do not affect the outcome of the normalization process. However, a

dependent attribute may become a key attribute as a result of normalization. We

will see this in the example shown in Figure 6.3.

The form shows that a repeating body of elements exists in the area of items

ordered. That is, many items can be associated with a single order. We call this

a repeating group, and it is shown within the box in Figure 6.3. Looking at this

entity, we must first ask ourselves: are we in 1st NF? The answer is clearly no

12 There are several techniques that analysts have used, but they are beyond the scope of

this book.

6. Logic Data Modeling Tools 89

Figure 6.1 Sample customer order form.

Figure 6.2 This diagram shows the transition of a data store into an entity.

90 Analysis and Design of Information Systems

Figure 6.3 The Orders entity and its associated attributes.

because of the existence of a repeating element or group. By showing the box

surrounding the repeating body, we are, in effect, exposing the fact that there is

a primary key being treated as a non-key attribute. In other words, there really

is another entity embedded within the Orders entity. Whenever a normal form is

violated, the solution is to create a new entity. If it is a 1st NF failure, the new

entity will always have a concatenated primary key composed of the primary

key from the original entity joined with a new key from the repeating group.

This new key must be the attribute in the group that controls the others. All

other attributes will be removed from the original entity and become part of the

new one, as shown in Figure 6.4.

Figure 6.4 now shows a new entity: Order Items which has a concatenated

primary key composed of the Order# from the original entity and the Item ID

which is the identifier of each item that is contained within an order. Note that

all the non-key (dependent) attributes now become part of the new entity. First

NF now allows the system to store as many items associated with an order as

6. Logic Data Modeling Tools 91

Figure 6.4 This diagram shows the entities in 1st NF.

required. The original file would have required an artificial occurrence to be

included in each record. This would result in (1) order records that waste space

because the order had fewer items than the maximum, and (2) the need to create

a new order if the number of items exceeds the maximum allotted per order in

the file.

Our entities are now said to be in 1st NF. Don’t rejoice yet—we must

now check 2nd NF. Second NF applies only to entities that have concatenated

primary keys. Therefore, any entity that is in 1st NF and does not have a

concatenated primary key must be in 2nd NF, simply by definition. As a result,

the Orders entity must be in 2nd NF. The issue becomes the Order Items entity.

To check for 2nd NF compliance, the analyst needs to ensure that every non-

key attribute is totally dependent on all parts of the concatenated primary key.

When we run this test on Item Name, we see that it depends only on the Item

ID and has no dependency on Order#. It is, therefore, considered a 2nd NF

violation. Once again, a new entity must be created. The primary key of this

new entity will always be the key attribute for which elements had a partial

92 Analysis and Design of Information Systems

dependency. In this case, it is Item ID. All non-key attributes dependent only

on Item ID will become part of the new entity, which we will call “Items.”

Note that non-key attributes “Quantity” and “Amount” stay with the Order

Items entity because they are dependent on both the order and item keys. To

be clearer, the quantity of an item ordered will be different for each order

(or the same by coincidence). The result now is three entities as shown in

Figure 6.5.

We are now in 2nd NF. Once again, don’t rejoice too early—we must test for

3rd NF. Third NF tests the relationship between non-key attributes to determine

if one is dependent on another, that is, if a non-key attribute is dependent on

another non-key attribute. If this occurs, then the controlling non-key attribute is

really a primary key and should be part of a new entity. If we look at the Order

Figure 6.5 This diagram shows the entities in 2nd NF.

6. Logic Data Modeling Tools 93

Figure 6.6 This diagram shows the entities in the first phase of 3rd NF.

entity, we will find that both Customer Name and Customer Address13 are really
dependent on the non-key attribute Customer ID. Therefore, it fails 3rd NF, and
a new entity is formed with the controlling attribute, now a key. The new entity
is Customers (see Figure 6.6).

Note that the Customer ID also remains as a non-key attribute in Orders. All
3rd NF failures require this to happen. The non-key attribute Customer ID is
called a foreign key and enables the Customer entity and Order entity to have a
relationship.

13 Customer Address would normally be comprised of more components, namely more

than one address line, city, state, and zip, but it has been left out of this example for the

sake of simplicity.

94 Analysis and Design of Information Systems

We may ask ourselves if we have now reached 3rd normal form. The answer
is still no! Although not intuitively obvious, there are still non-key attributes that
are dependent on non-key attributes. These are, however, slightly different from
the Customer ID case. For example, if you look at the Order Items entity, there
is a non-key attribute called Amount. Amount represents the total of each item
included in an order. Amount is a calculation, namely Quantity ∗ Unit Price.
Attributes that are calculations are said to be dependent and are known as a
derived value. One can see that Amount is indirectly dependent on Quantity in
the entity Order Items. When non-key attributes are deemed derived and thus
redundant because their values can be calculated at any time, they are removed
from the entity.14 The same problem also exists in the entity Orders. Subtotal
and Total Due are also derived and therefore must be removed from the logical
model. Our 3rd NF LDM is now modified as shown in Figure 6.7.

At this point we believe that 3rd NF has been reached and we should now
produce the Entity Relational Diagram (ERD), which will show the relationships
(connections) of one entity with others. The ERD is fairly simple to draw, and
the analyst should start by putting each entity into the accepted ERD format (see
Figure 6.8).

The ERD in Figure 6.8 depicts the relationships of all the entities. Let’s see
what it tells the analyst:

• The Order entity has a “one and only one to one to many” relationship
with the Order Items entity. That is, there must be at least one item
associated with an Order, or the order cannot exist.

• The Items entity has a “one and only one to zero to many” relationship
with the Order Items entity. The difference between this relationship
and the one established with Orders, is that here an Item does not have
to be associated with any order. This would be the case for a new item
that has not yet been ordered by any customer.

• The Order Items entity has a primary key that is comprised of the
concatenation of order# and item_id, which are the primary keys of
Order and Items, respectively. The Order Item entity is said to be
an “associative” entity, in that it exists as the result of a many-to-
many relationship between Order and Items. Specifically, one or many
orders could be associated with one or many items. A many-to-many
relationship not only violates normalization, but creates significant
problems in efficient SQL15 coding. Therefore, associative entities are

14 Although derived attributes are removed from the logical model during normalization,

they may be put back into the entity in the physical model. The physical model is the entity

in actual database format. These attributes are put back due to performance problems in

physical database products. We call this de-normalization, which will be discussed later

in the chapter.
15 SQL stands for Structured Query Language. SQL is the standard query language used

in relational database products. SQL was invented by IBM in the early 1980s.

6. Logic Data Modeling Tools 95

Figure 6.7 This diagram shows the entities in the second phase of 3rd NF.

created to avoid these relationships. First NF failures often result in

associative entities. It should also be noted that the primary keys of

Order Items are shown with an “(FK)” symbol. This model, which

was developed using Popkin’s System Architect CASE tools, shows all

primary keys that originate in a foreign entity with a “(FK)” notation.

Although this is not an industry standard, software products vary in

their depiction of derived primary keys.
• Customers has a “one and only one to zero-to-many” relationship with

the Order entity. Note that a Customer may not have ever made an

order. In addition, this model shows customer_id in the Order entity as

a non-key attribute pointing to the primary key of Customers. This is

the standard definition of a foreign key pointer.

96 Analysis and Design of Information Systems

Figure 6.8 The entities in ERD model.

What Normalization Does Not Do

Although we have reached 3rd NF and completed the ERD, there is a problem.

The problem is serious and exists in the case of a change in Unit Price. Should

the Unit Price change, there is no way to calculate the historical costs of

previous order items. Remember that we eliminated Amount because it was a

derived element. This poses an interesting problem in that it appears that normal-

ization has a serious flaw—or does it ? Before making this evaluation, let’s first

determine the solution to this problem. Does replacing Amount in the Item entity

solve the problem? Although we could “back into” the old price by dividing

the Amount by Quantity, it would not represent a true solution to the problem.

Looking closer, we will ultimately determine that the real problem is a missing

attribute: Order Item Unit Price or the price at the time of the order. Order Item

Unit Price is dependent on both the Order and the Item and is therefore wholly

dependent on the entity Order Items. It becomes a non-key attribute of that entity,

which means our ERD must be modified. It is important to note that Order Item

Unit Price is not a derived element. It is only related to Unit Price from the Item

entity at the time of the order16; thereafter they are separate elements. Because of

this phenomenon, the analyst has actually discovered a new data element during

normalization. To be consistent with the rules, this new data element must be

added to the ERD and the Data Dictionary (see Figure 6.9).

16 The Order Item Unit Price would retrieve the Unit Price during data entry of the order

and would therefore be controlled via the application program that governs the entry of

orders.

6. Logic Data Modeling Tools 97

Figure 6.9 ERD with the addition of order_item_unit_price.

The question now is: what does all this mean? To put the above problem

and solution into perspective is actually quite simple: normalization will not

work completely unless all attributes are included during the process. While

normalization itself will not uncover missing elements, the good news is that

the normalization process and the ensuing ERD did uncover the problem! If the

analyst stands to learn anything from this example, it is that normalization does

not ensure that the model is complete nor is it a panacea for the art of data

modeling. It is simply another tool that the analyst can use to reach the logical

equivalent, albeit a very important one.

The Supertype/Subtype Model

A troublesome database issue occurs in the LDM when there are records within

an entity that can take on different characteristics or have many “types” of data

elements. By “type” we mean that a portion of the data elements in a specific

record can vary depending on the characteristic or identification of the record

within that entity. Another way of describing this issue is that a portion of the

elements contained within a given record can be different from other records of

the same entity depending on the type of row it represents, or as it is defined as

a “subtype” of the record. A subtype, therefore, is the portion of the record that

deviates from the standard or “supertype” part of the record. The “supertype”

portion is always the same among all the records in the entity. In other words, the

“supertype” represents the global part of the attributes in an entity. A diagram

of this phenomenon can best explain this concept in Figure 6.10:

98 Analysis and Design of Information Systems

Figure 6.10 Supertype/subtype relationship.

The significant difference between a subtype and just a type identifier (using a

foreign key) is the existence of at least one nonkey attribute that follows just that

subtype part of the record. Thus, the main reason to design a supertype/subtype

database is the existence of multiple permutations of different elements that exist

in just certain types of records. Keeping all the permutations of elements within

a record format can be problematic. First, it can waste storage, especially if

each subtype has a significant number of unique elements. Second, it can create

massive performance issues, particularly as it relates to the querying of data.

Using the above example, we show two potential ways to store the data. The

first (Figure 6.11) represents a simple solution with all the permutations existing

in the record. The “type” of record is identified using a foreign key pointer to

an entity called “Educator Type.”

Figure 6.11 Educator ERD using one entity with foreign key identifier.

6. Logic Data Modeling Tools 99

This solution, while having only one main entity, wastes space because all

elements are not used in any one “type” of record. The user must be aware of

the meanings of the type identifier and remember which elements exist for each

type of educator. This method of logic data modeling violates the concepts of

normalization, and entrusts the integrity of values of elements in an entity to

either an application program’s control, or to the memory of the user. None of

these choices are particularly dependable or have proven to be a reliable method

of data dependency.

On the other hand, Figure 6.12 provides a different solution using the

supertype/subtype construct.

This construct depicts each type of educator as a separate entity, linked via a

special notation in the relational model, known as the supertype/subtype relation.

The relationship is mutually exclusive, meaning that any global supertype can

have only one of the three subtypes for any one supertype occurrence. Thus, the

relationship between any row of a supertype must be one-to-one with a subtype.

The supertype/subtype model creates a separate subtype entity to carry only its

related elements that are unique to its subtype.

There are two major benefits to this alternative structure. First, the construct

saves storage, in that only elements that exist in a subtype are stored in each

entity. Second, the subtype information can be directly addressed without first

accessing its supertype. This is because each permutation subtype entity contains

the same primary key as the parent. Having this capability is significant because

a user can automatically obtain the unique information from any subtype without

having to search the entire database, as would be the case with one entity

holding all the elements (as in Figure 6.11). The benefits from this construct are

particularly advantageous when the number of rows among the subtypes varies

significantly. Suppose, for example, there are 5 million educators in the database.

Figure 6.12 Supertype/subtype entity construct.

100 Analysis and Design of Information Systems

The Educator database would therefore contain 5 million rows. Four million of

the educators are high-school teachers, and as such, the High School subtype

entity has 4 million records. Nine hundred thousand educators are professors and

the remaining 100,000 educators are deans. Therefore, the Professor database

and Dean database have 900,000 and 100,000 records, respectively. In the

supertype/subtype configuration applications could access the sample of each

type without searching through every record. This improves not only perfor-

mance, but also access speed, in that each entity is separate and would not

interfere with access to the other.

The supertype/subtype construct is not limited to mutual exclusivity; it can

support multiple subtype permutations. For example, suppose an educator could

be a high-school teacher, college professor, and a dean at the same time, or any

combination from among the three types. The model would be modified to show

separate one-to-one relationships as opposed to the “T” relationship depicted in

Figure 6.13.

Supertype/subtypes can cascade, that is, can continue to occur within the

subtypes. Take the following example in Figure 6.14.

The above example reflects how subtypes can continue to cascade. Notice

that the same primary key continues to link the one-to-one relationships of the

entities. In addition, Figure 6.14 also exposes another interesting aspect of the

supertype/subtype model relating to a subtype that has no non-key attributes.

Such is the case with the subtype entity Adjunct Prof. In this situation, the empty

entity serves only to identify the existence of the subtype, but has no other

distinct elements that are attributed to its occurrence. The use of Adjunct Prof,

therefore, was created only because the other two subtypes (Tenured Prof and

Contract Prof) had unique elements and were used as subtypes. This example

serves only to show that the supertype/subtype model is not perfectly balanced,

and often has components that are necessary due to other factors that benefited

the model.

Figure 6.13 Supertype/subtype model without mutual exclusivity.

6. Logic Data Modeling Tools 101

Figure 6.14 Cascading subtypes.

Cascading subtypes do not need to be of the same relationship. In other

words, the subtype educator could have been exclusive to a cascade that is

mutually exclusive as follows in Figure 6.15.

Note that the example shows the subtype identifier Professor Types is a

validation entity in 3rd normal form (see Figure 6.16).

Supertypes and subtypes must also be normalized following the same rules

that govern any entity decomposition. For example, the subtype Educator Types

contains elements that are not fully normalized. For example, Grade_Level and

Subject in the subtype entity High School Teacher can be validated using a

look-up table. Department, School, and PhD_Subject can also be validated. The

resulting fully normalized ERD is shown below in Figure 6.17.

Combining User Views

Normalization has concentrated our analysis on the challenges of moving and

placing attributes in the correct entity. In each of the normalization examples, a

violation of an NF has always resulted in the creation of a new entity. However,

experienced analysts must deal with combining user views. In many aspects

102 Analysis and Design of Information Systems

Figure 6.15 Cascading subtypes with alternating exclusivities.

this has the opposite result of normalization in that entities will most likely

be combined. Combining or joining entities typically occurs when users have

separate views of the same data. A better way to comprehend this concept is

to remember the lesson of the logical equivalent. Although this lesson focused

on processes, we can try to redirect its point to the stored data model. First we

must ask, can data elements that have been physically defined differently really

be logically the same (or equivalent)? The answer is yes, and it occurs regularly

during the analysis process. Let us now use an example to help illustrate this idea:

The Analyst met with Charles on the 15th floor. During the

interview, a data store called Clients was created. The Clients

data store was made up of the following data elements shown in

Figure 6.18.

After the meeting, the Analyst then went to the 19th floor and visited with

Mary of another department. During this interview a data store called Customers

was created with the data elements listed in Figure 6.19.

In reality, these two entities are both part of the same object. Whether the

entity name is Client or Customer, these entities must be combined. The difficulty

6. Logic Data Modeling Tools 103

Figure 6.16 Supertype/subtype with subtype identifier element.

here is the combining of the identical elements versus those that need to be added

to complete the full view of the entity. Charles and Mary, unbeknownst to each

other, had similar but different views of the same thing. Their names for the

objects were also different. By applying the concept of the logical equivalent,

we determined that only one entity should remain (see Figure 6.20).

Finding that two or more entities are really identifying the same object may

be difficult, especially when their names are not as similar as the ones used in

the above example. It is therefore even more important that the analyst ensure

the logical meaning of entities and their component elements. Note that we chose

to call the combined entity “Customers” and added to it the unique elements

not already stored. However, combining these user views raises a new and ugly

issue: Why Customer, not Client? Charles and his staff may not care about the

internal name of the entity, but may find the name Customer used in screens

and reports to be unacceptable. What do we do? The answer is to provide what

is called an Alias entry into the Data Dictionary. This will allow both names

to point to the same element and allow each to be used in different screen

programs and reports. The use of an Alias is not new, as it has existed as a

feature in many programming languages such as COBOL for years. Its usefulness

continues, and both Charles and Mary should remain happy. (But don’t tell

104 Analysis and Design of Information Systems

Figure 6.17 Fully normalized supertype/subtype ERD.

Figure 6.18 The data store for Clients.

6. Logic Data Modeling Tools 105

Figure 6.19 The data store for Customers.

Figure 6.20 The combined data store for Clients and Customers.

Charles that the internal name is Customer!) Combining user views will always

boost performance of the database, as it reduces the number of entities and the

related links to make the connection.

Integration with Existing Models: Linking Databases

We have discussed the challenges of dealing with Legacy Systems. Most firms

are approaching the replacement of legacy systems by phasing business area

components into completely re-developed systems. As each business area is

completed, there needs to be a “Legacy Link” with data files that connect

business area components. This strategy allows a gradual porting of the entire

system. The problem with the “Legacy Link” is that the normalized databases

must interface and in many cases be dependent upon non-normalized files. This

effectively upsets the integrity of the new component and may permanently

damage the stored data in the new model. The linking of legacy applications

is only one example of this problem. Often, subsidiary companies or locations

must depend on data being controlled by less dependable master files. Therefore,

linking databases may force analysts to rethink how to preserve integrity while

still maintaining the physical link to other corporate data components. Let us

use the following example to show how this problem arises:

106 Analysis and Design of Information Systems

The Analyst is designing a subsystem that utilizes the company’s

employee master file. The subsystem needs this information to

allocate employees to projects. Project information is never purged,

and therefore the employee project file will contain employees who

may no longer be active. Unfortunately, the company master deletes

all terminated employees. The employee master must be used in

order to ensure that new employees are picked up. The subsystem

cannot modify any information on the company master. The ERD

in Figure 6.21 depicts these relationships:

Note that the Employee Project entity has a one or zero relationship with the
Employee Master entity. This simply means that there could be an employee
that exists in the Employee Project entity that does not exist in the Employee
Master. Not only does this violate normalization rules, it has a serious integrity
problem. For example, if we wanted to print a report about the project and each
participating employee, all employees who do not exist in the Employee Master
will print blanks, since there is no corresponding name information in the master
file. Is there an alternative that could provide integrity and normalization? The
answer is yes. The subsystem needs to access the Company employee master
and merge the file with an Employee Master subsystem version. The merge
conversion would compare the two files and update or add new information
and employees. It would not, however, delete terminated employees. Although
this is an extra step, it maintains integrity, normalization, and most of all, the
requirement not to modify the original Employee Master. The ERD would be
modified as shown in Figure 6.22.

Figure 6.21 ERD showing an association between Employees and Projects.

6. Logic Data Modeling Tools 107

Figure 6.22 ERD reflecting a legacy link to the Corporate Employee Master file.

The Corporate Employee Master and its relation to Employee Master is

shown only for informational purposes. The Corporate Employee Master in effect

becomes more of an application requirement rather than a permanent part of the

ERD. It is important to understand that this solution may require the analyst to

produce a list of existing projects in which terminated employees are needed.

The first conversion from the Corporate Employee Master will not contain these

terminated employees, and they will therefore have to be added directly to the

subsystem Employee Master.

Referential Integrity

Referential integrity is a feature provided by most databases. The idea behind

referential integrity is that it prevents users of the database from corrupting or

providing inconsistent data into a table. Normalization, as discussed before, is

the vehicle that ensures referential integrity in a database because it stops records

from being entered into one table that is not linked to another one (assuming the

two tables should be linked by a common data element). Referential integrity is

implemented through the use of a foreign key.

108 Analysis and Design of Information Systems

So, by the above definition, a 3rd normal form logical model if implemented

in the physical database, would establish referential integrity in the product.

Everything would seem to be very simple then; however, the reality is that 3rd

normal form physical databases are difficult to achieve. By achieve, I mean

100%, for what is almost integrity? While this book provides all of the steps

to accomplish 3rd normal form, there are a number of issues that block us from

ever reaching the magical 100% compliance:

1. Third normal form databases can have performance degradation in a

physical implementation. The foreign keys are indexes, and indexes

become incrementally slower as they become larger—so large systems

tend to run into significant performance problems that necessitate

violating the foreign key implementation of referential integrity.

2. Most applications today have not been created from scratch—they are

legacy migrations from existing systems. As such, there tend to be

a number of applications that contain the database rules within the

application code. To change these applications can be a daunting if

not overwhelming recoding effort that is likely not to receive either

the money or the time requisite to complete such an overhaul effort.

This results in new applications replicating the coding that exists and

the database is left unprotected, especially when users write their own

queries.

3. There is little compatibility of foreign key restraints across propri-

etary database products. The definition languages and uses of SQL

(structured query language) vary among database vendors, and as a

result maintaining 3rd normal form across multiple products is very

challenging—particularly with respect to having the necessary in-house

talent to understand all of the “flavors” of SQL. Furthermore, appli-

cation vendors, that is, companies that produce products that work

with databases, are careful not to be allegiant to any specific database

vendor, because their clients have their own preference. As a result,

these vendors want to make it as easy as possible for their applica-

tions to operate with the database that their client uses. Implementing

referential integrity at the database level in these cases would create a

maintenance nightmare for these application vendors. The result: most

vendors and companies have tended to shy away from putting foreign

key controls and restraints in their product because of portability issues.

Database Naming Conventions

How should analysts and designers determine the name of a physical table,

field names, and keys in the database? It is important to avoid redundant names

such as “Description” which might define a description attribute in a number of

different physical databases. For example, tables can often have a “name” field,

6. Logic Data Modeling Tools 109

like the company name, or the contact name, etc. Each of these attributes in turn

needs a descriptive field that explains more about the name. So analysts often

create a field called “description” in each separate table, but this habit has serious

consequences from a data dictionary perspective. Each “description” attribute

when entered into the DD creates a replication of the same name—so it creates

a confusing situation. Although many CASE products automatically prefix the

name with the name of the table, e.g., “Customer.Description” it is important

for the analyst/designer to control this with appropriate naming conventions that

all engineers of systems can understand and follow. Thus, there are a number of

guidelines for providing names—names that assist developers as well as users

(particularly those who use SQL) to understand the meanings of various field

names in the database.

For the purpose of this book, I will use the most popular Oracle naming

conventions as an example of widespread and “standard” database naming

conventions.

1. Table Names

Table names should be plural, should not contain spaces, separated by

_underscores, and limited to 23 characters. If a table name contains

multiple words, only the last word should be plural:

Customers

Customer_Applications

Customer_Application_Functions

2. Field Names

Fields should have a unique name in the database (as opposed to

duplicate names in separate tables which is often allowed in most vendor

database products). The Oracle field naming conventions are for fields

to lead with two or three character contractions of the table name:

Customer_Options would have a field called CO_Vendor_name.

Patient_Names would have a field called PN_Patient_Addresses.

Vendors would have a field called VE_Telephone_Numbers.

Cases can occur where two or more tables have the same prefix. This

can best be avoided by first being careful in the way the analyst names

a table, thus avoiding the dilemma. However, in very large tables,

let’s say one might consider concatenating another letter—so instead of

Customer_Options as CO, the analyst can add another character: COP.

3. Primary Key Fields

Primary key fields should be identified by appending “_pk.” For

example:

Customers would have a primary key field called

CU_Customer_Id_pk.

Vendors would have a primary key field called VE_Vendor_Id_pk.

110 Analysis and Design of Information Systems

When a primary key is used as a foreign key in another table, it should

be referred to as “_fk,” omitting “_pk” as follows:

Invoices might have a foreign key called IN_Customer_Id_fk.

In the case on concatenation of fields, forming a primary key, pk should

be replaced by “_ck” as follows:

Customer_Id_ck

Customer_Id_Locations_ck

View Naming Conventions

A view is a subset picture of a database table or physical database. During the

design stage it is important to determine the number of subset views that may be

required. Views can typically be associated with a screen program that is either

updating or viewing data. The use of a view is essentially a design decision that

has impact or performance. By creating subset views, less data and only data

that is relevant from the larger table is stored. The view can best be seen in

Figure 6.23.

The downside of a view is that it replicates physical data, and as such,

requires more manipulation to ensure data integrity. Thus, if a view is used for

update, then the changing of data must be re-applied to the superset table as

follows:

Update Quantity in Item 3 to 3000 requires two updates

Note that a recalculation to Total of 90000 is also required in both tables.

Therefore, one can take the position that views are best used when referential

integrity is not necessary—as it would not be when just retrieving data for

viewing only. For this reason, views can be very effective in data warehousing

operations (see Figure 6.24).

Item# Item Name Quantity Price Total

1 A 210 10.00 2100.00

2 B 403 20.00 8060.00

3 C 2000 30.00 60000.00

Item# Quantity Total

1 210 2100.00

2 403 8060.00

3 2000 60000.00

Figure 6.23 Subset view.

6. Logic Data Modeling Tools 111

Item# Item Name Quantity Price Total

1 A 210 10.00 2100.00

2 B 403 20.00 8060.00

3 C 3000 30.00 60000.00

Item# Quantity Total
1 210 2100.00
2 403 8060.00
3 3000 60000.00

Update Quantity

Figure 6.24 Recalculation of view fields.

Indexing in Views

Once the logical database is designed by identifying the primary, secondary,

and foreign keys in the logic data model, indexing can be used in the Design

Stage to incorporate specific query activity in the physical database. Separate

indexes allow for sorting without moving the physical data records as shown in

Figure 6.25:

Physical indexes are produced either in the primary key (see 1st normal form

failure primary key propagation) or as a foreign key (see 3rd normal form failure).

The primary key indexes have certain naming conventions that are important for

the analyst/designer using the format “idx_<TableName>_pk.” For example.

ItemID Name Price

H

G

C

B

Rulers

Tape

Pencils

Erasers

2.00

.75

1.25

1.00

ItemID

B

C

G

H

Index -- Sort Ascending

Items Table

Figure 6.25 Table indexing.

112 Analysis and Design of Information Systems

PATIENTS would have a primary key index called

“idx_patients_pk.”

If the primary key is a series of concatenations, each sequential concatenation

would be named as follows:

idx_patients_01

idx_patients_02 and so forth.

Foreign keys are typically called “constraints” and are represented as follows:

PATIENTS would have a foreign key called “fk_patients”, where

“patients” is the name of the Table or TableName.

There are also some other conventions that apply to non-key attributes, partic-

ularly those that carry a Boolean or Yes/No value. These non-key attributes

usually end in “_yn”. For example:

acceptance_status_yn is an attribute that contains either a “yes”

value or “no” value.

Field Length and Character Conventions

There are also maximum length naming conventions that are published and

vary by database vendor. Figure 6.26 contains recommended maximum length

names for databases created using IBM (DB2 database), Microsoft (SQLServer

database), and Oracle (Gulutzan and Pelzer, 1999).

The comprising length from the above table appears to be 30, so I recommend

that analysts use this number as their maximum assignment of any database

names.

Allowable Characters in a Name

What are the acceptable characters that can be used to comprise a name field?

Once again, the recommendations and limitations vary by database vendor as

depicted in Figure 6.27 (Note: I have added MY_SQL, which is a popular open

source database product):

In general, it is acceptable that the first characters of an attribute name can be

a letter and that subsequent characters may contain digits or “_” (an underscore).

$, #, @, while allowed, may not be compatible across all database products.

IBM Microsoft Oracle

Attribute (Column) 30 128 30

Constraint (Foreign Key) 18 128 30

Table 128 128 30

Figure 6.26 Maximum length naming conventions.

6. Logic Data Modeling Tools 113

IBM Microsoft Oracle My_SQL

First Character Letter, $,#,@ Letter, $,#,@ Letter Letter

Later Characters Letter, digit, _,

$,#,@

Letter, digit, _,

#,@

Letter, digit, _,

#,@

Letter, digit

Case Sensitivity No Maybe No No

Figure 6.27 Acceptable characters in field names.

Delimited Identifiers

Delimiters are used as a way to define the beginning and end of a field name.

They are, in effect, the character that is allowed to act as the field that designates

the beginning and end of such a field name. Delimiters are extremely useful

when a named field includes spaces. The most popular delimiters are “”. For

example:

Create table “art langer”

The above delimiter “” defines that the space between “t” and “l” is part of the

table name. Figure 6.28 shows the requirements by database vendor:

Null Values

There are often many questions raised about what Null is. What does it mean

to have a null attribute? Perhaps the first thing to discuss is what Null is

not! Null is not a value, zero, or spaces. The definition of Null is “does not

exist.” That is, a value is not provided or the value is unknown. Unfortunately,

null is often misused by database professionals. Perhaps a good example of

appropriate use of null is the field “Employee_Termination_Date.” This field

would be defined as a date value. However, if an employee was currently

employed, he/she would not have an “Employee_Termination_Date.” Therefore,

the field will “not exist” for active employees. This requires the data definition

of “Employee_Termination_Date” to allow for a null assignment since any date

IBM Microsoft Oracle My_SQL

Delimiting Character “” “ or [] “” “”

First Character Anything Anything Anything Anything

Later Characters Anything Anything Anything Anything

Case Sensitivity Yes Maybe Yes Yes

Figure 6.28 Allowed character delimiters by database vendor.

114 Analysis and Design of Information Systems

value would be fictitious and actually create an integrity problem (by assigning
a date that would likely be out of range or bogus).

Nulls should never be used as a key-field identifier, either in a primary,
secondary, or foreign key. This would also suggest that “Employee_Termination_
Date” should never be used as a key-field identifier. Popular database products
allow for the specification of a column to not permit null assignment. This feature
obviously helps maintain data integrity by ensuring that an attribute in a row
will always contain data. From a physical application perspective, this means
that a user would be required to enter a value for a specified field in an entry screen.

Another complication of using null is the results that can be rendered when
they are involved in complex database queries. While most advanced database
products handle queries on nulls, the Boolean results from these queries can
vary and result in unexpected output and aggregations. The details of how this
occurs are beyond the scope of this book, but I suggest care when using them
for database reporting needs.

Denormalization

Because of referential requirements, many databases need to be denormalized.
At the beginning of this chapter, I identified that denormalization was the eighth
and final step in the LDM. Denormalization is a reality, but a process that needs
to be carefully measured in the exposure it creates for integrity—they just go
hand-in-hand together.

Analysts/designers who consider denormalizing should weigh the value
between time vs. space trade-offs. Normalized databases are not designed to
minimize access time, and as a result they do not perform particularly efficiently
when using tables to perform simple tasks like printing reports. This is especially
true when such reports need data from multiple tables that are connected by
normalized links like foreign keys. For example, if a report analyzing Order
Items was required by a user, the normalized database would have the following
tables linked in Figure 6.29:

Orders

PK Order#

OrderItems

PK Order#

PK ItemID

Item Qty

Figure 6.29 Normalized view of order table.

Thus, the report would need to access both tables for each search—causing
degradation in access times. Alternatively, a denormalized version would only
have one table as shown in Figure 6.30:

6. Logic Data Modeling Tools 115

OrderItems

PK Order#

PK ItemID

Item Qty

Figure 6.30 Denormalized view.

This table concatenates Order with Item and eliminates the link. While this

denormalized architecture has great advantages in the identified application,

it can also have the opposite advantage if the report just needed to list each

Order number. This technique is often called combining tables. In this case, the

application would need to read every record and contain logic that would print

the next Order Number that did not match the prior one. So as one can see

by this example, electing denormalization is very tricky indeed. An alternative

approach would be to create a data warehouse which maintains the integrity, but

produces table structures for reporting only applications. This is covered more

in-depth in Chapter 13, Business Process Re-Engineering.

So while time may be enhanced via denormalization, space may suffer. Given

that denormalization creates replication of data, there are more records stored

and therefore more space required. While normalized databases need significant

storage during data manipulations, that is, producing a report, this space need is

temporary, meaning that the space is released after the program completes. With

denormalized databases, the storage is permanent because the data is stored in a

more “report-ready” mode. Because storage is much cheaper today than in the

past, many database analysts are not concerned with data storage and tend to

ignore the consequences in the design stage. Those consequences usually relate

to longer backup and restore times, and the need for multiple disk arrays to

handle massive databases that span multiple physical hardware devices. Multiple

device addressing will inevitably also cause time degradation, so as you can see

excessive space requirements may ultimately negate what analysts/designers are

attempting to originally improve.

Analysts and designers must ultimately ask themselves what denormalization

can do for them. Below are some key questions that should be asked before

considering using denormalization:

• Are their alternative ways to achieve better performance than denor-

malizing tables?
• Will denormalization get the database to the objective performance

level?
• What reliability and data quality exposure will occur from the denor-

malization and are those exposures acceptable and understood by all

stakeholders?

116 Analysis and Design of Information Systems

The answers to the above questions may provide important guidance to what

the analysts should recommend in their functional analysis and design of the

database. Given that performance is a key driver to denormalization decisions,

the following indicators may also provide useful guidelines for making effective

decisions (Mullins, 2006):

1. A number of queries and reports heavily rely on data from more than

one database.

2. Multiple repeating groups (e.g., ORDER—ITEMS as shown above)

exist and there are many queries and reports that need to show them

together.

3. Many calculations are needed across multiple tables before a query can

be completed (that is, the query must first do the calculation before a

report can be produced).

4. Multiple access to specific tables is required by many different users

for different operations.

5. Large concatenated keys become so large that foreign key connections

become lengthy.

Logic to Physical Databases

This chapter thus far has covered the analytics and complexities of designing a

logical database schema. Features of the logical model have been:

1. Entities and relationships.

2. Definitions of attributes within entities.

3. The assignment of primary and secondary keys.

4. Foreign key definition in 3rd NF.

5. Normalization.

6. Supertype/Subtype relationships.

At the above level, analysts do the best they can to describe data generally,

that is, without regard to how the database will “physically” be implemented.

There is a need, however, to specify the logic model in terms of its physical

implementation. By physical we mean the actual real database that the schema

will be implemented in—so once the analysts know the physical database (this

“knowing” will vary, but is often known early in the analysis process), then they

need to provide a “physical” data model which should include:

1. Specification of all logical tables and columns to their actual database

specification.

2. Identified actual foreign key names and link conventions.

3. Denormalization needs based on physical database constraints or limita-

tions which cause the ERD to become very different than originally

constructed.

6. Logic Data Modeling Tools 117

Therefore, the analysts need to specify how the LDM will be transformed into an
actual database schema. This transformation, as with all analytics, must provide
an audit trail as to how the analyst made the decisions. This audit trail requires
the following four steps:

1. Convert the logical entities into actual database tables.
2. Convert logical relationships into actual product-based foreign-key links

often called “constraints.”
3. Convert attributes into physical columns.
4. Modify the physical data model the formats required by the database

product.

Notwithstanding the possibility of differences between the logical and physical
database, the further the analysts drifts from the LDM, the increased risks of
integrity exposures. Perhaps the most important statements about this dilemma
have been published in March 2002 by Fabian Pascal. Pascal published what he
called the “first five quotes” as follows:

1. “The more you drift away from any physical implementation,

the more performance is going to suffer � � �The choice is

between best logical structure or best physical structure, or a

compromise.”

This is pure falsehood. The performance of a database is based

on many things, including how the data is stored, access paths,

and hardware configuration to name a few—yet many believe

the above statement.

2. “Ironically, there is really no difference between a document

and a database – In both cases, you have to abstract infor-

mation and a certain amount of metadata that helps the

system understand the meaning and uses of that extracted

information � � �XML could put an end to that by breaking

down the traditional barriers between document and database

processing. Interactive Web applications have characteristics of

both � � �Running an auction on a Web site is a massive database

challenge � � �But it’s also a massive document processing

challenge, because you have to offer all the descriptions of all

the products and so on.”

Once again, there is no logic to this statement. A database is

much different than a document and has more complex archi-

tecture and logic in the way it is designed. Overgeneralization

about database relationships with Web-enabled infrastructure

can be very misleading.

3. “I am designing a database system but I am a little unsure

about normalization–could anyone tell me if the information is

in third normal form? If it isn’t could anyone suggest where

I’ve gone wrong?"

Normalization is a mathematical process of functional

decomposition. One cannot just look at the tables, but needs

118 Analysis and Design of Information Systems

to understand the definition of dependencies as I have

outlined earlier in this chapter. The only way is to apply the

formula.

4. “I am having difficulty creating a table with one of the columns

in a composite primary key being NULL[able]. Example: table

ABC with columns in the PK ’ A’ NOT NULL, ’ B’ NOT

NULL, and ’ C’ NULL. Logically, I have a valid business

reason for wanting to implement a table with at least one

column of the compound PK being nullable.”

By definition you should never have a Null key—it simply

makes no sense.

5. “In creating a database, normalization is the process of

organizing it into tables in such a way that the results of

using the database are always unambiguous and as intended.

Normalization may have the effect of duplicating data within

the database and often results in the creation of additional

tables. (While normalization tends to increase the duplication

of data, it does not introduce redundancy, which is unnecessary

duplication.) Normalization is usually a refinement process

after the initial exercise of identifying the data objects that

should be in the database, identifying the relationships and

defining the tables required and the columns within each

table.”

Nothing could be further from the truth. Normalization does

not propagate redundancy, but rather removes it. All links

are accomplished through pointers or indexes which provide

the referential integrity needed in complex database architec-

tures.

In summary, the most important aspect of the physical model has everything to

do with the actual database product and the hardware being used, as opposed

to false generalizations of things that must be changed from the logical model.

There is also confusion about the term “conceptual model.” The conceptual

model is a view of the data from a business perspective or view. This model

is designed so that the user community can understand how the database is

being constructed and can comment on its accuracy, especially with regard to

relations of entities. However, the conceptual model is not an architecture that

can be implemented. For example, the conceptual model allows many-to-many

relationships to be depicted because it is not an engineering model—so that

showing these types of relationships helps users understand and agree to the

way the entities relate to each other. Thus the logical model is formed from the

conceptual design but employs the rules of information science. The physical

model is then transformed based on the vendor requirements for implementation

and hardware features where the database will ultimately reside and the way

indexes and keys are actually constructed by the product itself.

6. Logic Data Modeling Tools 119

Data Types Usage and Conventions

There are a number of alphanumeric data types to use when defining an attribute

or column in a table. Varchar2, which was used earlier in this chapter, is the

preferred alphanumeric data type for alphanumeric fields. The main benefit

of Varchar2 over Char is that Char will store blanks in characters not being

used—therefore actually using more storage. For example, Name is defined as

30 varying length characters, thus meaning that its value could be from 1 to

30 characters in length. If this field is defined as Varchar2 and a value of 20

characters is stored, then only 20 characters of space will be used. On the other

hand, if the same field was defined as Char 30, then the same example would

require 30 characters; 20 of actual data definition, and 10 of blanks to fill the

definition field.

However, the use of Char is important when logical comparisons are made

between fields where trailing blanks are not considered as part of the comparison

(this is an American National Standard Institute (ANSI) requirement. In these

cases using Char is more efficient because the comparisons are accomplished

on the same size fields. A comparison is commonly used in sorting data for

example. If trailing blanks are considered in the comparison, then the Char

definition is not viable. Figure 6.31 shows a comparison of ANSI standards with

Oracle.

Business Rules

The growth of the relational model has created a mechanism for storing certain

application logic at the database level. Business rules are application logic

that enforces the integrity of the business, that is, that maintains the rules

as set forth by the users. Such rules could include: If Last_Name is entered,

the First_Name must also be entered. This “rule” simply means that a valid

name must contain both the first and last name of the individual being entered

into the database. These business rules were traditionally part of the appli-

cation program code. This meant that every program that would need to

ANSI Standard Oracle Data Type

Character And Char Char

Character Varying And Char Varying Varchar2

Numeric, Decimal, Dec, Integer, Int

And Smallint

Number

Float, Real, Double Precision Float

Figure 6.31 ANSI/Oracle data types compared.
(Source: Ben Shepherd, 2003)

120 Analysis and Design of Information Systems

enforce a rule would need to encapsulate the same logic within each appli-

cation program. What followed historically was a maintenance nightmare which

required programmers to remember where the logic had been used, especially

when changes to the code were required. In addition, there was always the

issue of re-coding the same logic without error, so it meant greater testing time.

Although there were and are techniques for storing common code in global

libraries for applications to incorporate into the code, the procedures tended

to be archaic and awkward to support. The establishment of SQL as a robust

and end-user query tool also posed a new problem. Business rules coded in

applications can enforce them only if the program is executed. Because SQL

allows users to create and execute query sessions, they can easily avoid an

applications enforcement of a business rule. This therefore created a serious

integrity problem in the implementation of database products. Although the

tendency in the industry has been to separate data from applications, we will

see here that the industry is moving back towards combining data and appli-

cations again. It is important not to view this as a return to the old way,

but rather as a more intelligent and structured way to combine data with

its permanent logic. The word permanent is crucial: certain logic is really

an inherent part of the relationship that elements have with other elements.

Having business rules stored as part of the data, then, allows anyone to

use the information without violating the permanent relationship rules as set

forth by the business. It means that SQL users can query all they want or

even create and modify data without losing the controls necessary to support

integrity.

Business rules are implemented at the database level via stored procedures.

Stored procedures are implemented by each database manufacturer, and although

they are similar, they are not the same as business rules. Therefore, moving

stored procedures from one database to another is not trivial. Why do we care?

Networks are being built around the concept of client/server computing and may

often require communication among many different database vendor systems. If

business rules are to be implemented at the database level, the compatibility and

transportability of such code becomes a challenge. This issue will be discussed

in greater detail throughout the later chapters of this book.

Business-rule implementations fall into three categories: keys, domains, and

triggers. Key business rules are concerned with the behavior of a primary key

in an entity. They include the rules that can affect the insertion, deletion, and

updating of primary and foreign keys. For example, if an order is deleted, all

order items must also be deleted automatically. Many people call this feature

referential integrity. Domains represent the constraints related to an attribute’s

range of values. If an attribute (key or non-key) can have a range of values

from 1 to 10, we say that range is the domain value of the attribute. This is, of

course, very important information to be included and enforced at the database

level through a stored procedure. The third and most powerful business rule is

triggers.

6. Logic Data Modeling Tools 121

Triggering Operations

Triggers are defined as stored procedures that, when activated, “trigger” one

or a set of other procedures to be executed. Triggers usually act on other

entities, although in many databases such as Oracle, triggers are becoming

powerful programming tools to provide significant capabilities at the database

level. In many ways they represent their own programming languages and allow

embedded SQL code to be used in the stored procedure. Stored procedures

resemble BAT files in DOS and are actually implemented as an option in many

RDBMS packages. Below is an example of an Oracle 8 trigger:

/∗ Within B.D. only users who are president or director may mark ∗/

/∗ company as confidential. ∗/

if user_type not in (‘P’, ‘D’) then

:new.cmpConfidential := ‘N’;

end if;

end if;

/∗ Ensure user has right to make a company executive private. ∗/

if exec_com = ‘N’ then

:new.cmpexec_private �= ‘N’;

end if;

This trigger is designed to allow a company’s information to be marked as

confidential only by the President. This means that the president of the company

can enter information that only he or she can see. The second part of the trigger is

set to allow certain executives to mark their contacts with companies as private.

Here we see two sets of application logic that will execute via Oracle triggers. In

addition, it will be enforced by the database regardless of how the information

is accessed.

Too much power can be a problem, however, and it can cause difficulties

with triggers. Why? Because triggers can initiate activity among database

files, designers must be careful that they do not cause significant perfor-

mance problems. For example, let’s say a trigger is written which accesses 15

database files. If this trigger is initiated during a critical processing time in the

firm, major problems with productivity could result. Once again, the good and

the bad!

The subject of business rules is broad but very specific to the actual product

implementation style. Since analysts should remain focused on the logical

model, it is important for them to define the necessary key business rules,

domains and triggers required by the system. It should not be their responsibility

to implement them for a specific Relational Database Management Software

(RDBMS) product.

122 Analysis and Design of Information Systems

Problems and Exercises

1. What is logic data modeling trying to accomplish?

2. Define Normalization. What are the three normal forms?

3. What does normalization not do?

4. What is meant by the term “derived” data element?

5. Describe the concept of combining user views. What are the political

ramifications of doing this in many organizations?

6. What are legacy links? Describe how they can be used to enforce data

integrity.

7. Name and define the three types of business rules.

8. Why are stored procedures in some ways a contradiction to the rule

that data and processes need to be separated?

9. What are the disadvantages of database triggers?

10. What is meant by denormalization? Is this a responsibility of the

analyst?

11. Define a supertype/subtype. When should this entity construct by used?

Mini-Project #1

The Physician Master File from a DFD contains the following data elements:

Data Element Description

Social Security # Primary Key

Physician ID Alternate Key

Last_Name Last Name

First_Name First Name

Mid_Init Middle Initial

Hospital_Resident_ID Hospital Identification

Hospital_Resident_Name Name of Hospital

Hospital_Addr_Line1 Hospital Address

Hospital_Addr_Line2 Hospital Address

Hospital_Addr_Line3 Hospital Address

Hospital_State Hospital’s State

Hospital_City Hospital’s City

Hospital_Zip Hospital’s Zip Code

Specialty_Type The Physician’s specialty

Specialty_Name Description of specialty

Specialty_College College where received degree

Specialty_Degree Degree Name

Date_Graduated Graduation Date For Specialty

DOB

6. Logic Data Modeling Tools 123

Physician’s Date of Birth

Year_First_Practiced First year in practice

Year’s_Pract_Exp Practice Experience Years

Annual_Earnings Annual Income

Assumptions

1. A physician can be associated with many hospitals, but must be
associated with at least one.

2. A physician can have many specialties, or have no specialty.

Assignment

Normalize to 3rd normal form.

Mini-Project #2

1. Check the appropriate column that best identifies the use of each named
item as to whether it describes an element or whether it is an element.

124 Analysis and Design of Information Systems

2. For the following list of named entity types, provide a natural and

unique identifier that provides significant information. Where no natural

unique indentifier exists, create a new one and describe it

Exercise provided by Greg Vimont.

Mini-Project #3

Crow’s-Foot Exercise

1. (a) What is the total number of possible pairings of crow’s-foot

indicators? _____

How many mirror image pairs exist in these possible combi-

nations (like matching bookends)? _____

(b) How many unique pairs exist? _____ And if you didn’t count

the reversed version of each unique pairing, how many are

there? _____

Hint: Use this table diagram of crow’s-foot indicators to plot all of the

possible instances.

2. Draw the crow’s-foot cardinality for the following situation:

6. Logic Data Modeling Tools 125

A1 Travel takes reservations from clients and provides them with

travel arrangements on common carriers throughout the world. For

some reservations, tickets are never issued. Reservations can be made

and tickets can be issued for them at a later time. Sometimes, when

reservations are made one or more tickets are issued simultaneously.

A ticket may fulfill only a single reservation. Tickets, once issued, are

never reissued to fulfill anything other than the original reservation.

(3) Draw the crow’s-foot cardinality for the following situation:

The Party Palace is a catering facility that hosts many types of

social engagements. One type of event is the dinner party. Guests

and their respective dates are normally issued seating cards with table

assignments. Every guest will have a seating assignment. Not every

guest will have a date. Dates may not be unaccompanied, and they must

accompany only one guest.

4. Based on the following business case, draw an entity relation diagram.

You need only to name the entities; no keys or attributes are required.

(a) In the operation of its business, Top-Flight Limo Service

records information about drivers who chauffeur the

company’s patrons. Drivers must own and drive their own

cars. A driver may own more than one vehicle. Top-Flight

126 Analysis and Design of Information Systems

Limo tracks driver traffic citations during the time of their

employment with the company. Drivers begin employment

with a clean slate.

(b) In the ERD that you have created, what is the functional

significance of “optional” vs. “required” as it is applied to

business rules in implementing a database and populating it

with data?

Exercise provided by Greg Vimont.

7
Web User Interface Tools

Introduction

In this chapter I will focus on Web page creative design and the Graphical

User Interface (GUI), another crucial part of the analysis and design of systems.

Furthermore, this chapter will define the important components of designing

Web sites—Web sites that represent the vision and brand of their organization.

Web design has conventionally been considered an artistic process, outside the

traditional analysis and design process. Yet, Web design needs to have a place

in the development cycle; the key is to integrate it into the life cycle without

destroying its creative process.

Web designers face significant challenges. Powell (2000) pointed out that

many Web sites create visual effects that do nothing more than replicate paper

brochures. While these designs rely on sophisticated software, ultimately they

do little to establish the brand and identity needed by successful ecommerce

systems. Furthermore, attractive design is not necessarily functionally effective;

to be successful, Web designs must be technically sound. On the other end of

the spectrum are Web sites that are too focused on technology and pay little

attention to the user experience. The features and functions of these sites tend to

be sound, but confusing and complicated to the user. These sites may become

so “dressed up” that each function becomes a design in itself. This is sometimes

known as “brochureware.”

Unlike in more traditional analysis and design projects, users of Web systems

may not even be users, rather consumers—users who the analysts may not even

know! Therefore, the job of the analysts and designer is to translate what users

may want without really speaking to them. Thus, viable Web sites must be useful

to their users. Usefulness can be defined as a combination of utility and usability

(Grudin, 1992). Utility describes the site’s functionality, which ideally meets

the user’s needs. Usability describes the user’s ability to manipulate the site’s

features in order to accomplish a specific goal.

128 Analysis and Design of Information Systems

Components of Web Design

The major question of Web analysis and design projects is “who” will be using

the system and what features and functions will provide the best experience for

the user. There are four major parts to Web design:

1. Content: the features that will persuade users on the site.

2. Technology: ways to implement the functions of the Web site.

3. Visuals: form of the site and its navigation.

4. Purpose: economic ramifications for the site’s implementation.

Figure 7.1 is a graphical depiction of the four components in the form of a

pyramid (Powell, 2000). In this picture, content provides the bricks to build

the pyramid; the foundation consists of the visuals and technology (form and

function, respectively), and the economics the critical factor or purpose of

creating the pyramid. It is important to note that the economics of Web devel-

opment are beyond the scope of this book. This chapter will focus on two of

CONTENT

FUNCTION

(Technology)

FORM

(Visuals)

USERS DESIGNERS

PURPOSE

(Economics)

Figure 7.1 The components of Web design source: Web design (Powell, 2000).

7. Web User Interface Tools 129

the four components: Content and Visuals. These two components include the

requirements that Web analysts and designers must have in order to create the

features, functions, and interfaces of effective Web-oriented systems.

Content

Content is a very complex issue. While content is at the core of the message to be

communicated, it must be carefully designed to accommodate the limitations of

user preferences—preferences that become more variable and unknown outside

the controlled internal user base of more traditional analysis projects.

Branding

The first challenge of good content Web design is strategic brand building. Brand

building or “branding” is an important part of how an organization shapes the

image it projects to a large audience in cyberspace. A business’ brand can be

seen as a set of promises to its customers: for example, Federal Express’ “The

World on Time.” A brand is also a set of expectations. Successful brands connect

to users on an emotional level; Burger King’s “Have It Your Way” campaign,

for example, seeks to establish emotional connections with their customers.

The brand is the cumulative effect of all the interactions a user has with the

business; it represents a company’s personality. Why is branding so important

for ecommerce? The answer lies in its ability to reach wide varieties of markets

across the Internet. Strong branding is even more important when Internet-

based transactions replace personal transactions. What does branding have to do

with the analysis and design of ecommerce systems? The answer lies with its

contribution to making the ecommerce process attractive to its users. Users may

include internal constituents who use the system every day and can receive a

strong company brand image from the site. Understanding these external users

represents a challenge—so the branding exercise becomes a significant part of

the Web design process. A well-designed brand on the Web leaves a lasting

impression on users, especially customers and consumers. Great Web brands

have a consistent look and feel, and a high level of design integrity.

Figures 7.2 and 7.3 are examples of an old look and new branding approach,

respectively, created by Thirteen WNET New York. Thirteen is a public

television station that changed their logo to enhance their image to their viewers.

Figure 7.2 Old brand logo.

130 Analysis and Design of Information Systems

Figure 7.3 New brand logo.

The updated logo gave the Thirteen brand a more contemporary, younger,

energetic, and modern feel, while at the same time, upholding the core values

of the company and its products. The red three-dimensional sphere dotting the

“i” was conceived as an activation point, reminiscent of the Big Apple, and one

that could be used to click to the Web site.

Web branding, however, does not require a firm to re-brand itself or change

its image. The Thirteen example serves merely to illustrate that brand elements

can exist at many different levels within a firm. Organization Web sites can

have a powerful brand, which may or may not be identical to the company’s

core brand. The branding of the site in relation to the company’s brand must

be considered during the design process, and ecommerce analysts and designers

need to be part of this process. How do brands affect a Web site? Thirteen is

again used as an example, but this time looking at its Web site as shown in

Figure 7.4.

Notice that the new logo is visible, but the brand/identity is also used effec-

tively on the site. This is accomplished by using link names such as “explore

thirteen,” "join thirteen,” etc. Thus, in this case, the brand is complemented

within the Web site scheme of navigation. This is what we mean by Web site

branding.

The Web Branding Process

Too many organizations associate Web branding narrowly with marketing.

According to Susan Baston (Vice-President and Creative Director at the New

York-based Interactive Bureau) “branding is more the foundation on which to

build every experience the customer has with the company.” This foundation

includes the existing legacy applications or “brick and mortar” parts of the

business. Earlier, I stated that ecommerce encompasses all of the components

of the system. Branding can be broken down to its sub-components as well.

Effective branding for a customer, for instance, may not be the same for internal

constituents. It is necessary to operationalize these concepts into a clear, coherent

process for analysts/designers to follow.

7. Web User Interface Tools 131

Figure 7.4 Thirteen WNET Web site.

The User Interface

The first component of the branding process concerns the users. In each interview,

certainly in a JAD, ecommerce analysts are encouraged to invite the creative staff

to participate, so that they can learn what is important to the user community.

Creative staffs may also want to hold their own sessions, but such meetings

should be incorporated into the entire project plan and should be attended by

analysts. For customers and consumers, market information may be required

along with focus group sessions; these sessions must also be integrated with

the overall analysis and design process. In sum, the creative work relating to

branding really represents the first aspect of Web design, and it must be treated

as part of the analysis and design process. In essence, the creative outputs from

the user interfaces should be clear graphic branding concepts that:

1. Define the user marketplace.

2. Define what users want to do on the site.

3. Establish the way the Web will provide a method for users to use the

firm’s products and services.

4. Create some excitement and message for the experience.

132 Analysis and Design of Information Systems

In order to address branding during the interview analysis phase, it is important

to ask users what their objectives are for using the ecommerce system. Part of

the discussion should focus on the degree to which the user base is concerned

with branding versus feature function. Obviously the more “external” the user,

the more important branding and image will be in the design of the site.

However, internal branding is also important because it makes employees more

knowledgeable about the company’s image, its mission, and how it wants

to be seen by its customers. This all becomes part of the Web site design

solution.

User Profile Strategy

A user profile strategy is a plan for registering users and collecting information

from them that can make their Web experience more personalized (Smith, 2000).

Typically this step might be considered part of design and development, but it is

arguably more a component of branding because it allows users to define their

personal relationship with the company. Care needs to be taken in this evaluation.

For example, if your users are leery about supplying personal information, it

really means that they are not seeking a personal relationship with the brand. This

would not be the case, though, for a business such as Thirteen WNET, which

projects its brand and identity to users who may wish to become members. So

the “membership branding” is critical to the success of the ecommerce system.

Figure 7.5 is an example of the “membership brand” Web page of Thirteen

WNET in Figure 7.4.

Decisions about how brand should affect design should be made during focus

groups with external consumers. Therefore, analysts and creative designers need

to work together to understand ecommerce Web branding strategies. Profile

strategy is another technique that aids the evolution of Web site branding design.

Profiles can continually collect information about your user community and can

be used to ascertain changes in preference, level of computer sophistication,

and the array of preferences and capabilities of the user interfaces that were

presented in Chapter 3. Furthermore, profiling substantiates the need to adopt the

spiral life cycle, as the process of tracking user brand preferences using profiles

is a constantly evolving process. Given the complexity and sophistication of

implementing user profiles, it is wise to start with a simple strategy and build

on it. It is easier to go from a simple profile strategy than to undo a complex

one that completely misses the mark.

Content Preference

Content and branding seek to make users feel that they see themselves on your

Web site. That is, users should feel that they are in the setting that they prefer

in interfacing with your business. How can you accomplish this, and how can

you deal with users who have alternative preferences? The answer to the first

7. Web User Interface Tools 133

Figure 7.5 Thirteen WNET membership brand Web site.

question is to treat branding as part of the analysis phase of the user interface.

Customer preferences must drive the design decisions made by creative branding

professionals. All too often, the brand process is segregated from the application,

and the result is a disjointed Web site design. The second question raises another

issue: Should a brand attempt to be all things to all users? I believe not, and

as a result, it is suggested that your brand be tailored to your most important

user base. If the user base is not dominated by any single preference design,

then analysts might consider having multiple home pages. This concept was

discussed earlier and raises the challenge of maintaining multiple content sites.

Another alternative is to pick a type of site that many users can accept, that is, a

“middle-of-the-road” style that will alienate no one. Figure 7.6 shows Citibank’s

home page, designed in an attempt to facilitate many different ecommerce user

preferences.

Still another approach is to allow users to modify the site by choosing from a

select group of design preferences. Figure 7.7 shows Egomedia’s Web site that

allows users to customize the site, offering options to change shapes, desktop

features, and music.

Web Site Personalization

Personalization is another way to build a brand on the ecommerce system.

The goal of personalization is to allow users to feel that they have a special

134 Analysis and Design of Information Systems

Figure 7.6 Citibank home page.

Figure 7.7 Egomedia’s Web site customize feature.

7. Web User Interface Tools 135

relationship with the business. Personalization adds brand equity because the

user feels “valued.” An example of personalization is Amazon.com (Figure 7.8).

On Amazon’s personalized ecommerce site, returning buyers are greeted

by name. The site saves a lot of information about the user, such as credit

card numbers, shipping address, and prior book preferences. The personalization

enables the user’s site to cater to their specific preferences and creates a one-to-

one relationship between the company and user. This one-on-one can be created

through a greeting message and through suggestions to the user that fit their

prior shopping preferences. It also allows the company to “speak” to users in

their language, e.g., as college kids, as adults, etc. Gender also plays a role in

attracting users and branding the Web experience. Once again, analysts should

be capturing this information as part of their user requirements documentation,

that is, it should appear as a requirement of the system in both the business

specifications and technical specifications.

Furthermore, content “language” is another important issue in designing Web

brand. Content language is a type of “writing style.” Writing styles can create

comfort for users or insult them. The latter can occur when user content assumes

that the customer knows little about the product, or does not recognize users as

returning customers. The process of creating good content requires that skilled

copywriters and editors be involved in the analysis and design process. The

solution is either to have such personnel attend the interviews (a difficult and

time-consuming process) or to have analysts provide writers with information

Figure 7.8 Amazon.com screen personalization.

136 Analysis and Design of Information Systems

about the style of the content that should be used. In many projects, there is little

planning of the written content, and as a result first drafts need to be significantly

modified. This type of “hit and miss” approach to site content is another reason

that Web projects are frequently over budget.

Customer Service

Customer service has always been an important way to develop brand identity.

Words associated with customer service are “quality” and “caring”—words that

convey an important message to users. Notwithstanding the personalization of

the ecommerce system, it is important for ecommerce businesses to convey the

same quality and caring to users as brick and mortar companies traditionally

do. Quality characteristics can be conveyed over the Web by having a dedicated

section about how products are made and why they should be considered high

quality. Caring can be accomplished by providing customer testimonials and by

sending customers messages that (1) thank them for their order; (2) advise them

of when they can expect to receive their order; and (3) keep them posted on the

status of their order. The easiest way to provide these services is to replicate

the procedures in the current business. Unfortunately, this kind of caring is not

always easy to transfer from brick-and-mortar situations to ecommerce Web

sites. In retail stores, for example, good customer service is often provided by

individuals who are especially dedicated to their work. Therefore, it is advisable

that reliable ways to provide good customer support be explored during the

analysis phase. Some common branding-related customer service options are

listed below:

• Offer more services for purchasers of higher-margin products.
• Provide on-line support for the most valued customers.
• Provide exclusive hot-lines.
• Offer discounts for customer lifetime value, volume orders, and frequent

purchasers.
• Adjust shipping prices according to volume and frequency of purchase.
• Create a special sale area on the site.
• Offer advance-purchase opportunities on new products for existing

customers

Source: e-Loyalty (Smith, 2000)

All of the above options create special relationships between the company

and their customers. These customers become part of a “preferred” group, which

is treated differently because of their loyalty to the company. The loyalty is an

identity then presented to the users as a reminder of how important they are to

the company.

This section provided a perspective of how Web branding integrates with

the process of analysis and design. In a number of cases I stated that the

7. Web User Interface Tools 137

ecommerce analyst should provide or participate with creative personnel during

the user interview process. The purpose was to attempt to capture as much

about the creative brand vision that users have, as well as the technical feature

functions that they need. In order to provide creative staff with this information,

it is necessary for analysts to integrate into the business and technical speci-

fication sections that are devoted to assisting the creative development of the

system. Figure 7.9 summarizes the information that has been discussed above

into a sample questionnaire and checklist that can be used during the interview

cycles.

Client : Date: 2/28/07

Application:

Web Branding
Supersedes: 12/28//06

Process:

Information Questionnaire
Author:

 A. Langer
Page _____ of _______

Type of User: Internal _____ Customer: _____ Consumer: ______

Copyright A. Langer 1999-2001

User Market: (Briefly Describe)

Expected Length of User Longevity: _______________________________________

Number of Users in the Market: __________________

Briefly Describe Why Users will use this Web Site:

What Functions do Users need on this Web Site:

What Products and Services do you Plan to Offer:

Figure 7.9 (Continued)

138 Analysis and Design of Information Systems

Page _____ of _______

What Messages, Logos, and Other Information do you want Users to Experience?:

Application:

Web Branding

How often does the Design and Content need to

Change?

 Daily: ___________

 Weekly: ___________

 Monthly: ___________

Quarterly: ___________

 Other: ___________

Profile Strategy: Define Information that you

plan to obtain from your users

 Address: ________

 Age: ________

 Gender: ________

Computer Experience: ________

 Connectivity: ________

Preferences: Describe the intended audience a nd the overall goals that you want your users to

experience:

Preference Type: Focused: _____ Multiple: _______ General: ______

Personalization Options:

 Color: ___

 Music: ___

Graphics: ___

 Other: ___

Figure 7.9 (Continued)

7. Web User Interface Tools 139

Special Service Offers:

Page _____ of _______

Application:

Web Branding

Customer Service:

Order Confirmation Message: ________________

 Messaging: ________________

 Message Attachment: ________________

 Selective E-Mail: ________________

 Order Status: ________________

 Service Types: ___

Basis of Eligibility: ___

Description:

Figure 7.9 Web branding input questionnaire.

Text

What is the role of ecommerce analysts and designers in the creation of text

content? Certainly their responsibilities lie outside the actual content itself.

Many ecommerce books confuse the issue of who is to create the text content.

To clarify this issue is to simply go back to the core definition of analysis

and design, which is essentially to create logical equivalents for development.

Therefore, ecommerce analysts/designers need to understand how users want the

text arranged, categorized, and formatted. There are also architectural issues of

how content needs to be maintained. This section sets forth the key components

to provide Web developers with what they need to complete the site.

Text Layout

Layout refers to the placement and arrangement of text on the page. This includes

text justification (left, center, etc.), columns, and text frames. Layout also has to

do with formatting text—e.g., bolding, type size, type color, etc.—to highlight

important information. Such methods of text contrast work to direct users’ interest

to the focal point of the page. For example, the center and top part of a page are

usually the best places to get a user’s attention. Consideration of the focal point

also involves repetition—of key design elements and patterns of text. Repetition

is important to consider, because users seek to become comfortable with any

140 Analysis and Design of Information Systems

Web site they use. Consistent layout and formatting can help users begin to feel

“at home” on a site.

Text Categorization

Text categorization relates to placement of text. Categorization also focuses on

the grouping of text to enable users to find it. Text can be grouped by categories

like location, gender, date, time, etc. Such grouping allows users to find relevant

information quickly, such as in searching for movie theatres in a specific location.

Included in text categorization is the use of search criteria, which allows users

to see views of data based on some dynamic sorting of text. One method to

determine the proper groups and categorizations is the storyboarding concept.

In storyboarding, slides are developed to represent the text that needs to appear

on a specific Web page. Having each slide in a particular order allows analysts,

designers, and users to get a better understanding of how the text needs to be

viewed and what options need to be available. Storyboarding, which was also

utilized in prototyping, can be used during design to determine text placement in

relation to graphics. The prototype storyboards that were used in Chapter 3 lack

the combination of real text and real graphics, so this step during Web design is

really the basis of finalizing the Web page prototypes.

Text Formatting

The formatting of text focuses more on presentation than the other two compo-

nents. Formatting refers to the methods of screen presentation usually through

the use of menus, maps, and frames.

Menus can be defined as single-column lists or multiple-column lists; they can

even be designed as tables. Functionally, menus can be used for two purposes:

(1) to display information in a hierarchical format or (2) as way of linking to

other sites from the current Web page. Combinations of the two are also often

used, as shown in Figure 7.10: www.fathom.com. This example shows how a

menu of member schools appears when the user places the mouse pointer by the

words “Member Institutions.” The user can then click on items in the list to go

to the sites of the member institution.

While menus are easy to develop, they sometimes can be boring to a user.

An alternative format is a map that combines a graphic with text. This is

accomplished by placing a cursor over an image. The cursor will eventually

display the name of description in text, which also contains a hyperlink to

another Web location. These hyperlink areas are called hot regions (Conger and

Mason, 1998). Figure 7.11 is an example of how a map is used in the Web

site www.cluetrain.com. When the user places the mouse pointer on the book,

it displays text that tells the user more about the graphic and allows the user to

hyperlink to another Web page.

7. Web User Interface Tools 141

Figure 7.10 Text formatting using menus.

Figure 7.11 Text formatting using maps.

142 Analysis and Design of Information Systems

The problem with maps is that they tend to become very large and can take

time to load on the Web page. Because of this dilemma, many Web designers

also provide a text-only version of the site, which can add to the complexity of

design and incur more development time.

Frames are a way to segregate Web page text into separate windows that

can behave independently. These sub-areas allow certain parts of the Web site

to remain visible while the user moves to another screen. Frames are similar to

headers or sidebars in printed text. Figure 7.12 shows the site www.alanger.com.

The first example shows a screen with a standard header screen and a body

section for “Programs at Columbia,” which is one of the options in the header

menu. The second screen shows the same header frame, with a different body

section for “The Firm.”

A key benefit of frames is that they can accommodate multiple types of media

including graphics and text. They are also easy to display in different browsers

and compatible with lower versions of HTML. Another benefit of frames is that

they can be used as reusable components. So once the frame has been designed,

it can be encapsulated within many screens and even within ecommerce systems.

Developers need only to employ an engineering tool or program that allows

frames to be updated when changes are made. The disadvantages of frames are

that they tend to be small, and they have limited space on each screen. Sometimes

the display of a frame on one Web page may need to be different on another, so

formatting frames can be a problem.

Content Templates

I mentioned briefly above that frames can be devised in the form of reusable

objects and that there are systems that automate the updating of changes in

content. The actual unit of the frame’s storage is called a Content Template.

Content templates are objects of text and/or graphics that are stored as separate

files, and reused by a Web site. Using content templates reduces the need to

reprogram information and graphics that are repeated throughout a Web system.

The benefit also relates to maintenance programming; instead of changing

multiple sites, Web developers simply “link” content templates to frames within

a Web page. Each time the Web page is loaded, the most current version of the

template is loaded. The benefits in maintenance savings must of course outweigh

the overhead considerations, which affect the load time and storage requirements

for the site. The other obstacle in template development recalls the challenge

of creating object-oriented systems: the overall effort, scope, and complexity

of designing reusable systems. While it sounds easy, it requires the necessary

cooperation of skills to develop, especially for ecommerce systems, which have

an enormous reach throughout the organization. Finally, an important benefit of

content templates relates to good publishing practices; they allow the appropriate

personnel to participate in the creation and updating of content, from logos,

7. Web User Interface Tools 143

Figure 7.12 Web page formatting using frames.

144 Analysis and Design of Information Systems

to text, to graphic images that need consistent presentation for the ecommerce

system to be successful.

Visuals

A Web site’s visual design is often the first thing that users notice (Powell,

2000). Indeed, first impressions are lasting ones, and the impact of visuals will

heavily influence a user’s perception of a site’s value. However, users tend to

focus less on visuals as they become more familiar with using a site. There is

much written about “take-away value” and “e-loyalty,” which are defined as the

influences that make users come back to a site. Thus, it is important to focus

on the visual effect but also to recognize the site architecture and navigation

as important components. Good analysts and designers understand that form

is function. Design is not a battle between form and function, but rather the

intertwining of them both, as great architects have always known. This section

explores the challenge of how to combine great navigation and site architecture

with the psychology of visual design.

If we are first to explore the psychology of design it is important to agree that

for most users, the Web is a visual experience. Because of this reality, there are

concepts, moods, and identities that can be portrayed through the visual affect

on a site through its images. And let us not forget the old saying “You remember

50% of what you read, but 100% of what you see.” However, understanding the

visual experience is complex; it includes color, images, and backgrounds. Color

must be used properly to convey the appropriate mood and cultural meaning.

Images, on the other hand, can be slow to load, a factor that will affect the

usability of the Web site. From a usability perspective, background contrast is

critical to the way users work with the images and foreground texts. Thus, color,

images, and the use of backgrounds all contribute to the success or failure of a

Web design.

Color

There are three components that define color:

1. Hue: this represents the actual name of the color and refers to the quality

itself.

2. Value: the degree of the lightness or darkness of the color.

3. Saturation: the intensity or purity of the color. The brighter the color

the more saturated it is.

There are also three descriptors of color. First there are chromatic hues, which

are all colors other than black, white, and gray. Second are neutral colors, which

are black, white, and gray (non-chromatic hues). Third are the monochromatic

combinations that represent variations of value and saturation to form a single

hue. There are a number of factors relating to how these definitions of color are

7. Web User Interface Tools 145

used in the analysis and design of ecommerce Web sites. The first significant

issue is to determine the domain of colors to be supported by your Web site. This

decision is directly correlated to the type of browser to be supported. Within a

browser is what is known as “safe colors” or colors that are supported by most

browsers. “Safe colors” also relate to the differences in the hue, saturation, and

value that each type of computer and browser might display. What appears as

one set of colors on one machine might look different on another computer.

Sometimes such variations can affect the mood and experience of the site. In

some cases, such as with logo colors, variations can confuse the brand image

being presented to the user. From an analysis and design perspective, color

selection is a critical step in creating mood. During interviews with users, it is

important that they understand the alternatives in selecting colors, especially as

they relate to the “safe” domain.

Another important analysis step is defining bit depth. Bit depth controls the

number of bits used to display the image on the screen. The number of bits

supported by a computer are controlled by its video card and its monitor. Users

need to be aware of the type of computers needed to support the color schemes

and hues they wish to attain. These issues may result either in changing the color

scheme, or in requesting standardized computer interface units. Obviously, if

the users are consumers, the probability of knowing this information is limited

or based on market research data. In many cases decisions on color support

are strategic decisions, that is, an informed decision to force users to bring

their computers to a level that allows them to interface with the system. This

decision is typically based on whether continuing at a lower or “safer” color

level inevitably creates an inferior product. Perhaps the most important decision

is to determine the browser-safe limit. The range of colors can vary from 256

and below to well over a million. Furthermore, it is important to remember that

PCs and Apples have different 256 color match-ups, meaning that one blue may

not match the other. In many instances the computer will attempt to “dither”

if you go outside the domain of browser-safe colors. Dithering is a method

that the computer uses to attempt to match the color selected, and it results in

speckled or dotted color schemes, not the kind of look that ecommerce systems

desire. Ultimately the decision about how to implement the color scheme is up to

developers, but analysts should explain to all concerned parties the importance

of determining the limit early in the analysis process.

Aside from physical issues and limitations, it is important to understand the

meanings that colors convey to users. Colors often have different meanings in

different cultures, so analysts need to focus on where the audience is, or how

many different audiences are intending to use the Web system. For example,

Western cultures associate black with death, but in Japan the color of death is

White. On many Web sites, color is used as part of the identity and branding.

Figure 7.13 represents common themes associated with color.

Furthermore, with advancements in color hand-held devices, issues

surrounding color compatibilities are becoming more challenging and provide

even more reason to stick within the boundaries of safe colors. However, color

146 Analysis and Design of Information Systems

Color Theme

Red Hot, error, stop, warning, aggression, fire, lushness, daring

Pink Female, cute, cotton candy

Orange Warm, autumnal, Halloween

Yellow Happy, caution, sunny, cheerful, slow down

Brown Warm, fall, dirty

Green Envy, pastoral, jealousy, inexperience, fertility, newness

Blue Peaceful, sadness, water, male

Purple Royalty, luxury

Black Evil, death, mourning, ghostly, night, fear

Gray Overcast, gloom, old age

White Virginal, clean, innocent, winter, cold

Source: The Complete Web Reference Guide, Powell (2000)

Figure 7.13 Common color themes.

alone can be deceiving. Contrast, particularly with hand-held devices that support

only gray scales, can present another problem when designing Web sites. The

more platforms supported, the more reason to have separate Web sites to support

them. Of course, this means having multiple sites to support one product. Once

again, having content templates and reusable components can become very

attractive for portable software projects.

Images

Images represent things visually. Effective images convey thoughts, concepts

and identity, with or without supporting text. Meanings can be displayed through

images such as a button, a heading, or a graphic caption that helps convey

an experience or a message. The difficulty with images is determining which

provides the best experience for the user and conveys the message and identity

that the company desires. From an architectural perspective, images can be stored

in a number of different formats. Some of these formats can affect the file size

and compression requirements. Size always affects the time it takes to display

the image.

Analysts also need to determine the image type. There are two basic types of

image storage: vector images and bitmapped images. Unless a plug-in is installed

on the computer, the Web supports only bitmapped images. Vector images are

discussed in Chapter 6. Bitmapped images are essentially a group of pixels of

different colors that combined form the image. Because of the large number of

pixels they contain, bitmaps are usually very large files. There are alternatives to

7. Web User Interface Tools 147

compressing bitmap files, but uncompressing these files wastes more time than

is saved by compression. The most popular compression image types are GIF

(Graphics Interchange Format) and JPEG (Joint Photographic Experts Group).

GIF are the most widely used on the Web because they work well with large areas

of continuous colors. The downside of GIF images is that they support only 8-bit

color for a maximum of 256 colors in a given image. Therefore, GIF files may

have color loss when displaying true-type images, such as photographs. JPEG,

on the other hand, is more suited for working with photographs, particularly

those that have many shades of gray. JPEG is not as efficient in compression

as GIF and also may display different levels of clarity depending on the color

range on the computer. JPEG also does not provide good quality compression

for line drawings or text. Therefore, the basic rule is for analysts to require GIF

images for illustrations and JPEG images for photographs.

Backgrounds

The use of backgrounds is a tricky proposition, particularly backgrounds that

contain texture. In general, busy backgrounds are not good for Web pages.

When a background is desired, it is usually developed with a product like

Photoshop, which can generate seamless shapes. The other problem associated

with backgrounds is load time. Indeed, a background is nothing more than a

large image. When using background loads, it is recommended that the software

use tiles or sections; this reduces the time it takes overall to display the page.

Effective backgrounds are usually subtle images that convey a message,

mood, or identity. For example, Figure 7.14 shows the www.alanger.com site,

which has a background that identifies my association with Columbia University.

Another interesting example of background design is Figure 7.15, which is

the site of the Rhode Island School of Design (www.risd.edu). This site shows

how background can be integrated with imagery to convey a cultural view of

the school.

The other issue with background is contrast with text. A fault of the Rhode

Island School of Design is the difficulty in seeing the text on the site. The

number of images, from this perspective, serves only to clutter the site and make

it more difficult for a user to get the information they want. This kind of problem

determination leads Web designers back to the original concept of approaching

site design: who are the users?

Web designers will continue to be challenged in handling all of the diverse

color, image, and background problems that exist in ecommerce systems.

Furthermore, the movement to wireless hand-held devices will create yet another

group of difficult decisions that need to be made among users, analysts, and

designers. It is important to note that while Web design continues to be an art

form, there are very real engineering issues that need to be discussed before the

aesthetics of what is delivered to the user’s desktop is decided. This is the area

in which analysis and design must cooperate with the artistic element.

148 Analysis and Design of Information Systems

Figure 7.14 Enhanced image using background effects.

Figure 7.15 Use of background to represent organization culture.

7. Web User Interface Tools 149

Web Site Navigation and Architecture

The other important aspect of visual design is the architecture and navigation of

the system itself. Indeed, the navigation and use of color, images, and background

are inherently related. Navigation can be defined as the science and art of

getting people or things from one place to another. While text can be pre-

determined based on what we want to convey to the user community, visuals

are strongly influenced by how the site is architected. The key components of

Web navigation are:

• Where am I?
• Where can I go?
• How do I get where I want to go?
• How can I return from where I’ve gone?

Design of visuals and placement of text will be based on the answers to the above

questions. Fleming (1998) offered 10 principles of successful Web navigation:

1. Be easily learned: Web navigation must be intuitively obvious to its

users.

2. Remain consistent: the navigation style should be consistently repre-

sented across all Web pages.

3. Provide feedback: this involves creating controls that provide infor-

mation to users to confirm their understanding of an image or option.

4. Appear in context: this relates to allowing users to get back, or to

understand where they are on the site, so that the page can direct them

to the next possible tasks that they might want to do.

5. Offer alternatives: provide as many options of things that the user might

want to do, without creating a clutter effect.

6. Require an economy of action and time: Web designers need to be

aware of how long it takes to complete a function or a task.

7. Provide clear visual messages: the visual guidance of the site through

hierarchies of selections and icons that define functionality.

8. Use clear and understandable labels: common-sense and user-sensitive

labels that depict the meaning of a given selection. Terminology must

match users.

9. Be appropriate to the site’s purpose: create ecommerce systems that

meet the goals and objectives of the business. For example, a shopping

site will be different from a site created for informational services.

Mismatches between a site’s purpose and navigational approach can

cause user confusion.

10. Support users’ goals and behaviors: ensure that the site is what users

want it to be, not what you think it should be.

There are no easy solutions to good navigation and site architecture. The real

answer lies in the user community, so it is important to explore how ecommerce

150 Analysis and Design of Information Systems

analysts and designers can formulate the navigation and architecture that will

work for users. This challenge, like so many others, must be faced during the

user interface phase. One of the best methods of approaching the design of

navigation is to categorize the type of site you are planning to deliver. There are

six categories of design sites that will assist in the process of determining the

style of the navigation and site architecture:

1. Shopping Sites: focuses on serving consumers and deals with issues of

trust and security. Areas of concern include the security of financial

information, protection of privacy, finding items of interest quickly,

assistance for those who are unsure of what they want, preview of

products for review, and dealing with problems or returns.

2. Community Sites: these sites need to explore creating shared spaces.

Issues of concern are rules of participation, privacy of identity, obtaining

feedback, authenticity of information, learning more about users from

the community, and getting assistance from the community.

3. Entertainment Sites: focus on avoiding user distractions and attracting

users to immerse themselves in the activities. Issues of concern relate

to whether users know where to begin, understanding what will happen,

how do they receive help, what practice do users need to have, and how

will users know when they are finished.

4. Identity Sites: these sites need to ensure they send the right message

to their users, and to create various attractions to get users onto the

system. Issues to be addressed relate to knowing about the company,

finding out about products, and finding contact information.

5. Learning Sites: must deal with multiple learning preferences and

allowing users opportunities to improve their skills. Users of these sites

need to know where to begin, what special knowledge they need to have,

authenticity of information, obtaining information that is appropriate,

and knowing how to experiment.

6. Information Sites: these sites must allow users to find information

quickly. Therefore, they employ shortcuts for speed. Issues relating to

these users are confirming whether they are on the correct site, finding

the specific information they need, helping them look for what they

think they want, authenticity and practicality of information, and storing

information for later use.

Navigation Placement

A difficult question to answer is where on a Web site should navigation occur?

There are five places to put navigation elements: top, bottom, left, right, and

center. As with so many other issues in technology, there are positives and

negatives of each placement.

7. Web User Interface Tools 151

Navigation at the Top

Placing navigation at the top of the screen ensures that users will see it first

as a screen loads. Also, as with the Windows paradigm, key navigation menus

appear at the top of the screen, so putting navigation capabilities at the top seems

consistent and natural to the user. The largest problem with top navigation is

that it can disappear off the screen as a user scrolls down. This problem can

be addressed by providing navigation links that take users back to the top. A

navigation palette can also be used as in Netscape, which ensures that the palette

stays on the screen regardless which feature is being used. Figure 7.16 depicts

the Netscape menu palette on the www.alanger.com site. Still another option is

to provide navigation links at the bottom of the page.

Navigation as a Metaphor

Metaphor is a concept that has been used to help people understand things by

using symbols, concepts, or words. A metaphor can be an important concept

for learning as well as for communication. Technology has for some time

used metaphors to provide simpler and more exciting definitions for users: for

example, the Internet as the “information highway,” or the Web as “cyberspace.”

Thus, a metaphor allows us to provide our view of the world as we want others to

see it—a perfect concept for Web design. The navigation, along with metaphors,

Figure 7.16 Using palettes in a browser.

152 Analysis and Design of Information Systems

can be a significant component of ultimately deciding on the correct strategies

and alternatives that have been offered in this chapter. Indeed, metaphors and

navigation form the center of creating the kinds of experiences that we want our

users to have. According to Dalgleish (2000) site metaphors include:

• Lobby: users are greeted by a virtual representation of a physical lobby

they are familiar with.
• Personal organizer: users refer to the functions that a personal organizer

performs to use organizational tools on the Web.
• Desktop: this is similar to the Windows desktop in that it represents a

virtual physical desk with specific tools for different functions.
• Folder: a virtual folder is one that keeps data in separate files and allows

users to navigate easily through each folder.
• Briefcase: the physical act of having a collection of information that is

always available. This can be correlated to a collection of information

and tools on Web sites.
• Shopping cart: the virtual shopping cart collects information as one

“shops” through the Web site.
• Gallery: users can browse a virtual space in the same manner as if they

were there physically. This is often done with multimedia software to

enact a movement within and around a particular space.
• Guide: this is a virtual tour through a space, and typically provides

advice on particular areas of interest to the user.
• Neighborhood: individuals are collected into a community where they

have a role to play or a stake in what occurs.

These metaphors can be classified into three types:

1. Organizational metaphors, which relate to important concepts in the

known organization. These metaphors are very useful in the devel-

opment of internal or Intranet ecommerce systems.

2. Functional metaphors that attempt to match the virtual to the physical

functions.

3. Visual metaphors, which virtually leverage from a user’s visual recog-

nition of known concepts.

Overall, the concept of metaphor is a fitting conclusion to the section on

navigation. Indeed, it is the use of metaphor that allows analysts and designers

to relate the physical world to the logical experience. Thus, I again use the

concept of the logical equivalence to describe the design of virtual equivalents

to what people are accustomed to experiencing. The difference in this case is the

aesthetic and creative foundation that is required to provide the same experience,

while at the same time creating the brand and image of the business. All this

needs to be accomplished through design and navigation and represented in an

intuitive, consistent, and organized manner.

7. Web User Interface Tools 153

Site Architecture

Web navigation needs to be finalized by ultimately developing the site archi-

tecture. The site architecture provides the blueprint for the movement from one

Web page and site to another. It is the schematic of the Web design. The first

purpose of this section is to define the different site organizational models. There

are four main logical organizations: linear, grid, hierarchy, and web.

Linear

Linear architecture is common because it resembles the way we read a book, that

is, it starts and moves forward in a linear fashion. In linear site architecture, users

can move from screen to screen without jumping around in some progressive

sequence. Linear Web architecture allows for bi-directionality. Figure 7.17 repre-

sents the different types of linear models.

Grid

Grid sites use a dual linear structure that provides for both horizontal and vertical

relationships between pages. When properly designed, grids provide for orderly

Figure 7.17 Types of linear site organization models.

154 Analysis and Design of Information Systems

movements both vertically and horizontally. While a grid allows for many options

in moving around a site, it can be dangerous. Too many vertical and horizontal

alternatives can create disjointed Web sites. While grids seem to be appealing,

they tend to be too unstructured and often are not useful for good Web navigation

designs. Figure 7.18 represents a grid architecture format.

Hierarchy

Hierarchies are one of the most common architecture structures. Indeed, the

hierarchy is a visual representation of functional decomposition. In essence, the

hierarchical concept is consistent with the way most common Web sites operate.

Hierarchical structures are typically called trees. The concept of a tree is that

as you go down the hierarchy, the number of children or nodes expands, so it

horizontally becomes wider. The overall view resembles a physical tree. The

other significant feature of a tree is that no node, or child, can have more than one

parent. This is an excellent site concept for Web structures because it supports

the “only one way back” process. Thus, the movement from a home page to

other pages can be very structured and clearly represented; the way back retraces

the footsteps without jumping around. Figure 7.19 represents the different types

of hierarchy trees that can be designed into the site architecture.

Where there is structure, there can be violations of the pure tree model. This

violation is called a “mixed” hierarchy, in which parents can talk directly to

grandchildren, thus skipping over a node. Furthermore, nodes or Web pages at

the same level, called siblings, can also communicate with each other. While

this format is very versatile, it typically leads to similar problems as does the

grid. Too much versatility destroys structure, and without structure there can be

no order. Figure 7.20 is an example of a mixed or unstructured hierarchy.

Figure 7.18 Grid site model.

7. Web User Interface Tools 155

Figure 7.19 Hierarchy site organization model.

Web

Multiple permutations of Web page linkages create an unstructured model. Inter-

estingly enough, an unstructured site is called a Web structure. Figure 7.21

represents a Web structure and shows the possible confusions that can occur

when there are multiple links to the same Web page. While there is a problem

Figure 7.20 Mixed hierarchy site organization model.

156 Analysis and Design of Information Systems

Figure 7.21 Web organization model.

with structure, the model lends itself to more expression by allowing dynamic

links to be added to the site without concern of a strong mental model.

Actual site architecture diagrams can take many forms. Figure 7.22 shows

some alternative completed site architecture examples.

Non-Web-Based Interfaces

While Web-based interfaces are the most popular, there are still many systems

that use just GUI or character-based interfaces.

The history of GUI can be traced as far back as the early Xerox systems.

Apple was the first company, through its introduction of the Macintosh computer,

to effectively commercialize the concept of graphical applications using a mouse.

When Microsoft Windows was introduced in the late 1980s, the use of GUI got

another major boost. While there are no industry-mandated rules for GUI design,

the dominance of the Microsoft Windows product line has resulted in some de

facto design standards.

Character-based screens,17 on the other hand, are often associated with

mainframe applications of the 1960s and 1970s; however, many such applications

still exist today and continue to be found on mid-range and personal computers.

While character-based applications remain important, they are diminishing over

time, especially as a result of the popularity of Web-based applications that

depend on icons and graphical images. Therefore, this chapter will focus on

designing the user interface with graphically driven screens.

17 Character-based screens are those that are composed of only words and captions.

Selection of screen options is accomplished through the entering of a code, as opposed

to through an object typically called an icon. Character-based screens also do not contain

built-in screen features such as drop-down menus, radio buttons, and check boxes.

7. Web User Interface Tools 157

2

Weekly Main

Page

O.2

Monthly Main

Page

O.3

Weekly

Selections

O.2.1

Applications

O.4

HOME Page

3

4

Sample Site Architecture

Application

A

Application

B

Application

C

Main Page

O.1

Main Selections

O.1.1

Information Help

About the

Industry
External

Links

Daily Report Weekly

Report

Summary

Daily

Report

Weekly

Report

9

Inf Search

8

Research Center

7

Interactivity Center

6

Special Events

5

Daily News

4

Standard Forms

and Documents

3

Policies

1

Job Postings

2

HandbookHomepage

Figure 7.22 Site architecture formats.

GUI and Styles of Manipulation

AGUI is the primary mechanism that enables the user to interact with a collection

of elements, called “screen objects,” that are visible to the user and used by

him/her to perform tasks. To accomplish these tasks, users perform various types

of operations on these objects. Operations are executed using one of the two

types of GUI manipulation: direct and indirect.

158 Analysis and Design of Information Systems

The term “direct manipulation” was first used by Ben Shneiderman in 1982 to

describe a particular style of human interaction with a screen. Direct manipulation

portrays the system as an extension of the real world where users can relate to

objects and icons that remind them of real-world symbols. Direct manipulation

allows the user to access and modify these symbols so that they can be used to

activate tasks. Thus, selecting an icon to perform a task, such as hitting the “save”

icon in a word processing program, is an example of a direct manipulation.

Direct manipulation relates to the concept of WYSIWYG (what you see is

what you get) and must therefore result in an immediate reaction or resultant

event.

Indirect manipulation, on the other hand, represents a task that effectively

executes another. Thus, selecting an icon that provides a list of other selections

can be considered an indirect method for executing what is really desired. An

indirect manipulation can be thought of as an easy way to select alternative direct

methods. Most GUI designs use a combination of both manipulation methods.

Advantages of GUI Systems

Overall, GUI represents a simplified interface that promises to:

• reduce the need for users to remember how applications work;
• enhance the human ability to process information through a computer

interface; and
• reduce the learning time to master a computer application.

Listed below are a number of specific examples of how GUI systems help users.

1. Symbols are recognized faster than text because their shapes and colors

are more easily classifiable.

2. Symbols can be easily learned. A graphical, pictorial representation has

been found to aid learning.

3. Visual or spatial representations of information have been found to be

easier to retain and manipulate.

7. Web User Interface Tools 159

4. Greater simplicity of graphics makes remembering easier.

5. Actions and visual skills developed before languages in humans. Human

beings have a powerful image memory.

6. Spatial relationships are usually more quickly understood than verbal

representations.

7. Concrete thinking is enhanced when objects are displayed directly in

the high-level task domain. Abstract thinking is minimized.

8. Concrete thinking reduces errors.

9. Immediate feedback develops quicker reflexes. If the path of action is

going in the wrong direction, then prompts to correct the path occur

sooner.

10. Ability to reverse unwanted or reconsidered actions increases user

control, confidence, and system mastery.

11. Icons possess more universality than text and are more easily compre-

hended worldwide.

12. Moving from a command language to direct manipulation is relatively

easy. The reverse is not the case.

Disadvantages of GUI Systems

Some users have found the GUI to be more difficult to work with in some cases,

particularly with respect to applications that require only simple data input.

Furthermore, as graphical systems become more sophisticated, interfaces will

become increasingly more complex. The following is a list of perceived GUI

disadvantages.

1. Design complexity. Layers upon layers of options are packed into an

interface.

2. When a user confronts the interface in an application for the first time,

the sequence of necessary steps does not always seem intuitive.

3. Lack of thoroughly researched guidelines. Increased GUI complexity

unleashes too many variables that must be controlled in order to

establish meaningful cause-and-effect relationships.

4. Inconsistencies in technique and terminology occur because of

copyright and legal constraints and product differentiation pressures.

5. The working domain is always in the present. Usually, icons don’t have

past or future tense. When users click on a button, the button takes

action immediately. However, there is no reason that delay options

could not be implemented.

6. Symbolic representations may not be as familiar as words or numbers.

7. There may be a limit to a human’s capability to engage a more complex

interface.

8. GUI interfaces are slower to act than character-based applications. There

is also more application overhead.

160 Analysis and Design of Information Systems

9. Symbols cannot be clearly produced across different hardware

technologies. Some are not equally legible or recognizable.

10. Inefficient for touch typists. Moving a mouse is a much slower motor

movement than typing.

11. The screen can easily become more cluttered, resulting in the user

having more responsibility to do screen housekeeping.

12. Requires more computer processing power.

Conclusion

Regardless of the relative pluses and minuses of GUI, the reality is that today’s

systems increasingly require it, and Web applications demand it. Different

interface styles have different capacities. Some concepts and tasks are better

suited than others for pure graphical presentation. Therefore, it is the design

of the interface and not its interaction style that is the most reliable success

factor. The success of a graphical system depends on the skills of its analysts

and designers in following established principles of usability.

Where to Begin

Screens can be designed using a number of approaches. Under the best

circumstances, the analyst should first complete data flow and process flow

diagramming, creating the data dictionary, and producing process specifications.

Taking these steps is an important precursor to screen design, allowing the

analyst to begin mapping elements needed for screen to the data elements that

exist in the data dictionary. The process specifications are also critical because

they usually contain the business rules that often govern the way the elements

behave during the user interface. Furthermore, the process of designing screens

may even lead to process specification updates because of new requirements that

get formulated during the development and approval of screen functionality. We

must remember that in GUI applications, most functions are initiated through

a screen program. Process flow diagrams may be extremely useful to screen

design because they follow the user’s sequential needs. Thus, mapping screen

requirements to each process can be a useful step in beginning design. It should

be understood, however, that screens and processes do not have a one-to-one

relationship. While such a relationship may exist, it is totally incidental. Take

the following example:

The screen of Figure 7.23 depicts three actual processes. Figure 7.24 shows

the corresponding processes as they are represented in a PFD.

Another, alternative, approach to designing screens is to start with the ERD. In

this case, every data element in the ERD is mapped to a specific processing point

in the system. This processing point is then correlated to a screen. Unfortunately,

7. Web User Interface Tools 161

Figure 7.23 Order item entry screen.

this approach has many limitations. First, not every data element in the ERD

may be required to appear on a screen. Second, there are many fields that are

results of calculations that must be displayed, but are not elements in the database

(remember that 3rd normal form will eliminate derived elements). Figure 7.25

depicts a screen that has been mapped to an ERD. The actual data element names

are linked to the screen fields. Notice, however, that the screen fields labeled

“Duty” and “Expenses” are not mapped because they must be computed each

time the screen program is executed. Thus, these elements are 3rd NF failures

because they are derived.

Figure 7.24 Process flow of order entry screen.

162 Analysis and Design of Information Systems

Figure 7.25 GUI screen showing corresponding data element reference.

Yet another common method is to use the screens from the legacy system as

a starting point. Most software development projects are not done from scratch,

meaning that there is an existing system in place. Under this procedure, the

analyst obtains copies of every screen in the existing system. The screens are then

modified with new GUI functionality that is needed by the new system. While

this sounds very straightforward, character-based screens often do not map easily

to their GUI counterparts. The analyst must be especially careful not to attempt

to simply duplicate the screens in the legacy software. Figure 7.26 depicts a

character-based legacy screen. Note that there can be up to four Contract/POs

as shown in the upper right-hand corner. The user is required to enter each

Contract/PO on a separate screen.

On the other hand, the replacement GUI screen (Figure 7.27) takes advantage

of the view bar that allows for scrolling in a window. Therefore, the GUI version

requires only one physical screen, as opposed to four.

Still another method of designing screens is to hold separate user interviews,

with the sole focus of determining the types of screens that are needed. This

process, which can be effectively done using JAD sessions, is a way of recon-

ciling the screens against the process specifications, data dictionary, and flow

diagrams (DFDs and PFDs). Often, analysts may try to develop prototype screens

based on their knowledge and understanding of the requirements from the struc-

tured tools. This can at least provide users with something to critique. Screens

can be quickly drawn using a number of prototype packages, although almost

every development tool, such as Oracle/and Visual Basic, have easy-to-use screen

7. Web User Interface Tools 163

Figure 7.26 Character-based user screen.

Figure 7.27 GUI replication screen of character-based system.

164 Analysis and Design of Information Systems

painter features. A screen painter is a graphic tool within a development product

that allows you to design a screen quickly for prototype use. The main advantage

here is that the screen painter interfaces with features that allow the prototype

to be converted to a production version of the screen. The production version or

compile feature of the product can typically be used by programmers after the

prototype screen is passed to them for development.

Screen design is a very iterative process. It usually starts with just a drawing

of the screen in pencil. The analyst then prototypes the screen for presentation.

At this point, the users may need to have the screens “linked” so that they can

get a sense of how the screens integrate as a product. Screen linking can be

accomplished by using Microsoft’s Powerpoint; still others have actual linking

capabilities in their prototype feature. In any event, users need to get a sense

of how the screens work. After one or two iterations of review, the analyst

should then provide development with the source screens so that they can be

implemented. As screens are completed, they should again be shown to users

for their approval.

Components of the GUI

There are a number of parts that can go with the design of a user screen: (1)

operating system; (2) application; and (3) interapplication.

An operating system component relates to the de facto universal Microsoft or

Apple menus and icons that interface with the operating system itself. Examples

of these controls are the Application Window Menu Bar, sizing control icons,

and the Microsoft Application bar. These controls are summarized below and

shown on the sample application screen in Figure 7.28

Border: Also known as a “frame,” a border defines the boundaries of a

window view and distinguishes it from other windows.

Title Bar: This is the top line of the window and explains the purpose

or name of the window function.

Work Area: This is the portion of the screen inside the borders of the

window where the user performs tasks.

System Menu Button: This button is located at the left corner of the

title bar and is also called the “control menu” or the “window menu.”

This button is used as an aid to keyboard users and lists options for

manipulating the window. This includes commands such as Restore,

Minimize, Maximize, and, Close.

7. Web User Interface Tools 165

Figure 7.28 GUI screen features.

Title Bar Icon: This icon is located in the left corner of the title bar and

is used to retrieve a pull-down menu of commands that apply to the

object in the window.

Window Sizing Buttons: These buttons are located on the right corner of

the title bar and are used to manipulate the size of the active window.

Menu Bar: This is used to organize and provide access to actions that are

listed horizontally across the top of the screen and below the title bar.

Status Bar: Also known as a “message bar,” the status bar provides

information to the user about the state or status of the information or

object inside the window.

Scroll Bars: These appear when all displayed information cannot be

presented within the current window boundaries. The vertical scroll bar

at the right of a window controls the up-and-down scrolling, while the

horizontal scroll bar controls right-to-left movement.

Split Box/Split Bar: This is a window that is split into two or more

pieces, or panes. Split boxes can be manipulated using the split bar,

which is located above the vertical scroll bar.

166 Analysis and Design of Information Systems

Control Bar: This represents an array of choices and commands that

need to be viewed in an accessible area of the screen and are maintained

in the display area. Examples include button bars, color or pattern

palettes, toolbars, rulers, and ribbons.

Size Grip: This a handle in a window that permits the window to be

resized. The resizing is accomplished by dragging the grip and moving

the window to the desired size. The grip is located in the lower right

corner of the window. It is identified by 3 angled parallel lines.

What’s This? The question mark indicates to the system that the user wishes to

ask a question about the object being pointed to.

The application screen component consists of the specific data elements that

are needed by the screen application program. One can visualize that the appli-

cation component interfaces with the data elements in the ERD. The application

component is the most free-flowing and involves the most design issues. There

are a limited number of application screen tools such as buttons, check boxes,

and drop-down selections. The specific component controls within an application

screen are depicted below:

� Radio Button: This is used when there are two or more mutually

exclusive options. A dot in the circle indicates that the option

has been selected.

Command or Push Button: This initiates an option. Command

buttons typically contain a label on the button that identifies

the nature of the option.

Check Box: This used when you have one or more options that

are independent of each other. A checked box indicates that

the option is selected.

Scroll Bar: A scroll bar scrolls the screen either horizontally

or vertically. The purpose of the scroll bar is to allow users to

input or view more information than is available on the normal

screen view.

List Box: These are used to display several choices. There

are two types of list boxes. Single selection list boxes force

the user to choose one selection. Multiple selection list boxes

allow the user to make several selections. Multiple selections

is a useful option if the user is choosing several items that will

be acted upon the same way.

7. Web User Interface Tools 167

Combo Box: This is used when you want to provide the user

with the ability to either select from a list or enter a value. A

good example is the “Save As” feature in Windows, where a

user can either leave the default value or change the name by

overwriting it. Combo boxes are also useful for ensuring that

the insert of a foreign key points to a valid parent value (see

the Chapter 6 section titled “Business Rules”).

Text or Edit Box: This is used simply to enter or edit data.

Text boxes are used frequently for screens that require data

entry and for display of data. Data that is only displayed is

often shown as gray without a black outline. Thus, just the text

appears on the screen.

Database Design

The database design of Web-based software is particularly challenging when

an Internet/Intranet architecture is desired. As discussed above, security of data

becomes a major issue in two areas. First, data must be encrypted in some

fashion for users from within the company that are accessing internal sensitive

data. While these elements are traveling via an Internet connection, they are

vulnerable to illegal access. The only method to secure such data is to encrypt

it, meaning that the data is scrambled using a sophisticated algorithm. Even

if the data is illegally accessed or copied, it would have to be decrypted, or

unscrambled, to be understood. Offenders would thus need to be sophisticated

enough to know how to “break” the encryption code scheme.

Second, and more challenging, is the allowing of certain data information

to be available to the general public while other data elements are secured

from outside access. Data made available to the public through the Internet is

said to reside outside the firewall. A firewall is a hardware server that protects

organizations from illegal access from unauthorized users who could corrupt

or steal data. Analysts are therefore challenged to design database systems that

have data outside the firewall and available to all, and data inside and secured

against those who do not have correct access security. This challenge creates

a comprehensive database design issue. There may need to be a way that data

on either side of the firewall can communicate. Data that resides outside the

firewall may need to be refreshed from time to time with data from the internal

system. There must also be a way of obtaining new data or updates from the

data residing outside the firewall. Finally, and most important, there is the reality

that two or more databases may indeed need to coexist. Multiple databases

that contain some of the same data elements create redundancy and integrity

problems. Thus, analysts need to provide a solution to what appears to be a direct

design need with the concept of normalization. Further complications are the

challenges of maintaining the performance of internal production data, and the

168 Analysis and Design of Information Systems

impact of potentially massive amounts of access from the general public. While

there is no single right answer, there are a few ways to address these issues.

1. Maintain One Database: This is certainly not easy, but it provides the

best control over redundancies and integrity issues. The analyst has little

to do with respect to design, but a lot to address as to which data may

be accessed by external users. This means that data access outside the

firewall must be completely controlled by an application program that

filters requests to the main database server. Outside requests must be

guarded by special screen programs that operate over the Internet and

control which elements are available to users. Furthermore, elements

that are added or updated outside the firewall must be received by

the database system and handled under the auspices of the product’s

database manager, as shown in Figure 7.29.

2. Database Replication and Synchronization: This provides more security

over the internal data by allowing the specific database product to use

its replication capabilities to generate a mirror database. Thus, all the

database changes outside the firewall would need to be synchronized

back to the internal copy. The external database would still allow access

only to certain data elements deemed accessible to external users, as

shown in Figure 7.30.

3. Separate Databases: This design concept creates two separate

databases. The synchronization between the databases is delayed and

occurs through an application that ensures that the elements are updated

in a batch mode. This means that the production database, which resides

behind the firewall, goes through a number of replications and updates

a subset database for the general Internet user. The second database

contains only the elements that are deemed accessible to external users.

The separate database method establishes two separate systems. The

second, or external, database serves the Internet portion of the system

Figure 7.29 Internet/Intranet central database diagram.

7. Web User Interface Tools 169

Figure 7.30 Internet/Intranet synchronized replication database diagram.

and is not a copy of the latest data. This approach almost certainly

requires that the external data be used only for decision support infor-

mation, in that changes to the external database would be very difficult

to bring back to the production system. Thus, synchronization goes

only from production to external, not vice versa. External databases of

this design are often implemented using data warehouses, because the

data need not be in a normalized form as a read-only provider of data.

Unfortunately, this design is not effective for systems that require the

Internet data to update the internal production system.

E-Commerce Application Requirements

Designing application programs that support the Internet/Intranet database design

poses a major challenge for the analyst. On first consideration, it might appear

that the database design must be completed before applications analysis begins.

In fact, though, these two processes take place in a more parallel fashion. The

reason for this parallel development is that decisions about the way the database

will function are inevitably shaped by the needs of the application, especially

those outside the firewall. For example, if an Intranet application is required

directly to update elements in the production database, then the analyst should

not prescribe the separate database design approach. Even more important is

the need to have users involved in decisions about how e-commerce in their

organization should function. User input may be ongoing and will certainly

shape the development process. However, as in other areas of analysis, users

170 Analysis and Design of Information Systems

cannot be left to determine what they want entirely on their own. The constraints

of applications, security issues, and performance limitations must be discussed

with users so that they fully understand the implications of their decisions both

for themselves and for other parts of the organization. Without benefit of such

discussions, users may demand Web functionality that could create problems for

the system as a whole.

Many Internet/Intranet development projects utilize Web applications to

create a new form of business known as e-commerce (electronic commerce).

E-commerce creates a virtual interface for consumers to interact with an organi-

zation, and this interface may differ from the way the business typically

operates in the real world. In e-commerce analysis, the “user” becomes the

“consumer.” This transformation is an important issue for the analyst. The most

well developed e-commerce models are usually those relating to retail operations,

where defining users as consumers seems natural. Through these e-commerce

retail sites, consumers can actually order, purchase, and track products from a

company via the Web interface.

However, e-commerce from a data processing perspective is not just about

product fulfillment via a Web interface—it also encompasses the challenges

of creating a user interface that relies on forms of artificial intelligence (AI).

While I am not suggesting that Web systems are full-fledged AI products, they

are systems that need to allow users to enter “what ifs.” These “what ifs”

allow consumers to receive results about their needs based on their own input.

For example, if I want to search for a particular type of exercise equipment,

an e-commerce Web application might ask me to provide information about

my height, weight, exercise habits, age, etc. This information would then be

utilized by the application to suggest or recommend what equipment might best

fit my personal needs. Thus, e-commerce systems attempt to replace the store

attendant, who would typically provide this consultation to a potential buyer at

an exercise storefront, with an intelligent interface. This example is certainly

not limited to retail, as many e-commerce Web sites provide consulting services

through a similar question and answer interface. This concept of processing is

the component that represents the AI aspect of Web development.

Using AI skills, then, analysts need to develop procedures that emulate

the behavior patterns of users as consumers, so that they can design systems

that respond well to these behavior patterns. Unlike most traditional software

development situations, it is the marketing wing of the organization that will

have perhaps the greatest input in the design of the system, because of its focus

on consumers. Analysts therefore need to work closely with the organization’s

marketing operations to gain an understanding of what consumers/users need.

Rather than interviewing consumers directly, analysts will learn about their needs

indirectly from the perspective of the marketing department. This kind of learning

is not an easy task. Therefore, the following phases are recommended to help

the analyst generate appropriate specifications for e-commerce systems.

Phase One of the process is to identify the types of products and services to be

marketed on the e-commerce system.

7. Web User Interface Tools 171

Phase Two involves the prepurchase interaction with consumers. This process

involves comparison shopping and/or product selection based on competitive

variables and attributes.

Phase Three is the pricing, leasing, charging interface, where the consumer has

the ability to understand and determine the payment plan and process of goods

and/or services.

Phase Four is the consumer’s actual placement of the order and its authorization

and confirmation of. Delivery date is also a part of this phase of e-commerce

processing.

Phase Five involves issuing the consumer some form of receipt or confirmation

of the order.

Phase Six involves the postpurchase process interaction, where the customer is

serviced and supported based on various plans offered by the organization.

The analyst will need to develop specifications for each of these phases by

working with the marketing department to gain an understanding of the user

community. The marketing department must provide an action plan to support

each of these processes. Below are the proposed analysis and organizational

steps that should be taken to ensure successful e-commerce development.

Phase One

This phase requires that the branding of the business’s image be completed.

Branding means that the marketing department must first define the image it

wants the Web site to convey. Indeed, it is critical first to define the mission

and image of the organization before determining the products and services

that are to be offered on the Web. It is also important to have a detailed

understanding of the needs and demographics of targeted consumers. Buying

patterns are changing with the increasing numbers of time-strapped, two-career

couples, as well as the aging American population. Recent data suggests that

Americans are spending less time in shopping malls and storefronts.18 Therefore,

understanding the implications of time constraints and other issues on the way

consumers shop is crucial for the development of an e-commerce site that suits

this population’s buying preferences. Analysts should take an active role in this

research process, not so much from a market definition perspective, but rather

as a manager of the on-line consumption processes. This implies that the analyst

will define the kind of information that is needed, rather than the content of that

information.

18 Ravi Kalakota and Andrew B. Winston, Electronic Commerce: A Manager’s

Perspective, Addison-Wesley Publishing Co., 1997.

172 Analysis and Design of Information Systems

Phase Two

This process involves determining what constitutes an effective consumer user

interface. During this phase, the design of the e-commerce screens in accor-

dance with the entire Web site must provide the features that make using the

Web easy for on-line purchases. Thus, Phase Two requires the design of the

features and functions that must be available to consumers, and these must be

designed for effectiveness and simplicity. Software development decisions, Web

browser requirements, multimedia versus dynamic screens and pictures are all

components of making the appropriate design decisions.

Software product decisions must also be made during this phase. Technical

architecture of the Web infrastructure, including network topology and security,

use of CGI tools and interactive Web applications, as well as database integration

must all be considered. Network topology decisions include selecting the hosting

architecture and firewall hardware. CGI scripting will be necessary to ensure

standard interfaces between other Web servers and applications. Interactivity

must also address four distinct forms:

• ability to link data provided by different servers or hyperlinks and

anchors.
• ability to provide customers with data from diverse sources including

external systems and databases.
• ability to encompass new types of data including HTTP protocols and

Internet mail extensions (MIME).
• ability to integrate new helper or plug-in applications.

The integration of a back-end database will be crucial to the overall

e-commerce design. Issues surrounding the centrality of the data, and its interface

with existing production systems, will require the analyst to provide an intricate

design. Data warehousing alternatives for quick search results might be another

alternative. In any case, a detailed database interface analysis must be completed.

Phase Three

This phase essentially creates the virtual store. The analyst must ensure that

consumers are provided with systems that can determine the pricing of products

and/or services, and that allow them to pursue different scenarios—in other

words, an AI interface. The creation of this kind of virtual store often requires

the creation of a separate business entity within the organization. This can have

a profound effect on the culture of the organization. Therefore, it may be wiser

to develop the Web e-commerce system as a separate and distinct business.

Some of the consumer interface design challenges involve enabling

consumers to receive the answers they need to make a well-informed decision.

For the selling of some items, Web sites must allow consumers to select among

7. Web User Interface Tools 173

different options or components and thus to create different product configu-

rations. Furthermore, the Web must offer consumers help in determining what

product or service best fits their needs. This can be accomplished by creating

interfaces that request specific data from the consumer. The data in turn generates

advice for the online consumer. In essence, the traditional steps that typically

occur during the in-store sales process need to be replicated using a virtual

interface.

Phase Four

This phase requires that the new e-commerce system be incorporated into the

back-end processing and delivery procedures of the organization. Again, analysts

will need to decide whether to blend e-commerce processing with the existing

internal system or to create a new, stand-alone, business. Analysts will also need

to provide some form of on-line tracking systems that allow electronic users

to receive confirmation of their orders, acknowledgment of product shipments,

and a confirmed delivery date. These systems must also provide for security of

on-line charge accounts.

Another challenge may be the requirement to blend production software

with administrative products, such as e-mail. E-commerce transactions must be

monitored and confirmations sent out to consumers. Internal e-mail accounts

must be created so that a system operator responsible for the Web can receive

communication from both customers and internal parties about problems and

questions.

Phase Five

This process involves the actual delivery of product, and the need to have the

Web interface capable of communicating this delivery. During many transac-

tions, the normal retail issues of refunds and disputes will arise. Therefore,

software must be developed that provides an e-commerce system that can handle

account activity, statements, and credit handling to facilitate the resolution of

postpurchase problems. Other aspects of improving delivery issues are:

• administrative software that allows staff to handle e-commerce-related

issues.
• access for customers to automated support information, such as product

sheets and frequently asked questions.
• providing timely information via the Web so that customers would

rather check the Web page than call the office.

Also involved in this phase is the method marketing the Web site itself. This

process involves developing strategies to ensure that the site receives “hits.” The

system must also have capabilities to capture and track user information such as

174 Analysis and Design of Information Systems

the number of hits, what features and functions are being used, and how many

visitors to the site are actually ordering products and services.

Phase Six

This process involves postsupport after product delivery. It addresses the issues

of ongoing customer relations and activities that can be organized as installed-

based sales opportunities. Existing customers and prospects represent the best

opportunity for cross-selling installed customers and “upselling” product lines.

The most important requirement of the technology will be to effectively gather

information that aids in defining user needs. These needs can be determined

by having software that records demographic information and buyer habits, and

thus builds customer profiles. Such information must therefore be part of the

e-commerce system. This might be a good time to discuss privacy issues with

users.

Help-desk management must also interface with the e-commerce data to allow

personnel to provide accurate help to callers. Calls will come in, especially from

unsophisticated Web users who are not familiar with using electronic means

to generate orders. Phone and e-mail interfaces should also be considered to

provide maximum customer support.

We can see from the processes outlined above that constructing an

e-commerce Web model involves analysts in a more expanded role than other

tasks.

Problems and Exercises

1. Explain the challenges of Web-based development as it relates to end-

user satisfaction.

2. What specific advantages does using a browser product provide to

software development and user operation?

3. Discuss the database design challenges for Web-based applications

development.

4. What is data replication and data synchronization?

5. What is the purpose of a firewall?

6. Explain the different design techniques for developing Internet/Intranet

database products.

7. What is the difference between an Internet and an Intranet?

8. How do batch updates operate within aWeb-based database application?

9. Describe the six phases involved with developing e-commerce systems.

10. How are artificial intelligence (AI) concepts used in e-commerce

analysis and design?

11. Define what is meant by a GUI.

7. Web User Interface Tools 175

12. Explain the differences and similarities between character-based screens

and GUI-based screens.

13. Describe the differences between direct manipulation and indirect

manipulation.

14. Provide 10 advantages of GUI systems and 10 disadvantages. Explain

your support for each pro and con.

15. How do GUI screens interface with a PDF? a DFD?

16. How do GUI screens interface with the ERD?

17. Explain how derived data elements exist between screens and the ERD.

18. List and explain five unique components of a GUI screen.

19. What is the functional difference between a check box and a radio

button?

20. Explain the relationship among a derived data element, the ERD, and

the process specification.

8
XML in Analysis and Design

Introduction to XML

The Extensible Markup Language (XML) is a significant development that adds

flexibility and richness to the exchange of data on the Net. Specifically, XML

and its related standards improve Web data exchange by providing a method for

structured data transfer. This structured data transfer allows different systems

to exchange data through standard or agreed upon formats. Furthermore, XML

supports an object model that allows for the sorting, selecting, and manipulating

of data in documents, regardless of whether the data resides on the server or on

the client computer.

The purpose of XML is to allow for data exchange across multiple tiers

of Web applications. Like HTML, XML is a subset of SGML (Structured

Generalized Markup Language), optimized for delivery over the Web. HTML,

however, restricts developers to a finite set of tags designed to describe Web

pages for presentation, as opposed to exchange of reusable information or data.

Unlike HTML, which tags only elements in Web pages for presentation by a

browser, XML tags elements and stores them as data. This means that XML can

be used to identify text or numeric elements within a Web page, allowing text

to be passed into the page as data. This is accomplished by a coding system

that makes use of data tags that precede the value. For this reason, XML can be

defined as a metalanguage—a language used to define new markup languages.

With XML, developers can create languages or documents specifically for an

application.

The ecommerce applications that have the most to gain from using XML are

obviously those that cannot accomplish what they need to do with HTML. The

types of applications that can maximize their benefit from XML fall into one of

four categories:

1. Applications that require a Web client to utilize data between two or

more related databases.

2. Applications that have more processing on the client tier than on the

server tier.

3. Applications that require Web pages to be presented differently

depending on the user and device accessing the ecommerce system.

8. XML in Analysis and Design 177

<Item optional ="1">

Start Tag

End Tag

</Item>

Tag Name

Attribute Name Attribute Value

Figure 8.1 XML text format.

4. Applications that allow intelligent Web agents to dynamically tailor the

information provided to users depending on the environment or Web

client that the information must reside on.

In practice, then, XML is suitable for storing and exchanging data that can

be plausibly coded as text (Harold & Means, 2001). On the other hand, it is

unsuitable for multimedia data, such as photographs, sound, and video.

XML Structure

As stated earlier, XML can be considered a metalanguage. It is essentially text

that can represent an element, tag, or character data. An element defines the

existence of a data field, the tag delimits its beginning and ending, and the character

data represents the element’s actual data. Sometimes the data is an actual value;

other times it is a text string. This depends, of course, on the definition of the

element’s attributes. An example of an XML text structure is shown in Figure 8.1.

Because XML can have multiple types of definitions, it is said to contain

mixed content. The mixed content can be represented in the form of a tree

structure as shown in Figure 8.2.

In figure 8.2, the contents of the F-Name and L-Name are character data,

whereas name and profession are elements that have tags to delimit the definition

values.

XML Parsing

From a process perspective, there are a number of related components or tools

that provide XML with the ability to connect to various applications. The first

component is called the XML Parser. In many ways a parser is similar to a

compiler in that it is charged with the responsibility to translate source data into

an object or target machine form. The XML Parser is responsible for editing

178 Analysis and Design of Information Systems

Person

Name Profession Profession Profession

first_name last_name programmer teacher accountant

Art Langer

Figure 8.2 An XML tree.

an XML document and breaking it down to its elements for transfer to various
application programs. These programs could be Web browsers, word processing
editors, database systems for storage of the source, spreadsheet, Java or C++

programs, or miscellaneous third-party products. The transferring process is
known as “parsing out” the data. From an edit perspective, the XML Parser is
responsible for validating the input data to ensure that there are no errors. This
is accomplished by interfacing with a document type definition (DTD) file. The
DTD contains the master list of data rules and document constraints. The data
rules include the list of fields that can be used in an XML document. If the DTD
does not contain a definition, an error will be generated. Error messages can
have varying levels of significance, similar to the way compilers issue warning
and fatal errors when editing source code.

Once an XML document has completed the parser, it can be generated to a
number of different applications as shown in Figure 8.3.

What XML Is Not

XML is just a markup language, meaning that it is limited to the manipulation and
presentation of data as text. Therefore, XML is not truly a programming language
per se. Furthermore, XML is not a network protocol and therefore cannot be
used to send data across a network without the assistance of other network
protocols like HTTP and FTP (File Transfer Protocol). Finally, it is important to
recognize that XML is not a database and cannot replace the functionalities of
databases. XML can be stored within a database and provides a reuse function
by providing an XML format to many different types of applications on many
hardware platforms. The format is stored as data only.

8. XML in Analysis and Design 179

Relational

Database

DOM

(Standard

Reusable

Definitions)

XML Document

XML Parser

Applications

DTD

(Document Type

Definition)

Corel

Microsoft Money

and other

Bankstatement

Software

Package Software Java and C /C++

Web Browser

Word Processor

for Editing

Spreadsheets Database Storage

Validation

XSL Languages

Figure 8.3 XML application generation.

Other XML Interfaces

There are other application interfaces that are used when the target is a Web

browser. The functionality of these applications is to provide better formatting

features that allow XML to better integrate with a Web browser screen or

what is called a “stylesheet.” The Extensible Stylesheet Language (XSL) is an

XML application that transforms XML documents into Web browser form. This

180 Analysis and Design of Information Systems

application has been decomposed into two more specific programs: XSL Trans-

formations (XSLT) and XSL Formatting Object (XSL-FO). XSLT is general-

purpose in that it allows one XML document to be displayed in a Web browser,

whereas the XSL-FO feature describes the layout of the text data. Another

enhancement is that the Extensible Linking Language (XLL) is a more powerful

linking construct that has greater capabilities than HTML’s A tag. XLL is

comprised of two separate standards: Xlink, which describes the connections

between XML documents, and Xpointer, which addresses the individual compo-

nents within an XML document.

Another application that can be used to format Web browser pages is

Cascading Style Sheets (CSS). CSS is usually utilized as a lower-level formatter

for HTML. CSS does allow styles to be reused within documents without the

need to redefine them. In addition, CSS allows for the definition to be changed

anywhere in the document file.

XML and Ecommerce Applications

Ecommerce systems are all about the interfacing of systems across the Web

to conduct business transactions. A number of years ago, a communication

standard called Electronic Data Interface (EDI) was developed. EDI is essen-

tially a standard file format that allowed companies to provide a consistent

way for vendors to interface with their systems. For example, the publications

industry has a standard file format for vendors who submit invoices to them.

The EDI standard became part of most internal systems in the publications

industry because it saved costly custom modifications for each system for both

the company and its vendors. XML provides a great deal more functionality than

EDI; however, it works on the same principle of allowing standard interfacing

and exchange of data. What makes XML so exciting is that the data, unlike in

EDI, can also be used as text to populate applications, as well as passing over

the Web so that businesses can exchange information without standard network

protocols. Thus, an EDI-like data interchange can be accomplished by combining

data requirements and applications; the Web page combines application interface

and data interface in one package. By using XSL capabilities, an XML file can

be translated into HTML and be propagated into an operational Web application

in a Web browser as shown in Figure 8.4.

Document Object Model

The Document Object Model (DOM) represents the most important component

application for the ecommerce analysis and design function. Indeed, ecommerce

analysts must decide which portions of the system will utilize XML applications,

and more important how these XML documents should be defined. The DOM

is a powerful tool that allows XML documents (as well as other documents)

8. XML in Analysis and Design 181

XML Document

XML Parser

Parsed XML
Application

DTD

(Document Type

Definition)

Validation

Web Browser Formatting

CSS (Cascading Style

Sheets)
XSLT & XSLFO

XLL (Extensible Linking

Language)

Figure 8.4 XSL Web page creation.

to be manipulated as objects. This means that the DOM can access an XML

document, reformat it, and preview it visually as an object tree-structure. Given

that XML is structured hierarchically, any XML document can be displayed in

a tree structure as depicted in Figure 8.5.

Figure 8.5 reflects a recipe as a tree of document tags. This structure makes

it easier to understand—and to update—any XML design. The tree structure

is also consistent with a class diagram structure, so the model is well suited

for interface with object-oriented systems. Thus, the DOM allows developers to

make modifications to the structure, which will then be automatically translated

back to the XML document as shown in Figure 8.6.

Furthermore, the DOM can be used to create XML documents from scratch,

so it is truly full-duplex in its relationship with XML documents. Thus, with

the DOM, XML documents can be manipulated as objects, instead of only as

streams of text. Having a visual representation of an XML document makes it

easier to edit the information. Furthermore, the DOM is compatible with the

Interface Definition Language used in CORBA (Common Object Request Broker

Architecture), often used to implement object middleware applications.

The DOM also plays a pivotal role in the interface of XML with relational

databases. This is accomplished by thinking of the relational database as a set

182 Analysis and Design of Information Systems

University

Business School Medical School Arts&Sciences Law School

MBA
Exec

MBA
Certificate Graduate

Under-

graduate
Post-Grad

Masters PhD

Figure 8.5 XML tree structure design.

of DOM objects. If an ecommerce analyst wants to design a document that

represents a particular schema of data, it can be described by the DOM and then

translated into an XML document. The XML document can then be formatted

using XSL into an HTML Web application. SQL can be used and mapped via

XML to the backend relationally modeled data. Thus, database schemas can be

brought together in a rather robust way using the DOM as shown in Figure 8.7.

XML as a Common Data Format

In Chapter 9, I discuss the different methods of linking legacy applications with

ecommerce systems. Two methods, “Leave As Is” and “Enhance,” both required

some form of data linkage. The format alternatives were parameter passing and

database. While these options had value, XML provides yet another interesting

XML

File
DOM Parser Code Print

New

XML

File

DOM Tree New DOM Tree

Figure 8.6 DOM document transformation system.

8. XML in Analysis and Design 183

Orders Items

OrderItems

Customers

DOM

XML

Document

Database Management System (DBMS)

Application

Developer

Application

Interface

Figure 8.7 DOM interface with databases.

alternative, especially in cases where the legacy link does not have a database

interface. XML, as previously stated, provides linkages without concern for

the hardware platform. While relational databases provide for application and

platform independence, there is huge overhead associated with using a database

as a method of intercommunication among application programs.

With the rapid proliferation of ecommerce interfaces, free XML tools can

represent another method of providing platform-independent and database-

independent program communications. The unique strengths of using XML as a

software data communication method include:

• Simple Syntax: XML is easy to generate using the DOM, and easy to

parse using XSL.
• Support for Nesting: the tree format allows for programs to represent

data structures with nested elements—required by many program

formats.
• Easy to Debug: XML is easy to format, especially with the DOM.
• Language and Platform Independent: an XML data file is completely

transportable across different architectures and database products.

184 Analysis and Design of Information Systems

Mainframe
Data

Schema

DOM
XML

Document

Web Browser
Representation

Figure 8.8 Using XML to link legacy systems.

Thus, XML is becoming a popular format for enterprise data sharing, especially

when there are mixed platform environments. For example, suppose a typical

organization needs to take information from an IBM mainframe and display it

on a Web site. Using XML, the mainframe schema of data can be accessed by

the DOM, which in turn would format the output as an XML document. Using

XSL, the Web server could then transform the XML into HTML, which could

then be loaded into a Web browser template (Figure 8.8). It is important to

note that I am not suggesting that XML replace relational database technologies.

Indeed, XML is too slow to handle high-volume transactions. However, XML

can be used to work with database subsets, called sub-schemas, in which a small

picture of the data needed can be downloaded and formatted in a class structure

for use by an ecommerce object application.

XML Applications with Database Systems

A significant issue addressed by XML is the ability to create consistent repre-

sentation of data. While normalized databases were supposed to provide this

consistency, most do not because they violate certain normal form rules. These

violations ultimately create problems with the transportability of the data.

Furthermore, stored procedures tend to be proprietary at the vendor database

level, and therefore further complicate the task of providing seamless portability

8. XML in Analysis and Design 185

among databases. XML, on the other hand, creates a portable structure that allows

ecommerce systems to connect multiple databases across different hardware

platforms. Indeed, in some situations an XML-based representation of data and

the http protocol might be the only method of connecting legacy systems with

ecommerce technology. Figure 8.9 illustrates a sample ecommerce system that

uses XML to provide application integration. This integration is provided via

the linking of various databases using an XML interface.

Figure 8.9 reflects that XML, over the Web, provides the data integration

between the Oracle and SQL Server systems. If XML were not used, the appli-

cation developer would need to use separate SQL-based languages (SQL-7 for

SQL Server and PLSQL for Oracle) to provide data access to each program. XML

provides a means of using a central repository that can generate its own SQL

necessary to access its data. This means that each database vendor supplies an

SQL-XML interface that can generate (output) and access (read) XML formats.

Thus, just knowing and using XML allows for access to multiple proprietary

SQL coding.

Web

Web

XML XML

XML

XML

SQL

Server

Package

Applications

Oracle

Applications

Oracle 8i

Message

Hub

XSLT

Stylesheet

Source : Oracle XML Applications , Muench, 2000

Figure 8.9 XML/database integrator.

186 Analysis and Design of Information Systems

The key to integrating XML and SQL is making the information in the

query results easy to transform, transport, and transcribe. Figure 8.10 shows

the architecture of integrating XML and SQL to produce multiple applications.

Note that XSLT is used to transform the parsed XML data pages to multiple

applications such as Web pages, Wireless Markup Language (WML) for cell

phones, and handheld devices.

Therefore, publishing XML diagrams from relational databases allows for

proven portability, scalability, manageability, and performance.

Using the Oracle product as an example, we can see a more detailed view of

how a relational database and XML are integrated to provide portability between

XML and SQL technologies. Figure 8.11 shows how Oracle has implemented

XML in its product.

Web
Relational

Database

XML Data Page

Stylesheet -1 Stylesheet -2 Stylesheet -3

Web Server

Source : Oracle XML Applications, Muench, 2000

XSLT stylesheets can transform the

assembled XML data into any

target format

XML from SQL Query ResultsXML from External Web Sources

Figure 8.10 XML/SQL integrated architecture.

8. XML in Analysis and Design 187

Oracle

XML

Parser

Oracle

XPath

Engine

Oracle

XML SQL

Utility

Oracle

Text

XML Document

Oracle 8i

DOM

XPath

Oracle

XSLT

Processor

XML Infoset

XSLT

Transform

Select /Query

Manipulate

Parse Serialize

Save CLOB Columns

Retrieve based on XML
Search

Store XML as Table, View, or

Object

Create XML from

Query Results

Source : Oracle XML Applications, Muench, 2000

Figure 8.11 Oracle XML architecture.

Using the Oracle XML parser, XML documents can be manipulated and

modified with the DTD, which Oracle calls the information set or Infoset. The

Oracle XSLT processor transforms XML into HTML or other structures. While

these components are somewhat standard XML applications, Oracle adds an

XPath engine that enables the querying of XML documents. The Oracle XML

SQL utility then automates the tasks of producing XML from SQL query results

and vice versa (that is, storing XML documents into tables in the database).

The Oracle Text application provides a method of creating indexes of the XML

structure to support SQL queries. Figure 8.12 provides a summary of the Oracle

XML infrastructure.

Analysis and Design of XML Documents

The ecommerce analyst must provide XML specifications as part of the overall

engineering architecture. To do so, the analyst must determine the XML compo-

nents that will be used for data interface and what portions will be used for

ecommerce application reuse. Therefore, the first step in designing an XML

interface is to decide what will constitute an XML document. The second step

188 Analysis and Design of Information Systems

Oracle Feature/Function Description

XML Parser Edits and validates XML documents

XPath Engine Searches for XML documents

XSLT Processor Transforms XML documents to other output formats

XML SQL Utility Produces XML from SQL and inserts XML into tables

XSQL Pages Assembles XML data for use by XSLT

Oracle Text Indexes and searches XML documents using native
structure

Object Views XML-enabled view of relational data

Oracle JVM Java implementation on the database

JDeveloper Java development for XML, XSLT, and XSQL

Advanced Queuing Queues XML messages

Figure 8.12 Oracle XML infrastructure component definitions.

is to determine what elements, text, or code will comprise the XML document.

The third step is to determine the reuse and propagation of the XML document

data into the various ecommerce applications.

Step 1: Determining XML Documents

The process of determining what will be an XML document relates to two factors

mentioned above: (1) what data will be used as an EDI application and (2) what

will be used to populate Web applications. Regardless of which factor is used,

an ecommerce analyst must determine the actual data structure for the XML

tree. This data structure can be defined as a vocabulary of XML elements and

attributes. The elements and attributes are the text in the vocabulary that enables

communication of information.

An example of choosing the right reuse is the function provided by a search

engine. A search engine is typically used for general search requirements to

locate specific information in the database. An XML document can be created

that identifies the database elements that are required for the search application.

This is then coded in the DOM, and outputted as a XML document. The XML

design allows a user to search for a particular type of product, similar to the

way Amazon.com allows a user to search for a particular product offering like a

book or a DVD (see Figure 8.13). Thus, the root of the XML document tree is

the “Type Identifier” of the product. The DOM would then structure the XML

tree as shown in Figure 8.14.

Thus, the “Type Identifier” element identifies a type of product that is needed

to display the results of the search. The data can then be transformed into various

HTML Web browser applications. The data interface can be accomplished via

an SQL interface engine. So when a user wants to query the product database,

he/she will use the search engine XML document. This document interfaces

with the Oracle Text application, which created indexes on the related database

8. XML in Analysis and Design 189

Figure 8.13 Amazon search engine options.

elements that were defined in the XML document. When the query is created

by the application driving the ecommerce activity, the stylesheet created from

the XML document will issue an SQL call to the XML SQL interface (Oracle),

which will retrieve the necessary data and convert it back to the XML format as

shown in Figure 8.15.

Type Identifier

(Type ID)

Identifier Name Products

Type Identifier

Figure 8.14 XML search tree.

190 Analysis and Design of Information Systems

Oracle

XML SQL

Utility

Oracle

Text

XML Document

Oracle 8i

Store XML as Table, View, or

Object

Create XML from

Query Results

Figure 8.15 XML and SQL execution.

XML as an EDI

Earlier in this chapter it was mentioned that XML is an effective application

to replace the EDI traditionally used to handle standard file interfaces between

clients and vendors. EDI in legacy applications was typically implemented

by designing a standard file format that would be required for any entity to

interface with an ecommerce system. This file format was usually delivered in a

comma-delimited record (CSV file) that matched with a standard database format

required by the accepting system. A special application was then programmed

that was designed to read the standard CSV file and convert it into the target

database format. The program operated in a batch mode and included an edit

program that reported errors as appropriate and determined the validity of the

input transactions.

XML can be used to create a much more robust and portable EDI. The data

structure required would be converted as an object-tree structure using the DOM

(or coded directly as an XML document). The DOMwould then generate the XML

document, which would be parsed against the DTD. An XSLT application would

then create aWeb browser program that would accept the required input data.

The XML solution could also be adapted to accept a file input, instead of an

input screen over the Web. In this situation, the vendor would be provided with

8. XML in Analysis and Design 191

Customer # Order Date Item ID Quantity Request Ship Date

FIle Input Layout

Standard XML

Document Schema

Ecommerce System

XML Data Conversion

Web Interface

Figure 8.16 EDI/XML interface configuration.

the XML schema and asked to create their data using the same XML document.

Should an EDI standard exist in a particular industry group, then all parties

would incorporate the XML format into their respective systems. Of course this

requires all parties to agree about what that format should be. Figure 8.16 depicts

the EDI XML configuration interface.

In a nutshell, the ecommerce analyst must know whether an industry standard

exists, or whether the organization must create a standard for its own use and

hope others will adhere to it. Typically the latter is the case, and the EDI standard

format will evolve over time.

XML and Populating Web Applications

While XML can be used as a method of data interchange among applications, it is

also useful to provide data that is part of a Web application. Thus, the ecommerce

analyst needs to provide information about what portions of a particular appli-

cation can receive data that can be used to populate its content. For example,

suppose there is a particular phrase or logo that is used on multiple screens

in an application. The ecommerce analyst needs to determine if this phrase or

logo should be stored in a database and then formatted as an XML document.

This process greatly reduces duplication of static coding on a Web page. More

important, the concept of storing literals as data allows for better maintenance of

text that can change over the life of a Web application. Indeed, the content in

ecommerce systems is much more dynamic. Thus, XML can provide the standard

192 Analysis and Design of Information Systems

Q1: Last Date of Purchase

Q2: Prior Year Purchases

 : : : :

XML Table of Discount Questions

Code Discount %

01 15%

02 20%

 : :

 : :

XML Discount Value Table

Table of Questions Logic

Discount Look -Up Routine

"Discount " Application Program

Dynamic Object Loading

Figure 8.17 XML discount data architecture.

format to propagate content for Web applications. In Chapter 16, we will see how

XML, along with content management products, provides significant maintenance

capabilities by storing content as data and incorporating it into template systems.

In addition, XML can be used to provide data that is stored inside program

applications. This data could be in the form of an internal array, or multidimen-

sional tables that are used by an application to complete an algorithm, or as a

component of some conditional selection logic. Internal data structures are very

common, particularly in object component programming. Once again, XML can

be used to provide the data structure and allow programmers to use it in many

different applications. This allows for the creation of standard data structures that

can be dynamically loaded into an application. The capability to dynamically

load data structures can have a profound impact on program maintenance. Not

only can the data structure be stored, its values associated with the structure

can also be included in the XML document. Remember, XML can store both

element definitions and values. Suppose, then, that an XML document contained

a table that calculated discounts for book purchases. Such a calculation could

have many tiers of logic, and could be dependent on how many books have been

purchased and where. The XML document could store the table of questions,

as well as the questions themselves. Furthermore, the “discount codes” could be

stored as values. Thus, when the XML document is propagated into the appli-

cation program, it not only has the algorithm structure, but also the actual codes

that it needs to formulate the final discount amount. Should any of the questions

8. XML in Analysis and Design 193

or codes change, which normally will occur, the developer need only update
the XML document, changing its data structure or values, as necessary. These
changes would then be reloaded into the application upon its next instance (or
next execution of the program in the Web application). Figure 8.17 depicts the
XML data structure for the discount algorithm.

Embracing XML goes beyond just agreeing to use it; it also means
engineering applications that assume a component will change. This greatly
affects the architecture of the applications. Thus, the ecommerce analyst must
work closely with developers to ensure that specifications clearly establish infor-
mation on what components will be stored as XML documents. Ecommerce
analysts must also be aware how text (or content) will be stored in the relational
database. This topic will be discussed further in Chapter 13. As previously
mentioned, the reuse aspect of XML is consistent with object technologies. These
aspects are discussed in greater detail in Step 3 of this section.

Step 2: XML Data Schemas

A schema is defined as a way of describing the characteristics of data. The DTD,
in many ways, constitutes the basis of the XML schema. Unfortunately, the DTD
falls short in relation to some required processing needs. An XML schema must
provide three important benefits: (1) functionality and power, (2) ease of use,
and (3) compatibility.

Functionality

The DTD alone provides limited semantic checking of XML. This means that
there can be errors in the syntax of the code that will not be caught by the
DTD. So it is possible to produce an XML document that will be authorized
by the DTD, yet have some problems with syntax. Incorrect syntax can affect a
statement’s semantics or meaning.

Ease of Use

Unfortunately, good DTDs are difficult to write because of the limited infras-
tructure support provided by their design. Furthermore, DTDs are not easy to
read and edit. The result is that it can be difficult to produce XML that correctly
matches the DTD. DTDs also lack extensibility and have poor version control
mechanisms. Finally, there are syntactical differences between XML and DTD,
which makes it even more difficult to match the two scripts.

Compatibility

The DTD is part of the first version of XML. There are many later versions of
XML that have difficulty communicating with earlier versions. Ultimately this

194 Analysis and Design of Information Systems

means that the relationship between XML documents and DTDs is very version

sensitive, and system personnel must ensure that versions are kept consistent.

While this requirement sounds straightforward, it is difficult to enforce after

the initial installations of ecommerce systems. Indeed, version control becomes

progressively more challenging as the system is updated.

The weaknesses of DTD can be summarized below:

• Poor support for semantic checking
• No data typing
• No relational support
• No support for objects features such as inheritance
• Cannot use parts of other DTDs
• Difficult to write
• No extensibility
• No version control mechanism
• Unique syntax

(Source: Spencer, 1999)

The schema method is obviously designed to address the DTD weaknesses

summarized above. There are a number of product schemas designed to

complement the DTD. A document content description (DCD) mechanism

has been implemented as a schema in a number of products such as Internet

Explorer 5. Internet Explorer 5 implements a schema that contains a more exten-

sible and robust method for providing constraints on the structure and contents of

XML documents. The importance of an enhanced DCD is that it can provide more

advanced metadata, or data about data. The ecommerce analyst needs to be aware

of whether specific DCDs are available, since this information can affect how

XML documents are designed. Specifically, the more DCD capability, the more

advanced the XML applications can be used in the overall engineering of the

ecommerce system. More important is that the DCD has a significant influence

on what data elements and structures can be included in the XML document. If

the DTD edit abilities are limited, then certain data structures may be deemed

too risky (from a quality perspective) for inclusion in an XML document.

No matter how ambitious the XML structure designed, the ecommerce analyst

must provide a specification that defines the data elements and specific data

types to be included in the XML tree structure. While the data elements should

correspond to the definitions stored in the relational database, their syntax can

be different from an SQL data type and type qualifier. Figure 8.18 represents

the list of data types supported by XML.

Thus, an XML specification must list the actual names and XML definitions.

One method of accomplishing this is for the ecommerce analyst to establish the

corresponding XML name and attributes when building the data dictionary. Thus,

an XML definition should be included for every data element that is a candidate

for an XML solution. Another approach is to provide an XML definition for

all data dictionary data elements. The advantage of the latter approach is that it

prepares all data elements for possible inclusion in an XML document.

8. XML in Analysis and Design 195

Name Description Storage Type Example

string Alphanumeric data string Art Langer

number A number that has
no limits on digits

string 18, 54.596, .01

char string 1 Unicode

character (16 bits)

A, Z

int Whole number,
optional sign value

32-bit signed
binary

7, 45302, -87

float A number that has

no limits on digits

64-bit IEEE 488 .3258798554E+3

Fixed 14.4 A number with a
limit of up to 14

digits to the left of
the decimal point,

and no more than 4
decimal places to

the right

64-bit signed
binary

188.0458

boolean “1” or “0” bit 0, 1 (0=”false”)

dateTime.iso8601 A date in ISO
8601 format with

optional time and

no optional zone

Structure that
contains year,

month, hour,

minute, second,
nanosecond

20011204T09:25:01501

dateTime.iso8601tz A date in ISO

8601 format with
optional time and

optional zone

Structure that

contains year,
month, hour,

minute, second,
nanosecond, zone

20011204T09:25:01501+02

date.iso8601 A date in ISO

8601 format only

Structure that

contains year,
month, day

20011225

time.iso8601 A time in ISO

8601 format only

Structure that

contains day,
hour, minute

251548

time.iso8601.tz A time in ISO

8601 with no date
but optional time

zone

Structure that

contains day,
hour, minute,

zonehours,

zoneminutes

09:25-05:00

Figure 8.18 XML data types.

Step 3: XML Reuse

XML documents can be designed to provide reusable components that can be part

of different Web applications. In order to design such components, ecommerce

analysts must track the number of operations that are reused in applications,

similar to the example of the Search Engine. An example of application reuse can

be described with a function that adds a new customer. Let’s say that this function

is used when a caller wants to sign up as a customer to order a product. An

XML document could be designed that would be comprised of the data elements

necessary for inserting a new customer. The XML document would then be used

through XSLT to generate an HTML screen. There is another operation that

196 Analysis and Design of Information Systems

allows for entering new orders. This application requires the entry of the customer

who has placed the order. Sometimes a new order is placed by a caller who has not

yet signed up as a customer and is therefore not in the Customer database. Users

would like the order entry screen to allow the customer to be added while the

new order entry screen is operating. This is accomplished by allowing a pop-up

window to be invoked when a new customer needs to be inserted during the order

entry process. Instead of writing a new screen, the application can use the same

XML document that was used to generate the new customer application. Thus,

the XML document serves to provide a reusable application that is generated

into more than one application screen. Analysts should seek to design XML

documents that link up with object classes. The purpose of this approach is to

provide matching data for classes that are designed by nature to be reusable. This

means that the need for reusable XML documents for applications can be mapped

to classes designed to become reusable object components. Of course, this

approach assumes that the host system is based on object development. In legacy

systems, or even those that contain hybrid combinations (a high probability in

ecommerce systems), the likelihood of using this approach to identify all reusable

components is slim. XML and its relation to object components are shown in

Figure 8.19.

XML Reusable

Object Document

XSLT

XSLT

HTML Browser

Screen

Pop -Up Window
operatin inside

Web browser

Enter Customer Application

Components

Figure 8.19 XML matching object components.

8. XML in Analysis and Design 197

Calculate
Interest

XML Document

Square
Root

XM Document

New
Order

XML Document

TP System

Legacy
Application

A

Ecommerce
Application

B

Legacy
Application

C

Figure 8.20 Implementation of XML in a TP system.

Another area that can assist in determining the need for XML reuse appli-

cation is in a TP system. You might recall that the TP system was designed as a

middleware application repository. The TP monitor component was designed to

provide consistent operation and data integrity among many “linked” programs

from different systems. Thus, the TP monitor was the center of traffic among

different system components and reduced the need to program the same logic in

different program languages and for different file systems. XML can become the

data vehicle to operate within the TP system. Instead of requiring the TP system

to format and update data in different file systems, XML can be used to send a

standard format of the data needed to multiple applications across the network.

Each system would have the ability to read the data and reformat it as necessary

into their respective applications and file schemas. Figure 8.20 reflects the use

of XML in a TP system.

Storing XML Documents in a Database

External XML document files can be loaded into a database system so that it can

be better integrated with the SQL-based relational system. Notwithstanding the

fact that there is a difference in file format, most of the physical data will remain

stored in the database. The significant issue to remember is that the relational

model is built under third-normal form and referential integrity rules. This,

of course, focuses on a production-oriented database management component

198 Analysis and Design of Information Systems

that contains a high volume of transactional processing as opposed to a data

warehouse implementation (see Chapter 15). However, it is possible in a database

system such as Oracle actually to store an XML document in the database

without it being part of the traditional normalized schema. This means that the

XML document may contain data elements unique to the document itself, thus

not propagated into a particular entity. A database system like Oracle provides

an XML parsing utility, which allows the XML document to be accessible via

normal SQL queries and stored procedures. Thus, the XML document retains its

own format while being assimilated into the database infrastructure. Accessing

a data element within the XML document or in the relational database can be

transparent to the user community. Figure 8.21 reflects the concept of XML and

relational database schema integration.

The question arises from a design perspective of whether an XML document

should contain data elements that have not originated from the relational part

of the database. This certainly is a question that must be answered by the

ecommerce analyst. The most logical support for this occurrence is when a data

element in an XML document is unique to a particular application. Therefore,

the XML document has been designed to use in a one-on-one relationship with

a specific Web program or application. To propagate the data element into the

relational database under these circumstances would create unnecessary overhead

and the ongoing need for data synchronization. On the other hand, leaving the

data elements in XML structure eliminates the need for dual storage and allows

access from multiple sources, including traditional SQL-based applications.

XML Parser

DOM

XSL

Oracle XML

Parser for Java

Implementations

Oracle XML Parser for

PL/SQL

Oracle 8i

Figure 8.21 XML and relational schema generation.

8. XML in Analysis and Design 199

From a specification perspective, an ecommerce analyst needs to understand

how to design the XML-relational model. This task is easier if the analyst

knows the physical database features and functions that are designed to support

the product’s architecture. For example, Oracle supports the creation of an

element known as a CLOB. “CLOB” stands for Character Large Object. In

Oracle, a CLOB can hold character-based data like XML documents as large as

four gigabytes (4GB). A CLOB column is stored in the database and is fully

readable and writable. Using Oracle Text, CLOB files can be indexed for fast

XML document searching across millions of rows. Obviously, Oracle needed

to establish an XML/SQL API (Application Program Interface) to allow for the

parsing and integration of both models within the database. Essentially it allows

for the coexistence of the two.

Should the physical database vendor, like Oracle, support XML document

storage within their database, ecommerce analysts still must be aware of the

following challenges:

1. If an XML document is used by multiple databases vendors, will there

be compatibility in the XML/SQL integration, or should the XML

document be stripped out from one of the databases so that it is resident

in only one file?

2. There cannot be any “external” references within the XML document

that allow for insertion of data elements that exist, let’s say, in a URL.

This would be problematic since there is no existing infrastructure in

Oracle that allows for the external linking outside the confines of the

database infrastructure.

3. There needs to be documentation and control among the different

versions of XML and DTD used in all systems. Different versions

between XML and DTD could cause serious problems in the quality of

the parsing process as well as the validity of the applications generated

through the XSLT.

XML-Based File Types in Oracle iFS

Oracle provides an Internet file system (iFS) that supports the infrastructure

for defining XML documents. The file system essentially assigns descriptors

that specify the XML structure and store the schema in the database. As stated

above, the CLOB allows an entire XML file to mix structured data and text

markup in the same document. For example, an “Order” file type may map to an

OrderHeader and OrderLines table, while a “BenefitsClaim” file type can mix

the methods of data and text by actually structuring text markup for a Summary

Report and combining it with a Payments Report. In this case the data is stored

in the traditional database, whereas the text stored as a CLOB. Figure 8.22 shows

the contents of a sample BenefitsClaim.

200 Analysis and Design of Information Systems

Oracle
"BenefitsClaim"

Database

CLOB
Text

Internet File System
iFS

Order Header

Order Line

Summary Report

Payments

Physical Form

Text Portion

Data Portion

Reports with Text and Data

Figure 8.22 BenefitsClaim as a mixture of structured data and text.

XML as a Centralized Data Search Engine

Another application of XML is as a central search engine. A central search engine

is one that can be used to collect information over several different systems

and provide summary information on the collective meaning of the information.

This can be a difficult task in large organizations that have a proliferation of

legacy applications running across different hardware platforms. While Chapter 9

provided guidance on ways of integrating legacy applications, it did so with

approaches that have high overhead and require significant time to install. With

XML, on the other hand, the goal of centralizing information quickly and cheaply

is attainable. This can be accomplished by allowing each proprietary application

to generate a standard XML document that holds the data and text needed. Each

XML output could then be merged together in a database CLOB or integrated

in a table relational format for querying of data. Furthermore, the searching

could be accomplished via the Web, using the index utilities provided by the

database vendor. While this “central” repository of data is similar in concept

to data warehousing, it involves far less complexity in overhead, coding, and

maintainability. Most important is that it can be accessed over the Internet using

portable application programming. Thus, the ecommerce analyst should consider

XML for all multi-data analysis requirements.

8. XML in Analysis and Design 201

The importance of having a central repository for searching has further
benefits. Common ecommerce initiatives involve accessing text documents on
the Web for research, analysis, and business. Indeed, users would love to be able
to query text in a document and pull out all relevant information and citations
that they need, as opposed to being forced to print the entire document and find
the information they need manually. We say then that such data needs to be
stored as metadata. For example, suppose a user needed to access a Web site to
review information about a particular subject. If the document were created in
XML, it could be searched for matches on the subject, which would be looking
at multiple XML documents from many systems. If a match is found, instead of
just printing or copying the text, a portion of the data could be extracted from
the document in order to populate another application. This application could be
a spreadsheet program, or database system, that would capture the data or text
and categorize it as appropriate. Thus, the text document has become metadata,
and the user can select what portions of the text are useful for other applications.

XML Query Usage

Database products such as Oracle and Microsoft’s SQL Server must provide a
set of query functions that support the manipulation of data as provided by SQL
on the relational model. Obviously, with a hybrid model of XML integrated
with the database, not all typical SQL queries can be supported. Ecommerce
analysts need to understand the extent of query functionality available in XML
documents and the types of documents that can be queried before making final
design decisions relating to what will be stored as XML and what will be stored
as a traditional data element. W3C (World Wide Web Consortium) has issued
“query usage scenarios” that provide guidelines on the query usage for XML
documents as follows:

1. Human-Readable Documents: perform queries on structured documents
and collections of documents, such as technical manuals, to retrieve
individual documents, to generate tables of contents, to search for
information in structures found within a document, or to generate new
documents as the result of a query.

2. Data-Oriented Documents: perform queries on the XML representation
of database data, object data, or other traditional data sources to extract
data from these sources, to transform data into new XML representa-
tions, or to integrate data from multiple heterogeneous data sources.
The XML representation of data sources may be either physical or
virtual; that is, data may be physically encoded in XML, or an XML
representation of the data may be produced.

3. Mixed-Model Documents: perform both document-oriented and data-
oriented queries on documents with embedded data, such as catalogs,
patient health records, employment records, or business analysis
documents.

202 Analysis and Design of Information Systems

4. Administrative Data: perform queries on configuration files, user
profiles, or administrative logs represented in XML.

5. Filtering Streams: perform queries on streams of XML data to process
the data in a manner analogous to UNIX filters. This might be used
to process logs of email messages, network packets, stock market data,
newswire feeds, EDI, or weather data to filter and route messages
represented in XML, to extract data from XML streams, or to transform
data in XML streams.

6. Document Object Model (DOM): perform queries on DOM structures
to return sets of nodes that meet the specified criteria.

7. Native XML Repositories and Web Servers: perform queries on collec-
tions of documents managed by native XML repositories or Web
servers.

8. Catalog Search: perform queries to search catalogs that describe
document servers, document types, XML schemas, or documents. Such
catalogs may be combined to support search among multiple servers.
A document-retrieval system could use queries to allow the user to
select server catalogs, represented in XML, by the information provided
by the servers, by access cost, or by authorization. Once a server is
selected, a retrieval system could query the kinds of documents found
on the server and allow the user to query those documents.

9. Multiple Syntactic Environments: queries may be used in many environ-
ments. For example, a query might be embedded in a URL, an XML
page, or a JSP or ASP page; represented by a string in a program written
in a general-purpose programming language; provided as an argument
on the command-line or standard input.

XML versus the Database

XML appears to provide many storage and content benefits. However, I have
not meant to suggest that the relational database model is no longer necessary
and should be scrapped for total XML-based storage. The reality is that XML
deals much better with content than storage. During complex searches on large
databases, XML searches for data elements will be considerably slower than
through the relational model. Furthermore, relational databases provide better
facilities for security and the maintainability of the data itself.

However, databases have their downsides also. Their content cannot easily
be shared, and the standardization of their design is questionable; therefore,
exchanging data between two different database systems can be very difficult.
Furthermore, field value among multiple systems may not map well, and as
a result there can be significant incompatibilities when passing data among
applications. XML addresses this shortfall by providing a neutral data format
that supports easy data exchange.

The result of this chapter’s discussion on XML is that, like so many other
system components, XML is best integrated within a framework, in this case

8. XML in Analysis and Design 203

the traditional relational database. Indeed, XML works best when it is integrated
with the relational model, where each component can be used to the fullest extent
of its design advantages. Thus, it is not XML versus the database; it is XML
and the relational database as a new hybrid storage model.

XML and SVG

SVG or Scalable Vector Graphics is a language for describing two-dimensional
graphics in XML. SVG allows for three types of graphic objects: vector graphic
shapes (images consisting of straight lines and curves), images, and text. Graphic
objects can be grouped, styled, transformed, and composited into previously
completed objects, meaning that they can be exported to XML and then imported
back as an XML version of the original graphic. Text can be included as part
of the XML SVG, which enhances the document’s searchability and the acces-
sibility of the SVG graphics within the document. Therefore, SVG enables the
creation of resolution- and media-independent graphics in a text-based format
that permits integration with XHTML, XSL and XSLT, XLink, DOM, and other
W3 specifications, including support for CSS, scripting, and animation.

SVG drawings can be dynamic and interactive. The Document Object Model
(DOM) for SVG, which includes the full XML DOM, supports vector graphics
animation through scripting languages. The power of this model is that it allows
for scripting to be used for both XML text and XML SVG drawings within the
same document simultaneously. This means that one search will examine both
text and graphic images within the domain of the search. Furthermore, SVG
files are not proprietary binary data files as are many other graphic formats.
Because SVG files use XML, their syntax is readable as text files. This means
that developers can easily create scripts that dynamically modify content as well
as exchange designs between tools. XML also describes information in terms
of a structured data format thus allowing applications to process the same SVG
image differently.

SVG is currently a W3C candidate for recommendation, meaning that it
has not yet been authorized as a W3C standard. However, SVG is expected
to undergo widespread testing and eventual acceptance as a standard shortly.
The ability of XML to be extended beyond just text-based documents allows
for much greater use within Web applications. In Chapter 6, I described the
complex and extensive features of animation and interactivity being used in
today’s Web applications. The inclusion of XML into graphics establishes much
greater capabilities to combine database operations with interactive objects using
XML as the standard delivery medium.

SVG Formats

Defining objects, such as text and shapes, in an SVG image is relatively straight-
forward. While a software developer can code most SVG formats directly, there

204 Analysis and Design of Information Systems

are a number of third-party products such as Adobe® and Illustrator® 9.0 that

allow designers to generate complex images easily by simply exporting the files

as SVG. However, an ecommerce analyst must have a general understanding of

how SVG objects are defined, and what the various coordinates and elements

refer to in the syntax when considering animation and interactivity in any Web

design project. Listed below is some important information about the types of

graphics supported by SVG and the most common data type formats. This infor-

mation may need to be identified in the DOM and possibly the database system.

Most important, it needs to be described in the repository of data, meaning that

graphic images and their formats need to be organized in a central place so that

they can be reused in the same manner as data and applications.

SVG supports three fundamental types of graphics elements that can be

rendered onto the canvas:

1. Shapes: representing combinations of straight line and curves

2. Text: representing combinations of characters

3. Raster Images: representing an array of values that specify the paint

color at a series of points on a rectangular grid.

The common data types for SVG properties and attributes fall into the

following categories:

• <integer>: a whole number.
• <number>: real number value.
• <length>: a length is a distance measurement.
• <coordinate>: represents a length in the user coordinate system that

is the given distance from the origin of the user coordinate system

along the relevant axis (the x-axis for X coordinates, the y-axis for Y

coordinates).
• <angle>: an angle value is a number optionally followed immediately

with an angle unit identifier. Angle unit identifiers are: deg, degrees;

grad, grads; rad, radians.
• <color>: the basic color type.
• <paint>: specifications of the type of paint to use when filling or stroking

a given graphics element.
• <percentage>: the format of a percentage value is a number immediately

followed by a “%”. Percentage values are always relative to another

value, for example a length.
• <uri>: Uniform Resource Identifiers [URI] references. A URI is the

address of a resource on the Web.
• <frequency>: a frequency value is a number immediately followed by

a frequency unit identifier. Frequency unit identifiers are: Hz, hertz ;

kHz, kilohertz.
• <time>: a time value is a number immediately followed by a time unit

identifier. Time unit identifiers are: ms, milliseconds; s, seconds.

8. XML in Analysis and Design 205

Summary of SVG Features

SVG has many advantages over other image formats, and particularly over JPEG

and GIF, the most common graphic formats used on the Web today. Listed

below is a summary of SVG features that the ecommerce analyst should keep

in mind when considering the integration of animation and graphics as an XML

extension.

• Plain text format: SVG files can be accessed by a number of software

tools and are usually smaller and more compressible than JPEG or GIF

images.
• Scalable: unlike bitmapped GIF and JPEG formats, SVG is a vector

format, which means that SVG images can be printed with high quality

at any resolution.
• Zoomable: images can be zoomed in on any portion of an SVG image

without any visible degradation.
• Searchable and selectable text: unlike bitmapped images, text in SVG

text is selectable and searchable. For example, you can search for

specific text strings, like city names in a map.
• Scripting and animation: enables dynamic and interactive graphics far

more sophisticated than bitmapped or Flash images.
• Works with Java technology: SVG complements Java technologies’

high-end graphics engine.
• Open standard: SVG is an open recommendation developed by a cross-

industry consortium. Unlike some other graphics formats, SVG is not

proprietary.
• True XML: as an XML grammar, SVG offers all the advantages of XML.

9
Design Specification Tools

Chapter 4 discussed specification formats that can be used to communicate infor-

mation to both users and technical development personnel. Chapter 5 focused on

the specific tools to create the logical equivalent. A diagram was used to show

how an architect created a drawing for the user and a blueprint for the builder.

This example was expanded to relate to the analyst:

In this chapter, we will focus on the process specification portions of the

system, both from a user and a development perspective. The process specifi-

cation is a component of every modeling tool.

Business Specifications

The ultimate purpose of the business specification is to confirm with the user

the requirements of the system. In the picture in Figure 9.1, this confirmation

is shown in the form of a prototype. Although this is the best way to confirm

requirements with a user, there is always a need to have certain logic and flow

documented in the form of a business specification. Chapter 5 presented the

business specification in Figure 9.2 and defined it as a summary of the overall

requirements of the system.

The business specification was written in a prose format so users could be

comfortable with its meaning and intent, so that they could approve it. Although

an overview like the one above is helpful, it is often incomplete and may not

actually provide sufficient information for the user to approve. In order to provide

more detail, the analyst should include the following components with many

business specifications given to a user.

Functional Overview Sections

Functional overviews effectively take the business view a notch down in detail.

A function can be considered a subset portion of the whole specification.

For example, suppose a business specification was designed to handle order

processing. Order processing would be considered the overall business specifi-

cation goal; however, a subset function of the overall project could be picking

order items from the warehouse. The subset description of the process is similar

9. Design Specification Tools 207

Figure 9.1 Analyst interfaces.

Figure 9.2 Sample business specification.

208 Analysis and Design of Information Systems

to the general overview and simply puts the subset functionality into perspective

using prose format. After each subset functional overview is completed, the user

should have enough information to understand the requirements of the system.

It is important that the analyst make every attempt to keep the general and

functional overviews as short as possible yet accurate and complete. This may

sound contradictory; however, users typically do not like to read long documents

summarizing all the detailed events of a system. Although Figure 9.3 looks like

an overview, it is focused solely on a subprocess called Discounts.

Functional Flow Diagrams

Wherever possible it is important to use graphical representations to verify the

accuracy of a specification. A high level data flow is suggested to allow the

Figure 9.3 A functional business specification summarizing the requirements for a

discount component of the entire business specification.

9. Design Specification Tools 209

user to see a graphical representation of the overall requirement (see Figure 9.4).

Analysts should be encouraged to educate users so that they understand simple

modeling concepts and tools.

Screens and Reports

The business specification should also include sample screens and reports. The

level of detail of the screens and reports will vary depending on the prototype

tools being used and the available time framed that the analyst has to get user

sign-off on the requirements. CASE can be used where screen and report interface

are available (see Figure 9.5). Analysts should avoid CASE products that contain

drawing capabilities as opposed to true screen and report generators. Today’s

programming tools typically have prototype capabilities. The advantage here is

that part of the development work is being accomplished during analysis and

design. Using actual development tools during analysis and design is yet another

form of Rapid Application Development (RAD).

Figure 9.4 High Level DFD. Although a DFD, it is designed at a very simple level to

allow a user to confirm flow.

210 Analysis and Design of Information Systems

Figure 9.5 CASE screen design. The above screen was created in System Architect and

contains connectivity to physical application products such as Powerbuilder.

Therefore a good business specification should include the following

component documents:

Programming and Technical Specifications

Once the business specifications are completed and agreed upon by the users,

the information must be mapped into a programming or technical specification.

These specifications effectively provide all of the algorithms that are required

by the functional primitive DFDs and STDs. That is, each functional primitive

must point to a technical programming specification. This programming speci-

fication will define all algorithms which affect the process. The programming

specification must also, however, point back to its original functional business

specification as shown in Figure 9.6.

9. Design Specification Tools 211

Figure 9.6 Relationship of specifications with DFDs and STDs.

Another way of explaining the relationship is to say that an overview business

specification can have many functional business specifications. Functional

business specifications can have many programming specifications and each

programming specification should be associated with one or many functional

primitive DFDs or STDs. The example of a technical/programming specification

contained in Figure 9.7 initially appeared as Figure 5.11 of Chapter 5.

The programming specification in Figure 9.7 utilizes the pseudocode method

discussed in Chapter 5 and provides the necessary information for a programmer

to develop the application. Many IT professionals often feel the need for

programmers to understand the business specification. If the program specifi-

cations are developed using the methods recommended herein, then there is no

such requirement placed on the programming team. Good programming specifi-

cations stand alone, like a good blueprint that will allow a contractor to build a

house without ever being part of the development and confirmation phases with

the buyer. Programmers who can focus on the engineering issues rather than user

requirements will be much more productive. Therefore, IT professionals who

share both roles, that is, those with the title “Programmer/Analyst,” will always

be susceptible to doing both system requirements and engineering development

simultaneously. Doing both “as you go” poses a real danger in that the individual

has to continually change hats without really separating the tasks. In addition,

when the two tasks are combined it typically results in a longer development life

cycle and one that has less quality because neither task is ever really completed.

Furthermore, the skill sets of analysts tend to conflict with those of programmers.

For example, analysts should enjoy interacting with users and need to develop

skills that allow them to gather the information they need. Programmers, on the

other hand, often are not comfortable with user interaction and are more focused

on their technical knowledge of software and hardware products.

212 Analysis and Design of Information Systems

Figure 9.7 Technical/Programming Specification.

Screen Specifications

Another method of creating specifications, particularly when data flow diagrams

and process diagrams are not used, is to create them directly from the screens

themselves. This is usually accomplished by having two levels of screen

processing specifications. The first type of specification is used to describe the

functionality of the screen, especially as it relates to its execution options. The

second type of specification relates to how the data elements on the screen are

to be processed. By process we mean the business rules that govern how the

data element is treated by the screen program. For example, a data element in

one screen program may be used only in display mode and not allow its value

to be modified. Yet in another screen, the very same data element may require

modification.

9. Design Specification Tools 213

Therefore, a screen specification has three components: (1) the screen itself;

(2) screen processing specifications; and (3) data element specifications. There

should be one data element specification for every data element that appears

on a screen. Good specifications will even use the same data element definition

across multiple screen specifications just to ensure that there are no elements

that are left undefined in any screen definition documentation.

Figure 9.8 shows a screen designed using Oracle Developer 2000. Figure 9.9

depicts the screen processing requirements. Specifically, the screen processing

specifications provide a description of the purpose and functionality of the

screen, as well as stating how each function button is to be handled by the

program. Figure 9.10 is an example of a screen data element definition in which

Vendor_No is used to fetch and display Vendor, which is the vendor’s name.

Note that the form is designed to state specific information necessary for a

programmer to complete development, including the domain of values of the

data element, its definition in terms of processing, and whether the value can be

added, deleted, or modified from the database.

Screens and Derived Elements

In Chapter 6, the handling of derived data elements in normalization was defined

as a type of 3rd normal form failure. That is, derived data elements, commonly

known as calculated fields, were eliminated as a stored attribute in an entity.

However, screens often need to calculate and display these derived elements.

For example, the screen in Figure 9.8 has a field called “ELC” standing for

“Estimated Landing Cost.” This element is calculated, both for the season

and for year-to-date. The calculations for “ELC Season” and “ELC YTD” are

Figure 9.8 GUI screen using Oracle Developer/2000.

214 Analysis and Design of Information Systems

Figure 9.9 Screen processing requirements.

defined in their corresponding Screen Data Element Definition forms as shown

in Figures 9.11 and 9.12 respectively. Thus, every data element in the data

dictionary that appears on a screen must have a corresponding Screen Data

Element Definition form, regardless of whether it is a stored attribute in an entity

or a derived element that requires dynamic calculation.

Problems and Exercises

1. What is the purpose of business specifications?

2. How do functional overview sections relate to the entire business speci-

fication?

9. Design Specification Tools 215

Figure 9.10 Screen data element definition.

3. What is the use of a functional flow diagram? Which modeling tool is

used?

4. What are the five most common components of the business specifi-

cation?

5. How does the business specification relate to the programming specifi-

cation?

6. How does the programming specification interface with DFDs and

STDs?

7. Define the three components of a screen specification.

8. Explain the purpose of a “Screen Data Element Definition.”

9. What is the purpose of having “Screen Processing” instructions?

216 Analysis and Design of Information Systems

Figure 9.11 Screen data element definition for ELC season calculation.

9. Design Specification Tools 217

Figure 9.12 Screen data element definition for ELC YTD calculation.

218 Analysis and Design of Information Systems

Mini-Project

The process specifications and GUI screens are part of the requirements of a

contact management system. Based on this specification, design the ERD in 3rd

normal form.

9. Design Specification Tools 219

220 Analysis and Design of Information Systems

9. Design Specification Tools 221

222 Analysis and Design of Information Systems

9. Design Specification Tools 223

224 Analysis and Design of Information Systems

9. Design Specification Tools 225

226 Analysis and Design of Information Systems

9. Design Specification Tools 227

228 Analysis and Design of Information Systems

10
CASE and Automated Techniques

CASE Defined

We have mentioned CASE (Computer-Aided Software Engineering) in previous

chapters. Although its meanings can vary, CASE is traditionally defined as

“a comprehensive label for software designed to use computers in all phases

of computer development, from planning and modeling through coding and

documentation. CASE represents a working environment consisting of programs

and other development tools that help managers, systems analysts, programmers,

and others automate the design and implementation of programs and procedures

for business, engineering, and scientific computer systems.”19 CASE became

popular during the late 1970s as a way of automating and integrating modeling

tools. It also allows for the creation and maintenance of data repositories which

provide organizations with a tool to establish a central place to store all of their

data elements. Figure 10.1 shows the common components of most integrated

CASE products.

Data Repository Inputs

The design of CASE is based on inputs which create entries into the data

repository. A data repository can be defined as a “robust data dictionary.” A data

dictionary essentially provides the definition of the data element itself. A data

repository, on the other hand, stores information relating to the data element’s

behavior. This can include the element’s stored procedures, descriptions, and

documentation about how and where it is used. Therefore, the data dictionary

can actually be considered a subset of the data repository. Inputs to the data

repository are typically the modeling tools discussed in Chapter 5: DFDs, ERDs,

STDs, and process specifications as well as the object oriented analysis discussed

in Chapter 11. These input capabilities can be summarized as follows.

19 Microsoft Press, Computer Dictionary, 2nd ed., p. 66.

230 Analysis and Design of Information Systems

Figure 10.1 Components of CASE.

Data Flow Diagrams (DFD)

Every named data flow will automatically require an entry into the data repos-

itory. This named flow may consist of other elements and therefore require

functional decomposition down to the elementary data element level. Unique

data elements that are components of data stores will also generate entries into

the data repository. Figures 10.2 and 10.3 show these interfaces in the Popkin

System Architect CASE product.

Entity Relational Diagrams (ERD)

The ERD interfaces with the data repository by mapping an element to particular

tables (entities), that is, each unique data element within an entity points to a

data repository definition (see Figure 10.4).

State Transition Diagram (STD)

The STD interfaces with the data repository via the “conditions that cause a

change in state.” These condition arrows map to the data repository and allow

component elements to be defined as shown in Figure 10.5.

10. CASE and Automated Techniques 231

Figure 10.2 CASE flow elements. The above diagram shows how a data flow is defined

by its elementary data elements.

Figure 10.3 CASE data flow definition. The above diagram shows how the data compo-

nents of the Vendor_Invoice flow define each data element in the repository.

232 Analysis and Design of Information Systems

Figure 10.4 CASE entity attributes. This figure reflects how the Orders entity is defined by

its component data attributes. These attributes then point to their respective data elements

in the data repository.

Figure 10.5 CASE STD data element definition. The above diagram shows how the

condition-arrow “Enter Valid Bank Card” in an STD points to its component data

attributes. These attributes are then defined as data elements in the data repository.

10. CASE and Automated Techniques 233

Process Specifications

Process Specifications are typically defined via the functional primitive process

of the DFD or a particular state in an STD. The example in Figure 10.6

reflects how this is done using a DFD. Once the process specification is

defined, data elements embedded in the application logic are mapped to the data

repository.

The OO paradigm is also supported by CASE where objects can store both

attributes and methods and point data element definitions into the data repository

(Figure 10.7).

Data Repository Outputs

CASE outputs provide links to physical products and services. Its capabil-

ities therefore allow for the storage of various design-specific features that can

automatically produce output that can then be used by other products. The rest

of this section describes the features in each of the areas shown in Figure 10.1

schema generation; product code generation; prototypes; and documentation and

reports.

Figure 10.6 CASE process specification. The process specification above in System

Architect is mapped to a process in a DFD called “Record and Pay Vendor Invoices.”

The algorithm of the process is defined and any elements used in the process specification

must point to its data element definition in the data repository.

234 Analysis and Design of Information Systems

Figure 10.7 CASE object. This figure diagrams the creation of an object/class which

points to an attribute of an object that then points to the data repository definition of the

element itself.

Schema Generation

The schema generation facility in CASE allows various interfaces with physical

database products. These schemas include support for most of the popular

database products such as Oracle, Sybase, Informix, Microsoft’s SQL_Server,

and DB2. A schema is defined as the description of the data elements in the

format necessary for a particular RDBMS product. Most of the databases just

mentioned support SQL (Structured Query Language) data type identifiers as

shown in Figure 10.8.

Product Code Generation

Product Code Generation relates to storing specific information needed by

programming products such as Powerbuilder and C++ (see Figure 10.9). This

information, similar to the process in schema generation, allows the analyst

to export information directly into the intended product. The ability to store

multiple product definitions also provides a central capability to provide infor-

mation about a data element for different product languages. This translates

to providing a mechanism to support multiple development environments and

languages without the need to have the definition given only in the programming

language code.

10. CASE and Automated Techniques 235

Figure 10.8 CASE schema generation. This diagram shows the Orders entity and how

definitions specific for Oracle schema generation can be stored.

Figure 10.9 CASE program interface. This is an example of how CASE can store data

element information for the Powerbuilder programming product.

236 Analysis and Design of Information Systems

Prototypes

Prototypes are usually screens and reports that are produced so that users can

get a visual view of the system. Prototypes do not actually work; they are like

cars with no engines. CASE prototypes can range in capabilities from simple

views of the way a screen or report will look to an actual demonstration of

the application’s functional capabilities. These demonstration capabilities can

provide a way of linking screens with the data repository to show the “look and

feel” of the application to the user. In addition, certain CASE products allow

screen and report information to be directly ported into a development language

(see Figure 10.10).

Documentation and Reports

CASE provides both documentation and reports to reflect the information stored

in the data repository. The information can range from a simple data element

report to more sophisticated comparison information (e.g., missing data element

descriptions), as Figure 10.11 illustrates.

Figure 10.10 CASE screen painter. The above diagram shows the screen painter properties

of System Architect. The data elements contained in the screen are mapped to the data

repository and therefore contain their appropriate definitions.

10. CASE and Automated Techniques 237

Figure 10.11 CASE report writer. The above screen shows the report menu from System

Architect.

The data repository of CASE is therefore the central component of the product

and serves to store all related information of a particular data element. A data

element in the data repository does not necessarily need to belong to any entity,

schema, prototype or program product, but rather it may be an independent

piece of information. However, CASE provides an easier way to make a data

element associated with an entity, schema, prototype, and so on, without losing

this independence. The integration facility of CASE allows analysts to modify

the definitions of a data element and have that change propagated throughout

the data repository.

Why Does CASE Fail?

Unfortunately, many of the implementations of CASE during the 1980s were

not successful. Information systems professionals began to shy away from its

use. The reasons for this are very straightforward:

• Organizations were not properly trained how to use structured tools.
• CASE products did not comply with GUI (Graphic User Interface) and

therefore were not robust.20

20 The term robust or robustness is defined as the ability of a program to function,

or to continue functioning well, in unexpected situations. Microsoft Press, Computer

Dictionary, 2nd ed., p. 342.

238 Analysis and Design of Information Systems

• CASE products were methodology driven, and therefore required the

organization to commit to a particular approach. Such approaches did

not typically conform to the organization’s culture.
• There were limited third party product interfaces to enable efficient

transfer from logical models to physical products and databases.

Perhaps the CASE transition was bound to occur in a slow and methodical

manner. Many organizations could not afford to buy the popular CASE

products then that included Knowledgeware, Excellerator and IEF (Information

Engineering Facility). Those who did buy them still feel scarred, and even today

CASE is considered a bad word in some circles.

A key factor in the success of CASE is understanding where and when

to use it in the software implementation cycle. To determine this point, the

table in Figure 8.3 is a replication of the table of the Tiers of Analysis and

Software Application Development developed in Chapter 1. This table can also

be used to compare or map the analyst’s proficiency level to that of the software

development process being used.

The table shows that CASE should not be considered until tier 3, that is, until

an analyst is proficient with the user interface and the structured tools. CASE can

then be used as a way of automating the analysis process. By automating portions

of the analysis functions, organizations can thus become more productive when

modeling systems.

Why CASE Should Succeed

Using CASE is the only means of creating and maintaining any central storage

of information for enterprise level systems. Today, the CASE products are far

more robust, contain the GUI interface and allow for the handling of multiple

analysis methodologies. Analysts can therefore create data repositories as they

see fit for their organizations. In addition, there are many database and devel-

opment third party products that can be linked to CASE. Many companies

like Oracle now produce their own CASE products (Oracle Designer/2000) that

are focused on creating even more interfaces between data repositories and

the Oracle RDBMS. Frankly, an IT organization that does not consider CASE

cannot provide the long-term support for many of the features and capabilities

required by the applications of the future. These applications will be based

on the OO paradigm and client/server computing. Perhaps the most significant

advantage to CASE is in the area of maintenance. Definitions of quality software

have included the word “maintenance” for decades: systems that are difficult to

maintain will not be considered quality systems. When there is a central repos-

itory of data as well as defined processes, the maintenance of both databases

and applications becomes easier and more productive. The data repository also

allows both analysts and developers to use CASE as a means of training and

documenting existing systems. Having new programmers use an automated tool

10. CASE and Automated Techniques 239

to see the contents of each entity and how the data is used in an application

provides IT organizations with greater flexibility and productivity for future

enhancements.

Open Systems Requirements and Client/Server

Perhaps the most significant support for today’s use of CASE is Open Systems

architecture. Open systems architecture can be defined as a set of standards for

both hardware and software that allows portability of applications and databases.

Open systems architecture includes such operating systems as UNIX, LINUX,

Windows and Windows NT, DOS and Netware. These operating systems support

the standards in application software that allow such software to run across

one another’s operating systems. Although this concept is not fully transparent,

application developers have enjoyed more portability of their code than ever

before. The software industry will continue to support open systems, especially

through the use of OO technology. Essentially, without CASE it is impossible to

support the open systems model. In order for an IS organization to be compliant

with open systems, it must have the ability to store data elements free from

specific hardware and software products, that is, it must not be proprietary.

Client/server even further strengthens the need to use CASE. Built on the

basis of open systems and OO, client/server establishes the need for additional

standards in the area of object interfaces across LANs and WANs. The use of the

Internet as a key component of the future for IT processing is also constructed on

the basis of OO and client/server concepts. The analysis proficiency skills tiers

(Figure 10.12) showed us that CASE is a prerequisite for OO and client/server.

Chapter 11 will demonstrate that OO is constructed via the structured tools

and that client/server is developed after determining the appropriate objects and

classes. None of these links can be accomplished without a central point of

control, evaluation and reconciliation, all of which CASE provides to us.

We mentioned above that client/server established new needs for standards

for communicating among and WANs. Much of this interface is called

Figure 10.12 Analyst Proficiency Skills Correlation.

240 Analysis and Design of Information Systems

middleware. Middleware contains the necessary APIs (application program

interface), protocols, metadata, gateways and object messaging necessary to

provide communication across client/server networks. The driving force behind

middleware is that today’s applications must communicate with other appli-

cations and databases without knowing one another’s hardware and software

configurations. This means that the middleware must contain information for

the client or server about what data is being sent or received respectively. For

example, without knowing the receiving application’s programming language,

middleware must provide the details of the layout of data being sent. This data

layout is defined in the metadata (data about the data) facility of the middleware.

The components of open systems and client/server architecture are shown below

in the client/server three tier architecture depicted in Figure 10.13.

Our discussions of CASE can be mapped to every tier of the client/server

architecture. CASE thus provides the underlying facility to record information

and data to build such systems.

Types of CASE Tools

The CASE components which comprise analysis and design capabilities are

typically known as Upper-CASE. Many CASE products may provide only the

Figure 10.13 Client/server three tier architecture.

10. CASE and Automated Techniques 241

input side that has been shown. CASE products that also provide for output to the

physical product side are known as Lower-CASE. Once again, there are CASE

products that do not provide the analysis tools but rather only a data repository to

create outputs. These CASE products are also known as Code Generators. CASE

products that do both the input analysis and output generation are known as I-

CASE or Integrated CASE. I-CASE tools will continue to become more popular

as open systems and client/server architectures become more widely used.

CASE tools should also support multiple data repositories. This means that

some repositories can be either mutually exclusive or dependent as children in a

tree structure.Mutually exclusive repositories simply mean that there are multiple

libraries of data elements that have no relationship with each other. This situation

can occur in organizations that have different business lines or subsidiaries that

are in different businesses. Mutually exclusive libraries should be created only

if the analyst is sure that there is no need for an enterprise model.

Tree structure libraries are used more often. The tree of repositories allows an

organization to have a central parent repository with all common data elements

of the enterprise. Child libraries inherit the global definitions. Locally defined

data elements will become only global if they are needed by at least two entities

in the organization. Another use of the tree structure repositories is work-in-

process. Specifically this means that new projects may create potentially new

data elements to be added to the global data repository. This allows the IT

organization to properly control any new entries into the global data repository

until the project is completed or the data element candidate is approved by the

appropriate people in the organization. In any event, good CASE products allow

for this versatility, and it is recommended that analysts utilize such capabilities.

Reverse Engineering

Analysts will often be confronted with a system that is not in any existing CASE

product. The issue then becomes the chicken- and-egg paradox: how do I create a

data repository if the product already exists? Advanced CASE products typically

contain a module that allows for reverse engineering. “Reverse Engineering is

the process of analyzing existing application programs and database code to

create higher-level representations of the code. It is sometimes called design

recovery.”21 For example, reverse engineering features would allow for the input

of an existing Oracle table into the CASE product. This input would result in

the creation of a logical ERD and the creation of all the data elements into

the data repository. In addition foreign key links, triggering operations and

other stored procedures would automatically populate the appropriate repository

areas. Reverse engineering therefore allows analysts to “start somewhere” and

21 Jeffrey Whitten, Lonnie Bently, Victor Barlow, Systems Analysis & Design Methods,

3rd ed., p. 181.

242 Analysis and Design of Information Systems

eventually to get the organization into forward engineering, that is, building

physical products and databases directly from the CASE tool.

Problems and Exercises

1. Define the applications of a CASE tool.

2. What are the benefits of the input facilities of CASE? Of the output

facilities?

3. Explain the concept of a data repository. How does it relate to the

dictionary?

4. What is schema generation? Why is this important for forward

engineering?

5. How does the data repository assist in the development of screen proto-

types?

6. What is I-CASE? Explain.

7. What are the most important issues to ensure the success of CASE?

8. What are the five analysis proficiencies?

9. How does CASE relate to the implementation of object and client/server

system?

10. What is a three tiered architecture?

11. Why is reverse engineering so prevalent in most IS organizations?

11
Object-Oriented Techniques

What Is Object-Oriented Analysis?

Object-oriented analysis has become a key issue in today’s analysis paradigm. It

is without question the most important element of creating what may be called

the “complete” requirement of a system. Unfortunately, the industry is in a state

of controversy about the approaches and tools that should be used to create

object systems. This chapter will focus on developing the requirements for object

systems and the challenges of converting legacy systems. Therefore, many of

the terms will be defined based on their fundamental capabilities and how they

can be used by a practicing analyst (as opposed to a theorist!).

Object orientation (OO) is based on the concept that every requirement

ultimately must belong to an object. It is therefore critical that we first define

what is meant by an object. In the context of OO analysis, an object is any

cohesive whole made up of two essential components: data and processes.

Classic and even structured analysis approaches were traditionally based on

the examination of a series of events. We translated these events from the physical

world by first interviewing users and then developing what was introduced as the

concept of the logical equivalent. Although we are by no means abandoning this

necessity, the OO paradigm requires that these events belong to an identifiable

object. Let us expand on this difference using the object shown in Figure 11.1,

an object we commonly call a “car.”

The car shown in Figure 11.1 may represent a certain make and model, but it

also contains common components that are contained in all cars (e.g., an engine).

If we were to look upon the car as a business entity of an organization, we might

find that the three systems shown in Figure 11.2 were developed over the years.

Figure 11.2 shows us that the three systems were built over a period of

11 years. Each system was designed to provide service to a group of users

responsible for particular tasks. The diagram shows that the requirements for

System 1 were based on the engine and front-end of the car. The users for this

project had no interest in or need for any other portions of the car. System 2, on

the other hand, focused on the lower center and rear of the car. Notice, however,

that System 2 and System 1 have an overlap. This means that there are parts and

procedures common to both systems. Finally, System 3 reflects the upper center

and rear of the car and has an overlap with System 2. It is also important to note

244 Analysis and Design of Information Systems

Figure 11.1 A car is an example of a physical object.

that there are components of the car that have not yet been defined, probably

because no user has had a need for them. We can look at the car as an object

and Systems 1 to 3 as the software which has so far been defined about that

object. Our observations should also tell us that the entire object is not defined

and more important, that there is probable overlap of data and functionality

among the systems that have been developed. This case exemplifies the history

of most development systems. It should be clear that the users who stated their

requirements never had any understanding that their own situation belonged to

a larger composite object. Users tend to establish requirements based on their

own job functions and their own experiences in those functions. Therefore, the

analyst who interviews users about their events is exposed to a number of risks:

• Users tend to identify only what they have experienced, rather than

speculating about other events that could occur. We know that such

events can take place, although they have not yet occurred (you should

recall the discussion of using STDs as a modeling tool to identify

unforeseen possibilities). Consider, for example, an analysis situation in

which $50,000 must be approved by the firm’s Controller. This event

Figure 11.2 This diagram reflects the three systems developed to support the car object.

11. Object-Oriented Techniques 245

might show only the approval, not the rejection. The user’s response is

that the Controller, while examining the invoices, has never rejected one

and therefore no rejection procedure exists. You might ask why. Well,

in this case the Controller was not reviewing the invoices for rejection

but rather holding them until he/she was confident that the company’s

cash flow could support the issuance of these invoices. Obviously, the

Controller could decide to reject an invoice. In such a case, the software

would require a change to accommodate this new procedure. From a

software perspective we call this a system enhancement, and it would

result in a modification to the existing system.
• Other parts of the company may be affected by the Controller’s review

of the invoices. Furthermore, are we sure that no one else has automated

this process before? One might think such prior automation could never

be overlooked, especially in a small company, but when users have

different names for the same thing (remember Customer and Client!) it

is very likely that such things will occur. Certainly in our example there

were two situations where different systems overlapped in functionality.
• There will be conflicts between the systems with respect to differences

in data and process definitions. Worst of all, these discrepancies may

not be discovered until years after the system is delivered.

The above example shows us that requirements obtained from individual

events require another level of reconciliation to ensure they are complete.

Requirements are said to be “complete” when they define the whole object. The

more incomplete they are, the more modifications will be required later. The

more modifications in a system, the higher the likelihood that data and processes

across applications may conflict with each other. Ultimately this results in a less

dependable, lower quality system. Most of all, event analysis alone is prone to

missing events that users have never experienced. This situation is represented

in the car example by the portions of the car not included in any of the three

systems. System functions and components may also be missed because users

are absent or unavailable at the time of the interviews, or because no one felt

the need to automate a certain aspect of the object. In either case, the situation

should be clear. We need to establish objects prior to doing event analysis. The

question is how?

Before we discuss the procedures for identifying an object, it is worth looking

at the significant differences between the object approach and earlier approaches.

This particular example was first discussed with a colleague, Eugene O’Rourke,

on the generations of systems and how they compare to the object methodology:

The first major systems were developed in the 1960s and were called Batch,

meaning that they typically operated on a transaction basis. Transactions were

collected and then used to update a master file. Batch systems were very useful

in the financial industries, including banks. We might remember having to wait

until the morning after a banking transaction to see our account balance because

a batch process updated the master account files overnight. These systems were

246 Analysis and Design of Information Systems

built based on event interviewing, where programmer/analysts met with users

and designed the system. Most of these business systems were developed and

maintained using COBOL.

In the early 1970s, the new buzz word was “on-line, real-time” meaning that

many processes could now update data immediately or on a “real-time” basis.

Although systems were modified to provide these services, it is important to

understand that they were not reengineered. That is, the existing systems, which

were based on event interviews, were modified, and in many cases portions were

left untouched.

In the late 1980s and early 1990s the hot term became “client/server.”

These systems, which will be discussed later, are based on sophisticated

distributed systems concepts. Information and processes are distributed among

many Local and Wide Area Networks. Many of these client/server systems are

re-constructions of the on-line real-time systems which in turn were developed

from the 1960s batch systems. The point here is that we have been applying new

technology to systems that were designed over 30 years ago without considering

the obsolescence of the design.

Through these three generations of systems, the analyst has essentially been

on the outside looking in (see Figure 11.3). The completeness of the analysis was

dependent upon—and effectively dictated by—the way the inside users defined

their business needs.

Figure 11.3 Requirements are often developed by analysts from an outside view. The

specifications are therefore dependent on the completeness of the user’s view.

11. Object-Oriented Techniques 247

Object-orientation, on the other hand, requires that the analyst have a view

from the inside looking out. What we mean here is that the analyst first needs

to define the generic aspects of the object and then map the user views to the

particular components that exist within the object itself. Figure 11.4 shows a

conceptual view of the generic components that could be part of a bank.

Figure 11.4 shows the essential functions of the bank. The analyst is on

the inside of the organization when interviewing users and therefore will have

the ability to map a particular requirement to one or more of its essential

functions. In this approach, any user requirement must fit into at least one of the

essential components.. If a user has a requirement that is not part of an essential

component, then it must be either qualified as missing (and thus added as an

essential component) or rejected as inappropriate.

The process of taking user requirements and placing each of their functions

into the appropriate essential component can be called mapping. The impor-

tance of mapping is that functions of requirements are logically placed where

they generically belong, rather than according to how they are physically imple-

mented. For example, suppose Joseph, who works for a bank, needed to provide

information to a customer about the bank’s investment offerings. Joseph would

need to access investment information from the system. If OO methods were

used to design the system, all information about banking investments would

be grouped together generically. Doing it this way allows authorized personnel

to access investment information regardless of what they do in the bank. If

event analysis alone was used, Joseph would probably have his own subsystem

that defines his particular requirements for accessing investment information.

The problem here is twofold: first, the subsystem does not contain all of the

functions relating to investments. Should Joseph need additional information, he

may need an enhancement or need to use someone else’s system at the bank.

Figure 11.4 Using the object approach, the analyst interviews users from the inside

looking out.

248 Analysis and Design of Information Systems

Second, Joseph’s subsystem may define functions that have already been defined

elsewhere in another subsystem. The advantage of OO is that it centralizes all

of the functions of an essential component and allows these functions to be

“reused” by all processes that require its information. The computer industry

calls this capability Reusable Objects.

Identifying Objects and Classes

The most important challenge of successfully implementing OO is the ability to

understand and select Objects. We have already used an example which identified

a car as an object. This example is what can be called the tangible object, or

as the industry calls them “physical objects.” Unfortunately, there is another

type of object called an “abstract” or intangible object. An intangible object is

one that you cannot touch or as Grady Booch describes: “something that may

be apprehended intellectually � � �Something towards which thought or action

is directed.”22 An example of an intangible object is the security component

of the essentials of the bank. In many instances OO analysis will begin with

identifying tangible objects which will in turn make it easier to discover the

intangible ones.

Earlier in the book, we saw that systems are comprised of two components:

Data and Processes. Chapter 6 showed how the trend of many database products

is toward combining data and processes via stored procedures called triggers.

Object orientation is somewhat consistent with this trend in that all objects

contain their own data and processes, called attributes and services, respectively.

Attributes are effectively a list of data elements that are permanent components

of the object. For example, a steering wheel is a data element that is a permanent

attribute of the object “Car.” The services (or operations), on the other hand,

define all of the processes that are permanently part of or “owned” by the

object. “Starting the Car” is a service that is defined within the object Car. This

service contains the algorithms necessary to start a car. Services are defined and

invoked through a method. A method is a process specification for an operation

(service).23 For example, “Driving the Car” could be a method for the Car object.

The “Driving the Car” method would invoke a service called “Starting the Car”

as well as other services until the entire method requirement is satisfied. Although

a service and method can have a one-to-one relationship, it is more likely that a

service will be a subset or one of the operations that make up a method.

Objects have the ability to inherit attributes and methods from other objects

when they are placed within the same class. A class is a group of objects that

have similar attributes and methods and typically have been put together to

22 Grady Booch, Object Solutions: Managing the Object-Oriented Project, Addison

Wesley Publishing Co., p. 305.
23 James Martin and James Odell, Object-Oriented Methods, Prentice-Hall, p. 158.

11. Object-Oriented Techniques 249

Figure 11.5 Class Car Transmissions.

perform a specific task. To further understand these concepts, we will establish
the object for “Car” and place it in a class of objects that focuses on the use of
transmissions in cars (see Figure 11.5).

Figure 11.5 represents an object class called Car Transmissions. It has three
component objects: cars, automatic trans, and standard trans. The car object is
said to be the parent object. Automatic trans and standard trans are object types.
Both automatic trans and standard trans will inherit all attributes and services
from their parent object, Cars. Inheritance in object technology means that the
children effectively contain all of the capabilities of their parents. Inheritance
is implemented as a tree structure24; however, instead of information flowing
upward (as is the case in tree structures), the data flows downward to the lowest
level children. Therefore, an object inheritance diagram is said to be an inverted
tree. Because the lowest level of the tree inherits from every one of its parents,
only the lowest level object need be executed, that is, executing the lowest level
will automatically allow the application to inherit all of the parent information
and applications as needed. We call the lowest level objects concrete, while all

24 A data structure containing zero or more nodes that are linked together in a hierarchical

fashion. The topmost node is called the root. The root can have zero or more child nodes,

connected by links; the root is the parent node to its children. Each child node can in

turn have zero or more children of its own. Microsoft Press, Computer Dictionary, 2nd

ed., p. 397.

250 Analysis and Design of Information Systems

others in the class are called abstract. Objects within classes can change simply

by the addition of a new object. Let us assume that there is another level added

to our example The new level contains objects for the specific types of automatic

and standard transmissions (see Figure 11.6).

The above class has been modified to include a new concrete layer. Therefore,

the automatic trans object and standard trans object are now abstract. The new

four concrete objects not only inherit from their respective parent objects, but

also from their common grandparent, cars. It is also important to recognize that

classes can inherit from other classes. Therefore, the same example could show

each object as a class: that is, cars would represent a class of car objects and

automatic trans another class of objects. Therefore, the class automatic trans

would inherit from the cars class in the same manner described above. We call

this class inheritance.

We mentioned before the capability of OO objects to be reusable (Reusable

Objects). This is very significant in that it allows a defined object to become part

of another class, while still keeping its own original identity and independence.

Figure 11.7 demonstrates how Cars can be reused in another class.

Figure 11.6 Class-Car Transmission types.

11. Object-Oriented Techniques 251

Figure 11.7 Class: Transportation Vehicles

Notice that the object Car is now part of another class called Transportation

Vehicles. However, Car, instead of being an abstract object within its class,

has become concrete and thus inherits from its parent, Transportation Vehicles.

The object Cars has methods that may execute differently depending on the

class it is in. Therefore, Cars in the Transportation Vehicle class might interpret

a request for “driving the car” as it relates to general transportation vehicles.

Specifically, it might invoke a service that shows how to maneuver a car while

it is moving. On the other hand, Cars in the Transmission class might interpret

the same message coming from one of its children objects as meaning how

the transmission shifts when a person is driving. This phenomenon is called

polymorphism. Polymorphism allows an object to change its behavior within

the same methods under different circumstances. What is more important is that

polymorphism is dynamic in behavior, so its changes in operation are determined

when the object is executed or during run time.

Because objects can be reused, keeping the same version current in every

copy of the same object in different classes is important. Fortunately, objects are

typically stored in dynamic link libraries (DLL). The significance of a DLL is

that it always stores the current version of an object. Because objects are linked

dynamically before each execution, you are ensured that the current version

is always the one used. The DLL facility therefore avoids the maintenance

nightmares of remembering which applications contain the same subprograms.

Legacy systems often need to relink every copy of the subprogram in each

module where a change occurs. This problem continues to haunt the COBOL

application community.

252 Analysis and Design of Information Systems

Another important feature in object systems is instantiation and persistence.
Instantiation allows multiple executions of the same class to occur independent
of another execution. This means that multiple copies of the same class are
executing concurrently. The significance of these executions is that they are
mutually exclusive and can be executing different concrete objects within that
class. Because of this capability, we say that objects can have multiple instances
within each executing copy of a class to which it belongs. Sometimes, although
class executions are finished, a component object continues to operate or persist.
Persistence is therefore an object that continues to operate after the class or
operation that invoked it has finished. The system must keep track of each of
these object instances.

The abilities of objects and classes to have inheritance, polymorphic behavior,
instantiation and persistence are just some of the new mechanisms that devel-
opers can take advantage of when building OO systems.25 Because of this, the
analyst must not only understand the OO methodology, but must also apply new
approaches and tools that will allow an appropriate schematic to be produced
for system developers.

Object Modeling

In Chapter 5, we discussed the capabilities of a state transition diagram (STD) and
defined it as a tool useful for modeling event driven and time dependent systems.
A state very closely resembles an object/class and therefore can be used with
little modification to depict the flow and relationships of objects. There are many
techniques available such as Rumbaugh’s Object Modeling Technique (OMT)
and Jacobson’s Object-Oriented Software Engineering (OOSE) that can also be
applied. However, be careful, as many of the methodologies are very complex
and can be overwhelming for the average analyst to use in actual practice.

The major difference between an object and a state is that an object is
responsible for its own data (which we call an attribute in OO). An object’s
attributes are said to be encapsulated behind its methods, that is, a user cannot
ask for data directly. The concept of encapsulation is that access to an object is
allowed only for a purpose rather than for obtaining specific data elements. It
is the responsibility of the method and its component services to determine the
appropriate attributes that are required to service the request of the object. For
this reason, object relationships must include a cardinality definition similar to

25 This book is not intended to provide all of the specific technical capabilities and

definitions that comprise the OO paradigm, but rather its effects on the analyst’s approach.

Not all of the OO issues are analyst responsibilities, and many of them are product-

specific. Because OO is still very controversial, OO products are not consistent in their

use of OO facilities. For example, C++ allows multiple inheritance, meaning that a child

can have many parent objects. This is inconsistent with the definition of a class as a tree

structure, since children in tree structures can have only one parent.

11. Object-Oriented Techniques 253

that found in the ERD. An object diagram, regardless of whose methodology is

used, is essentially a hybrid of an STD and an ERD. The STD represents the

object’s methods and the criteria for moving from one object to another. The

ERD, on the other hand, defines the relationship of the attributes between the

stored data models. The result is best shown using the order processing example

contained in Figure 11.8.

The object diagram in Figure 11.8 reflects that a customer object submits a

purchase order for items to the order object. The relationship between customer and

order reflects both STD and ERD characteristics. The “submits purchase order”

specifies the condition to change the state of or move to the order object. The

direction arrow also tells us that the order object cannot send a purchase order to

the customer object. The crow’s-foot cardinality shows us that a customer object

must have at least one order to create a relationship with the order object. After an

order is processed, it is prepared for shipment.Notice that eachorder has one related

shipment object; however multiple warehouse items can be part of a shipment.

The objects depicted above can also represent classes suggesting that they are

comprised of many component objects. These component objects might in turn be

further decomposed into other primitive objects. This is consistentwith the concept

of the logical equivalent and with functional decomposition (see Figure 11.9).

It is important that the analyst specify whether classes or objects are depicted

in the modeling diagrams. It is not advisable to mix classes and objects at the

same level. Obviously the class levels can be effective for user verification, but

objects will be inevitably required for final analysis and engineering.

Figure 11.8 An object/class diagram.

254 Analysis and Design of Information Systems

Figure 11.9 The component objects of the Warehouse class.

Relationship to Structured Analysis

Many analysts make the assumption that the structured tools discussed in
Chapter 4 are not required in OO analysis. This simply is not true, as we have
shown in the previous examples. To further emphasize the need to continue
using structured techniques, we need to understand the underlying benefit of the
OO paradigm and how structured tools are necessary to map to the creation of
objects and classes. It is easy to say: “find all the objects in the essential compo-
nents”; actually to have a process to do so is another story. Before providing an
approach to determine objects, let us first understand the problem.

Application Coupling

Coupling can be defined as the measurement of an application’s dependency
on another. Simply put, does a change in an application program necessitate
a change to another application program? Many known system malfunctions
have resulted from highly coupled systems. The problem, as you might have
anticipated, relates back to the analysis function, where decisions could be made
as to what services should be joined to form one single application program.
Coupling is never something that we want to do, but no system can be made
up of just one program. Therefore, coupling is a reality and one that analysts
must focus on. Let us elaborate on the coupling problem through the example
depicted in Figure 11.10.

The two programs A and B are coupled via the passing of the variable Y. Y is
subsequently used in B to calculate R. Should the variable Y change in A, it will
not necessitate a change in B. This is considered good coupling. However, let us
now examine X. We see that X is defined in both A and B. Although the value
of X does not cause a problem in the current versions of A and B, a subsequent
change of X will cause a programmer to remember to change the value in B.

11. Object-Oriented Techniques 255

Figure 11.10 Application coupling.

This is a maintenance nightmare. In large enterprise level systems, analysts

and programmers cannot “remember” where all of these couples have occurred,

especially when the original developers are no longer with the organization. The

solution to this problem is also to pass X from program A (see Figure 11.11).

We now see that both X and Y are passed and programs A and B are said to

have low coupling. In addition, program A is said to be more cohesive.

Application Cohesion

Cohesion is the measurement of how independent a program is on its own

processing. That is, a cohesive program contains all of the necessary data and

logic to complete its applications without being directly affected by another

program; a change in another program should not require a change to a cohesive

one. Furthermore, a cohesive program should not cause a change to be made in

another program. Therefore, cohesive programs are independent programs that

react to messages to determine what they need to do; however they remain self-

contained. When program A also passed X it became more cohesive because

a change in X no longer required a change to be made to another program. In

addition B is more cohesive because it gets the change of X automatically from

A. Systems that are designed more cohesively are said to be more maintainable.

Their codes can also be reused or retrofitted into other applications as components

Figure 11.11 Application coupling using variables X and Y.

256 Analysis and Design of Information Systems

Figure 11.12 Coupling and cohesion relationships.

because they are wholly independent. A cohesive program can be compared

to an interchangeable standard part of a car. For example, if a car requires a

standard 14-inch tire, typically any tire that meets the specification can be used.

The tire, therefore, is not married to the particular car, but rather is a cohesive

component for many cars.

Cohesion is in many ways is the opposite of coupling. The higher the

cohesion, the lower the coupling. Analysts must understand that an extreme

of either cohesion or coupling cannot exist. This is shown in the graph in

Figure 11.12.

The graph shows that we can never reach 100% cohesion; that would mean

there is only one program in the entire system, a situation that is unlikely.

However, it is possible to have a system where a 75% cohesion ratio is obtained.

We now need to relate this discussion to OO. Obviously OO is based very

much on the concept of cohesion. Objects are independent reusable modules that

control their own attributes and services. Object coupling is based entirely on

message processing via inheritance or collaboration.26 Therefore, once an object

is identified, the analyst must define all of its processes in a cohesive manner.

Once the cohesive processes are defined, the required attributes of the object are

then added to the object. Figure 11.13 contains a table showing how processes

can be combined to create the best cohesion:

Figure 11.13 Methods of selecting cohesive objects.

26 Collaboration is the interaction between objects and classes where inheritance is not

used. Inheritance can operate only in hierarchical structures; however, many object and

class configurations can simply “talk” to one another through messaging systems.

11. Object-Oriented Techniques 257

The tiers above are based on best to worst, where the by function method is

the most desirable and by lines of code method the least desirable. Tiers 1 and

2 will render the best object cohesiveness. This can be seen with the example in

Figure 11.14.

Figure 11.14 depicts a four-screen system that includes four objects, that is,

each screen is a separate object. The Transaction Processing object has been

designed using tier 2, By Same Data since it deals only with the Transaction File.

The object is cohesive because it does not depend on or affect another module

in its processing. It provides all of the methods required for transaction data.

The Financials object is an example of tier 1, the by function method since a

Balance Sheet is dependent on the Income Statement and the Income Statement

is dependent on the Trial Balance. The object therefore is self-contained within

all the functions necessary to produce financial information (in this example).

The System Editor, on the other hand, being an example of tier 3, shows that

it handles all of the editing (verification of the quality of data) for the system.

Although there appears to be some benefit to having similar code in one object,

we can see that it affects many different components. It is therefore considered

a highly coupled object and not necessarily the easiest to maintain.

We can conclude that tiers 1 and 2 provide analysts with the most attractive

way for determining an object’s attributes and services. Tiers 3 and 4, although

practiced, do not provide any real benefits in OO and should be avoided as much

as possible. The question now is what technique do we follow to start providing

the services and attributes necessary when developing logical objects?

The structured tools discussed in Chapter 5 provide us with the essential

capabilities to work with OO analysis and design. The STD can be used to

determine the initial objects and the conditions of how one object couples or

relates to another. Once the STD is prepared it can be matured into the object

model discussed earlier in this chapter. The object model can be decomposed to

its lowest level; the attributes and services of each object must then be defined.

All of the DFD functional primitives can now be mapped to their respective

objects as services within their methods. It is also a way of determining whether

an object is missing (should there be a DFD that does not have a related object).

Figure 11.14 Applications with varying types of object cohesion.

258 Analysis and Design of Information Systems

Figure 11.15 The relationships between an object and the ERD and DFD.

The analyst should try to combine each DFD using the tier 1, by function
approach. This can sometimes be very difficult depending on the size of the
system. If the tier 1 approach is too difficult, the analyst should try tier 2 by
combining DFDs based on their similar data stores. This is a very effective
approach; since tier 1 implies tier 2,27 it is a very productive way to determine
how processes should be mapped to their appropriate objects. This does not
suggest that the analyst should not try tier 1 first.

The next activity is to determine the object’s attributes or data elements. The
ERD serves as the link between an attribute in an object and its actual storage
in a database. It is important to note that the attribute setting in an object may
have no resemblance to its setting in the logical and physical data entity. The
data entity is focused on the efficient storage of the elements and its integrity,
whereas the attribute data in an object is based on its cohesiveness with the
object’s services.

The mapping of the object to the DFD and ERD can be best shown graphi-
cally, as in Figure 11.15.

Thus, the functional primitive DFDs and the ERD resulting from the normal-
ization process provide the vehicles for providing an object’s attributes and
services.

Object-Oriented Databases

There is a movement in the industry to replace the traditional relational database
management systems (RDBMS) with the object-oriented database management

27 We have found that application programs that have been determined using tier 1 will

always imply tier 2. That is, applications that are combined based on function typically

use the same data. Although the converse is not necessarily true, we believe it is an

excellent approach to backing-in to the functions when they are not intuitively obvious.

11. Object-Oriented Techniques 259

system (OODBMS). Object databases differ greatly from the relational model

in that the object’s attributes and services are stored together. Therefore, the

concept of columns and rows of normalized data becomes extinct. The proponents

of OODBMS see a major advantage in that object databases could also keep

graphical and multimedia information about the object, something that relational

databases cannot do. The answer will come in time, but it is expected that

the relational model will continue to be used for some time. However, most

RDBMS products will become more object-oriented. This means they will use

the relational engine but employ more OO capabilities, that is, build a relational

hybrid model. In either case, analysts should continue to focus on the logical

aspects of capturing the requirements. Changes in the OO methodologies are

expected to continue over the next few years.

Problems and Exercises

1. What is an object?

2. Describe the relationship between a method and a service.

3. What is a class?

4. How does the object paradigm change the approach of the analyst?

5. Describe the two types of objects and provide examples of each type.

6. What are essential functions?

7. What is an object type and how is it used to develop specific types of

classes?

8. What is meant by object and class inheritance?

9. How does inheritance relate to the concept of polymorphism?

10. What are the association differences between an ERD and an object

diagram?

11. How does functional decomposition operate with respect to classes and

objects?

12. What is coupling and cohesion? What is their relationship with each

other?

13. How does the concept of cohesion relate the structured approach to the

object model?

14. What four methods can be used to design a cohesive object?

15. What are object databases?

12
Documentation and Acceptance
Testing

Documentation

Many IS organizations are faced with the ongoing issue of good product

documentation. Documentation has been classically defined as having two

components: user documentation and technical documentation. User documen-

tation consists of the necessary instructions required for users to operate and

maintain the system. Technical documentation, on the other hand, contains

detailed information about the inner components of the product itself. Technical

documentation should be designed to provide developers with the ability

to support and maintain the system from a programming and engineering

perspective.

Once analysis and design are completed, user documentation can be

developed as a parallel function with the rest of the product life cycle compo-

nents. This means that the screens and reports can be used from the design

phase to build the documentation on the inputs, queries and output reports

of the system. If the software is a GUI product, then the user documentation

must also adhere to the standard Help facility which is included in these

types of products. Although analysts may be involved with providing infor-

mation to the documentation team, it is not their responsibility to produce user

documentation.

A major part of the technical documentation should be the product of

the analyst’s work. All of the tools used by the analyst to formulate the

logical equivalent must remain as the schematic or blueprint of the product.

It is not advisable to try to provide other documentation. First, there rarely is

enough time, and second, it should not be necessary. Remember, the concept

of using modeling tools was compared to the creation and maintenance of

an architect’s blueprint in which the schematic had to be self-documenting.

There are, however, other components of technical documentation. This technical

documentation relates to the physical software development itself. Programming

source code, product libraries and version control are examples of technical

product documentation that should be the responsibility of the programming

team.

12. Documentation and Acceptance Testing 261

Acceptance Test Plans

Acceptance Test Plans can be defined as the set of tests that if passed will

establish that the software can be used in production. Acceptance tests need

to be established early in the product life cycle and should begin during the

analysis phase. It is only logical then that the development of acceptance test

plans should involve analysts. As with requirements development, the analyst

must participate with the user community. Only users can make the final decision

about the content and scope of the test plans. The design and development

of acceptance test plans should not be confused with the testing phase of the

software development life cycle. Testing should be defined as the carrying out

or execution of the acceptance test plans themselves.

The analysis and design of acceptance test plans is often overlooked in many

IS organizations. This is because it is viewed inappropriately as a testing method

rather than as a way of developing better systems. The question then is: Why

and how do acceptance test plans improve software quality?

Quality During Analysis

If acceptance test planning is conducted as a step in analysis, then the issue

of how to best test the requirements becomes part of making decisions about

overall system requirements. Specifically, if a user wants something that can be

difficult to test and maintain, it may force them to rethink the requirement and

alter its focus. What better time to do this than when the requirement itself is

being discussed? Remember, a strong part of quality software is how easy that

software is to maintain.

How Much Can Be Tested?

One must work with the understanding that no new product will ever be fault-free.

The permutations of testing everything would make the timetable for completion

unacceptable and the costs prohibitive. The acceptance test plan is a strategy to

get the most important components tested completely enough for production. The

testing of software can be compared to the auditing of a company. Accounting

firms that conduct an audit for a public company must sign a statement that the

books and records of their client are materially correct, meaning that there are no

significant discrepancies in the stated numbers. Accounting firms know that they

cannot test everything in their client’s books and records to be 100% confident

that the numbers are correct. Therefore, auditors apply strategic methods like

statistical sampling in order to be “comfortable” that the risk of a significant

difference is improbable. Software verification is no different. Analysts and users

must together decide on the minimum tests necessary to provide comfort to

262 Analysis and Design of Information Systems

going live with the system. It is unfair to leave this responsibility solely with

the user. Having the analyst or programmer do this alone is equally unfair. The

wise strategy is to have acceptance test plans developed by the analyst along

with input from the user and verification by programming as follows:

1. As each part of a system is functionally decomposed using the various

modeling tools, the analyst should develop generic test plans that are

based on typical standard logic tests (e.g., Account_Number must be

numeric). The analyst and users should then meet to refine the test plans

by focusing on how many permutations are required for each logical

test. Users should also be encouraged to establish new tests that are

missing from the plan. It is highly recommended that the analyst not wait

for the entire analysis to be completed before working with acceptance

test plan generation Tailoring an acceptance test plan specifically to

the needs of a group of users is a good technique. This means that

as the analyst completes the interviews with each user or user group,

the acceptance test plans should be completed for the specifications

developed for them. This philosophy is also good because it avoids the

process of meeting again and rehashing old information.

2. The analyst develops interpart tests necessary to ensure that each

component properly links with the other.

3. Once the acceptance test plans are approved by users, development

must design tests that focus on product-specific validation. These

include operating system and program tests to ensure that the operating

environment is working correctly. Users and analysts need not be

involved with this step as it represents the testing from an engineering

perspective. Quality assurance personnel who are part of the devel-

opment team should be involved in these test designs as these

professionals are specifically trained to provide intricate testing that

involves the mathematical aspects of finding errors. Once again, quality

assurance and testers should not be confused or combined with the role

the analyst and users play in the design of acceptance test plans.

More Efficient Development

Providing development personnel with the acceptance test plans is a somewhat

controversial idea. Many IS professionals would object to doing so, arguing

that the testing of software quality should not be carried out by programmers.

However, programmers who are given the test plans are not being asked to do

the testing but rather to understand what the user perceives as the most important

operational qualities of the system. If the programmer is aware of the specific

focus of the tests, then he/she should direct the development to ensure that

such errors do not occur. In essence, we are trying to focus the programmer

on the most important aspects of the system. To ask programmers to treat each

component of a program in an equal manner is unfair, especially since they have

12. Documentation and Acceptance Testing 263

no perspective on how to make the decision. If the programmer is especially

focused on the tests, there should be fewer errors detected during the test review,

thus supporting a more efficient development effort. Focusing on the tests does

not suggest, however, that the programmer is free to ignore the other quality

areas of the program.

Now that we have established the reasons and processes of developing accep-

tance test plans, the analyst must provide a format for its use. The format must

be user-friendly so that users can participate. The format must include a record

of each iteration of the test, allowing for better documentation and audit trail.

The test plans should be in a machine readable format so that changes can be

made. Figure 12.1 contains a sample acceptance test plan.

The acceptance test plan in Figure 12.1 reflects a group of tests to be applied

to the contact screen shown in Figure 12.2. This particular test plan assumes

that no data is on the screen and that the operator will only use the enter key (as

opposed to a mouse). Each condition to be tested and its expected result must

be listed. The tester will then execute each test number and fill in the results

along with any comments. The test plan is then reviewed for completeness. If

the test plan fails, the test will be performed again after the software is fixed.

Each test iteration is part of the documentation of the testing process. Users and

analysts should periodically review the test plans when the system goes live.

This procedure will allow the test plans to be “fine-tuned” should any critical

errors occur when the system goes into production.

Figure 12.1 Sample acceptance test plan.

264 Analysis and Design of Information Systems

Figure 12.2 Contact Management screen.

Designing acceptance test plans is not a trivial task, for either the user or the

analyst; however, good test plans can make the difference in the ultimate quality

of the software. When GUI products are tested, the number of test iterations

increases substantially. For example, the test plan in Figure 12.1 is focused only

on data entry (as opposed to changing existing data), and when the operator uses

the enter key. Because this is GUI, operators can enter data by using the enter

key, a mouse or the tab key. Therefore, the analyst will need to repeat the same

test plan two more times, once when the operator uses a mouse and the other

when a tab key is used.

Budget Process

We have continued to expand the role of the analyst in the life cycle of systems

development. Analysts must develop the ability to view an upcoming project

and submit an accurate budget for their time and effort. The best approach here

is to list the generic tasks that are typically performed by an analyst and then

attempt to provide an estimate of the requirements not only for each task, but

also for each system component within the task. Below is a step-by-step process

that can be followed.

12. Documentation and Acceptance Testing 265

Establish the Task List

The analyst should begin the budget by listing the three standard tasks:

• interviewing;
• modeling;
• acceptance test planning.

Each of these tasks will then need to be expanded depending on the scope of

the project.

Interviewing

The analyst will need to assess the number of users on the project and whether

there will be a need for JAD sessions. Once this schedule is put together, the

analyst should arrange for pre-meetings to assess the user skill sets, as this will

affect the strategy and time frame of the user interface process. Analysts should

employ a weighted criterion when budgeting time. Although there is no exact

science to doing this, Figure 12.3 contains a suggested template to follow.

This table does not include the specific budget for each session, as this would

require the analyst to have pre-meetings to assess the number of functions in

each component and then budget the time necessary. The user interviewing tasks

should take into consideration an estimate for the number of iterations. More

detailed sessions can require three to four iterations before final approval is

accomplished. The number of hours (or whatever time period is chosen) should

be based on a novice user. Note that if the user(s) is knowledgeable, there may

actually be a reduction in the budgeted time whereas amateurs (those that know

a little) may substantially increase the time frame. The latter situation is due

to the likelihood that amateur users will tend to get off track and in general

have more questions. The ultimate budget for JAD sessions must be based on a

composite of the levels of involved users for each JAD session.

Figure 12.3 User interview budget worksheet.

266 Analysis and Design of Information Systems

Modeling

Once the interviewing budget has been determined and there is an established

understanding of the scope, objectives, constraints and assumptions of the project,

the analyst can begin to determine the time period for modeling the system

requirements. Some guidelines are listed in Figure 12.4.

Analysts will need to get a sense during the pre-interviews of the likely

number of processes (or data elements with respect to the repository) and how

many diagrams might be included. Once this is established, then the budget can

be developed. Note that the weight factors are based on the level of integrated

automation. Integrated automation refers to the extent of computerization

(e.g., a CASE tool) that will be used to develop the models. Non-integrated,

which is the non-weighted factor, represents computerized diagramming without

intelligent interfaces (which would exist with a CASE product).

Acceptance Test Plans

Acceptance test plan budgeting must take into consideration two key factors: the

user interviews and the type of product. The user interview portion should be

based on the original budget for user interviews applying a factor based on the

modeling budget (see Figure 12.5).

Essentially the above matrix reflects that budget hours for acceptance test

plans are approximately 10% of the original interview budget hours factored

by the estimate of the number of diagrams and the level of automation. The

10% represents the portion of the interview time that is perceived to be spent

discussing testing issues with the user. The final factor is the GUI. Because of

the event-driven nature of GUI screens, the number of tests to be performed is

dramatically increased. Many IS professionals would feel that a 2.00 factor is

too low, since many favor 3.00.

Figure 12.4 Modeling budget worksheet.

12. Documentation and Acceptance Testing 267

Figure 12.5 Acceptance test plan budget worksheet.

Problems and Exercises

1. How does modeling provide the input of the system’s documentation?

2. What is an acceptance test plan?

3. Comment on the statement, “Cannot test 100% of everything.”

4. How does strategic testing relate to risk management?

5. What is meant by the concept of self-documentation and quality?

6. How do acceptance test plans facilitate productivity and quality of the

programming phase?

7. Why is it important for the analyst to provide a budget for his/her tasks?

8. How can acceptance test plans strengthen the relationship with users?

9. Why does acceptance test planning assist the budget process?

10. When should acceptance test plans be developed and by whom?

13
Business Process Reengineering

Business process reengineering (BPR) is one of the more popular methodologies

used to redesign existing applications. A more formal definition of BPR is “a

requirement to study fundamental business processes, independent of organi-

zation units and information systems support, to determine if the underlying

business processes can be significantly streamlined and improved.”28 BPR is not

just rebuilding the existing applications for the sake of applying new technology

to older systems, but also an event that allows for the application of new proce-

dures designed around the OO paradigm. Remember, it is the OO paradigm

that focuses on the essential components that were outlined in Chapter 9. The

essential components first require the establishment of the core business require-

ments and then the mapping of the functionality of the organization or business

unit to these components.

You might recall that existing applications were referred to as legacy systems

in Chapter 3. Many chief information officers (CIOs) today are confronted

with a corporate mission to reengineer their existing applications and apply a

more sophisticated and structured approach to developing what is known as

the enterprise system. The enterprise system is composed of one common data

repository for all of the organization’s data. The typical enterprise configuration

includes the OO paradigm and the client/server model that was developed in

Chapter 9 and is repeated here as Figure 13.1.

The mission of BPR is to take an existing system, which is typically based

on older technology and developed on the basis discussed in Chapter 9 (where

the analyst is on the outside looking in), and reengineer it into one integrated

system. Much has been written about the approaches or methodologies to use

when applying BPR, especially by Ivar Jacobson.29 The focus of this book is to

provide direction from a practitioner’s perspective, that is, something that can

realistically be applied within the typical resources and constraints that exist in

most IS organizations of today.

28 Jeffrey Whitten, Lonnie Bentley, Victor Barlow, Systems Analysis & Design Methods,

3rd ed., p. 238.
29 Jacobson’s book, The Object Advantage (1995, Addison-Wesley), focuses on business

process reengineering using object technology.

13. Business Process Reengineering 269

Figure 13.1 Client/server three-tiered architecture.

Analyzing Legacy Systems

The first step to applying successful BPR is to develop an approach to defining

the existing system and extracting its existing data elements and applications.

Once again, this is similar to the process described in Chapter 3 in that the

data needs to be captured into the data repository and the applications need to

be defined and compared to a new model based on essential components. Our

assumption in this section is that the legacy system resides on an IBM mainframe

computer. The data is stored in a VSAM format (non-database files) and the

applications have been developed in COBOL. There are no central libraries or

repositories of data or programs.

Data Elements

The analyst team will need to design conversion programs that will access the

data files and place them in a data repository. The simplest approach is to

use a repository from a CASE product. Once this has been accomplished, the

analyst can utilize a reverse engineering tool to access the converted data based

270 Analysis and Design of Information Systems

on the same procedures outlined in Chapter 3. Once all the data elements are

loaded, the more rigorous process of identifying duplicate elements becomes the

major effort. Duplicate elements may take on different forms. The most obvious

is the same element with the same name and attributes. Another type is the

same element name, but with different attributes. The third type, and the most

challenging, is the duplicate elements that have different names and different

attributes. This third type can be related to our discussion about combining user

views (see Chapter 4). In any event, users and analysts will need to begin the

laborious process of taking each element and building a data repository.

Applications

Application documentation is more problematic but again resembles the proce-

dures followed in Chapter 3. This means that each existing application must

be flowed and included as part of a new reengineered processes. Although

this procedure may sound straightforward, it is not. BPR typically involves a

methodology called Business Area Analysis (BAA). The purpose of BAA is to:

• establish various business areas that make up the enterprise.
• break down the business areas to their required data and process

portions.
• reengineer the new and old requirements of each business area,
• develop requirements that provide an OO perspective of each business

area, meaning that there is no need to map its needs to the existing

physical organization structure,
• define the links that create relationships among all of the business areas.

A business area should be developed in the same manner as depicted in

Chapter 9, where we established the essential components of a bank. Each

component is a business area that needs to be reengineered into its equivalent OO

and client/server enterprise system. Therefore, each essential component must

be functionally decomposed to its reusable parts.

Combining Structured and Object Techniques

Once the essential components or business areas have been completed and agreed

to by the user community, it is time to develop the actual architecture of the new

reengineered system. What modeling tools should we use? The answer is that

we should be ready to use all of them when required. Figure 13.2 is a schematic

of the reengineering process within a business area.

Like OO, BPR also uses the object concept to develop cohesive and reusable

processes. We use the example from Chapter 9 to demonstrate how this maps to

business areas. Once the business areas are defined, the structured tools should

13. Business Process Reengineering 271

Figure 13.2 BPR modeling using the essential components of a bank.

be used to define all data and processes. BPR supports the concept that the

data for a business area should be determined before the processes. You may

recall that the same data represented an excellent method for creating cohesive

modules. By using the same data, functional primitive DFDs and STDs can be

mapped to their appropriate business area.

Logical data modeling and the ERD will need to be completed prior to

creating the permanent objects and classes that belong to each business area.

Normalization must be applied to the required entities, which will not only

have the legacy data elements but also those added as part of the reengineering

analysis process.

Prior to mapping the processes and data to their logical objects, the analyst

can use another tool to assist in the reconciliation that all data and processes

have been found. The tool is called an association matrix or a CRUD diagram.

272 Analysis and Design of Information Systems

“CRUD” stands for the four functions that can be performed on any entity:

create, read, update or delete (archive). The importance of the CRUD diagram

is that it ensures:

• that an object has complete control over its data,
• that a data file is accessed by at least one process, and
• that processes are accessing data.

The CRUD matrix in Figure 13.3 tells us a lot about the status and activities

of our business area data and processes:

• Only the Items entity has enough component processes to control its

objects data, that is, by spelling CRUD its processes have the minimum

capabilities to control the cycle of any data element. Although this does

not ensure that processes are not missing, it is a good indicator that the

analysis has covered the life cycle of an entity.
• The Expense Category is not accessed by any process. This means that

we have a file that the system is not using. This is an excellent indicator

that processes are missing.
• The Customer, Expense Category and Salesperson data are created

and deleted by some other processes or business area. This could be

a situation where the physical location of a business function is not

where it logically should be processing. The analyst should look for the

missing processes to complete the spelling of CRUD before finalizing

both the processes and data of any business area.

Even if BPR is not used, the CRUD diagram is an excellent tool to use to

determine the processes and data needed for an object. Once the CRUD diagram

is finalized, the objects and classes can be created, as Figure 13.4 displays.

It is important to recognize that many of the objects that are developed during

BPR may become reusable components of other business area classes. If there

Figure 13.3 Sample CRUD diagram.

13. Business Process Reengineering 273

Figure 13.4 Business area component objects and diagrams.

are additions to an object as a result of reviewing a new business area, then

the object’s data and methods may need to be updated. The best approach to

tracking these objects is through an integrated CASE tool, although any level of

automation can be feasible.

Dealing with End Users

When applying BPR, analysts need to formulate a plan for how users and user

groups will be interviewed. Most important, since reengineering implies change,

change means discussions that must lead to decisions. Coordination of these

decisions is critical, and it can get out of hand quickly. For this reason the analyst

274 Analysis and Design of Information Systems

should attempt to organize BPR using multiple JAD sessions. The sessions

should be focused first on each individual business area. Prior to actually holding

the session, analysts and facilitators should educate users on the techniques

and reasons for BPR. Analysts should not be afraid to show users the business

area schematic and explain the concepts of essential components and how they

eventually can become reusable objects. This means that there may be a need to

hold a one-day training session for the users who will be involved in the JADs.

This suggestion is consistent with the concept of having users prepared before

they attend a meeting.

JAD sessions should be organized to have session leaders who can provide

walkthroughs of the existing functions. While these walkthroughs take place,

the adjustments and missing functionalities can be added to the business area.

The issues concerning the selection of key personnel as they were outlined in

Chapter 1 are extremely important, especially when selecting decision makers.

Because of the volume of information being discussed, it is advisable to have

more than one scribe available. This minimizes the risk of not capturing important

business rules.

After each business area is completed, the links to the other business compo-

nents must be handled. These should also take place via JADs and typically use

the session leaders as attendees. Session leaders tend to have enough information

at this point from the JAD sessions to determine the necessary links for each

business area.

The use of prototypes for each JAD is highly recommended because it will

provide the best vehicle to get agreement on the new system. This suggests that

an integrated CASE product is almost a necessity for creating a successful BPR

project.

Information Systems Issues

BPR is implemented on existing systems. Existing systems have IT staffs and

constraints that must be addressed as part of the process. Since the current

view of BPR is to create an open systems client/server enterprise system, the

physical requirements of the network are critical during analysis. Remember,

RAD means the combining of analysis, design and development into multiple

iterative steps. In order to take the objects and classes developed from the JAD

sessions, the analyst must start breaking up the data and methods of the classes

into its related client and server functions. You may recall that if the client

and server processing portions of an object must reside on separate hardware

components then the object/class must be separated or further decomposed into

separate physical modules (see Figure 13.5).

We have emphasized the importance of analysts being involved with the

network design for client/server systems. BPR thus requires that the network

design be completed as soon as possible and ideally before analysis starts. This

13. Business Process Reengineering 275

Figure 13.5 Client/server hybrid model.

will be difficult since many of the network decisions may be altered depending

on how the objects become distributed across the network. In addition, the back-

end database stored procedures (business rules, triggers, etc.) and middleware

software components must be defined while the analysis specification is being

finalized.

IS personnel must also be heavily involved in the JAD sessions to clarify

questions about the existing system processes. This will involve discussions

about the amount of data processed, as well as the difficulty or ease of getting

additional information from the suggestions brought up during the JADs. IS can

also disclose the details of the equipment choices and how these may affect the

requirements being discussed. Such input may enable quicker decisions based

on predetermined IS constraints.

Finally, IS will be required to establish the information about the existing

data and processes. They will most likely be responsible for the conversion of

the data as well as for clarifying the meaning of many of the data elements

in question. You may assume that many of the legacy data element definitions

will be unknown, and as a result analysts and programmers will be spending

time together figuring out what such elements do in the system. Existing process

review means looking at the current application programs and how they function

in the system. Most of this work will be required from IS programmers and

legacy designers (if they are still around!). Since our assumption was that the

existing system was developed under COBOL, there will be a more difficult

276 Analysis and Design of Information Systems

mapping of how a 3GL (third generation language30) is designed as opposed to

today’s 4GL (fourth generation language31) products.

System Development Life Cycle (SDLC)

BPR changes the steps in the typical IS SDLC. The traditional SDLC is based

on the waterfall approach as was shown in Chapter 1 and is repeated here as

Figure 13.6.

The problems with the waterfall approach are that it is unrealistic

(as discussed in Chapter 1) and that it does not conform to the requirements

of the OO life cycle. Therefore, IS must modify its SDLC to conform to the

OO and client/server needs of BPR. The OO client/server life cycle resembles a

spiral as shown in Figure 13.7.

The spiral life cycle reflects a much larger allocation of time spent on design

than in the traditional life cycle, because much of the development time is spent

designing the objects for product reuse. Although this may appear unduly time-

consuming, there is a heavy payback in BPR if it is done correctly. Remember

that the spiral life cycle is applied to the development of each object since it is a

cohesive component within itself. The more reusable the object, the more spiral

the effort becomes with a particular emphasis on the analysis/design phase.

Figure 13.6 The classic waterfall SDLC, showing each phase dependent on the completion

of the previous one.

30 A generation language refers to the level of the programming language. Thirdgener-

ation languages were considered high-level development systems that included C, Pascal

and COBOL
31 Fourth-generation languages typically include programming languages that work

directly with database systems and contain simpler program instructions than its prede-

cessor languages.

13. Business Process Reengineering 277

Figure 13.7 Object-oriented software life cycle.

Pilot Applications

Many analysts opt to have a pilot application as part of the BPR effort. The

purpose of the pilot is to get users excited about the benefits of creating the new

system. Because an actual application is developed, IS must be involved to ensure

the pilot is successful. How can success be evaluated? The first real decision

in a pilot is to select an existing application that is not working favorably and

one that can demonstrate enough advantages of the OO GUI and client/server

environment to pique the interest of users. Below is a suggested strategy:

• Focus on an application that can demonstrate the flexibility of the GUI

front end.
• Select an application that accesses existing corporate data to show the

users how easily the data can be reached. Analysts should avoid an

application that gets involved with massive updates or large data queries,

as this is inviting an unexpected delay in processing. Such exercises

tend to involve much study and experience with the corporate network

of information, and this expertise may not be available.
• Select an application that has a relatively short development time when

using a GUI product. Do not try an application which might be more

involved when using a client/server model.

The pilot application not only has the potential to generate more interest, but it

also allowsusers to bemore creative andunderstandingof the requirements ofBPR.

Downsizing System Components

After the business areas and interfaces among them have been completed, the

analyst and development must decide on a strategy for implementation. To

attempt to convert an entire enterprise level system in one project is very

dangerous and very unlikely to succeed. The user community also needs to be

278 Analysis and Design of Information Systems

involved with this decision since many business units can convert only at certain

times of the year due to various seasonal business requirements. Therefore, the

analyst must plan to migrate applications in pieces. It is only logical to do this

migration by business area and to develop temporary legacy links back to the

main system. Most organizations are doing just this by purchasing open systems

hardware and moving complete self-contained business areas independently onto

the new platforms (see Figure 13.8).

As each business area is converted to the open systems architecture, the

temporary legacy links will be deleted and incorporated in the new system.

Transactions Versus Data Warehousing

Our sample system is categorized as a transaction-based operation, that is, the

system was designed to maximize its performance based on the processing of

transactions. This type of systems must perform under the stress of many users

Figure 13.8 Legacy links of a business area.

13. Business Process Reengineering 279

who are using the system for production purposes. The limit of these systems is

that they do not provide the end-user with on-line data comparisons and what-if

analysis in a productive and robust environment. Such systems were designed in

the early 1980s and were called decision support systems (DSS). Today’s robust

software goes even further than the awkward DSS systems, and users want the

same level of flexibility with their enterprise solutions. The problem is simple:

You cannot maximize your transactions performance while maximizing your

DSS functionality. The result is many client/server systems have had trouble

performing at the same level as the legacy systems. SQL-based queries that are

issued during peak time enterprise processing can cause significant slow-down

in processing. In most cases such delays are simply unacceptable. In fact, GUI

applications will never outperform VSAM transaction-based mainframe systems.

This sounds like a disappointing state of affairs for users. The remedy is to

separate the transaction processing from the DSS functionality and improve

transaction processing to an acceptable user level. This is accomplished by

creating a data warehouse environment (see Figure 13.9). A data warehouse is

an archive of the database off-loaded usually to a separate machine to provide

DSS capabilities to those that need to query information.

The problem with data warehousing is the currency of the data, since off-

loaded information is typically not performed real-time. Therefore, users must

agree to use “old” data. Many organizations have provided data warehousing

capabilities within hours of the input or update of information. Nevertheless,

Figure 13.9 Transaction/data warehouse BPR solution.

280 Analysis and Design of Information Systems

data warehousing can work only if the user community can settle on aged data

that they cannot change. There are products such as SAS that provide specific

tools to create data warehouse databases. Often the data is not fully normalized

because the user cannot change the information. This results in a more efficient

and accessible database because the information is stored in a flatter format

(fewer database files). Almost every database manufacturer will be providing

data warehouse capabilities in their next release. The analyst must be involved

in determining which applications (usually reporting and inquiry operations) are

candidates for the warehouse function. Analysts and IS personnel must take care

in explaining the role of the data warehouse to the users so that they can use it

effectively.

Problems and Exercises

1. Explain the objectives of BPR.

2. How is BPR consistent with the object and client/server models.

3. What is a business area?

4. Explain the relationship between BPR and structured tools.

5. What is a CRUD diagram?

6. How should BPR be introduced to users and IT personnel?

7. What is the SDLC? Why is it called a waterfall approach?

8. Compare the SDLC with the OOLC.

9. What is the significance of the spiral approach and how does it support

the development of reusable objects?

10. Describe the procedures to implement a pilot application. Why is this

so important in BPR?

11. Describe the philosophy of reengineering an enterprise system.

12. What is the difference between a transaction database and a data

warehouse?

14
Security

Introduction

Analysts should be involved with the security of database and network systems.

Security responsibility covers a number of areas. The primary involvement is in

application security, which includes access security, data security, and functional

screen security. Access security regulates who is authorized to use an application.

Data security covers transaction data and stored data across the Web system, and

how to validate and secure it. Functional screen security involves determining

what features and functions are made available to which users within an appli-

cation. In addition, the analyst must also participate in network design decisions

and decisions about what hardware and operating system conventions should

be implemented to help protect the systems from vulnerabilities in browsers,

servers, protocols, and firewalls.

Obviously, Web systems need to provide security architectures similar to

those of any network system. But Web services are designed somewhat differ-

ently from those of regular Internet networks. Specifically, Web systems require

verification of who is ordering goods and paying for them and have an overall

need to maintain confidentiality. Finally, the issue of availability and account-

ability of Web systems to generate revenues and services to customers and

consumers goes well beyond the general information services offered by tradi-

tional public Internet systems.

Figure 14.1 reflects the dramatic growth in Internet usage from its core

beginnings in the early 1990s over a 10-year period. The result of this increase

is that users will be downloading and executing programs from within their own

Web browser applications. In many cases, users will not even be aware that they

are receiving programs from another Web server.

Since the frequency of downloading software has risen, analysts need to

ensure that applications operating over the Internet are secure and not vulnerable

to problems associated with automatic installation of active content programs.

Furthermore, analysts need to participate in deciding whether the Web system

will provide active content to its users. This means that user systems, especially

external ones, may have safeguards against downloading active contents on their

respective network system. Thus, Web applications that rely on downloaded

282 Analysis and Design of Information Systems

Internet Usage

0

100

200

300

400

500

600

700

800

900

Core Internet Consumer
Internet

E-Mail Users

Category of User

M
il
li
o

n
s
 o

f
U

s
e
rs

1997 2000 2001

Figure 14.1 Internet usage.

animation and other configuration software may not be compatible across all

user environments—certainly a problem for consumer-based Web systems.

Examples of Web Security Needs

This section presents some examples to demonstrate the crucial importance

of verification, confidentiality, accountability, and availability in application

security. Suppose a company is engaged in the process of selling goods. In this

scenario, a consumer will come to the Web site and examine the goods being

offered, eventually deciding to purchase a product offering. The consumer will

order the product by submitting a credit card number. Below are the security

requirements for the applications.

• Confidentiality: The application must ensure that the credit card number

is kept confidential.
• Verification and Accountability: The system will need to ensure that the

correct goods and process are charged to the consumer. Furthermore,

the Web system must validate that the correct goods are shipped within

the time frame requested on the order (if one is provided).

14. Security 283

A second example of Web security entails a company providing information on

books and periodicals. The information is shared with customers who subscribe

to the service.

• Confidentiality: In this example there is no credit card, but customer

information must be kept confidential because customers need to sign

on to the system.
• Verification and Accountability: The system needs to ensure that the

correct information is returned to the customer based on the query for

data. The system must also provide authentication and identification of

the customer who is attempting to use the system.

Availability

Availability is at the heart of security issues for Web systems. Plain and simple:

if the site is not available there is no business. Web systems that are not

available begin to impact consumer and customer confidence, which eventually

hurts business performance. While a failure in the other components of security

mentioned above could certainly affect user confidence, none has greater impact

than a Web site that is not working. Indeed, there have been a number of

books and studies that suggest that user loyalty does not last long in the cyber

community, especially when Web sites are not available (Reid-Smith, 2000).

Therefore, availability of the Web system is deemed a component of security

responsibility. The first step in ensuring availability is to understand exactly

what expectations the user community has for the site’s availability. Recall that

the user community consists of three types of users: internal users, customers,

and consumers.

The first user to discuss is the consumer, generally the user over whom we

have the least control and of whom we have the least knowledge. There are two

issues of availability that must be addressed with consumers:

1. Service: analysts need to know how often consumers expect the service

to be available. It is easy to assume “all the time,” but this may not

be practical for many sites. For example, banks often have certain

hours during which on-line banking is not available because the file

systems are being updated. In such a case, it is the users’ expectations

that should receive the analyst’s attention. It matters little what the

organization feels is a fair downtime in service; analysts must respond

to the requirements of the user base. Just having the Web site available

is only one part of the system. Analysts must be aware that all of the

other components will also need to be available to assist in the complete

processing of the order.

2. The issue of availability is linked to order fulfillment, at least in the

minds of customers. Failure to have product available can quickly erode

consumer and client confidence. For example, the industry has already

284 Analysis and Design of Information Systems

seen the demise of some on-line companies that failed to fulfill orders at

various times, especially Christmas. Once a company earns a reputation

for not fulfilling orders, that reputation can be difficult to change.

The second user to discuss is the customer. The model for customers or business-

to-business (B2B) is somewhat different than consumers. As stated previously,

customers are a more “controlled” user than a consumer, in that they typically

have a preexisting relationship with the business. Because of this relationship,

issues of availability might be more stringent, but are also more clearly defined.

In this kind of situation, the marketing group or support organization of the Web

company is likely to know the customer’s requirements rather than having to

derive them from marketing trends. An example of special B2B customers needs

occurs when a customer needs to order goods at different times throughout the

day, as opposed to ordering them at fixed intervals. This type of on-demand

ordering is known as “Just-in-Time,” which is a standard inventory model for

the manufacturing industry. Should this type of availability be required, it is

crucial that the Web site not fail at any time during operation because of the

unpredictability of order requests.

The third users are internal. Internal users are yet another group that depends

on the Web system. The importance of this group, because they are internal and

in a somewhat controlled environment, can be overlooked. However, internal

users are an important constituency. Remember that internal users are those

who process or “fulfill” the orders. Today, more than ever, internal users need

remote access to provide the 24-hour operation that most external users demand.

The access required by internal users, then, must mirror the access needed by

the firm’s customers and consumers. Such access is usually provided through

corporate Intranets that are accessible via the Web. In this case, protecting against

outside interference is critical, especially since Intranet users have access to more

sensitive data and programs than typical external users.

In the end, Web systems must satisfy the user’s comfort zone—a zone that

becomes more demanding as competition over the Internet continues to stiffen.

Furthermore, Web systems are governed by the concept of global time, meaning

that the system never is out of operation and it must take into account the

multiple time zones in which it operates. This concern can be especially important

with respect to peak-time processing planning. Peak-time processing is required

during the time in which most activity occurs in a business or in a market. So,

for example, if most manufacturers process their orders at 4:00, Web systems

need to handle 4:00 all over the world!

All of these issues demonstrate the significance of Web availability. Given

that I define availability as a component of security, it falls into our analysis

of how the analyst needs to integrate its requirements during the engineering

process. It is important to recognize the severity and cost of downtime. Maiwald

(2001) measures the cost of Web downtime by taking the average number of

transactions over a period of time and comparing it against the revenue generated

by the average transaction. However, this method may not identify the total cost

because there may be customers who do not even get on the Web site as a

14. Security 285

result of bad publicity from other users. Whatever the exact cost of the system

downtime is, most professionals agree that it is very high and a risky problem

for the future of the business.

Web Application Security

If Web systems are to be secure, the analyst must start by establishing a method of

creating application security. Because Web systems are built under the auspices

of object-oriented development, software applications are often referred to as

software components. These software components can reside in a number of

different places on the network and provide different services as follows:

• Web Client Software
• Data Transactions
• Web Server Software

Each of these major components and their associated security responsibilities

will be discussed in greater detail in this chapter with the ultimate intent to

provide analysts with an approach to generating effective security architecture

requirements.

Web Client Software Security

Communications security for Web applications covers the security of information

that is sent between the user’s computer (client) and the Web server. This

information might include sensitive data such as credit card data, or confidential

data that is sent in a file format. Most important, however, is the authentication of

what is being sent and the ability of the applications to protect against malicious

data that can hurt the system.

The advent of executable content applications that are embedded in Web

pages has created many security risks. These executable components allow

programs to be dynamically loaded and run on a local workstation or client

computer. Executable content, which is sometimes called active content, can exist

in many forms. ActiveX by Microsoft and Java applets are examples of object

component programs that can be downloaded from the Internet and executed

from within a Web browser. There are also scripting languages such as JavaScript

and VBScript which are run-time programs that are often sent from other Web

sites that allow for certain functionalities to be dynamically added during a

Web browser session. Finally, many files that are traditionally considered data,

such as images, can also be classified as an executable component because they

are used as plug-ins. Plug-ins can easily be integrated with a Web browser to

give it more functionality. Figure 14.2 reflects the components of client-side

security.

286 Analysis and Design of Information Systems

Ecommerce
Site

User Computer Systems

Internet

Repudiation:
Prevent the
customer from
denying the
transaction

Information
stored on the
system--prevent
unauthorized
access

Communication
Security:
Prevent
confidentiality of
private
information

Figure 14.2 Client-side security components.

Web applications today also make use of “push” and “pull” technologies.

Push technology is a way of minimizing user efforts to obtain data and appli-

cations by automatically sending it to a client from a server operation. Pull

technology is somewhat opposite in that it allows users to surf the Web from

their client machine and to retrieve the data application that they want to use.

The fact that the Web is open to interaction with the Internet provides

both benefits and problems. The security problems with downloaded software

fall into two areas: (1) authenticity of content and (2) virus security risks.

Specifically, users of push and pull technology are authorizing these applications

to be downloaded and written to a client local computer. Providing this function

allows content that may not have been authenticated (in terms of data credibility)

and opens the door for violations of security and privacy.

Because Web sessions do not by themselves retain information on prior

executions, they need to contain an “agent” that holds information from past

interactions. This agent is called a “cookie.” Cookies are stored on the client

computer and typically collect Web site usage information. This includes infor-

mation about whether the user has visited a site before as well as what activities

they performed while they were in the site. Unfortunately, cookies pose privacy

and security problems for users. First, the collection of personal information

might constitute a breach of personal privacy. Second, the residence of a cookie

on the local drive can allow files to be read and written to it beyond its intended

purpose. This opens the door for virus propagation.

14. Security 287

Authentication: A Way of Establishing Trust in Software
Components

Authentication provides a means of dealing with illegal intrusion or untrust-

worthy software. When dealing with authentication, the analyst must focus

on the type of middleware component architecture being used. For example,

Microsoft uses a technology called “Authenticode,” which is designed to help

thwart malicious code from executing inside a Windows application. This is

accomplished by assigning a code that is verified by the sending application and

the receiving application. This “code” is sometimes called a digital signature

and represents an endorsement of the code for valid use. Thus, authentication is

gained by validating the data’s validity. Authenticode can provide two methods

of checking ActiveX controls:

1. Verification of who signs the code; and

2. Verification of whether the code has been altered since it was signed.

These verifications are necessary because ActiveX controls have the ability to

run on a workstation like any other program. Thus, a malicious ActiveX control

could forge email, monitor Web page usage, and write damaging data or programs

to the user’s local machine. Authenticode essentially deals with ensuring that

both sides of the transaction are in sync. Before a code can be assigned, each

participant in the transaction (the downloading of the ActiveX control from

the sender to the receiver) must apply for and receive a Software Publisher

Certificate (SPC) from a particular Central Authority (CA) like VeriSign, who

issues valid digital signatures. Essentially, the role of the CA is to bridge the

trust gap between the end user and the software publisher.

Once the software publisher has created a valid signature, the end user can

verify the identity of the publisher and the integrity of the component when it is

downloaded. This is accomplished by the browser, which detaches the signature

code from the software and performs the necessary checks using Microsoft’s

Authenticode product. In order to accomplish this, the browser goes through a

two-step process. First, it verifies that the SPC has been signed by a valid CA.

Second, it uses the public keys provided with the original authentication to verify

that the message was signed by the software publisher and thus verifying that it

was sent from them. Figure 14.3 shows a sample SPC.

Authenticode also determines whether the active content was altered in any

way during transit so that it also offers protection against any tinkering during

the transport of the data from sender to receiver.

However, as with most software applications, analysts need to be aware

of Authenticode’s shortcomings. For example, Authenticode does not ensure

that simply because an ActiveX control is signed it has not been maliciously

tampered with. That is, the process of security is based on a “trust” model.

Therefore, the user who checks signatures may get a false sense of security that

the code is secure. Furthermore, since ActiveX controls can communicate across

distributed Web systems, they can be manipulated during transit, without an

288 Analysis and Design of Information Systems

Figure 14.3 Software Publisher Certificate.

effective method of verifying the changes; the result can be trust in something

that indeed is malicious. All of these situations, of course, do occur. One

way of ensuring that a component is truly safe is by limiting its ability to

compromise the user’s privacy or violate any client security settings. So, an

analyst can limit what an ActiveX component can or cannot do based on

settings within the infrastructure. The important message here is that the analyst,

not just the networking organization, should be very much involved with the

decision.

Another default scenario is using the security options available in Windows.

If the active content is enabled, a dialog box will be displayed each time an

ActiveX control is downloaded. The user will have the ability to choose whether

or not they will enable or authorize an ActiveX control to be stored. Some

developers call this option “making security decisions on the fly.” Unfortu-

nately, this is a rather haphazard way of protecting client-side security. Users

are a dangerous group to allow this type of decision-making power, and in

many ways, it is an unfair way of making the user responsible instead of the

system.

14. Security 289

Another important issue that the analyst must be aware of is incompatibilities

between Microsoft’s ActiveX and Java, particularly as they relate to authenti-

cation handling. The essential security difference between the two is that ActiveX

is based wholly on the trust of the code signer, whereas a Java applet security

is based on restricting the actual behavior of the applet itself. This difference

further complicates the process of establishing a consistent security policy. For

this reason, many analysts prefer to use Java because of its true multi-platform

compatibility; it is simply easier to create standard security policies for this

reason (remember that ActiveX is supported only on Windows-based systems).

Furthermore, from a programmer’s perspective, Java offers true object-oriented

programming, rather than those that have object extensions to a third-generation

procedural language.

The security model used with Java applets is called Java Sandbox. The

sandbox prevents “untrusted” Java applets from accessing sensitive system

resources. It is important to note that the sandbox applies only to Web-based Java

programs or Java applets, as opposed to Java applications, which have access

to unrestricted program resources. Another way of separating Java versions is

to focus only on Java applets for Web development. The Java “sandbox” name

came from the concept of defining the area where the Java applet is allowed to

“play” but not escape. This means that the functionality of the Java applet can

be restricted to certain behaviors like just reading, or just writing information

within a specific network environment. The Java sandbox is implemented or

enforced by three technologies: the bytecode verifier, the applet class loader,

and the security manager (McGraw & Felton, 1996). The three technologies

must work together to restrict the privileges of any Java applet. Unfortunately,

the design of the sandbox must be complete—any breaks in coding will cause

the entire sandbox to malfunction. Therefore, the analyst must be careful in the

design and testing of the sandbox functions. Ultimately, the selection of Java

and the standards created to support its implementation is a prime directive of

the analyst.

Risks Associated with Push Technology and Active Channels

This section focuses on active content that can be embedded in applications

without the awareness of users. Such applications include the use of JavaScript,

a run-time version of Java that downloads itself onto a client computer. This

section also discusses the challenges of working with plug-ins, viewing graphic

files, and executing e-mail attachments. The objective is to not only have secure

Web systems protected from outside scrutiny, but also to determine what types

of active content should be offered to users, both internal and external, as part

of the features and functions designed into the Web application and overall

architecture of the system. Remember that security issues go both ways; one

from the perspective of the Web system and the other from the user’s view.

Analysts must always be aware of what other systems will do to check against

the active contents that the Web system may wish to use.

290 Analysis and Design of Information Systems

JavaScript

JavaScript is a scripting language that can be distributed over the Web using

the client/server paradigm. If JavaScript is embedded in the browser, as it is in

Microsoft’s Internet Explorer, the user’s browser will automatically download

and execute the JavaScript unless the user specifically turns the option off.

JavaScript is typically used to enhance the appearance of the browser interface

and Web page. JavaScript is also used to check data validity, especially data that

is submitted through Web browser forms. What makes JavaScript so dangerous

is that a hardware firewall cannot help once the file is downloaded for execution.

Therefore, once the script is loaded, it can do damage both inside the Web

system as well as to the client workstation. Obviously the safest form of action

is to disable JavaScript from executing on the browser, but tha,t in effect, stops

its use completely. Thus, analysts need to know that using JavaScript to deliver

applications to their clients may be problematic because the client’s machine

may not accept it.

Plug-Ins and Graphic Files

Plug-ins are special applications that are integrated into a specific Web browser.

The purpose of the plug-in is to allow the browser to support a certain type of

program that will be downloaded to the client workstation. Typically, plug-ins

are first downloaded and then executed so the application can embed itself into

the Web browser. This usually means that once the plug-in is installed, it does

not need to be reinstalled each time the browser is executed. An example of

a plug-in is RealPlayer, which is a tool that supports streaming video over the

Internet (see Figure 14.4). Very often if a user wants to view a streaming video

file over the Web, the application will automatically scan the workstation to

determine whether the plug-in software exists. If it does not, the user will be

given the option to download it during the session so that a streaming file can

be viewed. Regardless of whether the plug-in is pre-installed or dynamically

provided, the user opens the door to potential viruses that can be embedded in

the code.

One of the better-known plug-in vulnerabilities is a program called

Shockwave, which is a program that allows for the downloading of movies

played over the Internet. There is a flaw that allows a Shockwave file to get

into the Netscape Mailer and thus invade e-mail accounts. There are no known

ways of preventing this, other than of course fixing it once it occurs. The

prevention of download files that could contain malicious programs within a

plug-in depends highly on what type of plug-in is being used. The situation with

Shockwave involves greater risk because the data is coming through a more open

environment where hackers can modify files or create phony ones. On the other

hand, Shockwave could be used to show a film about the company and could

be well protected from an intruder, depending on how the server is secured (for

14. Security 291

Figure 14.4 RealPlayer plug-in application.

example a firewall). Like most issues with security, the idea is to make illegal

break-in so difficult that it appears impossible.

Attachments

There are a number of cases where Web systems allow attachments to be

forwarded and received from users. These are often e-mail attachments because

they are the easiest and cheapest way to transmit messages and files. Loading

e-mail attachments becomes more dangerous to users when there are Web pages

attached rather than just a file attachment. The risk then is not on the delivery,

but rather against those who send attachments into the Web system. The degree

of risk exposure can be correlated to the relationship with the user (this of course

assumes that the user is intentionally sending a malicious e-mail attachment).

If the user is known, as in an internal user or customer, then the degree of

exposure in allowing upload attachments is less that if it is a consumer. While

users are allowed to send responses, it is probably not wise to allow them to

upload anything beyond that. Furthermore, analysts can build in scanning of

uploaded software that can detect a virus; however, as we have seen, there

can be embedded programs that cannot be easily detected. While dealing with

attachments does not seem as serious as the other components that have been

examined in this section, analysts attempting to design elaborate e-mail interfaces

should be aware of the potential exposure to malicious acts.

292 Analysis and Design of Information Systems

This section covered security over the client part of the Web system. The

security issues relate to both the author of the system, which entailed protecting

the Web system from receiving malicious software from a client, and the

spreading of problem software to users, the more relevant problem associated

with Web systems. In summary, the most important issues for the analyst to

understand are:

1. How internal users might obtain malicious software within the network

domain.

2. How users through the Web software might return something inadver-

tently.

3. The challenge of what technology application technologies have to offer

to users that might not be accepted through their standard configurations

(like turning off JavaScript).

4. What dangers there are to providing active content because the system

might become infected and thus be a carrier of viruses and other

damaging software to its most valued entity, its external users.

Securing Data Transactions

This section focuses on security issues related to protecting the data transaction.

The data transaction is perhaps the most important component of the Web

system. Data transaction protection is implemented using various protocols such

as encryption and authentication. Furthermore, there are protocols that operate

only on certain types of transactions, such as payments. The issue of securing

data transactions is complex, and this section will provide the types of protocols

available and how analysts can choose the most appropriate data security protocol

to fit the needs of the application they are designing.

Much of the data transaction concern in Web systems is focused on the

need to secure payment transactions. There are two basic types of data trans-

action systems used for Web technology: stored account and stored value. Stored

account systems are designed in the same way that electronic payment systems

handle debit and credit card transactions. Stored account payment systems

designed for theWeb really represent a new way of accessing banks to move

funds electronically over the Internet. On the other hand, stored value systems

use what is known as bearer certificates, which emulate hard cash transactions.

These systems use smart cards for transferring cash between parties. Stored value

systems replace cash with an electronic equivalent called “e-cash.” This involves

transferring a unit of money between two parties without authorization from a

bank. While both systems offer the ability to facilitate the Web, the decision

about which one to use is often based on the cheapest (cost per transaction)

method. Figure 14.5 shows a comparison of transaction costs for electronic

systems.

However, it is clear that stored value systems are much riskier because

an intermediate bank is not involved in securing the transaction. Stored value

14. Security 293

Processing Cost Per Transaction

0

0.2

0.4

0.6

0.8

1

1.2

Cash Check Credit Card Elect Bill
 Payment

Debit Card E-Cash

Source: The Boston Consulting Group

Figure 14.5 Comparison of electronic costs per transaction.

systems, as a result of this lack of security, are usually used for smaller-valued

transactions such as purchasing candy from a vending machine.

Before designing payment transaction systems, the analyst must recognize

which protocols can be used to secure Web-based transactions. The most popular

protocol is Secure Sockets Layer (SSL). SSL does not actually handle the

payment but rather provides confidentiality during the Web session and authenti-

cation to both Web servers and clients. Secure HTTP is another less widely used

protocol that wraps the transaction in a secure digital envelope. Both protocols

use cryptology to provide confidentiality, data integrity, and non-repudiation (no

denial) of the transactions. Because the Internet is inherently an insecure channel,

the processing of important data transactions that require protection should be

sent via secured channels. A secured channel is one that is not open to others

while a message of data is traveling from the originator or source to the desti-

nation or sink. Unfortunately, the Internet was not designed to provide this level

of security. Data is sent across the Internet using a transferring protocol called

TCP/IP. TCP stands for Transport Control Protocol, which runs on top of the IP

or Internet Protocol. SSL is used to provide security to a TCP/IP transaction by

providing end-to-end encryption of the data that is sent between the client and

the server. Encryption is the process of scrambling the data using a sophisticated

algorithm so that the data cannot be interpreted even if it is copied during a

transmission. The originator of the message encrypts it, and the receiver decrypts

the message using the same algorithm. Thus SSL is added to the protocol stack

294 Analysis and Design of Information Systems

with TCP/IP to secure messages against theft while the transaction is in transit.

The protocol stack with TCP/IP and SSL are shown in Figure 14.6.

The analyst needs to be aware that some form of transaction security needs

to be implemented as part of Web systems design. Unlike many other system

components, security software for data transaction systems is usually provided

through third-party software vendors. Currently, there are three major vendors

that supply transaction systems: FirstVirtual, CyberCash’s Secure Internet

Payment System, and Secure Electronic Transaction (SET).

FirstVirtual is based on an exchange of e-mail messages and the honesty of

the customer. There is no cryptography used by the firm. Essentially, a consumer

must first get an account with FirstVirtual, usually secured by a credit card. The

handling of the transaction is thus bartered through FirstVirtual as an outsourced

third party doing a service for the Web system. The most attractive feature of

using a service like this is its simplicity, and there is no special software that

needs to be purchased by the user. FirstVirtual has some built-in software to

monitor any abuses of the system.

Payment Protocols
(SET, CyberCash, First Virtual, etc)

S-HTTP HTTP S?MIME Telnet, Mail, News, FTP, NNTP,
DNS, etc.

Secure Sockets Layer

Transport Control Protocol (TCP)

Internet Protocol (IP)

Data Link Layer

Figure 14.6 Protocol stack for secured Internet connection stored account payment

systems.

14. Security 295

CyberCash’s Secure Internet Payment system does use cryptography to

protect the transaction data. CyberCash provides a protocol similar to SSL to

secure purchases over the Web. The system contains a back-end credit card

architecture that protects confidentiality and authenticity of the user, who in

many cases is a merchant. Figure 14.7 outlines the six steps in securing an

Internet payment.

The steps for this type of transaction security are described below:

1. A consumer selects a product and an invoice is sent from the merchant

to the consumer.

2. The consumer accepts the invoice and the browser sends the payment

information encrypted with a protection key from the third-party vendor.

3. The merchant processes the transaction and forwards it to the vendor

for decryption.

4. The payment is decrypted by the vendor (like CyberCash), who verifies

the information through authentication procedures. The payment is

brokered by the vendor with the bank.

5. The bank requests authorization from the credit card company.

6. Payment IDs are forwarded to the merchant.

It is important to note that the processing of transactions made between the bank

and credit card company uses private secured networks, which also strengthens

the protection of the payment. In summary, this method provides an excellent

way to secure purchases of goods through Web transactions that rely on multiple

Merchant

Server

Consumer PC

Bank Payment Server

The Internet

Private Financial
Network

1

2

3

4

5

6

Cardholder's Bank

Merchant's Bank

 or 3rd Party

Processor

Password Protection
Encryption
Authentication
Digital Signiture
Log
Digital Receipt

Encrypted
Seller authentication
Digital Signature
Code Receipt
Process all transactions

Card Association

Figure 14.7 Secure Internet payment process.

296 Analysis and Design of Information Systems

parties (merchants, banks, and credit cards). It does this by ensuring that all

parties get paid and that confidentiality is maintained.

Secure Electronic Transaction (SET) is an open standard that has received

support from many industry credit card associations like VISA and MasterCard.

SET was also developed in cooperation with GTE, IBM, Microsoft, Netscape,

and Verisign. SET is not as complex as the CyberCash model; it can be imple-

mented over the Web or via e-mail. SET does not attempt to secure the order

information, only the payment information. Payment security is handled using

cryptography algorithms. Figure 14.8 specifies the 10 steps in a SEC process.

The 10 steps are described below:

1. Consumer sends the request for transaction to merchant.

2. Merchant acknowledges the request.

3. Consumer digitally signs a message and the credit card is encrypted.

4. The merchant sends the purchase amount to be approved along with

the credit card number.

5. The transaction is approved or rejected.

6. The merchant confirms the purchase with the consumer.

Consumer Merchant

Bank

(1) Request Transaction

(2) Merchant acknowledges

(3) Send Purchase Order

(4) Verification

(7) Status Request

(8) Status Information

(5) Customer Payment Data

(6) Verify Customer Data

(9) Request Payment

(10) Verify Payment

Figure 14.8 SET security process.

14. Security 297

7. The consumer may send a status request to the merchant.

8. The merchant responds with the status information.

9. The merchant requests payment to the bank.

10. The bank sends confirmation of payment.

Stored Value Payment Systems

Stored value systems replace currency with the digital equivalent and thus have

the ability to preserve the privacy of traditional cash-based transactions while

taking advantage of the power of electronic systems. The major downside of the

stored value model is that it requires identification of the buyer and seller, which

in some instances is not what both parties want. By contrast, e-cash systems

are stored in an electronic device called a hardware token. The token is used

to hold a predetermined and authorized amount of money. The related bank

account of the consumer is automatically debited and the token is incremented

with the same value. This process allows the payment transaction to occur more

in a real-time mode than in the stored account model. Although the stored value

method supports online transactions, it can also be used offline if the consumer

prefers. Offline transactions are more secure because they are less traceable.

The stored value model is not as secure as the stored account system. The

main reason is that there is less audit trail of the transaction. This is expected

since there are fewer checks and balances in the process. Furthermore, the

transactions themselves are less secure because a token can be tampered with,

thus changing its value in the system. Electronic cash can be represented in a

hardware device or in a coin that is encrypted. In a hardware device, the prepaid

amount is resident and is decreased every time there is an authorized payment.

Hardware tokens are usually valid for a limited time period because they are

more difficult to update. Yet another method is called “smart cards.” These are

similar to hardware tokens in that they contain a prepaid amount of money on

a physical device; in this case a card. Figure 14.9 provides an example of an

e-cash transaction using the stored value method.

Securing data transactions, especially those used for payment systems, is

typically handled through third-party vendor software and systems. Web systems,

Check

Sign

Joe

Bank

Sign

Check

$50.00

$50.00

Joe's PC

-Generate Random Serial #

-multiply blinding factor

-sign request using digital signiture

Step 1

Step 2

Step 4

Step 3

Bank

-verify, identity, integrity

-add $50 to Joe's liability

-sign with $50 key

Figure 14.9 Stored value secure transaction process summary.

298 Analysis and Design of Information Systems

therefore, will need to interface with them, unless the analyst deems that it is

more advantageous to design and support an internal proprietary system. Overall,

it seems easier to integrate a Web system with a third-party payment security

system than to create a proprietary system. If the stored value method is used,

then analysts must consider how these hardware devices, cards, and software

tokens will be issued and updated. These requirements will need to be part of the

technical specifications provided to the development team. Obviously securing

data transactions may also require that vendors be interviewed to determine which

of their products and services best fit the needs of the Web system being built.

Securing the Web Server

The security issues governing the Web server are multifaceted. The security

components include the Web server software, the databases, and the applications

that reside on them. Thet also include a middle layer that provides communication

between the tiered servers.

Web Server

The Web server software can include applications, mail, FTP (File Transfer

Protocol), news, and remote login, as well as the operating system itself. Since

most Web systems are server centric, meaning that most of the application

software is resident on the server and downloaded to the workstation per

execution, the security of the server side is integral to the ongoing dependability

of the system. As can be expected, the complexity of both the server software

and its configurations can be a huge area of vulnerability.

The Web server can be decomposed into three components: front-end server,

back-end server, and middleware interface software. In many ways the Web

server architecture has its own client/server infrastructure where there are higher-

end servers that provide information to lower-end servers. The middle tier acts as

a communication buffer between the back-end and front-end servers similar to the

structure in a three-tier architecture. Figure 14.10 represents a more decomposed

architecture of the three-tier client/server design.

From a security perspective, any one of these components that receive

malicious events could result in problems with integrity and confidentiality. The

best way to deal with security problems is first to understand where the system

is most vulnerable. That is, once you know where the exposure is, then an

“anti-exposure” solution can be designed. This section examines each decom-

posed component and establishes the type of security needed to maximize its

dependability and confidentiality. The analyst must be involved as a driver of

the process because of the amount of application and data integrity software that

must be integrated into the design of the overall system. Figure 14.11 depicts

the decomposed server components.

Database security involves protection against unauthorized access to sensitive

data. This data could be confidential client data, such as account information

14. Security 299

Front End Server

Back-End Server

Front-End Server

Middleware/Application

Server

Middleware/Application

Server

Middleware/Application

Server
Middleware/Application

Server

Middleware/Application

Server

Client Client Client Client Client Client Client Client Client

Client Client
Client

Client

Figure 14.10 Decomposed three-tier client/server architecture.

WWW

CGI Scripts

Mail

FTP

Telnet

News

Network OS

Network Server

Internet

Firewall

Database Server

Figure 14.11 Web server components database server.

300 Analysis and Design of Information Systems

and payment history. Database security usually correlates to hardware security

because most break-ins occur through hardware server penetration. However,

because SQL provides the method of accessing databases from external applica-

tions, there must be security against its use. The problem with SQL is that once

you can access the data it is difficult to stop the spread of any malicious acts. This

means that it is more difficult to limit access once it has been granted. While it

is easy to limit access to data through custom applications that require sign-on, it

is much more difficult to implement against direct SQL query. It is unattractive

to take away the use of direct query altogether, since this is such a powerful

tool for analyzing data without the need for senior programmers. Furthermore,

databases provide an unauthorized user with the ability to access data without the

use of the underlying operating system. Therefore, to secure databases properly,

the operating system logs and database logs should be regularly examined. For

the analyst to determine how to maximize database server security, he/she must

know the following information:

• The location of the database server
• How the database server communicates with the Web server
• How the database server is protected from internal users

Location of the Database Server

The physical location of the system can provide some added protection against

illegal access of the data. The best location for the database server is in the organi-

zation’s central network system. Since the database should never be accessed

directly by external users, there is no reason that the database server should

be connected directly to the Internet. It is important to clarify this point. I am

not saying that the database should be accessible from the Internet, rather I am

merely saying that external access should be obtainable only through authorized

application programs. Thus, direct SQL query should not be allowed. In some

instances, because of the level of sensitivity of the data, the server is actually

placed in an even more secure location, and protected further with an internal

firewall.

Communication with the Web Server

Inevitably, the database server must communicate with the application server

so that transactions can be processed. In most well-secured environments, the

database server will initiate the connection, but in reality it cannot always operate

in this sequence. Thus, eventually the application server will need to initiate

connection to the database server using SQL. In these situations, it will be

necessary for the application server to store the User ID and password to gain

access to the database. This ID and password will need to be embedded in a

program or file on the system, which will need to be determined during the

14. Security 301

design of the system by the analyst. Unfortunately, anything stored in a computer

system can be discovered by an unauthorized intruder, especially those who are

aware of the architecture of the system. A solution of sorts is to limit every

password to only one part of the transaction: for example, if one password

allowed access but another was required for retrieval. At least this solution

would make it harder to obtain a complete sequence of codes. Furthermore,

the distribution of codes could also be kept in separate data files and matched

using a special algorithm that would calculate the matched key sequences to

complete a database transaction. While this approach sounds convincing, there

are some drawbacks. First, the distribution of security levels would create the

need for many IDs and passwords in the system. Users may find it difficult to

remember multiple IDs and passwords. Second, the distribution of codes will

inevitably begin to affect performance. Third, matching files always has the risk

that indexed data will become out of sync, causing major re-indexing to occur

possibly during a peak production cycle.

Another approach to reducing database exposure is to divide the function-

alities between the database server and the application server. This can be

accomplished by simply reducing the roles of each component, yet requiring all

of them to exist for the successful completion of a database operation. This is

shown in Figure 14.12.

Internal User Protection

While many systems focus on preventing illegal access by external users, they

fall short of providing similar securities against internal users. The solution to

this problem is rather simple, in that the same procedures should be followed for

both internal and external users. Sometimes there are databases that are available

only to internal employees, such as those that contain human resource benefit

information. These databases should be separated from the central network and

separate IDs and passwords should be required. Furthermore, as is practiced by

many IT managers, passwords need to be changed on a periodic basis. Finally,

the organization must have procedures to ensure that new users are signed up

properly and that terminated employees are removed from access authorization.

Application Server

The application server provides the entrance for most users to the system. Indeed,

the applications provide not only the functionality of the system but also the

access to its data. The first component of application security is user authen-

tication. User authentication is a way to validate users and to determine the

extent of functionality that they are authorized to use in the system. Furthermore,

sophisticated authentication systems can determine within an application what

CRUD activities (Create transactions, Read-only existing data, Update existing

data transactions, and Delete transactions) a user is authorized to perform. Further

302 Analysis and Design of Information Systems

Ecommerce Application Server

Web Server

Database Server

Internet

Intranet

Firewall

Figure 14.12 Distributed architecture for Web database operations.

security can actually be attained within an application Web page, in which only

certain functions are available depending on the ID and password entered by

the user.

Most companies use the following mechanisms to restrict access to Web

applications:

• Client hostname and IP address security
• User and password authentication
• Digital certificates

Client Hostname and IP Address Security

This is one of the most basic forms of Web page security. It is accomplished

by having the Web server restrict access to certain or all Web pages based

on a specific client hostname or range of IP addresses. This process is usually

straightforward because a Web request to a document residing on a host server

14. Security 303

must include the hostname of the client and its IP address. Thus, the server

can use this information to verify that the request has come from an authorized

requesting site. This type of security simply establishes a way of blocking access

to a specific or group of Web pages. The Web server can also use the Domain

Name Service (DNS) to check to see if the hostname that was sent actually

agrees with the IP address sent. Figure 14.13 shows the process of hostname and

IP address authentication.

User and Password Authentication

User authentication is essentially a process whereby an application verifies the

validity or identification of the requestor. This is accomplished using some user

identification and password—so it is a two-tiered security authentication. To set

up an ID and password system, the analyst must first design a database to hold

the names, IDs, and passwords of its valid users. Furthermore, there need to

be additional fields that will store information about the level of the user ID.

This means that a coding system must be designed so that the lookup tables can

store codes that identify the specific capabilities of the requestor. The analyst

must also design an application program that allows for the maintenance of all

user security databases so that IDs can be added, deleted, or changed. In most

database servers, the authentication file is designed using a flat-file architecture.

Figure 14.14 provides the architecture flow of user authentication.

It is important to note that analysts can provide “nested” authentication tables

within a Web system. This means that there are multiple tables, or ones that

are more dimensional, that list all of the security levels that the user is able to

perform. In Unix, this type of security is implemented with a “user profile” table

that holds all of the information in one file. This file is usually formatted as a

matrix or two-dimensional table. Each column refers to a specific enabling (or

restricting) access capability. The user authentication design is geared toward

WWW

CGI Scripts

Mail

FTP

Telnet

News

Network OS

Internet

DNS Table

1. Web request

2. IP Address Lookup

4. IP Address by Host Name

3. Returns Host Name

5. Returns IP Address

Network Server

Client Computer

6. Web Server/IP Address

Comparrision

Firewall DNS Server

Figure 14.13 Hostname and IP address authentication.

304 Analysis and Design of Information Systems

WWW

CGI Scripts

Mail

FTP

Telnet

News

Network OS

Internet
1. Web request

Network Server

Client Computer

Firewall

Authentication

Logic

Figure 14.14 User authentication flow.

providing easier maintenance of the user’s security levels. It also assumes that

the security settings will be maintained by one unit rather than by many different

units. For example, if a password is needed for a specific operation, it is handled

by a central security operation as opposed to having each department have a

separate authentication individual and system. Figure 14.15 shows a typical user

profile security system.

Digital Certificates

Most of the security measures surrounding applications have been based on

access control. Using access control to secure application security has a major

flaw: the data holding the ID and password can be seen over the Internet—

meaning that during transition they can be illegally copied. A higher level of

security can be attained by using a digital certificate, which requires that both

parties are involved with authenticating the transaction. This was discussed

earlier in the section on SSL. Essentially, digital certificates contain the necessary

User ID Security Level Application A Application B Application C
A143 0 7 4 3
B783 1 6 3 8
R815 3 4 7 6
C777 0 1 4 4

Figure 14.15 User profile format.

14. Security 305

ID and password in an encrypted state, so it does not matter whether the trans-

action is seen or copied during transit. The receiver of the digital certificate has

the decrypt software to unravel the coded message.

Summary

This section provided an overview of the methods of securing the Web server.

The model is complex because each component has its own security issues,

while still needing to operate together to strengthen effectiveness across the Web

operation. This section also identified the different types of security software

available and suggested where the analyst needed to be involved in the process

of determining what third-party products were necessary and how authentication

should be implemented.

Web Network Security

Most of this chapter has focused on the application side of security and how the

analyst needed to participate and design a Web system that could be reliable,

perform, and have a high degree of integrity and confidentiality. This part of

the chapter discusses the network architecture in terms of its impact on security

issues. This section will outline the role the analyst and designer should play

to ensure that the infrastructure is maximized to support the application design.

Indeed, the system network should not be completed without the participation

of software engineers.

The DMZ

The DMZ or the “demilitarized zone” is commonly understood as a portion of the

network that is not completely trusted. The job of analysts should be to reduce the

number of DMZs that exist in the system. DMZs often appear between network

components and firewalls. DMZs are constructed to place certain systems that

are accessed by external users away from those that are for internal users. Thus,

the strategy is to partition the Web network to focus on security issues inside

the DMZ, which is always used for external users. Internal users are behind the

firewall in a much more controlled environment. Figure 14.16 depicts the layout

of the DMZ with the rest of the network.

Common network components that should be in the DMZ and receive

different security attention are as follows:

• Mail: There should be both an internal and an external mail server. The

external mail server is used to receive inbound mail and to forward

outbound mail. Both inbound and outbound mail eventually are handled

by the internal mail server, which actually processes the mail. The

external mail server then really acts as a testing repository against emails

that might damage the central system.

306 Analysis and Design of Information Systems

Internal DNS Server

Web Server

Database Server

Internet

Intranet

Firewall

Internal Mail Server

Ecommerce
Application Servers

External DNS Server

External
Mail Server

DMZ

Figure 14.16 Relationship between the DMZ and the internal network.

• Web: The DMZ has publicly accessible Web sites. Many public Web

servers offer places where external users can add content without the

fear of hurting the central Web system. These types of servers can allow

certain interactive chat room activities to transpire.
• Control Systems: These include external DNS servers, which must be

accessible to queries from external users. Most DNS servers are repli-

cated inside the firewall in the central network.

14. Security 307

Firewalls

A firewall is a device that restricts access and validates transactions before they

physically reach the central components of the Web system. Maiwald (2001)

defines a firewall as “a network access control device that is designed to deny all

traffic except that which is explicitly allowed” (p. 152). A firewall then is really

a buffer system. For example, all database servers should contain a firewall that

buffers them from unauthorized access and potential malicious acts. Firewalls

should not be confused with routers, which are network devices that simply route

traffic as fast as possible to a predefined destination.

There are two general types of firewalls: application layer firewalls and packet

filtering firewalls. Application layer firewalls are also called proxy firewalls.

These firewalls are software packages that are installed on top of the resident

operating system (Windows 2000, UNIX) and act to protect the servers from

problem transactions. They do so by examining all transactions and comparing

them against their internal policy rules. Policy rules are enforced by proxies,

which are individual rules governing each protocol rule. Therefore, one protocol

has one proxy. In an application firewall design, all connections must terminate

at the firewall, meaning that there are no direct connections to any back-end

architecture. Figure 14.17 shows the application layer firewall connections.

Packet filtering firewalls can also be software packages that run on top of

operating systems. This type of firewall, unlike application ones, can connect to

many interfaces or networks. This means that many packets of data are arriving

from different sources. Like the application layer, the packet system also uses

proxies to validate the incoming transactions. The major difference between the

two firewalls is that packet firewalls do not terminate at the firewall as they

do in the application layer design. Instead, transaction packets travel directly to

the destination system. As the packet arrives at the firewall, it is examined and

either rejected or passed through. It is something like a customs line, where those

entering the country go through a line and are either stopped or sent through

into the country of arrival. Figure 14.18 reflects the packet firewall method.

Server System

Firewall

Client System

Firewall initiates Server
Connection

Firewall initiates a
connection for the Client

Client sends Connection
Request

Firewall decodes
message

Figure 14.17 Application layer firewall configuration.

308 Analysis and Design of Information Systems

Server SystemFirewall
Client System

Client sends Connection Request to the Server

Firewall Analyzes Packets and Validates
for Direct Pasage to Server.

Figure 14.18 Packet filter firewall system.

Summary

While network hardware security is somewhat outside the responsibilities of the

analyst, the knowledge of how the DMZ and firewall systems operate provides

important information that the analyst must be aware of. Knowing what is inside

and outside the firewall is crucial for both network designers and software

architects. Indeed, knowing where to place the software and how best to secure

it in a complex network environment are integrated decisions that require input

from both parties.

Database Security and Change Control

Database security and change control relate to the database access capabilities

granted to a particular user or group of users. Limited access is always a security

or control feature designed either to protect database integrity or to limit what

some users are allowed to do with data.

Levels of Access

Who has the ability to access a database is an important responsibility of the

analyst/designer. Access at the database level is implemented using a privilege

that is created using special coding. A privilege is defined as the ability that

a user has to execute an SQL (Structured Query Language) statement. In a

database product like Oracle, a user can have two types of privileges: system

and object. System privileges can be voluminous. In Oracle alone there are over

157 system-level privileges. An object privilege relates to how a user can access

a particular database table or view. For example, a user must have an object

privilege to access another user’s database system or schema.

14. Security 309

Object privileges are coded using commands like SELECT, INSERT,

UPDATE, and DELETE, that is, each of these commands can have special rights

limiting or granting a user access to the database. For example, a privilege may

allow a user to select a database record for viewing, but not with access rights

to delete, add, or modify a record. Such privilege rights need to be determined

during analysis and conveyed to the development team.

The specifications for object privileges are no different than a program

requirement but are usually conveyed through a table matrix as shown in

Figure 14.19:

Roles

A role is effectively a group of privileges that is granted to run an application. An

application can contain a number of roles, which in turn grant a specific group

of privileges that allow more or less capabilities while running an application

program. Thus, the role is a set of capabilities that can be granted to a user or

group of users. For example:

1. Create Nurses role.

2. Grant all privileges required by the Nurses application to the

Nurses role.

3. Grant Nurses role to all Nursing assistants or to a role named

Nurses_Assistants.

The advantages of this are multiple:

1. It is easier to grant a role, rather than each privilege separately.

2. You can modify a privilege associated with an application by modifying

just the privilege with that role without needing to go into each user’s

privileges.

3. You can easily review a user’s privileges by reviewing the role.

4. You can determine which users have privileges as an application using

Role level query capabilities in the data dictionary.

Privilege User Access Ability

ALTER Change the definition of a program

DELETE Remove rows from a Table or View

EXECUTE Execute a program

INDEX Create a special Index on a database Table or View

INSERT Insert new records

REFERENCES Create a constraint (referential integrity) on a database Table

or View

SELECT Retrieve data for Display

UPDATE Modify existing data

Figure 14.19 Privileges cross-referenced with user access ability.

310 Analysis and Design of Information Systems

Who Is in Charge of Database Security?

Once again, most of the security issues relating to analysis and design surround

the database. For small implementations, the database administrator is usually

responsible for security also. However, in larger more complex organizations

with multiple integrated databases, security can be assigned to a separate role

called the Security Administrator. The Security Administrator or whoever is

responsible for database security needs to develop a security policy, which must

then be abided in the analysis and design phases of software development.

The Security Administrator must focus on three aspects of security issues,

which in turn become part of the analysis/design specification:

1. Data Encryption: Encryption applications are programs that use

algorithms to change data so that it cannot be interpreted when it

is traveling between applications. Most encryption occurs outside of

the system because that is where such data is vulnerable. Thus, the

Internet has become the most encrypted area of data that travels through

cyberspace and must be protected against unauthorized access. The

question becomes: who is responsible for identifying at what points

data encryption is necessary? Again there are obvious points such as

a terminal accessing a host over the Internet. But what of encryption

between an application client and the database and the database and the

application server as shown in Figure 14.20?

While the database analyst/designer is not responsible for encryption

per se, it is worthwhile for him/her to be familiar with three encryption

alternatives:

RC4: This uses a secret, randomly generated key unique to each

session. This is an effective encryption for SQL statements, and

stored procedure calls and results.

DES: Oracle uses this encryption known as the U.S. Data

Encryption Standard Algorithm (DES) using a standard

encryption that is useful for environments that might require

backward compatibility with earlier, less robust encryption

algorithms.

Triple-DES: Provides a high degree of message security, but with

a performance penalty that may take up to three times as long

to encrypt a data block than the standard DES algorithm.

Internet

Application
Server

Database

Client

Encryption

Figure 14.20 Database encryption architecture.

14. Security 311

Client

Database

Third Party
Authentication

Server

Figure 14.21 Strong authentication.

2. Strong Authentication: allows identification of the user. This is a critical

issue to ensure confidence in network security. Passwords are the most

common method of authentication. This requires a separate third-party

authentication server which sends requests to the database as depicted

in Figure 14.21.

Since authentication will be integrated with the database software,

the analyst needs to be engaged in the implementation and versed in

the knowledge of how it relates to the design of the entire database

system.

3. Enterprise User Management: this feature enables the storing of

database users with their related administrative and security information

in a central directory server. This is accomplished by having a separate

database server that authenticates a user by accessing the information

stored in a directory (Figure 14.22).

This configuration enables the administrator to modify information in one

location and provides a more secure and lower cost solution.

Directory
Server

Client

Database

Database

Database

Multiple Databases

Figure 14.22 Enterprise user authentication architecture.

312 Analysis and Design of Information Systems

Version Control

Version control can be defined as a tracking and managing of changes to infor-

mation. Version control has become an important database issue particularly

with Internet applications and e-business operations. Internet applications often

have user editable data that is stored in a database. Thus, it is an advantage

to provide version control to this stored information in case of a mistake or

for “audit trail” and integrity purposes. That is, audit trail is an accounting and

security process of having a “trail” of changes that are made. The amount of

historical changes in audit trail can vary, although for the purposes of this book

I will confine the trail to the last change made—in other words, having the

last change stored for historical tracking. However, audit trail and security are

not the only reasons to implement version control. Version control provides an

error fixing capability. For example, if a user enters a new value in a lookup

table and then decides it is in error, version control can allow it to be reset

back to its original value. This is similar to applications like Microsoft Word

which contain an “undo” function that allows users to go back to an original

setting.

Database version controls are usually by designing what is known as “shadow

tables,” which store the last value changed by a user (see Figure 14.23).

The use of version control obviously creates potential performance problems

and space issues because of the expanded number of tables. The decision of how

many historical values to store also becomes an important decision to be made

by analysts, designers, and users. Most important is to understand the trade-offs

to these decisions and for users and system architects to recognize the impact of

such decisions.

ID XX

X-Hello

Y-Goodbye
Z-End

Active Table

ID XX-2

Y-Hello Again

Shadow Table

Figure 14.23 Shadow table implementation.

14. Security 313

There are also third-party products that provide functions for version control,

as well as mathematical formulas that can be used to minimize space needs

when implementing shadow tables. Ultimately the best approach is to work

closely with users and determine what fields require versions to address user

error, and with audit firms to determine the extent of audit trails for security

purposes.

15
Data Warehousing

Introduction

This chapter focuses on how to extract information from database systems.

This information will be used for decision support systems (DSS) purposes and

typically be presented to the user in an on-line display format or on a report.

As initially discussed in Chapter 13, the concept behind DSS is that it deals

with data “after the fact,” meaning that the data is no longer in a production

mode, but rather in a storage mode where it can be used for different forms of

analytical processing. The major benefit of operating on processed data is that

it cannot be changed and therefore can be accessed without concern for data

integrity. Another salient issue is that because the data is not subject to change,

it can be copied multiple times, allowing for some interesting performance

improvements and “flattening” of the data stored in the relational database. The

referential integrity that was attained in a production database does not maximize

performance for the query of data for reporting purposes. The purpose of the

chapter is to provide the details of creating complex warehouse systems.

In order to maximize the efficiency of accessing and analyzing data it is

necessary to separate it from the production system. This is accomplished by

creating copies of the data solely for decision support analysis. There are a

number of different ways to do this separation. One way is data warehousing,

where data is reformatted from one or more data sources and placed in a special

repository for analytical processing. Another approach is to create data marts.

While similar to a data warehouse, data marts are defined as more strategic

in nature and more specifically organized to support the gathering of depart-

mental data. Data warehouses can be composed of many data marts. Still another

method is called data mining, in which multiple definitions of data from different

systems are collected and analyzed for similarities. Data mining provides more

artificial intelligence features and can perform advanced analysis against multiple

data warehouses and data marts, especially when the data comes from multiple

computer systems. All of these alternatives will be examined in this chapter, and

its relationship to the analysis and design of ecommerce systems. In order to

provide effective data warehouses, data marts, and data mining, it is necessary to

understand how to obtain the data that is needed to populate these data structures.

15. Data Warehousing 315

A major component of creating effective repositories of data for DSS is how

to extract the information through database query. In order to accomplish this

effectively, it is important to understand the transaction processing system, since

some transactions might need to be captured when they occur as opposed to after

they have updated database files. Furthermore, the process of creating reports

and screen displays needs to be included as part of the analyst’s specification.

Some reports are pre-coded, while others are generated through user-initiated

query applications.

Data Warehousing Concepts Revisited

Operational databases are those that are designed to track business events in real

time. In operational databases, processing data usually correlates to cost while

the completion of the data’s process relates to revenue. In Chapter 5, we saw

that the data in operational databases is accessed at the detailed level where

individual records are created, read, updated, or deleted (CRUD). Entities in the

relational model are constantly updated to ensure that the integrity of the data

is preserved and that no historical information on the entity’s previous status is

stored.

Data warehouses, on the other hand, can capture both completed events

and their original transactions. This allows data warehouse implementations

with the ability to characterize more about how the data was produced at a

much more detailed and granular level than usually available in operational

databases. However, it is also important to remember that data warehouses are

static snapshots of historical events. As a result, they are often not in sync with

an operational database, which always reflects the current aggregate picture of

the data. This has both advantages and disadvantages. From an advantage point

of view, a data warehouse can contain multiple copies of the same data. Each set

could represent the same data at a different moment in time, or could represent

different views of the same data, or any combination of all of these. Figure 15.1

depicts the relationship between a data warehouse and the operational databases

in an ecommerce system.

The issue of data synchronization between the operational databases and the

data warehouses is significant. The ultimate consideration when designing a data

warehouse system relates to the age of the data in the warehouse and how often

this data needs to be refreshed. For example, if an accounting department needs

to produce a report by the 15th of every month on the previous month’s activity,

then the data refresh would need to occur sometime after the end of the previous

month and before the 15th of the new month. On the other hand, if a daily report

were needed on the previous day’s activities, then an evening refresh would be

required. Data refreshment requires that the data from the operational database

be copied to the warehouse. Unfortunately, this may not be the end of the data

refresh procedure, since the format of the data in the warehouse may be very

different from that of the operational system. Thus, there is typically a need

316 Analysis and Design of Information Systems

Operational View Data Warehouise View

Product

Type of Product Discounts

Price

Instructions

Order

Items

Shipments

Retail

Returns

Credit Returns

Payment

Wholesale

Credit Back

Exemption Status

Multi-Demnsional Views and Changes

Completed Sales Transactions

Multi-Demnsional Views and Changes

View by Product Grouping

Product

Type of Product

Sales by Order

Sales by Item

Customer

Groups

Customer

Figure 15.1 Operational databases and data warehouses.

for the data to be reformatted so it can be fed into the warehouse structure

directly. Because a data warehouse might be an aggregation of the operational

data, it can be necessary to perform mathematical computations on the ported

data to produce derived data information. You might recall that derived data is a

violation of normalization and not allowed in the operational database. Therefore,

data warehouses are denormalized models of the operational systems and will

typically contain data elements that were removed through third-normal form

implementation.

Performance Benefits of Data Warehouses

The advantages of developing a warehouse are many. First, it allows users to

analyze data without interfering with the operational systems. This is a significant

benefit because of the inherent problems associated with SQL. When queries are

produced against an operational database to produce reports they often require

what is known as database joins. These joins create intermediate databases until

the final report is produced. Furthermore, the final database of these joins is in

the format of the report being requested. This means that a report from an SQL

query is really a sub-schema picture of the original database. Issuing complex

queries that require multiple joins can easily tie up an operational database,

15. Data Warehousing 317

thus creating serious confrontations between production personnel and support

organizations. Therefore, the process of performing DSS requires SQL, which

in turn hinders the performance of the production system. Figure 15.2 shows an

example of the quantity of dynamic tables that can be produced as a result of a

simple SQL join statement.

The above example shows how an SQL PROJECT statement creates a subset

schema of columns of the parent entity. Thus, the sub-schema contains the same

number of records, but less columns or attributes. The SELECT statement also

creates another entity, which reduces the number of rows, but contains the same

number of attributes as the parent database. Finally, the join combines the results

of the two sub-schemas to produce a third entity, which is in the format of the

report requested by the query. This sample shows how much overhead is involved

with the production of a simple report. When voluminous data is involved the

time to complete the query is even more significant. Indeed, some queries have

Items
Purchase

Orders

SQL Query to generate report by

Item and Purchase Order Date

Report Table

after

Database

Select and

Join

Output Report

SQL Query, Select and Join

Figure 15.2 Dynamic SQL database joins.

318 Analysis and Design of Information Systems

been known to run over 24 hours! Therefore, data warehouse solutions should be

the preferred method for analyzing data rather than using standard SQL directly

against production databases.

Concept of Multidimensional Data

Data warehousing has often been referred to as a three-dimensional way of

representing data. The three dimensions are seen as a cube of data. Each cell

is viewed as a box within an array. This cube represents one data warehouse

aggregation (combination) and provides a number of ways to view the data.

Figure 15.3 shows a data warehouse aggregation of three viewable dimen-

sions of information. The relational table two-dimensional; it contains rows and

columns, which is synonymous with records and attributes. The corresponding

multidimensional cube reflects a three-attribute dimensional view of the data.

The two-dimensional part is Orders and Items, with the third dimension being

Markets. Figure 15.4 reflects another third dimension, the addition of the price

Books

Books

Books

Books

DVDs

DVDs

Books

Item

New York

St. Louis

St. Louis

Los Angeles

Los Angeles

Austin

New York

Market

Q1

Q1

Q4

Q4

Q2

Q3

Q2

Period

300

568

985

3500

5440

1500

1200

Quatity

Figure 15.3 Relational table with multidimensional cubes using three aggregations.

15. Data Warehousing 319

1200 568 985 300

New York

St. Louis

Los

Angeles

Q1 Q2 Q3 Q4

Time

M
a

rk
e
ts

P
ro

d
u

c
ts

Figure 15.4 Relational table with multidimensional cubes using four aggregations.

attribute to the array. From a reporting perspective, a user could query for Orders

and Items, which would only use two of the three dimensions, or ask for Orders

by Item within Market. To use all the dimensions available, the user could search

on Orders, by Item within Market by Price.

These examples picture the data warehouse from a logical perspective, that is,

the cube does not exist physically, just conceptually. From a physical perspective,

data warehouses use a standard data structure called the star schema. The star

schema contains the main table in the center of the star, and each node represents

another dimension of the data as shown in Figure 15.5.

The star schema in Figure 15.5 allows for queries to be performed based

on an Order. In many ways it resembles an ERD in an operational database.

However, most star schemas start with a multidimensioned center (concatenated

primary-key), so that query time is enormously reduced because there are less

joins. Figures 15.6 to 15.8 show how the number of tables dramatically reduced

as the number of primary key concatenations in the center table . It is important

to recognize that more key concatenations in the center table greatly reduces the

types of searches that can be performed on the data, that is, the flatter the schema

the less dimensions available to view the data. For example, in Figure 15.8, there

320 Analysis and Design of Information Systems

Dimension

Identify

Customer

Identify Dept Identify Products

Identify When Identify Where

Transactions

Figure 15.5 Data warehouse star schema design.

are no nodes in the star schema because there are no dimensions. Therefore,

a user can only query the data warehouse to view Items within Orders, by

Market and Price. It is also important to recognize that Figure 15.8 contains no

validation or look-up tables, which are normally used to validate the data of

certain data elements. Data validation is not required in a warehouse architecture

because the data is read-only, that is, records cannot be inserted, updated, or

deleted. This is significant because this structure greatly improves data access

Prices Market
Order

Items

Figure 15.6 Data warehouse reduced to three tables: prices, order-items and market.

15. Data Warehousing 321

Prices

Order

Items

Market

Figure 15.7 Data warehouse reduced to two tables: prices and order-items with market.

Order

Items

Market

Price

Figure 15.8 One-dimensional data warehouse.

performance. The removal of validation tables eliminates index pointers and the

need for multiple joins of tables, which simply reduces overhead and increases

the performance of report queries. Figures 15.6 to 15.8 also depict the number

of dynamic searches that are needed to produce one report. It is also feasible to

design data warehouses that contain all four types of star schemas. This could

occur if there were four departments who had three different fixed views of how

they wanted the data to be represented to them.

Because there can be multiple copies of data in a data warehouse environment,

there is an advantage to creating more schemas that represent the data as it is

needed for a specific report or analysis, as opposed to designing an elaborate

star schema that allows for multiple views of the data. The reason for this

position is simple: why design a data warehouse that resembles an operation

database? Another way of looking at this model is to conceptualize that every

data warehouse is nothing more than a view of data for a specific user view.

The more alternative searches you offer the user, the less attractive the model is

from a performance perspective. However, multiple warehouses require multiple

conversions from the operational systems. So, the analyst must balance the design

taking into consideration both performance and overhead issues.

Data Warehouse Conceptual Design

The first step in creating an ecommerce decision support system is designing the

data warehouse structure. This structure or architecture provides a framework

for identifying how data will be utilized within the ecommerce system. A basic

data warehouse architecture is shown in Figure 15.9.

322 Analysis and Design of Information Systems

Source

Source

Source

Data Warehouse
Transformation of

Data

User

User

User

User

User

Figure 15.9 Basic data warehouse structure.

The fundamental characteristics of the basic data warehouse architecture are:

1. Data is extracted from operational databases, flat-files, and other data

sources.

2. The data from all of the source systems is first integrated and trans-

formed into another format before being loaded into the actual data

warehouse.

3. The data warehouse can only be used for read-only activities for DSS.

4. Users obtain access to the data warehouse through a front-end appli-

cation tool, usually supplied by the warehouse vendor.

Extracting Data from a Database Source

The data warehouse process starts with identifying the source of the data needed

for the DSS. These will typically come from two places: (1) the operational

databases that exist in the new ecommerce system and (2) the data files that

exist in legacy systems. The most difficult part of the process is to identify

the meaning of the data elements in each system so they can be transformed

properly into the data warehouse. This can only be accomplished by first creating

a central repository of the data—typically by using a CASE tool. Porting data

into a central repository is easier when working with relational databases because

they are better documented and can be reverse engineered into a CASE tool.

However, legacy data is more challenging because of their lack of documentation

and less conventional data formats. Notwithstanding the format of the source

data, the process to define the operational data is time consuming but extremely

valuable for the project to be successful. Many data warehouse products like

15. Data Warehousing 323

Sagent provide their own metadata dictionaries that can be used instead of a

CASE tool. These metadata libraries store the relationships that exist among the

different yet related databases in the production systems. Analysts also need to

extract data from third-party products that are part of the operational system,

sush as a weekly stock price file that is integrated in to the production system. In

any event, most data warehouse systems can extract data from multiple databases

from multiple systems.

Many operational systems can be categorized as “transaction-processing”

based. This means that they are heavily geared toward capturing transactions that

occur throughout the day. Typically, transaction-processing systems are those

that take orders, ship them, and then record financial information. Transaction-

processing systems have the following characteristics:

1. High transaction rate.

2. Constantly changing.

3. Data redundancy is avoided in order to ensure integrity.

4. Optimized indexes to ensure SQL query efficiency.

5. Two-phase commit architecture to ensure recoverability.

DSSs using data warehouses provide tremendous advantages for transaction-

processing systems because they can reformat data into dimensions so that users

can better understand the meaning and results of the transactions.

Staging and Formatting Extracted Data

As previously stated, a significant component of the data warehouse product is

a load server that compiles the data and establishes the links among duplicate

data elements. Furthermore, the load server allows for the definition of elements,

especially for those attributes that have complex meanings. These attributes are

called intelligent keys where portions of the attribute have special meanings.

This is shown in Figure 15.10 for a Part Number data element.

140879402

Stored Part Number Value

140

Distribution Center

8

Warehouse

79

Year Created
402

Part Type

Figure 15.10 Encoded data fields.

324 Analysis and Design of Information Systems

The load server has the ability to store information about the Part Number so

the warehouse can easily identify the data element’s components during a query.

Overall, the load server prepares the raw data, and creates a new repository of

information in the format required by the data warehouse schema.

Read-Only Activities

As previously stated, the data warehouse is a read-only copy of operational data.

The philosophy is that operational data and DSS data are inherently different.

Specifically, DSS provides easy-to-understand formats of data so that analytical

information can be created to support better tactical and strategic business

decisions within the company. These analytical processes require that historical

data be kept in different views, unlike the single normalized view required

in operational databases. Indeed, one database format alone cannot efficiently

provide for both types of functional need. Thus, at the core of all warehouse

products is a read-only database that represents the primary component of

information analysis.

Front-End Query Tools

In most data warehouse systems, the data access infrastructure makes up the

next most important component of the DSS architecture. This data access is

composed of front-end query tools and application programs that provide useful

and accessible decision support information from the data warehouse. Thus,

analysts need to design the warehouse schemas, query logic, and applications

to create a useful data warehouse environment that operates under the auspices

of the production systems. The important component of application and query

support are the third-party applications that are provided with the purchase of

the data warehouse. Most warehouse products, like SAS, Sagent, and Oracle,

all come with sophisticated developer tool kits that allow for the generation of

advanced query and application development. These add-on application products

do not, however, provide the proper analysis and design process to determine

what they need to do.

Alternative Types of Data Warehouse Structures

Thus far we have only looked as what can be called a “generic” data warehouse

architecture. However, there are more sophisticated design considerations when

formulating an ecommerce enterprise warehouse system. Figure 15.11 depicts a

slightly more complex data warehouse that loads data into what are known as

business areas. A business area represents a defined segment of the organization

and is based on perceived business similarities. These similarities could be based

15. Data Warehousing 325

Source

Source

Source

Data Warehouse

Load Server

Transformation of

Data

User User UserUserUser

Business Area

Warehouse

Business Area

Warehouse

Business Area

Warehouse

Figure 15.11 Business area data warehouses.

on where income is derived, type of clients, etc. Therefore, each business has

its own view and use for a warehouse. All of these multiple warehouses are

derived from one enterprise warehouse that has been ported from the integration

of multiple data sources.

In Figure 15.11, data is extracted from various source systems and integrated

and transformed before being loaded into an enterprise data warehouse. This

data is then restructured, redesigned, and moved into separate business area

warehouses, which are then used for DSS. The major benefits of using a business

area architecture are to:

1. Ensure that all business areas are deriving data from a central warehouse

system.

2. Create sub-warehouses that can better facilitate the needs of smaller

departments.

3. Provide access to different user communities. Internal, consumers, and

customers all have different business area needs and access autho-

rization criteria.

4. Ensure that the timing of the data is consistent across all warehouses.

In this way comparisons of data across the enterprise are consistent.

Another hybrid version of the business area model is to create separate area

warehouses directly from the load server as shown in Figure 15.12 While this

architecture does not contain a central enterprise data warehouse, it has all of

the constructs that represent a true data warehouse. Obviously, the advantage is

the time and space saving of creating an intermediate enterprise data warehouse.

This model is advantageous when there is little need for a centralized warehouse

and when there are multiple updates of the warehouse from multiple source files.

326 Analysis and Design of Information Systems

Source

Source

Source

Transformation of

Data

User User UserUserUser

Business Area

Warehouse

Business Area

Warehouse

Figure 15.12 Direct business area data warehouse.

Still another intricate architecture is shown in Figure 15.13. This model

creates an integrated relational database in third-normal form. The data that

comes from source operational systems remains read-only; however, new data

can be added to the integrated database directly from users. The purpose of

these updates is to provide additional data that facilitates expanded decision

support activities. Sometimes this process also helps to “clean up” bad data.

Once the new data has been entered, the data is transformed into a data

warehouse.

Source

Source

Source

Transformation of

Data

User User UserUserUser

Integrated

Relational

Database

Data

Warehouse

Figure 15.13 Integrated Data warehouse with new data.

15. Data Warehousing 327

A Decision Support Life Cycle

A System Development Life Cycle (SDLC) for DSS focuses on data, as opposed

to processing and functionality. As a result of the elimination of many process-

oriented steps, the DSS life cycle is much faster and less complex than its

traditional counterpart. The main activity for the analysts is to take data from

various sources and platforms and provide multiple strategic views of the data

in another infrastructure.

The phases of the ecommerce DSS are:

1. Planning

2. Gathering Data Requirements and Modeling

3. Physical Database Design and Development

4. Data Mapping and Transformation

5. Data Extraction and Load

6. Automating the Data Management Process

7. Application Development and Reporting

8. Data Validation and Testing

9. Training

10. Rollout

Phase 1: Planning

The planning phase in ecommerce DSS is very similar to the project life cycle

and entails the creation of a project plan and realistic time estimates. Planning,

like that for any project, includes defining the project scope, plan, resources,

tasks, timeliness, and deliverables. Figure 15.14 depicts the project planning

components.

Furthermore, the DSS will require changes to the network infrastructure.

Therefore, there will be technical infrastructure design that needs to be imple-

mented while formulating the proper DSS environment. The technical compo-

nents include capacity planning, archival strategies, data refresh/update strategies,

and operations and job scheduling.

Phase 2: Gathering Data Requirements and Modeling

During this phase the analyst must understand the business needs and data

requirements of the users of the system. Because ecommerce systems are

comprised of internal users, customers, and consumers, the data modeling

requirements for data warehouses will vary depending on the different user

views. Essentially, data requirements will involve the process of identifying what

elements are needed for DSS by each group of users. The assumption should

be that normalized databases exist, legacy links have been made, and interme-

diate transaction processing systems are in place. If a central repository of all

328 Analysis and Design of Information Systems

Defining Project

Scope

Create Project

Plan

Resources

Defining Tasks

and Subtasks

Defining

Milestones and

Deliverables

Figure 15.14 DSS project planning steps.

data elements is in a CASE product, then identifying the components of the

warehouse will be much easier and productive. Unlike regular data gathering,

analysts should be looking at what users need to see in the form of screen displays

and printed reports. Thus, it is the output that identifies what is needed for the

data warehouse. Therefore, the analyst does not need to use process models like

15. Data Warehousing 329

DFDs to model the data warehouse, rather the specification will consist of query

screens for data access, sample reports, and screen display views. The reports and

screen displays need to be in prototype form so that users can validate that the

information and format are correct. Another interesting aspect of data warehouse

design is to determine what users might want to see in addition to what they have

already identified. Basically most users will want to see the reports and screen

displays that they are used to having from their existing system. However, data

warehousing allows so much more, that the analysts need to consider what users

might want to see given the robust power of the data warehouse query software.

While this activity might seem counter to my previous position that analysts

should never create requirements, I do believe that the analyst must at least

reveal, usually through demonstrations, the power of the data warehouse to each

user constituency. Obviously, this process may not be practical for consumers,

except where the marketing department is involved with focus groups. Analysts

must remember to inform users that data warehouses do not contain current data.

While designing real-time data warehouses is possible, it is unlikely and difficult

to implement.

What is most important, however, is not the reports and displays, but the

strategy of designing the data warehouse (or data mart) architecture. Reports can

usually be modified without great pain, but schema design is more complicated.

This process requires that the analyst determine which type of warehouse designs

to use. Remember that there can be multiple data warehouses produced from

multiple sources, so the options for design are many-to-many as shown in

Figure 15.15

Source

Source

Source

Data

Warehouse

Data Transformation

Data

Warehouse

Data

Warehouse

Data

Warehouse

Figure 15.15 Data source and data warehouse relationships.

330 Analysis and Design of Information Systems

Notwithstanding the relationships between data sources and data warehouses,

it is important to focus on the schema design, that is, what is the design of the

star schema. There are essentially three approaches. The first approach suggests

that the data warehouse contain a star schema that resembles the report or screen

display. This design was discussed earlier in this chapter. The advantage of

this approach is that data is already placed in the format required so there is

little need for data manipulation. As a result, the production of the reports and

displays are very efficient. Furthermore, there is little that the user needs to do

other than just selecting the option to produce the report. The bad news is that

the warehouse is very limited because all it can do is produce the report. The

economies-of-scale for creating the report in a data warehouse form may seem

like overkill, unless the process of obtaining the data in one central repository

has significant time saving for the user. Figure 15.16 shows a data warehouse

report schema.

The second approach is to create sophisticated star schemas that support a

grouping of needs. Each schema would contain a central table that provides

a data repository required by a group of users. Each node would provide the

supplemental data that might be needed depending on the user group and the

report subject. The benefit of this model is somewhat obvious in that it allows

warehouses to serve multiple needs and provides for more DSS analysis of the

data. The downsides are also obvious; users need more knowledge on how to

query the data and therefore need training and an understanding of what data is

available for analysis. In addition, the performance of the reports and displays

will vary depending on the level of sophistication of the queries that are afforded

to the end users. Figure 15.17 depicts a star schema for group user query.

Order

Items

Market

Price

Salesperson

Ship Date

Order Analysis Report

Order # Item ID Market Price Salesperson Date Shipped

14387 A5567 West 120.00 Joe Smith 3/15/2001

Figure 15.16 Data warehouse report design.

15. Data Warehousing 331

Orders
Quantity

Items Markets

Prices Salesperson

Figure 15.17 Star schema for a user group.

The third approach comes back to the earlier example of the enterprise level

data warehouse. Rather than have multiple warehouses serving many users,

one central complex star schema can be designed to afford the needs of an

entire organization, group, or department. These types of data warehouses will

contain the most nodes on the schema, and look very much like a third-normal

form database. The advantage is that data is copied once per cycle to one data

warehouse thus ensuring that the data all represents the same time period. The

downside is that the warehouse becomes voluminous and requires significant

data query manipulation in order to extract the needed information.

Another challenge in the movement of data from operations sources to data

warehouses is derived elements. I previously discussed the handling of derived

data as being a violation of third-normal form and a database redundancy. As

a result, all derived data elements were removed from the production database.

However, because data warehouses are read-only, there is no need to eliminate

derived data. In fact, warehouses that contain derivations will be much more

efficient for query and report production. The question to answer is how to

populate derived data back into the database. If a CASE tool was used to

produce the normalized operational database, then there is a good chance that

derived elements might exist in the data dictionary. You might recall in an

earlier chapter (Chapter 5) that many derived elements are first placed in the

data dictionary and defined in a process specification. Thus, the identity of

these derived data elements and their calculations can be extracted from the

data dictionary. Unfortunately, such is not the case when dealing with legacy

databases and flat-file systems. In these situations, the analyst must reconcile

each report and screen display against the existing data dictionary to determine

where derived elements exist. Furthermore, just identifying them is not enough—

analysts must work with users to understand how they are derived. Once all

derived elements have been discovered and defined they need to be added

to the metadata dictionary usually provided with a data warehouse product.

332 Analysis and Design of Information Systems

The use of metadata (data that defines data) will be discussed later in this

chapter; however, its use is important when integrating derived data elements

in the data warehouse. The metadata repository will allow analysts to store

the calculation formula. When the data warehouse is produced (or refreshed),

a triggering operation will examine the data and calculate the derived values

as set forth in the metadata repository. The process of calculating derived data

elements is shown in Figure 15.18.

There may also be derived data elements that cannot be directly calculated

from the supplied data sources. This means that the derived elements must be

calculated outside the data warehouse domain and then imported directly into

the data warehouse. This is shown in Figure 15.19.

In summary, the data gathering and modeling phase must address the

following key questions:

1. What will be the number and design of the data warehouses?

2. How will data be reflected in the data warehouse model, particularly

the derived data, which does not exist in the production database?

3. Is there a CASE tool that will allow for the transformation of derived

data elements from a data dictionary to the data warehouse?

4. How often does data need to be refreshed?

Figure 15.20 reflects the major steps that analysts must complete in this

phase.

Orders
Quantity

Item Amount

Items Markets

Prices Salesperson

Dreived Element

Calculated by

multiplying

Quantity X Price

Figure 15.18 Populating derived data elements to the data warehouse.

15. Data Warehousing 333

Orders

Quantity

Items
Markets

Intern Sales

Prices
Salesperson

Dreived

Calculation

Sales for Items

internationally:

Data collected and

stored from other
systems.

Figure 15.19 Porting derived data elements into a warehouse.

Phase 3: Physical Database Design and Construction

The physical database design entails a number of steps that enable the database

to operate efficiently. There are three main components involved in the physical

design process: fact tables, dimension tables, and look-up tables.

Fact tables, which are sometimes known as major tables, contain the quanti-

tative or factual data about a business. It is, in effect, the information for which

users are doing the query (Poe, 1996). Fact table information is often numerical

measurements of data that contain many attributes and sometimes millions of

occurrences. For example, a marketing database can contain data on various

sales for the company. Dimension tables or minor tables, on the other hand, are

smaller than fact tables and hold descriptive data that reflect various dimensions

of the facts—like month, year, region, etc. In the previous example, dimensions

of sales could be product, markets, etc. Figure 15.21 reflects the marketing data

warehouse with dimension tables.

Thus, the combination of fact tables and dimension tables provides for the

basis of the initial star schema. This star schema can then allow users to scan the

data, and with the appropriate database constraints provide interesting analysis

of the information. Look-up tables are another type of dimension table. They

provide fill-in information used to describe possible values that certain fact data

need. They represent entities that are similar to third-normal form validation

tables. An example of a look-up table the available colors of a particular model

car. Figure 15.22 shows a combined star schema physical database that combines

facts, dimensions, and look-up tables.

In many ways, much of the physical database design concepts discussed in

this section could be considered part of the logic data modeling phase (Phase 2).

While much of this design could be done during Phase 2, there are some

related decisions that require more knowledge about the physical environment,

that is, the actual data warehouse environment. Furthermore, the process of

334 Analysis and Design of Information Systems

User Interviews

Document

Results with

Logic Models

Define Logical

Data Model

Review Logical

Designs with

Users

Create

Dimension

Logical Data

Warehouse

Model

Figure 15.20 DSS data requirements and data modeling gathering.

denormalization is often accomplished during physical as opposed to logical

database design. Beyond just database design, the analyst also needs to:

1. Identify the Actual Primary and Secondary Key Structures. Sometimes

this could involve denormalized data elements.

15. Data Warehousing 335

Order-Date

Shipdate

Region

Total Amount

Orders

Fact Table

Salesperson Name

Address

Sate
City

Zip

Sales Reps

Region Name

Region

Dimension Tables

Figure 15.21 Fact and dimensional type data warehouses.

2. Develop Aggregation Strategies. Aggregation is the process of accumu-

lating fact data from other transactions. This means that a derived data

element transaction could be generated that depicts the results of many

detailed transactions.

3. Creating Indexing Strategies. Indexes are separate tables that are inter-

nally created to improve look-up performance. An index is an indirect

address that points to where specific information exists in the database,

without having to search every record. Figure 15.23 depicts an index

look-up table. Any field can be indexed so that query speed to access

that information can be dramatically increased.

4. Develop Partition Tables. Partitioning is the process of breaking up

physical databases into many different storage areas. Logically, these

multiple partitions are treated as one database, but physically are

distributed on many different areas of a disk, or across multiple physical

hard disks. The benefit of partitioning is purely performance. Parti-

tioning of data maximizes performance of the data warehouse when

particular parts of the data are needed by specific users. So, in theory,

two users can be using the same logical data warehouse, yet be accessing

two separate physical partitions of the same database.

5. Performing Capacity Planning. Analysts must determine the amount of

storage space and processor speed that they will need in order to provide

an efficient data warehouse environment. Analysts should not do this

configuration alone; network architects must be involved to assist in the

determination as to what processor types might best handle the load and

perceived growth of the data warehouse. The key input needed from

336 Analysis and Design of Information Systems

Item ID (FK)
Shipdate
Region (FK)
Sales Reps (FK)

Orders

Fact Table

Salesperson Name
Address
Sate
City
Zip

Sales Reps

Region Name

Region

Dimension Tables

Region

Item Name
Color (FK)

Items

Color Name

Color

Look-Up Table

Figure 15.22 Fact, dimension, and look-up data warehouse types.

Item ID (FK)
Shipdate
Region (FK)
Sales Reps (FK)

Orders

Fact Table

Salesperson Name
Address
Sate
City
Zip

Sales Reps

Region Name

Region

Dimension Tables

Region

Item Name
Color (FK)

Items

Color Name

Color

Look-Up Table

City Name

Index Tables

Figure 15.23 Index tables.

15. Data Warehousing 337

Social Security

Number

Char (9)

First-Name

Vchar 2(35)

Age

Vchar 2 (3)

Employee Record

Maximum Record Size = 92

=

Estimated Records in Data Warehouse = 100,000

×

Estimated Data Warehouse Size = 9,200,000

=

Last-Name

Vchar 2(35)

Figure 15.24 Data warehouse size calculation example.

the analyst is the number of records that will be estimated in each data

warehouse. There are two components that are needed to determine

space requirements. The first, which was covered in an earlier chapter,

calculates the size of each data warehouse record by multiplying the

total number of maximum characters in each attribute within a record.

By maximum I mean the largest size for all VARCHAR2 (variable

length) data elements. The result of this calculation will establish each

record size. The analyst needs to then calculate the database size by

multiplying this total record size by the estimated number of records in

the data warehouse (see Figure 15.24).

This last step might not be that easy, but sometimes estimating maximum

data warehouse sizes (i.e., the largest it could be) is the safest calculation.

Furthermore, analysts must take into consideration the needs for temporary

storage that are required during SQL JOINS, PROJECTS, and SELECTS of

data from tables. Remember that SQL-based queries generate dynamic database

tables for reporting. Thus, analysts need to consider doubling or even tripling the

storage requirements of the host data warehouse. This is why partitioning can

be so effective; it allows network architects to scale storage by attaching more

physical hard disks. The issue of how many processors to have, the memory

size, and disk access speeds needs to be determined by the proper network

professionals, but heavily based on the input supplied by the analyst.

Phase 4: Data Mapping and Transformation

The data mapping and transformation phase is one where the analyst must locate

the source of the data in the operational systems, do analysis to understand the

338 Analysis and Design of Information Systems

types of data migrations and transformations that need to occur, and map the

source data to target data warehouses. This phase ultimately determines what the

source data will be, how it will be converted, and where the data will be ported.

The specific steps within this phase are as follows:

1. Defining the Data Sources: Much of this activity can be accelerated

if the analyst has loaded the data elements of each system into a

central CASE tool repository. Other factors are the extent of legacy

data that exists in the system, and the nature of how the data is stored.

Furthermore, the amount of data redundancy and derived data elements

all play a factor in the time requirements to ascertain where the data is

and how it is defined.

2. Determining File Layouts: Once data sources have been defined, the

analyst must clearly understand the file layouts of these systems and

how the files interrelate with each other within a particular source

repository. For example, a file that contains fact data may be linked to

another table in the same system that provides validation information.

Thus, the analyst needs to understand the schema of each source system.

If the source is a relational database, then the best approach is to

generate (if not available) an entity relational diagram (ERD). The

ERD will expose the referential integrity that exists at the database

level and expose those relationships that have been implemented at the

application level. It might also expose data redundancies. If the system

is a flat-file legacy application, then the analyst should print out the file

description tables (particularly if the system is written in COBOL). The

file description tables will identify all of the data elements in each file.

By creating a simple template or utility program, analysts can determine

where duplicate elements exist among these flat-files. This will allow

the analyst to understand how the files link to one another, where there

are redundancies, and how to schematically look at the system from a

dimensional and relational perspective.

3. Mapping Source Data to Target Data: Once the source systems and

schematic have been identified, the analyst needs to map or identify

the source data to the data warehouse star schemas. This can be

accomplished by creating a matrix that shows source elements and

their attributes as well as their corresponding data warehouse data

elements. Figure 15.25 shows a sample matching source-to-target matrix

developed using a spreadsheet program.

4. Develop Transformation Specifications: The above matrix is only one

component of what is called the Transformation Specification. Another

name for a Transformation Specification is Conversion Document. A

Conversion Document provides the requirements for a programmer to

develop a utility program that prepares, moves, and transforms source

data to a data-staging file. The data-staging file is an intermediate data

store that is created for actual transport to the data warehouse.

15. Data Warehousing 339

Source Data

Element Attribute Source Table

Data Warehouse Data

Element Attribute Target Table

Company Char(3) Items Company-Name Vchar2(15) Company

Designator Char(15) Items Vendor-Style Char(18) PO-Item

Group-ID Char(10) Items Dept-No Char(2) Purchase-Order

Frt-Term Char(3) PO Freight-Terms Char(1) PO-Header

Final-Dest Vchar2(30) PO Import-Whse-No Char(4) PO-Header

Purchase-Term Char(4) Contract FOB-Terms Char(1) PO-Detail

Discharge-Point Char(30) Contract

Arrive-By-Date Date Contract Cancel-Date Date PO-Detail

Sup-Approval Char(30) Import Whse-Message Char(60) Header-Mess

Coord-Item Vchar(80) Merchandise Item-Message Char(80) PO-Detail

Figure 15.25 Source-to-target data element mapping table.

5. Reviewing the Update Cycle: This process establishes the refresh cycle

required for each data warehouse. Refresh cycles define when a cycle

begins, when it ends, and how long it runs. It is also important for the

analyst to have some idea about how long a refresh cycle might take.

This can be determined best by running tests on sample source files

and then forecasting the total update time based on the results of the

test. The determination of conversion time could be critical since the

update cycle needs to complete prior to the user wanting to see the

data results. Therefore, if an update cycle runs every 24 hours, then the

update cycle needs to complete by the beginning of the next morning.

While this might sound like plenty of time, many large-scale update

cycles can take substantial time to complete. The time to complete also

heavily depends on the amount of data manipulation that occurs during

the conversion of data from source-to-target.

6. Developing Strategies for Archival: This step entails the decision of

what portions of warehouse data can be archived or deleted from

the DSS. Typically this becomes more of an issue when looking at

transaction-based information. The decision is to determine when dated

transactions, which are used to formulate results of the data, are no

longer providing enough value to keep them actively stored in the live

data warehouse. The reason for purging certain transaction is because

of the performance degradation that it causes during warehouse queries.

Sooner or later, historical transaction data needs to be removed from the

active warehouse. Analysts have two options. Option one is to generate

a summary transaction record that might represent a group of detailed

transactions. This means that the summary transaction would provide a

view of the meanings of the detailed transactions. Figure 15.26 provides

an example of representing detailed transactions in a summary record.

If this option is selected then the detailed transactions can be deleted or

archived. The creation of summary records may also require that specific

program changes be made to query applications so that a summary

record can be appropriately identified from a detailed transaction. The

second option is to just create a separate file of purged transactions that

can be accessed using a different set of query applications. This purged

340 Analysis and Design of Information Systems

Source

Source

Source
Conversion A

 Results

Conversion

Program

A

QA Technician

QA Process

Conversion

Program

B

Source

Conversion B

Results

QA Technician

QA Process

Data Warehouse

Load Server

Figure 15.26 Converting source to warehouse load server.

file would typically be resident on a separate processor so that it would

not conflict with normal data warehouse activities. Regardless of which

option is used, the analyst needs to create specifications that identify

the conditions for purging data and where the data is to be stored. Both

options also require the development of specific query applications that

can access purged data when needed.

7. Review Security Requirements: Once the data warehouse is in place,

the analyst must integrate security requirements into the specification.

Unlike many security issues, because data warehouses are read-only,

there are no concerns about the creation of illegal or dangerous records.

However, data warehouse information is still proprietary and could

provide valuable information for those with malicious or illegal inten-

tions. Thus, securing data warehouses from unauthorized use is a key

component of data warehouse design. This is especially important

because most access to data warehouses in ecommerce systems will

occur via the Web, either from an Intranet or an Internet. So who has

access to what features in a Web-based data warehouse query becomes

very important in the design of the warehouse system. Much of the

design issues covered in Chapter 13 are relevant in data warehouse

development as well. Therefore, analysts should review the security

requirements of the data warehouse using the same approach as in any

other system.

15. Data Warehousing 341

8. Capacity Plan Review: Once the data mapping and conversion method-

ologies have been completed, the analyst will have a much better

perspective on the specific capacity requirements. This step simply

suggests that the capacity planning and space determination is an

iterative process in which the analyst and network architects will fine-

tune the capacity needs as each phase in the life cycle is completed.

Phase 5: Populating a Data Warehouse

This phase involves the actual extraction, conversion, and population of the

target data warehouses. This is typically accomplished with a combination of

conversion and update software supplied with the data warehouse vendor’s

product, and with the development of specific conversion programs designed by

the analyst. The steps involved with completing the population of data warehouse

data are as follows:

1. Loading and Staging the Data: This step may involve an intermediate

program that begins the process of building a repository of data where

the data warehouse software will extract the information from. While

many data warehouse products will allow for the loading of data directly

from an operational database or file system, this is often not recom-

mended. Accessing operational data is usually not a best practice for

data architects.

2. Converting and Integrating Data: This step entails the execution of

the actual conversion programs and the integration of multiple data

sources. The process involves the confirmation that multiple data source

migrations have been completed and the execution of one or more

conversion programs (that migrate the data as per the specification)

have occurred. This step should result in the formation of a warehouse

load server that is ready for testing before being moved to the live data

warehouse. Figure 15.26 shows the process.

3. Testing and Load: The Test and Load phase is the final step to creating

the data warehouse. The test part of this step is to provide various

reconciliation results that provide assurance that data has been converted

to specification. For the most part, the testing should be consistent with

audit-trail philosophies including the verification that the number of

records read, written, and transferred is correct. If records are rejected

for whatever reason, these should also be reported. The load portion of

this step involves the actual porting of the data into the warehouse for

use by users. There should also be an audit trail report specifying that

the process of final load has been successful.

4. Capacity Review: Once again, the analyst should review the capacity

needs of the system after the final data warehouses have been created,

since the storage at the time of completion will represent the actual

storage prior to query operations on the data.

342 Analysis and Design of Information Systems

Phase 6: Automating Data Management Procedures

While much of the work has been performed to generate the data warehouse,

there is a need to create automated processes that refresh the information on

a periodic basis. The periods may vary depending on the type and number of

data warehouses that have been designed. Thus, once the first data extraction

is completed and data warehouses are created, the analyst needs to design

automated utilities that migrate new data to a preexisting data warehouse. These

utilities must be automatically activated based on time and/or conditions. They

must also activate the application operations that are part of the life cycle of

refreshing data, namely Data Mapping, Conversion, Extraction, and Load. When

subsequent or ongoing refresh is in place, data will be replaced in the load

server and ultimately in the data warehouse. The procedures for verifying that

this process has occurred properly also involve the creation of utility applica-

tions that report on the outcomes of each automated step, each time the refresh

occurs.

There also needs to be an automatic backup and restore process should data

become corrupt or damaged because of a hardware failure. There is typically

a backup/restore feature available in data warehouse products, as well as from

third-party vendors. Restoration procedures must be designed and tested in order

to ensure that data warehouse information can be restored correctly and within

the time constraints set forth by the user communities. Of course, all automated

processes need to be tested, therefore, the analyst needs to design test case

scenarios that will assist in the verification that data can be backed up and

restored correctly.

Phase 7: Application Development and Reporting

This phase focuses on the delivery of output from the data warehouse. DSS

application development is usually accomplished by using special data access

tools to design and pre-build reports. Indeed, the tools selected to generate reports

are critical to the success of any data warehouse. Analysts need to determine

the environment to support data access and information analysis rather than just

selecting a front-end software package. There are several steps that are required

to understand the complexities of providing a reporting environment for users

in an ecommerce environment. The first issue to address is the ways in which

users can receive information from the data warehouse. There are four types of

reporting as follows:

1. Parameter-Based Ad Hoc: This allows users to enter particular infor-

mation that will act as a parameter into the report application. Param-

eters often consist of date information, or domain constraints like

department or group. Users, while changing parameters, are not creating

15. Data Warehousing 343

new reports, but rather modifying existing reports within a pre-defined

range of choices.

2. Display Access: This involves the display of reports on the Web or

some other central place on the system. The important concept here is

that reports are generated as needed but assumed to be effective in a

view-only mode.

3. Complete Ad Hoc: The user interacts directly with the data warehouse

using the query tools that support the warehouse product. Thus, users

will need to be trained on how to issue queries, and how to manipulate

the data in the warehouse. While this option provides the most versa-

tility, it is also the most difficult report to use successfully. The problem

is whether users can really master the query tool, be knowledgeable on

how the data is stored, and can appropriately test their results. Indeed,

the largest risk for users is generating reports that are not accurate.

4. Hard Copy: These are predefined and developed by the analyst. They

typically have a fixed format and are printed and forwarded to the

appropriate requester.

There are also a number of ways that users need to navigate through an

ecommerce DSS. This is based on user needs, similar to my earlier definition of

user categories. The three primary methods are:

1. Executive: Allows executives to get predefined reports quickly and on

a regular basis.

2. Structured Decision Support: Contains predefined and ad hoc reports

and outputs. Thus, structured decision support provides another level of

analysis offered to the user community. This hybrid approach is usually

required by middle-tier users like line managers and supervisors, where

there is a clear need to generate what-if analysis in a dynamic day-to-day

environment.

3. Unstructured Decision Support: These users have access to all types of

reports, but prefer to design ad hoc reports from scratch and use them

when they are needed for a particular analysis. These users are more

activity-based on the information they need.

The level and categories of users vary in how they use reports. What reports

are needed by users also depends heavily on whether they are internal, customers,

or consumers. Typically, internal users are those who can be trained to use

unstructured techniques to access data warehouse information. Figure 15.27

represents another view of how certain types of users utilize report options.

Report Access and Analysis

A data warehouse is not an automated method of getting the information you want

without working to find it. Users should not be disillusioned about what a data

344 Analysis and Design of Information Systems

Type of User

Executive

Casual

Ecommerce Analyst

Power User

Application Developer

Structured Unstructured

Figure 15.27 Types of users and their report access preferences.

warehouse product will afford them to do. Misunderstanding the commitment

that data warehouses require, both from designers and users, is a critical factor

for success (Poe, 1996). Figure 15.28 depicts the sequential steps that users

should follow when using DSS and when analyzing their data.

The viewing of the reports is another important component of analysis of

DSS. Users may want to specify what format they want to view the data.

Thus, analysts need to provide options for users where they can select from a

fixed menu of display options. While tabular and cross-tabular reports are most

common, graphical output is also a common way of analyzing what reports are

telling users about their data. Figure 15.29 shows various types of data warehouse

report presentations.

Listed below are the most common report functions that DSS should provide

to users:

1. Changing the axis: This allows users to swap rows and columns.

2. Changing sort order.

3. Adding and deleting subtotals and other information breaks.

4. Creating color reports with highlighting of certain variables.

5. Format options for fonts, styles, sizes, and colors.

6. Graphical display of information should support line graphs, dimen-

sional and stacked bars, pie, scatter, bubble, tape, and area.

7. Ability to change graph axis labels, colors, and titles.

15. Data Warehousing 345

Map Reports Standard Rows and Columns

100 90 80 70 60 50 40 30 40 50

Graphs

PHAS
E 5

DEPT 6

DEPT 5

DEPT 4

DEPT 3

DEPT 2

DEPT 1

PHAS
E 4

PHAS
E 3

PHAS
E 2

PHAS
E 1

DEPLOYMENT CHART

Charts

Figure 15.28 Sequence of reporting access and analysis.

Production

Data

Data

Warehouse

Query

Packages

Pre-Written

Queries

End User

Figure 15.29 Data warehouse report design.

Data Warehouse Query Tools

There are a number of types of queries that allow for the production and viewing

of the information that has been defined herein. There are four types of query

tools:

1. Report Writers: These are third-party products that access the data

warehouse directly and produce reports based on SQL type queries.

Examples of third-party report writers are Crystal Reports and Cognos

(see Figure 15.30).

346 Analysis and Design of Information Systems

Production

Data

Data

Warehouse

MDBMS

Tools

Pre-Written

Analysis

End User

MDBMS

Figure 15.30 DSS report writer.

2. Multidimensional Database Management Systems (MDBMS): These

tools create a subset database that can be populated by both opera-

tional systems and data warehouses. These databases are usually multi-

dimensional and are often defined as Online Analytical Processing

systems (OLAP). They allow for specialized reporting of data in an

aggregate form that can support advanced data mining activities (see

Figure 15.30).

3. Advanced DSS Tools: Advanced tools are very similar to report writers

except they support more advanced query capabilities and dimensional

analysis. They specifically support access to multiple data warehouses

from one query.

4. Executive Information Systems (EIS): EIS represents a higher level

of DSS. These systems contain advanced metadata facilities that can

create sophisticated and predefined analysis of data. EIS also supports

Artificial Intelligence activities, which are fundamental infrastructures

to the support of trend analysis and decision making alternatives

(see Figure 15.31).

Production

Data

Metadata

Analysis

Tools

Pre-Written

Analysis

End User

Data

Warehouse

Figure 15.31 EIS architecture.

15. Data Warehousing 347

Phase 8: Data Validation and Testing

While I have mentioned that testing must occur throughout the Data Warehouse

implementation, there is a need to have a central test plan strategy. Although

each phase has a quality assurance process, the entire data warehouse life cycle

requires integrated test scripts. These scripts establish what the expected results

should be from each previous life cycle step. Sometimes this is best accomplished

by having reports that provide reconciliation of what the warehouse contains.

However, analysts should also suggest that users review the output reports.

Users should be encouraged to hand check certain reports until they are satisfied

that the system is calculating and collecting information based on their require-

ments. All too often we see users who just accept what the output of a report

tells them!

Furthermore, analysts should plan for change—for change is inevitable with

DSS ecommerce systems. Change is not only modifications to the reporting,

it is the addition or changing of what data needs to be supplied to the data

warehouse and in what forms. In addition, new systems are added and need to be

integrated into the overall data warehouse schema. With this in mind, analysts

need to design and maintain sophisticated testing systems that can be reused

each time a change is made to the warehouse infrastructure or transformation

process.

Phase 9: Training

While this might not be the actual responsibility of the analyst, it is important

to plan for the training of users with the objective of teaching them how to

work with the data warehouse. Notwithstanding that pre-designed reports do

not require much data warehouse knowledge from the users, most systems will

always have “super users” who want to do advanced analysis on the DSS. The

training phase of the DSS life cycle includes the following considerations:

1. Understanding the scope of information in the data warehouse.

2. Training on the front-end tools and how to write queries.

3. Understanding of how to use existing reports and how to modify them.

4. Train the trainer concepts so users can eventually own the responsibility

of training new employees or other users.

Phase 10: Rollout

This phase essentially involves the process of going live. It requires the actual

deployment of the data warehouse into the production network environment,

creating user support infrastructures including adding new users, creating the

physical procedures for users to request new reports and options, providing the

procedures for backup and restore, and creating a team to troubleshoot problems

that inevitably occur early in the DSS rollout.

348 Analysis and Design of Information Systems

Source

Source

Source

Transformation of

Data

User

Data

Warehouse

DSS

Metadata

Production

Metadata

DSS Tools &

Programs

Figure 15.32 Metadata design.

Understanding Metadata

Metadata is data about data. Metadata is the fundamental component that allows

data warehouse systems to provide the complex information that users require.

There are two primary forms of metadata: operational and DSS. Operational

metadata contains the information about where the data is in the production

systems and/or in the staged database system prior to conversion. The DSS

metadata establishes a catalog of the data in the data warehouse and maps this

data to the query applications. Figure 15.32 depicts the metadata architecture.

Therefore, the metadata infrastructure provides the front-end users with the

ability to manipulate the data without working directly with the data. That is,

the user works directly with the metadata, which in turn operates on the data

warehouse attributes. Thus, the metadata provides a higher level of abstraction

about the data. This abstraction allows for the ease of use of operating with the

database.

16
Website Design and Architecture

Introduction

This chapter focuses on the challenge of how to manage the ongoing development

and maintenance of Web-based systems. In particular, this chapter targets the

problem of Web systems that have dynamic content changes on a regular basis.

Indeed, the Web has required businesses to become more dynamic and reactive

in their thinking. Web sites that contain old images are considered slow to react

to market needs. Users expect to see up-to-date information immediately. Take

the New York Times Web site for example. It generates new content dynamically

as stories become available (see Figure 16.1).

The problem facing many organizations is how to provide a development

infrastructure that can allow users to change content without the assistance

of developers, and how these systems can provide easier development for

programmers and database administrators. Furthermore, there are many organi-

zations that need to receive ecommerce content from multiple users at different

locations without having to submit them to programmers for retrofitting into the

existing Web screens. Indeed, static Web sites are expensive to maintain, difficult

to update, and do not support the flexibility that is needed to provide competitive

ecommerce on the Internet. With the average business Web site having over

8000 pages of HTML and graphical components, content management systems

provide an attractive new way of building Web sites while reducing costs.

The answer to the problem is to implement what is called “content

management systems.” Content management systems provide an infrastructure

that allows non-technical users to control their Web site commerce and commu-

nications using standardized browser interfaces, reusable template objects, and

a central administrative engine that allows automated methods to update and

secure an existing ecommerce Web system. Content management systems also

support site administration, which allows Web administrators to control access,

set design standards, edit new materials for submission to the site, and determine

the procedures for information delivery.

In today’s ecommerce environment it is better to generate content dynamically

than to create and store static pages (Dalgleish, 2000). Dynamic content infras-

tructures are faster, more efficient, and easier to maintain than static architectures.

Most content management systems utilize object-oriented design principles to

350 Analysis and Design of Information Systems

Figure 16.1 New York Times dynamic Web architecture.

implement ecommerce sites, which enhance reuse of Web components. Essen-

tially Web content management systems, which utilize object management, allow

organizations to:

1. Implement standards and styles through the use of template components.

2. Combine components from different sources into one or more central

template frames.

3. Have control of content by a central resource.

4. Have a workflow process that allows for changes to be made to content

with approval controls.

5. Contain a scheduling environment that allows certain content to become

available automatically on a certain date and for a specific period

of time.

6. Have multiple types of approval processes that ensure that no content

is available on the Web until all requisite approvals have been met.

7. Contain multiple versions of content for Web site reuse.

8. Provide detailed audit trails and reporting that give authors a clear

understanding of how long it takes to update content, and who is

working on the system.

9. Implement different levels of privileges, meaning that users have

different levels of security access.

10 Have users make significant content changes and modifications to the

Web site without programmer interface. These users can be content

writers, editors, content managers, Webmaster, and content approvers.

16. Website Design and Architecture 351

Dynamic Web Pages

Dynamic Web pages provide the key to creating maintainable user driven Web
sites for ecommerce systems. The content itself may be reusable, e.g., company
logo, and can be stored in a template or the database so that it can be reused when
needed across many Web pages in the ecommerce system. While the logo itself
can be stored as a file in static-based systems, any changes to the logo would
require a developer to reload each occurrence of the logo in the ecommerce
system. With a dynamic content management product, analysts can utilize an
infrastructure that automatically loads the new content into every Web page
that uses it. Thus, the content management engine resembles the reusable object
component strategy. Just like object systems use a central brokering architecture
such as CORBA (Common Object Request Broker Architecture) and Microsoft’s
.Net, the content management system provides the engine for component content
for complex Web systems like ecommerce.

Dynamic Web pages in ecommerce systems do not exist until the client brow-
ser issues a request for a particular Web URL. Dynamic architecture through the
content management infrastructure will build the Web page using stored compo-
nents, thus always ensuring that the current content is being used (or whatever
content has been identified in the content management system). Many content
management systems are database-centered, as opposed to folder-centric. Folder-
centric means that content is stored on a hard disk server and accessed through
intelligentWindows folder systems. Database-centered content, on the other hand,
stores the content in a relational/object database like Oracle 9 or Microsoft SQL
Server. These database products identify and store the content as an image, and
present the content to any Web page requesting it (with the appropriate autho-
rization, of course). Many of the content management products are now using
XML as a key vehicle to link stored database content with Web pages. You
might recall that XML provides a versatile method of storing documents in the
database and integrates its functionality with the power of the relational model.
DynamicWeb pages in accordance with database-centric support can also provide
powerful metadata support. This allows the data that describes an image or content
group to be utilized as part of the selection criteria for relevant information. This
means that the tagging of what the content represents can be extremely effective
for ecommerce systems that provide various search functionalities. Suppose,
for example, that a particular ecommerce Web site allowed for the searching
of certain animals. The dynamic content management system, using metadata
tags, could identify animals that match or closely match the searching criteria.

Content Management as a Web Site Builder

More advanced content management systems provide architectural infrastructures
that allow Web pages to be generated using a template-based design system. This
entails a structured approach to building a Web site for ecommerce. First, starter

352 Analysis and Design of Information Systems

or “base” templates are created in the content management system so that all Web

pages have a similar “look and feel” that is consistent with the firm’s branding

and identity. These starter templates represent a “frame” for every Web page in

the system. Thus, when a new Web page is required, the first component to load

is one of the base “frame” templates. Typically, there are a few different starter

templates; one for the main Web page and multiple starter frames for the various

sub-pages. In many ways the process of designing templates is similar to creating

a consistent navigation style for the entire ecommerce system. Figure 16.2 shows

a standard base frame for a Web page.

After the main frame is generated, developers, rather than generating HTML

code from scratch, begin to load various templates that contain specific features

and functions. In reality, the Web site builder resembles an object-based approach

to building programs. Rather than rewriting code over and over, the site builder

architecture allows for a component approach to Web development. While a

developer is loading a template, he/she can decide on the specific content to

place into the template frame. A template frame’s content can be defined as

“dynamic,” meaning that its content can be changed dynamically. Dynamic

changes can be scheduled using the content management system, or changed

when deemed necessary. Therefore, every template component on every page

can be “addressable,” meaning that its content can be changed without directly

modifying the Web page. Furthermore, the template can be changed in variable

ways. For example, a template might appear in multiple locations. The content

manager can change just one occurrence or can change all of them. Thus,

Figure 16.2 Content management Web page frame.

16. Website Design and Architecture 353

the content management system contains an infrastructure that can update the

content and set rules on who can update it (security). Content management

systems also support calendaring, which allows content to be updated automat-

ically based on a specific time schedule. In summary, the content management

site builder represents a new development environment that allows analysts to

specify programming requirements using template architecture. This architecture

allows programmers to build Web pages from a reservoir of standard templates.

In addition, it allows authorized business personnel to update content without

requiring programming assistance. Content management systems are also multi-

tasking environments. While designers are creating HTML screens, users can

be updating content. Furthermore, site builder products allow for the creation of

multiple versions of a site, so ecommerce systems can actually reuse screens,

or contain different screens for a specific user base. Figure 16.3 shows the

component Web page templates.

Thus, a content management infrastructure must support a site layout system

that enables analysts and designers to create an overall navigation structure for a

Web site. Because of the ease of use of the site builder, content can be changed

by business users without requiring them to have knowledge in HTML. These

A. LANGER & ASSOC., INC

New Info

Header

Links

Navigation

Global
Searches

What's New
Text

Information

Figure 16.3 Web page object templates.

354 Analysis and Design of Information Systems

systems also uphold the business branding strategy and identity requirements.
Furthermore, the site builder architecture provides security so access is controlled
for only those who have been authorized to work on the Web site.

What is so unique about implementing content management is that it supports
the integration of non-technical developers, that is, super users who will use the
system to modify and update content without the need for a technical interface.
This part of content management strategy provides a new concept in how software
is developed by allowing non-technical people to update the site frequently,
keeping it fresh and appealing to users.

Creating Objects

Another important component of content management is its ability to search
and find relevant content when building Web sites. In other words, a complex
indexing system exists that allows for content to be placed in an intelligent
repository. This repository can be indexed within assigned categories. These
categories are typically determined by the development team and by the users
who participate in the maintenance of the Web site. Once content is stored within
assigned categories it can be used to search for particular images, graphics, or
text that can be incorporated in the design of any Web site.

Part of the strategy for ecommerce systems is to generate common content
for reuse. This is similar to the way object-oriented systems are developed for
reusable programming. That is why it is so important to know whether a content
management system will be used. Once this has been determined, the design
of pre-built object types can be designed and used by developers to construct
the Web sites. This process does not imply that there are no modifications or
custom programming required when using content management software. Indeed,
developers still need to provide specific coding to handle complex ecommerce
functions. However, content management does offer a structured approach to start
the foundation. Content management philosophy can be compared to building
homes using a pre-fabricated model. Pre-fabricated homes are those that are built
off-site in a standard specification. Once built, these homes are delivered to the
site, and then completed by the builder. The builder may need to add specialized
features that are not included in the standard specification from the manufacturer
of the home. In this example, the content template represents the pre-fabricated
portion of the Web site and the developer is the builder who may need to add
the specialized features required for that particular version of the pre-fabricated
template.

Content Delivery

Creating content is only one part of the content management infrastructure.
Another component is how content is delivered to an ecommerce system. This
requires the use of various tools that allow developers to:

16. Website Design and Architecture 355

1. Pre-select which content is to be published on the Web site.

2. Assign publishing schedules to specific content items.

3. Pre-define rules that automate what content gets used for particular

users.

4. Determine when content should be removed and replaced with updated

graphics or text.

5. Determine how content is to be displayed depending on the type of

browser used on the requesting client.

For example, a retail operation could display special products on sale for a

period of time. The content to be display could be scheduled to appear at 9:00

in the morning and then be replaced or removed two days later. The developer

or content manager could establish certain criteria in the content management

system that would change the display content depending on where the user came

from in the system (such as the clicks used to get to the content), the user’s

profile that might be stored, and the type of browser being used.

Workflow and Process Automation

Another important part of best practices for Web site design is the integration

of workflow and process automation. Workflow and process automation simply

provide a foundation of how content makes its way onto a Web site. Each step

in the design and development of Web content needs to be mapped to its related

business process. Whether this involves enforcing a production process, setting

up authorization steps that are required in the development of content, or creating

a method of handling incoming orders, workflow and process automation help an

organization to understand how to migrate their current processes to ecommerce

in an efficient and consistent manner.

In order to implement a workflow process the analyst needs to interact with

business managers to define the different processes and tasks needed for their

Web businesses. This could include needs for articles, pictures, videos, etc.

Furthermore, business users most likely will have ecommerce needs that could

include new product promotions, handling incoming user service requests, and

generating special broadcast type of announcements to an entire population or

group of users. The analysts will provide the framework for what each component

needs to do and Web developers will program it using a content management

product like SOHOnet, Interwoven, or Vinette to build the necessary templates

that allow business users to modify the contents as needed. These templates

are commonly referred to as workflow templates. Once the process is in place,

business users can invoke the content workflow product to prepare new content

for their Web site. A workflow process is designed to assign a task to a particular

user, group of users, or department. Under the auspices of the security component

of the content management system, users can access their workflow templates

and submit new content, or change existing content. For example, suppose there

is a new article that a company wants to add to the Web site, which could

356 Analysis and Design of Information Systems

promote their bicycle business. The article has a photograph of the new model

bicycle and an accompanying story about how a particular consumer has used

the bicycle. A photographer takes a group of pictures and submits them to the

marketing manager who is responsible for approving the Web content story.

Simultaneously, a copywriter works on the text of the story. After the copywriter

has completed the first draft of the article it is sent to a marketing manager who

edits it and sends the revised copy back to the copywriter. This process is iterative

until the text is ready for submission to the marketing manager responsible for

approving the copy and image. After the marketing manager has approved both

the photograph and the text it is forwarded to a page designer who is responsible

for formatting the photo and text in a sample frame, which replicates how it will

appear on the actual site. The frame is approved by the marketing manager and

then deployed to the actual Web site. Figure 16.4 depicts this workflow process.

The above workflow sample shows how new content is submitted, edited,

approved, and deployed onto the Web site. An automated workflow component

in a content management system provides the infrastructure that allows each

individual in the process to sign on, review the content, approve the content, and

forward the content to the next individual in the life cycle. The above flow is

just a typical example; the analyst must work with the organization to determine

what the appropriate workflow process should be. Furthermore, there may be

multiple workflows depending on the nature of the department or its particular

business process.

E-Business Order Processing

Advanced content management products support workflow processes that involve

online ordering, registration, and other real-time-based transactions systems.

Such systems represent the heart of what ecommerce products are designed to

do. The workflow cycle for processing ecommerce transactions is similar to the

internal development cycle, yet has some unique steps. This includes designing

the procedures for registration, submitting requests, and purchasing a product

using an online store.

Capture Image
(Photographer)

Write Production

Description
(Copy Writer)

Edit Copy
(Market Manager)

Revise Copy
(Copy Writer)

Approve Copy & Image
(Market Manager)

Format Page
(Page Designer)

Approve Page
(Market Manager)

Live System

Figure 16.4 Ecommerce workflow.

16. Website Design and Architecture 357

Using an example of purchasing a product in an online store, a consumer

would select a product or group of products for purchase. The first step validates

whether the user has an account. If it is a new user, the workflow product

would initiate the execution of the new registration module. If, or once, the user

has an account, the order is taken using one-click ordering. The next step in

the workflow is to check inventory, process the credit card, and determine the

method of shipping. Once all information has been verified, including additional

payment information, the consumer receives an email notification confirming the

order and the shipping information. Another internal workflow process may be

initiated to manage the processing of the order until it is shipped. This process

would service the internal users who are responsible for ensuring that the product

is shipped. Figure 16.5 shows the workflow process for an ecommerce order.

An e-business workflow component should also provide a toolbox for

managing error conditions and product exceptions. These utility products allow

developers to specialize the code so that the error messages and processing alter-

natives can be customized to fit the business model of the enterprise. The error

handling of the work process software must be sophisticated enough to handle

user Web browser crashes, where the product would recognize an account that

did not complete its order the next time it signs onto the system.

The analyst must be the main driver to design the internal and external

workflow processes. The content management software is only as good as the

process that defines what it needs to do. Furthermore, the workflow processes

should be defined before any selections are made on which content management

product to use, since the requirements of the workflow will define what the

content management product needs to offer. The workflow process is invoked

User Information

User

Database

Check Inventory

External

Inventory
System

Process Credit Card

Cybercash

Schedule Shipping

Accounting

System

Figure 16.5 E-Commerce workflow process.

358 Analysis and Design of Information Systems

using the same business process reengineering (BPR) strategy discussed in

Chapter 13. Essentially this form of BPR is focused on defining the e-service

workflows and rules for processing orders and services over the Internet. The

main processes that need to be considered are as follows:

1. Making service requests.

2. Ordering a product or service.

3. Providing input to online requests such as surveys and product devel-

opment input.

4. Registration for service(s).

5. Updating personal information that is required by the company.

6. Request or receive emails and other push content.

7. Evaluation of products and services.

8. Provide feedback after completing a transaction.

9. Getting help online.

10. Contacting support.

11. Participating in an online forum or chat room.

Each of the above e-business activities must be designed in a workflow

and mapped to the features and functions offered by a sophisticated content

product. Figure 16.6 depicts a typical workflow diagram for processing an order.

Workflow diagrams are very similar to process flow diagrams (PFDs).

Product

Evaluation
Focus on the need for

the product, what
alternatives are

available, price, and
availability

Get More
Information
Need to know
more before

deciding

Decide to Buy
How to Get

Provide

Information
Provide information to
ecommerce in terms of

what is needed

Verify What is

Ordered
Confirmation that

information on Order
has been received.

Product Receipt
Is product received,
work the way it is

described.

Figure 16.6 Workflow Diagram for Order Processing Event.

16. Website Design and Architecture 359

With respect to the entire order processing activity, common issues that need

to be resolved by the analyst include:

1. What minimum information needs to be provided by a user to order

product?

2. What are the specific rules that govern how each product can be

ordered? This includes what constitutes an acceptable payment method,

available service levels, shipping alternatives, etc.

3. What format should the user’s request be provided in to facilitate

processing in the workflow and content management system?

4. What product options can be identified as part of the order process and

what processes require manual intervention?

5. What product selections by customers affect pricing changes in their

total order, that is, what are the complexities of purchase discounts?

6. Can orders to affiliated parties be automated so that there is no

requirement for manual retransmission of the user’s order?

The analyst must also cover the following general areas not typically covered

during process analysis. These central themes are critical for the successful

integration of content and workflow products.

1. Product Development Strategy: Internal users need to define how new

product will evolve on the ecommerce system. The concept of using

templates to generate new content and applications can be a whole

new culture to convey to management. Template generation is only one

component of this complex commitment; it also includes service issues,

transaction processing, reporting requirements, and methods to evaluate

the effectiveness of the ecommerce system on an ongoing basis.

2. Product Promotion: The firm will want to use the ecommerce system

to promote themselves. Typically this will require the use of media and

other animated content. The marketing department will need to provide

a perspective on how they envision promotional content to be integrated

into the system. Promotional content is also temporary and needs to

be integrated with the content system’s calendaring component. There

also need to be advanced features that ensure that the promotions are

displayed to the appropriate external users.

3. Customer and Consumer Management: Management must determine

the extent that they want external users to be able to personalize their

ecommerce experience. Personalization, which will be discussed later

in this chapter, involves the storage of user profiles and rule-based

analysis. It also affects the overall design of the Web site.

4. Service Improvement: The information obtained from the use of the

ecommerce system may need to be compared against other service

indicators, both inside the company and across the industry. This means

that the content system must have the appropriate reporting infras-

tructure to produce the information required. There also needs to be

an understanding how that information will be compared to other

360 Analysis and Design of Information Systems

systems. The analyst does not want to implement the content system

without first knowing what information is required by management on

service responses.

Automated Security

Content management and workflow products should contain a sophisticated

security system that automates the assignment of security levels based on the

construction of the workflow roles and responsibilities. The primary security

roles include system administrators, developers, analysts, business users and

managers, ecommerce site members, and ecommerce site affiliates. Within each

of these categories security is based on user authentication integrated with the

operating system directory (such as Windows NT/2000), and user activities that

govern policies particularly those that can control product access. As previously

discussed, the most common security feature for the Internet is user authen-

tication. Notwithstanding whether the security is focused on the Intranet or

Internet, authentication is needed to identify users and map those users to their

profiles and security policies.

Content management systems also support activity-based security control.

This type of security allows business managers with the ability to define the

types of activities that can be performed on a template or object. This means that

when an object is produced, the developer can define whether it can be changed

or deleted and how it can be displayed. Certain activity-based controls allow

internal users, like a business manager, to define a set of policies for controlling

how a product can be used. For example, a policy might dictate whether another

user can access the image without approval from the business manager. In effect,

activity-based controls can be used to store confidential information that is

available only to authorized users. Furthermore, the mapping of users to activities

is a very important capability of any content management product. This feature

not only controls the content, but limits access to any Web page that contains

that content. Thus, this feature integrates content and application security.

Database integration is yet another important component of security. Content

management software should allow outside databases that contain security direc-

tories to be integrated with the activity-based control system. Having this level

of integration allows companies with other application control systems to reuse

them with other systems. This is typically accomplished by mapping the external

database fields with the fields in the content management engine.

Personalization

Personalization is the process of keeping user profile information in the

ecommerce system. User profiling allows ecommerce sites to store and track

simple and complex values associated with a given user or group of users. These

16. Website Design and Architecture 361

values can then be used to generate dynamic content when the user signs onto

the system. Figure 16.7 shows the Amazon.com personalization format.

Typical user profile systems capture the name, country, email address and

certain user-defined preferences, which can be used to greet the user as shown

in Figure 16.7. It can also be used to display content in different languages

without requiring the user to select the language they want each time they

access the system. More advanced profiling can capture information over time

and determine related user preferences and track past activities such as multiple

shipping addresses. Content management systems provide pre-coded objects that

can provide this type of functionality. Many of these products, such as Allaire,

provide the end-user with links to favorite content or parts of a site thus allowing

them to personalize the entire Web site configuration. This software effectively

builds a special Web page for that specific user. A more advanced method

is called rules-based personalization where information is created based on a

more sophisticated set of stored rules for each individual or type of user. Rules

can be dynamically added because the data is stored in a separate file. So, for

example, if a new personalization screen was developed for buyers who spend

over $500, a rule could be added to the rules file, which then would be enforced

by the content system. Any user meeting this profile would automatically trigger

the rule and thus see the special offering information during their browser

session.

Figure 16.7 Dynamic personalization on Amazon.com.

362 Analysis and Design of Information Systems

Content

Host

Windows Java Client

JavaScript Browser

ASP Server Affiliate

Coldfision Server Affiliate

Content Management
Affiliate

Merchandise

Transactions

Content Object Databases

XML

Figure 16.8 Syndication on a Web-based architecture.

While dynamic personalization offers tremendous capabilities, it also presents

challenges. Content can only be as dynamic as the organization that supports

it. The analyst must convey to management the overhead that is associated

with supporting this type of ecommerce system. That is why having the analyst

simultaneously create the corresponding workflows is so important to the setup

of any content management product.

Syndication

Another important component that content systems provide for ecommerce

systems is syndication services. Syndication is the function of integrating site

affiliates with the ecommerce system. This means that business partners who

16. Website Design and Architecture 363

exchange information or are part of product fulfillment can utilize all or

parts of the ecommerce system. These affiliates are treated as limited Intranet

users. Thus, the syndication architecture allows for site-to-site relationships to

help drive the business. In today’s complex business relationships, ecommerce

partnerships are not unusual and integration of site features is a significant

advantage. Most content systems treat site affiliates as just another group of

users. However, syndication features provide a mechanism where site affiliates

can link to the ecommerce system using remote site automation functions that

allows the affiliate to actually use certain features of the ecommerce system.

Thus, syndication allows Web systems to share and integrate specific functions

as well as their corresponding databases. To attempt to automate such a system

from scratch would be a very difficult challenge for developers. That is why

content systems can be so attractive for the automation of these types of

ecommerce activities.

Remote site automation must support multiple APIs (Application Program

Interfaces) in order to provide true portability. This portability is important

should other sites have different architectures. Truly open content architecture

must support the following platforms and APIs:

1. Windows/Java Client

2. Javascript Browser

3. Coldfusion Server

4. Microsoft ASP Server

5. XML

Figure 16.8 shows the architecture for a syndication e-business system.

Automated Reporting

Content systems typically contain an administrative reporting function that can

provide valuable information about who is accessing the ecommerce system,

what Web pages users are visiting, how long users spend on the site, etc. These

reports allow managers to assess the effectiveness of the ecommerce system.

The infrastructure that provides this information is often implemented using a

logging architecture that captures all user events, including detailed information

about what screens and paths the user takes when they are on the system.

Sophisticated content systems allow managers to specify what information they

want to track, what level reports they need, and how often they need the infor-

mation. Furthermore, content systems usually have a DSS infrastructure that

allows managers to access the log database and query for information that might

not be available in one of the standard reports supplied with the package. These

query options support SQL-based logic and allow for export to other databases

or applications.

364 Analysis and Design of Information Systems

Server Engine Technologies

There are two types of server engines that most content systems use:

Macromedia’s Coldfusion and Microsoft’s Active Server Page (ASP). These

technologies provide the internal server engines that drive the architecture for

these products. The controversy over which engine best serves the needs of

ecommerce systems is not clear. One significant difference between the two

products, however, is that ASP can only operate on a Microsoft Windows server

platform. This does not suggest that ASP cannot interface with other hardware

platforms, but rather just limits the operation of the software on a Windows 2000

server. Essentially these server engines have built-in software that supports much

of the functionality that has been discussed thus far in this chapter, including

recording of ecommerce Web activities, integration, personalization, database

interface, directory services, and email interface. These products also support

various client configurations including mobile phones, Web services, hand-held

devices, and of course PCs. Figure 16.9 shows the Coldfusion architecture.

COLDFUSION SERVER

Coldfusion Markup Language

Charting &
Graphing

Search
Remote

Development
Third-Party
Extensions

Infrastucture Services

Execution Integration Security Clustering Management

Database
XML

Repository
Directory
Services

Email
Servers

Package
Applications

PC PDA Mobile Phone Web Service

Figure 16.9 Coldfusion server architecture.

16. Website Design and Architecture 365

Feature ASP Cold Fusion Comments

Syntax Script-based,
developer friendly,
supports Visual Basic
syntax

Tag-based, html
author friendly.
Support JavaScript
style scripting as
well

ASP supports
multiple, extensible
scripting languages.
Cold Fusion tag
syntax is simpler and
easier to use.

Database

Connectivity

Connectivity through
ADO COM object-
ODBC (Open
Database
Connectivity

Connectivity
through tags-
ODBC, has native
drivers, OLE DB,
ADO COM objects.

Cold Fusion tags are
easier to use.

Data Manipulation Direct, through ADO
objects

Implicit through tag
usage

ASP’s recordset
objects instead of
tags is more flexible
and powerful

Architecture ISAPI filter ISAPI, WSAPI,
NSAPI filters and
Apache

Cold Fusion runs on
more servers

Extendibility Server components
can be created in any
tool that produces
COM objects

C++, API, or any
COM objects.
CORBA support

Cold Fusion can use
all ASP components

Application
Framework

Dynamic, using server
side objects and event
programming

Dynamic or static. ASP is event based,
CF is include –based.

Debugging Error messages sent to
browser upon runtime

Configurable
debugging

Cold Fusion has
better debugging.

Web Server Support IIS only Any CGI compliant
Web server

Cold Fusion has an
edge

Figure 16.10 Comparison of Coldfusion and ASP.

The use of content products that either use Coldfusion or ASP does

create a certain level of proprietary activity in the architecture of the content

system. There are differences in data manipulation, database connectivity, and

syntax. Most of these proprietary features are invisible to developers and users.

Figure 16.10 is a comparison between Coldfusion and ASP features.

XML Support

Most content systems have or will offer support for XML by providing

conversion utilities that will automatically transfer text and graphics into the

XML format. This feature allows content that has been created outside the content

system to be easily imported into the content repository by simply converting

it first into an XML document. This feature also allows for content objects that

reside in the content system to be exported into a relational database so they

can be incorporated into the entire back-end repository of data. This further

supports the use of a content system as a central repository to transfer text and

graphics among databases, legacy systems, and Web sites. It also allows for

366 Analysis and Design of Information Systems

a better ecommerce system because information can be integrated with legacy

information without replacing them.

Email and Push Technologies

Content systems have built-in engines that allow for messaging among users

of the ecommerce system. This can be used to market new products and

services, and obtain valuable feedback from customers and consumers. The push

technology is quite sophisticated in that it allows users to be grouped into various

different categories. These categories can be nested, meaning that the number

of sub-categories is somewhat unlimited. Ultimately this means that the analyst

must consider this interface when designing the user profile information that is

captured to support Web personalization.

Another component of email and push technology is the support of chat

rooms. Many content products have built-in chat room software that can allow

users to share information. This may or may not be something that a business

wants to do, but there are certainly operations that can benefit from users that

can share information. The importance of having a chat room that is part of a

content system should be obvious. The value of being able to capture certain

parts of activity (this does not suggest violating any confidential conversations

that might be allowed), and the sharing of this information among users could

be a very powerful ecommerce feature.

Content Scheduling

I previously mentioned that most content systems provide the ability for content

to be “calendarized,” meaning that they can be automatically scheduled for

loading and removal from the ecommerce system. While this feature is available,

the analyst may need to develop a content schedule that assists business users

in managing the status of their content. The content schedule is a detailed

spreadsheet in which a business can monitor the progress of content development

and activity across the system. In essence it represents an inventory of what

content exists. The exact format of the content schedule will vary depending on

the type of ecommerce system and the type of content being used. Figure 16.11

ID Content
Type

Content
Owner

Source Due Date Status File
Name

Ecommerce
Activity

Template

1.1 Text with
Links

Marketing Current
Web site

9/15 In
process

Xyz.doc Marketing
Sales

Main Page

1.2 Text Production Previous
Web site

Inactive WProd Warehouse

1.3 Text with
Links

Shipping Ship
Request

Completed Active Ship.doc Fulfillment Orders

Figure 16.11 Content schedule example.

16. Website Design and Architecture 367

depicts a sample content schedule. Note that it contains active content, inactive

content, and content in process.

Summary

The purpose of this chapter was to provide best practices for site architecture.

The major emphasis was to implement a central content/workflow product that

could help centralize many utility type functions required for all Web systems.

As I have emphasized, the architecture is dependent heavily on how content is

created, maintained, and stored. The following are some of the problems that

analysts need to overcome to ensure that content systems are designed properly.

1. The value of spending money and time on investing in a content

management facility is critical. Management does not always under-

stand why content management systems are necessary or what they

ultimately do for the firm. Good content management products can cost

over $200,000.

2. Template design needs to occur early in the life cycle. If the analyst

does not include template design in the interviews it may be too late to

effectively implement them later. The message here is not to develop

the content management templates without first understanding what the

users need.

3. Content priority should be based on what the company feels is most

critical, not always what customers and consumers want. This means

that the analyst must be careful when gathering specifications from

focus groups. Ultimately, the company must decide what they want to

provide in an ecommerce system.

4. There needs to be an internal user organization to support the ownership

of the content. It is important for users to understand that IT does

not own the content responsibility, only the programming of it. Imple-

menting a workflow process means establishing ownership positions

for copywriting, editing, and approvals. This may require that some

firms invest in skilled Web writers and a dedicated content manager to

support the organization.

5. Content that needs to emanate from other departments or from third

parties needs to be clarified and inherently part of the workflow process.

The analyst may need to become the central person to coordinate where

there are holes in the flow of content in the organization.

6. The design of search criteria on the Web must be accomplished in

parallel to the design of content. Attempting to design search criteria

after content has been finalized can be difficult if not impossible. This

is particularly true with respect to XML documents that need to contain

the proper tags so they can be categorized properly, especially when

being stored in a relational database (see Chapter 8).

368 Analysis and Design of Information Systems

7. The development of the ecommerce system and the content management

system require that content be defined first. Therefore, a content system

should not be designed until all content analysis is completed. This

means that the analyst needs to produce another document, which

defines the content necessary for each Web page. Furthermore, he/she

must be cognizant at all times that content can be treated as objects for

reuse. The content management system becomes the equivalent repos-

itory for content object administration. The content system can store

content either in a folder system or in a relational database.

8. It is important that the marketing department or the marketing effort

be completed before using any content. Marketing efforts tend to be

dynamic and change up until the last moment. Changing rules on how

content is treated could be a setback in the development project.

9. The entire issue of content consistency is critical. This particularly

addresses inconsistencies in writing and presentation. This issue further

supports the need to have a centralized position that manages the writing

of text, and the presentation of photos and other graphics material. The

consistency of Web content becomes more difficult if the company is

less centralized.

10. The legality of content must be addressed. This means that certain

content needs to be reviewed and approved by a legal source. This

approval should be clearly defined in the content life cycle and discussed

with management so that the return of content occurs timely. Another

productive approach to help legal approval is to get as much input from

legal council as possible. I have found that many legal issues can be

provided to users so that most of the content sent to legal has a high

rate of approval. Issuing legal guidelines can be very effective.

11. It is important that the content for use by customers and consumers is

user-friendly to them, not just the writers. Content writers and designers

are not usually in touch with customers and consumers. Therefore they

do not understand how customers and consumers think or how they

make choices. Content effectiveness can be dramatically improved if

writers participated in some of the JAD sessions and focus groups.

12. The turnaround of content changes is slow and not in accordance with

the Web site schedules. Content writers are usually divorced from

the rest of the organization, particularly the IT staff. Content writer

schedules must be planned and managed as part of the Web schedule.

13. There needs to be a sophisticated system that assigns numbers or values

to content. Content managers should not rely on the content management

software to identify what the content means to the business. Failure to

do this will result in a system where all content can be found, but few

content managers know what it represents. This is particularly important

when tracking multiple versions of the same content.

14. Web content needs to be reviewed after it is populated on the Web site

and before it is published. This means that the analyst should have a

16. Website Design and Architecture 369

system that allows content to be viewed on a staged system prior to

being rolled in a live environment. This can get complicated when using

an automated update scheduling system, since the updates go directly to

the production system. There are two solutions to this dilemma. First,

the updates could be initially rolled to a staged system, reviewed, and

then moved to the production server. While this adds another step, it is

a safe way to go. It also requires that there is always someone available

to approve the content. Second, the updates can be done directly to the

production system, but must be reviewed immediately. This requires

that updates are made in the morning or at night, and that there are

support personnel available at those times.

15. Prototypes must be shown to users with their content included. To

demonstrate a prototype without content has no real value.

16. There is a need for audit trail of how customer and consumer requests

get resolved and recorded in the e-business system. I have seen too

many designs that do not walk through the process of user resolution

and end up with unhappy external users who have unresolved issues.

17. All departmental interfaces must be clarified as they relate to fulfilling a

user request. If this is not done, orders that require manual intervention

will get lost.

18. The process of Web branding and identity must be simplified. Web

sites typically cannot get finalized unless the image of the business is

clear and simple.

19. There needs to be a constant communication between marketing activ-

ities and Web design activities. Too often market personnel are working

on campaigns that have not been discussed with ecommerce support

staff. New marketing content tends to get thrown at Webmasters without

enough prior notice and planning.

20. Product rules must be clear, especially in terms of how they are

purchased, their price, and shipping criteria.

17
Concepts of ISO 9000

Developing a System of Procedures

Perhaps one of the most significant challenges in analysis today is its role in the

software life cycle. There has been much criticism of the lack of discipline applied

to software development projects and personnel in general, and we continue

to be an industry that has a poor reputation for delivering quality products on

schedule. Although many organizations have procedures, few really follow them

and fewer still have any means of measuring the quality and productivity of

software development. A system of procedures should first be developed prior to

implementing a life cycle that can ensure its adherence to the procedure. These

procedures also need to be measured on an ongoing basis. This book restricts

its focus to the set of procedures that should be employed in the analysis and

design functions.

The process of developing measurable procedures in an organization must

start with the people who will be part of its implementation. Standard procedures

should not be created by upper management, as the steps will be viewed as a

control mechanism as opposed to a quality implementation. How then do we get

the implementors to create the standards? When examining this question, one

must look at other professions and see how they implement their standards. The

first main difference between computer professionals and members of many other

professions is they lack a governing standards board like the American Medical

Association (AMA) or the American Institute of Certified Public Accountants

(AICPA). Unfortunately, as mentioned in previous chapters, it seems unlikely

that any such governing board will exist in the near future. Looking more closely

at this issue, however, we need to examine the ultimate value of a governing

board. What standards boards really accomplish is to build the moral and profes-

sional responsibilities of their trade. Accountants, attorneys and doctors look

upon themselves as professionals who have such responsibilities. This is not to

imply that governing boards can resolve every problem, but at least they can

help. With or without the existence of a standards board, analysts within an

organization must develop the belief that they belong to a profession. Once this

identification occurs, analysts can create the procedures necessary to ensure the

quality of their own profession. Currently, few analysts view themselves as part

of a profession.

17. Concepts of ISO 9000 371

If analysts can create this level of self-actualization, then the group can begin

the process of developing quality procedures that can be measured for future

improvement. The standard procedures should be governed by the group itself

and the processes integrated into the software life cycle of the organization. In

fact, analysts should encourage other departments to follow the same procedures

for implementing their respective quality procedures.

Although not typically required, many firms employ ISO 9000 as a formal

vehicle to implement the development of measurable procedures. ISO 9000

stands for the International Organization for Standardization, an organization

formed in 1947 and based in Geneva. As of this writing, 91 member countries

are associated with it. ISO 9000 was founded to establish international quality

assurance standards focused on processes rather than on products.

Why ISO 9000?

ISO 9000 offers a method of establishing agreed-upon quality levels through

standard procedures in the production of goods and services. Many interna-

tional companies require that their vendors be ISO 9000 compliant through

the certification process. Certification requires an audit by an independent firm

that specializes in ISO 9000 compliance. The certification is good for three

years. Apart from the issue of certification, the benefits of ISO 9000 lie in its

basis for building a quality program through employee empowerment. It also

achieves and sustains specific quality levels and provides consistency in its

application. ISO 9000 has a number of subcomponents. ISO 9001, 9002, and

9003 codify the software development process. In particular, 9001 affects the

role of the analyst by requiring standards for design specifications and defines

20 different categories of systems. Essentially, ISO 9000 requires three basic

things:

1. Say what you do.

2. Do what you say.

3. Prove it.

This means that the analyst needs to completely document what should occur

during the requirements process to ensure quality. After these procedures are

documented, the analyst needs to start implementing them based on the standards

developed and agreed upon by the organization. The process must be self-

documenting; that is, it must contain various control points that can prove at any

time that a quality step in the process was not only completed but done within

the quality standard established by the organization. It is important to recognize

that ISO 9000 does not establish what the standard should be but rather that

the organization can comply with whatever standards it chooses to employ. This

freedom is what makes ISO 9000 so attractive. Even if the organization does

not opt to go through with the audit, it can still establish an honorable quality

infrastructure that:

372 Analysis and Design of Information Systems

• creates an environment of professional involvement, commitment and

accountability,
• allows for professional freedom to document the realities of the process

itself within reasonable quality measurements,
• pushes down the responsibilities of quality to the implementor as

opposed to the executive,
• identifies where the analyst fits in the scope of the software life cycle,
• locates existing procedural flaws,
• eliminates duplication of efforts,
• closes the gap between required procedures and actual practices,
• complements the other quality programs that might exist,
• requires that the individuals participating in the process be qualified

within their defined job descriptions.

How to Incorporate ISO 9000 into Existing Software
Life Cycles

The question now is how to incorporate an ISO 9000-type process for the analyst

function and incorporate it into the existing software life cycle. Listed below are

the essential 9 steps to follow:

1. Create and document all the quality procedures for the analyst.

2. Follow these processes throughout the organization and see how they

enter and leave the analyst function.

3. Maintain records which support the procedures.

4. Ensure that all professionals understand and endorse the quality policy.

5. Verify that there are no missing processes.

6. Changes or modifications to the procedures must be systematically

reviewed and controlled.

7. Have control over all documentation within the process.

8. Ensure that analysts are trained and that records are kept about their

training.

9. Ensure that constant review is carried out by the organization or through

third party audits.

In order for ISO 9000 guidelines to be implemented, it is recommended that

the analyst initially provide a work-flow diagram of the quality process (see

Figure 17.1).

Figure 17.1 reflects some of the steps an analyst must perform in a quality

process. Note that certain steps reflect that there is an actual form that needs

to be completed in order to confirm the step’s completion. Figure 17.2 illus-

trates document AN0010; Figure 17.3 shows AN0050; and Figure 17.4 displays

AN0160.

17. Concepts of ISO 9000 373

Figure 17.1 A sample work-flow diagram.

These forms confirm the activities in the quality work-flow process outlined

by the analyst. At any time during the life cycle, an event can be confirmed by

looking at the completed form.

In order to comply with the documentation standards, each form should

contain an instruction sheet, as shown in Figure 17.5. This sheet will ensure

that users have the appropriate instructions. Confirmation documents can be

implemented in different ways. Obviously if forms are processed manually, the

documentation will contain the actual storage of working papers by project.

Such working papers are typically filed in a documentation storage room similar

to a library where the original contents are secure and controlled. Access to

the documentation is allowed, but must be authorized and recorded. Sometimes

forms are put together using a word-processing package such as Microsoft Word.

The blank forms are stored on a central library so that master documents can be

accessed by the analyst via a network. Once the forms are completed, they can

be stored in a project directory. The most sophisticated method of implementing

ISO 9000 is to use a Lotus Notes electronic filing system. Here, forms are filled

374 Analysis and Design of Information Systems

Figure 17.2 ISO 9000 Project Status Report.

out and passed to the appropriate individuals automatically. The confirmation

documents then become an inherent part of the original work flow. In any event,

these types of forms implementation affect only automation, not the concept of

ISO 9000 as a whole.

Interfacing IT Personnel

Wementioned earlier that ISO 9000 requires qualified personnel. This means that

the organization must provide detailed information about the skill set require-

ments for each job function. Most organizations typically have job descriptions

17. Concepts of ISO 9000 375

Figure 17.3 ISO 9000 Analysis Acknowledgment form.

that are not very detailed and tend to be vague with respect to the specific

requirements of the job. In addition, job descriptions rarely provide information

that can be used to measure true performance. Questions such as “How many

lines of code should a programmer generate per day?” cannot be measured effec-

tively. There is also a question about whether lines of code should be the basis

of measurement at all. A solution to this dilemma is to create a job description

matrix, which provides the specific details of each job responsibility along with

the necessary measurement criteria for performance (see Figure 17.6).

Figure 17.4 Quality Assurance Test Plan (AN0160).

376 Analysis and Design of Information Systems

Figure 17.5 An ISO 9000 form instruction page.

The document in Figure 17.6 is a matrix of responsibilities for an analyst. Note

that the analyst has a number of efficiency requirements within the managing

engagements (projects) responsibility. Efficiency here means that the analyst

must perform the task at a certain indicated level to be considered productive

at that task. To a degree, efficiency typically establishes the time constraints to

deliver the task. Measurement defines the method used to determine whether the

efficiency was met. Reports are simply the vehicle through which the analyst

proves that the task was completed and on what basis.

The job description matrix represents a subset of the entire job description that

focuses strictly on the procedural and process aspects of the individual’s position.

It not only satisfies ISO 9000, but represents a healthier way of measuring

17. Concepts of ISO 9000 377

Figure 17.6 Job description matrix.

individual performance in an IT environment. Most individuals should know

their exact performance at any time during the review period. Furthermore, the

matrix is an easy tool to use for updating new or changed performance tasks.

Committing to ISO 9000

We have outlined the sequential steps to implement an ISO 9000 organization.

Unfortunately, the outline does not ensure success, and often just following the

suggested steps leads to another software life cycle that nobody really adheres

to. In order to be successful, a more strategic commitment must be made. Let’s

outline these guidelines for the analyst functions:

• A team of analysts should meet to form the governing body that will

establish the procedures to follow to reach an ISO 9000 level (this does

not necessarily require that certification be accomplished).
• The ISO 9000 team should develop a budget of the milestones to be

reached and the time commitments that are required. It is advisable that

the budget be forecasted like a project, probably using a Gantt chart to

develop the milestones and time-frames.
• The ISO 9000 team should then communicate their objectives to the

remaining analysts in the organization and coordinate a review session

so that the entire organization can understand the benefits, constraints

and scope of the activity. It is also an opportunity to allow everyone

378 Analysis and Design of Information Systems

to voice their opinions about how to complete the project. Therefore,

the meeting should result in the final schedule for completing the ISO

9000 objective.
• The ISO 9000 team should inform the other IT groups of its objec-

tives, although analysts should be careful not to provoke a political

confrontation with other parts of the IT staff. The communication should

be limited to helping other departments understand how these analyst

quality standards will interface with the entire software life cycle.
• The work flows for the analyst tasks must be completed in accordance

with the schedule such that everyone can agree to the confirmation

steps necessary to validate each task. It is important that the ISO

9000 processes allow for a percentage of success. This means that not

every process must be successful 100% of the time, but rather can be

acceptable within some fault tolerance level. For example, suppose that

the analyst must have a follow-up meeting with the users within 48

hours after a previous step has been completed. It may not be realistic

to meet this goal every time such a meeting is necessary. After all, the

analyst cannot always force users to attend meetings in a timely way.

Therefore, the ISO 9000 step may view this task as successful if it

occurs within the 48 hours 80% of the time, that is, within a 20% fault

tolerance.
• All task steps must have verification. This will require that standard

forms be developed to confirm completion. While we have shown

samples of these forms earlier, the ISO 9000 team should beware

of producing an unwieldy process involving too many forms. Many

software life cycles have suffered the consequences of establishing too

many checkpoints. Remember, ISO 9000 is a professional’s standard

and should cater to the needs of well-trained professionals. Therefore,

the ISO 9000 team should review the initial confirmation forms and

begin the process of combining them into a smaller subset. That is,

the final forms should be designed to be as generic as possible by

confirming multiple tasks.
• There should be meetings held with the analysis group that focus on the

alternatives for automating the confirmation forms as outlined earlier

in this chapter. It is advisable that this topic be confirmed by the group

since their full cooperation is needed for the success of the program.
• Allow time for changing the procedures and the forms. Your first effort

will not be the final one; therefore, the ISO 9000 team must plan to meet

and review the changes necessary to make it work. Analysts should

be aware that the opportunity for change always exists as long as it

conforms to the essential objectives of ISO 9000.
• The ISO 9000 project should be at least a one-year plan, from inception

of the schedule to actual fulfillment of the processes. In fact, an organi-

zation must demonstrate ISO 9000 for at least 18 months prior to being

eligible for certification.

17. Concepts of ISO 9000 379

• The ISO 9000 group needs to be prepared and authorized to make

changes to the job description of the analyst. This may require the

submission of requests and authorizations to the executive management

team or the human resources department. It is important not to overlook

this step since an inability to change the organization structure could

hinder the success of the ISO 9000 implementation.

As we can see from the above steps, establishing an ISO 9000 group is a

significant commitment. However, its benefits can include a professional organi-

zation that controls its own quality standards. These standards can be changed on

an ongoing basis to ensure compliance with the business objectives and require-

ments of the enterprise. Certification, while not the focus of our discussion, is

clearly another level to achieve. Most companies that pursue certification do so

for marketing advantage or are required to obtain it by their customers. Imple-

menting ISO 9000 should not require that the entire company conform at once; in

fact it is almost an advantage to implement it in a phased approach, department

by department. The potential benefits of ISO 9000 concepts may fill the void in

many of the IT organizations which lack clearly defined quality standards.

Problems and Exercises

1. Explain why ISO 9000 represents a system of procedures.

2. What are the three fundamental things that ISO 9000 tries to establish?

3. What are the overall benefits of ISO 9000?

4. How is ISO 9000 incorporated into the life cycle?

5. Why are work flows the most critical aspect of developing the ISO

9000 model?

6. Why are forms used in ISO 9000?

7. How are personnel affected by ISO 9000?

8. What is a job description matrix?

9. What steps are necessary for an organization to adopt ISO 9000?

10. Does ISO 9000 need to be implemented in all areas of the business?

Explain.

Appendix A
Case Study: The Rainforest Book
Company Problem

The following four events are services provided by the Rainforest Book

Company:

Event I

A customer wishes to set up an account to purchase books. The Sales Department

at the Rainforest Book Company receives the request and sends out a blank

Account Request form. The form has space for the following information:

Customer Name

Customer Address

Customer Phone Number

Customer Fax Number

Credit Card Information (if applicable)

Credit Card Number

Type of Credit Card

Expiration Date

Cardholder’s Name

ZIP or postal code of the billing address for this card

The customer sends back a completed Account Request form. The “for office

use only” section is filled out by the Sales Group. This information includes

the processor’s identification, the date the account is opened, and a customer

account number that is assigned. The customer account file is updated, and the

Account Request form is filed. The Account Processing Department receives

notification of the new account and sends the customer a confirmation letter.

This letter notifies the customer of their customer account number. This number

can be used to expedite the ordering process.

Event II

A customer makes a book inquiry. The customer can request a book by giving

any of the following information: (book title and book author) or ISBN number.

Appendix A 381

The Sales Department first verifies that the customer has a valid account. If the

book is found based upon the information that was given, the customer receives

the following information about the book:

Title of the book

Author of the book

Paperback/Hardcover

Price

Date Published

Availability

Reviews

If the book is not available in stock, all of the above information is returned

and an out-of-stock notice is sent specifying the approximate date the book will

be in stock. If the book is no longer in print and has been discontinued, an

out-of-print notice is sent to the customer. This out-of-print notice includes a list

of Used Book Stores in the customer’s country.

Event III

A customer decides to purchase books, places the order for the books, and

requests a book order form from the Sales Department. A blank book order form

is forwarded to the customer. The customer account number and the date the

order is being placed is entered. The following information is included in the

book order:

Customer Account Number

Date Order is placed

Title of the Book

Author

Paperback or Hardcover

ISBN, if available

In addition, the customer indicates the shipping option by entering the

following information:

Standard Shipping or

Second Day Air or

Next Day Air

Placed orders are sent to the warehouse, and the customer account file

is updated. The warehouse issues an order confirmation when the books are

shipped. The invoice is generated and then sent to the customer. The customer

then sends the invoice slip and a payment or authorizes the use of a credit card

on file to the Accounting Department. The Accounting Department processes

the payment and updates the customer account.

382 Analysis and Design of Information Systems

Event IV

The Sales Department generates a monthly sales report and forwards it to

Management.

Assignment

1. Create DFDs for the four events.

2. Decompose the four top-level DFDs into their respective functional

primitives.

3. Create the data dictionary entries for all the named data flows found in

the child diagrams from (2). The entries in the resulting data dictionary

should be reported in alphabetical order.

4. Write process specifications for all of the functional primitives from (2).

Case Study created by Cynthia Hernandez.

Appendix B
Case Study: The CGT Rental
Service Problem

The following five events represent the services provided by the the CGT rental

agency:

I. Events

1. Potential renters call CGT and ask them if apartments are available for

either beachfront or mountainside views. All callers have their infor-

mation recorded and stored in an information folder. The most important

information for CGT to obtain is the caller’s maximum monthly rent

limit.

2. CGT examines their database and searches for potential matches on the

properties requested.

3. People call the agency to inform them that they have an apartment for

rent. The agency only deals with rentals for beach fronts and mountain

sides. All other calls are forwarded to their sister organization that

handles other requests.

4. Fifteen days before rent is due, CGT sends renters their monthly

invoices.

5. Sixty days before the lease is up, CGT sends out a notice for renewal

to the renter.

II. High Level Data Elements

The following data elements should be broken down to their elementary level

and added, if necessary.

Renter Name

Renter Address

Renter Phone Number

Maximum Monthly Rent

Rental Property

Rental Monthly Rent

Rental Number Bedrooms

384 Analysis and Design of Information Systems

Rental Dates

Rental Owner Information

Rental Number of Blocks from Beach

Rental Beach Side

Rental Mountain Range

Rental Mountain Ski Area

Rental Mountain Lake Site

III. Assignment

1. Draw the Data Flow Diagrams (DFD) at the Functional Primitive level.

2. From the DFD perform Logical Data Modeling and show 1st, 2nd and

3rd Normal Forms.

3. Draw the final ERD.

4. Produce a CRUD diagram.

5. What does the CRUD diagram show us?

Appendix C
Case Study: The Collection
Agency Problem

I. Background

Statement of Purpose

The purpose of the ABC organization is to process customer payments on credit

cards. ABC processes these payments for banks and other financial institutions.

Currently, the operation is done manually, and you have been called in as a

consultant to do the analysis for an automated system.

The Event List

During your analysis, you have met with departments and determined that there

are essentially 8 events as follows:

Event 1

Mary gets a delivery of mail every morning from a messenger who picks up

the mail at the local Post Office. Mary starts her day by opening and processing

the mail. There are, however, a number of types of information contained in an

envelope:

1. A check with a payment form

2. Cash only

3. Check only

4. Cash with a payment form

5. Payment form only

Note: All of the above can sometimes be accompanied with correspondence

from the customer.

The information on the payment form is necessary to process the payment.

The payment form is shown on Attachment I.

Mary fills in the “FOR OFFICE USE ONLY” portion and sends the Payment

Form and cash/check to Joe, the Bookkeeper. Correspondence is forwarded to

the Support Dept (including forms with no payment).

Payments made without a form are sent to Janet in the Research Department.

386 Analysis and Design of Information Systems

ATTACHMENT I

PAYMENT FORM

DATE INVOICED:_/_/_ PERIOD COVERED: _/_/_ TO_/_/_

ACCOUNT NO.:__________(30/NUMERIC)

NAME:____________________(30/ALPHANUMERIC)

ADDRESS:________________________(30/ALPHANUMERIC)

_________________________(30/ALPHANUMERIC)

STATE:____(SELF-DEFINING) CITY:_______(15/ALPHANUMERIC)

ZIPCODE:______(9/NUMERIC)

____ADDRESS CORRECTION (Y/BLANK)

===

(A) (B) (C)

PREVIOUS BAL:$____.__ NEW PURCH:$____.__

PAYMENTS:$____.__

OUTSTANDING BALANCE:$______.___(A+B-C)

MINIMUM PAYMENT DUE:$______.___

PAST AMOUNT DUE: $______.___

PAYMENT DUE THIS PERIOD: $______.___

AMOUNT ENCLOSED: $______.___

===

FOR OFFICE USE ONLY

OPERATOR CODE:____(4/NUMERIC)

DATE RECEIVED:_/_/_ AMOUNT PAID:$______.___

CORRESPONDENCE:____(Y/N) CASH:____(Y/N)

Appendix C 387

Event 2

Janet receives payments from Mary and begins a process of looking up the

information that the customer has provided. This can typically include Name,

Address, etc. If the customer account number is located, Janet fills out a blank

Payment Form to substitute for the original and forwards the form and the check

to Joe, the Bookkeeper. If the account number is not found, a substitute Payment

Form is still developed with whatever information is available. These payments

are also forwarded to Joe in bookkeeping.

Event 3

The Support Department receives the correspondence from Mary. The corre-

spondence requires written response. Correspondence falls into 4 categories:

1. An error in the outstanding balance or address of a customer. This will

require support to fill out a balance correction form (Attachment II).

This Form is forwarded to the Correction Dept.

2. A complaint about service. The complaint is researched and a written

response is sent to the customer. A monthly summary report of

customers with complaints is also forwarded to the department manager.

3. A client default request, stating that the customer cannot pay due to a

hardship. The Technician will send the customer a request for default

form (Attachment III).

4. A request for default form (3) is received for processing. These are sent

to the Correction Department.

Event 4

Joe, the bookkeeper receives payments. Payments are posted to the account

master ledger. A deposit slip is prepared for identified account payments.

Unknown account payments are deposited into a separate bank account called

“Unapplied Payments.” The payment forms are filed by account number. A daily

report of payments by customer (including unapplied payments) is produced.

Event 5

The Correction Department receives balance correction forms or requests for

default notices; the appropriate adjustments are made to the account master

ledger. The forms are filed by type and account number. A daily and monthly

report of adjustments is produced.

388 Analysis and Design of Information Systems

ATTACHMENT II

BALANCE CORRECTION FORM

DATE:_/_/_

SUPPORT TECHNICIAN:__________(30/ALPHANUMERIC)

ACCOUNT NO.:_______________(30/NUMERIC)

___ADDRESS CORRECTION (Y/BLANK)

NAME:____________________(30/ALPHANUMERIC)

ADDRESS:____________________(30/ALPHANUMERIC)

___________________(30/ALPHANUMERIC)

STATE:___(SELF-DEFINING) CITY:______(15/ALPHANUMERIC)

ZIPCODE:______(9/NUMERIC)

===

CURRENT BALANCE:$______.___ (A)

ADJUSTMENT AMT:$______.___ (B)

NEW BALANCE:$______.___ (A+/−B)

===

AUTHORIZATION CODE:__________(10/NUMERIC)

SUPERVISOR NO:________(8/NUMERIC)

SIGNATURE:____________________

Event 6

The department manager receives the monthly complaint report. After analyzing

the information, a summary report is produced by Complaint Type (e.g., unhappy

with service, credit card problem, and wrong outstanding balance) and the

department manager issues a report to management. A quarterly client survey

questionnaire on service is sent to customers. This report includes statistics on

client satisfaction which resulted from the previous questionnaire.

Appendix C 389

ATTACHMENT III

REQUEST FOR DEFAULT

DATE:__/__/__

SUPPORT TECHNICIAN: _______________(30/ALPHANU-

MERIC)

ACCOUNT NO.:_______________(30/NUMERIC)

NAME:_______________(30/ALPHANUMERIC)

ADDRESS:______________(30/ALPHANUMERIC)

_______________(30/ALPHANUMERIC)

STATE:____(SELF-DEFINING) CITY:______(15/ALPHANUMERIC)

ZIPCODE:______(9/NUMERIC)

===

REASON FOR DEFAULT

(CHECK ONE)

1. ____ DEATH (ATTACH DEATH CERTIFICATE) NO PAYMENT

REQUIRED

2. ____ BANKRUPTCY (ATTACH LEGAL DOCUMENT) 180 DAY

TERMS

3. ____ REQUEST FOR NEW PAYMENT TERMS 60 OR 90 DAY

TERMS

===

FOR OFFICE USE ONLY

OPERATOR CODE:____(4/NUMERIC)

DATE RECEIVED:__/__/__ ACTION CODE:___(1/2/3)

Event 7

Joe, the bookkeeper, receives bounced checks from the bank. He fills out a

balance correction form and forwards it to the Correction Department such that

the outstanding balance can be corrected. Joe sends a bounced check letter to the

customer requesting another check plus a $15.00 penalty (this is now included

as part of the outstanding balance). Checks are never re-deposited.

390 Analysis and Design of Information Systems

Event 8

Joe, the bookkeeper, issues a weekly update report on the balance of each account

where there was a transaction during that week.

II. Assignment

1. Based on the above statement of purpose and event list, develop pre-

liminary data flow diagrams (DFDs) on a separate sheet for each event.

2. Level each DFD to at least three levels. Functional primitives must be

accompanied by a process specification (using psuedocode).

3. Develop the ERD in 3rd normal form.

4. Develop the data dictionary entries from the DFDs, ERDs, process

specifications or other data elements. Your data dictionary should be in

alphabetical order and reduced to the elementary data element level.

5. Create a CRUD diagram.

6. Map the DFD, ERDs and CRUD to an object diagram.

Appendix D
Case Study: The Mobile Telephone
Company Problem

A Global System for Mobile communications (GSM) cellular telephone company
provides wireless telephone equipment and services for customers. GSM
telephones are packaged for sale in the form of a “pre-sale-distribution-kit” at the
company’s product assembly center. Each kit consists primarily of a Telephone
Handset and a SIM card. (A “Subscriber Identity Module” is a credit card-like
device that is inserted into digital cellular phones and identifies each customer
to the telephone system.) The telephone handset manufacturer assigns each
and every handset a unique International Mobile-communications Equipment
Identifier (IMEI) number.

An individual may own more than one SIM, but must own at least one SIM
to be considered a Customer. A customer may own more than one telephone
handset; however, handset ownership is not a requisite. The SIM is inter-
changeable among the various handset models sold by the company. (In practice,
nearly all customers own at least one telephone handset. Following the initial
sale, some customers chose to “upgrade” their handset to a smaller, lighter, more
functional model.)

In the back office, the company maintains an inventory of available, yet
unassigned, telephone numbers. To make the technological leap from wired-
telephone-number to wireless-telephone-number, each conventional Telephone
Number is assigned to a Mobil Identification Number (MIN). Each unique
MIN will ultimately be associated with a specific customer’s SIM card when a
new account is activated. A unique International Mobile SIM Identifier (IMSI)
number identifies each SIM.

For billing purposes, the company maintains a record of each Call Delivery
Notification (CDN) event. The unique identifier for the CDN is a concatenation
of the CDN_id + IMSI.

Assignment

Using the crow’s-foot notation method, prepare an Entity Relation Diagram
(ERD) based on the following business case. Provide only the primary key(s)
(PK) and foreign key pointers (FK) for each entity, as needed. Do not include
other attributes.
Case Study created by Greg Vimont.

Appendix E
Case Study: Northwest
General Practitioner’s Office

The following represents information obtained during an interview with the

Northwest General Practitioner’s office:

Potential patients contact the Northwest General Practitioner’s office to make

appointments to see a General Practitioner. All patient information is stored in

a patient medical history folder.

The patient must provide the following information:

Name

Social Security Number

Address

Home Telephone Number

Work or Mobile Telephone Number

Insurance Provider Name

Insurance Provider ID

Name of Primary Insurance Holder

Reason for Visit

Medical History

Family Medical History

List of Allergies

The office examines the patient medical history file and tries to make an

appointment for the patient to see the General Practitioner the patient has

specified as his/her “preferred” doctor. If the patient’s preference is not available

at the time the patient requests for the appointment, then the office provides the

patient with a list of practitioners who are available at that time.

Additionally, practitioners join the Northwest General Practitioner’s office

every day. Their information is stored in a practitioner’s information folder.

A new practitioner must provide the following information:

Name

Social Security Number

Address

Home Telephone Number

Work or Mobile Telephone Number

Specialty (or list of specialties), if applicable

Hospital Affiliations, if applicable

Analysis and Design of Information Systems 393

Seven days before patients are due to come in for their appointments, the

office begins to send reminder notices to them. There are three reminder notices

sent. The first is sent seven days beforehand, the second is sent three days

beforehand, and the third reminder takes place one day beforehand, via an

automated phone call.

For those patients who are billed for services, a notice is mailed to them 30

days before payment is due.

Assignment:

• Draw one data flow diagram depicting the logical equivalent for the

above business process description.
• Level the diagram to its functional primitives.
• To the best of your ability, provide the data elements you will need

for your data entities. NOTE: Pay particular attention to the patient

medical history file, the physician information file, any file that keeps

track of appointments, and, for extra credit, the invoice file.
• Create an entity relational diagram depicting the relationship between

your tables. NOTE: You should end up with at least eight entities, if

not more.

Case Study created by Melanie Caffrey

Appendix F
Case Study: University Student
Enrollment Database

The following enrollment form has been obtained from Southeast University’s

Computer Science program:

Student Enrollment Form

Last Name: ______________________________

First Name: ______________________________

Social Security Number: ______________________________

Address Line 1: ______________________________

Address Line 2: ______________________________

City: ______________________________

State: ______________________________

Zip Code ______________________________

Course # Section # Course Cost

__________ ___________ ___________

__________ ___________ ___________

__________ ___________ ___________

__________ ___________ ___________

__________ ___________ ___________

Total Amount Due: ___________

The students are choosing their courses from the following Course List:

Course # Course Name Section # Section Time Course Cost

QC2500 Intro to Programming 1 9:00 A.M. 800.00

2 10:30 A.M. 800.00

3 3:15 P.M. 800.00

4 6:00 P.M. 800.00

QC2625 Intro to Analysis 1 11:00 P.M. 910.00

2 4:00 P.M. 910.00

3 5:30 P.M. 910.00

QC2790 Intro to Web Design 1 12:45 P.M. 725.00

2 2:30 P.M. 725.00

3 6:00 P.M. 725.00

Assignment: Using the above form, create a normalized ERD. Make sure you are in 3rd

normal form.

HINT: You should end up with at least four entities, possibly five.

Case Study created by Melanie Caffrey

Glossary

Abstract object An object that is not at the lowest level in a class. Abstract

objects are not executed directly.

Acceptance test plans Set of tests that, if passed will establish that the software

can be used in production.

Alternate key An attribute that uniquely identifies a row of occurrence in an

entity. An alternate key cannot be the primary key.

Application server The middle tier of the three-tier client/server architecture.

The application server contains common programs that are available to frontend

workstation computers.

Attribute A component of an entity or object. An attribute may or may not be

an elementary data element.

Back-end server The top level of a tiered architecture. This tier usually houses

databases that are required to support applications.

Border Also known as a “frame,” defines the boundary of a window view.

Business process reengineering (BPR) A method to redesign existing applica-

tions.

Business specification A document that reflects the overall requirements of a

process or system written in a prose format. The focus of the business specifi-

cation is to provide the user with enough information so they can authorize the

development of the technical requirements.

Cascading Multiple iterations of subtypes. A subtype entity within a subtype.

A subtype that cascades is also a supertype to its cascading subtypes.

CASE (Computer-Aided Software Engineering) Products used to automate

and implement modeling tools and data repositories.

Case A format for developing application logic in a process specification.

396 Analysis and Design of Information Systems

Character-based screens Support only keyboard-driven data entry. Icons and

graphical symbols facilitated through the use of a mouse are not supported (or

required).

Class A group of objects that have similar attributes and methods and typically

have been put together to perform specific tasks.

Client An application that requests services from applications.

Cohesion The measurement of an application’s self-dependence.

Concrete object The lowest-level object in a class.

Control bar Represents an array of choices and commands that need to be

viewed in an accessible area of the screen and are maintained in the display

area. Examples include button bars, color or pattern palettes, toolbars, rulers,

and ribbons.

Coupling The measurement of an application’s dependency on another appli-

cation.

Crow’s foot A method of showing the relationship of association between two

entities.

CRUD diagram An association matrix that matches the types of data access

between entities and processes. CRUD represents create, read, update, and delete.

Data dictionary (DD) A dictionary that defines data. A component of the data

repository.

Data flow Component of a data flow diagram that represents data entering or

leaving a process, external, or data store.

Data flow diagram (DFD) A tool that shows how data enter and leave a

process. A data flow diagram has four possible components: data flow, data

store, external, and process.

Data replication The process that copies data from one file to another, ensuring

that all copies are synchronized with each other.

Data repository A robust data dictionary that contains information relating to

data element behavior.

Glossary 397

Data store Component of a data flow diagram that represents data that can be

accessed from a particular area or file. A data store is sometimes call “data-

arrest.”

Data synchronization The process of ensuring that copies of the same data are

equivalent.

Data warehousing A de-normalized database created to focus on decision

support activities. Data warehouses hold historical information and cannot be

used to update data.

Dynamic line library (DLL) An area that stores the active version of an object.

Object classes are formed from DLLs at execution time.

Elementary data element A functionally decomposed data element.

Encapsulation Attributes of an object that can be accessed only through the

object’s methods.

Entity An object of interest about which data can be collected. Entities can

consume a number of attributes.

Entity relational diagram (ERD) A diagram that depicts the relationships

among the stored data.

Executive sponsor An individual at an executive level who has responsibility

for a business area. The executive sponsor is a defined role in JAD sessions.

External Component of a data flow diagram that represents a provider or user

of data that is not part of the system. Externals are therefore boundaries of the

system.

Facilitator An impartial individual responsible for controlling the flow of JAD

sessions.

Firewall A network component, usually in the form of a server, that provides

access security to the network. Security is accomplished by the firewall’s ability

to validate data packets that attempt to enter the network.

Front-end client Workstations that function within a client/server archi-

tecture. Workstations are typically microcomputers running an operating system;

however, a client can also be a dumb terminal.

Functional decomposition The process for finding the most basic parts of a

system.

398 Analysis and Design of Information Systems

Functional overview A subset view of a specification. The subset usually covers

a particular function of the system.

Functional primitive A functionally decomposed data flow diagram.

Gantt chart A tool that depicts progress of tasks against time. The chart was

developed by Henry L. Gantt in 1917.

Graphical user interface (GUI) A screen interface that adopts the use of icons

and symbols to represent functions that a user can implement.

HTTP (hypertext transfer protocol) A standard format for publishing infor-

mation in a hypertext format known as HTML.

Inheritance The process by which child objects effectively retain all of the

capabilities of their parents. Inheritance is implemented using an inverted tree

structure.

Instantiation Independent executions of the same class.

InternetA cooperative message-forwarding system that links computer networks

all over the world.32

Internet/Intranet development Application that operates within a browser

product such as Netscape or Internet Explorer.

Intranet A network confined to a single organization or unit.33

ISO 9000 International Organization for Standardization, quality standard 9000.

Job description matrix The portion of an individual’s job description that

focuses strictly on the procedural and process aspects of the individual’s position.

Joint application development (JAD) Amethod of developing the requirements

for a system by focusing on group sessions. The sessions are typically under the

direction of a facilitator.

Key An attribute of an entry or database that uniquely identifies a row, occur-

rence, or record.

32 Douglas Downing, Michael Covington, and Melody Mauldin Covington, Dictionary

of Computer and Internet Terms, 6th ed., Barron’s Educational Series, Inc., p. 239.
33 Douglas Downing, Michael Covington, and Melody Mauldin Covington, Dictionary

of Computer and Internet Terms, 6th ed., Barron’s Educational Series, Inc., p. 242.

Glossary 399

Key business rules Business rules of key attributes that are enforced at the

database level (as opposed to the application level).

Legacy system An existing automated system.

Leveling Functional decomposition of a data flow diagram. Each decomposition

is called a “level.”

LINUX Derivative UNIX operating system. Linux was developed by Linus

Torvalds and was created as a free operating system.

Local area network Separate computers interacting together. A server or peer

connection establishes a gateway of communication among each computer

or node.

Logic data modeling (LDM) A set of procedures that examines an entity to

ensure that its component attributes should reside in that entity, rather than being

stored in another or new entity.

Logical equivalent An abstraction of the translation from physical requirements

to software.

Long division An abstraction of the relationship of arithmetic formulas to

functional decomposition.

Menu bar Is used to organize and provide access to actions that are listed

horizontally across the top of the screen and below the title bar.

Metadata Data about the data being sent or received in a client/server network.

Method A process specification that invokes services in an object.

Microsoft exchange Microsoft’s e-mail system, which operates under the

Windows 95/98/NT and 2000 environments.

MiddlewareMiddle tier of the three-tiered client/server architecture. Middleware

contains the necessary APIs, protocols, metadata, gateways, and object

messaging necessary to provide communications across client/server networks.

MIME (Multipurpose Internet mail extension) An e-mail protocol used to

send messages across the Internet.

Mutual exclusivity Used specifically in relation to supertype/subtype entities.

Subtypes that are mutually exclusive cannot coexist with the same supertype

entity.

400 Analysis and Design of Information Systems

Network workstation Desktop computer connected to a LAN or WAN.

Normalization The elimination of redundancies from an entity.

Object A cohesive whole made up of two essential components: data and

processes. The data are often referred to as attributes and processes as services.

Open systems Standards in applications software that allow such software to

run across multiple operating system environments.

Persistence An object that continues to operate after the class or operation that

invoked it has finished.

Polymorphism Dynamic change in the behavior of an object based on its

execution circumstance.

Pre-post conditions A format for developing application logic in a process

specification.

Primary key A key attribute that will be used to identify connections to a

particular entity. Normalization requires that every entity contain a primary key.

Primary keys can be formed by the concatenation of many attributes.

Process A function in a data flow diagram in which data are transformed from

one form to another.

Process flow diagram (PFD) A tool that depicts process flow in relation to

sequence and time.

Process specification A document that contains all of the algorithms and infor-

mation necessary to develop the logic of a process. Process specifications can be

comprised of the business and programming requirement documents. Pro-cess

specifictions are sometimes called “minispecs.”

Program or technical specification A technical algorithm of the requirements

of a process or system.

Prototype A sample of a system that does not actually fully operate. Most

software prototypes are visual depictions of screens and reports. Prototypes can

vary in capability, with some prototypes having limited functional interfaces.

Pseudocode A generic or structured English representation of how real

programming code must execute. Pseudocode is used in the development of

process specifications.

Glossary 401

Rapid application development (RAD) A method of application development

that combines the analysis and design steps through the use of prototypes and

CASE tools.

Reverse engineering The process of analyzing existing applications and database

code to create high-level representations of the code.

Reusable object An object that can be a component of different classes.

Robust Software that operates intuitively and can handle unexpected events.

Schema generation CASE interface that allows a logical database to be

generated into a specific physical database product.

Scribe A person who is designated in a JAD session to record minutes and

decisions made by the group. In certain situations, scribes can also be responsible

for data modeling.

Scroll bars Appear when all displayed information cannot be presented within

the current window boundaries. The vertical scroll bar at the right of a window

controls the up-and-down scrolling, while the horizontal scroll bar controls right-

to-left movement.

Server An application that provides information to a requesting application.

Size grip Is a handle in a window that permits the window to be resized. The

resizing is accomplished by dragging the grip and moving the window to the

desired size. The grip is located in the lower right corner of the window. It is

identified by three angled parallel lines.

Spiral life cycle Life cycle that focuses on the development of cohesive objects

and classes. The spiral life cycle reflects a much larger allocation of time spent

on design than the waterfall approach does.

Split box/Split bar Is a window that is split into two or more pieces, or panes.

Split boxes can be manipulated using the split bar, which is located above the

vertical scroll bar.

State transition diagram (STD) A modeling tool that depicts time-dependent

and event-driven behavior.

Status bar Also known as a “message bar,” provides information to the user

about the state or status of the information or object inside the window.

Stored procedures Application code activated at the database level.

402 Analysis and Design of Information Systems

Structured query language (SQL) Query language and data element construct

originated by IBM Corporation. SQL data descriptions are de facto standards in

most relational database products.

Supertype/subtype A relational database entity construct where rows of data

are divided into multiple separate entities or components. Each component or

subtype is stored as a separate entity with a one-to-one relationship with its

parent or supertype.

System menu button This button is located at the left corner of the title bar and

is also called the “control menu” or the “window menu.” This button is used

as an aid to keyboard users and lists options for manipulating the window. This

includes commands such as Restore, Minimize, Maximize, and Close.

Tier A level of processing in a client/server architecture. The most common

client/server network environment is the three-tier model, which consists of a

back-end tier, a middle or application server tier, and a client or front-end tier.

Title bar Is the top line of the window and explains the purpose or name of the

window’s function.

Title bar icon This icon is located in the left corner of the title bar and is used to

retrieve a pull-down menu of commands that apply to the object in the window.

Triggers Stored procedures that are activated at the database level.

UNIX Operating system developed by Bell Labs in 1969, a subsidiary of AT&T.

The operating system is written in the C language.

User category The conceptual view of the user from the analyst’s perspective.

There are three types of user categories: (1) Executive, (2) Department Head or

Line Manager, and (3) Functional.

User interface The relationship with end users that facilitates the process of

gathering and defining logical requirements.

User level The tier of computer project experience of the user. There are three

levels: (1) Knowledgeable, (2) Amateur, and (3) Novice.

Waterfall system development life cycle A life cycle that is based on phased

dependent steps to complete the implementation of a system. Each step is

dependent on the completion of the previous step.

Glossary 403

Web (World Wide Web) Loosely organized set of computer sites that publish

information that anyone can read via the Internet mainly using HTTP (Hypertext

Transfer Protocol).

Wide area network (WAN) A group of LANs that are connected through a

gateway.

Window sizing buttons These buttons are located on the right corner of the title

bar and are used to manipulate the size of the active window.

Work area The portion of the screen inside the borders of the window where

the user performs tasks.

WYSIWYG (What you see is what you get) A concept that requires that what

a program displays on the screen represents exactly how it will appear if printed

or otherwise displayed.

References

Barker, R. and C. Longman (1992) Case Method: Function and Process Modeling.

Berkshire, UK: Oracle Corporation.

Baudoin, Claude and Glenn Hollowell (1996) Realizing the Object-Oriented Lifecycle.

Upper Saddle River, NJ: Prentice Hall.

Berson, Alex (1996). Client/Server Architecture. New York: McGraw-Hill, Inc.

Booch, Grady (1996). Object Solutions. Menlo Park, CA: Addison-Wesley.

Brodie, Michael L. and Michael Stonebreaker (1995). Migrating Legacy Systems:

Gateways Interfaces and the Incremental Approach. San Francisco, CA: Morgan

Kaufmann Publishers, Inc.

Brooks, Frederick Jr. (1995). The Mythical Man-Month. New York: Addison-Wesley.

Burd, Stephen D. (1998). Systems Architecture, 2nd ed. Cambridge, Massachusetts: ITP,

Inc.

Conger, S. H. and R. O. Mason (1998) Planning and Designing Effective Web Sites.

Cambridge, MA: Course Technology.

Connell, John and Linda Shafer (1995). Object-Oriented Rapid Prototyping. Englewood

Cliffs, NJ: Prentice-Hall.

Date, C.J. (2000). An Introduction to Database Systems 7th ed. New York: Addison-

Wesley.

Dalgleish, J. (2000) Customer-Effective Web Sites. Upper Saddle River, NJ: Prentice-Hall.

DeMarco, Tom (1979) Structured Analysis and System Specification. Englewood Cliffs,

NJ: Prentice-Hall.

Deutsch, Michael and Ronald Willis (1998). Software Quality Engineering: A Total

Technical and Management Approach. Englewood Cliffs, NJ: Prentice-Hall.

Dewire, Dawna Travis (1993). Client/Server Computing. New York: McGraw-Hill, Inc.

Downing, Douglas, Michael Covington, and Melody Mauldin Covington (1998).

Dictionary of Computer and Internet Terms, 6th ed. Hauppauge, NY: Barron’s

Educational Series, Inc.

References 405

Fleming, J. (1998) Web Navigation: Designing the User Experience. Sebastopol, CA:

O’Reilly & Associates, Inc.

Fleming, Candace and Barbara von Halle (1998). Handbook of Relational Database

Design. Menlo Park, CA: Addison-Wesley.

Fournier, Roger (1991). Practical Guide to Structured System Development and Mainte-

nance. Englewood Cliffs, NJ: Prentice Hall.

Gale, Thornton and James Eldred (1996). Getting Results with the Object-Oriented Enter-

prise Model. New York: SIGS Books.

Harold, E. R. & W. S. Means (2001) XML in a Nutshell: A Desktop Quick Reference.

Sebastopol, CA: O’Reilly & Associates, Inc.

Hipperson, Roger (1992). Practical Systems Analysis: A Guide for Users, Managers and

Analysts. Englewood Cliffs, NJ: Prentice-Hall.

Jacobson, Ivar, Maria Ericsson, and Agneta Jacobson (1995). The Object Advantage. New

York: ACM Press.

Kalakota, R., and Andrew B. Whinston (1997). Electronic Commerce: A Manager’s

Guide. New York: Addison-Wesley.

Kerr, James and Richard Hunter (1994). Inside RAD. New York: McGraw-Hill, Inc.

Langer, A.M. (2005). Information Technology & Organizational Learning. New York:

Routledge.

Lorenz, Mark (1993). Object-Oriented Software Development: A Practical Guide.

Englewood Cliffs, NJ: Prentice-Hall.

Maiwald, E. (2001) Network Security. Berkeley, CA: Osborne/McGraw-Hill.

Martin, James and Carma McClure (1988). Structured Techniques: The Basis for CASE.

Englewood Cliffs, NJ: Prentice-Hall.

Martin, James and James Odell (1995). Object-Oriented Methods: A Foundation.

Englewood Cliffs, NJ: Prentice-Hall.

Mattison, Bob (1996). Data Warehousing: Strategies, Technologies and Techniques. New

York: McGraw-Hill, Inc.

McGraw, G. & E. Felton (1996) Java Security: Hostile Applets, Holes, and Antidotes.

New York: John Wiley & Sons, Inc.

Montgomery, Stephen (1991). AD/Cycle: IBM’s Framework for Application Development

and CASE. New York: Multiscience Press, Inc.

406 Analysis and Design of Information Systems

Microsoft Press (1994). Computer Dictionary: The Comprehensive Standard for Business,

School, Library, and Home. Redmond, WA: Microsoft Corporation.

Muller, Pierre-Alain (1997). Instant UML. Birmingham, U.K.: Wrox Press.

Orfali, Robert, Dan Harkey, and Jeri Edwards (1994). Essential Client/Server Survival

Guide. New York: John Wiley & Sons, Inc.

Perry, William (1991). Quality Assurance for Information Systems: Methods, Tools, and

Techniques. Wellesley, MA: QED Information Sciences, Inc.

Pfleeger, Shari L. (1998). Software Engineering: Theory and Practice. Upper Saddle

River, NJ: Prentice Hall.

Poe, V. (1996). Building a Data Warehouse for Decision Support. Upper Saddle River,

NJ: Prentice-Hall.

Powell, T. A. (2000). Web Design: The Complete Reference. Berkeley, CA:

Osborne/McGraw-Hill.

Purba, Sanjiv, David Sawh, and Bharat Shah (1995). How to Manage a Successful

Software Project: Methodologies, Techniques, Tools. New York: John Wiley & Sons,

Inc.

Rothstein, Michael, Burt Rosner, Michael Senatore, and Dave Mulligan (1993). Structured

Analysis & Design for the CASE User. Englewood Cliffs, NJ: Prentice-Hall.

Rumbaugh, James, Michael Blaha, William Premerlani, Frederick Eddy, and William

Lorensen (1991). Object-Oriented Modelling and Design. Englewood Cliffs, NJ:

Prentice-Hall.

Rumbaugh, James, Ivar Jacobson, and Grady Booch (1999). The Unified Modeling

Language Reference Model. New York: Addison Wesley, Inc.

Rummler, Geary and Alan Brache (1990). Improving Performance: How to Manage the

White Space on the Organization Chart. San Francisco, CA: Jossey-Bass, Inc.

Shlaer, Sally and Stephen Mellor (1992). Object Lifecycles: Modeling the World in States.

Englewood Cliffs, NJ: Prentice-Hall.

Simon, Alan R., and Tom Wheeler (1995). Open Client/Server Computing and

Middleware. Chestnut Hill, Massachusetts: AP Professional.

Smith, E. R. (2000) e-Loyalty: How to Keep Customers Coming Back to Your Website.

New York: HarperCollins Publishers, Inc.

Sommerville, I., and Pete Sawyer (1998). Requirements Engineering: A Practical Guide.

New York: John Wiley & Sons.

References 407

Sullo, Gary (1994). Object Engineering: Designing Large-Scale Object-Oriented Systems.

New York: John Wiley & Sons, Inc.

Ullman, Jeffrey D., and Jennifer Widom (1997). A First Course in Database Systems.

Upper Saddle River, NJ: Prentice-Hall.

Whitten, Jeffrey, Lonnie Bentley, and Victor Barlow (1994). Systems Analysis and Design

Methods. Burr Ridge, IL: Richard D. Irwin, Inc.

Whitten, Neal (1995). Managing Software Development Projects. New York: John Wiley

& Sons, Inc.

Wood, Jane and Denise Silver (1995). Joint Application Development. New York: John

Wiley & Sons, Inc.

Yourdon, Edward (1989). Object-Oriented Systems Design: An Integrated Approach.

Englewood Cliffs, NJ: Prentice-Hall.

Yourdon, Edward, Katharine Whitehead, Jim Thomann, Karen Oppel, and Peter

Neverman (1995). Mainstream Objects: An Analysis and Design Approach for

Business. Englewood Cliffs, NJ: Prentice-Hall.

Bibliography –Additions

Barker, R. and C. Longman (1992) Case Method: Function and Process Modeling.

Berkshire, UK: Oracle Corporation.

Conger, S. H. and R. O. Mason (1998) Planning and Designing Effective Web Sites.

Cambridge, MA: Course Technology.

Dalgleish, J. (2000) Customer-Effective Web Sites. Upper Saddle River, NJ: Prentice-Hall.

Fleming, J. (1998) Web Navigation: Designing the User Experience. Sebastopol, CA:

O’Reilly & Associates, Inc.

Gulutzan, P and Pelzer, T (1999). SQL 3 Complete, Really (New York: R & D Books).

Grudin, J The Case Against User Interface Consistency, Comm. ACM, 32(10), 1992

pp. 1164–1173.

Harold, E. R. & W. S. Means (2001) XML in a Nutshell: A Desktop Quick Reference.

Sebastopol, CA: O’Reilly & Associates, Inc.

Langer, A.M. (2005). Information Technology & Organizational Learning. New York:

Routledge.

McGraw, G. & E. Felton (1996) Java Security: Hostile Applets, Holes, and Antidotes.

New York: John Wiley & Sons, Inc.

Maiwald, E. (2001) Network Security. Berkeley, CA: Osborne/McGraw-Hill.

Mullins, C.S. (2006). DB2 Developer’s guide (5th ed) (Indianapolis, In: SAMS).

Poe, V. (1996). Building a Data Warehouse for Decision Support. Upper Saddle River,

NJ: Prentice-Hall.

Powell, T. A. (2000). Web Design: The Complete Reference. Berkeley, CA:

Osborne/McGraw-Hill.

Reed-Smith, E. (2000). e-Loyalty: How to Keep Customers Coming Back to Your Website.

(New York: HarperCollins Publishers, Inc.).

Smith, E. R. (2000) e-Loyalty: How to Keep Customers Coming Back to Your Website.

New York: HarperCollins Publishers, Inc.

Spencer, P (1999), XMLDesign and Implementation. (Birmingham, UK:Wrox Press Ltd).

Index

1st NF

1st normal form, 87–88, 90–91, 111

2nd NF

2nd normal form, 87–88, 91–92

3GL

third generation language, 43–44, 46, 276

3rd NF

3rd normal form, 88, 92–96, 116, 161

4GL

fourth generation language, 47, 276

Abstract

type of object, 248

Acceptance test plans, 261–264, 266–267

Activity matrices, 32

Alternate keys, 87–88

Analysis proficiency skills

skills assessment method, 239

Application program interface

API, 199, 240, 363

Archiving, 14–15

Artificial intelligence

AI, 78, 81, 170, 172, 174, 314, 346

Association matrix, see CRUD

Attributes

component of an object, 248

BAA, see Business area analysis

Barker

Case method, 10, 15–20

Batch

type of system processing, 245–246

Booch

Grady Booch, 248

BPR

Business Processing Reengineering, 10,

268–280, 358

Build Stage, 18–19

Business area analysis, 32, 270

Business requirements, 10, 52, 268, 278

Business rules, see Key business rules

Business specification, 15, 49, 58, 135,

206–212

CASE, 229–242

CIO

chief information officer, 268

Class

group of similar objects, 248–249

Client/server, 7–9, 120, 238–242, 246,

268–270, 274–277, 279, 290,

298–299

COBOL, 43–47, 71, 103, 246, 251, 269,

275–276, 338

Cohesion, 12, 255–259

Combine user views, 87

Concatenation

joining of keys, 63, 82

Concept of the logical equivalent, 21, 36–40,

51, 58, 102–103, 243, 253

Concrete

type of object, 249–250, 252

Coupling, 12, 254–256

Crows foot

notation in ERD, 43, 391

CRUD, 271–272, 301, 315

Data dictionary, 63–66

Data elements, 269–270

Data flow

component of a data flow diagram, 230

Data flow diagram

data repository, 230

Data store

component of a data flow diagram, 230

Data types, 67–70, 119

410 Index

Data warehouse

business area, 324–326

decision support life cycle, 327–347

extracted data, 323–324

metadata, 348

multidimensional data, 318–321

query Tools, 324, 343, 345–346

star Schema, 319–321, 330–331, 333, 338

transformation, 337–341, 347

DB2, 12, 112, 234

DD, see Data dictionary

Decomposition models, 32

DeMarco, 47, 71

De-normalize, 87

Development, 11–12, 262–264

DFD, see Data flow diagram

DLL, see Dynamic link libraries

Documentation, 5, 15, 19, 37, 40, 42–43, 58,

65, 135, 199, 213, 229, 233, 236–237,

260–267, 270, 322, 372–373

Document Object Model (DOM), 180–184,

187–188, 190, 202–204

Document type definition (DTD), 178–181,

187, 190, 193–194, 199

Domains, 19, 87, 120–121

DOS, 121, 239

DSS

decision support system, 279, 314–315, 317,

321–325, 327–328, 330, 339, 342–344,

346–348, 363

Dynamic link libraries, 251

E-commerce, 6–8, 169–174

Electronic Data Interface (EDI), 180, 188,

190–191, 202

Elementary data element, 65–66, 230

Encapsulation, 252

Enterprise, 1–2, 7, 22, 184, 238, 241, 255, 268,

270, 274, 277–279, 311, 324–325, 331,

357, 379

Entity, 81

Entity Relational Diagrams, 32, 81–83, 230

ERD, see Entity Relational Diagrams

Essential component

in object analysis, 243, 247–248, 254,

268–271, 274

Excellerator

CASE tool, 238

Executive interface, 21, 27

Executive sponsor

role in JAD, 29

Executive supporter, 21–23, 29

Extensive Markup Language (XML)

parsing, 177–178, 198–199

reuse, 195–197

stylesheet, 179, 189

Extensive Style sheet Language (XSL),

179–180, 182–184, 203

External

component of a data flow diagram, 59

Facilitator

role in JAD, 28–30, 32

Foreign key

technique of linking entities, 98

Functional decomposition, 36–37, 39–40, 51,

53, 65–66, 117, 154, 230, 253

Functional primitive, 39, 53, 57–58, 61–63, 65,

71, 85–86, 210–211, 233, 257–258,

271, 393

Gantt Chart, 3–5, 16, 377

Gateways

component of three tier architecture, 240, 298

GUI

Graphical User Interface, 127, 156–160,

162–165, 218, 237–238, 260, 264, 266,

277, 279

HTML, 142, 176, 180, 182, 184, 187–188, 195,

349, 352–353

Hybrid objects, 41, 201, 203, 259

Information Engineering Facility

IEF, CASE tool, 238

Inheritance, 194, 249–250, 252, 256

Instantiation, 252

Interview

interviewing users, 243, 247

IS

Information Systems, 1–9, 28–31, 47, 239,

260–262, 266, 268, 274–277, 280

ISO 9000, 370–379

Jacobson

Ivar Jacobson, 252, 268

JAD, see Joint Application Development

Job description matrix, 375–377

Joint Application Development, 3, 28–34

Key business rules, 87–88, 120–121

Knowledgeware

CASE tool, 238

LDM, see Logical data modeling

LE, see Logical equivalent

Index 411

Legacy systems, 17, 43–44, 105, 185, 196, 243,

251, 268–269, 279, 322, 365

Leveling, 39, 58

Logical data modeling, 83, 87, 271

Logical equivalent, 21, 36–41, 51, 58,

97, 102–103, 139, 206, 243, 253,

260, 393

Long division

decomposition concept, 37, 40, 42

Management guide

used in JAD, 30

Martin

James Martin, 59, 248

Metadata

component of middleware, 287

Method

component of an object, 7

Microsoft Word, 312, 373

Middleware

component of three tier architecture, 240

Minispec, see Process specifications

Naming conventions, 17, 108–112

Netware, 239

Non-key attribute

attributes of an entity, 92–96, 100

Normalization, 87–97, 99, 101–102, 106–107,

116–118, 167, 213, 258, 271, 361

No-win scenario, 5, 24

Null values, 113–114

Object orientation, 7, 243,

247–248

Object oriented analysis, 12, 81, 229, 243–248

Object oriented database management system

(OODBMS), 259

Object oriented techniques, 32, 81, 243–259

Object types, 249, 354

OMT, see Rumbaugh

OO, see Object orientation

OO client/server life cycle, 276

OOSE

Object-Oriented Software Engineering, see

Jacobson

Open systems

type of architecture, 239–241, 278

Operational users, 22, 24

Oracle, 12, 109, 112–113, 119, 121, 162–164,

185–190, 198–201, 213, 234, 238, 241,

308, 310, 324, 351

Organization chart, 22

Persistence, 252

Pilot

in application development, 277

Polymorphism, 251

Pre-Modeled, 42

Pre-post

method of process specification, 70–76

Primary key

identifier of an entity, 82, 94

Process

component of data flow diagram, 58–59

process flow diagrams, 58–59, 160, 358

Process specifications, 17, 32–33, 47–49,

62, 70–72, 85, 160, 162–164, 218,

229, 233

Product code generation

from a data repository, 233–235

Programming specification, 50, 71, 210–212

Protocols

component of middleware, 172, 178, 180,

240, 281, 292–294

Prototypes, 28, 33–34, 140, 163, 233, 236,

274, 369

Prototyping, 29, 32, 140

Pseudocode, 49, 62, 71–75, 211

QA, see Quality assurance

Quality assurance, 4, 13–14, 16, 19, 262,

347, 371

Questionnaire

developing a, 23

RAD

Rapid Application Development, 29,

209, 274

RDBMS

relational database management system, 8,

121, 234, 238, 258–259

Referential integrity, 107–108, 110–111, 118,

120, 197, 314, 338

Reusable, see Reusable objects

Reusable objects, 142, 248, 250, 274

Reverse engineering, 44, 241–242, 269

Robust, 6, 8, 120, 182, 190, 194, 229, 237–238,

279, 310, 329

Rumbaugh

James Rumbaugh, 252

Scalable Vector Graphics (SVG)

features, 205

formats, 203–204

Schema generation, 233–235

412 Index

Scribe

role in JAD, 29, 33, 274

SDLC

Systems Development Life Cycle,

10–20

Security

application server, 301–302, 310

attachments, 291–292

authentication, 287–289

availability, 283–285

database server, 300–303

data encryption, 310

digital certificates, 304–305

(DMZ) demilitarized zone, 305–306

firewalls, 307–308

Javascript, 290

plug-ins, 290–291

push technology, 289, 366

roles, 309

version control, 312–313

Web application, 285

Web server, 298–300

Self-Defining

in the data dictionary, 63–66

Service

process of an object, 257

Site architecture

grid, 153–154

hierarchy, 154–155

linear, 153

Web, 155–156

Spiral life cycle

in object orientation development, 132, 276

SQL

Structured Query Language, 44, 67, 108,

234, 308

State transition diagrams, 16, 32, 58, 77–81

STD, see State transition diagrams

Stored procedures, 120–121, 184, 198, 229,

241, 248, 275

Stored valued payment systems, 297–298

Structured Generalized Markup Language

(SGML), 176

System Architect

CASE product by Popkin Software, 44

Text

categorization, 140

formatting, 140–142

Topology, 7, 12, 172

Transaction processing (TP), 257, 279, 315,

323, 327, 359

Transaction Stage, 19–20

Transport Control Protocol (TCP), 293–294

Triggering operations, 87, 121, 241

UNIX, 202, 239, 303, 307

Version Control, 19, 42–43, 193–194, 260,

312–313

Website Design

automated reporting, 363

background, 147–148

branding, 129–131

content delivery, 354–355

content management, 351–354

content scheduling, 366–367

content templates, 142–144

CORBA (Common Object Request Broker

Architecture), 181, 351

creating objects, 354

customer service, 136–139

Dynamic Web pages, 351

images, 146–147

navigation and architecture, 149–150

.Net, 351

personalization, 360–362

server engine, 364–365

syndication, 362–363

user profile strategy, 132

visuals, 128, 144

workflow, 355–356

Windows, 156, 239, 307, 364

Windows NT, 239, 360

Wireless Markup Language (WML), 186

Work Document

used in JAD, 31

Yourdon, 3, 47, 51

