
IN THE SAME SERIES

Basic
Computer Programming Languages in Practice
Hardware Design
Systems Analysis
Word Processing for the Professions

Computer Programming
Languages in Practice

Made Simple Computerbooks

C. A. Hofeditz

Made Simple Books
HEINEMANN : London

Copyright © 1985 William Heinemann Ltd
All rights reserved, including the right
of reproduction in whole or in part
in any form whatsoever

Phototypeset by Wilmaset, Birkenhead
Printed and bound in Great Britain
by Richard Clay (The Chaucer Press), Ltd, Bungay, Suffolk
for the publishers, William Heinemann Ltd,
10 Upper Grosvenor Street, London W1X 9PA

This book is sold subject to the
condition that it shall not, by
way of trade or otherwise, be lent,
re-sold, hired out, or otherwise
circulated without the publisher's
prior consent in any form of binding
or cover other than that in which it is
published and without a similar condition
including this condition being imposed
on the subsequent purchaser

British Library Cataloguing in Publication Data

Hofeditz, Calvin A.
Computer programming languages in practice.—(Made simple
computer books)—(Made simple books)
1. Programming languages (Electronic computers)
2. Electronic digital computers—Programming
I. Title II. Series III. Series
001.64'24 QA76.7

ISBN 0 434 98400 0

Introduction

WHY LEARN TO PROGRAM?

Despite the simplification of computer systems in the past few
years, they are still complex tools. And there is a great difference
between operating a machine and programming one. A user often
has a tutorial display shown on the screen to guide him through a
task. Even if such instructions are not provided, there is always an
operator's manual to rely on for assistance.

On the other hand, the programmer has to create the displays on
the screen, determine how the computer performs, and write the
operating instructions. Quite a difference, indeed. Somewhat like
the difference between using a lawn mower and building one.

It's not difficult to write simple programs in BASIC. Within a
week and using no more than ten of the instructions in either of
these computer languages, the beginner can have his computer
performing many calculations and other tasks.

Unfortunately, these tasks alone do not justify the cost of a
computer and its software for they could be done with a calculator
and basic instructions. Thus, the beginner is not likely to be
satisfied with having developed only a rudimentary programming
skill.

There are, of course, many reasons why people would want to
develop the ability to use computers and the programming
languages available with them. All are related to self-interest.

The Competition Will Use the New Tools

The computer is a new tool that is rapidly becoming available to
millions of people who have never used sophisticated equipment
before. With respect to small businesses, computers properly

xii Computer Programming Languages in Practice

applied can greatly reduce operating costs. Small machines can be
purchased or leased, and time on larger machines can be rented.
These new tools and methods are available, and are being used by
a great many small businesses now. Use of computers will spread
even more quickly as prices continue to come down. The small
businessman has no choice. He must learn to use these new tools
to his advantage because the competition will.

To Organize Jobs for the Computer

But why does the computer user need to know anything about
programming and programming languages? To organize jobs for
the computer to process is one answer. There is much more
involved in processing a stack of bills to be paid than sitting in
front of a display screen and typing the information at the
keyboard. Actually, the data entry at the machine is the last step in
the organizing process. Before the power switch is turned on
for the first time, the user must have determined which records
are to be maintained and in what form, how the bill-paying
process is to affect other records, and what the outputs are to
be. The organizing of inputs, processing, and outputs for each
task will always be required. The more the computer user
knows about programming, the better he will be able to organize
his jobs.

To Understand the Products Offered

Another good reason is to understand what you're buying.
Differences in programs and programming languages have a
dramatic effect on the performance of a computer. The sales
sheets available to the prospective computer user aren't much help
unless he is able to understand the material listed.

Many programs are often provided only as extra-cost options.
Even the lowest-priced retailer is offering programming language
packages at £50 to £100 each. A poor choice of machine and
programs can thus be very expensive to the owner of a small
computer; not only in terms of actual cost but also in disappointing
performance. It pays off, therefore, to understand the products
being offered before buying them.

Introduction xiii

Do-It-Yourself Projects

The fourth reason for learning to program may be the most
important. It is the need to do it yourself. Although there are
hundreds of programs available for the most popular computers, it
may be difficult to find one that fits your task perfectly. The
alternatives in this case are to change your methods to match the
capacity of the program, to hire a programmer to prepare a
customized program, or finally to do it yourself.

As a Hobby and for Entertainment

We haven't said much about personal computers so far, having
concentrated on business use. But let's assume that you are
interested in a personal computer.

It's hard to define exactly what a personal computer is. We can
say, however, that it is a small desktop unit, and if it has
supporting equipment it is likely to be limited to a small printer
and a disk drive. What does it do? Generally anything that a big
machine does, only in smaller volumes and more slowly.

As of this writing, personal computers are offered for sale at
prices as low as £25. These are incomplete machines, however.
They rely on using a TV screen for display and a cassette tape
recorder for storage, but they are unable to communicate with
other machines without optional adapters. A complete personal
computer with diskette storage and a display screen still costs £500
and up. At these prices, it is an expensive 'toy,' so we have to
assume that the buyer uses it for tasks other than entertainment.

A wide variety of programs are available for the most popular
personal computers. Most are optional, and they're not cheap.
Therefore, one good way to get the most use out of a personal
computer is to program it yourself. It should be an interesting
hobby for those liking mathematics and electronics.

Most readers interested in programming their own machines are
likely to prefer BASIC, particularly a modern version. This is a
good selection because it is widely offered with personal compu-
ters, and the new versions have been developed fully to handle
graphics and provide other features the novice programmer should
find attractive.

xiv Computer Programming Languages in Practice

And as a Profession

Skilled programmers are in great demand in the job market, and
this should remain so for the foreseeable future. Many people in
the computer industry believe that equipment development has
outpaced the programs and considerable time will elapse before
the programmers catch up.

In general, an applicant for a programmer's job should have a
degree in a field of learning that provides considerable training
in mathematics. A good deal of the work involved in pro-
gramming is similar to that necessary to lay out and solve a
complex equation. In fact, the word 'algorithm,' which is seen in
mathematics, is also frequently used to mean 'the programming
solution to a problem.'

WHY ARE THERE SO MANY LANGUAGES?

The answer to this question is fairly simple. Computers have been
used in business for over thirty years, while some models were
used in engineering and scientific applications even before that. A
great many models were developed during this time. As one would
expect, programming groups were also busy providing languages
for the various models, always trying to make the languages more
powerful and easy to use. Logically then, many languages were
produced.

Among the most commonly used high-level languages are
BASIC, COBOL, FORTRAN, Pascal, and RPG. We cover all
but Pascal in this book but devote less attention to RPG, a
language with a limited purpose and whose instructions are not in
the same class as the others mentioned, and to FORTRAN, which
is primarily intended for engineering and scientific applications.
Any serious reader will have no difficulty in finding descriptions of
at least five more high-level languages on a computer science
bookshelf in a large bookstore.

WHAT YOU'LL FIND IN EACH CHAPTER

When one reaches the computer science section in a bookstore,
one finds that most of the reference books dealing with program-

Introduction xv

ming languages are fairly large. A typical reference book on
BASIC alone has as many pages as this one. How then can we
hope to discuss such complex subjects within these covers? We'll
answer that question in the following paragraphs.

The largest portion of this book is devoted to two very popular
languages—BASIC and COBOL. They have a good deal in
common. Records, files, arithmetic operators, coding forms, and
flowcharts, for example, are more alike than different from one
language to another. Therefore, one general discussion of these
subjects common to all languages is given in Chapter 2.

Next, we have concentrated on the 'core' of each language,
eliminating discussions of rarely used instructions and those that
apply to only one brand of computer. Knowledge of uncommon
instructions is of very little use to anyone other than a programmer
of a specific model.

We've also limited the number of sample programs to one per
language. A great many programming books have an excess of
sample programs and only the most dedicated reader ever uses
them.

These are some of the ways in which we've managed to 'boil
down' a great deal of material to a usable size. Now let's examine
how the material is organized and what you can expect to find in
each chapter.

There are five chapters, which are supplemented by a Glossary
of Terms. Each chapter is followed by a self-test. The five chapters
are:

Chapter 1. What Programming Is
2. Components of a Programming Language
3. BASIC, Beginner's All-purpose Symbolic /nstruc-

tion Code
4. COBOL, Common Business Oriented Language
5. Other Languages, Old and New

Chapter 1, What Programming Is, provides the fundamentals:
What programs are, how they are planned and organized, what
elements of the computer the programmer controls, flowcharting,
and how computer data is organized.

Chapter 2, Components of a Programming Language, covers
material common to all languages. It shows that each language is
really a system, consisting of a set of words the programmer may
use and a group of complex programs that interpret and apply
those words. The entry program, the compiler, the run-time

xvi Computer Programming Languages in Practice

system are described, and their relationship to the programmer is
shown.

This chapter also discusses syntax diagrams and coding forms,
which establish the sentences that may be used and the form in
which they are provided. Next covered are topics common to all
languages, including character sets, operators, variables, con-
stants, expressions, arrays, functions, and procedures.

Chapters 3 and 4, each deal with a specific programming
language, covering BASIC and COBOL, respectively. Each
chapter provides the following information:

• A brief history of the language's development and use.
• A description of how the programming system is organized. Its

major components, divisions of instructions, and a description
of its instruction set (instruction-by-instruction).

• How a program is written, including a sample program.
• A self-test, including exercises in which programming state-

ments must be written.

Chapter 5, Other Languages, Old and New, discusses those
languages which the reader is less likely to use but should know
about. Included are descriptions of FORTRAN and RPG II. This
chapter does not provide programming examples but does show
the instruction set and the appearance of a program. Also included
in Chapter 5 are descriptions of recent additions to BASIC.

1
What Programming Is

THE PURPOSE OF A PROGRAM

Many people think of a computer as an intelligent machine; it is
not. All the 'intelligence' is entered into the machine by man,
either as part of the machine design or in the form of a program.

The question to be asked then is: What is a program? And the
answer is a very simple one: It is a set of instructions that make the
computer perform a specific task. The instructions chosen must all
be within the capacity of the computer to perform them, and they
must be arranged in the proper order.

Computer programmers originally had to choose from a set of
instructions each of which executed a very small step. A great
many instructions were necessary to perform even small jobs, and
arranging the steps in order was a complex task, requiring a great
deal of time and skill.

Fortunately, high-level programming languages have been
available for many years. A high-level language is one in which
each instruction performs a recognizable operation rather than
one small step. For example, a PRINT instruction in the high-level
language called BASIC causes information to be shown on the
screen. Actually, the computer must execute many small steps to
produce the display, but a programmer using the high-level
language does not have to be concerned about them.

WHAT IS SOFTWARE?

For many years the term 'software' has meant the programs that a
computer executes. 'Hardware' has become the commonly used
term for the equipment—it being 'hard' in the sense that it is not

2 Computer Programming Languages in Practice

TYPES OF PROGRAMS

The next subject we'll discuss is the types of programs. First to
come to mind are the programs that make the computer perform
useful work, such as printing a telephone bill. These are called
'application programs.' To look at it from another point of view,
application programs are those that make the computer do the
things that the user bought or leased it for. Of course, these
'applications' cover a very wide range of tasks.

A second type of program is one that does the 'housekeeping
chores' associated with the application of the computer. These
'housekeepers' are called utility programs. Although they are
application programs themselves, they are thought of as a separate
category because they support the main tasks rather than perform
them themselves. Copying files of data and purging outdated files
are examples of 'utility' functions.

easily changed—and 'software' is used to mean the programs and
their supporting materials, such as instructions on how to use them.

A good way to visualize what software is is to use a home stereo
system as an analogy. The stereo is the hardware, and while it may
have some optional equipment, such as a cassette tape player, and
several levels of performance, once the options are chosen, the
stereo system is not easily or inexpensively changed. The same
holds true for computer hardware.

If we now extend this comparison, the tape cassette, the
phonograph record, and the eight-track cartridge are the 'soft-
ware' for the stereo system. They are easily changed and make the
machine play what the user wants it to.

Although the media on which music is supplied and the methods
for playing it have become standardized, computer software has
not. What will 'play' on one computer may be totally useless on
another. Some software can be transferred from one type of
machine to another, but the process is not yet a simple one. As
computers come into very widespread use we can expect to see
great improvements in the ability to transfer and convert prog-
rams. As yet, however, many computer users can expect to find
that they have to shop around, write their own programs, or be
satisfied with 'rock music' when they really want to hear
Beethoven.

What Programming Is 3

ELEMENTS THAT CAN BE PROGRAMMED

One of the first questions that should come to mind is: What
components of the computer can actually be given instructions?
The answer to that is that there are several, some of which produce
visible results and others of which appear to do nothing at all.
There are five basic things that the programmer of a small machine
can control:

• The output on e.g. a printer or typewriter.
• Acceptance of inputs e.g. from a keyboard.

So, application programs and their subdivision, utility prog-
rams, are the ones that the operator of the computer uses every
day, and they may be the only programs the operator ever sees
producing results. There are other types, however, that are of
equal importance. Diagnostic programs are the ones used to
isolate failures when problems arise. The nature of computer
design, function, and construction make it difficult to find a failing
part by simply observing the failure symptoms. An exercise of the
machine's functions is necessary. This is the purpose of diagnostic
programs. They try all the functions that the computer is designed
to perform, and they summarize the results for a repairman.

Now we'll get to the programming languages that are the subject
of this book. Such a language contains a set of commands that a
programmer can give the computer, but there is much more to it
than that. It is really a 'programming system,' which is made up of
several complex programs. The system is loaded into the computer
before the language is used. In later chapters, we'll discuss the
details of programming system, but for now, we'll say only that it
consists of entry programs, listing programs, assembler and
compiler programs, interpreter programs, and aids that make it
possible to use the language.

Last on our list is a type of program that computer users seldom
see, and most users may not even be aware of its presence. It is
called an operating system. It is a link between the computer
equipment and most types of programs we've discussed up to now.
An operating system is provided to get the computer started and
establish the initial operating conditions. It then manages loading
of other programs, organizes storage media, and handles access to
the storage media.

4 Computer Programming Languages in Practice

Φ The display of information on a screen.
• The storage of information on storage media such as diskettes,

disks, and tapes.
• The internal functions that the computer is capable of

performing.

In the case of a printer or typewriter, the programmer selects the
information to be printed and positions it on the paper.

In the case of inputs from a keyboard, the programmer
determines when the computer will accept the inputs and, in some
cases, what kind of information may be entered.

When programming the display screen, the programmer selects
the information to be shown and determines where it will appear
on the screen.

Storage of information requires the programmer to select the
storage medium, to name and organize the stored information,
and determine when it will be stored or read.

Finally, each computer has an instruction set of functions it can
perform. Selecting from these functions, the programmer tells the
computer which functions to perform and the order in which they
are to be performed.

Programming a Printer

What can be chosen on a printer? The characters to be printed is
the obvious answer, but there are other answers as well. First, the
programmer may choose either the character to be printed or a
variable. To illustrate: The programmer may say print the letter
'A,' or he may say print whatever character is held in location 5.
The former is used when a specific message is to be printed, and
the latter is used when there is no way to know in advance what
this information will be.

The programmer can also choose the position on the paper in
which the information is printed. He can specify the number of the
line on which printing is to begin and the column in which the first
character is to be placed. Some programming systems also permit
the use of the 'tab' feature, which is used in generally the same way
as it is on a typewriter.

Now let's examine the type of instructions that the programmer
uses to make the printer operate. The words available depend
upon the language, but PRINT and WRITE are typical. The
action they produce is shown in Fig. 1.1. Information is taken from

What Programming Is 5

STATEMENTS

PRINT
WRITE

Fig. 1.1 Programming a printer

Fig. 1.2 Acquiring data from a keyboard

the computer and printed on a form in the printer. Directions to
place this information in a specific location on the page are either
provided along with the information or are given separately prior
to printing.

6 Computer Programming Languages in Practice

Programming a Keyboard

Controlling inputs from the keyboard is another important
function that the programmer must consider. When programs are
being executed by the computer, they pay no attention to the
keyboard unless specifically instructed to do so. Therefore, the
programmer must provide a statement that causes the computer to
pause, accept the typed entry, and then proceed.

Again we'll use a Figure (Fig. 1.2) to show the movement of
information. Typical instructions available to do this job are
ACCEPT, INPUT and READ. Each takes data typed at the
keyboard and places it in a specific storage location in the
computer; the location is selected by the same instruction that gets
the data. The instructions we've listed don't process the informa-
tion or take action based on its contents; they simply read it.

Programming a Display

Displays available vary considerably from one machine to another.
Some have an alphabet consisting of only capital letters, numerals,
punctuation marks, and some common symbols. At the other end
of the range are displays capable of showing complex graphic
elements in colour.

Regardless of the display capability, the screen is divided into
small parts, each of which can be assigned line (row) and column
coordinates. The programmer specifies the location in which
information is to appear and then chooses the information itself.

If we ignore graphics for now, programming the display is nearly
identical to programming the printer. Instructions are very similar
as well. As shown in Fig. 1.3, the words DISPLAY, PRINT and
WRITE take specific information from the computer and place it
on the screen.

Programming the Storage Units

We'll see later that there are several kinds of storage units, but the
most common are tapes, disks, and diskettes. They hold files of
information that the program is to process, and they store the
results in either new or existing files.

Instructions are needed to choose the storage unit, name the file

What Programming Is 7
STATEMENTS

DISPLAY
PRINT
WRITE

kSTORAGE
LOCATIONS

ENTER NAME:

Fig. 1.3 Displaying information

STATEMENTS
OPEN
READ
WRITE
CLOSE

STORAGE
LOCATIONS

Fig. 1.4 Programming the storage units

to be dealt with, and to accomplish the actual data transfer.
OPEN-a-file is usually the instruction given to establish a
connection between the computer and a storage unit, and then to
choose a specific file of information. CLOSE is the common word
used to end operations with that file.

8 Computer Programming Languages in Practice

Programming the Computer Itself

Most of the instructions available in the high-level languages deal
with the processing of data within the computer. Computers can
do nearly everything imaginable with information.

Of course, the word 'computer' makes most people think first of
calculations. Arithmetic and engineering and scientific calculations
are certainly important, and most languages provide many
instructions and symbols that perform calculations. For example, a
programmer can expect to find add, subtract, multiply, divide,
raise to a power, square root, absolute value, cosine, sine, and
other trigonometric functions in all high-level languages.

Data manipulation is another major task computers perform.
This includes sorting, moving, filing, exchanging, editing, and
searching. Instructions that do this work include: SEARCH,
SORT, MOVE, GET, and PUT.

One of the most important features of a computer is the ability
to examine conditions and take certain action based upon what it
finds. If quantity A is greater than quantity B, for example, one
action is called for, while a second action is necessary if Β is
greater than A, and still a third is needed if A and Β are equal. All
the high-level languages provide instructions that allow a program-
mer to easily tell the machine what conditions are to be examined
and what is to be done based upon the findings. Among the
instructions available are:

IF condition THEN action 1 ELSE action 2
ON condition GOTO part of program
WHILE condition DO action
REPEAT action UNTIL condition

We've shown a diskette in Fig. 1.4, to illustrate the transfer of
information between a storage unit and the computer. Once a file
is opened, just like a file cabinet, the computer acquires its
contents with a READ instruction. It stores information with a
WRITE instruction, and when work with a file is completed, the
program closes the file with the CLOSE instruction.

What Programming Is 9

HOW DATA IS ORGANIZED

'MULTIPLY sales BY comm-rate GIVING gross-comm' is an
instruction that could be given in the language COBOL. It's
reasonably clear that a quantity of 'sales' is to be multiplied by a
'commission rate' to produce the 'gross commission,' perhaps as
part of the program to prepare a cheque for a salesman.

Sales, commission rate, and gross commission are all data items
that must be handled. What is not clear is the size of each item,
where it came from, and where the result will go. Obviously, a
programmer must know these things before he can prepare
instructions to manipulate the data involved.

The purpose of this section is to describe how data is organized
in computers and their peripheral units. We'll begin with bits
(tanary digiis), which are the smallest units of information, and
conclude with data bases, which are often giant collections.

Codes and Characters

Computers use the binary numbering system to represent informa-
tion. Since this system has only two symbols available, a one (1)
and a zero (0), they must be placed in combination to stand for
characters such as: A, é, 3, 7, Ζ, and 0. A combination of 1000001
means an 'A' to some computers, for example, and 0110010 means
a '2.' The codes and the characters that they produce are called the
character set. (Fig. 1.5, shows a small section of a character set and
the code used for each character.)

Character Code

6
7
8
9
A
Β
C
D
Ε

0 1 1 0 1 1 0
0 1 1 0 1 1 1
0 1 1 1 0 0 0
0 1 1 1 0 0 1
1 0 0 0 0 0 1
1 0 0 0 0 1 0
1 0 0 0 0 1 1
1 0 0 0 1 0 0
1 0 0 0 1 0 1

Fig. 1.5 Codes and an alphabet

10 Computer Programming Languages in Practice

Fields

Characters are then organized into fields. Gross sales may be a
field, as may employee name, or any other division of data the
programmer chooses to establish. The size of the field is set to
accommodate the largest number of characters that it would be
expected to hold. The employee number might be set to seven
characters, national insurance number to nine characters, and
employee name to twenty-one characters. A simple example of
this is shown in Fig. 1.6.

1ST 2ND 3RD
FIELD FIELD FIELD

-Λ Λ „ ^ _

- γ γ ^

2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 19 4 0

2 5 7 9 2^8 0 9 7 - 2 6 - 4 1
ι — ι — ι — ι — ι — r

2 8

y y y

EMPLOYEE NATIONAL INSURANCE EMPLOYEE
NUMBER NUMBER NAME

Fig. 1.6 Fields in an employee record

Types of Fields

In Fig. 1.6, we've shown three fields: employee number, national
insurance number, and employee name. How are they used, and
what characters may they hold? Well, they're certainly not added,
subtracted, multiplied, or divided; the results would be nonsense.
These then are alphanumeric fields, and they may hold any of the
characters in the character set.

The combination may vary from one machine to the next, but
there are some standard combinations used throughout the
industry. ASCII, American Standard Code for Information
Interchange, and EBCDIC, Extended Binary Coded Decimal
Interchange Code, are two that computer users are familiar with.
If when buying a printer, you are told, 'It uses ASCII,' it means
that a specific combination of ones and zeros (1000001) sent to the
printer will produce the printed character 4A. '

That's enough about codes for now. It is sufficient to say that
when a programmer enters an employee name and number, or any
other data, the computer uses codes to represent that data. So, a
character is the smallest unit of data as the programmer sees it.

What Programming Is 11

1 8 19 41

EM P. NO. S.S. NUMBER NAME ADDRESS ^

6 5 6 9 73 7 7 8 2 88 128

JPEPT. NO. JOB CODE PAY CODE PAY RATE STATUS UNUSED

Fig. 1.7 A typical record format

A record can be identified and located in different ways. Each
may include information that distinguishes it from all others (a
label of some kind), or records may simply be numbered in
sequential order so the fourth record in sequence is identified as
record 4.

Files

Records organized into groups are called files. Normally, all the
records in a file have the same format and pertain to the same
subject. A file called PARTS LIST would contain many records
each of which give the number, description, and price of a part.
The fields holding these entries could be the same length in each
record and appear in the same position. A simple example of such
a file is shown in Fig. 1.8.

Suppose we added the employee pay rate field to our figure. It is
intended to be used in arithmetic and thus may hold only numbers.
The pay rate field, therefore, is a numeric field.

The distinction between numeric and alphanumeric fields is an
important one because the fields are treated differently. High-level
languages provide a way for the programmer to state the size of a
field and whether it is numeric or alphanumeric. Within the
computer itself, the fields are often represented differently.

Records

The next level of organization is usually the record, in which fields
of information related to one another are handled as a group.
Record length depends upon the type of information.

A typical record is shown in Fig. 1.7. It is moved between
storage media as a unit, although the fields within it are used by
themselves in calculations or comparisons.

12 Computer Programming Languages in Practice

PART NUMBER DESCRIPTION

1ST RECORD— 0 2 4 1 7 9 SCREW,3 /32 , HEXHEAD (
2ND RECORD— 0 2 4 1 8 0 SHIELD, UPPER

0 2 4 1 8 1 RESISTOR , WIREWOUND , 2K

0 2 4 1 8 2 PCB,PROCESSOR \

L i
Γ ? 9 751 1 1 SPINDLE , 3 - I N . /

LAST RECORD-^ 9 7 5 1 1 2 TIMER, 8-HOUR)

Fig. 1.8 A parts list file

(0 0 0 . I 2

0 0 0 . 75
] 0 0 1 . 4 3

5 7 9 . 8 0

1 -j

Τ
 Ί

Γ 0 1 0 . 2 0

\ 17 1 . 1 4

Files have names and control information associated with them;
this is stored on the recording medium along with data so that a file
can be transported from one computer to another.

Up to now, we haven't mentioned how records and files are held
physically. Recording media consist of the tapes, diskettes, and
disks mentioned earlier. There are other forms as well, cards for
instance, but let's concentrate on the magnetic recording media.

A Volume

Files are held in volumes. A volume is a physical unit of storage: a
disk, a diskette, a reel of tape. There can be several files to a
volume, or a file can extend over several volumes. Volumes
include labels and control information, such as the names of the
files present, the space occupied by each, and the remaining space
available. Programs that control the recording of information
examine this information to determine if there is space available
before recording new data.

PLANNING A DATA FILE

We now know that a file is a group of related data, that each entry
is organized in the same way as the others, and that the file is
known by one name. An example would be a file named
CURRENT EMPLOYEES. In this case, the information pertain-
ing to each employee is organized in the same way as that for every
other employee. Last name may occupy the first twenty spaces of
every employee record, and current salary may occupy positions
forty-five to fifty of each record.

What Programming Is 13

Of course, file size and the format of entries differ greatly from
one file to another. The programmer is allowed to name files, state
the size expected, and specify how the data within the file is to be
organized.

Considerable thought must be given to organizing files before
the system is set up. First, each record must be organized. Then
field locations, names, and sizes must be decided upon, and
enough flexibility must be built in to accommodate any changes
anticipated.

File Size

The next thing to be determined early is initial file size and
possible expansion needed. Each file must bear a unique name, so
it is awkward to start a second file when the first is full. It is
common practice, however, to open a new larger file and copy the
existing information into it.

Access Methods

How to gain access to the records in a file is an extremely
important decision that must be made when files are being
organized. There are three basic methods: (1) sequential, (2)
direct, and (3) indexed. Indexed is often called 'keyed,' both
terms meaning that each record contains information that allows it
to be located and identified. For the purpose of this description,
we'll call one type of file 'sequential access,' the second 'direct
access,' and the third 'indexed' or 'keyed' access.

Sequential Access

As its name implies, a sequential access file has records entered
into it in the order in which they are received. Each new record is
added to the end of the file. It is not possible to insert records nor
is it possible to delete them. (Of course, a special program could
be prepared to edit the files.)

Direct Access

As strongly implied by its name, a direct access file allows the user
to select any record in the file without reading through others. This

14 Computer Programming Languages in Practice

THE NEED FOR A DATA BASE

Organizing records and files is an important step, but the work
doesn't stop there in most cases; files are often organized into data
bases. A data base is a collection of related data, stored so that
there is a minimum of redundancy. In other words, there is little
duplication of information.

type of file can be stored only on units having the proper
mechanical characteristics, as disks have. Records are numbered,
and a list of the record numbers and their storage location is
maintained by the storage manager program.

When a record is originally stored, it is placed in the next
available location in the file, then the address of that location is
placed in the list next to the record number. Now, when that
record is to be read, the record number calls forth the location
address and this, in turn, immediately finds the record.

Indexed Access

In the following paragraphs we'll discuss an improvement over the
direct access method, called indexed sequential access. It allows
records to be stored in order by the value of one of the fields in the
record and yet to be read directly.

Assume that a file of employee records was to be established
and maintained. This would usually require that an employee's
record be chosen by name, employee number, or national
insurance number and brought into the computer. After the
record is revised, it would be returned to the file in exactly the
same place so that there would not be two records in the file for the
same employee.

The programming task is greatly simplified if a 'keyed' file is
used. The 'key' in this case would be one of the items mentioned
above, name or number. Usually number is the best choice
because its length can be predetermined and there is no chance of
duplication. So, the file is established as a 'keyed access' file, and
the key length and position in each record are decided upon. All
records are placed in order by the value of the key and the
programmer can insert, update, or delete as he sees fit.

What Programming Is 15

STEPS INVOLVED IN PREPARING A PROGRAM

This is a task that must be well organized from beginning to end if
it is to be successful. What seems to be a simple program
occasionally turns out to be very difficult, particularly if it must
interact with others.

Five major steps are involved in program development: (1)
preparation of the program specifications, (2) design of the
program, (3) writing the program (4) testing, and (5) documenting
and releasing the program. Writing the program is often called
'coding,' and that is what we'll call it in the rest of this discussion.

Program Specifications

Program requirements, or specifications, are extremely important.
If they are incorrect, misleading, or incomplete, the programmer
may be forced to repeat a good deal of his work after the program
is tested. Specifications state what the program must do, what the
inputs are, and what the output must be. They frequently describe
interaction with the operator, displays and printouts that must be
produced, and the relationship to other programs and data.
Record and file layouts may be stated as well. Finally, and most
important, specifications define the overall processing that must be
done and generally the order in which it must be done.

Program Design

Design is the next step. Through one method or another, the
programmer must lay out the overall logic involved in meeting the
program requirements. Flowcharts, pseudocode, and decision

A data base does not require that one giant file be established,
only that there be ways of linking and gaining access to the related
information. In the case of employee data maintained by a major
company, for example, there might be three separate files of
employee information in the data base, but the only common
information would be employee number, which appeared in all
three files and served as a link between them.

16 Computer Programming Languages in Practice

tables may be used singly or in various combinations to produce
the program logic.

Coding the Program

Now the coding is started. Complex programs may be subdivided,
allowing many programmers to work simultaneously. How the
divisions are made depend on the design of the program and the
skill and specialities of the programmers. Of course, their activities
must be well coordinated.

As to the language used, the programmer may not have a
choice. Perhaps the entire system of which the current program is
only a part uses COBOL, and this makes it necessary to use
COBOL despite the fact that a programmer may be more
proficient in another language.

Regardless of the language chosen, the programmer must be
very careful in using it. As we'll see in later chapters, words and
punctuation differ considerably from one language to another.
Even where the words appear to be identical, they may not
produce exactly the same result. In addition, languages differ
somewhat from one type of computer to another, and this will
result in errors if the programmer is not fully aware of variations.

In some cases, the programmer can type in his source statements
directly at a computer, while in others the program must be
written out on a coding form and provided to a keypunch operator
for the preparation of cards. Whatever method is used, the result
is the same: Source statements are entered into the computer.

Source statements are the instructions the programmer pre-
pares. They are the source of the program; hence, the name
'source statements.'

Some type of compilation is then done. The tools available and
the results produced depend on the language and the system;
however, the source statements are processed so that the program
can be executed by the computer.

Testing

The testing that a programmer can do by himself may be limited.
This depends to a large extent on whether he has a complete and
independent program or only a section of a large and complex

What Programming Is 17

system. Of course, availability of the computer and data to be
processed affect this as well.

Formal testing is a major step. After the originator has satisfied
himself that the program is complete and accurate, it must
undergo testing to determine that it meets specifications. This test
is usually conducted by a separate group, and it requires good
planning.

Releasing the Program

This brings us to the last step in program development, which is
documentation and release. There are at least three program users
that must be considered: (1) the operator, (2) the applications
specialist, and (3) other programmers. The operator is the person
who will actually be using the program to process data. Often this
individual has limited technical training, so a description of the
purpose of the program, its inputs and outputs, and in general
what it does is required for the operator. Of course, a full set of
operating instructions must be provided as well.

We've used the term 'applications specialist' to mean the person
that is responsible for the data processing installation in which the
program will be used. He needs another level of documentation.
Record layouts, file organization, system and program flowcharts,
a description of the processing done, and data used and produced
are examples.

Finally, we must keep in mind that the program may be revised
by other programmers in the future. This makes it necessary to
provide still another level of documentation, which includes a list
of source statements, test data, and detailed descriptions of the
program logic.

The Finished Program and Its Documentation

Assuming that the programmer is finished and has a tested
program, what materials can we expect to see? A typical package
appears in Fig. 1.9. The finished program (the object program) is
most important; it will be stored, possibly along with others, on a
disk, diskette, tape, or cards. This depends on the size of the
program, its purpose, and the type of computer.

18 Computer Programming Languages in Practice

OPERATING

INSTRUCTIONS

Fig. 1.9 A finished program and its documentation

Also very important is the source program, since it is the source
statements that will be revised if changes are required. It too will
be held in one of the storage media mentioned above, but is likely
to be kept by itself. Accompanying the source program is the
source list, which is usually printed.

If the program is at all complex, operator instructions and
reference material are provided. These describe the purpose of the
program, what it requires, and how to use it. Finally, the
performance specifications, program description, flowcharts, and
development materials are provided as required by company
practices. The user of the program does not have access to this
detailed material but it is available to programming and supervis-
ory personnel.

FLOWCHARTS

We'll start with a broad definition of what a flowchart is: A set of
symbols and notations that show how a program is organized to
perform its intended functions. A simple chart is shown in Fig.
1.10.

Rectangles, diamonds, parallelograms, circles, and several
special symbols appear in this sample. Each represents an action
that the program takes, and the order in which the actions are
taken is indicated by the arrowheads on the lines that interconnect
the symbols.

It's always important to carefully inspect the tools available

What Programming Is 19

^ END ^

F/g. 1.10 A simple flowchart

before using them. So first we need to examine each symbol and its
purpose.

There are nineteen basic symbols, shown in Fig. 1.11, available
for use in flowcharts. There are some variations of symbols. The
meaning of each symbol is as follows:

• Punched-card Symbols. The punched-card symbol is used to
represent either inputs from cards or an output to be punched
into cards. A card deck is a small group of cards, and a card
file is generally a larger group.

• Magnetic-tape Symbol. The magnetic-tape symbol represents

(START)

20 Computer Programming Languages in Practice

either an input from magnetic tape or an output to magnetic
tape.

• Manual Input Symbol. This symbol represents a manual input
from a typewriter linked to the computer terminal equipped
with a keyboard. (It could also represent switches or push
buttons on a control panel.)

• Decision Symbol. The decision symbol in which a question is
asked represents a critical decision that affects the action that
the program will take.

• Function Rectangle. The rectangle is a box that holds a short
statement of what process is to be accomplished or what action
is to be taken. Often it is also used to hold comments.

• Flow Line. A flow line and an arrowhead are used to show the
path that the program will follow.

• Connector Symbol. A connector symbol for flow lines shows
more than one way of reaching the same point. More than one
flow line may enter, but only one may leave.

• Display Symbol. A display symbol, representing the display of
information to an operator, is used when the program
provides an output for the operator to read on a screen.

• Document Symbol. This symbol represents either an input or
an output. An input might be an order form to be entered at
the keyboard by an operator. An output might be a printed
report at a printer.

• Disks and On-line Storage Symbols. These symbols represent
either an input from or an output to a magnetic disk or other
type of online storage devices.

• Communication-link Symbol. A communication-link symbol
represents a data link, such as voice-grade telephone lines, for
transmitting information.

• Preparation Symbol. A preparation symbol is used to define a
manual action required, but it may also be used to show
preparatory steps the computer takes.

• Terminal Symbol. A terminal symbol indicates a point in the
program at which the program allows a start, halt, or interrupt
and end.

• Manual Operation Symbol. The action required is listed inside
this symbol, and it is usually an action performed by the
operator.

• Input/Output Symbol. This symbol would be used when there
was no specific symbol, such as a tape symbol, to represent the
I/O operation or when the programmer wanted to subdivide

What Programming Is 21

the I/O operation into two symbols: one specific symbol and
one general I/O symbol.

• Off-line Storage Symbol. An off-line storage symbol repre-
sents the storage of information that requires special action to
obtain.

Now we can begin to put some of the symbols together to show
some common functions that programs perform.

If the steps of a program were all performed in the sequence in
which they appear, flowcharts would be of little use; a list of major
functions in the order they are performed would be adequate.
Because most programs are far more complex in their logic than a
simple sequence, flowcharts are extremely useful in program
development. There are other important tools, such as decision
tables and pseudo-code, but we'll discuss those later.

There are three basic functions that a flowchart can show. Of
course, sequence of the program is the first. By providing the flow
lines and arrowheads, a programmer can clearly show the order in
which steps are executed. Next is repetition. Flowcharts are
particularly good at showing that a function is to be performed
more than once. Last, and closely related to sequence, is the
ability to make decisions and take multiple paths. This can be
called selection. So, to summarize: Flowcharts show sequence,
repetition, and selection of alternative paths.

Using the symbols in the next subject we'll cover. Showing
sequence of operation is the simplest place to begin. In this case,
the functions to be performed are written in the appropriate symbol
and the symbols arranged in order from the top to the bottom of
a page.

The ability to make decisions and take action is shown by the
diamond-shaped symbol, with the condition being tested written
within the symbol. There are some variations as to where
information is written, but the symbol itself is a standard. Flow
lines enter the symbol at the top and leave at the bottom and sides,
at the points of the symbol. Fig. 1.12 shows two examples of use.

Since there are only three exit points on the decision diamond it
is limited somewhat in its ability to show the complex decisions
that computers can make. Of course, these decisions are made one
at a time, so the decision diamonds can be placed one after
another in succession to show the order in which conditions are
tested and the path taken for each result. Fig. 1.12(b.) shows just
such a case. Here, four consecutive decisions are made. If the

PUNCHED
CARD

CARD
DECK

CARD
FILE

MAGNETIC
TAPE

MANUAL
INPUT

DECISION

FUNCTION
RECTANGLE

:
LOW LINE

CONNECTOR

Ο
DISPLAY

DOCUMENT

ON-LINE
STORAGE

MAGNETIC
DISK

COMMUNICATION
LINK

PREPARATION

CD
TERMINAL

\ZZ7
MANUAL
OPERATION

INPUT/OUTPUT

OFF-LINE
STORAGE

Fig. 1.11 Most common flowchart symbols

α. One Decision - Multiple Paths

OBTAIN
CANDIDATE

RECORD

b. Multiple
Decisions

YES

INVITE
FOR

INTERVIEW

Fig. 1.12 Decisions shown by flowcharts

24 Computer Programming Languages in Practice

candidate fails—that is gets a 'no' answer at any decision
point—that candidate is discarded and the next is subjected to the
same screening process.

Loops are the next subject to be discussed. A loop is a process, a
task, that is performed a number of times before the program
continues. Once the program enters the loop, a specific condition
must be present before the program proceeds. That condition
often involves checking a count to determine if the process has
been performed the required number of times. If there are fifty
employees in a company, for example, the group of steps that
prepares a pay-form must be performed fifty times. This would
appear in flowchart form as shown in Fig. 1.13.

On the other hand, there is a kind of a loop that waits for
something to happen before continuing. A loop such as this may
wait for equipment to be made ready or for the operator to press a
certain key at the keyboard. There is generally no limit to the
number of times a loop such as this is performed—it simply
continues until the condition that it requires is met.

Decision Tables

Decision tables are often helped when the selection process
becomes complex and difficult to keep in mind. Tables are
suggested because they force the information into a matrix form.
(It's very easy to overlook all the possibilities, otherwise.) And,
naturally, they are easy to read when one has to go back to revise
the program.

A decision table is shown in Fig. 1.14. Notice that it requires the
programmer to consider what action he must take in eight
different situations. Although this is a very simple example, it does
serve to illustrate that a programmer might overlook some of the
possible combinations and not include them in his program unless
he uses a decision table.

Pseudocode

Last among the three methods commonly used to organize
programs is one called pseudocode. It provides English statements
of what is to be done, and it often uses words that become part of
the source statements in the programs themselves.

What Programming Is 25

Fig. 1.13 Λ loop shown by a flowchart

Earlier in this chapter, we used several examples of instructions
needed to make decisions in a computer. Among them were:

IF condition THEN action 1 ELSE action 2
REPEAT action UNTIL condition

It should be obvious that the capitalized words, which become part
of the program, can also be used in full English sentences that
express the logic of the program. For example:

26 Computer Programming Languages in Practice

Possible Combinations
of Conditions

Conditions A

1 2 3 4 5 6 7 8

Y Y Y Y Ν Ν Ν Ν

Y Y Ν Ν Y Y Ν Ν

Y Ν Y Ν Y Ν Y Ν

Χ - - Χ

- χ
χ

Χ - Χ Χ Χ

Action for
Each Combination

Y-Condition Exists. N-Condition Does Not Exist.

Fig. 1.14 A decision table

IF the applicant is under 35, THEN use table 1 for rates.
ELSE use table 2.
REPEAT payroll procedure UNTIL employee count reaches
50.

This is the nature of pseudocode. Usually an indentation scheme
shows the relationship between the lines. In other words, decisions
and actions are indented to show subordination as in Fig. 1.15.
Statements expressing the main flow of the logic are blocked left,
and each subdivision of the logic is indented until the lowest level
is reached.

As yet, there are no standards for pseudocode. This is
unfortunate because it can show complex logic better than
flowcharts in many cases. Alone, the physical limitations of the
flowchart symbols for decisions prevent the expression of many
relationships, and a programmer may oversimplify the decision in
order to make it fit.

Fig. 1.15 is a case of reading the sales records for a salesman
from a file and calculating total commission due. We've assumed
only one salesman and one file. The pseudocode opens the sales
file and reads one record at a time. For each sale, it calculates the
amount due the salesman. It prints a line showing results and
maintains a running total. When the last record is read, it prints

Actions A

Action 1

Action 2

Action 3

Action 4

What Programming Is 27

Perform INITIALIZATION

OPEN the SALESFILE

READ a Record

IF End-of-File, Perform FINAL TOTAL AND PRINT, CLOSE SALESFILE,

and End the Program

ELSE Perform the Following:

IF SALE AMT > £200, MULTIPLY by 2%, GIVING COMMISSION AMT

ELSE MULTIPLY by 3%, GIVING COMMISSION AMT

PRINT the SALE AMT and COMMISSION AMT

ADD COMMISSION AMT to TOTAL COMMISSION

Return to READ Next Record

Fig. 1.15 Λ section of pseudocode

the final total, closes the file and ends the program. When most
readers reach the COBOL chapter, they'll recognize that this
pseudocode is remarkably close to the final code needed to
program this problem in COBOL.

SELF-TEST FOR CHAPTER 1

1. What is a computer program?
2. Name the five types of programs and briefly describe what

each type does.
3. What is an operating system, and why is it necessary?
4. When programming a display screen or printer, what two

things does the programmer control?
5. What do OPEN and CLOSE mean when used in connection

with programming a storage unit?
6. Define field, record, and file. Relate them to one another.
7. What is the difference between a numeric field and an

alphanumeric field?
8. Explain sequential access, direct access, and indexed access.
9. What does the word 'key' mean when used in connection

with an indexed file?
10. Why is it desirable to have a data base rather than a group of

separate and unrelated files?
11. List the steps involved in the development and testing of a

program. Briefly describe what is done in each.
12. What is the purpose of a flowchart, and how are flowcharts

used?
13. What does the diamond-shaped symbol indicate when it is

shown in a flowchart?
14. What are decision tables, and how are they used?
15. What is pseudocode, and how is it used?

2
Components of a
Programming Language

When one thinks of a programming language, the first thing that
comes to mind are the words that comprise the language. Rightly
so, because these are the key elements, but they are only the 4tip of
the iceberg'. A programming language is really a complex system
consisting of many components that make it possible for a
programmer to use the words. In this chapter, we'll discuss all of
those components and show how they work together.

PHASES OF OPERATION

Let's begin by examining a simple statement in a high-level
language and see what must happen to that statement before a
computer actually performs the action called for. The statement is:

READ (5,*) A, B, C

This statement, which is from FORTRAN, is intended to make
the computer accept certain data (A, B, and C) from an input unit
(number 5), perhaps typed in from a keyboard or read by a card
reader. The programmer must give the statement, following
certain rules for its construction. A section of the programming
system, called an entry program, accepts the statement and places
it in order with the others entered. This is shown in step 1 in Fig.
2.1. So far, the statement is in the programming system but the
computer has not executed it.

After all the statements are entered, the next phase is started
(step 2 in the figure). The programmer signals that his entries are
complete and that he wishes to have them processed. This is done
by another part of the programming system, which is called the
compiler. Following certain rules, the compiler takes each of the

Components of a Programming Language 29

SOURCE
STATEMENTS

\
ENTRY-
EDITOR

PROGRAM

SOURCE
PROGRAM

COMPILER
PROGRAM

OBJECT!
PROGRAM

RUN-TIME
SYSTEM

SOURCE
LIST

(INCLUDES
SUPPLEMENTARY
INFORMATION)

Fig. 2.1 Components of a programming system

statements and converts them to a form the machine can execute.
When finished, the compiler signals the programmer that his
program is now available to be executed.

30 Computer Programming Languages in Practice

If the programmer wishes, the programming system can provide
him with a list of all the statements he entered. Also available with
this list (step 3 in the figure) are notes that the compiler has made
concerning errors the programmer may have made in using the
language.

Assuming that there are no errors, the programmer is finally
ready to execute the program he has written. This is called
'run-time' or 'execution time.' Usually, the programmer enters the
name of his finished program along with a command to run that
program. At this point (step 4 in the figure), the machine begins to
carry out each of the statements the programmer has entered.

Part of the programming system must remain in the computer to
supervise the execution of the object program, but other portions
of the programming system, such as the section that accepts source
statements, are not required during the 'run-time' phase.

Thus, the major components of a programming language are an
entry program, a compiler, and a run-time system. The source
statements themselves do nothing without having been processed
by these elements and converted to a form the computer can use.

Most programs have at least minor mistakes in them. So when a
programmer executes his own object program for the first time, he
is likely to be surprised by some of the results. Each mistake is
called a 'bug,' and this brings us to another phase of operation,
which is called 'debugging.'

Most of the programming systems provide aids to make
debugging fairly easy. Step-by-step execution modes are usually
available, and thus the programmer can cause the computer to
stop after each source statement is executed so that he can see
what each statement has done. After locating faults in the source
statements or data, the programmer returns to the entry phase and
'edits' the program by adding, deleting, or modifying the original
source statements or data. Compilation is then done again, and a
new object program is produced.

There are also variations of the usual steps—entry, compilation,
and execution. One involves an intermediate code. In this case,
the compiler converts the source statements to an intermediate
code rather than machine language and an interpreter processes
this code into machine language during program execution.

In another variation, the source statements go to the interpreter
after only a limited amount of pre-processing and the interpreter
converts them into machine language during execution of the
program.

Components of a Programming Language 31

THE STATEMENTS AVAILABLE IN A LANGUAGE

Each programming language has a set of statements that the
programmer may issue. Most use words that are English or
near-English and by themselves are fairly easy to understand. The
keywords, or reserved words, as they are often called, have a
specific meaning to the programming system and must be used in
no other way.

In Fig. 2.2, a section of the reserved word lists is shown for each
of the two major languages, BASIC and COBOL. Notice that
there is some similarity among the languages and that most of the
words available are in English, not coded or abbreviated in any
way. These are the tools the programmer has to work with.

SYNTAX DIAGRAMS

A statement given in a high-level language is like an English
sentence in many respects. Proper construction conveys the
information you wish to convey; improper construction produces
nonsense or ambiguity. It is essential, therefore, that a program-
mer not only understand what each word does but also be familiar
with the rules concerning statement construction.

This is not an easy task. There is a tool available that is of great
value, however, and it is called a syntax diagram.

'Syntax' means the way in which words are put together to form
phrases and sentences. Each language has very strict rules
concerning its syntax and is 'unforgiving'; it carries out the
statement exactly as written, or rejects it if it cannot be executed.

Syntax diagrams are basically a way of summarizing the rules
that apply to the construction of source statements.

Unfortunately, the style and symbols used for syntax diagrams
differ from one language to another, although each style is easy to

Thus, we have three common arrangements: (1) compiler alone,
(2) compiler and interpreter, and (3) interpreter alone. In general,
the first scheme results in the fastest execution of programs
because the program is in machine language before execution
begins.

32 Computer Programming Languages in Practice

BASIC

ACCESS ELAPSED MARGIN RESET UNTIL

AND ELSE MAT REST URGENCY
ARITHMETIC ENABLE RESTORE USING
AT END NAME RESUME

EOF NATIVE RETRY VARIABLE
BASE EVENT NEXT RETURN VIEWPORT

BEGIN EXIT NONE REWRITE
BOUNDS NOT WHILE
BREAK FILE SAME WINDOW

FOR OFF SCRATCH WITH
CALL FROM ON SELECT WRITE
CASE FUNCTION OPEN SEQUENTIAL
CAUSE OPTION SET
CENTERING GO OR SIGNAL
CHAIN GOSUB ORGANIZATION SKIP
CLEAR GOTO OUT STANDARD

COBOL
ACCEPT CORRESPONDING EXTEND LESS
ACCESS COUNT LIMIT
ADD CURRENCY FD LIMITS
ADVANCING FILE LINAGE
AFTER DATA FILE-CONTROL LINAGE-COUNTER
ALL DATE FILLER LINE
ALPHABETIC DATE-COMPILED FINAL LINE-COUNTER
ALSO DATE-WRITTEN FIRST LINES
ALTER DAY FOOTING LINKAGE
ALTERNATE DE FOR LOCK
AND DEBUG-CONTENTS FROM LOW-VALUE
ARE DEBUG-ITEM LOW-VALUES
AREA DEBUG-LINE GENERATE
AREAS DEBUG-NAME GIVING MEMORY
ASCENDING DEBUG-SUB-1 GO MERGE
ASSIGN DEBUG-SUB-2 GREATER MESSAGE
AT DEBUG-SUB-3 GROUP MODE
AUTHOR DEBUGGING MODULES

DECIMAL-POINT HEADING MOVE
BEFORE DECLARATIVES HIGH-VALUE MULTIPLE
BLANK DELETE HIGH-VALUES MULTIPLY
BLOCK DELIMITED

Fig. 2.2 Sections of reserved word lists

understand after some study. Standardization is also a problem.
There are some differences in appearance of the syntax diagrams
from one publication to another.

Fig. 2.3 illustrates the same statement given in the two major
languages we cover in this book. It is an 'if statement, which
determines whether or not a certain condition exists and then
takes the action the programmer has specified.

Punctuation is often specified in syntax diagrams. This is
extremely important, because the systems act on punctuation in
different ways. BASIC uses no punctuation at the end of a
statement. COBOL uses a full stop at the end of each sentence.

Components of a Programming Language 33

BASIC I F X * = " 3 " THEN 1 7 0

IF < relation > THEN

IF < relation > THEN

line no.
or

statement
ELSE

line no.
or

statement

line no.
or

statement J
UNLESS < condition >

HD— expression » ^ t h e n ^ — •

COBOL I F ACCT-NUM I S LESS THON PREVIOUS-ACCT-NUM

MOVE ' O U T OF SEQUENCE' TO M E S S A G E - L I N E

ELSE MOVE P A Y - I N TO A C C T - C R E D I T .

IF condition; Jstatement-1 Ί ί ; ELSE statement -2 ^
l^NEXT SENTENCEj" "(j ELSE NEXT SENTENCE Γ

Fig. 2.3 An IF Statement in two languages

CODING FORMS

The process of writing out a program step-by-step is called
'coding/ which means that the programmer is giving instructions
in the 'code' or 'code words' that the programming system can use.
Not only are the programming languages restrictive in the choice
of words and symbols used, but most are also sensitive to the
positions that the inputs occupy. Each type of information must be
entered in a certain format in order to convey the proper meaning.
Most languages have coding forms available to show the program-
mer the positions in which he must enter his code. These forms are
useful to experienced programmers as well as to beginners.

Several typical forms appear in Fig. 2.4. They are simplified in
our example because they may differ somewhat from one company
to another, although there are standard forms.

OPERATORS

Operators are the symbols that are used in statements to cause
arithmetic to be performed or to cause relationships to be tested.

F
ig

.
2.

4
Ty

pi
ca

l
co

di
ng

 f
or

m
s

36 Computer Programming Languages in Practice

They are remarkably similar from one language to another, so
readers familiar with one set of operators should have no difficulty
learning those in a second language.

Arithmetic Operators

First, we'll show arithmetic operators and their meaning. Follow-
ing is a compilation of a set from several languages. Each language
may have slight differences.

S Y M B O L M E A N I N G

+ Addition (or make positive)
- Subtraction (or make negative)
* Multiplication
/ Division

** Exponentiation (raise to a power)

Most readers will recognize that some of the symbols are those
used when the same functions are performed with a calculator or
pencil and paper. One reason that differences exist is that the
operator symbols must be chosen without any confusion from
those available on a typewriter keyboard. For example, the
superscript needed to show an exponent is not available on most
keyboards, and there is no 'dot' to show multiplication.

Relational Operators

Next we'll show relational operators. These too should be familiar.
There is a greater difference among languages in this case,
however, so we've shown the symbols from three languages. In the
case of COBOL, we've shown the full English form, although
COBOL also allows symbol form, somewhat similar to BASIC, to
be used.

B A S I C

<>

>

<

F O R T R A N

.EQ.

.NE.

• GT.

.LT.

COBOL

IS EQUAL TO
IS NOT
EQUAL TO
IS GREATER
THAN
IS LESS
THAN

M E A N I N G

Equal
Not Equal

Greater
Than
Less Than

Components of a Programming Language 37

>= .GE IS NOT LESS Equal or Greater
Than
Equal or Less
Than

<= LE
THAN
IS NOT
GREATER
THAN

VARIABLES

Even in secondary school nearly everyone used variables in
simple equations. Area of a rectangle, for example, was A=L*W.
The length (L) and the width (W) were of course variable
depending upon which rectangle was being considered. Therefore,
the area (A) was also variable. Thus A, L, and W were the names
of variables, and since the quantities involved were numbers, they
were, specifically, the names of numeric variables.

Each of the programming languages has certain rules concerning
how a programmer may name the numeric variables used. On one
hand, simple BASIC allows a maximum of two characters in a
numeric variable name. As long as we are dealing with only simple
equations this is no problem, but most people find it too restrictive
in other applications. FORTRAN allows names up to six
characters long, while the other major languages (including
modern BASIC) allow even more. Thus it is possible to be very
English-like in naming numeric variables in some languages.
'Interest rate,' for example, might be named INT-RATE, a name
whose meaning is easily recognized.

There is also another type of variable used in the high-level
languages; it is not used as a number in arithmetic. Let's consider
the case of a student name in college records. Suppose that one
student record after another is to be processed to determine
whether or not tuition has been paid. The program to do this needs
some way of acquiring student name without knowing it in
advance. The student name is thus a variable that must be
identified somehow. This variable is a character variable, which is
commonly called a 'string variable' in that it is made up of a string
of characters. The name given to the variable is thus a string
variable name. It would certainly be helpful if the string variable in
our example could be called STUDENT-NAME, but again the
languages have a wide range of sizes available to construct names.

38 Computer Programming Languages in Practice

There are also two types of constants: numeric and string.
Logically, a numeric constant is a number written in a statement in
its final form, exactly as it will be used in arithmetic. In using the
equation to convert from Centrigrade to Fahrenheit temperatures,
for example, the constant '32' is written in the statement that does
the arithmetic.

A string constant is a set of characters in the exact form it will be
used. A statement might be written: PRINT "YOUR SCORE
IS," X. In this case, the string constant is set off by quotation
marks, which is a common method of showing that certain
characters are a constant. Responding to this statement, the
computer prints the words YOUR SCORE IS and follows them
with the current value of the numeric variable X.

It may sound contradictory after we just explained that variables
are named while constants are given in final form, but constants
can also be named in most languages. The names must be declared
to be names of constants and the value of the constant given. Once
this is done, however, a programmer may use the name in his
statement and thus write statements that may be easier to read.
'PI,' for example, has somewhat more meaning than 3.14 when
someone is reading a program.

LITERALS

Included in some of the syntax diagrams for source statements is
the word 'literal.' It means that the actual value to be used can be
placed in the source statement. To illustrate, we'll use two source
statements, one with only variables and the second using a literal:

ADD Interest-Due TO Payment
MULTIPLY Payment BY 36 GIVING Total-Due

In the first, the contents of the variables Interest-Due and
Payment are added, whatever the actual values are. In the second,
the contents of Payment is multiplied by the literal 36 to produce
the contents of another variable, Total-Due.

CONSTANTS

Components of a Programming Language 39

'Array' is another of the special words used in this chapter.
However, an array is nothing more than a table of data. If it holds
numbers, it is called a numeric array; if it holds string (character)
data, it is called a string array.

Arrays that have only one row of entries, which are called
'elements,' are known as one-dimension arrays. Those that have
two or more rows and columns are two-dimension arrays.

Arrays are named just as one would name a table. Naming rules
vary from one language to another, but are often the same as the
rules for naming variables. Thus, an array may be named for its
contents, perhaps 'INTEREST RATES.' When the assigned name
is used in a source statement, the statement gains access to the
array.

Each element in an array is accessible individually. (Two simple
arrays appear in Fig. 2.5.) An element is the location at the
intersection of a row and column. In the figure, 19 is an element,
as is 'EAGLE.' Elements are identified by their row and column
numbers. The 19 is element 1, and EAGLE is element 2, 3 (row 2,
column 3).

There are source statements that establish an array and its size,

A One-Dimension Array With Four Elements

019 138 057 288

A Two-Dimension Array With Nine Elements

Column
1

Column
2

Column
3

DOG CAT CANARY

WOLF TIGER EAGLE

FOX LYNX PARROT

Fig. 2.5 Examples of arrays

ARRAYS

40 Computer Programming Languages in Practice

FUNCTIONS

Here's a word that has a broad meaning to the layman. In our
high-level languages though, it has a very limited definition. A
function is a certain pre-programmed operation offered by the
language, or it is an operation that the programmer prepares and
sets aside for use as if it was offered by the language. SQRT,
square root, is a simple example of a function, and so are SIN and
COS (sine and cosine).

If functions such as these are available, as they are in nearly all
the languages, the programmer can use them by simply giving their
name. Obviously, if they are not provided, he must perform the
same operation in another way, using the limited statements
available. We'll see how a function is called into action when we
discuss the construction of expressions.

Most languages allow a programmer to create his own functions.
It's a simple matter of declaring that a function by a certain name
exists and then preparing the statements that will be called into
action when that name is given.

EXPRESSIONS

Now that we know what operators, variables, constants, literals,
array elements, and functions are, the next step is to see how they
are put together to obtain results. When these components are
placed in a source statement either singly or in complex combina-

others that enter the data in the elements, and still others that
refer to and use the data held in these tables. Each language has
certain rules for using arrays, which will be discussed in the
appropriate chapter.

We know so far that each element in an array is numbered
(although some languages permit elements to be named). For
example, RATES (2) selects the second entry in a one-dimension
array named RATES, and A (5, 4) selects the element at the
intersection of the fifth row and the fourth column of an array
named A. The numbers in parentheses are called subscripts, and
an array is also often called a 'subscripted variable.'

Components of a Programming Language 41

tions they make up an 'expression.' 'Α*Β' is an expression, ' O D
or E > F ' is an expression, as is 'SQR(X)/Z.'

When the arithmetic in the expression A*B is actually per-
formed and the result obtained, the expression is said to have been
'evaluated.'

A*B is, of course, an arithmetic expression, but the term
'evaluated' is also used to describe the resolution of relational
expressions such as C>D that we gave in our examples. In this
case, the evaluation produces a 'yes' or 'no' rather than a number.

A function, square root, was used in the third example, and
when this expression is evaluated, the square root of X is found. In
turn, it is divided by Ζ to complete the evaluation of the
expression.

Now we confront two new subjects: (1) how expressions are
written, and (2) the order in which the evaluation proceeds. In
general, the same fundamental rules apply to all languages. First,
expressions must be written on a line. Secondly, the evaluation
proceeds in a certain predetermined order.

A few typical expressions are shown in Fig. 2.6 to illustrate how
the requirement to place all terms and operators on a single line
affects the programmer. It takes some thought and care to convert
the typical equation into a form acceptable to most programming
languages.

Normally Written One-Line in BASIC

χ ab + c

ab X = f t * B / (C - D) χ c - d

a 2x + 3y + 8z Α=£·*Χ+3*Υ+8*Ζ

χ X=ft*B~C/D

χ 3a
2 - 5b + 27c X = 3 * f l * * £ : - 5 * B + 2 7 * C

a2 + b
2

C=SQR <f t**£+B**£ ')
c

Fig. 2.6 Expressions written in the one-line form

42 Computer Programming Languages in Practice

PROCEDURES

A procedure is a 'miniprogram' similar in construction to the
'functions' we just discussed but generally considerably longer.
Some programming languages allow these miniprograms to be
constructed and called into use, while others do not. A procedure
is given a name when it's constructed, and the overall program can
cause that miniprogram to be performed whenever it wishes by
simply entering the name of the procedure in a source statement.

Now let's examine the order in which all the activities involved
in the evaluation of an expression proceed:

1. Functions are executed first. This is referred to as a 'function
call.' The function call places a quantity in the expression.

2. Next, the arithmetic operators are applied, and they have the
following priority from highest to lowest:
Make positive or negative (+ and - signs with a single term)
Raise to a power (exponentiation)
Multiplication and division
Addition and subtraction

3. Relational operators (less than, equal to, etc.) are applied
next. Since the arithmetic has been done, quantities can now
be compared.

4. Last, the logical operators (AND, OR, NOT, etc.), which we
haven't discussed yet, are applied. These operators link
conditions such as C>D AND A=B. Obviously, they can't be
applied until it is known if C is greater than D and A is equal
to B. Both of these conditions must be true if the expression
using the AND operator is to return a 'yes' when it is
evaluated.

In closing this discussion on operator precedence we need to state
one last rule: When operators of equal priority exist, they are
applied in order from left to right in the expression.

Parentheses also play an important role in the order in which the
components of an expression are evaluated. Whatever compo-
nents are within parentheses are fully evaluated first, in the order
discussed above, to result in a single quantity. Evaluation begins
with the innermost parentheses and progresses outward until all
parentheses have been removed.

Components of a Programming Language 43

CONTROL STRUCTURES AND STRUCTURED
PROGRAMMING

Structured programming is a term you may hear occasionally.
What is structured programming, and how does it differ from
unstructured programming? These are two questions we'll answer
in this section. It's important to do this now because some
languages we'll discuss later are much better suited to structured
programming than others. If you have a good understanding of
what structured programming is, you'll be able to recognize
language features that aid in the preparation of structured
programs.

Let's use an analogy to illustrate the difference between
structured and unstructured programs. A pyramid of children's
blocks placed alongside a bowl of cooked spaghetti should do. In
the spaghetti, it is very difficult to follow an individual strand in the
mass, and if the strand is removed, its place with respect to the
whole is impossible to determine. Contrast this with the blocks.
Each block is clearly identifiable and its place in the stack certain.
When a block is removed, the place it occupied is left unfilled and
the block can stand alone.

Admittedly, this analogy is severe, but it does serve to show the
fundamental difference between structured programming, which
allows parts to be clearly separated, and unstructured program-
ming, which does not.

So the first language feature needed for structured programming
is the ability to create the blocks. Logically then, the second
feature is the ability to determine that a specific block should be
used and for how long. Of the two major languages we cover,
COBOL is much better suited to structured programming than
BASIC.

Structured programming generally requires that more planning
be done. The program must be broken down into modules and, if
necessary, submodules, somewhat like the organization shown in
Fig. 2.7. Each module (the 'procedure' we spoke of earlier)
consists of the steps needed to perform a specific task. In order to
have that task performed, the program includes a statement that

After the procedure is completed, the overall program continues
from the point at which it called the procedure into action.

44 Computer Programming Languages in Practice

OVERALL
STRUCTURE

SUB-
MODULES

A Β C D

PROGRAM
FLOW IN A
STRUCTURED
PROGRAM

Έ1

3L

7f

CALLS SUBMODULE

CALLS SUBMODULES 2 , 3 , 5

CALLS SUBMODULES 4 ,

CALLS SUBMODULES 6 ,5

PROGRAM
FLOW IN AN
UNSTRUCTURED
PROGRAM

-3H

Ύ
Fig. 2.7 Organization of structured and unstructured programs

selects the desired procedure. After that specific procedure is
completed, the program continues with the statement following
the one that selected the procedure.

Procedures may also use other procedures by including state-
ments to select them. When any procedure is complete, it returns

Components of a Programming Language 45

to the statement following the one that called it into action. Fig.
2.8 illustrates how procedures can be linked to one another.

Now let's discuss the features needed to create and use a
procedure. There are some differences between languages, so
we'll have to generalize. First, the language must have some way
of saying that a group of statements are to be treated as a unit.
Next, the language must have a way of choosing that procedure for
execution. Some allow the procedure name to be given, and that's
all that is needed.

Now we can return to Fig. 2.7, which shows the difference
between structured and unstructured programs. The unstructured
example consists of a series of statements that are essentially
inseparable. In contrast, we have the example of a structured
program in Fig. 2.8. The body consists of twelve statements that
call procedures into action. Each time a procedure is finished, the
program moves to the next statement.

There are more than twelve procedures in this program,
however. In fact, there are thirty-one. We've simply numbered the
procedures in our example; in practice, they would have names
that indicated what task they performed.

MAIN PROGRAM

0 1 0 0 REM MYPROGRAM
Ol I 0 CALL ONE

FROM PROCEDURE ONE • [0 1 2 0 CALL TWO
FROM PROCEDURE TWO 0 1 3 0 CALL THREE

— • T O PROCEDURE ONE
- • T O PROCEDURE TWO
- - • T O PROCEDURE THREE

FROM PROCEDURE ELEVEN -
FROM PROCEDURE TWELVE-

Τ
0 2 2 0 CALL TWELVE
0 2 3 0 END

Τ
>T0 P R O C E D U RE T W E L V E

CALL FIRST PROCEDURE CALL SECOND PROCEDURE

^ P R O C E D U R E : O NE

S T A T E M E N T

S T A T E M E N T

R E T U R N S T A T E M E N T

~+ E N D P R O C.

^ P R O C E D U R E : T W O

STATEMENT
STATEMENT I
CALL SEVENTEEN--—PROCEDURE SEVENTEEN— *-i

L * - STATEMENT
CALL FOURTEEN —PROCEDURE F O U R T E E N - - - η

^ CALL T H I R T Y O N E - - — PROCEDURE THIRTYONE "-i

Fig. 2.8 Use of procedures in a structured program

46 Computer Programming Languages in Practice

IF condition THEN
statements 1,2,3

ELSE
statements 4 , 5

ENDIF
IF

THEN
TRUE

ELSE
FALSE

1 1
STATEMENTS

1,2,3
STATEMENTS

4 , 5

Ο
E N D I F

Fig. 2.9 The IF/THEN/ELSE control structure

To summarize what we've said: A programming language must
have the ability to create and call procedures if it is to be well
suited to structured programming. And structured programs are
desirable because they are generally easier to prepare, test, and
maintain.

There are, however, some other features that a language should
have. For example, it may be necessary to call one procedure if a
certain condition exists and a different procedure if it does not. It
may be necessary to repeat a procedure a certain number of times
or until a specific event occurs. Thus, there is much more to
structured programming than simply creating and calling the
procedures.

The need to test conditions and take alternative actions based
on the results is an idea that's easy enough to understand. How
this is actually accomplished by the statements in a programming
language is another matter, however. Of course, a language
should provide statements that make clear the logic of the
situation.

Components of a Programming Language 47

Some are better than others in this respect. Because we're just
beginning to get acquainted with programming languages, we'll
skip around among the two major languages and choose state-
ments that are the easiest to explain.

First, we'll discuss the basic decision in which a condition is
examined and one of two paths chosen. This is shown in flowchart
form in Fig. 2.9. A typical high-level language states this situation
as follows:

FOR condition DO statements
PERFORM statements number TIMES

INCREMENT
COUNT

1
Fig. 2.10 The FORIDO and PERFORM number of TIMES
control structure

48 Computer Programming Languages in Practice

IF condition exists THEN perform statements below
Statement 1
Statement 2
Statement 3

ELSE perform statements below
Statement 4
Statement 5

END of this block

Any one of the statements 1 through 5 in the example could call a
procedure to perform a specific task, or the statements could
perform the necessary processing themselves. The END entry
simply establishes the boundary for this block; it does no work.

Our next example is a loop that is to be performed a certain
number of times or until a certain condition exists. One language
offers a very clear statement to handle this, while the others have
statements that are slightly more difficult to use. Our easy
statement is:

PERFORM procedure name number of TIMES

In this case, the programmer has only to give the name of the
procedure to be performed and state the total number of times.
This causes the logic shown in Fig. 2.10 to be enacted.

Other languages offer a statement that is slightly more difficult
to understand. It has some variation of this basic form:

name of first second statements
FOR variable limit TO limit DO specified

Each time the statements are executed, the variable named (which
is called a control variable) is incremented to record that fact. As
long as the variable is within the two limits set, this continues. The
variable is thus a counter and the limits set determine how many
times the loop is performed; when a limit is reached, the loop is
stopped and the program goes on to the next operation to be
performed. Of course, the programmer selects the name assigned
to the counter and its limits when he writes the statement.

Next we have the case in which a procedure (or a statement or
group of statements) is to be performed until a certain event
occurs. The logic of the situation is shown in Fig. 2.11. Notice that
the loop is entered unconditionally and thus the procedure is
performed once before the occurrence of the event is checked.
One language offers the following statement to handle this
situation:

Components of a Programming Language 49

PERFORM statements UNTIL condition
REPEAT statements UNTIL condition

PERFORM

Statements

UNTIL

TRUE

Fig. 2.11 The REPEAT/UNTIL control structure

PERFORM procedure name UNTIL condition

and another offers:

REPEAT procedure name UNTIL condition

As we mentioned, this type of statement enters the procedure
before it checks the condition, and this may not be desirable. The
alternative, of course, is the logic shown in Fig. 2.12. There are
several ways to prepare a statement to execute this logic, but one
language has a statement that is especially easy to use:

WHILE condition exists DO procedure or statements

In this case, the condition is checked first. If it is not present, the
loop is bypassed entirely; if it is present, the loop is performed
until the event occurs that eliminates the condition.

50 Computer Programming Languages in Practice

The features discussed in the preceding paragraphs are called
'control structures.' All contribute to making structured program-
ming easy, and they are also the elementary tools needed.

WHILE condition DO statements

I I V
Fig. 2.12 The WHILE/DO control structure

THE EFFECT OF LIMITED CONTROL STRUCTURES

Let's examine some of the statements that a programmer might
have to use if a language couldn't create procedures and had
limited control structures. Most languages have a statement called
GOTO. Its format is usually GOTO statement number, or ON
condition GOTO statement number.

Components of a Programming Language 51

So a programmer has the tool available to branch another
section of his program, either unconditionally or after determining
that a certain condition exists. By carefully organizing that section
so that it performs a clearcut task and is properly labelled, he can
create the rough equivalent of a procedure. There is, however, no
automatic return to the main trunk of the program when the
section is completed. There is no automatic way of checking that a
condition still exists or, for that matter, no automatic way of
counting the number of times that section is performed. In other
words, the programmer must provide his own tests and he must
provide them in the section being executed. Once the tests are
met, the programmer might use a GOTO or ON GOTO
statement to return to the point in the main program which he left.
If the section we're dealing with included some GOTO statements
that branched to still other sections, the programming logic
becomes hard to follow and error prone.

Some languages do include a pair of statements that help to
control the return to the main program. That pair is GOSUB
statement number and RETURN. An ON condition GOSUB
statement number is usually available as well.

This pair of statements means 'go to a subroutine and return
automatically.' A subroutine is the same as a section we spoke of
above, and it too is the rough equivalent of a procedure. It is
ended by the RETURN statement, which causes the program to
go back to the main trunk at the point at which the branch took
place. And there may be GOSUB statements within a subroutine,
causing subbranches but automatically returning to the branch
from which they came. This is the equivalent of a procedure calling
another procedure.

Although the GOSUB/RETURN control structure helps a bit,
the programmer must still provide, in the subroutine itself, his own
tests for conditions or the number of iterations necessary to end
the subroutine. Of course, once the RETURN statement is
reached, the return is automatic; the programmer does not have to
provide the number of the statement to which the program is to
return.

The two high-level languages we cover in detail in this section
have a variety of control structures available, some easier to use
than others. It should be clear, however, that the IF/THEN/
ELSE, REPEAT/UNTIL, WHILE/DO, and FOR/DO control
structures do make programming easier than if ON GOTO and
GOSUB were available.

52 Computer Programming Languages in Practice

SELF-TEST FOR CHAPTER 2

1. Describe what takes place during each of the three basic
phases (entry, compilation, and execution) involved in the
preparation of a program.

2. What is a high-level language?
3. What is a compiler and, in general, what does it do?
4. What is a source program, source list, source file, an object

program?
5. Describe what a syntax diagram is and why it is necessary.
6. Why are coding forms needed?
7. Two types of operators were mentioned in this chapter:

relational and arithmetic. Use them to write A B/ c , (A 2) B , A is
less than Β, Β is not equal to A.

8. Listed below in the left column are common arithmetic
operators. Enter a number in the right column to show the
order in which they are executed:

Operator Order
+ (Add)

/
- (Sub)

**

+ (Make
positive)
— (Make
negative)

9. Describe a one-dimensional array, a two-dimensional array.
10. Describe what a function is. When a function is used in an

expression, what happens?
11. What does the word 'evaluated' mean when used in

connection with an expression?
12. Expressions must be written on one line in the programming

languages we cover. What effect does this have on the
programmer?

13. What is a procedure? What causes a procedure to be
performed?

14. Structured programming has several advantages over
unstructured programming. Name two and describe why
they are important.

Components of a Programming Language 53

15. Several of the most common control structures available
(WHILE/DO, IF/THEN/ELSE) were described in this
chapter. Why is it important that they be available in a
programming language?

16. When the programmer issues a GOTO statement to cause a
branch to another part of a program, how is a return
accomplished? (Assuming that one is necessary.)

3
BASIC—
Beginner's All-Purpose
Symbolic Instruction Code

INTRODUCTION

The acronym BASIC means beginner's ΛΠ-purpose Symbolic
/nstruction Code.' Developed in the 1960s at Dartmouth College,
BASIC is the most popular language offered to users of small
computers. It is easy to learn the meaning of each source
statement because the key words are English or near-English.
PRINT, NEXT, RETURN, READ, and several more do exactly
what their names suggest.

One of the first things that we must make clear is that there is
not only one BASIC language; there are many. Most companies
offering the language have 'tailored' it in order to take full
advantage of the strong points in their equipment and to meet its
intended application. Although there is a standard for BASIC
provided by the American National Standards Institute, it's
unlikely that the reader will encounter a BASIC that is identical to
the standard in all respects. Many nearly meet the standard,
however, and, therefore, some programs written in BASIC can be
moved from one machine to another after undergoing only minor
changes.

WHAT DOES A BASIC PROGRAM LOOK LIKE?

Programs are as different as the people that prepare them. Some
are very neat and well organized, while others are confusing and

BASIC—Beginners All-purpose Symbolic Instruction Code 55

hard to follow. Some are very 'wordy,' while others restrict their
comments to few or none. The liberal use of comments, titles, and
blank lines can change a program's appearance dramatically,
although not one line of the active statements is changed.

There are, however, some fundamental entries, the active
source statements themselves, and these are what we're interested
in. A good place to start is with two simple examples that solve
very common problems: (1) conversion of temperature from
Centigrade to Fahrenheit and (2) finding the length of the
hypotenuse in a right triangle. These examples should make it easy
for the reader to relate the work to be done to the steps that do it,
although it's too early in this chapter to fully understand how each
statement operates.

Our first example:

10 REM TEMPERATURE CONVERSION PROGRAM
20 DISPLAY "TYPE IN TEMPERATURE IN DEGREES C."
30 INPUT C
40 LET F = (9/5)* C + 32
50 DISPLAY "THE TEMPERATURE IN DEGREES F IS:", F
60 END

The first statement is a remark that titles the program; it does
nothing else. The second statement gives an operator instruction
that appears on the display screen, and the program waits for C,
perhaps a + 17, to be typed in. It accepts C with the INPUT
statement. C is then used in a calculation, the result of which
becomes F. To conclude the program, statement 50 displays a
sentence on the screen and shows whatever value F turned out to
be.

Next we have the case of solving for the hypotenuse of a right
triangle when we know the leg sizes. It is to be done four times
because we have four triangles. The problem is set up using the
Pythagorean theorem (C 2 = A 2 + B 2) and solving for C by writing
the expression C = V A 2 + B 2 . In BASIC the program takes the
following form:

10 REM RIGHT TRIANGLE SOLUTION
20 FOR 1=1 TO 4
30 READ A, Β
40 C=SQR (A**2+£**2)
50 DISPLAY 4'HYPOTENUSE=", C
60 DISPLAY SPACES ONE LINE

56 Computer Programming Languages in Practice

70 NEXT I
80 DATA 10, 20, 30, 50, 60, 90, 100, 150
90 END

The first line is a remark, a programmer comment using the REM
statement, which is an abbreviation of remark. Next, line 20
establishes that this program will be done four times. The
instruction READ A, Β takes the first two values (10, 20) in the
DATA line (line 80) and assigns these values to A and B,
respectively. Now, the arithmetic is done by the expression. This
line says 'LET C equal the square root of the quantity A raised to
the power of 2 plus Β raised to the power of 2.' (Notice that the
word LET is not actually required.)

Now Line 50 shows on the screen the statement
'HYPOTENUSE=' and follows it with whatever value C turned
out to be. A blank DISPLAY instruction is then given, and the
programmer has chosen to add a comment (SPACES ONE LINE)
for himself; the comment does nothing.

At line 70, the instruction NEXT I says 'do it again if we haven't
done it four times.' So the program again over at line 20. This time
through the READ instruction gets the values 30 and 50 from the
DATA line and assigns those values to A and B. The calculation is
done again; but A and Β are 30 and 50, so the result is different. It
is displayed, and the program runs a third time, now using 60 and
90 as the values for A and B, the triangle legs.

On the fourth pass, values 100 and 150 are used, and the result
of the calculation displayed. When the line NEXT I is reached, it
causes the FOR instruction to again check how many times the
program has been run. This time, the FOR instruction finds that
the program has been run four times and ends it by going to the
END statement in line 90.

Now that we've seen some very simple programs, let's examine
a program complex enough to make buying a computer worth-
while. Our samples could be done easily with an inexpensive
hand-held calculator, and while they are 'real programs,' they are
not realistic examples of how computers are used.

In Fig. 3.1, we've reproduced the first page of a five page source
listing to illustrate what an actual program looks like. The
programmer has used remarks to title the program and record its
history. Empty remarks lines are used for separation of sections
and thus make the program easier to read.

Next comes a series of entries in which the format of the records

BASIC—Beginner's All-purpose Symbolic Instruction Code 57

LINE TEXT COMMENTS

00100 REM PRINT/DISPLAY INVENTORY
00200 REM WRITTEN BY J. ALAM AUGUST 10, 1973. UPDATED AUG. 30, 1979.
00300 REM UPDATED JAN. Θ, 1980,FOR MULTIPLE COMPANIES IN INVNTRY.
00310 REM
00400 REM FOLLOWING DEFINES THE INVENTORY RECORD
00410 INCLUDE TRC
00500 FIELD C$=l COMPANY CODE - LOCATION 1
00600 REM
00700 REM SUBDIVIDE PRODUCT #
00800 FIELD Pl=3.0 PRODUCT CODE - LOCATION
00900 FIELD P*=10 ITEM # LOCATION 5
01000 FIELD P3=3.0 NOT USED LOCATION 15
01100 FIELD R=l. 0 RECORD TYPE - LOCATION 18
01200 REM NOT USED LOCATION 19
01300 FIELD W*=2 WAREHOUSE CODE LOCATION 20
01400 FIELD D*=20 DESCRIPTION - LOCATION 22
01500 FIELD B=6. 2 BASE PRICE LOCATION 42
01600 FIELD U*=3 UN/MEASURE LOCATION 50
01700 FIELD Q=8.0 ON-HAND QTY - LOCATION 53
01800 FIELD 0=8. 0 ON-ORDER QTY - LOCATION 61
01900 FIELD Rl=8.0 REORDER QTY - LOCATION 69
02000 FIELD R2=8.0 REORDER POINT LOCATION 77
02100 FIELD C«=8. 0 PHYS INV CNT - LOCATION 85
02200 REM REST OF 128-BYTE RECORD IS SPACE-FILLED
02300 REM
02310 REM WORK FIELD DEFINED
02400 FIELD K*=18, X*=l, Y=1.0, J*=14, D=6.0, X=1.0
02410 FIELD N*=30, Y*=l
02500 REM
02600 OPEN #3 "CONTROL"
02700 DISPLAY "PRINT/DISPLAY INVENTORY ITEMS"
02800 DISPLAY "TYPE COMPANY CODE"
02900 INPUT C*
02901 LET X=0
02902 GOSUB 16920
02904 READ #3 KEY J* ERR 3400
02905 GET #3 16=N*
02910 LET X=l
03010 GOSUB 16920
03200 READ #3 KEY J* ERR 3400
03300 GET #3 20=D

Fig. 3.1 The appearance of a BASIC program

to be used are laid out and other fields are defined. All the
descriptive material on the right side consists of comments made
by the programmer; it is not used by the program itself.

After thus establishing the format of the data with which the
program will operate, the programmer provides the active
statements, which are those that carry out the logic of the
program. Some should be familiar. Line 02800, for example,
displays an instruction on the screen TYPE COMPANY CODE'
and the following statement INPUT C$ takes what the operator
typed in and assigns it to become the value of C$.

58 Computer Programming Languages in Practice

OTHER COMPONENTS OF THE LANGUAGE

Source statements and keywords are, of course, very important
components of any programming language. There are others,
however, as we know. Operators, functions, arrays, variables,
constants, and expressions are all important components as well.
Since they usually differ somewhat from one language to another,
it's necessary to examine each of these components early in a
language description. Therefore we'll discuss BASIC'S in the
following paragraphs.

EXPRESSIONS IN BASIC

One word that the reader will undoubtedly tire of seeing in this
chapter is 'expression.' It has two dictionary definitions that apply
here:

1. Mathematics—A designation of a symbolic mathematical
form, such as an equation.

2. General—That which communicates, indicates, embodies,
or symbolizes something; a symbol; a sign; a token.

These are broad definitions to be sure, but they are necessary
because an expression can take many forms, ranging from a single
number or letter to a complex equation.

CHOOSING AN INSTRUCTION SET FOR
EXPLANATION

We've chosen a set of thirty statements from the great many in
use. In Fig. 3.2 are shown the keywords from what is, presently a
proposed new ANSI standard for BASIC. There are many words
in this proposed standard, including some having to do with the
construction of colour graphics.

When we reach Chapter 5, we'll see another set of keywords,
those for a popular modern version of BASIC, and we'll show how
the graphics are programmed. Here, in Chapter 3 we'll stick with
the fundamentals, however, and cover the statements that a reader
must understand before he is ready for graphics.

BASIC—Beginner's All-purpose Symbolic Instruction Code 59
ACCESS ELAPSED MARGIN RESET UNTIL
AND ELSE MAT REST URGENCY
ARITHMETIC ENABLE RESTORE USING
AT END NAME RESUME

BASE
EOF NATIVE RETRY VARIABLE

BASE EVENT NEXT RETURN VIEWPORT
BEGIN EXIT NONE REWRITE
BOUNDS NOT WRITE
BREAK FILE SAME WHILE

FOR OFF SCRATCH WINDOW
CALL FROM ON SELECT WITH
CASE FUNCTION OPEN SEQUENTIAL WRITE
CAUSE OPTION SET
CENTERING GO OR SIGNAL
CHAIN GOSUB ORGANIZATION SKIP
CLEAR GOTO OUT STANDARD
CLIP GRAPHIC OUTIN START
CLOSE OUTPUT STATUS
COLLATE HANDLER STEP
CONNECT PARACT STOP
CONTINUE IF PARSTOP STREAM

IMAGE PICTURE STYLE
DATA IN PLOT SUB
DATUM INPUT POINTER SUBEXIT
DEBUG INQUIRE POSITION
DECIMAL INTERNAL PRINT THEN
DEF PROCESS THERE
DELAY KEY PROMPT TIME
DELETE KEYED TIMEOUT
DIM LENGTH RANDOMIZE TO
DISABLE LET READ TRACE
DISCONNECT LINE RECORD(s) TYPE
DISPLAY LOOP RELATIVE
DO REM

Fig. 3.2 Keywords in the proposed new ANSI standard for BASIC

Expressions are made up of one or more of the following
components, which may appear in various combinations: con-
stants, variables, operators, references to array elements, and
references to functions.

Let's discuss what each component is and then show how they
make up expressions. First is the variable.

A variable is an item subject to change during program
execution, therefore, it must be named somehow. Think of the
name as you would the letter assigned to the terms in a simple
algebraic equation: C=^d. ' C and 'd' are names for variables.
Constants, of course, can appear in their final form because they
do not change during program execution, π is the constant in this
equation.

References to array elements are nothing more than the name
assigned to a table of data and the number of the location in which
a specific entry in that table appears.

References to functions are also very simple. There are several
fundamental operations preprogrammed for the system user, and
the user can cause them to be performed by simply calling them by

60 Computer Programming Languages in Practice

STRING CONSTANTS AND STRING VARIABLES

Variables are basically one of two types: (1) numeric, pure
numbers, and (2) 'string,' which is alphanumeric in that letters,
numerals, and symbols may be used. BASIC uses string constants
and string variables. Constants are enclosed by quotation marks
and may include any character in the character set except the
quotation marks.

Because they may change during program execution, string
variables can only be named, and the name they use must
distinguish them from numeric variables. A two-character name is
used.

In simple BASIC, the first character is a letter and the second a
dollar sign ($). It is $ that distinguishes the name for a string
variable from that of a numeric variable. Names used might be B$
or Z$

NUMERIC CONSTANTS AND NUMERIC VARIABLES

Numeric constants are numbers and are specified simply by writing
a number in a source statement. Many BASIC systems do provide
assistance to the user in that common numeric constants such as π
and conversion ratios, C to F temperature for example, are
available by name. The programmer does not have to enter the
constant but only specify its name in a source statement.

Numeric variables have simple names, consisting of either one
or two characters. The first must be a letter and, if a second
character is used, it must be a digit. Examples are: C, D9, M, M9,
R ,and Z3

name. For example, the operation 'take square root' can be made
to happen by giving its name, SQR, in an expression.

Last, the 'operators' are nothing mysterious either. Arithmetic
operators are the signs used to indicate what arithmetic is to be
done, just as they are in pencil and paper methods. Relational
operators are the greater than (>) , less than (<) , and similar signs
with which most readers are already familiar.

BASIC—Beginner's All-purpose Symbolic Instruction Code 61

HOW NUMERIC AND STRING VARIABLES ARE
USED

The need for a numeric variable is illustrated in the following
example, which is given in Fig. 3.3. We have a variable named R,
which is employee pay rate per hour. Needless to say, a pay rate
may vary from one employee to another, so for the calculation in
which a paycheque is produced, we always call the pay rate R. As
one employee record after another is brought into the computer
for processing, the pay rate from that record is moved into
numeric variable R. Thus, the pay rate changes as we've shown in
the example. For the first employee record, R places £1.50 per
hour in the calculation; for the next record, R produces £3.80 per
hour; and, in the third record, R brings £4.25 per hour to the
calculation. Therefore, one statement (GROSS PAY = HOURS
times RATE) operates for all employees. In BASIC, this would be
written G = H * R.

The need for a string variable can be shown in the same way.
Of course, the string variable is not a number to be used in
arithmetic, but it is manipulated within the computer. Let's
continue calculating paycheques to illustrate.

In our example of the use of numeric variable, we had three
employee pay rates. Relate them to the three employees JONES,
SMITH, and TINKLEPAUGH, which are a string variable named
E$. When an employee record that provides pay rate for R is
available, it provides employee name for E$. After gross pay is
calculated, the paycheques can be printed by giving the statement

A NOTE ABOUT NAMES

Throughout this chapter we use the naming rules established for
early versions of BASIC, calling it 'simple BASIC. Many new
releases permit longer names—the proposed new BASIC standard
allows thirty-one characters, while BASIC for the IBM Personal
Computer permits forty. Because BASIC is the first major
language covered in this book, it's especially important that the
reader concentrate on the principles involved. And, in general, the
short names help in this. Statements are thus 'bare bones,' making
it easier to grasp the logic of what they do.

62 Computer Programming Languages in Practice

A Numeric Variable Named R

R - Means Employee Pay Rate Per Hour

R I 10.50

R 3.85

4.25

A String Variable Named E$

E$ - Means Employee Name

E$ R.S. JONES

E$ S.V. SMITH

E$ I.B. TINKLEPAUGH

Fig. 3.3 A numeric variable named R and a string variable named
E$

PRINT E$, G. This prints the name of the employee now
represented by E$, and it follows the name with the gross amount
(G) due to that employee. (Of course G is a numeric variable.)

ARITHMETIC OPERATORS

Most of the BASIC systems available are capable of at least the
five fundamental operations: add, subtract, multiply, divide, and
raise to a power. The five signs, called arithmetic operators, that
are used in expressions to produce arithmetic are:

+ for addition
— for subtraction
* for multiplication
/ for division

Î (or **) for exponentiation (raise to a power)

BASIC—Beginner's All-purpose Symbolic Instruction Code 63

ORDER OF PRIORITY

Arithmetic operators are executed in a specific order, just as they
are in pencil and paper arithmetic. The following is the order of
priority, starting with the highest:

• Operations in parentheses are performed first, starting with
the innermost parentheses and working outward.

• Unary operators (make positive or make negative) are
executed.

• Raise to a power.
• Multiplication and division.
• Addition and subtraction.

When operations of equal priority remain, they are executed in
order left to right in the expression.

WRITING EXPRESSIONS USING ARITHMETIC
OPERATORS

It takes some getting used to to write expressions using arithmetic
operators because a source statement must be written all on one
line rather than in multiple lines with subscripts and superscripts
available. Some typical examples are shown in Fig. 3.4.

Of course, these operators require two factors (the 'a' and the V
to be added, for example) to perform the arithmetic. If the + and
the - signs are placed before only one factor, they are called unary
operators and they make the factor positive or negative, respec-
tively.

Parentheses are available and are used in generally the same
way as in elementary algebra. One significant difference is that
brackets are usually not available. This makes it necessary to use
parentheses within parentheses to achieve the effect of brackets.
The innermost parentheses perform their normal functions and the
outer ones function as brackets.

64 Computer Programming Languages in Practice

WRITING EXPRESSIONS USING RELATIONAL
OPERATORS

Preparing an expression in which numeric variables are compared
is very simple. A > B , X < = Y , and M o N are examples.
However, string variables can also be compared through the use of
relational operators.

Possible applications are to determine alphabetical order or to
search for a specific set of characters, such as a name. There are
usually four relationships that can be tested:

< less than
> greater than
= equal to
< > not equal to

Comparison begins with the first character of each string. For
example, if HARRIS was being compared with TINKLE-
PAUGH, the Ή ' in Harris is aligned with the T ' in Tinklepaugh
and the value of the computer code used for each of those two
letters is compared. If the ASCII code were used then Ή ' would be
less than 'Τ' because the ASCII code for Ή ' is 72 (0100 1000 in
binary) while the ASCII code for T ' is 84 (010 01000 in binary).

Assume that the following expression was used to make the
comparison of the two names, HARRIS and TINKLEPAUGH:

IF R$<D$ THEN

RELATIONAL OPERATORS

These are the symbols commonly used to show the relationship
between values of quantities, the equal sign (=), the greater than
sign (>) , etc, They are placed between the quantities to be
compared so that the correct decision can be made. Among the
relational operators available in most BASIC systems are:

= equal
< > not equal
> = not less than (equal to or greater than)
< = not greater than (equal to or less than)
> greater than
< less than

BASIC—Beginner's All-purpose Symbolic Instruction Code 65

Normally Written On One Line

~2
ft=B*H/£

V = πχ r2h V = P I * R * * £ * H

A (- B) ft*(-B>

Ζ = a + b + c
2

Z = (f t + B + C) / £

Y = d -
a + b

4c
Y = D - (f t + B) / (4 * C)

a
X = b + c X = f t / (B + C / (D - f t))

d - a

Fig. 3.4 Examples of one-line expressions

The string variable name R$ would bring HARRIS to be
compared with TINKLEPAUGH, which was identified by the
name D$. In this case, R$ is less than D$ and the decision is
affirmative.

A string variable can also be compared with a string constant.
Suppose we were searching a file alphabetically. The constant
might be the letter ' C and the variable named R$. The following
expression compared the two:

If R$ identified HARRIS, the Ή would be greater than the C and
the decision affirmative. On the other hand, if R$ brings the name
BAKER to the comparison, the decision is negative.

Although some versions of BASIC offer up to five logical
operators, most programmers will use only AND and OR often.
Thus, we'll limit our discussion to those two.

IF R$>"C" THEN . . .

LOGICAL OPERATORS

66 Computer Programming Languages in Practice

THE STRING OPERATOR

There is only one string operator, and it is used to join strings or
segments of strings. 'Concatenation' is the name given to this
joining process and, logically, the operator symbol is one that
implies joining. A common and nonambiguous symbol used in
simple BASIC is the ampersand (&). It's used in the form M$ =
N$ & P$. In this case, string variables N$ and P$ are joined
(without a space) to form the string variable M$. However, a
string constant could have been used. M$ = N$ & 'HARRIS' joins
'HARRIS' to N$, forming M$.

ARRAYS

The nature of computers is such that they can perform repetitive
tasks very rapidly, and therefore they can operate on large data
collections. One of the fundamental ways of organizing data is the
array.

Testing of conditions in order to make decisions is an important
part of any programming job. Logical operators make this job
easier. They allow relational expressions to be combined and to
form a much more complex relationship to be tested.

Two examples are shown below:

IF A>B AND A < C THEN . . .
IF A>7 or Β=3 THEN . . .

In the first example, the objective is to determine that the value of
variable A is within the range of Β to C. This could be an age
range, with A the age of the person being checked and the values
of Β and C, being the ages thirty-three and forty-seven.

The second example, which uses the OR operator, checks to see
if either of two conditions exists before taking action. We've used
only simple expressions, but they could be complex.

Although we've shown only numeric relationships being tested
in the examples above, the AND and OR operators can also be
applied in relational expressions involving strings. They are
applied last, after the relationship has been evaluated, and thus
work in the same way they do in the examples above.

BASIC—Beginner's All-purpose Symbolic Instruction Code 67

2,1 2,2 2,3 2,4 2,5

3Ό ä 9 4Ό 4Ό 4Ä

3,1 3,2 3,3 3,4 3,5

4Ό 4J5 4/7 4^9 5Ό

4,1 4,2 4,3 4,4 4,5

W 5 7 aï ä 5

5,1 5,2 5,3 5,4 5,5

ä Ö 7 0 7 6 ä Ö

Fig. 3.5 The contents of a typical BASIC array

Arrays may hold either numeric or string data. An array is
named in the same manner as numeric and string variables are
named. In simple BASIC, this means a letter is used to name a
numeric array and a letter followed by a $ names a string array
(F$, for example). Newer versions of BASIC allow much longer
names, but the $ always concludes the names of string variables
(and arrays) to distinguish them from their numeric counterparts.

BASIC permits either one-dimension arrays, consisting of a
series of elements, or two-dimension arrays, which are a group of
rows and columns. As we mentioned earlier, each element in the
array can be identified individually. This is done by placing the
element number in parentheses following the array name. A (17)
selects the seventeenth element in a one-dimension array named
A, while B$ (3,5) selects the element at the intersection of the
third row and fifth column in a two-dimension string array named
B$.

What kind of data is placed in an array? Generally, the same
kind of data that is tabulated, an example of which appears in Fig.
3.5. Here we have an insurance rate multiplication factor array.

ELEMENT NUMBER • 1,1 1,2 1,3 1,4 1,5

CONTENTS OF E L E M E N T - • 2 Ό Î 2 Ï 3 3 ^ 3 7

68 Computer Programming Languages in Practice

SYSTEM FUNCTIONS

As an aid to simplify programming, certain predefined functions in
which all the work is done by the system rather than by the
programmer are provided in most versions of BASIC. These are
preprogrammed operations, each of which is assigned a name.
When the programmer gives this name in an expression, the
function is performed and the results are automatically included in
the evaluation of the expression.

Let's examine some typical system functions, using examples
with which the reader may be familiar. SQR(X) is a simple one.
When this name is given, it produces the square root of the
quantity (X), and this root is used in the expression of which SQR
is a part. LOGIO(X) is another good example. It produces the
common logarithm of the quantity (X), which then becomes part
of the expression and is processed in accordance with the
operators in the expression.

Listed below are names of some of the system functions that a
BASIC system may have. Each is accompanied by a brief
description of its function. Some are obviously related to
engineering and scientific functions, while others are suited to
general use.

Examples of System Functions Frequently Available in BASIC
N A M E F U N C T I O N

SQR(X) Take square root of the following expression, which
is enclosed in parentheses. Example: A =
SQR(N*3/7)

INT(X) Take largest integer. Example: A = INT(N)
LOGIO(X) Common log of X. Example: A = LOGIO(X)
LOG(X) Natural log of X. Example: Β = LOG(X)

The notation (1,1) chooses the contents of the first element, a
factor of 2.0, while (4,5) selects the element at the intersection of
row 4, column 5, and thus brings forth the factor 6.5.

Array elements are used in expressions just like any other
variable. A typical expression P=C*M(3,3) takes cost (C) and
multiplies it by the contents of element 3,3 in our array M. In this
case, a factor of 4.7. The result becomes the value of variable Ρ
(premium).

BASIC—Beginner's All-purpose Symbolic Instruction Code 69

SIN(X) Sine of Χ (X is an angle measured in radians).
Example: S = SIN(X)

COS(X) Cosine of X.
TAN(X) Tangent of X.
SGN(X) Sign of X. Example: A = SGN(X)
ABS(X) Absolute value of X. Example: A = ABS(R+7*S)
RND Random number. Example: A = 97*RND
LEN(R$) Determine length of R$. Example: IF A>LEN(R$)

THEN 200

SPECIAL SYSTEM FUNCTIONS

Each industry or type of business has some calculations that are
done often but which are probably not found among the standard
system functions available in BASIC. A pricing calculation, for
example, may be used very often and always in the same manner.
Many BASIC systems allow the programmer to prepare a
customized system function in this case and call it by name just as
one does with the standard system functions. The function may be
either a numeric function or a string function.

A statement called 'define function' (DEF) is used to create a
customized system function. Once this function is established, it
may be called as many times as necessary by the program in which
it is defined. It does not become one of the standard system
functions, however, and thus must be provided in each source
program in which it's used.

Construction and naming of a function are fairly simple. The
first two letters of the function name are always FN. These letters
are followed (without a space) by a name conforming to the rules
for numeric variables or string variables. For example, FN A is a
numeric function and FNR$ is a string function. To summarise: A
numeric function is named like a numeric variable and a string
function like a string variable.

Thus far we have DEF FN name in our define function
statement. Next come the names of the variables to which it will be
applied. Up to five variables may be named, the names separated
by commas and enclosed in parentheses. DEF FN A (X) or DEF
FNB (M, N) are two examples. The first says that function FN A
will act on a numeric variable, the X, and the second says the
function FNB will act on two numeric variables, M and N.

70 Computer Programming Languages in Practice

CONSTRUCTION OF SOURCE ELEMENTS

Source statements are the instructions that a programmer can
issue. They usually consist of an action word (a 'verb' if we think of
them as a sentence) and a body that provides information
necessary to carry out the action.

The best way to study the source statement set available in
BASIC is to organize instructions into groups that work together—
all those associated with displaying information, for example,
should be examined at the same time. That is the way the
following discussion is organized.

Showing Source Statement Formats
We'll show formats in the same style that a programmer has to
write them on a coding form. Let's examine the format. At the left
is the line number, which identifies each source statement. All
modern systems assign line numbers automatically and provide the
capability to reassign line numbers, also automatically, when
statements are removed or added.

Some systems still require manual entry, so the programmer
must write them out. In addition, some source statements must
refer to another line number, and the programmer must provide
that line number in the body of the source statement. A GOTO
statement, for example, must read: GOTO line number NNNN.
In order to provide that line number, the programmer must have
kept some kind of record on his coding form.

The names given (X, M, and Ν in the examples) establish only
the form of the variables that the function will act on. They are not
the final variable names. Β could be substituted for X when the
function is actually used, for example.

Last in the define function statement comes the expression that
is evaluated when the function is called into action. So our
complete function definition statement would take the form: DEF
FNA(X) = (X + 2)9/5*. After this statement is entered in the
program, FNA can be used just as any of the standard system
functions. Perhaps LET C = FNA (B) would be the form. In this
case, the value of the variable named Β replaces the X in the
expression 9/5* (X + 2) and the result of the evaluation becomes
the value of C.

BASIC—Beginner's All-purpose Symbolic Instruction Code 71

The REMARKS section of each source statement, which
appears at the right side, is usually of fixed length. Any characters
may be typed in there, so this part of the coding form has no effect
on the instruction.

This brings us to the heart of the matter—the positions in which
the words and expressions must be entered. We'll call it the 'body'
of the source statement.

BASIC Source Statement Syntax Diagrams

A problem arises when it becomes necessary to show all
arrangements possible within the body of a source statement. In
the following section, we've given examples of the most common
uses and forms of each statement, but it is impractical to do more
than that. Therefore, syntax diagrams like those shown in Fig. 3.6
are provided to illustrate the type of information that may appear
in each statement, its position with respect to other information,
and the punctuation that is necessary to separate the components
of the statement.

The keywords are shown in all capitals, and appear in the
positions they must occupy in the statement. Two sets of symbols
are then used to point out the positions of the other components.
The enclosures () mean that a component of this type fits in this
position. Punctuation needed to separate the component from
others is also shown. For example, (component 1), (component 2),
means that the comma is the punctuation mark that must be
provided if the statement is to be processed properly.

ON (variable) GOTO (line no. 1), (line no. 2), (line no. Ν)

S line no. ^ ELSE (line no. ^
IF (relation) T H E N - J or V or A or V

\statement) UNLESS ^ statement)

OPEN (channel no.) (" f i l ename") , (parameter list), (error line no.)

Fig. 3.6 Examples of BASIC syntax diagrams

Sometimes, the punctuation chosen depends upon the function
to be performed. This means that a comma, semicolon, colon, or
no punctuation at all are the options available.

Components of two different types may occupy a specific
position in some statements. A pair of braces {} shows this; they
represent an 'or' relationship just as if two sets of enclosures ()
were stacked one on top of the other.

72 Computer Programming Languages in Practice

The last situation that may need explanation is the possibility of
substituting one keyword for another. This appears in only a few
statements, and it is indicated by stacking the two acceptable
keywords and separating them by the word 'or.'

Let's examine three source statements, which are shown in Fig.
3.6, to demonstrate how the formats should be read. The first
statement is the ON()GOTO. The position of the variable is
shown between the keywords. There is no punctuation. At least
one line number must be present. If there is more than one, they
must be separated by commas.

In the second statement, either a line number or a statement of
action may appear after the THEN. If it is desired to specify an
alternative action, the ELSE word and an alternative action is
provided. If it is desired to add conditions, the UNLESS word
followed by a statement of condition is included.

An OPEN statement is the third example. Channel number is
followed by file name. A parameter list must be provided. It is
separated from other components by commas, and it uses commas
for internal punctuation. Finally, a line number may be provided if
the program is to go to a specific line number if an error is
produced when the OPEN statement is executed.

Statements Discussed

We've chosen a set of 'core' statements to explain in detail. They
handle the fundamental operations available in BASIC. When a
description moves to statements beyond this core, it becomes
involved in unique statements available in only one version of
BASIC, or at most a few.

First come the statements necessary to enter the data with which
the program will operate. They are:

enter DATA
READ data
RESTORE data table pointers

We'll cover statements that operate with the keyboard next. There
are two:

sound BEEP
accept INPUT

Establishing the size of tables and the fields in which data is held

BASIC—Beginners All-purpose Symbolic Instruction Code 73

are performed by two source statements. We'll cover these
statements next:

define array DIMensions

Those statements concerned with handling data in files and
buffers appear fourth in order. These are listed below. The
reserved word is given in capital letters, and this is supplemented
to give it added meaning, as was done above. There are eleven
statements in this group:

PURGE file

Discussed next are the statements that display or print informa-
tion. They include:

DISPLAY
DISPLAY USING

establish IMAGE
PRINT
PRINT USING

An extremely useful source statement is the one called LET. Its
importance is so great and its use so varied that it is discussed by
itself. Essentially, the statement means:

LET the following expression be evaluated.

Statements that make decisions and establish loops have much in
common with one another, and they are discussed together.
Included are:

A few of the source statements available have special actions, and
we've saved these for last. In this group we have:

FIELD size

CLOSE file
DELETE current record
GET buffer contents
MARK end of file
OPEN file

PUT in buffer
READ record
RESTORE file pointer
UPDATE record
WRITE record

FOR and NEXT
IF and THEN
GOTO and ON () GOTO
GOSUB and RETURN

PAUSE
enter REMarks

74 Computer Programming Languages in Practice

STOP
END
RANDOMIZE

DATA ENTRY STATEMENTS

Data necessary for the execution of a program can be provided in
several ways:

• It may already be present in existing files. In this case, the files
are read when the program is being executed.

• The program may ask the operator to enter the data from the
keyboard. In this case, instructions appear on the screen, the
operator types in the information, and it is accepted by the
INPUT statement.

• The data may be provided by source statements before the
program is compiled. Thus, the data becomes a permanent
part of the program.

The three statements that we'll describe in this section perform the
data entry outlined in the third case above. They are typed in
during entry of the source statements, and, therefore, become part
of the source program. There are three statements involved, and
their formats are shown in Fig. 3.7. They have the following
meaning:

DATA (entry 1), (entry 2), (entry Ν)

READ (variable 1), (variable 2) , (variable Ν)

RESTORE

Fig. 3.7 Data entry statements syntax diagrams

enter the following DATA
READ data into the specified variable
RESTORE data table pointers

The DATA source statement creates data tables, both numeric
and string, and provides the information to be entered in the
tables. This operation is used to initially enter information.
Although both string and numeric data can be entered, express-
ions and operators cannot.

BASIC—Beginner's All-purpose Symbolic Instruction Code 75

String Data Table Numeric Data Table Variables

HARRIS 5 M$ HARRIS
SMITH 7 N$ SMITH
JONES 9 P$ JONES
BROWN 80 R 5
WILSON 149 S 7
WILLIAMS 20.73

15.95
88.95

70
80

100

Fig. 3.8 Use of DATA and READ statements

String data is identified by quotation marks and appears in the
string data table in the order in which it is given in the DATA
statements. The numeric data does not have quotation marks, but
it too is entered in a table in the order in which it is provided by the
source statement. One DATA statement after another may be
used until all the desired data is entered, and numeric and string
data may be mixed.

The data tables are only data entry devices. Material in these
tables must be associated with the name of a variable so that the
program can call it by name.

The READ statement takes an entry from a table and places it
in an array element, a string variable, or a numeric variable. The
READ statement is simply a list of names of variables or array
elements.

A READ statement starts moving data from the first position of
a table, switching back and forth between numeric and string
tables as the name of the variable indicates, until all the variables
specified in the body of the statement have been handled. The next

STATEMENTS

DATA " H A R R I S " , " S M I T H " , " J O N E S "

DATA 5,7,9,80,149

DATA 2 0 . 7 3 , 1 5 . 9 5 , 8 8 . 9 5

DATA " B R O W N " , 7 0 , " W I L S O N " , 8 0 , " W I L L I A M S " , 1 0 0

READ M $, N $, P *

READ R,S

76 Computer Programming Languages in Practice

KEYBOARD INPUT STATEMENTS

Two statements, INPUT and BEEP, are described in this section.
Both are very simple to construct and use. For readers who wish to
look at the syntax diagram before reading this description, it
appears in Fig. 3.9.

INPUT (variable 1) , / ; / : / (variable 2) , / ; / : /

(variable Ν) , / ; / : /

BEEP

Fig. 3.9 INPUT and BEEP statement syntax diagrams

In the preceding section, three ways of entering data for a
program to process were mentioned. Each method has specific
applications to which it is best suited, and we've discussed the use
of the data entry statements. They have one major disadvantage;
once entered, they become part of the program and cannot be
changed during its execution. Obviously, this is not a good choice
of data entry for material that changes often or is otherwise
variable.

This brings us to use of the keyboard to enter data while the
program is being executed. It is the INPUT statement that allows
keystrokes to be accepted. Included in the statement are the
names of the variables to be entered and punctuation that controls
spacing of the data typed in.

READ statement continues from the point at which the previous
statement left off. (Fig. 3.8 illustrates how this works.)

A pointer is automatically maintained to keep track of which
position in the table is being read by the READ statement. This
applies to the entry of data into the table by the DATA statement
as well. Each table (string and numeric) has its own pointer.

The pointers both begin at the first location and step along the
locations as each table is used by an enter DATA or READ data
statement. A reset action is needed if the same data is to be used a
second time by a READ statement, and this is provided by the
RESTORE statement. Both pointers are returned to position one
when this statement is issued.

The DATA statement is normally provided at the end of the
program but may be used anywhere, and the READ statement
given as the data is used by the program.

BASIC—Beginner's All-purpose Symbolic Instruction Code 77

Many variables can be defined by one INPUT statement. The
number depends upon their type and name. Numeric variables,
string variables, and array elements can all be accepted. Use of the
INPUT statement to enter information is shown later in examples
but before we get to the examples, let's review the punctuation
that is provided with the names of the variables listed in an INPUT
statement. There are three symbols:

• A comma (,) means advance to the beginning of the next zone
on the screen to enter the variable. The spacing of zones
depends upon the BASIC system in use. A typical arrange-
ment is to divide eighty character positions into five zones of
sixteen spaces each. Thus, zone one begins at position one,
zone two at position seventeen, etc.

• A semicolon (;) means do not leave a space between this
variable and the next. In this case, the cursor on the screen will
move only one position and the data for the two variables will
be run together on the screen.

• A colon (:) means leave one space between variables on the
screen.

If no punctuation is provided, the cursor moves to the next line as
soon as the variable is entered.

The following example of an INPUT statement accepts the
employee name asked for by the DISPLAY statement and moves
to the next zone.

DISPLAY "ENTER EMPLOYEE NAME"
INPUT E$,

Shown below are two more examples to illustrate the action of the
INPUT statement:

INPUT M, N$
Action: Accepts first typed entry and assigns it to variable M.

Moves to start of next zone on the screen to await next
entry. Accepts next entry and assigns it to variable N$.
Moves to the beginning of the next line on the screen.

INPUT D:T
Action: Accepts the first typed entry and assigns it to variable D.

Inserts one space on screen and awaits the next entry.
Assigns it to variable Τ and moves to the beginning of
the next line on the screen.

78 Computer Programming Languages in Practice

ARRAY HANDLING STATEMENTS

One of the first tasks that a programmer must perform is to
organize his data. Definition of his arrays is an important part of
this work. Most BASIC systems establish a standard size array if
the programmer does not otherwise set the limits. That standard
size is no greater than ten in either dimension, therefore, a
two-dimensional array of ten rows and ten columns is the
maximum possible size for an array that is defined only by
reference to one of its elements. BASIC calls this 'an array defined
implicitly.'

This brings us to the use of the DIM statement, which is
necessary to establish any array other than the standard size, and is
always required if an array is to have more than ten columns or
rows. When a DIM statement is used, an array is said to have been
defined explicitly.

DIM (array 1 name (rows, columns)), (array 2), (array Ν)

Fig. 3.10 DIMension statement syntax diagram

The format of the DIM source statement appears in Fig. 3.10.
The number of arrays established by each statement depends on
the complexity of the definition and the space available in the
statement. A one-dimension array needs only the number of rows
defined, while a two-dimension array definition must include both
the number of rows and number of columns. In simple BASIC, a
numeric array is named by a single letter and a string array by a
letter and dollar sign.

Use of the DIM statement is very easy, as the following
examples illustrate. The first example establishes a string array
named Y$, consisting of five rows and ten columns. In the second

The computer often needs a way to attract operator attention to
inform him of a variety of conditions. This is usually done by
producing an audible tone through a small speaker in the machine.
The BASIC instruction that produces the tone is called a BEEP.
Whenever this source statement is given, the tone is produced for
a very short time. If the programmer wants to lengthen the tone,
he places the BEEP statement in a loop so that it is given over and
over again until the operator either takes action or the time
established for the loop expires.

BASIC—Beginner's All-purpose Symbolic Instruction Code 79

case, the DIM statement establishes two numeric arrays, A and B.
A is a one-dimensional array of ten elements and Β is a
two-dimensional array of five rows and twenty columns.

DIM Y$(5,10)
DIM A(10),B(5,20)

Of course, these statements do nothing more than establish
dimensions; they do not enter data in the array. Additional
statements are required to do that.

There are two basic ways in which data can be entered into
arrays or the contents of arrays displayed or printed: (1) one
element at a time, and (2) handling the entire array as a unit. If a
single element is to be manipulated, it is only necessary to give the
name of the array and the location of the element in a statement.
For example: READ A$(5,10) will place the next data item it
reads from the string data table into the array named A$ at the
element located in row five, column 10. To use another example of
a statement we've covered: INPUT A$(5,10). This takes data from
the keyboard and enters it in the location we just mentioned.
DISPLAY A$(5,10) would show the same information on the
screen.

Included in many BASIC systems is a keyword that allows a
programmer to handle an entire array as a unit; that word is MAT,
meaning matrix. When given before the array name in a source
statement, it causes that statement to act upon all elements of the
array. For example, MAT R refers to all elements in the numeric
array named R.

It should be easy for the reader to see how useful this keyword
would be when loading data into an array. The source statement
DATA can provide the information. When a MAT READ R
statement is given, it accepts the data in the order it appears in the
DATA statement and assigns it to array R. The array is loaded
left-to-right and top-to-bottom.

MAT can also be used in other source statements. MAT PRINT
R prints out the contents of array R in the same left-to-right,
top-to-bottom form it was loaded, allowing the programmer to
deal with an entire array rather than individual elements.

It is also possible to do arithmetic involving an entire array.
Suppose, for example, a set of array values had to be updated at
the beginning of a new year to reflect the addition of new taxes. In
this case, the entire array can be multiplied by a constant to
increase every element in the array by an equal percentage. All

80 Computer Programming Languages in Practice

that is necessary is one statement in the form: MATS = (C)*R.
A new array S is formed after every element in R has been
multiplied by C, the constant. All elements maintain their
respective positions.

THE FIELD STATEMENT

A field is a group of character positions that holds a specific type of
information, although a field may be as small as one position.
Student grade, for example, would require only one position if the
letter system (A, B, C, etc.) was used but would require more
positions in a percentage grade. And, of course, the student name
field might be as many as twenty positions long.

FIELD (name 1 and size), (name 2 and size), (name Ν and size)

Fig. 3.11 FIELD statement syntax diagram

The purpose of the FIELD statement, which is shown in Fig.
3.11, is to establish the length of a numeric or string variable. In
the body of the statement, the name of the variable is given and is
followed by the number of positions allocated to that variable and
the number of decimal places to be used.

Some examples of a FIELD statement follow:
FIELD M = 5.0
Action: Sets the size of numeric variable M to five digits, with no

decimal places.
FIELD Ν = 8.2
Action: Sets the size of numeric variable Ν to ten digits, with two

decimal places.
FIELD E$ = 20
Action: Sets the size of string variable E$ to twenty character

positions.

FILE HANDLING STATEMENTS

Up to now we've discussed two sources of data that a BASIC
program may process. The first being the data entered by the
DATA statement and the second being information typed in by
the operator during program execution. Both sources are impor-
tant and used often, but files of data are the primary source of
information for most BASIC programs.

BASIC—Beginner's All-purpose Symbolic Instruction Code 81

Files are groups of data external to a BASIC program, and they
are held in a permanent storage medium such as tape, disks,
diskettes, or cards. Only the simplest BASIC programs operate
without using files of data. Therefore, the programmer must learn
how to organize and manipulate them. There are several opera-
tions involved. First, of course, the file must be established. This
requires that a storage medium be selected and the file be given a
name. Files are generally named after the type of information they
hold and in this respect naming a file is no more complicated than
organizing paper files.

After a file is established, there are only a few operations that
can be performed on it. Information can be stored in the file and
retrieved from the file. In some cases, specific information can be
deleted from the file and, naturally, the file itself can be
eliminated.

We mentioned earlier that all files are given names but we didn't
discuss how one storage medium is chosen from among those
available. This depends upon the BASIC system in use, the
equipment available, and the operating system. In general,
however, each storage medium is given a number or code that the
programmer can place in his source statements dealing with files.

In Chapter 1 we discussed how data is organized and how to
plan a data file. Some BASIC systems have the capacity to handle
two very different types of files. The first is a file in which records
are treated as units of information and no less than an entire
record is moved to or from a file—this is generally called a 'record
input-output file.' A second type is a file in which individual items
are handled by their name. In other words, variables like A$, Z,
and Y are stored and retrieved by name. This kind of file is often
called a 'stream file' and could be thought of as a file in which each
record holds only one variable and has a length determined by the
size of that variable.

The files, no matter what type, must be opened, named, written,
and read, of course. It is much more likely that the reader will be
interested in using the record input-output files, however, so we'll
limit our discussion to those.

File handling source statements are listed below in alphabetical
order. The word entered in the program itself is given in all
capitals. Added to this word are others that should help to clarify
its meaning.

CLOSE file
DELETE record

82 Computer Programming Languages in Practice

MARK end of file
OPEN file
PURGE file
READ record
RESTORE file pointer
UPDATE record
WRITE record

For those readers wishing to see the syntax diagrams of the file
handling instructions before reading the explanations that follow,
they are shown in Fig. 3.12. There is a great deal of similarity
among source statements. This is evident in the figure.

OPEN is the first source statement we should consider. It really
has two meanings: (1) OPEN—establish or create—a file, and (2)
OPEN—gain access to—an existing file. When establishing a file,
the programmer must include file parameters such as the access
method, the size of records to be used, the size of the file itself, the
file name, and the number of the volume on which the file is to be
recorded. When wanting to use an existing file, the programmer is
able to gain access to the file by simply giving its name.

OPEN (channel no.) (file name) (parameters) (error line no.)

CLOSE (channel no.)

DELETE (channel no.)

MARK (channel no.)

UPDATE (channel no.)

RESTORE (channel no.)

WRITE (channel no.) (error line no.)

PURGE (channel no.) (f i lename) (volume no.)

READ (channel no.) -H
REC (record no.
KEY (record key
EOF (line no.

(error line no.)

Fig. 3.12 Syntax diagrams for file handling statements

CLOSE is the next logical statement to examine. It has a very
simple function—to end program access to a specific file. Because
a file is given a number when opened, the CLOSE statement need
only give that number to accomplish its purpose.

This brings us to the PURGE statement, which is used to
eliminate a file when it is no longer needed. Positive file
identification is required in the PURGE statement, rather than
just the file number used in CLOSE. Included must be the file
name and number and the number of the volume on which it is

BASIC—Beginner s All-purpose Symbolic Instruction Code 83

stored. The file must have also been closed before the PURGE
statement is issued.

READ, WRITE, UPDATE, and DELETE are the source
statements that control movement of records between buffers in
the computer's memory and files. The actions performed by each
are as follows:

• READ moves a record from a file to a buffer in the computer's
memory. The READ statement must provide the file number.
There are other specific types of information that can be given.

• WRITE record moves a record from a buffer to a file. The file
number is given in the source statement.

• UPDATE record is similar to the WRITE statement but deals
with a specific record that was read into a buffer and changed.
Information needed to identify that record was provided with
the READ statement.

• DELETE record also deals with a record that was previously
read into a buffer, and identifying information was provided
with the READ statement. When the DELETE statement is
issued, that record is removed from the file.

MARK end of file is a simple statement that places an end of file
(EOF) indicator in the specified file. The EOF mark follows the
current record. If one hundred records are in the file, for example,
the EOF mark follows immediately after the one hundredth
record. One purpose of this mark is to make it possible for a
READ statement to read to the end of file without knowing in
advance how many records are in the file.

A RESTORE file pointer statement returns a record counter to
the beginning of a file, that is to record one. In the case of tape
files, the tape is rewound to the beginning of the file, but for disk
and diskette files it is necessary only to reset a record counter
because the disk/diskette file is always in motion.

This leads us to a discussion of the statements used to move data
into and out of the buffers. Each buffer usually holds all the fields
that make up one record. Of course, each field bears a name by
which the program can identify it and gain access to only that field
without disturbing the rest of the record. Since field sizes and
record sizes are specified in advance, no problems arise in making
a field fit.

There are two statements that move information into and out of
buffers. Their formats are shown in Fig. 3.13. Below, we again

84 Computer Programming Languages in Practice

have shown the keyword in all capitals and supplemented it with
other words to clarify its meaning.

GET (buffer no.) (numeric expression 1 = variable name 1),

(numeric expression 2 = variable name 2),

(numeric expression Ν = variable name Ν)

Fig. 3.13 GET and PUT statement syntax diagrams

GET data from a buffer
PUT data in a buffer

The GET statement is made up of pairs of field identifiers. The
first element of each pair is a numeric expression that defines the
starting position in the buffer of the information to be 'got' and the
second element of each pair is the name of the variable into which
the 'got' information is to be placed. These are fields in a record.
An employee's name, for example, might start in position six of a
record and be placed in a variable called E$. So, the GET
statement would specify that the field starting at position six
should be moved to the variable named E$. Several pairs of
starting points and names of variables, can be given in each GET
statement, so all the information required for a series of
calculations can be obtained simultaneously.

PUT operates so as to move information into a buffer from a
variable involved in a calculation. Again, pairs of identifiers
appear in the body of the statement. One element specifies the
starting location in the buffer where data is to be 'put,' and the
second element defines the data itself.

Two examples follow:

GET#4 10=M
Action: Information from buffer #4 , starting at position 10, is

moved to variable M. Length of M is defined earlier. If it
is 5, for example, positions 10 through 14 are moved to
numeric variable M.

PUT#4 17=R
Action: Contents of numeric variable R are placed in buffer #4,

starting at position 17. The size of R was defined earlier.

Now to some examples of how the file handling statements appear
in actual use. Perhaps the best way to illustrate functions is to
place several statements in the sequence in which they would be
used together, as follows:

BASIC—Beginner's All-purpose Symbolic Instruction Code 85

OPEN #7 "EMPLOYEES" ERR 2700
READ #7 EOF 1200

UPDATE #7

1200 CLOSE #7

This group of statements and the intervening steps, which are
indicated by lines, open the file named 'EMPLOYEES' on
channel number 7. It then records one record, revises it, and
returns the record with an UPDATE statement. Another state-
ment causes the program to return to read the next record. This
process is repeated until the READ statement encounters the end
of the file. The EOF 1200 notation means that the program is to go
to line 1200 when the end is encountered, and when it does, the
CLOSE statement closes the file on channel 7.

In this case, the records were simply read in order, but it is also
possible to specify the record to be read by position or by its key.
The record identification fits in place of the EOF 1200 we used.
For example, the following statements would each read a specific
record:

READ #7 REC 13 ERR 2800
READ #7 KEY A$ ERR 2800

The first statement reads the thirteenth record in the file, while the
second statement reads a record whose key is the string variable
named A$. It should also be noted that the key itself could be
provided rather than the name of the variable holding the key.

As we mentioned, a file is established by an OPEN statement.
Following are two examples of such statements:

OPEN #5 "ACCOUNTS",6,N, 128,1,1000,
4,10,5 ERR 0700
OPEN #3 E$,6,N,128,S,500,ERR 0700

The first statement opens a new (N) file on channel number 5. Its
name is 'ACCOUNTS', and it is placed on unit 6. Record length is
128 positions, the file is a 'keyed' file as indicated by the I, which
means indexed. The file is to be established as a 1000-record file.
The key is four characters long, and it begins at position 10 in the
record. A 5 percent overflow is allowed. If an error is encountered
when this statement is establishing this file, the next statement to

86 Computer Programming Languages in Practice

STATEMENTS THAT DISPLAY AND PRINT

The display screen, or CRT as it is often called, is the primary way
in which a small computer communicates with the operator. All
screens can show uppercase letters, most can display messages in
both upper- and lowercase, and some have the capability to
provide complex graphics. The tube, the Tin Cathode-Ray Tube,
is identical to that used in TV sets and, therefore, can provide any
picture desired; it is the computer circuits and the programs that
determine what is actually shown.

Printers, on the other hand, are limited in their capacity to
present information. Most have both upper- and lowercase
characters available, and many have the capacity to construct
graphics.

We'll cover three major statements in this section and two

DISPLAY (expression 1) , / ; / : / (expression 2) , / ; / : / (expression Ν)

' (T O F) Ν
DISPLAY TAB - (numeric expression) -

^ (numeric expression, numeric expression)

PRINT # 1 (expression 1) , / ; / : / (expression 2) , / ; / : / (expression Ν)

PRINT # 1 TAB -f !
 T 0F]

. , \
numeric expression))

DISPLAY USING (line no.), (expression 1), (expression 2), (expression Ν)

PRINT # 1 USING (line no.), (expression 1), (expression 2), (expression Ν)

IMAGE (information and edit mask)

Fig. 3.14 Syntax diagrams for statements that print and display

be executed is in line 0700. Any time after this statement is
completed, the program can issue WRITE statements to place
records in the file.

The second OPEN statement above opens a file on channel 3.
Its name is the contents of string variables E$, which might be
something like 'EXPENSES-APRIL'. This file is to be placed on
unit 6. It is new, has records 128 positions in length, and in a
sequential file of 500 records.

After the file E$ is established, data can be written into it.
Assuming that the file was used for an entire month and it was time
to eliminate it, a PURGE statement in the form PURGE #3,E$,6
could remove this file from unit 6.

BASIC—Beginner's All-purpose Symbolic Instruction Code 87

keywords that appear only in the body of a statement. DISPLAY,
PRINT, and IMAGE are the statements, while USING and TAB
are the keywords mentioned. (Syntax diagrams for these state-
ments appear in Fig. 3.14.)

Some versions of BASIC use the word PRINT for any recording
of data, whether that data is placed on the display screen, paper in
the printer, or in data files. They choose the destination by placing
a channel number after the word PRINT or a letter before it
(LPRINT, for example), and this number or letter directs the
output to the proper medium.

Some confusion may result from this, particularly for the
beginner, so we've used the word DISPLAY to mean 'show data
on the screen.' It should be understood that PRINT can be
substituted for this in most adaptations of the language.

The 'display' we speak of is the screen on which messages and
data appear. Control of it is very simple. There are two
instructions available: DISPLAY and DISPLAY USING. When
these words are entered in a source statement they have the
following meaning:

• DISPLAY the characters that follow this word or which are
named by the symbols following this word.

• DISPLAY the characters that follow this word or which are
named by the symbols following this word, but organize them
along the line USING the format (the image) established by
the source statement in line NNNNN.

A keyword IMAGE is used to establish the format of a line on
both the screen and on the printer. When this keyword is entered
in a source statement, it has the following meaning: Establish the
IMAGE following this word as the format of characters to be
displayed or printed and edit the characters as shown by this
format.

Position of the characters within the line is controlled by
punctuation, as follows:

None Display, then advance to the beginning of the next line.
Comma Display, then advance to the beginning of the next

zone.
Semicolon Display, then advance to the next position after the

data provided (this will not leave a space between entries on
the line).

Colon Display, then advance two positions after the data

88 Computer Programming Languages in Practice

provided (this will leave one space between entries on the
line).

If no expressions are provided in the DISPLAY source statement,
a blank line will appear. This is the way in which vertical spacing is
achieved.

The keyword TAB is used somewhat like the tabs on a
typewriter are. TAB follows the word DISPLAY, and produces
one of three possible actions depending on the expressions that
follow it, as shown below:

TAB (n-exp) Move to horizontal position specified by the
numeric expression.
TAB (n-exp,n-exp) Move to the horizontal position specified by
the first expression and to the vertical position specified by the
second expression. This is a way in which starting positions can
be established.
TAB(TOF) means move to the top of the form. It moves the
completed page up and off the screen, leaving a blank screen (a
blank page). The first display position is the first character of the
first line.
Shown below are examples of the statements that would be used

to construct a simple display of instructions on the display screen.
DISPLAY TAB(TOF) clears the screen.
DISPLAY TAB(20,4) moves the starting point to line 4, the

20th position from the left.
DISPLAY "CHOOSE THE JOB TO BE PERFORMED"
DISPLAY TAB(25,6) moves the starting point to line 6, 25th

position from the left.
DISPLAY " 1 . ACCOUNTS RECEIVABLE"
DISPLAY TAB (25,8) moves the starting point to line 8, 25th

position from the left.
DISPLAY "2. ACCOUNTS PAYABLE"
DISPLAY TAB (25,10)
DISPLAY "3 . GENERAL LEDGER"
DISPLAY TAB (25,12)
DISPLAY "4. INVENTORY UPDATE"

This produces a list of jobs, and the program pauses with an
INPUT statement waiting for the operator to push the proper key
number to select the job to be done. We've used only string
constants in our example, but it is also easy to use variables, as
follows:

BASIC—Beginners All-purpose Symbolic Instruction Code 89

DISPLAY "THE COLOUR IS:", T$
Action: Displays the information in quotation marks. Moves to

the beginning of the next zone and displays the current
contents of the string variable T$.

Printing

Printers range in size from the small desktop units to large
free-standing machines. They differ in speed and in quality of the
printed copy, but most have the same basic characteristics. The
paper on which printing is done is usually organized into 80 or 132
columns, with about 60 lines per sheet.

Source statements used for printing are very similar to those
used for display, as the reader would expect. (The same basic
functions of providing data and locating it on a page are being
performed.) The words used in the source statement are
PRINT#1 or PRINT#1 USING. They have the following
meaning:

• PRINT the characters following this word or which are named
by the symbols following this word.

• PRINT the characters following this word or which are named
by the symbols following this word USING the format (the
image) established by the source statement in line NNNNN.

The IMAGE statement is the same as that used with the
DISPLAY statements described earlier. It is extremely useful in
that a format for specific information, such as columns of numbers
in a table can be established in advance and used over and over. If
the IMAGE statement were not available, the programmer would
have to provide his format each time he printed or displayed data.

There is one printer characteristic that does require it to be
handled somewhat differently from a display. This is that printers
usually print one entire line at a time and then move down to the
next line. Most printers cannot back up. In BASIC, this character-
istic limits the use of the TAB keyword to two functions:

TAB (n-exp) Move to the horizontal position specified by
(n-exp).

TAB (TOF) Move to the top (first line) of the next page.

Spacing along a line is controlled by the comma, semicolon, and
colon punctuation marks described in the DISPLAY statement.

90 Computer Programming Languages in Practice

Although the PRINT statement is very similar in action to the
DISPLAY statement, it is likely to be of great interest to the
reader. Therefore, we'll provide two examples of its use.

PRINT#1 TAB(TOF)
Action: Feeds paper through printer until first line of new sheet

is reached. Current position is first position on first line.

PRINT#1 "EMPLOYEE NAME". E$
Action: Prints information in quotation marks, starting at

current position on current line, skips to beginning of
next zone, prints contents of variable E$, goes to first
position of next line.

The IMAGE Statement

Up to this point, we've seen the need for layout planning forms
used for displayed and printed pages. It should be obvious that
organizing the data for display or printing is a fairly complex task
and that any tools that would assist a programmer would be
welcome. One very important tool is the IMAGE statement.

Of course a programmer must establish the format of each line
the first time he uses that format, so the IMAGE statement cannot
eliminate this task. Where it is useful is in repetitive use of the
same format.

The body of the IMAGE source statement is called the 'edit
mask.' It consists of a series of symbols that determine how the
data to be shown is processed before it is printed or displayed. An
edit mask is particularly useful in handling numbers, so most of the
symbols have to do with editing numeric values.

Symbols available for use in an edit mask and their meaning are
shown below. Let's review all the symbols and their effect.

Allow this character to appear.
! Suppress zeros (Don't display zeros in this position).
, Insert a comma, unless zeros are suppressed so as to make

the comma unnecessary.
. Insert a decimal point, unless zeros are suppressed so as to

make the point unnecessary.
: Insert a decimal point, stop zero suppression at this point.
; Insert a semicolon, stop zero suppression at this point.

BASIC—Beginner's All-purpose Symbolic Instruction Code 91

- Add a minus sign if quantity is negative; space otherwise.
+ Add a minus sign if quantity is negative; add a plus sign if

quantity is positive; space otherwise.
/ Insert a slash at this point.

A simple example in the following lines shows how useful an edit
mask is in establishing the format of a variable when that variable
is printed. We start with an unknown number G l , which is gross
sales by a salesman. Assuming that it was £100,000.00 for the
period, the short program below would print sales commission as
follows:

050 LET A = 0.05 (This is the commission of 5 percent.)
060 PRINT#1 USING 070, A*G1
070 IMAGE "SALES COMMISSION £! ! !# .##"

Result: SALES COMMISSION £500.00

Gl is the gross sales credited to a specific salesman; it was
calculated by an earlier routine. Each time that commission is to
be printed, the program comes to this routine to print the
commission. A is 5 percent. When the PRINT#1 statement is
executed, it does the arithmetic (A*G1), although it could have
been done earlier and is shown here only to illustrate the power of
the PRINT and DISPLAY statements.

The image, which includes part of the message, then edits the
product of the arithmetic before the figure is printed. The mask
(!!!#.##) suppresses all leading zeros, which are any zeros that
appear to the left of the first digit that appears. In the example,
one position was unfilled. Then the '5' was encountered and zero
suppression stopped. A decimal point was inserted. If the answer
had produced a zero in the position immediately to the left of the
point, it would have been displayed.

Zones on Both the Screen and Printer

The screen and printer lines are divided into several zones to assist
the programmer. When confronted with the task of aligning
columns of data, the programmer can simply use the zone spacing
provided, rather than work out all the details on a planning sheet
and set tab positions for each starting point. Another feature that
makes use of the zone spacing easy is that a comma placed in a
PRINT statement after data to be displayed or printed causes the
next printing to start at the beginning of the next zone.

92 Computer Programming Languages in Practice

Variations of the Display and Printing Statements

Some BASIC systems allow the edit mask to be provided in the
PRINT statement itself, following the word USING. Such a
statement would appear in the form:

PRINT#1 USING " # # # # . # # " , G

In this case, the contents of numeric variable G are printed with
four positions to the left of the point and two to the right. No
suppression of leading zeros is provided. Whether numbers to the
right of the last printed position are truncated or rounded depends
upon the system. Assuming that rounding is done, the gross
income, the 'G' in the above expression, of 3546:275 would appear
as 3546.28 when the statement is executed.

The word TAB may also be used differently. Earlier examples
showed the tab operation to be done first, then the data being
printed by another PRINT statement. Some systems allow the
TAB word to be placed in the line of information to be printed.
An example of such a statement follows. It would print the
material shown immediately beneath it.

PRINT TAB (4); 'NAME'; TAB (30);
'ADDRESS'; TAB(60); 'DATE'

NAME ADDRESS DATE
(start in (start in (start in
position 4) position 30) position 60)

Ability to Evaluate Expressions

Also overlooked, or at least not stressed up to this point, is the
power of the DISPLAY and PRINT statements to cause express-
ions to be evaluated. Whatever expression is given is resolved first,
then the results are printed. Examples are:

PRINT 5*A+3*Y
PRINT "CIRCLE CIRCUMFERENCE IS:":PPD

The number of spaces in each zone depends upon the system in
use. If 80 spaces were available, each of the five zones would have
16 spaces each, and the 132 spaces on the longest print line could
be divided in a similar fashion.

BASIC—Beginner's All-purpose Symbolic Instruction Code 93

THE LET STATEMENT

Because the LET statement is so versatile and powerful, most
beginners will find it very easy to use. Its purpose is to cause the
expression following the word LET to be evaluated. The result of
the evaluation is moved to the numeric variable, string variable, or
array element named in the statement. It says: 'LET this
expression be evaluated and the result assigned to the item
named.'

Most users would write the expression to be resolved in the
same style they would use for pencil and paper arithmetic and
elementary algebra. The only significant difference in form is
caused by the fact that the expression must all be written on one
line; this makes it necessary to show the numeric operator symbols
and terms one after another. A good way to illustrate the actions
that can be performed by the LET statement is through examples.
Several follow:

LET M=5 Value is assigned to a numeric variable.
LET N$="EAGLE" Value is assigned to a string variable.
LET M (3,15)=29 Value is assigned to a numeric array element.
LET M (X)=25 Value is assigned to a numeric array element.
Element number is the value of X.
LET M$=N$ Value is assigned to a string variable from another
string variable.
LET S=S+H Simple arithmetic to accumulate a sum total.
LET A=(M+N)/5 More complex arithmetic.

It should be noted that most BASIC systems allow the expressions
above to be written without the word LET. In other words, X = 5
is processed just as if it read LET X = 5. Thus, the syntax
diagrams shown in Fig. 3.15 both apply.

LET (expression)

or

Fig. 3.15 LET statement syntax diagrams (expression)

In the first case, the expression 5*A+*Y is evaluated and the
number that results is printed. In the second example, the
expression PI*D (π times diameter) is evaluated and the result
made part of the printed line in the form CIRCLE CIRCUMFER-
ENCE IS: 25.

94 Computer Programming Languages in Practice

DECISIONS, BRANCHES, AND LOOPS

The capacity to make a decision and take action based on an
examination of existing conditions distinguishes a computer from a
calculator. BASIC has several statements that make it easy for a
programmer to describe the conditions to be examined and the
action to be taken.

We've described loops and branches earlier, but a refresher is
worthwhile.

• A loop is a group of statements that are performed over and
over.

• A branch is the act of moving to perform a source statement
that is not in sequence. Normally, statements are performed in
1,2,3,4,5 . . . order. If statement 2 caused statement 5 to be
performed next, that would be a 'branch.'

. BASIC Source statements in this class are:

FOR and NEXT
GOSUB and RETURN
GOTO and ON . . . GOTO . . .
IF . . . THEN . . .

Syntax diagrams are shown in Fig. 3.16. The reader should
examine them before reading the following descriptions.

FOR (variable) = H or h TO —j or k- STEP - j or f- or (condition)

GOSUB (line no.)

ON (variable) GOSUB (line no. 1), (line no. 2), (line no. Ν)

GOTO (line no.)

ON (variable > GOTO (line no. 1), (line no. 2), (line no. Ν)

IF (relation) THEN

IF (relation) THEN

Fig. 3.16 Syntax diagrams for FORI NEXT, GOSUB, GOTO, and
IFITHENIELSE statements

BASIC—Beginner's All-purpose Symbolic Instruction Code 95

The FOR/NEXT Loop

The FOR statement and the NEXT statement are, respectively,
the beginning and end of a loop. Usually, the same operations are
repeated but the data operated on is different.

Calculating the retail markup on a series of toys might be a good
example to illustrate. The markup is always the same percentage,
perhaps 40 percent, but the toy to which it is applied changes and
so does the final price of the toy. So a series of wholesale prices is
processed by the loop and a series of retail prices is calculated.
The number of times the loop is performed depends upon the
number of toys to be priced.

The FOR statement includes the name of a control variable and
the limits of that variable. As long as the variable is within those
limits, the loop continues. Steps following the FOR statement are
performed until a NEXT statement including the name of the
same control variable is reached. Then the program returns to the
related FOR statement and the value of the control variable is
checked again. When a limit is reached, the program leaves the
loop and continues at the statement following the NEXT
statement.

Each time the loop is performed, the value of the control
variable is incremented by one (stepped by +1), but this can be
changed by the addition of the keyword STEP to the FOR
statement. STEP is followed by the amount the variable is to be
changed. For example, a +2 produces a step of two each time the
loop is performed, and a - 5 would reduce the control variable by
five.

Up to this point we've thought of the limits of the control
variable and the steps as constants. The limits might be 1 TO 10
and the STEP +2, for example. Both the limits and the step value
may be expressions to be evaluated, however. For example, the
lower limit could be stated as Α-B, the upper limit as X + 2 and
the step as 2*Y/Z.

Some BASIC systems add even more decision-making power to
the FOR statement. They allow the keyword WHILE or UNTIL
at the end of the statement and follow the keyword with a
condition. In this case, the control variable must not only be within
the limits stated, but the condition must also be met if the loop is
to be performed. If the condition is not met, the program moves
on to the line following the NEXT statement just as it would if the
control variable was not within limits.

96 Computer Programming Languages in Practice

GOSUB and RETURN Statements

The GOSUB and RETURN source statements allow the program
to leave its sequential order, go to the source statement in a
specific line number and then return to the source statement that
follows the GOSUB statement. These statements are uncon-
ditional; that is, no conditions are tested to determine whether or
not they are executed. Part of the body of a GOSUB statement is
the line number of the source statement to be executed next. On
the other hand, the RETURN statement has no body at all; the
first RETURN statement encountered causes the program to
come back to the line immediately following the GOSUB
statement that caused the branch to take place.

An example follows:

40 GOSUB 350
50 Statement

An example of the loops created by the FOR and NEXT
statements appears in Fig. 3.17. The upper section shows a single
loop, beginning at line 050 and ending with line 130. At line 50, the
FOR statement establishes A as the control variable and 1 to 25 as
the limits of the variable. If A is within the limits, it is increased by
one and the program beginning at line 60 is performed. The value
used to step the variable can be changed, however, by the addition
of the word STEP followed by the value of the step. A STEP 2 is
shown in the figure. (Negative values can be used for steps as well.
A-3, for example.)

All the statements on lines 60 to 120 are performed before the end
of the loop is reached. The statement NEXT A then causes the
program to go back to line 50 and test the limits of the variable
again. If the test shows that the limits have been exceeded, the
program goes to line 140 for the next instruction.

An example of two loops used together is shown in the lower
position of the figure. Operation is basically the same. The main
loop is started in the normal manner, and the subloop (or inner
loop) is entered as the value of control variable Β dictates.

When loops appear within other loops, the term used to
describe them is 'nested.' The number of nested loops possible
depends upon the BASIC system being used. Loops may not cross
one another, however.

BASIC—Beginner's All-purpose Symbolic Instruction Code 97

PATH
IF

WITHIN
LIMITS

0 4 0

0 5 0

0 6 0

0 7 0

0 8 0

0 9 0

100

I 10

120

130

140

FOR A = I TO 2 5 STEP 2 •

NEXT A

PATH
IF

NOT
WITHIN
L I M I T S

Fig. 3.17 Examples of FORIΉEXT loops in BASIC

Action: The program goes to line 350 for the next statement to
be executed. If this is the only GOSUB statement
active, the first RETURN statement encountered
brings the program back to the line following this
GOSUB statement, which is 50.

98 Computer Programming Languages in Practice

The IF/THEN/ELSE Statement

The IF statement is a very useful one in that it can evaluate complex
conditions before taking action. In the simplest form, the word IF is

Although GOSUB by itself is an unconditional statement, some
BASIC systems make possible the addition of the word ON
accompanied by a condition. This changes the statement from an
unconditional branch into one that evaluates a numeric expression
before branching. The form is a simple one: ON (X) GOSUB. It
operates in the same manner as an ON . . . GOTO statement,
which is described below.

The GOTO Statement

Next among the branching instructions is the GOTO statement.
This statement has two forms: (1) unconditional, in which no
conditions are tested before the branch takes place, and (2)
conditional, in which a numeric expression is evaluated to
determine whether or not a branch should be taken.

The unconditional GOTO statement includes only a line number
in its body. When the GOTO statement is executed, it causes the
program to branch to that line number and execute the source
statement there.

The conditional GOTO statement offers more flexibility, and is
written ON (X) GOTO line number NNNNN, line number
NNNNN, line number NNNNN. A series of line numbers can be
provided in the body, limited only by the space available, and the
value of the numeric expression chooses one of the line numbers.
If, for example, the expression (X) yields the number 3, the
GOTO statement causes the program to branch to the third line
number provided.

Two conditions cause the program to continue in normal
sequence: (1) When the number resulting from the numeric
expression is less than one, and (2) when the numeric expression
produces a number greater than the total number of line numbers
listed. If there were only four line numbers provided and the
numeric expression produced 8.23, the branch is not taken.

It should be noted that there is no automatic return possible in the
GOTO statement like that provided in GOSUB. The programmer
must plan source statements for any return links that are necessary.

BASIC—Beginner's All-purpose Symbolic Instruction Code 99

followed by two numeric expressions separated by a relational
operator. (IF A - B > C - D , for example.) The last expression is
followed by the keyword THEN and a line number (IF A - B > C - D
THEN 700). In this case, the program goes to line 700 if the
expression yields an affirmative decision but continues on in normal
sequence if a negative decision is reached.

As the next step to add power to the IF statement, the logical
operators AND and OR (only one, not both or two of each) can be
used to join two relational expressions in the form: IF
A - B > C - D OR C - D > E - F THEN . . . Essentially this allows
two relational expressions to be evaluated.

The IF statement need not be concluded by a line number. In
other words, the action taken can be more complex than
branching. A LET, PRINT, or DISPLAY statement can be used
to cause action to take place. Suppose we had the following case:
IF X>Y PRINT#1 'BALANCE OK.' This might be used when
deducting a cheque from a bank account. If X was greater than Y,
the printing would take place and the next source statement would
be executed in its normal sequence.

Two other keywords, ELSE and UNLESS, are available for use
with the IF statement in some systems. They offer additional
decision-making power, much the same as the WHILE and
UNTIL words do in the FOR statements. Let's examine the
formats of two IF statements with the ELSE and UNLESS words
attached:

IF relation THEN line no. ELSE line no.
IF relation THEN line no. UNLESS condition

In the first statement, the relationship is examined. An affirmative
decision causes the program to branch to the first line number
given, and a negative decision causes a branch to the second line
number.

In the second statement, the relationship is examined, but even
if the decision is affirmative another condition must be met before
a branch to the line number given is taken. If either the decision is
negative or the condition is not met, the program continues in
sequence.

Shown below are four examples of the IF statement. Two are
worth special attention. In the case of the second example, the
ability of this statement to work with string data is illustrated.
And, in the fourth example, we show that the action following
THEN does not have to be a branch to a line number, but may be

100 Computer Programming Languages in Practice

SPECIAL SOURCE STATEMENTS

There are several statements that are difficult to categorize, so
we'll cover them in a group called special source statements.
Included in this group are:

insert REMarks
STOP
END
PAUSE
RANDOMIZE

The insert REMarks statement is a very simple one: Whatever
follows the abbreviation REM (or its substitute *) is entered in the
source listing. It has no effect on execution of the program.
Remarks statements are used to give titles to groups of statements
that perform a specific function. A remark using the * symbol but
with no information in the body is often used to create spaces

an imperative statement such as the DISPLAY statement we've
provided.

IF N=5 THEN 40
Action: A numeric variable (N) is checked to see if it is a 5. If it

is, the program goes to line 40 for the next statement to
be executed.

IF M$="SEAM" THEN 40
Action: A string variable is checked to see if it is 'SEAM.' If it

is, the program goes to line 40 for the next statement.

IF M (3,7) = (A-B)/C THEN 40
Action: An element of array M is compared with the results of

the expression A minus Β divided by C. If they are
equal in value, the program goes to line 40 for the next
statement.

IF N>10 THEN DISPLAY "NO. IS GREATER THAN 10."
Action: The IF/THEN statement may also be used to produce

actions other than branching. In this case, number
variable Ν is checked. If its value is greater than 10, the
message to that effect is shown on the display screen.

BASIC—Beginner's All-purpose Symbolic Instruction Code 101

A SAMPLE PROGRAM

Included in this section is a sample program. If the reader is able to
understand the action taken by each step, the reason the step is
necessary, and the results produced, he is well prepared to take
the self-test.

Before anyone tries to analyse how a program operates, he
must have a clear understanding of what that program is intended
to do. So that's where we'll begin with this sample.

The purpose of this program is to check the sales orders returned
by novelties salesmen. Each salesman has a standard order sheet on
which the items available for sale are listed. Next to each item on the

between titles and the steps, thus making it easier to read the titles
and to separate the routines from one another.

The STOP and END statements are nearly identical in function.
Both terminate the program, but END serves to mark the physical
end of the source program as well as to terminate it while STOP
serves only the latter purpose.

These statements end processing so that no problems are
encountered by the next program. For example, the STOP or
END statement closes all open files.

PAUSE is one statement that may not be available in some
versions of BASIC. When it is encountered, the program stops,
awaiting some operator action. Most often this is the pressing of a
key on the keyboard. PAUSE can be used if the program
encounters some simple problem that the operator can correct.

Instructions to correct the problem would be displayed, then the
program would pause. If a key must be depressed, that fact would
be given in the instructions and, after correcting the problem, the
operator would press the key and the program would resume.

One feature provided in some BASIC programming systems is a
random number generator. There are scientific uses for such a
feature, but a more popular application may be with computer
games where the results are to be based on chance. A RAN-
DOMIZE statement resets the generator to an unpredictable
starting point, and the RND function acquires the name of the
number produced by the generator. When RND appears in an
expression, it places the random number in the expression, to be
evaluated as the expression states.

102 Computer Programming Languages in Practice

list, he enters the total number of that item he has sold, does the
arithmetic necessary, and gives his order to the composer operator.

As a first step in processing the orders, the operator checks the
sales by running this simple program. The results state the number
of items sold by each salesman and the total value of the sale.

Simple BASIC requires that the names of variables be very
short. So, before any program is written the programmer should
make a list of his variables and assign them names that make it
easy to remember what the name stands for. If we do that for the
sample program, we come up with the following list:

Variable Meaning
Name

Ν Number of items on the standard order sheet. (The
number of different items offered for sale.)

Ρ Price of each item.
M Number of salesmen.
S Total value of the sales made by each salesman.

SI Total number of items sold by each salesman.
C Number of each item sold, as read from the order sheet

(Item 1, Item 2, etc., a substitute for the name of the
item).

Next, let's look at the program itself and locate the sections that
perform the primary functions. A source list follows. In it, we've
used PRINT to operate the display screen and PRINT#1 to
operate the printer.

10 READ Ν
20 FOR I = 1 TO Ν
30 READ Ρ (I)
40 NEXT I
50 READ M
60 FOR J = 1 TO M
70 PRINT
80 PRINT "***SALESMAN":J
90 LET S = Ο

100 LET SI = Ο
110 FOR I = 1 TO Ν
120 PRINT "ITEM NUMBER"; I:
130 INPUT C
140 LET S = S + C*P(I)
150 LET SI = SI + C

BASIC—Beginner's All-purpose Symbolic Instruction Code 103

160 NEXT I
170 PRINT#1 "SALESMAN",J
180 PRINT#1 "NUMBER OF ITEMS":S1
190 PRINT#1 "TOTAL ORDER = $":S
200 PRINT#1
210 NEXT J
220 DATA 5
230 DATA 2.25, 3.15, 1.85, 5.40, 3.20
240 DATA 3
250 END

Data to be used by this program is entered in lines 220, 230, and
240. The reader should recall, however, that the DATA state-
ments may appear anywhere in the program. They put information
into data tables, while READ statements take it out and assign it
to variables.

Fig. 3.18 illustrates the interaction between DATA and READ
statements for this program. Line 220 puts a 5 in the data table;
line 10 reads the 5 and assigns it to variable N, the number of items
on the standard order sheet. Line 230 enters the prices of the five
items available into the data table; line 30 reads them from the
table and assigns them to elements 1 through 5 of a one-dimension
array named P. Last, line 240 enters a 3 into the data table; line 50
reads it and assigns it to variable M, the number of salesmen
involved.

There are three loops. The first reads the prices into the array Ρ
and is composed of lines 20, 30, and 40. It is performed five times.

The next two loops are 'nested.' An outer loop, from lines 60
through 210, uses control variable J and has an upper limit of M.
Since M is the number of salesmen, this outer loop will be
performed three times. An inner loop consisting of lines 110
through 160 has an upper limit of N, which is the number of items
offered for sale on the order sheet. In our case, this is five items, so
this loop will be performed five times for each time the outer loop
is executed. Thus, the inner loop will be performed fifteen times.

Lines 80 and 120 do not print; they display. If no channel
number is specified in this case, the display screen is selected. A
channel #1 must be included in order to use the printer.
Therefore, line 80 shows a title SALESMAN 1 (or 2, or 3) on the
screen. This is followed by the notation ITEM NUMBER 1 (or 2,
3, 4, 5). The computer operator is thus instructed to read a specific
salesman's order sheet and type in the quantity sold for item 1 (2,

104 Computer Programming Languages in Practice

Ν

Fig. 3.18 Data used in the sample program

3, 4, or 5). This number, which appears on the screen, is accepted
by the INPUT statement in line 130 and assigned to variable C.
Thus, the computer knows the value of C for the following
calculations.

Now the calculations are performed. Line 140 does the
arithmetic for value and line 150 adds up the number of items sold.
In each case, the total accumulates until the five items for one
salesman are processed. Then lines 170 to 200 print out the totals
for one salesman.

When line 210 is reached, it causes the outer loop to be repeated
for salesmen 2 and 3. Only when all three salesmen's orders have
been processed is the outer loop ended. This causes the program
to drop to lines 220, 230, and 240, the nonexecutable DATA
statements, and finally to reach line 250, the END statement.

When the program is thus concluded, the operator has the
printed output. Of course, this can then be compared with the
sales orders and the orders checked for accuracy.

The next step is the analysis of this sample program in a
line-by-line examination. This is provided below:

Line Function
10 READ Ν Accepts the first item from the numeric data table

and assigns it to variable N. This is a 5 and is the
number of items in the price list.

20 FOR Based upon Ν being 5, this loop reads five items
1 = 1 TO Ν from the data table. These are the prices of five
30 READ Ρ products, and they are placed in a one-dimension
(I) array named Ρ (prices). Element number is I,
40 NEXT I which goes from 1 to 5.

BASIC—Beginner's All-purpose Symbolic Instruction Code 105

50 READ M

60 FOR
J = 1 TO M

70 PRINT
80 PRINT
"***SALES-
MAN":J

90 LET
S = 0
100 LET
SI = 0
110 FOR
I = 1 TO Ν

120 PRINT
"ITEM
NUMBER":!:

130 INPUT C

140 LET S =
S + C*P(I)

150 LET SI
= SI + c

160 NEXT I

170 PRINT
#1 "SALES-

Reads another item from the data table. A 3 in
this case, representing the number of salesmen
involved. The variable M is now assigned 3.
Establishes the main (outer loop). M is the
number of salesmen, so this loop will be per-
formed once for each salesman. In this case, that
is three times.
Creates one blank line on the screen.
Shows the word 'SALESMAN' on the screen,
followed by the value of control variable J, which
starts at 1. Therefore, the first time this loop is
performed, the screen shows: 'SALESMAN 1.'
Sums S and SI are intitially set to zero.

Establishes the inner loop. Ν is the number of
different items. So this loop is performed once for
each different item. In this case, that is five times.
Shows the words 'ITEM NUMBER' on the
screen, followed by the value of control variable
I, which starts at 1. Therefore, the first time this
loop is performed, the screen shows: 'ITEM
NUMBER 1.'
The operator enters the quantity of item number
1 that salesman 1 sold.
This multiplies the number sold of this item (C)
by the price (P) from array element P(I) meaning
the element is the same number as the item
number being processed, and this runs from 1 to
5. The product is then added to S, which is the
sum of goods sold by this salesman.
This expression adds the total number of items
sold. C is the number sold. It is added to the
current sum, SI.
This closes the inner loop, and causes it to be
performed again. Τ steps to 2, then 3, 4, and
finally 5. Then the loop ends. S will be the value
of all items sold, and SI will be the total number
of items sold by a salesman.
This prints out SALESMAN 1 the first time,
because control variable J is 1 on the first

106 Computer Programming Languages in Practice

MAN",J

180 PRINT
#1 "NUM-
BER OF
ITEMS":S1
190 PRINT
#1 "TOTAL
ORDER =
$":S
200 PRINT
#1
210 NEXT J

performance of the main loop. It is 2 on the
second pass, and 3 on the third.
This prints out the number of items sold (SI) by
this salesman.

This prints out the total value of items sold (S) by
this salesman.

This spaces one line at the end of each salesman's
printout.
This closes the main (outer) loop and causes it to
be performed again. J steps to 2, then to 3. Then
the loop ends.

SELF-TEST FOR CHAPTER 3

1. Which of the following string variables is named incorrectly?
a. S$ b. B$ c. A3 d. Z$

2. What are the rules for naming numeric variables in the
simple BASIC we've covered?

3. What distinguishes string constants from numeric constants?
4. Describe what each of the following statements do:

a. DIM A (10,25)
b. LET S = (A+B)/2
c. PRINT#1 "PROGRAM COMPLETE"
d. DATA "HARRIS",70,"GILMAN",90,"WILLIAMS",75

5. Records in our file of data have the following

1 7 30 I 36 45

1 E 1 E2 Hl 1 G Dl
a. E l is employee number field. How many characters does

it have?
b. E2 is employee name. What is wrong?
c. HI is hourly pay rate. Write the statement to get it,

assuming that the record for this employee is in the buffer
associated with file 2.

d. Assuming that we have calculated gross pay, put it in the
employee record in the field labelled G.

BASIC—Beginner's All-purpose Symbolic Instruction Code 107

6. What does the acronym BASIC mean?
7. What are arithmetic operators? Show the five commonly

used in BASIC?
8. What are relational operators?
9. Which of the following are string constants?

a. "PRICE EACH"
b. "147A4"
c. "JONES"
d. "YOUR GRADE IS 75."

10. Why is an IMAGE statement and its edit mask useful?
11. Expressions must be written on one line in BASIC source

statements. This requires some study in order to get correct
results. Write the statements for the following calculations:
Pencil and Paper Form

a. A =

b. Ρ = X 3 + 78X + A
c. C = V3X + Ν
d. Amount of payment (A) equals the total loan (T) plus

interest charges (I) divided by months to pay (M).
12. The OPEN statement has two functions and forms. What are

the functions?

In questions 13 to 23 write a one-line statement to meet the
requirements given.

13. Provide in a DATA statement the names, prices, and
quantity on hand (in that order) of the following:
3 chairs at £19.95 ea.
14 clipboards at £1.50 ea.
40 pads of paper at £0.90 ea.

14. Enter the first set of the above information into variables.
T$ Type of product
Ρ Price each
Q Quantity on hand

15. Place headings on display screen (spaced at zones) for entry
of the same information.

16. Enter one line of the same data from the keyboard.
17. Place headings on the printer (spaced at zones) for printout

of the same information.
18. Print one line of the data.

108 Computer Programming Languages in Practice

19. Subtract your current cheque (C) from current balance (B),
and form new balance (Bl).

20. Find the number of cubic feet (T) of insulation needed in
your attic floor if the dimensions are L (length), W (width),
and D (depth).

21. Perform the same task (any task) ten times.
22. Make a decision based upon age (A) of the job applicant. If

40 or over, go to line 500. If not, continue in sequence.
23. Perform the subroutine beginning at line 700 and then return

to the next instruction.
24. If we have the following statements as part of a program,

what is the value of X when the statement in line 20 is
finished?
10 READ A, B, C
20 X = A**2 + 3*B - C
30 DATA 10, 20, 30

25. What is wrong with the following simple programs?
FIRST PROGRAM
10 READ Χ,Υ,Ζ
20 LET C = X*Y/Z
30 DISPLAY C
40 DATA 5, 10
50 END

SECOND PROGRAM
10 FOR I = 1 to 5
20 INPUT A
30 IF A > 3 THEN 60
40 PRINT "NUMBER IS GREATER THAN 3"
50 LET C = A +B
60 PRINT "NUMBER IS LESS THAN 3"
70 NEXT I

THIRD PROGRAM
10 READ Χ,Υ,Ζ
20 LET A = X*Y + 2Z
30 PRINT#1 "YOUR GRADE IS": A
40 DATA 90,100,35
50 END

FOURTH PROGRAM
10 FOR A = 1 TO 3
20 FOR Β = 1 TO 5

BASIC—Beginner's All-purpose Symbolic Instruction Code

30 LET X = Υ + Ν
40 LET C = X**2/P
50 NEXT A
60 NEXT Β
70 PRINT X
80 PRINT C

109

4
COBOL—
Common Business
Oriented Language

INTRODUCTION

COmmon business Oriented Language are the words from which
the acronym COBOL is derived. COBOL is one of the oldest
major programming languages, so a review of its history is a good
place to start our description.

As one would gather from its name, the primary use of COBOL
is in business data processing. All major computer manufacturers
offer it with their machines, and it is widely used. In general,
BASIC is most popular with the very small machines and COBOL
with medium and large business installations.

The description in this chapter is based on the 1974 standard
ANS-74 COBOL.

As one moves further into this chapter, one is certain to
recognize that COBOL statements are very easy to read and
understand. This is due to the fact that they are near English in
their composition. It does, however, make for long statements
when compared to those in BASIC and some of the other
languages. This is a virtue of the language in two respects. First, it
makes the transition from an English statement of the action to be
performed to a COBOL statement fairly easy. Secondly, it makes
the program easy to understand and thus reduces the need for a
great deal of explanation.

The Four Divisions

Many reference books on the subject of COBOL begin by showing
the four major divisions of a COBOL program, which are the

COBOL—Common Business Oriented Language 111

identification, environment, data, and procedure divisions. We'll
do the same but approach them in reverse order however,
beginning with the procedure division.

Fig. 4.1 shows the divisions and the sections that make them up.

IDENTIFICATION DIVISION

PROGRAM - ID.
AUTHOR.
INSTALLATION.
DATE WRITTEN.
DATE COMPILED.
SECURITY.
REMARKS.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.
SOURCE-COMPUTER.
OBJECT - COMPUTER.
SPECIAL NAMES.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
I-O-CONTROL.

DATA DIVISION.

FILE SECTION. ^
FD
SD
WORKING - STORAGE SECTION.
DESCRIPTION ENTRY
RENAMES ENTRY
CONDITION NAME ENTRY

OPTIONAL MODULES
COMMUNICATION SECTION
LINKAGE SECTION
REPORT SECTION

PROCEDURE DIVISION.

Using Sections and Paragraphs

Fig. 4.1 The four divisions of a COBOL program

112 Computer Programming Languages in Practice

Although the procedure division appears last, it is, for all practical
purposes, the program itself. It includes all the statements of what
is to be done. Here is where the executable instructions are given
by the programmer.

Coming just before the procedure division is the data division. It
describes the data to be handled. Name, length, and value of
fields, records, variables, and constants are given here. This is an
extremely useful feature. COBOL was one of the first languages to
provide such a separate data definition. This allows a programmer
to find his data descriptions easily and simplifies changes.

Still working our way backward, we reach the environment
division. This is the division intended to make a COBOL program
transportable from one machine to another. It defines the
characteristics of the surroundings in which the program must
operate and, if all standards were rigidly enforced, would be the
only division that needed to be changed when a COBOL program
was moved from one data processing installation to another.

The environment division defines the types of computers
involved in handling the program. What type accepted the source?
What type will execute the object, and which files are assigned to
the various physical devices available? These are questions
answered in this division. The environment division has to be
prepared each time a COBOL program is moved to a new
'environment'; it is unique to every application.

At the top of each program but discussed last here is the
identification division. We can assume that this part was included
to help make a COBOL program self-documenting, for it includes
nothing more than what a programmer often provides in remarks
or comments with other languages. Program name, author,
installation, date written, date compiled, security, and remarks
make up the identification division. The remarks portion is
unrestricted as to length, so the programmer may provide his
program description here. The compiler treats the identification
division entries as other languages treat comments; it stores them
and prints them but otherwise ignores them. Only the program
name is a required entry.

Reserved Words

The 1974 ANSI standard lists over 300 reserved words, which are
shown in Fig. 4.2. As we move through this chapter, we'll use

COBOL—Common Business Oriented Language 113

ACCEPT
ACCESS
ADD
ADVANCING
AFTER
ALL
ALPHABETIC
ALSO
ALTER
ALTERNATE
AND
ARE
AREA
AREAS
ASCENDING
ASSIGN
AT
AUTHOR

BEFORE
BLANK
BLOCK
BOTTOM
BY

CALL
CANCEL
CD
CF
CH
CHARACTER
CHARACTERS
CLOCK-UNITS
CLOSE
COBOL
CODE
CODE-SET
COLLATING
COLUMN
COMMA
COMMUNICATION
COMP
COMPUTATIONAL
COMPUTE
CONFIGURATION
CONTAINS
CONTROL
CONTROLS
COPY
CORR
CORRESPONDING
COUNT
CURRENCY

DATA
DATE
DATE-COMPILED
DATE-WRITTEN
DAY
DE
DEBUG-CONTENTS
DEBUG-ITEM
DEBUG-LINE
DEBUG-NAME
DEBUG-SUB-1
DEBUG-SUB-2
DEBUG-SUB-3
DEBUGGING
DECIMAL-POINT
DECLARATIVES
DELETE
DELIMITED
DELIMITER
DEPENDING
DESCENDING
DESTINATION
DETAIL
DISABLE
DISPLAY
DIVIDE
DIVISION
DOWN
DUPLICATES
DYNAMIC

EG I
ELSE
EMI
ENABLE
END
END-OF-PAGE
ENTER
ENVIRONMENT
EOP
EQUAL
ERROR
ESI
EVERY
EXCEPTION
EXIT
EXTEND

FD
FILE
FILE-CONTROL
FILLER
FINAL
FIRST

FOOTING
FOR
FROM

GENERATE
GIVING
GO
GREATER
GROUP

HEADING
HIGH-VALUE
HIGH-VALUES

l-O
l-O-CONTROL
IDENTIFICATION
IF
IN
INDEX
INDEXED
INDICATE
INITIAL
INITIATE
INPUT
INPUT-OUTPUT
INSPECT
INSTALLATION
INTO
INVALID
IS

JUST
JUSTIFIED

KEY

LABEL
LAST
LEADING
LEFT
LENGTH
LESS
LIMIT
LIMITS
LINAGE
LINAGE-COUNTER
LINE
LINE-COUNTER
LINES
LINKAGE
LOCK
LOW-VALUE
LOW-VALUES

MEMORY
MERGE
MESSAGE
MODE
MODULES
MOVE
MULTIPLE
MULTIPLY

NATIVE
NEGATIVE
NEXT
NO
NOT
NUMBER
NUMERIC

OBJECT-COMPUTER
OCCURS
OF
OFF
OMITTED
ON
OPEN
OPTIONAL
OR
ORGANIZATION
OUTPUT
OVERFLOW

PAGE
PAGE-COUNTER
PERFORM
PF
PH
PIC
PICTURE
PLUS
POINTER
POSITION
POSITIVE
PRINTING
PROCEDURE
PROCEDURES
PROCEED
PROGRAM
PROGRAM-ID

QUEUE
QUOTE
QUOTES

RANDOM
RD

many of them in our explanations, examples, and syntax diagrams.
These words have a certain meaning to the COBOL compiler and
must not be used in any other way. Some computer manufacturers
have added to the list of reserved words used by their compilers,
but we certainly have enough words to deal with in the ANSI list.

114 Computer Programming Languages in Practice

READ SAME STRING UNSTRING
RECEIVE SD SUB-QUEUE-1 UNTIL
RECORD SEARCH SUB-QUEUE-2 UP
RECORDS SECTION SUB-QUEUE-3 UPON
REDEFINES SECURITY SUBTRACT USAGE
REEL SEGMENT SUM USE
REFERENCES SEGMENT-LIMIT SUPPRESS USING
RELATIVE SELECT SYMBOLIC
RELEASE SEND SYNC VALUE
REMAINDER SENTENCE SYNCHRONIZED VALUES
REMOVAL SEPARATE VARYING
RENAMES SEQUENCE TABLE
REPLACING SEQUENTIAL TALLYING WHEN
REPORT SET TAPE WITH
REPORTING SIGN TERMINAL WORDS
REPORTS SIZE TERMINATE WORKING-STORAGE
RERUN SORT TEXT WRITE
RESERVE SORT-MERGE THAN
RESET SOURCE THROUGH ZERO
RETURN SOURCE-COMPUTER THRU ZEROES
REVERSED SPACE TIME ZEROS
REWIND SPACES TIMES
REWRITE SPECIAL-NAMES TO
RF STANDARD TOP
RH STAN DAR D-1 TRAILING
RIGHT START TYPE
ROUNDED STATUS
RUN STOP UNIT

Fig. 4.2 COBOL reserved words

ORGANIZATION OF A PROGRAM

Before we examine each of the divisions of a COBOL program
and the appearance of statements in them, it is necessary to
understand the organization of the entries provided in each
division. Overall, the scheme is:

DIVISION
SECTION

PARAGRAPH
SENTENCE

Sections, if they are necessary, are blocks within divisions.
Paragraphs are blocks within sections, and sentences make up
paragraphs. This is the basic hierarchy. We'll refine it division by
division after discussing the coding form.

Coding Form

A sample coding form is shown in Fig. 4.3. The heading material is
similar to that for most systems and is eighty columns wide, also a
common arrangement. Note that the contents of columns 1
through 3 remain the same for the entire page and are shown only

F
ig

.
4.

3
T

he
 C

O
B

O
L

 c
od

in
g

fo
rm

COBOL—Common Business Oriented Language 115

116 Computer Programming Languages in Practice

in the upper left corner. The same is true for columns 73 through
80. They hold program identification and appear in the upper
right. Once we reach the body, however, the unique COBOL
features appear. There are six positions provided for numbering
the lines. The first three often provide the page number of the
coding form and the second three (columns 4, 5, and 6) give the
line number within a page. We have only twenty-five lines per
page in our sample which, of course, need only two columns to
number. The last position of each line number is normally left at
zero, in the style: 030. This allows as many as nine elements to be
inserted between line 030 and line 040 without having to
renumber, a great convenience because insertion and removal of
statements is normal during program development.

Column 7 provides some important information about the
material on each line. Ordinarily, this column is blank, but if the
line is only a comment, column 7 includes an asterisk (*). If the
line begins with a continuation of a word from the previous line,
column 7 contains a hyphen (-). This causes the word to continue
without a space.

Next, in columns 8 through 72, we have the area that holds the
COBOL statement. Area A occupies columns 8-11 and area Β
columns 12-72. Some types of entries must begin in area A and
others in area B. When the divisions are discussed in detail, the
use of the two areas will be explained.

The rest of the form is divided by vertical lines every four
positions. (We've shown those up through column 24.) These lines
provide guides for indentation schemes. Columns 73-80 provide
space for additional information the programmer wishes to insert
concerning program identification.

Relationship of Divisions to One Another

Now let's discuss the way in which the environment, data, and
procedure divisions work together. One good way to show how the
divisions are related is to use specific examples of files and data
items. Two such examples are given in the following paragraphs.

Suppose a file of employee records, which is held on a disk, is to
be updated by the program. Beginning in the FILE-CONTROL
paragraph of the INPUT-OUTPUT SECTION in the environment
division, the file name, EMPLOYEE-FILE, is assigned to the
equipment holding the disk on which the file is stored. (Fig. 4.4

COBOL—Common Business Oriented Language 117

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT EMPLOYEE-FILE
ASSIGN TO System Name
ORGANIZATION IS INDEXED
ACCESS MODE IS RANDOM.
RECORD KEY IS EMP-NMBR.

Defines the file and
its organization.

DATA DIVISION.
FILE SECTION.
FD EMPLOYEE-FILE

LABEL RECORDS ARE OMITTED
DATA RECORD IS EMP-RECORD.
EMP-RECORD. 01
05 EMP-NMBR

05 EMP-NAME
WORKING-STORAGE SECTION.

PIC X(5).

PIC X(£0),

| _ Defines the organization
of a record in the file.

PROCEDURE DIVISION.

B000-EMP-UPDATE SECTION. ^
OPEN INPUT EMPLOYEE-FILE.
READ EMPLOYEE-FILE KEY IS EMP-NMBR.

Reads a record
from the file.

Fig. 4.4 First example of the relationship between divisions

shows the entry.) This establishes a connection between the
COBOL program and specific equipment. Next, the basic organ-
ization of the file is stated, and the key is given. Now the compiler
knows both the kind of equipment and the file characteristics
involved.

In the data division, the file description (FD) paragraph of the
FILE SECTION defines the contents of the file as to names and
sizes of fields. The data record in the file is called EMP-RECORD,
and it is made up of a series of fields. The compiler now knows the
name, size, and type of elements the procedure division will be
dealing with. Last in the data division is the WORKING-

ENVIRONMENT DIVISION.

118 Computer Programming Languages in Practice

STORAGE SECTION; it also gives names of data items that the
procedure division will be using.

Now we reach the procedure division itself, where actions to be
taken appear. When we reach the EMP-UPDATE SECTION, all
instructions to open and read the EMPLOYEE-FILE can be
given. All links to the equipment and operating system have been
defined. And, of course, the record size, field size, and data names
have been established.

The second example, which is shown in Fig. 4.5, is a simpler
one. A data item named PAY-RATE will be used in the program.
It is named and its size given in the WORKING-STORAGE
SECTION of the data division. (A value could also be established
here.) The procedure division can now use this data item, but will
have to provide a value for PAY-RATE.

DATA D I V I S I O N -
F I L E S E C T I O N .

WORKING-STORAGE S E C T I O N .
7 7 PAY-RATE P I C 9 9 V 9 9 .

PROCEDURE D I V I S I O N .

READ E M P L O Y E E - F I L E KEY I S EMP-NMBR.

Uses the
MULTIPLY HRS-WKD BY PAY-RATE G I V I N G GRS-PAY. \- Independent

J Data Item.

Fig. 4.5 Second example of the relationship between divisions

THE IDENTIFICATION DIVISION

The purpose of this division is to name the program, describe its
origin, and, if the programmer chooses, give a statement of its
purpose. Only the PROGRAM-ID paragraph is mandatory; the
others are optional.

Defines an
Independent
Data Item.

COBOL—Common Business Oriented Language 119

This is the division that adapts the data and procedure divisions to
a specific computer and, theoretically, is the only division that
would change when a COBOL program is moved from one type of
computer to another. It consists of two sections: (1) the CON-
FIGURATION SECTION and (2) the INPUT-OUTPUT SEC-
TION.

The CONFIGURATION SECTION includes only two stan-
dard paragraphs, one naming the computer on which the program
is compiled, the source computer, and the second naming the
computer on which the program will be run, the object computer.
Although these are normally the same, it is possible for them to be
different.

The second section is far more important. Called the INPUT-
OUTPUT SECTION, it relates the data files used by the program
to the equipment available at a specific installation, and it defines
the characteristics of those files to the system. It also provides
certain instructions regarding the use of the input-output equip-
ment.

There are two paragraphs in the INPUT-OUTPUT SECTION.
The first is the FILE-CONTROL paragraph. Through a series of
entries that take the form: SELECT file name ASSIGN TO
device-name, the FILE-CONTROL paragraph links a file to
equipment. Following each assignment are entries concerning the
organization of the file, its access mode, and the name of the file
key (if one is used). This information is required by the computer's
operating system in order to manage the files properly.

The second paragraph in the INPUT-OUTPUT SECTION is
called the I-O-CONTROL paragraph, and it is optional. Certain
features and operations unique to the application can be specified
in this paragraph.

All paragraph titles begin at margin A, are hyphenated as shown
in Fig. 4.1, and are followed by a full stop. The program name must
begin with a letter and conform to the naming rules; some systems
allow only eight characters in the name. A full stop follows the
program name.

The optional paragraphs and their contents may appear in any
order. Since the compiler does not check the contents of the
entries, the programmer is free to use them as comments.

THE ENVIRONMENT DIVISION

120 Computer Programming Languages in Practice

THE DATA DIVISION

Provided in the data division are the names and descriptions of the
files, records, fields, data groups, and data items the program will
be using. Two sections are required. A FILE SECTION identifies
files and records and gives the name and description of items
within the records. The second section is called the WORKING-
STORAGE SECTION; it names and describes data groups and
individual data items that are used with the program but which are
not described in the file section.

Three other sections are available in the data division: a
COMMUNICATION SECTION, a LINKAGE SECTION, and a
REPORT SECTION. Each has a special use. The COM-
MUNICATION SECTION is concerned with telecommunication
messages, the LINKAGE SECTION is used to pass information
between programs, and the REPORT SECTION is used with the
report writer module of COBOL. We'll confine our discussion to
the two sections that are likely to be of most interest to the reader,
the FILE and the WORKING-STORAGE sections.

Naming Data

Early in the process of learning a new programming language, a
programmer must become familiar with the rules governing the
way in which data is identified and described to the system. In
COBOL, data is defined and described in the data division. The
naming rules are simple and easy to apply:

• Each name must be unique.
• Reserved words must not be used.
• Names may be up to thirty characters long.
• The first character must be a letter or a number.
• Other characters must be letters or numbers, with one

exception: a hyphen may be used.
• Blanks must not be used, and the last character in the name

must not be a hyphen.

Describing Data

COBOL uses an interesting way to describe a data item. A
reserved word PICTURE, or PIC, follows the name of the item to

COBOL—Common Business Oriented Language 121

describe its size and contents. PIC X(80), for example, says that
this item is eighty positions in length and that it holds alpha-
numeric data, which is indicated by the X.

There are two other code characters for data types, A and 9.
Thus, we have the following codes for the type of data that may
appear in a data item:

A Alphabetic. Only letters A-Z and blanks may
appear.
X Alphanumeric. Any valid character may appear.
This includes letters, numbers, and punctuation.
9 Numeric. Only numbers may appear in this data
item.

The A and X codes are followed by a number in parentheses, like
the PIC X(80) we showed above. On the other hand, the code 9
for numeric may be shown in either of two ways: A 9 followed by
the same parentheses-style definition of size, or a series of 9s
written out one after another. Each 9 in the series represents one
position that the number may have.

The number in parentheses is called the repetition factor. It tells
the compiler how many spaces to provide for a specific data item.

Relationship of Data Items

Now that the rules concerning names and descriptions have been
discussed, the next step is to examine how the relationship of one
data item to another is shown. COBOL uses level numbers to
indicate these relationships. There are five possibilities:

Level Meaning
No.
01 A data group, most often a record, including fields or

other subdivisions
02-49 Fields within a record or subdivisions within a data

group
77 An independent data item
66 Used with RENAMES
88 Condition names

Since 66 and 88 are related to rather specialized uses, we'll skip
them and concentrate on the frequently used codes. Let's begin
this discussion with the level number 77, an independent data
item.

122 Computer Programming Languages in Practice

0 3 PORT-NUMBER P I C X (7) .
0 3 F I L L E R P I C X < £) .
0 3 D E S C R I P T I O N P I C X < £ 4) .
0 3 F I L L E R P I C X (6) .
0 3 COST P I C 9 9 V 9 9 .
0 3 F I L L E R P I C X (£) .
0 3 N U M - I N - S T O C K P I C 9 9 9 .

Fig. 4.7 Example of a record description

Notice that the level number 01 appears in column 8, while the
level number 03, identifying a field, is placed in column 12. If
further subdivision of the fields was necessary, continued indenta-
tion and level number would be used.

Setting the Beginning Value

In some cases, it is necessary to establish the initial value of a data
item defined in the data division so that the program will begin

An independent data item is one of the items that the program
uses but: (1) is not part of a data group or (2) is not known by the
same name if it is part of a group or record. Two independent data
items are shown in Fig. 4.6. The level code for the independent
data item appears in area A and the name and description in
area B.

Col. 8 12

7 7 PREV-ORD-NUM P I C 9 (5) .
7 7 V f tLUE-SOLD P I C S 9 9 V 9 9 .

Fig. 4.6 Examples of independent data items

Next we'll look at the description of fields and records and show
how level numbers are used to indicate what fields make up a
record. A simple record is shown in Fig. 4.7. It holds all the
information related to a specific part held in stock by an auto
dealer and is called a part record. It begins with part number, and
includes part description, cost, and number in stock. (This same
style is used to show the organization of other data groups as well.)
Where the word FILLER is shown, that section of the record is
usually set to blanks by the programmer.

Col. 8 12

0 1 PART-RECORD.

COBOL—Common Business Oriented Language 123

Organizing Numeric Data

We mentioned earlier that the code 9 following PICTURE or PIC,
indicates that the data item is a number. EMP-NUM PIC 9999, for
example, says that the data item EMP-NUM is a four-position
number.

Now we must consider decimal point position, signs, and
punctuation as well. First, the decimal point position is shown by a
V, in the form: TOTAL-AMT PIC 999V99. This statement says
that there are three positions to the left of the decimal point and
two to the right. If the number is a large one, the repetition factor
style can be used. TOTAL-AMT PIC 9(5)V9(3) says there are
five positions to the left and three to the right of the decimal
point.

Next, the sign (+ or -) of the number is important in many
cases. Unless there is an indicator placed with the PICTURE
clause, no sign can be used. The indicator is an S and it precedes
the first 9, in the form: TOTAL-AMT PIC S999V99.

Editing Data for Display or Printing

Whenever numbers held within the computer are displayed or
printed, they must appear in the form that humans are accustomed
to reading. For example, 003445655 should be read £34,456.55
when it appears in a report. This requires that a pound sign be

with a known quantity. Constants must, of course, be set to a
value, and other items may be as well. This is done by the VALUE
clause, VALUE being one of the reserved words.

Immediately following the PIC définition of the data item, a
VALUE clause is inserted in the form PIC X(80) VALUE . . .
The reserved word SPACES can be used. VALUE SPACES, for
example, produces a field of blanks. Another form 'VALUE'—
also produces a blank field. Whatever information appears within
the quotation marks following VALUE becomes the initial value
of the related data item. The quotation marks are used only with
alphabetic data (A) and alphanumeric data (X). Pure numbers,
data type 9, do not use quotation marks. A data item TOTAL-
AMT PIC 999V99, for example, would be given an initial value in
the form: TOTAL-AMT PIC 999V99 VALUE 43.75.

124 Computer Programming Languages in Practice

COBOL SYNTAX DIAGRAMS

Nearly all programming languages use some type of diagram to
explain the construction of their source statements. If a reader has
gone through earlier chapters, he knows why syntax diagrams are
necessary. For those beginning here in Chapter 4, we'll provide a
brief introduction to the subject.

Source statements in most languages may take a variety of
forms, depending on their specific use. It's very difficult to provide
examples of every possibility because the more complex state-
ments may have a great many combinations. In addition, the
meaning of specific examples might be misunderstood. Therefore,
a 'possibilities diagram' using generic rather than specific names is
prepared, and the diagram uses certain symbols to illustrate all
valid arrangements of the words and names that form a statement.

Syntax diagrams are available for all four divisions, but we're
concerned with those for the statements in the procedure division.
A typical diagram is the one used for the ADD statement, which is

added, the zeros on the left be eliminated, a comma inserted, and
a decimal point inserted. Of course, the computer must be told
what to do, and this is also done by a PICTURE clause.

Assume that there is a data item named PRICE which has a
PICTURE 99V99, meaning a number with two positions on each
side of the decimal point. The actual value of PRICE is 3550.
Thus, the number must be converted to a readable form before it
is printed. This is done by a PICTURE clause, £99.99, provided
for this field in the printed line. Thus, when 3550 is moved to the
print line field, it becomes £35.50, and this is what is actually
printed in the report.

COBOL has a wide variety of editing possibilities. Let's
examine one more before moving on.

Assume that a very large number may exist within the
computer. To print it we could provide a PICTURE clause: PIC
££££, ££9.99. The currency sign is floating, suppressing zeros down
to the last integer position, and a comma is inserted for thousands.
Of course, the comma is not inserted if the zero suppression makes
it unnecessary. If 57695401 was moved into this field, it would
appear £576, 954.01. On the other hand, 00000059 would appear
£0.59.

COBOL—Common Business Oriented Language 125

ΛΓΛΓΛ _f identifier-1 Ί Γ , identifier-2 1 T^ m ^ i . K i n m i

1 literal-1 J |_ . l i t e r a l J · XQ 'dentifier-m [ROUNDED]

[, identifier-η [ROUNDED]] . . . [; ON SIZE ERROR imperative-statement]

Fig. 4.8 ADD statement syntax diagram

Now to the lowercase words. These are the generic terms
describing what the programmer may place in the positions the
words occupy in the syntax diagram. In our ADD statement, the
term 'literal' means a number may be placed there, 187 perhaps.
On the other hand, the term identifier' means that the name of a
data item, perhaps, FICADED, may occupy this position. Of
course, the number that this data item holds is used when the
arithmetic is done.

Next to be examined are the symbols involved in the diagram.
The square brackets indicate that the feature is optional. The
ROUNDED clause, for example, can be left out and yet the
statement will be executed. When brackets appear within other
brackets, it means that the feature shown by the outer brackets is
optional but, if it is used, the feature within the inner brackets is
again optional.

Braces on the other hand indicate that a choice must be made
among the items offered. In our ADD statement, the first number
following the word ADD must be provided, but the braces show
that the number may be provided in literal form or a data item
named. The three periods (. . .) are called the ellipsis points.
They show that the previous option may be repeated as many
times as the programmer sees fit. In the ADD example, we have
shown that one number must follow ADD and that a second may.

ADD E M P L O Y E E - H O U R S TO T O T A L - H O U R S -

shown in Figure 4.8. Let's begin our explanation by examining
words. Those capitalized are underlined in the form ADD, TO,
ROUNDED, and SIZE ERROR are mandatory if the feature
they represent is to be used. The ROUNDED phrase is an option,
as is the SIZE ERROR phrase. Other capitalized words also
appear in the syntax diagrams but are not underlined. These words
may be added to make a sentence more readable if the
programmer wishes, but they are not mandatory. ON is an
example of such a word.

126 Computer Programming Languages in Practice

THE PROCEDURE DIVISION

This is the division in which the programmer provides the
executable statements that carry out the functions the program is to
perform. It has no preassigned section or paragraph names,
requiring only that the division name be given at the beginning of
the coding, in the form: PROCEDURE DIVISION.

The programmer is therefore free to organize the body of the
procedure division as he sees fit. Let's examine first the basic
component available, the COBOL sentence. The sentence consists
of one or more statements and is terminated with a full stop. A
simple sentence would consist of a single statement, but a complex
sentence may include several statements. As we'll see when we
examine the functions performed by each statement, nearly all
statements begin with a verb. ACCEPT, CALL, DIVIDE,
MOVE, SEARCH, and WRITE are examples.

In very simple programs, the sentences may follow immediately
after the PROCEDURE DIVISION heading, and no further
organization is necessary. Of course, most programs are not
simple, consisting of hundreds of statements. This makes it
desirable to group sentences into paragraphs or sections and
identify them by the function they collectively perform.

Paragraphs are given names that conform to the general naming
rules. They may be up to thirty characters long, and they begin in
area A of the coding form.

If necessary, sections named by the programmer can be
introduced in the procedure division. Section names, too, conform
to the naming rules, can be a maximum of thirty characters, and
must begin in area A. The word SECTION is appended to the
name constructed by the programmer.

When a paragraph heading is provided for a group of sentences,
it allows the program to handle that group as a unit, a procedure.
The PERFORM statement can then select paragraphs or sections
to be executed in their entirety. PERFORM paragraph or section

The ellipsis points show that a third, fourth, fifth, etc. number may
also be included.

Except for the period shown at the end of the ADD sentence,
the punctuation marks are optional. They are included only to
make the sentence more readable.

COBOL—Common Business Oriented Language 127

STATEMENTS THAT PERFORM ARITHMETIC

There are five COBOL statements that perform arithmetic: ADD,
SUBTRACT, MULTIPLY, DIVIDE, and COMPUTE. The first
four are the equivalent of the arithmetic operator symbols (+ , —,
*, and /) that we discussed in BASIC. In COBOL, however, the
operation can be written out, in the form: ADD A TO Β or
SUBTRACT A FROM B.

On the other hand, the COMPUTE statement uses the operator
symbols just as BASIC and Pascal do, and the symbols available
are very similar. If the reader is familiar with the way in which
BASIC and Pascal do arithmetic, he should find the COMPUTE
statement very easy to use.

Although the ADD, SUBTRACT, MULTIPLY, and DIVIDE
statements are themselves simple, there are several variations
available. (Typical syntax diagrams appear in Fig. 4.9.) One good
way to illustrate how they perform is to provide some examples of
statements and show the results that they produce. In order to
make the examples realistic, we'll use identifiers (names) for our
data items that the reader may encounter in everyday use.

The ADD Statement

There are two basic forms of the ADD statement. Both allow use
of the ROUNDED phrase and ON SIZE ERROR phrase. The
ROUNDED phrase causes the result (the sum in the case of
addition) to be rounded off. If, for example, the result had three

name, for example, causes all the statements in the group named
to be executed; then the program resumes with the sentence
following the PERFORM statement.

To summarize the organization of the procedure division: Only
the name PROCEDURE DIVISION is mandatory. If further
organization is necessary, the hierarchy is:

SECTION
Paragraph

Sentence
Statement

128 Computer Programming Languages in Practice

[, identifier-η [R O U N D E D]] . . . [; O N 1 SIZE E R R O R imperative-statement]

n (identifier-1 \ Γ identifier-2 Ί Γ, identifier-3 "I
— \ literal-1) ' \ literal-2 J L literal-3 J

G I V I N G identifier-m [R O U N D E D] [, identifier-n [R O U N D E D]] . . .

[; O N SIZE E R R O R imperative-statement]

M ^ C O R R E S P O N D I N G j_ -, i d e m j f j e r. 2 [r o u n d e d]

[; O N SIZE E R R O R imperative-statement]

C O M P U T E identifier-1 [R O U N D E D] [, identifier-2 [R O U N D E D]] . . .

= arithmetic-expression [; O N SIZE E R R O R imperative-statement]

DIVIDE ĵ lî'fM J" !NTQ identifier-2 [R O U N D E D]

[, identifier-3 [R O U N D E D]] . . . [; O N SIZE E R R O R imperative-statement]

D IV IDE] J 2 y r I N T O - [IJjJJ'"2]- G I V I N G identifier-3 [R O U N D E D]

[, identifier-4 [R O U N D E D]] . . . [; O N SIZE E R R O R imperative-statement]

D IV IDE î ^ î f '
1
^ BY - [J2_F2R'2} G I V I N G identifier-3 [R O U N D E D]

[, identifier-4 [R O U N D E D]] . . . [; O N
1
 SIZE E R R O R imperative-statement]

D IV IDE - [jjjjf'"1 J- INTO -[US?"2}" G I V I NG
 identifier-3 [R O U N D E D]

R E M A I N D E R identifier-4 [; O N SIZE E R R O R imperative-statement]

M {lS-Tr"1} ̂ ̂ iSr2} QBfflsai d e n, I F I E R
-

3
 [B O U N D E D]

R E M A I N D E R identifier-4 [; O N SIZE E R R O R imperative-statement]

MULTIPLY - j ^ l^eral'-'T^^J-
 - - identifier-2 [R O U N D E D]

[, identifier-3 [ROUNDED]] . . . [; O N SIZE E R R O R imperative-statement]

COBOL—Common Business Oriented Language 129

MULTIPLY {iSr} ̂ {ίΞ-Γ2} ^ identifier-3 [ROUNDED]

[, identifier-4 [ROUNDED]] . . . [; ON SIZE ERROR imperative-statement]

SUBTRACT { | 2 r } [;] · FROM ident i f ie , . [ROUNDED]

[, identifier-η [ROUNDED]]. . . [; ON SIZE ERROR imperative-statement]

ςι I R T R A P T S identifier-! Γ , identifier-2 1 f identifier-m^l
SUBTRACT - ^ | i t e r aM y L f , i terai-2 J " ^ l i teral -m J "

GIVING identifier-η [ROUNDED] [, identifier-o [ROUNDED]] . . .

[; ON SIZE ERROR imperative-statement]

SUBTRACT - ^ c O R R
E S P Q N P I N G

J "
 i d e n t i f i eM F R QM

 identifier-2 [ROUNDED]

[; ON SJZE ERROR imperative-statement]

Fig. 4.9 Statements that perform arithmetic

positions to the right of the decimal point but the field into which
the result was placed had only two, the result is rounded to two
positions.

The ON SIZE ERROR phrase is followed by a statement of
what to do if a size error results from the ADD statement. While
the ROUNDED phrase applies to only decimal places (positions
to the right of the point), the ON SIZE ERROR phrase applies to
the integer part. Suppose the receiving field had four positions—
perhaps a maximum number of 9999.99—but the result of an
addition produced a value of 23597.23. This amount cannot be
moved into the receiving field with meaningful results, thus a size
error has occurred. The statement following the ON SIZE
ERROR phrase would, in this case, cause a branch to some type
of error recovery routine in which the operator is warned about
the invalid operation.

Now we can examine the GIVING phrase. It states where the
result is to be placed. Without the GIVING phrase, the result is
placed in one of the fields involved in the addition operation. With
the GIVING phrase, the result is placed in the field (or fields)
specified by the GIVING phrase.

Below are some examples of the ADD statement. Note that

130 Computer Programming Languages in Practice

additional punctuation could have been included in the positions
shown by the syntax diagrams.

ADD DEPOSIT TO BAL.
The amount of DEPOSIT is added to BAL and the result
appears in BAL.

ADD DEP-1, DEP-2, DEP-3, to BAL.
Three deposits are added to BAL and the result appears in
BAL.

ADD TAX TO COST ROUNDED.
TAX is added to COST. Result is rounded, then placed in
COST.

ADD TAX TO COST GIVING TOTAL.
TAX is added to COST and the result is placed in TOTAL.

ADD OTIME TO BASERT GIVING GROSSPAY ON SIZE
ERROR GO TO . . .
Overtime is added to the base rate. If the resulting gross
pay is greater than the maximum number that the GROSS-
PAY field can hold, go to an error routine.

The SUBTRACT Statement

The SUBTRACT statement is also easy to use, and it has the two
basic forms—one without the GIVING phrase and one with it.
Both the ROUNDED and ON SIZE ERROR phrases may be
used. Examples follow:

SUBTRACT CHEQUE-1 FROM BAL.
The amount of CHEQUE-1 is subtracted from BAL and
the difference appears in BAL.

SUBTRACT CHEQUE-1, CHEQUE-2, CHEQUE-3, FROM
BAL.
All three cheques are subtracted from BAL and the final
result appears in BAL.

SUBTRACT COST FROM PRICE GIVING PROFIT.
COST is subtracted from PRICE and the difference placed
in PROFIT.

The MULTIPLY Statement

Again we have a simple statement that may or may not use the
GIVING phrase, and both the ROUNDED and ON SIZE

COBOL—Common Business Oriented Language 131

The DIVIDE Statement

Last in the series of simple arithmetic statements is the DIVIDE
statement. It allows use of the ROUNDED phrase, the ON SIZE
ERROR phrase, and the GIVING phrase. It, like the MULTI-
PLY statement, is likely to use these options in many cases.

Another phrase, called REMAINDER, appears for the first
time in the DIVIDE statement. As the reader knows, a remainder
may be significant in many cases and therefore must be saved. This
is the purpose of the REMAINDER phrase. As the syntax
diagram shows, the REMAINDER phrase is used only in
DIVIDE statements also using the GIVING phrase, and it must
follow the ROUNDED phrase if that phrase is also used.

Now to the specific use of the REMAINDER phrase; it names
the remainder, nothing more. Once the remainder is named, of
course, it can be handled by other steps in the program as the
programmer sees fit.

Some examples of the DIVIDE statement follow. Note that two
keywords, BY and INTO, are available in the form using the
GIVING phrase but only the word INTO is available for the
simple form of the statement.

ERROR phrases are available. Of course, these two phrases are
most likely to be used in the MULTIPLY statement than they are
in ADD and SUBTRACT because the multiplication operation is
more likely to produce results that need rounding and size
checking.

The GIVING phrase would normally be used in the MULTI-
PLY statement. Otherwise, the product would be placed in the
field used as the multiplier. We'll see that in the examples below.

MULTIPLY A BY B.
A is multiplied by B, and the product is placed in B.

MULTIPLY BASERT BY HRSWKD GIVING GROSSPAY
ROUNDED ON SIZE ERROR GO TO . . .
The base rate of pay is multiplied by the number of hours
worked and the product placed in GROSSPAY. Decimal
places are rounded off (probably to two) and the total size
of the product is checked to make sure it doesn't exceed the
size of the GROSSPAY field. If it does, the program goes
to an error routine.

132 Computer Programming Languages in Practice

DIVIDE A INTO B.
The value of A is the divisor, Β is the dividend, and the
result (quotient) is placed in B.

DIVIDE A INTO Β GIVING C.
A is divided into Β but the quotient is placed in C, leaving Β
unchanged.

DIVIDE A BY Β GIVING C.
In this case, Β is the divisor, A the dividend, and C receives
the quotient. Neither A or Β are changed.

DIVIDE TOTAL-SALES BY NMSLMN GIVING
AVGSALES ROUNDED.
The total sales of the company are divided by the number of
salesmen employed, giving the average amount sold per
salesman. If the remainder was significant, which it would
not be in this case, the REMAINDER phrase could follow
the word ROUNDED in the form: REMAINDER
SALES-LEFT. This says that the value remaining is to be
named SALES-LEFT.

The COMPUTE Statement

This is the most powerful arithmetic statement and is used when
complex arithmetic must be done. Many programmers would
prefer the COMPUTE statement because it allows the operations
to be condensed into one statement rather than written out as
individual statements. Of course, this makes the coding somewhat
harder to read and understand.

Two phrases are available for use in the COMPUTE statement:
ROUNDED and ON SIZE ERROR. The GIVING phrase is not
available because it is not needed. This is illustrated in the snytax
diagram, which is shown in Fig. 4.9. Notice that the results of the
COMPUTE statement are placed in the data item, whose name
immediately follows the verb COMPUTE. Thus, the variable is
already named and the GIVING phrase has no application.

Next, we'll examine the body of the COMPUTE statement. The
operator symbols and the data items named are combined to form
an expression, and the COMPUTE statement causes the express-
ion to be evaluated and the result produced. Any valid data name
may be used, and the five operators mentioned earlier (- , + , *, /,
and **) cause specific arithmetic functions to be performed.
Parentheses may also be used to enclose data items and operators

COBOL—Common Business Oriented Language 133

THE ACCEPT AND DISPLAY STATEMENTS

The display screen and keyboard are used very often to provide
data to the computer and for the computer to provide information
and instructions to the operator. Although the computer terminal
is now the most common input-output device for interaction
between the computer and operator, older installations may still
use a card reader for operator inputs and a printer to provide
messages from the computer to the operator. For low-volume
inputs and outputs, the ACCEPT statement is intended to acquire
the input and the DISPLAY statement to provide the output.
High-volume devices are usually handled by the READ and
WRITE statements.

Syntax diagrams in Fig. 4.10 show the formats of the ACCEPT
and DISPLAY statements, and it is clear that they are very
similar. The identifier portion is one of those data items defined in
the data division and, of course, the literal is the actual
information to be displayed.

that must be treated as a unit. And parentheses within parentheses
are permitted.

Because the COMPUTE statement evaluates expressions very
much like BASIC and Pascal, we've provided only two examples
of COBOL COMPUTE statements. Readers interested in how to
write expressions for evaluation should refer to Chapter 1 where
the general rules that apply to all three major languages appear.

One rule that might be overlooked is worth mentioning here.
Unlike some languages, COBOL operator symbols must have at
least one space before and after each operator.

Now to the examples of the COMPUTE statement. Since these
statements are fairly long and complex, we've followed the
common style of writing the basic statement on one line and then
indenting the expression itself by four spaces on the following line.
Examples are:

COMPUTE FINAL-GRADE-AVG ROUNDED =
(MATH-GRD + ENG-GRD + PE-GRD + TYP-

ING-GRD) / NUM-COURSES.
COMPUTE TRIANGLE-AREA =

BASE * HEIGHT / 2.

134 Computer Programming Languages in Practice

ACCEPT identifier [FROM mnemonic-name]

' D A T E "
ACCEPT identifier FROM - DAY

TIME

{;sr1} [: :sr2] ^
Fig. 4.10 The ACCEPT and DISPLAY statements

Often, a DISPLAY statement gives instructions to the operator
and an ACCEPT statement acquires the material that the operator
provides. For example:

DISPLAY 'ENTER EMPLOYEE NAME'
ACCEPT EMPLOYEE-NAME.

In this case, the DISPLAY statement provides a literal, the
instruction ENTER EMPLOYEE NAME. The operator types in
a specific name and the ACCEPT statement takes it, assigning it to
the date item entitled EMPLOYEE-NAME. If a DISPLAY
statement was now given: DISPLAY EMPLOYEE-NAME., the
name that the operator just typed in would be returned to the
screen and displayed.

To summarize: The ACCEPT statement takes an input and
assigns it to a named data item: the DISPLAY statement may
show either a literal (the actual words or numbers given in a
statement) or the current contents of a named data item.

THE MOVE STATEMENT

The purpose of this statement is very easy to understand; it places
information in a specific data item. When we use the term
information in this case, it means either a literal or the contents of
a data item.

Simplicity of the MOVE statement construction is shown in the
syntax diagram in Fig. 4.11. If a literal is to be placed in a specific
field, that literal is provided in the MOVE statement itself. On the
other hand, if the contents of a data item is to be moved, the name
of that item appears in the statement.

The data item into which information is to be placed is called the
receiving field. More than one receiving field may be named in a

COBOL—Common Business Oriented Language 135

MOVE Α βθ η ΐ ι ί ι θ Μ
 L το identifier-2 [, identifJer-3] . . .

Fig. 4.11 The MOVE statement

MOVE statement. Logically then, the data item from which
information is being taken is called the sending field. After the
statement is executed the sending field is unchanged but previous
contents of the receiving field have been replaced.

A feature called the CORRESPONDING (or CORR) phrase
makes it possible to move several data items with only one MOVE
statement. Although it takes the same amount of time within the
computer, it does make the coding simpler. CORRESPONDING
means that there is a group of sending fields that have the same
names as the receiving fields. The sending and receiving fields are
in different records. Thus, the CORRESPONDING phrase gives
the record names, and the fields with the same names are
automatically moved.

Branches, Conditions, and Loops

COBOL has a family of statements that test conditions, take
branches, and cause loops to be performed. Many of them will be
familiar to readers who have completed the BASIC chapter.
Included in the statements we'll cover in this section are:

GO TO . . . and GO TO
. . . DEPENDING ON . . .

IF . . . ELSE . . .
PERFORM . . .
PERFORM . . . THRU . . .

PERFORM . . . THRU . . .
TIMES
PERFORM . . . THRU . . .
UNTIL . . .

After first discussing the relational and logical operators, we'll
divide this section into three parts, covering first the IF statement,
then the GO TO statement, and finally, since it has the most
complex construction, the PERFORM statement.

MOVE
Γ CORRESPONDING

1 CORR } identifier-1 TO identifier-2

136 Computer Programming Languages in Practice

Relational Operators

As in arithmetic operators, COBOL offers the choice between
words and symbols for the relational operators. Six relationships
can be tested: equal, not equal, greater than, less than, not greater
than, and not less than. While BASIC required the programmer to
state the relationship in symbols, COBOL provides both the
symbols and the words that may be substituted for the symbols, as
follows:

Word Form Symbol Form
IS GREATER THAN >
IS NOT GREATER THAN NOT >
IS LESS THAN <
IS NOT LESS THAN NOT <
IS EQUAL TO
IS NOT EQUAL TO NOT =

The word IS may or may not be used, depending on the
programmer's preference. It does make a sentence somewhat
easier to read, however.

Logical Operators

AND, OR, and NOT were applied in BASIC, where they're
called logical operators. These same three operators are available
in COBOL, but here AND and OR are also referred to as 'logical
connectors.' Of course they serve the same purpose as in other
languages: to establish complex relationships to be evaluated.
Let's examine two examples of statements using the logical
connectors. The first is:

IF ITEM STOCK IS LESS THAN
25 AND DELIVERY-TIME
IS GREATER THAN 14 PER-
FORM ORDER-NOW.

Here is a case where an inventory is being checked for items that
must be reordered. When the number on hand is less than
twenty-five AND the delivery time is greater than fourteen weeks,
the item is to be reordered. Notice how useful the logical
connector is in combining conditions to be tested.

COBOL—Common Business Oriented Language 137

The IF Statement

We've seen the IF statement before. If a certain condition exists,
take a certain action; if it does not, do something else. The logic of
the IF statement is very clear, and the statement itself is easy to
use, but coding it so that it is readable and fitting it in to the overall
program logic require study.

A first step is to examine the syntax diagram in Fig. 4.12 to
acquire a good understanding of the statement's construction. Of
course, the statement begins with the reserved word IF. Next
comes the condition to be tested. Following the condition is the
statement to be performed if the condition exists, or is 'true.' Note

GO TO [procedure-name-1]

GO TO procedure-name-1 [, procedure-name-2] . . . , procedure-name-n

DEPENDING ON identifier

f statement-1 "I (; ELSE statement-2 \

lh condition, N E XT SENTENCE Γ \ ; ELSE NEXT SENTENCE J

PERFORM procedure-name-1 ^ j p ^
U GH

 J- procedure-name-2 J

PERFORM procedure-name-1 ĝUGH
 J procedure-name-2 J ĵ ?r?i'

1}- TIMES

PERFORM procedure-name-1 ™ p °
U GH

 J- procedure-name-2 J UNTIL condition-1

PERFORM procedure-name-1 THFuf^J" procedure-name-2 J
{ Ν Γ identifier-3 Ί

identities ι F R QM j j n d e x_ n a m e_ 2 L
index-name-lj |̂ | J t e r aM J

[C c ^ Γ identifier-6
AFTER -I ,d*nt, f ,er-5 V F R O M - index-name-4 -

\ index-name-3/ ^ | j t e r a, . 3

f identifier-zl UNTIL condition-2
— literal-4 J

[f ·-. . < · ο ^ Γ identifier-9
AFTER- I

 , d
r " "

e r
"

8
 X F R O M - index-name* I

1 mdex-name-5/ ^ | | (e r a |.5 J

BV{̂ ,0}̂ «-™]]
Fig. 4.12 Statements that perform branches and loops

138 Computer Programming Languages in Practice

that the NEXT SENTENCE phrase may be used here. This means
that the next sentence in sequence is to be performed if the stated
condition is true.

In the second portion of the sentence, we reach the alternative:
What to do if the condition does not exist (is 'false'). The ELSE
phrase specifies the alternative action to be taken, and this may
range from simple to very complex.

An IF statement may be written without the ELSE alternative
under certain circumstances. Assume that the next statement in
sequence is to be executed when the condition given in the IF
statement proves to be false. The syntax diagram implies that the
ELSE clause and the words NEXT SENTENCE or a statement
number must be given, but that's not true in many systems. The
program will automatically go to the next statement if the
conditions set out in the IF statement are not met.

The GO TO Statement

Another in the group of statements that cause branches is the GO
TO statement. Note that it is two separate words, not run together
as in BASIC. GO is a reserved word, as is TO.

Whenever the GO TO statement is given, the program stops
executing statements in sequence and starts at the procedure
specified by the GO TO statements. The syntax diagram for the
GO TO statement is also shown in Fig. 4.12.

Given in its simplest form, the GO TO statement is punctuated
as a complete sentence and is unconditional. It may, however, be
preceded by an IF statement and thus be made conditional. IF A
> Β GO TO BAL-TOTALS. is an example of such a case.

There is also a phrase DEPENDING ON that may be added to
the GO TO statement to establish limited conditions. When
written with the DEPENDING ON phrase, the GO TO statement
evaluates the contents of the data item whose name follows the
words DEPENDING ON. Evaluation is more limited than the
syntax diagrams may imply, however. The data item is checked for
a number and that number selects one of the several procedure
names that appears in the body of the GO TO statement. If, for
example, four procedure names were given, a 1 in the data item
would choose the first procedure, a 2 the second, a 3 the third, and a
4 the fourth. If the data item holds anything other than a number to
select one of the procedure names provided, no branch takes place
and the program simply continues in sequence.

COBOL—Common Business Oriented Language 139

The PERFORM Statement

Perhaps the most powerful statement in COBOL is PERFORM,
for it selects the names of procedures to be executed. After the
procedure named by the PERFORM statement is completed, the
program returns to the step following where the PERFORM
statement appeared and resumes executing instructions in sequ-
ence.

The PERFORM statement has several forms, which are shown
in Fig. 4.12. We'll begin with the simplest format and work toward
the most complex.

PERFORM procedure-name, is easy enough to understand.
This statement causes the specified procedure to be executed.
When it is finished, the program resumes with the sentence
following this PERFORM statement. Of course, conditions can be
established in the form IF condition PERFORM procedure-name.

Next in complexity is the form that uses the reserved word
THROUGH or THRU to select a series of procedures to be
executed. It is no different in execution; it simply specifies two or
more procedures that are to be executed rather than one. And
conditions may be set by the IF just as all PERFORM statements
may be made conditional.

So far, we've seen that the PERFORM statement can cause one
procedure or a series of procedures to be executed, and that
execution of the PERFORM statement can be made conditional
by preceding it by IF. Next, we'll add a word at the end of the
PERFORM statement that causes execution of procedure to
continue until a certain condition occurs. That word is UNTIL.

The reserved word UNTIL causes a condition to be tested in a
manner similar to that of the IF statement. UNTIL A IS
GREATER THAN B, or UNTIL BAL-DUE IS LESS THAN 10
are examples. Only when the specified condition is true does the
program return to the sentence following the PERFORM state-
ment.

Another variation of the PERFORM statement establishes in
advance the number of times the selected procedures are to be
performed. This is accomplished by using the reserved word
TIMES rather than UNTIL. PERFORM procedure-name TIMES
is the form this variation takes. As shown in the syntax diagram,
the number may be an integer (a literal known in advance, such as
5 TIMES) or the value of a named data item. Suppose, for
example, there were a varying number of cars sold and this

140 Computer Programming Languages in Practice

STATEMENTS THAT USE FILES

COBOL has a group of four statements that handle files. READ,
WRITE, OPEN and CLOSE are the verbs used, and although
these are supplemented by other reserved words, these statements
are also easy to learn and use.

Describing a File to COBOL

COBOL requires that data items be introduced in the data
division, and files, too, must be defined and described before the
procedure division can use them. This is done in both the
environment division and the data division. Let's review the
material that must be provided in the environment division.

procedure had to be performed once for each car. CARS-SOLD
could be the name of the data item. If seven cars were sold, the
procedure would be performed seven times and, likewise, if forty
were sold, it would be performed forty times.

Next we move on to even more complex versions of the
PERFORM statement. Often, it is necessary to execute the same
procedure over and over but operate on different data. If, for
example, we had a list of data and had to process every element in
that list in exactly the same way, there would have to be some way
to change the identification of the element each time a procedure
was executed. The PERFORM statement has the ability to do this.
The form is generally called PERFORM VARYING.

The most important word to be added is VARYING, which is
followed by the name of the data item or index that is to be
changed each time the procedure is executed. Next comes the
starting value of the item to be changed. Perhaps it starts at one,
but this can be specified in the PERFORM statement. (So far we
have PERFORM procedure VARYING X FROM starting point.)
Next comes the amount by which the X is to be changed, and
logically this is preceded by the reserved word BY. Last in the
chain is a definition of how long the process is to continue. Again,
the word UNTIL is used to set the limit, and a condition that ends
the process is given. We'll discuss the PERFORM VARYING
statement further when we reach the section dealing with tables
and lists.

COBOL—Common Business Oriented Language 141

One major part of the environment division is the INPUT-
OUTPUT SECTION. Included in this section is the FILE-
CONTROL paragraph, which is the place where file names are
first given.

The file name is preceded by the word SELECT and followed by
an ASSIGN clause. One SELECT entry is provided for each file
used, so if there are ten files, there are ten SELECT entries.

The purpose of the FILE-CONTROL paragraph is to match the
characteristics of the file to the equipment and, in some cases, to
inform the operating system of file characteristics. One file, for
example, may be assigned to a tape unit, another to a card
machine, another to a printer, and a fourth to a disk. Each has
certain characteristics that dictate the choice of equipment and
method of file access and handling.

Next the file must be named and described in the data division
so that the file name, record name, and fields that make up each
record will have been identified for use by the procedure division.
A part of the data division called the FILE SECTION is where the
file description is given. Each file is described in its own paragraph
identified by FD (file description). FD is followed by the file name
and a description of the records in the file. From this point on, the
procedure division can use the files freely. Therefore, the rest of
this section is devoted to a discussion of how the READ, WRITE,
OPEN, and CLOSE statements are used.

Fundamentals of the File Handling Statements

Rules for using the four file handling statements should be easy to
remember:

• A file must be opened before its contents may be used.
• A READ statement acquires one record at a time from the

file.
• A WRITE statement places one record at a time in the file.
• A file must be closed before the program using that file is

ended.

Syntax diagrams for the four basic statements used with files are
rather complicated because all possible variations are included.
We can reduce these statements to the simple form shown below.

142 Computer Programming Languages in Practice

INPUT
OPEN OUTPUT file-name.

I-O
CLOSE file-name.
READ file-name AT END imperative
statement
WRITE record-name.

The OPEN verb must be followed by a word to indicate the
direction of data transfer between the computer and the file.
INPUT means input to the computer from the file, which is a read
operation. OUTPUT means an output from the computer to the
file, which is a write operation. Finally, I-O means that both
reading (I) and writing (O) may be done in the file by this
program. Concluding the OPEN statement is the name of the file
to which this statement applies; this is the same name provided in
the environment and data divisions.

Actually, one OPEN statement may select files. It can be
written:

OPEN INPUT file-name, file-name . . .
OPEN I-O file-name, file-name . . .
OPEN OUTPUT file-name,
file-name, INPUT file-name.

This form is very convenient if a series of files is to be opened
simultaneously. The programmer should keep the statements
simple for easy reading, however.

CLOSE is used in a similar way. The verb CLOSE is followed
by the name of the file to which it applies. It, too, may give several
file names in one statement, in the form:

CLOSE file-name, file-name . . .

The simplest forms of READ and WRITE each deal with one
record, the next record position in the file. We'll see later that
variations of these statements can select specific records, but it is
necessary to understand the fundamental operation first.

Recall that part of the file description in the data division gave a
file-name and the name of the data records in that file. This
relationship need not be repeated in the READ and WRITE
statements. If, therefore, a READ statement appears in the form:
READ file-name, the computer already knows what the record
name is. On the other hand, a WRITE statement can be prepared

COBOL—Common Business Oriented Language 143

in the form: WRITE record-name, and the computer knows the
name of the file in which the record is to be placed.

The format of the WRITE statement is very simple: WRITE
record-name. On the other hand, the READ statement allows an
addition. That is the AT END clause, which describes the action
to be taken when the end of the file is reached.

Often, the programmer does not know how many records are in
a file that must be read and processed. Thus, he cannot determine
in advance how many records must be read. The AT END clause,
which is available in nearly all languages, although the words
differ, allows the read operation to continue until a mark
designating the end of file is encountered. At EOF, the statement
following the AT END clause is executed. This leads to a part of
the program that finishes the processing as the programmer sees
fit.

At this point we must divide our discussion into sections dealing
with the various types of devices. The characteristics of a printer
differ so much from those of a diskette file that, of course, the
statements using them must be very different in construction.

Printer Files—Printing a Line

Some languages provide a statement called PRINT in addition to a
WRITE statement. This allows the printing operation to be clearly
distinguished from the recording operation and simplifies the
syntax diagrams for the respective statements. COBOL uses the
WRITE statement to print, however, and the statement construc-
tion is fairly complex.

Let's begin with the basic steps involved in getting one line
printed. Step one is to review where the material we want to print
is located. It is organized into lines by entries in the WORKING-
STORAGE SECTION. Perhaps one line is called CURRENT-
ORDER-TOT AL-LN and represents the last line to be printed in
a customer order form.

Step two is to recall that the FILE-SECTION of the data
division describes print records and that the environment division
matched the print file characteristics to the printer available. So,
printing must be done, not from the CURRENT-ORDER-
TOT AL-LN but from whatever name is given to the print record.
For the sake of simplicity, let's say it is called PRINT-RECORD.
Thus, CURRENT-ORDER-TOTAL-LN must be moved to

144 Computer Programming Languages in Practice

PRINT-RECORD before the WRITE statement is given to print
it.

The third step then is to move the line to be printed into the
PRINT-RECORD and then print the material. This can be
accomplished in either of two ways. A MOVE statement (MOVE
CURRENT-ORDER-TOTAL-LN to PRINT-RECORD) fol-
lowed by a WRITE statement (WRITE PRINT-RECORD) gets
the job done, but there is a simpler way. That way is to use the
FROM clause in the WRITE statement. For example, a WRITE
statement in the form: WRITE PRINT-RECORD FROM CUS-
TOMER-ORDER-TOTAL-LN accomplishes both the move and
the printing.

The fourth and last step in getting our line printed is to
determine where the information must be shown on the form in
the printer. The vertical position of the line on the page must be
chosen. This is done by more of the phrases and clauses available
in the WRITE statement.

We have three possibilities to examine: BEFORE ADVANC-
ING, ADVANCING, and AFTER ADVANCING. The
BEFORE and AFTER indicate when the movement should take
place with respect to the printing. In English they read: WRITE
line BEFORE ADVANCING and WRITE line^ AFTER
ADVANCING. If the ADVANCING clause appears by itself
(without the before or after), the movement takes place after the
line is printed.

The next thing that must be considered is how many lines to
advance. The ADVANCING clause may be followed by an
indication of how many lines are to be skipped, and the indication
may be given as a literal (7 lines) or by the name of a data item that
holds a number. For example, WRITE line AFTER ADVANC-
ING BLNK-ODR LINES.

A PAGE clause may also be used to control the advance. It
means new page or top of next page. Thus, the PAGE clause
causes the next page to be moved into position for printing. A
statement WRITE line AFTER ADVANCING PAGE would
place the line in the first position of a new page.

Handling Tape Files
The nature of tape is such that all files are of the sequential access
type. This reduces the number of optional phrases and clauses that
may be used with the file handling statements.

COBOL—Common Business Oriented Language 145

The four basic statements OPEN, CLOSE, READ, and
WRITE are available for use with tape files. As usual, the
characteristics of the file are established in the environment and
data divisions.

A file is made accessible to the program when an OPEN
statement is issued. The INPUT, OUTPUT, or I-O words then
determine whether the file will be read, written, or both. And, of
course, more than one file may be opened by one statement.

The OPEN statement also handles the tape header label, if one
is to be used, according to the information provided in the
environment division. A label is either written, if this is a file to be
created, or read if this is an existing file that is to be located.

After the desired tape file is located, the program may either
read its previous contents, create a new file of data, or both read
data from an existing file and add to it. Each READ statement
acquires one record or a group of records that have been blocked.

Since the name of the data records in the file was given in the
data division, the program places the record it read in the area
bearing the name of the data record. This is not the only
arrangement possible, however. The programmer may use the
word INTO to select a different place for the record he reads.
READ file-name RECORD INTO data-name is the form in which
this would appear. Now, the record just read is placed in the data
item whose name follows INTO.

Tape files have the end of file mark we discussed earlier. So, the
READ statement may include the AT END clause, which is
followed by a statement of what action is to be taken when the end
of the file is reached.

Next, the entry of information into a tape file must be
considered. This is done by the WRITE statement. Writing takes
place one record at a time or in blocks, if a blocking feature has
been specified.

If the programmer wishes, he may use a WRITE statement with
the FROM clause to simplify the operation. WRITE record-name
FROM date-name is the form this takes. Of course, the statement
may also be used in the form WRITE record-name but in this case
the data to be written must have been moved into the record-name
area before the WRITE statement is issued. This step can be
skipped if the FROM clause is used, the data being provided
directly from the data-name area.

After work with the file is finished, it is closed because there are
several things that must be done to it by the system. If, for

146 Computer Programming Languages in Practice

Indexed Access Files

In sequential disk files, the READ and WRITE statements deal
with the records in sequential order. In keyed (indexed) files,
however, the READ statement provides the key of the record it
wants to read. That specific record is then found and read. On the
other hand, the WRITE statement provides the key as part of the

example, a new file was created, the end of file mark and whatever
trailer label is needed must be written. On the other hand, a file
that was only read by a program is normally rewound to the load
point when work is finished. The CLOSE statement does all these
things automatically. However, the programmer does have some
options. A NO REWIND clause may be given, and a LOCK
clause is available. The LOCK does not involve anything physical;
it simply prevents this file from being opened again during
execution of the current program.

Disk and Diskette Files

By their physical nature, disks and diskettes make it easy to gain
access to data. Tape units must move all the tape preceding the
desired record past the read/write head in order to reach a specific
record. Disks can move the head, however. This allows access to
data without having to pass by everything that has come before.

Most operating systems include a program to manage the
storage space on disks and diskettes. It's important that the space
be used to the maximum extent possible because it is fairly
expensive. In addition, the space must be managed so as to keep
access time to the minimum.

This combination of the disk and the storage space manager is
usually designed to provide three types of access to records in a
file: sequential, direct (or relative), and indexed. We described the
access methods in Chapter 2.

COBOL statements can handle files providing any of these
access methods. Although the statements used are the same four
(OPEN, CLOSE, READ, WRITE) as we discussed earlier for
tape and printer files, they are supplemented by additional clauses
for disk access. In addition, three more statements are provided
for the indexed access mode.

COBOL—Common Business Oriented Language 147

Relative Access Files

Very little mention of relative access has been made up to now. It's
essentially a simple technique. Records are numbered according to
the sequence in which they are written. The storage manager

record to be written and the storage manager places the record in
the file in order by the value of its key.

Both the READ and WRITE statements provide an INVALID
KEY clause, which is followed by the action to be taken if the key
is invalid. In reading, the key is invalid if no record with such a key
can be located. In writing, the key is invalid if it is not within the
range specified when the file was established or duplicates a key
already present.

Now to the DELETE and REWRITE statements, which
supplement READ and WRITE. Both operate with indexed files,
the objective being to edit the files as data changes. DELETE
deals with a specific record, either the record just read or the
record whose key is provided, depending upon the mode of file
access being used.

REWRITE is used to revise the contents of a specific record.
Again the access mode has an effect on how the REWRITE
statement works. Either the record just read or the record whose
key is given is replaced with new information.

Twice in the previous two paragraphs we've mentioned access
mode for indexed files without explaining it further. That was a
deliberate omission. Indexed files can also be used in a sequential
access mode. If they are, a READ statement takes the next record
rather than specifying a key.

A START statement is required to establish the beginning
position in an indexed file from which sequential reading is to be
done. Two basic forms are available. If only the START file-name
form is used, access begins at whatever value is now held by the
variable named as the record key.

The second form of the START statement provides the key to
be used in locating the starting point. This is done by giving the
name of the variable in which the key value can be found.

It should be noted that no actual data exchange with the file
takes place as a result of the START statement. A READ
statement is required to acquire a record, then a DELETE or
REWRITE statement may be issued to remove or modify that

148 Computer Programming Languages in Practice

STATEMENTS THAT HANDLE TABLES

Whether you call them lists, tables, arrays, or matrices, the subject
is basically the same: a collection of data items arranged in order.
Let's begin with a list of seven items and organize it using COBOL
methods.

The subject is a list of SALESMEN. In the list will appear the
names of the seven salesmen on the staff of a small company. This
list, or 'table,' is defined in the WORKING-STORAGE SEC-
TION of the data division in the following manner:

01 SALESMEN.
05 SLSMAN-NAME OCCURS 7 TIMES PICTURE X(20).

This statement establishes a table named SALESMEN and says
that the data items in it are called SLSMAN-NAME. The
OCCURS clause is the way COBOL sets the table size; in this
case, there are seven data items, all called SLSMAN-NAME, in
the table. The first is SLSMAN-NAME (1), the second SLSMAN-
NAME (2), etc.

By now, use of the PICTURE clause should be familiar to most
readers. Here, the PICTURE clause says that each SLSMAN-
NAME may hold alphanumeric data and be twenty characters long.

After the OCCURS clause is given, a table framework is
established but it does not have any data in it. Our SALESMEN
table, for example, has no names in any of its seven positions.
We'll see how data is loaded into a table later.

Thus, it is the OCCURS clause that the programmer must use to

program maintains a list of the locations in which records are
placed. Records can thus be read in sequence or randomly. A
record number must be provided, and it is treated like a key in the
indexed files we've discussed.

The organization of the file and method of access are defined in
the environment division. Some systems describe the record
number to be given as NOMINAL KEY or RELATIVE KEY in
that it differs somewhat from the 'real' key used in indexed files.
The key is then given a name and a description in the data division.
From that point on, the programmer may use the form of the
READ statement in which he provides a key, the key being the
name of a data item that holds a record number.

COBOL—Common Business Oriented Language 149

establish the dimensions of a table. The SALESMEN table is a
one-dimension table; each element in it can therefore be disting-
uished from the others by the addition of a single number in the
form of subscripts: (1), (2), (3), (4), (5), (6), and (7). Subscripts
may be words, numbers, or even simple arithmetic expressions.

For the moment, however, we'll stick to numbers. If then, a
programmer wishes to use the contents of a specific location in our
SALESMEN table, he can select the location by giving the name
of the data item, SLSMAN-NAME and its subscript. SLSMAN-
NAME (6), for example, gains access to the contents of the sixth
location. The contents can then be used, or new information can
be stored.

Up to this point, most readers who have completed the BASIC
chapter should recognize the similarities between BASIC and
COBOL tables. The principles are that a table with certain
dimensions is named and its framework established; elements
within the table are then individually identified by a subscript.
And, of course, the fact that a table must be loaded with data even
though its framework is in place is common to the three languages.

COBOL allows tables to have one, two, or three dimensions.
Each dimension is set by an OCCURS clause. Each element in the
table is set to the same size, however, by a common PICTURE
clause that follows the last OCCURS clause.

The next idea is not easy to grasp: Each use of the OCCURS
clause to define a dimension of a table provides a different name
for each level. Let's use an example of a table in which a large
company is keeping track of its inventory of TV receivers, ranging
all the way from the total held by the company down to those held
in a dealer's stock. Three OCCURS clauses might set up a table in
the following manner:

01 TV-RCVR-INV.
03 REGION-STK OCCURS 12 TIMES.

05 DISTRBTR-STK OCCURS 10 TIMES.
07 DLRS-STK OCCURS 10 TIMES.

PICTURE 9(6).

The basic element in this table is a six-position number. Thus, up
to 999,999 TV receivers can be accounted for in each element.
There are twelve regions, which are designated REGION-STK
(1), REGION-STK (2), etc. Each of those data items will, when
the table is filled, hold the number of TV receivers in stock in that
region.

150 Computer Programming Languages in Practice

Loading Data into Tables

Data to be placed into a table may be provided in the data division
of the program in which the table is used, and the table may also
be filled as a result of program calculations or the reading of
external data. Soon we'll examine tables whose contents are
provided by entries in the data division of the program in which
they are used. While this method may be employed in some cases,
it is not practical for large tables, nor is it practical where data in
the table changes often. The program has to be recompiled in
order to change data in the table.

A more common method of placing data into a table is to load it
from an external source. This means that the data is available from
a file. The program containing the table must acquire the data
from the file and place it in the table before using the contents of
the table. Of course, this allows the table to be updated with new
data easily.

When a table must be loaded from an external source, its
framework is set up in the data division by OCCURS clauses in the
normal manner. The procedure division, however, includes a table
loading routine.

Within each region, there may be as many as ten distributors,
and each is designated DISTRBTR-STK (1), DISTRBTR-STK
(2) etc. When the table is filled, each of these locations will hold
the number of TV receivers available at the respective distributor.

Last, each distributor has up to ten dealers that he supplies,
designated as DLRS-STK (1), DLRS-STK (2), etc. Of course, the
number of TV receivers held by each dealer is placed in the proper
position.

Note that this table has a great many locations: Twelve regions
times ten distributors is 120, and each distributor may have up to
ten dealers, for a total of 1,200 locations, or elements.

Next to be discussed is how an element at the second or third
levels, or dimensions, is chosen. This must be done by stating that
they are part of a larger group. Suppose, for example, we wished
to gain access in the fourth dealer in the second distributor's chain
in the tenth region. We would specify it this way: DLRS-STK (10,
2, 4). The 10 chooses the tenth region, the 2 chooses the second
distributor in that region, and finally, the 4 chooses the fourth
dealer in that distributor's chain.

COBOL—Common Business Oriented Language 151

03 FILLER PIC X(20) VALUE 'TWEILLER C.H.'

Next, the information must be placed in a table framework with an
OCCURS clause, but it requires something to connect the values
given above to the framework. That something is the REDE-
FINES clause, and it is used in the following manner:

01 SALESMEN-TABLE REDEFINES SALESMAN-NAME-
LIST.

05 SLSMAN-NAME OCCURS 7 TIMES PICTURE
X(20).

Now the SALESMEN-TABLE is filled with the seven names
provided. If the reference SLSMAN-NAME (2) is used to select
an item to be printed or displayed it brings forth 'SMITH B.M.'

The INDEXED BY Clause

So far we've seen only cases in which the programmer must write
out the subscript needed to select a specific element in a table.
There are times, however, in which a table is to be handled one
element after another in sequence. Therefore, there must be a
simple way of producing a series of numbers that select the
elements in sequence. That method is to use the INDEXED BY
clause.

When a table framework is set up by an OCCURS clause (or a
series of OCCURS clauses), an INDEXED BY clause may be
added to each OCCURS clause. This is done in the form:

Now let's discuss how data for tables can be provided in the data
division. We'll go back a bit to our table named SALESMEN in
which the names of seven salesmen were to be placed in a list. We
used an OCCURS clause to establish the framework of a table but
never did fill in the names.

Beginning with a clean slate, we'll assume that the OCCURS
clause has never been given and that we simply want to give a list
of the actual names for the salesmen. This is done in the form:

01 SALESMAN-NAME-LIST
03 FILLER PIC X(20) VALUE 'BROWN A.J.'
03 FILLER PIC X(20) VALUE 'SMITH B.M.'

152 Computer Programming Languages in Practice

The SET Statement

The SET statement controls the value of the pointer. It can
establish the contents of the index and cause it to count up or down
by any value.

By itself, the SET statement is of no use; it simply sets the
pointer, and other statements must use the pointer contents to
select an element to operate on. One of these statements is the
SEARCH statement, which is discussed next.

The SEARCH Statement

One very useful task that a computer can perform is to look up
data. If we use an unknown catalogue number (named CAT-
NUMBER-IN), the computer can compare it against all the
catalogue numbers in a table, and, when it finds a match, extract
the descriptive information from the table for display, printing, or
recording. The SEARCH statement performs this operation.

It first names the table to be searched, and a WHEN phrase
establishes the search conditions. The name of the unknown data
item follows WHEN. Finally, the portion of the table with which
the unknown is to be compared is given, perhaps CATALOGUE
NUMBER in our case. So the WHEN phrase would read: WHEN
CAT-NUMBER-IN = CATALOGUE NUMBER (index-name)
Statement.

The value of the index, which sets the starting point of the
search, is increased by one time the unknown fails to match a
catalogue number in the table. Thus, the SEARCH statement
steps its way through the table, examining all entries automati-
cally.

When a match is found, the statement following the WHEN
phrase is executed and the search is concluded. If the end of the
table is reached before a match is found, the statement following

SLSMAN-NAME OCCURS 7 TIMES
INDEXED BY index-name.

This establishes a pointer, the name given in 'index-name,' that
can be set and stepped up or down to select one element after
another in the table.

COBOL—Common Business Oriented Language 153

1. A SET statement establishes the index value first.
2. SEARCH automatically steps through the table.
3. SEARCH compares items named in the WHEN phrase,

seeking a certain condition.
4. When the condition is found, the statement following the

WHEN phrase is performed.
5. If the condition is not found, the statement following the AT

END phrase is performed.

The SEARCH ALL Statement

It should have occurred to some readers that searching a large
table may take a long time even for a computer. It does if the
program starts searching from the first entry and examines every
entry. There is a more efficient way, but the table to be searched
must be in sequence by some identifier, which is called the 'key.'
In our example of the catalogue number table it would be easy to
select the catalogue number as the key and place the items in order
by the value of the catalogue number.

After a table is made sequential by key, in either ascending or
descending order, the SEARCH ALL statement can be used. It
performs what is called a 'binary search.' The SET statement is not
required because the SEARCH ALL statement establishes its own
index, starting at the middle of the table. It checks the value of the
middle entry with respect to the value of the unknown item.
Obviously then, the SEARCH ALL statement can determine
whether the unknown item is within the upper half or the lower
half of the table. Again, the SEARCH ALL statement divides the
table, going this time to the middle of the remaining half. After
repeatedly halving the table, the SEARCH ALL statement either
finds the matching entry or determines that it is not present. The
statement following the WHEN phrase or the AT END clause is
then performed, depending of course on the SEARCH results.

an AT END phrase is executed. It would take whatever action the
programmer chose to take when a matching catalogue number
could not be found, perhaps displaying a message 'INVALID
CATALOGUE NUMBER' to an operator.

To summarize the SEARCH statement:

154 Computer Programming Languages in Practice

The PERFORM VARYING Statement

While the SEARCH statement is obviously a very useful tool, it is
limited in what it does. This makes it desirable to have a more
versatile statement to process tables, and that is the PERFORM
VARYING statement.

The basic function of the PERFORM statement was discussed
earlier. To review: The PERFORM statement gives the names of
procedures that are to be executed for a specific number of times,
or until a certain condition exists. When the word VARYING is
added, the PERFORM statement can be made to apply to a
sequence of elements in tables.

Fig. 4.12 (see page 137) shows the syntax of the PERFORM
VARYING statement. Let's examine it. The first line gives the
name of the procedure or procedures to be performed, and the
next two lines give the name of a data item whose value will be
controlled. In the case of tables being processed by the PER-
FORM VARYING statement, this data item is the name of one of
the levels in the table. FROM sets the starting value of the
subscript, and BY determines the increment value, which would
normally be one. This sequence is ended when the condition given
by UNTIL is present. To summarize: The procedures are
performed on every element in the table selected by the named
level and its subscript. The subscript beginning value is set, and it
is then stepped by the value specified each time the procedure (or
procedures) is performed.

Notice that there are two more sections that are optional in the
PERFORM VARYING statement. These allow the statement to
handle two- and three-dimension tables, naming the second and
third levels and varying subscripts just as it does for a one-
dimension table.

We need not assume that all elements in a table are processed in
sequence. The subscripts can be set to any starting value and
ending conditions established. Thus it is possible to choose one
small area of a complex table and work only with it.

THE SORT STATEMENT

Sorting means to examine a collection of data and to place it in
order. The SORT Statement, which does this, is a very powerful

COBOL—Common Business Oriented Language 155

STATEMENTS THAT PROCESS CHARACTER
STRINGS

We'll begin this section by refreshing our definition of character
strings. 'J. L. SMITH' is a character string, as are '9N4W744' and
'ERROR 101.' Although character strings may contain numbers,
these numbers are not intended to be used in arithmetic. Most
programming languages provide statements and operators that
allow a programmer to combine strings, separate strings, and edit
strings. In COBOL, these statements, which we'll cover in this
section, are:

INSPECT . . . REPLACING . . .
INSPECT . . . TALLYING . . .

tool. When this statement is given, a file chosen by the
programmer is reorganized to produce a new file.

Of course, the programmer must provide the criterion for
sorting. Is it employee number in ascending order or is it salary in
descending order? Perhaps there is more than one criterion. Once
employees are sorted into order by their work unit number, they
are then to be ranked by employee number or salary. The criterion
is called a 'key,' and there may be more than one key given in the
SORT statement.

Now it's time to examine the syntax of the SORT statement.
SORT is immediately followed by the name of a temporary file,
one in which the sorted data will be accumulated. Next in the
SORT statement, the programmer names the key or keys that are
to be used as a basis for the sorting. The first key is the major key;
it establishes the overall sorting scheme. The second key (and
subsequent keys) are minor keys; they determine how data is
further sorted.

USING appears next, and it is followed by the name of the raw
data file, the input file. The word GIVING names the finished file,
the output file. All files are opened, closed, read, and written
automatically by the SORT statement. The programmer does not
have to provide separate statements for these functions.

Everything about the SORT statement seems simple, but there
is a complication as to the type of files that can be sorted: They
must be sequential. If this is not stated in the environment division,
the SORT statement assumes it to be true.

156 Computer Programming Languages in Practice

The STRING and UNSTRING Statements

The purpose of a STRING statement is to join two or more strings
together. This is often necessary to form messages for printing or
display, as mentioned above.

The first section of a STRING statement gives the name of the
strings that are to be joined. A literal may also be joined to
another string; it is provided by the STRING statement itself. The

STRING . . .
UNSTRING . . .

A few examples of the use of the statements may serve to illustrate
their purpose. Suppose that a standard error message was
available, which reads, 'YOUR ERROR CODE IS NNN.'
However, the error code varies, depending upon the conditions,
and the message must include the correct code for the situation.
Either the INSPECT . . . REPLACING . . . statement or the
STRING statement could be used to compose a message in this
case. The former would replace the 'NNN' with the code given for
these circumstances, and the latter, the STRING statement, would
combine the 'YOUR ERROR CODE IS' with the current error
code for the situation. This would form: 'YOUR ERROR CODE
IS 701.'

The UNSTRUNG statement separates data items that are in a
string. It can take each selected section of the string and assign it to
a specific data item name. If, for example, all the information in a
customer order from a clothing catalogue is in one character
string, the UNSTRING statement can separate them, assigning
one portion to CAT-NMR, another to DESCRIPTION, etc.

Some character strings may be variable in length. Despite the
fact that a PICTURE clause has set the field size, the field may not
be full, and it's sometimes necessary to know the size before acting
on the string for printing or display. The INSPECT . . .
TALLYING . . . statement can determine the size of the
character string.

The four statements in this group permit many added phrases in
a wide variety of combinations. We'll limit ourselves to the basic
principles involved, however. And we'll start the discussion with
the simplest statements.

COBOL—Common Business Oriented Language 157

STATEMENTS THAT USE OTHER PROGRAMS

Now that we've finished our discussion of most statements that go
to make up a COBOL program, we have to consider the possibility
of one COBOL program using another COBOL program. This is
done by two statements: CALL and EXIT.

A third statement we'll also discuss in this section is ENTER.
This statement allows COBOL to go to another program but
provides that the program may be in another language.

last section of the STRING statement names the receiving field in
which the combined string will be formed.

A simple STRING statement would appear: STRING data-
item-1, data-item-2 INTO data-item-3.

UNSTRING is essentially the reverse of STRING. It separates
a string of characters, the name of which follows the verb
'UNSTRING.' In this case, however, we have one sending field
and multiple receiving fields.

The INSPECT Statement

The INSPECT statement examines a specific string, looking for
characters and character combinations defined by the program-
mer. Some COBOL users may find that their system uses the verb
EXAMINE rather than INSPECT; that is an older form of the
statement.

What is to be done after the string has been examined? There
are two basic actions that may be selected. The first is a
TALLYING phrase, which counts the occurrences of the charac-
ter or character combinations specified by the programmer and
records this count in the data item named. The second action is to
replace; it is selected by the REPLACING clause. In this case, the
character or character combinations listed are replaced by others
given in the statement.

An INSPECT . . . TALLYING statement can, for example,
check for specific characters and count the number of occurrences.
Of course, INSPECT . . . REPLACING could change invalid
characters to those that are acceptable.

158 Computer Programming Languages in Practice

The CALL Statement

A part of COBOL called the Interprogram Communication
Module makes it possible for two programs to communicate with
one another. It would certainly be foolish for a programmer to
write a new program if there was one already available that did
exactly what needed to be done. The existing program can be
'called' into operation. It is then executed, and it ends with an
EXIT statement. This returns control to the 'calling' program.

The 'called' program provides a LINKAGE SECTION in its
data division. Here, a description of the data to be shared by the
calling and called programs is given.

A syntax diagram of the CALL statement appears in Fig. 4.13.
Immediately following the word CALL is the name of the program
to be called, or the definition of an entry point. (An ENTRY
clause in the called program is required in the latter case.) The
called program begins execution at the beginning of the procedure
division unless a different entry point has been provided.

C A L L T ; f
n t

i
f i

f
r
-

r
-

^ literal-1 ,

[USING data-name-1 [, data-name-2] . . .]

[; ON OVERFLOW imperative-statement]

ENTER language-name [routine-name] .

EXIT [PROGRAM] .

Fig. 4.13 Statements that use other programs

The USING phrase in the CALL statement gives the names of
the data that is to be passed to the called program. There is also a
USING phrase in the called program. The first data name given by
the calling program is related to the first data name given in the
USING phrase in the called program, the second to the second,
etc. The number of data items in the USING phrases must be the
same, although they do not have to be identical in name.

The called program is then executed. When it encounters the
EXIT statement, it returns control to the calling program.

COBOL—Common Business Oriented Language 159

The EXIT or EXIT PROGRAM Statement

This statement, which may be written simply EXIT, causes the
program to return control to a calling program. It must be the only
statement in its paragraph. For example:

Another use of the EXIT statement is to provide a common
ending point for a series of paragraphs in the procedure division.

The ENTER Statement

This statement, whose construction is very simple, causes COBOL
to go to a mode and program that uses another language. Most
likely this would be the computer's assembler language and it
would be used for debugging programs or operating diagnostic
programs. Return to the COBOL program depends upon how this
feature is implemented, but a statement called ENTER COBOL is
defined in the ANSI Standard. It would follow the last statement
of the other language.

This statement stops the program in progress. As its syntax
diagram in Fig. 4.14 shows, two-versions are possible: (1) STOP
RUN is an unqualified stop and would be used to end a successful
run, and (2) STOP literal provides a code in the literal position and
allows the program to be restarted. The code provided in the
STOP literal version could indicate an error or a successful run,
depending on the programmer's choice.

F499-RETURN. EXIT.
G999-RTN. EXIT PROGRAM.

THE STOP STATEMENT

Fig. 4.14 The STOP statement

160 Computer Programming Languages in Practice

COBOL MODULES AND LEVELS

Each time a programming language is applied to a specific
computer system it is said to have been 'implemented,' and the
implementor has some choice in the complexity level and features
to be offered. COBOL is organized so that the choice may be
simpler than in some of the other languages. In this section we'll
discuss the overall organization and complexity levels established
by the 1974 ANSI Standard.

There are twelve parts defined by this standard, consisting of a
nucleus and eleven modules:

Nucleus Report Writer
Table Handling Segmentation
Sequential Input- Library

Output
Relative Input- Interprogram

Output Communication
Indexed Input- Debug

Output
Sort-Merge Communication

In addition, there are two levels of complexity in the modules;
level one being less complex than level two. A system that
implements level one of the nucleus, the table handling, and the
sequential input-output modules is called minimum standard
COBOL. Logically then, one that implements level two of all
modules is called 'full COBOL.' Since level one is a subset of level
two, programs prepared with a minimum system can be used in a
full system.

SAMPLE PROGRAM—USE OF AN INVENTORY FILE
ON TAPE

The sample program in this chapter illustrates how COBOL uses
tape files. It also has a procedure division that shows how several
procedures can be called into use, including procedures that call
other procedures.

Fig. 4.15 provides some of the source list. Parts have been cut
away in order to simplify the explanation and focus attention on
the most important features.

COBOL—Common Business Oriented Language 161

This program deals with the parts inventory of a small
manufacturer. It reads a file stored on tape and prints out the
contents, computing the total value of each type of part in stock
and then the value of the entire inventory. A program such as this
is unlikely to 'stand alone,' however. It would normally be part of
a system of inventory maintenance programs that allow changes to
be made to the inventory file, as well as answering inquiries
concerning file contents.

If we jump immediately to the procedure division we find the
following four sections:

• MAIN-CONTROL SECTION, which is the complete logic of
the program. It opens and closes the files involved and issues
PERFORM statements to cause procedures to be executed.

• PROCESSING SECTION, which reads the file contents, does
the computations necessary, and prints the detailed lines of
the report.

• HEADING-LINE SECTION, which places the headings on
each page of the printed report.

• TOTAL-LINE SECTION, which prints the total line on the
printed report.

Now we'll move up to the environment and data divisions. In
the environment division, the INVENTORY-FILE is assigned to a
tape unit; since access method is not specified, it defaults to
sequential. And the PRINT-FILE is assigned to a high-speed
printer.

In the file description (FD) paragraphs of the data division, the
records in the inventory file are described in detail. Each field is
named and its picture given. The print file is described only in a
general way, however, in that it is said to be 132 characters long
and named PRINT-RECORD. This allows a variety of different
lines to be moved into the PRINT-RECORD before the printing is
actually done. We'll examine the format of some of those lines
shortly.

The WORKING-STORAGE SECTION of the data division
comes next. Here some independent data items are named and
described; we've cut away part of those to shorten the program
listing. Next comes the format of the heading line, the detail line,
and the total line. Except for the page number, the actual
information to be printed is provided in the heading line
description, and a similar arrangement is used in the description of
the total line. The detail line must be filled in by the information

ID
E

N
T

IF
IC

A
T

IO
N

D

IV
IS

IO
N

.
P

R
O

G
R

A
M

-I
D

-
S

T
O

R
E

-I
N

V
E

N
T

O
R

Y
-I

I.

E
N

V
IR

O
N

M
E

N
T

D

IV
IS

IO
N

.
C

O
N

F
IG

U
R

A
T

IO
N

S

E
C

T
IO

N
.

S
O

U
R

C
E

-C
O

M
P

U
T

E
R

.
M

o
d

e
1

O
B

J
E

C
T

-C
O

M
P

U
T

E
R

.
M

o
d

e
l

IN
P

U
T

-O
U

T
P

U
T

S

E
C

T
IO

N
.

F
IL

E
-C

O
N

T
R

O
L

.
S

E
L

E
C

T

IN
V

E
N

T
O

R
Y

-F
IL

E
,A

S
S

IG
N

T

O

S
y

s
te

m

M
o

d
e

l
T

a
p

e
U

n
it

.
S

E
L

E
C

T

P
R

IN
T

-F
IL

E
,A

S
S

IG
N

T

O

S
y

s
te

m

H
ig

h
-S

p
e

e
d

P

r
in

t
e

r
.

D
A

T
A

D

IV
IS

IO
N

.
F

IL
E

S

E
C

T
IO

N
.

F
D

IN

V
E

N
T

O
R

Y
-F

IL
E

L

A
B

E
L

R

E
C

O
R

D
S

A

R
E

O

M
IT

T
E

D

D
A

T
A

R

E
C

O
R

D

IS

IN
V

T
-R

E
C

O
R

D
.

O
l

IN
V

T
-R

E
C

O
R

D
.

0
3

S
T

O
C

K
-I

N

P
IC

X

(
5

)
.

0
3

Q
T

Y
-I

N

P
IC

9

9
9

.
0

3
U

N
C

O
S

T
-I

N

P
IC

9

9
9

V
9

9
.

0
3

D
E

S
C

R
IP

-I
N

P

IC

X
(

£
0

)
.

0
3

F
IL

L
E

R

P
IC

X

(
3

0
)

.
F

D

P
R

IN
T

-F
IL

E

L
A

B
E

L

R
E

C
O

R
D

S

A
R

E

O
M

IT
T

E
D

D

A
T

A

R
E

C
O

R
D

IS

P

R
IN

T
-R

E
C

O
R

D

P
IC

X

<
1

3
2

>
.

W
O

R
K

IN
G

-S
T

O
R

A
G

E

S
E

C
T

IO
N

.
7

7
E

O
F

-F
L

A
G

P

IC

X
(3

)
V

A
L

U
E

'

'.

Θ
Θ

E

N
D

-F
IL

E

V
A

L
U

E

'E
N

D
'.

7
7

IN
V

T
-V

A
L

U
E

7

7
T

O
T

A
L

-V
A

L
U

E

0
1

H
E

A
D

IN
G

-L
IN

E
.

0
3

F
IL

L
E

R

0
3

F
IL

L
E

R

0
3

F
IL

L
E

R

0
3

F
IL

L
E

R

0
3

F
IL

L
E

R

0
3

F
IL

L
E

R

0
3

P
A

G
E

-P
R

0

1
D

E
T

A
IL

-L
IN

E
.

0
3

F
IL

L
E

R

0
3

S
T

O
C

K
-P

R

0
3

F
IL

L
E

R

0
3

D
E

S
C

R
IP

-P
R

0

3
Q

T
Y

-P
R

0

3
F

IL
L

E
R

0

3
U

N
C

O
S

T
-P

R

0
3

F
IL

L
E

R

0
3

V
A

L
U

E
-P

R

0
3

F
IL

L
E

R

0
1

T
O

T
A

L
-L

IN
E

.
0

3
F

IL
L

E
R

0

3
F

IL
L

E
R

0

3
T

O
T

A
L

-V
A

L
U

E
-P

R

0
3

F
IL

L
E

R

P
IC

9

(
5

)
V

9
9

V
A

L
U

E

+
0

.
P

IC

9
<

7
)V

9
9

V
A

L
U

E

+
0

.

P
IC

X

(1
5

)
V

A
L

U
E

'

'
.

P
IC

X

(1
0

)
V

A
L

U
E

'S

T
O

C
K

N

O
.'

.
P

IC

X
(2

4
)

V
A

L
U

E

'D
E

S
C

R
IP

T
IO

N
'.

P

IC

X
(2

3
)

V
A

L
U

E

'Q
T

Y

U
N

C
O

S
T

'.

P
IC

X

(1
0

)
V

A
L

U
E

'V

A
L

U
E

'.

P
IC

Χ

(2
β

)
V

A
L

U
E

'P

A
G

E
'.

P

IC

Z
9

.

P
IC

X

<
1

5
)

V
A

L
U

E

'
'.

P

IC

X
(

5
)

.
P

IC

X
(5

)
V

A
L

U
E

'

'
.

P
IC

X

(
2

4
)

.
P

IC

Z
Z

9
.

P
IC

X

(5
)

V
A

L
U

E

'
'

.
P

IC

Z
Z

9
.9

9
.

P
IC

X

(5
)

V
A

L
U

E

'
'

.
P

IC

Z
Z

,Z
Z

9
.9

9
.

P
IC

X

(5
3

)
V

A
L

U
E

'

'.

P
IC

X

(5
2

)
V

A
L

U
E

'

'.

P
IC

X

<
1

4
)

V
A

L
U

E

'T
O

T
A

L

V
A

L
U

E

=
'.

P

IC

Ζ
,Z

Z
Z

,Z
Z

9
.9

9
.

P
IC

X

(5
4

)
V

A
L

U
E

'

'
.

P
R

O
C

E
D

U
R

E

D
IV

IS
IO

N
.

M
A

IN
-C

O
N

T
R

O
L

S

E
C

T
IO

N
.

O
P

E
N

IN

P
U

T

IN
V

E
N

T
O

R
Y

-F
IL

E
,O

U
T

P
U

T

P
R

IN
T

-F
IL

E
.

P
E

R
F

O
R

M

H
E

A
D

IN
G

-L
IN

E

S
E

C
T

IO
N

.
R

E
A

D

IN
V

E
N

T
O

R
Y

-F
IL

E
,A

T

E
N

D

M
O

V
E

'E

N
D

'
T

O

E
O

F
-F

L
A

G
.

P
E

R
F

O
R

M

P
R

O
C

E
S

S
IN

G

S
E

C
T

IO
N

U

N
T

IL

E
N

D
-F

IL
E

.
P

E
R

F
O

R
M

T

O
T

A
L

-L
IN

E

S
E

C
T

IO
N

.
C

L
O

S
E

IN

V
E

N
T

O
R

Y
-F

IL
E

,P
R

IN
T

-F
IL

E
.

S
T

O
P

R

U
N

.
P

R
O

C
E

S
S

IN
G

S

E
C

T
IO

N
.

IF

E
N

D
-P

A
G

E

P
E

R
F

O
R

M

H
E

A
D

IN
G

-L
IN

E

S
E

C
T

IO
N

.
M

O
V

E

Q
T

Y
-I

N

T
O

Q

T
Y

-P
R

.
M

O
V

E

U
N

C
O

S
T

-I
N

T

O

U
N

C
O

S
T

-P
R

.
C

O
M

P
U

T
E

IN

V
T

-V
A

L
U

E

=
Q

T
Y

-I
N

*

U
N

C
O

S
T

-I
N

.
M

O
V

E

IN
V

T
-V

A
L

U
E

T

O

V
A

L
U

E
-P

R
.

A
D

D

IN
V

T
-V

A
L

U
E

T

O

T
O

T
A

L
-V

A
L

U
E

.
M

O
V

E

S
T

O
C

K
-I

Ν

T
O

S

T
O

C
K

-P
R

.
M

O
V

E

D
E

T
A

IL
-L

IN
E

T

O

P
R

IN
T

-R
E

C
O

R
D

.
W

R
IT

E

P
R

IN
T

-R
E

C
O

R
D

A

F
T

E
R

A

D
V

A
N

C
IN

G

1
L

IN
E

S
.

A
D

D

1
T

O

L
IN

E
-C

T
R

.
M

O
V

E

S
P

A
C

E
S

T

O

D
E

T
A

IL
-L

IN
E

.
R

E
A

D

IN
V

E
N

T
O

R
Y

-F
IL

E
,

A
T

E

N
D

M

O
V

E

'E
N

D
'

T
O

E

O
F

-F
L

A
G

.
H

E
A

D
IN

G
-L

IN
E

S

E
C

T
IO

N
.

|f

M
O

V
E

P

A
G

E
-C

T
R

T

O

P
A

G
E

-P
R

.
Ο

M

O
V

E

H
E

A
D

IN
G

-L
IN

E

T
O

P

R
IN

T
-R

E
C

O
R

D
.

Ο
—

w
~

W

R
IT

E

P
R

IN
T

-R
E

C
O

R
D

A

F
T

E
R

A

D
V

A
N

C
IN

G

T
O

P
-P

A
G

E
.

U
j

M
O

V
E

3

T
O

L

IN
E

-C
T

R
.

Ζ

A
D

D

1
T

O

P
A

G
E

-C
T

R
.

-I

M
O

V
E

S

P
A

C
E

S

T
O

P

R
IN

T
-R

E
C

O
R

D
.

W
R

IT
E

P

R
IN

T
-R

E
C

O
R

D

A
F

T
E

R

A
D

V
A

N
C

IN
G

2

L
IN

E
S

.
T

O
T

A
L

-L
IN

E

S
E

C
T

IO
N

.
M

O
V

E

T
O

T
A

L
-V

A
L

U
E

T

O

T
O

T
A

L
-V

A
L

U
E

-P
R

.
M

O
V

E

T
O

T
A

L
-L

IN
E

T

O

P
R

IN
T

-R
E

C
O

R
D

.
W

R
IT

E

P
R

IN
T

-R
E

C
O

R
D

A

F
T

E
R

A

D
V

A
N

C
IN

G

2
L

IN
E

S
.

F
ig

.
4.

15

Sa
m

pl
e

pr
og

ra
m

COBOL—Common Business Oriented Language 165

pertaining to a specific inventory item, so it has no permanent
contents.

Before moving on to the logic of the program itself, let's
summarize what has been said:

• The INVENTORY-FILE has been assigned to a tape unit and
the PRINT-FILE to a high-speed printer.

• The record in the INVENTORY-FILE is named INVT-
RECORD. It consists of five fields.

• The record in the PRINT-FILE is named PRINT-RECORD.
It consists of one 132-character field.

• Lines to be moved into PRINT-RECORD are defined in the
WORKING-STORAGE SECTION.

As we already know, the procedure division consist of four
parts. First is the MAIN-CONTROL SECTION which lays out
the logic of the program. The two files involved are opened by the
first statement, and the second statement performs the heading
procedure for the printer. This starts a new page and titles it. Thus
the first two statements 'set the stage' for the rest of the program.

Now the first record is read from the inventory file. This is done
by the third statement. Ordinarily, the AT END clause would not
come into play in this statement because the file would be at the
starting point. Therefore, the normal action of this line is to
acquire the first inventory record.

The next step is to start the processing procedure. This is
ordered by the statement PERFORM PROCESSING SECTION
UNTIL END-FILE. This means that the entire inventory file is to
be processed and the related material printed. We'll examine the
PROCESSING procedure in detail later, but for now let's move
on through the MAIN-CONTROL SECTION.

We know that the PERFORM statement will continue until the
inventory file is exhausted, so the program doesn't move to the
next line until this is done. When it does, another PERFORM
statement orders the TOTAL-LINE procedure to be executed. It
provides the total value of the inventory and prints the total line on
the printer.

The program then resumes with the CLOSE statement. Both
the input and output files are closed, and the STOP RUN
statement ends the program.

The next thing to do is to inspect each of the procedures
line-by-line. We'll begin with the procedure that prepares head-
ings. It first moves a page number into the line to be printed. Next,

166 Computer Programming Languages in Practice

the heading procedure moves the heading line into the print
record. Thus, the material to be printed is ready.

A statement in line 113 writes the contents of the print record
after moving the form to the top of a new page. It then moves a
three into the line counter and adds one to the page count.
Consequently, the page count is increased by one each time a new
page is started.

The print record is then cleared by the MOVE SPACES TO
PRINT-RECORD statement. Following this, a blank is produced
(after the printer is advanced two lines). A space between the
headings and the first line of the report to be printed next is thus
created.

While we're on the subject of printing, let's go on to the
TOTAL-LINE SECTION and see what is done when the total line
is to be printed. The TOTAL-VALUE accumulated by the
PROCESSING procedure is moved to TOTAL-VALUE-PR,
which is to be printed as part of the total line. Then the entire total
line (prepared in advance by the data division except for the total
value) is moved to the print record. The following statement prints
the line, after advancing the printer two lines and thus skipping
one line before the total is printed.

We'll now examine the details of the PROCESSING SEC-
TION, which has the following tasks to perform:

• Maintain page control. When the printed page is filled with
detailed lines, a new page must be started.

• Prepare each detailed line to be printed.
• Compute the extended value of each item.
• Compute the total value of the inventory.
• Read records from the inventory file.

When the PROCESSING SECTION begins for the first time,
the first record is available from the INVENTORY-FILE and the
printer is ready with a new page. These conditions were set up by
the MAIN-CONTROL statements. The END-PAGE condition
will not be true and the PROCESS SECTIONING will begin
manipulating data. When the end of a page is reached, however,
the HEADING-LINE SECTION is performed before work on the
data begins.

MOVE statements take some fields from the tape record and
place them in the detail line to be printed. Extended value for this
item is calculated, and it too is moved to the output line. After
extended value is available, it is added to the total value of the

COBOL—Common Business Oriented Language 167

1. There are four divisions in a COBOL program: identifica-
tion, environment, data, and procedure. Briefly describe the
purpose of each.

2. COBOL coding forms provide the first six columns for line
identification and columns 8-72 for coding. What is the
purpose of column 7, and what symbols may be used there?

3. Data item names (identifiers) used in COBOL must comply
with several rules. Which of the following identifiers are
invalid, and why?

4. What is the maximum number of characters permitted in an
identifier?

5. The PICTURE clause defines the format of a data item, or
field. A, X, and 9 define the type of characters that may be
placed in that field. What does each mean?

6. Using the style required in the data division for the definition
of a record, provide a description of a record named
CUST-ORDER with the following fields: positions 1-10 are
customer order number, positions 11 and 12 are unused,

SELF-TEST FOR CHAPTER 4

7-COUNTED
FAMILY-ONE
EMPLOYEE-
PAY-RATE
TOTAL OF
FIRST

CUSTOMER'S-ACCT
ACCEPT
4TH YEAR
STUDENT AVG
TV-INVENTORY

inventory, a running total used only when the processing is
finished.

Next, the fully composed detail is moved to the PRINT-
RECORD and printed. The line counter is stopped, and the detail
line is cleared out in preparation for the next record.

The last line of the PROCESSING SECTION reads the next
record from the INVENTORY-FILE and returns to the first
statement in the section. When the end of the file is reached, the
PROCESSING SECTION sets a condition that the PERFORM
statement in the MAIN-CONTROL SECTION senses. The
program then returns to the MAIN-CONTROL SECTION and
the PROCESSING SECTION is no longer performed.

168 Computer Programming Languages in Practice

positions 13^0 are the customer name, positions 41-46 are
order date, positions 47-55 are the total amount of the order,
and positions 56-64 are unused.

7. Write a statement to show on a display screen an instruction
that requires the operator to type in an employee name.

8. Level numbers in the data division are very important. What
does each of the following level numbers mean: 01, 02-49,
77?

9. Describe briefly what each of the following PICTURE
clauses mean.

a. PIC 99V99 c. PIC A(20) e. PIC XXXXX
b. PIC X(7) d. PIC 999 f. PIC 9(5)V9(2)

10. Add the capability of the number in d. above to carry a sign
with it.

11. What is the purpose of the MOVE statement? Write one to
take the CUST-TOTAL just calculated and place it in the
BAL-DUE.

12. Write statements to perform the following calculations:
a. DEPOSIT + BALANCE (total to replace current
balance)
b. DEPOSIT + BALANCE = NEW-BALANCE
c. AMT-DUE - PAYMENT (difference to replace current
amount due)
d. INT-RATE x AMT-BORROWED = INT-CHGS
(round the product)
e. INT-CHGS + AMT-BORROWED = TOTAL-DUE
f. TOTAL-DUE - s - REPAYMENT-PERIOD
MONTHLY-PAYMENT (round the quotient)
g. A = BH/2

13. It's very important that the programmer knows how to read
COBOL syntax diagrams so that his statements and sent-
ences are constructed properly. Explain the meaning of each
of the following: (a) capitalized words without an underline,
(b) capitalized words that are underlined, (c) phrases and
clauses within square brackets, (d) phrases and clauses
within braces, (e) lowercase words, and (f) ellipsis points.

14. COBOL allows relational operators to be expressed with
symbols or words. Write out the words for: NOT = , > , and
NOT < .

15. In the statements that perform arithmetic, the COMPUTE
statement allows the use of symbols called arithmetic

COBOL—Common Business Oriented Language 169

operators similar to those in other languages. There are five
symbols (+ , - , *, /, and **). Describe the operation that
each causes. List the symbols in the order in which they are
applied when an expression is evaluated (the arithmetic
actually done).

16. ACCEPT and DISPLAY statements take inputs and provide
outputs; so do READ and WRITE. Briefly summarize
where the first pair would be used, then do the same for the
latter pair.

17. We discussed three statements that cause branches, make
decisions, and cause loops to be executed. What were they?

18. The IF statement can evaluate several kinds of conditions.
Write a statement to examine CURRENT-BALANCE, and
if it is less than MIN-ACC-BAL, display a message
'BALANCE TOO LOW.' Otherwise continue with the next
sentence.

19. A GO TO statement that uses the DEPENDING ON phrase
allows multiple branches based upon the value of the data
item following that phrase. Briefly describe how this feature
can be used.

20. Write a simple PERFORM statement that unconditionally
causes the paragraph FINISH-CHEQUE-PAYMENTS to
be executed.

21. One form of the PERFORM statement allows the program-
mer to select the number of times a procedure is to be
executed. Write a simple, unconditional PERFORM state-
ment that executes SALESMAN-COMM-CALC seven
times.

22. File handling statements include OPEN, CLOSE, READ,
WRITE, DELETE, START, and REWRITE, which are
used in the procedure division. Two other divisions include
material that is closely related to the use of files, however.
Which divisions are they, and what information is provided
in each?

23. Which division, section, and paragraph gives the file orga-
nization and type of access information?

24. Which division, section, and paragraph gives the description
of the records in a file?

25. Place the following verbs in the order they must be given in
dealing with a file: READ, CLOSE, OPEN.

26. What is the result produced by giving a READ statement
and a WRITE statement?

170 Computer Programming Languages in Practice

27. Write a statement to open a file named FORMER-
EMPLOYEES from which you intend only to read. Now
change the statement so that you may write as well.

28. Lists and tables are an important source of data in many
COBOL programs. How is the data that is placed in the
tables acquired? Name the three basic origins.

29. Tables in COBOL may have up to three dimensions. What
clause establishes the dimensions? In what division, section,
and paragraph does that clause appear?

5
Other Languages,
Old and New

INTRODUCTION

One has only to glance at the collection of names in Fig. 5.1 to
realize that there are a great many programming languages. Our
problem is that of choosing a few subjects that will be of interest to
the typical reader and yet which are representative of products
available and advances made. We've chosen four subjects. Recent
additions to the most popular language, BASIC, is the first.
ADAM FORMAC Pascal
AED FORTH Pascal-86
AESOP FORTH 86 UCSD Pascal
ALGOL FORTRAN Tiny Pascal
ALTRAN FORTRAN IV PILOT
APL FORTRAN-80
APL/V80 PL/1
Assembler GPSS PRINT
Autocoder GRAF

GAT QUICKTRAN
BASIC
BASIC-80 IPL-V RPG
Advanced BASIC RPG II
Business BASIC JOSS
Extended BASIC JOVIAL Short Code
Tiny BASIC SNOBOL Tiny BASIC

LISP SIMSCRIPT
Tiny COBOL LISP 2 Speedcoding
COBOL LISP 80
COGO Logo Transforth II
COLASL TREET
COLINGO MAD
Commercial Translator MATHLAB XPLO-Structured Language

MOBOL
EASYCODER MULISP/MUSTAR-80

FACT NEAT
FLOW-MATIC

Fig. 5.1 The many languages

172 Computer Programming Languages in Practice

GRAPHICS AND BASIC

Some fascinating things can be done when a computer is arranged
to control a display on a TV screen, as demonstrated by the
popularity of video games and the sales of word processors. The
ability of the computer to process data extremely fast is the key
factor in making these things possible.

Because it is so widely used with small machines, it appears that
BASIC is the best language to use as an example of how graphics
are programmed. Nearly everyone buying a computer for personal
use or small business applications will want to use the ability of his
machine to produce graphics on the display screen.

One dictionary defines the word 'graphics' as: 'The making of
drawings in accordance with the rules of mathematics, as in
engineering or architecture.' That is certainly an excellent defini-
tion of the graphics created on a display screen by a computer. The
programmer must provide his instructions in very precise mathe-
matical terms when preparing or changing the graphic.

Imagine the display screen layout as a set of very fine horizontal
and vertical grid lines, numbered left to right and top to bottom.
The programmer selects a horizontal and a vertical line and tells
the computer to move his 'pencil' to the point at which they
intersect. From this point, the pencil can be moved in units defined

Programming of graphics in BASIC should be interesting to
most readers. All of the material in earlier chapters concentrated
on the 'core' of each language. Now we'll take BASIC and examine
the additions made to it that allow a programmer to create
something other than letters and numbers on the display screen.

Next in this chapter, FORTRAN and RPG are introduced and
described. We discuss their purpose and history and describe their
structure. When a reader has examined this material and the
detailed descriptions of BASIC and COBOL, he should have a
good general knowledge of the programming languages that are
widely used.

Concluding Chapter 5 is a subject barely touched thus far—
operating systems and their relationship to the programming
languages and the user. An operating system called CP/M, which
is now being used by many small computers, is introduced and
briefly described.

Other Languages, Old and New 173

by the size of the grid. Up five, right ten, down five, and left ten
are the commands that would draw a rectangle, for example.

A typical colour display screen used with a small computer has
320 of the imaginary grid lines running from top to bottom and 200
running from left to right. Each is given a number. Because zero is
used as the starting number in computer languages, the columns
are numbered 0-319 and the rows 0-199, as shown in Fig. 5.2. A
programmer can thus choose any one of the 64,000 points on the
screen by giving its column number, called the X coordinate, and
its row number, called its Y coordinate.

X COORDINATE

SELECTED
POINT

Fig. 5.2 X and Y coordinates of a display screen

Next to be determined is whether the beam is to be on or off at
the chosen point. Of course, a colour must be selected if the
display screen handles colour.

Colour is also given a number. In a black and white display, the
choice is simple, but a range of colour numbers is available in
colour displays. Both the background colour and the information
(the data to be shown) colour must be chosen. Thus the
programmer must choose a point, define its colour, and state what
colour the unused area must be.

Now, as to how shapes are formed: They are composed of a
collection of points, or 'dots.' In our typical display of 320 columns
and 200 rows, we have 64,000 points. If a programmer were to
construct a small square in red 8 points wide and high and select
column 150 (the X coordinate) and row 100 (the Y coordinate) as

174 Computer Programming Languages in Practice

the starting point for the upper left corner of the square, 64 points
illuminated in red would appear in about the centre of the screen.
(This is shown in Fig. 5.3.) All of the remaining points would be
illuminated in whatever colour the programmer chose for the
background—let's say green.

How to make the square move is the next question. The answer
is to change the coordinates at which it starts. Now we'll give the
coordinates as 300,150. This causes our little group of 64 points to
begin in column 300 and row 150, which is to the far right and
about % of the way down on the screen and also is shown in Fig.
5.3. All other 63,936 points are green, so the square appears to
have moved quickly.

150 300

100

150

Fig. 5.3 Construction and movement of a square

And to the last question before we reach the statements that
prepare graphics: How can the square we've constructed out of 64
red points be made to move smoothly across the screen rather than
jump from the centre to the lower right corner? The answer is to
make the X and Y coordinates variables and change the value of
the variables in small increments, perhaps as part of a loop. Of
course, large increments would produce rapid movement.

So now we know the fundamentals of graphics construction and
movement. To summarize: (1) the screen is divided into a great
many points that can each be distinguished from all the others; (2)
the colour of each point can be chosen; (3) shapes can be
constructed by the points; (4) the starting point of each shape can
be chosen; and (5) the starting point can be changed at a rate
determined by the programmer.

Other Languages, Old and New 175

Statements Available in a Popular BASIC

When most readers casually leaf through the 'How to Program in
BASIC books provided with the personal computers now on the
market, they'll find that the BASIC offered differs significantly
from the simple BASIC we covered in Chapter 3. What has been
added? Statements needed to program colour graphics are the
most obvious addition, but there are some others. These are
generally concerned with controlling special attachments such as
joysticks or a cassette recorder.

Although there are a number of ways in which all the versions of
'new BASIC could be handled, we've chosen to use one version as
a typical example and ignore the others. This version is the set of
statements available in the Advanced BASIC provided for use
with the IBM Personal Computer.

Fig. 5.4 summarizes the keywords available. Let's examine the
list quickly, searching for both standard statements and new ones,
and then move on to a description of what the graphics statements
do.

BEEP
CALL
CHAIN

•CIRCL E
CLOSE
CLS

•COLO R
COM. . . ON/OFF/STOP
COMMON
DATA
DATES
DEF FN
DEF SEG
DEF USR
DIM

•DRA W
END
ERASE
ERROR
FIELD
FOR. . TO. . STEP
GET

• GET (graphics)
GOSUB
GOTO
IF. . THEN. . ELSE
INPUT
KEY ON/OFF
KEY
KEY. . ON/OFF
LET

•LIN E
LINE INPUT
LOCATE
LPRINT
LPRINT USING
LSET
MID$
MOTOR
NEXT
ON COM/KEY/PEN

RETURN
RSET

• SCREEN
SOUND
STOP
STRIG ON/OFF
STRING. . ON/OFF

ON ERROR GOTO
ON. . GOSUB
ON. . GOTO
OPEN
OPTION BASE
OUT

• PAINT
PEN ON/OFF/STOP
POKE
PRINT
PRINT USING

• PRESET
•PSE T

PUT
• PUT (graphics)

RANDOMIZE
READ
REM
RESTORE
RESUME

STRIG. . GOSUB

SWAP
TIMES
WAIT
WEND
WHILE
WRITE

The Draw Statement Commands

U
D
L
R
Ε
F
G
H
M
B
Ν
A
C
S
X

UP
DOWN
LEFT
RIGHT
UP AND RIGHT
DOWN AND RIGHT
DOWN AND LEFT
UP AND LEFT
MOVE AND PLOT
MOVE AND NO PLOT
MOVE, PLOT, RETURN
SET ANGLE OF ROTATION
SET COLOR
SET SCALE
EXECUTE SUBSTRING

•—Graphic s Statements

Fig. 5.4 Statements in a popular modern BASIC

176 Computer Programming Languages in Practice

Since our list is in alphabetical order, we'll start with BEEP.
Here's a statement we covered in Chapter 3; it causes a brief
audible tone from the speaker in the machine, which can be used
in a variety of ways to signal the operator.

Among the Cs , we have CIRCLE and COLOR, both obviously
associated with graphics and selecting screen colour. And in the
D's we have DRAW, which constructs graphics.

DATA and DIM, standard statements the reader should
recognize, along with FIELD, FOR/NEXT, GOTO, GOSUB/
RETURN, IF/THEN/ELSE, and PRINT USING show that the
fundamental BASIC statements are all here.

MOTOR is an example of a statement added to handle a special
attachment, the cassette recorder. And there are also statements
to handle other attachments, as the light pen and joysticks.

How the Graphics Statements Work

Now let's discuss the statements associated with graphics, colour,
and positioning of information on the screen. Among these we
have: CIRCLE, COLOR, DRAW, GET (graphics), LINE,
LOCATE, PAINT, PRESET, PSET, PUT (graphics), and
SCREEN.

We'll begin with the SCREEN statement because it chooses
either the text or graphics mode for the display and may enable
colour. This statement is written SCREEN mode, where mode is
number 0 , 1 , or 2. A 0 selects the text mode, while 1 or 2 select the
graphics mode. Additions to the statement can identify specific
text pages and enable or disable colour. An example of the
SCREEN statement could be:

40 SCREEN 0, 1,0, 0
This selects the text mode (the first zero), allows colour (the one)
and sets the two possible page selections to zero (the two zeros on
the right). The '40' we've included is nothing more than a line
number, and we'll use it thoughout this section.

The COLOR statement applies to both the text and graphics
modes. In the text mode, it can select the character and
background colours by providing numbers corresponding to those
colours. For example, the COLOR statement could appear: 40
COLOR 7,1. This would choose white characters (7) on a blue
background (1). The effect of the COLOR statement in the text
mode is shown in Fig. 5.5.

Other Languages, Old and New 111

CO LO R foreground, bac kground, border

Fig. 5.5 Effect of the COLOR statement in the text mode

In the graphics mode, the effect of the COLOR statement is
slightly different, as shown in Fig. 5.6. The background colour is
chosen in the same manner, but the foreground is not chosen to be
a specific colour but rather a group, called a palette, from which
other graphics statements may select. In this case, the COLOR
statements could read: 40 COLOR 8, 0. This would choose grey as
the background and the even palette (0) from which the graphics
statements can choose a foreground colour.

After the programmer has selected the graphics mode, he is
ready to use the statements dealing with the construction of
graphics. Because the LINE statement is the simplest of this
group, that's where we'll begin.

COLOR background, palette

r
BAR I

BAR 2

BAR 3

Fig. 5.6 Effect of the COLOR statement in the graphics mode

178 Computer Programming Languages in Practice

40 PAINT (Χ,Υ), Ν, Ν

The LINE statement has more than one form. First, it can draw
a line starting from the current point to the point whose
coordinates are given. This would appear: 40 LINE (X2, Y2). The
X2 and Y2 are the coordinates of the ending point, and, of course,
the line starts from the current point. Another form gives both the
starting and ending points: 40 LINE (XI, Yl) (X2, Y2). This, too,
draws a straight line. Fig. 5.7 shows how the LINE statement
works.

Colour of the line to be drawn is given by the number following
the last parenthesis. 40 LINE (XI, Yl) (X2, Y2), 1, for example,
chooses the first colour from the palette available.

The LINE statement can be made to draw an empty box or a
filled box by the addition of letter Β or BF, respectively, at the end
of the statement. Β causes the two coordinates given to become
the opposite corners of the box, thus the remaining two corners
are known and do not need to be provided. BF does the same
thing but fills the box in the colour specified by the colour number.
A solid rectangle could thus be drawn by: 40 LINE (XI, Yl) (X2,
Y2), 1, BF. This action is shown in Fig. 5.8.

Curved shapes are produced by the CIRCLE statement.
Visualize this statement as a drawing compass. First, the coordin-
ates of the centre must be given, then the radius established. The
next item to be given is the colour, and this is followed by the start
and end angle parameters, which are given in radians.

40 CIRCLE (X,Y), R, Ν, A l , A2 is the format of the CIRCLE
statement. The centre point is selected by coordinates X and Y,
the radius by the value of R, the colour by N, and the start and end
angles by Al and A2. (Fig. 5.9 illustrates this.) After the circle is
drawn, the reference point (the current point) for additional
graphics work is the circle centre. Of course, the figure need not be
a full circle; it could be an arc, depending upon the values
provided.

PAINT is the next statement we'll discuss. Its purpose is to fill in
a specific area with colour, and perhaps it would be used most
often after a figure is drawn. Let's assume the programmer just
drew a circle and wishes to fill it in. He does so by issuing the
PAINT statement giving a coordinate within the circle, the colour
he wants for the interior of the circle (the paint colour), and the
colour of the boundary.

A PAINT statement has the form:

LINE

(ΧΙ,ΥΙ) 25
25,25

Other Languages, Old and New

start, end ,colour\

179

Fig. 5.7 Use of the Line statement

LINE start, end, colour, box

3 0 0

(X2.Y2)
300,150

Fig. 5.8 Use of the LINE statement to draw a box

CIRCLE centre, radius, colour, angles

125

Fig. 5.9 Use of the CIRCLE statement

180 Computer Programming Languages in Practice

75

250
Fig. 5.10 Use of the PAINT statement

A more complex statement is DRAW, which allows the
programmer to give the instruction to draw a graphic that is
defined by a string of commands. (The commands are listed in Fig.
5.4) The first command given in a string starts its movement from
the current position; after that each moves from where the
previous command stopped. Included in the list of commands is
one that sets the colour of the lines being drawn, and it does so by
selecting a colour number as we've shown earlier. An example of
how DRAW can be used is shown in Fig. 5.11.

The Ν in most of the DRAW commands may be either a literal
or the name of a variable from which a number will be obtained
when the DRAW statement is executed. Of course, this gives the
DRAW statement the power to produce a graphic that represents
the results of active calculations. The size of a bar in a bar chart,
for example, can be made to depend upon the value of a variable.

First we'll examine a simple DRAW statement. (Note that the
semicolons are optional in this case but are required when
variables are used, so we've used them in both cases.) The
following statement draws a rectangle:

40 DRAW "U10;R20;D10;L20"

The X and Y are the coordinates, the first Ν is the number of the
paint colour and the second Ν is the number of the boundary
colour. The statement 40 PAINT (250, 75), 2, 3 selects the figure
in which the point chosen by X and Y coordinates 250 and 75 falls.
That figure will be painted colour number two from the palette out
to the boundary colour number three. (A PAINT statement and
the results it produces appear in Fig. 5.10.)

PAINT identifying paint boundary
point , colour, colour

Other Languages, Old and New 181

DRAW "string

CURRENT
POSITION si \

' 1
1ST 2ND 3RD

\
\

\

4TH
MOVEMENT
C O M M A N D S - V ' U S O " . R5Q ; U 5 Q " ;

Fig. 5.11 Use of the DRAW statement

If the width of the rectangle is to depend upon a variable, as in a
horizontal bar chart, the height of the bar is specified by constants
but the width by a variable, in the form:

Now the height stays at ten units but the width depends on
variable A. Of course, variable A results from the evaluation of an
expression, so the width of the bar shows the value of A in graphic
form.

This statement is extremely interesting, and we could spend a
great deal of space on it. However, we'll cover the two most
important features and then move on to the next statements. Most
important is the command XSTRINGS, which means execute the
following substring. XZ$ is the form in which this is written, and
substring Z$ can be a figure constructed by the commands
available to DRAW.

For example Z$ = "U10;R20;D10;L20" defines a rectangle but
doesn't draw it. Think of this as a character string being defined by
the simple BASIC statements. The string is first defined but it
doesn't actually appear until used by one of the active statements.

STRING

40 DRAW "U10;R = A;D10;L = A

182 Computer Programming Languages in Practice

Now the DRAW statement is free to use the substring Z$
whenever the programmer wishes. DRAW "C2;A1 ;XZ$;" sets the
colour at 2 (C2), rotates the figure 90 degrees (Al , where 1 selects
a 90-degree rotation), and draws the figure defined by substring Z$
(XZ$;). This is the first time we've used the colour selection and
rotation commands in DRAW. Colour numbers are handled in the
same way we discussed earlier, but rotation is new. The figure can
be rotated 0, 90, 180, or 270 degrees, depending on whether the
number following the command A is 0, 1, 2, or 3, respectively.

PSET and PRESET are two more statements available in the
graphics mode. One means 'point set' and the other 'point reset.'
Their format is very simple PSET (Χ,Υ), Ν and PRESET (X,Y),
N. The X and Y are the coordinates of a point and Ν is the colour
number for that point. This is shown in Fig. 5.12.

These statements are nearly identical in operation, but there is
one difference that affects their use. That is the choice of colour if
no colour number is provided in the statement. PSET chooses the
foreground colour, meaning that the point is visible, and PRESET
chooses the background colour, meaning that the point is invisible.

PSET point, colour

v y
Fig. 5.12 Use of the PSET statement

Since the X and Y coordinates of a point can be given the names
of variables and the statements entered in a loop, these statements
can plot points across the screen as the value of the variables
change. Under some circumstances, PRESET can be used to erase
a point plotted. This operation is related to colour choice. The
reader should be able to see that a point plotted by PSET in the
foreground colour when no colour choice is specified can be erased
by the PRESET statement using the background colour when no
colour choice is specified.

Other Languages, Old and New 183

It should also be evident that coordinates read from joysticks
can be assigned variable names. If these names are given as the
X-Y coordinates to the PSET statement set in a loop, the joystick
can draw a line on the screen.

Another pair of statements available in the graphics mode is
GET and PUT. Their action is far different than statements by the
same name used with records and files, however, and their names
appear to be opposite to their actions if your viewpoint is the
display screen. GET takes an image from the screen and places it
in an array. Opposite in action, PUT takes an image from an array
and places it on the screen. From the viewpoint of the program,
however, it is getting an image for an array and putting an image
on the screen.

We'll begin our discussion with the format of these statements.
The GET statement format is:

Coordinates XI, Yl and X2, Y2 are the opposite corners of a
rectangular area to be stored. (Of course, the other corners need
not be written out.) Obviously, array name is the name of the
storage place.

In response to this statement, the system acquires the colour
code for every point within the rectangle specified and stores it in a
numeric array. Size limitations are imposed, but these depend
upon the equipment used. So now we have a rectangular section of
the screen stored. (An example of the area is shown in Fig. 5.13).

GET start - end, array name

GET (XI, Yl) (X2, Y2), array name

r

Fig. 5.13 Use of the GET statements

184 Computer Programming Languages in Practice

PUT start , array name , action

Fig. 5.14 Use of the PUT statement

The array name is simple enough. It is the name of the array in
which the original rectangle was stored.

ACTION is where the complication comes in. There are five
words that may be used here: PSET and PRESET, which we
discussed earlier as statements, and XOR, OR, and AND. One of
these words is always provided to select the relationship between
the incoming image and the one currently on the screen. XOR is
the standard relationship if the programmer makes no selection.

PSET and PRESET produce the simplest results. PSET places
the incoming image on the screen, replacing the existing image
while PRESET places it on the screen in negative form, also
replacing the existing image.

AND and OR impose some conditions. If AND is used, the

The PUT statement, which reclaims the stored image, is
somewhat more complex in format and operation. It appears in
the form:

PUT (XI, Yl) , array name, action
At first glance, this doesn't appear complex. XI, Yl are the
coordinates of the upper left corner of the rectangular area in
which the image is to be placed. Already some complexity
appears, however. These coordinates can be different from the
coordinates of the area stored. Thus, the image can appear in a
different area on the screen, as shown by the contrast between
Figs. 5.13 and 5.14. If the coordinates were variables, the image
would move as the value of the variables changed.

Other Languages, Old and New 185

FORTRAN—FORmula TRANslator

One of the first high-level languages available was FORTRAN,
which was developed by IBM and released in 1957. Intended
primarily for engineering and scientific use, rather than business, it
became widely used. This, of course, led to the need for
standardization.

The first FORTRAN standards were completed and published
in 1966, but a 1977 standard is now available.

The 1977 standard defines two versions of FORTRAN, full
FORTRAN and subset FORTRAN. Some of the additions
mentioned above are not available in subset FORTRAN. Among
the other features not provided in the limited version are double
precision and complex data types.

Most readers will find FORTRAN more similar to BASIC than
it is to COBOL. For example, the overall organization is not
sectionalized, and a program does not even need to be named,
although it can be and would normally be.

Since FORTRAN is widely used for scientific and engineering
applications, one would expect to find a great many intrinsic
functions available, and this is the case.

As the reader makes his way through this section, he will see
other similarities and differences between FORTRAN and the
two major languages covered in detail. Arithmetic operators, for
example, are generally the same (+ , - , *, /, and **) while
relational operators are totally different. FORTRAN uses a

incoming image is transferred only where there is an existing
image in place, using the existing image like a mask. The OR, on
the other hand, superimposes the incoming image on whatever
exists.

The standard selection XOR, which means exclusively OR in
computer language, superimposes the incoming image onto the
existing image (like OR) but inverts each point in the existing
image where there is an identical point in the incoming image.
This, of course, makes the incoming image fully visible wherever it
is placed. Two successive PUT statements with XOR specified at
the same coordinates restore the existing screen. This feature
allows the incoming image to be moved without leaving a trail
destroying the existing display.

186 Computer Programming Languages in Practice

two-letter operator bounded by periods. Less than is .LT., while
equal is .EQ.

The Coding Form

A FORTRAN coding form is shown in Fig. 5.15. It appears to be
very similar to those we've used in other languages; however,
there are some differences that deserve attention. Columns 1
through 5 are allocated for the source statement number, but
column 1 is also used to identify comments and special options. An
asterisk (*) in this column identifies the line as one that is not
translated by the compiler. As in other languages, FORTRAN
accepts and lists comments but doesn't act on them.

Columns 7 to 72 are where the statements are entered. A
statement may begin in any of these columns, so indentation
schemes can be used to make the coding easy to understand. Like
COBOL, columns 73-80 of FORTRAN forms are reserved for
program identification and are not used for source statements.

Continuation of a FORTRAN statement is indicated in column
6; otherwise, column 6 is left blank. Some publications recom-
mend using a 1, 2, etc., in column 6 to show the continuation of a
statement. Any nonzero character is sufficient to show continua-
tion, however.

FORTRAN Keywords and Syntax Diagrams

In the sections that follow we'll see some FORTRAN source
statements. Understanding them requires the use of keywords and
syntax diagrams, so an examination of the basic structure of
FORTRAN syntax diagrams is necessary before we begin.

All languages use a series of symbols and abbreviations to keep
the diagrams short and readable. When one first sees FORTRAN
syntax diagrams (shown in Fig. 5.16), they appear to be simple
compared to those for COBOL. That's true. FORTRAN diagrams
are roughly equivalent in complexity to the diagrams used for
BASIC.

Let's begin our explanation of the diagrams with the square
brackets and then move on to the letters used. Brackets mean that
the item or items they enclose are optional. For example, a
number may follow the word STOP in the STOP statement to

F
ig

.
5.

15

T
he

 F
O

R
T

R
A

N
 c

od
in

g
fo

rm

188 Computer Programming Languages in Practice

Keywords

ASSIGN, GOTO, IF, THEN,
ELSE, ELSEIF, ENDIF
DO, CONTINUE

STOP, END, PAUSE

CALL, RETURN, ENTRY

READ, PRINT, WRITE,
REWIND, BACKSPACE, ENDFILE,
OPEN, CLOSE, INQUIRE, FORMAT

DATA, DIMENSION, COMMON,
EQUIVALENCE, INTEGER, REAL,
COMPLEX, LOGICAL, CHARACTER
DOUBLE PRECISION, IMPLICIT,
PARAMETER, EXTERNAL, INTRINSIC,
PROGRAM, FUNCTION, BLOCK DATA,
SUBROUTINE, SAVE

Typical Syntax Diagrams

ASSIGN s TO i
GOTO (s1,s2,.. ,sn)
IF (e) s1,s2,s3

STOP [n]

CALL subroutine (parameter list)

READ *[,list]
READ fs [.list]
WRITE (u,fs,control specifiers) [list]

DATA v1, v2,. . . / c 1 , c2,. . .
DIMENSION A1 (k1), A2 (k1,k2)
PROGRAM name

Fig. 5.16 FORTRAN keywords and typical syntax diagrams

distinguish one stop from another, but that number is not
mandatory.

Now let's proceed to the letters that may appear in the
diagrams. Some of the most common are listed below:

Symbol Meaning
A Name of an array
e Expression
f Subprogram name or function name
fs Format statement number label
i Integer variable
k Any type of constant
η A five-digit integer number or a character constant
s Statement number label
st Statement
u Unit selection (integer constant or variable) in an

I/O statement
ν Variable (integer or real)
w Field width in a FORMAT statement

Operators—Arithmetic, Relational, and Logical

FORTRAN uses arithmetic, relational, and logical operators.
Some are the same as those in other languages but others are

Other Languages, Old and New 189

totally different. We'll summarize the operators quickly because
most readers now know what operators are and how they're used.

FORTRAN operators include:

Names for Variables

One of the most difficult parts of learning a new programming
language is to become accustomed to the rules for naming
variables. The rules in FORTRAN are:

• The first character in the name must be alphabetic (a letter).
• Only letters and numbers can be used (No special characters

like $). Blanks are ignored; they have no effect.
• A name must not have more than six characters.

To summarize: Up to six characters (numbers or letters) may be
used, but the name must start with a letter.

There is an additional restriction. The names for integer
variables must begin with I , J , K , L , M , or Ν and those for real
data with A through Η and Ο through Z. This can be modified as
we'll see later.

Construction of Statements

FORTRAN statements have the same general appearance as
those in BASIC. Except for comment lines, they are likely to be
rather short. A limitation on the size of names and the short
operator symbols contribute to this.

4- addition
— subtraction or negation
* multiplication
/ division
** exponentiation
// concatenation

.LT. less than

.LE. less than or equal

.EQ. equal

.NE. not equal

.GT. greater than

.GE. greater than or equal

.NOT. logical negation

.AND. logical and

.OR. logical or

.EQV. equivalent

.NEQV. not equivalent

190 Computer Programming Languages in Practice

Let's examine a few simple statements to see what they look like
before moving on. We'll use the following five:

A = Β + C
X = (A + B)/(C + D)
READ *, Χ, Υ, Ζ
WRITE (6,750) MTH, DAY, YEAR
IF (X.GT.Y) GOTO 400

In our first example, Β and C are added and the sum assigned to
variable A. The + sign is the arithmetic operator and the equal
sign makes the assignment. This is identical to the style used in
BASIC. Spaces may be inserted in the expression as necessary to
make it easy to read; the FORTRAN compiler ignores spaces
before and after the operator symbols and before and after the
variable names.

Next we have a somewhat more complex expression. It uses the
division operator, the slash (/) and parentheses to group terms that
are to be treated as a unit and thus eliminate ambiguity. As in all
the programming languages, FORTRAN requires that expressions
be written on one line. Everyone should recognize that the
expression we've written is:

a + b a. = — — τ c + d

In processing this expression, the computer first removes the
parentheses, adding A to Β and C to D. Then the sum of A and Β
is divided by the sum of C and D. Finally, the quotient is assigned
to the variable X.

Now we'll examine two of the input-output statements avail-
able. READ accepts data and brings it into the computer. In this
case, the statement reads three inputs, most likely from a
keyboard, and assigns those inputs to variables X, Y, and Ζ in the
order received. The asterisk shown in this statement is not a
multiply operator; it simply says that the material to be read has no
separate FORMAT statement governing how it should be
handled.

The fourth statement in our samples is an output statement,
WRITE. It chooses unit number 6 on which to write; this is
frequently the unit number assigned to the printer in a FORTRAN
system. It also includes the number 750, which is the line number
of a FORMAT statement that controls the appearance of the
printed material. Concluding the WRITE statement are the names

Other Languages, Old and New 191

of three variables (MTH, DAY, YEAR) whose current values are
to be printed. Thus, the variables will be printed on unit 6 in the
format established by line number 75. Last in the samples is a
decision statement. FORTRAN has a variety of such statements.
We've chosen only a simple one, primarily to show a relational
operator. The statement says: If the relationship specified in the
expression in parentheses is true, go to line number 400 for the
next instruction. The expression reads 'X is greater than Y'; the
.GT. being the relational operator greater than.

Data Types

Although integer and real are the only two data types mentioned
so far, FORTRAN provides other data types and ways of
specifying them. First, the additional data types must be covered.
There are four:

• Character, which is in the same class as string variables in
other languages. Character data is any combination of
characters in the character set but which is not used in
arithmetic. CUSTNM, customer name, for example, would be
a variable consisting of character data.

• Double precision, which increases the positions available for a
number. It is needed only in a system with a limited number of
digits in the single precision number.

• Complex, meaning a complex number as used in mathematics.
• Logical, which means a variable that may only have one of two

states, true or false.

This brings us to the way in which variables of these types are
declared to exist. It's done with a type declaration. That type declar-
ation may also include integer and real data types and thus override
the rules concerning the first character of the variable's name.

A type declaration must be given before a specific variable is
used. Some programmers prefer to provide all type declarations at
the beginning of the program. Its format is simple: type vl, v2, . . .
vn. The word 'type' is replaced by INTEGER, REAL, CHAR-
ACTER, DOUBLE PRECISION, COMPLEX, or LOGICAL.
VI, v2, etc. are the names of variables, arrays, or functions being
declared that data type. An advantage of using this explicit
declaration of data type for real and integer data is that it
overcomes the naming restrictions mentioned earlier.

192 Computer Programming Languages in Practice

Intrinsic Functions Available

As one would expect in a language intended for engineering and
scientific applications, FORTRAN has a large number of 'built-in'
mathematical functions available.

Each function is given a short name. When that name is used in
a statement, it is followed by the expression to which it is to be
applied. The expression, or argument as it is called, is enclosed in
parentheses. If a statement such as A = SQRT(B + C) is
constructed, A is assigned the value of the square root of the sum
of Β and C.

This concept was first introduced and explained in Chapter 2
and repeated for each of the major languages. FORTRAN
functions are applied in the same basic way. Where they do differ,
however, is that the names for the same function may vary
depending upon the type of data being operated on. If only the
generic name appears in a statement, the compiler examines the
data type of the argument and applies the correct function. Thus,
the programmer is free to use only the generic name in his
statements. In addition, FORTRAN includes some functions used
to convert between data types.

Overall Organization of a Program

In COBOL the rules concerning the declaration portion of a
program are well defined. On the other side of the coin are BASIC
and our current subject, FORTRAN, which allow the program-
mer a great deal of freedom. Neither of these languages requires a
separate declaration section that makes programs easy to read,
test, and maintain. The programmer is wise, however, if he uses
comments to prepare lists and provide identification as suggested
below.

A fact to be considered is that there are really four kinds of
programs that may be prepared—a main program and three kinds
of subprograms. Each has basically the same organization,
although the main program is very likely to be the largest. Each is
entered into the system and compiled separately.

PROGRAM followed by a name assigned by the programmer
(in the form: PROGRAM name) identifies the main FORTRAN
program. Although the FORTRAN system itself does not require
the program to be named by a PROGRAM statement, most

Other Languages, Old and New 193

implementations and operating systems require that names be
assigned.

The three kinds of subprograms are titled in the same manner,
as follows:

SUBROUTINE name. A subroutine may be called by the main
program, like procedures in other languages. It must be named.
FUNCTION name. A user-defined function is called when its
name is used in an expression. It returns a value to the
expression.
BLOCK DATA name. The BLOCK DATA subprogram can
initialize variables declared to be common to the main program
and/or subprograms. It does not require a name.

Fig. 5.17 illustrates how a PROGRAM, SUBROUTINE, or
FUNCTION might be organized if a programmer was meticulous
in describing the program and its components. Some of the
information provided is optional and is entered in the form of
comments.

We've shown program identification first. This consists of the

PROGRAM, SUBROUTINE, FUNCTION, BLOCK DATA program name

Program Description and History

Variable Identification

Array Identification

Constant Identification

Functions and Subroutines List

PARAMETER equates a name and a value

IMPLICIT defines first letter of a name as a data type

INTEGER, REAL, COMPLEX, DOUBLE-PRECISION, LOGICAL, CHARACTER data

type declarations list names belonging to each type

DIMENSION sets array size

COMMON data names in common storage

EQUIVALENCE data names using the same space

EXTERNAL external functions list

INTRINSIC internal functions list

Program Body

Groups of Statements

STOP

END

Fig. 5.17 Overall organization of a FORTRAN program

194 Computer Programming Languages in Practice

word, PROGRAM, SUBROUTINE, FUNCTION, or BLOCK
DATA, and a name as we discussed above. Following the name,
in the form of comment entries, is a description of the program,
the author's name, probably dates, and remarks concerning
revisions made.

A section is then devoted to listing the items used by the
program. This is all in the form of comments, and it has no effect
on program execution. Although this listing might seem to be a
chore, it is invaluable in testing and maintenance. Our sample list
consists of:

• Variable Identification—all the variables used are listed and
the full meaning of their names is given.

• Array Identification—array names are listed and their full
meaning explained.

• Constant Identification—all constants are listed by name (if
used), and their value and the full meaning of the name are
given.

• Functions and Subroutines List—names are given and their
full meaning explained.

Up to this point nearly everything entered is for the purpose of
documenting the program. Only the title word PROGRAM,
SUBROUTINE, FUNCTION, and BLOCK DATA along with
the name and any parameter lists provided have any effect on
program execution. Now, however, we encounter a set of
declaration statements which do determine the program results.
This could logically be called a declarations section, but some
publications refer to it by other names. Storage allocation block is
one common term.

Whatever we call it, this section includes statements such as
PARAMETER, DIMENSION, COMMON, and DATA. In Fig.
5.17, the basic function performed by each statement is outlined.

Next the program moves into action. The blocks that execute
the logic of the program or subprogram now appear. The END
and STOP statements shown might seem to do the same thing;
they do not. END defines the end of the program unit in which it
appears; it is an instruction to the compiler. On the other hand,
STOP causes execution of the object program to be terminated at
the point at which it appears.

Ordinarily, there would be only one stop statement in most
simple programs, and it would appear just before the END
statement. In complex programs or in programs being tested,

Other Languages, Old and New 195

however, the programmer may provide several STOP statements,
each including an identifying number. This number is printed or
displayed when the program halts, so the programmer knows
exactly which path the program follow to completion.

A SECTION OF A FORTRAN PROGRAM

No description of a FORTRAN program would be complete
without at least one example program. We've provided one in Fig.
5.18 and, although we won't analyse it, the reader should find
several useful examples of statements metioned earlier.

READ * , I D , HRSWRK, WGRATE, DEDUC
P R I N T * , ' E C H O CHECK'
P R I N T * , I D , HRSWRK, WGRATE, DEDUC
P R I N T * , ' '
GRSPAY = HRSWRK * WGRATE
TAXES = GRSPAY * TAXRT
PAYCHK = GRSPAY - TAXES - DEDUC - PNRATE * GRSPAY
PAYRTN = PAYCHK / HRSWK
P R I N T * , ' GROSS TAXES CHECK RATE '
P R I N T * , GRSPAY, T A X E S , PAYCHK, PAYRTN
STOP
END

Fig. 5.18 A section of FORTRAN program

REPORT PROGRAM GENERATOR—RPG

Here is a language with a name quite different from the others
we've discussed. Its structure is different as well. RPG produces
programs that prepare reports, hence the name 'report program
generator.'

Let's examine first a very simple program generator to under-
stand some of the ideas involved. Computer manufacturers offer
program generators to allow a user to produce an application
program that fits his exact needs without having to write the
program himself. When the user loads and executes the program
generator, it lists options available and allows the user to make
selections. The generator then takes the choices made and
combines them with the basic logic of the program.

Imagine this basic logic represented in flowchart form. The

196 Computer Programming Languages in Practice

using programmer writes none of it; he simply chooses whether or
not certain parts are executed and if they are what specifications
apply.

Of course, the program generator may be used over and over
again. Each program it produces is unique, based upon the
specifications provided by the user, but the basic program logic is
the same for all the customized programs.

To summarize: Program generators require the using program-
mer to provide a set of specifications. These specifications are
combined with the existing program logic to produce a program
that does a specific job. That's also the nature of RPG.

A question now arises: Where is the 'programming language' in
RPG? And the answer is that the language is used to prepare the
specifications. These are far more complex than simply making the
selections, but the principles are similar. RPG requires, however,
that the specifications be entered in the form of a source program.
A compiler then produces the RPG object program, which is
tailored to the user's specifications.

RPG is a fairly old language, having been introduced in the
mid-1960s and upgraded to RPG II in 1970. As evident from the
preceding paragraphs, RPG is certainly different from the
languages we've covered up to now.

RPG is well suited to the preparation of routine business reports
and to the establishment and maintenance of files related to these
reports. Most people would not want to program complex tasks in
RPG, however, because of the great detail that the programmer
must provide. Therefore, we'll stay away from complex applica-
tions in this discussion, concentrating instead on the strengths of
the sytem.

The Five Specifications

RPG accepts data from files, processes it in a certain manner, and
provides output files. Thus, we can already see three sets of
specifications that the using programmer must provide: the input,
the process, and the output specs. These are three of the five most
important specifications. Each is provided on a coding form. The
form has a very rigid format, is very complex, and is called a
specifications form rather than a coding form.

Each type specification is given a letter to distinguish it from
other types, and this letter is entered in every line. We'll cover

Other Languages, Old and New 197

them in the order in which they must be entered into the system,
later enlarging important sections where necessary.

First, we have the Ή specification, called the control card
specifications, which provides information concerning the compu-
ter and program. For example, it defines memory size to be used
and gives the program name. It defines the currency symbol, the
character set, the number of printer positions, etc.

Next comes the T ' form, the file description specifications,
which names and describes the files the program will use. It gives
file name, type, access method, type of device the file is associated
with (printer, tape, etc.) and many other details.

The Τ form, the input specifications, is provided next. It
describes the organization of the input records. This form gives the
file name and defines the layout of the records in each file.

Fourth in appearance is the ' C form, the calculation specifica-
tions, which defines the processing to be done. The format of the
calculation specifications is similar to coding forms used in
low-level languages. It provides areas for operands and operations
to be entered, and it also lists conditions on which the calculations
depend.

Last in the group is the output specifications form, the Ό ' form,
which describes the layout of the records to be produced by the
program. It gives file names, field sizes, output positions and
information needed to control the device holding the output file.

A Source Program and Its Compilation

Now we'll jump ahead to the compilation of an RPG program,
assuming that the programmer has prepared the specification
sheets. Later we'll describe the format of each specification and
show what can be entered in each type.

The specifications are handled like source statements in other
languages. Columns 1 to 5 of each form provide page and line
number, and the information necessary to place all the lines in
consecutive order. Column 6 of each form holds a letter indicating
the specification type. Specifications must be entered in the order in
which they were described above: H, F, I, C, and O.

After the compiler accepts and processes the specifications,
combining them with any subroutines called by the programmer
from a subroutine library, it produces the object program and a
source listing. As usual, diagnostic notes are added.

198 Computer Programming Languages in Practice

A Section of a Source Listing

RPG source listings take some 'getting used to.' A section of one is
shown in Fig. 5.19, and although it has been greatly reduced in
size, the reader should be able to see that we have essentially the
contents of the specifications forms after the background has been
removed.

On the left, as usual in source listings, is the sequential line
number assigned by the compiler. Next appears the page number
and line number taken from the forms entered. A letter showing
the form type comes next, then the contents of the form. At the far
right, occupying columns 75-80, the last five columns, is the
program identification.

A 'bare' listing like this is hard to use. Obviously, it is possible to
improve the appearance of a source listing if the programmer takes
the time to prepare comments and separating lines.

The Fixed Program Logic of RPG

Now let's examine the object program. A good way to illustrate
the order in which the program logic is executed is to show it in
flowchart form as we've done in Fig. 5.20. This flowchart is
simplified, leaving out details that require great knowledge of the
system but retaining all the information needed for the reader to
understand the basic cycle.

The primary purpose of these programs is to produce reports
based on the contents of data files. Some processing can be done,
but RPG does not have a long list of powerful instructions that can
be given in the calculation specifications.

The first block encountered is entitled 'initialization.' It opens
files, loads tables and arrays, and sets certain indicators.

Let's talk about indicators briefly. They are extremely impor-
tant to RPG. An indicator is a sign that a certain event has occurred
or that a certain condition exists. Each is given a two-position
designation. Numbers 01 to 99, for example, indicate types of
records. Certain calculations should be done on type 01 but not on
type 02. In this case, the indicator 01 is set when a record of that type
is read and the indicator causes these certain calculations to be
executed. Perhaps specific fields of record type 02 are to be placed in
the output file. The 02 indicator causes that to take place.

C
om

pi
le

r
S

he
et

Fo

rm
 L

in
e

P
ro

g
ra

m

L
in

e
N

o
.

N
o.

N

um
be

r
Id

en
ti

fi
ca

ti
o

n

^
,

s
ι

I
0
0
0
1

0
1

0
2
0

F
C
U
S
T
M
R
S

I
P

F

8
0

R
E
A
D
4
0

S
Y
S
I
P
T

)

\

P
R
O
G
-
1

0
0
0
2

0
1

0
3
0

F
R
E
G
I
S
T
R

D

F

1
3
2

O
F

P
R
I
N
T
E
R
S
Y
S
L
S
T

/

\

P
R
O
G
-
1

0
0
0
3

0
2

0
1
0

I
C
U
S
T
M
R
S

P
A

0
1

J

/

P
R
O
G
-
1

0
0
0
4

0
2

0
2
0

I

2

6
0
C
U
S
T
N
C
L
1

/

/

P
R
O
G
-
1

0
0
0
5

0
2

0
3
0

I

7

2
6

N
A
M
E

)

1
P
R
O
G
-
1

0
0
0
6

0
2

0
4
0

I

2
7

2
Θ

S
T
A
T
E

/

/

P
R
O
G
-
1

0
0
0
7

0
2

0
5
0

I

2
9

3
1

C
I
T
Y

)

P
R
O
G
-
1

0
0
0
Θ

0
2

0
6
0

I

3
2

3
6

I
N
V
N
O

/

P
R
O
G
-
1

0
0
0
9

0
2

0
7
0

I

3
7

3
Θ

M
O
N
T
H

)
I

P
R
O
G
-
1

0
0
1
0

0
2

0
Θ
0

I

3
9

4
0

D
A
Y

/

)

P
R
O
G
-
1

0
0
1
1

0
2

0
9
0

I

4
1

4
6
2
1
N
V
A
M
T

I
/

P
R
O
G
-
1

0
0
1
2

0
3

0
1
0

C

0
1

I
N
V
A
M
T

A
D
D

C
U
S
T
O
T

C
U
S
T
O
T

Θ
2

Ί
 ί

P
R
O
G
-
1

0
0
1
3

0
3

0
2
0

C
L
1

C
U
S
T
O
T

A
D
D

F
I
Ν
Τ
Ο
Τ

F
I
N
T
O
T

8
2

/

]

P
R
O
G
-
1

0
0
1
4

0
4

0
1
0

O
R
E
G
I
S
T
R

Η

2
0
1

I
P

I

/
P
R
O
G
-
1

0
0
1
5

0
4

0
2
0

Ο

O
R

O
F

/
 (

P
R
O
G
-
1

0
0
1
6

0
4

0
3
0

Ο

U
D
A
T
E

Y

1
0

(

)

P
R
O
G
-
1

0
0
1
7

0
4

0
4
0

Ο

4
5

'
 A

C
C
O
U
N
T
S
'

(

P
R
O
G
-
1

0
0
1
8

0
4

0
5
0

Ο

6
7

'
 R

E
C
E
I
V
A
B
L
E
'

/

]

P
R
O
G
-
1

0
0
1
9

0
4

0
6
0

Ο

8
5

'
R
E
G
I
S
T
E
R
'

I
/

P
R
O
G
-
1

0
0
2
0

0
4

0
7
0

Ο

1
1
0
 '

 P
A
G
E
'

)

(

P
R
O
G
-
1

0
0
2
1

0
4

0
8
0

Ο

P
A
G
E

1
1
5

]

P
R
O
G
-
1

F
ig

.
5.

19

Se
ct

io
n

of
 a

 s
ou

rc
e

lis
t

200 Computer Programming Languages in Practice

C START ^

INITIALIZATION

HEADING AND
DETAIL OUTPUT

CLEAR RECORD
PROCESSING
INDICATORS

EXAMINE TYPE
AND SET

INDICATOR

DETAIL
CALCULATIONS

CONTROL
BREAK
LOGIC

Fig. 5.20 Object program flowchart

TOTAL
CALCULATIONS

NO / LAST
RECORD

END O F ^
JOB J

After the operations required by a specific indicator are
performed, the indicator is turned off. It is turned on again when
the same conditions exist, such as when the next record of the
same type is read. Indicators can thus be considered as RPG's way
of saying such things as WHILE condition DO statement that the
high-level languages can express directly.

Other Languages, Old and New 201

Now we'll jump down to rectangle 3, the READ RECORD in
Fig. 5.20, and move to the main logic of the program. A record is
read from an input file and examined to determine its type. A
specific record identifying indicator is set as the result of this
examination. Thus the record has been identified and the program
can execute the steps the programmer has specified for this record
type.

If the record is the same type as the previous record and is thus
to be processed in the same manner, there is no control break and
the logic proceeds to the detail calculations (5) and detail output
steps (1). A new cycle then begins with the reading of the next
record to be processed. This flow continues until the last record is
processed or a control break is indicated.

A control break in RPG means that the programmer has
specified that certain fields are to be compared with the same fields
of the previous record. When RPG finds that the records differ,
certain action specified by the programmer is to be taken. This
involves some type of activity by the 'total' logic, which is shown
on the right side of the flow-chart.

There are two basic events that cause the total logic to be
executed. We discussed one, the control break; the other is the last
record indicator. Action taken by the total logic differs slightly
depending upon which event caused it.

In the case of a control break, the total logic executes the total
calculations and output steps specified by the programmer for that
type of control break. These steps complete the processing for all
records of the type being handled prior to the detection of the
difference in the records—prior to the control break in other
words. After the total logic is executed, the program moves on to
the detail logic to process the record in which the difference was
detected, the first of a new group.

A last record indicator also causes the total logic to be executed.
However, the program does not go on to the detail logic because
the detail calculation and output lines for the last record have
already been executed. Instead, the program moves to the end of
the job.

Before we close this discussion of an RPG object program we
must make clear that the terms 'detail time' and 'total time' are
significant and the reader should keep their meaning in mind while
going through the rest of this section. 'Detail time' is basically
blocks 1 and 5, while 'total time' is blocks 7 and 8. Later, when we
discuss lines of instructions given in the specification forms, we see

202 Computer Programming Languages in Practice

that some are labelled so as to be executed only during total time
or only during detail time. These terms are thus important to
anyone wishing to develop a good understanding of RPG.

Naming Conventions

There are two basic units that must be named in RPG: (1) files and
(2) data items, which include tables, arrays, and fields. Names given
to files may be up to eight characters long, although only the first
seven are used by many compilers. Characters permitted in a file
name vary slightly with the system.

Field names are limited to six positions, as are table and array
names. And again there are slight differences in the naming rules
from one implementation to another.

Table and array names differ somewhat from field names. The
first three characters of a table name must always be T A B , ' but
the remaining characters may be any letter or number.

Control Card Specifications

This single-line specification, which differs significantly from one
system to another, is printed on the same form as the file
description specifications. Like the Identification Division in
COBOL, the control card specifications in RPG provide only
limited information, including program name. Many of the entries
take on a standard value if they are not provided.

File Description Specifications

Printed on the same form as the control card specifications are the
file description specifications, which list files used by the program
and describe their characteristics. We'll concentrate on the most
important file characteristics, however, leaving the details to RPG
reference books.

Figure 5.21 shows a section of the F form. On the left is the line
number entry, which is consecutive within each page but not
between pages. The page number itself, which occupies columns 1
and 2, is usually provided at the top of each form. Next is the form
type, which is preprinted.

F
ig

.
5.

21

F
ile

 d
es

cr
ip

tio
n

de
ta

ils

204 Computer Programming Languages in Practice

File name, MYFILE in this case, occupies the next few columns.
A single letter for file type comes next. We've entered I for input
here. Another letter goes in the next column to describe how the
file is used: Ρ (primary), S (secondary), C (chain), D (demand),
etc.

Skipping to column 19 we enter an F to point out that records in
this file are fixed length, and then we state the record length in
columns 24 through 27.

The file thus described is to be read first (primary) and the
program can expect to find that all records are 128 bytes long.

Input Specifications

Readers who remember COBOL's Data Division should find the
appearance and content of the RPG input specifications form
somewhat familiar. It defines the format of the records that make
up each input data file, giving field name, location, and size. It also
specifies whether a field is numeric or alphanumeric.

The use of indicators to select the processing to be performed on
each record is new, however. Also being encountered for the first
time is the possibility that a file may hold more than one record
type. A substantial part of the input specifications form is allocated
to information RPG needs to identify records of different types
and to check their sequence.

First to appear in the specifications is the name of the file whose
contents are to be described. It appears in columns 7 through 14
and is the same as that given in the file specifications. The file
name is entered on only one line, although the input specifications
for a file may occupy many lines. Of course, each file must be fully
described before the next file name appears.

Many of the most important columns in the input specifications
form are shown in Fig. 5.22. The input file MYFILE is named
first. Then we have entered A A to show that there is no specified
sequence in which the records must appear; they are all the same
in this file.

Next comes the number of the indicator that will be turned on
when a record from this file is read. Indicator 01 thus signals the
program that the fields defined on the right side of the form are
available for processing.

Since the name, size, and location of each field is given, the
program knows exactly where each field is. Column 57 defines field

F
ig

.
5.

22

R
ec

or
d

de
sc

ri
pt

io
n

de
ta

ils

206 Computer Programming Languages in Practice

type. Fields are alphanumeric unless a number appears in this
column.

Since all the records in this file are identical, no entries are
needed in columns 21 through 41. Let's assume though that the
first record was a label and, although it was 128 bytes long like the
others, it had to be recognized and handled in a different way. The
label record would thus have a different indicator number. That
indicator would be turned on only when specific characters were
recognized in the record read from MYFILE. The distinguishing
characters and the positions they occupy are stated in columns 21
through 41, and then the fields of the label record are identified in
the same manner described above.

Perhaps the label record is always first. In this case, the
sequence columns would state that the label record is first and that
the data records are second and all following records read from
this file.

Relationship Between Files

What establishes the order in which input files are read? This
question quickly arises when we discuss the file description and
input specifications. It is the input specifications that defines the
order. The first file named on the I form is considered to be the
primary file, and it is read first. All other files named are secondary
files, and each is read in the order in which the name appears on
the I form. Each file is read at one record per cycle of the object
program.

With respect to output files, the order of data output is
established by the output specifications. This is subject to
conditioning indicators and a certain instruction (EXCPT) in the
calculation specifications.

There are some special arrangements that may be made for
reading input files, however. Included are demand files, chained
files, use of the FORCE instruction, and the matching records
feature. Each of these processes is fairly complex, and they will
have to be left to RPG reference books.

Arrays and Tables

RPG's way of handling tables and arrays is somewhat different
from the methods used by the languages we've studied so far. Up

Other Languages, Old and New 207

to now, we've thought of an array as being a table. In RPG,
however, arrays and tables are distinctly different.

Let's go into the description of an array first because it is similar
to the arrays used in other languages. RPG allows only one-
dimensional arrays.

An array name consists of up to six characters. Each element in
the array is then numbered and is selected in the following
manner: Array name, element number. For example, the entry
PYRT, 3 would select the third element in the array named PYRT
to be acted on. The element number is called the array index.

Tables are handled much differently. A table is a list and a table
by itself is of limited value. We might have a table of employee
names, another of part numbers, and still a third of part costs. Each
table can be displayed, printed, and updated, so if all we're inter-
ested in is a current list, a table by itself satisfies our requirements.

On the other hand, tables can be paired with one another to
perform more useful functions. Product part number might be
paired with the price of the product, for example, to form two
lengthy lists, one holding part numbers and the second holding the
price of that part. Of course, the related information must be in
corresponding positions. If the part number for Toaster E52A75 is
in the twenty-seventh position of the first table, then the price of the
toaster must be in the twenty-seventh position of the second table.
In RPG, this is done at the time of data entry through the method of
naming two tables and alternating the entries in the form: part
number, part cost, part number, part cost, etc.

Table names always begin with the characters TAB. These
characters distinguish tables from arrays. Both tables and arrays
are described on the file extension specifications form, which we
haven't covered in this book, and this form established the
relationship between two tables as well.

Calculation Specifications

A good way to start a discussion of the calculation specifications
is to examine the 'core' of the form, columns 18 to 42, which is
organized into operation and operand fields much like an assembly
language coding form. (Fig. 5.23 shows this.) Factor 1 and factor 2
are operand areas, and the operation code occupies the operation
field. Later in this section we'll discuss some of the instructions
that may be entered here.

208 Computer Programming Languages in Practice

There are two other major areas on the calculation form.
Conditioning indicators occupy most of the left side. When an
indicator listed here is active, the related operation line is
performed. This is the basic control device that determines
whether or not a line in the calculation specifications is executed.

On the right side are listed the indicators that are to be
controlled by the action of a line when that line is executed. In this
manner, the results of certain operations can be recorded and later
acted upon.

Now we can examine the calculation specifications form in
detail. Let's use the simple example in Fig. 5.23, which shows one
line. At the left we have the indicators that must be on to allow this
instruction to be performed. Nothing is entered in columns 7 and
8, so this is a detail line. Indicator 01 is the only condition
required.

When indicator 01 comes on then, the instruction MULT
(multiply) is executed. The fields named in factor 1 and 2 were
defined the input specifications, so the program knows their
location, type, and size. After multiplication, the product is placed
in the result field, and its type and size are defined on the
calculation specifications. (Note that column 53 has an H in it; this
means half adjust, 'round' in other words.)

RPG offers many instructions for use in the calculation
specifications. We won't go into the details of each, but we will
briefly describe some.

Most of the instructions in the arithmetic group are easy to
understand. They operate on factor 1, factor 2, the result field, and
indicators, and naturally the instruction name is placed in the
operation field. Some of the instructions in this group are:

ADD Adds factor 2 to factor 1 ; places the sum in the result field.
COMP (Compare) Compares factor 1 and factor 2; sets

indicator(s) specified to show results.
DIV (Divide) Divides factor 1 by factor 2; places quotient in the

result field.
MULT (Multiply) Multiplies factor 1 by factor 2; places the

product in the result field.
MVR (Move Remainder) Given immediately after DIV, moves

the remainder into the result field.
SQRT (Square Root) Takes the square root of factor 2 and

places it in result field.

F
ig

.
5.

23
 Λ

 s
am

pl
e

ca
lc

ul
at

io
n

lin
e

210 Computer Programming Languages in Practice

SUB (Substract) Subtracts factor 2 from factor 1, places the
difference in the result field.

Next, we have the Lookup (LOKUP) instruction whose purpose is
to find an entry in a specific table or array. Factor 2 holds the name
of the table or array involved, while factor 1 holds the search
information, or argument. For searches involving pairs of tables,
the result field holds the name of the second table in the pair.

A limited number of instructions appear in the branches and
subroutines group. GOTO is available, as is the ability to create
subroutines and link to them.

A subroutine is called by an EXSR (Executive Subroutine)
statement; the name of the subroutine is given in factor 2. At the
end of the subroutine, control returns to the statement following
the EXSR instruction that called it into action.

We have eight instructions in the program control group. Since
RPG has a fixed program logic, instructions that force inputs or
outputs override the basic logic and are thought of as program
control instructions.

The STOP instruction causes the program to halt immediately
and to display a two-character code supplied in factor 2. It is not
the normal way in which the program stops so the 'stop code' is
displayed.

Next we'll deal with three instructions that cause reading to take
place; they override or supplement the basic logic of RPG.
FORCE selects a specific file from which the record used on the
next cycle will be read. READ causes a record from a demand file
to be made available for processing immediately. And, last,
CHAIN retrieves chained records at calculation time.

Now we'll discuss the instructions that produce outputs. There
are three of these: EXCPT, DUMP, and DUMPF. The purpose of
the EXCPT instruction is to permit an output to take place during
calculations, while DUMP and DUMPF are special instructions
that are used to record the RPG object program and selected files.

There are six MOVE instructions. All have the same purpose:
to move data into the result field. They differ in what information
is moved and how it is aligned.

To close our discussion, we have two instructions whose sole
purpose is to control indicators and thus give the programmer
direct control of indicator status. They are SETON/SETOF, which
turn on or off, respectively, the indicator listed in columns 54
through 59.

Other Languages, Old and New 211

Output Format Specifications

The purpose of this form is to describe the output records and the
conditions under which the output will take place. It is similar in
appearance to the input specifications but there are significant
differences that make a detailed examination necessary. Part of
the form appears in Fig. 5.24. In order to keep related functions
together we'll have to skip around among the columns rather than
discuss them left to right in numerical order.

First to be given is the output file name. This appears in columns
7 through 14; it was related to a specific type of unit (printer, video
terminal, etc.) in the file description specification.

Next, in column 15, is a one-character definition of the record
type. H and D in this column stand for heading record and detail
record, respectively. Both are processed for output at detail time.
Τ means a total record, which is processed during total time, and Ε
designates an exception record, which is processed when the
EXCPT instruction in the calculation specifications is obeyed.

Columns 23 through 31 provide the output indicators, which
state the conditions that must be satisfied before a particular
record or field can be handled for output. The entries and use are
very similar to the conditioning indicator columns in the calcula-
tion specifications.

Next are the names of the fields involved in output. These are
names given in either the input or calculation specifications, or
they may be table names, array names, array entry names, or some
special names.

Column 38, called edit codes, provides a letter or number to
select the editing conventions followed in providing the output.
This would apply to printer and display outputs. (Editing can also
be done by an edit word provided in the 'constant or edit word'
area that we discuss later.)

In our example, we have the format of a detail line laid out.
Each time indicator 01 comes on, the contents of the three fields
named are placed in the output record in the positions given. Since
field size and type are known—it has been defined on either the I
or C forms—only the position of the field in the output record
needs to be shown on the Ο form.

Control of the printer and video terminal screens is provided by
entries in several columns, 17 through 22. Entries in these columns
control line spacing on the printer and move the cursor symbol on
the display screen.

F
ig

.
5.

24

O
ut

pu
t

de
sc

ri
pt

io
n

de
ta

ils

Other Languages, Old and New 213

In most printed reports, the programmer needs to insert
information such as headings that cannot be obtained from the
input records. Special editing of the data fields may also be desired
before they are actually printed. Space for the entry of both titles
and editing symbols is available on the right side of the output
specifications form in columns 45 through 70.

One use of this area is to enter information that is to be
displayed or printed. Up to twenty-four characters framed by
apostrophies—in the form 'CHARACTERS'—may be entered.
When these entries are combined with the ending position stated
in columns 40 through 43, the result is that the characters are placed
in certain locations along a displayed or printed line.

An edit word may also occupy this area. It applies to the related
field given on the same line and gives the specific format for that
field's contents. The place of the decimal point, zero suppression,
etc., can be specified.

An Ideal Application for RPG

A common and important application of RPG is to derive routine
reports from data available in existing files. The calculations
required are limited and the output specifications are often the
largest portion of the program.

Fig. 5.25 shows a small part of a routine project cost report.
Most of the body has been eliminated because it is very difficult to
reproduce large computer printouts in a book this size. Fig. 5.26
does show how the entire report is organized, however.

Product Introduction Costs By Project Number Report Date 06/15/82

Project 015 Computer A Development

Purchase Order Date Project No. Supplier Order Amt.

14639

Τ
02/20/81

Τ
015

Τ
Micro PLST

Τ
2082.19

Τ
X

14688
i

08/03/81
I
015

1
Arrow Elect

χ
1330.21

Field Chosen
For Control Break (£

Total Project 015

Fig. 5.25 Section of a sample report

o.oo

I I
0.00 1330.21

$29,811.96 $20,000.00 $9,811.96

214 Computer Programming Languages in Practice

REPORT TITLE
PROJECT 015 - COMPUTER A DEVELOPMENT
COLUMN HEADINGS

REPORT TITLE
PROJECT TITLE - PROJECT Β
COLUMN HEADINGS

DETAIL LINES_

TOTALS FOR PROJECT Β

REPORT TITLE
PROJECT TITLE - PROJECT C
COLUMN HEADINGS

DETAIL LINES_

TOTALS FOR PROJECT C

TOTALS FOR ALL PROJECTS

1ST PAGE COMPLETELY FILLED.
NORMAL OVERFLOW TO NEXT PAGE

. REPORT TITLE
PROJECT 015 - COMPUTER A DEVELOPMENT.

*. COLUMN HEADINGS

nFTAII 1 INFS

CONTROL *

BREAK \
J ^ - ^ T O T A L S FOR PROJECT A

•

2ND PAGE ENDS SHORT BECAUSE
OF CONTROL BREAK FOR NEW PROJECT.
TOTALS FOR PROJECT A , THEN
FORCE OVERFLOW TO NEXT PAGE.

3RD PAGE ENDS SHORT BECAUSE
OF CONTROL BREAK FOR NEW PROJECT.
TOTALS FOR PROJECT Β, THEN
FORCE OVERFLOW TO NEXT PAGE.

4TH PAGE ENDS SHORT BECAUSE
OF CONTROL BREAK FOR NEW PROJECT.
TOTALS FOR PROJECT C .THEN
TOTALS FOR ALL PROJECTS TO
END REPORT

Fig. 5.26 Organization of a sample report

Our only objective in analysing this report is to show examples
of things a programmer must consider; we are not writing the
program itself. A reader should be able to relate these examples to
entries in the specification forms, however, and have a general
idea how we would go about organizing a program.

The first thing to be printed is the report title, which in this case
is to be printed at the top of every page. Therefore, the report title
Product Introduction Costs by Project Number (item 1 on Figure

Other Languages, Old and New 215

5.25) and the date should appear on the output specification. And
the printing of these items should be conditioned by the IP (first
page) and OF (page overflow) indicators.

Next to be considered are divisions within the report. Project
numbers (item 2) determine the boundaries of these divisions, so
the project number field should be used as a control break. It
would set a level indicator.

Before we reach the body of the report we must print project
title and column headings. Column headings remain the same for
every sheet, so these would be handled in the same way as the
report title.

The project title must also be printed at the top of each page,
but its content depends upon the specific project being processed
and must change when the project changes. Handling of the
project title would depend upon where the information is
available. It might be a label record in the file of project costs, it
might be an entry in the output specification form, or it might be a
small input file on its own. In the first case, the label could be
assigned a record identifier (01-99) and the characters by which it
could be recognized entered on the input specifications. When that
label was read, it would condition an output line that prints part or
all of the label to provide the project title.

In the second case, the line to be printed would be written on
the output specification and its printing conditioned by up to three
indicators. Of course, the indicators would select only one project
title, based upon which projects had already been processed.

Last, a file of project labels might be provided on an input file
and read as needed. A record indicator would then condition the
output.

Next comes the body of the report. It is based upon six fields of
each record in an existing file, which provide purchase order
number, date of the order, the project number, supplier name,
amount of the order, and payments made. The last field of the
report, Balance, is to be calculated for each detail line by the RPG
program. Of course, these fields would bear names compatible
with the RPG rules while they are handled internally.

For the purpose of this explanation, we'll assume that the input
file Project Costs is in order by project number. The only output
file is Project Costs Report. Again, both the input and output files
would bear RPG names for internal use.

When the first record is read and the first project number
encountered, the printed output for the project title is produced.

216 Computer Programming Languages in Practice

CP/M—AN OPERATING SYSTEM YOU MAY HEAR
ABOUT

Most operating systems are 'silent partners' of the application
programs, but one called CP/M has become well known among
the users of small business and personal computers. Therefore,
we've included a brief description of CP/M in this section.

An operating system ties things together. It gets the computer
started, loads programs, manages storage space, links programs to
one another, and handles the details of input/output operations.
These are typical functions. Some systems do less and others
more.

Six fields of each record are moved to the output file. This is
initiated by a record type indicator, and the same indicator should
cause a calculation to take place. Payments should be subtracted
from order amount and the balance produced. Then the balance
field should be printed. A running total of amount, payment, and
balance must be kept, so calculations must be provided for those
as well.

The input-output cycle is repeated for every record read, and
the detail lines are printed. Then the project number changes,
producing a control break and turning on a level indicator. At that
point, totals for the project must be prepared. A line giving a title
to the totals and the totals themselves must be printed after a
double space on the printer. So both calculations and outputs are
required at the control break, and a double space is needed before
first printing is done.

At each control break, which indicates the beginning of a new
project, the calculations required to prepare the totals for the
previous project are performed. The totals and the accompanying
headings (item 3) are then printed.

The format of this report requires that each project begin on a
new page, so the control break must, in addition to printing
project totals, force the page overflow in order to move the paper
to the top of the next page.

At the end of the last record for the last project, totals for the
last project must be printed. Then totals for all projects must be
calculated and printed. Logically, this action would be conditioned
by the last record indicator.

Other Languages, Old and New 217

OUTSIDE UNITS UNIQUE
TO A SPECIFIC COMPUTER
SYSTEM

THE VARIABLE
PORTION OF CP/M

THE FIXED PORTION
OF CP/M

THE
MICRO-

PROCESSOR
8 0 8 0 / 8 0 8 5

Fig. 5.27 The fixed and variable parts of CP/M

Of course, the operating system is itself a program. CP/M means
'Control Program/Monitor.' One trade magazine estimates that as
of mid-1981 there were about 200,000 installations of CP/M. This
covered over 3,000 different computer and peripheral equipment
arrangements. These are certainly large numbers, and they indicate
how popular microcomputers have become. Inexpensive micro-
processor chips, semiconductor memories, and floppy disks are
three primary reasons for their popularity.

The microprocessor family for which CP/M was developed is the
Intel 8080 and 8085 group. It also applies to the Zilog Z-80
processor.

Computers based on these microprocessor chips vary consider-
ably. CP/M is arranged to handle the differences; with one portion
of the system remaining the same regardless of the machine on
which it is used, and a second section being custom-made to fit a

218 Computer Programming Languages in Practice

specific computer arrangment. CP/M consists of a fixed portion
and a variable portion. When an implementor applies CP/M to a
certain computer, he prepares the variable portion. This is
illustrated in Fig. 5.27.

CP/M is supplied typically on diskette and bears a version
number like 1.4 or 2.2. A third digit, related to the computer type,
is often added, in the form: 1.42. The first digit is the overall
version number, the second indicates a certain revision level
within the overall version, and the last digit shows variations of
CP/M for a specific machine.

As a first step in getting started, the computer user places the
CP/M diskette in his machine and turns power on. A loading
program is then automatically moved from the diskette into the
computer and executed. In turn, the loader transfers CP/M from
the diskette to the computer and starts its execution. 'Initializa-
tion,' which means to establish the original operating conditions,
then takes place.

The user is first aware that CP/M has taken control of the
machine when the operating system display shown in Fig. 5.28
appears. At this point, the computer is ready to use. A 'ready
prompt,' the Ά > ' shown in the figure, signals this.

6 4 K C P / M Version 2 .21
Copyright 1979 by Digital Research
A>i

V J
Fig. 5.28 The CP/M display

'Ready' means that CP/M can accept a command from the user.
These vary somewhat from one machine to the next, but typical
commands are those that call utility programs or programming
systems into action.

Certain commands are standard. An example is DIRx:, which
acquires a list, a directory, of all the files on the specified disk
number (x) and displays it on the screen.

If the user wishes to call a programming system into action, he
types in the name of that system in response to the 'ready prompt.'

Other Languages, Old and New 219

SELF-TEST FOR CHAPTER 5

1. Describe the coordinate system used to organize a display
screen for the construction of graphics.

2. Briefly describe what the five following graphics statements
in our sample language do:
COLOR, PAINT, DRAW, LINE, PUT.

3. What does the acronym FORTRAN mean, and what are full
FORTRAN and subset FORTRAN?

4. How are comment lines identified in FORTRAN source
statements?

5. FORTRAN relational operators are different than those in
other languages. Write the relational operators, for 'equal'
and 'equal or greater than.'

6. How is an assignment statement written in FORTRAN?
7. Compose a statement in FORTRAN to read three variables

(A,B,C) from unit 5 and use the format in line 360.
8. FORTRAN has two very unusual rules concerning the

names used for integer variables and variables that are real
data (having decimal places). What are they?

The command 'BASIC,' for instance, brings in the BASIC system.
This allows programs to be written in BASIC, any previously
written programs to be run, and any of the BASIC system
commands to be executed. In other words, it puts BASIC in
control of the computer, under supervision of CP/M.

How to get back to CP/M is the next question, and this is done
rather simply. When the CONTROL and C keys are depressed
simultaneously, CP/M returns the ready prompt to the screen,
showing that it is again ready to accept a command and that the
BASIC system, for example, is no longer active.

Why should a computer user or programmer be concerned by
whether he will be using CP/M or some other operating system? Its
popularity is one very important reason. Since its use is wide-
spread, a great many application programs have been prepared for
the computers using it. This makes those programs available to
other computers using CP/M and greatly increases the computer's
value. In the case of the user, he'll have a greater selection of
programs, and the programmer, of course, will have many less that
he has to write.

220 Computer Programming Languages in Practice

9. Name the data types handled by full FORTRAN.
10. FORTRAN also has an unusual way of constructing sub-

routines and user-defined functions. Describe it.
11. RPG, Report Program Generator, is unique among the

languages we've covered. What does this system do?
12. The RPG programmer prepares his source program on

specifications forms. Name the five primary forms.
13. What information is given on the input specifications?
14. There are three unique terms in RPG that are very

important: indicator, detail time, and total time. Describe
what each means.

15. RPG limits the size of names, as most of the old languages
do. How long may a file name be, a field name?

16. What is a control break?
17. What is the purpose of the calculation specifications?
18. Does RPG use the near-standard operator symbols (+ , - , * ,

/) for arithmetic?
19. What is the purpose of the output specifications?
20. If a programmer wishes to enter the actual headings or other

information to be placed in an RPG report, where is this
done?

Glossary of Terms

Absolute Value. The value of a number without regard to its
sign.

Address. A label, name, or number that identifies a location or
unit. A memory address chooses one location to read or store
data. A device address chooses a specific functional unit from all
others of the same type. Used to select one item with which to
operate.

ALGOL. Algorithmic /anguage. An older, general-purpose
programming language used to express problem-solving formulas.
(Algorithm meaning the procedure for the solution of a problem.)

Alphanumeric. A collection of letters and numbers that make up
a character set. Also includes special characters such as punctua-
tion and currency signs.

APL. An abbreviation for a programming /anguage, which was
designed primarily for mathematical uses.

Application Program. The program that applies the computer to
a specific task for which the computer is intended. A program that
causes a computer to print bank statements is an application
program, but a program that detects and isolates computer faults is
not.

Array. A collections of data elements arranged in order. Often
used to mean a table of data or a matrix of data items.

ASCII. American Standard Code for Information Interchange.
A 7- or 8-bit code capable of representing 128 or 256 characters
respectively.

Assembler Program. The program that translates statements
made in a symbolic language by a programmer into the machine-
language program that the computer executes.

Backspace. Associated with magnetic tape units, backspace
means to back up one record and stop.

Backup Copy. A second copy of the same data in case the

222 Computer Programming Languages in Practice

primary copy is destroyed. For example, important information
stored on disks for daily operation may also be stored on magnetic
tapes, but the tapes would be copied onto the disks only if the
original information was lost.

BASIC, beginner's All-purpose Symbolic instruction Code.
Described in Chapter 3, this programming language is widely
used, particularly with small computers.

Batch processing. The handling of data to be processed in
groups of similar items that require the same treatment. Data is
collected and processed in a 'batch.' Contrasted with 'transaction
processing' in which data is handled as it is available.

BCD (Binary Coded Decimal). An arrangement in which a
certain number of bits are intended to be read as a group
representing a single decimal digit. Most often four bits are used to
represent the decimal digit.

Binary Number System. The number system used by computers.
Having only two characters, a 0 and a 1, the binary numbering
system is represented within the machines by circuits that have an
on and an off condition, usually meaning Τ and 'Ο,' respectively.

Bit. The contraction of the words 'binary digii,' but is also used
to mean the position that holds a binary digit, such as bit 5, which
means bit position 5.

Block. Data or storage locations handled as a group. Records
are said to be 'blocked' when they are recorded on tape without
the usual interrecord gap.

Business Applications. Computers and programs devoted to
tasks involved in a typical business, such as accounting, payroll,
and invoicing. Contrasted with engineering or scientific applica-
tions.

Byte. A group of eight bits handled as a unit is the generally
accepted meaning of byte.

Calling. To select a program for execution by stating its name or
symbol. The program size varies from a subroutine to a very large
program.

Centralized Processing. The processing of data by a machine at
one central location. Data may originate at remote locations, be
forwarded to the central machine for processing, and then results
returned. Contrasted with distributed processing in which there
may be many processing stations generally at, or very close to, the
source of the data to be processed.

Character. A character is one of the set of symbols handled by a
computer. Each letter of the alphabet may be included in the

Glossary of Terms 223

character set, as are numerals, punctuation, and special symbols.
There are also control characters included in many character sets;
these cause actions and are not shown on display screens and
printers. Each character in the character set is represented by a
unique binary code.

Character Set. The collection of different characters that a
language or computer is capable of representing. See Character
above.

COBOL—Common Business Oriented Language. Described in
Chapter 4, COBOL is one of the older programming languages.
Designed to be very English-like in its statements, COBOL is
widely used in medium and large business computers.

Codes. Within a computer, a set of binary digits organized so as
to represent higher-level functions or symbols; 101111 might
always be used to represent an 'A,' for example, and 00111010
might be the* operation code for an ADD instruction.

Coding. Means 'writing a program,' by giving the words to
which a computer will respond and placing them in the order
needed to perform a specific task.

Communication Link. The arrangement of equipment needed
to transfer data from one location to another, usually over fairly
long distances.

Compiler. Similar to an assembler program listed earlier, a
compiler program also translates statements made by a program-
mer into machine language. However, a compiler is usually more
powerful than an assembler in that the assembler translates on a
one-for-one basis, one programmer statement for one machine
instruction, but a compiler is capable of translating one program-
mer statement into several machine instructions. In other words,
the compiler can expand the input while an assembler can not.

Constant. A quantity that will be used in a program and that is
unchanging. Some numeric constants may be named and their
values given by the programmer. Some languages have constants
already available. PI, for example, is already defined as 3.14 in
some languages and may be used by inserting PI into an
expression.

Conversational Mode. A computer operating so as to accept
English or 'near English' statements directly from the user,
normally from a keyboard/display unit, and to provide an
immediate response that has meaning to the user without
translation.

CP/M. Control Program/Microprocessor. An operating system

224 Computer Programming Languages in Practice

designed for use with small computers using the 8085 (and related)
microprocessor chips as their base.

CPU. The abbreviation for central processor unit. Is not related
to centralized processing but rather is the name given to the
control unit, arithmetic unit, and often the memory unit of a
computer. It may be very small as in the case of a microcomputer
or very large as in the case of the 'mainframes.'

CRT (Cathode-Ray Tube). The display device used in most
display screens. A vacuum tube that uses an electron beam to
excite an internal coating that glows. A TV picture tube is a CRT.

Cursor. A special indicator placed on a display screen to point
out the character or position that is the subject of attention. If the
display screen and keyboard are being used by the operator to
enter information, the cursor points out the next entry position.

Data Base. Usually a large collection of information maintained
permanently, or semipermanently, on which a computer is to
operate.

Data Item. Most often a field of information; any named unit of
information.

Data Link. A communications link over which computer data is
transferred. This may range from voice-grade telephone lines that
handle data transfer at low rates to radio links capable of very high
rates of transfer.

Debug. To remove the 'bugs' from equipment or programs
during their initial testing. A 'bug' is usually thought of as a design
flaw that prevents the equipment or program from fulfilling its
intended function rather than a malfunction that occurs after the
system has been tested.

Decision Table. A programming design tool that lists alternative
conditions that may arise and the action required for each
condition or a combination of many conditions. Decision tables, or
decision logic tables as they are also called, are often more
effective than flowcharts in portraying the problem.

Decrement. (1) To reduce a quantity by a specific number, or (2)
the number by which the quantity is reduced.

Desk Checking. The checking of program logic at the program-
mer's desk before the source program is entered into the
computer.

Diagnostic Program. A program intended to test computer
equipment and, through a logical process of testing and elimina-
tion, isolate failures to small sections of the machine.

Direct access. Applied to access to data, direct access means that

Glossary of Terms 225

specific data can be reached without reference to previous data.
Contrasted with sequential access in which data must be handled
in sequence until the desired data is reached.

Directory. A list of items available. A file directory, for
example, would list all files available and often their location.

Disk pack. A removable disk or disks normally enclosed in a
case.

Diskette. Also called a 'floppy' or flexible disk. A small
magnetic disk based on soft plastic material.

Distributed processing. A computer network in which data is
processed near its origins rather than at a central location. (See
Centralized processing for contrast.)

Dump. Usually means the copying of memory contents to
another storage medium or displaying or printing them for
examination. Dump implies the lack of discrimination among the
data transferred. In other words, copying is not selective.

EBCDIC (Extended Binary Coded Decimal Interchange Code).
A code consisting of eight bits to represent each character.
Commonly used to record and communicate data.

Edit. As in writing, to change the content and form of informa-
tion. Data elements may be reorganized, eliminated, or converted
to a different style of presentation by editing tools available.

End of File. A special mark recorded in storage media that
designates the end of a group of records that is to be considered a
file. Abbreviated EOF.

Executable. Applied to programs, executable means a program
that can be performed by the computer rather than a source
program that must be assembled or completed before it can be
executed. An executable program is usually called an Object'
program. Applied to instructions (statements), it means an active
instruction that performs the logic of the program rather than one
that provides information needed by the program.

Execution time. The most common meaning is the time required
for a computer to perform an instruction. A second meaning is a
substitute for 'run-time' or 'object run-time,' meaning the time
during which a program is being executed to carry out its intended
functions.

Executive. The name usually given to a program whose function
is to control the jobs to be performed and to select the programs
required to perform them. An executive would also manage the
storage media as required to provide input data and to store
processed data.

226 Computer Programming Languages in Practice

External Storage. A storage medium outside the computer
memory. Tape units and diskette and disk drive are examples of
external storage.

File. A group of records organized so as to be treated as a unit.
All the records in a file hold information that is of the same general
type.

Firmware. A program of data pattern stored in a device that
cannot be changed, usually a ROM, during normal operation of
the computer. Some small computers provide their operating
systems in firmware to avoid their loss or alteration.

FORTRAN, FORmula TRANslator. A language originally
designed for engineering and scientific use. Described in Chapter
6.

Graphics. The figures other than alphanumeric characters
shown on a screen. Computers with the ability to generate
graphics in colour are now readily available at low cost.

Header. Identifying or labelling information that precedes the
data.

High-level languages. Those near-English languages, such as
Pascal, COBOL, and BASIC.

Hollerith Code. A code used in punched cards in which one
column of twelve positions each is read as a unit. The combination
of punches in these twelve positions is the Hollerith code. Named
after Dr. Herman Hollerith.

Identifier. The name given to data or a procedure to distinguish
it from all others. Programming systems all have very stringent
rules concerning how identifiers are composed.

Impact Printer. A printer that forms characters by contact
between the paper, ribbon, and character elements.

Increment. (1) To increase a quantity by a specific number, or
(2) the number by which the quantity is increased.

Indexed sequential organization. A file in which records are
accessible in any other regardless of the previous access. A key,
such as social security number, identifies each record. When the
record key is given, that record is read. Records are stored in
order by value of the key.

Initialize. To establish the initial operating conditions in either
equipment or programs.

Interactive. A mode of computer operation in which the user,
most often an operator at a computer terminal, and the computer
exchange inputs and responses, with one bringing forth the other.

Interrupt. A signal used by other computer units to gain the

Glossary of Terms 227

attention of the control unit. Usually produced in response to
important external conditions, an interrupt signal produces a
break in the flow of activities. Action taken in response to the
interrupt varies according to the programs being executed, but the
immediate needs of the external device are normally met before
the control unit returns to the point at which it was interrupted.
Applied to programs, means the stopping of one activity to pause
or to take up a different activity.

Iteration. One performance of a series of steps that are normally
performed more than once.

Interpreter. (1) The series of machine language instructions
needed to carry out one high-level instruction. (2) The system in
which each source statement is converted to machine language
instructions as the program is being executed rather than having
the conversion done all at one time by a compiler before
execution.

Job Control Language. A system of statements used to control
the performance of tasks by a computer. This language links the
operating system and the application programs to determine what
programs are to be performed and in what order.

Key. In access to files and tables, the unique character
combination used to locate a specific record or entry.

Line Printer. A printer in which an entire line of characters is
accumulated and printed during one cycle of the device.

Loop. (1) A series of steps that are intended to be performed
repetitively. (2) one iteration of those steps. Applies to programs,
and means a group of instructions that return to the starting point
and repeat themselves, usually until a certain event takes place to
break the loop.

Low-level languages. Languages in which the instructions are
close to machine-level instructions, often one instruction in a
low-level language produces one machine-language instruction.

Machine language. The binary code for each instruction the
computer can execute. It is used directly by the computer without
translation.

Main Storage. Generally means the memory that is part of the
computer proper, not the storage available in diskettes, disks, and
tape units. (That storage is usually called auxiliary storage.)

Menu. A list of programs or functions presented on the display
screen. The program causing the menu to be shown accepts
operator selections, which are usually made from the keyboard.

Merging. In most programming languages, means the combining

228 Computer Programming Languages in Practice

of files into one file in a certain order.
Microcomputer or Microprocessor. Usually means a computer

on a single integrated circuit chip. Microcomputer most often
refers to an entire computer while microprocessor means only the
CPU. These terms are frequently used interchangeably.

Network. A group of computers and related equipment that are
interconnected, either locally or over long distances.

Nonimpact Printer. A printer that forms characters without
having ribbon/print-head/paper contact. Characters may be
formed by heat, electrical charges, ink spray, or other means.

Object Computer. The computer that executes the object
program, which may not be the same machine that accepted and
compiled the source.

Object Program. A program that is in machine language and is
executed by the computer. It is the 'object' of entering and
assembling source statements and represents the final results of the
process.

Off-line Operation. An operation that is not in the primary flow
of computer activities. For example, data from a magnetic tape
may be printed out while a computer is not engaged in or available
for its primary task. In this case, the computer is doing off-line
printing. Can also mean an operation such as a direct connection
between the tape and printer, which bypasses the computer
completely and is not under computer control. A peripheral unit
that is said to be off line is one that is not immediately accessible to
the computer.

On-line Operation. The opposite of the off-line operation
above, an on-line operation is in the primary flow of computer
activities. When applied to the status of a peripheral unit, it means
that that unit is immediately accessible to the computer.

Operand. Usually considered to be one of two major parts of an
instruction, the operation code being the other. An operand is an
item to be operated upon or is somehow involved in the operation
specified by the operation code. An operand may be a memory
address, a number to be added, a parameter of some type, etc.

Operating System. The set of programs that supervises the
operations of a computer.

Operation Code. A portion of an instruction or control word
that specifies the function that the computer is to perform.
Eventually translated into binary-form machine language, the
operation code may be any one of several high-level forms, when
entered by the programmer.

Glossary of Terms 229

Packing and Packed. The process by which data is changed so as
to occupy less space. In packed decimal, for example, two decimal
digits, each represented by four bits, are placed in one byte (an
eight-bit unit). This connects a code that uses eight bits to
represent characters to a form that uses only half the storage
space.

Parity Checking. As defined in the dictionary, 'parity' has to do
with maintaining equality. Applied to computer use, it means
adding a bit to a unit of information so as to maintain the total
number of Is in that unit always odd or always even, depending
upon which method is chosen. The bit added is called the parity
bit, and it is a way of checking the accuracy of storage or transfer.

Pascal. A general-purpose high-level language.
Peripherals or Peripheral Equipment. Units that support the

computer. Tape units, disk drives, and printers are peripherals;
they do no computing themselves but store and display data.

PLI I Programming Language 1. A general-purpose language
that combines some features of COBOL and FORTRAN. PL/1 is
not one of the most popular languages.

Polling. A scheme in which a central unit chooses one remote
unit after another and exchanges data with each remote unit that
has information ready. Usually associated with a central computer
and many remote terminals.

Program. (1) A collection of computer instructions arranged so
as to cause the computer to perform a specific task. (2) The act of
selecting and placing in the proper order the instructions required.

Protocol. Most often associated with the exchange of data
between two systems separated by considerable distance, protocol
means the rules and conventions that will be followed by each
system during the exchange.

Pseudocode. The technique of writing out the major steps in a
program in a language that is neither English or the statements of
the programming language but which can be converted to
statements without difficulty.

Random or Direct Access. The ability to gain access to any one
storage location among many in an equal amount of time and
effort and not depending upon any previous action. Tape units, for
example, are serial access rather than random access.

Reading. The retrieval of information from some form of
storage.

Read-only Memory. (ROM) A storage unit whose contents
cannot be changed during normal operation. In other words, data

230 Computer Programming Languages in Practice

cannot be written into this memory by the computer; it was placed
there in advance by a special means, and the computer can only
read the memory contents. Read-only memories have the advan-
tage of being very small and requiring a minimum of supporting
circuits.

Real-time Processing. The processing of data from an event
when the event is actually occurring rather than storing the data
for processing later. An example of real-time processing would be
a machine tool being operated by a computer in which the progress
of the tool was sensed by the computer, and directions given by the
computer were based on the tool's progress.

Record. A group of bytes, characters, or words organized and
handled as unit is the narrow definition of 'record' used in the
computer industry. 'Record' is usually applied to the organization
of data on magnetic tapes and disks.

RPG (Report Program Generator). A language intended to
produce reports from data files. RPG is described in Chapter 5.

Scientific Application. The use of a computer to solve scientific
and engineering problems, as opposed to typical business applica-
tions.

Sector. An arc-shaped section of a track on a disk or diskette.
Sequential File. A file organized so that information is accessible

in the sequence in which it was stored. Data is written at the end of
a sequential file.

Software. Very commonly used to mean programs, while
hardware means the equipment, but originally meant the prog-
rams, programming aids, and the documentation associated with
programs.

Source Computer. The computer in which the source program is
entered and compiled.

Source Program. The statements originally entered by the
programmer before they are assembled; compiled; or interpreted.
The program written in the source language.

Structured Programs (Programming). The organization of prog-
rams into clearly defined sections or modules using the three basic
control structures of sequence, selection, and repetition so that
overall program development, testing, and maintenance are
simplified.

Subroutine. A small group of instructions intended to perform
one specific function. Whenever this function is required by a
program, the subroutine is called and executed. This allows
several different programs to use the same subroutine and avoids

Glossary of Terms 231

the need to include these instructions in every program.
Supervisor. Part of the operating system that manages the flow

of jobs and allocation of resources.
Syntax Error. Improper construction of a statement or entry.
Time Sharing. Generally thought of as the sharing of a

large-central computer by several parties, usually from remote
locations, on the basis of having central intervals assigned to each
party. Sometimes the access is based on demand, and in other
cases it is based upon time assignments made in advance.

Translation. The conversion of one form of code to another. For
example, source statements are 'translated' to machine language
by assemblers, compilers, and interpreters. Operation codes are
translated into commands by decoders in the control units, and a
code such as EBCDIC held in storage is translated to ASCII for
transmission to another system.

Variable. A data item whose value is subject to change during
program execution and is therefore named rather than provided in
a literal form.

Volume. A large collection of files, usually a large physical
division such as a reel of magnetic tape.

Word. One of the basic units of information processed by the
computer. Most often, a word is considerably larger than a byte. A
computer may use a sixteen-bit, thirty-two-bit, or forty-eight-bit
word as its basic unit of information.

Writing. The process of placing information in a storage
medium.

Answers

ANSWERS TO THE SELF-TEST FOR CHAPTER 1

1. A computer program is a set of instructions that make a
computer perform a specific task. Although the instructions
may be provided in several programming languages, they are
always converted to machine language before being
executed.

2. Application programs are the programs that cause the
computer to perform useful work. Utility programs support
application programs by performing servicing tasks.
Diagnostic programs detect and isolate computer failures.
Operating systems manage the computer tasks. Programming
systems allow programs to be prepared.

3. An operating system is a control program that provides
services in order to 'tie things together.' It manages the
loading of programs, controls the use of memory, and
schedules jobs.

4. A programmer can control what information is displayed or
printed and its position on the screen or paper.

5. OPEN is a common instruction given when a specific file is to
be made accessible to other instructions such as READ or
WRITE. CLOSE terminates access to a file so that the
READ and WRITE instructions cannot reach the file
contents.

6. Afield is a character or group of characters handled as a unit
and having meaning as a unit. 'Address' may be a field, as
may 'invoice total,' and similar units of information. A
record is generally a group of fields holding information
related to one subject. All the information about one
customer would be held in a customer account record, for
example. A file is made up of records that are related.

Answers to Self-Test for Chapter 1 233

Customer account records would be held in a file named
CUSTOMER ACCOUNTS, for example.

7. A numeric field is used in calculations and may hold only
numbers. Punctuation and related signs may be provided
when the field is displayed or printed, however. An
alphanumeric field may hold any of the characters in the
character set; it is not used in arithmetic.

8. Sequential access allows a record to be reached only after all
the preceding records have been passed. Records are written
only at the end of a file and are read in the sequence in which
they were recorded.

Direct access allows a record to be reached without the
user having to pass through preceding records.

Indexed access allows records to be stored in order by their
key. Any record can be read immediately when the key is
provided, and no preceding records have to be read.

9. A key is a specific field in a record in an indexed sequential
access file. Records are stored in order by the value of this
field. In order to read from this type file, the program
provides a key. The record with the matching key is then
read.

10. To eliminate redundant information, which occupies valu-
able storage space and is costly to update.

11. Preparation of the program specifications, which describe
what the program must do. Design of the program, which
lays out the overall logic by which the program will go about
meeting the specifications. Writing the program in the
language required. This involves selecting and placing in
order all the steps required to fulfill the program design.
Testing the Program first with known information and then in
the system of which it will become a part. Documenting and
releasing the program for all users.

12. A flowchart is used to organize the logic of a program. It
shows in a graphic form the processes and decisions needed
in the program.

13. A decision is being made at that point in the program logic.
14. Decision tables provide a summary of all possible conditions

that may exist at a specific time in a program and show the
action to be taken for each condition.

15. An English or near-English statement of the program logic.
It is used in program design to lay out the functions to be
performed and decisions to be made.

234 Computer Programming Languages in Practice

ANSWERS TO SELF-TEST FOR CHAPTER 2

1. During the entry phase, the program source statements are
provided to the programming system. During the compila-
tion phase, the source statements are processed into a form
that can be executed by the computer. And, during the
execution phase, the program is performed.

2. A high-level language provides instructions that produce
recognizable operations such as OPEN, READ, PRINT,
PEFORM.

3. A compiler is a program that translates the source statements
into the form needed by the run-time system for the
execution phase. It produces an object program and a list of
any errors found in the source program.

4. The source program is the set of source statements provided
by the programmer. A source list is a list of those statements
after they have been entered into the compiler and processed
by the compiler. A source file is the file in which the source
program is stored after it has been entered into the
computer. An object program is the final (finished) program
ready to be executed.

5. A syntax diagram shows how the body of a source statement
may be constructed. It is needed as a guide to construct a
statement correctly in the programming language. A great
many combinations are possible in the construction of most
statements.

6. To show the proper position of the components of each
source statement.

7. Arithmetic operators included +, - , *, /, and **. Relational
operators included: = , Ο , X , > = , and < = . Answers
are: A*B/C, (A**2)**B,A<B, B o A

Operators
+ (Add)

Order
4
3
3
4
2
1

*

/
- (sub)

+ (Make
positive)
— (Make
negative)

1

Answers to Self-Test for Chapter 3 235

9. A one-dimension array has a series of entries in the form of a
list. Each item in the list is chosen by a single subscript. A
two-dimension array has rows and columns, as in a table or
matrix. Each item (element) is identified by a double
subscript (2, 2) that selects an element at the intersection of
the row and column number given.

10. A function is a preprogrammed calculation. When the
functions name is given in an expression, the function is
performed and the result entered into the expression at the
point at which the function name and its argument (the
quantity named within the parentheses following the func-
tion name) appear.

11. 'Evaluated' means that all the components of the expression
have been fully processed (resolved) and that the final result,
whether 'yes' or 'no' or a number, is available.

12. This question could be answered in a variety of ways, but the
greatest effect on the programmer is that he must learn a new
way to write mathematical expressions.

13. A procedure is a section of an overall program that is
handled as a unit. It is named in some manner and has a
definite beginning and end. A procedure is 'called' by the
overall program when the specific task the procedure
performs is needed.

14. Structured programming allows the parts of a program to be
clearly identified and separated. This makes it easier to write
a program in sections and to test and maintain it.

15. They make it possible to use structured programming.
Without these control structures, the programmer must
construct his own structures to obtain the same results.

16. The programmer is responsible for arranging for the return;
it is not automatic. Of course, the return can be provided by
another GOTO instruction.

ANSWERS TO SELF-TEST FOR CHAPTER 3

1. c. A3. String variables are named with a letter (A-Z)
followed by a $.

2. Numeric variables may have one or two-character names.
The first character must be a letter (A-Z) and the second
character, if used, must be a number.

236 Computer Programming Languages in Practice

3. String constants are enclosed in quotation marks; numeric
constants are not.

4. a. Establishes an numeric array, named A, of 10 rows and 25
columns.

b. Adds A and B, divides the total by 2, and puts the result in
numeric variable S.

c. Prints the words PROGRAM COMPLETE, beginning at
wherever the current printing position is. Then goes to the
beginning of the next line.

d. Enters HARRIS, GILMAN, and WILLIAMS in a string
data table. Enters 70, 90 and 75 in a numeric data table.

5. a. Six.
b. It is labelled as if it were a numeric variable; it is a string

variable and should be named E$.
c. GET #2 31,H1
d. PUT #2 36,G

6. beginner's All-purpose Symbolic /nstruction Code.
7. The symbols used to indicate the arithmetic operations to be

performed: 4- means add or make positive, - means subtract
or make negative, * means multiply, / means divide, Î or **
means raise to the specified power.

8. The symbols used to show relationships between expressions
that are to be tested.

9. All are. A string constant can include any character,
including numbers, but string constants are not processed as
if they have numeric value.

10. It establishes the format (and sometimes part of the
contents) for data that is variable and can be set up only once
for many items to be handled.

11. BASIC form:
a. LET A = (B*H)/2
b. Ρ = X** 4- 78*X 4- A
c. C = SQR(3*X 4 N)
d. A = (T 4- I)/M

12. To establish a new file of data and allow computer access to
that file.

To allow computer access to an existing file.
13. DATA "CHAIR", 99.95, 3, "CLIPBOARD", 2.50, 14,

"PAPER PAD", 0.90, 40
14. READ T$,P,Q
15. DISPLAY (or PRINT) "TYPE OF PRODUCT", "PRICE

EA.", "QUANTITY"

Answers to Self-Test for Chapter 4 237

16. INPUT T$,P,Q
17. PRINT #1 'TYPE OF PRODUCT", "PRICE EA.",

"QUANTITY"
18. PRINT #1 T$,P,Q
19. LET Bl = Β - C
20. LET Τ = L*W*D
21. F O R X = 1 TO 10
22. IF A > = 40 THEN 500
23. GOSUB 700
24. A = 10, Β = 20, and C = 30 after the READ statement. A is

squared first, placing 100 in the expression, Β is multiplied by
3 next, placing 60 in the expression. Then Β (60) is added to
A (100) to total 160. Finally, C (30) is subtracted, producing
a factor of 130 to be assigned to X.

25. Three variables (Χ,Υ,Ζ) are to be read from the numeric
data table but only two (5,10) are provided by the DATA
statement.

The relationship in line 30 is true if A is greater than 3, but
the branch to line 60 prints the opposite message. The
messages are reversed or the logic in line 20 is wrong.

There is an error in the expression in line 20. The
multiplication operator is missing from 2Z.

The FOR-NEXT Loop A crosses over the FOR/NEXT
Loop B. B's action must be within A's, so lines 50 and 60
have to be reversed to make this a legal use of nested loops.

ANSWERS TO SELF-TEST FOR CHAPTER 4

1. Identification provides the program name and information
concerning the program origin. Environment relates the
program to the equipment and system it will be working
with. Data defines and describes all data the program will
process, including the forms of inputs and outputs. Proce-
dure provides the executable statements that carry out the
logic of the program.

2. Column 7 defines the type of statement on a specific line, as
follows: A blank indicates a normal statement, a hyphen (-)
the continuation of a word or number from the previous line,
and an asterisk (*) means the line is only a comment.

238 Computer Programming Languages in Practice

3. Invalid identifiers are:
TOTAL OF FIRST includes blanks
CUSTOMER'S ACCOUNT includes punctuation (apos-
trophe)
ACCEPT uses a reserved word.
4TH YEAR STUDENT AVG includes blanks.

4. 30 characters.
5. A Only alphabetic characters may appear in the position.

X Alphanumeric. Any character in the character set may
appear in the position.
9 Numeric. Only numbers may appear in the position.

6. 01 CUST-ORDER
03 ORDER-NO PIC X(10)
03 FILLER PIC X(2)
03 CUST-NAME PIC X(28)
03 ORD-DATE PIC X(6)
03 TOT-AMT PIC 999V99
03 FILLER PIC X(9)

7. DISPLAY 'ENTER EMPLOYEE NAME'.
8. 01 An overall data group, such as a record or a table.

02-49 Items within a data group and subsequent subdivisions
of the data.
77 An independent data item, which is not part of a data
group.

9. a. PIC 99V99 A four-place number with two decimal places.
b. PIC X(7) A seven-place field that may hold any charac-

ters.
c. PIC A(20) An alphabetic field (letters only) of twenty

positions.
d. PIC 999 A three-place integer.
e. PIC XXXXX A five-place alphanumeric field.
f. PIC 9(5)V9(2) A seven-place number with five integer

positions and two decimal positions.
10. PIC 999 becomes PIC S999.
11. To move either a literal or the contents of a variable into

another variable. Often used to construct output records and
printer or display lines. (MOVE CUST-TOTAL TO BAL-
DUE.)

12. a. ADD DEPOSIT TO BALANCE.
b. ADD DEPOSIT TO BALANCE GIVING NEW-

BALANCE.
c. SUBTRACT PAYMENT FROM AMT-DUE.

Answers to Self-Test for Chapter 4 239

d. MULTIPLY AMT-BORROWED BY INT-RATE GIV-
ING INT-CHGS ROUNDED.

e. ADD INT-CHGS TO AMT-BORROWED GIVING
TOTAL-DUE.

f. DIVIDE TOTAL-DUE BY REPAY-PERIOD GIVING
MONTHLY-PAYMENT ROUNDED.

g. COMPUTE A = B*H/2.
13. a. Words that may be used to improve the clarity of a

statement but which are optional.
b. Words that are mandatory if a specific statement and

feature is to be used.
c. Square brackets show optional material.
d. Braces show a choice that must be made.
e. Lower case words are the generic names for variables,

records, literals, etc.
f. Ellipsis points show that the previous option may be

repeated.
14. IS NOT EQUAL TO is the same as NOT =. IS GREATER

THAN is the same as > . IS NOT LESS THAN is the same as
NOT < .

15. Add, subtract, multiply, divide, and raise to a power are the
actions of + , - , * , /, and **, respectively. First applied: **.
Second applied: * and /. Last applied: + and - .

16. ACCEPT and DISPLAY are most often used for low-
volume inputs and outputs, respectively. Installations differ,
but ACCEPT could be used for keyboard or card reader
inputs while DISPLAY could be applied to the display
screen or printer. READ and WRITE, on the other hand,
would be used for high-volume inputs and outputs, which
could include some card readers and printers as well as tape
and disk files.

17. GO TO, PERFORM, and IF/ELSE.
18. IF CURRENT-BALANCE IS LESS THAN MIN-ACC-

BAL DISPLAY 'BALANCE TOO LOW.' ELSE NEXT
SENTENCE.

19. The value of the data item whose name appears in the
DEPENDING ON phrase is determined and it chooses one
of the procedures listed in the GO TO statement. If the data
item value is two, for example, it causes the GO TO
statement to branch to the second procedure listed.

20. PERFORM FINISH-CHECK-PAYMENTS.
21. PERFORM SALESMAN-COMM-CALC 7 TIMES.

240 Computer Programming Languages in Practice

ANSWERS TO SELF-TEST FOR CHAPTER 5

1. The display area is organized into a grid pattern. Any point
on the grid can be selected by giving the number of a column
(X coordinate) and a row (Y coordinate). The point chosen
is at the intersection of the selected row and column.
Movement is described in terms of direction and number of
grid squares to be moved, such as RIGHT 10.

2. COLOR chooses the background colour and a palette of
colours from which foreground graphics may be constructed.
PAINT chooses the colour to fill a specific area, such as a
square or triangle. DRAW constructs a shape; part of the
statement is a list of movements necessary to draw the shape.
LINE produces a straight line from the current point to a
point specified in the statement. It can also draw a line
between any two points specified. PUT acquires a rectangle
display section that was stored and places it on the screen at
the position specified.

3. The acronym FORTRAN is composed from sections of the
words 'formula' and translator.' Full FORTRAN is the
language incorporating all features set out in the 1977
standard. Subset FORTRAN, while fully compatible with

22. The environment division names each file, assigns it to a
specific unit, and declares the access method. In the data
division, the file is further described, giving the format of
records used.

23. ENVIRONMENT DIVISION, INPUT-OUTPUT SEC-
TION, and FILE-CONTROL paragraph.

24. DATA DIVISION, FILE SECTION, and FD (file descrip-
tion) paragraph.

25. OPEN, READ, CLOSE.
26. One record is read; one record is written.
27. OPEN INPUT FORMER-EMPLOYEES. OPEN I-O

FORMER-EMPLOYEES.
28. Provided in the data division, loaded from an external

source, and results from computations.
29. OCCURS clause. DATA DIVISION, WORKING-

STORAGE SECTION, description entry paragraphs.

Answers to Self-Test for Chapter 5 241

full FORTRAN, lacks certain features such as complex data
types.

4. An asterisk in column 1 of the coding form.
5. .EQ. means equal, and .GE. means equal or greater than.
6. It appears: variable = expression and is thus like BASIC and

COBOL.
7. READ (5.360) A,B,C
8. Names for integer variables must begin with I, J, K, L, M, or

Ν unless declared otherwise, while real data names can begin
only with A to Η and Ο to Ζ unless declared otherwise.

9. Integer, real, character, double precision, complex, logical.
10. Subroutines and functions are handled as separate programs,

entered and compiled individually outside the main program.
11. It produces programs that are primarily used to generate

reports from data held in existing files, although more
powerful programs can be prepared by RPG.

12. Control card specifications, file description specifications,
input specifications, calculation specifications, and output
format specifications.

13. Primarily the description of records in each input file handled
by the program.

14. An indicator is an on/off device that shows what conditions
exist. Indicators are each identified by a two-character code.
Detail time is the time during which the sections of the
program dealing with the detailed lines of data are per-
formed. Total time is the time during which the 'total' logic
sections of the program are performed to provide total and
subtotal lines in a report.

15. File names may be eight characters, but only seven are used
in some cases. Field names, table names, and array names
(including references to elements in arrays) may be only six
characters long.

16. A condition in which a record is read that differs from the
previous record in ways specified by the programmer. Special
action involving the 'total' logic must be taken.

17. It provides the source statements involved in the arithmetic
and related data manipulation to be done.

18. No. It uses ADD, SUB, MULT, and DIV, which is similar to
low-level languages.

19. It describes the format of the output records.
20. On the right side of the output specifications. Editing words

also appear in this area.

Index

ACCEPT, 133-4
Access methods, 13-14
ADD, 125-30
ADVANCING, 144
Alphanumeric fields, 10-11
AND, 65-6, 136
ANSI standard, 54, 58,160
Application programs, 2
Arithmetic operators, 36

BASIC, 62-3
COBOL, 127-33
RPG, 208-10

Arrays, 39-40
BASIC, 59, 66-8,78-80
RPG, 208-10
see also Tables

ASCII code, 10

BASIC, 54-109
graphics keywords, 171-85
relational operators, 36
reserved words, 32

BEEP, 78
Binary code, 9
Branching, 51

BASIC, 94-100
COBOL, 135-8

Buffers, 83
Bugs, 30

Calculation specifications, 207-10
CALL, 158
Character set, 9
Character strings, 155

CIRCLE, 178
CLOSE

BASIC, 82
COBOL, 141-2,145-6

COBOL, 110-70
reserved words, 32
relational operators, 36

Codes, binary, 9-10
Coding forms, 33-5,114-16,186-7
COLOR, 176-7
Compiler, 28-31
Components, languages, 29-53
COMPUTE, 132-3
Concatenation, 66
Conditions, 8, 46-50

BASIC, 66, 94-100
COBOL, 135-8
RPG, 200

Constants, 38, 59-60
Control cards, 202
Control structures, 43-51
CORRESPONDING, 135
CP/M, 216-19

DATA, 74
Data bases, 14-15
Data division, 120,150
Data entry, 3-8

BASIC, 73-6
COBOL, 119,141
RPG, 204

Data files see Files
Data types, 191
Debugging, 30

244 Computer Programming Languages in Practice

Decision making, 21, 24-7
Decision tables, 24,26
DEF FN, 69-70
DELETE

BASIC, 83
COBOL, 147

Designing programs, 15
Diagnostic programs, 3
DIM, 78-9
Direct access, 13-14
Disk/diskette files, 146-8
Displaying data, 6-7

BASIC, 86-9,172-4
COBOL, 123-4,133-4

DISPLAY, 86-8, 92,133-4
DIVIDE, 131-2
Divisions of COBOL, 110-12,

116-27
Documentation, 17-27
DRAW, 180-2

EBDIC, 10
Editing

BASIC, 90-1
COBOL, 123-4
RPG, 211

Elements, 39,151-2
END

BASIC, 101
COBOL, 143

ENTER, 159
Entry, 28-9
Environment division, 111, 119,

141
Errors see Bugs
Evaluation, 41-2

BASIC, 63, 92-3
COBOL, 135-40

Execution, 30
EXIT, 159
Expressions, 40-2

BASIC, 58-60, 63, 65
FORTRAN, 189-91

FIELD, 80
Fields, 10-11

Files, 11-14
BASIC, 80-6
COBOL, 140-8
RPG, 202-13

Flowcharts, 18-25, 46, 47, 49, 50,
200

FOR/DO, 47
FOR/NEXT, 95-7
FORTRAN, 185-95

relational operators, 36
Functions, 40

BASIC, 59, 68-70
FORTRAN, 192

GET, 84,183
GIVING, 129
Glossary, 221-31
GOSUB, 50-1, 96-8
GOTO, 50-1

BASIC, 98
COBOL, 138

Graphics, 172-4,185

Hardware, 1
High-level languages, 1, 8

Identification division, 111, 118-19
IF/THEN/ELSE, 46

BASIC, 98-100
COBOL, 137-8

IMAGE, 87, 90-1
Indexed access, 14,146
INDEXED BY, 151-2
Indicators, 198
INPUT, 76-7, 79
Input see Data entry
INSPECT, 157
Intermediate code, 30
Interpreter, 30-1

Keyboard, 5-6
BASIC input, 76-8
COBOL, 133-4

Keyed access see Indexed access
Keywords, 31-2

BASIC, 59,175

Index 245

COBOL, 113-14
FORTRAN, 186-8

Languages, general, xiv, 16
high-level, 1,8
components, 29-53
old and new, 171-220

Layout, 90
LET, 93
Levels, 121-2,160
LINE, 178
Literals, 38,134
Logical operators

BASIC, 65-6
COBOL, 136
FORTRAN, 188-9

Loops, 24, 46-50, 94-7

MARK, 83
MAT, 79
Modules, 160
MOVE, 134
MULTIPLY, 130-1

Naming
BASIC, 61
COBOL, 120,126
FORTRAN, 189
RPG, 202, 204

NOT, 136
Numeric

arrays, 39
constants, 38, 60
data, 123
fields, 10-11
variables, 37, 60-2

Object program, 198
OCCURS, 149-51
ON/GOTO, 50-1
ON SIZE ERROR, 127-9,132
OPEN

BASIC, 82
COBOL, 141-2,145-6

Operating systems, 216
Operators, 33, 36-7

BASIC, 60, 62-6
COBOL, 127-32
FORTRAN, 188
precedence, 41-2
RPG, 208

OR, 65-6,136
Organisation, 12-14,114,192-5
Output, 3-8, 206

see also Printing

PAGE, 144
PAINT, 178-80
Parentheses, 42, 63, 132
PAUSE, 101
PERFORM, 126-7,139-40

number TIMES, 47-8
/UNTIL, 49
VARYING, 154

PICTURE, 120-1,148
Planning files, 12-14
Precedence see Evaluation
Preparing programs, 15
PRINT, 87, 89-90, 92
Printing, 4-5

BASIC, 89, 93
COBOL, 123-4,143-4

Priority see Evaluation
Procedures, 42-51,124-32
Program generators, 195-6
Programming profession, xiv
Programs, general, 2-3,15-18
PSET/PRESET, 182
Pseudocode, 24-7
Punctuation, 32

BASIC, 71-2
COBOL, 123-6

PURGE, 82
PUT, 84,184

READ
BASIC, 75, 79, 83
COBOL, 141-2,145-8

Records, 11
Relative access, 147-8
Relational operators, 36

BASIC, 64

246 Computer Programming Languages in Practice

COBOL, 136
FORTRAN, 188-9

REM, 56, 71,100
REMAINDER, 131-2
REPEAT/UNTIL, 49
Repetition see Loops
Report Program Generator see

RPG
Reserved words see Keywords
RESTORE, 74-6, 83
RETURN, 96-8
REWRITE, 147
RND, 101
ROUNDED, 126-9,132
RPG, 195-216
Run-time see Execution

Sample programs
BASIC, 101-6
COBOL, 160-7
FORTRAN, 195
RPG, 213-16

Screen display, 6-7
BASIC, 86-8,91
COBOL, 123-4,133-4
graphics, 172-85

SEARCH (ALL), 152-4
Sections, 126
Sequential access, 13,155
SET, 152
Size of files, 13
Small business, xi-xii
Software, 1-2
SORT, 154-5
Source statements, 16, 31-51

BASIC, 70-101
COBOL, 124
RPG, 197

Specifications, 15,197,202, 207-13
START, 147
Statements, 31-51

BASIC, 70-101
FORTRAN, 189-91

STOP, 101,159,210

Storage units, 6-8,12
see also Files

STRING/UNSTRING, 155-7
String

arrays, 39,155-6
constants, 38, 60
operators, 66
variables, 37, 60-2

Structured programming, 43-51
Subscripts, 40
SUBTRACT, 130
Symbols, 18-25

COBOL, 125
edit mask, 90-1
FORTRAN, 188

System functions, 68-70
Syntax diagrams, 31-3

BASIC, 71-2
COBOL, 124-6
FORTRAN, 186-8

TAB, 88, 89,92, 207
Tables, 148-54
Tape files, 144-6
Testing programs, 16-17
Types of programs, 2-3

UPDATE, 83
Utility programs, 2-3

VALUE,122-3
Variables, 37

BASIC, 59-62
FORTRAN, 189

Volumes, 12

WHILE/DO, 49-50
WRITE

BASIC, 83

COBOL, 141-4,145-7

XOR, 184-5

Zones, 91-2

